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Abstract 

An Engineering Companion to Mechanics of Materials is the first volume 
in the Momentum Press collection The Modern Engineering Companions: 
A Systems Approach to the Study of Engineering. In Mechanics of Materials, 
we apply the intuitive “systems approach” to learning, the advantages of 
which are several. The student first gets a broad overview of the entire 
subject rather than the narrow piecemeal vision afforded by the 
traditional “component approach” common to most engineering texts. 
Mechanics of Materials comes with additional features to improve 
student learning, including Common Confusing Concepts (C3) noted 
and clarified, indication of key concepts, side bar discussions, worked 
examples, and exercises for developing engineering intuition. The 
Companions are intended as a supplementary resource to help both 
undergraduate, graduate, and post-graduate students better learn and 
understand engineering concepts. 
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Preface 
An Engineering Companion to Mechanics of Materials is the first volume 
in the Momentum Press collection The Modern Engineering 
Companions: A Systems Approach to the Study of Engineering. Mechanics 
of materials is a fundamental engineering topic concerned with the 
response of structures to loads. It is a typical course of study in most 
engineering curriculums, often taken in the second year along with 
associated courses in statics and dynamics.  

In Mechanics of Materials, we apply the intuitive “systems 
approach” to learning to the study of mechanics of materials. The 
advantages of the systems approach are several. The student first gets 
a broad overview of the entire subject rather than the narrow 
piecemeal vision afforded by the traditional “component approach” 
common to most engineering texts. Crucial, core topics can be 
reached early to provide motivation for student learning. Rather than 
studying a component and then leaving it behind, never to be 
considered again, the systems approach continually passes through 
components, reviewing and refreshing, then adding layers of 
increasing complexity. 

Mechanics of Materials comes with additional features to improve 
student learning, including indication of key concepts, side bar 
discussions, worked examples, and exercises for developing engineering 
intuition. It is suitable as a text for a first undergraduate course, or as a 
companion for the advanced undergraduate, beginning graduate 
student, and the practicing professional in engineering. 

The sole purpose of the Engineering Companions collection is to 
dramatically improve the learning of STEM (science, technology, 
engineering, and mathematics) topics for students of engineering. The 
Companions are intended as a supplementary resource to help both 
undergraduate and graduate students better learn and understand 
engineering concepts. They will also be found useful to the engineering 



xii           PREFACE 

 

post graduate looking to brush up on a topic long since forgotten. In all 
cases, it is assumed that Companion readers have a textbook, homework 
assignments, problem solutions, etc., either from a current course or a 
course previously taken. Unfortunately, what they also have is confusion 
and limited understanding of one or more crucial concepts in the subject. 

Mechanics of Materials is of modest length with the intent of giving the 
reader an effective and efficient enhancement of important underlying 
concepts and applications, rather than trying to provide an expansive or 
comprehensive treatment of the foundational fields. Mechanics of 
Materials is an Engineering Fundamentals volume, which covers basic 
engineering topics most common among the various disciplines. 

Books in this collection will appeal to college instructors as texts in 
fundamental and advanced topics courses, to students as a learning 
resource, and to practitioners in the field at all levels. The books will 
also be appealing to the technically savvy reader who wants a quick, but 
effective, orientation to collection topics though their background might 
be in a different technical field.  

Navigating the Mechanics of Materials Companion 

Nearly every mechanics of materials text has the chapters arranged by 
components (topics) of the subject. After an introductory chapter, there 
appear chapters on stress and strain, axial structures, torsion structures, 
beams, combined loading, etc. This is a perfectly reasonable approach for 
a reference handbook, typically consulted after one has learnt the subject. 
But it is non-optimal to support primary learning for the reasons already 
discussed here and the Engineering Companion Preface.  

This Companion approaches achieving the learning objectives by 
expanding circles of increasing complexity. After an introductory chapter 
on fundamentals (Level 0 or Chapter 1), the next “circle” -- Level 1 
(Chapter 2) considers configuration, equilibrium, deformation, and 
constitution for all three “strength design” structures (rod, shaft, 
beam). Level 2 adds complexity to what has come before, e.g., 



PREFACE           xiii 

 

introducing the simpler combined flexure-torsion loading. Finally, 
Level 3 adds still more complexity, such as full tension-torsion-flexure 
combined loading. 

A word about figure numbering is in order. There are four uses of 
figures in this Companion: introduction/motivation (I), representative 
problems (RP), examples (E), and general text. Thus a figure labeled 
Figure I1.2 is the second introductory/motivational figure in Chapter 1, 
Figure E3.4b is the second figure in the fourth worked example in 
Chapter 3, and so on. A figure label without an I, RP, or E is a figure in 
the general text.  

Other Features 

The Engineering Companions incorporate many additional features to aid 
in learning: 
 

• Consistent nomenclature from volume to volume 

• Chapter learning objectives and their practical importance 

• Sidebars highlighting key concepts 

• Common Confusing Concepts (C3) noted and clarified 

• Summary of key concepts  

• Worked examples that demonstrate concepts 

• Exercises to build engineering intuition 

How to Use a Companion 

The best way to use the Companion for your subject is start at the 
beginning and work your way through to the end. The Companion will 
lead you through the subject in an ever expanding pattern of increasing 
knowledge and complexity, while not losing the big picture of where 
you’re going. However, should you want, say, as a refresher to follow the 
traditional path along a component, a traditional Component Index is 
there to guide you. 
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The ultimate success of any Engineering Companion will be measured 
by the extent to which confusing concepts are made clear (or at least 
clearer). That is our mission: to make clear the unclear. We wish the 
reader the best in their search for clarity.  

—Chris Jenkins Bozeman, MT 
Sanjeev Khanna Columbia, MO 

March 2015 



CHAPTER 1 

Fundamentals 
Learning Objectives: This chapter will provide the student with a 
systematic introduction to fundamental concepts in the study of 
mechanics of materials. Along the way, we will clear up several common 
confusing concepts (C3s). 
Clarifications: Studying this chapter will help clarify several C3s, 
including definitions, physical concepts, methods of analysis, and where 
to go for help.  
Importance: The design of structures crosses many disciplines and has a 
long history. Some of the earliest structures were civil structures, mostly 
habitats like tents and huts. Simple mechanical structures also were in 
early use, such as levers, and supports for processing and cooking game. 
Later, marine structures such as rafts and canoes came into existence. 
Other structures followed, including carts, construction equipment, and 
weapons. Roads, aquaducts, and bridges were built. Much later, early 
aerospace structures, such as balloons and parachutes, appeared. 

Today, the fields of aerospace, civil, marine, and mechanical 
engineering are all involved in structural design. On a cursory level, we 
can define a structure as any physical body that must carry loads (other 
than its own weight), and hence develops stresses and strains. Often times 
these stresses and strains are trivial, and the body can be considered a 
secondary structure. However, 
in many cases, inadequate 
design for carrying loads can 
lead to significant, even 
catastrophic, failure in primary 
structures, those structures that 
have a primary function to 
carry loads. Unfortunately, examples of such failure are readily found, 
including the Tacoma Narrows Bridge disaster, the Kansas City Hyatt 

C3 

1.1 The word “structure” is used 
differently here than in my 
chemistry class. Why? 
(Answer: Section 1.6) 
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Regency skywalk collapse, and the space shuttle Challenger explosion. 
Adequate structural design is critically important! 

1.0 Representative Problems 

The following is an example problem that exhibits some fundamental 
concepts from mechanic 

RP1.1. Equilibrium 

Consider an equilateral truss loaded as shown in Figure RP1.1a. 
Determine the internal forces in the truss. 

 

Figure RP1.1. 

1.1 Mechanics and materials 

Applied mechanics and 
materials science are broad 
fields of human endeavor 
with long histories. Mechanics 
deals with the theoretical and 
experimental analysis of forces 
on material bodies, and the 
resultant motions and deformations that follow. Materials science is 

C3 

1.2 My mechanics of materials 
course and text have very little in it 
about “materials”. Does it matter? 
(Answer: Section 1.6) 
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concerned with the atomistic structure of material and the properties 
resulting therefrom. For our purposes here, a working, albeit over-
simplified, definition is taken to be: mechanics is physics, materials 
science is chemistry.  

Today, examples abound which show the need for engineers and 
scientists who have an integrated, interdisciplinary background that 
bridges mechanics and materials science. Consider, for example, the 
important and active area of high-performance composite materials.  

Here, an intimate knowledge of structure-property relations is 
demanded for technological advancement. Bulk response can be 
predicted in an averaged sense using a mechanics approach, which is 
necessary to design a real composite structure; but only knowledge of 
the fine-scale (micro- to nano-scale) structure-property relations and 
interactions among the constituents can lead to an optimal 
“engineering” of these materials for an intended application. 

Other topics of current interest include: computational modeling of 
materials with evolving microstructures; advanced manufacturing and 
processing challenges to mechanics and materials; mechanics and 
statistical physics of particulate materials; mechanics and materials 
science of contact; and processing and mechanics of nanoscale, 
multilayered materials. We will show in what follows that every 
structural design should be an integration of mechanics and materials 
technology. 

1.2 Loads and Structures 

1.2.1 Structural Loads 

In structural design, we use the term “loads” to mean forces and 
moments applied to the structure, either externally on the surface 
(surface loads), or developed within the structure (body loads). (Recall 
that moments are forces acting through a “moment arm” so as to 
produce torsion or flexure.) 

Loads are further considered to be either static or dynamic. Static 
loads are loads that do not depend on time, i.e., they are of constant 
magnitude, direction, and location. Although it might seem that certain 
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structures are static, for example, on a civil structure such as a building, 
this is rarely the case. “Live loads” from occupant activity, wind loads, 
seismic (earthquake) loads, thermal cycling, etc., all may give rise to a 
dynamic load environment. However, if the loads vary slowly with time, 
they are often considered quasi-static, and taken as static loads. (Slowly 
usually means that structure inertia force due to accelerations may be 
neglected with respect to the difference of the externally applied forces 
and the internal resistance forces.) 

Dynamic loads are divided into two main categories: 
 

 1. Steady-state loads are loads that maintain the same character 
(frequency, amplitude, etc.) over the long-term. 

 2. Transient loads are loads that change their character (for example, 
they may decay) with time. 

 
Common structural loads are summarized in Table 1.1.  

Table 1.1. Summary of common structural loads.  

Surface Loads 
(Common name) 

Units 
SI (US) 

Body Loads 
 

Units 
SI (US) 

Concentrated force 
(‘‘Point load’’) 

N  (lb) Gravitational force 
(‘‘Gravity load’’ or ‘‘weight’’) 

N  (lb) 

Distributed force 
(‘‘Line load’’) 

(‘‘Pressure’’) 

N/m   (lb/in) 
N/m2  (psi) 

Thermal stress 
(‘‘Thermal load’’) 

N/m2  (psi) 

Moment or couple 
(‘‘Bending moment’’ 
‘‘Torsion moment’’) 

N-m  (lb-in)   

The orientation of the load 
on a structural member is also 
important. Although this issue 
will be discussed in more detail 
in latter chapters, a brief 
summary is given in Figure 1.1.  

C3 

1.3 Can a “line” load or a “point” 
load really exist? 
(Answer: Section 1.6) 
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Figure 1.1. Simple load orientations. Single headed arrows are forces, 

double headed arrows are moments (and follow the right hand rule). 

1.2.2 A Taxonomy of Structures 

Humans have always tried to understand complex systems by 
“decomposing” them into a number of simpler, more manageable parts. 
The hope is that when this compartmentalized knowledge is “summed 
up” (synthesized), an accurate representation of the whole system results. 
While this approach has worked well in countless human enterprises, it 
is based on the linear assumption of superposition, which fails as systems 
become nonlinear and more complex. 

Forewarned by this knowledge, we will attempt here a taxonomy 
(classification) of structures (complex systems) by decomposing them into 
their structural elements (simpler parts). Most real structures are 
comprised of a number of different types of structural elements, any one 
of which may assume a variety of different roles. The primary 
characteristic used to classify a structural element is: how does it carry 
loads? 

Carrying loads is the primary function of a structure, and it is this 
characteristic that largely determines the form of the structural elements. 
Loads carried include: tensile and compressive axial loads; shear loads; 
torsion moment loads; bending moment loads; distributed loads; gravity 
loads; and thermal loads.  
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Structural forms fall into two major categories: line-forming and 
surface- forming; surface-forming elements may be further subdivided 
into area-forming and volume-forming elements. A taxonomy of 
structural elements is given in Table 1.2. 

A review of Table 1.2 reveals that beams, plates, and shells are 
structural elements fully capable of carrying all types of loads. Specialty 
elements such as cables, rods, and membranes carry limited types of 
loads. Schematics of the elements are shown in Figure 1.2. 

Line-forming elements (LFEs) are slender structures having one 
spatial dimension (length) significantly greater than any other 
dimension (width, height, thickness, etc.). Schematically, for analysis 
purposes, LFEs may be represented as lines, either straight or curved as 
required. LFEs may carry loads in tension, compression, torsion, 
bending, or some combination of these, depending on the nature of the 
applied loads, structural geometry, material properties, and boundary 
conditions. LFEs may form axial, torsional, or bending structures such as 
rods, cables, and beams. 

Table 1.2. A taxonomy of structural elements. 

FUNCTION FORM 

� Line-forming Surface-forming 

    Area-forming Volume-forming 

Loads carried: Cable Rod Beam 
Plane 

membrane Plate 
Curved 

membrane Shell 

Tensile axial � � � � � � �

Compressive 
axial 

- � � - � - � 

Direct shear - - � - � - �

Torsion moment - � � - � - �

Bending moment - - � - � - �

Distributed force �  � � � � �

Thermal � � � � � � �
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Figure 1.2. Schematic of basic structural elements. 
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 1. Rods carry concentrated axial forces in either tension or 
compression (no moments or transverse forces). Thus they are axial 
structures. Only pinned (“simply supported”) boundary conditions 
are required. Cross-sectional geometries may take any shape, but 
simple shapes are most common, such as circular and rectangular. 
The cross-section may be solid or hollow. 

 2. Cables carry concentrated axial tensile forces (but not compressive 
axial forces – “you cannot push a rope”!), as well as concentrated or 
distributed transverse forces (but not moments!). In the latter case, 
cables deform under the action of these transverse loads in such a 
way that they remain axial structures (specifically “no-compression 
axial structures”). (Of course, in the former case of axial loads, 
cables are by definition axial structures.) As with rods, only pinned 
boundary conditions are required. Cross-sectional geometries may 
be of any shape, but solid circular cross-sections are common. 

 3. Beams are the most complete LFEs since they can carry axial 
compressive or tensile forces as in rods or cables, as well as 
transverse concentrated or distributed forces as in cables; moreover, 
they can carry torsion and bending moments. In cases where 
moments are applied, at least one boundary condition must be able 
to support moment reactions (for example, a “fixed” or “built-in” 
condition). Cross-sectional shapes may be of any geometry, solid or 
hollow. 

 
Surface-forming elements (SFEs) are thin structures having two spatial 

dimensions (length and width) significantly greater than the third 
dimension (thickness). Schematically, for analysis purposes, SFEs may 
be represented as surfaces, either straight or curved as required. SFEs 
may carry loads in tension, compression, torsion, bending, or some 
combination of these, depending on the nature of the applied loads, 
structural geometry, material properties, and boundary conditions. SFEs 
may form axial, torsional, or bending structures such as plates and shells. 
Being more complicated structures, SFEs are outside the scope of this 
book and will not be described further. 
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1.2.3 Boundary Conditions and Determinacy 

It should be obvious that if a structure is not tied down somewhere, it 
will not be able to carry loads in many situations. Imagine trying to 
hang a weight from a hook not connected to the ceiling! Thus we see 
that the conditions at the structure boundaries, i.e., the boundary 
conditions, are critically important in structural design and analysis. 

A number of “idealized” 
boundary conditions can be 
defined mathematically. (We 
say “idealized” since some 
boundary conditions may not 
be physically realized exactly.) 
Mathematically, boundary conditions provide additional equations of 
constraint. If there are fewer constraints than the minimum required, the 
structure is under-constrained and unstable. If there are more constraints 
than the minimum required, the structure is over-constrained. The 
structure is statically indeterminate if there are fewer independent 
equations available than unknowns to solve for, respectively. (See 
Examples 1.2 and 1.3 for further discussion on determinacy.) 

For a truss, the degree of indeterminacy i is given by: 

 i = m + r – 2(j) (1.1) 

where 
m = total number of members 
r = total number of unknown boundary reactions 
j = total number of joints 
If i = 0, the truss is statically determinant; if i ≥ 0, the truss is statically 

indeterminant. 
 

A number of common boundary conditions are provided in Table 
1.3 and Figure 1.3. 
  

C3 

1.4 Is a statically indeterminate 
structure a bad structure? 
(Answer: Section 1.6) 
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Table 1.3. Common boundary conditions. The prime or ′ symbol 

indicates differentiation with respect to a spatial coordinate, i.e., a 

gradient or ‘‘slope’’. 

Name (other 
names) Translation Constraint 

Rotation 
Constraint 

Free --- 2D or 3D None None 

Fixed (clamped) --- 2D or 
3D 

No translation  
(u = v = w = 0) 

No rotation 
(u′ = v′ = w′ = 0) 

Ball and socket (swivel) 
--- 3D 

No translation 
(u = v = w = 0) 

None 

Simple (pinned) --- 2D No translation 
(u = v = 0) 

None 

Simple (roller) --- 2D No translation ⊥ to roller surface 
(e.g., v = 0) 

None 

 

 

Figure 1.3. Some examples of boundary conditions listed in Table 1.3. 
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An example of a real boundary condition can be seen in the pin joint in 
the truss shown in Figure 1.4. 

 

 

Figure 1.4. (a) Pin joints in a truss. (b) Pin joint detail. 

Example 1.1. Statically equivalent forces and moments 

Determine the reactions for the cantilever beam with a distributed load 
as shown in Figure E1.1a. 

Figure E1.1a shows a cantilever beam with a distributed triangular 
load of peak magnitude q0 per unit length. 
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Figure E1.1a. 

We know that the fixed or clamped boundary at A provides both 
translation and moment resistance. We have the equilibrium equations 
to apply globally. What we need is how to deal with the distributed 
load. What would be convenient is to replace the distributed load with a 
concentrated force F (magnitude and location to be determined) that 
resulted in an equivalent static response, i.e., resulted in the same 
reactions, internal forces and moments, etc., as the original load. 

First, we want the equiva- 
lent concentrated force F to 
represent the same total load 
as the distributed load. If we 
recognize that the distributed 
load q(x) is a linear function of the form y = mx + b, the slope of the 
function m = q0/L and the y-intercept b = 0. Then q(x) = (q0/L)x = 
q0(x/L). Setting F equal to the total load gives: 

 ( )
2

0 0 0
0

0 0

  |
2 2

L L
Lq q q Lx

F q x dx x dx
L L

= = = =� �  

So now we know the magnitude of F, we need to determine its location 
xF so that the beam experiences the same total moment. Thus we set the 
moment of F equal to the moment provided by q(x): 

 
( )

23
20 0 0

0
0 0

  |
3 3

L L
L

F
q q q Lx

Fx xq x dx x dx
L L

= = = =� �
 

  

C3 

1.5 Why is integration needed here? 
(Answer: Section 1.6) 
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Then the location xF is: 

 2 2
0 0

0

1 2 2
3 3 3F

q L q L L
x

F q L
= = =

 

This is exactly the location of the centroid of the triangular 
distribution (see Figure E1.1b)! 

 

Figure E1.1b. 

Example 1.2. Statically determinate or indeterminate 

Let’s check the truss in RP1.1 to see whether or not it is statically 
determinate.  

 

Figure E1.2. 

Referring to Figure E1.2 (same as Figure RP1.1), we see there are 
three members, three joints, and three (possible) unknown reactions 
(RAx, RAy, and RBy). Then Equation (1.1) gives: 

 i = 3 + 3 – 2(3) = 0 
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This truss is thus statically determinate. 

Example 1.3. Statically determinant or indeterminate. Determine 
whether the trusses in Figures E1.3a and E1.3b are statically determinate 
or indeterminate. 

 

Figure E1.3a. 

The above truss has five members, four joints, and three (possible) 
unknown reactions (two translation and one rotation). Then Equation 
(1.1) gives: 

i = 5 + 3 --- 2(4) = 0 

This truss is thus statically determinate. 

 

Figure E1.3b. 

The above truss has six members, four joints, and three (possible) 
unknown reactions (two translation and one rotation). Then Equation 
(1.1) gives: 

i = 6 + 3 – 2(4) = 1 

This truss is thus statically indeterminate. 

1.2.4 Materials 

Every structure is a material. The response of a structure is intrinsically 
interrelated among geometry, boundary conditions, loads, and material 
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properties. One of the most basic of material properties is mass, which 
we take a look at next. 

Mass, density, and weight  

Students often find the 
concepts of mass, density and 
weight confusing. This is 
exacerbated by the confusion 
in systems of units (see the 
review section in the 
appendix), and by the fact that 
two types of density are often reported: mass density and weight density. 

By definition we take density to mean mass density �, specifically the 
mass per unit volume of a given material. Mass relates to the amount of 
material; unit volume could be a cube, say, 1 mm on a side (but it could 
also be a spherical unit volume, etc.). The mass of a given material is the 
same anywhere in the universe, and hence is a very fundamental 
property. The mass density then quantifies how tightly packed is that 
material. Units of mass are, for example, kilogram or slug; units of mass 
density are, for example, kg/m3 or slug/ft3. 

Weight, on the other hand, is a force, specifically the gravitational 
force. It depends both on the material (its mass) and the intensity (i.e, 
acceleration g) of the local gravitational field: 

 w = mg (1.2) 

Units of weight are force units, like newton or pound. Weight 
density is also commonly used, i.e., the weight per unit volume; 
unfortunately, the same symbol is often used for weight density as for 
mass density, and sometimes simply density is reported without 
definition, and one has to take special note of the units used. 

We recognize that the weight of an object on the moon is about 1/6 
of its weight on earth. Same mass, different weight! Thus we take mass 
or mass density as fundamental, not weight. 
  

C3 

1.6 How do I know whether the 
density value is mass density or 
weight density? 
(Answer: Section 1.6) 
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It is common to talk about wanting to minimize the weight of a 
structure. That’s a bit sloppy, because what we really want to do is 
minimize the mass of the structure. This can be done either by reducing 
the density (again, we take density in this text to always mean mass 
density), or by reducing the volume of material—either way, we reduce 
the mass, and for a given gravitational field, reduce the weight. 

1.3 Strength and Stiffness 

When we think of a structure carrying loads, two primary questions 
must be asked: 
 

• Is it strong enough? 
• Is it stiff enough? 

 
In other words, we wish to know how well the primary functional 

requirement of a given structure—carrying loads—is performed; this is 
the primary role of structural analysis. (Ultimately, a number of other 
questions must be asked as well, such as: Is it light enough? Cheap 
enough? Repairable enough? …) 

Strength and stiffness are independent quantities that depend on the 
constituents of the material in different ways. We’ll come to understand 
these concepts more in later sections as well. At this point, we just 
mention that strength considerations are usually of greater importance 
in structures than stiffness. If you carry a load with a large rubber band, 
you are usually not too worried if it stretches quite a bit, as long as it 
doesn’t break (i.e., as long as it is strong enough). However, if the band 
stretches too much, your arms may not be long enough to keep the load 
from interfering with the ground, and now stiffness (or lack of it!) does 
become of concern. 

An important issue we cannot avoid is: “How much is enough?” 
Unfortunately, the answer is a somewhat unsatisfying—“It depends.” It 
depends on the application, the failure mode, how catastrophic would 
be the failure (for example, loss or injury of human life), the past history 
of similar designs, how well known are the loads and material properties, 
etc. In any case, we must always compare what we have (stress, strain, 
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deflection—the load effects) to what we can allow (strength, stiffness—
the resistance). This comparison is done generally in one of two ways (a 
third being a combination of these two): resistance factor design and load 
factor design (the third being load and resistance factor design). 

By way of illustration, one common, elementary approach to 
determining “enough” is to define a factor of safety FS (some might say 
factor of ignorance!) that tries to account for the effect of many of the 
issues described above into one quantity. The factor of safety (FS ≥ 1) is 
applied to the resistance side of the comparison, and as such creates a 
knockdown factor resulting in an allowable resistance. For example, if the 
resistance considered is strength, then we have: 

 max
failureS

FS
σ=  (1.3) 

where  
Sfailure = designated failure strength (tensile yield, tensile ultimate, 

compressive yield, etc.) 
σmax = maximum stress (at the critical section) associated with the 

appropriate failure mode (shear, von Mises, etc.) 

The most general form of the comparison is through load and 
resistance factor design (LRFD): 

 
1

I

i i
i

R Qα β
=

= �  (1.4) 

where 
α = resistance factor (≤ 1) 
R = nominal resistance  
βi = ith load factor (usually > 1) 
Qi = ith nominal load effect, associated with the ith nominal applied load, 

I total loads being applied. 

We will not pursue this later approach in this text. Organizations 
such as the American Institute for Steel Construction (AISC) provide 
tables of load and resistance factors for various applications. 
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1.4 Modeling and Analysis 

1.4.1 Characteristic Tasks in Structural Analysis 

Structural analysis supports structural design. Structural analysis can 
include a variety of tasks aimed at understanding the complex response 
of structures, specifically the resultant stress, strain, and displacement to 
applied loads, which answer the questions about strength and stiffness. 
A sample of such tasks is given below: 
 

• Loads analysis 
• Strength analysis 
• Stiffness analysis 
• Natural frequency analysis 
• Dynamic response analysis 
• Damping analysis 
• Thermal (heat transfer) analysis 
• Thermoelastic (thermal deformation) analysis 
• Structural life (fracture, fatigue) analysis 
• Mass property (weight, center of gravity) analysis 
• Precision (shape and position accuracy) analysis 
• Sensitivity (of the design to perturbations or small changes) 

analysis 

1.4.2 Methods of Structural Analysis 

Structural analysis consists of three fundamental parts: 
i. Equilibrium. Here we consider forces, moments, and the 

application of Newtonian mechanics (or the potential and kinetic 
energies and the application of Lagrangian mechanics), and stress. If 
the body is in global equilibrium, then every local particle of the 
body is also in equilibrium. Equilibrium implies negligible 
accelerations (inertia forces), and hence implies static analysis. 
(Dynamic analysis would consider the motion of the body, requiring 
inertia forces in the full equations of motion.) 
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ii. Deformation. Here we consider the geometry of material particle 
displacement and the concept of strain. We assume that any material 
is continuous and fully populated with material particles (the 
continuum hypothesis). We further assume in this text that 
deformations are small enough that only a linear analysis is required. 

iii. Constitution. Stress and strain are dual quantities that are intimately 
related within a given material/structural system. These are stress-
strain relations. 

The methods of structural analysis are mathematical analysis and 
experimental analysis. Mathematical analysis may result in closed-form 
solutions, series solutions, asymptotic solutions, numerical solutions, etc. 
There are two major approaches for performing mathematical analysis: 
Newtonian or vector mechanics and Lagrangian or scalar mechanics. 
Except for relatively simple structural problems, numerical solutions are 
usually required. The direct stiffness method, and its descendant the finite 
element method, are the most ubiquitous and powerful numerical 
methods for structural analysis today.  

Newtonian or vector mechanics is the most common for structural 
analysis for at least two reasons. First, it is the most intuitive due to the 
arrow-like representation of forces, displacements, etc. Second, vector 
mechanics solves for the critical quantities like internal forces and 
moments directly. The central tool used in Newtonian analysis is the 
Free Body Diagram (FBD). The FBD is used to account for all forces 
and moments when applying Newton’s laws. (See Appendix 2 for 
further details.) 

Experimental analysis involves the testing of real or prototypical 
structures, and uses various techniques to assess strain and/or 
displacement. Some of these experimental techniques are: 

 
• Strain gages 
• Optical interferometers 
• Extensometers 
• Videography 
• Thermography 
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Quite often, combinations of mathematical and experimental 
methods are used. Many standard results are available in reference 
sources (see Section 1.8). 

In every case of analyzing real structures, certain assumptions about 
their behavior or character must be made. This leads to an idealized 
structure model that will be divorced from the real structure to some 
greater or lesser degree. The engineer must always be aware of this 
discrepancy. 

1.5 Structural Design 

In this section we review some concepts from statics that will be useful 
later in the analysis and design of structures. 

RP1.1. Equilibrium  

Consider an equilateral truss loaded as shown in Figure RP1.1. 
Determine the internal forces in the truss. 

The symmetric truss problem (symmetric geometry about the line of 
action of the load) that follows is a good place to start because intuition 
tells us that the reaction loads should also be symmetrical about the line 
of action (the dashed line in the figure). In this case, since the total 
global reaction equals the load, or RA + RB = 10 N, the individual global 
reactions must be equal, or RA = RB = 5N. 

 

Figure RP1.1a. 
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Also note that the action of the load will try to increase the x-
distance between joints A and B. But the truss member AB resists that 
spreading so the boundary conditions don’t have to! In fact, for this 
problem both boundary conditions could be rollers without changing a 
thing. It’s just good structural design to restrain the structure from rigid 
body motion in case the load isn’t perfectly vertical. 

Let’s verify our intuition by checking global equilibrium. In 
Example 1.2 we’ve already verified that this truss is statically 
determinate and thus should be solvable. So next we need a FBD of the 
entire truss (Figure RP1.1b): 

 

 

Figure RP1.1b. 

Applying the equilibrium equations globally now:  
    0 :    10  0      10 y A B A BF R R N R R N+ ↑ = + − = � + =� �
 0 :  10 *1   * 2 0    5A B BM N m R m R N+ = − + = � =�� �
Note that the global reaction forces RA and RB are assumed to be acting 
in the +y-direction, opposing the applied load. This is the only choice 
that makes physical sense. But for static problems, the assumed direction 
doesn’t matter since the sign of the solution will tell you whether you 
got the direction correct (positive solution) or wrong (negative solution). 

This is the answer we expected. (Note that since there were no 
reaction forces in the x-direction, ∑Fx = 0 was automatically satisfied.) 
  

Note that the global reaction 
forces RA and RB are assumed 
to be acting in the +y-
direction, opposing the 
applied load.  This is the only 
choice that makes physical 
sense.  But for static problems, 
the assumed direction doesn’t 
matter since the sign of the 
solution will tell you whether 
you got the direction correct 
(positive solution) or wrong 
(negative solution). 
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Note that the internal reaction 
forces FAD and FAB are assumed 
to be acting as shown. This is 
the only choice that makes 
physical sense. But for static 
problems, the assumed direction 
doesn’t matter since the sign of 
the solution will tell you 
whether you got the direction 
correct (positive solution) or 
wrong (negative solution). 

Now let’s apply the equilibrium equations locally to determine the 
internal reaction forces in the truss members. We need a local FBD of 
the truss, a FBD that contains at least one known force, such as joint A 
(Figure RP1.1c). 

Note that the internal reaction forces FAD and FAB are assumed to be 
acting as shown. This is the only choice that makes physical sense. But 
for static problems, the assumed direction doesn’t matter since the sign 
of the solution will tell you whether you got the direction correct 
(positive solution) or wrong (negative solution). 

 

Figure RP1.1c. 

Now we apply the equilibrium equations locally. In order to do that, 
we need to resolve FA into x and y components. Then, with θ  = 60 

degrees:  
    0 :    0     x AD AB AB ADF F cos F F F cosθ θ+ → = − + = � =� �

 
5.00 0 :    0    5.77
0.866

A
y A AD AD

R N
F R F sin F

sin
θ

θ
+ ↑ = − = � = = =� N �

Knowing FAD allows us to solve for FAB from the first equation 
above, or FAB = 5.77 N * 0.5 = 2.89 N. (Note that since the line of 
action of all forces pass through joint A, ∑MA = 0 was automatically 
satisfied. Also note that we’ve assumed we know the load, and hence RA, 
to at least three significant figures, i.e., 10.0 N and 5.00 N, respectively. 

The last activity left is to ask: Does our result make sense? Let’s take 
one more look (Figure RP1.1d): 
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Figure RP1.1d. 

Note two things: 
 
 1. The vector addition of forces is correct, i.e., 5.002 + 2.892 = 5.772. 
 2. Intuition suggests that as theta decreases, AB and AD approach 

parallelism and would carry equivalent loads. As theta increases, the 
load carried by AD increases and that by AB decreases. (You may 
need to sketch these for it to make sense.) If we plot our solutions 
for FA and FAB Figure RP1.1e), this exactly what we have: 

 

Figure RP1.1e. 
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1.6 C3 Clarified 

C3 1.1 The word “structure” is used differently here than in my 
chemistry class. Why? 

Answer. Unfortunately, our language contains many words with 
dual meanings and this makes learning even more challenging than it is 
already! We cannot escape and the best we can do is be internally 
consistent (for example, see the discussion on moment of inertia). 
Another meaning of the word “structure” is “organization” and a 
chemist might talk about the structure of bonds in a certain polymer, 
that is, the organization of the bonds.  
C3 1.2 My mechanics of materials course and text have very little in it 
about materials. Does it matter? 

Answer: Yes it does! Every structure is a material and structural 
performance depends greatly on material performance. For example, 
consider axial stiffness EA/L—it is easy to see the material contribution 
through the elastic modulus E. Failure to recognize the significance of 
the material in structural design limits optimal solutions at the least and 
risks structural collapse at the worst.  
C3 1.3 Can a “line” load or a “point” load really exist? 

Answer: In principal, “point” and “lines” loads cannot exist, since any 
load will act over a finite spatial “area”, no matter how small; however, if 
that area is small relative to the structure size, then for practical purposes 
the load may be considered a “point” load or a “line” load. 
C3 1.4 Is a statically indeterminate structure a bad structure? 

Answer: No. In fact, most real structures are statically indeterminate 
in that they have more constraints (boundary conditions) than needed. 
This redundancy can actually be a good thing in case a load path fails 
(see Section 1.7.1). 
C3 1.5 Why is integration needed here?  

Answer: Note that to find the total of the distributed load, we must 
“add up” all of its “parts”. But there are an infinite number of “parts”, 
one for every x between 0 and L. So we must do an infinite sum or an 
integration. 
C3 1.6 How do I know whether the density value is mass density or 
weight density?  
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Answer: If you mistake weight for mass, you are off right away by at 
least 10 in SI (g = 9.81m/s2) or 32 or even 386 (g = 386 in/s2) in the US 
Customary system. These are serious errors. You have got to check the 
units for the data given, for example, mass density would be in kg/m3 or 
slugs/ft3 or lb s2/in4. On the other hand, weight density would go like 
N/m3 or lb/ft3 or lb/in3. If in doubt, ask the person who supplied the data. 

1.7 Developing Engineering Intuition 

1.7.1 Load Paths 

Since structures carry loads, a useful tool in structural analysis is the 
concept of load path, i.e., the path by which the load is carried. It helps 
if one can imagine a “flow of stress or load” along the path. In many 
cases, this is trivial and obvious, particularly when there is only a single, 
unique path. For example, the load from a sign is carried (literally to 
ground in this case) by the cantilevered arm and the beam-column (post) 
as in Figure 1.5 below. 

 

Figure 1.5. Load path for a simple sign, arm, and post. 

A sign supported by a truss presents a more complicated load paths 
in Figure 1.6. 

 

Figure 1.6. Load paths in truss-supported sign. 



26 AN ENGINEERING COMPANION TO THE MECHANICS OF MATERIALS 

To continue the discussion, imagine that in Figure 1.6, the vertical 
beam-column is attached to ground through a bolted flange connection 
(Figure 1.7 is a detailed section of the lower portion of Figure 1.6). 
What is the load path to ground now? 

 

Figure 1.7. Load paths at the base of the beam-column in Figure 1.11. 

We will find as we proceed that the load sharing among multiple 
paths apportions itself in large part according to the path stiffness. As a 
simple example, consider a load carried by two parallel springs, one 
considerably stiffer than the other. It is not hard to imagine that the 
stiffer spring carries a greater portion of the load, and we will prove this 
result later. Developing an intuition for load paths will prove to be a 
very useful asset for the structural engineer. 

Find the load paths for the following structures: 
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CHAPTER 2 

Basic Structures Level I 
Learning Objectives: This Chapter will provide the student with a 
systematic introduction to the three basic structure types: axial, 
torsional, and flexural. Strength design will be the focus of this Chapter. 
(Stiffness design is covered next in Chapter 3.) Along the way, we will 
clear up several common confusing concepts (C3s). 
Clarifications: Studying this Chapter will help clarify several C3s, including: 
 

• Definition and configuration of the three basic structures 
• Basic structures loading and response  
• Uniaxial material response  
• Solving strength design problems 
• Moment of inertia 
• Stress vector 
• Global vs local equilibrium 
• Shear and bending sign conventions  

 

Importance: Structures fall down! Most structures fail because they are 
not strong enough. A classic example is the Hyatt Regency walkway 
collapse in 1981 (Figure I2.1).  

 

Figure I2.1. Hyatt Regency Walkway Collapse 

 

We’ll explore this example later. 
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2.0 Representative Problems 

The following are examples of basic strength design problems we want 
to be able to solve as engineers. Studying this Chapter will help us solve 
them, some of which we will do along the way, before finishing up in 
Section 2.5. 

RP2.1 

The stepped rod shown in Figure RP2.1 consists of two co-axial circular 
cylindrical sections carrying concentrated forces: 800 lb at location B (x 
= 5 inch) and 1000 lb at location D (x = 22 inch). Cylinder ABC is 
0.375 inch in diameter and CD is 0.25 inch in diameter. The material is 
high-carbon steel (E = 30 x 106 psi). Determine the overall extension of 
the rod and check for strength design. 

 

Figure RP2.1. 

RP2.2 

A 2024-0 aluminum shaft 30 inches long is built in at one end as shown 
in Figure RP2.2. A torque is applied at the free end of magnitude 6000 
in lb. 

 
a. For a 2 inch diameter solid circular cross-section, determine the 

maximum shear stress and the shaft weight. 
b. Now consider an annular cross-section of outer radius Ro and 

inner radius Ri. If the wall thickness h = Ro – Ri and Ro/Ri = 1.1, 
determine Ro, Ri, and the shaft weight if the annular shaft has the 
same maximum shear stress as the solid circular shaft. 

RP2.3 

We wish to minimize the amount of material in a beam such that, under a 
specific loading condition, each cross-section will be at the maximum 
allowable stress (at the outer fiber). Applications are leaf springs, gear 
teeth, and bridge girders. Consider a cantilever beam of rectangular cross-
section b by h(x), with tip load P as shown in Figure RP2.3. Find h(x). 
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Figure RP2.2. 

 

Figure RP2.3. 

RP2.4 

Compare the maximum stress due to a central concentrated load P 
between two beams that are identical except for the boundary 
conditions: one beam is fixed-fixed and the other is pinned-pinned. 

RP2.5 

For the rod in RP2.1, calculate the total strain energy stored due to the 
loads applied. 
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2.1 Definitions 

2.1.1 Axial Structures 

Axial structures carry loads primarily in tension or compression. They are 
typically long, straight, slender structures, which could be categorized as 
“one-dimensional (1-D)” structures. Axial structures are often called by 
the names bar, link, rod, or strut. Whether or not a given structure 
responds, or can be represented to respond, as an axial structure depends 
on the nature of the loading, and on the structure’s boundary 
conditions. For example, a truss will be an axial structure if its ends 
(joints) are pinned, and if the loading occurs only through these pin 
joints, as shown in Figure 2.1. 

In thinking of these structures as one-dimensional, we are ignoring 
the fact that all real structures deform simultaneously in three 
dimensions under the action of any load. We can get away with this 
neglect, for now, because we will only consider the structure’s response 
to a single load type, and that its multi-axial response may not be 
important for the given design. Later, when we consider combined 
loading (Chapter 4), we will be required to look at multi-dimensional 
response. 

 

Figure 2.1. While the various members that make up the truss 

assembly may or may not be axial members, the rods supporting the 

hanging lights clearly are axial. 
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Tensile axial loads act to extend the axial structure, while 
compressive axial loads act to compress the structure. If an axial member 
is rather compact, that is “short and stout” (Figure 2.2), its response is 
not unlike that of tensile axial structures. Failure is governed largely by 
strength, since a compact member should be overly stiff.  

 

Figure 2.2. Compact compressive axial structure. 

On the other hand, if the member is relatively slender (e.g., a 
column), compressive failure may be due to lack of stiffness, and a 
completely different response occurs (this becomes a stability problem 
which we do not treat here). The axial member, at a given critical load, 
will buckle or warp (Figure 2.3). Excessive buckling can lead to complete 
collapse upon continued loading.  

 

Figure 2.3. Slender compressive axial structure undergoing buckling. 

An example of slender compression members can be seen in Figure 
2.1. Note the columns that carry roof loads down to the truss. We will 
defer to a later volume the study of buckling behavior and the design of 
slender compressive axial structures (we need to first explore flexural 
structures).  
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2.1.2 Torsion Structures 

Thus far we have introduced axial structures, capable of carrying axial 
loads either in tension or compression. We have seen that axial 
structures can form elements of more complicated structural systems, 
e.g., trusses, capable of carrying limited transverse loads. 

But what of twisting loads? If you put a wrench on a nut rusted tight 
to a bolt and twist it so as to tighten or loosen it, how is the load carried 
(Figure 2.4)? What is the internal response of the bolt?  

 

Figure 2.4. Wrench being used to tighten a nut. 

Many other examples of such torsion structures are common, such 
as the shafts on an automobile (Figure 2.5). 

 

Figure 2.5. Axle and drive shafts on an SAE Mini-Indy racecar. 
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An infamous example of a torsion loading is the failure of the 
Tacoma Narrows Bridge in the state of Washington. On November 7, 
1940, just several months after it opened, the bridge experienced severe 
torsion oscillations that ultimately lead to its collapse. The peak 
amplitudes of the oscillations reached around 20 ft (Figure 2.6), and 
fortunately there was no loss of human life.  

 

Figure 2.6. Torsion oscillations of the Tacoma Narrows Bridge. 

In practice, it is difficult to load any structural member purely in 
torsion. All of the examples above have transverse loads applied in 
addition to torques (combined loading). In this Chapter, however, we 
assume the loads to be purely torsional (we’ll consider cases of combined 
loading later in Chapter 4). 

2.1.3 Flexural Structures 

Flexural structures carry transverse loads primarily through bending 
(flexing), which is accompanied by a stress state of combined tension 
and compression. The tension and compression state creates an internal 
bending moment. Common flexural structures, called beams, are typically 
straight, narrow members that are longer than they are deep (but short 
and stubby, as well as curved, beam configurations are also used). A 
plate or shell-like structure can also be used as a flexural structure. 
Whether or not a given structure responds, or can be represented to 
respond, as a flexural structure depends on the nature of the loading, 
and on the structure’s boundary conditions. A structural element will be 
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a flexural structure if its boundaries and loading are such that an internal 
bending moment can be developed.  

Simplifying assumptions are often made in analyzing flexural 
structures. For example, we will ignore the fact that all real structures 
deform simultaneously in three dimensions under the action of any 
load. We can get away with this neglect, for now, because we will only 
consider the structure’s response to transverse loads. Later, when we 
consider combined loading, we will be required to look at multi-
dimensional response. We will in this text also disregard the effects of a 
small amount of shear that may develop in flexural deformation. 

Beams are one of the most common of structural types. In nature, 
tree limbs are a most familiar example (Figure 2.7): 

 

Figure 2.7. Occasionally, tree limbs must carry loads in addition to 

their own weight. Limbs are nonprismatic cantilever beams. Note that 

the limbs (and trunks) are always thicker near their attached ends. 

Why? 

Beams resting on columns are fundamental building blocks of the 
built environment, as seen in Figure 2.8.  
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Figure 2.8. A beam (foreground top) supported by a column. Trusses 

are seen in the upper right.  

The wings of a modern airplane are highly evolved and complex 
beams (Figure 2.9).  

 

Figure 2.9. The Museum of Flight. The wings of planes are easily 

recognized as cantilever beams. 
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2.2 Geometry, Boundary Conditions, and Loads 

2.2.1 Axial Structure Geometry and Boundary Conditions 

In Figure 2.10, an axial structure called a bar, link, rod, or strut of round 
cross-sectional shape is shown. A force P is applied to one end of the 
rod, resulting in a displacement u. The other end of the rod has a 
boundary condition described as either fixed or built-in. The rod has 
geometric properties of length L and constant cross-sectional area A. 
(Material properties will be discussed later in this Chapter.) 

 

Figure 2.10. Definition sketch of an axial structure. 

Comments: 
i. Keep in mind that although we have shown a rod with constant, 

circular cross-section, primarily for convenience and simplicity, a 
rod may have a non-constant and/or, non-circular cross-section.  

ii. However, to remain an axial structure, the axis of every cross-
section, which is the line passing perpendicularly through the 
centroid of that cross-section, must remain co-linear.  

iii. Structures with constant cross-sectional area, or more generally 
constant second moment of area, are called prismatic structures. 

iv. Axial structures have one coordinate degree of freedom (CDOF):  
x-displacement (designated as u). 

 
We need to be cautious here about boundary conditions. In the case 

of tensile axial structures, we can readily allow the case of pinned-free 
boundary conditions. Such a configuration (of co-axial tensile loads and 
boundary conditions combined) is unconditionally stable. That is, any 
slight perturbation (disturbance) of the rod from its equilibrium position 
(Figure 2.11a) would simply be returned to the equilibrium position 
(Figure 2.11b): 
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Figure 2.11. Tensile axial structure slightly perturbed from 

equilibrium returns to the equilibrium position. 

Now in the analogous compression case, if we perturb the rod 
slightly from its equilibrium position (Figure 2.12a), a radically different 
response occurs: 

 

Figure 2.12. Compressive axial structure slightly perturbed from 

equilibrium does not return to the equilibrium position, but seeks a 

new equilibrium position. 

In this case, the rod undergoes large excursions away from the original 
equilibrium position (until a new equilibrium position is found, as seen in 
Figure 2.12b.). The original equilibrium configuration then must have 
only been conditionally stable (also called unstable equilibrium).  

For our present discussions, we assume that the configurations 
(tensile or compressive co-axial load plus boundary conditions) are 
unconditionally stable. In the compressive case, pinned-pinned 
boundary conditions are a common example of such configurations. 

2.2.2 Torsion Structure Geometry and Boundary Conditions 

We begin by considering that the torsion structure forms a structural 
member that is straight and relatively narrow, i.e., the dimension of any 
cross-section is small compared to the member length L. The cross-section is 
characterized by its area A(x) and polar second moment of area (polar moment 
of inertia) J(x) (this later quantity will fall naturally out of the analysis later).  
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We first consider only 
cross-sections that are sym-
metric with respect to 
rotations about the long axis 
(x-axis in the figure), i.e., axi-
symmetric cross-sections, and 
that are at the same time 
prismatic, i.e., with A(x) = constant. The simplest embodiment of an axi-
symmetric prismatic torsion structure is the solid circular shaft, whose 
cross-section is a circle of radius R (Figure 2.13). In this case, A = πR2 and 

 2

A
J r dA= �  (2.1) 

 

Figure 2.13. Solid circular shaft of radius R. Note that the 

cylindrical-polar coordinates of a point Q are Q(r, θ, x). � is a 

rotational coordinate and � is the rotational displacement. 

For now, we will consider our torsion structural members to be right 
circular cylinders (solid or hollow). Any point on the circular cross 
section x = constant can be identified by the cylindrical-polar 
coordinates (r, θ, x). 

Torsion structures as defined here have one CDOF: a �-
displacement or �. Boundary conditions for the torsion structure must 
include at least one fixed boundary. (Why?) Hence either fixed-free or 
fixed-fixed are the required torsional boundary conditions. 

C3 

2.1. What is the difference between 
the moment of inertia and the 
second moment of area? 
(Answer: Section 2.6) 
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Example 2.1 

a. Determine the general expression for the polar second moment 
of area for a solid circular shaft of radius R. If R = 1.0 inch as in 
RP 2.2a, what is the value of J? 

The incremental area dA = 2πrdr (see Figure E2.1a). Then 
Equation (2.1) gives 

 ( )
4

2 2

0

2
2

R

A

R
J r dA r rdr

ππ= = =� �  

If R = 1.0 inch, J = 1.57 in4.  

 
b. Determine the general expression for the polar second moment 

of area for a hollow circular shaft of inner and outer radius Ri and 
Ro, respectively. 

The incremental area is still dA = 2πrdr, only the integration 
limits change (see Figure E2.1b). Then Equation (2.1) gives  

4
2 2 4 4(2 ) | ( )

2 2

i

o

RA
o

o i
iR

RR
r dA r rdr R R

R
π ππ= = = = −� �   
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2.2.3. Flexural Structure Geometry and Boundary Conditions 

The beams we consider here have cross-sections that are relatively 
narrow and compact. We will for now consider that the cross-sections 
are symmetrical with respect to the plane of bending (say the x-y plane 
in Figure 2.14). (This makes for simplification in the analysis of flexural 
structures. The added complications from non-symmetrical cross-
sections are outside the scope of this volume.) 

 

Figure 2.14. Simple beam cross-sections symmetrical with the 

bending plane (arbitrarily selected as the x-z plane).  

The cross-section is characterized by its area A(x) and second moment 
of area (area moment of inertia) I(x), where in general A and I can be 
functions of position x along the beam. The second moment of area is 
given by: 

 2( ) ( )
A

I x y x dA= �  (2.2) 

For now, however, we will only consider prismatic beams, i.e., beams 
with constant cross-sectional properties, where A and I are constants 
along the length of the beam. In this case, we can represent the beam as 
a one-dimensional structural element of length L, with cross-sectional 
properties A and I (Figure 2.15). 

 

Figure 2.15. Prismatic beam as a one-dimensional structural element. 

It is convenient to think about the beam as being comprised of 
longitudinal “fibers”, running the length of the beam and parallel to the 
long axis (x-axis in the above figure). (The “fiber” imagined here is just a 
collection or locus of material points along a given y = constant line and 
not a real fiber, although real fibers can exist, e.g., in fiber-reinforced 
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composite materials.) In a rectangular cross-section h high by b wide, 
the outer fibers would be located on the surfaces ± h/2. Another 
important fiber is co-located with the neutral axis of the beam. The 
neutral axis (really, neutral plane) is a locus of material points that have 
zero stress during flexure and will be described in more detail in Section 
4. (Unless otherwise specified, we will assume the x-axis to be coincident 
with the neutral axis of the beam.) 

Unlike the axial and torsion structures, there is considerable variety 
of boundary conditions available for beam support, since the loading 
and subsequent reactions can be more complex. The supports can occur 
at any x location along the length of the beam, although the location 
may limit the type of boundary conditions applicable.  

A beam has three coordinate degrees of freedom (CDOF) associated 
with its response: axial translation u, transverse translation v, and 
rotation in the plane of bending θ (Figure 2.16). One or more of these 
CDOF may be constrained at the boundary, defining the boundary 
condition, depending on the nature of response desired in the beam. 
(Because the beam is modeled as one-dimensional, we automatically 
assume that all other translations and rotations are constrained.) 

 

Figure 2.16. Coordinate degrees of freedom for a beam. 

The principal beam boundary conditions are: 
• Pin or simple support (u = 0, v = 0, θ ≠ 0) 
• Roller support (u = 0, v ≠ 0, θ ≠ 0) or (u ≠ 0, v = 0, θ ≠ 0) 
• Guide support (u = 0, v ≠ 0, θ = 0) or (u ≠ 0, v = 0, θ = 0) 
• Fixed or clamped support (u = 0, v = 0, θ = 0) 

Example 2.2 

a. Determine the general expression for the second moment of area 
of a solid rectangular beam of width b and depth h. 



44 AN ENGINEERING COMPANION TO THE MECHANICS OF MATERIALS 

 

The incremental area dA = 2x dy = b dy (see Figure E2.2a). 
Then Equation (2.2) gives 

 
/2 3 3

2 2

0

/ 2
2 2 2 |

03 12

h

xx
A

hy bh
I y dA y bdy b= = = =� � �

 

b. Determine the general expression for the second moment of area 
of a solid circular beam of radius R. Show that J = Ixx + Iyy. 

 
The incremental area dA = 2x dy = 2(R2 – y2)1/2dy (see Figure 

E2.2b). Then Equation (2.2) gives 

4
2 2 2 22

0

2 2 2
4

R

xx
A

R
I y dA y R y dy

π= = − = … =� �
�

(The integral was computed by referring to a table of 
intergrals.) 

Due to symmetry, Ixx = Iyy. J = Ixx + Iyy = πR4/2 as before (see 
Appendix 3). 
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Note: As an engineer, you will almost never calculate a second moment of 
area directly using Equation (2.1) or (2.2). It is important to understand 
Equation (2.1) or (2.2), but the engineer will usually look up the second 
moment of area or perhaps determine it from a CAD program. 

2.2.4. Loads  

Recall that the definition of a structure is a physical artifact that carries 
loads other than its own weight. Loads then are the forces and moments 
carried by structural members in accordance with the structure type (as 
discussed in Section 1).  

A structure that undergoes simple loading carries only a single type of 
load. For example, that could be forces or moments but not both. 
Simple loading results in the simplest structural response, which is a 
good place for us to start! 

The loads on an axial structure must be co-axial loads (we’ll see this 
shortly), i.e., loads acting co-axially with the significant structural axis 
(x-axis here), such as the concentrated force applied to the ends of the rod 
in Figure 2.10. The force shown in Figure 2.10 is tensile, since it acts to 
create tension in the bar, i.e., acts to displace material particles further 
away from one another. In Figure 2.2 the force is compressive, so as to 
create a compressive action on material particles, i.e., acting to displace 
material particles closer together than in their unloaded configuration. 
No moments are applied to axial structures. 

On the other hand, the torsion structure is loaded by a twisting 
moment or torque. In practice, this could arise from a couple of 
magnitude Pd applied to the shaft of diameter d (Figure 2.17). The 
couple is self-equilibrating since no net force results. (Why?) Application 
of global equilibrium would conclude that a moment of magnitude M = 
Pd (but oppositely directed) must be acting as a reaction for equilibrium 
to occur. 

As we saw in Section 1, beams can carry any of the load types: 
concentrated forces, distributed forces, or moments. 
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Figure 2.17. Cylindrical shaft of diameter d under the action of a 

couple of magnitude M = Pd. The end x = 0 is imagined clamped in 

the figure. 

2.3 Equilibrium under Simple Loading 

Now as we describe the response of structures to simple loads, what we 
are really describing are models of response. Our models are based on 
the laws of mechanics and our understanding of material response. 

There are several key concepts to keep in mind as we discuss 
equilibrium and deformation of any structure.  

 
 1. The quantities stress and strain are, by definition, measures of the 

body’s response at a point. That is, in general stress and strain vary 
from point to point within the structure. 

 2. Stress and stain also vary from direction to direction at a given 
point.  

 3. Think of it this way: stress and strain vary depending on where you 
are and where you look when you’re there. This makes stress and 
strain vector-like quantities called tensors (see Appendix 5), 
specifically 2nd order tensors.  

 4. Three coordinate directions, each requiring three components 
(think vectors) to describe the stress state on that face. Thus nine 
components are required to fully describe the state of stress (or state 
of strain) at a point. The components can be arranged in a 3 by 3 
matrix. 
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 5. Any continuous body that is in global equilibrium must have all of 
its “parts” in equilibrium, that is, it must be in local equilibrium as 
well.  

 
We take advantage of these concepts to go from the externally 

applied loads to the internal stress and strain response. The process goes 
as follows: 

External load � internal traction vector � stress components 
Imagine a body under the action of n concentrated loads F1, F2, 

…Fn as seen in Figure 2.18a.  

 

(a) 

 

(b) 

Figure 2.18. (a) The body is sectioned so we can look inside and 

observe the internal reaction on an infinitesimal volume element. T is 

the traction vector. (b) Stress components in the x-y-z coordinate 

system. 



48 AN ENGINEERING COMPANION TO THE MECHANICS OF MATERIALS 

 

We section the body so we can look inside and observe the internal 
response to external loads, starting with the traction vector T. The three 
components of T on each of three orthogonal surfaces are the nine stress 
components, �11, �12, etc., as seen in Figure 2.18a. The nine stress tensor 
components can be arranged in a 3 by 3 array or matrix as follows: 

 
11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

� �
� �
� �
� �� �

 (2.3) 

Replacing x1 with x, x2 with y, and x3 with z (Figure 2.18b), 
Equation (2.3) becomes: 

 
xx xy xz

yx yy yz

zx zy zz

σ σ σ
σ σ σ
σ σ σ

� �
� �
� �
� �� �

 (2.4) 

We will study this in much more detail in Chapter 4, but for now 
we consider simple loading to further develop the concept of stress.  

2.3.1. Axial Structure Equilibrium 

We now consider a “global” 
free-body diagram (FBD) of a 
rod (see Appendix 2). The 
right end of the rod is “freed” 
from the body at some 
position x from the origin and 
the corresponding FBD looks as shown in Figure 2.19: 

 

Figure 2.19. Global free body diagram of an axial structure. 

  

C3 

2.2 What is the difference between 
global and local equilibrium? 
(Answer: Section 2.6) 
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Shown on the FBD is the internal reaction force F, which from 
global static equilibrium analysis 

 ΣF = 0 (2.5) 

can be shown to be 

 P – F = 0 	 F = P (2.6) 

Furthermore, global moment equilibrium 

 ΣM = 0 (2.7) 

shows that F and P are co-linear (co-axial), since they must present no 
net couple (moment) on the rod. 

We now look more closely at the stress in an axial structure and the 
corresponding local equilibrium. Consider the local FBD or stress 
element carved out of the cross-section A, shown in Figure 2.20: 

 

Figure 2.20. Local free body diagram of an axial structural element. 

Now an increment of internal force, dF, can be seen to act over an 
increment of area, dA, which balances the increment of applied load dP 
(i.e., dF = dP). We take as a fundamental postulate (known formally as 
Cauchy’s Stress Principal) that the externally applied load is resisted 
internally (to enforce local equilibrium) by a traction vector T such that 

 
lim

0
d

A A dA
Δ

Δ Δ
= =

→
F F

T  (2.8) 
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Cauchy’s Stress Principal 
also provides that the 
components of T normal and 
parallel to the surface dA are 
the normal stress σn and shear 
stress � components on that face (see Figure 2.21). 

 

Figure 2.21. Internal stress components. 

The normal stress component is found by taking the projection (see 
Appendix 5) of T on to the surface normal en: 

 
n nσ = ⋅T e  (2.9) 

Similarly, the shear stress component is found from 

 
sτ = ⋅T e � (2.10) 

Note: 
i. Comparing Figures 2.18 and 2.21, Equation (2.4) can be written 
 

xx xy xz

yx yy yz

zx zy zz

σ τ τ
τ σ τ
τ τ σ

� �
� �
� �
� �� �

 

(2.11) 

ii. The stress state and strain state in an axial structure are considered to be 
relatively simple, in that it is assumed that only normal stresses and 

C3 

2.3 Are the traction vector and 
stress vector the same thing? 
(Answer: Section 2.6) 
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strains exist on cross-sections normal to the rod axis. In that case, T and 
en would be collinear with the x-axis and we can neglect the shear stress 
component τ = ⋅ sT e  (for now). Then for an axial structure, the only 

non-zero stress component is the normal stress in the axial direction, or  

 
0 0

0 0 0
0 0 0

xxσ� �
� �
� �
� �� �

 (2.12) 

iii. At the point of load application (the bar end in this case), the stress 
distribution is in fact not simple. But it also turns out that the stress 
develops to the simple state in a fairly short length of the bar, so 
assuming uniformity over the entire length is reasonable. 

iv. Keep in mind that what we really calculate by Equation (2.8) is an 
“average” stress acting everywhere over the cross-section of the bar, 
even though stress is fundamentally a measure of the load response 
by a structure at a point.  

v. We are representing the cross-section surface (area) as a vector 
quantity, with both magnitude An and direction en (see Appendix 5).  

vi. The stress σxx is assumed to be constant as long as no intermediate 
axial loads are applied (see RP1.1). 

vii. For one-dimensional stress states, we will often change from the 
double subscript notation to a single subscript notation. For 
example, σxx = σx. 

viii. From this point forward, we will suspend the use of bold font for 
vector and tensor quantities except where that emphasis is essential. 

 
Local and global equilibrium can be related through the following 

equation: 

 xxA
F dF dA Pσ= = =� �  (2.13) 

Example 2.3. 

Two rods are identical except one has a square cross-section while the 
other has an equilateral triangle cross-sectional shape. The identical 
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cross-sectional areas of 100 mm2 each carries an identical load P = 1 kN. 
Determine the axial stress for each rod and discuss the comparison. 

 

Figure E2.3. 

Since the area is constant, Equation (2.13) gives �xx = P/A and �xx = 
1000 N/100 x 10-6 m2 = 10 MPa. This is true for both rods since only 
the area matters in the tensile axial structure; shape does not play a role 
in axial tension or compact axial compression. 

2.3.2. Torsion Structure Equilibrium 

The applied couple in Figure 2.17 is resisted internally by a shear force 
of magnitude V. Figure 2.22 shows a cylindrical differential element of 
the shaft of length Δx and cross-section ΔA (radius r < R), which is 
coaxial with the original shaft of radius R. The associated traction vector 
T on the element face is given by:  

 
lim V VT

0
d

A A dA
Δ

Δ Δ
= =

→
 (2.14) 

where ΔV is the incremental 
shear force. Since V lies 
entirely along the surface 
(parallel with es), then so does 
T and there is only one stress 
component, namely τxθ. Due 
to symmetry, V or τxθ can only be functions of r and x, but not θ.  

C3 

2.4 How can V be used for both 
“volume” and “shear force”? 
(Answer: Section 2.6) 
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Figure 2.22. Internal force system on a differential shaft element of 

area ΔA, consisting of a shear force ΔV. There is a shear force acting 

over every material particle in ΔA 

Note that there is no net shear force in the y-z plane, since each ΔV 
forms a self-equilibrating system of couples. That is, each ΔV has an 
equal but opposite counterpart canceling its shearing action (but not its 
moment). 

Now the magnitude of the total internal moment M resisting the 
applied load C is given by the equilibrium equation M = C, where: 

 xA A
M rdV r dA Cθτ= = =� �  (2.15) 

Let’s multiply both sides of Equation (2.15) by r again, and since the 
shear stress is constant over dA, we have 

 2
xrM r dAθτ= �

 

or 

 x
Mr
Jθτ =  (2.16) 

where 

 2J r dA= �  (2.17) 
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Equation (2.16) is an important result that tells us the shear stress in 
our circular cylindrical shaft varies linearly from zero at the shaft center 
to a maximum at the outer fiber (r = R), as shown in Figure 2.23. J is the 
polar second moment of area (polar moment of inertia) (see Appendix 3). 

 

Figure 2.23. Shear stress in a circular cylindrical shaft varies linearly 

from zero at the shaft center to a maximum at the outer fiber (r = R),  

In matrix component form, the torsion stress state as we’ve defined 
it is 

 
0 0

0 0
0 0 0

x

x

θ

θ

τ
τ

� �
� �
� �
� �� �

 (2.18) 

Example 2.4 

The shaft in Figure E2.4 is subject to a torque M = PD. Determine the 
maximum shear stress �x�,max if D = 2R is the shaft diameter.  

 

Figure E2.4. 
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J = πR4/2 in this case and the maximum stress occurs at r = R. Then 
Equation (2.16) looks like 

 ,  4 3 2

2( ) 2 4
x max

PD R PD P
R R Rθτ

π π π
= = =  

2.3.3. Flexural Structure Equilibrium 

Figure 2.24 shows the free body diagram of a beam subjected to a 
transverse concentrated force P, in keeping with our current limitation 
of simple loading only. (We’ll consider a distributed force p(x) 
[force/length] and concentrated moments M [force*length] in the next 
chapter.)  

 

Figure 2.24. Free body diagrams of a beam under simple concentrated 

loading. All internal reactions are shown positive according to the 

coordinate and stress sign conventions. 

The internal reaction system required to enforce equilibrium under 
an applied concentrated load includes a shear force V and moment M. 
In order to relate the internal forces and moments to the externally 
applied loads, we sum forces and moments in the usual way from the 
right-side FBD for convenience (the same results arise from a 
summation over the left-side FBD and this is left as an exercise for the 
student): 

 
0 : ( ) 0

0 : ( ) ( ) 0
y

z

F V x P

cw M M x P a x

+ ↓ = − + =

+ = − + − =





 (2.19a, b) 



56 AN ENGINEERING COMPANION TO THE MECHANICS OF MATERIALS 

 

Note that: 
 1. The signs and magni-

tudes of the boundary 
reaction forces and 
moments would be 
determined from global 
statics in the usual way. 

 2. We have summed the 
internal moments about 
the cut at x, in order not 
to have to include the moment due to V(x), which at the present is 
unknown. 

 3. No assumptions about the sign convention need be made other 
than the usual right hand rule. 

 4. Equations (2.19a, b) can now be solved for V(x) and M(x) in terms 
of the applied loads. 

 5. It is reasonable to assume that the stress is maximum wherever the 
moment is maximum (we will verify this later). 

 

We will also show later that the expression for the magnitude of 
maximum flexural stress is 

 �max = Mmaxc/I (2.20) 

where 2I y dA= �  as before and c is the distance from the neutral axis to 

the outer fiber.  

Example 2.5 

Compare the maximum stress in a “2 × 4” placed first with height “2 
inches up”, then with “4 inches up”. 

I2up = bh3/12 = (4 in)(2 in)3/12 = 2.67 in4 

I4up = bh3/12 = (2 in)(4 in)3/12 = 10.67 in4 

�max,2up/�max,4up = (c/I)2up/(c/I)4up = (2/4)(10.67/2.67) = 2.0 

The “weak way” maximum stress is twice the “strong way” 
maximum stress! 

C3 

2.5 Why do most mechanics of 
materials books discuss an 
additional sign convention for shear 
force and moment in beam 
bending? 
(Answer: Section 2.6) 
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2.4 Uniaxial Material Response  

So far we have studied the definition, configuration, and equilibrium of 
the three basic structures. These considerations apply to all three 
structures. So why would three rods, identical in configuration, except 
one is made of steel, on of wood, and one of rubber, behave different 
under identical loads. We will see that the nature of the material, its 
constitution, plays an important role in the structural response. For now, 
we will only consider uniaxial material response. 

2.4.1 Uniaxial Deformation 

Under the action of the tensile force F, a material particle located at 
position x in a rod will displace an amount u(x) in the +x direction. The 
corresponding strain is a strictly geometrical quantity with a number of 
possible definitions. The simplest definition we can take is that strain (at 
a point!) is the comparison of a local change in length between two 
material particles relative to some “gage length”, which is taken as the 
length between the same particles in the undeformed state, namely dx. If 
we take the deformed length to be dx*, then the strain in the x-direction 
is defined as  

 
*

x
dx dx

dx
ε −≡  (2.21a) 

 x
du
dx

ε =  (2.21b) 

(There is no single, unique definition for strain. We use here the 
common definition of one-dimensional engineering strain.) 

Equation (2.21b) is a very fundamental and general requirement of 
deformation that relates strain to displacement, and is called the strain-
displacement relation (although it is more correctly the strain—
displacement gradient relation). 

We see that the strain εx is a normal (here tensile or extensional) 
strain in the axial direction. The axial displacement anywhere along the 
rod (at any cross-section) can then be found from 
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0

( )
x

xu x dxε= �  (2.22) 

with the total increase in the rod length given by: 

 
0

( )
L

xu L dxε= �  (2.23) 

We emphasize that for a rod modeled as a 1-D structure, all fibers 
(which are axial fibers) deform identically. 

2.4.2 Axial Structure Constitution 

In 1678, the English mechanician Robert Hooke published a paper 
titled “De Potentia Restitutiva” (“The Spring”). In it, he detailed the 
results of experiments he had conducted on materials, such as metallic 
wire. He showed that the deflection u in the wire was proportional to 
the applied tensile load P: 

 P = ku (2.24) 

where k is the proportionality constant (called the stiffness) to be defined 
later. It is critical at this point to realize that every elastic element can be 
considered as a “spring” of one sort or another, just as Hooke did. We 
will come back to this concept time and time again. 

Dividing both sides of Equation (2.24) by AL (the product of the 
initial area and length of the wire) 

P/AL = ku/AL 

and rearranging terms,  

P/A = (kL/A)(u/L) 

this relation can be re-written in terms of stress and strain as: 

 σ = Eε (2.25) 
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where σ is the engineering 
stress P/A, ε is the engineering 
strain u/L, and E is the elastic 
modulus of the material. The 
stiffness k is easily seen to be 
k = EA/L. We will take a more detailed look at strain in the next section 
but we can see it is a non-dimensional ratio of deformed displacement 
(change in length here) to original length.  

Equation (2.25) shows the proportionality now between stress and 
strain, and is formally called the 1-D Hooke’s Law. We have just 
discovered something very fundamental: the mechanics quantities stress 
and strain are related physically in the material through material 
quantities (such as the elastic modulus in this case).  

Example 2.6 

Three round rods, each having a diameter D and length L, are fixed at 
one end (u(x = 0) = 0) and carry a load P at the free end (x = L). One 
rod is steel (E = 210 GPa), one is aluminum (E = 70 GPa), and one hard 
rubber (7 GPa). For L = 1 m, D = 25.4 mm, and P = 10 kN, determine 
the stress, strain, and displacement in each rod. 
 
Solution using spread sheet: 
Area = πD2/4 
Stress = P/Area 
Strain = Stress/E 
Displacement = Strain*L 
 

Rod length L (m) 1    

Rod dia. D (mm) 25.4 area= 5.07E-04 m2 

Load P (N) 10,000    

     
Material E(Pa) Stress (Pa) Strain (m/m) Displ (m) 
Steel 2.10E+11 1.97E+07 9.39E-05 9.39E-05 
Aluminum 7.00E+10 1.97E+07 2.82E-04 2.82E-04 
Rubber 7.00E+09 1.97E+07 2.82E-03 2.82E-03 

 
 

C3 

2.6 Can stress be measured? Strain? 
(Answer: Section 2.6) 
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2.4.3. Axial Structure Strength 

Why do we care about the internal response of a structure to loads called 
“stress”? It is because we can account for structural failure by claiming 
the internal response reached its “failure stress”. The failure stress is 
called the material “strength” and an over-arching design objective is to 
always keep the stress less than the strength.  

Just as there are different kinds of loads and stress, there are also 
different kinds of failure modes and different kinds of strength. Here, 
we only consider axial loading and uni-axial failure. Figure 2.25 shows 
the stress response of an axial structure (“ductile tension specimen”) 
under increasing tensile axial loading. 

 

Figure 2.25. Uni-axial stress response. 

There’s much to discuss in Figure 2.25 but for now we only need to 
be concerned with two features: 
 1. The elastic region. An elastic deformation is one wherein the 

structure returns identically to its unloaded configuration upon 
removal of the load. That is, there is no permanent deformation 
(that occurs in the plastic region). Linear elastic response indicates a 
straight line stress-strain curve in the elastic region. If the structure 
exhibits a linear elastic response, the slope of the stress-strain curve 
in the elastic region is the elastic modulus E in Equation (2.25). 
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 2. Failure. In Figure 2.25, you see various modes of failure: yield, 
ultimate tensile, and fracture. There are others, too, but for now it 
is enough to recognize that the stress at a failure mode is the 
strength in that mode and our goal is to keep the stress < strength. 

2.4.4 Uniaxial Energy 

In this book, we make considerable use of Newtonian mechanics, which is 
a vector mechanics of forces, displacements, and displacement 
derivatives. For one, Newtonian mechanics is a very intuitive approach—
it is easy to visualize forces and displacements as arrows! For another, the 
vector approach leads directly to finding forces and moments, which are 
needed to determine the internal stress response.  

However, there is also considerable reason to take a Lagrangian 
mechanics approach, which is a scalar mechanics of work and energy, 
and their derivatives. Energy concepts are important because they 
provide fundamental principles for formulating the governing structural 
equations, and as such they are the gateway to more advanced analysis 
techniques. Also, some failure theories are based on the amount of 
stored energy in the structure.  

We know from earlier studies that mechanical energy can be divided 
into potential energy and kinetic energy. Since we only deal with static 
problems here, we can disregard kinetic energy considerations. The total 
potential energy Π of a structure includes both the energy of deformation 
stored within the structure (i.e., the strain energy) and the potential 
energy associated with the work of the forces and moments responsible 
for the deformation. The incremental work dU of a force is defined as the 
scalar product of the vector force F with the resulting incremental 
displacement vector ds or F⋅ds = Fcosθds, where θ is the angle between F 
and ds The incremental work dU of a force is defined as the scalar product 
of the vector force F with the resulting incremental displacement vector 
ds or F⋅ds = Fcosθds, where θ is the angle between F and ds. The strain 
energy U is equal to the recoverable work done on the body.  
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Example 2.7 

Consider a linear elastic translational spring of stiffness k under the 
action of a net (axial) force P. From the definition of work, we have for 
the spring that dU = P du (du being the increment of displacement in 
the x-direction). Integrating over the total displacement u we obtain the 
strain energy in the spring as: 

 2

0 0

1
2

u u
U Pd k d kuξ ξ ξ= = =� �  

(Here ξ is just a dummy variable of integration.) 
The potential energy E of the applied loads relevant to the structure 

is the negative of the work done by the applied loads during the 
deformation: 

 E = –Pu 

The total potential energy Π = U + E is then 

 2 2 2 21 1 1
( )

2 2 2
ku Pu ku ku kuΠ = − = − = −  

Note that Π is a quadratic function (quadratic form) of u. A plot of Π vs. 
u looks like (Figure E2.7): 

 

Figure E2.7. 
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Apparently Π has a minimum, which in this case can be analyzed by 
elementary calculus (more powerful methods of the calculus of variations 
will be needed for more complex energy functions): 

 dΠ/du = ku – P = 0 	 ku = P (2.26) 

 d2Π/du2 = k > 0 

These two simple results are very important: 
 
 1. We have derived the equilibrium equation ku = P from the 

minimization of the total potential energy. That means that the 
equilibrium configuration achieved under a set of applied loads is 
the unique one that minimizes the total potential energy. This is 
the principle of minimum potential energy. It is a cornerstone of 
structural mechanics! 

 2. The stiffness k is guaranteed to be positive. 
 

One final point can be made. The stored energy of a rod can be 
calculated in terms of stress and strain through use of the constitutive 
relations. For the one-dimensional Hooke’s Law model, we get a strain 
energy per unit volume of the rod as follows: 

 U = ½ ku2 = ½ Pu = ½ σxA εxL 

or 

 U = ½ σxεx(AL) 

Hence the strain energy per unit volume is given by ½ σxεx = ½ Eεx
2 

= ½ σx
2/E. In general, for the one-dimensional axial case, the strain 

energy is given by Equation (2.27) as: 

 1
2 x xvolume

U dVσ ε= �  (2.27) 

Similarly in the case of uni-axial torsion, the torsional strain energy 
is given by Equation (2.28) 
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21 1

2 2
x

x xvolume volume
U dV dV

G
ττ γ= =� �  (2.28) 

Two and three-dimensional forms of the strain energy will be 
discussed later. 

2.5 Structural Design 

In the case of strength design, our solution strategy goes something like 
the following: 

 
 1. Global Free Body Diagram 
 2. Apply global equilibrium to find external reactions 
 3. Local Free Body Diagram 
 4. Apply local equilibrium to determine internal reactions 
 5. Determine internal stress, compare to strength criteria 
 

The ratio of strength to stress is often called the Factor of Safety  
(see Chapter 1). Since we want the stress to be less than the strength, the 
Factor of Safety will be greater than one. 

Let’s apply this to the problems introduced at the beginning of this 
Chapter. 

RP2.1 

The stepped rod shown in Figure RP2.1 consists of two co-axial circular 
cylindrical sections carrying concentrated forces: 800 lb at location B (x 
= 5 inch) and 1000 lb at location D (x = 22 inch). Cylinder ABC is 
0.375 diameter and CD is 0.25 in diameter. The material is high-carbon 
steel (E = 30 x 106 psi). Determine the overall extension of the rod and 
check for strength design. 

 

Figure RP2.1a. 
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First we complete three FBDs associated with each of the 
discontinuities (Figure RP2.1b): 

 

Figure RP2.1b. 

From the strain definition (Section 2.4), we can find the total 
elongation: 

 , , ,i
i

u u i I II III= =
  

or u = uI + uII + uIII 

In the present example, the displacement is constant over each 
section I, II, and III.  

Next we determine the loading over each section by applying the 
equilibrium relations: 

 
• Section III: ΣFx = 0: –Fc + 1000 lb = 0 	 FC = 1000 lb 
• Section II: ΣFx = 0: –FB + 800 lb + Fc = 0 	 FB = 1800 lb 
• Section I: ΣFx = 0: –FA + FB = 0 	 FA = 1800 lb 
 
Now we can integrate separately over each section of the rod: 

 
( ) ( )

( )

1 2

1 2

31 2

0
1 2 3

5" 10" 22"

0 5" 10"
1 1 3

2 2
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2

( )( ) ( )
( ) ( ) ( )
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4
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F FF
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in in
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π

= + +
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� �
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As a check on strength design, we can compute the stress in each 
segment of the rod: 

( )

( )

( )

1
1

2
1

2
2

2
2

3
3

23

1800 16,300
0.375

4
1000 9,050
0.375

4
1000

20,400
0.25

4

P lb
psi

A in

P lb
psi

A in

P lb
psi

A in

σ π

σ π

σ π

= = =

= = =

= = =

 

 

The stress is seen to be less than the strength (Sy = 70 x 103 psi) in 
every case. However, we have not taken into account the effects of stress 
concentrations near boundaries and discontinuities—the stresses there 
could be considerably higher! 

RP2.2 

A 2024-0 aluminum shaft 30 inches long is built in at one end as shown 
in Figure RP2.2. A torque is applied at the free end of magnitude 6000 
in lb.  

a. For a 2 inch diameter solid circular cross-section, determine the 
maximum shear stress and the shaft weight. 

b. Now consider an annular cross-section of outer radius Ro and 
inner radius Ri. If the wall thickness h = Ro – Ri and Ro/Ri = 1.1, 
determine Ro, Ri, and the shaft weight if the annular shaft has the 
same maximum shear stress as the solid circular shaft. 

 

Figure RP2.2. 

Factor of safety = 
70,000/16,300 = 4.3 
 
Factor of safety = 
70,000/9050 = 17.3 
 
Factor of safety = 
70,000/20,400 = 3.4 
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a. Equation (2.11) provides for the maximum shear stress at the 
outer fiber R = 1.0 inch. Then, with J = πR4/2 = 1.571 in4 from 
Example 2.1, 

 

 ,  4

(6000 )(1.0 )
3819 

1.571x max

in lb inMR
psi

J inθτ
⋅

= = = �
The weight density �w of 2024 aluminum is about 0.1 lb/in3. 

Then this shaft weighs  

 w = �wV = (0.1 lb/in3) π(1.0 in)2(30 in) = 9.4 lb 

b. For the annular shaft, J = π(Ro
4 – Ri

4)/2 from Example 2.1. 
Substituting Ri = Ro/1.1, J = 0.498 Ro

4. Now solving Equation 
(2.11) for Ro/J (since �x�,max and M are known), 

Ro/J = Ro/0.498 Ro
4 = 2.01/Ro

3 = 3819 psi/6000 in lb = 0.637 1/in3. 

or  
Ro = 1.47 inch 

Then 
Ri = 1.33 inch 

with 

w = �wV = (0.1 lb/in3) π[(1.47 in)2 – (1.33 in)2](30 in) = 3.6 lb 

The annular shaft weighs one-third that of the solid shaft but 
carries the same maximum stress! 

The yield strength and ultimate tensile strength of this 
material are 11 ksi and 27 ksi, respectively. Compared to the 
3819 psi stress, the FS ranges between 2.9 and 7.1. 

RP 2.3 

We wish to minimize the amount of material in a beam such that, under 
a specific loading condition, each cross-section will be at the maximum 
allowable stress (at the outer fiber). Applications are leaf springs, gear 
teeth, and bridge girders. Consider a cantilever beam of rectangular 
cross-section b by h(x), with tip load F as shown in Figure RP2.3a: 
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Figure RP2.3a. 

Note that for this beam, I = bh3(x)/12 from Example 2.2. At every 
section, we vary h(x) to maintain: 

 2 2

6 6
( ) ( )allow

M Px
bh x bh x

σ = =  

At the fixed end: 

 12
1

6 6
allow

allow

PL PL
h

bh b
σ

σ
= 	 =  

Anywhere else: 

 1
6

( )
allow

Px L x
h x h

b L Lσ
� �

= = �
� �

 

or 

 2
2

1

Lx h
h

=  

This is the equation of a parabola, and the beam is called a “constant 
strength parabolic beam.” Let’s plot h(x) and see what it looks like 
(Figure RP2.3b): 
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Figure RP2.3b. 

One application of a non-prismatic beam geometry is the teeth of 
gears, such as the spur gear seen in Figure RP2.3c: 

 

Figure RP2.3c. 

RP2.4 

Compare the maximum stress due to a central concentrated load P 
between two beams that are identical except for the boundary 
conditions: one beam is fixed-fixed and the other is pinned-pinned. 

Let’s solve this problem by using an engineering reference. For 
structural analysis, one of the most famous is “Roark” (see Chapter 1). 
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Roark organizes beam response first by load type and then by boundary 
conditions. Figure RP2.4 provides an excerpt from the appropriate table 
for our problem. 

 

Figure RP2.4. 

Our problem is contained in Cases 1d and 1e, where a = L/2 and  
W = P. To determine the maximum stress we need only the maximum 
moment. Since we’re asked to compare, we can form a ratio where all 
like terms will cancel: 

�max,f-f/�max,p-p = (Mmaxc/I)f-f/(Mmaxc/I)p-p = (Mmax)f-f/(Mmax)p-p = 
(PL/8)/(PL/4) = 1/2 

Thus the max stress in the fixed-fixed support case is one-half that of 
the pinned-pinned case. (Why?)  

RP2.5 

For the rod in RP2.1, calculate the total strain energy stored due to the 
loads applied.  

In general, the strain energy is given by: 

 
21 1

,
2 2

x
x xvol vol

U dV dV dV dxdydz
E

σσ ε= = =� �  
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Again, due to the discontinuities in stress and volume, the integral 
must be broken as before: 

 ( )2 2 2

. . .

1
2 x x xvol I vol II vol III

U dV dV dV
E

σ σ σ= + +� � �  

Note that for constant stress over any volume element, the volume 
integral becomes 

 
vol area

dV dxdydz dAdx A dx= = =� ��� �� �  

for constant area A. 
Now computing the total strain energy is straightforward: 

( )
( ) ( )( ) ( )
( )( ) ( ) ( )( )

5" 10" 22"2 2 2
1 1 2 2 3 30 5" 10"

22 2

6 2 22

1
2
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10.5

U A dx A dx A dx
E

in in psi in

x psi in psi in in psi

lb in

σ σ σ

π

= + +

� �+
� �=
� �+� �

= ⋅

� � �  

IP2.1 

Finally, let’s take a look at the Hyatt Regency walkway collapse 
mentioned at the beginning of this Chapter. The collapse occurred at 
the Hyatt Regency Kansas City in Kansas City, Missouri, on July 17, 
1981. Two vertically contiguous walkways collapsed onto a dance 
competition being held in the hotel's atrium. The falling walkways 
killed 114 and injured another 216. According to the NIST report1: 

“Three suspended walkways spanned the atrium at the 
second, third, and fourth floor levels. The second floor 
walkway was suspended from the fourth floor walkway 
which was directly above it. In turn, this fourth floor 
walkway was suspended from the atrium roof framing 

                                                            
1 Marshall, R.D., et al. (1982). Investigation of the Kansas City Hyatt Regency 

Walkways Collapse. National Bureau of Standards Building Science Series 143, 

Washington, DC: U.S. Department of Commerce, National Bureau of Standards. 
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by a set of six hanger rods. The third floor walkway was 
offset from the other two and was independently 
suspended from the roof framing by another set of 
hanger rods. In the collapse, the second and fourth floor 
walkways fell to the atrium floor, with the fourth floor 
walkway coming to rest on top of the lower walkway. 
Based on the results of this investigation, it is concluded 
that the most probable cause of failure was insufficient 
load capacity of the box beam-hanger rod connections. 
Observed distortions of structural components strongly 
suggest that the failure of the walkway system initiated 
in the box beam-hanger rod connection on the east end 
of the fourth floor walkway's middle box beam (Figure 
IP2.1a). 

Two factors contributed to the collapse: inadequacy of 
the original design for the box beam-hanger rod 
connection, which was identical for all three walkways, 
and a change in hanger rod arrangement during 
construction that essentially doubled the load on the 
box beam-hanger rod connections at the fourth floor 
walkway (Figure IP2.1b). As originally approved for 
construction, the contract drawings called for a set of 
continuous hanger rods which would attach to the roof 
framing and pass through the fourth floor box beams 
and on through the second floor box beams. As actually 
constructed, two sets of hanger rods were used, one set 
extending from the fourth floor box beams to the roof 
framing and another set from the second floor box 
beams to the fourth floor box beams.” 



 BASIC STRUCTURES LEVEL I 73 

 

 

Figure IP2.1a. Distorted box beam (cross beam) hanger. 

 

Figure IP2.1b. Original hanger design vs as built. 

2.6 C3 Clarified 

C3 2.1: What is the difference between the moment of inertia (MOI) 
and the second moment of area (SMOA)? 

Answer: Both refer to the same thing but MOI is an inappropriate 
choice. “Inertia” means “resistance to acceleration” (a). It is the meaning 
of “mass” (m) in Newton’s 2nd Law, i.e., m = F/a. Inertia has no role in 
the static equilibria that we deal with here in mechanics of materials. 
SMOA is the correct description of the quantity 2r dA� . See Appendix 3 

for further discussion.  
C3 2.2: What is the difference between global and local equilibrium? 

Answer: Global equilibrium refers to the structure as a whole and 
not the internal reaction to loads. Reactions at boundaries to structure 
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loads are found using local equilibrium considers equilibrium at any 
point in the structure, e.g., where stress or strain is of interest. If a 
structure is in global equilibrium, it is also in local equilibrium, i.e., 
every point is in equilibrium. 
C3 2.3: Are the traction vector and stress vector the same thing? 

Answer: Yes, both refer to the same quantity but traction vector is 
the preferred name. Stress is not a vector quantity but a second order 
tensor and we should not confuse the two. 
C3 2.4: How can V be used for both “volume” and “shear force”? 

Answer: Unfortunately, there are more engineering variables than 
there are letters and symbols, so there will be overlap. The best we can 
do is be consistent and make clear in what context we are using the 
variable. 
C3 2.5 Why do most mechanics of materials books discuss an additional 
sign convention for shear forces and moment in beam bending? 

Answer: This is indeed unfortunate as it is not necessary. For a 
complete discussion, see Appendix 4. 
C3 2.6: Can stress be measured? Strain? 

Answer: Interestingly enough, stress cannot be directly measured. 
This is a little troubling, since engineers like to directly measure 
important results if necessary. Strain can be directly measured and then 
stress inferred from strain through material models (Table 2.1). 

Table 2.1. Comparison of some key relationships between axial, 

torsional, and flexural structures. Keep in mind that stress and strain 

are point functions, i.e., they are defined at a point in a structure and 

(in general) vary from point to point within a structure. 

 Axial Torsional Flexural 

Stress σ =xx

P
A θτ =x

Mr
J

  σ =xx

My
I

Deformation �xx = du/dx Chap. 4 Chap. 3 

Constitution �xx = E �xx Chap. 4 Chap. 3 
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2.7 Developing Engineering Intuition 

 1. AXIAL: You and a partner grab the opposite ends of a rope or wire 
and pull as hard as you can. Now reverse the loading from tensile 
to compressive. Explain what you observe. 

 2. TORSION: Take a standard wire paper clip, partially open it, then 
try to twist it into two pieces. Repeat with four more clips (five 
total) and think about what you observe. 

 3. FLEXURE: Place a “2 × 4” lumber about 8 ft long across two 
shorter 2 × 4s, one at each end of the long lumber. Do this first the 
“short” way (2 inch sides vertical), stand on the center and observe 
the deformation (e.g., central sag). Now repeat with the 4 inch 
sides vertical. Explain your observations. 

 4. MATERIAL RESPONSE: Take an ordinary metal paperclip, open 
it up into approximately two halves, then bend it back and forth in 
the middle until it fractures (which should take less than 20 or so 
cycles). Record the number of cycles. Repeat for another four clips 
(five total). Discuss the results, particularly in comparison to the 
twisted paper clips. Comment on the clip’s temperature change. 

  



 

 

 



 

CHAPTER 3 

Basic Structures Level II 
Learning Objectives: This chapter will introduce the student to 
additional complexity from Level I, such as combined loading and beam 
deflection. Stiffness design will be considered in this chapter. (Strength 
design was covered in Chapter 2.) Along the way we will clarify several 
common confusing concepts (C3s). 
Clarifications: Studying this chapter will help clarify: 
 

• Body loads 
• General loading of flexural structures 
• Combined axial and flexural loads 
• Beam deflections 
• Material response in flexure 
• Solving stiffness design problems 

 
Importance: Catastrophic failure of many modern structures can lead to 
extensive property damage as well as the unfortunate loss of life. A 
classic example is the crane (Figure I3.1a). 

The crane, in existence at least from the early Greek and Roman 
periods, is a machine used for moving materials vertically and/or 
horizontally. Used extensively in a variety of applications today, crane 
failures are not uncommon, some ending badly (see Figure I3.1b). For 
example. Between 2003 and 2006, the National Bureau of Labor 
Statistics reported over 70 crane-related fatalities per year. 
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Figure I3.1a. (a) Roman crane; (b) mobile crane; (c) shipyard crane; 

(d) portable crane. 

 

Figure I3.1b. Crane failure in Bellevue, WA, November 2006. 
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3.0 Representative Problems 

The following are examples of basic structural design problems we want 
to be able to solve as engineers. Studying this chapter will help us solve 
them, which we will do in Section 3.6. 

RP3.1 

A cantilever beam of length L, modulus E, and second moment of area I, is 
tip-loaded by a transverse concentrated force P as shown in Figure RP3.1a. 
Determine the following quantities: 

v(x) = ? v′ (x) = ? σx(x) = ? 
vmax = ? v′max = ? σx,max = ? 

 

Figure RP3.1a. Here v is the beam y-displacement and v� is the beam 

slope. 

RP3.2 

A jib crane consists of a wide flange steel beam attached by a pin 
(momentless) connection to a vertical support (Figure RP3.2a). The 
beam has an intermediate tie rod support. The wide flange beam has the 
following section properties: h = 153 mm, A = 22.9 cm2, I = 916 cm4. 

If a 500 kg load is suspended at the free end of the beam, compute 
the maximum stress in the beam. 

 

Figure RP3.2a. Jib crane. 
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RP3.3 

A rod of solid circular cross-section is used as a cantilever beam by 
welding one end to a metal wall and leaving the other end free. Of the 
diameter D, modulus E, and length L, which has the greatest impact on 
the beam deflection? 

3.1 Body Loads and Axial Response  

As discussed in Chapter 1, body loads are those loads that act within and 
throughout the body by forces “acting at a distance”. This is in contrast 
to surface loads”, which result from direct contact of one body with 
another. The most common body loads are gravity loads and thermal 
loads. Other body loads include magnetic and electro-magnetic. 

3.1.1 Gravity Loads 

Loads due to the local gravitational attraction (acceleration) are called 
gravity loads. Simply, this is the structure’s self-weight, which is often 
ignorable compared to the applied load being carried.  

The only real challenge arising with gravity loads is with structures 
that have a significant vertical component to them. In that case, we have 
an internal response gradient (spatially varying response). This is simply 
the fact that (for example, in compression) each successively lower 
material particle feels not only the tug of gravity on itself but 
additionally all of the weight of the material particles above it.  

Consider a uniform rod of total mass m0 in a vertical configuration 
as shown in Figure 3.1: 

 

Figure 3.1. Uniform rod under gravity loading.  
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The rod mass must increase linearly from top to bottom such that 
m(x) = �Ax, with m(x = L) = �AL = m0. Hence the self-weight loading 
follows the same linear trend 

 w(x) = m(x)g = �Agx (3.1) 

Example 3.1 

Three rods are hung vertically from a ceiling, each suspended from their 
top (Figure E3.1). Each rod is 10 m in length, with one made from 
steel, another from aluminum, and a third from wood. Compute the 
total elongation of each rod due to its own weight, and compare one to 
another. Why are the results independent of the cross-sectional area? 
 
Material Density ρ (kg/m3) Modulus E (GPa) 

Steel 7850 200

Aluminum 2700 70

Wood 500 12

 

 

Figure E3.1. 

The total elongation is  

 ( )TOT 0
u

L
x dxε= �   
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where for the 1-D case Eσ ε= . Then 

 uTOT ( )x
dx

E
σ

= �  

But  

 ( )
( ) ( )

= =σ
P x m x g

x
A A

 

Upon substituting,  

 uTOT ( )
0

L g
m x dx

EA
= �  

Since  

 ( )  m v Al m x Axρ ρ ρ= = � =  

Then 

 

( )TOT

0

2

0

u

2

L

L

g
Ax dx

EA
g

xdx
E
g x
E

ρ

ρ

ρ

=

=

=

�

�  

Finally, 

 
2

TOT    u
2

g L
E

ρ=  

Let’s check units:  

 

2 2
2 3

TOT 2

2

u [ ]
2

kgmg L m
s m m

kg m s
E

m

ρ � �� � � �� �� 	� 	� � � �= =
� �⋅
� 	
� �

� 

Knowing we get the correct units (length) gives us confidence the 
equation is correct.  



 BASIC STRUCTURES LEVEL II 83 

 

Computing uTOT for each rod gives the final result: 

 

5

5

5

    1.925 10

    1.391 10

2.043 10                      greatest elongation!

stl

Al

wood

u m

u m

u m

−

−

−

= ×

= ×

= × ⇐

 

Note that the resultants 
are independent of the cross-
sectional area. The force 
causing the elongation is due 
only to gravity acting on the 
total mass.  

Note also that for the same g and L, the variation in uTOT depends 
only on the variation in �/E. 

3.2 Equilibrium under General Loading I 

3.2.1 General Flexural Structure Equilibrium 

Consider a beam subjected to general flexural loading: transverse 
concentrated forces P, distributed forces p(x) [force/length], and 
concentrated moments M [force*length] as shown in Figure 3.2: 

 

Figure 3.2. A beam under general loading.  

The internal reaction 
system required to enforce 
equilibrium under any general 
system of applied loads 
includes an axial force N, 
shear force V, and moment M. 
(We will shortly consider loads 
that generate a net axial force 

C3 

3.1 Why should we take the time to 
check units? 
(Answer: Section 3.7) 

C3 

3.2 In many textbooks, the shear 
stresses are shown oppositely directed, 
that is, one up and one done. In 
Figure 3.3 they are shown in the same 
direction. Which is correct? 
(Answer: Section 3.7) 
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N in the beam. Formally, such a structure would be called a beam-
column.) The signs and magnitudes of the reaction forces and moments 
would be determined from global statics in the usual way.  

To relate the internal forces and moments to the applied loads, let’s 
first consider an incremental element (Δx long) of a beam under a 
distributed load p(x) only (Figure 3.3): 

 

Figure 3.3. Incremental element of a beam subjected to transverse 

distributed load p(x). 

In Figure 3.3, xxp Δ)(  represents an average force over the 
element. Satisfying force equilibrium in the y-direction gives: 

 
0 : ( ) ( ) ( ) 0 ( )

( ) ( )
yF V x p x x V x x p x

V x x V x
x

Σ Δ Δ
Δ
Δ

= − − + + = �

+ −=
 (3.2) 

In the limit, as Δx → 0 (remember stress and strain are “point” 
quantities), )(xp  → p(x) and  

 
0

( ) ( ) ( )( ) lim
x

V x x V x dV x
p x

x dxΔ

Δ
Δ→

+ −= =  (3.3) 

Satisfying moment equilibrium at x gives: 

 
0 : ( ) ( ) ( )

2
( ) 0

z
x

M M x p x x V x x x

M x x

ΔΣ Δ Δ Δ

Δ

= − − + +

+ + =
 (3.4) 

or 
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 ( ) ( ) ( ) ( )
2

M x x M x x
p x V x x

x
Δ Δ Δ
Δ

+ − = − +  (3.5) 

Again, in the limit as Δx → 0 and using Equation (3.2)  

 ( ) ( )dM x
V x

dx
= −  (3.6) 

(Note that in the limit as Δx → 0, the difference between Δx and 
Δx/2 becomes insignificant.) 

Equations (3.3) and (3.6) 
are fundamental differential 
equations relating external 
beam loads and internal beam 
reactions. (The sign in 
Equation 3.6 has no immediate 
practical significance.) These 
two equations are useful in 
beam design since they allow us 
to locate the position along the beam length of the maximum internal shear 
force and bending moment, the later particularly driving the design. Note 
that by Equation (3.6), the location of the maximum internal moment is 
found by setting the internal shear function V(x) = 0 and solving for the 
roots (one of which gives the location of the global maxima). This is a 
critical concept as it allows us to find the maximum bending stress when 
doing a strength design, and we will come back to this point later. 

From Equation (3.3) we see that the internal shear force can be 
found by an integration of the distributed load: 

 ( ) ( )V x dx p x dx=� �  (3.7) 

Similarly, from Equation (3.6) we see that the internal moment can 
be found from an integration of the shear force: 

 ( ) ( )M x dx V x dx= −� �  (3.8) 

  

C3 

3.3 I understand the need to know 
the magnitude, direction, and 
location of the maximum moment, 
but why not also for the maximum 
shear force? 
(Answer: Section 3.7) 
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Equations (3.7) and (3.8) are the integral equation versions of 
Equations (3.3) and (3.6). They can be used to construct what are called 
shear and moment diagrams, respectively. For simple loading p(x), the 
shear and moment diagrams can be manually constructed by simple 
graphical methods. For more complicated loadings, however, the 
modern engineer usually relies directly on Equations (3.7) and (3.8).  

Remember, what we are primarily interested in is the magnitude, 
sign, and location of the maximum moment(s). We’ll illustrate this in 
the next couple of examples. 

Example 3.2 Maximum moment by statics alone 

A simply supported beam (pinned—roller) of length L has a distributed 
load as shown in Figure E3.2a: 

 

Figure E3.2a. 

Here, the loading function p(x) = p0x/L, where p0 is the intensity of 
the load at the right end of the beam in dimensions of [force/length]. 
Let’s find the internal shear force and moment expressions and the 
maximum moment simply using statics. 

We start as always with the equations of statics applied globally and 
solve for the reaction forces and moments (which, among others things, 
satisfies us as to whether the problem is statically determinate or not). 
The first thing we do is a global FBD (Figure E3.2b): 

 

Figure E3.2b. 
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Notice that we’ve replaced the distributed load with its statically 
equivalent concentrated force F = p0L/2 acting at xF = 2L/3, as we 
reviewed in Chapter 1. Now the global analysis gives: 

 

0
1 2

0
1 2

0 : 0
2
20 : 0

2 3

y
p L

F R R

p L L
M R L

Σ

Σ

= − + =

= − + =
 

Solving these two equations for the unknown reactions gives R2 = 
p0L/3 and R1 = p0L/6. 

In order to find the internal response V(x) and M(x), we now need 
to apply statics locally, following the same procedure as above but this 
time using a local FBD (Figures E3.2c and E3.2d): 

 

Figure E3.2c. Local FBD showing distributed load. 

 

Figure E3.2d. Local FBD showing statically equivalent concentrated 

load P. 

Following the same procedures as above and in Chapter 1, 

( ) 20
0

1
2 2

px
P x p x x

L L
= =  and xP = 2x/3. A local analysis then gives 

 
1

1

0 : ( ) 0

0 : ( ) ( 2 / 3) 0
y

z

F P R V x

ccw M M x R x P x x

+ ↑ = − + + =

+ = − − + − =
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The first of these equations gives V(x) = –R1 + P, while the second 
gives M(x) = R1x – Px/3. Finally then our internal shear force and 
moment distributions are: 

 

20 0

30 0

( )
6 2

( )
6 6

p L p
V x x

L
p L p

M x x x
L

= − +

= −
 

We can check that M(0) = 0 from the condition at boundary 1 and 
from the other moment boundary condition M(L) = 0. Also we find  
V1 = V(0) = –p0L/6 = –R1, and V(L) = V2 = p0L/3 = R2.  

Setting V(xmax) = 0 gives 

 20 0
max max max( ) 0

6 2 3
p L p L

V x x x
L

= = − + � =  

Then Mmax is given by: 

 
3 2

0 0 0
max max( )

6 63 3 9 3
p L p p LL L

M x
L

� � � �= − = = �  �
� � � �

�  

Let’s plot the internal shear force and moment distributions in 
Figure E3.2e and see what they look like: 

 

Figure E3.2e. Internal shear force and moment reactions along the 

beam. The variables have been non-dimensionalized such that Vnd(xnd) 

= V(xnd)/p0L and M(xnd) = M(xnd)/p0L
2, where xnd = x/L. (Note that 

xnd in the plot is xnd in the text.) 
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Note that the shear force is maximum at boundary 2, and that the 
moment is maximum when V(x) = 0 at x = xmax = 0.577L as predicted.  

Example 3.3 Maximum moment from beam theory 

Let’s now solve the same problem posed in Example 3.2, namely, 
finding the shear and moment distributions along a simply supported 
beam carrying a triangular distributed load. Except this time, let’s apply 
the differential equilibrium relations (Equations (3.3) and (3.6)) in 
integral form (Equations (3.7) and (3.8)). That is, 

 

0

0 0

20
1

( )

( )
2

x x p
V d d

L
p

V x V x
L

ζ ζ ζ ζ=

− =

� �
 

where we have used V1 = V(0). From Equation (3.8), 

 

20
10 0

30
1

( )
2

( )
6

x x p
M d V d

L
p

M x V x x
L

ζ ζ ζ ζ� �= − +� 	� �

= − −

� �
 

where we have taken that M(0) = 0 from the condition at boundary 1. 
Using the other moment boundary condition M(L) = 0, we solve for V1 
= p0L/6 = R1, which should come as no surprise and makes a good 
check. Finally then our internal shear force and moment distributions 
are: 

 

20 0

30 0

( )
6 2

( )
6 6

p L p
V x x

L

p L p
M x x x

L

= − +

= −
 

These are the same as we found in Example 3.2. 
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Example 3.4. Two concentrated loads 

Consider now a simply supported beam with two concentrated loads, 
each of magnitude F, spaced a distance “a” from each end of the beam, 
i.e., at x = a and x = L – a (Figure E3.4a). Find V(x), M(x), Vmax, and 
Mmax. 

 

Figure E3.4a. 

First, find the external reactions by global statics. Here’s a good 
opportunity for you to practice, since by intuition we know the answer. 
We’ve already got the global FBD in Figure E3.4a. Sum forces in the y-
direction and sum moments about end 1 or end 2. You should be able 
to show what you would intuit, that R1 = R2 = F.  

Now to find the shear and moment distributions, we need three 
local FBDs, since the discontinuous loading breaks the beam into three 
distinct regions: 

0 ≤ x < a 
a ≤ x < L – a  
L – a ≤ x ≤ L 

These regions are captured in Figure E3.4b: 

 

Figure E3.4b. 
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Now, summing forces region by region: 
0 ≤ x < a: ( ) ( )1 10 :  0yF R V x V x R F= + = � = − = −
  

a ≤ x < L – a: 
( ) ( )1

1

0 :  0 0 
(   )

yF R F V x V x
since R F

= − + = � =
=


  

L – a ≤ x ≤ L: 
( ) ( )1

1

0 :  0  
(   )

yF R F F V x V x F
since R F

= − − + = � =
=


  

 
Let’s see what the shear distribution looks like (Figure E3.4c): 

 

Figure E3.4c. 

Now, summing moments (about the “cut”) region by region: 

0 ≤ x < a: 
( ) ( )1

1

0 :  0cM R x M x M x
R x Fx

= − − = �
= − = −


  

a ≤ x < L – a: ( ) ( )
( )

10 : 

0
cM R x F x a M x

M x Fa

= − + − −
= � = −


  

L – a ≤ x ≤ L: 
( ) ( )( )

( ) ( )
10 : 

0   ( )
cM R x F x a F x L a

M x M x F L x

= − + − + − −
− = � = − −


  

Let’s see what the moment distribution looks like (Figure E3.4d): 

 

Figure E3.4d. 
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The maximum moment exists between the two concentrated forces 
and with magnitude Mmax = –Fa. 

3.2.2. Combined Axial and Flexural Loading 

Thus far we have considered structural loading that acts to cause 
extension (axial) only, twist (torsional) only, or bending (flexural) only 
(Table 3.1). However, most structures will experience simultaneous 
combinations of two or all three loading conditions. In Chapter 4 we 
will consider the most general case of combined loading and see the 
critical issue that arises: the determination of the maximum stress. 

Figure 3.4 shows the combination of all three loading conditions. 
Each loading condition results in a corresponding stress state (internal 
response); these combine tensorially to give the total stress state. Moving 
from left to right in rows (b) or (c) shows flexure, extension, and twist.  

By way of introduction, here we consider only the simplest case of 
combined loading: axial and flexural. Our scope in this section is thus 
confined to the box outlined in Figure 3.4.  

 

Figure 3.4. Graphic Representation of Combined Loading. 
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The matrix stress component representation would have the 
following form: 

 

0 0 0 0 / 0 0
0 0 0 0 0 0   0 0 0
0 0 0 0 0 0 0 0 0

0 0
0 0 0
0 0 0

xx xx

axial flexural axial

flexural

P A

My
I

σ σ� � � � � �
� 	 � 	 � 	+ =� 	 � 	 � 	
� 	 � 	 � 	� � � � � �

� �
� 	

+ � 	
� 	
� 	� �

 (3.9) 

Example 3.5 

A 60 inch long beam of rectangular cross-section (2 × 3 inches) carries 
both transverse load P and axial load N (Figure E3.5a). Determine the 
maximum tensile and compressive stresses. 

 

Figure E3.5a. 

Let a = 45 in, b = 15 in, P = 0.8 kip, N = 6 kip. Also area A = 2 in  
* 3 in = 6 in2 and second moment of area I = (2*(3)3)/12 in4 = 4.5 in4. 

Student should verify: RA = 0.2 kip, RB = 0.6 kip, Mmax = 9,000 in lb 
at x = 45 inches 

Axial stress (N only): �xx = N/A = 6,000 lb/6 in2 = 1,000 psi 
Flexural stress (P only): �xx = My/I 

 �xx, max = Mmaxc/I = (9,000 in lb)(3/2 in)/4.5 in4 = 3,000 psi 

In matrix stress component form, for a point located along the outer 
compressive fiber (y = +h/2) at the section of maximum moment, 
Equation (3.9) becomes 
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0 0 0 0 1000  0 0
0 0 0 0 0 0   0 0 0
0 0 0 0 0 0 0 0 0

3000    0 0 2000    0 0
0 0 0 0 0 0
0 0 0 0 0 0

xx xx

axial flexural axial

flexural

psi

psi psi

σ σ� � � � � �
� 	 � 	 � 	+ =� 	 � 	 � 	
� 	 � 	 � 	� � � � � �

� � � �− −
� 	 � 	+ =� 	 � 	
� 	 � 	� � � �

�
A graphical representation is given in Figure E3.5b: 

 

Figure E3.5b. 

Note that the neutral axis has shifted from y = 0 to yNA, found by 
similar triangles as: 

 4000/(h/2) = 1000/yNA => yNA = (1000/4000) 1.5in = 0.375 inch. 

3.3 Flexural Structure Deformation I 

For a beam undergoing small deflection, it is convenient and reasonable 
to make the following simplifying assumptions: 
 

• The beam bends symmetrically about a so-called neutral axis. 
• The neutral axis is co-located with a unique fiber, the 

neutral fiber, which remains inextensional during 
deformation, i.e., the axial strain along the fiber is zero. Due 
to symmetry and zero neutral fiber strain, it is convenient to 
associate the origin of coordinates along the neutral axis. 

• Cross-sectional planes initially perpendicular to the neutral 
axis remain plane and perpendicular to the neutral axis 
during deformation. 
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(These assumptions are known as the Euler-Bernoulli assumptions.) 
Consider a beam under the action of transverse forces and/or 

moments applied to the surface (Figure 3.5): 

 

Figure 3.5. Deformation of a beam. The beam deflections shown are 

greatly exaggerated given the Euler-Bernoulli assumptions. (Why?) 

The radius of curvature of an axial fiber is r. Note that the fiber co-

located at y = ---h/2 is extended, while the one at y = +h/2 is 

contracted.  

Let’s now examine a slice of the beam of width dx, taken arbitrarily 
along the beam at x, before and after the deformation. We consider an 
arbitrary fiber of initial length ds = dx located at a position y in the slice 
(Figure 3.6): 

 

Figure 3.6. Elemental slice through the beam, before and after 

deformation. Line c-c has an undeformed length ds = dx and a 

deformed length ds*. 
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Note that the outer fibers are shown extended and contracted as 
previously discussed (e.g., ds → ds*), and the neutral fiber does not 
change length (equal to dx before and after deformation). The cutting 
planes perpendicular to the neutral axis remain plane and perpendicular 
after deformation. The initially straight neutral fiber is bent into a 
curved line, with radius of curvature r0(x), which is a large number since 
the deflections are assumed very, very small.  

In the deformed slice, the neutral axis has length dx* = r0dθ = dx, 
which is equal to dx due to the inextensional condition. The new length 
of the arbitrary fiber segment ds is ds*, with length: 

 ds* = (r0 – y)dθ (3.10) 

From the definition of extensional strain: 

 0 0

0 0

( )*( )x
r y d r d yds ds

y
ds r d r

θ θε
θ

− −−= = = −  (3.11) 

(We have assumed here that the y-location of ds is the same before 
and after deformation. For the small deflections assumed here, this is 
quite reasonable.) 

We see that the extensional strain of a fiber εx is a linear function of 
its distance y from the neutral axis. The strain distribution must look 
like Figure 3.7: 

 

Figure 3.7. Extensional fiber strain distribution at a cross-section. 
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Along any given y = constant fiber, the strain increases with 
increasing curvature, as would be expected. From elementary calculus, 
the curvature 1/r0 (say) of a line is related to the first and second 
derivatives of the function describing the line by: 

 
( )

2 2

230

1 /

1 /

d u dx
r du dx

=
+

 (3.12) 

where u is the displacement variable in the x-direction. 
For small deflections, (dv/dx)2 << 1, and 1/r0 ≈ d2v/dx2. Then the 

strain in Equation (3.11) is given by  

 
2

2
0

( )x
y d u

y yu x
r dx

ε ′′= − ≈ − = −  (3.13) 

This is the fundamental strain-curvature relationship for a beam. 

Example 3.6 

A cantilever beam of length L and depth h, such that L/(h/2) = 30, is 
loaded by a pure moment of magnitude M0 as shown in Figure E3.6. 

 

Figure E3.6. 

a. Determine an expression for the normalized radius of curvature 
r0/(h/2) if the bottom fiber (at y = – h/2) is at the tensile yield strain 
of the material, εY,T. 

 
,

0 0

0

,

( / 2)

1
/ 2

x Y T

Y T

y h
r r

r
h

ε ε

ε

−= − = − =

=
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b. Determine the normalized tip deflection δ   /(h/2) for the given 
loading. 

 

For small deflection, a pure moment loading results in a circular arc 
for a deflection curve. (A discussion of circular bending is given at the 
end of Example 3.8.) Then L = r0α, and δmax = r0 – r0cosα = r0(1 – 
cosα). 

 ,
0 0

/ 2 30
/ 2 Y T

L L h
r h r

α ε= = =  

 
max

,
,

1 1 cos(30 )
/ 2 Y T

Y Th
δ ε

ε
= −� �� �  

Determine r0 and δmax if L = 15 ft and εY,T = 0.001. 

0
,

max 0 ,

15
500

30 30(0.001)
[1 cos(30 )] 500 [1 cos(0.03 )] 0.225 2.70
Y T

Y T

ftL
r ft

r ft rad ft in
ε

δ ε

= = =

= − = − = =
 

3.4 Material Response in Flexure 

3.4.1 Flexural Structure Constitution 

For a linear elastic isotropic homogeneous beam, Hooke’s law provides an 
adequate model for the constitutive relations. As discussed in Chapter 4, 
in general there are nine components of strain to relate to nine 
components of stress. (Physical and mathematical requirements reduce the 
number of relationships.) In the Hooke’s Law model, normal stress and 
strain components are 
unrelated to shear stress and 
strain components, and vice 
versa. Equations (3.14) shows 
the Hookean relations for 
normal strains and stresses: 

C3 

3.4 Where does Hooke’s Law come 
from? 
(Answer: Section 3.7) 
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 ( )1
x x y zE

ε σ ν σ σ� �= − +� �  

 ( )1
y y x zE

ε σ ν σ σ� �= − +� �  (3.14) 

 ( )1
z z x yE

ε σ ν σ σ� �= − +� �  

Now for the beams we study here, there will only be transverse loads 
in the x-y plane (i.e., transverse to the long axis of the beam in the 
bending plane). Thus it is reasonable to assume that σy = σz = 0 
(especially since the surfaces x = 0, L and z = ± h/2 are traction free, i.e., 
unloaded). Then the constitutive relations simplify to  

 

x
x

x
y z

E

E

σε

σε ε ν

=

= = −
 (3.15) 

Note that the negative sign in the latter equations implies that the 
extensional fibers (σx > 0) contract due to Poisson’s effect, while the 
contracting fibers (σx < 0) expand! In most practical cases, however, we 

need only concern ourselves with the first of Equations (3.15). 

3.4.2 Flexural Energetics  

If we maintain that the stress—strain state in a flexural structure is one-
dimensional, then the stored energy (internal or strain energy) under 
flexural loading is the same as it was for the axial structures we 
considered in Chapter 2. Recalling Equation (2.27): 

 
21 1 ,

2 2
x

x xvol vol
U dV dV dV dxdydz

E
σσ ε= = =� �  (3.16) 

If, on the other hand, we were to consider the contribution of shear 
to the stress—strain state, then the strain energy relation would include 
shear terms. Such multi-axial strain energy is discussed in Chapter 4.  
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In this chapter, we will use the one-dimensional strain energy relation in 
the context of the flexural test.  

There are several advantages of flexural testing over tensile testing. 
Flexural specimens are simpler in design and to manufacture than tensile 
specimens. For materials where the clamping force of the grips may 
cause problems, such as very brittle materials like ceramics, flexural 
testing obviates those concerns. Even for small strains, the displacements 
under flexure can be considerably more than those for tensile loading, 
making measurements easier. 

The standard configurations for flexural testing are either three-point 
bending or four-point bending. The three-point bend configuration is 
shown in Figure 3.8: 

 

Figure 3.8. Three point flexural test on a composite beam at 

speed=10 mm/min. Universal testing machine (Instron brand) 

equipped with a 300 kN dynamometer.  

If the Young’s Modulus of a material is found from flexural testing, it 
should be very close to that found from tensile testing if the compression 
modulus is the same as the tension modulus (which it is for many materials). 
Flexural strengths may or may not correlate as well with tensile strengths. 

If the beam is relatively slender (standard test methods recommend 
that L/h > 15), then the contribution of shear to the deflection Δ is 
more than 10 times smaller than the normal deflection, and are thus 
usually ignored in the modulus calculation. 
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3.5 Flexural Structure Deformation II 

Now we substitute the constitutive relation (Equation 3.15) into the strain-
curvature relation (Equation 3.13), which gives a stress-curvature relationship: 

 ( )x yEv xσ ′′= −  (3.17) 

Computing the stress resultant N by integrating the force �xdA 
through the symmetric cross-section gives, using (3.17): 

 
/22/2 /2

/2 /2 /2
( ) ( ) 0

2

h
b h

xA b h h

y
N dA yEv x dydz bEv xσ

− − −
′′ ′′= = − = − =� � � (3.18) 

This is an important result that verifies the symmetry of the bending 
stress distribution about the neutral plane, i.e., there is no net axial force 
on the beam as a result of the transverse loads. 

A stress-couple or moment can be calculated in a similar manner: 

 

/2 /2

/2 /2
/2 /22 2

/2 /2
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b h

xA b h
b h

b h

M x ydA

y Ev x dydz Ev x y dydz EIv x

σ
− −

− −

= − =

′′ ′′ ′′= =

� � �
� �

(3.19) 

where �xdA is again the force, y is the moment arm, and we have again 
used (3.17). Equation (3.19) is the important moment-curvature 
relation, where we have used the definition of moment of inertia I given 
earlier. Note that if the moment produced by the load is a known 
function of x (meaning the beam is statically determinate), two 
integrations of the moment-curvature relation Equation (3.19) can be 
performed to find the resulting deflection v(x). The first integration 
gives v′(x), i.e., the slope of the beam at x or v′(x) = θ(x): 

 1
0

1
( ) ( )

x

v x M x dx C
EI

′ = +�   (3.20) 

while the second gives the deflected shape or elastic curve: 

 1 2
0 0

1
( ) [ ( ) ]

x x

v x M x dx dx C x C
EI

= + +� �   (3.21) 
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The constants C1 and C2 are determined from the two boundary 
conditions at the supported end of the free body. 

Returning to the beam boundary conditions, we now see that v = 0 
implies V ≠ 0 at the boundary and vice versa. Similarly, θ = 0 at the 
boundary implies M ≠ 0 at the boundary and vice versa. Hence the 
simple and roller supports provide a momentless boundary with a shear 
force, while the fixed and guided supports each provide a moment, but 
no shear force in the latter case. 

Substituting the moment-curvature relation (Equation 3.19) into 
the stress-curvature relation (Equation 3.17) gives 

 ( )
( )x

M x y
x

I
σ = −  (3.22) 

which is useful in calculating the stress in a beam cross-section from a 
given moment-producing load. 

Example 3.8 

A cantilever beam has a moment M0 applied at the free end (Figure 
E3.8a). Determine the maximum transverse displacement of the beam 
and its location. 

 

Figure E3.8a. 

Let’s look at a FBD (Figure E3.8b): 

 

Figure E3.8b. 
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The internal moment must equal the external moment everywhere 
along the beam, i.e., M(x) = M0. The x = 0 boundary is fixed (clamped); 
the boundary conditions are v(0) = v�(0) = 0 accordingly. 

Applying Equation (3.20), with ( ) 0 0
0 0

x x

M x dx M dx M x= =� � : 

 ( ) ( )'
0 1 1

10 0 0 0v M C C
EI

= = �+ = �
Applying Equation (3.21), with ( )

0 0

x x

M x dx dx
� �
� 	
� �

� �
2

0 0
0

( )
2

x x
M x dx M= =� : 

 ( ) ( )2
0 2 2

10 0 0 0
2

v M C C
EI

= = + � = �
Then  

 ( ) 20

2
M

v x x
EI

= �
which is maximum at x = L (plot the function v(x) if you don’t see this): 

 ( ) 20

2max
M

v v L L
EI

= = �
Finally, imagine the beam in Figure E3.8a as one-half (the “right 

half”) of a beam of length 2L held at mid-span. With moment loading 
applied as before, the right-side elastic curve would still look like v(x)  
~ x2 and the left-side would be symmetrical: 

 v(–x) ~ (–x)2  

For small deflection, the curve v(x) is a quadradic function that 
represents the arc of a circle. Thus pure moment loading as we have 
examined it is referred to a circular bending. 
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Example 3.9 

Let’s determine the Young’s modulus from a three-point bend test, 
using a beam of length L with rectangular cross-section beam of depth h 
and width b (Figure E3.9a). 

 

Figure E3.9a. For three-point bending, a = b. 

We start with Equation (3.16), and upon substituting in Equation 
(3.22): 

 
2 2

2

1
2

M y
U dA dx

E I
� �

=  �
� �

� �  

The moment is easily found by the method of sections. First we find 
the reactions R1 = R2 = P/2 by global statics. Then a FBD shown in 
Figure E3.9b is used for finding the moment M. 

 

Figure E3.9b. 

Summing moments around c we find that M = (P/2)x. Noting that  

 2y dA I=�  
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and that M is only a function of x, the strain energy equation above 
becomes: 

 21
2

U M dx
EI

= �  

We note that the moment is discontinuous at x = L/2 (M changes 
sign but not magnitude at x = L/2), but since M2 is symmetrical about x 
= L/2, we complete the integration by integrating from x = 0 to x = L/2 
and multiply by 2: 

 
2 2 2 3/2

0

2
2 4 96

L P x P L
U dx

EI EI
= =�  

For the rectangular cross-section, I = bh3/12. Recasting the strain 
energy in terms of the work done on the beam, U = ½ PΔ, where Δ is 
the deflection incurred under the load P (see Section 3.6): 

 
2 3 3

3 38 2 4
P L P PL

U E
Ebh bhΔ Δ

= = � =  

One last issue remains to be discussed here, and that is the shear 
deformation in flexure. Looking back on Figure 3.5 (which, recall, is a 
greatly exaggerated view) and Figure 3.6, it is clear that there must be a 
relative “slip” or “sliding” between fibers. That is, the outermost tensile 
fiber extends just infinitesimally more than its contiguous neighbor, 
which extends just infinitesimally more than its contiguous neighbor, 
and so on and so forth. Thus there is a shearing that takes place through 
the cross-section of the beam. Flexing a deck of cards will give you a 
very quick intuition of this effect. The minimum relative slip exists at 
the outer fiber (the shear is zero on the free surface of the beam) and the 
maximum relative slip (maximum shear) takes place at the neutral axis 
(the difference between the maximum strain of the outer fiber and the 
zero strain of the neutral axis). 

For us, the question is: “Is this important?” The answer is: “It 
depends.” For a large class of flexural structures, those that are 
homogenous and respond within the assumptions of the linear theory 
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(think of metallic beams used in commercial buildings, for example), the 
shear contribution is likely an order of magnitude or more smaller than 
the normal contribution. In such cases, the shear effects can likely be 
disregarded.  

On the other hand, there are many flexural structures where shear 
deformation is important, even within the linear theory, such as short 
study beams. In particular are inhomogeneous beams, such as laminated 
beams, those that are built up by adhering several thin layers or “lamina” 
together (sometimes called “glue-lam beams”). For these beams, the 
interfacial shear strength, i.e., the strength in shear of the adhesive 
between the lamina, may be the controlling design feature. Also, 
whenever the beam deformations become large, the shear contribution 
becomes increasing large as well, and may need to be investigated by the 
engineer. However, such topics are outside the scope of this text, and we 
refer the interested reader elsewhere for further information. 

3.6 Structural design 

In the case of stiffness design, our solution strategy goes something like 
the following: 
 
 1. Global Free Body 

Diagram 
 2. Apply global equilibrium 

to find external reactions 
 3. Local Free Body Diagram 
 4. Apply local equilibrium 

to determine internal reactions 
 5. Determine deformation, compare to stiffness criteria 
 

Let’s apply this to problem RP3-1 introduced at the beginning of 
this chapter. 
  

C3 

3.5 Can a structure fail in stiffness 
but still be strong enough? 
(Answer: Section 3.7) 
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RP3.1 

A cantilever beam of length L, modulus E, and area moment of inertia I, 
is tip-loaded by a transverse concentrated force P as shown in Figure 
RP3.1a. Determine the following quantities: 

v(x) = ? v′(x) = ? σx(x) = ? 

vmax = ? v′max = ? σx,max = ? 

 

Figure RP3.1a. 

 1 20 0

1
( ) ( )

x x
v x M x dx dx C x C

EI
� �= + +� 	� �� �  

The moment can easily be found from a section analysis (the FBD is 
shown in Figure RP3.1b): 

 

Figure RP3.1b. 

 + ccw ΣMc = 0: -M(x) – P(L-x) = 0 

 M(x) = -P(L-x) 

 2

0 0

1
( ) ( ) ( )

2
x x
M x dx P L x dx P Lx x= − − = − −� �  
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2

1 20

2 3
1 2

( )
2
1

2 6

xP x
v x Lx dx C x C

EI
P L

x x C x C
EI

� �
= − − + + �

� �
� �= − − + + �
� �

�
 

 2

1( )
2

P x
v x Lx C

EI
� �′ = − − + �
� �

 

 v(0) = 0 � C2 = 0 

 v′(0) = 0 � C1 = 0 

 
3
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2 6

P L x
v x x

EI
� �

= − − �
� �

 

 
2
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2 2
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2 2
P L PL

v v L L
EI EI

� �′ ′= = − − = − �
� �

 

 
( ) ( )

( )
M x y P L x y

x
I I

σ −= − =  

 ,max (0)x x
PLc

I
σ σ= =  

RP3.2 

A jib crane consists of a wide flange steel beam attached by a pin 
(momentless) connection to a vertical support (Figure RP3.2a). The 
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beam has an intermediate tie rod support. The wide flange beam has the 
following section properties: h = 153 mm, A = 22.9 cm2, I = 916 cm4. 

If a 500 kg load is suspended at point D, compute the maximum 
stress in the beam  

 

Figure RP3.2a. 

First, a global FBD to determine boundary reactions (Figure 
RP3.2b). 

 

Figure RP3.2b. 

P = 500 kg (9.81 m/s2) = 4905 N 

RCy/RCx = 0.5 m/ 2.0 m = ¼ 

 ( ) ( )0 :  2 3 0 1.5 7358A Cy CyM R m P m R P N= − = � = =
 �
 RCx = 4RCy = 29,430 N 
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 0 :  0 4905 7358 2453y Ay Cy AyF R R P R N N N= + − = � = − = −
  

 0 :  0 29430 x Ax Cx AxF R R R N= − = � =
  

Then local FBDs to determine internal reactions (Figures RP3.2c 
and RP3.2d): 

 

Figure RP3.2c. 

2 m ≤ x ≤ 3 m: 0 : 0 0 xF = =
  

2 m ≤ x ≤ 3 m: ( ) ( ) ( )0 :  0 ( )cM M x P L x M x P L x= − − − = � = −
  

 M(2 m) = 4905 N (3 m – 2 m) = 4905 Nm 

 

Figure RP3.2d. 

0 ≤ x ≤ 2 m:  0 :  0x Ax AxF N R N R= − + = � = =
 29430 N 

0 ≤ x ≤ 2m:  ( ) ( )0 :  0c Ay AyM M x R x M x R x= − + = � = −
  

 M(2 m) = –(2453 N)(2 m) = –4905 Nm 

Plotting the maximum moment (Figure RP3.2e) 
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Figure RP3.2e. 

Mmax = 4905 Nm 

 , 2 2

29430  128.5  ( )1 22.9  ( )100 
axial max

NN kPa compressionA mcm cm
σ = = = �

 , 4 4

(4905  )(0.765  )2 40.96 1 916  ( )100 

max
bending max

hM Nm m
kPamI cm cm

σ = = = �
 128.5  40.96  169.5  ( )max kPa kPa kPa compressionσ = + = �
RP3.3 

A rod of solid circular cross-section is used as a cantilever beam by 
welding one end to a metal wall and leaving the other end free. Of the 
diameter D, modulus E, and length L, which has the greatest impact on 
the beam deflection? 

We showed in RP3.1 that the maximum deflection of a tip-loaded 
cantilever occurred at the tip as well: 

 
3 3 3

max ( )
2 6 3

P L L PL
v v L

EI EI
� �

= = − − = − �
� �
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Since stiffness is force per unit displacement, the beam stiffness is 

 3

P CEI
k

v L
= = �

where C is a constant that depends on the boundary conditions (e.g.,  
C = 3 for fixed-free boundary conditions). 

Since I ~ D4, k ~ D4/L3 and a change to D will have more impact 
than the same change to L.  

3.7 C3 Clarified 

C3 3.1 Why should we take the time to check units? 
Answer: Checking units is a quick way of assessing if an equation 

returns the expected dimensions. Dimensions as used here refers to the 
primitive variables of length, mass, time, etc. (See Appendix 1 for 
further discussion on primitive variables.) For example, if we are 
expecting an equation to return an answer in force/length (or stiffness 
k), will the combination of variables in the equation correctly do that?  

 [ ] 4
2

3 3 3

    [ ]

[ ]

NC constant E I mCEI m Nk mL L m

� �
� 	� � � �= = = � �

��
The combination of variables in the equation correctly return an 

answer in force/length.  
C3 3.2 In many textbooks, the shear stresses are shown oppositely 
directed, that is, one up and one done. In Figure 3.3 they are shown in 
the same direction. Which is correct? 

Answer: This is one of the most confusing concepts in mechanics of 
structures. Let’s start to clarify the confusion by appealing to our 
intuition. If an external force P is pushing down on the beam in some 
region (say �x), then it stands to reason that every point on the beam in 
that region is pushing back (upward). So, intuition tells us that the shear 
force directions in Figure 3.3 are physically correct.  

Unfortunately, many authors adopt a separate (and unnecessary) 
sign convention for shear and moment in beams. Often in these 
conventions, a positive shear force is defined as one that creates a 
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(clockwise or counter-clockwise) rotation—hence the oppositely 
directed shear forces. But this leaves a net rotation in the beam, which, if 
the beam is in equilibrium, cannot exist. See Appendix 4 for further 
discussion on sign conventions. 

Bottom line: use physical intuition where possible to draw forces and 
moments, and only use the rational sign conventions of mechanics. 
C3 3.3 I understand the need to know the magnitude, direction, and 
location of the maximum moment, but why not also for the maximum 
shear force? 

Answer: It depends. See the discussion at the end of Example 3.9. 
C3 3.4 Where does Hooke’s Law come from? 

Answer: Robert Hooke was a 17th century scientist/engineer who, 
among other pursuits investigated the force—displacement response of 
materials such as metal wires. In 1660 he first published his findings (ut 
tensio, sic vis or "as the extension, so the force") that force and 
displacement are proportional in some materials. 

Keep in mind that Hooke’s Law is a phenomenological model, i.e., it 
relates empirical (experimental) observations but does not explain “why”. 
C3 3.5 Can a structure fail in stiffness but still be strong enough? 

Answer: Sure, this happens frequently. Consider the unfortunate 
bungy jumper who stretches the cord a little farther than planned but 
never snaps it in two. Or the floor board that sags when you walk on it 
but that never fractures.  

Table 3.1. Comparison of some key relationships between axial, 

torsional, and flexural structures 

 Axial Torsional Flexural 

Stress 
σ =xx

P
A

  
θτ =x

Mr
J

 
σ =xx

My
I

Deformation �xx = du/dx Chap. 4 
ε � �= − ≈ − = −  �

� �

2

2
0

x

y d u d du
y y

r dx dxdx
 

Constitution �xx = E �xx Chap. 4 �xx = E �xx
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3.8 Developing Engineering Intuition 

As the structural loading and response becomes more complicated, 
developing intuition about them becomes more challenging. That is 
certainly true of topics in this chapter. However, there are some simple 
things we can do to develop intuition: 
 

• Be aware of the self-weight gravity body loads that exist on 
all structures. Start with your own body as a structure! 

• Observe structures from the point of view of being designed 
based on strength, stiffness, or both. 

• Think about the combination of loads in common 
structures: 
• Flag pole: bending and axial compression 
• Bolted joint: torsion, axial tension, and axial 

compression 
• Bicycle fork: bending and axial compression 



 

CHAPTER 4 

Basic Structures Level III 
Learning Objectives: This chapter will introduce the student to added 
complexity from Level II, such as more complicated combined loading 
and stress transformation. The strength design of structures under 
combined loading is considered. 
Clarifications: Studying this chapter will help clarify: 
 

• How to analyze structural elements under torsion loading 
• How to analyze structures that are subjected to combined 

loading 
• The general three-dimensional stress and strain response to 

combined loading 
• The three-dimensional constitutive behavior of materials 
• Design of structures for combined loading 

 
Importance: Up to this point, we have considered structures and the 
loads they carry in a very constrained way. That is, we have either 
constrained the loading to be one-dimensional: axial, torsion, and 
flexural loads applied in isolation from one another or we have 
considered only the combination of axial and flexural loads. In the case 
of flexural structures, where we applied both forces and moments, we 
made sure that the loads resulted in flexure in a single plane only. In 
each case, the resulting stress/strain state could reasonably be considered 
uni-axial. But you would be correct to ask: there must be situations 
where we would need a structure to carry various kinds of loads, or even 
a single type of load in various directions? 

Yes, of course, that happens all of the time. Consider a drill bit: first 
and foremost the bit carries torsion loads as it twists into the work piece. 
Yet at the same time, axial force is applied to advance the bit through 
the piece. Next time on the road look at the large sign boards supported 
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at the top of a pole (Figure I4.1), which carries both the compressive 
axial loading of its own weight as well as the sign board weight, but also 
transverse wind loads, and possible seismic base loads. 

 

 

Figure I4.1. Structures subjected to three dimensional loading (a) 

The tall column supporting the bill board, (b) The blades and the 

supporting structure of a windmill, and (c) structural loading test on 

the wing box of an Airbus A380, at the IABG company in Dresden. 

So what’s the problem? Can’t we just analyze each of these loads and 
their effects separately? Unfortunately, the answer is no. As we’ll study 
further in this chapter, the stresses resulting from the loading are tensor 
quantities, and can’t simply be added or decoupled in a algebraic fashion. 
We have to look at the stress resulting from the combined loading. 

Two other problems arise as well. First, the convenient coordinate 
system chosen for analysis, for example that we are led to by the 
structure geometry, will in general not lead us to the critical or 
maximum stress we need for a strength design. We need some way to 
hunt for the principal stress. Secondly, materials fail differently under 
multi-axial stress than in the uni-axial case, so again simply trying to 
analyze the structure separately for each kind of loading won’t suffice. 
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4.0 Representative Problems 

RP4.1: Shown in Figure RP4.1 is a beam in which the shear stress τxy on 
the top surface is zero. If the beam is cut along a plane x = constant, 
what is the shear stress on the new surface?  

 

Figure RP4.1. 

RP4.2 A thin rectangular rubber sheet is enclosed between two thick 
steel plates and the rubber sheet is subjected to a compressive stress of 
σxx and σyy in the x- and y-directions, respectively. Determine the strains 
in the x- and y-directions and the stress along the z-direction (thickness 
direction) of the rubber sheet (Figure RP4.2). 

 

Figure RP4.2. 

RP4.3 A closed cylindrical pressure vessel is fabricated from steel 
sheets that are welded along a helix that forms an angle of 60º with the 
transverse plane. The outer diameter is 1 m and the wall thickness is 
0.02 m. For an internal pressure of 1.25 MPa, determine the stress in 
directions perpendicular and parallel to the helical weld (Figure RP4.3). 
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Figure RP4.3. 

RP4.4 A cylindrical tube made of 2024-T4 aluminum has a diameter 
of 50 mm and wall thickness of 3 mm. An axial tensile load of 60 kN and 
a torque of 0.7 kN-m are applied. Will the tube yield? If not, how much 
can the tensile load or the torque can be increased before yielding occurs? 

RP4.5 A thin-walled circular tube is made of AISI1020 steel. It is 
subjected to a torque of 6 kN-m and a pure bending moment of 4.5 
kN-m. If the diameter of the tube is 50 mm, what must be the thickness 
so that the factor of safety against yielding is 1.25? 

RP4.6 A cylindrical pressure vessel has an inner diameter of 240 mm 
and a wall thickness of 10 mm. The end caps are spherical and of 
thickness 10 mm. If the internal pressure is 2.4 MPa, find (a) the 
normal stress and the maximum shear stress in the cylindrical wall, (b) 
the normal stress and the maximum shear stress in the wall of the 
spherical end cap. 

4.1 General State of Stress and Strain  

4.1.1. General State of Stress at a Point 

When forces are applied to a structural member, the forces are 
transmitted through the member as internal forces. Qualitatively, the 
intensity of the internal force per unit area at any point is called the stress 
at that point (see Chapter 2). Stresses in loaded members result from 
two basic types of forces, namely, surface forces and body forces (see 
Chapter 1). Surface forces are those that act on the surface of a body or 
member, for example when one body or member comes in contact with 
another body. Body forces act throughout the volume of the member; 
examples are gravitational, centrifugal, and electro-magnetic forces. 
Gravitational body forces are the most common body forces in static or 
quasi-static structural members (see Chapter 3), and are generally much 
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smaller than surface forces. For this reason, body forces are often 
neglected in comparison to surface forces without introducing a 
significant error. However, there are many applications where this is not 
true. Consider, for example, the mirror in a large space telescope. With 
diameters on the order of a few meters or a few tens of meters, the self-
weight of the telescope can cause enough “gravity sag” to distort the 
mirror considerably from its intended shape. 

To determine the nature of internal forces, we divide the member into 
two parts by passing a cutting plane through the point of interest. Each of 
the two resulting parts may be considered a free body. The internal forces 
acting on the exposed cross-sectional area may have a distribution such 
that the internal force F (which is a vector represented by a bold quantity) 
varies in both magnitude and direction from point to point. 

Consider a small area ΔA, around a point P of interest, on the 
surface generated by an arbitrary cutting plane (Figure 4.1). A system of 
internal forces acts on this small area, the resultant of which is ΔF, as is 
shown in Figure 4.2. 

 

Figure 4.1. Cutting plane passing through point P. 

 

Figure 4.2. Resultant of all forces acting over an area ΔA on the 

arbitrary surface of a member. The vectors en and es are unit vectors 

perpendicular and parallel to �A, respectively.  
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It should be noted that the resultant force vector ΔF does not in 
general coincide with the outward normal en associated with the element 
of area ΔA (see Appendix 2). The resultant traction vector T at point P 
is obtained by dividing ΔF by ΔA, taking the limit as ΔA approaches 
zero, and is given by (see also equation 2.6) 

 
0

lim
d

A dAΔΑ

Δ
Δ→

= =F F
T  (4.1) 

The line of action of T coincides with the line of action of resultant 
force ΔF, as shown in Figure 4.3.  

 

Figure 4.3. Resolution of the forces and stresses transmitted through 

the area ΔA. 

It should be observed that 
the resultant stress σF is a 

function of the position of the 
point P in the member, the 
orientation of the cutting 
plane passing through the 
point P as identified by the 
outer normal en, and the 
magnitude and direction of the resultant force on an infinitesimal area 
in the cutting plane around the point P. Thus to completely define the 
stress at a point we not only need the magnitude and direction of the 
force but also an additional direction of the outward normal en 
associated with the plane. Such quantities, for example stress (or strain), 
which require additional quantities besides a magnitude and a direction  

C3 

4.1 Stress is often computed from 
the expression stress=force/area and 
is treated as a scalar. Is that 
appropriate? 
(Answer: Section 4.7) 
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(as with a vector quantity) for complete definition are called ‘tensors’. 
Thus a complete definition of stress or strain requires a magnitude and 
two directions. The magnitude of all vector or tensor quantities is 
influenced by the orientation of the coordinate system. However, the 
physical phenomena taking place at a point should not be dependent on 
the choice of a coordinate system. This implies that all operations 
performed with physical quantities should be independent of the 
orientation of the coordinate system, and the components must be 
obtainable from the components of the original coordinate system by 
appropriate transformation equations.  

(A rigorous mathematical definition of a tensor is not being 
provided here for the sake of simplicity. However, it must be 
emphasized that any quantity (physical or mathematical) that transforms 
according to certain specific transformation laws when the original 
coordinate system changes its orientation, is known as a tensor. And 
vector quantities (such as force and displacement) are first-order tensors, 
while stress and strain are second order tensors. Higher order tensors can 
also be defined mathematically but they are generally difficult to 
comprehend in physical terms.) 

The force ΔF may be resolved into two components ΔFn and ΔFs, 
along the normal to the small area and perpendicular to the normal en, 
respectively. The force ΔFn is called the normal force on area ΔA and ΔFs 
is called the shearing force on ΔA. The normal and the shearing stress 
components at point P are obtained by letting ΔA approach zero (or 
become infinitesimal) and dividing the magnitude of the respective force 
by the magnitude of the area. Thus the normal stress σn and shear stress 
τs are given by the equations: 

 nσ = ⋅ nT e  (4.2a) 

  
sτ = ⋅ sT e  (4.2b) 

The unit vectors associated with σn and τs are perpendicular and 
tangent, respectively, to the cutting plane. (From this point forward, we 
will drop the n and s subscripts on stress.) 
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Cartesian components of 
stress for any orientation of a 
rectangular-Cartesian coordi-
nate system (x, y, z) at P can 
also be obtained from the 
resultant stress. Consider the 
small or incremental area ΔA, 
whose outer normal now 
coincides with the positive z-direction as shown in Figure 4.4. If the 
resultant traction factor T is resolved into components along the x, y 
and z-axes, the Cartesian components σzz, τzx, and τzy are obtained. 
(From this point forward, the bold font will be dropped on the stress 
notation for convenience; however, we wish to remind the student to 
keep in mind that stress is a tensor quantity.) 

 

Figure 4.4. Resolution of the resultant stress on an incremental area 

into three rectangular-Cartesian stress components. 

The first subscript refers to the outer normal and defines the plane 
upon which the stress component acts. The second subscript gives the 
direction in which the stress acts. In σxx, the first subscript x means that 
the outer normal of the infinitesimal area on which the force acts points 
along the x-axis. The second subscript x means that the force or the 
stress on the infinitesimal area acts in the x-direction. Thus the outward 
normal of the area and the force are in the same direction for normal 
stresses. In the term τxy, the outward normal of the area is along the  
x-axis, while the force is along the y-axis. Hence for shear stresses, the 
outward normal and force are perpendicular to each other. 

C3 

4.2 Does the choice of the 
coordinate system affect the state of 
stress at a point in a body under a 
given external load? 
(Answer: Section 4.7) 
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Figure 4.5. Rectangular-Cartesian stress components acting along the 

faces of a small cubic element around a point in a loaded member. 

Normal stresses will be positive (+ sign) when they produce tension 
and negative ( - sign) when they produce compression. Alternatively, 
normal stresses are positive when they act in the same direction as the 
outward normal to the area and negative when they act oppositely to the 
outward normal. As an example, a positive �yy acts on the positive y-face 
in the positive y-coordinate direction. 

Shear stresses are termed positive (+ sign) if they point in a positive 
coordinate direction on a positive face or in a negative coordinate 
direction on a negative face, otherwise they are negative (- sign).  As an 
example, a positive �yx acts on a negative y-face in the negative  
x-coordinate direction. 

If the same procedure is followed using infinitesimal areas whose 
outer normals are in the positive x and y directions, two more sets of 
Cartesian components, (σxx, τxy, τxz) and (σyy, τyx, τyz), respectively, can 
be obtained. Hence at any point P in a member under an arbitrary load, 
nine Cartesian stress components can be identified. These nine 
components of stress constitute the general state of stress and are 
tabulated in the form of an array as follows: 

 

xx xy xz

yx yy yz

zx zy zz

σ τ τ
τ σ τ
τ τ σ

� �
� �
� �
� �� �

  Outer normal parallel to y-axis

Outer normal parallel to x-axis

Outer normal parallel to z-axis
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By arranging the stress components in the above array and as will be 
shown later that the shear components are related by three relations,  
�yz = �zy, �xy = �yx, and �xz = �zx, the stress matrix becomes symmetric about 
the diagonal.  

It is conventional to show these nine stress components on the faces 
of a small cubic element around a point in the loaded member, as 
shown in Figure 4.5. 

Thus the three dimensional state of stress in a body loaded by 
surface and body forces and couples is defined by three normal stress 
components and six shear stress components.  

4.1.2. General State of Strain at a Point 

In the previous section the state of stress at any point in a body was 
determined. The relationships obtained were based on conditions of 
equilibrium and no assumptions were imposed regarding the deformation 
in the object or the physical properties of the material that constituted the 
object. Hence those results are valid for any material and any amount of 
deformation in the object. In this section, the state of deformation and the 
associated strains will be analyzed. Since strain is a pure geometric 
quantity, no restrictions on the object material will be required.  

When a body is subjected to a system of forces, if individual points 
in the body change their relative positions the body is said to be in a 
state of deformation. The movement of any point is a vector quantity 
known as displacement. Translation or rotation of a body as a whole, 
with no change in the relative positions of points in the body, is known 
as rigid-body motion and does not result in strain within the body.  

In introductory mechanics of materials two types of strains are 
generally used: (i) Extensional or normal strain, and (ii) shear strain. Figure 
4.6 illustrates these two types of strains for a two dimensional case.  

Normal strain is defined as the change in length of a line segment 
between two points divided by the original length of the line segment. 
Thus in Figure 4.6a the normal strain along the x-direction can be 
written as 

 xx
u
x

Δε
Δ

=  
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Figure 4.6. (a) Normal strain in the x-direction, (b) Normal strain in 

the y-direction, (c) Shear strain in the xy-plane. The dotted segments 

indicate the deformed position.  

In the limit �x�0, (that is, using an infinitesimal line segment) the 
normal strain equation can be written as 

 xx
u
x

ε ∂=
∂

 (4.3a) 

It may be noted that in general the displacement u along the x-axis 
(or the x-component of the displacement of a point from one state to 
another) would be a function of both x- and y-coordinates such as u = 
u(x,y). A partial derivative has been used in Equation (4.3a) as u is the 
displacement only in the x-direction. A partial derivative of a function of 
several variables is its derivative with respect to one of those variables, 
with the others held constant.  

Similarly from Figure 4.6b, we can write 

 xx
v
y

ε ∂=
∂

 (4.3b) 

Also, along the z-direction the normal strain can be expressed as 

 zz
w
z

ε ∂=
∂

 (4.3c) 

The shear strain is defined as the angular change between the two 
line segments which were originally perpendicular and parallel to the  
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x- and y-axes. In Figure 4.6c the total change in the angle is �1 + �2. In 
the limiting case if �1 and �2 are very small, the total angle change can be 
expressed as 

 �1(radians) + �2(radians) = tan �1 + tan �2 

where 

 ( )1tan
v
x

θ ∂=
∂

 and ( )2tan u
y

θ ∂=
∂

 

Thus the shearing strain is 

 1 2xy
v u
x y

γ θ θ ∂ ∂= + = +
∂ ∂

 (4.3d) 

When shear deformation involves a reduction of the right angle 
between two line segments oriented respectively along the positive x- 
and y-axes, the shearing strain �xy is said to be positive, otherwise it is 
negative.  

Similarly if two line segments are considered parallel to the y- and z-
axes, and parallel to the x- and z-axes, two more expressions for the 
corresponding shear strains can be written as 

 yz
v w
z y

γ ∂ ∂= +
∂ ∂

 (4.3e) 

and xz
u w
z x

γ ∂ ∂= +
∂ ∂

 (4.3f) 

Equations (4.3a) to (4.3f) constitute the strain-displacement 
equations, and are valid only for small strains of the order of 0.2% or 
less. For larger strains higher order terms have to be added to equations 
(4.3). The more general equations are not provided here as we will only 
consider problems with small strains in this book. Analogous to the 
general state of stress the general state of strain at a point can be written 
in matrix notation as  
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xx xy xz

yx yy yz

zx zy zz

ε γ γ
γ ε γ
γ γ ε

� �
� �
� �
� �� �

 (4.4) 

The strain components shown in the strain matrix in Equation (4.4) 
are called the engineering strains and the matrix is called the strain 
tensor. 

4.1.3 Equilibrium and Deformation 

In Sections 4.1.1 and 4.4.2 we have seen that a general state of stress 
and strain are completely defined by nine respective components in an 
isotropic material. However, if body and surface couples are zero, we 
can show for this case of stresses that: 

 �yz = �zy 
 �xy = �yx (4.5)  
 �xz = �zx 

Equation (4.5) can be proven as follows. Consider the x-y plane as 
shown in Figure 4.7, writing the moment equilibrium equation about 
the z-axis (by arbitrarily choosing counterclockwise direction as 
positive), one obtains the equation: 

0 :oM =�  �xy(dydz)dx – �yx(dxdz)dy = 0 

	  �xy = �yx 

Note that the equal and opposite normal force components cancel 
out and hence have not been shown in the equation above. 

Hence the stress tensor for an isotropic, homogeneous material can 
be written as shown in equation (4.6) below 

 
xx xy xz

xy yy yz

xz yz zz

σ τ τ
τ σ τ
τ τ σ

� �
� �
� �
� �� �

 (4.6) 
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Figure 4.7. Stresses acting on the element in x-y plane to demonstrate 

the equality �xy = �yx 

Similarly, we can write the strain components in the form 

 
xx xy xz

xy yy yz

xz yz zz

ε γ γ
γ ε γ
γ γ ε

� �
� �
� �
� �� �

 (4.7) 

Note that analogous to the stress tensor in Equation (4.6), the 
normal strains are placed along the diagonal and the shear strains are 
symmetric about the diagonal of the strain matrix. 

4.2 Analysis of Thin-Walled Torsion Structures  

We have so far considered the torsion of shafts of solid circular cross-
section, be they prismatic or non-prismatic. We found that the twist 
angle varies linearly along the shaft length and varies inversely with the 
polar moment of inertia. We also found that the shear stress varies 
linearly from the center of the shaft, so that only the outer fibers are 
fully stressed. It makes sense then that high-performance structures, 
those like aerospace vehicles that demand high torsion resistance at 
minimum weight, would rely on thin-walled shafts. 

In this section we will 
examine the analysis of thin-
walled torsion elements with 
both open and closed cross-
sections 

C3 

4.3 Torque, moment and couple -- 
what is the difference? 
(Answer: Section 4.7) 
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4.2.1 Shear Flow 

Consider a thin-walled prismatic tube of arbitrary cross-section under 
pure torsion loading as shown in Figure 4.8. Figure 4.9 shows details 
of the elements in Figure 4.8. 

 

Figure 4.8. Thin-walled prismatic tube of arbitrary cross-section 

under pure torsion loading. 

 

 

Figure 4.9. Section details of Figure 4.8. 
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We assume that, since the thickness t is so small, the shear stress is 
approximately constant across the wall thickness. In Figure 4.9, for the 
arbitrary element abcd to be in equilibrium, the force Fb (= τbtbdx) must 
be equal in magnitude to Fc (= τbtbdx). Then 

 τbtb = τctc (4.8) 

or  

 τt = constant (4.9) 

The quantity τt is called the shear flow. Note that this implies that 
the largest shear stress occurs where the thickness is smallest. (Hereafter 
we drop the subscript on τ and φ for convenience, since no confusion 
should arise.) 

We now need to relate the shear flow to the applied torque M. 
Looking at Figure 4.9, we see that an increment of torque dM is applied 
by the shear flow as: 

 dM = rτtds (4.10) 

where ds is an increment of arc length along the mean circumference lm. 
Integrating along the entire mean length lm gives: 

 
0

2
ml

mM t rds tAτ τ= =
  (4.11) 

where Am is the mean area enclosed by the mean circumference. Note 
that the integral  

 
0

2
ml

mrds A=
  (4.12) 

since from Figure 4.9, rds represents twice the area of the shaded 
triangle. Finally, we then have a useful relationship for the shear stress 
on a thin-walled shaft of arbitrary cross-section: 

 
2 m

M
tA

τ =  (4.13) 
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4.2.2 Thin-Walled Shafts of Closed Cross-Section 

Consider a shaft of thin circular closed cross-section as shown in Figure 4.10: 

 

Figure 4.10. Shaft of thin circular closed cross-section. The mean 

radius is given by rm and t is the wall thickness. 

The polar moment of inertia J is calculated in the usual way as 
before: 

 
4 4

2 2 2m m
t t

J r r
π � �� � � �= + − +� � �  �

� � � �� �� �
 (4.14) 

After expansion and some simplification this becomes 

 2 2 3(4 ) 2 1
2 2
m

m m
m

r t t
J r t r t

r
π π

� �� �
= + = +� � �

� �� �� �
 (4.15) 

Now for a thin wall, where t/rm << 1 and (t/2rm)2 << 1, Equation 
(4.15) simplifies to: 

 J ≈ 2πrm
3t = 2Amrmt (4.16) 

where Am is the area enclosed by the mean radius. 
The shear stress is then 

 3 22 2 2
m m

m m m

Mr Mr M M
J r t r A t

τ
π π

= ≈ = =  (4.17) 

For values of t/rm = 0.2, 0.1, and 0.05, the approximate shear stress 
is 92%, 95%, and 98% of the exact shear stress, respectively. Note also 
that since τ is assumed not to vary across the thickness, the stress found 
above is the maximum shear stress. 
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The total twist angle is given as before: 

 
2total

m m

ML ML
GJ GA r t

ϕ = =  (4.18) 

Of course, for the thin-walled closed circular cross-section, the 
approximation to J provides us little advantage. However, we can apply 
this same approximation technique to more complex thin-walled shapes, 
of either open or closed section, where calculating the exact polar 
moments of inertia would be difficult. (In these cases of non-circular 
cross-section, the factor J is no longer the polar moment of inertia but is 
called more generally the torsion constant, and is in general less than the 
polar moment of inertia.) 

A formal method for finding the torsion constant can be developed 
from strain energy considerations. Recall that the strain energy 
expression developed previously was 

 
2

volume
1
2

U dv
G
τ= 
  (4.19a) 

For the thin-walled section, dV = dAdx = tdsdx, where ds is an 
increment of wall length measured along the mean circumference. Upon 
substitution and some manipulation we get: 

 
( )22 2 2 2

2
0 0 0 02 2 8 2

m m ml l lL

m

t Lt ds ds M L ds M L
U dx

G t G t GA t GJ
ττ � �

= = = = �
� �


 
 
 
  (4.19b) 

where the final term has the same form as the strain energy for a circular 
shaft, except that here J is the torsion constant found from 

 

2

0

4
ds
t

m

m
l

A
J =



 (4.20) 
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Example 4.1 

Consider for example the thin square closed cross-section shown in 
Figure E4.1: 

 

Figure E4.1. Shaft of thin square closed cross-section. A side has 

mean length given by b and a wall thickness t. 

The above formula for J can be applied here. The value of the 
integral in the denominator is simply 4b/t, Am is b2, giving J = b3t. 
Hence the average shear stress (maximum shear stress must take into 
account the stress concentrations in the corners) is 

 22 2m

M M
tA tb

τ = =  

and the total twist angle is 

 3total
ML

Gb t
ϕ =  

Example 4.2 

Compare the shear stress and total twist angle in two thin-walled shafts 
having the same length L and net cross-sectional area, which are 
subjected to the same torque T, except that one shaft is of circular cross-
section while the other has a square cross-section. 
For the circular tube: 

Ac = 2πrmt  Amc = πrm
2 Jc = 2πrm

3t 
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For the square tube: 

As = 4bt = Ac = 2πrmt 	 b = πrm/2 Ams = b2  Js = b3t = π3rm
3t/8 

Now  

 
2

2 2

/ 2 4 1.27
/ 2 / 4

s ms mc m

c mc ms m

M tA A r
M tA A r

τ π
τ π π

= = = =  

 
3

3 3 2

2 16
1.62

/ 4
s c m

c s m

J r t
J r t

φ π
φ π π

= = = =  

Hence the shear stress and total twist angle for the square tube are 
27% and 62% greater than the circular tube. The square shape is clearly 
less efficient in torsion. 

4.2.3 Torsional Shape Factor 

We can now begin to see how we might characterize the shape efficiency 
of a given cross-sectional configuration. We define a shape factor β that 
compares the relative efficiency of a given cross-section to a reference 
cross-section. Following Ashby, we arbitrarily take a solid circular shaft 
as the reference. This reference shaft has length L0, cross-sectional area 
A0 = πR0

2, shear modulus G0, and torsion constant  

 4 2
0 0 0 0

1
2 2

J R A R
π= =  (4.22) 

Under the action of a torque M, the reference shaft has a maximum 
shear stress and total twist angle given as before: 

 τ = =0
0

0 0 0

2MR M
J A R  (4.23) 

 0 0
0 2

0 0 0 0 0

2ML ML
G J G A R

ϕ = =  (4.24) 

Then we use β to compare the efficiency of other shaft configurations 
having shear modulus G, but equivalent cross-sectional area A0 and 
length L = L0, under the action of the same torque T. That is: 
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0 0 02 /M A Rτ

τ τβ
τ

= =  (4.25) 

 
2

0 0 0 0 0

0 0 0 0

/
/ 2

G J G A RML GJ
ML G J GJ G Jϕ

ϕβ
ϕ

= = = =  (4.26) 

A value of β less than one means that the shaft under consideration 
is more efficient than the reference solid circular shaft, that is, for the 
same load the stress and/or stiffness are less than for the reference shaft. 

Example 4.3 

Determine β for the thin-walled circular shaft of Example 4.2. 

 
2

2

c m o o o m

mc m

A z r t A R R r t

A r

π π
π

= = = 	 =

=
 

 

( )0 0
2

0
0 0

2

3 3

2 22
... 0.7072 4 4 2

1
(2 )(2 )12

2 4

m mc mc

mc m m m

o o
o m m

c m m m

M
r t r ttA A R t t

M tA t r r rA R

A RJ r t r t t
J r t r t r

τ

τ

πτβ
τ π

πβ
π π

= = = = = =

= = = =

 

Table E4.1 below shows a comparison of both the strength and 
stiffness efficiency of the thin-walled circular shaft for various wall 
thicknesses (compared to the solid circular shaft of same cross-sectional 
area). As shown, as the wall thickness becomes thinner, the shaft 
becomes more efficient. (Note that this trend cannot go on indefinitely, 
since the shaft is getting larger to keep the area constant and equal to A0. 
As the wall thickness gets thinner, other failure modes will start to take 
place, such as local wall buckling.)  

Table E4.1. 

m

t
r  

τβ  Φβ  
1/10 0.224 0.1 

1/100 0.0707 0.01 
1/1000 0.0224 0.001 
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4.2.4 Thin-Walled Shafts of Open Cross-Section 

Slicing a thin-walled shaft of closed circular cross-section longitudinally 
results in an open cross-section as shown in Figure 4.11. 

 

Figure 4.11. A longitudinal cut transforms a closed cross-section into 

an open cross-section. 

However, this cut “releases” the shear stress depicted in 
Figure 4.9(c). This significantly increases flexibility of the structure in 
torsion, and hence thin-walled open sections are considerably less 
efficient in torsion than comparable closed cross-sections. 

The exact form of the torsion constant for a thin solid rectangular 
section h by t (h > t) (Figure 4.12) can be shown to be  

 

Figure 4.12. Cross-section of a thin solid rectangular shaft. 

 
3 4

4

16 3.36 1
16 3 12
ht t t

J
h h

� �� �
= − −� � �

� �� �
 (4.27) 

For t/h << 1, J ≈ ht3/3. Thus the torsion constant for open sections 
can be approximated as a sum of thin rectangular sections. Figure 4.13 
provides several examples: 
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Figure 4.13. Approximate torsion constants for some thin-walled open 

sections. 

The (average) shear stress (away from sharp corners) and the total 
twist angle are found as: 

 ,avg
Mt ML
J GJ

τ ϕ= =  (4.28a, b) 

Example 4.4 

Compare the torsion efficiency under the load T of 2 thin-walled tubes 
of circular section and equal cross-sectional area, one being closed and 
the other formed by a thin longitudinal cut in the wall. 

 
2

2

2
3

2
3

open open m m

m mclosed m
closed

Mt
J r t rt

Mr rr ttJ

τ π
τ π

= = =  

 

23
closed

3open

2
3

2
3

open m m

mclosed

J r t r
rJ tt

φ π
φ π

� �= = =  �
� �  

As can be seen, the open cross-section carries 3 times the shear stress 
and rotates more than 3 times than that of the equivalent closed cross-
section. 
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4.3 Three-Dimensional Stress-Strain Relationship 

4.3.1 Three-Dimensional Elastic Material. 

The general state of stress at a point is shown in Figure 4.5, with three 
normal stresses in three coordinate directions and three shear stresses on 
three orthogonal planes. In the elastic region, that is if the strains are 
small or less than about 0.2%, a linear relationship exists between stress 
and strain, called Hooke’s Law (see Section 3.4). With the small strain 
assumption the strains caused by each normal stress can be added.  

A normal stress in the x-direction causes a strain in the x-direction of 
�xx/E, and a strain of –��xx/E in both the y- and z-directions. Similarly 
stresses in the y- and z-directions cause strains in all three directions. 
The stress—strain relationships can be summarized in a tabular form as 
shown in Table 4.1 below: 

Table 4.1. Stress-strain relationships. 

Normal Stress Normal Strains 

 x-direction y-direction z-direction

�xx �xx/E ---��xx/E ---��xx/E

�yy ---��yy/E �yy/E ---��yy/E

�zz ---��zz/E ---��zz/E �zz/E

Adding the columns in the table above results in the tensile stress-
strain equations shown in Equation (4.29), where E is the elastic 
modulus and � the Poisson’s ratio of the material and are also known as 
the elastic constants of the isotropic material. For a three-dimensional 
stress-strain state, the tensile stress—strain relations given in equation 
(4.29) are expressions for obtaining the strains in terms of stress 
components and elastic constants. 

 

1 [ ( )]

1 [ ( )]

1 [ ( )]

xx xx yy zz

yy yy zz xx

zz zz xx yy

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

= − +

= − +

= − +

 (4.29)  
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The three shear strains that occur on three orthogonal planes are 
related to the corresponding shear stresses by an elastic material constant 
called the ‘shear modulus’, G (note that this is the third elastic constant 
for isotropic materials besides E and �), and the shear stress-strain 
expressions are shown below 

 

2(1 )

2(1 )

2(1 )

xy xy

yz yz

zx zx

E

E

E

νγ τ

νγ τ

νγ τ

+=

+=

+=

 (4.30)  

We can re-write Equations (4.29) and (4.30) to express stresses in 
terms of strain as shown below 

 

[(1 ) ( )]
(1 )(1 2 )

[(1 ) ( )]
(1 )(1 2 )

[(1 ) ( )]
(1 )(1 2 )

2(1 )

xx xx yy zz

yy yy zz xx

zz zz xx yy

xy xy

E

E

E

E

σ ν ε ν ε ε
ν ν

σ ν ε ν ε ε
ν ν

σ ν ε ν ε ε
ν ν

τ γ
ν

= − + +
+ −

= − + +
+ −

= − + +
+ −

=
+

 

 
2(1 )

2(1 )

yz yz

zx zx

E

E

τ γ
ν

τ γ
ν

=
+

=
+

 (4.31) 

If pure shear stresses are applied, the elastic response of the material 
is characterized by the last three equations in equations (4.31). For 
isotropic materials, in general three normal stresses and six shear stresses 
exist. However, three relations between the shear stresses can be 
obtained as given in equation (4.32) 

 
xzzxzyyzyxxy ττττττ === ,,  (4.32) 

and thus only three shear stresses need to be obtained independently.  
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For an isotropic material, only two of the material properties G, E, 
and ν, are independent, the third can be calculated from the relation 
shown in equation (4.33) 

 
2(1 )

E
G

ν
=

+
 (4.33) 

Example 4.5 

The strain components are measured at a point in a steel component in 
a machine and are listed below. Determine the stress at this point. For 
steel E=207 GPa and ν=0.3. 

 
300 , 300 , 300
200 , 200 , 200

xx yy zz

xy yz zx

ε με ε με ε με
γ με γ με γ με

= = =
= = =  

Answer: From the first expression in equation (4.31) 

 
9

6 6

6 2

[(1 ) ( )]
(1 )(1 2 )

207 *10 [(1 0.3)(300 *10 ) 0.3(200 100)10 ]
(1 0.3)(1 2 * 0.3)
 119.4 *10 N / m
 119.4

xx xx yy zz
E

MPa

σ ν ε ν ε ε
ν ν

− −

= − + +
+ −

= − + +
= −

=
=

 

Similarly using the second and third expressions from equation 
(4.31), we obtain the two remaining normal stress components as: 

9
6 6

6 2

[(1 ) ( )]
(1 )(1 2 )

207 *10
[(1 0.3)(200 *10 ) 0.3(100 300)10 ]

(1 0.3)(1 2 * 0.3)
 103.5 *10 N / m
 103.5

yy yy zz xx
E

MPa

σ ν ε ν ε ε
ν ν

− −

= − + +
+ −

= − + +
= −

=
=
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9
6 6

6 2

[(1 ) ( )]
(1 )(1 2 )

207 *10 [(1 0.3)(100 *10 ) 0.3(300 200)10 ]
(1 0.3)(1 2 * 0.3)

 87.6 *10 N / m
 87.6

zz zz xx yy
E

MPa

σ ν ε ν ε ε
ν ν

− −

= − + +
+ −

− + +
= −

=
=

 

The shear stress components are obtained by using the last three 
expressions in equation (4.31) as: 

 
9

6

6 2

2(1 )
207 *10

200 *10
2(1 0.3)
 15.9 *10 N / m
15.9

xy xy
E

MPa

τ γ
ν

−

=
+

=
+

=
=

 

 
9

6

6 2

2(1 )
207 *10 100 *10
2(1 0.3)
 7.9 *10 N / m
7.9

yz yz
E

MPa

τ γ
ν

−

=
+

=
+

=
=

 

 
9

6

6 2

2(1 )
207 *10

150 *10
2(1 0.3)
 11.9 *10 N / m
11.9

zx zx
E

MPa

τ γ
ν

−

=
+

=
+

=
=

 

Example 4.6 

A rubber cube is inserted into a cavity of the same size and shape in a 
thick steel block, as shown in Figure E4.6. The rubber cube is pressed 
by a steel block with a pressure of p. Considering the thick steel cavity to 
be rigid and there is no friction between the cube and the cavity walls, 
find the pressure exerted by the rubber against the cavity walls. 
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Figure E4.6. 

Answer: Since the cube is constrained in the x- and y-directions, the 
strain components along these directions are zero, 

 	 εxx = 0 and εyy = 0 (E4.6.1) 

In the z-direction the stress in the rubber cube must balance the 
pressure applied to maintain equilibrium, thus 

 σzz = –P (E4.6.2) 

Using equations (E4.6.1) and (E4.6.2) and the first two expressions 
of equation (4.29) we can write 

 

1
[ ( )] 0

1 [ ( )] 0

xx xx yy

yy yy xx

P
E

P
E

ε σ ν σ

ε σ ν σ

= − − =

= − − + =
 (E4.6.3) 

simultaneously solving equations (Equation E4.6.3), we obtain the pressure 
exerted by the cube against the cavity walls as: 

 
1xx yy P

νσ σ
ν

= = −
−

 

4.3.2 Energetics 

Strain energy is the potential energy stored in a body by virtue of an 
elastic deformation, equal to the work done by the applied forces, to 
provide both normal and shear strains. In a body loaded within the 
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elastic limit, the work done during loading is stored as recoverable strain 
energy in the material of the body. If the body is unloaded, the body 
does work (on the loading frame or the human or other interfacing 
objects) and releases all its energy. The work done to deform the body 
depends only on the state of strain at the end of the test; it is 
independent of the history of loading.  

Strain energy stored in a material is a very useful metric for 
evaluating the suitability of a material for structural applications. Higher 
the strain energy stored or higher the strain energy absorbed under a 
given loading condition the better, else if the energy is not dissipated it 
could likely cause failure or fracture in the material. In this regard a 
quantity called strain energy density, U, is defined as the work done per 
unit volume to deform the material from a stress free state to a loaded 
state. Defining this quantity for a unit volume of material eliminates the 
effect of size of the body. If the strain energy is divided by the density, 
we obtain a quantity called specific strain energy. Strain energy density 
has the dimensions of J/m3 in the SI metric units, or in-lb/in3 in the US 
system of units. The strain energy density is equal to the area under the 
stress-strain curve measured from zero strain to a given strain value and 
the mathematical form is given in equation (4.34), which is graphically 
represented by the shaded area in Figure 4.14.  

 
volume

U dσ ε= 
  (4.34)  

 

Figure 4.14. Shaded region represents the strain energy per unit 

volume. 
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If the specimen is loaded beyond its elastic limit and plastic deformation 
occurs and then the specimen is unloaded, only the energy represented by 
the shaded region in Figure 4.15 is recovered, the remainder of the energy is 
spent in deforming the material and is dissipated as heat energy. Note that 
line P�p is the unloading path and is parallel to the linear or elastic region of 
the stress-strain curve. The area under the stress-strain curve up to fracture is 
called modulus of toughness of the material. 

 

Figure 4.15. 

The strain energy density, U, for a member under a uniaxial normal 
stress state is given by Equation (2.27), for a member under shear stress 
only by equation (2.28). If a body is subjected to a general state of stress, 
that is any element will have at least two or more non-zero stress 
components from among the six stress components, σxx, σyy, σzz, τxy, τyz, 
τxz, the strain energy density can be obtained by adding the expressions 
given in equations (2.27) and (2.28), as well as the four other 
expressions obtained through a permutation of the subscripts of the 
stress and strain components. The six expressions can be added to obtain 
the total strain energy density according to the principle of superposition, 
which states that the effect of a given combined loading on a structure 
can be obtained by determining separately the effects of various loads 
and combining the results, provided the loads produce small 
deformations and each effect is linearly related to the load that produces 
it (which is true if the material remains within the elastic limit). Thus, 
assuming elastic deformations in the body, we can write the strain 
energy density as  
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 ( )1
2 xx xx yy yy zz zz xy xy yz yz xz xzU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +  (4.35) 

Substituting for the strain components from equations (4.29) and 
(4.30), we obtain an expression for the strain energy density in terms of 
stress components as 

 
( )

( )

2 2 2

2 2 2

1 2
2

1
2

xx yy zz xx yy yy zz zz xx

xy yz xz

U
E

G

σ σ σ υ σ σ σ σ σ σ

τ τ τ

� �= + + − + +� �

+ + +
(4.36) 

4.4 Combined Axial, Torsional and Flexural Loading 

4.4.1 Stress Analysis for Combined Loading 

Figure 4.16 shows the combination of all three loading conditions. Each 
loading condition results in a corresponding stress state (internal 
response) that combine in some fashion to give the actual stress state. 
The last figure in row (c) shows three loads: flexure, axial and torsion, 
applied simultaneously and the stress state on a small element on the 
surface of the object.  

We now develop a process to determine the maxima’s in the values 
of stresses created at a point in a body under combined loading. If the 
coordinate system x�y �z � shown in Figure 4.17 is rotated through an 
arbitrary angle � about the same origin to a new axes system x�y �z �, with 
the assumed requirement that the z�-axis and the z�-axis remain 
coincident, the values of the normal and shear stresses will change in the 
new axes system. However, the new stress components do not represent 
a new state of stress but rather an equivalent representation of the 
original state of stress. In a general three-dimensional case it can be 
shown that for a certain specific orientation of the coordinate axes 
system the normal stresses achieve a maxima and a minima, while for 
another specific set of axes system the maxima and minima in the shear 
stresses are obtained. To illustrate this phenomena a three-dimensional 
stress state will be approximated as a two-dimensional (2-D) state of 
stress without loss of generality, and this has been achieved in 
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Figure 4.17 by effectively rotating the coordinate system only in the  
xy-plane. Moreover a 2-D stress state is only a special case of a 3-D case. 
The special 2-D stress state is called ‘Plane Stress’, which occurs when 
the three components of stress acting on any one face of the cubic 
element (Fig. 4.17) are all zero.  

 

Figure 4.16. Various loading conditions and the corresponding stress 

states created in the simple object. (note that this figure was originally 

introduced in Chapter 3).  
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Fig. 4.17 Stress transformation in Plane Stress. 

Thus in Figure 4.17 if the planes parallel to the X-Y plane are 
considered stress free, then 

 �zz = �xy = �yz = 0 

Equilibrium of forces on the element in Figure 4.17 requires that the 
moments must sum to zero about both the x- and y-axis, requiring that 
the shear components �xz and �yz acting on the other two planes must 
also be zero. Hence the remaining non-zero stress components are �xx, 
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�yy, and �xy, as illustrated in Figure 4.7 or see Figure 4.17(b). 
Figure 4.17(c) shows the stress state ' 'x xσ , ' 'y yσ and ' 'x yτ  if the coordinate 

axes are rotated by an angle �.  
The stress components in the rotated axes system can be obtained by 

cutting the 2-D stress element in Figure 4.18 by an oblique plane 
(shown as a dashed line) at an arbitrary angle � and then drawing the 
free body diagram of the portion of element ABC. The free body 
diagram is shown in Figure 4.18b.  

 

Figure 4.18. Stresses on an oblique plane. (Note that all stress 

components are not listed for better clarity). 

Equilibrium of forces in the x- and y-directions requires that the sum 
of the forces is equal to zero. Thus the two equations can be solved to 
obtain the unknown normal and shear stress components ' 'x x

σ  and , ,x y
τ  

on the arbitrary inclined plane, which are shown below 

 1 1( ) ( )cos2 sin2
2 2x x xx yy xx yy xyσ σ σ σ σ θ τ θ′ ′ = + + − +  (4.37a) 

 1
( )sin 2 cos 2

2x y xx yy xyτ σ σ θ τ θ′ ′ = − − +  (4.37b) 
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The Equations (4.37a,b) directly give ' 'x x
σ  and , ,x y

τ  in the new 

coordinate system, while substituting � with � + 90o in Equation 
(4.37a) results in / /y y

σ  shown below as Equation (4.37c): 

 1 1( ) ( )cos2 sin 2
2 2y y xx yy xx yy xyσ σ σ σ σ θ τ θ′ ′ = + − − −  (4.37c) 

Now let us determine the specific orientation of the coordinate axes 
that provides the maximum normal stress, as was mentioned earlier in 
this section. Using the established mathematical procedure we take the 
derivative d�/d� of Equation 4.37a and equate the results to zero. Then 
solving for � we obtain the rotation required of the coordinate axes for 
the maximum and minimum values of the normal stress �, 

 
2

tan2 xy
n

xx yy

τ
θ

σ σ
=

−  (4.38) 

Equation 4.38 defines two particular values of angle 2�n (subscript 
n has been introduced to indicate that the orientation of axes system 
provides the extreme values of normal stresses), one of which provides 
the maximum normal stress termed as �1 and the other, the minimum 
normal stress �2. These stresses have a special name and are called 
‘Principal Normal Stresses’, given by  

 

2 2
1

2 2
2

1
( )

2 4

1
( )

2 4

xx yy
xx yy xy

xx yy
xx yy xy

σ σ
σ σ σ τ

σ σ
σ σ σ τ

+
= + − +

+
= − − +

 (4.39 a, b) 

It can be shown that for the axis orientation of �n the shear stress is 
zero on the planes where the principal normal stresses occur. This can be 
proven by rearranging equation 4.38 and substituting in Equation 
4.37a, and is left as an exercise for the student. It should be noted that 
the converse is also true: if the shear stress on a plane is zero, then the 
normal stresses on this plane are principal normal stresses.  
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In a similar manner, by solving the derivative d�/d� = 0 of Equation 
4.37b gives the coordinate axes rotation for the maximum and 
minimum shear stresses. 

 tan2
2

xx yy
s

xy

σ σ
θ

τ
−

= −  (4.40) 

Substituting for �s in Equation (4.40) provides the maximum value 
of the shear stress in the x-y plane and is called the ‘principal shear 
stress’.  

 
2

2
max 2

xx yy
xy

σ σ
τ τ

−� �
= + �

� �
 (4.41) 

It can be shown that the two orthogonal planes where the principal 
shear stress occurs has the same normal stress of  

 �s = (�xx + �yy)/2 (4.42) 

Figure 4.19 shows the stress element orientation and the schematic 
stress state consisting of the principal normal stresses and the principal 
shear stresses.  

 

Figure 4.19. Stress element orientation and the schematic stress state 

consisting of the principal normal stresses and the principal shear 

stresses. 
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By substituting Equations (4.41) and (4.42) into Equations (4.39 a,b) 
and solving for the maximum shear stress we obtain 

 1 2
max 2

σ σ
τ

−
=  (4.43) 

The absolute value of maximum shear stress is used due to the two 
roots of Equation (4.41). 

4.4.2 Mohr’s Circle for Plane Stress Problems 

Let us again consider the transformation employed in Section 4.4.1 
wherein the (x, y, z) coordinate axes were rotated through an arbitrary 
angle to (x', y', z') coordinate axes with the requirement that the z-axis 
and the z'-axis remain coincident. Let the angle between the x & x' axes 
and the y & y' axes be � after the transformation, as shown in Figure 
4.17. Thus effectively Figure 4.17 represents a transformation in two-
dimensions or in a plane, namely, the x-y plane.  

The equations (4.37 a,b) can written as: 

 { } { }2 21 1( ) ( )cos2 sin2
2 2x x xx yy xx yy xyσ σ σ σ σ θ τ θ′ ′ − + = − +  (a) 

 { }2
2 1 ( )sin2 cos2

2x y xx yy xyτ σ σ θ τ θ′ ′ = − − +  (b) 

adding equations (a) and (b) results in the expression: 

 { } { }
2

21 ( )
2x x xx yy x yσ σ σ τ′ ′ ′ ′− + +  

 2 2 21 1( ) (cos 2 sin 2 ) ( ) sin 2 cos2
4 2xx yy xx yy xyσ σ θ θ σ σ τ θ θ= − + + −  

 2 2 21
( ) sin 2 cos 2 (sin 2 cos 2 )

2 xx yy xy xyσ σ τ θ θ τ θ θ− − + +  
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 { } { }
2

2 2 21 1( ) 0 ( )
2 4x x xx yy x y xx yy xyσ σ σ τ σ σ τ′ ′ ′ ′	 − + + − = − + (4.44) 

Equation (4.44) represents the equation of a circle in the (�x'x', �x'y') 

plane, whose center C has the coordinates ( )1 , 0
2 xx yyσ σ� �+� �� �

and has a 

radius of ( ){ }1/2
2 21

4 xx yy xyr σ σ τ= + + . A graphical representation of 

this circle, popularly knows as Mohr’s circle in honor of the German 
engineer Otto Mohr, who first employed it to study plane stress 
problems, is shown in Figure 4.20. 

 

Figure 4.20. Mohr’s circle for plane stress. 

In the Mohr’s circle diagram the normal stress components � are 
plotted on the horizontal axis while the shear stress components � are 
plotted on the vertical axis. Tensile normal stresses are plotted along the 
positive �-axis, that is to the right of the �-axis, while compressive 
normal stresses are plotted to the left of the �-axis. To determine the 
shear stress the general convention is as follows. First define the positive 
face of an element as one for which the outward normal is in the 
positive direction of the coordinate axis. For example, in Figure 4.21a 
the outward normal along the positive z-axis is the positive face, and the 
outward normal on the bottom face is along the negative z-direction and 
is thus the negative face. Then if the shear stress acts in the positive 
direction of the coordinate axis on the positive face it is termed as 
positive (+ve) shear stress (or it is also termed positive if the shear stress 



 BASIC STRUCTURES LEVEL III 153 

 

acts in the negative direction on a negative face). The shear stress is 
termed as negative (–ve) if the shear stress acts in the negative direction 
of the coordinate axis on the positive face (or if a positive shear stress 
acts on a negative face). As can be seen from Figure 4.21 the positive 
shear on the z-faces produces a clockwise rotation of the element, while 
a negative shear produces a counterclockwise rotation of the element at 
point P. A shear stress couple that produce a clockwise rotation (cw) of 
an infinitesimal element around the point P under consideration, as 
shown in Figure 4.21a, is plotted above the �-axis. Shear stress couple 
that produces a counter-clockwise rotation (ccw) (Figure 4.21b) is 
plotted below the �-axis.  

 

Figure 4.21. Shear stress states: (a) positive shear, and (b) negative 

shear. The positive shear on the z-faces produces a clockwise rotation 

of the element as in (a), while a negative shear produces a 

counterclockwise rotation of the element at point P as in (b). (Note 

that the complementary shear stress to maintain moment equilibrium 

not shown here). 

From Figure 4.17, for the case � = 0º, the equations (4.37 a,b) give 

 �x'x' = �xx and �x'y' = �xy 

which are the coordinates of point P0 in Figure 4.20 (Note: for � = 0º 
the face with outer normal along x-axis has a tensile stress �xx and a 
counterclockwise shear �xy). The coordinates of the center C are 
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' ' ' '

2 2
xx yy x x y y

σ σσ σ ++
=

 

which can be shown by 
adding the equations (4.37 
a,c). Thus using C as the 
center and length CP0 as the 
radius, the Mohr’s circle can 
be plotted. Another point P0' 
(�yy, �xy) can be located 
though it is not needed for 
drawing the Mohr’s circle. This point represents the stress on the faces 
with outer normal along the y-axis or � = π/2. The points P and P’ 
represent the stresses on the element with faces along x'-axis and y'-axis 
as shown in Figure 4.17. In other words, stress components associated 
with each plane through a point are represented by a point on the 
Mohr’s circle. 

The principal stresses are located at points Q1 and Q2. By definition, 
in the principal planes the shear stress is zero. Thus from the equation 
(4.37b) when �x’y’ = 0, we obtain: 

 
2

tan2 xy

xx yy

τ
θ

σ σ
=

−  (4.45) 

Solution of Equation (4.45) will yield two values of �, say � = 	 and 
	 + π/2, which are shown as 2	 and 2	 + π on the Mohr’s circle. The 
magnitude of the principal stresses can be obtained from the Mohr’s 
circle as 

 

2 2
1

2 2
2

1 ( )
2 4

1 ( )
2 4

xx yy
xx yy xy

xx yy
xx yy xy

σ σ
σ σ σ τ

σ σ
σ σ σ τ

+
= + − +

+
= − − +

 (4.46) 

Note that �3 = 0 as a plane stress case is being considered.  
  

C3 

4.4 Do you need to know the shear 
stresses on both the x- and y-faces 
of the element to draw the Mohr’s 
circle? 
(Answer: Section 4.7) 
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Example 4.7 

For the state of plane stress shown in Figure E4.7a, determine (a) the 
principal planes, (b) the principal stresses, and (c) the maximum 
shearing stress and the corresponding normal stress using (i) the Mohr’s 
circle method, and (ii) numerically without using the Mohr’s circle 
diagram. 

 

Figure E4.7a. 

(i) Mohr’s Circle Method:  
The stress state on the face with outer normal along the x-axis consists 
of a tensile normal stress (+ normal stress) and a shear stress producing 
a counter-clockwise rotation of the element. Thus this stress state is 
plotted to the right of the �-axis (as tensile normal stress) and below the 
�-axis (as cc
 rotation of element due to shear) at point P0. Similarly 
point P0' is plotted to represent the stress state on the face with outer 
normal along the y-axis in Figure E4.7b. (Note: One could use a 
reverse sign convention too, that is plot the clockwise rotation below 
the �-axis, and it would 
make no difference in the 
construction of the Mohr’s 
circle and the analysis of 
the stress states. However, 
you must be consistent in 
the use of the chosen sign 
convention).  

  

C3 

4.5 What is the effect on principal 
stress determination if one shows 
the shear stress on an element as 
clockwise instead of the correct 
direction of anti-clockwise? 
(Answer: Section 4.7) 
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On drawing the line P0 P0', it intersects the �-axis at C, which is 
the center of the Mohr’s circle. The abscissa of the center C is 

 80 ( 40)
20

2 2
xx yy MPa

σ σ+ + −= =
 

The radius of the circle is CP0 and is given by 

 2 2 2 2
0 0( ) ( ) (80 20) (25) 65r CP CA P A MPa= = + = − + =  

 

Figure E4.7b. 

The principal stresses are represented by the points Q1 and Q2, 
where Q1 represents the maximum principal stress �1 and Q2 
represents the minimum principal stress �2. Their magnitudes are 
given by 

|�1| = OQ1= OC + CQ1 = OC + CP0 

 = 20 + 65 = 85 MPa 

|�2| = OQ2 = OC – CQ1 = OC + CP0' 
 = 20 – 65= –45 MPa 

The angle Q1CP0 represents 2� [see Figures E4.7b and E4.7c], 
and is obtained as 

 
0

0 0

25tan 2
60

2 22.6 , 11.3

AP
CA

θ

θ θ

= =

	 = 	 =
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Thus in the Mohr’s circle line CP0 must be rotated counter-
clockwise through an angle 22.60 to bring CP0 into CQ1. In the 
actual material the element should be rotated counterclockwise 
through half the angle � = 11.3º to obtain the principal stress state, 
as shown in Figure E4.7c. 

 

 

Figure E4.7c. Orientation of principal normal stress and shear stress 

elements, and magnitude of principal normal stresses and maximum 

shear stress. All stress in MPa. 

Point D in Figure E4.7c represents the maximum shear stress 
state. CQ1 can be rotated counterclockwise through 90º to bring 
CQ1 into CD. The magnitude of the maximum shear stress is equal 
to the radius r of the Mohr’s circle, that is �max = 65 MPa. In the real 
material the stress element is rotated counterclockwise through an 
angle of � + 90º/2 = 11.3 + 45º = 56.3º, to bring the axis Ox into 
the axis OD and the orientation of the element and the associated 
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stress represent point D on the Mohr’s circle. Since point D is 
located above the �-axis (that is the �(cw) axis), the shearing stress 
exerted on the faces of the element perpendicular to OD in 
Figure E4.7c must be directed so that they will tend to rotate the 
element clockwise. The normal stress is the same as that at C, which 
is 20 MPa. 

(ii) Numerical Solution 
(a) Equation (4.45) can be used to obtain the orientation of the 

principal plane as 

 0

0

2 2( 25) 50tan2
( 80) ( 40) 120

2 22.6 180 22.6 202.6

11.3 90 11.3 101.3

xy

xx yy

and

and

τ
θ

σ σ
θ

θ

+= = =
− + − −

	 = ° + ° = °

	 = ° + ° = °

 

Thus the element is oriented at an angle of 11.3º (measured 
ccw) to the element containing the applied plane stress state. The 
second value of � = 101.3º can also be used to define the element’s 
� orientation (Figure E4.7d). A plane that contains the face on 
which �1 acts perpendicularly is the principal plane, and similarly a 
plane that contains the face on which �2 acts is the other principal 
plane. 

 

Figure E4.7d. 

(b) Equations (4.39 a, b) reproduced below can be used to obtain 
the magnitude of the principal stresses as  
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2 2
1

2 2
2

2
2

1

2 2
2

( )
2 2

( )
2 2

80 40 80 ( 40) 25 85
2 2

80 40 80 ( 40)
( ) 25 45

2 2

xx yy xx yy
xy

xx yy xx yy
xy

MPa

MPa

σ σ σ σ
σ τ

σ σ σ σ
σ τ

σ

σ

+ −
= + +

+ −
= − +

− − −� �	 = + + = �
� �

− − −= − + = −

  

(c) The maximum shear stress can be obtained analytically as 
follows: 

Differentiating equation (4.37b) with respect to � = �S and 
setting the results equal to zero, we obtain  

 2
tan 2

xx yy

s
xy

σ σ

θ
τ

−� �
 �
� �=  

This value of � gives the orientation of the element 
corresponding to the maximum shear stress. 

Solving the above equation for sin2�s and cos2�s and 
substituting into the equation (4.37b) we obtain  

 

max
2 2 2 2

2 2

2 2

2 2

( )
2( )

2
( ) ( )

2 2

( )
2

( )
2

( )
2

yy xx

yy xx xy
xy xy

yy xx yy xx
xy xy

yy xx
xy

yy xx
xy

yy xx
xy

σ σ
σ σ τ

τ τ τ
σ σ σ σ

τ τ

σ σ
τ

σ σ
τ

σ σ
τ

−
−

= = +
− −

+ +

−
+

=
−

+

−
= +

 

which is customarily written as  
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 2 2
max ( )

2
xx yy

xy

σ σ
τ τ

−
= +  

Note that the value of �max is also the radius of the Mohr’s 
circle. 

 2 2
max

80 ( 40)( ) 25 65
2

MPaτ − −∴ = + =  

To obtain the value of the normal stress acting on the 
element with the maximum shear stress, we substitute the value 
of sin2�s and cos2�s into equations (4.37 a,c) to obtain 

 
2

xx yys s
xx yy

σ σ
σ σ

+
= =  

Thus the normal stress on each of the four faces of the 
maximum shear stress element is the same.  

Therefore, 80 ( 40)
20

2
s s

xx yy MPaσ σ + −= = =  

Example 4.8 

Show that the following relationship exists between the three elastic 
constants 

 
2(1 )

E
G

ν
=

+
 

A circular cross-section solid rod under torsion is in a state of pure 
shear stress. On a plane rotated 45o with respect to the directions of pure 
shear the normal stresses are the principal stress and thus �1 = �, �2 = 0, 
and �3 = –�. Similarly, �1 = �/2, �2 = 0, and �3 = –�/2. If we let the x-, y-, 
and z-directions coincide with the principal 1-2-3 directions then 
substituting for �xx = �, �zz = 0, and �yy = –� and �xx = �/2 into the first 
expression in Equation (4.29) yields  

 
2(1 )

E
G

τ
γ ν

= =
+
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4.4.3 Principal Stresses in a Three-Dimensional Stress State 

It was mentioned in Section 
4.4.1 that the resultant stress 
on a plane depends on the 
orientation of the cutting 
plane Q on which the stress 
acts. If the plane Q is such 
that the outer normal to the plane coincides with the resultant stress the 
shear stress vanishes on the plane Q. In such a case the resultant stress is 
the normal stress on the plane. It can be shown that for any point P in a 
member there exist three mutually perpendicular planes at the point P 
on which the shear stress vanishes. (For two-dimensional stress states, as 
is evident from Mohr’s Circle analysis in Section 4.4.2 that there are 
two mutually perpendicular planes.)  

In a general 3-D state of stress a cubic characteristic equation shown 
below is solved to obtain the three principal normal stresses: 

 3 2
1 2 3 0I I Iσ σ σ− + − =  (4.47) 

Where the first, second and third stress invariants, I1, I2 and I3, 
respectively, are 

 I1 = σxx + σyy + σzz = constant (4.48a) 

 
2

2 2 2

constant

xx xy yy yzxx xz

xy yy xz zz yz zz

xx yy yy zz zz xx xy yz zx

I
σ τ σ τσ τ
τ σ τ σ τ σ

σ σ σ σ σ σ τ τ τ

= + + =

= + + − − −
=

 (4.48b) 

 
3

2 2 22
 constant

xx xy xz

xy yy yz

xz yz zz

xx yy zz xy yz zx xx yz yy zx zz xy

I
σ τ τ
τ σ τ
τ τ σ

σ σ σ τ τ τ σ τ σ τ σ τ

=

= + − − −
=

 (4.48c) 

  

C3 

4.6. Is Mohr’s circle useful for 3D 
stress analysis? 
(Answer: Section 4.7) 
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The three roots of the cubic equation are the three “principal 
stresses” at point P where all the Cartesian stress components are 
known. Generally, the three principal stresses are represented by σ1, σ2 

and σ3. Typically, these three principal stresses are algebraically ordered 
as σ1≥ σ2≥ σ3, and implies that σ1, has the largest algebraic value and σ3 

has the smallest algebraic value. Remember that in this ordering process, 
tensile stress are considered as positive and compression stresses are 
considered negative. 

The magnitude and directions of σ1, σ2 and σ3, for any given 
equilibrium system of forces applied to a body, are uniquely determined 
and are independent of the orientation of the Cartesian coordinate axes. 
Thus the coefficients in Equation (4.47) are called “stress invariants” (or 
constant) and must have the same magnitude for all orientations of the 
coordinate axes. Thus σ1 the largest principal stress, is the maximum 
normal stress that can occur at any place passing through the point. 

After determining the magnitudes of the principal stresses finding 
the directions of the principal stresses or the direction of planes 
containing the three stresses is more involved and not elaborated here. 
Typically, in a material strength based design the directions are not 
important.  

It may be noted that the maximum shear stress is equal to  
½(σ1 – σ3) and the associated normal stress is ½(σ1 + σ3). The other 
two extremum values for the shear stresses are ½(σ2 – σ3) and ½(σ1 - 
σ2) with the associated normal stresses of ½(σ2 + σ3) and ½(σ1 + σ2), 
respectively.  

Example 4.9 

The 1 in. diameter, L-shaped 
steel lever is loaded as shown 
in Figure E4.9. Determine 
the critical point where the 
stress is expected to be 
highest. Determine the 
Cartesian stress components 
and the principal stresses at that point.  

C3 

4.7. In shear force and bending 
moment analysis where should be 
the origin of the coordinate axis? 
(Answer: Section 4.7) 
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Figure E4.9. 

Answer: The point marked O is the critical point as the bending 
stresses are highest here. This point is also subjected to torsion-induced 
shear stresses. 

 
( )

( )4

1.010 14
2

1.0
64

xx

lb in inMc
I in

σ
π

×
= =  = 1426 lb/in2 

 
( )

4

1.010 15
2

1.0
32

xz

lb in inTr
J

τ
π

×
= =  = 764 lb/in2 

All other stress components on a cubic element at point O are zero, 
that is  

σyy = σzz = τxy = τyz = 0 (Note that τxy = τyx = 0 and τyz = τzy = 0) 
The principal stresses are determined from the cubic equation (4.47) 

 σ3 – σ2(1426) + σ(–764)2 = 0 
 	 σ(σ2 – 1426σ – 583696) = 0 
 	      σ1 = 1758 lb/in2 

 σ2 = 0 
 σ3 = –332 lb/in2 

Note: σ1, σ2, σ3 are ordered such that σ1 > σ2 > σ3. Note also that 
the original bending stress found was not the maximum stress. 
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The maximum shear stress is given by: 

 ( ) ( )max 1 3
1 1

1758 332 1045
2 2

τ σ σ= − = + =  2/lb in  

Example 4.10 

At a point in a machine component the stress state is given below: 

 
1 2 1
2 2 3
1 3 4

� �
� �− −� �
� �−� �

 

All stresses are in MPa. Find the principal stresses.  
Answer: From the given stress tensor, it is implied that �xx = 1, �yy = 

–2, �zz = 4, �xy = �yx = 2, �zy = �yz = –3, �xz = �zx = 1. 
The three stress invariants are determined using equation (4.48), as  

 
I1 = 1 – 2 + 4 = 3 MPa 
I2 = (1 * –2) + (–2 * 4) + (4 * 1) – 22 – (–3)2 – (1)2 = –20 MPa2 
I3 = (1 * –2 * 4) + 2 ( 2 * –3 * 1) –1 (–3)2 – (–2)(1)2 – 4(2)2 = –43 MPa3 

 
Using equation (4.47) we obtain the cubic equation 

 �3 – 3�2 – 20� + 43 = 0 

the three roots of the cubic equation are the three principal stresses, 
which when algebraically ordered (�1 > �2 > �3) are �1 = 5.25 MPa, �2 = 
1.95 MPa, �3 = –4.2 MPa. 

4.5 Structural Design under Combined Loading 

4.5.1. Yielding under Multi-Axial Stresses 

Most engineering structures function in the elastic region for the 
majority of their life. However, the presence of stress concentrations and 
development of defects during service that can act as stress risers, or 
general degradation in the material for example due to corrosion, can 
cause the localized stress state to exceed the elastic limit of the material. 
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This state represents the beginning of inelastic deformation or plastic 
deformation or the initiation of yielding at that point(s). In a very severe 
case yielding may occur over the whole cross-section of a component. 
Generally, engineering designs are such that initiation of yielding will 
cause minimal loss of function or change in the steady state deformation 
of a statically loaded structure. However, initiation of yield can cause 
development of residual stresses in the structure (generally residual 
stresses are harmful if tensile), provide locations for crack initiation, 
provide locations for increased chemical attack, etc. Hence, if possible the 
structure should function in the elastic region over its whole life span.  

4.5.2. Yield Criteria 

The simplest state of stress is the uniaxial stress state. Such a stress 
condition is produced in a simple tension test experiment to obtain the 
uniaxial stress-strain curve of a material. This stress-strain curve provides 
information about the yield point of the material. Thus if an actual 
component, such as a tie-rod or a linkage in a four bar mechanism, is in 
pure tension then its failure is predictable at the yield point determined 
from a simple tension test. 

If a structural component is subjected to biaxial or tri-axial state of 
stress, the prediction of failure (or yielding) is no longer as easy as the 
uniaxial loading case. In the multiaxial stress condition, we can no longer 
say that the material will yield when the largest normal stress reaches the 
yield point obtained from a uniaxial tension test, as the other normal stress 
components also influence yielding. Furthermore it is practically impossible 
to conduct experiments to obtain the yield condition for a whole range of 
stress combinations in all three possible orthogonal directions, and also 
consider factors such as stress 
concentration, temperature and 
environmental effects. To 
overcome these difficulties, 
designers have relied on 
developing theories that relate 
failure behavior in the 

C3 

4.8. Are there standard tests for 
materials properties under 
combined loading? 
(Answer: Section 4.7) 
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multiaxial stress situation to the failure behavior in a simple tension test in 
the same mode through a selected quantity such as stress, strain, or energy. 
Thus the failure theories will predict failure to occur when the maximum 
value of the selected mechanical quantity in the multiaxial stress state 
becomes equal to or exceeds the value of the same quantity that produces 
failure in a uniaxial tension test using the same material.  

In general the elastic limit or the yield stress is a function of the state 
of stress represented by six stress components for an isotropic material. 
The yield condition can generally be written as  

 ( )1 2, , , , , , , ,.... 0xx yy zz xy yz zxf M Mσ σ σ τ τ τ =  (4.49) 

where M1 and M2 are materials constants. For isotropic materials the 
orientation of the principal stresses is immaterial, and the values of the 
three principal stresses are sufficient to describe the state of stress 
uniquely. The yield criteria therefore can be written as  

 ( )1 2 3 1 2, , , , ,.... 0f M Mσ σ σ =  (4.50) 

Based on this philosophy, several theories have been developed to 
predict the yield point when a component is subjected to multiaxial 
stresses, namely the maximum normal stress theory, the maximum shear 
stress theory and the distortion energy theory. In this chapter, we only 
discuss the maximum shear stress theory, which provides fairly accurate 
results for yielding in ductile materials and is relatively simple to use. As 
described earlier, a general multiaxial state of stress at any point can be 
fully described by three principle normal stresses and their directions. 
Hence all failure theories express the yielding criteria in terms of the 
principle normal stresses. It may be noted that there is only one non-
zero principal stress in a uniaxial tension test situation. 

4.5.3. Maximum Shear Stress Theory 

This theory proposes that yielding will occur under a multiaxial stress 
state when the maximum shear stress becomes equal to or exceeds the 
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maximum shear stress at the yield point in a uniaxial tension test using a 
specimen of the same material. The principal shearing stresses are 

 

( )

( )

( )

1 1 2

2 1 3

3 1 2

1
2
1
2
1
2

τ σ σ

τ σ σ

τ σ σ

= ± −

= ± −

= ± −

 (4.51) 

Also, for a uniaxial tension test, the only non-zero principal stress at 
the yield point is 1 ySσ = = the yield strength, and hence the principal 

shearing stress at the yield point is 

 
2

y
tension

S
τ =  (4.52) 

Thus according to the maximum shear stress yielding theory the 
yield conditions can be written as 

 
2 3

2 3

1 2

y

y

y

S

S

S

σ σ
σ σ
σ σ

− ≥

− ≥

− ≥
 (4.53) 

Failure by yielding occurs if any one of the above expressions is 
satisfied. These yield conditions are represented graphically for a three-
dimensional stress field in Figure 4.22. The yield surface is a hexagonal 
cylinder whose axis makes equal angles with the three principal stress 
axes. And as with all yield theories, stress states that lie within the 
hexagonal cylinder (or the yield surface) does not result in yielding, 
while stress states lying 
outside the cylinder result in 
yielding. A stress state lying 
exactly on the yield surface 
signifies that the material is 
ready to yield.  

C3 

Stress or strength, what is the 
difference? 
(Answer: Section 4.7) 



168 AN ENGINEERING COMPANION TO THE MECHANICS OF MATERIALS 

 

 

Figure 4.22. Graphical representation of the maximum shear stress 

theory for a general three-dimensional stress state 

For a biaxial stress field, i.e., any one principal stress equals zero, say σ1 
≠ 0, σ2 ≠ 0, σ3 = 0, the graphical representation is shown in Figure 4.23 
assuming that the yield strength in tension is equal to the yield strength in 
compression, which is approximately true for most structural metals. 

 

Figure 4.23. Graphical representation of the maximum shear stress 

theory for a biaxial stress field. 

Experimental results have shown that the maximum shear stress 
theory predicts yielding in ductile materials with reasonable accuracy. 
This theory also predicts the experimentally observed behavior of ductile 
materials under hydrostatic stress state. If all principal stresses are equal, 
the shear stresses τ1, τ2 and τ3 are all equal to zero and hence yielding 
will never initiate regardless of the magnitude of the hydrostatic stress 
state. In the graphical representation, the hydrostatic stress state always 
lies on the axis of the hexagonal cylinder and hence within the yield 
surface, which implies yielding will never occur. 
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Example 4.11 

A point in a structural component has a stress state given by σxx = 50, σyy 
= 70 and τxy = 200 MPa. The material of the component is ductile and 
has yield strength of 300 MPa. Will the material yield at the point 
under consideration according to the maximum shear stress theory? 

Answer: The given stress state is a biaxial state of stress. Hence the 
two in-plane principal normal stresses can be determined using 
equations (4.37 a,b) as: 

 
2

2
1 2,

2 2
xx yy xx yy

xy

σ σ σ σ
σ σ τ

+ −� �
= ± + �

� �
 

 
1 2260 , 140MPa MPaσ σ	 = = −  

The third principal stress σ3 = 0. (Note that according to 
convention, the principal stress σ1, σ2, σ3 should be ordered as σ1 > σ2 > 
σ3. However, we have not followed the convention only for this example. 
You may follow the convention and re-number the principal stresses, 
and draw the yield plot axes accordingly.) 

The principal stress state (σ1, σ2) ≡ (260, –140) can be plotted on 
the biaxial yield plot to determine the yield condition. The stress state at 
the point lies outside the yield locus as shown in Figure E4.11. Hence 
yielding occurs. 

 

Figure E4.11. 

  



170 AN ENGINEERING COMPANION TO THE MECHANICS OF MATERIALS 

 

4.6 Design III 

RP4.1: Shown in Figure RP4.1 is a beam in which the shear stress τxy on 
the top surface is zero. If the beam is cut along a plane x = constant, 
what is the shear stress on the new surface? 

Consider a small element as shown below  

 

Figure RP4.1. 

The top surface is given to be shear stress free, hence �yx = 0. Thus to 
maintain equilibrium the cross shear �xy must be zero. Similarly if a 
section is taken at plane A, the cross shear on the newly created surface 
will be zero.  

RP4.2 

A thin rectangular rubber sheet is enclosed between two thick steel 
plates and the rubber sheet is subjected to a compressive stress of σxx and 
σyy in the x- and y-directions, respectively. Determine the strains in the 
x- and y-directions and the stress along the z-direction (thickness 
direction) of the rubber sheet (Figure RP4.2). 

 

Figure RP4.2. 
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From Equations (4.29) 

 

2

1
( ) 0

( )

1
( )

1 (1 ) (1 )

zz zz xx yy

zz xx yy

xx xx yy zz

xx yy

E

and

E

E

ε σ ν σ σ

σ ν σ σ

ε σ ν σ σ

σ ν ν ν σ

� �= − − − =� �

	 = − +

� �= − − +� �

� �= + + +� �

 

(which is obtained by substituting for �zz.) 
Similarly, 

 
2

1 ( )

1 (1 ) (1 )

yy yy xx zz

yy xx

E

E

ε σ ν σ σ

σ ν ν ν σ

� �= − − +� �

� �= + + +� �

 

RP4.3 

A closed cylindrical pressure vessel is fabricated from steel sheets that are 
welded along a helix that forms an angle of 60º with the transverse 
plane. The outer diameter is 1 m and the wall thickness is 0.02 m. For 
an internal pressure of 1.25 MPa, determine the stress in directions 
perpendicular and parallel to the helical weld (Figure RP4.3). 

 

Figure RP4.3. 

Ratio of diameter to wall thickness: 0.5/0.02 = 25 > 10 	 thin-walled 
vessel 

 1
pr
t

σ = =1.25(0.5)/(0.02) = 31.25 MPa, 1
2 2

σσ = =15.62 MPa 
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 1 2
1

( ) 23.44
2ave MPaσ σ σ= + =  

 1 2
1

( ) 7.82
2

R MPaσ σ= − =  (Mohr’s circle radius) 

The normal stress to the weld is cos60w ave Rσ σ= − ° = 19.53 MPa 
The shear stress on the weld is sin60w Rτ = ° =  6.77 MPa 

RP4-4 

A cylindrical tube made of 2024-T4 aluminum has a diameter of 50 
mm and wall thickness of 3 mm. An axial tensile load of 60 kN and a 
torque of 0.7 kN-m are applied. Will the tube yield? If not, how much 
can the tensile load or the torque can be increased before yielding 
occurs? 

2024-T4 aluminum yield strength= 330 MPa 
Torque: T = 0.7 kN-m 
Axial tensile load: 60 kN 
Polar second moment: J = π(254 – 224)/2 = 0.25(106) mm4 = 

0.25(10–6) m4 
The shearing stress due to torsion T is: 

 6 2
6

0.7(50)
70(10 ) /

2 2(0.25)(10 )
Td

N m
J

τ −= = =  

Normal stress due to tension is: 

� = 60(103)/π(252 – 222)(10–6) = 0.14(109) N/m2 = 140(106) N/m2 

Therefore: 

 ( )2 2
1,3

1 1 4 70 99
2 2

MPa MPaσ σ σ τ= ± + = ± ; �2=0 

According to the maximum shear stress theory yielding occurs if  

max 1 3
1 ( )
2 2

yS
τ σ σ= − ≥  

	  LHS = 99 MPa, which is less than RHS = 165 MPa. Hence no 
yielding occurs.  
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RP4.5 

A thin-walled circular tube is made of AISI1020 steel. It is subjected to a 
torque of 6 kN-m and a pure bending moment of 4.5 kN-m. If the 
diameter of the tube is 50 mm, what must be the thickness so that the 
factor of safety against yielding is 1.25? 

AISI 1020 steel yield strength= 225 MPa 
Factor of safety 1.25 
Torque: T = 6 kN-m 
Bending moment: 4.5 kN-m 
For thin-walled tubes, the shearing stress due to torsion T is: 

 
3 6

2
2 6

6(10 ) 1.5(10 ) 1.5/
2 2 (25) (10 )
T

N m MPa
At t t t

τ
π −= = = =  

Normal stress due to bending is: 

 
3

2 2 6

(4.5)(10 ) 0.3
2 2 (50 )(10 )

Mc M
MPa

I d t t t
σ

π π −= = = =  

Therefore: 

 ( )2 2
1,3 2 2

1 1 0.15 1 0.09 94
2 2 2

MPa
t t t

σ σ σ τ � �= ± + = ± + �
� �

; �2=0 

From the maximum shear stress theory 

max 1 3
1 (1.25)( )
2 2

yS
τ σ σ= − ≥  

	 t = 16.6 mm 

RP4.6 

A cylindrical pressure vessel has an inner diameter of 240 mm and a wall 
thickness of 10 mm. The end caps are spherical and of thickness 10 
mm. If the internal pressure is 2.4 MPa, find (a) the normal stress and 
the maximum shear stress in the wall of the spherical end cap, (b) the 
normal stress and the maximum shear stress in the cylindrical wall. 
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Check diameter to thickness ratio, 120/10 = 12 > 10 	 thin-walled 
vessel 

(a) Spherical cap: 

1 2 2
pr
t

σ σ= = = 2.4(120)/2(10) = 14.4 MPa 

Note that 3σ  = 0. 

max 1
1

7.2
2

MPaτ σ= =  

(b) Cylindrical body of the vessel: 

1
pr
t

σ = = 2.4(120)/(10) = 28.8 MPa, 1
2 2

σσ = =14.4 MPa 

max 1
1

14.4
2

MPaτ σ= =  

4.7 C3 Clarified 

C3 4.1. Stress is often computed from the expression stress = force/area 
and is treated as a scalar. Is that appropriate? 

Answer: It is appropriate only if the force is aligned (or parallel) with 
the direction of the outward normal to the area on which the force acts. 
C3 4.2. Does the choice of the coordinate system affect the state of stress 
at a point in a body under a given external load? 

Answer: The Cartesian stress components change with the 
orientation of the coordinate system, however, the principal stresses are 
independent of the choice and orientation of the coordinate system.  
C3 4.3. Torque, moment and couple -- what is the difference? 

Answer: These terms are often used synonymously albeit 
inaccurately, but the context of the problem may help arrive at the 
correct result. The magnitude of both torque and moment are obtained 
by multiplying the force with a distance between the force and the point 
(or an axis) about which the quantity is desired. However, strictly the 
moment and torque are vector product of distance vector r and force 
vector F. Thus for example in the case of a rod, if the resultant of the 



 BASIC STRUCTURES LEVEL III 175 

 

vector cross product r × F is in a plane perpendicular to the axis of the 
rod it is a moment (that causes bending), and if the resultant is in the 
plane containing the axis of the rod it is a torque (that causing twisting). 
A couple is a pair of self-equilibrating forces separated by a distance, 
which results in force equilibrium but not moment equilibrium.  
C3 4.4. Do you need to know the shear stresses on both the x- and y-
faces of the element to draw the Mohr’s circle?  

Answer: The Mohr’s circle can be drawn by knowing the center 

given by the �-axis coordinate 
2

xx yyσ σ+
and only one point on the 

circle, which determines the radius as the distance between the center 
and the point representing the stress on one face of the element.  
C3 4.5. What is the effect on principal stress determination if one shows 
the shear stress on an element as clockwise instead of the correct 
direction of anti-clockwise? 

Answer: The principal stress magnitudes will not be affected, 
however, the directions would be in error by 45o. 
C3 4.6. Is Mohr’s circle useful for 3D stress analysis? 

Answer: Mohr’s circle is primarily used for two-Dimensional or 
plane stress analysis, though it can also be used for 3-D stress analysis.  
C3 4.7. In shear force and bending moment analysis where should be 
the origin of the coordinate axis? 

Answer: The best option is to use an origin that minimizes the 
number of unknown reactions in the two static equilibrium equations, 
namely the force equilibrium and moment equilibrium equations.  
C3 4.8. Are there standard tests for materials properties under combined 
loading? 

Answer: Material properties under combined loading are not 
generally tested. However, tests are conducted under very specific 
combined load conditions for a particular application or to validate a 
certain analytical/numerical solution. 
C3 4.9. Stress or strength, what is the difference? 

Answer: Strength is a property of the material. Stress depends on the 
magnitude and direction of force on an area, and is also dependent on 
stress concentrations.  
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Key Points to Remember:  
 

• The general state of stress at any point in a stressed 
homogeneous, isotropic material is given by three normal 
stress components and six shear stress components. Three 
relationships exist between the six shear stress components 
and hence only three shear stress components need to be 
independently known. 

• The general state of strain at any point in a deformed 
homogeneous, isotropic material due to applied loads is 
given by three normal strain components and six shear strain 
components. Three relationships exist between the six shear 
strain components and hence only three shear strain 
components need to be independently known (Table 4.2). 

• The Cartesian components of stress and strain depend up on 
the choice of the coordinate system, though this choice of 
the coordinate system does not affect the physical 
phenomenon occurring at the point. 

• The three principal stresses and three principal strains at a 
point are independent of the choice of the coordinate 
system, or in other words do not vary with the orientation of 
the coordinate system.  

• The Mohr’s circle is an excellent graphical method for 
visualizing stresses (and strains) primarily in two 
dimensional loading conditions and stress states. 

Table 4.2. Comparison of some key relationships between axial, 

torsional, and flexural structures. 

 Axial Torsional Flexural 
Stress 

σ =xx

P
A

 
x

Mr
Jθτ =  σ =xx

My
I

 

Deformation �xx = 
du/dx 

�x� = 
r(d�/dx) 

2

2
0

x
y d u d du

y y
r dx dx dx

ε � �= − ≈ − = −  �
� �

Constitution �xx = E 
�xx 

x� = G �x� �xx = E �xx
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APPENDIX 1 

System of Units 
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Notes: 
• The SI system is the system of units in use by most of the 

rest of the world outside of the USA, and is the standard for 
nearly all current engineering and scientific publications. 
The SI system is an “absolute” system since mass is taken as 
a primitive or fundamental dimension (as compared to force 
or weight); force is a derived dimension. Force and mass 
have separate and distinct units. The constant of 
proportionality in Newton’s law is nondimensional and of 
unit value. SI also uses order of magnitude descriptors (in 
decades). 

• All other systems of units are less desirable in practice, but a 
working knowledge of them is required in the USA.  

• The U.S. Customary system is a “gravitational” system 
(“relative” system) since it takes force (weight) as a primitive 
dimension (but weight obviously depends on the local 
gravitational acceleration). It does however have separate 
and distinct units for force and mass, and a constant of 
proportionality in Newton’s law that is nondimensional and 
of unit value. Limited order of magnitude descriptors are 
used (e.g., ksi). 

• The English Engineering system is the least desirable of 
commonly used systems of units. Both force and mass are 
taken as primitives. Hence, the constant of proportionality 
in Newton’s law is neither nondimensional nor of unit value 
(1/gc). Force and mass do not have separate and distinct 
units. Limited order of magnitude descriptors are used (e.g., 
ksi). 

• The cgs and fps are rarely used at the present time, and that 
is for the best. 

 



 

APPENDIX 2 

Free Body Diagrams 
The free body diagram (FBD) is a tool for formulating mathematical 
models via Newton-Euler mechanics.  It provides for bookkeeping of all 
of the externally applied forces and moments on the system of interest 
(SOI), as well as internal forces and moments at the free body 
boundaries. 
 
There are three simple steps for developing FBDs: 
 
 1. Define the SOI (i.e., a particle, body, portion of a body, etc.). 
 2. The definition must include a coordinate system.  The SOI must 

be considered in its displaced configuration.  For convenience in 
writing the equations of motion, displace the SOI in the positive 
coordinate direction(s). 

 3. Completely isolate the free body. 
Isolate the free body from the SOI, and show on the FBD all forces 
and moments: 
• applied by external agents (e.g., gravity, concentrated forces, 

etc. 
• occuring internally as reactions at the boundaries when the SOI 

is isolated 
 3. Show on the FBD the relevant geometry and any other 

information required to do a complete accounting. 
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An example follows in Figure A2.1: 

  

Figure A2.1. Simple free body diagram. 



 

APPENDIX 3 

Centroid and Second 
Moment of Area 

Mechanics of materials texts do an adequate job of illustrating how to 
calculate the centroid and second moment of area of plane sections. 
Needing not to cover that ground, this brief appendix seeks to clarify 
common confusion over these very important topics. 
 
Centroid 

• The centroid is the “geometric center” of a plane section. It 
is specified as a coordinate pair, e.g., ( ), .x y  

• The centroid uses the first moment of area to calculate a 
“weighted average of areas” that represents the geometric 
center. Each increment of area dA is (linearly) weighted by 
its distance from the reference axis—the further away, the 
greater the weight. 

• If the plane section is smooth and continuous, then the 
centroidal coordinates relative to rectangular Cartesian 
coordinates x, y are given by 

 d  d
,  

d d

x A y A
x y

A A
= =� �

� �

 

• If the plane section is not smooth and continuous, but 
consists of N discontinuous elements, then the centroidal 
coordinates relative to rectangular Cartesian coordinates x, y 
are given by 

1 1

1 1

 ,  
N N

i i i ii i
N N

i ii i

x A y A
x y

A A
= =

= =

= =� �
� �
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where ( ),i ix y  and Ai are the centroidal coordinates and area 

of the ith element, respectively. For example, an angle section 
would have N = 2 discontinuous elements. 

• If the material is homogeneous and the mass of the material 
is uniformly distributed, then the centroid and center of mass 
coincide (in other cases they may not). 

 
Second Moment of Area 

• The second moment of area (SMoA) is commonly, but 
incorrectly, called the “moment of inertia” or the “area 
moment of inertia”. Inertia is a mass property describing the 
“resistance” to acceleration, as correctly used in the 
dynamical mass moment of inertia. However, there is no mass 
nor dynamics in our mechanics of materials “resistance” (to 
torsion or flexure) and any reference to inertia should be 
avoided. 

• If the plane section is smooth and continuous, then the 
flexural SMoA Ixx and Iyy relative to rectangular Cartesian 
coordinates x, y are given by 

2 2d ,   dxx yyI y A I x A= =� �
 

• The torsional SMoA Izz (also Jzz), sometimes called the polar 
SMoA, is found as Izz = Ixx + Iyy or 

2 2( )dzzI x y A= +�
 

• The SMoA referenced to a centroidal coordinate axis ( ) I  
can be referenced to another parallel coordinate axis by 
following the so-called “Parallel Axis Theorem”. For 
example, consider the SMoA referenced to an x�-axis that is 
parallel to the x-axis passing through the section centroid: 

2
' ' * dx x xxI I A= +  

where d is the perpendicular distance between the x�-axis 
and the x-axis. 
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• If the plane section is not smooth and continuous, but 
consists of N discontinuous elements, then the SMoA of 
each element can be summed to give the composite SMoA if 
each element SMoA is referenced to the composite 
coordinate axis, accomplished by using the Parallel Axis 
Theorem. For example, 

( )2
' ' ,

1

N

x x i xx i i
i

I I A y y
=

� �= + −� ��
 

where ,i xxI , iy , and Ai refer to the ith element and y  refers 

to the composite section. 



 

 

 



 

APPENDIX 4 

Sign Conventions in 
Mechanics of Materials 

One of the leading sources of confusion in Mechanics of Materials is 
that of sign convention. Perhaps every MoM textbook covers this 
subject, unfortunately often in confusing and arbitrary ways. For 
example, one popular MoM text, now in its 8th edition, states the 
following: 

“Let us now consider the sign conventions for shear 
forces and bending moments. It is customary to assume 
that shear forces and bending moments are positive 
when they act in the directions shown in the figure. 
Note that the shear force tends to rotate the material 
clockwise and the bending moment tends to compress 
the upper part of the beam and elongate the lower part. 
Also, in this instance, the shear force acts downward and 
the bending moment acts counterclockwise.” 

Definitions like “rotate clockwise” and “compress the upper part of 
the beam” are arbitrary definitions that have no rational or physical 
basis, are confusing and an unnecessary burden to learning.  

First of all, let’s be clear on what is important and what is the goal. 
The sign of the shear force is not important. The sign of the shear force 
will not play a significant role in structural design. The sign of the 
moment is important in so far as it informs us where the beam is in 
tension and where it is in compression. Failure in tension is much more 
likely than it is in compression. 

Fortunately, there is no need for any “additional” sign conventions. 
We have everything we need with the two fundamental mechanics sign 
conventions: coordinate/right-hand rule and stress. 
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Coordinate Sign Convention 

A vector parallel to a coordinate axis is considered positively directed 
(“positive”) if it points in the direction of increasing coordinate values. 
A vector parallel to a coordinate axis is considered negatively directed 
(“negative”) if it points in the direction of decreasing coordinate values. 

Right-Hand Rule 
Coordinate systems are assumed to be right-handed. In the case of 

the rectangular Cartesian coordinate system (Figure A4.1), this means 
that the unit vectors i, j, and k are related by 

k = i × j 

  

Figure A4.1. (a) unit vectors defined; (b) right-hand rule. 

Forces and Moments 

It is important to keep the following in mind: forces and moments are 
vectors. We treat them as scalars where allowable for convenience, but 
they are nonetheless vectors! Vectors in general do not have a “sign” 
associated with them. However, the components of a vector, which exist 
only in reference to a coordinate system, by definition have a sign 
associated with them. Only in the case where the vector can be 
represented by a single component, say v = 10 j, can the vector have an 
associated sign (in this case v is in the positive y-direction). Consider the 
following: is the vector v in Figure A4.2a positive or negative? 
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The vector v can now be represented by components that are 
positive or negative, i.e., v = vx i – vy j, by way of the basic coordinate 
sign convention. The x-component of v is positively directed in the x-y 
coordinate system and the y-component negatively directed. However, 
use of the terms “positive” or “negative” to describe the vector v itself 
has no meaning (Figure A4.2b).  

Now we could also reference the vector components to another 
coordinate system, say the x�-y� system (Figure A4.2c): 

 

a. General vector. 

 

b. Vector components tied to a coordinate system. 

 

c. Vector v referenced to a different coordinate system. 

Figure A4.2. 
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Here v = vx� i can be described as positive. 

Areas 

Areas can also be treated as vector quantities. Areas have both 
magnitude and direction. The direction of an area (or surface) is given by 
the direction of the outward seeking normal n to the surface forming the 
area. (see Figure A4.3).  

 

Figure A4.3. Outward seeking normal vector n. 

We can now express A as A = An, where A is the magnitude of the 
surface area and n is the outwardly-directed unit vector orthogonal to 
the surface.  

If n aligns with the positive direction of a coordinate axis, the surface 
A is called a “positive surface” or “positive face”. If n aligns with the 
negative direction of a coordinate axis, the surface A is called a “negative 
surface” or “negative face”. 

Stress Sign Convention 

In addition to the usual sign convention for coordinates, we also have a 
sign convention for stress. The stress sign convention arises due to the 
critical dependence of the tensile or compressive nature of stress on the 
failure of a material. Tensile stresses are defined as positive stresses and 
compressive stresses are defined as negative stresses.  

Recall our definition of normal stress 

 σ = ⋅T n  



 SIGN CONVENTIONS IN MECHANICS OF MATERIALS 189 

 

It is important to note that � can be positive in two ways -- when T 
and n are both positive or are both negative. Same for the shear stress: 
 τ = ⋅T t  

Recall also the “stress cube”, a 2-D view of which is shown in Figure A4.4: 

 

Figure A4.4. 2-D view of the stress cube. All forces, moments, and 

stresses are shown positive. 

The stresses shown are all positive. Why? (Remember: positive * 
positive or negative * negative!) 

Forces and Moments in Beam Bending 

So what does this tell us about a sign convention for forces and 
moments in beam bending? Do we need a third sign convention, like 
positive moment if “holding water” or “sagging” (see Figure A4.5)? 

 

Figure A4.5. 
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What’s wrong with this picture? A coordinate system—the most 
fundamental thing—is missing! (See Appendix 2 for FBD 
requirements.) Let’s add one (Figure A4.6): 

 

Figure A4.6. 

Looking at the left-hand cut, we see that on the +x face the shear 
force is negative and the moment is positive. Similarly, on the –x face 
the shear is negative and the moment positive, which is internally 
consistent. (This is, by the way, just Newton’s 3rd Law. That is, for every 
action there is an equal and opposite reaction.) 

So we use the coordinate sign convention, along with the stress sign 
convention at the structure scale, to determine the sign of any internal 
shear force and any moment, internally or externally derived. We don’t 
need any other convention. Given our y-coordinate is “up” and our 
moment—stress relationship is 

σ = −xx
My
I

 

then a positive moment gives a negative (compressive) stress above  
(y > 0) the neutral axis and positive (tensile) stress below (y < 0) the 
neutral axis. 

One arbitrary choice for a beam bending sign convention is the 
following (Figure A4.7): 

 

Figure A4.7. Arbitrary beam bending sign convention. 
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This is problematic for several reasons: 
(i) The element seems to not be in rotational equilibrium since the 

shear forces provide a net moment on the slice; 
(ii) Herein lies confusion: the internal moment M has been clearly 

defined as a positive moment if it is oriented as shown above, yet M 
can show up as a negative moment in the moment equilibrium 
equation! The same confusion applies to the shear force V.  

 

Example A4.1. Consider a simply supported beam of length L that 
carries a concentrated force P as shown in Figure EA4.1a. 

 

Figure EA4.1a. 

We first determine expressions for the reaction forces RA and RB 
using ∑F = 0 and ∑M = 0 globally (the student should verify): 

RA = Pb/L  RB = Pa/L 

Then we investigate the internal (local) response by sectioning the 
beam (at x = c), creating two Free Bodies, a left FBD and a right FBD.  
 

I. By additional beam bending sign convention (Figure A4.7) 
 We now include on our sectioned beam the internal shear and 

moment reactions, shown in their positive sense according to the 
above definition (Figure EA4.1b): 

 

Figure EA4.1b. 
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 We choose arbitrarily (since no coordinate system definition is 
given) summation directions that are consistent with the positive 
definition of the right section FBD shear and moment, and 
correctly expect these to apply to the left section FBD as well: 

0 : 0AF R V+ ↑ = − =� => V=Pb/L 

 
0 : 0AM R x M+ = − =��  => M = Pbx/L 

 Herein lies the confusion: the internal moment M has been clearly 
defined as a positive moment if it is oriented as shown on the FBD 
above, yet M shows up as negative moment in the moment 
equilibrium equation! The same confusion applies to the shear force V. 

II. By fundamental sign conventions only (y-axis up) 
 We again include on our sectioned beam (now correct FBDs) the 

internal shear and moment reactions, shown in their positive sense 
according to the fundamental coordinate and stress sign 
conventions (Figure EA4.1c): 

 

Figure EA4.1c. 

 0 : 0AF R V+ ↑ = + =� => V = -Pb/L 

 0 : 0AM R x M+ = − + =��  => M = Pbx/L 

The minus sign on V indicates only that our original choice of 
direction was wrong, obvious now when we look at it. 
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III. By fundamental sign conventions only (y-axis down in Figure 
EA4.1d) 

 

Figure EA4.1d. 

0 : 0AF R V= − + =� => V=Pb/L 

 
0 : 0AM R x M= + =�  => M = �Pbx/L 

 
The minus sign on M indicates only that our original choice of 
direction was wrong, obvious now when we look at it. 

 
 The correct solution is obtained in II and III without introducing 

an arbitrary and unnecessary sign convention. 



 

 

 



 

APPENDIX 5 

Vectors and Tensors 
A vector is a mathematical object that can be used to represent physical 
objects that have both magnitude and direction. Representing physical 
objects as vectors can greatly simplify analysis. 

For example, in mechanics we use position vectors to describe where 
something is in the space under consideration, or how its position is 
changing at that moment in time. The position of an object in space is 
its distance from a reference point. Distance must necessarily include 
both magnitude (“three meters”) and direction (“northwest”). 

Any vector may be referred to a basis. A common basis is a rectangular 
Cartesian coordinate system. A vector is referred to a basis by being equivalent to a 
sum of components that lie along the coordinate directions. The coordinate 
directions are represented by basis vectors. Basis vectors are unit vectors (i.e., vectors 
that have magnitude equal to one) that point in the coordinate directions; a set of 
basis vectors for a rectangular Cartesian coordinate system could be written as 

( ) ˆ, ˆ ˆ,i j k or 1 2 3
ˆ ˆ ˆ, , )(e e e . For example, the general position vector is written as 

1 2 3
ˆ ˆ ˆx y z= + +r e e e  (see Figure A5.1). 

(Note: in text, vector quantities are typically shown in bold font; 
unit vectors are indicated by ^. However, for simplicity in what follows, 
we will drop the ^ symbol on the basis vectors.) 

 

Figure A5.1. 
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Vector Algebra Operations 

Addition and Subtraction 

If a and b are vectors, then the sum c= a +b is also a vector (see 
Figure A5.2a). The two vectors can also be subtracted from one another 
to give another vector d= a � b. 

 

 

Figure A5.2. Vector operations. 

Multiplication by a Scalar 

Multiplication of a vector b by a scalar λ  has the effect of stretching or 
shrinking the vector (see Figure A5.2b). 

You can form a unit vector b̂ that is parallel to b by dividing by the 
length of the vector |b|. Thus, 
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bb̂ =
b

 

Scalar Product of Two Vectors 

The scalar product or inner product or dot product of two vectors is 
defined as 

a b a b cos( )θ⋅ =  

where � is the angle between the two vectors (see Figure A5.2b). If a and 
b are perpendicular to each other, / 2θ π=  and cos( ) 0θ = . Therefore, 
a b 0⋅ = . The dot product therefore has the geometric interpretation as 

the length of the projection of a onto the unit vector b̂  when the two 
vectors are placed so that they start from the same point. 

The direction cosines of a vector are the cosines of the angles between 
the vector and the three coordinate axes. The direction cosines for the 
vector r shown in Figure A5.1 are given by: 

 cos i i
r

e
r

θ = ⋅  

The scalar product leads to a scalar quantity and can also be written 
in component form (with respect to a given basis) as 

 
1 1 2 2 3 3

1..3

a b i i
i

a b a b a b a b
=

⋅ = + + = �  

Using the Einstein summation convention, we can also write the 
scalar product as a b .i ia b⋅ =  

Notice that the following also hold for the scalar product: 

 a b b a⋅ = ⋅  (commutative law). 

 a (b c) a b a c⋅ + = ⋅ + ⋅  (distributive law). 
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Vector Product of Two Vectors 

The vector product (or cross product) of two vectors a and b is another 
vector c defined as 

ˆc a cb a b sin( )θ= × =  

where θ is the angle between a and b, and ĉ  is a unit vector 
perpendicular to the plane containing a and b in the right-handed sense 
(see Figure A5.3 for a geometric interpretation). 

 

Figure A5.3. Vector product of two vectors. 

In terms of the orthonormal basis (e1, e2, e3), the cross product can 
be written in the form of a determinant 

 
1 2 3

1 2 3

1 2 3

a b
e e e
a a a
b b b

× =  

Tensors 

Tensors are mathematical generalizations of vectors. In this way, vectors 
are first order tensors and scalars are zero order tensors. A vector has 
three components and a second order tensor has nine components. It is 
convenient to write a second order tensor, say A, as a 3 x 3 matrix: 
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11 12 13

21 22 23

31 32 33

A
A A A
A A A
A A A

� �
� �
� �
� �
� �

=

 

Tensors can be thought of as linear transformations. For example, 
second order tensors transform vectors into vectors, such as the tensor 
[A] transforms the vector {a} into a vector {b}.  

{b} = [A]{a} 
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Static loads, 3–4 
Steady-state loads, 4 
Stiffness, 16–17, 58 
Strain, 46 

at a point, general states of, 124–127 
effects on equilibrium and 

deformation, 127–128 

energy, 61, 142–145 
energy density, 143–145 
engineering, 57, 59 
extensional, 96 
measurement of, 74 
normal, 124–125 
shear, 125–126 

Strain-curvature relationship, 97, 101 
Strain–displacement relation, 57 
Strength, 16–17 

design problems, 30–31 
Stress, 46, 175 

analysis, for combined loading, 
145–151 

at a point, general states of, 118–124 
Cartesian components of, 122 
effects on equilibrium and 

deformation, 127–128 
engineering, 59 
failure, 60 
invariants, 161, 162 
measurement of, 74 
normal, 50, 190 
shear, 50, 191 
sign convention, 190–195 
vector, 74 
yield, 166 

Stress-couple, 101 
Stress–strain relations, 19 
Structural analysis 

characteristic tasks in, 18 
methods of, 18–20 

Structural design, 20–23, 64–73 
stiffness, 106–112, 113 

Structural elements, 7 
Structural loads, 3–5 
Structure(s), 3, 24 

axial. See Axial structures 
definition of, 1 
flexural. See Flexural structures 
primary, 1 
secondary, 1 
taxonomy of, 5–8 
torsion. See Torsion structures 
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Superposition, principle of, 5, 144 
Surface-forming elements (SFEs), 7, 8 
Surface loads, 3 
System of units, 177–179 
 
Tacoma Narrows Bridge, torsion 

collisions of, 35 
Taxonomy of structures, 5–8 
Tensors, 46, 121, 200–201 

strain, 127 
Thin-walled torsion structures, 128–137 

closed cross-section, shafts of,  
131–134 

open cross-section, shafts of,  
136–137 

shear flow in, 129–131 
torsional shape factor, 134–135 

Three-dimensional stress–strain 
relationship, 138–145 

elastic material, 138–142 
energetics, 142–145 

Torque, 174–175 
Torsional shape factor, 134–135 
Torsion constant, 132 
Torsion structures, 34–35 

equilibrium, 52–55 
geometry and boundary 

conditions, 39–41 
Traction vector, 74 
Transient loads, 4 

Transverse load, 35 
Two concentrated loads, 90–92 
 
Uniaxial deformation, 57–58 
Uniaxial energy, 61–64 
Uniaxial material response, 57–64 

axial structure constitution, 58–59 
axial structure strength, 60–61 
uniaxial deformation, 57–58 
uniaxial energy, 61–64 

Unit vector, 197 
 
Vectors 

addition of, 198 
basis, 197 
definition of, 197 
multiplication by scalar, 198–199 
position, 197 
product of two vectors, 200 
subtraction of, 198 
unit, 197 

Volume force, 74 
 
Weight, 15 
 
Yielding 

criteria, 165–166 
under multi-axial stresses, 164–165 

Yield stress, 166 
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