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Abstract 

This book is intended to be a textbook for advanced undergraduate stu-
dents, graduate students in engineering, and mid-career engineering 
professionals. It can also be a reference book, or be used to prepare for 
the Six Sigma Green Belt and Black Belt certifications by organizations 
such as American Society for Quality. 

The book focuses on the introduction of the basic concepts, process-
es, and tools used in Lean Six Sigma. A unique feature of this book is 
the detailed discussion on Design for Six Sigma aided by computer 
modeling and simulation. The authors present several sample projects in 
which Lean Six Sigma and Design for Six Sigma were used to solve en-
gineering problems or improve processes based on their own research 
and development experiences in engineering design and analysis. 
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Preface 
 

As practitioners and trainers of Lean Six Sigma, we have long held the 
view that it should be taught more widely in colleges as part of the basic 
curriculum of engineering and management disciplines. Lean Six Sigma 
has proven to be a valuable tool for improving efficiency and quality of 
products and services. College graduates who can apply its principles are 
needed across a broad range of industries, in private sectors, government 
agencies, and nonprofit organizations. The education in Lean Six Sigma 
will provide students with the necessary skills to respond to this demand.  

While most of traditional science and engineering courses are taught 
as deterministic knowledge, Six Sigma helps students form a statistical 
view of the real world in which a product or a process is built and oper-
ated. The students will learn to anticipate and deal with the undesirable 
variations that cause the performance of a product or process to deviate 
from its design intent. This unique statistical mindset will benefit them 
in solving practical problems. 

While a college-level textbook needs to be self-contained, covering 
the concepts and process of Lean Six Sigma, statistical background, ma-
jor tools including computer simulation, and practical examples, it does 
not have to be overly extensive. An entry-level Lean Six Sigma textbook 
should be easy to follow, even suitable for self-learning. These were the 
considerations we had in mind while writing this book. 

Over the past 15 years, many Lean Six Sigma books have been pub-
lished, each providing a unique perspective. Some of the well-written 
books in Lean Six Sigma are as follows: 

• W. Brussee, (2012). Statistics for Six Sigma Made Easy! Re-
vised and Expanded, 2nd ed., New York, NY: McGraw-Hill 
Education. 

• H. S. Gitlow, R. J. Melnvck, and D. M. Levine, (2015). A 
Guide to Six Sigma and Process Improvement for 
Practitioners and Students: Foundations, DMAIC, Tools, 
Cases, and Certification, 2nd ed., Upper Saddle River, NJ: 
Pearson FT Press. 
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• T. Pyzdek and P. A. Keller, (2014). The Six Sigma 
Handbook, 4th ed., New York, NY: McGraw-Hill. 

• E. A. Cudney, S. Furterer, and D. Dietrich, eds., (2013). 
Lean Systems: Applications and Case Studies in Manufacturing, 
Service, and Healthcare, Boca Raton, FL: CRC Press. 

• M. J. Franchetti, (2015). Lean Six Sigma for Engineers and 
Managers: With Applied Case Studies, Boca Raton, FL: 
CRC Press. 

Brussee’s book covered many topics of statistics in the context of Six 
Sigma, while both Pyzdek and Keller’s book and Gitlow et al.’s book 
aimed to teach Six Sigma to people with backgrounds from different 
sectors. Cudney et al. focused on the process and applications of Lean in 
the service sector, and Franchetti concentrated mainly on case studies (a 
total of 11 case studies). 

However, we did not find a Lean Six Sigma textbook specifically 
written for engineering students or practitioners that has a comprehen-
sive treatment of Lean Six Sigma using advanced statistical and comput-
er-aided tools with plenty of examples and real-world case studies from 
engineering research and development. This book was the result of our 
attempt. Drawing on our extensive experiences in the application of 
Lean Six Sigma in the automotive industry, we incorporated the follow-
ing unique features into this book: 

1. It provides many examples so that readers can learn by themselves. 
2. The DMAIC process of Lean Six Sigma is illustrated in detail with 

an example that does not require much technical background to 
understand, namely, the example of Krisys robot kits. This makes it 
easy to understand when, what, why, and how to carry out tasks 
necessary for the completion of a Lean Six Sigma project. 

3. The book thoroughly explores Design for Six Sigma (DFSS). 
Chapter 7 is devoted completely to DFSS, and two pertinent 
case studies are included in Chapter 8. 

4. Statistical tools are employed, as presented in Chapter 4 and the 
case studies. The related statistical knowledge is included for 
readers who wish to understand those tools. 
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5. Advanced analysis methods such as modeling, simulation, Mon-
te Carlo analysis, design of experiments, and response surface 
method are employed in case studies. Since we have first-hand 
knowledge as engineers in the automotive industry, the case 
studies demonstrate practical applications of Lean Six Sigma in 
product development. 

6. Computer software is used to demonstrate how Lean Six Sigma 
projects can be executed. Chapter 5 contains a number of ex-
amples for the usage of Excel, MATLAB, Minitab, and R. 
Readers can easily follow along with screen captures to fully un-
derstand the concepts. 

The purpose of this book is two-fold. First, it is designed for under-
graduate, graduate students, and practitioners to learn Lean Six Sigma. 
In addition, it serves as preparation material for the Lean Six Sigma 
Green Belt and/or Black Belt certification. 

Both authors have many years of experience with Lean Six Sigma. 
Wei Zhan completed several Six Sigma projects as a system engineer in 
the automotive industry. He is currently an associate professor at Texas 
A&M University and is an ASQ-certified Six Sigma Black Belt. He has 
published many papers in the area of Lean Six Sigma. Xuru Ding is a 
Master Black Belt of DFSS at General Motors, leading and coaching 
DFSS and robust optimization projects in various engineering disci-
plines. She has also taught cooperate-level training classes in robust op-
timization and DFSS at General Motors since 1991. These experiences 
allowed the authors to share with the reader valuable insights on the 
implementation of Lean Six Sigma.  

The materials in this book have been used in ESET 329 of Texas 
A&M University for six semesters. They were also used in a continuing 
education workshop, Lean Six Sigma Green Belt Training offered at 
Texas A&M University. Survey data and comments from the students 
of ESET 329 and the workshop were studied thoroughly, in order to 
improve the manuscript. 

It is only fitting that this book is the result of a Lean Six Sigma pro-
ject. We reached out to the target users, students, to collect Voice of 
Customer (VOC). In the spring semester of 2015, seven student teams 
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at Texas A&M University used the improvement of the draft manu-
script as their semester-long Lean Six Sigma project for the Six Sigma 
and Applied Statistics course (ESET 329). The students’ recommenda-
tions and questions were considered as VOC and revisions to the con-
tent were made accordingly. Many typographical and other errors were 
found and corrected with the help of the students. As a result, the man-
uscript has improved significantly since the first draft.  
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CHAPTER 1 

Introduction 
Since the mid-1980s, there has been increasing interest in the application 
of the Six Sigma methodology in many industries [1–6]. SSix Sigma is a 
well-accepted tool for process improvement and quality control. It is a 
structured, disciplined, data-driven methodology and process for improv-
ing business performance, with an emphasis on vvoice of the customer 
(VVOC) and using statistical analysis tools. In the early 2000s, Six Sigma 
was combined with the Lean principle to become LLean Six Sigma to 
achieve business and operational excellence [7, 8]. In this chapter, the 
history, rationale, and benefits of Lean Six Sigma will be discussed. 

1.1 History of Lean Six Sigma 

The use of statistics in manufacturing started in the 1920s at Bell Labora-
tories by Dr. Walter A. Shewhart, Dr. Harold Dodge, and Dr. Harry 
Romig. The military adopted the use of statistics in the 1940s during 
World War II. By the 1950s, Drs. Edwards Deming, Joseph M. Juran, 
and Armand V. Feigenbaun had made significant contributions to the 
quality engineering field by developing the TTotal Quality Management 
(TTQM) system. Dr. Deming first taught quality control to the Japanese, 
and they were the first ones to embrace TQM. In the 1950s, Dr. Genechi 
Taguchi popularized the concept of “design of experiments” in order to 
improve product quality. The Japanese manufacturing industry made 
significant improvements in quality due to the wide use of statistical 
methods such as TQM. The Japanese were so successful in quality control 
that American customers preferred to buy products made in Japan rather 
than those made in the United States. As a result, Japanese manufacturers 
enjoyed large market shares in the United States, especially in the markets 
for automobiles and consumer electronics. To meet its customers’ needs, 
Toyota created the TToyota Production System (TTPS) [9] to deliver 
products of the right quality, in the right quantity, and at the right price. 
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This marked the beginning of LLean pproduction [10–13]. The key con-
cept of Lean is to identify and eliminate the non–value-added steps in a 
process. These steps waste resources and add the chance of defects; elimi-
nating them can accelerate the process and reduce the cost. 

In 1980, NBC aired a documentary, If Japan Can…Why Can’t We?, 
which raised the awareness of the quality issues among the American 
industries. During the 1980s, U.S. corporations made tremendous 
strides to catch up with their Japanese counterparts. Six Sigma was de-
veloped partly due to this endeavor [4, 5, 14]. 

In 1986, Six Sigma was first introduced by Motorola, where William 
Smith and Mikel Harry created the quality improvement process. In 
1989, Motorola established the Six Sigma Research Institute, followed 
soon by AlliedSignal and General Electric (GE). Black & Decker, 
DuPont, Dow Chemical, Federal Express, Boeing, Johnson & Johnson, 
Ford Motor Company, General Motors, and many other companies 
initiated Six Sigma afterwards. Most of the early proponents of Six Sig-
ma were from the manufacturing and technology industries. As the 
methodology progressed, however, it spread to pharmaceuticals, finan-
cial institutes, toy makers, clothing retailers, military, and many other 
sectors. By the late 1990s, about two-thirds of the Fortune 500 compa-
nies had embraced Six Sigma initiatives aimed for reducing cost and 
improving quality. Today, many companies require their employees to 
go through the Six Sigma training. It is fair to say that Six Sigma has 
become an internationally accepted management system, a process im-
provement methodology, a technical problem-solving tool, and a global 
common language across different sectors.  

In general, Six Sigma focuses on reducing the variation and defects 
in the performance of a product or process, as illustrated in Figure 1.1.  

The performance of mass-produced products varies slightly from 
unit to unit; when this variation exceeds the tolerance, the product is a 
defect. Defects have to be tested, repaired, replaced, recycled, or trashed, 
adding waste and cost to the manufacturer. After the product is de-
ployed in the field, a defect would cause customer dissatisfaction, repair 
charge, and potential loss of market share. To both the manufacturer 
and the consumer, a consistent product performance adds value, which 
is why Six Sigma is so important. Six Sigma also allows more flexibility 
in choosing the nominal values for design parameters.  
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Figure 1.1 Improve the quality of a product by reducing the variation 

In the narrow statistical sense, a Six Sigma process is one that produces 
3.4 ddefective parts per million opportunities (DDPMO). However, the 
objective of a Six Sigma project can also be a five sigma process, a three 
sigma process, or an eight sigma process, depending on the situation. 

Many practitioners realized that Six Sigma alone might not be 
enough for some process improvement. Sometimes, we need to shift the 
mean in addition to reducing the variation. For example, for a process in 
manufacturing or service, it may be desirable to reduce the average and 
the variation of the cycle time. M. George was credited as the first per-
son to propose the combination of Lean and Six Sigma in his book Lean 
Six Sigma: Combining Six Sigma Quality with Lean Production Speed [7]. 
This new methodology, LLean Six Sigma, takes advantage of both: waste 
elimination and process acceleration in Lean, and variation reduction in 
Six Sigma. Lean Six Sigma is more effective than Lean or Six Sigma 
alone. As a result, it has become more and more popular as a tool for 
improving business and operational excellence over the last decade. 

Even though statistics is a major part of the methodology [15, 16], 
Lean Six Sigma is more than just a statistical tool for reducing product 
variation. It is also a process that can make a business more successful. 
Companies and organizations employ Lean Six Sigma to raise the quality 
of their products, to eliminate the waste in their processes, to maintain the 
competitiveness of their products, and to improve the financial bottom 
line. To survive in today’s global market, companies must continuously 
improve; no company is too big to fail! 
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1.2 Optimal Quality Cost 

J.M. Juran introduced the concept of ooptimal quality control in his 
book Quality Planning and Analysis [17]. The total cost related to product 
quality was broken down into two categories: the  cost of failure and the 
cost of appraisal/prevention. These costs can be plotted as functions of 
product quality, which ranks from 0 percent (all bad) to 100 percent 
(all good), as illustrated in Figure 1.2.  

The cost of failure is a monotonically decreasing function, and the 
cost of appraisal and prevention is a monotonically increasing function. 
The cost of failure curve tells us that we will pay higher costs as the 
product quality lowers. The cost of appraisal and prevention will go up 
as more effort is needed to further improve the end product customers 
receive. While it is tempting to go after 100 percent good in quality, 
sometimes the high cost associated with it may make the product 
unprofitable, this is particularly true for organizations that are just 
starting their quality-improvement effort. As organizations become more 
mature in quality control, the cost of appraisal and prevention may not 
go up as steep as Figure 1.2 shows. Juran argued that we should consider 

 

Figure 1.2 Cost in two categories 
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Figure 1.3 Optimal Quality Cost [17] 

Source: Reprinted with permission by McGraw Hill. 

the sum of the two costs for decision making. The sum is defined as the 
total quality costs, which is a function of the product quality. 

A typical total quality cost function is plotted in Figure 1.3. The ob-
jective is to minimize the total quality costs by operating around the 
optimal point.  

It is commonly accepted in industry that continuous efforts to 
achieve stable and predictable process results are vitally important for 
businesses to remain successful. In order to maximize the benefits of 
Lean Six Sigma, businesses must invest in training, change organization-
al infrastructure, and shift the corporate culture. Every employee must 
think about how he or she can impact the customers and to improve 
communication within the business using a common language. All these 
require a resource commitment by the management as well as the rest of 
the organization. In the end, companies and organizations must take 
everything into consideration when weighing options to minimize the 
total quality cost of their products or services. We can see in Figure 1.3 
that the optimal point is usually close to 100 percent good quality, but  
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Figure 1.4 Optimal point shifting toward 100% good quality 

not at 100 percent. However, it is moving closer and closer to 100 percent 
good, as technologies evolve, global competition increases, and better 
infrastructures for quality control are established in organizations. In 
addition, the cost for 100 percent good quality is also becoming lower. 
Therefore, the total quality curve in Figure 1.3 may have become what is 
shown in Figure 1.4. 

1.3 Benefits of Lean Six Sigma 

Many corporations reported significant improvement in their financial 
bottom line after deploying Lean Six Sigma [14]. GE announced savings of 
$350 million in 1998 due to the implementation of Six Sigma. Over 
5 years, GE saved $12 billion, adding $1 to its earnings per share. In 2005, 
Motorola attributed over $17 billion in savings to Six Sigma over the years. 
Honeywell (AlliedSignal) recorded more than $800 million in savings in 1 
year. Pulakanam reported in an article [18] in the ASQ Quality Manage-
ment Journal, “An average return of more than $2 in direct savings for eve-
ry dollar invested on Six Sigma.” Lean manufacturing made Toyota one of 
the most competitive and profitable companies in the world. 

Many companies and organizations also reported positive influences 
of Lean Six Sigma in sales growth, operating income, profits, employee 
turnover, employee satisfaction, and customer satisfaction.  
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Although Lean Six Sigma can be used in many different ways to im-
prove processes, it has limitations and boundaries and is by no means a 
universal tool that can solve all the problems in the world. While Lean 
Six Sigma does have its drawbacks, it is important to understand that 
some of the myths circulated by opponents of Lean Six Sigma are not 
true [19]. Below is a list of such myths. 

Myth 1: Lean Six Sigma mostly finds application in large organizations. 

As a matter of fact, Lean Six Sigma contains a large number of tools 
and techniques that also work well in small to medium-sized organizations. 

Myth 2: Lean Six Sigma is only suitable for the manufacturing sector. 

Actually, Lean Six Sigma has been successfully implemented in 
many other sectors such as pharmaceuticals, financial institutes, services, 
and military. A process is anything that has a beginning and an end. If 
there is a process involved, it can be streamlined with Lean Six Sigma! 

Myth 3: Introduction of Lean Six Sigma has the effect of stifling 
creativity which is needed in R&D.  

In reality, research, development, and other creative work can be 
rigorous and follow systematic approaches. Creativity and Lean Six Sig-
ma do not have to be contradictory. 

Myth 4: Software development does not need Lean Six Sigma, because 
there will be no variation in the results of any software. 

On the contrary, the actual inputs to software can deviate from the 
design intent, causing variation in the result. 

Myth 5: Lean Six Sigma is for incremental improvement, not for 
new products. 

In fact, Design for Six Sigma (DFSS) is specifically for new product 
development. 
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Lean Six Sigma changes the way people think and work; it changes 
the culture of corporations. It has become both a business model and a 
business culture. Nowadays, many companies in manufacturing and 
pharmaceutical industries mandate the use of Lean Six Sigma tools in 
their everyday business operation. Engineers and engineering managers 
need to have a more thorough knowledge of Lean Six Sigma as more 
businesses, government agencies, and organizations adopt the method-
ology to improve their products, processes, and services. Lean Six Sigma 
provides a systematic approach for improving a process, identifying the 
root cause of a problem, finding a robust design, performing statistical 
data analysis, and assessing a measurement system, all of which are rele-
vant to the tasks of engineers. 

What do you need to know about Lean Six Sigma as a 
manager/leader? 
� Product development/improvement process, technology 

innovation and planning, R&D: if you know Lean Six 
Sigma, you will be able to plan more efficiently and make 
better decisions. 

What do you need to know as a Lean Six Sigma practitioner? 
� The Lean Six Sigma process (DMAIC), systematic way of 

problem solving, process mapping, process improvement, 
new product development, robust design, among others. 

What are the characteristics of Lean Six Sigma? 
1. The strong emphasis on defining the project, especially on 

understanding what customers need 
2. The thoroughness in validating the measurement system 
3. The use of data and statistical tools to identify root causes  
4. The creativity in solution development 
5. The emphasis on establishing controls to maintain improvements 
6. The never-ending effort to improve processes 
7. A strong support from the management 
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CHAPTER 2 

Probability and Statistics 
In engineering designs, we often face two problems: how to predict the 
results based on the knowledge of probability and how to draw a 
conclusion about the entire population from a set of sampled data. We 
apply the probability theory to solve the first problem and statistics to solve 
the second. Statistics is widely used in Lean Six Sigma projects. The 
fundamental concepts of statistics required for learning Lean Six Sigma are 
covered in this chapter. More advanced tools, such as hypothesis testing, 
are discussed in Chapter 4. 

2.1 Why is Statistics Relevant to Engineers? 

Designing products and conducting tests are important parts of an en-
gineer’s job, whose decision making usually involves analysis of meas-
ured data. Since error exists in all measurement systems that collect data, 
multiple data points are usually recorded during a test when possible. 
This provides us with more reliable information for understanding the 
underlying phenomenon observed in the test. The collected data can 
then be analyzed with statistical techniques, shedding light on a problem 
that might otherwise be very difficult to understand. 

Many parameters that affect the performance of a product or process 
will not be perfect as designed. For instance, physical and chemical prop-
erties of a material, manufactured dimensions of a part, temperature and 
humidity of the operating environment of the system, usage and prefer-
ence of a customer, all have variation to some degree. The question is 
what is the impact of these variations on the product performance? An 
engineer cannot automatically assume that the variations are negligible, 
that somehow the design should magically work in presence of the varia-
tion. In order to design and build high-quality products, it is critical that 
we understand how parameter variation affects an engineering design.  
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Figure 2.1 Design of a low-pass filter  

Example 2.1 A simple low-pass filter circuit is illustrated in Figure 2.1. It 
is designed to block noises above 159.15 Hz and allow the signal below it 
to pass.  

The cutoff frequency fc is calculated as 

3 6

1 1 159.15 
2 2 10 10cf Hz

RCπ π �� � �
� �

�

To implement this low-pass filter design, it isn’t enough to select the 
nominal values of resistance and capacitance. If we select the resistor made 
by Vishay with the part number CRCW08051K00JNEA, it has a 5 per-
cent tolerance. Similarly, the Vishay capacitor VJ0805Y105MXQTW1BC 
has a tolerance of 20 percent. Using these tolerances, we can calculate the 
worst case cutoff frequencies (i.e., the furthest away from the nominal of 
159.15 Hz) for this circuit: 

� � � �1 3 6

1 1 126.31 
2 2 1 0.05 10 1 0.20 10cf Hz

RCπ π �� � �
� � � � � �

 

� � � �2 3 6

1 1 209.41 
2 2 1 0.05 10 1 0.20 10cf Hz

RCπ π �� � �
� � � � � �

 

The designer must consider if these cutoff frequencies are acceptable 
for the product. � 

Of course, other factors such as cost need to be considered as well. 
An interesting question arises when we design a product: Do we really 
need to design for the worst case scenario caused by parameter varia-
tions? To answer this question, we need to review some basic concepts 
in probability theory. 
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2.2 Probability, Sampling, and Random Variables 

Probability is the relative possibility that an event will occur. It can be 
calculated as 

      
( )

   
Actual occurences of Event A

P A
Total possible occurences

�  (2.1) 

Population is a well-defined collection of objects that are of interest in 
a specific case. If all the information for all objects in the population is 
available, we have a ccensus. A census is usually time-consuming and costly 
to obtain. Oftentimes a ssample, which is a subset of the population, is 
randomly selected from a given population instead. When the sample is 
randomly selected and the sample size is large enough, one can hypothesize 
that the sample carries information that is representative of the population. 
In other words, if an experiment is repeated sufficiently many times, say 
N times, and an event A occurs n times, then approximately 

 ( ) n
P A

N
� � (2.2) 

An eexperiment is any activity which has uncertain outcomes. The 
sample space (Ω) of an experiment is the set of all possible outcomes of 
that experiment. 

An eevent is a subset of the sample space Ω. A ssimple event is an el-
ement in Ω that consists of a single outcome. If an event contains more 
than one outcome, it is called a ccompound event. 

A more rigorous interpretation of probability is as follows: 
Probability is a function P(•) that gives a precise measure P(A) of 

the chance that an event A will occur, with the sample space Ω as the 
domain and the set of real numbers [0, 1] as the rrange. 

Example 2.2 The experiment is to inspect 20 samples out of the 
100 products. Each sample is either defective or not defective.  

In this case, the sample space Ω consists of all the possible outcomes, 
that is, {0 defects, 1 defect, 2 defects, 3 defects, …, 20 defects}, while 
{0 defects}, {1 defect}, …, {20 defects} are the simple events. 
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There are many compound events in this sample space. For example, 
{less than 5 defects}, which consists of the first 5 simple events in Ω; 
{more than 10 defects}, which consists of simple events 12 to 20;  
{between 10 to 15 defects, inclusive}, which consists of {10 defects},  
{11 defects}, {12 defects}, {13 defects}, {14 defects}, and {15 defects}. � 

In practice, we often use Equation (2.2) to attain an approximation 
for probability of an event. In order to get an approximation with suffi-
cient accuracy, we need to ensure that the selection of samples is repre-
sentative of the population, which is also a requirement for calculating 
other statistical quantities. Two commonly used sampling methods are 
simple random sampling and stratified sampling.   

Simple random sampling assigns any particular subset of a given 
size the same chance of being selected. SStratified sampling first divides 
the entire sample space, Ω, into nonoverlapping subsets, followed by 
simple sampling within each subset. 

Example 2.3 When polling for a local mayoral race, a simple sampling 
method can be used. Every eligible voter is assigned a specific number, 
and a certain percentage of the voters are randomly selected by a com-
puter to participate in the poll. For example, assume that a total of 
10,000 voters participate in the poll. Each voter is assigned a unique 
number between 1 and 10,000. A computer program such as Excel or 
MATLAB can be used to randomly generate 5 percent of the total vot-
ers, that is, 500 numbers. The voters who were assigned these 500 num-
bers earlier will be surveyed for their opinion. � 

Example 2.4 The U.S. presidential election is not determined by nation-
wide popular votes. Instead, the election is determined by the votes cast by 
the Electoral College. Therefore, it makes more sense to use the stratified 
sampling method than the simple sampling method in polling for the pres-
idential race. The total population that is eligible to vote is about 200 mil-
lion. If we decide to poll 0.01 percent of the voters, that would be 20,000. 
We can divide these 20,000 people among the 50 states and Washington 
DC according to the electors allocated to each state and DC. For example, 
out of the total 538 electors, there are 55 (or 55/538 = 10.22%) for Cali-
fornia, 38 (or 38/538 = 7.06%) for Texas, 29 (or 29/538 = 5.39%) for 
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New York, …, 3 (or 3/538 = 0.56%) for Wyoming, and  
3 (or 3/538 = 0.56%) for DC. Therefore, out of the 20,000 voters to be 
polled, 2045 should be from California, 1413 from Texas, 1078 from  
New York, …, 111 from Wyoming, and 111 from DC. Within each state 
or district, simple sampling can be applied. In this case, the stratified sam-
pling polling method would be more accurate than the simple sampling 
method for predicting the U.S. presidential election. � 

A rrandom variable is a function with the sample space Ω as its do-
main, and the real numbers R, or a subset of R, as its range. A random 
variable is said to be ddiscrete if it takes finitely many or infinitely but 
countably many values. A random variable is said to be ccontinuous if it 
takes uncountable many values and the probability for the random vari-
able to be equal to any given value is 0. 

Example 2.5 The number of people voting for a particular presidential 
candidate is a discrete random variable, since there are only a finite 
number of possible results. A digital signal is a discrete random variable, 
since it can only take 0 or 1 as its value. An analog voltage signal in an 
electronic circuit is a continuous random variable, since it can take 
uncountably many different values. However, if a digital multimeter with 
certain resolution is used to measure the analog voltage, the measurement 
would be a discrete random variable, since there are only a finite number 
of possible readings from the digital multimeter. � 

2.3 Set Theory 

For any two events A and B, various operations can be defined in a simi-
lar way as in the set theory: 

1. Intersection: A �B is the event that consists of the sample 
points that are in both events A and B. 

2. Union: A�B is the event that consists of the sample points that 
are in A or B or both. 

3. Complement: Ac (or A') is the event that consists of the sample 
points that are not in A. 

The complement of the sample space Ω is the empty set, denoted 
by �. 
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Figure 2.2 Venn diagram for set operations 

 

Figure 2.3 Mutually exclusive events 

These basic set operations are illustrated in Figure 2.2 using Venn 
diagrams. 

Events A and B are said to be mmutually exclusive or ddisjoint if A	B 
= �, in other words, A and B do not have any common elements. This 
can be illustrated by the Venn diagram in Figure 2.3. 

For any three events A, B, C, we have 
 

Commutative Law: 

 ,A B B A A B B A
 � 	
 � 	  (2.3) 

Associative Law: 

� � � �A B C A B C A B C
 
 � 
 
 � 
 
 , � � � �A B C A B C A B C	 	 � 	 	 � 	 	  (2.4) 

Distributive Law:  

 � � � � � �A B C A B A C	 
 � 	 
 	 , � � � � � �A B C A B A C
 	 � 
 	 
  (2.5) 

De Morgan’s Laws:  

 � �' ' 'A B A B	 � 
 , � �' ' 'A B A B
 � 	  (2.6) 

These can all be proved using Venn diagrams. 
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Example 2.6 Consider the experiment of rolling a die twice. The sam-
ple space is expressed as 

Ω = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), 
(2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), 
(4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), 
(6,3), (6,4), (6,5), (6,6)} 

We can define events A, B, C as the following: 

A = {sum of the two numbers is less than 6} 

B = {both numbers are even} 

C = {at least one of the numbers is 4} 

A, B, C can also be written as 

A = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1)} 

B = {(2,2), (2,4), (2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6)} 

C = {(1,4), (2,4), (3,4), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,4), (6,4)} 

With these definitions, it is easy to perform the set operations, for example,  

A 	 B = {(2,2)} 

A 	 C = {(1,4), (4,1)} 

B 	 C = {(2,4), (4,2), (4,4), (4,6), (6,4)} 

A 	 B 	 C = � � 

2.4 Calculus of Probabilities 

The probability of the sample space is always 1, that is, P(Ω) = 1. 
For any event A, 1 ≥ P(A) ≥ 0. 
If A B,�  then P(A) ≤ P(B) 

 

If A1, A2, A3, . . . , An is a collection of mutually exclusive events, then 

 11 2 3 n( ... ) ( )n
i iP A A A A P A=∪ ∪ ∪ ∪ = �  (2.7) 
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This is true even if n is infinity. 

 P(Ac) = 1 � P(A) (2.8) 

 P(�) = 1 � P(Ω) = 0 (2.9) 

 ( ) ( ) ( ) ( )P A B P A P B P A B
 � � � 	  (2.10) 

Events A1, . . . , An are mmutually independent if for every k (k =  
2, 3, . . . , n) and every subset of indexes i1, i2, . . . , ik: 

 1 1 22( . . . ) ( ) ( ) . . . ( )
k ki i i i i iP A A A P A A P A	 	 	 �  (2.11) 

When n = 2, then two events A and B are iindependent if and only if,  

 P(A 	 B) = P(A)P(B) (2.12) 

If A and B are independent, then  

 P(A 
 B) = P(A) + P(B) � P(A)P(B) (2.13) 

Example 2.7 Using Venn diagram to prove that 

 P(A 
 B 
 C) = P(A) + P(B) + P(C) � P(A 	 B) � P(A 	 C) �  
 P(B 	 C) + P(A 	 B 	 C) (2.14) 

 

Figure 2.4 Venn diagram illustration of P(A 
 B 
 C) 
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Proof: We can use the areas to represent the probability of different parts 
of the Venn diagram. As such, P(A 
 B 
 C) is the total area of the 
shaded parts; P(A), P(B), and P(C) are the area of events A, B, and C, 
respectively. Clearly, P(A) + P(B) + P(C) is more than P(A 
 B 
 C), 
because parts 1, 2, and 3 in Figure 2.4 are counted twice and part 4 is 
counted three times. In other words, we have 

P(A) + P(B) + P(C) = P(A 
 B 
 C) + area1 + area2 + area3 + 2 × area4 

Note that 

P(A 	 B) = area1 + area4 

P(A 	 C) = area2 + area4 

P(B 	 C) = area3 + area4 

P(A 	 B 	 C) = area4 

Therefore,  

P(A 	 B) + P(A 	 C) + P(B 	 C) � P(A 	 B 	 C)  
= area1 + area2 + area3 + 2 × area4. 

It follows that 

P(A) + P(B) + P(C) = P(A 
 B 
 C) + P(A 	 B) + P(A 	 C) + P(B 	 C) 
 � P(A 	 B 	 C) 

That is, 

P(A 
 B 
 C) = P(A) + P(B) + P(C) � P(A 	 B) � P(A 	 C) � P(B 	 C) 
 + P(A 	 B 	 C). � 

The cconditional probability of event A given that event B, which 
has a nonzero probability, has occurred is defined as 

 � � (     )|  
( )

P A B
P A B

P B
	

�  (2.15) 

Events A and B are independent if and only if, P(A|B) = P(A). This 
can be interpreted as “whether B has occurred or not has no impact on 
the probability of A.” In other words, the outcome of A has nothing to 
do with that of B.  
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Mixing up the concepts of two events being independent and two 
events being disjoint is a common mistake. The difference in the two 
concepts is illustrated in the following example 

Example 2.8 Assume that P(A) ≠ 0 and P(B) ≠ 0. If A and B are inde-
pendent events, prove that A and B are not disjoint. 

Proof: Since P(A) ≠ 0 and P(B) ≠ 0, we have P(A) P(B) ≠ 0. If A and B 
are independent events, then P(A 	 B) = P(A)  P(B) ≠ 0, which means 
that A and B are not disjoint. � 

2.5 System Probability as a Function of  
Subsystem Probabilities 

Sometimes we would like to calculate the probability of a system 
functioning normally within a specified period of time, given the 
probabilities of the subsystems functioning normally within the same time 
period. Here we make the assumption that the subsystems are mutually 
independent. 

Let us first consider two basic configurations: the series and the parallel. 
The series configuration is depicted in Figure 2.5. 
For this system to work, each subsystem must work. If we denote 

the events that the system, the subsystem 1, and subsystem 2 work as S, 
S1, and S2 respectively, then 

 P(S) = P(S1 	 S2) = P(S1) P(S2) (2.16) 

Similarly, if we have n subsystems connected in series, then the sys-
tem probability is the product of the subsystem probabilities, 

 P(S) = P(S1) P(S2) � � � P(Sn) (2.17) 

 

Figure 2.5 Series configuration 
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Figure 2.6 Parallel configuration 

The parallel configuration is plotted in Figure 2.6. For the system to 
work, at least one of the subsystems must work. Therefore, 

P(S) = P(S1 
 S2) = P(S1) + P(S2) � P(S1 	 S2)  
 = P(S1) + P(S2 ) � P(S1)P(S2) (2.18) 

Alternatively, we can first calculate the probability of the failure of the 
system. The system fails only if both subsystems fail, which implies that 

P(Sc) = P (S1
c � S2

c) = P (S1
c)P (S2

c) = [1 � P (S1)] [1 � P (S2)] 

Therefore, P(S) = 1 � P(Sc) = 1 � [1 � P (S1)] [1 � P (S2)] . 
This analysis can be easily extended to the case of n parallel-

connected subsystems with the following formula: 

 P(S) = 1 � [1 � P (S1)] [1 � P (S2)] � � � [1 � P (Sn)] (2.19) 

Now that we know how to calculate the system probability as a function 
of subsystem probabilities for the two basic configurations, we are ready to 
consider more complicated cases. The following procedure can be applied: 

1. First, break down the system into subsystems which are either in 
series or parallel. 

2. Write the probability of the system (being a success) as a func-
tion of probabilities of the subsystems. 

3. Continue this process until you reach a point where you can 
calculate the probabilities of all subsystems. 



22 LEAN SIX SIGMA AND STATISTICAL TOOLS 

Example 2.9 Derive the system probability as a function of the subsys-
tem probabilities for the system described in Figure 2.7: 

 

Figure 2.7 System configuration for Example 2.9 

Let us first divide the system into two subsystems consisting of (1, 2, 4) 
and (3, 5, 6, 7, 8), denoted by S124 and S35678, respectively. Clearly, these 
two subsystems are connected in series. Therefore, P(S) = P(S124 � S35678) = 
P(S124)P(S35678). 

Now the original problem becomes the calculation of two subsystem 
probabilities. For each subsystem, we apply the similar technique to 
divide them into two even simpler subsystems. S124 is divided into S1 
and S24 with parallel connection. As a result, we have 

P(S124) = P(S1 
 S24) = P(S1) + P(S24) � P(S1)P( S24) 

Subsystem S24 is comprised of subsystems 2 and 4 in series, so P(S24) 
= P(S2)P(S4). 

Subsystem S35678 consists of three subsystems, S38, S67, and S5, con-
nected in parallel; therefore, according to Equation (2.19) we have 

P(S35678) = 1 � [1 � P (S38)] [1 � P (S67)] [1 � P (S5)] 

 = 1 � [1 � P (S3) P (S8)] [1 � P (S6) P (S7)] [1 � P (S5)] 

Alternatively, we can divide S35678 into S38 and S567, and further di-
vide S567 into S67 and S5. The same result will be obtained. Substituting 
the subsystem probabilities back into the system probability to get 

P(S) = [P(S1) + P(S2)P(S4) � P(S1) P(S2)P(S4)]{ 1 � [1 � P (S3) P (S8)] 
 [1 � P (S6) P (S7)] [1 � P (S5)]}. � 
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2.6 Law of Total Probability and Bayes’ Theorem 

The law of total probability and Bayes’ theorem can provide a quick 
solution to some problems involving conditional probabilities. 

Events A1, . . . , Ak are mmutually exclusive if no two events have any 
common outcomes. The events are eexhaustive if A1 
 . . . 
 Ak = Ω, 
where Ω is the entire sample space. 

2.6.1 Law of Total Probability  

Theorem 2.1 (Law of Total Probability) Let A1, . . . , Ak be mutually 
exclusive and exhaustive events. Then for any event B, 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
| . . . | |k

k k i ii
P B P B A P A P B A P A P B A P A

=
= + + =�  (2.20) 

The Law of Total Probability can be easily understood using a Venn 
diagram and the fact that � � � �| ( )i i iP B A P A P A B� 	 . 

Example 2.10 For any event B, B and Bc are mutually exclusive and 
exhaustive; therefore,  

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) = P(A 	 B) + P(A 	 Bc) 

This result can also be easily illustrated with Venn diagrams. � 

2.6.2 Bayes’ Theorem 

Theorem 2.2 (Bayes’ Theorem) Let A1, A2, . . . , An be a collection of n 
mutually exclusive and exhaustive events. For any event B with P(B) > 0, 
the conditional probability of Ai given that B has occurred is 

( ) ( ) ( )
( )   1

| ( ) | ( )( )
|        

( ) ( ) | ( )
i i i ii

i n
j jj

P B A P A P B A P AP A B
P A B

P B P B P B A P A
=

= =∩ =
�

 (2.21) 

for i = 1, 2, 3, …, n. 
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Example 2.11 A company has three different plants making the same 
product. Sixty-five percent of the products are made in plant 1, 20 percent 
in plant 2, and the remaining 15 percent in plant 3. The defect rates in 
plants 1, 2, and 3 are 1, 2, and 3 percent respectively. What is the 
probability that a product purchased by a customer is defective? If a 
consumer purchases a defective product, what is the probability that it was 
made in plant 2? 

Let Ai = {product purchased by a customer is from plant # i} for i = 1, 2, 3 
B = {product purchased by a customer is defective}  
then the given information implies the following:  

P(A1) = 0.65, P(A2) = 0.20, P(A3) = 0.15, P(B|A1) = 0.01, P(B|A2) = 
0.02, P(B|A3) = 0.03. 

Substituting these values into the equation for the Law of Total 
Probability, we get 

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3) 

 = (0.01)(0.65) + (0.02)(0.20) + (0.03)(0.15) = 0.015 

That is, 1.5 percent of the products will be defective. According to 
Bayes’ theorem, 

� �
� �
2 2

2

( | ) (0.02)(0.2)( | ) 0.267
0.015

P B A P A
P A B

P B
� � �  

which means that the probability of the defective product was made in 
plant 2 is 26.7 percent. � 

2.7 Probability Distributions and Cumulative 
Distribution Functions 

The pprobability distribution or pprobability mass function of a dis-
crete random variable is defined as  

p (x) �  P(X = x) = P (union of all events s in Ω that have X (s) = x)   (2.22) 
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The ccumulative distribution function, F(x), of a discrete random 
variable X with probability mass function p(x) is defined as 

 ( ) ( )
:

( )
y y x

F x P X x p y�
≤

≤ =�  (2.23) 

Since {X > x} is the complement of {X ≤ x}, we can calculate P(X > x) 
in terms of F(x) as follows: 

� � � � �1 1 ( )P X x P X x F x� � �  � �  (2.24) 

Similarly, for any two numbers a and b with a ≤ b, we have 

 P (a ≤ X ≤ b) = F (b) � F (a�) (2.25) 

where “a�” represents the largest possible value that is strictly less  
than a. 

The pprobability distribution or pprobability density function of a 
continuous random variable X is a non-negative function f (x) such that 
for any two numbers a and b with a ≤ b, 

 � � ( ) 
b

a
P a X b f x dx  � �  (2.26) 

This means that the probability of X being inside an interval is equal 
to the area under the density curve over the interval. 

The ccumulative distribution function F(x) of a continuous ran-
dom variable X is defined as 

 � � � � � �   
x

F x P X x f y dy
��

�  � �  (2.27) 

For each x, F(x) is the area under the probability density curve, f(x), 
to the left of x. 

Since {X > x} is the complement of {X ≤ x}, we can calculate P(X > x) 
in terms of F(x) as follows: 

 � � � �1 1 ( )P X x P X x F x� � �  � �  (2.28) 
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For any two numbers a and b with a < b, 

 P(a ≤ X ≤ b) = F(b) � F(a) (2.29) 

as shown in Figure 2.8. 
Let p be a number between 0 and 1. The ((100p)th percentile of the 

distribution of a continuous random variable X, denoted by percen-
tile(p), is defined by p = F(percentile(p)) 

 

Figure 2.8 Probability of a continuous random variable being between 

two numbers 

 

Figure 2.9 (100p)th percentile 

  



 PROBABILITY AND STATISTICS 27 

Percentile (p) is a value on the measurement axis such that (100p) 
percent of the area under the graph of f(x) lies to its left and 100(1 � p) 
percent lies to the right (Figure 2.9). 

The mmedian of a continuous distribution, denoted by ��, lies at the 
fiftieth percentile. 

2.8 Expected Value and Variance 

The expected value or the mean value of a discrete random variable X is 
defined as 

 ( ) μ= = �
   

( )
all possible x

E X xp x �� (2.30) 

where p(x) is the probability mass function of X. 
The eexpected value of a continuous random variable X is defined as 

 � � � �   E X x f x dxμ
�

��
� ��  (2.31) 

Similarly, the expected value of any function h(X) of a random 
variable X denoted by E [h(X)], is defined for discrete random variables as 

 ( ) = �
   

( ) ( ) ( )
all possible x

E h X h x p x  (2.32) 

and for continuous random variables as 

 � � � �( )   ( ) E h X h x f x dx
�

��
��  (2.33) 

Using the definitions for the expected values, it is easy to prove that 
for any constant a and b, 

 E (aX + b) = a E(X) + b (2.34) 

where X is a discrete or continuous random variable. 
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The vvariance of a discrete or continuous random variable X is de-
fined as 

 � �2 2[( ) ]V X E Xσ μ� � �  (2.35) 

The sstandard deviation of X is ( )V Xσ = . It can be shown that  

 V (aX + b) = a2 V(X) (2.36) 

 | |aX b Xaσ σ� �  (2.37) 

2.9 Probability Distributions 

Many probability distributions can be used in Lean Six Sigma. We only 
list a few commonly encountered ones. The reader is encouraged to find 
more information in reference books listed at the end of this chapter. 

2.9.1 Normal Distribution 

A continuous random variable is said to have a nnormal distribution if 
its distribution density function is  

 ( ) ( )μ σσ
σ

μ
π

− −= −∞ < < ∞
2 2/(2 )1

; , ,       
2

xf x e x  (2.38) 

where μ is a real number and σ is a positive number.  
It can be shown that E(X) = μ and V(X) = σ2, so the parameters μ 

and σ are the mean and the standard deviation of X. The notation  
X ~ N(μ, σ2) is used to denote that X has a normal distribution with 
mean of μ and standard deviation of σ. 

Two probability density functions of normal distributions with different 
parameter values are plotted in Figure 2.10. Note that the probability 
density functions are centered at their mean values and the standard 
deviations indicate how wide spread the probability density functions are. 

The cumulative distribution function is given by  

 � � � � � �μ σ

πσ
2 2/(2 )1

2

x yF x P X x e dy� �

��
�  � �  (2.39) 
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Figure 2.10 Probability density functions of normal random variables 

The probability of a normal random variable X with parameters μ 
and σ being between a and b is determined by  

� � � � � � � �
2 2/(2 )1

     
2

b x

a
P a X b e dx F b F aμ σ

πσ
� �  � � ��  (2.40) 

However, the closed form expression of F(x) cannot be obtained, ex-
cept for a few limited special cases such as x = 0 and x = ∞. Instead of a 
closed form expression for the integration, we can use numerical meth-
ods to obtain an approximation of P(a ≤ X ≤ b) for any given values a 
and b. The accuracy of such approximation is more than enough for 
most practical cases. 

Before computer programs such as Excel were widely used in statistical 
analysis, we relied largely on the lookup tables of the nominal distribu-
tion. Since there are infinitely many values that μ and σ can take, it is 
impractical to generate lookup tables for all normal distributions. Howev-
er, one can standardize the random variable to have a normal distribution 
with μ = 0 and σ = 1, which is named the sstandard normal random var-
iable and denoted by Z. From the lookup table of � (z), defined as  
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� (z) = P(Z < z), one can calculate probabilities involving x as explained 
in the following. 

Using the normal distribution density function and the cumulative 
function, it can be shown that  

 Z = (X � μ)/σ  (2.41) 

is a normal random variable with μ = 0 and σ = 1. In other words, Z so 
defined is a standard normal distribution. This property allows us to 
first convert a normal distribution to the standard normal distribution, 
then use the lookup table for the standard normal distribution, which is 
called sstandard normal distribution table or the Z table, to find the 
probabilities of interest. Therefore, only one lookup table is needed for 
all the normal distributions. A part of the standard normal distribution 
is shown in Table 2.1. 
 
Table 2.1 Standard normal distribution table 
 

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
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z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 

 
Let us discuss how to use the Z table. The graph of the standard 

normal distribution is called the sstandard normal curve or the z curve. 
The area to the left of the point z, under the z curve, is the cumulative 
distribution function F(z) = P(Z < z), which is denoted by � (z), as il-
lustrated in Figure 2.11. The sum of the numbers in the first column 
and the numbers in the first row in Table 2.1 are the z values. The value 
in the corresponding cell is the value � (z). 

Example 2.12 Let X be a standard normal random variable. Find  
P (X < 0.84) and P (X ≥ 0.84). 

 

Figure 2.11 z curve and � (z) 
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In the first column of Table 2.1, find the ones and tenth digits of 
0.84, which is 0.8, then go to the first row and find the hundredth digit 
4. The cell in the intersection of the corresponding column and row has 
a value of 0.7995, which is the probability P (X < 0.84).  

 P (X ≥ 0.84) = 1 � P (X < 0.84) = 1 � 0.7995 = 0.2005. � 

Note that the z curve is symmetric about 0. Therefore, it can be seen 
from Figure 2.12 that 

 � (�z) = 1 � � (z) (2.42) 

For this reason, some of the standard normal tables do not include 
the negative values of z.  

Example 2.13 Let X be a standard normal random variable. Find  
P (X < �0.84). 

P (X < �0.84) = � (�0.84) = 1 � � (0.84) = 1 � 0.7995 = 0.2005. � 

 

Figure 2.12 � (�z) = 1 � � (z) 
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Example 2.14 Let X be a standard normal random variable. Find 
P(0.15 < X < 0.63). 

According to the relationship depicted in Figure 2.8,  

P(0.15 < X < 0.63) = P(X < 0.63) � P(X < 0.15) 

Using Table 2.1, we can find P(X < 0.63) = 0.7357 and P(X < 0.15) 
= 0.5596. Therefore, 

 P(0.15 < X < 0.63) = 0.7357 � 0.5596 = 0.1761. � 

Example 2.15 Suppose X ~ N(2, 42), find the probability of X < �8.0. 

The notation X ~ N(2, 42) means that X has a normal distribution 
with μ = 2 and σ = 4. Since X does not have a standard normal distribu-
tion, we cannot use Table 2.1 directly. We must first use Equation (2.41) 
to transform X into the standard normal random variable Z == (X � 2)/4. 

The event X < �8.0 is equivalent to X � 2 < �8.0 � 2, which in turn 
is the same as  

(X � 2)/4 < (�8.0 � 2)/4 or Z < (�8.0 � 2)/4 = �2.5 

Therefore, P(X < �8.0) = P(Z < �2.5) = � (�2.5) = 1 � � (2.5) = 1 
� 0.9938 = 0.0062. � 

Another usage of Table 2.1 is to find the z value corresponding to a 
given probability or the area under the z curve to the left of z. We use 
the following example to demonstrate. 

Example 2.16 Let X be a standard normal random variable. Given  
P( X < a) = 0.7088, find a, that is, the 70.88th percentile. 

In Table 2.1, first find the value 0.7088 in the cells other than the first 
column and first row. Once we identify the cell with 0.7088, we go to the 
left to find the first two digits of z which are 0.5, and then go to the top to 
find the third digit 0.05. Adding these two numbers, we have a = 0.55. � 

It is worth noting that the numbers increase from left to right and 
from top to bottom. If you cannot find the exact probability number, 
use the number that is closest to the probability. If necessary, you can do 
a linear interpolation between two adjacent numbers in the table. 
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Nowadays, software packages such as Minitab, MATLAB, and Excel 
can be used to conduct statistical analysis instead of the lookup tables. 
These software packages completely change the way probability and 
statistics are taught. For example, the transformation in Equation (2.41) 
used to be a must-learn skill for analyzing normal random variables. 
With the capabilities of the software packages, it has become optional. 
The accuracy of the result with the software can be higher than that 
provided by the lookup tables; no linear interpolation is necessary either. 
As a practitioner, one should definitely learn how to use Excel to per-
form basic statistical analysis due to its wide availability.  

Example 2.17 Reproduce the results in Table 2.1 and Examples  
2.12–2.16. 

To create Table 2.1, fill Column A with the first two digits of the z 
values, starting from 0. Then fill Row 1 with the third digits of the z 
values, from 0.00 to 0.09. The cumulative probability values are calcu-
lated using the Excel function NORM.S.DIST. Figure 2.13 captures the 
screen when creating the cumulative probability for cell F10. Once the 
formula is typed in one cell, you can copy and paste it to other cell to 
complete Table 2.1. To learn more about “$” and its purpose, use the  

 

 

Figure 2.13 Screen capture for Example 2.17 
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Help function in Excel. One can easily increase the resolution of the z 
values and display more digits of the cumulative probability than what 
are shown in Table 2.1. Note that earlier versions of Excel used 
NORMSDIST for this function, and in future versions of Excel, the 
function name may change. To make sure that you are inserting the 
correct function, type “= N” in a cell, and a list of functions that have 
names start with N will be displayed. You can click on a function to 
find out what it is for. 

The results in Example 2.12 can be obtained using Excel as illustrat-
ed by the screen captures in Figure 2.14. The results are displayed for six 
digits after the decimal point to show that more accurate results than 
Table 2.1 are possible. Once the formulas are set up in Excel, you can 
change the z value to update the probabilities. For example, you can 
type in 0.8432 as the z value to calculate the probability without having 
to do any linear interpolation as you would if you used Table 2.1. 

In the Excel program shown in Figure 2.14, if you type “�0.84” in 
B1, you will see 0.200454 in B2 as the probability of X < �0.84.  

With slight modification, one can calculate the probability in 
Example 2.14 as illustrated in Figure 2.15. 

 

Figure 2.14 Screen captures for Example 2.17 

 

Figure 2.15 Screen capture for Example 2.17 
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Figure 2.16 Screen capture for Example 2.17 

 

Figure 2.17 Screen capture for Example 2.17 

Without the transformation from X to Z, the probabilty in 
Example 2.15 can be obtained with Excel using the NORM.DIST 
function, as captured in Figure 2.16. 

The calculation in Example 2.16 requires the use of NORM.S.INV 
function with Excel, as shown in Figure 2.17. 

The result is a = 0.549882. � 

2.9.2 Student’s t-Distribution 

A continuous random variable is said to have a t-distribution if its 
probability density function is in the form 

 ( )
2

( 1)/2

1
2 (1 ) ,      

2

v

v
x

f x x
v vvπ

− +

+� �Γ� �
� �= + −∞ < < ∞

� �Γ� �
� �

 (2.43) 

where v is the ddegree of freedom, 	 is the gamma function defined as 

 � � 1

0
a a tt e dt

�
� �� �Γ  (2.44) 

Probability density functions for Student’s t-distribution with 
various v values are plotted in Figure 2.18. 
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Figure 2.18 Probability density function of Student’s t-distribution 

Student’s t-distribution is useful for analyzing whether the population 
mean is above or below certain values. 

Assuming X is a random variable and n samples of its values are 
taken, the probability that  

 ( )X n
t

s
μ�

�  (2.45) 

is between a and b is equal to the area under the Student’s t-density 
function between a and b. 

Example 2.18 Ten measurements of a random variable are as follows: 

x1 = 10.0, x2 = 11.1, x3 = 9.9, x4 = 10.1, x5 = 11.2, x6 = 9.7, x7 = 11.5,  
 x8 = 9.8, x9 = 10.1, x10 = 11.2. 

Find the probability that the random variable has a population mean 
greater than 10.0. 

The average of the samples is 10.46, and the sample standard 
deviation is 0.6979. 

� � � � � � 10
10 10 10

X X
P P P X X P n n

s s
μμ μ μ

� �� � �� �� � � �� � � � � � �� �� ��� �
 

 10.46 10
10 ( 2.084)

0.6979
P t P t
� �� ��� � � ��� ��� �

�
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Using Excel function T.DIST (2.084, 9, TRUE), we find that the 
probability of the event {X has a population mean greater than 10.0} is 
96.66 percent. � 

Example 2.18  illustrates how one can use data to draw a conclusion 
about the population; this is a typical use of statistics. We can also use 
the data in this example in a slightly different way. For a given probabil-
ity, can we conclude that the population mean is greater than 10.0? This 
is the subject of hypothesis test, which will be discussed in Section 4.3.2. 

2.9.3 F-Distribution 

A continuous random variable is said to have an F-distribution if its 
probability density function is  

� �
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Γ

Γ Γ
 (2.46) 

where v1 and v2 are the two degrees of freedom. Probability density 
functions of the F-distribution with various degrees of freedom values 
are plotted in Figure 2.19. 

 

Figure 2.19 Probability density function for F-distribution 
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F-distributions can be used to compare the population standard de-
viation of two random variables based on sampled values. If X and Y are 
two independent normal random variables, with m samples for X and n 
samples for Y, then the following random variable 

2
1
2
2

S
f

S
� �

has an F-distribution with v1 = m � 1 and v2 = n � 1. S1, S2 are the sam-
ple standard deviations of X and Y, respectively. 

2.9.4 Chi-square Distribution 

A continuous random variable is said to have a CChi-square (or �2) 
distribution if its probability density function is  

 � �

( 1) /22

/2 ,                0
2 ( / 2)

0,                                 0  

v
x

v

x e
if xf x v
if x

� �
����� ������� ���

Γ  (2.47) 

where v is the degree of freedom and is a positive number, and Γ (�) is 
the gamma function as defined in Equation (2.44). Probability density 
functions for �2 distribution with various degree of freedom values are 
plotted in Figure 2.20. 

 

Figure 2.20 Probability density function for �2 distribution 
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Figure 2.21 Screen capture for Example 2.19 

If Z1, Z2, . . . , Zn are standard normal random variables, then the sum of 
squares of these variables is a random variable with n degrees of freedom. 

Example 2.19 Let X be a �2 random variable with 8 degrees of 
freedom. Use Excel to find the x value such that P(X < x) = 95%. 

The solution to this problem is shown in Figure 2.21. � 

2.9.5 Binomial Distribution 

A discrete random variable has a bbinomial distribution if its probability 
mass function is of the form 

 � � � �
! (1 )             0,1,2, ,

! !
0                                                 

x n xn
q q x n

x n xp x
otherwise

���� � � ��� ��������

 (2.48) 

where q is a number between 0 and 1. The binomial distribution can be 
used to model the probability of exactly x successes in n trials. Each trial 
has two possible outcomes, success or failure, with q as the probability of 
one trial being a success. 

Example 2.20 The defect rate of certain product is 2 percent. If 20 
random samples of the product are tested, what is the probability of 
having less than or equal to 3 defective products? 

Let X be the random variable of the number of non−defective products 
among the 20 samples. Then X is a binomial random variable and n = 20. 
With a defect rate of 2 percent, q = 0.98. We need to calculate P(X ≥ 17). 

� � � � � � � � � �17 17   18 19 20P X p p p p� � � � � �
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This can be calculated either by directly evaluating the four terms 
using the binomial probability mass function or by typing  
“= 1 � BINOM.DIST(16, 20, 0.98, 1)” in an Excel cell. This gives us the 
probability of 0.9994. � 

2.9.6 Lognormal Distribution 

A continuous random variable X is said to have a llognormal distribution 
if ln (X) is a normal random variable. The probability density function of 
a lognormal random variable is of the form 

 � �
2 2[ln( ) ] /(2 )1             0

; , 2
    0                                          0

xe x
f x x

x

μ σ

μ σ πσ
� ���� ������� ���

 (2.49) 

It can be verified that � is the mean of ln(X), not of X. Similarly, � is 
the standard deviation of ln(X). Three probability density functions of 
lognormal distribution are plotted in Figure 2.22, with different values 
of � and �. 

 

Figure 2.22 Probability density functions for lognormal distribution 
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2.10 The Central Limit Theorem 

There are several reasons why the normal distribution is one of the most 
important distributions in statistics. First, many random variables are 
normal, including the weights and heights of a human population, meas-
urements of dimensions, etc. Second, many useful hypothesis tests require 
that the underlying random variables have normal distributions. Last but 
not least, the average of the sample values can be approximated with nor-
mal distributions even for random variables that are not normal. This last 
reason is the essence of the CCentral Limit Theorem (CLT). 
 

Theorem 2.3 (CCentral Limit Theorem) If a random variable X has a 
mean � and a finite variance 2 ,  then the average of the   samplesnσ

   1

1 n

i
i

X x
n =

= �  has a distribution that can be approximated by a normal 

distribution with mean � and variance 
2

n
σ  if n is sufficiently large. 

 
The size of n depends on the underlying distribution. For most cases, 

the approximation is sufficiently accurate for n > 30. 

Example 2.21 A sensor output has a mean value of 40 mV and a 
standard deviation of 5 mV. If 35 values are measured and the average is 
calculated for these measurements, what is the probability that the aver-
age value is between 39 and 41 mV? 

According to the Central Limit Theorem, the average value is ap-
proximately a normal distribution with a mean of 40 mV and a standard 
deviation of 5 / 35  = 0.8452 mV. 

� �39 41P X� �  = 0.7633 

which can be calculated using the transformation in Equation (2.41) 
and Table 2.1, or alternatively, by typing “= NORM.DIST(41, 40, 
0.8452,1) � NORM.DIST(39, 40, 0.8452,1)” in an Excel cell. � 



 PROBABILITY AND STATISTICS 43 

2.11 Statistical Data Analysis 

When dealing with large amounts of data, it is usually helpful to use some 
numerical measures as indicators of certain properties of the entire data set. 
The two main properties of a data set are its center position and variability. 

2.11.1 The measure of center position of the data 

The mean, the mode, and the median are common indicators of the 
center position of a data set, as defined in the following. 

Mean or average: Given a set of data x1, x2, … xn, the sample mean or 
average is defined as 

 
1

1 n

i
i

x x
n =

= �  (2.50) 

Note that the sample mean is sensitive to the presence of outliers in 
the data set. 

Mode: The mode of a data set is the value(s) that appears most frequently. 

Median: The median of a data set is determined by first sorting the data in 
ascending order followed by repeatedly eliminating the smallest and largest 
numbers until there are one or two data points remaining. The median is 
either the remaining data point or the average of the two remaining data 
points.  

Note that the median is insensitive to the presence of outliers in the 
data set—sometimes too insensitive. 

2.11.2 The measure of variability 

The range and the standard deviation are common measures of the vari-
ability of the values in a data set. 

Range: The range of a data set is defined as the difference between the 
largest value and the smallest value of the data set. 

Standard deviation: The sample standard deviation of a data set is de-
fined as  
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where �� is the sample mean, n is the sample size, and s2 is the sample 
variance. 
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2.11.3 Other measurements of data 

Quartiles: The median divides the data set into two subsets: the smaller 
half and the larger half. The median for each subset can be found and 
are known as the llower and upper fourth. The lower fourth (Q1), the 
median (Q2), and the upper fourth (Q3), also known as the ffirst, second 
and third quartiles, divide the data into four quarters. 

Trimmed mean: To calculate the trimmed mean, certain percentage of 
the sorted data from each end is eliminated first and then the average is 
calculated for the remaining data. For example, a 10 percent trimmed 
mean is the average of the data after eliminating the smallest 10 percent 
data and the largest 10 percent data. The trimmed mean can be viewed 
as a compromise between the mean and the median. 

2.12 Graphical Methods 

Sometimes it is easier to draw a conclusion from a data set using graph-
ical methods instead of numerical measurements, as we shall explain in 
the following. 

2.12.1 Stem-and-Leaf Plots 

Stem-and-leaf is a graphical method of displaying quantitative data. A 
steam-and-leaf plot consists of the sstem, the lleaf, and a vertical line that 
separates the stem and the leaf. Other information such as the total 
number of data points, the sstem or leaf unit, and the title of the plot 
may be included as well. 

A stem-and-leaf plot can be created as follows: 

1. Determine the digits for the stem. The stem may have one or 
more digits. The trailing digits become the leaves. 

2. Draw a vertical line. List the stem values on the left side of the 
line in an incremental, ascending manner. 

3. Record the data points one at a time by finding the row of the 
corresponding stem value and recording the leaf value to the 
right side of the vertical line. 

4. Indicate the stem or leaf unit, the total number of data points, 
the title, etc. 
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The leaf values may or may not be sorted. The decimal point should 
be left out, since the stem or leaf unit is specified. If the leaf has one 
digit only, no space between leaf values is needed. If the leaf has more 
than one digit, a space is left between two leaf values. The stem value 
can be in increments of 1, 10, or other values. 

Example 2.22 Construct the stem-and-leaf plot for the following set of 
data. 

15.2 9.2 12.1 8.8 9.5 18.9 19.2 30.9 45.8 25.6 

24.5 15.2 10.0 49.9 41.7 23.4 24.8 31.2 26.8 27.3 
 

We choose the tens digit as the stem unit and the ones and one-
tenth digits as leaf digits. In this example, the stem values are chosen to 
be 0 to 4 with 1 to 4 repeated twice. For instance, 1L is the stem for 
those numbers whose tens digit is 1 and leaf values are less than 50. 1H 
is the stem for those numbers whose tens digit is also 1 but leaf values 
are greater than or equal to 50. 

 

0H 92 88 95 

1L 21 00 

1H 52 89 92 52 

2L 45 34 48 

2H 56 68 73 

3L 09 12 stem digit: tens digit 

3H total number of points: 20 

4L 17 

4H 58 99 
 

Alternatively, we can construct the following stem-and-leaf plot for 
the same set of data, the only difference being the designation of the stem 
values. 

 

0 92 88 95 

1 52 21 89 92 52 00 stem digit: tens digit 

2 56 45 34 48 68 73 total number of points: 20 

3 09 12 

4 58 99 17 

� 
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2.12.2 Histogram 

A hhistogram is used to display the distribution of a data set. To con-
struct a histogram, the horizontal axis is first divided into equal inter-
vals, called bbins. For example, the horizontal axis can consist of 5 bins of 
a width of 4, from 0 to 20 (excluding 20), where the bins are defined as 
[0, 4), [4, 8), [8, 12), [12, 16), and [16, 20). (Here, the brackets mean 
inclusive and parentheses mean exclusive.) The frequency for each bin is 
calculated by counting how many numbers in the data set fall inside the 
bin. Then a rectangle is drawn for each bin, with the bin value as its 
width and the frequency as its height. Alternatively, the frequencies can 
be replaced by relative frequencies, that is, the frequencies divided by 
the total number of data points in the set. As a rule of thumb, the num-
ber of bins should be close to the square root of the total number of data 
points in the data set. If a software package is used, one can easily try 
different numbers of bins until a satisfactory result is achieved. Usually, 
the number of bins should be between 5 and 20. 

Figure 2.23 shows the histogram of the data set in Example 2.22. 
The graph was created with Excel. Other software packages such as 
MATLAB and Minitab can also be used to create histograms. 

 

Figure 2.23 A histogram of data in Example 2.22 
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2.12.3 Box-and-Whisker Plot 

The bbox-and-whisker plot, also known as bboxplot, is determined by five 
values: the smallest value (minimum), lower fourth (first quartile Q1), me-
dian (second quartile Q2), upper fourth (third quartile Q3), and the largest 
value (maximum). Q1, Q2, and Q3 were defined earlier in Section 2.11. 

We use the following example to illustrate the construction of a box-
and-whisker plot. 

Example 2.23 Display the following data set with a box-and-whisker plot:  

10 20 23 34 45 46 46 46 48 51 

52 52 56 68 70 90 100 110 120 130 

First, we find the five values needed for the plot: 

xmin = 10, Q1 = 45.5, Q2 = 51.5, Q3 = 80, xmax = 130. 

We draw a horizontal number line extending from xmin to xmax. A rec-
tangle with Q1 and Q3 as the two sides is plotted, its height being arbitrary. 
Then add a vertical line segment at Q2 inside the rectangle. Draw a horizon-
tal line (whisker) from xmin to the left or Q1 side of the rectangle and another 
horizontal line (whisker) from xmax to the right or Q3 side of the rectangle. 
Figure 2.24 shows the completed box-and-whisker plot. 

There are variations of the box-and-whisker plot. Some depict the 
outliers and extreme outliers on the plot. To determine the outliers and 
extreme outliers, the fourth spread is first defined. 

 fs = Q3 � Q1 (2.52) 

 

Figure 2.24 A box-and-whisker plot example 

� 
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Figure 2.25 A box-and-whisker plot with outliers 

Any number xi that satisfies one of the following conditions is said 
to be an ooutlier. 

 xi > Q3 + 1.5 fs   or   xi < Q1 � 1.5 fs  (2.53) 

Furthermore, xi is an eextreme outlier if it satisfies one of the follow-
ing conditions. 

 xi > Q3 + 3 fs    or   xi < Q1 � 3 fs (2.54) 

Those outliers that are not extreme outliers are called mmild outliers. 
In Figure 2.25, the whiskers are shown to go from the box to the 

smallest and largest points that are not outliers. Mild outliers are indi-
cated by solid dots and extreme outliers by small circles. 
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CHAPTER 3 

DMAIC: The Process of 
Lean Six Sigma 

Every product or process has an intended function with an expected 
outcome—called a nnominal value—and every outcome has some varia-
tion. If you sign your name twice, the signatures will not look exactly 
the same. Similarly, two vehicles of the same model and year are not 
exactly the same. These are known as vvariations. Such variation in a set 
of data can be measured by levels of “ssigma,” as we shall explain. Indi-
vidual customers don’t experience the average performance of a product; 
instead, they each experience a variation of the product, some better 
than the average and some worse. By reducing the variation of a product 
or process, more consumers can receive products or services of higher 
quality. This chapter discusses the DMAIC process of Lean Six Sigma 
that helps reduce the variation and improve a product or service. A real-
world example with the Krisys robot is used to illustrate the generic exe-
cution steps of a Lean Six Sigma project. Details of the tools used in this 
chapter can be found in Chapter 4. 

3.1 Introduction 

Lean Six Sigma is a structured, disciplined, data-driven methodology 
and process, which focuses on improving business performance based on 
Voice of Customer (VOC) and statistical analysis. Lean Six Sigma can 
be applied to any situation where there is a process, such as in the fields 
of engineering, service, health care, military, and many others. The es-
sence of Lean Six Sigma is the improvement through reduction of the 
variation and waste in a process [1, 2]. However, it is not exclusively 
limited to the improvement of existing processes. For example, DDesign 
for Six Sigma (DFSS) is best practiced when designing a new product 
or a new process [3, 4].  
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Lean Six Sigma uses a number of unique tools as well as some com-
mon ones such as project management, quality function deployment, 
cause-and-effect diagrams, gage R&R, statistical process control (SPC), 
and lean manufacturing. 

3.2 Six Sigma as a Statistical Measure 

The Greek letter σ (sigma) represents the standard deviation of random 
variables. A Six Sigma process implies that the interval between the 
Upper Specification Limit (USL) and the LLower Specification Limit 
(LSL) contains the mean value ±6 × standard deviation of the random 
variable; therefore, the probability of having any defects is extremely 
small (Figure 3.1). 

Suppose that the mean of a normal distribution is at the center of 
the specification limits. The probability for success when the specifica-
tion limits are mean ±nσ is simply the area under the normal curve be-
tween �nσ and nσ, for n = 1, 2, . . . , 6. Consequently the probability 
for defects is the area outside of the interval (�nσ, nσ). The probability 
for defects is sometimes multiplied by 106 to calculate the DDefects per 
Million Opportunities (DPMO). 

Assuming that the mean value of the distribution is centered at the 
midpoint between the USL and LSL, Table 3.1 summarizes the DPMO 
corresponding to n sigma levels, where n = 1, 2, . . . , 6.  

 

Figure 3.1 Six Sigma and USL/LSL 
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Table 3.1 DPMO and probabilities of success 
 

Sigma 
Defects per  

Million Opportunities Probability of Success (%) 

1 317,311 68.27 

2 45,500 95.45 

3 2,700 99.73 

4 63.3 99.9937 

5 0.57 99.99994 

6 0.00197 99.9999998 
 

It was noted in the early days of Six Sigma that over time the center 
might shift to the left or right by as much as 1.5 times of sigma, as illus-
trated in Figure 3.2. When that happens, the calculation of the probability 
of success needs to be modified accordingly, as illustrated in Figure 3.3. 

The positions of the specification limits remain the same in the plot, 
but the normal distribution curve is shifted to the right by 1.5σ. The case 
of the mean shifted to the left can be treated similarly. The DPMO num-
bers are identical whether it is shifted to the left or right, since the curve is  

 

Figure 3.2 Shift of the process mean over time 
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Figure 3.3 Six Sigma and USL/LSL with 1.5σ shift to the right 

symmetric. The area to the left of the �6σ line is given by � (�6 � 1.5), 
where � (z) is the cumulative distribution function of the standard normal 
random variable. The area to the right of the 6σ line is 1 � � (6 � 1.5). 
Therefore, the probability of success, that is, the area under the shifted 
density function between the specification lines, is given by  

1 � [� (�6 � 1.5) + 1 � � (6 � 1.5)] = � (4.5) � � (�7.5) 

The DPMOs and probabilities of success for processes with 1.5σ 
shift in mean are summarized in Table 3.2. Note that the DPMOs are 
greater than those without the shift in mean. 
 

Table 3.2 DPMO and probabilities of success with 1.5σ shift in mean 
 

Sigma 
Defects per Million 

Opportunities Probability of Success (%)

1 697,672 30.233 

2 308,770 69.123 

3 66,811 93.319 

4 6,210 99.379 

5 233 99.977 

6 3.4 99.99966 
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Example 3.1 Find the sigma level for a normal process that has a 
97 percent success rate with a 1.5σ shift in mean. 

This calculation can be easily done in Excel. Type a positive value in cell 
A1 and “=100*(NORM.S.DIST(A1�1.5, 1)�NORM.S.DIST(�A1�1.5,1))” in 
cell B1. Change the value in A1 until you have 97 percent in B1.The value 
in A1 is the sigma level that we are looking for. The answer is 3.3808. � 

One may ask, Why do we have to achieve Six Sigma? or Why isn’t a 
97 percent success rate good enough? It all depends on the situation. If 
it is a matter of life or death as are medical operations, airplane landings, 
or space explorations, a 97 percent success rate is not acceptable. Even 
Six Sigma may not be good enough. On the other hand, there are many 
situations where 97 percent success rate is sufficient; examples are the 
tolerance bands for resistors or capacitors in a noncritical product. The 
essence of Six Sigma is not about the specific value of DPMO. Instead, 
it is about how to achieve the required success rate through continuous 
improvement to reduce the variation in the process. 

3.3 The DMAIC Process 

Lean Six Sigma can be viewed as a tool, but more importantly, it is a pro-
cess [5−7]. It consists of five phases: DDefine, MMeasure, AAnalyze, IImprove, 
and CControl, commonly called DDMAIC. Figure 3.4 illustrates the 
DMAIC process, with the main tasks of each phase specified. 

 

Figure 3.4 The Six Sigma DMAIC process 
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Each of the five phases will be discussed in a separate subsection. For 
easier understanding, we will use a Lean Six Sigma project conducted by 
a group of students at Texas A&M University as an example [8]. Addi-
tional case studies will be discussed in Chapter 8. 

3.3.1 The Krisys Robot 

The Krisys robot, shown in Figure 3.5, is a platform used in one of the 
digital electronics courses in the Electronic System Engineering Tech-
nology (ESET) program at Texas A&M University [8]. It has a micro-
controller on a printed circuit board to control two motors in order to 
move the platform along a trajectory embedded with signals that the 
robot can sense. A group of students made an effort to commercialize 
the product with the objective to educate students in product develop-
ment and innovation. Their intention was to make the Krisys robot kits, 
and sell them to high schools and colleges interested in using them in 
course projects for their science and engineering classes. The original 
design had not considered making a profit in mass production, leaving 
room for improvement. This new student team was able to make the 
robot more profitable by following the DMAIC process. 

 

Figure 3.5 A Krisys robot 

Source: Reprinted with permission by Association for Industry, Engineering, and 
Management Systems 
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3.3.2 Define 

The main objective of the Define phase is to establish the pproject scope 
and collect background information about the current process. A pproject 
charter, typically a one-page summary of the project, is created in this 
phase. The project charter will be approved by the sponsor or manager of 
the project before it is started. The SSuppliers-Inputs-Process-Outputs-
Customers (SIPOC) analysis is conducted once the project is approved, 
to make sure that the project team fully understands the current process, 
who the sstakeholders are, and what the customers want from the process. 
The VOC is collected and analyzed, and the CCritical-to-Quality (CTQ) 
analysis is conducted to achieve a high-level understanding of what is crit-
ical to the success of the process.  

The project charter should contain the following: 

• A problem statement. 
• A clearly stated business case for the intended Six Sigma 

project. 
• A well-defined project scope. 
• Identification of project sponsor. 
• A specific pperformance metric or metrics that can be used 

to evaluate the performance improvement before and after 
the project. 

• Identification of the stakeholders, process owner, project 
team, and project champion. 

• Resources required. 
• Potential risks of the project not being able to achieve the 

intended result within the specified project duration. 

Let us see how the Define phase was executed in the Krisys project. 

Project Charter for the Krisys Robot Kit 

Problem statement: The current Krisys robot kit operation is not com-
petitive enough in the marketplace, mainly due to its high cost. As a part 
of the commercialization effort, the cost must be significantly reduced.  
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Project scope: The project will focus on improving the design of the 
current process of purchasing, making, shipping, and supporting the kit. 
Circuit optimization will not be considered in this project.  Due to the 
time limitation, the improvement identified in this project will be 
implemented in a small scale only. Large-scale implementation will be 
carried out in a future project.  

Business case: Reducing the cost will improve the profit margin. 

Project sponsor: ESET program. 

Project duration: The project will be completed in 7 weeks. 

Resource: Ten students and a faculty advisor. 

Project champion: The faculty advisor for the student team. 

Metric: The total cost of the Krisys robot kits will be used as the per-
formance measure.  

The project goal: To reduce the cost of the kit by 25 percent. 

Deliverables: Cost-reduction recommendations. 

Project risks: The team is not familiar with the detailed design of the 
Krisys robot or the pricing strategies of the vendors. 

The SIPOC diagram and process map are illustrated in Figures 3.6 
and 3.7. 

 

Figure 3.6 SIPOC for Krisys robot kit 

Source: Reprinted with permission by Association for Industry, Engineering, and 
Management Systems 
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Figure 3.7 Krisys robot kit process 

Source: Reprinted with permission by Association for Industry, Engineering, and 
Management Systems 

The stakeholders of the Krisys robot process: ESET faculty members, 
ESET students, high schools, and, other colleges. The stakeholders are 
consulted in the project for information and feedback.  

The process owner: The ESET faculty member in charge of the Krisys 
operation. 

A high-level understanding of critical components in the success of 
the process was also investigated in this phase. After conducting the 
CTQ analysis, the CTQ tree was created as in Figure 3.8. 

The CTQ analysis concluded that there were six aspects of the oper-
ation that are critical to quality: optimized design, low-cost parts, sim-
plified kit creation, effective marketing, customer improvement, and 
low-cost carrier. Among these, effective marketing was not included in 
the scope of the project and would not be analyzed further. 

 

Figure 3.8 CTQ for Krisys robot kit 

Source: Reprinted with permission by Association for Industry, Engineering, and 
Management Systems 
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3.3.3 Measure 

In the Measure phase, data need to be collected so that the performance 
of the current process such as pprocess capability index and pprocess 
performance index can be established. The data will be further ana-
lyzed in the next phase (Analyze). 

To this end, a data-collection plan should be created and the 
sampling method should be determined. Before measurements are 
taken, mmeasurement system analysis (MSA) may be necessary.  

The problem statement in the Define phase may need revision based 
on the analysis of the data. Any change made to the project charter, how-
ever, needs to be approved by the sponsor and the project champion. 

Let us see how the Measure phase was carried out in the Krisys project.  
To establish the performance of the current process, the cost of the 

current Krisys robot kit operation had to be calculated. The total cost 
included the kit cost, the labor cost, and the shipping cost. The profit 
per kit was the difference between the selling price and the total cost. 
The electronic part list for the kit was used, and the prices for the parts 
at Mouser, which was where the parts were purchased, were identified 
based on the price information posted on the Mouser website. Prices for 
other components such as motors and wheels were also collected.  

The Six Sigma team also recorded the time required for putting to-
gether a kit: 30 minutes on average with standard deviation of seven 
minutes for making a kit, and 8 minutes for another person to double 
check the kit. The time for double checking had a standard deviation of 
20 seconds. There was a large variation in customer support time.  

Excluding the customer support cost, the current total cost for the 
Krisys robot kit operation was $120. 

3.3.4 Analyze 

In the Analyze phase, root causes of the problem are identified. It is crit-
ical that the analysis is supported by data collected in the Measure 
phase. If necessary, one can go back to the Measure phase to collect 
more data. Specific tasks such as process analysis, data analysis, cause-
and-effect analysis, hypothesis testing, regression, and design of experi-
ments can be carried out when it is appropriate. At the completion of 
this phase, a hypothesis will have been tested and validated. 
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Figure 3.9 Current value stream mapping for Krisys robot kit 

 

Figure 3.10 Cause-and-effect diagram of the Krisys robot kit  

Source: Reprinted with permission by Association for Industry, Engineering, 
and Management Systems 

Let us see how the Analyze phase was conducted in the Krisys project. 
The team created the value stream map for the Krisys kits operation, as 
shown in Figure 3.9. 

The cause-and-effect diagram was created by the team, shown in 
Figure 3.10. The team decided to focus on the parts cost, student 
training, customer support, kit assembly time, and quality assurance time. 

Parts cost: 

The current process used Mouser ElectronicsTM as the vendor for all the 
electronic parts. The main reasons for using one vendor was to save on 
shipping fees and simplify the purchasing process, which made sense 
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when orders were small and profitability was not important. As a 
commercialized product, the sales volume was expected to increase, and 
profitability became critical to success, and purchasing all parts from a 
single vendor was no longer the best choice. To compare the prices of 
electronic parts, two additional vendors were selected: DigiKeyTM and 
Allied ElectronicsTM. For illustration purposes, prices for five parts are 
listed in the following table: 
 

Part number Qty/kit
Mouser 

cost/kit ($)
Digikey 

cost/kit ($) 
Allied  

cost/kit ($) 

 80-C322C104K1R 7 0.70 2.87 1.428 

 80-C330C334K5R 2 1.66 1.66 0.394 

 299-100-RC 1 0.10 0.10 0.015 

 598-SK100M050ST 1 0.14 0.21 0.133 

 538-90120-0132 3 5.31 4.05 2.055 

 
The comparison showed that some parts were cheaper at one vendor 

and other parts were cheaper at another vendor. Creating such a chart 
made it easier to find significant price differences among various ven-
dors. Purchasing parts from vendors who offered the cheapest prices 
could reduce the part cost significantly. The shipping cost increase was 
negligible once the volume reached a high level. For example, an addi-
tional $10 shipping cost for 1,000 parts meant $0.01 increase in cost per 
kit. This cost increase could easily be negated with saving from a single 
part: If we purchased the second part on the list, 80-C330C334K5R, 
from Allied Electronics instead of Mouser Electronics, a saving of $1.66 
� $0.394 = $1.266 would be achieved. 

The team also discovered that some parts were overdesigned. For ex-
ample, some capacitors in the original design had a maximum voltage of 
100 V, but the highest voltage on the Krisys robot platform was about 
12 V. The original design had not focused on cost because making prof-
it had not been an objective. The small volume before the commerciali-
zation of the kit made it unnecessary to optimize the cost. 
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In addition, the team found that the two motors used by the Krisys 
robot had encoders that were not used. After negotiations, the vendor of 
the motors agreed to provide replacement motors without the encoder, 
at a lower price. 

Cost associated with customer support: 

The current process required students and professors to travel to high 
schools to provide customer support. This was not an efficient method 
for customer support. 

Labor cost: 

Because the parts were not well-organized or clearly labeled, it took the 
student workers a long time to assemble a part kit. Student workers also 
spent more time labeling the electronic components. 

3.3.5 Improve 

In the Improve phase, ppotential solutions are developed based on the 
analysis conducted in the Analyze phase to reduce or eliminate the effects 
of the root causes. These solutions will be evaluated and then implement-
ed. The root causes identified in the Analyze phase will be validated with 
data after the implementation of the improvement. 

Failure Mode Effects and Analysis (FMEA) can be done to evalu-
ate the risks for all potential failures. High-risk items will be addressed 
with recommended solutions and reevaluated. Before the large-scale 
implementation, a small-scale pilot test can be performed to gauge the 
effectiveness of the solution for improvement. 

Let us see how the Improve phase was executed in the Krisys project.  

Solutions for reducing the part cost: 

• Buy parts from three different companies that offer the 
lowest prices. When ordering hundreds and thousands of 
kits, the shipping cost is negligible. 
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• Optimize the design by selecting the lowest cost parts that 
meet the requirements. 

• Negotiate with the motor vendor for a price reduction for a 
motor without encoder. 

Solutions for reducing the cost of customer support: 
• Provide instructions in pdf, PowerPoint, and YouTube to 

reduce the cost of customer support. There is a one-time 
cost, but the investment is sound, since it eliminated the 
face-to-face visits and the time spent on explaining the 
processes over the phone.  

• Host instructional material such as video tutorials and 
printable instructions at a website. The website also allows 
users to provide feedback for further improvement of the 
service and the design of the Krisys robot. 

• Implement an online ordering system through the website. 
• Provide buyers with an option of paying $2 for small electronic 

spare parts. These parts may be misplaced or lost, and replacing 
them can cause delays and significant shipping cost.  

Solutions for reducing kit assembly time: 
• Organize parts into bins. 
• Pregroup parts by type. 
• Provide training to new student workers. 
• Build inventory for parts that have long lead time.  
• Build kits using parts in inventory while the student workers 

have spare time, before an order comes in. 
• Do not label every part in a kit, so that the high school or 

college students can learn about color coding of resistors. 
This reduces the time for making the kit and provides 
learning opportunities for the user. 

The new VSM is illustrated in Figure 3.11.  
Compared to the current VSM, there are several changes. Inventory is 

increased, in particular for the parts that have longer lead time. Student 
workers build Krisys kits when they have spare time, before an order comes 
in. Since a typical order is less than 50 kits, most of the time there are 
enough kits in the inventory ready for immediate shipping. Instructions  
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Figure 3.11 The new value stream mapping for Krisys kits 

and YouTube videos are posted on a website to provide support for 
customers, significantly reducing the time and cost needed since on-site 
support is completely eliminated. These modifications to the process 
reduce the average lead time and its variation. 

VSM will be discussed in more detail in Chapter 4. 

3.3.6 Control 

In the Control phase, one should make bbefore and after comparisons to 
evaluate the improvement of the new process over the current process, the 
metrics detailed in the Define phase should be used, and a plan for main-
taining the improvement should be developed and evaluated. In addition, 
the new process should be documented and standardized. It is necessary to 
make sure that the changes to the process are made according to the 
change control and compliance requirement of the organization. The data 
from the new process should be monitored by the process owner using 
tools such as SPC. Since Six Sigma is a continuous improvement effort, 
suggestions for a next-phase project can be made in this phase. It is also 
common to recommend replication of the process in other parts of the 
organization to multiply the effects of the improvement. The money belt, 
typically a person with expertise in finance will provide estimations and 
methods to track the financial impact of the project. The project should 
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be documented including the major findings, recommendations, and les-
sons learned; typically, these materials are presented to appropriate people 
in the organization before the project is closed.  

For the Krisys robot project, the following activities were completed 
in the Control phase: 

• The cost under the new process was compared with that of 
the current process. The total operation cost was reduced by 
30 percent. 

• A website was developed that collected customer feedback 
on services, suggestions, and the design of the website. 

• The future state VSM was compared to the current state 
VSM to determine how much improvement was made in 
lead-time reduction. 

• A plan was created to collect data on kit completion time 
and error. 

• A plan was created to collect data every other semester to 
monitor the price fluctuation of the electronic parts. 
Purchase strategy was modified based on the latest price 
information. 

• Manuals and YouTube videos were created to help 
customers. 

• A project report was written, and a project presentation was 
made. 

Recommendations for a next-phase project were made as follows: 

• Continue the investigation of new parts distributors. 
• Study how to increase sales. 
• Study how to increase customer satisfaction. 
• Make this project an example for teaching Six Sigma.  

The DMAIC process can go through several iterations if necessary. 
However, any changes made to the project charter will need to be ap-
proved by the management.  
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CHAPTER 4 

Lean Six Sigma Tools 
While Chapter 3 introduced a number of tools which can be used in the 
DMAIC process of Lean Six Sigma, this chapter will discuss the usage of 
more generic tools not specifically for Lean Six Sigma projects. They are 
grouped according to where they can be applied in the DMAIC process; 
however, some tools can be used in more than one phase, thus making it 
impossible to follow this rule strictly. The reader may find it helpful to 
refer to Chapter 3 for their applications in Lean Six Sigma projects. 

4.1 SWOT, Affinity Diagram, SIPOC, VOC, CTQ 

4.1.1 SWOT Analysis 

One can conduct a SStrengths, Weaknesses, Opportunities, and 
Threats (SWOT) analysis to evaluate the challenges and opportunities 
faced in a project or by an organization [1]. The SWOT matrix is basi-
cally a matrix with two rows and columns, as illustrated in Figure 4.1.  

The rows represent internal and external factors, and the columns rep-
resent the factors in favor of or harmful to the organization or products.  

 

Figure 4.1 SWOT analysis 
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Strengths are the internal factors that are in favor of the organization, 
hence advantageous. WWeaknesses are the internal factors that are harmful 
to the organization. OOpportunities are the external factors in favor of the 
organization, and TThreats are the external factors against the organization. 
For example, a company may have strength in making a low-cost product, 
a weakness in innovation, an opportunity in selling its product in a cost-
sensitive market, and a threat from other companies outsourcing their 
product to low-production-cost countries. 

The SWOT analysis can be applied in Lean Six Sigma projects to 
evaluate challenges and opportunities for the products or processes so 
that areas for improvement can be identified. The impact of the Lean 
Six Sigma project can be increased by the SWOT analysis. SWOT is 
useful for developing a high-level strategy and selecting the appropriate 
Lean Six Sigma projects. 

4.1.2 Affinity Diagram 

The aaffinity diagram is a tool for organizing a large number of ideas 
according to their natural relationships [1]. It was invented in the 1960s 
by the Japanese anthropologist Jiro Kawakita. This tool is typically used 
in a brainstorming session where a team’s consensus is required or for 
sorting a large amount of information into logical categories. The 
affinity diagram taps a team’s creativity and intuition. The procedure for 
creating an affinity diagram is as follows: 

1. Write ideas on sticky notes, each on a separate note. To prevent 
the process from being dominated by a few team members, it is 
recommended that team members do not discuss with each 
other in this step.  

2. After all of the ideas are captured on the sticky notes, organize 
the sticky notes into logical groups according to their contents. 
Give each group a name that is appropriate for all the sticky 
notes in the group. 

3. Have a discussion. Make necessary changes or additions. 
Regroup if necessary.  

4. Document the result for further analysis. 
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Figure 4.2 Affinity diagram 

A simple example of affinity diagram for improving the writing of 
this book is illustrated in Figure 4.2. 

4.1.3 SIPOC 

SIPOC is the acronym for SSuppliers, Inputs, Process, Outputs, and 
Customers [2, 3]. SIPOC analysis is conducted in the Define phase, 
with the main purpose of capturing the information related to the pro-
cess to be improved. The process is usually illustrated with a simple 
flowchart of the main steps. Inputs are things that are provided to the 
process, outputs are the outcomes of the process, while suppliers and 
customers provide or receive the inputs or outputs. The SIPOC analysis 
forces the team to have a good understanding of the current process 
before they are set out to improve it. Through this analysis, the team 
will also learn where to gather useful information about the process, 
who the stakeholders are, and who will be impacted if any change is 
made to the current process.  

The complexity of a ccurrent process mapping needs to be 
appropriate; it should not be too simple, containing just 1 or 2 steps, nor 
should it be too detailed, containing 50 steps. Five to 15 steps are proper  
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Figure 4.3 A SIPOC example [4] 

Source: Reprinted with permission by Association for Industry, Engineering, 
and Management Systems 

for most processes. The SIPOC diagram also serves the purpose of 
documentation. Managers and other teams can review the SIPOC to 
understand the current process at a high level. Figure 4.3 is the example of 
SIPOC discussed in Section 3.3.2. 

4.1.4 VOC 

VOC stands for VVoice of Customer; it is the “rroot wants” of the 
customers [1]. For a Lean Six Sigma project to be successful, it is critical 
that information from the customer is collected and thoroughly 
analyzed before attempting to improve the process.  

VOC includes the direct input or feedback from customers on what 
they want; however, the raw data from customers must be analyzed to 
become the true ccustomer wants, that is, the rroot wants. Not all the 
root wants are from customers; for example, government regulations are 
a part of the root wants, which customers may not mention.  

One of the common mistakes is to replace the collection and analysis 
of VOC with a brainstorming session by the project team. This may 
allow the team to come up with most of the VOC information quickly, 
but they may miss some important customer needs or overemphasize the 
internal needs of their organization such as cost reduction. In other 
words, the team may have a bias which can only be corrected by the true 
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voice of the customers. What the team overlook may be important to 
customers, and the project may miss the opportunity of creating an ex-
cellent product or process if it doesn’t address customers’ concern.  

Another common mistake is to take the raw data from the customers 
for process improvement without thoroughly analyzing it. Two exam-
ples below illustrate how to process the information from customers to 
derive the VOC.  

Example 4.1 In the automotive industry, there is a well-known specifi-
cation for vehicle acceleration, the time it takes to go from 0-to-60 mph. 
While this information may be from internal or external customers, it is 
not a customer root want, but a requirement. The root want is “fast 
acceleration,” and a quick 0-to-60 mph acceleration is only one way of 
meeting the customer need. If we just use this requirement, we may be 
missing the customer root want related to the vehicle acceleration in 
other situations. The right way of capturing this customer input is to 
keep “fast acceleration” as a customer root want and leave the specific 
requirements such as “time from 0-to-60 mph” open for further study at 
the requirement derivation stage.  

Figure 4.4 illustrates that not capturing the root want may lead to an 
inferior design.  

 

Figure 4.4 Vehicle speed trajectories 
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Let us say there are two design options, whose 0-to-60 mph traces, 
v1 and v2, are shown in Figure 4.4. The 0-to-60 mph times for v1 and 
v2 are 6.45 seconds and 7.80 seconds, respectively. Since vehicle 1 has a 
shorter 0-to-60 mph time than vehicle 2, it seems that vehicle 1 has a 
faster acceleration. Is this really what the customers want? 

Let us look at the distances the two vehicles traveled starting from 
standstill. Distance is speed integrated over time; therefore, the distances 
can be plotted based on the speed information, as illustrated in Figure 4.5.  

Vehicle 2 travels a much longer distance than vehicle 1 in the same 
amount of time for the first 8 seconds, which means that vehicle 2 will 
pull ahead of vehicle 1 if they took off from the same position. Even 
though customers tell us they want a shorter 0-to-60 mph time, they 
may like vehicle 2 better than vehicle 1. 

This example shows that VOC is not just a direct recording of the 
raw data from customers; oftentimes these raw data need to be inter-
preted and analyzed to obtain useful information. In a sense, we need to  

 

Figure 4.5 Distances traveled over time by two vehicles 
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read the mind of the customer. In this example we should capture “fast 
acceleration” as a customer want. The time from 0-to-60 mph is one of 
the design requirements to meet, and other requirements may include 
“the distance traveled in 4, 5, 6 seconds starting from the standstill posi-
tion shall be above x, y, z meters,” etc. Together, they address custom-
ers’ need for fast acceleration. � 

Example 4.2 In a high school Science, Technology, Engineering, and 
Math (STEM) outreach project sponsored by NASA, the students were 
asked to use only wood to build a space station model for display in 
museums. This became the design requirement discussed during the 
VOC analysis. The team found additional information on why the ma-
terial was limited to wood: in a similar project carried out by another 
high school team previously, the space station model had been made of 
steel, and it was difficult to move the model to museums because of its 
heavy weight. Using wood was actually a solution to a specific problem, 
rather than a customer root want. After further discussion with the 
sponsor, the true customer root wants were identified as “lightweight, 
durable, and low cost.” As a result, a combination of different materials 
could be used, as long as the customer wants on weight, durability, and 
cost were satisfied. � 

Raw data for VOC can be obtained in a number of ways. Focus 
groups, interviews, surveys, customer complaints, customer require-
ments, and other customer feedback such as warranty data are all valid 
methods for collecting VOC information.  

4.1.5 CTQ Tree 

CTQ stands for CCritical to Quality [1, 3]. Before a CTQ tree can be 
built, we first need to identify the customer. Then we summarize the 
high-level ccustomer need based on the VOC analysis. Typically, this 
need is somewhat general, subjective, and not easy to quantify. Starting 
from this general need, a tree is created with two to three levels. The 
“ddrivers,” which are more specific than the need and easier to quantify, 
are then derived from the customer need. Next, CTQs are developed 



76 LEAN SIX SIGMA AND STATISTICAL TOOLS 

from the drivers; they are more specific and easier to quantify than the 
drivers. 

Example 4.3 The CTQ tree for an automobile repair shop can start with 
“auto repair” as the need. The drivers identify attributes that customers 
care about, which may include price, problem fixing, after-service support, 
and convenience in this case. The CTQ related to “price” may be “com-
petitive labor cost” and “parts with better quality.” The CTQs related to 
the driver “problem fixing” may be “identifying the root cause” and “find-
ing a solution.” The CTQ related to the driver “after-service support” 
may be “warranty for parts” and “warranty for labor.” The CTQ related 
to “convenience” may be “options for customers to drop off, pick up, or 
waiting,” “short service time,” and “option for online appointment.” The 
CTQ Tree is constructed as shown in Figure 4.6. 

 

Figure 4.6 A CTQ tree example 

� 
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4.2 Cp, Cpk, GR&R, Pareto Diagram, Prioritization 
Matrix, Normality Check, Monte Carlo Analysis 

4.2.1 Cp, Cpk 

Two widely used measurements for the performance of a process are 
process capability index, Cp, and pprocess performance index, Cpk [1]. 
They are defined as follows: 

 
6p

USL LSL
C

�
�  (4.1) 

 � �,
3 3pk

USL X X LSL
C min

� �
�  (4.2) 

where X is the mean value of the process output. 
The process capability index is a ratio of the width of the specifica-

tion limits and 6σ. If the width is greater than 6σ, then the process ca-
pability index is greater than one. The larger the process capability index 
value is, the lower the process defect rate will be. If the output is cen-
tered inside the specification limits, then Cp = Cpk. In general, Cp ≥ Cpk. 

Example 4.4 For a six sigma normal process without a shift in its mean, 
find its Cp and Cpk. If a normal process without a shift in its mean has a 1.5 
process capability index, calculate the sigma level for the process. If a six 
sigma process has a 1.5σ shift in its mean, what are its Cp and Cpk ? 

A normal process without a shift in its mean has its mean centered 
within the specification limits where LSL = � � 6σ and USL = � + 6σ. It 
follows from the definition of the process capability index that Cp = 2. 
Similarly, Cpk = 2.  

If the process capability index is 1.5, then  

1.5
6

USL LSL
σ
�

� �
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and USL – LSL = 9σ. Since its mean is centered between the specifica-
tion limits, we have LSL = � � 4.5σ and USL = � + 4.5σ. Therefore, it 
is a 4.5 sigma process. 

For a six sigma process with a 1.5σ shift in its mean, we assume the 
shift is to the right. It follows that LSL = � � 6σ � 1.5σ = � � 7.5σ and 
USL = � + 6σ � 1.5σ = � + 4.5σ. Therefore, Cp = 2 and Cpk = min 
{4.5/3, 7.5/3} = 1.5.  Similarly, if the mean shifts to the left, it can be 
calculated that  Cp = 2 and Cpk  = 1.5. � 

In general, a process with Cpk greater than 1.33 is called ccapable; it is 
capable with tight control if Cpk is between 1.00 and 1.33, and 
incapable if Cpk is less than 1. 

4.2.2 GR&R 

GR&R is the acronym for GGage Repeatability and Reproducibility 
[1, 5, 6]. A ggage is any device used to measure certain characteristics of a 
component, and GR&R is a part of the MMeasurement System Analysis 
(MSA), which is typically conducted before collecting data using a 
measurement system. There are four aspects of a gage that are important 
to MSA: resolution, accuracy, repeatability, and reproducibility.  

1. RResolution is the smallest amount of change that a gage can de-
tect, also known as sensitivity or discrimination. 

2. AAccuracy is an indication of how close the measurements are to 
the true value. 

3. RRepeatability is the variation in measurements on the same part 
by the same operator at or near the same time, also known as 
the eequipment variation. Repeatability can be used to indicate 
precision. 

4. RReproducibility is the amount of variation in measurements by 
different operators at different times, also known as the appraiser 
variation. 

The AANalysis Of VAriance (AANOVA) is the most common 
method used for GR&R analysis. The ANOVA for GR&R is conducted 
with N number of operators and M number of random parts. The parts 
are first labeled for identification purpose and the operators will take 
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measurements of the parts with L number of replications. We can use 
Excel, but the most convenient way is to use statistical analysis software 
such as Minitab. For a given confidence level, Minitab can calculate the 
contribution from the operators (reproducibility), from the part-to-part 
variation, from the measurement equipment (repeatability), and from 
the interaction between operators and parts. The R&R is the sum of 
repeatability and reproducibility. An example for GR&R analysis using 
Minitab can be found in Chapter 5 (Example 5.13). 

4.2.3 Pareto Diagram 

Pareto diagrams, or PPareto charts, are graphical representations of data 
that identify the vital factors separated from many trivial factors [1, 2, 7]. 
In Figure 4.7, the vertical axis represent the factors, and the horizontal axis 
is the response we are interested in which can be the occurrence, im-
portance, or impact of the factors on the outcome. Sometimes the graph is 
rotated by 90 degrees. 

The Pareto diagram can also be modified slightly to reflect the im-
portance of each factor. This is done by multiplying the response of each 
factor by a weighing factor, producing the weighted Pareto diagram. 

 

Figure 4.7 A Pareto chart example 
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4.2.4 Prioritization Matrix 

The  principle  of the  prioritization matrix is similar to that of the Pugh 
matrix (Appendix A). The  prioritization matrix is typically used to 
determine how much impact the inputs have on the outputs [1]. The 
procedure for constructing it is as follows: 

1. Identify the inputs and outputs.  
2. Create a matrix with the inputs in the first column and the out-

puts in the first row.  
3. Assign a weight to each output. 
4. For each output, assign a rank order for each input. Number “1” 

means that the input has the least influence on the output, and the 
largest number in ranking indicates the most significant influence. 

5. Calculate the weighted averages for each input and assign it as 
the composite ranking. 

Example 4.5 Let x1, x2, and x3 be the inputs and y1, y2, y3, and y4 be 
the outputs. The relative importance or the weights for the outputs are 
0.2, 0.4, 0.1, and 0.3 respectively. Note that the weights add up to 1 in 
this case, which is not necessary; you may choose integers to simplify the 
calculations. Suppose that the influence on y1 has the rank order of x1, 
x3, x2 from the most significant to the least significant, the influence on 
y2 has the rank order of x1, x2, x3, the influence on y3 has the rank order 
of x3, x1, x2, and the influence on y4 has the rank order of x2, x3, x1. The 
prioritization matrix can be constructed as shown in Figure 4.8. 

Based on the composite rankings, x1 is the most important input and 
x3 is the least important input.  

 

Figure 4.8 A prioritization matrix example 

� 
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Substituting the outputs with the criteria and the inputs with the 
options with the weight equal to 1, then the priority matrix becomes a 
Pugh matrix, only with the rows and columns switched in their roles.  

4.2.5 Normality Check 

Many probabilistic theories are based on the assumption that the random 
variable has a normal distribution, also referred to as GGaussian 
distribution. Although many random variables have normal distributions, 
it is still necessary to check whether the random variables under 
consideration have normal distribution or not. The nnormality check is a 
graphical method that allows us to examine, at a given confidence level, if 
the data is from a normal distribution [1, 8−10]. This method can be 
extended to more general cases where the distribution may or may not be 
normal distribution. In this more general setting, the method is then called 
a pprobability plot. The rationale for the probability plot method is that if 
the sample was selected from the standard normal distribution, the sample 
percentiles should be reasonably close to the corresponding population 
percentiles. 

The procedure for constructing a plot for normality check is as 
follows: 

1. Sort the data in ascending order. The ith number is considered 
to be the [100(i � 0.5)/n]th sample percentile, where n is the to-
tal number of data points and i = 1, 2, . . . ,n. These are the ver-
tical coordinates (y) of the points in the plot. 

2. Calculate the [100(i � 0.5)/n]th percentile for the standard 
normal distribution. These are the horizontal coordinates (z) of 
the points in the plot. 

3. Plot y vs z. 

If the z–y coordinates are very close to a straight diagonal line pass-
ing through the origin with a slope of 1, then the data can be modeled 
by a random variable with standard normal distribution. 

In a more general case, if X is a normal random variable with � as its 
mean and σ as its standard deviation, then Y= (X � μ)/σ is a standard 
normal random variable as shown in Section 2.9.1. If (z, y) coordinates 
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are close to the straight diagonal line passing through the origin with a 
slope of 1, then it follows that the (z, x) coordinates are very close to a 
straight line with � as its x-intercept and σ as its slope, and vice versa. 
Therefore, if the (z, x) coordinates are close to a straight line, then the data 
can be modeled by an underlying random variable with a normal distribu-
tion. The x-intercept is the estimated mean value and the slope of the 
straight line is the estimated standard deviation. This graphical method 
can be implemented in Excel. The goodness of fit can be indicated in Ex-
cel by the R2 value, also called the ccoefficient of determination. The 
closer R2 is to 1, the better the fitting is. 

Example 4.6 Given the following data set, use normality check to de-
termine if the data are from a normal distribution. If they are, find the 
estimated mean and estimated standard deviation for the population. 

0.6399 0.8059 0.091 0.5194 −0.803 0.1725 0.3382 −1.547 −0.446 −1.13 0.3619 0.4945 

−0.551 −0.676 0.2032 2.0713 −1.547 −1.304 −0.501 0.7936 −0.511 0.0105 −0.499 −0.912 

0.5627 −1.033 0.8431 −0.625 −0.772 −1.945 1.5952 0.4143 −1.037 −1.238 −0.14 0.9913 

 
There are 36 numbers in the data set, so n = 36. We first sort the 

data in ascending order to be the vertical (y) coordinates of the points: 
 

�1.945 �1.547 �1.547 �1.304 �1.238 �1.13 �1.037 �1.033 �0.912 �0.803 �0.772 �0.676 

�0.625 �0.551 �0.511 �0.501 �0.499 �0.446 �0.14 0.0105 0.091 0.1725 0.2032 0.3382 

0.3619 0.4143 0.4945 0.5194 0.5627 0.6399 0.7936 0.8059 0.8431 0.9913 1.5952 2.0713 

 
Next we need to calculate the [100(i − 0.5)/36]th percentile of the 

standard normal distribution, for i =1, 2,. . . , 36. The results will be the 
horizontal (x) coordinates of the points, and can be calculated in Excel 
as shown in Figure 4.9: 

 

Figure 4.9 Excel screen capture for Example 4.7 
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The resulting x coordinates are listed in the following table: 
 

�2.2 �1.732 �1.48 �1.298 �1.15 �1.025 �0.913 �0.812 �0.719 �0.631 �0.549 �0.469 

�0.393 �0.319 �0.246 �0.175 �0.105 �0.035 0.0348 0.1046 0.175 0.2462 0.3186 0.3928 

0.4693 0.5485 0.6314 0.7189 0.8122 0.9132 1.0246 1.1503 1.2975 1.4799 1.7317 2.2004 

 
The points with the (x, y) coordinates so calculated are plotted in 

Figure 4.10 with Excel. The equation for the trend line and the R2 value 
are shown in the graph. The R2 value of 0.9812 indicates that the 
straight line is a good fit for the data, leading to the conclusion that the 
data can be modeled by a normal random variable. Based on the equa-
tion, the y-intercept is �0.1752, which is the estimated mean for the 
normal random variable. The estimated standard deviation is the slope 
of the trend line, which is 0.9182. 

Other methods are readily available for use if statistical software such 
as Minitab is used, in which case the user can select specific methods 
such as the Anderson–Darling method.  

 

Figure 4.10 Probability plot for Example 4.7 

� 
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4.2.6 Monte Carlo Analysis 

Monte Carlo analysis is a numerical analysis usually performed by 
computers [11, 12]; it uses randomly generated inputs to calculate the 
output and draw conclusions based on the statistical properties of the 
results. This analysis can quickly generate a large amount of computer 
experimental data without physically conducting the experiments. The 
procedure for Monte Carlo analysis is as follows: 

1. Define inputs to the system being analyzed. 
2. Randomly generate the values of each input according to its 

probability distributions (assuming that you know the probabil-
ity distribution of each input). 

3. Simulate the system with the input values thus generated and 
obtain the outcome data (Some kind of simulation model is 
usually required to produce the outcome for each set of input).  

4. Draw conclusions based on the simulation results. 

Example 4.7 A well-known example for Monte Carlo analysis is to 
estimate the value of π. Consider the unit circle in the first quadrant and 
the square with sides equal to 1 as shown in the Figure 4.11. 

 

Figure 4.11 Monte Carlo analysis example (Example 4.7) 
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The area of the unit square is 1, and the area inside the quarter unit 
circle is π/4. If the coordinates of a point (x, y) are randomly generated 
from a uniform distribution independently, with the x, y values between 
0 and 1, then the probability for the point to fall inside the quarter unit 
circle is π/4. If N such points are randomly generated using some soft-
ware and N is very large, then the occurrences of points falling inside the 
quarter circle divided by N should approach the value of π/4. From this 
we can estimate the value of π. 

In this example, the inputs are the x and y coordinates of the point, 
whose values can be generated in Excel or other random number genera-
tor. In Excel, click on DData, DData Analysis, choose RRandom Number 
Generation, and then click OOK. Assign 2 to Number of Variables; as-
sign a large number, say 1,000, to Number of Random Numbers; select 
Uniform from Distribution menu and assign parameters to be between 
0 and 1. Now we have randomly generated 1,000 pairs of numbers be-
tween 0 and 1. Next we calculate the value of x2 + y2; if it’s less than 1, 
then it is inside the quarter circle. Use COUNTIF in Excel to count the 
total number of points that are inside the quarter circle. Assume this 
sum is 791 (this number can be different every time because the num-
bers are randomly generated), then we have  

791
1000 4

π
� �

This provides us with an approximation of the value for π to be  
791 × 4/1000 = 3.16. In general, the larger the number N is, the more 
accurate the approximation will be. � 

Other examples of Monte Carlo analysis from practical Lean Six 
Sigma projects can be found in Chapter 8. 

4.3 Confidence Intervals, Hypothesis Testing,  
Cause-and-Effect Analysis, FMEA, DOE, VSM 

4.3.1 Confidence Intervals 

In Lean Six Sigma projects, we often need to estimate parameters such as 
the mean of a random variable. There are two types of estimations: point 
estimation and interval estimation. Point estimation involves a single value, 



86 LEAN SIX SIGMA AND STATISTICAL TOOLS 

for example, the sample average can be used as a point estimation for the 
population mean. Point estimations are usually simple to understand; 
however, they usually do not provide information about how good the 
estimations are. The interval estimation provides an interval together with 
a cconfidence level (CCL) [1, 9, 10, 13], instead of a single value. 

Let us start with the interval estimation of the mean value for a 
normal distribution with a known population standard deviation �. Let 
x1, x2, . . . , xn be n samples from the same normal distribution. Using the 
definitions of normal distribution, mean, and standard deviation, one can 

show 
1

n
ii

X x
=

=�  is a normal distribution with � as its mean and 

σ / n  as its standard deviation. Based on the discussion in 
Section 2.9.1, the following random variable  

/
X

Z
n
μ

σ
−= �

has a standard normal distribution. Therefore, we can find the probabil-
ity of Z being between any two numbers. Typically, we use this property 
in a reverse manner, that is, given a probability, we can find a symmetric 
interval (�w, w) that Z lies in with the probability. This probability is 
defined as the cconfidence level (CL) and the interval is defined as the 
confidence interval ((CI). 

Typical values for confidence levels are 90, 95, and 99 percent. Here, 
we use 95 percent as an example to show how the CI is determined. Since 
the standard normal distribution is symmetric, (1 � 95%)/2 = 2.5% of the 
area under the standard normal density curve should be to the right of w 
and 97.5 percent of the area should be to the left of w. In other words, w 
should be the 97.5 percentile. The value of w can be obtained by typing 
“=NORM.S.INV(0.975)” in a cell in Excel, it is approximately 1.96. 
Similarly, for confidence levels of 90 percent and 99 percent, we can use 
NORM.S.INV(0.95) and NORM.S.INV(0.995) to get w = 1.645 and w = 
2.576 respectively. Now let us return to the 95 percent confidence level. 
We can summarize what we have discussed with the following formula: 

� �1.96 1.96 0.95P Z� � � � �
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which means that Z is a number between �1.96 and 1.96 with a proba-
bility of 95 percent. We can rewrite the inequalities as 

1.96 1.96
/

X
n
μ

σ
�

� � � �

which is equivalent to 

1.96   1  .96X X
n n

σ σμ− < < + �

The result is summarized in the following theorem. 
 

Theorem 4.1 The confidence interval for the population mean of a 
normal distribution with a known standard deviation is  

 1.96 ,   1.96X X
n n

σ σ� �− +� �
� �

 (4.3) 

at 95 percent confidence level.  

 
It is worth noting that the CI is not a fixed interval, instead the val-

ues of the two ends are random variables. For one set of samples, we 
have one interval; for another set of samples, we may have a different 
interval, even though the two sample sets are from the same population. 
All we can say is that for all data sets, 95 percent of the time the popula-
tion mean will be contained in the CI calculated this way. 

For other confidence levels, the derivation of CI calculation remains 
the same; simply change the number 1.96 to the appropriate value de-
termined by the confidence level. 

If the samples are not from a normal distribution, but n is large 
enough, we can use the Central Limit Theorem to establish the CI. The 
procedure is exactly the same except that it is an approximation in this 
case. For 95 percent confidence level, the CI is given by Equation (4.3). 

In the above derivation, we assumed that the population standard 
deviation � is known.If this is not the case, that is, we have a normal 
random variable with unknown mean and standard deviation. In this 
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case, we can replace the population standard deviation � with the sample 
standard deviation s. With the above substitution, the following random 
variable can be shown to have a t-distribution. 

/
X

T
s n

μ−= �

Following the similar steps as in the derivation of CI for normal var-
iables with known standard deviations, we have the following theorem: 

 

Theorem 4.2 The confidence interval for the population mean of a 
normal distribution with an unknown standard deviation is 

 /2,  1 /2,  1,  n n
s s

X t X t
n nα α− −

� �− +� �
� �

 (4.4) 

 
where /2,  1ntα �  is the value which has an area of �/2 under the t-distribution 
probability density function with n � 1 degree of freedom to its right side, 
also known as the tt-critical value. � is the ssignificance level, which is 
equal to (1 � confidence level), and s is the sample standard deviation. 

The CI for standard deviation estimation of a normal distribution is 
given in the following theorem without a proof. 

 

Theorem 4.3 The CI for the standard deviation of a normal distribu-
tion is given by 

2 2

, 1 1 , 1
2 2

1 1,     
n n

s n s n

α αχ χ
− − −

� �− −
� �
� �� �
� �

 

where n is the sample size, s is the sample standard deviation, � is the 
significance level, which is equal to (1 � confidence level), and 

2 2 2
,  is the   value such that area   is under the   probability densityγ νχ χ γ χ  

2function with   degree of freedom,  to the right of the ν χ  value. 
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There are many other CI estimation methods for other parameters 
such as proportion. For more CI estimation methods the reader can 
refer to the reference books listed at the end of this chapter. 

4.3.2 Hypothesis Testing  

In  hypothesis testing, we use statistical tools to analyze a given set of 
data in order to determine whether a hypothesis should be rejected or 
not [1, 3, 10, 13]. We have used hypothesis testing in Section 4.2 to 
check the normality of a data set, or more generally, to decide whether a 
data set can be modeled by a specific probability distribution. In this 
section, we will discuss another type of hypothesis testing: to determine 
whether a parameter is greater, equal to, or less than a certain value. The 
parameter can be the mean or variation of a population, for example. 
Such hypothesis testing typically involves a null hypothesis denoted by 
H0 and an alternative hypothesis H1 that is contradictory to H0.  

It is important to understand that there is a risk involved in hypothesis 
testing. We can make mistakes when we draw a conclusion on a 
hypothesis. There are two types of errors in hypothesis testing. TType I 
error incorrectly rejects the null hypothesis when it is actually true. The 
probability of making a type I error, denoted by �, is defined to be the 
significance level of the test; it is also known as the pproducer’s risk. 
Typical values for � are 0.1, 0.05, and 0.01. TType II error incorrectly 
accepts the null hypothesis when it is actually false. The probability of 
making a type II error, denoted by �, is also known as the cconsumer’s risk. 
In general, for a given set of data, reducing � will cause � to increase, and 
vice versa. However, increasing the sample size will reduce both � and �. 

The fundamental concept of hypothesis testing is based on the fact 
that if we assume the parameter equal to certain value, then we can cal-
culate the probability of certain test statistic being in a region. If the 
data falls into a low probability region, then we have enough confidence 
to reject the hypothesis. The actual application of this concept requires 
the following steps:  

1. Select a null hypothesis. 
2. Set a significance level �, which is the probability of making 

type I error. 
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3. Determine the rregion of rejection.  
4. Calculate the test statistic using the given data. If the test statis-

tic fails in the region of rejection, then the null hypothesis is re-
jected. Otherwise it is not rejected. 

We use the case of hypothesis testing for population mean to illustrate 
this process. Let’s say the nnull hypothesis is that the population mean is 
less than or equal to certain value �0. Next we select a significance level �. 
Assuming the population mean is equal to �0, calculate the (1 � �)100th 
percentile denoted by x0. Then the region of rejection is x > x0, as illustrat-
ed in Figure 4.12. 

If the sample mean is in the region of rejection, we will reject the null 
hypothesis, which means we’ll conclude that the population mean is 
greater than �0. The rationale behind the conclusion is that if the null 
hypothesis were true, then the sample mean would only have a small 
probability (�) of falling into the region of rejection. If we reject the null 
hypothesis, the probability of our conclusion being wrong is �. The prob-
ability of the null hypothesis being false is 1 � �, which is the confidence 

 

Figure 4.12 Significance level, critical value, and region of rejection 
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level. If � = 0.05, then the probability of our conclusion being wrong is 
5 percent and our confidence level for rejecting the hypothesis is 
95 percent. 

What happens when the population mean is less than �0? The prob-
ability density curve in Figure 4.12 will be shifted to the left in this case, 
which will make the probability of x > x0 even smaller. Therefore, if we 
reject the null hypothesis, the probability of our conclusion being wrong 
will be smaller than �. 

It is worth noting that when the test statistic is not in the region of 
reject, we are not accepting the null hypothesis; we just cannot reject it. 
For this reason, if we want to prove a claim, we usually choose the oppo-
site of the claim to be the null hypothesis. The claim we want to prove 
would then become the alternate hypothesis. If the data support the 
rejection of the null hypothesis, then we can conclude that the claim we 
want to prove is correct with a high probability. 

An alternative way of testing a hypothesis is to calculate the so-called 
p-value. Instead of selecting a significance level �, a test statistic calculated 
from the data is used to determine the probability of the test statistic be-
ing right on the border line of the region of rejection. If the significance 
level � is chosen to be smaller than the p-value, then we would fail to re-
ject the hypothesis. If the significance level � is chosen to be greater than 
the p-value, then we would be able to reject the hypothesis. The p-value is 
shown in Figure 4.13 as the shaded area to the right of the test statistic. 

In the above case we discussed, the nnull hypothesis and aalternate 
hypothesis are 

0 0      1 0     :                          :         H Hμ μ μ μ≤ >  

This is called the rright one-tailed test, since the region of rejection is 
on the right side, with an area of �. It is also referred to as the uupper-tailed 
test. Similarly, we have the lleft one-tailed test, or the llower-tailed test, 
with the following null hypothesis and alternate hypothesis: 

0 0      1 0     :                          :  H Hμ μ μ μ≥ <  
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Figure 4.13 p-value 

 

 

 

Figure 4.14 Left one-tailed test 
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In this case, the region of rejection is on the left side, with an area of 
� as shown in Figure 4.14. 

The third case is 

0 0      1  0   0 :                          :         H H orμ μ μ μ μ μ= < > . 

This is called a ttwo-tailed test since the region of rejection has two 
sides, one on the left and one on the right. Each side has an area of �/2, 
as shown in Figure 4.15. 

The most common hypothesis testing involves the population mean 
and population standard deviation for normal distributions. The propor-
tion in binomial distribution is also widely used in hypothesis testing. We 
will examine some of these hypothesis tests. 

 

Figure 4.15 Two-tailed test 
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Z-Test: 

If the population is known to have a normal distribution with a known 
standard deviation �, and we are interested in comparing the population 
mean to a fixed value �0, then we can use the following test statistic: 

 0

/
X

Z
n

μ
σ

−
=  (4.5) 

where  X  is the sample average, � is the population standard deviation, 

0 μ is the value given in the null hypothesis, and n is the number of 
sample points. 
 

Theorem 4.4 Given a normal distribution with a known standard devi-
ation, three types of hypothesis tests can be performed with significance 
level �. 
1. For right one-tailed test, if ,  then the null hypothesis Z Zα�

0 0:  H μ μ  is rejected. Otherwise, there is insufficient evidence to 
reject the null hypothesis. 

2. For left one-tailed test, if ,  then the null hypothesis Z Zα��

0 0 :  H μ μ� is rejected. Otherwise, there is insufficient evidence to 
reject the null hypothesis. 

3. For two-tailed test, if α α/2 /2,or    then the null Z Z Z Z�� �

0 0 hypothesis  :  H μ μ� is rejected. Otherwise, there is insufficient 
evidence to reject the null hypothesis. 

 
When the sample size is large, according the Central Limit Theorem 

in Section 2.10, the Z-test can be applied without assuming the normal-
ity of the distribution and without knowing the population standard 
deviation. In this case, the population standard deviation σ  is replaced 
with the sample standard deviation s. 

t-Test: 

If the samples are drawn from a normal random distribution, but the 
population standard deviation is unknown and the sample size is small, 
then the Z-test cannot be used. The test statistic defined by 
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 0

/
X

T
s n

μ−
=  (4.6) 

has a t-distribution, where s is the sample standard deviation.  
Following a similar reasoning as for the Z-test, we have the following 

theorem: 
 

Theorem 4.5 Given a normal distribution with an unknown standard 
deviation and a small sample size, three types of hypothesis tests can be 
performed with significance level �: 
1. For right one-tailed test, if , 1,  then the null hypothesis nT tα ��

0 0:  H μ μ  is rejected. Otherwise, there is insufficient evidence to 
reject the null hypothesis. 

2. For left one-tailed test, if , 1,  then the null hypothesis nT tα ���

0 0 :  H μ μ�  is rejected. Otherwise, there is insufficient evidence to 
reject the null hypothesis. 

3. For two-tailed test, if ,  1 , 1
2 2

or   then the null  
n n

T t T tα α
� �

�� �

hypothesis 0 0:  H μ μ�  is rejected. Otherwise, there is insufficient 
evidence to reject the null hypothesis. 

 

The definitions of ,  1ntα �  and α , 1
2

,n
t

�  known as the t – critical values, 

are similar to those of Zα and /2Zα  with the standard normal probability 
density function replaced by the t-distribution. 

Example 4.8 The average daily failure rate for a product was 1 percent. 
A Lean Six Sigma team worked on the process improvement. The new 
process has been tested for 16 days with the average daily failure rate of 
0.85 percent and a sample standard deviation of 0.3 percent. Can we 
make the conclusion that the process mean has been improved with 
95 percent confidence level? 

We choose the null hypothesis and alternate hypothesis as 

0 0      1 0     :                          :  H Hμ μ μ μ≥ < �
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This matches case 2 of Theorem 4.5. The test statistic is calculated as 

0 0.0085 0.01
2.0

/ 0.003 / 16
X

T
s n

μ− −= = = − �

We can use Excel to calculate the t-critical value: 0.05,15 1.7531t � . 

Since T < �t0.05, 15, we can reject the null hypothesis and accept the al-
ternate hypothesis according to Theorem 4.5. In other words, based on 
the data, we can conclude with 95 percent confidence that the process 
has been improved by the team. � 

Let us revisit Example 2.18 from the perspective of hypothesis testing. 

Example 4.9 Ten measurements of a random variable are as follows: 

x1 = 10.0, x2 = 11.1, x3 = 9.9, x4 = 10.1, x5 = 11.2, x6 = 9.7, x7 = 11.5,  
 x8 = 9.8, x9 = 10.1, x10 = 11.2 

Can we make the conclusion with 95 percent confidence level that 
the random variable has a population mean greater than 10.0? 

We choose the null hypothesis and alternate hypothesis as 

0 1:   10.0                       :   10.0H Hμ μ≤ > �

The average of the samples is 10.46, and the sample standard devia-
tion is 0.6979. 

0 10.46 10
2.084

/ 0.6979 / 10
X

T
s n

μ− −= = = �

Using Excel function T.INV (0.95, 9), we find that 
, 1 , 11  .833. Since n nt T tα α− −= > , the null hypothesis is rejected and the 

alternative hypothesis is accepted, that is, at 95 percent confidence level, 
we can conclude that the population mean is greater than 10.0. � 

F-Test: 

Let x1, x2, . . . , xm be samples from a normal random variable X and y1, 
y2, . . . , yn be samples from a normal random variable Y. Suppose X and 
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Y are independent. To compare the population standard deviations of X 
and Y, an F-test statistic is defined as 

2
1
2
2

s
F

s
�  

where s1 and s2 are the sample standard deviations for X and Y, respectively. 
 

Theorem 4.6 Let x1, x2, . . . , xm be samples from a normal random var-
iable X and y1, y2, . . . , yn be samples from a normal random variable Y. 
Suppose X and Y are independent. Three types of hypothesis tests can be 
performed on the population statandard deviations of X and Y with sig-
nificance level �: 
1. If α − −≥ , 1, 1,m nF F then the null hypothesis σ σ≤1 2

 is rejected. 

Otherwise, there is insufficient evidence to reject the null hypothesis. 
2. If α− − −≤ 1 , 1, 1,m nF F then the null hypothesis σ σ≥1 2

 is rejected. Oth-

erwise, there is insufficient evidence to reject the null hypothesis. 
3. If α − −≥ /2, 1, 1, m nF F or α− − −≤ 1 /2, 1, 1m nF F then the null hypothesis 

σ σ1 2 �  is rejected. Otherwise, there is insufficient evidence to re-
ject the null hypothesis.  

Example 4.10 Eight and 10 samples were taken for normal random 
variable X in January and February, respectively. 

January 9.9 11 9.8 10.5 11.1 9.9 11.4 9.8 

February 9.1 11.7 9.9 10.1 11.2 9.7 11.5 9 10.1 12.5 

 
The sample standard deviation for January is calculated to be 

0.6628. The sample standard deviation for February is calculated to be 
1.1764. Do the samples indicate a significant increase in variation from 
January to February at 95 percent confidence level? What if we change 
the confidence level to 90 percent? 

The null hypothesis is 

σ σ≤ = =0  1 2:    ,            9,  7 f jH v v �
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The alternative hypothesis is 

1  :   f jH σ σ> �

The F-test statistic is 

2

2

1.1764 3.1506
0.6628

f = = �

At a 95 percent confidence level, the F statistic needs to be greater 
than the critical value of 3.6767 to reject the null hypothesis. This can be 
found from either an F distribution table or by using the Excel function 
F.INV(0.95,9,7). Since f is not greater than the critical value of 3.6767, we 
fail to reject the null hypothesis at 95 percent confidence level. 

If we change the confidence level to 90 percent, the critical value is 
reduced to 2.7246 (“= F.INV(0.9, 9,7)”). Since f = 3.1506 > 2.7247, we 
will reject the null hypothesis and accept the alternative hypothesis. 

In summary, at a 90 percent confidence level we can draw the conclu-
sion that the variation in February is greater than that of January; such a 
conclusion cannot be drawn at a 95 percent confidence level, however. � 

Chi-Square Test: 

For a normal distribution, the Chi-square distribution can be used for hy-
pothesis testing of the population standard deviation, whether it is greater 
than, less than, or equal to a number 0σ . The test statistic is calculated as 

 
2

2
2
0

( 1)n sχ
σ
�

�  (4.7) 

where n is the number of sample points and s is the sample standard 
deviation. 

Similar to the Z-test, t-test, and F-test discussed earlier, there are 
three scenarios with the null hypothesis and alternate hypothesis: 

0 0 1 0Right one tailed test :       :        ,   :    H Hσ σ σ σ− ≤ > �

σ σ σ σ− ≥ <0 0 1 0Left one tailed test :       :     ,  :    H H �

σ σ σ σ σ σ− = > <0 0  1 0 0Two tailed test :      :     :              ,H H or �
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Theorem 4.7 Given a normal distribution, three types of hypothesis 
tests can be performed on the population standard deviation with signif-
icance level �. 
1. For right one-tailed test, if 2 2

, 1� � nα −> , then the null hypothesis 

0 0:         H σ σ≤ is rejected. Otherwise, there is insufficient evidence to 

reject the null hypothesis. 
2. For left one-tailed test, if 2 2

1 ,  1� � nα− −< , then the null hypothesis 

0 0:    H σ σ�  is rejected. Otherwise, there is insufficient evidence to 

reject the null hypothesis. 

3. For two-tailed test, if 2 2

1 , 1
2

� �  
nα− −

< or 2 2

,  1
2

� �
nα −

> , then the null 

hypothesis 
0 0  :    H σ σ= is rejected. Otherwise, there is insufficient 

evidence to reject the null hypothesis. 

Example 4.11 One hundred fifty measuremes were taken for the di-
mension of a product. The sample standard deviation is calculated to be 
0.0101. The vendor of this product claims that the standard deviation is 
less than or equal to 0.01, which is chosen as the null hypothesis. At 5 
percent significance level, can we reject the null hypothesis based on the 
sample data? 

Since we are testing whether the standard deviation is less than or 
equal to a value, it is a right one-tailed test. 

2 2 2 2
0 1:  0.01 ,     :  0.01  H Hσ σ �  

The test statistic is given by 

χ
σ
− ×= = =

2 2
2

2 2
0

( 1) 149 0.0101 151.99
0.01

n s  

According to Theorem 4.7, this test statistic needs to be compared with 

α −
2

, 1� ,n  where � = 0.05 and n = 150. Using Excel, 2
0.05,149 121.787.χ =  

Since the test statistic is greater than 2
0.05, 149� ,  the null hypothesis is 

rejected and the standard deviation of the measured dimension is deemed 
greater than 0.01. � 
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Paired t-Test: 

Let x1, x2, . . . , xn be samples from a normal random variable X and y1, 
y2, . . . , yn be samples from a normal random variable Y. Suppose X and 
Y are independent. Let D = X � Y. Then the following variable has a t-
distribution with degree of freemdom of n � 1: 

 
D

D n
T

s
=  (4.8) 

where D  and Ds  are the sample average and standard deviation of D, 
respectively. The following theorem can be used to compare the popula-
tion means Xμ  and Yμ . 
 

Theorem 4.8 Let x1, x2, . . . , xn be samples from a normal random vari-
able X and y1, y2, . . . , yn be samples from a normal random variable Y. 
Suppose X and Y are independent. Three types of hypothesis tests can be 
performed on the population means of X and Y with significance level �: 
1. If , 1nT tα �� , then the null hypothesis X Yμ μ≤  is rejected. Other-

wise, there is insufficient evidence to reject the null hypothesis. 
2. If , 1nT tα �� , then the null hypothesis X Yμ μ≥  is rejected. Oth-

erwise, there is insufficient evidence to reject the null hypothesis. 
3. If /2, 1  nT tα �� or /2, 1,nT tα ��  then the null hypothesis  X Yμ μ=  

is rejected. Otherwise, there is insufficient evidence to reject the null 
hypothesis. 

Example 4.12 Two sets of data were collected before and after a Lean 
Six Sigma project. 

Before 5.1 5.2 5.1 5.5 5.9 5.3 5.1 4.7 

After 4.9 5.4 4.9 4.8 5.2 5.5 5.0 4.3 

 
Can we conclude, with confidence level of 95 percent, that the pop-

ulation mean has been reduced? 
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Let us select the hypotheses as 

0 1:        ,   :      b a b bH Hμ μ μ μ≤ > �

where bμ  and aμ  are the population means of before and after, respec-
tively. It can be calculated that the difference between the “before” and 
“after” data has a sample average of 0.2375 and sample standard devia-
tion of 0.3503. The degree of freedom is 7. Using Excel function 
“=T.INV(0.95,7)”, we can calculate the t-critical value as 0.05,7 1.8946.t =  

The test statistic is 

0.2375 8 1.9179
0.3503D

D n
T

s
= = = �

Since T > 0.05,7t , we can conclude with 95 percent confidence level 

that the population mean has been reduced. � 

More detailed discussions on hypothesis tests can be found in the 
reference books [1, 9, 10, 13−15].  

In many software packages, the p-value is calculated when conducting 
hypothesis testing. p-value is defined as the smallest significance level � at 
which the null hypothesis can be rejected. That is, if p-value ≤ �, the null 
hypothesis is rejected; If p-value > �, the hypothesis is not rejected. 

4.3.3 Cause-and-Effect Analysis 

Cause-and-effect diagram:  

The caause-and-effect diagram, also known as the ffishbone diagram, is a 
graphical method that can be used to analyze the root cause of a problem 
[7]. It is typically created in combination with other tools such as brain-
storming, affinity diagram, and prioritization matrix. It starts from a prob-
lem statement, followed by sorting the possible causes of the problem into 
several categories such as mmachine, mmaterial, mmeasurement, mmethod, 
manpower, and eenvironment. Each category contains more detailed 
causes. This information is represented in the diagram that resembles a 
fishbone, hence the name “fishbone diagram.” The following example can 
be found in Section 3.3.4 (Figure 3.10, reprinted here as Figure 4.16).  
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Figure 4.16 A cause-and-effect diagram example 

After the fishbone diagram is created, the next step is to prioritize the 
causes so that the project team can focus on the most important ones. 

Additional examples of the cause-and-effect diagram can be found in 
Ishikawa’s book: Guide to Quality Control [7]. 

5 Whys: 

Another effective tool for cause-and-effect analysis is the 55 Whys meth-
od. It was first introduced by Toyota as a part of the Toyota Production 
System [1]. It states that one can ask “why” five times to get to the root 
cause of a problem. When asking the 5 Whys questions, the focus 
should be on the failure of the process where the problem resides. The 
concept of 5 Whys is illustrated by the following example. 

Example 4.13 We have a problem with a vehicle: its engine cannot be 
started. We ask the first “why” and find that the vehicle’s battery is 
dead. If we stopped at this point, the solution would seem to be replac-
ing the battery. We ask the second “why,” “Why is the battery dead?” 
The answer is that it is not properly charged by the alternator. Instead of 
replacing the alternator, we continue to ask the third “why,” and discov-
er that the alternator belt is slipping and almost broken. The fourth 
“why” unearthed the fact that the belt has not been replaced as recom-
mended by the manufacturer. After the fifth “why,” we know that the 
vehicle is not maintained properly by the owner. This is the root cause. 
By fixing the root cause, we can not only solve this problem but also 
prevent other problems from occurring. � 
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4.3.4 FMEA 

Failure Mode and Effects Analysis (FMEA) is an effective tool for risk 
assessment [16−18]. It is used to identify possible ways for failures to 
occur (ffailure modes), the ppotential effects of the failures, the sseverity of 
the consequence of the failures, the probability of failures occurring 
(ooccurrence), and the probability of detecting the failures (ddetectability). 
In addition to identifying the potential failures, FMEA is also used to 
prioritize actions that need to be taken. It is a common practice to use 
cause-and-effect analysis method during the process of FMEA analysis. An 
FMEA example is illustrated in Figure 4.17.  

The header of the document contains information on the product, 
the FMEA, and those responsible for the documentation. The main 
body has a number of columns. The functions of a process or product 
are identified in the first column. For every function of the process, its 
potential failure modes are identified in the second column. For each 
failure mode, the effect of the failure is captured in the third column. 
The fourth column indicates the severity or the impact of the failure. 
This column is numerical, and the assignment of the numerical values 
can vary from one industry to another or even from one company to 
another. An example for severity criteria is given as follows: 

 

10: Extremely Hazardous, 9: Hazardous, 8: Very High, 7: High, 6: 
Moderate, 5: Low, 4:Very Low, 3: Minor, 2: Very Minor, 1: None 

 

Figure 4.17 An example of FMEA document 
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The fifth column of the FMEA document is optional, indicating if 
the failure mode is safety- related or not. The sixth column indicates the 
potential causes for the failure. The seventh column is the occurrence, 
which is used to indicate the possibility of the failure occurring. An 
example for occurrence criteria is given as follows: 

 

10: 1 in 2, 9: 1 in 3, 8: 1 in 8, 7: 1 in 20, 6: 1 in 80, 5: 1 in 400, 4: 
1 in 2000, 3: 1 in 15,000, 2: 1 in 150,000; 1: 1 in 1,500,000 

 
The eighth column captures what is currently being done to prevent 

or reduce the occurrence of the failure. The ninth column is detectabil-
ity, indicating the possibility of the failure being detected. An example 
for detectability criteria is given as follows: 

 

10: Almost Impossible, 9: Very Remote, 8: Remote, 7: Very Low, 6: 
Low, 5: Moderate, 4: Moderately High, 3: High, 2: Very High, 1: 
Almost Certain 

 
The tenth column is the RRisk Priority Number (RRPN), which is 

calculated as product of S (severity), O (occurrence), and D (detectabil-
ity). Based on the FMEA result, recommended actions to address the 
high RPN issues are recorded in the eleventh column. The twelfth col-
umn has the target completion dates for the recommended actions and 
the people responsible for the actions. The next five columns are for the 
next round of RPN evaluation, after the recommended actions are tak-
en. The RPN values are the most important indicators in the FMEA 
form, items with high RPN values usually become high priority tasks to 
look into. Although different industries or companies have different 
general criteria for acceptable RPN values, the typical acceptable thresh-
old is between 75 and 100.  

It is a common mistake to oversimplify FMEA and think that the 
RPN numbers are the only output of the analysis. In fact, FMEA doc-
uments and guides the design effort during the product development 
and manufacturing processes. In some cases, failure modes with relative-
ly low RPN also need to be investigated. For example, if the severity of a 
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failure mode is very high even though its RPN is not, actions may be 
required to reduce its occurrence or detection level. On the other hand, 
for a failure mode whose consequence is not very severe but its occur-
rence is very frequent, that failure can be very annoying to the customer. 
A low RPN value alone is not enough a reason for ignoring the failure 
mode. 

FMEA can be performed at the design stage for the design FMEA 
(DDFMEA) and the manufacturing process planning stage for the process 
FMEA (PPFMEA). 

4.3.5 DOE 

Design of experiments (DOE) is a method widely used in science and 
engineering for planning efficient experiments [19−23]. The purposes of 
the experiments include understanding the relationship between a set of 
inputs and outputs of a system, fitting regression models, and design 
optimization.  

In the context of Lean Six Sigma and Design for Six Sigma, DOE 
helps us determine the impact of inputs or ffactors of a process on the 
output or rresponse of the process. If there is only one factor, we can 
vary it and measure the response to understand the effect of the factor 
on the response, using techniques such as regression. More often the 
response is affected by multiple factors, and we would like to know the 
effect of each factor and possibly their iinteractions on the response. An 
interaction of two factors is important when their influence on the re-
sponse is not additive. For instance, if the product AB of factors A and B 
causes the response to change significantly, rather than A and B sepa-
rately, then the response is not an additive function of A and B. In that 
case, we can still use the regression techniques to uncover the impact of 
the factors on the response, but more experimental data will be needed. 
Under tight constraints on time and budget cost, it may not be feasible 
to conduct many experiments. DOE is a technique that can considera-
bly reduce the number of experiments needed to study which factors 
and interactions have more significant impact on the response.  

In a DOE, each factor takes several levels of values. The most popu-
lar choice is the ttwo-level DOE, where a minimum and a maximum 
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value are specified for each factor. The two levels are usually denoted by 
1, �1, +, �, or 1, 2. There are two types of DOEs, full factorial and frac-
tional factorial.   

Full-factorial DOE 

The ffull-factorial DOE contains all combinations of each factor taking 
the two levels.  

Example 4.14 The full-factorial DOE for the four-factor, two-level 
experiments is given as follows: 

StdOrde RundOr
d

CenterP Blocks A B C D 
16   1 1 1   1   1   1   1 

  7   2 1 1 �1   1   1 �1 

13   3 1 1 �1 �1   1   1 

  9   4 1 1 �1 �1 �1   1 

  5   5 1 1 �1 �1   1 �1 

11   6 1 1 �1   1 �1   1 

  2   7 1 1   1 �1 �1 �1 

  4   8 1 1   1   1 �1 �1 

  3   9 1 1 �1   1 �1 �1 

  6 10 1 1   1 �1   1 �1 

10 11 1 1   1 �1 �1   1 

15 12 1 1 �1   1   1   1 

  1 13 1 1 �1 �1 �1 �1 

12 14 1 1   1   1 �1   1 

14 15 1 1   1 �1   1   1 

  8 16 1 1   1   1   1 �1 

 
Note that there are 16 runs and each one can be replicated, causing 

the total number of runs to be large. To reduce the number of runs, we 
can use the ½-factorial DOE matrix, which will be discussed later. In 
general, for N factors each with two levels, the full-factorial DOE has 2N 

combinations without replicates. � 

Unless the experiments are carried out using computer simulation, it is 
recommended to have two or more rreplicates for each experiment. If there 
are many factors and some factors are known to have insignificant effects 
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or their effects are completely known, then we can use the bblocking 
technique in DOE to fix those factors. To reduce the impact of unknown 
factors, the order of experiments should be rrandomized. After the 
experiments are completed, the outcome can be used to create a Pareto 
chart, the mmain effect chart, and the iinteraction chart to identify the 
main effect and the interaction. Nowadays, most DOE matrices are 
generated with computer software, so are the charts. However, in order to 
illustrate the basic concept, let us go through the following simple example 
of calculating the main effects. 

Example 4.15 Consider a full-factorial DOE of two factors A and B, each 
with two levels. The first two columns in the matrix define the DOE tests. 
There are four runs in total. The third column is the interaction factor AB. 
The tests were run, and the response y was recorded in the last column. 
Assume that we would like to maximize the value of the response y. 

A B AB y 
  1   1   1   3 

  1 �1 �1 14 

�1   1 �1   6 

�1 �1   1   4 

 
To calculate the main effect of factor A, we take the average of the y 

values when A = 1, that is, the average of 3 and 14, which is 8.5. We 
then take the average value of y when A = �1, which is 5. The main ef-
fect of A is 8.5 � 5 = 3.5. Similarly, the main effect of B is �4.5, and the 
main effect of AB is �6.5.  

Since the absolute value of AB is the largest, the DOE analysis tells 
us that the interaction between A and B has the most significant effect 
on the response y. Factor B is the second most significant factor, while A 
is the least significant. To maximize the response, we would choose A 
and B with different signs so that AB = �1; factor B should be set at �1 
and factor A at 1. � 

Fractional-factorial DOE 

Most of the time, responses are only affected by a small number of main 
effects and lower order interactions; hence, not all the experimental data 
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in a full-factorial design are useful information. When the amount of 
experiments in a full-factorial DOE is too many, one may choose to use 
the ffractional-factorial DOE instead. A fractional-factorial DOE 
eliminates certain experiments from the full-factorial DOE, hence has 
considerably fewer experiments. The drawback of using fractional-factorial 
DOE is that we may not be able to determine the impact of certain 
interactions. 

Example 4.16 Four-factor, two-level, ½-factorial DOE 

StdOrder RundOrder CenterPt Blocks A B C D 
6 1 1 1   1 �1   1 �1 

3 2 1 1 �1   1 �1   1 

4 3 1 1   1   1 �1 �1 

7 4 1 1 �1   1   1 �1 

1 5 1 1 �1 �1 �1 �1 

2 6 1 1   1 �1 �1   1 

8 7 1 1   1   1   1   1 

5 8 1 1 �1 �1   1   1 

 
From the full-factorial DOE test matrix in Example 4.13, if we 

choose the rows with ABCD = 1, where ABCD is the interaction among 
A, B, C, and D, then we have only one-half of the experiments. We call 
it the “½ factorial” because its number of experiments is one-half of that 
of the full-factorial DOE. Alternatively we can choose the rows with 
ABCD = �1. In either case, by reducing the total number of runs, we no 
longer have the information on interaction ABCD. The data analysis 
with this fractional-factorial DOE will only reveal the effects of the 
single factors, the interactions of any two factors, and the interactions of 
any three factors. One can further reduce the runs by using the ¼-
factorial DOE, in which case, we will lose the information of the 
interactions of some three factors and of all four factors. There is a 
trade-off between the reduced runs and the information coming out of 
the DOE analysis. However, if we know that the three-factor and  
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four-factor interactions are not significant based on physics or other 
experience, then such a trade-off is justified. � 

Taguchi design: 

Among the fractional-factorial DOEs, one type deserves special atten-
tion: oorthogonal arrays (OOA). These highly fractional DOEs were 
promoted by Dr. Genichi Taguchi, hence also referred to as TTaguchi 
design [23−25]. In the orthogonal arrays, the number of tests is greatly 
reduced. For each level of a particular factor, all levels of each of the 
other factors are tested at least once. OA are also bbalanced, meaning 
that in the test matrix each factor takes different levels for the same 
number of times. Figure 4.18 shows the Taguchi OA of eight experi-
ments for seven factors, each with two levels (L8 array). For more OA 
matrices, refer to Appendix B of this book. 

Taguchi method is best used when there are less than 50 factors, few 
interactions between variables, and only a small number of factors have 
significant impact on the response. The Taguchi design also contains 
some unique aspects such as the treatment of uuncontrollable input (the 
inner array factors or nnoise) and ccontrollable input (the oouter array 
factors or ssignal) and the ssignal-to-noise ratio. In Chapter 7, we shall 
discuss this subject in more detail.  

 

Figure 4.18 Taguchi method: L8 array 
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More examples of DOE analysis can be found in Chapters 7 and 8. 
It is also a common practice to use the DOE data to create a response 
surface, which will be discussed in Section 4.4.1. 

4.3.6 Value Stream Mapping 

Value Stream Mapping ((VSM) is a Lean method for analyzing a process 
and eliminating wastes in the process [2, 26−28]. Lean focuses on vvalue, 
defined as what is important to the customer, through the elimination of 
waste and acceleration in the velocity of the processes. VValue-added work 
is something that customers are willing to pay for, including tasks that add 
desired functionalities or features to the product. It can also be tasks that 
result in lower price, short lead time, and good quality. NNon–value-
added work, or wwaste (translated from a Japanese word muda), includes 
tasks that have no value to the customer. Whether a particular task is 
value-added or non–value-added, we should judge from the customers’ 
perspective. By analyzing the process and identifying what the value-
added and non–value-added steps are, VSM allows one to focus on the 
elimination of waste and the increase of the process speed. 

There are seven commonly known categories of waste: over produc-
tion, inventory, defects, motion, excessive processing, waiting, and 
transport. Over production is producing more than needed. Inventory 
includes raw materials, work in process (WIP), and finished products, 
since extra inventory costs money. Motion refers to the physical activi-
ties of the operator. Unnecessary motions for the operator should be 
avoided. Transport muda is about inefficient move of the work piece or 
product. Some also add unused talents as the eighth muda. 

To identify the waste in the process, we first need to understand 
how the process works. A value stream map can be divided into three 
sections: the information flow, the process flow, and the timeline and 
summary statistics, as illustrated in Figure 4.19. This VSM is from the 
Krisys Robot Kit project presented in Chapter 3, where more back-
ground information on the project can be found. The VSM in Figure 
4.19 was created using Microsoft Visio, which has a group of standard 
symbols in the stencil accessible by clicking SShapes> More Shapes> 
Business> Business process> Value Stream Map Shapes. 
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Figure 4.19 A VSM example 

 

Figure 4.20 VSM symbols 

The legend for the VSM shapes used in Visio can be found in 
Figure 4.20.  

Most of the symbols are self-explanatory. A pproduction kanban is a 
visual signal representing a trigger for producing a specific number of 
parts. A kaizen burst highlights the need for improvement that is critical 
to the overall process. More information can be found in [28]. 

The procedure for VSM analysis is as follows: 

1. Understand how the process works. 
2. Make observation of the information flow and the process flow. 
3. Measure the average time for each step in the process. 
4. Analyze which steps of the process are value-adding and which 

are not value-adding. 
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5. Draw the VSM for the current process, which is known as the 
current state map. 

6. Identify improvement opportunities by eliminating the waste 
(muda or non–valued-added steps) in the process. 

7. Modify the current process to make it more efficient. The 
modified VSM is also known as the ffuture state map. 

After the VSM was created for the Krisys Robot Kit project, it was 
easy to conclude what areas needed improvement to make the process 
more efficient. The value-added steps only took 52 to 137 minutes 
while the non–value-added steps took 5 to 65 days. The majority of the 
lead time was spent on ordering parts from suppliers and shipping kits 
to customers. This example confirms the well-known PPareto principle 
or the 880/20 rule: 80 percent of the problem arises from 20 percent of 
the process issues. The Krisys team decided that certain parts with lead 
time of 60 days should be ordered long before the customer orders came 
in. The team was able to significantly reduce the lead time by optimiz-
ing the inventory with the forecast of the orders.  

One of the tools that help eliminating waste is 55S: Sort, SSet in order, 
Shine, SStandardize, and SSustain. 5S can improve the productivity by 
maintaining an orderly workplace and using visual cues to achieve more 
consistent operational results.  

Additional important concepts used in VSM are listed below: 

Work in Process (WIP): Average number of units in the process at any 
point in time.  

Lead Time (LT): The average time it takes from start to finish in mak-
ing a product or completing a service (unit: time period such as se-
conds, minutes, hours, days, etc.) 

Cycle Time (CT): The average time between two successive finished 
products or completed service (unit: time period such as seconds or 
minutes per piece). Cycle time reduction is one of the most common 
objectives of Lean Six Sigma projects. 

Takt Time: The available time in a specified time period divided by 
customer demand (how many products should be produced or cus-
tomers should be served) in the same time period (unit: time period 
such as seconds or minutes per piece). 

Throughput: The production output rate, which is the reciprocal of cycle 
time (unit: pieces per unit time period such as second, minute, etc.) 
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The LT, CT, and WIP are related by the following formula: 

 LT = CT × WIP (4.9) 

Many practitioners are confused by the definitions of LT, CT, and 
Takt. The following simple example illustrates how each one is calculated. 

Example 4.17 A customer receives a service that requires her to go 
through three consecutive steps, each taking 10, 15, and 12 minutes to 
complete. It is desirable that as many as eight customers can be served in 
each day. Each day, the three service people all work 8 hours, with 1 
hour lunch break and 1 hour for other breaks. Find the LT, CT, and 
Takt. Will they be able to serve as many as eight customers a day? 

If there is someone right before the customer, then she will spend 10 
minutes in counter 1 and wait for 5 minutes before she goes to counter 
2. She will then spend 15 minutes at counter 2 and 12 minutes at coun-
ter 3, assuming the time to move from one counter to the next is negli-
gible. So, the total time the customer needs is 10 + 5 + 15 + 12 = 42 
minutes, which is the LT. To calculate the CT, we start timing when 
the first customer has completed the service. At that point, the second 
customer has spent 12 minutes at counter 2. She will need 3 more 
minutes at counter 2 and 12 minutes at counter 3 to complete her ser-
vice. Therefore, the CT is equal to 3 + 12 = 15 minutes. 

If a customer walks in with nobody right in front of him waiting for 
service, then the LT is 10 + 15 + 12 = 37. So, the LT is between 37 and 
42 minutes. 

The total available time in a day is 8 � 1 � 1 = 6 hours; here for 
simplicity we assume that the three workers all take breaks at the same 
time. Takt = 6 × 60 (minutes)/8 = 45 minutes per customer. Since the 
worst case LT is 42 minutes, the answer is yes, they will be able to serve 
eight customers per day. � 

4.4 RSM, Regression 

4.4.1 Response Surface Method 

The purpose of the RResponse Surface Method (RSM) is to fit a set of 
input–output data with a mathematic model, so that the output can be 
estimated from the values of the inputs [29, 30]. The resultant model 
can then be used to solve optimization problems, or to understand the 
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effects of the inputs (factors) on the output (response). In Lean Six Sig-
ma projects, RSM can help find the optimal values or ranges for several 
factors such that the response is optimal, which typically means that the 
output achieves the largest or the smallest value. For example, the re-
sponse could be the total cost or the number of defects to be minimized. 
If the response represents the efficiency, profit, or customer satisfaction 
level, then we would like to maximize it. RSM can be effectively used 
when either the input–output relationship is too difficult to characterize 
with a first-principle mathematical model or the mathematical model is 
too complex for finding a closed-form expression of the optimal solu-
tion. The RSM is typically used in combination with DOE. After the 
DOE analysis, we select the factors that have significant impact on the 
response to be included in the response surface, and set the other factors 
at their nominal values. If possible, we would narrow the major factors 
to less than three. This is because RSM relies on graphics to show the 
relationship between the inputs and outputs, and the highest dimension 
for easy-to-understand graphics is three. 

Figure 4.21 shows the cost function of an electric vehicle plotted as a 
“surface,” its “height” changing with two factors, the specific energy, 
and the battery weight [31]. The optimal- or low-cost region of the de-
sign is depicted by the oval shape in the horizontal plane. 

 

Figure 4.21 A RSM example [31] 

Source: Reprinted with permission by SCIYO. 



 LEAN SIX SIGMA TOOLS 115 

More examples of RSM analysis can be found in Chapter 8 and the 
references listed at the end of this chapter. 

4.4.2 Regression 

Regression is used to find the underlying relationship between the fac-
tors and response from a data set [9, 10, 13, 15]. We use a simple linear 
model to illustrate the concept of regression. Given a data set of n pairs 
(x1, y1), (x2, y2), . . . , (xn, yn), first, we plot the n points in a two-
dimensional Cartesian coordinate system, shown in Figure 4.22. 

The question to be answered is, Is there a linear relationship between 
x and y? Note that there are a lot of variations in y, which can be divided 
into two categories: one caused by the change in x and the other caused 
by some random noise in the data. We propose the following model. 

 y = mx + b + ε (4.10) 

where ε is a random variable. This model can be interpreted as “The var-
iation in y is caused by the change of x, as described by mx + b, and a ran-
dom noise ε.” To find the two parameters m and b, we use the pprinciple 
of least squares.  

 

Figure 4.22 Linear regression 
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First, we define the error for each point (xi, yi) as the difference be-
tween yi and the value of the straight line y = mx + b at xi. Our objective 
is to minimize the sum of squared errors by choosing the appropriate 
values for m and b. Mathematically, this is an optimization problem 
defined as follows: 
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The optimal values of m and b can be found by taking the partial deriv-
atives of f with respect to m and b and then set the partial derivatives equal 
to 0. Solving for m and b, we get 
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where  and x y  are the sample average for xi and yi, respectively.  

Let us compare the total variation in y and the portion caused by ε, 
the noise in the data. The ttotal sum of squares (TSS), which is an indi-
cation for the total variation in y, is given by  

 
2

2 2 1( )i i i
i i i

TSS y y y y
n
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� �

� � �  (4.13) 

The rresidual sum of squares (RSS), which represents the variation 
in y caused by the noise, is given by 

 ( ) 22( )  ˆi i i
i i

RSS y y y b m x= − = − +
 �� � �  (4.14) 

We then use the ratio of RSS over TSS as a measure for how well the 
linear model fits the data. If the fit is perfect, then RSS = 0. If there is no 
relationship between x and y, then the total sum of square should not be 
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reduced by the line fitting effort, that is, RSS should be equal to TSS. 
Based on this insight, the ccoefficient of determination R 

2 is used to 
indicate how good the fit is. 

 2 1
RSS

R
TSS

� �  (4.15) 

If R 
2 is close to 1, then we have a good regression model; if it is close 

to 0, then we should look for a different model. 
Similarly, the principle of least square can be applied to mmultivariable 

model and nnonlinear model. For example, the principle of least square 
can be directly applied to the following model. 

 0 1 1 2 2 3 3y a a x a x a x ε= + + + +  (4.16) 

 2 3
0 1 2 3y a a x a x a x ε= + + + +  (4.17) 

Equation (4.17) is nonlinear in the x but linear in the parameters  
a0, a1, . . . , a3, and .ε  The formulas will be different from those for the 
linear single variable case, but the derivation steps are the same. 

Example 4.18 A temperature sensor (thermistor) is characterized by 
measuring its resistance at various temperatures. The test data is given in 
the following table:  

T (degree C) 0 10 14 18 21 22 24 25 26 27 

R (Ohms) 6,980 4,560 3,759 3,040 2,700 2,495 2,260 2,150 2,050 1,950 

 
We can use linear regression to find the relationship between the re-

sistance and the temperature. In Excel, insert a scattered chart of the 
data and add a trend line, with the equation and R 

2 value displayed as 
shown in Figure 4.23. 

The coefficient of determination has a value close to 1, indicating 
that the trend line is a good fit of the data. The equation of the trend 
line, y = �181.74 x + 6593, provides us an easy way to predict the re-
sistance at a given temperature, or predict the temperature at a given 
resistance. This method is commonly used in the design of electronic 
instrumentation. � 

Since both authors are runners, we use the following example to 
show how regression can be used in running. 
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Figure 4.23 Linear regression model for a temperature sensor 

Example 4.19 For distance runners, it is important to control the pace 
of running. Many prediction methods are available for runners to use. 
For example, Runner’s World gives the following formula: 

2
2 1

1

1.06 
d

t t
d

� � �

where t1, t2, are times and d1, d2 are distances, d2 being longer between the 
two. This formula allows a runner to predict his or her marathon time 
using his or her half marathon time for instance. How was this formula 
generated? Regression! Runner’s World collected a lot of data from run-
ners and used regression to come up with this formula. This formula is 
simple to use; however, it only reflects the average of all runners who con-
tributed their data. For those runners who are trying to shed a few 
minutes off from their marathon time, this formula is not going to help 
much. In contrast, if we can collect more relevant data from a certain age 
group of male or female runners, the regression model would better pre-
dict the performance of runners in the same age and gender group.  

If a runner keeps his own record of times for various shorter distanc-
es, then a regression model can be derived to predic his marathon time 
and the pace he should target. Table 4.1 is an example of such record.  

We can use regression to find a formula based on the data in Table 4.1. 
This time we use the “Power” option in Excel trend line selection, and the 
result is shown in Figure 4.24 as 0.09596.5509y x= , where x is the distance 
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Table 4.1 Marathon time prediction 
 

Miles Time Pace Pace in minutes 

3 21:58 7:19 7.317 

6 47:22 7:44 7.733 

7 54:58 7:52 7.867 

8 1:03:38 7:57 7.950 

9 1:13:16 8:08 8.133 

13 1:49:30 8:25 8.417 

 

 

Figure 4.24 Race pace prediction using a regression model 

� 

and y is the pace (minutes per mile). Let x = 26.2, then y = 8.96 minutes 
per mile. His predicted marathon time is 26.2 × 8.96 = 234.75 minutes 
or 3:54:45. 

4.5 Statistical Process Control 

All processes have variation. It is critical to know if the variation is due to 
random variation or some changes of the process. The latter would require 
corrective actions. SStatistical process control (SPC) is a statistic analysis 
method for measuring, monitoring, and controlling processes [1, 32, 33]. 
SPC uses different types of control charts to identify instability and 
unusual circumstances and to diagnose problems. A ccontrol chart plots 



120 LEAN SIX SIGMA AND STATISTICAL TOOLS 

the pprocess average, uupper control limit (UCL), llower control limit 
(LCL), and certain process metrics. There are many control charts that can 
be plotted in SPC; two most commonly used ones are X  chart and 
R chart, where the averages and ranges are the process metrics respectively. 

The procedure for plotting the X  chart and R chart is as follows: 

1. Select ssubgroups such that specific information can be attached to 
the subgroups. For instance, we can select subgroups according to 
the timestamps or the machine/operator that is involved in pro-
cessing the parts. This allows us to pinpoint where or when a 
problem might have happened. The size of the subgroup n is typi-
cally chosen to be greater than three. The sampling frequency 
(e.g., out of every 100) is selected. Sufficient data are required be-
fore we can plot the control charts. A typical value is more than 25 
subgroups. 

2. Calculate the average X  for each subgroup. 
3. Calculate the range R for each subgroup. 
4. Calculate the average of X , which is the center line for the X . 

chart. Calculate the average of R, which is the center line for the 
R chart. 

5. Calculate the UCLs and LCLs: 
For the X-bar chart: 2LCL A RX= −   = + 2UCL A RX  (4.18)  

For the R chart: 3LCL D R=                4UCL D R=  (4.19) 
where A2, D3, and D4 are given by Table 4.2. 

It can be shown that for normal distributions, the standard deviation 
can be estimated by 

2 / 3. So,  the   and   for A R UCL LCL R  are +/�3� 

from the mean. It can also be shown that the standard deviation for R 
can be estimated by a function of n, ˆ ( )R nσ . Defining  

 
3 ˆ1 3 ( ),RD nσ� �     

4 ˆ1 3 ( ),RD nσ� �  (4.20) 

it is clear that the LCL and UCL for the R chart are the +/�3� from the 
mean. The details of the proof and calculation of A2 and ˆ ( )R nσ  is out of 

the scope of this book. 
It can be calculated that the probability of the sample average being be-

tween LCL and UCL is 99.73 percent. Based on this observation, we can 
claim that the probability of the sample average X  falling outside of the  
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Table 4.2 Coefficients for X-bar and R charts 
 

n A2 D3 D4 
2 1.88 0 3.267 

3 1.023 0 2.574 

4 0.729 0 2.282 

5 0.577 0 2.114 

6 0.483 0 2.004 

7 0.419 0.076 1.924 

8 0.373 0.136 1.864 

9 0.337 0.184 1.816 

10 0.308 0.223 1.777 

11 0.285 0.256 1.744 

12 0.266 0.283 1.717 

13 0.249 0.307 1.693 

14 0.235 0.283 1.717 
 

range between LCL and UCL is very small. If this does happen, then we 
have a high level of confidence that something other than the random vari-
ation in the process has occurred. This is the basis for many of the rules for 
determining if something caused the changes in the process mean and/or 
standard deviation; these causes are called sspecial causes of variations. If 
the process mean and standard deviation do not change, the variations in 
the process are called ccommon cause of variation. Therefore, SPC charts 
provide us with a way to differentiate the common causes and the special 
causes of variations. Based on the above discussion, we have the following 
basic rule: 

 

1. The basic rule violation: A point is outside of the +/�3� control limits.  
 

In addition to this basic rule, there are many other rules, some of 
which are related to the +/�1� or +/� 2� lines. Those lines can be plot-
ted on the SPC chart by dividing the region from the center line to the 
+/� 3� lines into three equally sized regions. Some of the popular rules 
are listed as follows: 

 

2. Run violation: Seven consecutive points on one side of the center line 
3. Trend violation: Upwards or downwards movement of seven points 
4. Two of three consecutive points above 2�  
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5. Two of three consecutive points below �2�  
6. Fourteen points in a row, alternating direction 
7. Fifteen points in a row within +/�1� 

 
It is worth noting that typically only a few rules from No. 2 to 7 are 

used. Using too many rules can cause false detection of special causes of 
variation, which can be annoying to the user. A process is said to be oout 
of control or uunstable if any of the rules we selected to use for SPC charts 
is violated. Otherwise, the process is said to be iin control or sstable. 

Similar to the discussion we had in “Hypothesis Testing” 
(Section 4.3.2), we can define the following errors: 
Type I error: The chart indicates the process is out of control, but the 

process is actually in control. 
Type II error: The chart indicates the process is in control, but the pro-

cess is actually out of control. 
We have calculated the probability of a point being inside of the 

+/�3� limits as 99.73 percent. Therefore, the probability of type I error 
(�) related to rule 1 is 1 � 99.73% = 0.27%. 

Example 4.20 A battery manufacturer measures the battery voltage at 
the end of the production line. They randomly select a subgroup of 5 
out of every 100 batteries for voltage measurement. The measurement 
data are given in the following table: 

Subgroup # Battery voltages x bar R 

1 1.500 1.514 1.518 1.495 1.503 1.506 0.023 

2 1.505 1.490 1.497 1.508 1.508 1.502 0.018 

3 1.489 1.511 1.500 1.504 1.484 1.498 0.026 

4 1.497 1.504 1.511 1.497 1.495 1.501 0.016 

5 1.508 1.489 1.506 1.490 1.502 1.499 0.019 

6 1.505 1.491 1.507 1.505 1.508 1.503 0.017 

7 1.498 1.490 1.495 1.503 1.511 1.500 0.021 

8 1.495 1.508 1.511 1.515 1.486 1.503 0.030 

9 1.491 1.508 1.493 1.492 1.483 1.494 0.025 

10 1.507 1.496 1.485 1.528 1.503 1.504 0.043 
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Subgroup # Battery voltages x bar R 

11 1.509 1.497 1.505 1.482 1.504 1.499 0.026 

12 1.497 1.503 1.480 1.500 1.519 1.500 0.038 

13 1.498 1.495 1.508 1.510 1.485 1.499 0.025 

14 1.601 1.491 1.515 1.500 1.494 1.520 0.110 

15 1.500 1.507 1.496 1.486 1.506 1.499 0.021 

16 1.517 1.491 1.518 1.504 1.503 1.507 0.026 

17 1.509 1.503 1.503 1.495 1.491 1.500 0.019 

18 1.488 1.492 1.490 1.495 1.487 1.490 0.008 

19 1.498 1.514 1.493 1.501 1.511 1.503 0.021 

20 1.500 1.505 1.499 1.501 1.501 1.501 0.005 

21 1.510 1.510 1.497 1.493 1.490 1.500 0.020 

22 1.493 1.517 1.485 1.489 1.512 1.499 0.031 

23 1.498 1.487 1.493 1.506 1.494 1.496 0.019 

24 1.514 1.509 1.514 1.519 1.488 1.509 0.031 

25 1.494 1.498 1.504 1.504 1.495 1.499 0.011 

26 1.495 1.503 1.497 1.499 1.501 1.499 0.007 

 
Since n = 5, we have  

A2 = 0.577, D3 = 0, and D4 = 2.114. 

The averages of X  and R are 

1.501,  0.025.X R� �  

The control limits are calculated as follows: 

2:    1.501 0.577 0.025 1.487    X LCL X A R� � � � � �  

2 1.501 0.577 0.025 1.516UCL X A R� � � � � �  

3 4:    0 0.025 0;    2.114 0.025 0.054  R LCL D R UCL D R� � � � � � � �  
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Figure 4.25 X bar chart for Example 4.20 

 

Figure 4.26 R chart for Example 4.20 

Inspection of the X  chart and R chart (Figures 4.25 and 4.26) re-
veals that the process is out of control, since rule 1 was violated in both 
charts. We leave the other rules for the reader to check. � 
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CHAPTER 5 

Excel, MATLAB, Minitab, 
and other simulation tools 

As we have learned in Chapter 4, Lean Six Sigma projects use statistical 
analysis tools extensively. Most projects have data that are more than 
what we want to handle with paper and pencil. Fortunately, there are 
quite a few software packages that are inexpensive and easy to learn and 
can help us analyze data. In this chapter, we will focus on three software 
packages: Excel, MATLAB [1, 2], and Minitab [3−7]. R will be briefly 
discussed due its free availability [8]. Excel is probably the most accessi-
ble among all the statistical analysis tools. While not obvious to most, 
Excel is extremely capable of performing statistical analysis. MATLAB is 
not necessarily low in price, but it deserves our attention because many 
engineers use it for engineering design and analysis. Minitab specializes 
in statistical analysis and is inexpensive as well. We will demonstrate the 
usage of these three software packages in the statistical analysis and gra-
phing discussed in Chapters 2 to 4.  

5.1 Excel 

There are two places in Excel where you can find statistical analysis tools. 
One resides in the functions available in Excel such as AVERAGE, MAX, 
MIN, MEDIAN, MODE.MULT, which you can find by typing the equal 
sign (=) in a cell. Excel will then display a list of functions for you to 
choose from. If the function you need is not displayed on the list, click on 
“MMore Functions…” and you will see the window shown in Figure 5.1. 
We will use some examples to illustrate how to use Excel to conduct sta-
tistical analysis. 
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Figure 5.1 Inserting a function in a cell in Excel 

Example 5.1 Most of the Excel functions are straightforward to use, 
but there are some confusing ones, one of which can be used to calculate 
the modes of a data set. 

To find the mode of data in a column (cell A1:A8), first highlight a 
few cells, say B1:B5. Then type “= MODE.MULT( ”, highlight A1:A8, 
then press CTRL+SHIFT+ENTER. If done correctly, you will see that 
4, 2, and 8 are the three modes of the data, as shown in Figure 5.2. By 
pressing CTRL+SHIFT+ENTER, we entered the data as an array. Note 
that the curly brackets were added in the cell formula as a result. If we 
do not enter the data as an array, the result will only have the first mode, 
which is 4 in this case. It may take a few trials, because we didn’t know 
the number of modes, which is how many cells in column B we should 
highlight. If we don’t highlight enough cells, the result will be incom-
plete. The last two cells with #N/A tell us that there are no more modes.  

If you need to know how to use a function, you can double click on the 
link that appears after you selected the function name. An Excel Help win-
dow will pop up with detailed instructions for how to use that function. 
The instructions can be confusing sometimes, as is the case in this example.  
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Figure 5.2 Calculating mode in Excel 

Warning: Don’t try to manually edit one of the cells in B1:B5. You 
may have to go to the task manager to stop Excel! � 

Some Excel functions that are useful in Six Sigma projects are listed 
as follows: 

BETA.DIST, BETA.INV, CHISQ.DIST, CHISQ.DIST.RT, CHISQ.INV, 
CHISQ.INV.RT, CHITEST, CONFIDENCE.NORM, CONFIDENCE.T, 
F.DIST, F.DIST.RT, F.INV, F.INV.RT, F.TEST, LOGNORM.DIST, 
LOGNORM.INV, NEGBINOM.DIST, NORM.DIST, NORM.INV, 
NOR.S.DIST, NORM.S.INV, PERCENTILE.EXC, PERCENTILE.INC, 
QUARTILE.EXC, QUARTILE.INC, RAND, RANDBETWEEN, STDEV, 
T.DIST, T.DIST.2T, T.DIST.RT, T.INV, T.INV.2T, T.TEST, TREND, 
TRIMMEAN, WEIBULL.DIST, Z.TEST. 

Most of the above functions are self-explanatory, and detailed in-
formation can be found in Excel Help if needed. 

Example 5.2 Generate 200 random values for a normal distribution 
with a mean of 2 and a standard deviation of 3. Use the data to find the 
sample mean, sample standard deviation, range, fifteenth percentile, 
lower-fourth Q1, upper-fourth Q3, median, 10 percent trimmed mean, 
and plot the histogram.  
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Before we use the DData Analysis tools in Excel, we need to make 
sure the TToolPak is selected, it is under FFile>Options>Add-Ins. If not, 
you need to select AAnalysis ToolPak and then click OOK, as shown in 
Figure 5.3. 

Now if you click on the DData tab, DData Analysis should appear in the 
top far right corner. Click on it, and the window shown in Figure 5.4 will 
appear. 

 

Figure 5.3 Setting up Analysis ToolPak in Excel 

 

Figure 5.4 Data Analysis window 
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Figure 5.5 Random number generation using Excel 

Click on HHelp, you can read the information about how each function 
works. Select RRandom Number Generation and click OOK, then fill in the 
form that pops up, shown in Figure 5.5. The numbers should be self-
explanatory except for the OOutput Range, which simply asks where you 
want to start storing the random numbers generated. If you click the A1 
cell, $A$1 will appear in the OOutput Range input area. After you complete 
the form, click OOK. A1:A200 will be filled with random numbers that 
comes from a normal distribution. It is worth noting that if RRandom Seed 
is not selected, then you will get a different result each time you repeat the 
steps in this example. In order for the readers to compare results with the 
answers in this book, we assigned RRandom Seed with value 1. 

After the 200 numbers are generated, the following formulas should 
be typed in cells B2:I2: 

B2: =AVERAGE(A1:A200)  C2: =STDEV.P(A1:A200) 

D2: =MAX(A1:A200)-MIN(A1:A200) E2: =PERCENTILE.INC(A1:A200, 0.15) 

F2: =QUARTILE.INC(A1:A200,1) G2: =QUARTILE.INC(A1:A200,2) 

H2: =QUARTILE.INC(A1:A200,3) I2: =TRIMMEAN(A1:A200,0.2)  



134 LEAN SIX SIGMA AND STATISTICAL TOOLS 

 

Figure 5.6 Basic statistical calculation in Excel 

The data in column A has been sorted so that we can easily check 
the calculated results; but the sorting is only optional. The results are 
shown in the captured screen of Figure 5.6. 

Manual calculations show that some of the results are slightly different. 
This is due to slightly different definitions. For example, we define 10 per-
cent trimmed mean as the average value of the data after 10 percent of the 
smallest and 10 percent of the largest values are trimmed. Excel apparently 
defines this as a 20 percent trimmed mean. In this case we can still use Ex-
cel to do the calculation according to the definition given in this book by 
calculating the 20 percent trimmed mean in Excel as our 10 percent 
trimmed mean. There are other small differences that are not easy to get 
around. For example, we define the first quartile as the median of the lower 
half. If the total number of data points in the lower half is an even number, 
then we calculate the average of the two middle points. Excel does an in-
terpolation of the two middle points, by the weighted average. The point 
further away from the median carries a 0.25 weight, and the point closer to 
the median carries a 0.75 weight. The difference between the two methods 
for calculating the quartiles is insignificant, but it does exist. 

Note that the mean and the standard deviation of the sample (1.889, 
3.128) are slightly different from the mean and the standard deviation of 
the population (2, 3). It is expected that when the sample size is larger, the 
sample mean and standard deviation will be closer to the population mean 
and standard deviation.  

To plot the histogram, we need to create a bin width column. Since the 
data is between �8 and 13, we type �8, �6, �4, . . ., 10, 12, 14 in B5:B16. 
Now click on DData and then DData Analysis. Select HHistogram then click 
OK. Fill out the Histogram form as in Figure 5.7 and click OOK. 
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Figure 5.7 Creating histogram in Excel 

 

Figure 5.8 An example of histogram created in Excel 

After generating the histogram, right click on the bars, select FFormat 
Data Series, and change GGap Width to 0. The final result is shown in 
Figure 5.8. 

The function QUARTILE.INC can be used to create the box-and-
whisker plot in Example 2.23. � 

Example 5.3 Plot the probability density functions for three lognormal 
distributions with means equal to 1, 2, and 2 and standard deviations 
equal to 1, 2.5, and 1.5, respectively.  
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Figure 5.9 Plotting lognormal distribution in Excel 

We can use the function LOGNORMA.DIST(x, mu, sigma, 0) as illus-
trated in Figure 5.9, where x is the variable’s value, mu is the mean, 
sigma is the standard deviation, and the last parameter 0 implies that it 
is not the cumulative function, but instead it is the pdf. 

The means and standard deviations are specified in the first two rows. 
The increment in the x values is specified in A5. The x values are started 
from 0 and incremented by delta x each step by typing “=B4+A$5” in B5 
and copying and pasting to the cells below B5. f(0)=0, so we type “0” in 
C4, D4, and E4. In C5, we type “=LOGNORM.DIST($B5, C$1, C$2,0)”. 
The $ is used so that we can copy and paste to the rest of the C column 
and columns D and E. You can compare the results when you do and 
don’t use the $. After the values x and f(x) are calculated, we can insert a 
graph using the data. The graph is shown in Figure 2.22. In fact, all the 
probability density functions in Section 2.9 were created in Excel using 
similar method. � 

Example 5.4 The SPC X  chart and R chart in Example 4.20 can be 
created with Excel. 

First, generate five columns of random numbers, 26 values for each 
column, from a normal distribution with a certain mean and standard de-
viation. Put the 26 by 5 matrix in B4:F29. A4:A29 contain the subgroup 
number 1 to 26, as illustrated in Figure 5.10.  
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Figure 5.10 Setting up data for control chart in Excel 

In Example 4.20, the number in the first column and fourteenth row 
was manually changed to a large number to illustrate the unstable condi-
tion. The same thing can be done here. X bar and R in columns G and H 
are the average and the range of each subgroup. For example, G4 is 
“=AVERAGE( B4:F4)”, and H4 is “=MAX(B4:F4)-MIN(B4:F4)”. 

The fourth row from J to X is coded as follows: 
 

J4 ( X ): =AVERAGE(G4:G29) K4 (LCL for X ): =J4-K1*AVERAGE(H4:H29) 

L4 (UCL for X ): =J4+K1*AVERAGE(H4:H29) M4 ( X -1�): =J4-(J4-K4)/3 

N4 ( X -2�): =J4-2*(J4-K4)/3 O4 ( X +1�): =J4+(L4-J4)/3 

P4 ( X +2�): =J4+2*(L4-J4)/3 R4 ( R ): =AVERAGE(H4:H29) 
S4 (LCL for R): =Q1*R4 T4 (UCL for R): =S1*R4 

U4( R  -1�): =R4-(R4-S4)/3 V4( R  -2�): =R4-2*(R4-S4)/3 

W4( R  +1�): =R4+(T4-R4)/3 X4( R  +2�): =R4+2*(T4-R4)/3 

 

The fifth to twenty-ninth rows for J:X, excluding Q, are just copies 
of the fourth row. Figure 5.11 shows the Excel calculations with the cell 
formula in K4 displayed. 

 

Figure 5.11 Calculations for control chart in Excel 
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The X  chart can be plotted using A4:A29, J4:29, K4:29, L4:29, 
M4:29, N4:29, O4:29, P4:29. The R chart can be created in a similar 
manner.  The results are shown in Figures 4.15 and 4.16. � 

Example 5.5 In Section  4.3.2, we presented several theorems where crit-
ical values of the normal distribution, the t-distribution, and the 2�  dis-
tribution were used for hypothesis testing. Here, we will explain how these 
values can be calculated with Excel. Given the significance level �, calcu-
late the following critical values for hypothesis testing: Zα , /2 , , 1  nZ tα α � , 

/2, 1ntα � , 2
, 1� nα � , 2

1 ,  1� nα� � , 2
1 /2, 1� nα� � ,  2

/2,  1� nα � . 

In the Excel file, as shown in Figure 5.12, the significance level � is 
specified in E2 and the sample size is specified in I2. When the user 
types values into E2 and I2, all the critical values will be automatically 
updated. The formulas in C5:J5 are implemented as follows: 

C5: =NORM.S.INV(1-E2) D5: =NORM.S.INV(1-E2/2) 
E5: =T.INV(1-E2,I2-1) F5: =T.INV(1-E2/2,I2-1) 
G5: =CHISQ.INV(1-E2,I2-1) H5: =CHISQ.INV(E2,I2-1) 
I5: =CHISQ.INV(E2/2,I2-1) J5: =CHISQ.INV(1-E2/2,I2-1) 

 

Figure 5.12 Critical value calculations in Excel 

� 

Example 5.6 The probabilities of the type II errors (�) are usually more 
complicated than probabilities of type I errors, since it is more than one 
number. We use the two-tailed test in Theorem 4.4 to illustrate how to 
calculate �. 
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Figure 5.13 Concept of type II error calculation 

The type II error is the probability for the mean to be different from 
0μ  in the hypothesis, but the test statistic falls outside of the region of 

rejection. The � value depends on the actual mean 1μ , as indicated by 
the shaded area in Figure 5.13.  

We can use Excel to create a curve that indicates the � value as a 
function of the actual mean 1μ . To use the standard normal distribution, 

we will plot � as a function of 1 0 
μ μ

σ
− . 

The significance level � is defined in Excel cell B1. The results 
including the graph will be automatically updated when a different value 
for � is typed in B1. The formula in cell F2 is “=NORM.S.INV 
(1-B1/2)”. This calculates the two-tailed z-critical value. The region of 
rejection is defined by Z > 

/2Zα  or Z < 
/2Zα� . B2 defines the step size 

for the horizontal axis. C4 is defined as “=B4+$B$2”, and D4 is defined 
as “=C4+$B$2”. The formula in cell B5 is shown in Figure 5.14. It 
calculates the area under the normal distribution centered at mu1 and 
outside of the region of rejection. Since this region is outside of the 
region of rejection, the null hypothesis 0μ μ�  will not be rejected; 
however, if the actual distribution is centered at a different location, 
then the hypothesis should be rejected. So, the probability of this 
happening is exactly the probability of the type II error. 
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Figure 5.14 Calculations of type II error probability using Excel 

Adjusting delta mu1 to an appropriate value, you will have a beta 
curve shown in Figure 5.15: 

 

Figure 5.15 Type II error probability curve 

For each value of mu1, we can use this curve to find the probability 
of the type II error. � 

More examples using Excel to calculate probabilities for various dis-
tributions can be found in Chapters 2 and 3. There are several examples 
in Chapter 4 where Excel is used for normality check, FMEA, DOE, 
and regression. Additional statistical analysis tools in Excel are available 
in Data Analysis to conduct ANOVA, t-test, F-test, and Z-test.  

5.2 MATLAB 

Example 5.7 Generate two set of random numbers from normal 
distributions with means at 4 and 6 and standard deviations at 1 and 3, 
respectively. Add outliers manually to the data sets. Create the boxplots 
for the two data sets. 
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Figure 5.16 A box-and-whisker plot created using MATLAB 

These tasks can be completed by running the following codes in 
MATLAB:  

mu1 = 4; mu2 = 6; s1 = 1; s2 = 3; 
rng('default') 
x = mu1+s1*randn(50,1); 
y = mu2+s2*randn(50,1); 
boxplot([x,y]) 

The resultant Boxplot is shown in Figure 5.16. 
To understand the functions in the codes, such as randn, rng, 

and boxplot, you can type help <function name> (without 
the < >, for example, help randn) in the MATLAB command 
window to read the documentation. � 

Example 5.8 Calculate the mean, the standard deviation, the range, the 
fifteenth, twenty-fifth, fortieth, fiftieth, seventy-fifth, and ninetieth per-
centiles, the median, the first and third quartiles, the process capability 
index Cp, and the process performance index Cpk (with USL = 7, LSL = 1) 
for the first data set (x) in Example 5.7. Plot the histogram of x. 



142 LEAN SIX SIGMA AND STATISTICAL TOOLS 

Add the following codes to the codes in Example 5.7. 

R = range (x) % or R=max(x)-min(x) 
%range function may not be available for 
student version of MATLAB. 

M = mean(x) 
S = std(x) 
Percentiles = prctile(x,[15 25 40 50 75 90]) 
MD = median(x) 
Q = quantile(x,[.25 .50 .75]) 
CpCpk = capability(x,[1, 7]) 
figure 
hist(x, [1:8]) 

You should get the following result in the command window: 

R = 6.5227 
M = 4.2840 
S = 1.2625 
Percentiles = 2.9311  3.5664  3.9534  4.3222  
5.0347  5.5600 

MD = 4.3222 
Q =  3.5664   4.3222  5.0347 
Cp = 0.7921  
Cpk = 0.7171 

A histogram will be generated by MATLAB as illustrated in 
Figure 5.17. 

Note that the median can be calculated in three different ways, with 
the same result. � 

Example 5.9 In Example 5.6, we used Excel to calculate the probabil-
ity for type II errors. The same task can be done in MATLAB with the 
following codes. 

alpha=0.05; delta_mu1=0.3; 
Z_alpha_half = icdf('normal',1-alpha/2,0,1) 
delta=[0.1:delta_mu1:5.2] 
beta= 1-(cdf('normal',-Z_alpha_half, del-
ta,1)+... 

      1-cdf('normal', Z_alpha_half-delta, 
0,1)) 

plot(delta, beta), grid on 
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Figure 5.17 A histogram created using MATLAB 

The codes can also be easily modified to plot a class of probabilities 
for type II errors for different significance levels by using a “for loop” in 
MATLAB. � 

Example 5.10 Generate 26 sets of subgroups of 5 random numbers 
from a normal distribution with a mean of 1.5 and a standard deviation 
of 0.01. Change the first number in the fourteenth subgroup to 1.62, 
second number in the fifteenth subgroup to 1.61, and the third number 
in the sixteenth subgroup to 1.62. Plot the Xbar–R control charts and 
check if the process is stable using the following two rules: “1 point 
above or below the UCL and LCL,” and “6 consecutive points increas-
ing or decreasing.” 

The following code does what is required:  

rng('default'); 
x=1.5+0.01*randn(26,5) 
x(14,1)=1.62; x(15,2)=1.61; x(16,3)=1.62; 
controlchart(x,'chart', {'xbar' 'r'}, 
'rules', {'we1' 'we2' 'we5' 'n3'}) 
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Figure 5.18 An Xbar---R chart created using MATLAB 

The Xbar–R charts with points of violations of the rules marked are 
shown in Figure 5.18. 

We will leave it to the reader to figure out which points are in viola-
tion of which rules. � 

We can reproduce the results in Example 4.18 using the MATLAB 
function regress or operator “\” to find the coefficients in the linear regres-
sion model. All probability density functions introduced in Section 2.9 
can be reproduced in MATLAB using functions pdf or makedist. 
The Z-critical, t-critical, F-critical, and 2χ -critical values can be calculat-
ed using MATLAB functions zscore or icdf.  

You can find many more useful MATLAB functions by clicking on 
Help > Statistics Toolbox. A list of functions and other tools that can be 
used for statistical analysis will pop up. More advanced MATLAB users 
can also design graphical user interfaces so that some commonly used 
analysis can be easily done by a user who has no knowledge of MATLAB. 
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5.3 Minitab 

Example 5.11 Generate 500 random numbers from a lognormal dis-
tribution. Use the data points to plot the histogram, the boxplot, the 
stem-and-leaf graph, and the graphical summary. Use the probability 
plot to verify that it is from a lognormal distribution. 

Click on CCalc >Random Data > Lognormal, a pop-up window 
appears as shown in Figure 5.19. 

Type 500 in “NNumber of rows of data to generate:” and C1 in the 
area “SStore in column(s):” then click OOK. The 500 data points will be 
created and stored in column C1. 

To plot the histogram, click on GGraph>Histogram. In the pop-up 
window, select SSimple. In the area of “GGraph variables,” type C1 or 
double click C1 on the left, then click OOK. The histogram will appear as 
in Figure 5.20. 

 

Figure 5.19 A window for generating random numbers in Minitab 
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Figure 5.20 A histogram created using Minitab 

 

Figure 5.21 A box plot created using Minitab 

To create the boxplot, select GGraph>Boxplot. In the pop-up win-
dow, select SSimple. With the cursor in the area “GGraph variable:”, 
double click on C1 or highlight C1 then SSelect. Then click OOK. The 
boxplot will appear as in Figure 5.21. 
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To create the stem-and-leaf graph, select GGraph>Stem-and-Leaf: 
then double click on C1. Click OOK. The following stem-and-leaf graph 
will appear in the Session window. 

(254) 0   

0001111111111111111111111112222222222222222222222222222222223333333333333333333+ 

246   1   

0000000000000000000000011111111111122222222222333333333333444444444444444555555+ 

125   2   000000011111112222223333333333445556666666789999 

77    3   000000011112222233344556677778899 

44    4   0001222346677899 

28    5   001234556778 

16    6   344567 

10    7   122 

7     8   009 

4     9 

4     10  45 

2     11  4 

1     12  8 

To plot the graphical summary for the data, select SStat>Basic Statis-
tics>Graphical Summary. The graph shown in Figure 5.22 will appear. In 
this graphical summary, you can find the p-value, mean, standard deviation, 

 

Figure 5.22 A graphical summary created using Minitab 
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min, max, first quartile, median, third quartile, confidence intervals for 
mean, median, and standard deviation, histogram, and boxplot. 

To use the probability plot for checking if the data is from a 
lognormal distribution, select GGraph>Probability Plot>Simple and 
double click on C1. Click on DDistribution, and select LLognormal in 
the pop-up window. Click OOK, and OOK. The probability plot as in 
Figure 5.23 will be generated. 

The p-value, which is equal to (1 � the confidence level), is shown 
on the plot. A p-value greater than the significance level means that the 
null hypothesis that the data is from a lognormal distribution cannot be 
rejected. You can try to check if the data are from a normal distribution. 
The p-values will be less than 0.005, which tells us that we should reject 
the null hypothesis for the given significance level. 

 

Figure 5.23 A probability plot created using Minitab 

� 

Example 5.12 This example explains how a cause-and-effect diagram 
can be created using Minitab. 

First, type in all the text in C1 to C6 as shown in Figure 5.24. Select 
Stat>Quality Tools>Cause-and-Effect. Fill out the pop-up window as 
in Figure 5.24, then click OOK. 
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Figure 5.24 Setting up a cause-and-effect diagram in Minitab 

 

Figure 5.25 A cause-and-effect diagram created using Minitab 

The cause-and-effect diagram in Figure 5.25 will appear. 
� 
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Example 5.13 This example illustrates the use of gage R&R analysis. 

Select SStat>Quality Tools>Gage Study>Create Gage R&R Study 
Worksheet. Use the default values in the pop-up window, click OOK. 
Three columns will be created with C1, C2, and C3 specifying the 
RunOrder, PParts, and OOperators, respectively. Type in your test result 
for each run in the fourth column (C4) named as y. To conduct the 
gage R&R analysis, select SStat>Quality Tools>Gage Study>Gage 
R&R Study (Crossed). Fill out the pop-up window as in Figure 5.26. 

 

Figure 5.26 Setting a GR&R analysis in Minitab 

Click OOK. You will get the numerical results in the Session window.  

Gage R&R 

                               %Contribution 
Source               VarComp    (of VarComp) 
Total Gage R&R     0.0568160          76.51 
  Repeatability    0.0535694          72.14 
  Reproducibility  0.0032465           4.37 
    Operators      0.0032465           4.37 
Part-To-Part       0.0174452          23.49 
Total Variation    0.0742612         100.00 

A graph shown in Figure 5.27 will also be generated. 
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Figure 5.27 GR&R analysis result from a Minitab session 

The results indicate that 76.51 percent of the variation is from the 
measurement system (gage R&R) and 23 percent is from part-to-part 
variation. Out of the 76.51 percent, the main contributor is repeatabil-
ity, with 72.14 percent contribution. This tells us that the main prob-
lem is with the measurement equipment. According to AIAG, if the 
gage R&R contribution is more than 9 percent, the measurement sys-
tem is not acceptable. � 

Example 5.14 In this example, we will illustrate how to create a 
Taguchi DOE matrix and analyze the results.  

Select SStat>DOE>Taguchi>Create Taguchi Design. In the pop-up 
window, select 22-Level Design, change NNumber of factors to 5. Click on 
the DDesigns button and select LL8. Click OOK and OOK. The 8 × 5 matrix  
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Figure 5.28 Creating a Taguchi design matrix in Minitab 

will be created in the first five columns and eight rows as shown in the 
Figure 5.28. This is the design of experiment test matrix. After the 
experiments are completed, fill in the results in columns C6 and C7. 

To analyze the test results, select SStat>DOE>Taguchi>Analyze 
Taguchi Design. With the cursor in the area “RResponse data are in:”, 
double click on C6 then C7. Then click on the TTerms button. Click on 
the >>> sign then OOK and OOK. Four graphs will appear, as shown in 
Figure 5.29. The main effects plots for means and SN ratios indicate the 
impact on outcomes from each of the five factors A to E. The interac-
tion plots indicate the impact on the outcomes for two factors changing 
simultaneously. Parallel lines in an interaction plot indicate no interac-
tion. The more the lines depart from parallel, the higher the degree of 
interaction. The four graphs indicate that factor C has only minor im-
pact on the mean response; factor D has minor impact on the SN ratio, 
and the interaction between factors B and D is insignificant. 

There is more information displayed in the Session window. For ex-
ample, it states, “The following terms cannot be estimated and were 
removed: A*B A*C A*D A*E B*C C*D C*E D*E.” � 

Example 5.15 This example illustrates how to plot Xbar–R control charts.  

Select CCalc>random Data>Normal…. Type 26 in “rrows of data to 
generate:”. Type C1 C2 C3 C4 C5 in “SStore in column(s): ”. Type in 
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Figure 5.29 Taguchi design analysis using Minitab 

1.5 as the mean and 0.01 as the standard deviation. Click OOK. To create 
an unstable condition, we change the number in the fourteenth row and 
first column to a number larger than the original one, say, 1.6. Click 
Stat>Control Charts>Variable Charts for Subgroups>Xbar-R…. In 
the pop-up window, select “OObservation for a subgroup aare in one row 
of columns:” from the pull-down menu. Click on the blank area 
underneath the pull-down menu, then double click on C1, C2, . . . , C5. 
Click on “XXbar-R Options…” then click the TTest tab; select rules that 
you like to apply. Click OOK and OOK. The Xbar–R chart will be created as 
shown in Figure 5.30. 

Rule 1 was violated for the points marked red. You may try different 
rules and data sets; sometimes violations of rules may happen even for a 
data set created from a normal distribution. This is a low-probability 
event (type I error), but it does occur. � 
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Figure 5.30 Control charts created using Minitab 

5.4 R and Other Software Tools 

There are many other software packages available, among which are 
R, JMP, SPSS, Maple, Mathematica, and Mathcad. The American Sta-
tistical Association’s website has a long list of statistical analysis software 
packages: http://www.amstat.org/careers/statisticalsoftware.cfm 

R is a free software package that is worth considering if your 
organization does not provide commercial software for statistical analysis. 
R is similar to MATLAB in its statistical analysis capability and many 
other areas. In the following example we will use R to plot a pdf and a 
histogram. 

Example 5.16 Plot the probability density function for a normal 
distribution. Generate 500 random numbers from a standard normal 
distribution and plot the histogram for the data set. 

http://www.amstat.org/careers/statisticalsoftware.cfm
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We use the following codes to plot the desired graphs. If not familiar 
with R, the reader is encouraged to use the HHelp function in R to com-
prehend the commands in the code. 

#plotting pdf for a normal distribution 
plot(function(x) dnorm(x, mean =0, sd=4, log = 
FALSE), -15, 15, main = "Probability density 
function for a normal distribution") 

#generate 500 random numbers from standard 
normal distribution 

N<- rnorm(500, mean = 0, sd = 1) 
#plot the histogram 
hist(N, freq = FALSE) 

The results are displayed in Figure 5.31. 

 

Figure 5.31 Probability density function and histogram created using R 

� 

Once you have the basic knowledge in this book, it will be relatively 
easy to master a new statistical software. 
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CHAPTER 6 

Lean Six Sigma Projects: 
Strategic Planning and 

Project Execution 
In Chapters 1 to 5, we covered the technical knowledge necessary for 
completing a Lean Six Sigma project. There are additional skills essential 
to the success of Lean Six Sigma projects and, at a higher level, the or-
ganizationwide deployment of Lean Six Sigma as a strategy [1–4]. For 
example, how do you select a Lean Six Sigma project? How do you de-
cide whether a potential project should be a go or no-go? How do you 
form a team for a Lean Six Sigma project? How do you manage a pro-
ject? What should be the expected results? As a manager, Lean Six Sigma 
Black Belt, or Master Black Belt, you need to be able to answer these 
questions with accuracy and confidence. As an engineer, you may also 
find these skills valuable. When proposing a potential project, you need 
to understand the criteria for project approval used by the decision mak-
ers, so that your proposal can gain their support. This chapter will focus 
on strategic planning and deployment, project selection, team for-
mation, determining a project scope, project management, milestones 
and deliverables, and project summary. 

6.1 Strategic Planning and Deployment 

Every organization should have a vvision statement and a mmission 
statement. A vvision statement describes what the organization wants to 
achieve over time. It provides guidance and inspiration to its members with 
what the organization is focused on achieving in the future. A mmission 
statement defines the present state or purpose of the organization. It 
describes why the organization exists, what it does, who the customers are, 
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and how the organization is currently achieving its goals. Based on the 
vision and mission statements, a strategic plan can be developed using tools 
discussed in Section 4.1 such as SWOT. If Lean Six Sigma is a process that 
your organization wants to follow, then a strategic plan for Lean Six Sigma 
deployment should be developed [5–8].  

There are various paths to Lean Six Sigma deployment. A particular 
organization may choose to start the Lean Six Sigma deployment with 
small-scale trials and then extend to the entire organization. Alternative-
ly, it may decide to deploy Lean Six Sigma only to a certain part of the 
organization where Lean Six Sigma is needed. To be able to complete 
the projects, the organization needs internal experts with the relevant 
knowledge and skills, which can be achieved by hiring people with re-
quired experience or training the current employees. 

For organizations with little or no existing expertise in Lean Six Sigma, 
the management may choose a few people who are both interested in 
quality control and have some level of experience in managing teams to go 
through the Lean Six Sigma Green Belt training [9]. The training can be 
done either through workshops offered by various organizations or by hir-
ing a consultant to conduct in-house training. These Green Belts are re-
quired to complete three to four Lean Six Sigma projects before they can 
move on to the Black Belt training. Black Belts with good management 
skills may be designated as Master Black Belts. Before starting a large-scale 
deployment of Lean Six Sigma in the entire organization, the management 
team needs to know the basic concept of Lean Six Sigma and why it can 
help their organization. This can be accomplished through an in-house 
Yellow Belt training, offered by a consultant, for the management team. 
The different belts and respective qualifications are described as follows: 

Yellow Belt:  
What: Have a high-level understanding of Lean Six Sigma, but does not 

necessarily possess the technical skills required to complete a Lean 
Six Sigma project. This is the awareness training. 

Who: The management team and possibly every employee in the role of 
making, improving, and managing the products or service 
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Why: It is critical that the management team understand the im-
portance and benefits of Lean Six Sigma. Without their commit-
ment and support, it is impossible to have a successful deployment. 
Managers also need to be able to make decisions on which project is 
appropriate for Lean Six Sigma. Employees who are not working on 
Lean Six Sigma projects directly should also have some level of un-
derstanding of Lean Six Sigma, since they may be asked to assist 
Lean Six Sigma projects. An organizationwide awareness is also im-
portant for building a Lean Six Sigma culture. High quality means 
no sloppy job, no negligence, and no low standards are allowed at 
any link of a chain; hence, it is rarely the responsibility of one part of 
an organization. If the vision of the organization calls for a custom-
er-focused continuous improvement process in its mission, and Lean 
Six Sigma is selected as the methodology, then all employees should 
know when Lean Six Sigma should be used and support the projects 
from their own positions. 

Green Belt:  
What: Have the technical skills necessary to apply the concepts and 

methods to Lean Six Sigma projects. However, Green Belt projects 
are limited in scale, and they are less complex in terms of statistical 
tools required. 

Who: Six Sigma project team members and team leaders 
Why: This is usually the largest group doing majority of the work in 

Lean Six Sigma projects. Proper training must be provided to em-
ployees who are motivated to become Green Belts. 

Black Belt:  
What: Have more advanced technical skills in Lean Six Sigma and have 

the ability to use advanced statistical tools in large-scale projects  
Who: Black Belts are typically full-time positions that lead Black Belt 

projects, training, and coaching others. 
Why: You need technical leaders with advanced knowledge and experi-

ence of Lean Six Sigma to train and coach the Green Belts, as well as 
work in large-scale Black Belt projects. 
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Master Black Belt:  
What: Have the same technical skills required for Black Belts; in addition, 

they possess more managerial skills and are able to develop organiza-
tionwide plans for training, deployment, and overall management of 
the Lean Six Sigma effort. Typically, Master Black Belts are also full-
time positions. 

Who: Master Black Belts are leaders in charge of planning and managing 
the overall Lean Six Sigma deployment within the organization. They 
set organization policies and procedures related to Lean Six Sigma. 
They are able to provide training and coaching to both Green Belts 
and Black Belts. 

Why: Master Black Belts are needed for large-scale deployment of Lean 
Six Sigma. They are leaders who can transform the organization into 
a Lean Six Sigma organization. 

6.2 Project Selection  

Before a Lean Six Sigma project is started, it needs to be approved by a 
decision maker. This decision maker may be a manager, a Lean Six Sigma 
Black Belt, or a Lean Six Sigma Master Black Belt. He or she may also be 
the project champion or sponsor. 

The decision maker may be given a proposal for a potential Lean 
Six Sigma project. He or she needs to know how to decide whether it is 
a “go” or “no-go” project. In addition to some level of technical skills in 
Lean Six Sigma as presented in the first five chapters, this also requires 
the knowledge of making a business decision. A Lean Six Sigma practi-
tioner should know the major factors considered by the decision maker 
while evaluating a potential Lean Six Sigma project. 

As a team member or team leader, it is helpful to know what the de-
cision makers will be considering before they make their decisions. This 
will increase the chance of your project being approved or funded.  

To evaluate a potential Lean Six Sigma project, the following steps 
of pproject portfolio analysis can be used: 

• Identify project benefits, risks, costs, and available resources. 
• Translate benefits and costs into monetary amounts. 
• Conduct benefit–cost analysis. 
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• Evaluate the team leader and team members based on their 
skills and track records. 

• Make a decision based on data analysis.  

Benefits, costs, risks, and available resources are the main factors to 
be considered. It is desirable to attach monetary amounts to both the 
benefits and the costs, which may not always be trivial. For example, a 
project’s financial benefits may not be clear now, but the project may 
have strategic importance. The decision maker must make a call based 
on his intuition. Costs include materials, labor, and other resources; 
they all need to be translated to monetary amounts. The benefit–cost 
analysis can be conducted using any of the following methods: rreturn 
on asset (ROA), return on investment (ROI), net present value 
(NPV), or payback period, which are defined as follows: 

 Net incomeROA
Total asset

=  (6.1) 

 Net income
ROI

Total investment
=  (6.2) 
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where n is the number of years in the period considered, r is the annual 
interest rate of capital, and CFt is the cash flow in t-th year. 

 Initial investment
Payback period

Annual cash flow
=  (6.4) 

Each organization may have some criteria for these financial metrics, 
such as a ROI greater than 10 percent, a payback period less than 
5 years, and a NPV greater than $20K. If these minimum requirements 
are not met, the project is deemed as a no-go. 

The risk of a project can be estimated by the risk-assessment matrix 
as illustrated in Table 6.1. Each risk is assigned an estimated probability 
and severity, with higher severity numbers implying more serious conse-
quences. The fourth column is the product of the second and the third 
columns. The total risk is the sum of the risk assessment for each risk. 
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Table 6.1 Risk-assessment matrix 
 

Project risk  Estimated probability (%) Severity Risk assessment 

Risk 1 1 1 1 

Risk 2 5 2 10 

Risk 3 1 6 6 

Risk 4 12 1 12 

Total risk 29 

 
Projects that can be completed with the available resources, have the 

highest benefit, lowest cost, shortest payback period, and the lowest risk 
are good candidates for Lean Six Sigma project. However, there may be 
conflicts among these factors. A Pugh matrix with benefit, cost, risk, 
available resources, and team leader and team members’ skills and track 
records as criteria can be used to select the high-priority project. Based 
on this analysis, the project may be approved, postponed, or rejected.  

6.3 Lean Six Sigma Team 

The success of a project depends heavily on its execution by the team, 
and team formation is the first task of the Lean Six Sigma project. The 
team may be formed with either a top-down or a bottom-up approach. 
The top-down approach identifies a project and assigns the project to a 
team by a decision maker, such as a Black Belt, a Master Black Belt, or a 
manager. The bottom-up approach identifies a project by the team lead-
er or a group of team members. Then the team leader or the team pre-
sents the case to the decision maker for approval.  

The team’s mission must be defined and approved by managers and 
agreed upon by team members. Buy-ins from stakeholders must then be 
secured before the project is approved. It is also important to make sure 
that the resources needed to complete the project are readily available. 
For Green Belt projects, the size of the team is typically between 4 and 
10 people. Black Belt project teams may be larger. Sometimes, a Black 
Belt project may involve several Green Belt projects.  

The selection of the team leader is critical to the success of the project. 
The team leader should have enough knowledge in Lean Six Sigma, have 
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the necessary managerial skills to pull the team together, be able to resolve 
conflicts, and make decisions at critical times. Selection of team members 
should consider different aspects such as specialty, experience, availability, 
motivation, and personality. Typically, a cross functional team is neces-
sary. This ensures that the team has expertise for all major tasks in the 
project. It is desirable to mix team members with more experience in Lean 
Six Sigma, such as those who have completed Lean Six Sigma training, 
with ones with less experience, such as those currently receiving Lean 
Six Sigma training. The team’s strengths and weakness need to be evaluat-
ed by the decision maker. Members of a good project team should have 
the following characteristics: 

• Ability to learn from each other 
• Trust and tolerate each other 
• Highly motivated by the project 
• Put the team’s interest above their own 
• Have the perseverance to work through difficult time 
• Be responsible and willing to take initiatives 
• Be able to deliver assigned tasks in a timely manner  

Team building is necessary if the members have never worked to-
gether before. Team members need to know each other’s personalities, 
strengths, and weaknesses. Rules for resolving potential conflict and 
running team meetings should be established. Typically, meetings are 
held weekly by the team and updates to management are made monthly.  

A team leader, a timekeeper for meetings, and a person responsible 
for making meeting minutes should be determined. A meeting should 
always include an agenda with time allocated for major items. It should 
also record the time, location, and attendees of the meeting as well as 
the author of the meeting minutes. Each action item should be assigned 
to specific team members with  due dates. In the subsequent meeting, 
the team should first discuss the meeting minutes from the previous 
meeting followed by approval or revision of the minutes. The team 
members will then report back on the status of the assigned action 
items. It is important to seek consensus among team members and keep 
good project documentation.  
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Last but not least, the organization should establish a mechanism to 
acknowledge the achievements of good teams and reward them 
accordingly. 

6.4 Project Scope and Project Management 

Project scope is established in the Define phase of the DMAIC process 
[9–12]. Since DMAIC is iterative, revisions are allowed for each phase. 
However, any change made to the project scope, including the objective, 
duration, and resources needed, has to be reasonably justified and ap-
proved by the project champion. The project scope should be treated as 
a contract between the team and the project champion.  

It is often tempting for the project champion to change the require-
ments or for teams to add features during the project execution. This in-
cremental expansion of the project scope is called sscope creep and can 
have detrimental consequences. The team must learn to manage scope 
creep; otherwise a Green Belt project may become a Black Belt project, or 
in the worst case, it may become the whole career of those involved. 
However, because the DMAIC process is a continuous improvement pro-
cess, it is desirable to make incremental improvements in a Lean 
Six Sigma project. In this way, the organization can benefit immediately. 
If further improvement can be achieved, a new Lean Six Sigma project 
can be started as a second-phase project instead of changing the scope of 
the original project. 

A Lean Six Sigma project should always be managed to follow the 
DMAIC process. Project management tools can be used throughout the 
project, including work breakdown structure (WBS), critical path method 
(CPM), Gantt chart, responsibility-assignment matrix (also known as 
responsible, accountable, consulted, informed, or RACI, matrix), cost 
performance index (CPI), and the schedule performance index (SPI). 
Regular meetings, reports, and reviews should be held. The risks of the 
project should be evaluated constantly with tools such as the failure mode 
and effects analysis (FMEA). 
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6.5 Milestones, Deliverables, and Project Summary 

Project milestones are points that mark the major events of a project. 
For Lean Six Sigma projects, the natural choice for milestones is the end 
of each phase of the DMAIC process, while other milestones can be 
added if necessary. PProject deliverables are the objects produced in the 
project, which can be tangible or intangible. They can be requirements, 
designs, design documentation, test reports, SIPOC, CTQ, and FMEA. 
Both milestones and deliverables should be clearly specified and re-
viewed periodically. 

Many companies use the pphase-and-gate system, which divides a 
project into multiple pphases with ggates as the points where the 
achievements made in the project are assessed. For Lean Six Sigma, one 
can use DMAIC as the five phases. GGate reviews are conducted to assess 
the milestones and deliverables, analyze the critical path, predict project 
success, discuss how to avoid mistakes in the subsequent phase manage 
risks. Decisions are then made on further actions. If the project does not 
pass a gate review, then that phase may be delayed or the project may be 
canceled.  

The potential financial benefits of the project need to be evaluated 
by the so-called MMoney Belt who is a financial expert of the organiza-
tion. In the Control phase, documentation, presentation, records of the 
lessons learned, and contribution to the knowledge base are made before 
wrapping up the project. Typically, documentation includes a one-page 
executive summary with graphs.  
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CHAPTER 7 

Design for Six Sigma 
Design for Six Sigma (DDFSS) is a natural extension of Six Sigma to  
the upstream of product development process, when designs can be 
optimized for quality assurance. In this chapter, we provide a compact 
introduction to DFSS, including its importance, concept, basic techniques, 
and process. 

In Section 7.1, we introduce the reader to the concept of DFSS with 
an example, showing how DFSS can provide competitive advantages to 
businesses. We then briefly review the history of DFSS and contrast it 
with Six Sigma. Section 7.2 explains the five phases of DFSS in more 
detail, and presents the basic methodology illustrated with examples. 
Section 7.3 is a discussion on how to systematically implement DFSS in 
an enterprise setting. Two case studies from the automobile industry are 
offered in Sections 8.2 and 8.3, demonstrating the impact of DFSS in 
real-world applications. The appendixes of this book include the 
description of the Pugh decision-making technique and a collection of 
orthogonal arrays commonly utilized in design of experiment (DOE), 
which are impotant to DFSS. 

7.1 Overview: Quality at Low Costs  

7.1.1 Why Do We Need DFSS? 

While the practice of Lean Six Sigma has proven to be a powerful tool 
for reducing variation in performance and quality of products or ser-
vices, it also has limitations. First, the design of a product or process can 
be inherently sensitive to certain sources of variation, making it more 
challenging or costly to deliver consistent performance and quality. 
Without changing the design, the improvement through Lean Six Sigma 
may be limited. This will be shown by the examples in this chapter and 
the DFSS case studies in Chapter 8. Second, sources of variation such as 
those in usage and operating environment can be very difficult, if not 
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impossible, to control. For example, while airplane pilots are well 
trained to fly airplanes with consistent procedures, drivers of automo-
biles have much more variation in how they operate their vehicles. Also, 
controlling user variation would usually limit the market potential of the 
product or process. It is therefore desirable to design a robust product or 
process that is less sensitive to unwanted variation sources, which is the 
subject of DDFSS. Let’s start with the following example. 

Example 7.1 Design of a Wheel Cover [1] 

A wheel cover is one of the thousands of parts that make up a car. There 
are at least two expectations a customer has for a wheel cover: ease of 
removal if he or she has to change the tire and good retention on the 
wheel so that the cover does not fall off when the vehicle hits a bump or 
turns a sharp corner.  

Figure 7.1 shows the backside of a wheel cover. The cover has three 
clips, each with two prongs, spaced around an imaginary circle. The diame-
ter of this circle, which we call the clip diameter, is larger than the diameter 
of the rim of the wheel. When the cover is pressed onto the wheel, the clips 
act as a spring and deform, pushing the cover to the rim and holding it 
there. 

 

Figure 7.1 Backside of a wheel cover 

Source: Reprinted with permission by ESD—The Engineering Society of Detroit 
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Two variables determine the retention force F: the stiffness k of the 
clips and the deflection u of the clips. The clips deflect when they are 
inserted into the rim, and the amount of deflection is the difference 
between the radius of the circle spanned by the clips and the radius of 
the rim. By mechanics,  

 F = ku (7.1) 

Measurement data indicate that the deflection u has a significant 
amount of variation, since both the rim and clip diameters have their 
manufacturing tolerances. It is not uncommon for this variation to be 
up to several millimeters. We classify this deflection variation as a nnoise 
factor, which implies that the variation is not intended by design, and it 
affects the performance of the product. However, the nominal values of 
the clip stiffness and the clip deflection are subject to design, making 
them ccontrol factors (We shall define noise factors and control factors 
more precisely in Section 7.2.4). 

Customer survey data show that for the wheel cover to be removable, 
the retention force should be no more than 60 N. This is shown in 
Figure 7.2. On the other hand, the data show that covers will fall off at a 
significant rate when the retention force is less than 30 N, as shown in 
Figure 7.3. In general, vehicles driven on bumpy roads and with sharp turns 
need a higher retention force than those cruising on a freeway. Combining  

 

Figure 7.2 Customer survey data on easy wheel cover remover 
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Figure 7.3 Customer survey data on wheel cover retention 

 

Figure 7.4 Setting the target for retention force 

these two competing requirements, a retention force of 34.6 N is deemed 
optimal for most of the customers, as indicated in Figure 7.4. Deviation 
from this target will lead to some degree of customer dissatisfaction and 
higher warranty costs to the car maker. The range for the required 
retention force is therefore set at 30 to 40 N. 
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In mass production, it is impossible to be exactly on target all the 
time. Typically, the retention force of the wheel cover varies, as shown 
by the shaded distribution in Figure 7.4, having a mean deviated from 
the target and a spread around the mean. For the product to satisfy most 
if not all customers, we must aim for the mean of the retention force to 
match the target value, while also reducing the standard deviation. 
Shifting the mean of the retention force toward the target value is less 
challenging than reducing its variation; therefore, we will focus on how 
the variation can be reduced. 

For a deflection of 6.65 mm and a clip stiffness of 5.2 N/mm, the 
nominal retention force is 34.6 N, which is on target. However, in mass 
production, we get a distribution of deflection as shown in Figure 7.5 by 
the shaded distribution along the horizontal axis. This variation in the 
deflection u projects to a variation in the retention force wider than the 
required 30 to 40 N, resulting in less-satisfied customers. 

The usual practice is to tighten the tolerance, say, by sorting the 
larger covers to match with the larger rims and smaller covers with 
smaller rims. However, the factory would need extra manpower and storage 

 

Figure 7.5 Variation in deflection transmitted to retention force 
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room for sorting. Sorting may give us the quality we aim for, but at an 
extra cost. Moreover, when the customer has the tires rotated for 
maintenance, the matched covers may become unmatched again, caus-
ing problems.  

The Six Sigma approach would aim for the reduction of the varia-
tion in the clip deflection. However, the wheels may be produced by 
one supplier and the covers by another. Data must be collected and ana-
lyzed to determine which part contributed most to the variation. Then 
the supplier at fault needs to improve its manufacturing process to meet 
a tighter tolerance specification. This may be time-consuming, and the 
price that the supplier charges for better parts may increase.  

Let us examine how DFSS will achieve the required quality at no ex-
tra cost. At the center of this problem is the sensitivity of the retention 
force to the variation in the clip deflection. If this sensitivity can be low-
ered by design, then we can reduce the variation of the retention force 
without tightening the manufacturing tolerance of the deflection. 

Consider using clips which are less stiff, for example, k = 3.10 N/mm, 
and increasing the clip diameter so that the deflection u is 11.15 mm. 
With this design, the nominal retention force is still 34.6 N, but the varia-
tion range of the retention force is much smaller than when the stiffer 
clips are used. In Figure 7.6, the same variation in the deflection projects 
to retention forces between 30 and 40 N, with which most customers will 
be satisfied. With this soft-clip design, we achieve the same quality as sort-
ing but without the extra cost. The soft-clip design is more robust to the 
variation in the diameters of the rim and the clips. 

In fact, by choosing still softer clips of 2.0 N/mm and increasing the 
clip diameter until the nominal deflection is 17.3 mm, we can even relax 
the tolerance on the deflection and still achieve the same quality, as shown 
in Figure 7.6. This design is even more robust, allowing more variation in 
the amount of clip deflection. It can be produced at a lower cost, since we 
can purchase parts from less-expensive suppliers, require a less-precise as-
sembly process, and lower the skill level of the labor needed. This can lead 
to extra profit, without sacrificing quality of the product. � 
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Figure 7.6 Using DFSS to achieve quality at low cost 

There are numerous examples similar to this one in the day-to-day 
work of engineers, where simple math models based on physics are used to 
design products or processes. The opportunity for DFSS is tremendous.  

Compared with the traditional quality control methods, DFSS has 
the following advantages: 

• It is carried out early in the product development cycle, 
when major capital expenditures such as tooling and testing 
have not been spent. Design mistakes may be corrected at 
this stage with much less-severe consequences. Moreover, 
decisions made at this stage have significant impact on the 
product quality and reliability, as illustrated by Example 7.1. 

• There is more design freedom to address the quality 
concerns at the design stage. Once in production, design 
changes will be very costly. 

• DFSS can be carried out without using many production 
parts, especially if the mathematical model of the design is 
available to simulate the product performance. In 
Example 7.1, the mathematical model is F = ku. This makes 
DFSS especially suited for the development of new 
technologies and new products. 
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• DFSS can exploit opportunities of lowering costs, by 
relaxing tolerances of the variables the design is not sensitive 
to. We saw this strategy used in Example 7.1, with the soft 
clips of 2.0 N/mm.  

7.1.2 A Brief History of DFSS 

Design for Six Sigma is the integration of Six Sigma and rrobust design. 
It moves Six Sigma upstream into the product or process design phase, 
combined with the concept and methods of robust design. 

The concept of robust design was pioneered by Dr. Genichi Taguchi 
[2]. After World War II, Japan was faced with the challenge of producing 
high-quality products when there was a shortage of high-quality material, 
capable manufacturing equipment, and skilled workers. Dr. Taguchi, 
then a manager at the Electrical Communication Lab of Nippon Tele-
phone and Telegraph, was assigned to solving this problem. While 
Dr. Edward Deming taught statistical process control in Japan, 
Dr. Taguchi developed the foundations of robust design through practi-
cal applications during the 1950s and early 1960s. DDOE was the main 
approach of robust design at that time, and Dr. Taguchi made heavy use 
of the orthogonal arrays for DOE (Appendix B). He developed “recipes” 
for DOE and the subsequent data analysis, which could be followed by 
engineers without broad statistical knowledge. With robust design, 
Dr. Taguchi emphasized reducing variation of product performance as 
used by the customers at a low cost. This was, and still is, very relevant to 
industries for mass production and consumption. 

By the 1980s, Japanese products were gaining a reputation for their 
quality and reliability, especially in the electronic and automotive indus-
tries. American industries followed suit. Some universities started offering 
courses on robust design, and companies such as AT&T, Ford Motor 
Company, and General Motors Corporation started to learn and apply 
robust design methods in their research and development activities. The 
methodology evolved too, extending beyond DOE with physical parts to 
using computer simulation models for robust design. Traditional optimi-
zation algorithms were combined with the “probabilistic method” in the 
search for robust solutions [3]. As Six Sigma process moved upstream to 
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the development of products/processes, robust design became a key ena-
bler of institutionalized quality engineering. 

7.1.3 Phases of DFSS 

The process of DFSS has a number of acronyms, such as 

• DMAIC: Define–Measure–Analyze–Improve–Control; this 
is the same as the Six Sigma process 

• DMADV: Define–Measure–Analyze–Design–Verify 
• IDOV: Identify–Design–Optimize–Validate 
• DMADOV: Define–Measure–Analyze–Design–Optimize–

Validate 
• DCDOV: Define–Concept–Design–Optimize–Validate 
• DMADOV: Define–Measure–Analyze–Design–Optimize–

Validate 
• IDDOV: Identify–Define–Develop–Optimize–Verify 
• ICOV: Identify–Characterize–Optimize–Verify 

Although the expressions vary, the underlying philosophy is the 
same. In this book, we will use IDDOV [4]. More specifically, the five 
phases of DFSS are as follows: 

Phase 1. Identify opportunity of improving quality by design. The 
opportunity may come from a new technology making its way from 
research to a commercial product or process, or from redesigning a 
product or process that has poor quality. The business case should 
be considered at this stage.  

Phase 2. Define requirements. This includes understanding customer 
needs and translating those needs to measurable requirements on the 
product or process.  

Phase 3. Develop concepts. One or more new concepts may be pro-
posed and evaluated, and the concept that has the most potential of 
achieving the goal is selected. 

Phase 4. Optimize design. This phase will fine-tune the design of the 
product or process, such that it is not only “on-target,” but also “ca-
pable,” with its nominal performance fulfilling the design intent, 
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and its variation within the range that customers are satisfied with. 
The optimized tolerances are also determined here as part of the 
cost-effective design.  

Phase 5. Verify design. This phase ensures that the optimized design 
indeed delivers as expected. 

In Example 7.1, the DFSS opportunity was recognized when variation 
of the wheel cover retention force caused customer complaints, and the tra-
ditional quality control methods proved to be too costly. The requirements 
on the retention force were defined based on customer survey data, as 
shown in Figure 7.4. The new concept was to change the design of the clips 
so that the sensitivity of the retention force to variation in the clip deflection 
was reduced; this approach is in contrast to reducing the variation of the 
deflection itself. When optimizing the design, different values of the clip 
stiffness were evaluated for their robustness, in addition to other considera-
tions such as durability (not shown in Example 7.1). Finally, the new design 
of the clips needed to be verified, not only with the nominal clip deflection, 
but also with the variation in the deflection, therefore proving its robustness.  

7.1.4 Contrast between Six Sigma and Design for Six Sigma 

Design for Six Sigma and Six Sigma are similar in their basic philoso-
phy: Quality is crucial to customer satisfaction and business competi-
tiveness; performance consistency is a major part of quality; quality 
characteristics should be measured quantitatively. They also share some 
tools such as quality function development (QFD), failure mode and 
effect analysis, cause-and-effect diagram, fault tree analysis, DOE, and 
statistical data analysis. 

On the other hand, DFSS differs from Six Sigma in one important 
aspect: timing of the application. While Six Sigma activities occur dur-
ing the production phase and support sales and services, DFSS is part of 
the research and development of a product or process. This is illustrated 
in Figure 7.7.  

As the result of this difference in timing, DFSS has more design lati-
tude. Many aspects of the design can be optimized at this stage. For in-
stance, while Six Sigma accepts the performance tolerance specification  
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Figure 7.7 Product development process and timing of DFSS and SS 

and strive to meet the specs, DFSS can redefine the performance specifi-
cations based on customer needs. DFSS can also change the values of 
the design parameters to reduce its sensitivity to major sources of varia-
tion, as demonstrated by Example 7.1. In that example, the stiffness of 
the wheel cover clips was changed to make it less sensitive to the manu-
facturing variation in the clip deflection. DFSS is fire prevention, while 
Six Sigma is fire fighting. DFSS focuses on the first-time quality, while 
Six Sigma focuses on continuous improvement and maintenance. 

One of the major challenges to implementing DFSS is the shift in 
mentality. Rather than reacting to problems and fixing them, DFSS 
requires us to anticipate potential downstream problems, far before the 
product or process is built. For instance, when designing a consumer 
product with DFSS, we need to anticipate variations from raw materials, 
manufacturing processes, operating environment such as temperatures, 
aging, and the ways customers use the product. Field data may or may 
not be available for a new technology or product, making it difficult to 
evaluate the robustness of the design.  

DFSS therefore relies more on the prediction methods and tools. 
Mathematical modeling, computer simulation, DOE, statistical simula-
tion, and robust optimization are being used widely for DFSS, as we will 
discuss in Section 7.3. 

DFSS and Six Sigma are coherent. When a DFSS project is com-
plete, a set of specifications should be established. Six Sigma can then be 
called upon to execute the production, ensuring that the specs are 
achieved effectively. 
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7.2 Process of DFSS 

In this section, we shall explain the details of the DFSS phases and the 
commonly used methods, illustrated by examples. 

7.2.1 Phase 1: Identify Opportunity------Starting from Customer Needs 

This phase is similar to the “Define” phase of the Six Sigma process. 
However, there are some differences between the two as explained in the 
following. 

DFSS projects should focus on what is important to the customer. 
Since DFSS is conducted at the design stage, it is critical to understand 
who the customers are, what the intended function of the product or pro-
cess is, and what the customers are looking for in the product or process. 

“Customers” can be external such as consumers and government 
agencies, or internal such as plant workers. For example, when designing 
a car, drivers and passengers are the car manufacturer’s external custom-
ers. Besides, the government regulates the safety of the car, imposing 
requirements as the advocate for car buyers; such government agency is 
also an external customer. On the other hand, the safety and health of 
the workers in automobile plants require that the design of parts and 
their manufacturing processes be ergonomical. In this sense, the auto 
workers become car manufacturer’s internal customers.  

Each customer desires certain things from a product or process. 
Collectively, those needs are called “the Voice of Customer,” or VOC. 
During the first phase of a DFSS project, customer surveys may be 
conducted to understand the VOC. Also, data on the existing design can 
be analyzed so that its weakness can be corrected by the new design. In the 
U.S. automotive industry, data from J.D. Power Initial Quality Survey, 
J.D. Power Vehicle Dependability Survey, Consumer Reports, and auto 
manufacturers’ vehicle warranty repair data can all be used to identify 
opportunities for DFSS. 

In Example 7.1, the main VOCs are “easy removal” and “reliable re-
tention” of the wheel cover. There may be additional VOC for the cover, 
such as being lightweight and corrosion-resistant, etc. 

As with Six Sigma, at the end of the first phase, a DFSS project team 
should have identified the objectives, scope, duration, resources, stake-
holders, and risks of the project. 
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7.2.2 Phase 2: Develop Requirements------Translating VOC to 

Specifications  

The VOC collected in Phase 1 needs to be translated into quantifiable 
specifications. Any vague customer preference should be made concrete, 
expressed in terms of a measurable quantity. In Example 7.1, “easy re-
moval” was translated into the engineering requirement of “retention 
force must be less than 40 N,” while “reliable retention” was expressed 
as “retention force must be greater than 30 N.”  

There are several challenges to this step. First, it is nontrivial to 
translate all VOC into quantifiable specifications accurately. Often, a 
VOC is vague and subjective, stating a preference in a layperson’s lan-
guage. Different customers may mean different things even when the 
same expressions are used. “The room should be comfortable” may 
mean a temperature of 25°C to an elderly, but 20°C to a teenager; and it 
may also mean that the humidity needs to be in certain range. The word 
“noisy” not only relates to high volume of the sound, but also its fre-
quencies. Since the entire project starts and ends with the requirements, 
it is important to find the correct objective interpretation of the VOC, 
and derive specifications true to it.  

Second, the specification must be on a variable that can be “measured” 
at the design stage. If prototypes can be made for testing, one can measure 
the performance. However, if no prototype samples are available, one has 
to replace the real measurements with predictions. A physics-based math-
ematical model or an empirical model may be used for this purpose. In 
Example 7.1, Equation (7.1) is a mathematical model predicting the re-
tention force, based on theory of mechanics. Conversely, the vehicle 
DFSS case studies in Sections 8.2 and 8.3 used both physics-based and 
empirical models to predict the performance of the products.  

In some cases, a failure mechanism cannot be easily modeled mathe-
matically due to its complexity. For instance, when two plastic parts in a 
car rub against each other, they may produce a squeaky noise, which an-
noys customers. While this noise can be measured, it is difficult to predict 
with a mathematical model. In such cases, surrogate variables may be 
used: instead of predicting the noise, one may predict the lack of clearance 
and the relative motion between the parts. When using surrogate varia-
bles, one must make sure that the failure mechanism is well represented. 
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As in the second phase of Six Sigma process, QFD is an effective 
tool for translating the VOC to objective performance requirements. At 
the end of this phase, the DFSS team should have identified perfor-
mance variables that are critical to quality and can be predicted reliably, 
and established their specifications based on the VOC. 

Example 7.2 VOC and Functional Requirements for an Electric Bike 
Battery  

Compared to its man-powered counterparts, an electric bike has addi-
tional VOCs for its battery system. For instance, customers want the 
battery to be lightweight, fast-charging, powerful, durable, and afforda-
ble. They also want the bike to travel reasonably long distance with each 
charge, to operate around the year, and so on. Each of these desires 
needs to be interpreted accurately and precisely in engineering or finan-
cial teams. Lightweight means that the mass of the battery must be less 
than certain kilograms; fast-charging means that the charging time 
should be less than certain minutes; greater power corresponds to the 
fast battery discharge; etc. Table 7.1 lists the metrics for each of the 
VOCs. Note that they are all measurable. 
 

Table 7.1 Translating electric bike battery VOC to requirements 
 

VOC 
Engineering Metric 
on Battery System 

Specification 
for Model I 

Specification 
for Model II 

Lightweight Power and energy 
density 

  

Fast-charging Charging time to 90% 
battery capacity 

  

Powerful Maximum discharge rate 
and duration 

  

Durable Cycle life and calendar 
life 

  

Inexpensive Battery cost    
Adequate travel 
range per charge 

Charge capacity   

Can be safely used 
in all seasons 

Operating temperature 
and humidity range 

  

Convenient 
charging 

Charger can  
use residential power 
supply of 110 V 

  

Easy to maintain Maintenance frequency    

� 
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The developer of the battery system then needs to determine the speci-
fications of the metrics. In this example, different types of bike riders may 
have different needs; hence, different battery models can be designed to 
meet the needs. For instance, one battery model may be designed for peo-
ple who use the bike in cities no more than 20 km a day, while another can 
be for dispatchers and delivery workers who ride up to 120 km a day. Each 
model of the battery system would have its own set of specifications. The 
blanks in Table 7.1 should be filled based on customer preference and 
market research data. 

7.2.3 Phase 3: Develop Concepts------Searching for Robust DNA 

This phase is unique to Design for Six Sigma. At the early development 
stage, there are usually more than one proposed design concepts. The 
objective of this phase is to evaluate them with evidence, to find the best 
concept satisfying the requirements identified in Phase 2 and other 
business objectives. However, it is not the optimization of a particular 
design concept.  

Professor Stuart Pugh [5, 6] created a method to help concept selec-
tion. He emphasized the importance of this step: if the wrong design 
concept was chosen, no amount of subsequent efforts on details could 
save the situation. His Pugh matrix has been used for concept selection. 
It “scores” each design concept against a set of criteria, in comparison 
with a “datum” or a baseline design. The scores for all the candidate 
designs are then used to make trade-off decisions, and the best overall 
design concepts will be chosen. For more details, see “Appendix A. Pugh 
Concept Selection Technique” at the end of this book.  

For a DFSS project, robustness should be part of the criteria. Some 
design concepts are less sensitive to variations in their production and 
usage, therefore easier to achieve high levels of quality. Including this 
criterion in the evaluation will help achieve quality at lower costs.  

During the concept selection, new ideas and concepts may emerge, 
as a result of better understanding of the advantage and disadvantage of 
the existing concepts. It is important to be open-minded and keep as 
many design options open as possible, to provide the best candidate 
designs for evaluation. 
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Note that the “scoring” of the concepts may require a good under-
standing of the failure modes of each concept. FMEA, fault tree analysis, 
and fishbone diagram may be utilized to help with the evaluation.  

Example 7.3 Concept Selection of Electric Bike Battery 

Let’s continue with the electric bike battery design discussed in Example 
7.2. Suppose that we now need to choose the chemistry of the battery 
for Model I, which can travel 20 km with each charge at a city biking 
speed.  

Four battery technologies are being compared: lead acid such as in 
the 12 V battery of a car, nickel cadmium such as in common AA bat-
teries, nickel metal hydride and lithium–manganese used in batteries of 
today’s consumer electronics and electric vehicles.  

Table 7.2 shows a hypothetical exercise of choosing the battery 
technology with the Pugh matrix. Each technology is scored against the 
lead-acid type on each metric. The result shows that the lithium–
manganese battery provides the best performance, but costs more. In fact, 
lithium–manganese batteries are the most commonly used in electric bikes. 
However, in this example, Model I only needs to travel 20 km per charge; 
therefore, nickel metal hydride may also be a good choice. In some 
markets, even nickel cadmium batteries can be used as a low-cost solution. 
A decision should be made based on the market data and the sales strategy. 
 
Table 7.2 Pugh Matrix for choosing battery for electric bike 
 

Lead 

Acid 

Battery 

Nickel 

Cadmium 

Battery 

Nickel 

Metal 

Hydride 

Lithium–

Manganese 

Battery 
Power density 0   +2   +3   +6 
Energy density 0   +2   +3   +6 
Maximum discharge rate and 
duration 

0   +2   +3   +6 

Cycle life and calendar life 0   +2   +3   +3 
Battery cost  0   �1   �2   �4 
Operating temperature and 
humidity range 

0   �1   �2   �2 

Charger can use residential 110 V 
power supply 

0     0     0     0 

Maintenance frequency  0   +2   +2   +2 
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Lead 

Acid 

Battery 

Nickel 

Cadmium 

Battery 

Nickel 

Metal 

Hydride 

Lithium–

Manganese 

Battery 
Charging time to 90% capacity 0   +1   +2   +2 
Total positive 0 +11 +16 +25 
Total negative 0   �2   �4   �6 
Total neutral 0      1      1   1 

� 

7.2.4 Phase 4: Optimize Design------Achieving Quality at Low Cost  

Now that the best concept is chosen, we need to optimize the detailed 
design to achieve the project objectives. 

At the core of DFSS is the concept of robust design. A robust design is 
less sensitive to non-negligible variation sources in the raw materials, 
manufacturing process, operating environment, and usage. While quality 
control methods work on reducing or eliminating the variations, robust 
design searches for the nominal values of the design variables, such that 
the sensitivity of the performance with respect to the major variation 
sources can be reduced. In essence, robust design is to make a design more 
immune to critical variation sources, negating the effects of those 
unwanted variation on the quality of the product.  

Let us reexamine Example 7.1. The sensitivity of the retention force 
F with respect to the clip deflection u is given by  

 dF
k

du
=  (7.2) 

Larger values of the clip stiffness k, or stiffer clips, will make the re-
tention force more sensitive to the variation in u. In order to reduce this 
sensitivity, smaller values of k, or softer slips, should be chosen.  

Similar to the traditional optimization problem, we can formulate 
robust optimization as “searching for the values of a set of independent 
variables to maximize (or minimize) the objective function, subject to 
constraints.” However, for robust optimization, we also need to include 
the measure of robustness in the objective function, which requires sta-
tistical estimates. 
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7.2.4.1 How to Measure or Predict Performance? 

By convention, the performance variable we will optimize is called the 
response. In general, the response is a function of a number of inde-
pendent variables, or factors. In Example 7.1, the retention force is the 
response we are interested in. There are two options to evaluate the re-
sponse: experimental measurement and mathematical prediction. If a 
mathematical model is available to predict the response with sufficient 
accuracy, then experiments are not necessary at this point of the project, 
which saves costs. However, if no such predictive model exists, experi-
ments must be conducted to measure the response. In some complex 
cases, experiments and predictive models can be combined to estimate 
the system response(s). 

In Example 7.1, the response F was predicted by Equation (7.1). It 
can also be measured with a force gauge if needed.  

Note that a factor can be either a continuous variable or a discrete 
one. A mathematical model may accept both types of factors, while only 
discrete values (or llevels) are used in the experimental approach. 

7.2.4.2 What Are Control Factor, Noise Factor, and Their Ranges? 

The response variable is a function of a number of independent variables 
of two categories: those that are subject to design (ccontrol factors), and 
those that vary but are not subject to design (nnoise factors).  

A control factor is an independent variable that affects the response, 
and its value can be chosen as part of the design. In Example 7.1, the 
nominal values of the stiffness k and the deflection u of the clips are 
control factors, since we can choose their values to obtain the retention 
force of 34.6 N.  

A noise factor is a variable that also affects the response, but we 
cannot control its value or choose not to control for some reason. For 
instance, the variation of the clip deflection in Example 7.1 is a noise 
factor. Although controlling this variation is possible through sorting, it 
is costly. If one can find a robust design that tolerates the variation in 
deflection, it will be more cost-effective. For this reason, variation in the 
clip deflection is treated as a noise factor.  
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Other examples of noise factors are given below:  

• When making a car body, sheet metal thickness variation 
within the specification of a metal gauge.  

• When regulating the temperature of a room, the variation in 
the outside temperature. 

For a DFSS project, it is important to estimate the range of each 
noise factor, in order to evaluate its effect on the variation of the re-
sponse. Also, one must determine the range of choice for a control fac-
tor, which should be as large as feasible to increase the design flexibility, 
therefore maximizing the chance of finding a robust solution. 

In Example 7.1, the variation of the clip deflection is a noise factor, 
with a range of ±3 mm, or �u = 1 mm if we assume a ±3� variation 
range. The nominal values of the stiffness k and the deflection u of the 
clips have reasonably large ranges, as long as other requirements such as 
durability of the clips are met. 

7.2.4.3 How to Evaluate Robustness? 

The robustness of the design can be measured by how much the value of 
the response deviates from its average, when the noise factors vary ran-
domly. A small deviation in the response implies a more robust design. 
This deviation can be quantified with the variance or standard deviation 
of the response.  

Several methods are commonly used to estimate the variance, as ex-
plained below. 

a) Taylor expansion method 

Suppose that y is a differentiable function of x = (x1, x2, . . . , xn), where 
xi, i= 1, 2, . . .  ,n are random variables. In other words, y can be ex-
pressed as 1 2( , , . . . , )ny f x x x� . 

The first-order Taylor expansion of y about the mean value 

1 2( , ,. . . , )o o o o
nx x x x� is given by 

1 1 2 2
1 2
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Figure 7.8 Transmission of variation 

The variation of x is transmitted to the variation of y, mostly 
through the slope of the function at the mean value of x, as illustrated in 
Figure 7.8. This slope corresponds to the first-order derivative of y with 
respect to x, evaluated at xo. The magnitude of the variation of y thus 
transmitted depends on (1) the magnitude of the variation in x and 
(2) how sensitive y is with respect to x.  

Assuming that the x variables are statistically independent. Then the 
mean and the variance of y can be approximated by the following 
equations [2]: 

 1 2( , ,. . . , )o o o o
ny f x x x≈  (7.3) 

 
σ σ σ σ

σ
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 (7.4) 

where yoand xo are the mean values of y and x respectively and yσ and 

ixσ are the standard deviations of y and xi respectively.  

We can also estimate how much each xj contributes to the variation 
of y in percentage terms. The contribution to 2

yσ  by xj is 
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If the variation of a variable, say jx , is negligible, then σ ≈ 0
jx  and 

the corresponding term 2 2( | )
jo x

j

y
x

σ∂
∂  in Equation (7.4) and Equation (7.5) 

will be zero; hence, it won’t contribute to the variation of the response. 
The magnitude of 2

yσ  is a measure of the design robustness.  

Example 7.4 Variation Analysis of the Wheel Cover  

Consider the wheel cover retention force discussed in Example 7.1. The 
nominal value of the retention force is F = 34.6 N, since = =F ku
5.2 6.65 34.6� �  N. 

Assuming σ = 1u  mm and σ = 0.2k  N/mm, we can estimate the 

standard deviation of the retention force as follows: 

5.2 /F
k N mm

u
∂ = =
∂

, 6.65F
u mm

k
∂ = =
∂

, 

2 2 2 2 2 2 2 25.2 1 6.65 0.2 5.4y u kk u Nσ σ σ= + = × + × =  

The yσ  above is a measure of the robustness of the retention force. At 
the three-sigma level, the variation will cause the retention force to be out-
side the customer-preferred range of 30 to 40 N, as shown in Figure 7.9. 

Using Equation (7.5), the contribution by the variation of u is calcu-
lated as 2 2 2(5.2 × 1 )/5.4 =93%, while the contribution by the variation of 

k is 2 2 2(6.65 × 0.2 )/5.4 = 7%. It is clear that the variation of u is the main 
cause of the problem, its effect being amplified by the stiffness k. A more 
robust design would need to reduce the sensitivity of the retention force 
to u. This knowledge indicates that softer clips are more robust. � 

If y is not a differentiable function of x, or the variation of x is too 
big compared to the linear range of the function, then the Taylor expan-
sion method may not provide an accurate estimate of 2

yσ . In that case, 
Monte Carlo Simulation (MCS) is a good alternative. 
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Figure 7.9 Variation caused by both deflection and stiffness of clips 

b) Monte Carlo Simulation 

MCS imitates the effects of random variation on a system described 
by a mathematical model. In reality, the parameters in the system and 
the inputs to the system may have variation, while in the mathematical 
model they are usually assumed deterministic. If the input to the model 
is the same, the predicted output will also be the same. For instance, in 
Example 7.1, if the values of stiffness k and deflection u do not change, 
then the value of the retention force F does not change either.  

In order to evaluate the robustness of the system, one needs to 
introduce variation of the noise factors into the calculation. Suppose that 
U is a random variable of normal distribution with a mean of Uμ  and a 

variance of 2
Uσ , there is a numerical method that can generate many 

random values of U, such that their probability distribution matches that 
of N( Uμ , 2

Uσ ). For each of these random values of U, Equation (7.1) will 

produce a value of F. If we have 10,000 such F values, we can estimate the 
mean and the variance of F, or calculate the probability for F to be 
between 30 and 40 N with relative accuracy. This approach of simulating 
the random variation with a mathematical model of the response is called 
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MCS. In the past decades, as ccomputer-aided engineering (CCAE) 
advanced, MCS found numerous applications in various fields, from 
financial planning to automobile design. Algorithms for random number 
generation have been built into many computer simulation software 
packages, making MCS a powerful tool for robust design.  

MCS does not require the response function to be continuous, and 
the noise factors may be continuous or discrete. Usually, the number of 
simulation runs is between hundreds and thousands, depending on the 
nature of the problem. This may put a burden on the computing sys-
tem. For instance, a vehicle crash-worthiness simulation that evaluates 
the structural damage and occupant injury takes hours to complete. It is 
not practical therefore to conduct thousands of simulations to evaluate 
the probability of meeting certain requirement. In that case, a response 
surface model may be created first, and the MCS can be conducted with 
the response surface model instead. The case studies in Sections 8.2 and 
8.3 will illustrate that approach. 

c) Experimental method 

If no mathematical model of the product or process is available, one 
needs to conduct experiments to measure the robustness of the design.  

Ideally, for a candidate design, we would want to run many experi-
ments, each with different noise-factor levels. The response values from 
all these experiments would be analyzed statistically; the mean and 
standard deviation of the response could be estimated as in MCS. How-
ever, this approach is usually not feasible, due to the limitation on time 
and cost of running large number of experiments with prototypes. In-
stead, DOE methods should be employed to reduce the number of ex-
periments neccesary. 

There are various DOE matrices for this purpose. For example, Dr. 
Taguchi favored orthogonal arrays for robust design [2, 7]. If there are 
two or more noise factors, we can choose a suitable orthogonal array to 
run the experiments. For readers’ convenience, some frequently used 
orthogonal arrays are listed in Appendix B. 

For a given design (with a combination of control-factor values), we 
vary the levels of the noise factors according to a DOE matrix, conduct 
tests with repeats, and obtain several measurements of the response. For  
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Table 7.3 Full-factorial DOE matrix for two noise factors 
 

Experiment N1 N2 y 

1 Low Low y1 

2 Low High y2 

3 High Low y3 

4 High High y4 

 
instance, if we have two noise factors N1 and N2, each with two levels 
(low and high, or Level 1 and Level 2), and if we choose the full-
factorial design, a total of four experiments will be conducted, and the 
response measured, shown in Table 7.3.  

We can then calculate the average value yμ  and the variance 2
yσ  of 

the response as follows: 

1 2 3 4

4y

y y y yμ + + +
=  

2 2 2 2
1 2 3 42 ( ) ( ) ( ) ( )

3
y y y y

y

y y y yμ μ μ μ
σ

− + − + − + −
=  

The variance of y thus calculated is a measure of the spread in y. Since 
we only conducted four experiments and the values of the noise factors 
were not random, this is not an accurate estimate of the true probabilistic 
variance of the response. However, for the purpose of robust design, this 
metric can often distinguish a good design from a poor one.  

On the other hand, the average value of the response yμ  is a meas-

ure of the “bias.” Comparing yμ with the intended target value of the 

response, we know how much “mean shift” is needed in order to achieve 
the target response. The goal for robust design is to choose the optimal 
control-factor levels, such that the bias and the standard deviation of the 
response are both minimized.  

In practice, the three methods described above are usually adequate 
for DFSS. There are other sophisticated methods of estimating variation 
or probability distribution of the response; see [3, 8] for more details. 
Note that when designing a new product or process, it is usually not 
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feasible to have a large sample size to estimate accurately the statistical 
characteristics of the responses. For one thing, all mathematical models are 
approximations of the real system, and the responses predicted by those 
models have error. This prediction error can be greater than the sampling 
error due to the limited sample size in MCS, or greater than the neglected 
higher order terms in the Taylor expansion method. Similarly, in 
experimental approach, the parts used may be prototypes, and may not be 
exactly the same as produced during large-scale production. In all these 
cases, the error in the data of the response can be significant enough that 
no method can guarantee accurate estimates of the mean, the variance, or 
the probability distribution of the response. In this context, “Six Sigma” 
means “a very high level of consistency,” rather than “<3.4 defects per 
million opportunities.” This is different from the Six Sigma practice, 
where true production data is usually available for analysis.  

7.2.4.4 How to Formulate the Objective Function? 

There are three types of commonly used objective functions for robust 
optimization: nominal the best, ssmaller the better, and llarger the 
better. “Nominal the best” means that the nominal value of the re-
sponse needs to match a target value with minimum bias and variation; 
the “smaller the better” aims to minimize the response values, and the 
“larger the better” wants to maximize the response values. Depending 
on whether the response is predicted with a mathematical model or 
measured during experiments, the objective function for robust optimi-
zation will have various forms.  

When a mathematical model is used to predict the response and its 
variation, the objective function can be expressed as follows: 

For “nominal-the-best” problems, search for control-factor values such 
that 2 2{( ) )}y t yyμ σ− +  is minimized. The first term in this objective 

function represents the bias of the mean response yμ  from the target 
value yt, and the second term measures the variation of y.  

For “smaller-the-better” problems, we want to minimize( )y ynμ σ+ , 

where n is the sigma level of y variation. For example, if the goal is to 
achieve a Six Sigma design, then n = 6.  
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Similarly, for “larger-the-better” problems, ( )y ynμ σ−  should be 

maximized.  
There may also be a number of constraints for the optimization 

problem, which may contain statistical characteristics of response varia-
bles such as the mean and the standard deviation.  

In the experimental approach, the ssignal-to-noise ratio, or S/N, can 
be used as the objective function. S/N for “nominal-the-best” problems 
is defined by Dr. Taguchi as a logarithm function of the ratio of the 
mean squared over the variance of the response [2]:  

 
2

10 210 log ( )y
NTB

y

S
N

μ
η

σ
= =  (7.6) 

From Equation (7.6), smaller variation of the response makes the 
S/N ratio larger; therefore, one should choose the design that maximizes 
the S/N ratio. 

For a “smaller-the-better” problem, the objective is to maximize the 
S/N ratio defined by 
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where yi, i=1,2, . . ,n are the measurements of the response when the 
noise factors take on various levels such as in a DOE for noise factors. 

For a “larger-the-better” problem, the objective is to maximize the 
S/N ratio defined by 
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N n y

η
=

= = − �  (7.8) 

where yi, i=1,2, . . . ,n are the measurements of the response when noise 
factors varies.  

We summarize these commonly used objective functions in Table 7.4. 
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Table 7.4 Summary of robust optimization objective functions 
 

Problem 
Type 

Objective Function 
Analytical 

Objective Function 
Experimental (dB) 

Nominal-
the-best 

2 2min{( ) )}y t yyμ σ− +  

2

10 2max{10 log ( )}y

y

μ
σ

 

Smaller-
the-better 

min( )y yNμ σ+  
2

10
1

1max{ 10 log ( )}
n

i
i

y
n =

− �  

Larger-
the-better 

max( )y yNμ σ−  10 2
1

1 1max{ 10 log ( )}
n

i in y=

− �  

7.2.4.5 Robust Optimization Process 

When a mathematical model is used to predict the response, optimization 
algorithms can be used to search for the optimal solution. However, since 
the objective function includes statistics such as the mean and the stand-
ard deviation of the response, in each iteration of the robust optimization, 
we need to calculate those statistics of the response. Taylor expansion 
method, MCS, or other methods can be applied in the estimation.  

The optimization process is depicted in Figure 7.10. Note that the 
noise factors are needed in the step “estimate mean and variance of re-
sponse.” This is where MCS or other probabilistic methods are utilized. 
In practice, some of the constraints may also contain statistics, and 
should be evaluated here too. 

If experimental data rather than mathematical prediction are availa-
ble, the robust optimization can be carried out with either the response 
surface modeling method or the Taguchi methods.  

The response surface modeling starts with a DOE of all the factors, 
control and noise. The DOE matrix can be full factorial, fractional 
factorial, orthogonal array, etc., depending on the specifics of the project. 
After the experiments are completed, the measured data can be used to fit 
a response surface model. With that model, one can choose the analytical 
objective function from Table 7.4 and the process described in 
Figure 7.10. This is similar to the situation when we have a mathematical 
model to predict the response, except that the model is fit with 
experimental data. 
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Figure 7.10 Process of robust optimization with a math model 

The Taguchi methods, on the other hand, rely more on a graphic 
method to find the robust design solution. The following describes the 
basic process of the graphic method: 

Step 1. Choose a DOE matrix for the control factors (Dr. Taguchi 
preferred orthogonal arrays), based on the number of control factors and 
their levels, and the number of experiments allowed. This DOE matrix 
for the control factors is also called the “inner array”. In Figure 7.11, the 
inner array is at the left-hand side of the matrix. It has eight 
combinations of up to seven control factors, A to G, each with two 
levels. In Appendix B, we list some commonly used orthogonal arrays. 
For more elaborate treatment of orthogonal arrays, refer to [2] and [7].  
Step 2. Choose a DOE matrix for the noise factors. This is called 
the “outer array.” In Figure 7.11, the flipped upper right matrix is 
the outer array.  
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Figure 7.11 Structure of a Taguchi robust design matrix 

Step 3. Arrange the inner array and the outer array as shown in 
Figure 7.11. Each row has a unique combination of the control fac-
tors, but with multiple tests, each having a different combination of 
the noise-factor settings and two repeats. For instance, if the outer 
array has four combinations of the noise factors, then the first row of 
the inner array needs to be run eight times.  

Example 7.5 Robust Design of the Wheel Cover with DOE 

For the wheel cover design examined in Examples 7.1 and 7.4, we can 
use the inner and outer arrays as shown in Table 7.5. The nominal val-
ues of the clip stiffness k and the clip deflection u are control factors. k 
has two levels at 3.1 and 5.2 N/mm, while u has two levels at 6 and 11 
mm. The outer array is the full-factorial design with two combinations. 
The variation of the clip deflection �u is the noise factor with two levels 
at �3 mm and +3 mm; the outer array is very simple in this case.  

Each row in the DOE matrix corresponds to one combination of the 
control factors. Combined with the noise-factor levels, there are two 
different test settings for each row. In addition, each test setting is re-
peated twice, so we have a total of four measurements of the retention 
force, recorded in the shaded area of Table 7.5. 

Step 4. Run experiments and record data. The response measure-
ments are entered in the data area.  
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Table 7.5 DOE matrix for the wheel cover robust design example 
 

�u = �3 mm �u = 3mm 

Number 
Nominal k, 

N/mm 
Nominal u, 

mm 
1st F 
(N) 

2nd F 
(N) 

1st F 
(N) 

2nd F 
(N) 

1 3.1 6 9.6 9.6 27.9 27.5 
2 3.1 11 25.6 25.2 43.8 42.9 
3 5.2 6 16.1 15.3 46.5 46.5 
4 5.2 11 42.2 41.2 72.4 72.7 
 
Step 5. Calculate the mean, the standard deviation, and the S/N 
ratio for each data row. For the j th row,  
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where n is the total number of measurements of the response y in each 
row, and the summations are carried out for each row of data. For in-
stance, in Figure 7.11, each row has eight tests, and the summations are 
for the eight measurements.   

Depending on the objective of the project, one of the S/N ratios in 
Table 7.4 can be chosen. Then use the chosen formula to calculate the 
S/N ratio for each row. Enter the calculated average, the standard devia-
tion, and the S/N as in the shaded area of Table 7.6. Then calculate the 
averages of each column of μy,j, �y,j, and �j as in the last row of Table 7.6. 
 

Table 7.6 Average, standard deviation, and S/N of a DOE 
 

 
Control Variable 

Average, STD, and S/N 
(�) 

Experiment A B C D E F G μy,j �y,j �j 
1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
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Control Variable 

Average, STD, and S/N 
(�) 

Experiment A B C D E F G μy,j �y,j �j 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

Overall average μy �y �y 

 

Table 7.7 Data calculation for the wheel cover DOE 
 

�u = �3 mm �u = 3mm 

Number 

Nominal k, 

N/mm 

Nominal u, 

mm 

1st 

F 

2nd 

F 

1st 

F 

2nd 

F Average � S/N 

1 3.1 6 9.6 9.6 27.9 27.5 18.7 10.5 5.03 

2 3.1 11 25.6 25.2 43.8 42.9 34.4 10.4 10.38 

3 5.2 6 16.1 15.3 46.5 46.5 31.1 17.8 4.86 

4 5.2 11 42.2 41.2 72.4 72.7 57.1 17.8 10.11 

Overall average 35.3 14.1 7.6 

Example 7.5 (cont.) From the data in Table 7.5, we calculate the aver-
age, the standard deviation, and the “nominal-the-best” S/N for the 
wheel cover retention force, summarized in Table 7.7.  

Step 6. Analyze effect of factors   
We first define aadditive function. An additive function is a function of 
factors A, B, C . . . , such that the response can be expressed as  

 ( ) ( ) ( ) . . .y m a A b B c C� � � � �  (7.11) 

where m is the overall mean of y; a is a function of factor A only, repre-
senting the deviation of y from its overall mean caused by changes of A; 
b is a function of factor B only, representing the deviation of y from the 
overall mean caused by changes of B, and so on.  

The Taguchi methods assume that the overall average of the 
response yμ  and the S/N ratio �y (when noise factors vary) can be 

approximated by additive functions of the control factors. Although this 
assumption is not always valid, additive models are adequate for a large 
number of applications [2]. 

To estimate the effect of each control factor on the overall mean and 
S/N is straightforward. For instance, in Table 7.6, Experiments 1 to 4 are 
all run with factor A = 1. If we average μy,j for j = 1,2,3,4, the result is the 
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average value of y when A = 1. Experiments 5 to 8 are run with A = 2. If we 
average μy,j for j = 5,6,7,8, the result is the average value of y when A = 2. 
From these two average values, we obtain the effect of factor A on y when 
A changes from level 1 to level 2. If the two averages differ significantly, 
then factor A has a large effect on response y. This comparison also shows 
how to change A to make y larger or smaller.  

Similar calculations can be carried out for factor B, except that the 
experiments for averaging are different. Experiments 1, 2, 5, and 6 have 
B = 1; if we average μy,j for j = 1,2,5,6, the result is the average value of y 
when B = 1. Likewise, if we average μy,j for j = 3,4,7,8, then the result is 
the average value of y when B = 2. These two averages can be compared 
to show the effect of factor B on the response.  

The same analysis can also be carried out for S/N. Since S/N is a 
measure of robustness of the design, its factor analysis indicates which 
factors influence the robustness the most and how they influence it.  

Although the factor analysis is simple enough to be carried out with 
a calculator, we usually use commercial software such as Minitab© to 
analyze the data and plot the results.  

Example 7.5 (Cont.) For the wheel cover example, the factor effects 
are calculated and summarized in Table 7.8. 

The factor plots are also called “main effects plots.” Figure 7.12 pre-
sents the effects of the control factors on the retention force F. Both the 
stiffness and the deflection of the clips affect the retention force signifi-
cantly in the range explored in the DOE. By contrast, their effects on 
the S/N ratio are very different (Figure 7.13): S/N changes from 4.9 to 
10.3 dB as the nominal deflection varies from 6 to 11 mm, while re-
mains between 7.7 and 7.5 dB as the nominal stiffness k changes from 
3.1 to 5.2 N/mm. This means that we can maximize the S/N ratio by 
choosing u = 11 mm, regardless of what k value is chosen.  
 

Table 7.8 Factor effects of the wheel cover DOE 
 

k = 3.1 N/mm k = 5.2 N/mm u = 6 mm u = 11 mm 

Average F (N) 26.5 44.1 24.9 45.7 

S/N (dB) 7.7 7.5 4.9 10.3 
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Figure 7.12 Main effects plot of average retention force 

 

Figure 7.13 Main effects plot of S/N 

One advantage of the Taguchi methods is the insights provided by 
the intuitive factor plots of the mean response and the S/N. Those plots 
can be used to find control factors of four types: 
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a. Have high impact on the mean response, but low impact on the S/N 
ratio. These control factors can be employed to adjust the mean re-
sponse, without changing its variation. They are also called “sliding 
factors,” or “adjustment factors.” 

b. Have low impact on the mean response, but high impact on the S/N 
ratio. The levels of these control factors should be chosen to increase 
the S/N (to reduce the variation of the response), without changing 
the mean response.  

c. Affect neither the mean response nor the S/N ratio. These control 
factors may be chosen based on other considerations, such as cost. 

d. Affect both the mean response and the S/N ratio. We need to be 
careful when choosing levels for these control factors, due to the 
coupled effects. 

Note that the “a type” and the “b type” factors have decoupled ef-
fects on the mean and the variation of the response. They make the task 
of robust design more straightforward.  

Table 7.9 summarizes the usage of different types of control factors. 
Step 7. Choose the optimal level for control factors 

Based on the factor effect analysis, we can now select the right values for the 
control factors to achieve a robust design. If there are adjustment factors 
that only impact the mean response, we can carry out this step as follows: 

1) Maximize the S/N ratio by choosing the right level for “b type” 
and “d type” factors; 

2) Shift the mean response toward the target value by choosing the 
right level for the adjustment factors.  

 

Table 7.9 Usage of the control factors 
 

Control Factor Has High Impact on yμ  Has Low Impact on yμ  

Has High Impact on 
S/N 

Affects both, choose level 
carefully 

Choose level to increase S/N 

Has Low Impact on 
S/N 

‘‘Adjustment factor’’; choose 
level to adjust �y 

Low impact, choose  
cost-saving level 
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Example 7.5 (Cont.) In the wheel cover example, we first choose u = 
11 mm to maximize the S/N ratio. Then we try k = 3.1 N/mm, which has 
an average retention force of 34.4 N (second row of the data, Table 7.7). 

More examples of the Taguchi methods can be found in [2] and [7].  

7.2.4.6 Predicting Results 

Predicting the results of the robust optimization is easy if a mathemati-
cal model has been used. MCS can again be conducted to estimate the 
statistical distribution of the response and the constraints. The results 
can then be compared with the requirements we have determined at the 
start of the project. 

If the Taguchi DOE approach was used, the predictions of the mean 
response and the S/N ratio for the optimal robust design rely on the as-
sumption of additive models given by Equation (7.11). We illustrate it 
with the wheel cover example: 

Example 7.5 (Cont.) Based on the additive model, the predicted aver-
age retention force is 

Average Fpredicted = Overall average of F + (�F due to u = 11)   
 + (�F due to k = 3.1). 

From Tables 7.7 and 7.8, 

(�F due to u = 11) = (Average F when u = 11) � (Overall average of F) 
 = 45.7 � 35.3 = 10.4 (N) 

(�F due to k = 3.1) = (Average F when k=3.1) � (Overall average of F) 
 = 26.5 � 35.3 = � 8.8 (N) 

Therefore, when u = 11 mm and k = 3.1 N/mm, the average reten-
tion force is estimated to be 

Average Fpredicted = 35.3 + 10.4 	 8.8 = 36.9 (N) 
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Similarly, the S/N ratio when u = 11 mm and k = 3.1 N/mm can be es-
timated by its additive model:  

S/Npredicted = Overall average of S/N + {�(S/N) due to u = 11}  
 + {�(S/N) due to k = 3.1} 
 =7.6 + (10.3 � 7.6) + (7.7 � 7.6) = 10.4 (dB) 

Note the importance of choosing the right levels for the control fac-
tors to be included in the DOE. In this example, if u = 11 mm were not 
part of the DOE, we might not have found the satisfactory design solu-
tion. In that case, subsequent DOEs are needed, to further explore the 
design space. Unlike the analytical approach where a math model is 
available for optimization, the DOE-optimization process may be itera-
tive: if the data from the first DOE does not yield a robust solution, a 
second DOE should be conducted, with additional levels or even addi-
tional control factors. The expectation is that each iteration will lead to 
new knowledge and eventually we’ll find a solution. � 

7.2.4.7 Tolerance Design 

If the optimized design still has more variation in its performance than 
allowed by the requirements, tolerances of the noise factors should be 
optimized too. For those noise factor(s) that the response y is most sensi-
tive to, tolerance(s) should be tightened. This is equivalent to reducing 

ixσ of those noise factors with large 2( )
i

y
x

∂
∂

. For the noise factors that y is 

no longer sensitive to, their tolerances may be relaxed to lower the cost.  
If the mathematical model of the response as a function of the noise 

factors is available, one can optimize the tolerances with a similar process 
as described in Figure 7.10. The tolerances of the noise factors are now 
the independent variables in the iterative search. In each iteration, a new 
set of tolerances are used to simulate the variation of the noise factors, and 
the resultant mean and variance of the response can be estimated.   

If we do not have a mathematical model relating noise factors to the 
response, then experiments are needed to understand the sensitivity of the 
response with respect to the noise factors. Set the control factors at their 
optimal levels determined by the robust optimization described in 
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Subsection 7.2.4.5, and vary the noise factors with a DOE matrix. Then use 
the factor effect plots to identify noise factors that have the most impact on 
the response, and reduce their tolerance ranges. For those noise factors that 
do not affect the response very much, their tolerances can be relaxed.  

In Example 7.1, we discussed how the tolerance of the clip deflection 
could be optimized to achieve a high quality at a low cost. It illustrated 
the concept of tolerance design. For more examples of tolerance design, 
refer to [2] and [7].  

7.2.5 Phase 5: Verify Design------Ensuring Requirements Are Met 

In this phase, the predictions of the mean and the variation of the re-
sponse are confirmed with tests, which should be conducted with pro-
duction parts and in the real operating environment of the product or 
process. It is important to include the noise factors in the experiments, 
so that the robustness of the quality can be verified.  

Why is the verification phase necessary? There are several reasons:  

• During the optimization phase, mathematical models, or 
prototype parts, or reworked parts, in controlled operating 
environment are used to predict the response and its 
variation; they are only approximations of the production 
parts and the real operating environment. The predictions 
thus obtained may have large errors and need verification. 

• In the Taguchi methods, additive models are used to predict 
the mean response and the S/N ratio. An additive model 
assumes that any interaction (or “cross-terms”) between two 
or more factors is negligible. While this assumption 
simplifies the data analysis and optimization, it may not 
always be valid. In case that a significant interaction between 
control factors exists, the predictions of the optimal mean 
response and S/N will be incorrect. We need verification 
tests to validate that the solution we find is indeed optimal 
and performs as predicted. 

If the product development cycle is long, we may not have the true 
verification of the robust design until the product or process is in the 
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market. For instance, in the United States, J.D. Power surveys vehicle 
quality by sending questionnaires to vehicle buyers, and publishes the 
result. The true verification of a good design is therefore months or even 
years after a DFSS project is carried out. However, before the new vehicle 
model is in production, there are validation tests using parts produced 
with near-production tooling, and there are preproduction vehicles that 
are built and tested but not sold to the public. We can collect and analyze 
data from those tests, to assess the design.  

7.3 Implementing DFSS 

7.3.1 The Drive for DFSS Implementation 

While the theory of DFSS is not complicated, its implementation can be 
challenging. More important than technical environment, such as hav-
ing the expertise in statistics, computer modeling and simulation, opti-
mization, and so on, is the mindset of the organization. The leadership 
of the organization must understand the necessity and benefits of DFSS, 
and commit to its implementation. In addition, DFSS requires support 
from all who participate in the design and development of a product or 
process; it can only be successful when all of them share the vision of 
“quality at low costs” and engage in its realization. 

For an organization, a powerful drive for DFSS is the competitive 
pressure. This pressure is measured by external or internal metrics. Exter-
nal metrics can be ratings by consumer advocates such as J.D. Power and 
Consumer Reports, who review products and services and collect feedback 
from consumers; it can also be a government agency such as the U.S. 
NHTSA, or stock analysts of Wall Street firms. The external metrics show 
the winners and losers in a marketplace, and can be vital to the success or 
even the survival of an organization. No one wants to be a loser. Under 
this pressure, a weak organization would seek to improve its products or 
services, including quality and reliability. This is an important reason why 
the quality of the American-made automobiles improved dramatically 
since the 1980s—when the U.S. automakers’ survival was threatened by 
their Japanese counterparts. 
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To motivate an organization to embrace DFSS, it is essential to use 
these driving metrics. Without the competitive pressure and the desire 
for product excellence, it is not likely that DFSS will take hold in the 
organization.  

As a tactic, in an organization new to DFSS, good case studies 
should be developed to demonstrate the power of DFSS and to win over 
the skeptics. 

7.3.2 Quality Products at Low Costs—A Competitive Advantage 

For many enterprises, the internal metric for quality is the warranty cost 
they pay to repair or maintain their products or services. For instance, 
the U.S. automobile companies typically spend millions of dollars each 
year on warranty. This cost reduces profit, and directly impacts the fi-
nancial results of a company.  

Organizations which can provide high-quality products or services at 
low costs will be very competitive in the global marketplace. However, 
the traditional point of view believes that “quality is expensive,” which 
often leads to a trade-off between cost and quality. DFSS has shown that 
high quality can be achieved without high costs; it may even be achieved 
at lower costs. Depending on the situation, the following strategies can 
be considered: 

• Focus on quality improvement, limiting the cost to be no 
more than that of the current design. 

• Focus on cost reduction, maintaining the same level of quality. 
• Balance quality improvement and cost reduction, to achieve 

both. 

The wheel cover example illustrates all these potentials. The key is to 
carry out DFSS early on, while anticipating the downstream variation 
that may affect the quality of the product or service.  

7.3.3 How to Choose DFSS Projects? 

DFSS should be applied when a product or process has new or persis-
tent old problems, and is being redesigned. If resources are limited, it is 
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important to prioritize potential DFSS projects. Below is a list of candi-
dates for DFSS: 

• Product or process that uses a new technology. A device of 
new technology may be sensitive to new sources of variation. 
It may also introduce new interface with the rest of the 
system. The new technology may have been used in another 
industry, where the operating condition is very different 
from the new application. For instance, when consumer 
electronic devices are integrated into a vehicle, they no 
longer work in a protected environment such as an office or 
home. They have to operate in cold and hot temperatures as 
well as at dry and wet locations, withstand vehicle shakes 
and vibration, encounter electromagnetic interferences, and 
even survive a car crash. It deserves a careful review, to 
decide if DFSS should be used to make the product robust. 

• Product or process that has a “hardy perennial problem.” This 
may be a quality problem that appears again and again, in 
generations of designs, making a comeback each time it was 
thought to have been solved. A different design concept may 
be needed to cure the problem, and DFSS is a powerful 
process to make sure that the new design is robust inherently. 
To identify those hardy perennials, one can analyze the 
historic warranty data or customer feedback data.  

• Product or process that is at a high risk of failing new 
regulations. When government agencies change regulatory 
requirements, if a product or service does not meet them, it 
may be prohibited for sale, let alone to compete. In 
addition, the product or service may be inspected or tested 
by government agencies on a random basis, making it even 
more important to have a robust design with consistent 
performance. DFSS is a suitable approach in this case.  

• Product or process that is going to a new market. It is 
critical to understand the customers, and not only from the 
marketing point of view. The new customers may have 
different needs and preferences. For instance, in a country 
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where the passenger usually sit in the back seats of a vehicle 
while a chauffeur drives the car, the seating comfort 
requirements for the back seats need to be considered for an 
upgrade. The government regulation in the new market may 
also be different from that of the existing markets, which 
may be more or less stringent. The common warranty 
policies in the new market may vary as well, presenting 
opportunities for DFSS. 

• Product or process whose cost needs to be slashed. For 
various reasons, cost reduction is a constant effort in a 
market economy. How to reduce the cost while maintaining 
a high quality level of a product or service is a challenge. 
While cutting cost by sacrificing the quality may produce 
short-term financial gains, it is not a viable strategy in the 
long run. With DFSS, however, alternative designs can be 
developed to ensure that the quality does not suffer as a 
result of the cost-cutting. 

• When a product or process is complex. It is easy to overlook 
potential failure modes in this situation, especially those 
failures caused by unexpected sources of variation that the 
system is sensitive to. The systematic approach of DFSS can 
guide the design process, and minimize the risks brought by 
the complexity.  

7.3.4 DFSS Support to Manufacturing and Service  

As emphasized throughout this chapter, DFSS should be implemented 
early at the design stage of a product or process. Upon the completion 
of a DFSS project, two sets of knowledge should be passed on to the 
manufacturing or the service organization: 

1. Functional requirements that are important to customers, and 
how to measure them. These requirements came from the 
VOC, and have already been translated to quantitative specifica-
tions. The manufacturing and service facilities need to check if 
the requirements are met, to maintain a high quality level. 
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2. Tolerances of noise factors that the product is sensitive to. The-
se are the few variables that can negatively impact the perfor-
mance of the product, as identified during the optimization 
phase of DFSS. In the process of making and using a product, 
many factors may deviate from the design intent, but not all of 
them are equally important. To deliver consistent quality, the 
knowledge of which factors are more sensitive is valuable.  

The above knowledge can be used by a Six Sigma team, to help achieve 
its objectives. 

7.3.5 Making DFSS a Habit  

DFFS is most effective if its philosophy becomes a natural habit of an 
organization, so that DFSS can be implemented whenever the opportuni-
ty arises, and for a long period of time. In other words, DFSS is most ef-
fective when it is institutionalized. This does not mean that every person 
in the organization needs to be an expert in DFSS, but that everyone has 
the mindset of designing robustness into the product or process, under-
stands the concept of DFSS, recognizes opportunities for applying DFSS, 
and supports DFSS projects from his or her own position.  

Of cause, an organization needs DFSS experts, who can lead or 
coach DFSS projects and provide advice to the management on the 
strategy of quality improvement. The DFSS experts should also have 
knowledge about the product or process being designed, so that their 
advices are more pertinent. To be a good DFSS project leader or coach, 
one needs to know not only the DFSS methods and techniques, but also 
how the product or process works. The integration of the DFSS meth-
ods and the product knowledge is critical to the success of the projects. 

To make DFSS a natural habit, it needs to be built into the standard 
workflow of the organization, especially for large companies. The 
knowledge gained from DFSS projects should be applied to future de-
signs of similar products, and the best practice may be integrated into 
the standard work procedure. These steps will make DFSS a part of the 
collective memory of the organization, and change its culture toward 
designing-in high product quality.  
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A variation database is valuable in facilitating DFSS projects. Data 
on variation of the material properties, manufacturing process capabili-
ties, ergonomic limits, operating environment, and customer usage can 
all be part of the database. The source of the data can be public database 
provided by government agencies, commercial database that can be pur-
chased, or proprietary information such as a company’s own production 
database or the customer feedback records. An easy-to-access database 
can reduce the time needed for evaluating the robustness of a design.  

It should be clear that the above implementation measures all re-
quire the commitment of the management. Without firm support of the 
management, the resource will not be available to DFSS, and the effort 
to institutionalize DFSS will be a false start.  

7.4 Conclusions 

DFSS is a rigorous process for the design and development of a product or 
process. It starts from understanding customer needs, translated into 
quantitative measurable requirements. It anticipates the downstream 
sources of variation, and chooses design concepts that have the potential 
of being robust against the variation. It optimizes the design in the statisti-
cal sense to achieve consistent quality, in presence of variation in building 
and using the product or process. It also optimizes the tolerances so that 
they are tightened only when necessary, therefore saving costs.  

Besides technical expertise, DFSS calls for the change in culture of 
an organization. The traditional view that “quality is the responsibility 
of manufacturing” can be persistent, and the paradigm of designed-in 
high quality needs constant effort to be implanted into the culture. 
Strong leadership is required to lead this change.  

The drive to product excellence is never ending. There are always 
new customer expectations, new regulatory challenges, new technology 
to be applied, and DFSS has the competitive advantage of producing 
high-quality products at lower costs.  

As an introduction to DFSS, this chapter is self-contained, focuses 
on the most commonly used concepts and methods of DFSS. For a 
more detailed and technically oriented treatment of DFSS, refer to [8]. 
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CHAPTER 8 

Case Studies 
This chapter provides three real-world case studies to help readers better 
understand the Lean Six Sigma and DFSS processes. Compared with the 
examples in the previous chapters, these case studies are more complex 
in their technical content, and more advanced tools such as DOE, RSM, 
and Monte Carlo Analysis are employed. From these case studies, read-
ers can learn the practical usage of some of the tools introduced in 
Chapters 4 and 7. All three case studies relied heavily on mathematical 
modeling and computer simulation, which enabled convenient system 
evaluation and redesign, therefore helped achieve the desired outcome 
timely and at low costs. 

Note that the focus of the case studies in Sections 8.2 and 8.3 is to il-
lustrate the concept and the process of DFSS, not to present the specific 
details of the designs. Data in those case studies have been transformed, 
and do not represent any vehicle designs or performance measurements.  

8.1 Lean Six Sigma Project—Pulse Width  
Modulation Control for Motor Speed 

Pulse Width Modulation (PWM) is widely used in industries to effec-
tively control analog devices such as motors using digital control signals. 
For instance, in a typical automobile, a number of subsystems use DC 
motors as actuators, including power-steering mechanisms, fans for 
heating, ventilation, and air conditioning (HVAC), sunroofs, antilock 
brakes, and power windows. The power source for the motors of these 
subsystems is the lead-acid battery and the alternator, whose voltage is 
maintained at a relatively constant level. To control the motor speed, a 
PWM signal is applied to the power supply of the motor, as illustrated 
in Figure 8.1.  
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Figure 8.1 Pulse width modulation control 

Source: Reprinted with permission by Inderscience Publishers 

In these systems, the motor speed is controlled by changing the dduty 
cycle of the PWM signal, which is defined as follows:  

   on

s

T
Duty cycle

T
=  (8.1) 

Some of these systems use the open-loop control without a speed 
feedback to reduce the cost. In such cases, the duty cycle is calculated 
according to the following rule of thumb:  

 
 

  100%
 

Desired voltage
Duty cycle

Nominal voltage
= ×  (8.2) 

where the desired voltage is the value of the voltage such that if it is ap-
plied to the motor, the desired speed will be achieved, and the nominal 
voltage is the voltage value that is available. For most vehicles, the nom-
inal voltage is 14 V. The actual voltage could be anywhere between 10 
and 16 V. For example, a vehicle has a 14 V nominal voltage from the 
battery and alternator system. Suppose that to control the motor speed 
to a desired level, we need a 7 V power source. Since the 7 V power 
source is not directly available, we can use PWM with a duty cycle of 
7/14 × 100% = 50% to achieve the desired speed using the fixed nomi-
nal voltage of 14 V. This seems to be a good solution, but field data 
shows that the motor speed controlled this way is not consistent, which 
in turn has a negative impact on the system performance. A Lean Six 
Sigma project team was formed to study this problem [1]. 
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8.1.1 Define 

Project Charter 
Problem statement: The rule of thumb Equation (8.1) used in the 

PWM control causes inconsistent motor speed. This variation must 
be reduced to improve the motor speed control performance.  

Business case: Reducing the speed variation will improve the perfor-
mance of subsystems that use motors as actuators. This will help 
companies to produce more competitive products and better satisfy 
their customers. 

Project scope: The project will focus on the improvement of the PWM 
control of DC permanent magnetic motors with brushes. The im-
pacts of the motor part-to-part variation, the fluctuation in voltage 
output of the battery/alternator subsystem, the load torque, and the 
PWM duty cycle on the average motor speed over time will be stud-
ied. Among these factors, the main cause for the speed variation will 
be identified, and an improved control method will be proposed. 
Due to the limitation on project duration and available resources, 
the investigation will rely mainly on computer simulation instead of 
laboratory testing. This project is the first phase of a series of efforts 
to improve the motor control performance. The temperature and 
the PWM frequency are assumed to be constant, to limit the scope 
of this project. 

Project sponsor: Automotive original equipment manufacturers 
(OEMs). 

Process owner: Automotive suppliers for OEMs. 
Project duration: The project will be completed in two months. 
Resource: Two engineers working full-time. 
Project champion: The engineering manager. 
Project goal: To reduce the average motor speed error and variation by 

60 percent without incurring additional cost. 
Metric: The standard deviation of the average motor speed and the mean 

value of the difference between the average speed and the desired 
speed will be used as the metrics for performance measurement.  

Deliverables: Improved PWM control design, design document, simu-
lation model, and simulation results. 
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Project risks: The analysis relies mostly on mathematical modeling and 
computer simulation. Inaccuracy of the model will directly affect the 
conclusions of the project. 
The SIPOC diagram and the process map were developed as shown 

in Figures 8.2 and 8.3: 

 

Figure 8.2 Motor PWM SIPOC 

 

Figure 8.3 Motor PWM process 

Source: Reprinted with permission by Inderscience Publishers 

The critical-to-quality tree was developed as shown in Figure 8.4. 
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Figure 8.4 CTQ tree for motor PWM control 

Source: Reprinted with permission by Inderscience Publishers 

8.1.2 Measure 

Since modeling and simulation were the main tools to be used in this 
project, we started by developing the first principle model for DC per-
manent magnetic motors with brushes:  
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 (8.3) 

where Ra and La are the resistance and inductance of the motor coil, 
respectively, J is the rotor inertia, Ki is the torque gain, Kb is the back 
emf gain, eb is the induced back emf voltage, ea is the applied voltage, Tm 
is the motor torque, TL is the load torque, 
 is the rotor angle, and ia is 
the current through the motor coil. 
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Figure 8.5 The Simulink model for DC PM motor speed control 

Source: Reprinted with permission by Inderscience Publishers 

In Equation (8.3), the first equation is based on Kirchhoff’s voltage 
law; the second is the formula for the force on a current-carrying wire; 
the third is based on Faraday’s law, and the fourth is based on Newton’s 
second law. 

A Simulink model was created based on Equation (8.3), as shown in 
Figure 8.5. The parameters in the Simulink model were specified in an 
mfile. This allowed us to run hundreds of iterations of simulation using 
the for loop in MATLAB. The motor parameters could also be randomly 
generated in the mfile before simulating the motor dynamics. 

The Simulink model was used to find the voltage that would 
produce a desired average motor speed, say 2,000 rpm, as illustrated in 
Figure 8.6. In this case, the desired voltage was found to be 5.69 V. For 
comparison, if the nominal battery voltage was 14 V, and if the rule of 
thumb Equation (8.2) was used, the PWM duty cycle would have been 
5.69/14 × 100 = 40.6%. However, the simulation result showed that a 
40.6 percent duty cycle would have resulted in an average motor speed 
of 4,100 rpm, far exceeding the desired speed of 2,000 rpm. Other 
values for the desired speed were also simulated and the conclusion was 
consistent: the rule of thumb in Equation (8.2) was not accurate enough 
for our purpose.  

Through simulation, we also found that the PWM duty cycle affect-
ed average speed while the PWM frequency affected the peak-to-peak 
variation of the speed. Since the PWM frequency was assumed to be 
constant as stated in the project scope, the peak-to-peak variation was not 
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Figure 8.6 A typical PWM control motor speed trace 

considered as a performance metric. The duty cycle calculated by 
Equation (8.2) was replaced by the more accurate one from the 
simulation of the model.  

To measure the performance of the current (baseline) process, 1,000 
sets of random values for the motor parameters were generated in 
MATLAB, assuming that each parameter had a normal distribution.  

1. Resistance: normal distribution, mean value 1.0e � 1 Ω , � = 
5.0e � 3 Ω  

2. Inductance: normal distribution, mean value 1.0e � 4 H, � = 
5.0e � 5 H 

3. Inertia: normal distribution, mean value 9.0e � 5 kg 2m , � = 
4.5e � 6 kg 2m  

4. Torque gain: normal distribution, mean value 2.0e � 2 Nm/A, 
� = 1.0e � 3 Nm/A 

5. Back emf gain: normal distribution, mean value 2.0e � 2 
V/(rad/s), � = 1.0e � 3 V/(rad/s) 

6. Applied voltage: normal distribution, mean value 12 v, � = 1.5V 
7. Load: normal distribution, mean value 0.3 Nm, � = 0.015 Nm 
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Figure 8.7 Average error statistics for baseline 

Source: Reprinted with permission by Inderscience Publishers 

Each set of these parameters represented one particular motor. For 
each motor, the average motor speed was estimated with randomly gener-
ated battery voltage. The 1,000 values of such average motor speeds were 
compared with the desired speed of 2,000 rpm, and the differences were 
defined as the errors. The statistics of the error are displayed in Figure 8.7.  

In summary, the performance metrics of the baseline process were 
given below: 

 

The mean error was �61.44 rpm. 
The standard deviation of the error was 722.71 rpm. 

8.1.3 Analyze 

There were five motor parameters, whose deviation from their nominal 
values represented the part-to-part variation. In addition, the battery 
voltage was a noise factor that could be measured but not controlled, and 
the PWM duty cycle was a factor that could be controlled. Altogether, 
there were seven factors, too many to analyze using the techniques such as 
the response surface method discussed in Section 4.4.1. Instead, the design 
of experiments technique presented in Section 4.3.5 was applied first to 
determine which factor(s) had a more significant impact on the outcome. 
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The minimal and maximal values for each factor were as follows: 

1. Resistance: 0.085 ohm, 0.115 ohm 
2. Inductance: 8.5e � 5 H, 1.15e � 4 H 
3. Inertia: 7.65e � 5 kg m2, 1.04e � 4 kg m2 
4. Torque gain: 0.017 Nm/A, 0.023 Nm/A 
5. Back emf gain: 0.017 V/(rad/s), 0.023 V/(rad/s) 
6. Load: 0.255 Nm, 0.345 Nm 
7. Applied voltage: 7.5 v, 16.5 v  
8. Duty cycle: 18%, 38% 

Since simulation was used to conduct the DOE, and each simula-
tion needed only seconds to run, the number of experiments was not a 
limiting consideration. Also, there was no need for replica of each exper-
iment because the results would be exactly the same for replicas. There-
fore, a seven-factor, full-factorial DOE was performed. Since each factor 
has two levels, the total number of tests was 27 = 128. Figure 8.8 shows 
the Pareto chart from the DOE analysis. It can be seen that the top 
three factors having significant impact on the outcome are E, F, and EF, 
representing the battery voltage, the duty cycle, and the interaction be-
tween the battery voltage and the duty cycle, respectively. The motor 
coil resistance was in the fourth place. 

 

Figure 8.8 Pareto chart of the seven factors 

Source: Reprinted with permission by Inderscience Publishers 
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Figure 8.9  surface method for motor speed 

Tightening the tolerance for the motor coil resistance would increase 
the cost of the motor, violating the project constraint of “no additional 
cost.” Therefore, we left this parameter alone and considered the other 
two, the battery voltage and the PWM duty cycle. The response surface 
method was used to analyze the relationship between the motor speed 
and these two factors. The other parameters were assumed to be at their 
nominal values. While this simplifying assumption was not realistic 
since all the parameters had variation in them, it was adopted to simplify 
the analysis. The effect of this assumption will be considered later, when 
we evaluate the performance of the improved process. 

The motor speed is plotted as a function of the battery voltage and 
the PWM duty cycle, as in Figure 8.9. We can see from the graph that 
the motor speed changes steeply as the duty cycle and the battery voltage 
change. 

8.1.4 Improve 

A horizontal plane representing the desired speed of 2,000 rpm is added 
in the response surface plot (Figure 8.9). On the one hand, the motor 
speed must follow the physical laws and stay on the response surface. 
On the other hand, the desired speed is 2,000 rpm. To achieve the desired 
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Figure 8.10 Improvement idea: follow the intersection curve 

Source: Reprinted with permission by Inderscience Publishers 

speed without violating the physical laws, the choice of the PWM duty 
cycle and the battery voltage must lie on the intersection of the response 
surface and the horizontal plane (Figure 8.10).  

This intersection specifies the ideal relationship between the PWM 
duty cycle and the battery voltage, as shown in Figure 8.11. In other 
words, if we choose the PWM duty cycle as a function of the battery 
voltage as defined in Figure 8.11, then the average motor speed will be 
maintained at the desired speed.  

 

Figure 8.11 New design for determining PWM duty cycle 

Source: Reprinted with permission by Inderscience Publishers 
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Figure 8.12 The improved process for motor PWM control 

Source: Reprinted with permission by Inderscience Publishers 

The improved process for the PWM motor speed control is illustrated 
in Figure 8.12. 

8.1.5 Control 

The performance of the proposed new process needed to be evaluated 
and compared with the baseline performance. To this end, the same 
1,000 sets of values for the motor parameters generated during the 
“Measure” phase were used in the simulation, together with the new 
PWM control algorithm. The error statistics are shown in Figure 8.13. 

The mean and the standard deviations of the error for the baseline 
and the new processes are summarized in Table 8.1 for comparison. It is 
worth noting that during the evaluation of the new process, all parame-
ters were randomly generated. This validated the simplifying assumption 
adopted in the RSM used in the Analyze phase. 

 

Figure 8.13 Average error statistics of the improve process 

Source: Reprinted with permission by Inderscience Publishers. 
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Table 8.1 Before-and-after comparison for motor PWM control 
 

 
Current 

Process (rpm) 
Improved 

Process (rpm) 
Improvement 

(%) 

Mean error �61.44 24.79 60 

Standard 
deviation of errors 

722.71 190.143 
74 

 
The mean error was reduced by 60 percent and the standard deviation 

of the error was reduced by 74 percent, both meeting the target of 
60 percent reduction specified in the project goal. Since the project was 
carried out with computer simulations, there was no need for SPC. These 
results must be validated in the next phase project with real-world tests.  

The results from this project was presented to the sponsor and 
summarized in the final report. Recommendations were made for fur-
ther improvement of motor PWM control, these included modeling the 
temperature, adding low-cost measurement for motor speed, and devel-
oping algorithm for load detection. 

8.2 DFSS Project—Vehicle-Occupant  
Safety Robust Design for Frontal Impact 

To protect occupants from severe injuries caused by crash accidents, au-
tomobiles are equipped with occupant-restraint systems. Typically, a driv-
er-restraint system for the frontal impact consists of the air bag located 
inside the steering wheel, the shoulder and lap seat belts, the steering col-
umn which collapses to absorb the impact energy, and the knee bolster to 
protect the knees of the driver. The performance of such a system is evalu-
ated by a government agency such as the U.S. NNational Highway Traffic 
Safety Administration, or NYTSA. NYTSA has a  New Car Assess-
ment Program (NCAP) that tests new vehicle models as they come to 
the vehicle market, and publish the results as safety ratings. Car buyers can 
then use the ratings to help make purchase decisions. 

These safety performance measures include the accelerations at the 
critical locations of the test dummy such as its head and chest, the forces 
or moments on joints such as dummy neck, pelvis, and knees, and de-
flection of the dummy ribs. NHTSA provides formulae to calculate the 
“star ratings,” derived from real-life automotive accident injury data [2]. 
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8.2.1 Phase 1: Identify Opportunity 

It is important to design the restraint system for absorbing and dissipating 
the crash impact energy. For the frontal impact in which the vehicle is 
driven to collide with a solid barrier, the power and timing of the airbag 
inflator deployment, the geometry of the airbag such as its shape and size, 
the force and timing of the seatbelt tightening, the yield strength of the 
steering column under the crash load, all affect the dynamic movement of 
the test dummy. In addition, the results of the frontal-crash tests for the 
same vehicle model, if conducted with more than one car, can vary signifi-
cantly. Since the test vehicles are randomly chosen, there are variations in 
their components within manufacturing specifications, as well as variation 
in the test setup within ranges allowed by the test procedure. For instance, 
the seated hip position of the test dummy can vary by more than one inch, 
the seat back angle by 1 to 2 degrees, the airbag inflator power by 
10 percent, etc. If the restraint system is not designed to be robust, the 
vehicle crash test results and the field performance of the restraint system 
will not be consistent. It is therefore a challenge for the auto manufactures 
to produce vehicles with consistent safety performance, and here lies the 
opportunity for DFSS [3]. 

The objective of this project was to consistently achieve a five-star 
rating in the U.S. NCAP frontal-crash test, given variation in the com-
ponents and in the dummy’s posture.  

8.2.2 Phase 2: Define Requirements 

In this project, the objective was set by the vehicle-development team to 
achieve a five-star rating, based on a study of the competing vehicles’ 
safety ratings. The star rating was already in a measurable form, its cal-
culation published by NHTSA [4]. 

Traditionally, when designing a new vehicle, auto manufactures had 
to run crash tests of prototype vehicles, to assess the occupant-protection 
performance. The tests were destructive and very expensive, each costing 
as much as U.S.$500,000. In the last 20 years, however, the U.S. auto 
industry has been using ccomputer-aided-engineering (CAE) models to 
simulate crash tests. These simulation models include the components 
of the restraint systems, as well as the test dummies of different sizes  
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Figure 8.14 Typical CAE simulation of occupant-restraint system for 

frontal impact 

Source: Reprinted with permission by CPC Press LLC. 

(Figure 8.14). The computer simulation helps evaluate and improve the 
occupant-safety performance measured by the “star rating” of NCAP as 
well as many other technical specifications [4] 1 . Using the CAE 
simulation for the design of occupant-restraint system enables fast 
design evolution without building prototypes. The same CAE models 
can also simulate the variation of the random parameters, which is 
necessary for assessing the robustness of a design.  

8.2.3 Phase 3: Develop Concepts 

In this project, the most advanced design concept was already chosen, 
using the up-to-date technologies of the airbag and the seat belt systems. 
Therefore, the emphasis of the DFSS project was on the optimization of 
the chosen design concept. 

                                                        
1This case study was carried out in 2001, and the reference to the vehicle safety 
standards in this section are all based on the U.S. NHSTA documentations of that time. 
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8.2.4 Phase 4: Optimize Design 

There were a number of parameters in the occupant-restraint system, as 
shown in Table 8.2. Some of them could be changed by design, such as 
the airbag size and the airbag inflator output; those variables were con-
trol factors. Others might vary randomly in a test, such as the dummy’s 
position and posture; those variables were noise factors. A control factor 
could also have a small random variation around its nominal value. In 
that case, the nominal value was a control factor and the random varia-
tion around the nominal was a noise factor.  

The range of the control factors were determined by the constraints 
of packaging, availability from the suppliers, as well as other perfor-
mance requirements. The range of the noise factors were determined by 
available data or the best estimates of their variation. These ranges are 
summarized in Table 8.3 and Table 8.4.  
 

Table 8.2 Typical factors in frontal occupant-restraint system 
 

Factor Type 
Airbag size and shape (diameter, volume, etc.) Control 

Airbag tether length (ties the outer surface of the air bag when 
deployed; affects the volume of the airbag) 

Control 

Airbag vent area (controls how fast the air bag is inflated when 
deployed) 

Control 

Airbag inflator output Control and noise 

Steering column stroke (controls how much the column can 
collapse) 

Control and noise 

Twist shaft level (affects steering column collapse load) Control 

Seat belt pretension spool (controls how tight the seat belt is 
when deployed) 

Control 

Seat belt pretension firing time (controls the timing of seat belt 
tightening) 

Control 

Knee bolster stiffness (affects how much impact energy can be 
absorbed by the knee bolster) 

Control and noise 

Vehicle crash pulses (time trajectory of the vehicle deceleration 
after a collision) 

Noise 

Airbag firing time (controls how fast the air bag is deployed 
after a collision) 

Control 

Dummy position and orientation (test variation allowed by the 
test procedure) 

Noise 

Frictions between dummy and seat belt and airbag (affect the 
dynamic motion of the dummy after deployment of the airbag 
and the seat belt)  

Noise 

Friction between seat belt and routing rings/buckles (affects the 
seat belt tightening motion) 

Noise 
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Table 8.3 Design factors and their ranges 
 

Factor Range (Scaling Factor of the Baseline Design) 

Airbag tether length 0.86---1.48 

Airbag vent area 1.366---3.534 

Twist shaft level  0.62---1.49 

Knee bolster stiffness  1.0---1.5 

Airbag inflation output  1.0---1.4 

Pretension spool  2.0---4.4 

Pretension firing time  0.5---1.0 

Steering column strokes 0.62---1.88 

 

Table 8.4 Noise factors and their ranges 
 

Factor Range 

Airbag firing time (sec) +/�0.003 

Friction coefficient between airbag and dummy +/�0.35 

Friction coefficient between seat belt and buckle/ring +/�0.2 

Dummy position and posture Per FMVSS test procedure [4] 

Steering column build load (N) +/�444 

 
In this project, we needed to meet requirements for three major 

frontal-crash tests (named lload-cases) described below, which shared 
the same design and noise factors: 

1. The frontal NCAP test. This was conducted with the fiftieth 
percentile dummies in both the driver and the passenger seats, 
and with the seat belts on. The vehicle was driven to a rigid bar-
rier at 35 miles per hour, or 56.3 km per hour. Performance 
metrics included the following:  
a. Head injury index, denoted by HHIC 
b. Chest acceleration for 3 millisecond moving average, denot-

ed by CChest G 
c. Star rating, which was a function of HIC and Chest G, with 

five-star the best and one-star the worst  
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2. Frontal impact at 25 miles per hour, or 40 km per hour, with 
unbelted fiftieth percentile dummies in both front seats 

3. Frontal impact at 25 miles per hour, or 40 km per hour, with 
unbelted fifth percentile dummies in both front seats. 

For load-cases 2 and 3 above, there were a number of requirements 
on head injury, chest acceleration, neck injury, and so on. Vehicles had 
to meet those requirements in order to be sold in the United States. For 
a complete list of the requirements, refer to [4]. 

To search for a robust solution to the problem, numerous computer 
simulations of the three load-cases would be needed. However, each simu-
lation took hours, making it infeasible to complete the project in a timely 
manner. Conversely, if high-fidelity response surface models (RSMs) were 
developed from the original CAE models, then a number of techniques 
could be used to achieve the objectives in time for the vehicle application.  

Therefore, the RSM approach was chosen. RSMs were derived as 
approximations of the original CAE models of the three load-cases. For 
each load-case, 150 DOE simulations were conducted, and the data was 
fit with third-order polynomial regression models for the key response 
variables such as HIC, Chest G, etc. Those polynomials were deemed 
accurate enough for design optimization. However, further verification 
would be needed with more accurate models or tests after the candidate 
solution was found. 

Polynomial RSMs are very efficient to compute, and Monte Carlo 
simulations (MCS) can be carried out easily with them for a given de-
sign. We used the noise factors listed in Table 8.4 for the MCS of the 
RSMs, to assess the scatter in the response variables. The probability 
distribution of each noise factor was assumed to be normal, with the 
mean at the middle of its range and the standard deviation as one-sixth 
of its variation range. MCS estimated that the initial design had mostly 
four-star ratings when the variation of the noise factors was simulated. 

To formulate a robust optimization problem, one can use ( 3 )μ σ�  
of the response as a measure of performance, where μ and � represent 
the mean and the standard deviation. If ( 3 )μ σ�  of the star rating was 
five, then the crash test outcome would be five star with a very high 
probability. This metric was chosen for its simplicity, and for the reason 
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that the CAE simulation of occupant safety systems was not very accu-
rate in predicting the real test results; therefore, higher sigma levels such 
as 6 sigma would not be meaningful. 

The objective function for robust optimization then became 

 ( 3 )y yx
Max μ σ−  (8.4) 

where x is the set of design factors listed in Table 8.3 within their ranges, 

yμ is the mean of the interpolated star rating, and yσ is the standard de-

viation of the interpolated star rating. 
The solution to Equation (8.4) must also be subject to other constraints 

derived from the requirements for load-cases 2 and 3. Note that those con-
straints also contained statistics estimated from MCS of their own RSMs. 

Since the RSMs were nonlinear functions, we used global search algo-
rithms for the optimization. In each search iteration, 5,000 MCS were 
performed to evaluate the mean and the standard deviation of the star 
rating and the other responds. This sample size of 5,000 for MCS provid-
ed sufficient accuracy in estimating the mean and the standard deviation 
of the responses. At the end of the optimization process, a new design was 
chosen. Figure 8.15 shows the clusters of the star rating of the initial and 
the final designs. The improvement was due to the increase in the mean 
and the decrease in the standard deviation of the star rating.  

 

Figure 8.15 Comparison of the star-rating ranges 
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8.2.5 Phase 5: Verify Design 

The new design was verified with the original CAE models for all the 
load-cases. Besides the nominal design, a number of scenarios of varia-
tion were also simulated, with the noise factors set at values that led to 
extremes in the response. The results of those simulations agreed with 
the predictions by the RSMs, and the new design was recommended to 
the design engineers. The final design based on those recommendations 
was tested when the vehicle was produced, with satisfactory results. 

8.3 DFSS Project—Reliability Improvement of  
Car Window Regulator Operation  

This project was an effort by a car manufacturer to reduce the warranty 
cost in repairing the cable-drive vehicle glass guidance system [5], shown 
in Figure 8.16. The mechanism was designed to pull the window glass up 
and down, powered either by an electric motor or by a hand operation. 

8.3.1 Phase 1: Identify Opportunity 

In defect cases, the power window glass would jam and the electric mo-
tor would break. Here, the customers were the vehicle occupants, who 
needed the windows to move up and down smoothly and fast. They 
certainly did not want the glass to be stuck at an open position when it 
was raining outside.  

 

Figure 8.16 Schematic of a cable-drive glass guidance system 

Source: Reprinted with permission by CPC Press LLC. 
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The warranty data indicated that this problem was caused by varia-
tion, as only some vehicles had this issue. In other words, the design 
might be too sensitive to certain random factors in the system, making 
its operation nonrobust. DFSS was employed to solve the problem. 

8.3.2 Phase 2: Define Requirements 

The customer requirements relevant to this project are listed in the 
VOC column of Table 8.5. 

The fifth VOC in Table 8.5 was based on the consideration for 
packaging space, since many components were located inside the doors 
of a vehicle. 

The VOCs of the window regulator were translated to engineering 
and financial requirements, as shown in Table 8.5. The specific values for 
the requirements (not shown) were established based on the customers’ 
feedback and the competitive studies of similar vehicles in the market. In 
this project, the focus was the reliability improvement of the system. 
 

Table 8.5 VOC for a window regulator system 
 

 VOC Requirement 

1 
Windows can be 
opened/closed reliably 

Probability of failure be less than a specific value. 

2 
Power window can be 
opened/closed fast enough

Glass travel be less than a specific period when being 
opened/closed fully. 

3 

Window seals do not leak 
water in car wash or in 
rain, as well as isolate air-
borne noises 

When closed, pressure between the window glass and 
the seals be greater than a specific value; this includes 
static condition (when the car is not moving) and the 
dynamic condition (when the car is moving at highway 
speed). 

4 Energy-efficient 
The power rating of the electric motor be less than a 
specific value. 
The weight of the regulator be less than a specific value. 

5 Compact 
The dimensions of the system be such that it can fit 
into available space in the door. 

6 Low-cost 
The piece price and installation cost be below a specific 
amount. 
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8.3.3 Phase 3: Develop Concepts 

Two concepts of the window regulator were considered: the dual-cable 
design (Figures 8.16 and 8.17) and the cross-arm design (not shown).  

In comparison, the dual-cable regulator weighed less, was more 
compact in dimension, and cost less. However, it was more sensitive to 
variation in the system. On balance, the dual-cable concept was chosen, 
but its operation reliability needed to be improved via DFSS. 

 

Figure 8.17 Schematic of a dual-cable regulator 

Source: Reprinted with permission by CPC Press LLC 

8.3.4 Phase 4: Optimize Design 

Let’s examine how the system works. As shown in Figures 8.16 and 8.17, 
the window glass was supported by two carriers. The carriers were driven 
by the electric motor through cables and pulleys, and moved along the 
run channels. Around the window opening, the seal strips were attached 
to the door metal panels, and pressed by the glass when in contact. While 
the electric motor provided the torque necessary for driving the 
mechanism, the amount of the torque might deviate from its designed 
value due to the build variation. On the other hand, a number of factors 
contributed to the resistance to the glass motion:  

• Glass gravity. 



 CASE STUDIES 233 

• Friction between the glass and the seal strips around the 
edges of the window opening. 

• Friction in the regulator including the pulleys and the cables. 
• Friction between the glass carriers and the run channels. 

The frictions had variation, depending on the stiffness, the geometry, 
and the surface coating of the seals, the deflection of the metal panel to 
which the seal strips were attached, the environment temperature, the 
compression of the seals by the glass edges, the pulley lubrication and 
alignment, the cable pretention, etc. Most of these factors had variation 
from the manufacturing process or the vehicle operating environment. 

There was a probability for the required torque to overcome the re-
sistance to exceed the torque output of the electric motor, causing the 
motor to slow down, stall, or break. In Figure 8.18, the area where the 
two probability density functions overlap corresponds to the shortage of 
the motor torque. A highly reliable system should have the two density 
distributions well separated. 

Therefore, the challenge was to design the motor and its position so 
that it could always overcome the resistant torque in presence of the 
variation, driving the glass with sufficient speed, while meeting the re-
quirements on weight, power rating, and packaging of the motor. 

 

Figure 8.18 Torque distributions of original design 
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Traditionally, the reliability of the system was evaluated by testing, a 
practice both costly and time-consuming. With the help of CAE soft-
ware, however, the system was simulated with finite element models, 
making it possible to assess and optimize the design so that it was robust 
against the random variation of the noise factors. 

Step 1: Determine the response and the input parameters. The focus in 
this case was the probability for the required torque load �L to be less 
than the torque provided by the motor �m. The required torque load �L 
could be expressed as 

 1 2( , , , )L rf F F pτ μ�   (8.5) 

where p was the regulator cable pretention, μr was the friction coefficient 
of the regulator components, and F1 and F2 were the forces at the two 
carriers. F1 and F2 were expressed as 

 δ δ μ=1 1 1 2( , , , )sF f k  (8.6) 

 δ δ μ=2 2 1 2( , , , )sF f k  (8.7) 

where �1 was the glass position in the cross-car direction, �2 was the 
regulator position in the forward–afterward direction, μs was the friction 
coefficient of the seal strips, and k was the seal stiffness. 

Another important factor was the motor output torque �m, whose 
nominal value was a design choice. The motor torque also had a varia-
tion range around its nominal value. 

In order for the window regulator to function properly, one must 
have 

 τ τ= − > 0m Ly  (8.8) 

The condition expressed in Equation (8.8) should be satisfied even 
in presence of the variations we discussed earlier. Explicitly, we can re-
write the project objective function as 

 σ− >3 0mean yy  (8.9) 



 CASE STUDIES 235 

where ymean is the mean of m Lτ τ� , and �y is the standard variation of 

m Lτ τ� ; both were estimated with fast-running mathematical models. 
Based on the physics of the mechanism, it was decided that the 

functions for �L, F1, and F2 could all be represented by second-order 
polynomials with sufficient accuracy in the design space of interest. The 
specific values of the coefficients in Equations (8.5) to (8.7) could be 
determined by regression, while the data needed for regression could be 
obtained either by conducting a DOE with hardware tests or computer 
simulations. The latter was chosen due to its feasibility. 

Step 2: Build and validate two CAE models of the system, one for the qua-
si-static analysis and the other for the dynamic analysis. Those models 
contained all the parts contributing to the motion of the glass: the regu-
lator, the seals, the glass, and the metal panels for attaching the seals. 
Together, the two models calculated the required torque to move the 
glass up and down at the required speed [5]. The models predicted the 
forces at the carriers F1, F2 and the torque load �L for a given system de-
sign. Those predictions were carefully validated with test measurements 
of the same system.  

Step 3: Conduct DOE to derive RSMs. There were six input variables in 
Equations (8.5) to (8.8); each could change within a range, representing 
either the design choices or the random variation. Those ranges are 
summarized in Table 8.6.  

 

Table 8.6 Input parameters for DOE 
 

Factor Type 

Glass position δ1 Noise 

Regulator position δ2 Control/noise 

Seal friction coefficient μs Control/noise 

Seal stiffness k Control/noise 

Cable pretension p Control/noise 

Friction coefficient of regulator μr Noise 

Torque provided by motor �m Control/noise 
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A DOE of 25 simulations was conducted with six factors using the 
CAE models, and the data was used to fit the regression models for F1, F2, 
and �L. As predicted, those second-order polynomial RSMs were good 
approximations of the original CAE models in the ranges considered. 

Step 4: Estimate variation. To estimate the mean and the standard 

deviation of m Ly τ τ= − , one can use a number of methods, including 

MCS and the first-order approximation as given in Equation (7.3) and 
Equation (7.4). The analysis of variation (ANOVA) indicated that the 

regulator friction had the highest impact on m Ly τ τ= − , followed by 

the seal friction, the seal stiffness, the glass position, and the regulator 
position in descending order. 

Step 5: Robust optimization. With the RSM for y, the best design was 

found so that σ− >3 0mean yy  and other requirements were also met. The 

new design reduced the mean and the variation in the load torque resist-
ing the glass motion. The resultant probability density function of the 
load torque is to the left of that of the motor torque, with little overlap. 
This meant that the probability for the motor to have sufficient power 
to drive the window was very close to 100 percent, Figure 8.19. 

 

Figure 8.19 Torque distributions of robust design 
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8.3.5 Phase 5: Verify Design 

The robust design solution was verified with the original CAE models, 
followed by hardware tests. Ultimately, it was confirmed by the reduction 
in the warranty cost after the new design was implemented in vehicles.  
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APPENDIX A 

Pugh Concept  
Selection Technique 

The Pugh matrix was invented by Stuart Pugh for decision making, when 
multiple design concepts were being compared [1, 2]. The method is 
widely used today in engineering and nonengineering fields. Here we’ll 
present the basics of the technique. 

In the first column of the Pugh matrix of Table A.1, all the criteria for 
judging the design concepts are listed. These criteria can be functional 
requirements or business requirements we would like the product to meet. 
The functional requirements are usually related to the performance of the 
product, while the business requirements are related to the cost and 
productivity. In the top row, alternative design concepts of the product 
are listed, starting from the “DDatum” or the “BBaseline CConcept.” The 
Datum may be the current design, or any other reference concept. Each 
alternative concept is compared with the Baseline on how it can meet each 
of the requirements, and scored accordingly as follows:  

• If it performs as well as the Datum, the score is 0.  
• If it performs better than the baseline, the score is a positive 

number, such as 1, 2, 3, depending on how much it 
outperforms the Baseline. 

• If it performs worse than the Baseline, a negative score is 
entered, such as −1, −2, −3, depending on how severely it 
underperforms. 

After scoring, the scores of each alternative concept in its column are 
summed up, to be the total positive, total negative, and the total neutral 
scores of that concept. Then we can compare different concepts and 
make a trade-off decision.  

In the following example, five concepts are evaluated, with the first 
being the Baseline or reference. Alternative Concept 4 is the best, having 
the most positive score and the least negative score. 
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Table A.1 An example of Pugh Matrix 
 

 

Baseline 

Concept 

Alternative 

Concept 1 

Alternative 

Concept 2 

Alternative 

Concept 3 

Alternative 

Concept 4 

Criteria 1 0 0 1 −1 1 

Criteria 2 0 1 1 −2 −1 

Criteria 3 0 0 −1 0 2 

Criteria 4 0 −2 2 0 0 

Criteria 5 0 −1 −1 −3 2 

Criteria 6 0 3 2 2 1 

Total Positives 0 4 6 2 6 

Total Negatives 0 −3 −2 −6 −1 

Total Neutrals 0 2 0 2 1 
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Frequently Used  
Orthogonal Arrays for DOE 

Orthogonal arrays are commonly used in DOE by Dr. Taguchi for their 
simplicity and the ease of data analysis. Listed below are some frequently 
encountered orthogonal arrays, which can be generated with Minitab©. 

1. L4(23) has four combinations of up to three factors, each with two 
levels (1, 2), as shown in Table B.1. 

 

Table B.1 Orthogonal array L4 (2
3) 

 

Factors 

Number A B C 

1 1 1 1 

2 1 2 2 

3 2 1 2 

4 2 2 1 

2. L8 (27) has eight combinations of up to seven factors, each with two 
levels (1, 2), as in Table B.2. 

 

Table B.2 Orthogonal array L8 (2
7) 

Factors 
Number A B C D E F G 

1 1 1 1 1 1 1 1 

2 1 1 1 2 2 2 2 

3 1 2 2 1 1 2 2 

4 1 2 2 2 2 1 1 

5 2 1 2 1 2 1 2 

6 2 1 2 2 1 2 1 

7 2 2 1 1 2 2 1 

8 2 2 1 2 1 1 2 
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3. L12 (211) has 12 combinations of up to 11 factors, each having two 
levels (1, 2), as shown in Table B.3. 

 

Table B.3 Orthogonal array L12 (2
11) 

 

Factors (Two-Level) 

Number A B C D E F G H J K L

1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 2 2 2 2 2 2 

3 1 1 2 2 2 1 1 1 2 2 2 

4 1 2 1 2 2 1 2 2 1 1 2 

5 1 2 2 1 2 2 1 2 1 2 1 

6 1 2 2 2 1 2 2 1 2 1 1 

7 2 1 2 2 1 1 2 2 1 2 1 

8 2 1 2 1 2 2 2 1 1 1 2 

9 2 1 1 2 2 2 1 2 2 1 1 

10 2 2 2 1 1 1 1 2 2 1 2 

11 2 2 1 2 1 2 1 1 1 2 2 

12 2 2 1 1 2 1 2 1 2 2 1 

 
4. L18 (21 × 37) has 18 combinations of up to 8 factors, one with 2 lev-

els (1, 2) and 7 with 3 levels (1, 2, 3), as in Table B.4.  
 

Table B.4 Orthogonal array L18 (2
1 × 37) 

 

Factors 
Number A B C D E F G H 

1 1 1 1 1 1 1 1 1 

2 1 1 2 2 2 2 2 2 

3 1 1 3 3 3 3 3 3 

4 1 2 1 1 2 2 3 3 

5 1 2 2 2 3 3 1 1 

6 1 2 3 3 1 1 2 2 

7 1 3 1 2 1 3 2 3 

8 1 3 2 3 2 1 3 1 

9 1 3 3 1 3 2 1 2 
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Factors 
Number A B C D E F G H 

10 2 1 1 3 3 2 2 1 

11 2 1 2 1 1 3 3 2 

12 2 1 3 2 2 1 1 3 

13 2 2 1 2 3 1 3 2 

14 2 2 2 3 1 2 1 3 

15 2 2 3 1 2 3 2 1 

16 2 3 1 3 2 3 1 2 

17 2 3 2 1 3 1 2 3 

18 2 3 3 2 1 2 3 1 
 
5. L18 (61 × 36) has 18 combinations of up to 7 factors, 1 with 6 levels 

(1, 2, 3, 4, 5, 6) and 6 with 3 levels (1, 2, 3), as in Table B.5. 
 

Table B.5 Orthogonal array L18 (6
1 × 36) 

 

Factors 
Number A B C D E F G 

1 1 1 1 1 1 1 1 

2 1 2 2 2 2 2 2 

3 1 3 3 3 3 3 3 

4 2 1 1 2 2 3 3 

5 2 2 2 3 3 1 1 

6 2 3 3 1 1 2 2 

7 3 1 2 1 3 2 3 

8 3 2 3 2 1 3 1 

9 3 3 1 3 2 1 2 

10 4 1 3 3 2 2 1 

11 4 2 1 1 3 3 2 

12 4 3 2 2 1 1 3 

13 5 1 2 3 1 3 2 

14 5 2 3 1 2 1 3 

15 5 3 1 2 3 2 1 

16 6 1 3 2 3 1 2 

17 6 2 1 3 1 2 3 

18 6 3 2 1 2 3 1 
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7. L36 (211 × 312) has 36 combinations of up to 23 factors, 11 with 2 
levels (1, 2) and 12 with 3 levels (1, 2, 3), as in Table B.7. 

 

Table B.7 Orthogonal array L36 (2
11 × 312) 

 

Factors 
Number A B C D E F G H J K L M N O P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 
3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 
4 1 2 2 1 1 1 1 1 2 2 2 2 3 3 3 3 
5 1 2 2 1 2 2 2 2 3 3 3 3 1 1 1 1 
6 1 2 2 1 3 3 3 3 1 1 1 1 2 2 2 2 
7 2 1 2 1 1 1 2 3 1 2 3 3 1 2 2 3 
8 2 1 2 1 2 2 3 1 2 3 1 1 2 3 3 1 
9 2 1 2 1 3 3 1 2 3 1 2 2 3 1 1 2 
10 2 2 1 1 1 1 3 2 1 3 2 3 2 1 3 2 
11 2 2 1 1 2 2 1 3 2 1 3 1 3 2 1 3 
12 2 2 1 1 3 3 2 1 3 2 1 2 1 3 2 1 
13 1 1 1 2 1 2 3 1 3 2 1 3 3 2 1 2 
14 1 1 1 2 2 3 1 2 1 3 2 1 1 3 2 3 
15 1 1 1 2 3 1 2 3 2 1 3 2 2 1 3 1 
16 1 2 2 2 1 2 3 2 1 1 3 2 3 3 2 1 
17 1 2 2 2 2 3 1 3 2 2 1 3 1 1 3 2 
18 1 2 2 2 3 1 2 1 3 3 2 1 2 2 1 3 
19 2 1 2 2 1 2 1 3 3 3 1 2 2 1 2 3 
20 2 1 2 2 2 3 2 1 1 1 2 3 3 2 3 1 
21 2 1 2 2 3 1 3 2 2 2 3 1 1 3 1 2 
22 2 2 1 2 1 2 2 3 3 1 2 1 1 3 3 2 
23 2 2 1 2 2 3 3 1 1 2 3 2 2 1 1 3 
24 2 2 1 2 3 1 1 2 2 3 1 3 3 2 2 1 
25 1 1 1 3 1 3 2 1 2 3 3 1 3 1 2 2 
26 1 1 1 3 2 1 3 2 3 1 1 2 1 2 3 3 
27 1 1 1 3 3 2 1 3 1 2 2 3 2 3 1 1 
28 1 2 2 3 1 3 2 2 2 1 1 3 2 3 1 3 
29 1 2 2 3 2 1 3 3 3 2 2 1 3 1 2 1 
30 1 2 2 3 3 2 1 1 1 3 3 2 1 2 3 2 
31 2 1 2 3 1 3 3 3 2 3 2 2 1 2 1 1 
32 2 1 2 3 2 1 1 1 3 1 3 3 2 3 2 2 
33 2 1 2 3 3 2 2 2 1 2 1 1 3 1 3 3 
34 2 2 1 3 1 3 1 2 3 2 3 1 2 2 3 1 
35 2 2 1 3 2 1 2 3 1 3 1 2 3 3 1 2 
36 2 2 1 3 3 2 3 1 2 1 2 3 1 1 2 3 
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