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ABSTRACT

Fuel cell technology has attracted great interest in recent decades.
However, progress in lignocellulosic biomass-energized fuel cells
has been slow. This is because that lignocellulosic biomass generally
cannot be directly used for electricity generation in a fuel cell with
high efficiency. As a renewable resource available in large quantities in
many regions of the world, lignocellulosic biomass can be a promising
feedstock for sustainable electricity production using fuel cell technol-
ogies. In this monograph, we focus on the electricity generation in fuel
cells that are operated at high temperatures with high efficiency using
lignocellulosic biomass-derived fuels. More specifically, we discussed
biomass conversion coupled solid oxide fuel cell and direct carbon fuel
cell, the state of the art in technology development, the challenges and the
perspectives on future development.
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direct carbon fuel cells, fuel cells, gasification, lignocelluloses, solid oxide
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CHAPTER 1

INTRODUCTION

Demand for electricity has been growing continuously as a result of
increasing global populations and the development of third-world nations
[1]. The importance of electric energy to modern society can be seen from
many electricity-driven daily technologies or gadgets that contribute to
our life quality. Electricity has been mainly produced through turbines
[2] driven by hydropower at remote dams or hot gases or steam from
combustion of fossil fuels. For example, the amount of electricity produced
from the combustion of coal and natural gas in the United States in 2014
was 39 percent and 27 percent, respectively (U.S. Energy Information
Administration, http://www.eia.gov/tools/faqs/faq.cfm?id=427&t=3, last
accessed September 2015). Owing to the concerns over the air emissions
of greenhouse gases and particulates and pollutants from combustion
of fossil fuels, conventional fossil-fuel-driven power plants are facing
increased challenges. Thus, sustainable and environmentally friendly
pathways for alternative electricity production using renewable resources
need to be developed.

Lignocellulosic biomass as one of the major renewable resources
can be sustainably produced in large quantities and has been used for
energy production through combustion in many regions around the world.
A recent study suggest that approximately 1.3 billion dry tonnes of
lignocellulosic biomass can be potentially produced annually in the
United States alone [3]. This is equivalent to 2 trillion kWh of electricity
(assuming 30 percent conversion efficiency from thermal energy to
electricity), or approximately 50 percent of the total U.S. electricity
production in 2014, which illustrates the potential impact of using ligno-
cellulosic biomass for electricity production. Lignocellulosic biomass has
been used to produce electricity commercially using steam or gas turbines
through combustion or gasification (Figure 1.1). However, distributed
operation at relatively small scale is preferred because of the low energy
density of lignocelluloses.
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Figure 1.1. Different pathways for electricity production from
lignocellulosic biomass.

Fuel cells are clean, are portable, and can be an alternative electricity
production technology for a variety of applications. Fuel cells using fuels
such as syngas, biogas, or biochar derived from lignocellulosic biomass by
thermal—chemical or biological conversions or indirect biomass fuel cells
(IDBFC) have been intensively studied in recent years. On the other hand,
direct biomass fuel cells is a new technology that uses biomass directly
to generate electricity. It has not been well developed, with only limited
research being carried out in the laboratory. Therefore, in this monograph,
we examine a variety of IDBFC with the focus on solid oxide fuel cells
and direct carbon fuel cells that are operated at high temperatures but with
high efficiency. Our aim is to present some basic principles, technological
challenges, and future developments of these technologies.



CHAPTER 2

OVERVIEW OF THE
CHARACTERISTICS OF
LiIGNOCELLULOSIC BiomAss

Lignocellulosic biomass including biomass from forest and agricultural
land such as harvesting forest residues, short rotation woods, agricultural
residues (e.g., corn stover and straw), and energy crops (e.g., switchgrass)
is renewable, is carbon neutral in terms of reduction of CO, emission,
and can be sustainably produced in large quantities [4]. The elemental
compositions of lignocelluloses are C, H, O, N, P, and S. The major
elements C, H, and O mainly come from cellulose, hemicellulose, and
lignin; N, P, and S mainly come from the minor components such as pro-
tein. Dry lignocelluloses commonly have a C content of approximately
50 percent, lower than that of coal (75 to 90 percent); an O content of
about 45 percent, higher than that of coal (<20 percent); and, therefore,
has a lower heating value of approximately 20 MJ kg [5, 6], lower
than that of bituminous coal of 26 MJ kg™ [5, 6]. As shown by the van
Krevelen diagram in Figure 2.1, lignocelluloses have higher H:C and O:C
ratios than those of fossil fuels. Moisture content of freshly cut wood is
approximately 50 percent [7].

The major components of lignocelluloses, that is, cellulose, hemicel-
lulose, and lignin, account for more than 80 percent of the total dry weight
[8, 9]. However, the proportions of the three major components differ
among different species of plants and different parts of the same plant
[10]. Lignin is an aromatic polymer composed of three basic monomeric
units: p-hydroxyphenyls (H), guaicyls (G), and syringyls (S), which vary
between species and cell tissue type [11]. Lignin has higher carbon content
than cellulose and hemicelluloses, thus having a higher heating value. The
heating value of woody biomass is higher than that of herbaceous biomass
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Figure 2.1. van Krevelen diagram of several solid fuels.

Source: Adapted from McKendry [5].

because of the higher lignin content of woody materials. Cellulose is a
polysaccharide consisting of a linear chain of several hundreds to more
than 10,000 g (1 — 4) linked D-glucose units. Hemicelluloses are
heteropolymers of several monosaccharide groups and uronic acid groups
[12]. Details of the structures of cellulose, hemicelluloses, and lignin can
be found in literature [12—14].



CHAPTER 3

INDIRECT Biomass FUEL
CEeLLs AT HiGH TEMPERATURES

Indirect lignocellulosic biomass fuel cells refer to fuel cell technologies
that use biomass-derived fuels for electricity production. A first-step
conversion of biomass is required. There are generally two types of
indirect biomass fuel cells operated at high temperatures with high
efficiency: solid oxide fuel cells (SOFC) and direct carbon fuel cells
(DCFC) (Figure 3.1). In a biomass-fueled SOFC, lignocelluloses are
first converted to syngas or biogas containing H,, CO, and CH, using
thermal—chemical or biological conversions, and then the fuel gasses are
subsequently converted to electricity by electrochemical oxidation using
air (oxygen). In a biomass-fueled DCFC, lignocelluloses are first carbon-
ized, usually by pyrolysis, and the obtained biochar is used to produce
electricity by direct electrochemical oxidation of the carbon. Several
parameters were used to characterize the performance of a fuel cell.
Open-circuit voltage (OCV) is the maximum voltage available from a fuel
cell at zero current, V or mV. Current density is the current per unit area
of electrochemical-active electrode (anode), mA cm™. Power density is
power output per unit area or volume, mW ¢cm? (mW m™2 or W cm™2)
or mW c¢m™. Coulombic efficiency, also called Faradic efficiency, is the
fraction of total produced coulombs to the theoretical amount of coulombs
available from the fuel, percent. These parameters will be exclusively
used throughout this monograph.

3.1 SOLID OXIDE FUEL CELLS

3.1.1 PRINCIPLES OF SOFC

SOFC are a promising technology for efficient electric energy generation
from hydrogen, natural gas, syngas, methane, or other similar light
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hydrocarbons [15, 16]. Intensive research progress has been made on
SOFC since the 1950s, including the fundamentals [17], technology
advances [18-20], electrode materials and modifications [21-28], cell
design [29, 30], and applications [15]. However, work on SOFC using
biomass has been limited.

The working principles of SOFC are graphically shown in Figure 3.1.
A SOFC essentially consists of two porous electrodes separated by a dense,
oxygen-ion-conducting electrolyte [31]. The fuels, such as H,, CO, CH,,
or their mixtures, enter the anode chamber where they are dispersed by the
anode over its interface with an electrolyte. The anode further catalyzes
the electrochemical reactions to release electrons from fuel molecules
and conducts the electrons to an external circuit. In the cathode chamber,
oxygen molecules are distributed at the cathode interface with the solid
electrolyte and reduced by electrons from the external circuit, thus pro-
ducing oxide ions. Oxide ions diffuse through the solid electrolyte to the
anode to react with fuel molecules forming H,O or CO,, depending on the
fuel type [32]. The Gibbs free energy (or chemical potential energy) of the
global reaction of fuel and oxidizer is converted to electricity and heat.
The anode half-cell oxidation reactions are

H,(g) +O0* (el) » HO (g) +2 ¢ (a) (3.1
CO(g) +O* (el) > CO,(g) +2¢ (a) (3.2)
CH, (g) +40* (el) < 2H,0 (g) + CO, (g) + 8 ¢ (a) (3.3)

and the cathode half-cell reduction reaction is

0,(g) + 4 ¢ (a) & 2 0% (el) (3.4)

External load
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Figure 3.1. Working principle of biomass-fueled SOFC.
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Corresponding global reactions are

H,(g) + 1/20,(g) < H,0 (2) 3.5)
CO(g) + 1/20,(g) <> CO, (g) (3.6)
CH, (g) +2 O, (g) «> 2H,0 (g) + CO, (g) 3.7)

Therefore, for a given fuel composition, the theoretical maximum
potential difference that the cell could achieve, namely, the reversible cell
potential (the Nernst potential) £ between the fuel and oxidizer, can be
calculated by the Nernst equation [17]:

AG A,G* RT
E =-"r—__“"r” __"" In Vi 3.8
o F nF nF (l:[p, ) G-9

e

where A G and AG” are the temperature-dependent Gibbs free energy of
reaction and standard-state free energy change, respectively, associated
with the global oxidation reaction; n, is the number of transferred electrons
in mol; F is the Faraday constant (96,485.34 C mol™'); R is the universal
gas constant (8.314 J K™' mol™); T'is the thermodynamic temperature; p,
is the partial pressure of the species 7 in atmospheres; and v, is the stoi-
chiometric coefficient in the global reaction. However, the actual power
output of SOFC is influenced by the actual fuel compositions. Pure hydro-
gen usually gives the highest power density, while the presence of inert
gas such as H,0, N, and CO, can dramatically decrease the power out-
put (Figure 3.2a). The actual power output is also affected by many other
factors, such as material of the electrode, type of electrolyte, operation
parameter, impurity concentration, and cell design. The actual cell volt-
age is affected by losses from various electrochemical processes, mainly
activation polarization, ohmic polarization, and concentration polarization
[27], as expressed by the equation
V.=E.,— IR -1

act

cathode B nanode (3 9)
where E_ is the Nernst potential of the reactants, / is the current through
the cell, R is the ohmic resistance of the cell, and »_, , and 5 . are the
cathodic and anodic polarization losses, respectively. Activation polariza-
tion depends on chemical reactions in the anode and cathode, and it is the
combination of the reaction rate and the electron or ion transfer [27]. High

operating temperatures of SOFC cause extremely fast reaction kinetics;
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hence, the voltage drop because of the activation polarization is small
[33]. The concentration polarization arises because of the transportation
of the reactants from their respective streams to the fuel cell, while ohmic
polarization is a combination of resistances to electron and ion transport
throughout the fuel cell [27, 34]. Increasing operating temperature can
reduce the ohmic polarization, thus increasing the power density of SOFC

(Figure 3.2b).
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3.1.2 ELECTRODE AND ELECTROLYTE MATERIALS FOR
SOFC

The electrode materials for SOFC must have catalytic activity, electronic
conductivity, chemical stability and compatibility, high morphological
stability without sintering, mechanical compatibility with the electrolyte
and interconnect, and low cost of fabrication [35]. The anode catalyzes
electrochemical oxidation of fuel(s) and conducts electrons released
during oxidation to reach the current collector. In a typical anode-
supported SOFC, the anode support is a Ni—yttria-stabilized zirconia
(YSZ) cermet with thickness between 0.5 and 2 mm [36]. This composite
is electron conductive (because of Ni) and also ion conductive (because
of YSZ) [37]. Ni anode materials show good electrochemical activity for
hydrogen oxidation with high electrical conductivity at SOFC operating
temperatures [38]. However, for hydrocarbon fuels such as CH,, Ni can
also actively catalyze carbon formation by reforming reactions (e.g., CH,
— C+2H,) [39, 40]. The deposit carbon can block the reaction sites and
gas diffusion pores and degrade cell performance [40, 41]. Modifications
of the Ni-YSZ anode by adding a small amount of metals such as Au,
Rh, or Ru [18] or developing anodes without Ni can reduce the propen-
sity for carbon deposits. For example, when using a mixture of CH, and
CO, as fuel, porous Ni-Gd-doped ceria (GDC) cathode/thin porous GDC
electrolyte (50 um)/porous SrRuO,-GDC anode system [42], Ru-GDC
cathode/porous GDC electrolyte/Ru or SrRuO,~-GDC anode system [40],
and Ni—GDC cathode/porous GDC electrolyte/Cu—GDC anode system
[43] had no significant carbon deposition. Another issue associated with
Ni anodes is low tolerance to impurities such as sulfur that can deactivate
catalytic activity of Ni. Thus there would be a potentially significant
impediment to the direct use of untreated syngas [34] or biogas pro-
duced from lignocellulosic biomass because of impurities. Some other
materials, such as rare-earth-doped CeO,, perovskite, pyrochlore, and
tungsten bronze, have been developed as SOFC anodes [25]. However,
the catalytic and electronic conductivities of these anodes are low and
need improvement.

One of the basic functions of cathode is to electrically catalyze oxy-
gen reduction on its surface, and the electrocatalytic activity of a cathode
is highly dependent on the materials used and its microstructure features,
such as porosity, grain size, connectivity between grains, and its adhesion
with other SOFC components [44]. The most common type of cathode
material for SOFC is perovskite [45]. A perovskite-type oxide has the gen-
eral formula of ABO,, in which A and B are cations with a total charge of
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+6. For most of the perovskite-type cathodes in SOFC, the A-site cation is
usually a mixture of rare and alkaline earth metals (such as La and Sr, Ca,
or Ba), while the B-site cation is a reducible transition metal such as Mn,
Fe, Co, or Ni (or a mixture thereof) [46]. The frequently used materials for
cathode are a porous mixture of lanthanum—strontium-doped manganite,
La,_ Sr MnO,_; (LSM), and YSZ or a porous mixture of lanthanum-stron-
tium-doped cobaltite, La,_ Sr CoO,_; (LSC), and Sm-doped CeO, (SDC),
as listed in Table 3.1 [36]. Lanthanum strontium cobalt iron oxide or its
mixture with SDC is also used. However, high operating temperatures
(800°C to 1,000°C) are necessary for these cathodes to effectively cat-
alyze the electrochemical reduction of oxygen. Thus, great efforts have
been devoted to the development of intermediate-temperature (500°C to
700°C) SOFC. Alternative cathode materials, therefore, need to be devel-
oped to reduce the overpotentials, particularly at temperatures below
700°C. Ba,_Sr, .Co,Fe 03 ; (BSCF) was developed as a new cathode
material for reduced-temperature SOFC operation. High power densities
(1,010 and 402 mW cm2 at 600°C and 500°C, respectively) were obtained
using humidified hydrogen as fuel when BSCF was incorporated into a
thin-film-doped ceria [47].

Electrolyte is an important component of SOFC. It conducts oxygen
ions from cathode to anode. Therefore, materials used for electrolyte must
have a high oxygen ion conductivity (i.e., >0.1 S cm™') over a wide range
of oxygen partial pressure [18]. Apart from high ionic conductivity, the
electrolyte must be electrically insulating to avoid leakage of electrons
and impervious to gas flow to prevent gas leakage. The electrolytes must
also have good chemical and thermal stability because SOFC are always
conducted with oxidant at high temperatures. The widely used electro-
lyte is YSZ, in which yttria is added to stabilize the conductive cubic
fluorite phase and to increase the concentration of oxygen vacancies, thus
increasing the ionic conductivity [48]. The optimum addition of yttria is
8 mol percent to obtain the highest conductivity. Further increasing yttria
concentration leads to a reduction in defect mobility and thus conductivity.
Another promising dopant for zirconia is scandia, which has been reported
to have the highest conductivity in the zirconia-based oxide systems
[49]. Scandia-stabilized zirconia (ScSZ) also has excellent stability in
oxidizing and reducing environments with better long-term stability
than YSZ. However, ScSZ has not been widely used because of the lack
of conductive stability when it is aged at a high temperature and high
cost of scandia [50]. Some other electrolytes have also been developed,
such as rare-carth-doped ceria and lanthanum strontium gallium mag-
nesium oxide [51]. GDC and cerium gadolinium oxide (CGO) show
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higher conductivity than YSZ and ScSZ, especially at low temperatures.
However, low electronic conduction at low partial pressure of oxygen and
weak mechanical stability, as well as the high price of Gd, have limited
the application of GDC [52]. Progress in developing new materials and
modifications of electrolyte has been made in recent years. The stability of
electrolyte, however, still needs improvement, and the cost of the materi-
als is still prohibitive.

3.1.3 BIOMASS-DERIVED FUELS FOR SOFC

Hydrogen and carbon monoxide are typical fuels for SOFC and can be
consumed directly in electrochemical reactions. Typically, these gases can
be produced via coal gasification or methane steam reforming. Hydro-
gen can also be generated by electrolysis of water at different scales [53].
Other gas fuels such as CH, and light hydrocarbons (e.g., C,H, [54], C,H,
[54, 55], and n-C H,[37]) have also been studied. Some liquid fuels (at
room temperature), such as iso-C . H [56, 57], toluene, n-decane, and

1

synthetic diesel, have been directiy ilsed in power generation without
reforming [58]. Studies on electricity generation from fuels produced from
lignocellulosic biomass are summarized in Table 3.1. The presence of inert
gases such as H,0, CO,, and N, have negative effects on power output
(Figure 3.2a). The dilution of fuel gas by these inert gases increased the
anodic concentration polarization. Diluent with higher molecular weight
have more serious negative impact on power output [36]. Three types of
gas fuels produced from lignocellulosic biomass, namely biohydrogen,
biogas (including hythane), and syngas, are discussed in the following
sections.

3.1.3.1 Biohydrogen

The term biohydrogen here refers to hydrogen produced from biological
conversion of biomass to differentiate from hydrogen produced from
thermochemical conversion. Biohydrogen production using microorgan-
isms can be classified into five different processes: (a) direct biophotolysis,
(b) indirect biophotolysis, (¢) biological water-gas shift reaction, (d) photo-
fermentation, and (e) dark fermentation [59]. Currently, dark fermentation
is the most feasible process for biohydrogen production from renewable
biomass because of its higher rate of hydrogen evolution in the absence
of any light sources as well as the versatility of the substrates used [60].
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The widely used substrate is glucose. The theoretical hydrogen yield from
glucose is dependent on the fermentation end products. Maximum hydro-
gen yields are 4 and 2 mol mol™ glucose when end products are ace-
tic acid and butyric acid, respectively, as shown in Equations 3.10 and
3.11, while coproduction of acetic acid with butyric acid or with ethanol
produced maximum 2.5 or 2 mol (hydrogen) mol™ (glucose). However,
actual hydrogen yield is still much lower than theoretical yield. One rea-
son is that actual yields are reduced by hydrogen recycling because of the
presence of one or more uptake hydrogenases, which consume a portion of
the produced hydrogen [61]. Another factor influencing hydrogen yield is
the operation conditions in dark fermentation, which is closely associated
with bacterial metabolic activities. Temperature, pH, hydraulic retention
time, gas partial pressure, substrate concentration, and soluble metabolic
profile had significant influence on hydrogen production [60—-63]. Other
substrates, including pure monosaccharides (xylose, arabinose) [64—66],
biomass hydrolysate [67-70], and pretreated lignocellulosic biomass
[71-74], have also been used for hydrogen production. Using biomass or
its hydrolysate as carbon sources is of great interest; releasing sugars from
biomass, however, is one of the most important limitations for low-cost
production of biohydrogen.

CH 0, + 2H,0 — 2CH,COOH + 4H, + 2CO, (3.10)

671276

C,H,,0, — CH,CH,CH,COOH + 2H, + 2CO, (.11

671276

4C.H,,0, + 2H,0 — 3CH,CH,CH,COOH + 2CH,COOH + 10H, + 8CO,
(3.12)

CH, O,+2H,0 — CH,CH,0H + CH,COOH + 2H, + 2CO, (3.13)

In recent years, hydrogen production using synthetic biology and
cell-free system has attracted much interest. Zhang et al. [75] demonstrated
a synthetic enzymatic pathway consisting of 13 enzymes for producing
hydrogen from starch and water. The theoretical yields of biohydro-
gen from this pathway from hexose and xylose were 12 H, per glucose
molecule [75, 76] and 10 H, per xylose molecule [77], respectively, and
were much higher than the theoretical limit (4 H, per glucose) of anaerobic
fermentations. This pathway seems to be promising to produce low-cost
hydrogen from biomass for fuel cells, but demonstration in a larger scale
is needed.
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3.1.3.2 Biogas and Hythane

Biogas can be produced from organic materials by anaerobic digestion.
It contains 50 to 75 percent (v/v) CH,, 25 to 45 percent (v/v) CO,, 0 to
2 percent (v/v) N, 0 to 2 percent (v/v) CO, 0 to 1 percent (v/v) H,S,
0 to 1 percent (v/v) H,, 0 to 1 percent (v/v) NH,, 0 to 2 percent (v/v) O,,
and 2 to 7 percent (v/v) water vapor [78]. During anaerobic digestion,
the conversion of organic matter into biogas is carried out by a consor-
tium of microorganisms through a series of metabolic stages. Traditional
anaerobic methane fermentation normally consists of four steps: hydro-
lysis, acidogenesis, acetogenesis, and methanogenesis [79]. Taking
lignocellulosic biomass as an example, biomass is first hydrolyzed to mono-
saccharides such as glucose or xylose by extracellular cellulase enzymes
secreted by hydrolytic or fermentative bacteria. The monosaccharides are
then fermented by acidogenic bacteria in a process known as acidogenesis
into a mixture of CO,, H,, alcohol, and low-molecular-weight volatile
fatty acids (e.g., acetic, propionic, and butyric acids). In the final stage,
acetotrophic and hydrogenotrophic methanogens transform acetate, H,,
and CO, into a mixture of CH, and CO, (the biogas) [78, 80]. Various
lignocelluloses, such as wheat straw [81, 82], rice straw [83, 84], corn
stalk [85, 86], wastepaper [87, 88], and forestry residues [89], have been
used for biogas production with yields between 0.1 and 0.4 m® kg™! VS
(volatile solid) and an average yield of 0.24 m? kg™! of dry organic matter
[90]. Note that H, is also produced in the anaerobic digestion process;
thus coproduction of H, and CH, is possible via a multistage fermentation.
Actually, the coproduction of a mixture of H, and CH, (also known as
hythane) can obtain higher energy recovery efficiency from biomass than
either single-stage hydrogen or single-stage methane production [79].
After parameter optimization for a two-stage fermentation using 10 g L!
glucose as substrate, H, yield was increased to 2.75 mol mol ™" glucose and
the CH, yield increased to 2.13 mol mol™" glucose, which corresponded
to a total energy recovery of 82 percent [91]. Biomass hydrolysate and
pretreated lignocelluloses, such as agricultural residues, weeds, algae bio-
mass, and livestock manure, have been successfully converted to hythane
in laboratory scale by multistage anaerobic fermentation, with H, yield of
10 to 200 Lkg ™" VS and CH, yield of 100 to 700 L kg™' VS [92-96]. How-
ever, biomass recalcitrance limits the biodegradation efficiency of cell
wall polysaccharide, even when a consortium of bacteria is used. There-
fore, pretreatments such as physical comminution, thermal-chemical,
chemical, and biological pretreatments must be used to increase biogas or
hythane yield [97].
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Using biogas or simulated mixed gases as a fuel for electricity
generation in SOFC has been studied [39, 98—103]. Generally, the power
density of SOFC increased with the increase in CH, concentration of fuel
gas [39]. However, directly using biogas as a fuel for SOFC has faced
several issues. First, a strong temperature gradient generated in the cell by
an endothermic reforming reaction can cause cell fracture [100]. Second,
impurity contained in biogas, especially H,S, can poison the anodic
catalyst by blocking the anode-active area, thus lowering the power output
[104]. Poisoning by H.,S at 1 ppm caused approximately 9 percent voltage
drop and 40 percent decrease in reaction rate of internal reforming using a
simulated biogas (mixture of CH,and CO,) [102]. Third, carbon deposition
on anode caused by Ni-catalyzed reforming of CH, may decrease the
cell performance or even cause cell deactivation [40, 41, 105]. Various
processes have been developed to remove H,S, including precipitation by
Fe?* ions or Fe** ions, adsorption on activated carbon, chemical absorption
using NaOH or iron-oxide-coated (Fe(OH), or Fe,O,) supported material,
and biological treatment [106]. Another solution to H S poisoning is to
modify the Ni-based anode or developing novel anode material that is
not sensitive to sulfur, but such materials can be costly. A promising solu-
tion to carbon deposition is to combine an external reforming with SOFC,
such as steam reforming or catalytic partial oxidation using either air or
pure oxygen as oxidant [107]. Modification of the anode with the addition
of a second-phase catalyst, such as K.O or Ru-Ni, was also effective in
suppressing carbon deposition [108].

3.1.3.3 Syngas
3.1.3.3.1  Syngas Characteristics and Formation Chemistry

Syngas (or synthesis gas) is mainly produced by gasification of biomass.
It is the most promising biomass-derived fuel for SOFC at large scales.
Syngas mainly consists of CO, H,, CH,, and a small quantity of other
light hydrocarbons (C H, ), CO,, water vapor, and N, from the air supplied
for gasification [109]. The composition of syngas is affected by gasifica-
tion conditions, such as temperature, equivalent ratio, and pressure, and
the biomass characteristics such as biomass type, chemical compositions,
and moisture content [109]. Generally, biomass syngas from a bubbling
fluidized bed contains 5 to 26 percent H,, 13 to 27 percent CO, 12 to
40 percent CO,, less than 18 percent H,0, 2 to 11 percent CH,, less than

3 percent C,,, less than 0.11 percent tars, ppm magnitude of H.,S, less
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than 0.2 percent O,, and 13 to 56 percent N, [110]. During gasification of
lignocellulosic biomass, drying, pyrolysis and devolatilization, reduction,
and combustion take place [111]. The drying step removes moisture
in the biomass; during pyrolysis, feedstock undergoes heat-induced
decomposition, which liberates volatile constituents to the gas phase
in the form of CO, CO,, and light hydrocarbons and liquid long-chain
hydrocarbons [111]. Gasification usually takes place at high temperatures
(600°C to 1,000°C) under the deficiency of oxidants. Typical oxidants are
air, steam, CO,, oxygen, or the combinations of these [112].

Biomass gasification can be described by a global reaction
(Equation 3.14), where CHaOﬂ denotes biomass, neglecting sulfur and
nitrogen. The chemical reactions involved in gasification of biomass
include solid—gas phase and gas—gas phase reactions (Equations 3.15
through 3.23) [112, 113]. Energy from the combustion reactions is used to
drive the gasification reactions to produce syngas [113].

CHaOﬁ (biomass) + O, (21% of air) + H,O (steam) — CH, + CO
+ CO, + H, + H,0 (unreacted steam) + C (char) + tar (3.14)

Partial oxidation reaction:
C(s) +1/20,(g) = CO(g) (AH"=—110.5 k] mol™") (3.15)
Complete oxidation reaction:
C(s) + O,(g) = CO,(g) (AH’=—393.5 kJ mol ™) (3.16)
Hydrogen oxidation reaction:
H,(g) + O,(g) = H,0(g) (AH’=—241.8 k] mol™) (3.17)
Hydrogasification reaction:
C(s) + 2H,(g) = CH,(g) (AH’==74.8 k] mol™") (3.18)
Water-gas shift reaction:
CO(g) + H,0(g) = CO(g) + H,(g) (AH’=—41.2kJ mol™") (3.19)
Steam reforming reaction:

CH, + H,0(g) = CO(g) + 3H,(g) (AH"=206.0 k] mol )  (3.20)
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Water-gas reaction:
C(s) + H,O(g) = CO(g) + H(g) (AH’=131.3kJ mol™") ~ (3.21)
C(s) + 2H,0(g) = CO(g) + 2H,(g) (AH’=90.1 kI mol")  (3.22)
The Boudouard reaction:

C(s) + CO,(g) = 2CO(g) (AH’= 172.5 kJ mol ) (3.23)

3.1.3.3.2 Impurities of Syngas and Their Impacts on SOFC
Performance

Biomass syngas contains a variety of impurities that have negative effects
on the performance of SOFC. The effects of impurities in syngas on SOFC
performance have been intensively reviewed by Aravind and de Jong [32].
These impurities mainly include particulates, tars, H,S, hydrogen chloride
(HCI), alkali metal compounds, and nitrogen-containing contaminants.
Particulates can deposit on anode of an SOFC, causing clogging of
the anode porous structure, thus hindering gas diffusion, blocking the
active catalytic area, or causing anode layer delamination because of
mechanically induced tensions [114]. Filtration is the most commonly
used process to remove particulates in syngas.

Tars present in syngas are generally assumed to be largely aromatics
[115]. The variations in the composition of tars range from primary
oxygenated pyrolysis products produced at lower gasification temperatures
to high-molecular-weight deoxygenated products at higher temperatures
and severe reaction conditions [32]. The effects of tars or model aromatic
compounds, such as toluene, benzene, or naphthalene, on SOFC
performance have been studied [114, 116—119]. No significant impact on an
Ni—GDC anode was observed up to 110 ppm tar (naphthalene was used as
representative). An Ni/GDC (gadolinium-doped ceria) anode operating at
temperatures greater than 750°C was not susceptible to carbon deposition
from a typical biomass gasification syngas containing 15 g m~ benzene
[116]. These studies suggest that SOFC anodes have a high tolerance to
tars. Because the amount and composition of the tars present in biomass
syngas depend on the type of feedstock and the operating conditions and
oxidant [120], more intensive investigation on the subject is still needed.

Sulfur compounds had serious negative effect on SOFC performance,
especially on those with an Ni—YSZ anode. Sulfur is predominantly
present in syngas as H,S, with concentrations ranging from 20 to 200 ppm.
Syngas from nonwoody biomass usually has a higher H,S concentration
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than that from woody biomass [32]. Various studies have proved that H,S
in the syngas poisons the catalyst even at low-ppm levels [121-126].
The polarization resistance and overvoltage of the electrode increased
when H_S concentration exceeded 0.05, 0.5, and 2 ppm at 1,023, 1,173,
and 1,273 K, respectively, [124]. Cell voltage dropped with periodical
addition of 2 to 100 ppm H,S to an H -containing fuel in 24-h intervals.
Fortunately, cell performance can be recovered after removing H,S from
the simulated fuel gas [122, 125]. This suggests that the poisoning effect
of H,S is perhaps primarily caused by the adsorption of H,S at active
sites to block Ni particles, which does not cause significant changes in
the microstructure of the anode or the formation of an insulating layer
[32]. H,S can be removed by chemical adsorption using metal oxides such
as zinc, cesium, copper, and other transition metal oxides [127-129] or
molten carbonate (MC) [130].

HCI has been detected as the predominant halide gas in biomass
syngas, with concentrations up to 200 ppm [131] depending on the biomass
type. It is formed by the vaporization of alkali metal salts contained in
the biomass and reacts with water vapor at high temperatures [131, 132].
Cell performance decreased when HCl was added into a simulated gas
fuel for SOFC [133-136]. An Ni-YSZ cermet anode can tolerate up to
10 ppm HCI without significant performance degradation [133]. However,
a higher concentration of HCI, such as 100 ppm, caused notable decrease
in the power output. HCI mainly caused the corrosion of cell components
and reacted with the nickel anode, resulting in permanent changes of the
surface microstructure of the nickel particles [135]. Moreover, HCI can
react with other contaminant species in the syngas to form salts, such as
ammonium chloride (NH,Cl) and sodium chloride (NaCl), which cause
fouling of cell component or blocking cell pipe [137]. HCI generally can
be removed at high temperatures by chemical adsorption using sorbents
such as carbonates [32], metal oxides [138], and alkali earth metal com-
pounds [132] to less than 1 ppm. The removal efficiency is significantly
influenced by gas flow rate and temperature.

Alkali metal compounds, especially sodium and potassium, in biomass
syngas are formed from vaporization of ash materials of biomass at
gasification temperatures. However, only a minor fraction of the biomass
alkali remains in the gas phase after gasification. The reported alkali
compound concentrations range from sub-ppm to a few ppm, depending on
biomass types and gasification temperature [139, 140]. Grass biomass has
higher ash content than woody biomass, resulting in a higher concentration
of alkali compounds in syngas. Alkali compounds can reduce cell perfor-
mance by corroding cell components, deleteriously affecting fuel-reforming
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catalysts, and probably negatively influencing fuel cell electrodes [141].
Alkali sorbents such as bauxite, kaolinite, and activated alumina are usually
used to remove alkali compounds to a few ppm or sub-ppm levels [142].

The primary nitrogen-containing compound in biomass syngas is
ammonia (NH,), with concentrations ranging from a few hundreds to
1,000 ppm depending on biomass and gasification method [143]. No
detailed information on the negative impact of NH, on SOFCs was found
in the literature. The addition of ammonia can suppress coke formation
in direct methane SOFC using a conventional nickel cermet anode.
Furthermore, hydrogen produced by decomposition of ammonia also
acted as an additional fuel source for the SOFC [144—147], resulting in
high cell performance. The operational stability of fuel cells was also
improved when NH, was added [148]. These studies suggest that NH, has
positive effects on SOFC performance.

3.1.3.3.3 Integration of Biomass Gasification and SOFC for
Electricity Generation

Integrating biomass gasification and SOFC has attracted much attention, and
various studies have been reported, particularly on process thermodynamics
relating to energy efficiency [149—158]. Models predicted that integrating
SOFC with biomass gasification produces higher electrical and exergy (the
maximum useful work that can be obtained from a system at a given state in
a given environment) efficiencies with lower greenhouse gas emissions than
the conventional biomass-fueled power production system using a steam
turbine [159]. In a typical integration (Figure 3.3), syngas from biomass gas-
ification is first cleaned to remove various contaminants and then reformed
to obtain H_-rich fuel. The off gas from SOFC containing unconverted fuels
is further burned in a combustor to produce heat for steam. The steam can be
used for heating a reforming unit and driving the steam turbine for electric-
ity. Gasification is the limiting step for electricity generation in such a com-
bination; however, higher power density was obtained when catalysts such
as Fe O, and K CO, were added into coconut shell carbon to accelerate fuel
gas production [160]. Energy and exergy analyses of an integrated SOFC
with gasification had an energy efficiency of 37 percent and an exergy effi-
ciency of 23 to 27 percent for steam turbine process, depending on feedstock
[161]. Fuel cell, gasifier, and combustion chamber were the main units with
high exergy destruction. A similar conclusion was drawn from a pilot exper-
imental study using a bagasse gasification unit integrated with an SOFC
[151]. The major exergy destruction is the gasifier, ranging from 75 to
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Figure 3.3. A typical scheme of integrating biomass gasification with
SOFC for electricity generation.

80 percent of the total loss. Gasification agents were also found to have
notable influences on the biomass-to-electricity conversion efficiency. Using
steam as the gasification agent yielded higher electrical efficiency, power-
to-heat ratio, and exergetic efficiency, but lower fuel utilization efficiency
(50.8 percent), compared with values obtained using air and enriched oxygen
[150]. The total efficiency of integrated SOFC with gasification was greatly
dependent on cell and gasifier operating conditions and biomass moisture
content [162]. Several economic evaluations on biomass—gasifier—SOFC
systems indicated that a biomass—gasifier—SOFC system can obtain a high
biomass-to-electricity conversion efficiency than any other biomass-fired
electricity generation system; however, the operating cost of this system is
very high. Gasifier, SOFC, and steam generator are major units with high
investment costs [163—165].

3.2 DIRECT CARBON FUEL CELL

3.2.1 TYPES AND PRINCIPLES OF DCFC

DCFC directly use a carbon-rich material (e.g., coal and biochar) as a
fuel [166]. The overall reaction of DCFC is

C+0,—CO,(AG=3954kImol !, E°=1.02V)  (3.24)

DCFC have several advantages over other fuel cells [166, 167]. First,
a DCFC has a theoretical electrochemical conversion efficiency slightly
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Table 3.2. Anodic and cathodic reactions of major DCFC
developed currently

o Typical Anode and main anodic . Oxidant and cathodic
Cell type carbon fuels reaction Electrolyte reaction
MH-DCFC Coall;.biocl;ar, gﬂ:g:;[e er (O mel h)l/\gfol:(ei]:les Air or pure oxygen as 500~
graphite rod, oxidant 650
carbon black C+40H = 2H,0 (g)+CO,+ 4¢ = O0H" 0,+2H,0+4¢ =
etc. 40H
MC-DCFC Coal, biochar, Carbon particles in molten Molten . 600—
activated carbonates carbonates Air or PLIElCXY ZEnas 900
carbon, graphite | C+2C0.2 =3C0,+ 4¢ =Co*+ oxidant
particle etc. ’ : ! 0,+2C0, +4e"=2C0,>
DCSO-DCEC | Coal, wood Carbon particles in a fluidized 700~
charcoal, bed Oxygen ion 1000
biochar etc. C+20* = CO,+4e conducting )
— solid oxide Air or pure oxygen as ~1000
9 MMSO-DCFC | Coal, carbon, Carbon particles in liquid such as YSZ oxidant
S plastic, biomass [ metal (e.g. tin) GDC, SDC‘
a ete. Sn (1) +20% = Sn0,+ 4e” 0, +4e =20"
) C+8n0, = CO,+Sn (1) e —
MCSO-DCFEC | Coal, biochar, Carbon particles in molten 1000
activated carbon | carbonates
ete. C+20* =CO,+4¢
C+0,=CO+2¢

Source: Adapted based on Giddey et al. [166].

exceeding 100 percent because of the positive entropy change for the cell
reaction (Equation 3.24, AS= 1.6 ] mol K™'). Second, the fuel fed and product
gases are distinct phases; therefore, their chemical potentials (activities) are
fixed and independent of the extent of conversion of the fuel or location
within the cell. Third, the DCFC system is mechanically simple because no
reformers or heat engines are required. DCFC are classified into three main
types according to the electrolyte used, namely, molten hydroxide (MH), MC,
and solid oxide (SO), as compared in Table 3.2. With the development of
materials and fuel cell technologies, some hybrid DCFC have demonstrated
improved performance and are promising for long-time operations [168].

3.2.1.1 Molten Hydroxide Direct Carbon Fuel Cell

The molten hydroxide direct carbon fuel cell (MH-DCFC) was first
patented in 1896 [169] and further developed in the mid-1990s by Scientific
Applications and Research Associates (SARA) Inc. [170]. This type of
fuel cell uses MH (LiOH, NaOH, KOH, or their mixture) as the electrolyte
in a metallic container that also acts as a cathode. Typical operating
temperatures of MH-DCFC are 500°C to 650°C [171]. The advantages
of hydroxide electrolyte are its high electrical (ionic) conductivity, high
electrochemical activity of carbon, lower operation temperatures, and
ability to use less-expensive materials for cell fabrication [172]. However,
the drawback is the chemical instability of the electrolyte because of
the reaction with anode product CO, (20H™ + CO,= CO,* + H,0) or
electrochemical reaction of carbon with hydroxide (C + 60H = CO,*
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+ 3H,0 + 4e), resulting in hydroxide to carbonate conversion, which
reduced cell performance and life time [170, 173]. Using high water con-
tent in the electrolyte or oxide additives such as SiO,, As O, Sb,0O,, ZnO,
and MgO have been found to prevent or reduce carbonate formation to
some extent [173, 174].

Several types of MH-DCFC configuration have been developed by
SARA. A novel design (Figure 3.4a) consists of a cylindrical pure graphite
rod immersed into molten sodium hydroxide serving as both the anode
and the fuel, with a cylindrical or prismatic shell serving as the container
for the electrolyte and the cathode. The electrolyte around the anode
(the anolyte) is separated from the electrolyte around the cathode (the
catholyte) by a porous separator. The separator allows for the transport
of hydroxyl ions but prevents air (oxygen) from coming in contact with
the anode [175]. This design can overcome a number of drawbacks of
a conventional MH-DCFC. Graphite rods have been used as a fuel, and
the average power output of 40 mW c¢cm™ at 140 mA cm™ over 540 h
with a peak power output of 180 mW c¢m™2 was achieved. The maximal
current density achieved was greater than 250 mA cm™ [173]. However,
no studies were reported using a biomass-fueled MH-DCFC.

Cathode
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Anode collector
“athode collecjgr
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Figure 3.4. Schematics of different types of DCFC. (a) An MH-DCFC

by SARA Inc. Adapted from Rastler [175]; (b) a DCFCs with a tilted
orientation design by Lawrence Livermore National Laboratory (LLNL,
Livermore, CA). Adapted from Giddey et al. [166] and Cooper [240]; (ci)
an SOFC combined with carbon fluidized bed by CCE. Adapted from Cao,
Sun, and Wang [167]; (cii) an SOFC fueled with solid carbon in molten
metal (tin) developed by CellTech Power LLC. Adapted from Heydorn and
Crouch-Baker [241]; (ciii) an SOFC fueled with solid carbon in MC.

Source: Adapted from Jain et al. [196].
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3.2.1.2 Molten Carbonate Direct Carbon Fuel Cell

Molten carbonate direct carbon fuel cell (MC-DCFC) is a type of DCFC
using MC as the electrolyte. This type of fuel has been considered as one
of the most promising fuel cells for commercialization. Actually, fuel
cells with MC as electrolyte have been developed to convert gas fuels
such as hydrogen [176, 177], natural gas [178], biogas [179-181], and
syngas [182-185] to electricity. Using MC (commonly Li,CO,, K,CO,,
and Na,CO, or their mixture) as electrolyte has a number of advantages,
such as high ionic conductivity [166, 171] and good stability in the pres-
ence of CO, with a long-term operation [186, 187]. The carbonate can also
catalyze carbon oxidation [188]. However, MC-DCFC has to be operated
at higher temperature than MH-DCFC, typically at 600°C to 900°C,
because of the high melting point of carbonate. The actual OCV of the cell
is affected by CO, partial pressure at the anode and the cathode and O,
partial pressure at the cathode. In particular, lowering CO, partial pressure
in the anode by inert gas purge will result in an increased OCV [189].
The desirable carbon fuel for MC-DCFC should have high mesoporous
surface area and rich oxygen-containing surface groups [190]. The anodic
performance of a cell may also be improved by using carbon of small par-
ticle size and high stirring rates.

A tilted orientation design was developed by Lawrence Livermore
National Laboratory (LLNL, Livermore, California) (Figure 3.4b).
A 32 percent Li,CO,-68 percent K,CO, melt was used as electrolyte. Var-
ious carbon fuels have been tested including coconut-activated carbon and
peach pit char. The current density achieved ranged from 58 to 124 mA cm ™2
at a cell voltage of 0.8 V [191]. Although MC-DCFC showed various
merits, technical issues still exist, including high cathode polarization,
loss of cathode performance with time, corrosion of metal bipolar plates,
difficulties associated with fuel delivery, low power densities, short cell
lifetimes, and the need for keeping the cell under constant polarization
to avoid the reverse Boudouard reaction [166]. Fuel processing and fuel
delivery systems are also key limits to a long-term operation of MC-DCFC.

3.2.1.3 Solid Oxide Direct Carbon Fuel Cell

In solid oxide direct carbon fuel cells (SO-DCFC), SOs similar to those
used in SOFC are used as electrolyte for conducting oxygen ion (O%).
The most common electrolyte being investigated is stabilized zirconia
(8 to 10 mol percent Y,O,-stabilized ZrO,, YSZ) at operating temperature
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of 800°C to 1,000°C [171]. There are three main classes of SO-DCFC
depending on the contact type between the fuel and the anode, namely, solid
carbon or fluidized bed (DCSO-DCFC or FBSO-DCFC) (Figure 3.4ci),
solid carbon in molten metal (MMSO-DCFC) (Figure 3.4cii), and solid
carbon in MC (MCSO-DCFC) (Figure 3.4ciii) [166]. In FBSO-DCFC,
the anode directly contacts the carbon particles. For continuous fuel feed-
ing to the anode—electrolyte interface, a fluidized bed arrangement with
fluidizing gas, typically CO,, can be arranged, as proposed by Clean Coal
Energy (CCE, Stanford, California) (Figure 3.4ci) [167]. However, poor
contact between the carbon anode and the electrolyte is still the main issue
of FBSO-DCEFC.

In MMSO-DCFC, molten metal, such as tin [192-194], is used as
the anode and solid carbon fuel carrier, as developed by CellTech Power
LLC (Westborough, Massachusetts) (Figure 3.4cii). The oxygen anions
transported through the SO electrolyte react with tin. The tin oxide formed
can be converted back to tin by chemical reaction between tin oxide and
carbon (Table 3.2). Carbon can be directly converted to electricity with-
out reforming when liquid tin was used. The operating temperature of
an MMSO-DCFC is around 1,000°C. Fuel efficiency is up to 50 percent
when coal is used and 34 percent when biomass is fed [194]. Sulfur is not
a poison element anymore in this type of fuel cell. The high solubility
of sulfur in molten tin (8 percent at 1,000°C) allows dissolved sulfur to
be oxidized to SO, and carried out with anode exhaust [194]. The major
technical hurdle is the excessive anodic polarization losses because of
the use of porous ceramic separator. However, few studies on electricity
generation using biomass or derivate charcoal as fuel were carried out.

MCSO-DCEFC is a combination of MC fuel cell and SOFC, in which
the anode is filled with a slurry of MC and carbon fuel (Figure 3.4ciii).
This hybrid fuel cell can achieve direct conversion of solid carbon to
electric power with high efficiency. MCSO-DCFC has some advantages,
such as no need for CO, circulation, ability to protect the cathode from
MC, and use of advanced cathode compositions already developed for
SOFC. It can also avoid cathode flooding and corrosion in MC-DCFC
[166]. A typical MCSO-DCFC consists of a NiO-YSZ anode, an LSM—
YSZ cathode, YSZ as the oxygen ion conductor, and a mixture of Li,CO,
and K,CO, as the solid carbon carrier [195, 196]. The actual anodic
reactions are more complex than simple direct oxidation of carbon to CO,.
Partial oxidation of carbon to CO also takes place (C +O,” — CO + 2¢),
evidenced by the CO detected in the gas products [196]. Power densities
of 13.0 and 6.9 mW cm at 900°C and 700°C, respectively, and OCV of
1.5V at 550°C to 700°C (much higher than the theoretical value of 1.02 V)
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were achieved from this hybrid fuel cell using carbon black as fuel [195].
The major issues of MCSO-DCEFC are corrosion of the nickel anode and
other cell components and relatively poor stability of YSZ electrolyte in
MC environments (e.g., formation of lithium zirconate in the presence of
Li—K carbonate eutectic mixture at 1,000°C). Technical issues such as low
power densities, very short lifetime, and slow electrode kinetics must be
solved for large-scale applications [166].

3.2.2 BIOMASS AS A FUEL FOR DCFC
3.2.2.1 Biomass-Derived Charcoal (Biochar) as a Fuel

Currently, the main fuels used for DCFC are coal and graphite. However,
carbon produced from lignocellulosic biomass (biochar) is promising for
DCFC because biochar from biomass is inexpensive, easy to store, and
readily available worldwide. Biochar also contains very low sulfur and
nitrogen and no mercury. It has high electrical conductivity, large surface
areas, and many reactive bonds at relatively modest temperatures [197].
Using biochar as a fuel for electricity generation in DCFC has been reported
in recent years (Table 3.3). The reported power densities are lower than
100 mW cm™. Both biochar and fuel cell types show significant influence
on power output. When comparing pine charcoal (PCC) with bituminous
coal, demineralized bituminous coal, and anthracite coal as fuel in a direct
carbon SOFC and an MCSO-DCFC, PCC showed the greatest power out-
put [198]. A similar conclusion was reached by the same authors when
comparing apple tree biochar with graphite rod in an MH-DCFC. Biochar
was much more reactive than graphite rod, probably because of the struc-
ture of the carbon matrix and the degree of crystallinity of the biochar
carbon [199]. Biochar [200] can eliminate or reduce anode degradation
due to low sulfur content [189]. The chemical and physical properties
of fuel such as composition, structure, surface area, surface functional
groups, and mineral impurities all affect the electrochemical oxidation
of carbon fuel in DCFC [201]. Biochar is preferred for obtaining higher
power density due to its high carbon content [202]. The electrochemical
oxidation of biochar can be enhanced by the oxygen-containing groups at
high concentrations. These oxygen-containing groups are bound within
the interior of the graphite crystal or between the separated layers in the
graphite crystals [203]. The oxygen-containing groups have low thermal
stability and can reduce polarization losses and increase electrochemical
oxidation rate at fixed potential when they emerge at the reacting edges
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Table 3.3. Some reported power densities by biomass-derived carbon-
fueled DCFC

Peak power
density

Fuel Fuel cell type (mW cm™?)  Reference
Apple tree biochar MH-DCFC 10-41.7* [199]
Apple tree biochar MH-DCFC 22.4 [200]
Energetic willow biochar MH-DCFC ~22.3 [200]
Pine wood charcoal MH-DCFC ~20 [200]
Commercial biochar MH-DCFC ~34 [200]
Coconut activated carbon MC-DCFC 102 [191]
Peach pit char MC-DCFC 124 [191]
Willow carbon MC-DCFC 18.48 [224]
Carbonized wood biomass MC-DCFC 25.15 [202]
Wood charcoal A DCSO-DCFC 54 [197]
Wood charcoal B DCSO-DCFC 170 [197]
Coconut char DCSO-DCFC 25 (with N, as [204]

the purge gas)
Coconut char DCSO-DCFC 60 (with N, as [204]

the purge gas)
Biochar DCSO-DCFC 10 [204]
Pine charcoal MCSO-DCFC 12 [198]
Miscanthus carbon MCSO-DCFC 77.41 [224]
Almond shell biochar MCSO-DCFC 127 [203]
Fiberboard biochar MCSO-DCFC 70-878° [225]

* The peak power density varied depending on the electrolyte composition (ratio of
NaOH, LiOH, and KOH) and temperature.

® The peak power density varied depending on the purge gas and cathode materials
used. The maximum power density was obtained by using LSC cathode with
flowing air.

and participate in the electrochemical reaction [203]. The main issue with
biochar is its high ash content, particularly in grass-derived biochars,
which can reduce the amount of surface area for reaction and block charge
transfer through the cell to result in reduced cell performance [204]. Bio-
char properties are influenced by biomass type, carbonization techniques,
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and pretreatment and posttreatment procedures. Therefore, preparation of
biochar is important and should be optimized.

3.2.2.2 Preparation of Biochar from Biomass

Biochar is a stable carbon-rich by-product synthesized through carboniza-
tion of plant-based biomass [205]. It has been defined by Shackley et al.
[206] as “the porous carbonaceous solid produced by the thermochemical
conversion of organic materials in an oxygen depleted atmosphere that
has physicochemical properties suitable for safe and long-term storage of
carbon in the environment.” Biochar has received considerable interest
in recent years for remediation of contaminated soil [207] and carbon
sequestration [208]. Biochar can be produced from various carbona-
ceous biomass by different carbonization technologies such as pyrolysis,
gasification, hydrothermal carbonization, and flash carbonization [209],
of which pyrolysis is the most commonly used. The yield and quality of
biochar are greatly dependent on pyrolysis conditions such as peak tem-
perature, heating rate, retention time, reactor, and biomass characteristics
such as biomass type and chemical composition, especially lignin content,
particle size, and moisture and mineral salt contents. The wide range of
process parameters leads to the formation of biochar products that vary
considerably in their elemental and ash composition, density, porosity,
pore size distribution, surface area, surface chemical properties, water and
ion adsorption and release, pH, and uniformity of physical structure [210].
Fast pyrolysis, with a heating rate of above 200°C min™' and short resi-
dence time of approximately 2 s, usually favors the formation of bio-oil of
approximately 75 percent yield, with charcoal yield typically lower than
12 percent [211]. Slow pyrolysis, with heating rate of generally less than
10°C min™' to over 400°C, can obtain charcoal yield of approximately
30 percent, or as high as 51 percent [212].

Major components from lignocelluloses have been used for biochar
production under different pyrolysis conditions (Table 3.4). Pure cellulose
generally results in the lowest biochar yield, while lignin results in the high-
est biochar yield. Increasing pyrolysis pressure to 1 MPa can substantially
increase biochar yield [213]. Woody biomass typically results in greater
char yields than those derived from herbaceous feedstock because of
their higher lignin content. Furthermore, biochar from woody biomass
has higher carbon content than those from herbaceous biomass [214].
High carbon content is important for DCFC, as discussed previously;
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carbon content of biochar increased with temperature as consistently
demonstrated using various pyrolysis processes [215]. A carbon con-
tent of greater than 80 percent can be achieved at 500°C or higher, 60 to
80 percent at 400°C to 500°C, and 15 to 60 percent below 350°C [216].
Carbon content of biochars increased at an average of 41 g C kg™' for each
100°C rise in pyrolysis temperature [210]. Pyrolysis temperature also can
significantly affect biochar properties, such as pore structure, surface area,
and adsorption properties [215].






CHAPTER 4

PEeERsPECTIVE OF Biomass-

FueLep SoLip Oxipe FUEL

CELLS AND DIRECT CARBON
FueL CELLs

Different biomass-energized fuel cells are compared in Table 4.1. Com-
pared with direct carbon fuel cells (DCFC), solid oxide fuel cells (SOFC)
show higher power density and stability (Table 4.1). Large-scale, utili-
ty-based SOFC power generation systems are in pilot-scale demonstration
stages in the United States, Europe, and Japan. Small-scale SOFC systems
are being developed for military, residential, industrial, and transportation
applications [16]. It is also the most commercially promising fuel cell
technology for electricity production from lignocellulosic biomass. In this
system, biomass is first thermochemically or biologically transformed to
fuel gases. The conversion efficiency of biomass to fuel gases is a limit-
ing step. Biological conversion of lignocellulosic biomass to biohydrogen
or biogas can be conducted at mild conditions with various microorgan-
ism species. However, fermentation is slow. New enzymatic pathways
for producing biohydrogen, while promising, needs to be demonstrated
at large scales. Thermochemical conversion seems to be more promising
to produce fuel gases (syngas) for SOFC because of much higher reaction
rates. Gasification of biomass is also a relatively mature technology for
producing combustible gas. Thus, it can be integrated with SOFC at a large
scale. However, the efficiency of common high-temperature SOFC with
integrated gasification of solid feedstock is often lower than the efficiency
of SOFC operated with pure hydrogen or methane because additional
system components such as gasifier reduce efficiency. Hence, common
fuel cell systems with integrated gasification of biomass will hardly reach
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electrical efficiencies above 30 percent [149]. Biomass gasification also
has several challenges including tar formation to cause catalyst deacti-
vation, operation interruption, and production of carcinogenic elements
[109]. The presence of excessive moisture in biomass reduces the molar
fractions of combustible components [217], therefore, the quality of the
product gas, as well as the general performance of the system because of
the excess energy consumed for water evaporation [218]. The impurities
of syngas can cause degradation of SOFC. Gas clean-up reduces electric-
ity production efficiency.

The following aspects should be considered to increase the efficiency
of syngas—SOFC systems: (1) optimizing gasification in terms of process
operation, catalyst, and reactor design and necessary pretreatment to
remove moisture or desulfuration; (2) developing novel electrode and
catalyst for SOFC with strong tolerance to impurities in syngas; (3) heat
integration to decrease energy consumption and increase energy efficiency
for power generation; and (4) comprehensive economic estimation of the
system to identify the most expensive units for further optimization.

DCFC has the advantage of directly converting carbon to electricity.
Biochar produced from lignocellulosic biomass is a promising alternative
to coal for fueling DCFC. Using biochar as a fuel can reduce net CO,
emission. Most biochar-fueled DCFC can only produce a power density
less than 100 mW cm™ that needs to be at least doubled for commercial
applications. Biochar significantly lowers power density than coal in most
cases. This is related to not only carbon content of biochar but also the
properties of the fuel. DCFC is also still at an early stage of development
compared with the conventional SOFC systems. A significant number of
technical challenges still need to be overcome, such as poor power den-
sities, high degradation rates caused by corrosion of cell components,
poor fuel feed system, difficulty in scaling up to kilowatts and larger size
systems, and need of establishing fuel processing requirements [166].
Poor contact of solid carbon with anode catalyst is a major challenge to
DCFC, because fuel cannot diffuse to the active sites within a porous elec-
trode where chemical oxidation can occur. The use of molten materials
can not only improve power output but also increase the degradation of the
system, either by chemical attack on other system components or through
rapid reactions with fuel impurities because molten salts can alloy with
even small quantities of metal within the fuel [166].

To improve the performance of biochar-fueled DCFC, the following
areas of research are needed: (1) comprehensively investigating the
effects of biochar properties (including elementary composition, impurity
contents, moisture content, physical features such as particle size and its
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distribution, porosity, surface area, crystallinity, electrical conductivity,
and wettability) on power output and establishing the “quality criteria” for
biochar as a fuel in a DCFC for maximizing power output; (2) optimizing
the carbonization or pyrolysis process, coupled with pretreatment or
post-treatment processes, to maximize the production of biochar that
meets the “fuel criteria”; (3) developing anode materials that can extend
the triple-phase boundary of the reactant (carbon), oxygen ion conductor
(electrolyte), and an electronically conducting material (current collector)
to increase solid fuel reactive sites; (4) developing electrode-supported
cell designs to minimize resistive losses across the electrolyte and enhance
fuel transport or diffusion through the anode; and (5) integrating and
globally optimizing biomass pyrolysis and DCFC systems to minimize
running cost.



CHAPTER 5

CoNcLUDING REMARKS

Lignocellulosic biomass is a promising feedstock for fuel cells because
it is renewable, carbon neutral, and sustainable. For highly efficient
conversion of biomass to electricity by fuel cell technology, biomass is
usually first converted to simple fuels in external reactors, which refers to
indirect biomass fuel cells, mainly including solid oxide fuel cells (SOFC)
and direct carbon fuel cells (DCFC). Lignocellulosic biomass has to be
chemically or biologically converted to syngas, biogas, or biohydrogen
for fueling SOFC. This type of fuel cell shows high power density and
seems to have promising chances to evolve into full-scale commercial
applications, based on currently achieved power output and conversion
efficiency. However, increasing the conversion efficiency of biomass to
fuel gases is one of the most important considerations in reducing the cost
of biomass-fueled SOFC. Lignocellulosic biomass can also be converted
to biochar and used as a fuel for DCFC. This type of fuel cell can directly
convert solid carbon to electricity after carbonizing lignocellulosic
biomass without complex processing. However, poor contact of solid
carbon with the anode catalyst is the major challenge of DCFC, and the
cell performance must be improved for commercialization.
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Fuel cell technology has attracted great interest in recent decades. How-
ever, progress in lignocellulosic biomass-energized fuel cells has been
slow. This is because that lignocellulosic biomass generally cannot be
directly used for electricity generation in a fuel cell with high efficiency.
As a renewable resource available in large quantities in many regions
of the world, lignocellulosic biomass can be a promising feedstock for
sustainable electricity production using fuel cell technologies.

In this monograph, we focus on the electricity generation in fuel
cells that are operated at high temperatures with high efficiency using
lignocellulosic biomass-derived fuels. More specifically, we discussed
biomass conversion coupled solid oxide fuel cell and direct carbon fuel
cell, the state of the art in technology development, the challenges and

the perspectives on future development.
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