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Abstract

Quality is a discipline that focuses on product and service excellence. 
This book is about improving the quality of products and services. The 
improved quality and reliability lead to higher perceived value and 
increased market share for a company, thereby increasing revenue and 
profitability.

The book discusses the concepts and dimensions of quality, costs of 
poor quality, the importance of quality in this highly competitive global 
economy, and quality programs—Six Sigma and Lean Six Sigma that 
focus on improving quality in industries. The text integrates quality 
concepts, statistical methods, and one of the major tools of quality—
Statistical Process Control (SPC)—a major part of Six Sigma control 
phase. A significant part of the book is devoted to process control and 
the tools of SPC—control charts—used for monitoring, controlling, and 
improving the processes by identifying the causes of process variation. 
The fundamentals of control charts, along with SPC techniques for vari-
ables and attributes, and process capability analysis and their computer 
applications are discussed in detail.

This book fills a gap in this area by showing the readers comprehen-
sive and step-wise solutions to model and solve quality problems using 
computers.

Keywords

capability analysis, common cause of variation, control charts, control 
charts for attributes, control charts for variables, control limits, cost of 
quality, lean six sigma, pattern analysis, p-chart, process spread, process 
variation, rational subgroup, R-Chart, run charts, s-chart, Six Sigma, 
special causes of variation, specification limits, statistical process control, 
three-sigma limits, total quality management (TQM), x– chart
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Preface

This book provides an overview of the field of quality, the importance of 
quality in today’s competitive global economy, and one of the major tools 
used to manage and improve quality of products and services—statistical 
process control (SPC). In this book, we explore quality programs used in 
industry today with a focus on SPC. We discuss one of the major quality 
and process improvement tools known as control charts. Computerized 
application, and implementation of various control charts. is one of the 
major focuses of this text. SPC is a part of overall quality program—Lean 
Six Sigma.

Quality is a discipline that focuses on product and service excellence. 
Both manufacturing and service companies have quality programs. The 
quality is closely related to the variation in both products and processes. 
Variation is an inherent part of products and processes that create 
these products and services. For example, no two parts produced by a 
production process are the same, and no machine can dispense exactly 
the same amount of beverage in two cans. This is because of the vari-
ation. You may recall that statistics is the tool that allows us to study 
variation. Most of the quality programs are data driven and almost all 
data show variation that can be studied using statistics. One of the major 
objectives of the quality programs is to reduce the variation in products 
and processes to the extent that the likelihood of producing a defect 
is virtually nonexistent. This means improving quality and meeting or 
exceeding customers’ expectations.

There is a close relationship between quality, profitability, and market 
share. Quality is achieved through customers’ perception; therefore, 
organizations must understand customer needs and expectations in 
order to meet and exceed them. Customer needs and expectations can 
be achieved through quality improvement. Quality is important to the 
consumers. In today’s highly competitive and global economy, a company 
cannot survive and stay in business unless they are able to provide high 
quality products and services. Improving quality can help organizations 
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increase their market share and profitability. The improved quality and 
reliability in products and services lead to higher perceived value and 
increased market share for a company. This leads to increased revenue 
and profitability.

This book provides a comprehensive coverage of quality. We first 
explore what is quality before discussing various statistical tools and 
methods that are used to monitor and improve the quality of products 
and services. We explain the term quality from the perspective of a 
manufacturer, a design engineer, a service provider, and the end user of a 
product or service—the customer.

Quality has been defined from several perspectives. For example, 
quality may have a different meaning to the engineer who designs the 
product, or to the manufacturer involved in the production of a product. 
Although we define quality from many different perspectives, the final 
judge of the product or service quality is the customer, and therefore, 
quality is the customer’s perception of the degree to which the product or 
service meets his or her expectations.

The book begins with an introductory chapter where we explain 
quality, dimensions of quality, and its importance in this highly 
competitive global economy. This chapter also discusses the quality costs 
and costs of poor quality. Quality is important, because quality—both 
good and bad—costs money. There is a cost involved with improving 
the quality of products and services; because, poor quality can signifi-
cantly affect an organization’s competitiveness and market share. In his 
book Quality is Free, Phillip Crosby has described quality costs or the 
costs of quality as having two components: (1) costs of good quality 
(or the cost of conformance), and (2) costs of poor quality (or the cost 
of nonconformance). We will explore the costs of poor quality and its 
impact on the organizations in the first chapter.

To improve quality, it is important to have an understanding of 
systems and processes. A system converts inputs into useful products 
or services through a conversion process. The products or services are 
the output of the system. Quality is concerned with the variation in the 
output of a system or the products and the processes of the system. The 
quality of the products and services are improved by reducing the defects 
and variation. Quality is inversely proportional to the variation in the 



	 PREFACE	 xi

products and processes. This means that as the variation is reduced and 
controlled, significant improvement in quality can be achieved. The  
quality programs including Total Quality Management (TQM), Six 
Sigma, and Lean Six Sigma all focus on quality improvement by reducing 
variation and removing waste from the system. Almost all types of orga-
nizations and systems have two things in common: waste and variation. 
The quality programs focus on removing the waste and reducing variation 
and defects to improve quality.

While a complete coverage of the quality programs is beyond the 
scope of this book, we devote a chapter describing these programs. We 
also provide sufficient statistical background for the reader to understand 
the principles of quality in a separate chapter.

In the remaining chapters of the book, we turn our attention to SPC 
and control charts. These are graphical tools for monitoring the process, 
identifying the causes of process variation, and taking necessary actions to 
control and improve the process. Before going into the details of control 
charts and their applications, we explain the run chart, a tool used to 
describe the variation of the process output in the form of a time series 
plot. The run charts are an excellent way of understanding the variation 
and pattern of variation in the process.

The chapters on the run chart is followed by chapters on fundamentals 
of control charts, why and how control charts work, control charts 
for variables, computerized applications of control charts, additional 
SPC techniques for variables, control charts for attributes, and process 
capability analysis.

Who Can Benefit from This Book?

SPC is an integral part of quality improvement program in industries. 
This book provides an overview of one of the major tools used to manage 
and improve quality of products and services. The topics are dealt with 
in a concise and simple to understand format. Throughout the book, 
we emphasize the computer applications and implementation of quality 
programs in the real world. The book is unique in the sense that it shows 
the importance of SPC, and its place, in overall quality improvement pro-
grams. The reader is also provided with necessary statistical background 
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to understand the subject matter and is introduced to quality programs 
used in industry today. Computerized application and implementation of 
various SPC tools is one of the major focuses of this text.

This book fills a gap in this area by showing the readers comprehensive 
and step-wise solutions to model process quality and solve quality prob-
lems. Where applicable, we provide data files, computer instructions, 
computer output, and interpretation of results.

This book is written with a wide audience in mind both managers and 
future professionals. Also, undergraduate and graduate data analysis and 
statistics students and MBAs, as well as audience in engineering taking a 
course in quality and process control will find the book to be useful.

Six Sigma professionals and those implementing Six Sigma in their 
companies will find the book to be very useful. The quality professionals 
and particularly those implementing Six Sigma quality in their companies 
will find the book to be a valuable resource.
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CHAPTER 1

Introduction to Quality

Quality as a Field

This chapter provides an overview of the field of quality, the importance 
of quality in today’s competitive global economy, and statistical process 
control. The chapter explores these topics and shows how various statistical 
tools can be used in improving the quality of the products and services.

Quality is a discipline that focuses on product and service excellence. 
Both manufacturing and service companies have quality programs. 
Quality is closely related to the variation in both products and processes, 
and statistics is the tool that allows us to study variation. Most of the 
quality programs are data driven and almost all data show variation 
that can be studied using statistics. One of the major objectives of the 
quality programs is to reduce the variation in the product and process 
to the extent that the likelihood of producing a defect is virtually 
nonexistent. This means improving quality and meeting or exceeding 
customer’s expectations. The improved quality and reliability in products 
and services lead to higher perceived value and increased market share, 
thereby, increasing revenue and profitability.

Before discussing various statistical tools and methods that are used to 
monitor and improve the quality of products and services, we explain the 
term quality and outline many different ways quality has been defined. 
Some of the definitions of quality are presented here.

Quality Defined

Quality means different things to different people. Therefore, quality can 
be defined from several different perspectives. From the perspective of 
the customer or the end user of the product or service, the quality of a 
product or service is the customer’s perception of the degree to which 
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the product or service meets his or her expectations. This also means that 
the quality of a product or service can be determined by the extent to 
which the product or service satisfies the needs and requirements of the 
customers. This definition is a customer-driven quality approach that 
aims at meeting or exceeding customer expectations.

Quality has also been defined from several other perspectives. For 
example, quality may have a different meaning to the engineer who 
designs the product, or to the manufacturer involved in the production 
of a product. Thus quality can be defined from the perspective of the 
manufacturer or the designer. Quality has a transcendental definition and 
can also be product based, user based, manufacturing based, and value 
based (Garvin). Following are some of the other ways quality has been 
defined:

•	 Transcendent: Quality is something that is intuitively 
understood but nearly impossible to communicate, such as 
beauty or love.

•	 Product-based: Quality is found in the components and 
attributes of a product.

•	 User-based: If the product or service meets or exceeds 
customer’s expectations, it has good quality.

•	 Manufacturing-based: If the product conforms to design 
specifications, it has good quality.

•	 Value-based: If the product is perceived as providing good 
value for the price, it has good quality.

Quality has also been defined as:

•	 Meeting or exceeding customer expectation
•	 Fitness for intended use
•	 Conformance to specifications
•	 Inversely proportional to variation
•	 Total customer service and satisfaction
•	 The degree or standard of excellence of something
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These definitions of quality show that although we can define quality 
from many different perspectives, the final judge of the product or service 
quality is the customer, and therefore, quality is the customer’s perception 
of the degree to which the product or service meets his or her expectations.

Dimensions of Quality

The dimensions of quality specify the characteristics the product or 
service should possess in order to be high quality. Garvin has identified 
eight dimensions of quality described here. These dimensions describe 
the product quality that is critical to developing high quality products 
or services. The recognition of these dimensions by the management and 
the selection of these dimensions along which the business will compete 
is critical to business success.

1.	Performance: Will the product do the job?
2.	Features or added features: Does it have features beyond the basic per-

formance characteristics?
3.	Reliability: Is it reliable? Will it last a long time?
4.	Conformance: Does the product conform to the specifications? Is the 

product made exactly as the design specified?
5.	Serviceability: Can it be fixed easily and cost effectively?
6.	Durability: Can the product tolerate stress without failure?
7.	Aesthetics: Does it have sensory characteristics such as taste, feel, 

sound, look, and smell?
8.	Perceived quality: What is the customer’s opinion about the product 

or service? How customers perceive the quality of the product or 
service?

Importance of Quality

There is a close relationship between quality, profitability, and market 
share. Quality is achieved through customer’s perception, therefore, 
organizations must understand customer needs and expectations to meet 
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and exceed them. Customer needs and expectations can be achieved 
through quality improvement. Quality is important to the consumers. 
In today’s highly competitive and global economy, a company cannot 
survive and stay in business unless they are able to provide high quality 
products and services. Figure 1.1 shows how improving quality can help 
organizations increase their market share and increase profitability.

Costs of Quality and Costs of Poor Quality

Quality is also important because the quality—both good and bad—costs 
money. There is a cost involved with improving the quality of products 
and services, because poor quality can significantly affect an organization’s 
competitiveness and market share. In his book Quality is Free, Phillip 
Crosby has described quality costs or the costs of quality (COQ) as having 
two components: (1) costs of good quality (or the cost of conformance) 
and (2) costs of poor quality (or the cost of nonconformance). These are 
shown in Figure 1.2.

The focus of many quality programs is to reduce the cost of poor 
quality. Since the cost of poor quality is significant, reducing this cost will 
lead to increased revenue and improved productivity. A quality program 
should be focused on preventing poor quality. A prevention system is 
focused on preventing the poor quality and is far superior to a detection 
system that detects the defects and nonconformities in the products after 
they are produced.

Figure 1.1  Quality, profitability, and market share

Improvement in
products/service

quality

Higher perceived
value by customers

Increased market
share

Claim higher prices

Increase revenue

Increase profits
Meet and exceed

customer
expectations

Lower overall costs,
improve productivity

Reduce cost of
poor quality

Reduced defects,
minimize waste,

improve cycle time
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Figure 1.2  Costs of quality

Costs of quality

Appraisal costs

Costs of poor
quality

External failure
costs

External failure
costs

Internal failure
costs

Costs of good
quality

The major components of costs of good quality—prevention costs 
and appraisal costs, and the costs of poor quality—internal failure and 
external failure costs, are explained in Table 1.1.

Detection Versus Prevention Quality Systems

Figure 1.3 shows the quality costs under detection and prevention systems 
(Griffith 2000). The costs under the detection system are similar to the 
costs that are measured for the first time in a company that has no formal 
quality prevention system in place. In the detection system, the costs of 
internal failure (e.g., scrap, rework, repair, and retest) are almost equal to 
the appraisal costs (e.g., inspection, testing, and auditing). The internal 
failure and appraisal costs tend to increase simultaneously. Since no or 
little prevention efforts are in place, more inspection is performed that 
finds more defects. On the other hand, as more defects are produced, 
more inspection is required. In a detection system, the external failure 
costs are small because of high inspection. The prevention costs are also 
small in a detection system.

A prevention quality system focuses on preventing failures and 
defects. Several companies have reported significant reduction in cost of 
poor quality through Six Sigma quality, which is a prevention quality 
program.
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Prevention cost
Attempts to prevent poor quality from 
being produced. These costs include:

•  Quality planning and engineering
•  Product and process design
•  Process control
•  New product review
•  Manufacturing engineering tasks
•  Quality Training
•  Vendor relations
•  Variability analyses
• � Design reviews and manufacturing 

planning
• � Designing equipment and processes to 

measure and control quality

Appraisal costs
Related to functions that appraise or 
evaluate. These are the cost of:

• � Inspection and testing of incoming 
material

•  Inspection and testing of products
•  Staffing inspectors and supervisors
• � Maintaining the accuracy of test 

equipment
• � Maintaining test or inspection records
•  Performing audits and field tests

Internal failure cost
Related to failure or nonconformance that 
occurs in-house. These costs include the 
cost of:

•  Scrap		  •  Repairs
•  Rework		 •  Failure analysis
•  Retest		  •  Downtime
• � Loss in profit due  

to substandard  
product

External failure cost
Related to failures or nonconformance 
in the customer’s facility. These costs 
include:

• � Returned products or material that 
must be inspected, reworked, or 
scrapped

•  Customer complains
• � Cost of testing, legal services, 

settlements
•  Other costs related to product liability
• � Customer dissatisfaction (not directly 

measurable)

Table 1.1  Quality costs

Systems and Processes

The quality methods and tools are applied to the systems and the processes 
that make the systems. The system and the processes within the system are 

Figure 1.3  Quality costs: Detection system versus prevention system  
(a) Quality costs in a detection system, (b) Quality costs in a 
prevention system

Internal failure
Appraisal

(a) (b)

Prevention
External  failure

Quality costs under detection system
(costs measured the first time)

Prevention Appraisal

Internal failure
External  failure

Quality costs under prevention system
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responsible for creating the products or services. Therefore, it is important 
to understand the systems and the processes.

Systems

A system usually consists of a group of interacting, interrelated, or 
interdependent processes forming a complex whole. Thus a system is 
a collection of processes with a specific mission or purpose. Figure 1.4 
shows the model of a basic system. A process can be viewed as a part of 
a system.

Some examples of systems are electronic manufacturing or food 
processing companies which produce electronic or food products. Such 
systems are usually a collection of interacting or interrelated processes; 
for example, both the electronic manufacturing and food processing 
plants may consist of a number of departments including manufactur-
ing engineering, marketing, design engineering, sales, transportation, 
warehousing, finance and accounting, and distribution systems.

All these departments can be viewed as processes. In manufacturing 
or food processing companies, the raw materials are converted into useful 
products, which are outputs. Such systems as shown in Figure 1.4 have a 
feedback through which the companies receive information about their 
products from the customers and market. This information is helpful in 
changing or modifying their processes and products to adapt to the needs 
and requirements of their customers.

The other types of systems are the service systems. These systems exist 
to provide various types of services to their customers. Examples of such 
systems are education institutions, government organizations, technical 
call centers, health care organizations, hospitals, and insurance companies. 
These systems also consist of a number of processes and provide services 

Figure 1.4  A basic system

System

InputSupplier

Feedback

Output Customer

Process 1

Process 4

Process 2 Process 3

Process k
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through the collection of processes. The outputs of the service systems are 
usually intangible.

Processes

In many cases, the focus of statistical analysis has been to draw conclusions 
or make decisions about the population using the sample data. The 
other aspect of statistical analysis is to study and reduce the variation 
in the products or processes studied using data. Statistics and statistical 
methods enable us to study variation in the processes. Almost all data 
show variation and controlling or minimizing variation in products and 
processes lead to improved product quality. The variance in a process 
is an important measure of the quality of the products and processes. 
A large variation in any product, process, or both is not desirable and is 
an indication that the process be improved by finding ways to reduce the 
process variance. As variation in the products and processes is reduced, 
the product or the process becomes more consistent. Therefore, one of the 
major objectives of quality programs like Six Sigma is to reduce variation 
in product, process, or service.

In this text, we will study how the variations in the processes affect the 
product quality. To study this, we will explore the relationship between 
the variation and product quality, and the statistical tools that are used to 
study, monitor, and control the variation. This area comes under statisti-
cal process control.

Since the quality of products and services is related to the variation 
in products and the processes that create the products, we will first 
define and study the processes. A process can be a chemical process, or 
a manufacturing process. The processes in general use the inputs that go 
through a transformation to produce outputs or useful products.

Any organization, or any of its parts, can be viewed as a process. 
A  process is a transformation of inputs into outputs. Some examples of 
processes include electronic and appliance manufacturing processes, 
computer and car assembly lines, and chemical processing plants. 
A process in its simplest form is shown in Figure 1.5.

A process usually consists of a sequence or network of activities that 
depicts the flow of the complete procedure required to transform the 
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inputs into outputs (useful product or service). The transformation is 
achieved by flows through network of activities that are performed by 
various resources. Figure 1.6 shows an input output process.

Outputs of Processes and Variation

The processes, as discussed earlier, take inputs and convert them into 
outputs using some type of transformation process. Systems, on the other 
hand, may consist of a number of processes. It is important to note the 
following characteristics of the system outputs and the outputs produced 
by the processes of the system:

1.	The outputs of the process always vary.
2.	The products produced by the same processes are different. This 

means that no two products are identical and the measured quality 
characteristic of products vary. For example, the volumes of two 
beverage cans labeled 16 oz. are not exactly the same; the two tires 
that are 13.0 inches in radius are not both exactly the same radius. 
Figure 1.7 shows the measurements of the diameters of a 13.0-inch 
radius tires that are manufactured by the same process. The radius 
in this case is a critical quality characteristic of the product or the 

Figure 1.5  A process in its simplest form

Inputs
Process

Outputs

Figure 1.6  An input-output process
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people
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Process
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output. Notice how the measured radius varies from product to 
product (the last block in Figure 1.7 that shows the measured values 
of several products). Similarly, the computers and calculators made 
by the same processes are not exactly the same. Although the products 
look alike, they always vary in critical quality characteristics. The 
variation in many cases is not noticeable. The variations in product 
characteristic do not affect the functionality as long as the variation 
is within a certain limit.

3.	Variation is an inherent characteristic in products and processes.

As long as the variation in products and processes that produce 
these products is within certain limit, the product is acceptable. When 
the variation increases beyond the desired or set limits, the product 
quality, functionality, and reliability are affected. This is the reason why 
the variation in the products and processes must be monitored and 
controlled. The variation in the products and processes can be studied 
using statistical tools.

Sources of Variation in Products and Processes

The major sources of variation in the products and processes are attributed 
to the following factors:

1.	Materials
2.	Men (Operator)
3.	Machines
4.	Methods
5.	Measurement
6.	Environment

These sources of variation are shown in Figure 1.8(a) and (b) where 
(a)  shows the general categories that are common sources of variation 

Figure 1.7  Variation in quality characteristic (diameters of tires)
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and (b) shows the details. Note that all categories may not apply to all 
products or services.

In the rest of the chapter, we will see how the variation in the products 
and processes are studied, measured, and controlled.

Measuring Variation

The variation in the data is measured using the variance and standard 
deviation. The Greek letter σ 2 (read as sigma-squared) represents the 
variance of a population data and σ  represents the standard deviation. 
The corresponding symbols for the variance and standard deviation of a 
sample data are s 2 and s. The standard deviation σ is a measure of spread 
or deviation around the mean as shown in Figure 1.8(c). We may have 
two or more sets of data all having the same average, but their spread 
or variability may be different. This is shown in Figure 1.8(d). It can be 
seen from this figure that the data sets A and B have the same mean but 
different variations—curve B has less spread or variability than curve A. 
The more variation the data has, the more spread out the curve will be. 
We may also have a case where two sets of data have the same variation 
but different mean.

Figure 1.8(a)  Sources of variation in products and processes
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The variation in the data can also be plotted using a graph. Suppose 
that the average time to assemble a product is 4.0 minutes. The average 
assembly time for all the products is not going to be exactly 4.0 minutes. 
This means that the assembly time will vary from product to product. 

Figure 1.8(c)  The measure of variation—standard deviation σ
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The variation in the assembly time can be studied using a graph that is 
shown in Figure 1.8(e). This graph shows the assembly time of a sample 
of 30 products. Note how the assembly time varies around the average of 
4.0 minutes.

Summary

This chapter provided an overview of the field of quality, various ways 
quality has been defined, and the importance of quality in today’s 
competitive global economy. Quality is a discipline that focuses on product 
and service excellence. Both manufacturing and service companies have 
quality programs. Quality is closely related to the variation in both 
products and processes, and statistics is the tool that allows us to study 
variation. Most of the quality programs are data driven and almost all 
data show variation. One of the major objectives of the quality programs 
is to reduce the variation in the product and process to the extent that 
the likelihood of producing a defect is virtually nonexistent. This means 
improving quality and meeting or exceeding customer’s expectations. 
The chapter described the dimensions of product quality. These are the 
characteristics that the product and service should possess in order to be 
of high quality. The COQ were also discussed. Cost of poor quality is a 
significant percent of the sales dollars in companies. Reducing these costs 
leads to improved quality, higher perceived value by the customer, and 
increased market share. The chapter emphasized on the importance of 
prevention quality programs like Six Sigma and Lean Six Sigma quality 
programs. These programs have been applied with tremendous success 
in a large number of companies. The tools of quality are applied to sys-
tems and processes within the systems. These systems and processes are 
responsible for creating goods and services. The chapter provided an 
overview of the systems and processes. Finally, the sources of variation 
in products and processes were discussed and it was shown that there is 
always a variation when we measure the critical quality dimensions. No 
two products are exactly the same. There is always some degree of varia-
tion in them. Quality is all about studying, reducing, and controlling the 
variations to improve product or service quality.





CHAPTER 2

Quality Programs in Use 
Today: Lean Six Sigma and 
Total Quality Management

Introduction—A Brief History of Quality

The quest for quality traces its roots back to medieval Europe in the 13th 
century when the craftsmen started organizing into unions called guilds. 
These guilds developed rules for producing products of high quality. The 
concept of inspection was introduced and inspection committees were 
formed to produce flawless products. The craftsmen model of guild existed 
until the early 19th century across medieval Europe. The craftsmanship 
model was replaced by the factory system that originated in Great Britain. 
The factory system was the product of the Industrial Revolution. Since 
then quality has evolved in different forms. Table 2.1 provides a brief 
historical perspective (http://asq.org/learn-about-quality/history-of-
quality/overview/overview.html). It outlines the major developments in 
the field of quality and its current state.

Total Quality Management

Total quality management (TQM) approach to quality is a management 
approach to long-term success through customer satisfaction. In a TQM 
effort, all members of an organization participate in improving processes, 
products, services, and the culture in which they work. The methods for 
implementing this approach come from the teachings of quality leaders 
such as Philip B. Crosby, W. Edwards Deming, Armand V. Feigenbaum, 
Kaoru Ishikawa, and Joseph M. Juran (http://asq.org/learn-about-qual-
ity/total-quality-management/overview/overview.html). TQM has been 
a popular quality program and was widely adapted before the emergence 
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Table 2.1  A brief history of quality

Middle ages Skilled craftsmanship

Industrial revolution Introduction of inspection methods and separate quality 
departments

Early 20th century Statistical methods at Bell System

1900 to 1920s Taylor and scientific management
Ford assembly line
Shewhart and statistical process control

World War II Quality control
Efficient use of limited resources
Quality control methods

1950s Quality emphasis and education—Quality gurus
Deming, Juran, and Feigenbaum

Postwar Japan Evolution of total quality management

1960s to 1980s Japanese quality revolution
The Toyota production systems

1980s to 1990s Quality awareness in the United States.
Manufacturing industry during 1980s: from Little Q to Big Q—
total quality management
Just-in-time and lean manufacturing
Total quality management (TQM)
  The U.S. response to Japanese quality revolution, applications of 
statistical methods and managerial approaches for organization wide 
quality continued….
Business process reengineering (BPR)
Emergence of quality management in service industries, 
government, health care, and education
Birth of Six Sigma
Malcolm baldrige national quality award.

Current Six Sigma becomes the part of the corporate business plan that 
is key to achieving business objectives and quality excellence 
with top leadership support and involvement
Six Sigma must address the voice of the customer (VOC) and 
critical to quality (CTQ) characteristics
Lean Six Sigma—removal of waste and defects from processes
Design for Six Sigma (DFSS)—incorporate quality early in the 
design phase
Six Sigma and Big data
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of Six Sigma and Lean Sigma quality programs. In Table 2.2, we provide 
a comparison between Six Sigma and TQM. As can be seen, the TQM 
lacks some of the critical components and has some drawbacks compared 
to Six Sigma.

Six Sigma provides a very structured way of solving problem. Almost 
all problems in manufacturing, service, and other areas can be defined 
in terms of DMAIC (Define, Measure, Analyze, Improve, and Control). 
Because of the systematic nature of problem solving approach, well-
defined statistical tools, and verifiable return on investment, Six Sigma 
approach to quality has become very popular.

Table 2.2  Six Sigma and TQM

Six Sigma TQM
Six Sigma is a team based approach owned 
by business leaders, champions, and other 
stake holders

Total employee involvement through 
worker empowerment and team work 

Six Sigma efforts are focused on building 
strong competitive advantage driven by 
customer wants and needs

Process-centered: Focus on process 
thinking (a process is a series of activities 
that converts inputs into outputs). 
In TQM, process steps are defined, 
performance measures are monitored to 
detect variations

In Six Sigma, VOC and CTQ 
characteristics must be addressed

Customer focus but the tools for meeting 
customer requirements are not rigorous or 
well defined

Six Sigma uses simple to advanced 
statistical tools that are outlined in each 
phase of Six Sigma project

Simple improvement tools are applied

Six Sigma is based on a strategic 
improvement methodology known 
as DMAIC, which stands for Define, 
Measure, Analyze, Improve, and Control

Tools of improvements not standardized 

The benefits or cost savings from Six 
Sigma can be quantified rather quickly

Little or no financial accountability

Cost savings is one of the major 
requirements that must be addressed in the 
project charter. Six Sigma projects require 
verifiable return on investment

No method for quantifying cost savings
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Six Sigma, Lean Sigma, and Design for Six Sigma 

Six Sigma, Lean Sigma, and DFSS are the most sought after quality 
programs in industry today. More and more companies are realizing that 
it is possible to achieve dramatic improvements in cost, quality, and time 
by using the Lean Six Sigma and DFSS. Several companies including 
Toyota, General Electric, Motorola, and others have accomplished 
impressive results using one or more of the techniques mentioned. Six 
Sigma and DFSS are a customer-driven quality approach that aims at 
meeting or exceeding customer expectations.

Six Sigma employs a well-structured continuous methodology to 
reduce process variation and decrease defects within the business processes 
using simple to advanced statistical tools and techniques. It improves 
quality through defect removal and process optimization. The improved 
quality leads to higher perceived value for the products or services the 
company offers that help companies achieve increased market share. 
Companies have reported significant savings by reducing the costs of 
poor quality.

The term sigma (denoted by the Greek letter, s) is a metric based 
on the statistical measure called standard deviation and is a measure of 
variability. In Six Sigma, the metric s is a measurement of certain qual-
ity characteristics; for example, percent defect. The term sigma also 
refers to the population that falls within plus or minus six standard 
deviations of the mean. Statistically, Six Sigma equates to 3.4 defects per 
million. Thus a Six Sigma process is capable of producing 3.4 defects per 
million opportunities (DPMO). In practice, this refers to the maximum 
acceptable range of noncompliance.

The other approach to achieving excellence in products and services is 
based on the removal of waste from service and manufacturing processes 
is ‘Lean’ approach commonly known as Lean Sigma. Many companies 
have reported significant improvement through the removal of waste or 
nonvalue added activities. Companies have also reported that bringing 
the two concepts—Lean and Six Sigma—together deliver faster results. 
While the objective of Lean is to create flow and eliminate waste, Six 
Sigma improves process capability and reduces defects and variation 
that leads to improved quality and cost savings for the companies. If a 
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company just applies Six Sigma, it cannot maximize the potential of the 
organization. A combined approach—Lean Six Sigma is currently very 
popular and is a widely used quality program.

Any process has the following things in common: Variation, Waste, 
and Delay. The removal of these will make the process much more 
efficient. Controlling variation makes the process consistent and defect 
free thereby improving quality. Removing waste and delay from the 
process will improve flow and reduce the cycle time. Six Sigma is used to 
reduce defects and variation from the products and processes. Lean Sigma 
is an approach to reducing or eliminating the waste, improving the flow, 
and reducing the cycle time. A combined approach—Lean Six Sigma—is 
needed to reduce variation, waste, and delay in the processes.

The term ‘lean’ has its root in ‘Just-in-time Manufacturing’ or ‘Lean 
Manufacturing’; a philosophy of production that emphasizes on the 
minimization of the amount of all the resources (including time) used in 
the various activities of the enterprise. It involves:

•	 identifying and eliminating nonvalue-adding activities,
•	 employing teams of multiskilled workers, and
•	 using highly flexible, automated machines.

The other quality program gaining popularity now is DFSS. The 
goal of DFSS is to address and incorporate quality issues early in the 
design or redesign process using robust design methodologies. It inte-
grates engineering design and statistical methods to predict and improve 
quality before production. DFSS is a way of understanding the key 
product characteristics to design and build successful products. The 
success of companies depend on designing, developing and launching 
new products of superior quality, getting to the market quickly (reduced 
cycle time), bringing innovation in products, and understanding the 
customer’s needs and requirements. Research shows that approximately 
5 percent of all new-product ideas survive to production, and only about 
10 percent of these are successful. Therefore, actively building quality 
in every phase of the product development process, and predicting and 
optimizing critical quality characteristics are keys to ensuring product 
success. DFSS is a systematic method to build quality and key customer 
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requirements in all stages of product development. These key or critical 
quality characteristics (CTQs) and customer requirements can be 
measured, verified, and optimized. DFSS is an approach to meet or 
exceed customer needs, requirements, and expectations using the VOC. 
This research focuses on one of the major tools—Quality Function 
Deployment and House of Quality (HOQ)—used in DFSS and also in 
Six Sigma to design products and services to meet and exceed customer 
requirements by identifying and addressing CTQs and VOC early in the 
design phase.

To achieve Six Sigma quality level, the companies must determine 
where the Lean, Six Sigma, and DFSS activities occur in the life cycle 
of the product. In other words, the companies must determine when to 
apply the Lean Six Sigma or DFSS approach.

There is a need for an integrated approach to achieve the overall 
objectives. It is also important for the companies to identify and initiate 
appropriate projects based on Six Sigma, Lean, or DFSS depending 
on the objectives and priorities. Sometimes a combination of these 
methodologies (Lean, Six Sigma, and DFSS) is needed as an integrated 
approach to achieve the overall objectives of improving quality, reducing 
defect and becoming a Six Sigma company, reducing cost, eliminating 
waste, providing speed and reliability of delivery, incorporating flexibility 
and innovation in products and services, and meeting or exceeding 
customers’ expectations.

Six Sigma

Six Sigma is a business strategy that employs well-structured continuous 
improvement methodology and statistical tools to reduce defects and 
process variability. It is a quality discipline that focuses on product and 
service excellence. The objective of a Six Sigma program is to reduce the 
variation in the product and process to the extent that the likelihood of 
producing a defect is virtually nonexistent. This means improving quality, 
and meeting or exceeding customers’ expectations.

Six Sigma seeks to find and eliminate causes of defects and errors 
in manufacturing and service processes by focusing on outputs that are 
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critical to customers and a clear financial return for the organization. Six 
Sigma can be viewed as:

•	 A customer-focused approach to create near perfect processes, 
products, and services all aligned to delivering what the 
customer wants.

•	 A project based approach where majority of projects are 
selected for measurable bottom line or customer impact.

•	 A methodology that uses well-defined set of statistical tools 
and process improvement techniques by well-trained people 
in an organization.

•	 A business strategy that has evolved from a focus on process 
improvement using statistical tools to a comprehensive 
framework for managing a business.

Six Sigma is about improving quality by reducing variation. One 
of the major objectives of Six Sigma is to reduce variation in products 
and processes. According to Robert W. Galvin, Chairman Emeritus of 
Motorola:

We quickly learned that if we could control variation, we could 
get all the parts and process to work and get to an end result of 
3.4 defects per million opportunities, or a Six Sigma level. Our 
people coined the term and it stuck. It was shorthand for people  
to understand that if you can control the variation, you can 
achieve remarkable results.

A commonly accepted customer-driven definition of quality is that 
the quality of a product or service is a customer’s perception of the degree 
to which the product or service meets his or her expectations. Six Sigma is 
a customer-driven quality approach that aims at meeting or exceeding 
customer expectations. The underlying principles of Six Sigma are 
customer focus, a project and team-based approach, and a process-focused 
approach based on continuous improvement. Successful implementation 
of Six Sigma requires creating a culture that demands excellence and 
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perfection in everything companies do. For more information, see the list 
of bibliography.

Business Success of Six Sigma

A number of organizations—including banks and hospitals—have 
successfully implemented Six Sigma program within their corporate 
structure. Among the companies who have reported significant success 
with Six Sigma are GE, Texas Instruments, Honeywell, Boeing, IBM, 
Caterpillar, 3M, Xerox, Raytheon, Citibank, Home Depot, and the 
U.S. Air Force. The list goes on. Six Sigma has been successfully applied 
to many service industries including health care and financial services. 
The savings resulting from Six Sigma initiative range from $150 million 
to $800 million for some of the big companies.

Based on the industry research, and current trends, Six Sigma and 
related methodologies are considered as one of the most sought after 
emerging technologies and programs by industries today.

A survey conducted in 2010 by the consulting firm Compdata 
indicates that the deployment of Lean and Six Sigma methods remains 
strong in the manufacturing sector. The section of the survey on safety 
and cost-cutting procedures showed that nearly 70 percent of the 1,100 
companies surveyed have implemented Lean practices in their operations. 
The survey also found that 58.6 percent of the companies are using Six 
Sigma, which is almost unchanged from the 58.5 percent who reported 
the same in 2009.

A survey by Quality Digest on Six Sigma shows some interesting 
facts. Approximately 2,577 quality professionals took part in the 
survey. The survey also compiled data on Six Sigma’s effect on compa-
nies, support for Six Sigma by top management, cost of implement-
ing this technique, and the functional areas where Six Sigma is being 
implemented. A majority of the respondents acknowledge that Six 
Sigma has improved their companies’ profitability. Nearly 80 percent 
of the respondents agreed that the management fully supported the 
Six Sigma program. The results of the survey also indicate that Six 
Sigma is making its way into small companies. The survey also shows 
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that an increasing number of companies are implementing—or plan to 
implement—Six Sigma techniques. With the overwhelming success of 
Six Sigma, many companies are now moving toward Lean Six Sigma 
and DFSS.

To achieve the overall objectives of improving quality, reducing 
variation and defect, reducing cost, eliminating waste, providing speed 
and reliability of delivery, and incorporating flexibility and innovation 
in products and services, the goal of many companies is to become a 
Six Sigma company using the proven techniques of Lean Six Sigma and 
DFSS.

Six Sigma: Current Trends

The following are some impressive data reported in iSixSigma LLC 
website (http://www.isixsigma.com). The research report states:

•	 Over the past 20 years, use of Six Sigma, the popular business 
improvement methodology, has saved Fortune 500 companies 
an estimated $427 billion, according to research published in 
the January–February 2007 issue of iSixSigma Magazine.

•	 Corporate-wide Six Sigma deployments save an average 
2 percent of total revenue per year.

•	 Six Sigma adoption has increased phenomenally in recent 
years.

•	 Six Sigma started out slowly in the late 1980s but then took 
off in the mid-1990s once people started seeing successes at 
companies like GE and AlliedSignal.

•	 About 53 percent of Fortune 500 companies are currently 
using Six Sigma and that figure rises to 82 percent when you 
look at just the Fortune 100.

•	 The market for Six Sigma training and consulting is very 
much open where 47 percent of the Fortune 500 have not yet 
embraced the methodology.

•	 Six Sigma has a 20-year record of accomplishment of 
impressive results and is still expanding.
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Statistical Basis of Six Sigma

Traditionally, manufacturing processes have been controlled using a 
three-sigma process. In such a process, 3σ upper and lower limits must 
be inside the customer’s specification limits for a capable process. A ±3σ 

process results in 99.73 percent of the items being within the 3s limits, 
and 0.27 percent of the items being out of specification. This means that 
even if all the special causes of variations are removed and the process 
has only random fluctuations (natural causes of variation for which we 
have no control), the process will produce 0.27 percent (2700 defects per 
million) defective or nonconforming items. This level of nonconformity 
is not acceptable in today’s highly competitive global market.

As outlined previously, one of the major objectives of a Six Sigma 
program is to reduce variation in products and processes. In a three-sigma 
process where three standard deviations just fit within the specification 
limits, the process will begin producing nonconforming products if there 
is a shift in the process mean. This process is very sensitive to the process 
shift. Figure 2.1 compares a three-sigma process to a Six Sigma process. 
In a three-sigma process, Six Sigmas (or three Sigmas on either side of 
the mean) fit within the specification limits; whereas, in a Six Sigma 
process, 12 Sigmas (or Six Sigmas on either side of the mean) fit within 
the specification limits.

In a Six Sigma process, even if the process mean shifts by as much as 
1.5 sigma on either side of the mean, the majority of the products will 
remain within specification limits. In fact, in a Six Sigma process, a shift 

Figure 2.1  Comparing a three-sigma process to a Six Sigma process
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in the process mean of 1.5 sigma on either side of the mean results in 
3.4 nonconforming products per million. Figure 2.2 shows a Six Sigma 
process where 12 standard deviations (Six Sigmas on either side of the 
mean) fit within the specification limits. It also shows the shift in the 
process mean by as much as ±1.5 s.

In a Six Sigma process, variation is reduced to an extent that a spread 
of 12 Sigmas (Six Sigmas on either side of the mean) fits within the pro-
cess specifications. The specification limits (also called tolerance) are 
established during the design phase of the product or process, or the 
customer provides them. A Six Sigma quality level represents 3.4 DPMO. 
This means that if a process is operating at a Six Sigma level, it will 
produce no more than 3.4 defects per million. This is only possible when 
the variation in the process is reduced significantly. To be exact, to achieve 
a Six Sigma process, the variation must be reduced to one-half, or 50 percent 
that of a three-sigma level quality. With the variation reduced to this level, 
even a drift in the process on either side of the mean or target value will 
not allow the process to go out of control. It is important to note here that 
no process can be controlled exactly at the target or the mean value. It is 
natural for a process to drift from its mean or target value in due course. 
This drift or shift can be as much as 1.5 standard deviations on either side 
of the mean or the target. In a Six Sigma process, the process variation is 
equal to half of the design specification or tolerance so that a shift in the 
process mean of as much as 1.5 standard deviations on either side of the 
target will keep the process well within the tolerance, and the likelihood 
of producing nonconforming products is virtually nonexistent.

Figure 2.2  A Six Sigma process
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Metrics and Measurements in Six Sigma

A metric is a measurement of certain quality characteristic. In Six Sigma, 
metrics provide ideas regarding the overall quality level or information 
on overall performance. Metrics are used to evaluate and communicate 
quality performance. For example, a company that has achieved Six 
Sigma quality level produces no more than 3.4 defects per million. Here, 
defects per million opportunities or DPMO is a metric and is a measure 
of quality level. Refer to Table 2.3 that shows the sigma values translated 
to number of defects. A metric tells the customers and other stakeholders 
about the level of quality (e.g., a four-sigma level of quality) for the 
company and conveys expectations for employees and suppliers. Thus, 
a metric (or a measurement) can be seen as a performance indicator that 
provides information on overall performance that is helpful in evaluating 
and identifying opportunities for improvement.

Industries use different metrics or performance measures. While many 
of these metrics seem to focus on manufacturing, these can be applied 
universally. Some of the commonly used metrics in use are:

•	 DPMO
•	 PPM (parts per million defective)
•	 % Defects
•	 % Good quality
•	 Rolled throughput yield (%)
•	 First pass yield (%)

The metrics most commonly used by industries are DPMO and PPM. 
According to a survey conducted by Aberdeen Group approximately half 
or 49 percent of best in class companies use DPMO as their performance 
measure. About the same percent (49 percent) of the companies in 
the same category used PPM defective as a performance measure. The 
survey also indicated that those companies that measure DPMO and 
PPM achieved better performance than those who measured % good or 
% defective as metrics. Since DPMO is one of the most commonly used 
metric, it is explained next.
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Defects per Million Opportunities

A Defect per Unit (DPU) is the measure of output that focuses on the 
final product and ignores the process—or the processes—that makes 
the product. A product can be produced using different processes, or a 
service can be provided using different steps or processes. In such cases, 
different processes may have different numbers of opportunities for error. 
This makes it difficult to compare the DPUs for different processes. 
Therefore, Six Sigma defines the quality performance as defects per 
million opportunities (DPMO), which is defined as:

Quality Level and Percent Nonconforming for a Noncentered 
Process (A Process Mean Shift of ±1.5 s)

Table 2.3 provides the numerical values in parts per million nonconform-
ing for different quality level with a process mean shift of ±1.5 s.

Figure 2.3 shows the nonconforming parts per million for different 
sigma quality levels. The amount of improvement for different sigma 
quality levels can be seen from the graph.

As can be seen from the Figure 2.3, an improvement from a three-sigma 
to Six Sigma level in quality leads to a 70 times improvement.

Table 2.3  Percent nonconforming for a noncentered process
(A process mean shift of ± 1.5σ )

Specification 
limits (Quality 
level)(σ )

Percent 
within 

specification 
limits
(%)

Percent outside 
specification limits 
(Nonconforming)

(%)
Nonconforming 

PPM

±2σ 69.1229 30.8771 308771

±3σ 93.3190   6.681 66811

±4σ 99.3790   0.621 6210

±5σ 99.97674   0.02326 233

±6σ 99.999660   0.000340 3.4

DPMO = (Number of defects/Opportunities for error) × 1,000,000
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Service Successes of Six Sigma

Most of the techniques of Six Sigma were developed in manufactur-
ing but the applications are not limited to manufacturing operations 
only. Six Sigma has been applied successfully in many service industries 
including banking, health care, airlines, and several financial companies. 
Six Sigma techniques can be applied to virtually any process. Figure 2.4 
shows the application areas of Six Sigma with achieved improvement in 
quality level for some of the service industries.

Figure 2.3  Defect rates in parts per million for different sigma quality 
level
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Figure 2.4  Improvement in quality for different levels of sigma
Source: Six-Sigma Programs, Selected Topics in Assurance Related Technologies, Volume 6, 
Number 5.
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Six Sigma Methodology

The Six Sigma approach is a collection of managerial and statistical 
concepts and techniques that focus on reducing process variation and 
preventing product deficiencies. As mentioned earlier, the variability in 
the process is described by sigma (s). This sigma is the standard deviation 
of measurements around the process mean. The process that has achieved 
the six-sigma capability will have much smaller variation. In many 
processes, we establish a relationship between the response (output) y and 
input variables x1, x2, x3,…, xn; that is,

The Six Sigma approach identifies the process variables that cause 
variation in the products. Some of these input variables are controllable 
and are critical to maintaining quality. These variables must be controlled 
within a specified range.

Six Sigma is based on a strategic improvement methodology known 
as DMAIC which stands for Define, Measure, Analyze, Improve, and 
Control. The steps in DMAIC methodology contain several simple to 
advanced statistical tools—and other process-improvement tools—used 
to carry out or execute Six Sigma projects. The DMAIC process is briefly 
explained next followed by a detailed explanation of each. Figure  2.5 
shows the DMAIC model. Each of the five phases in DMAIC is  
described in the next section.

Figure 2.5  The DMAIC model
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Five Phases of Six Sigma

The five phases of Six Sigma and their major objectives are outlined here.

•	 Define: identify or define the problem, identify critical 
customer requirements, define the project, form project 
teams, and create a project charter.

•	 Measure: outline the process, determine the characteristics 
CTQ, identify the metrics, assess the measurement system, 
collect data, and measure the current process capability.

•	 Analyze: analyze data to determine the root cause(s) of the 
problem, and the key input and output process variables.

•	 Improve: conduct formal experiments (using Design of 
Experiments, and other statistical tools), isolate key input 
process variables from a large number of controllable and 
uncontrollable factors, and determine the process settings to 
optimize product or process.

•	 Control: measure the new process capability, document the 
improved process, and impose control techniques on the 
critical factors to maintain the gain.

The preceding is a brief overview of Six Sigma. A complete under-
standing of each of the previous five phases is critical to successful 
implementation of Six Sigma quality program.

Lean Six Sigma

Traditional Six Sigma is well understood and consistently deployed 
across a number of industries. Six Sigma employs a well-structured 
continuous methodology to reduce process variation and decrease 
defects within the business processes using simple to advanced statistical 
tools and techniques. It improves quality through variation reduction, 
defect removal, and process optimization. The improved quality leads to 
higher perceived value for the products or services the company offers. 
This helps companies achieve increased market share. As noted earlier, 
companies have reported significant savings by reducing the costs of poor 
quality.



	 QUALITY PROGRAMS IN USE TODAY	 31

The other approach to achieving excellence in products and services  
is based on the removal of waste from service and manufacturing pro-
cesses. This is Lean approach. Many companies have reported significant 
improvement through the removal of waste or nonvalue added activities. 
Companies have also reported that bringing the two concepts—Lean and 
Six Sigma—together deliver faster results. While the objective of Lean is 
to create flow and eliminate waste, Six Sigma improves process capability 
and reduces defects and variation that leads to improved quality and cost 
savings for the companies. If a company just applies Six Sigma, it cannot 
maximize the potential of the organization. Lean is really an enabler for 
Six Sigma (Chowdhury 2001).

The term lean has its root in Just-in-time Manufacturing or Lean 
Manufacturing—a philosophy of production that emphasizes on the 
minimization of the amount of all the resources (including time) used in 
the various activities of the enterprise. It involves:

•	 identifying and eliminating nonvalue-adding activities,
•	 employing teams of multiskilled workers, and
•	 using highly flexible, automated machines.

The major focus of lean is eliminating or reducing waste from the 
process. Eliminating waste in a manufacturing process involves the follow-
ing steps:

•	 Make only what is needed.
•	 Reduce waiting by coordinating flows and balancing loads.
•	 Reduce or eliminate material handling.
•	 Eliminate all unneeded production steps.
•	 Reduce setup times and increase production rates.
•	 Eliminate unnecessary human motions.
•	 Eliminate defects.

This philosophy can be applied to any process, manufacturing, or 
service because both have waste and variation. Companies have realized 
significant improvement in quality, cost, productivity, profitability, and 
cycle time (speed) through the removal of waste or nonvalue added activ-
ities and variation reduction from their process. Thus, lean is for reducing 
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waste, improving flow, and reducing cycle time. Six Sigma is for reducing 
defects and variation. The combined approach is what is known as Lean 
Six Sigma that is described in quality disciple as a philosophy, a culture, 
and a journey to excellence.

Difference Between Lean and Six Sigma

•	 Lean is an approach that seeks to improve flow in the value 
stream and eliminate waste or nonvalue adding steps. It is 
about doing things quickly.

•	 Six Sigma uses a powerful framework (DMAIC) and simple 
to advanced statistical tools to uncover root causes of the 
problem to understand and reduce variation. It is about doing 
things right (defect-free). Table 2.4 outlines the differences 
between Lean and Six Sigma approaches.

Table 2.4  Difference between Lean and Six Sigma

 Lean Six Sigma
Theory Reduce waste Reduce variation

Application
guidelines

Identify value
Identify value stream
Flow
Pull
Perfection

Define
Measure
Analyze
Improve
Control

Focus Flow Problem

Assumptions Waste removal will improve 
performance Many small 
improvements are better than 
systems analysis

A problem exists
Figures and numbers are valued
System output improves if 
variation in all processes is 
reduced

Primary effect Reduced flow time Uniform process output

Secondary 
effects

Less waste
Fast throughput
Less inventory
Improved quality

Less variation
Uniform output
Less inventory
Improved efficiency
Improved productivity
Improved quality

Criticism Statistical analysis not used and 
valued as much as in Six Sigma 

System interaction not considered
Process improved independently

Source: Lean Six Sigma: some basic concepts (NHS Institute for Innovation and Improvement).
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•	 Lean means “using less to do more by determining the value 
of any given process by distinguishing value-added steps from 
non-value-added and eliminating waste so that ultimately every 
step adds to the process” (Miller 2005).

Lean and Six Sigma Approach

The Six Sigma and Lean differ in their approaches and objectives.  
Table 2.5 outlines the difference between the Lean and Six Sigma 
objectives.

Lean Six Sigma Project Selection: Problems and Opportunities for 
Lean Six Sigma Projects

The following are some of the reasons for the companies to initiate Lean 
Six Sigma projects:

•	 High COPQ
•	 High costs (operation, material)
•	 Excessive defects
•	 Customer complaints
•	 Low customer satisfaction
•	 Declining revenue or profitability

Table 2.5  Lean and Six Sigma objectives

Lean Six Sigma
Specify value

What is important in the eyes of the 
customer?

Define
What is important?

Identify the value stream
What is the entire value stream?

Measure
How are we doing?

Flow
How will the material and information 

flow through our process?

Analyze
What is wrong?

Pull
How can we let the customer pull 

products, rather than pushing product?

Improve
What needs to be done?

Perfect
How can we optimize our processes?

Control
How do we sustain the improvements?



34	 MANAGING AND IMPROVING QUALITY

•	 Declining market share
•	 Declining sales
•	 Low throughput yield
•	 Increase in warranty costs
•	 Increase in merchandize return for refunds.

Design for Six Sigma (DFSS)

The other quality program in use and gaining popularity is the DFSS. 
The goal of DFSS is to address and incorporate quality issues early in the  
design or redesign process using robust design methodologies. It 
integrates engineering design and statistical methods to predict and 
improve quality before production. DFSS is a way of understanding the 
key product characteristics to design and build successful products. The 
success of companies depend on designing, developing and launching 
new products of superior quality, getting to the market quickly (reduced 
cycle time), bringing innovation in products, and understanding the 
customer’s needs and requirements. Research shows that approximately 
5 percent of all new-product ideas survive to production and only about 
10 percent of these are successful. Therefore, actively building quality 
in every phase of the product development process, predicting, and 
optimizing critical quality characteristic (CTQs) are keys to ensuring 
product success. DFSS is a systematic method to build quality and key 
customer requirements in all stages of product development. These key 
quality characteristics (CTQs) and customer requirements can be mea-
sured, verified, and optimized. DFSS is an approach to meet or exceed 
customer needs, requirements, and expectations using voice of customer 
(VOC).

Companies who have successfully employed a Six Sigma program 
have found that once they achieve five-sigma quality level (233 defects 
per million opportunity) they must design or redesign their products, 
processes and services by means of DFSS to surpass this quality level 
(Chowdhury 2001; Miller 2005). Also, the cost to correct potential 
design problems to reduce the defect level for achieving a higher quality 
level (above four-sigma) is usually greater than the projected cost savings 
of the further improvement effort. It is therefore important that the 
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quality be built-in during the design phase; and the quality issues must be 
addressed early in the design process. To achieve Six Sigma quality level, 
the companies must determine where the Six Sigma and DFSS activities 
occur in the life cycle of the product. In other words, the companies 
must determine when to apply the DFSS approach. Unlike Six Sigma, 
the DFSS is not standardized and does not yet have a structured problem 
solving approach as Six Sigma. DFSS is not as well deployed as Six Sigma 
in industry. The underlying principles of DFSS methodology are outlined 
here.

•	 DFSS is a systematic methodology to design new products or 
processes so that quality is built into every phase of product 
design. It is also used for improving existing products through 
redesign.

•	 The roots of DFSS are in systems engineering. It combines 
systems engineering methodology with statistical methods to 
achieve built-in quality objectives.

•	 DFSS optimizes the CTQ characteristics to achieve the best 
system performance. CTQs are the selected few measurable 
quality characteristics that are key to a specific product, 
process, or service that must be controlled to meet or exceed 
customer expectation.

•	 DFSS uses Robust Design, Design of Experiment (DOE), 
Design for Manufacturability, Simulation and several other 
tools to optimize product design.

•	 DFSS balances the cost and quality.
•	 DFSS reduces the development cycle time in the long run.
•	 In DFSS, both engineering methods and statistics are used to 

optimize the design requirements.
•	 Like Six Sigma, DFSS also uses a collection of tools. These 

tools must be understood in context to the engineering design 
for achieving DFSS objectives.

The DFSS methodology has been identified by a five-step process: 
DMADV; which stands for Define, Measure, Analyze, Design, and 
Verify. These are explained briefly:
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1.	Define: determine the project need, identify the project goals and 
objectives, determine customers’ needs and requirements, and 
include the voice of customers (VOCs).

2.	Measure: determine the characteristics CTQ, prioritize customer needs 
and requirements, and assess customers’ needs and CTQ metrics.

3.	Analyze: evaluate the process options to meet customers’ needs and 
CTQs.

4.	Design: design the product and process to meet the customer 
requirements, and include customer requirements in the develop-
ment process.

5.	Verify: check the design to ensure that the customers’ requirements 
are met.

The DFSS is also identified by the IDOV process, which stands for 
Identify, Design, Optimize, and Validate. Unlike the Six Sigma process, 
the DFSS is relatively new and not standardized; therefore, there are 
inconsistencies in the methodology, tools, and models companies employ. 
Some authors also argue that DFSS is a complex systems engineering 
analysis methodology, enhanced with statistical methods, and cannot 
be fully executed using a simple four-step IDOV process. The IDOV or 
the DMADV process may be applied to a single requirement or CTQ, 
but not to an overall product development process. The IDOV process is 
explained as follows:

1.	Identify: Identify customer requirements, and address the VOC. 
Prioritize customer requirements, use HOQ to identify and define 
CTQs.

2.	Design: Identify product design parameters and characteristics; build 
a database about the product and related process, and design in key 
customer requirements.

3.	Optimize: Optimize the design to achieve a balance of quality, cost, 
and time to market. Create robust design that will minimize the 
impact of variation in the production process.

4.	Validate: Using data, demonstrate that the product and process is 
capable, the process capability meets appropriate sigma level, satisfies 
the CTQs, and meets the customer’s requirements and expectations.
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The process of DFSS can be divided into four categories described in 
the following (Creveling, Slutsky, and Antis 2003). These are very similar 
to the IDOV process described earlier. The DFSS process can be briefly 
described using the following four categories:

1.	Concept development and concept engineering
2.	Design development
3.	Design optimization
4.	Design verification

Six Sigma or Design for Six Sigma?

Figure 2.6 shows the stages in the life cycle of a product where DFSS and 
conventional Six Sigma are used. Once the product is released over to 
manufacturing for production, Six Sigma methodology is used to achieve 
constant incremental improvements by reducing or minimizing the causes 
of process variation. When Six Sigma improvement projects are applied 
based on the assumption that the design of a current product, process, or 
service is correct, and the design satisfies the functional requirements of 
the customers, it may be difficult to achieve improvement beyond a four- 
or five-sigma level. Significant design or redesign effort may be required to 
achieve further improvement. In addition, the design changes are much 
more expensive at this level. This is why DFSS should be considered early 

Figure 2.6  Six Sigma and design for Six Sigma in a product’s life cycle

Research &
development

Design Prototype Production Customer

C
os

t t
o 

m
ak

e 
de

si
gn

 c
ha

ng
es

/c
os

t t
o

co
rr

ec
t d

ef
ec

t

Conventional
Six Sigma

Design for Six Sigma
(DFSS)



38	 MANAGING AND IMPROVING QUALITY

in the design stage. Figure 2.6 shows the cost to correct defects and make 
design changes at different stages of a product life cycle.

Summary

More and more companies are realizing that it is possible to achieve 
dramatic improvements in cost, quality, and time by incorporating 
Lean Six Sigma and Design for Six Sigma (DFSS) quality programs. 
A number of companies including Toyota, General Electric, Motorola 
have accomplished impressive results using one or more of the quality 
programs mentioned in this chapter. However, using only one method—
Lean, Six Sigma, or DFSS—has limitations. Six Sigma eliminates defects 
during the production phase, but does not address the importance of 
quality effort in the research and design phase of a product. Also, Six 
Sigma does not address the question of how to optimize the process flow, 
and the Lean principles do not address the use of advanced statistical tools 
required to reduce variation, defects and achieve the process capabilities 
needed to be truly lean.

Unlike Six Sigma, the DFSS is not standardized and is not deployed 
well in industry. The goal of DFSS is to address and incorporate quality 
issues early in the design or redesign process using robust design 
methodologies. Companies who have successfully employed the Six 
Sigma program have found that once they achieve five-sigma quality levels 
(233  defects per million opportunities), they must design or redesign 
their products, processes, and services by means of DFSS to surpass this 
quality level (Chowdhury 2001). Also, the cost to correct the potential 
design problems to reduce the defect level to achieve higher quality level 
(above four-sigma) is usually greater than the projected cost savings of the 
further improvement effort (Peplinski 2004). It is therefore important 
that the quality must be built in the design phase, and the quality issues 
must be addressed early in the design process. To achieve Six Sigma 
quality level, the companies must determine where the Lean, Six Sigma, 
and DFSS activities occur in the life cycle of the product. There is a need 
for an integrated approach to achieve the overall objectives.



CHAPTER 3

Statistical Methods Used in 
Quality

Introduction

This chapter provides an overview of statistical methods used in quality 
improvement. We will discuss a number of simple to complex statistical 
techniques that are used in modeling, studying, and solving quality 
problems. Since variation reduction is one of the major objectives 
of quality improvement programs, the emphasis in this chapter is to 
introduce the graphical and numerical tools of descriptive statistics that 
are used to study the variation in process data. The other objective of 
this chapter is to get insight into several of the discrete and continuous 
probability distributions and their properties. A good knowledge and 
understanding of probability distributions is critical in being able to 
apply these distributions in solving quality problems.

Statistics is studied under two broad categories: (1) descriptive 
statistics, and (2) inferential statistics. Descriptive statistics involves the 
methods of collection, presentation, and characterization of a set of data 
in order to properly describe the various features of that set of data. There 
are two ways we can describe the collected data: (1) through charts and 
graphs and (2) using numerical methods. Charts and graphs fall under 
the category of graphical methods. Graphical techniques include charts 
and graphs, such as bar charts, pie charts, histograms, polygons, scatter 
diagrams, and so on. In addition, a number of simple yet very effective 
graphical methods including the histogram, stem-and-leaf plot, and box 
plots are very useful in summarizing and presenting the data. These tools 
are also used in studying the variation in the process. Simple numerical 
methods, for example, the measures of central tendency, and measures of 
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variation often used to model and describe the quality characteristics of a 
process are described in this chapter.

Inferential statistics is the process of using sample statistics to draw 
conclusions about the population parameters. Interference problems are 
those that involve inductive generalizations.

Population denotes the entire measurements that are theoretically 
possible. It is also known as the universe and is the totality of items or 
things under consideration. For example, total number of light bulbs 
manufactured by a company in a given period of time, or number of 
people who can vote in a country, and so on.

Sample is the portion of the population that is selected for analysis 
(a subset of population).

A population is described by its parameters, whereas a sample 
is described by its statistics. A parameter is a summary measure that is 
computed to describe the characteristic of a population. A statistic is a 
summary measure that is computed to describe the characteristic of a 
sample.

Population parameters are the population mean, population 
variance, population standard deviation, and population proportion. 
These are expressed using Greek symbols. The symbols used to describe 
the population parameters are: the population mean µ (read as mu), 
population variance (σ 2), population standard deviation (σ , read as sigma), 
and population proportion, p. Note that each one is denoted by a specific 
symbol.

A sample is described by its statistics. These statistics are sample mean  
(x , read as x-bar), sample variance (s 2), sample standard deviation (s), sample 
median, and sample proportion, p  (read as p-bar). It is important to 
know the distinction between the population parameters and the sample 
statistics and the way they are described.

The purpose of this chapter is to introduce the statistical methods 
commonly used in quality. We also introduce the concept of probability 
distribution and discuss a number of both discrete and continuous 
probability distributions that form the basis for the control charts we will 
be presenting and applying later in this text.
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Data and Graphical Methods

In this section, we discuss the methods of describing data using graphical 
techniques. Graphical techniques involve describing data using charts 
and graphs. This area comes under descriptive statistics. There are two 
methods of describing data: graphical and numerical. Before studying the 
graphical techniques in greater depth, a review of (1) data and types of 
data; (2) collection, presentation, organization of data; and (3) concept of 
frequency distribution are presented.

Classification of Data

Data are collections of any number of related observations. All data 
are some form of measurement. Data can be classified as qualitative 
or quantitative data. Quantitative data are numerical data that can be 
expressed in numbers. For example: data collected on temperature, sales, 
demand, length, height, and volume are all examples of quantitative data.

Qualitative data are data for which the measurement scale is 
categorical. Qualitative data are also known as categorical data. Examples 
of qualitative data include the color of your car, response to a yes or no 
question, or the product rating using a Likert scale of 1 ot 5, where the 
numbers correspond to a category (excellent, good, etc.). Data can also 
be classified as:

•	 discrete or
•	 continuous

Discrete data are the result of a counting process. These are integers. 
For example, cars sold by Toyota in the last quarter, the number of houses 
sold last quarter in a city, or the number of defective parts produced by a 
manufacturing process. All these are expressed in whole numbers and are 
examples of discrete data.

Continuous data are the data that can take any value within a given 
range. These are measured on a continuum or scale that can be divided 
infinitely. Continuous data are numerical measurements of quantities 
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such as length, volume, temperature, stock price, or time. More powerful 
statistical tools are available to deal with continuous data as compared to 
discrete data. Therefore, continuous data are preferred wherever possible.

Collection and Presentation of Data

There are two methods used for describing data. These are:

•	 tables and
•	 graphs

The purpose of collecting data is to draw conclusions or to make 
decisions. To draw meaningful conclusion, the data are organized, 
grouped, plotted, and analyzed. Organizing data into groups is known as 
the frequency distribution.

Data are collected through actual measurements or observations or can 
be obtained from company records. This information can be organized in 
a way that can be used to make decisions or draw conclusions. When 
data are arranged in a compact, usable form, decision makers can obtain 
reliable information and use it to make decisions.

Organizing Data

Data can be arranged in different ways. For example, the collected data 
may be arranged from the lowest to highest value. This arrangement is 
often called ordered array.

Another way to organize or classify the data is by using a frequency 
distribution. In a frequency distribution, the data are divided into similar 
categories or classes, and the number of observations in each category or 
class is then counted. This is also known as grouping.

The reasons behind organizing the data in the form of a frequency 
distribution are: (1) to obtain a compact representation of the data; (2) to 
be able to see some characteristics of the data, for example, the spread or 
variation in the data; (3) to observe the pattern in the data; and (4) to find 
out what values occur most frequently.
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Organizing Data: An Example

A manufacturer of televisions is interested in the survival time of one of 
its components. A sample of 200 television components was tested. The 
results are shown in Table 3.1. The table shows the life (in hours) of these 
components rounded to the nearest hours. Note that the lifetime is a 
variable. In statistics the quality characteristics on which we collect data 
are known as variables. Thus, when we collect data on length, diameter, 
volume, stock values—they are all variables. Statistics allows us to study 
variation, and all data show variation.

The data of  Table 3.1 are called raw data (data which are not arranged 
and analyzed). The life times of the components are listed in the order in 
which they occurred. This is ungrouped data. Ungrouped data enable us 

314 330 371 365 267 307 371 297 291 398

276 253 286 344 385 349 269 304 319 283

430 253 378 306 376 308 339 368 289 344

340 298 330 311 318 358 354 406 369 254

322 242 331 236 344 418 328 393 267 305

325 282 315 328 319 353 336 384 298 398

343 203 373 297 276 333 257 367 296 349

322 325 252 345 373 317 307 289 363 340

309 246 302 260 292 231 338 372 226 365

271 302 331 374 355 336 312 354 329 345

276 329 379 288 356 302 263 364 337 361

416 360 337 273 298 390 215 382 329 306

306 279 414 262 372 303 346 331 362 366

387 304 302 280 287 368 281 329 309 310

375 346 413 309 283 299 335 330 376 260

277 366 345 409 312 266 383 289 294 370

359 363 243 339 323 297 333 299 302 384

370 357 314 348 257 291 358 409 337 347

215 277 313 300 322 304 282 410 390 332

373 280 339 349 363 297 274 334 359 330

Table 3.1  Lifetime of 200 television components (in hours)
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to study the sequence of values; for example, low or high values. The data 
may also be helpful in determining some causes of variation. However, for 
a large data set, the ungrouped data do not provide much information.

When the data are arranged in an increasing order of magnitude; that 
is, in rank order we refer to such data as data array or ordered array. A data 
array arranges the values in increasing or decreasing order.

Summarizing Quantitative Data: Frequency Distribution

A frequency distribution provides a compact representation of data. 
This is also known as grouping. Compact representation is obtained by 
arranging the data into groups or class intervals usually of equal width and 
then recording or counting the number of observations in each interval. 
Counting the number of observations in each group is called the class 
frequency. For example, examine the data in Table 3.2, We can divide this 
data into nine class intervals with a width of 30 and tabulate the results 
as follows:

The earlier class frequency is an example of a frequency distribution. 
The class interval of 200–230 means that this interval contains all the 
values from 200 to 230 (not including 230). If you count the number of 
observations between 200 and 230 in Table 3.2; you will find there are 
four observations in this group. The count of 4 is known as the frequency. 
The class interval can also be written in a formal way as:

200 ≤ x < 230

This means that the values in this class interval include the value 200 
but not 230. The value 200 is known as the lower class boundary or lower 
class limit, and the value 230 is known as the upper class boundary or upper 
class limit.

Class interval Frequency
200–230 4

230–260 11

260–290 30

….. and so on. …..
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There are several other possibilities of grouping or constructing 
frequency distributions using the information in Table 3.2. The following 
information is helpful while grouping or forming a frequency distribution: 
when dividing the data into class intervals, 5 to 15 class intervals are 
recommended. If there are too many class intervals, the class frequency 
(count) is low and the savings in computational effort is small. If there are 
too few class intervals, the true characteristic of the distribution may be 
obscured and some information may be lost.

The number of class intervals should be governed by the amount 
and scatter of data present. A small sample or a uniform distribution  
(a distribution that has a constant frequency) would suggest that fewer 
class intervals are needed.

Table 3.2  Data array: Data of Table 3.1 arranged in increasing 
order (read row-wise)

203 215 215 226 231 236 242 243 246 252

253 253 254 257 257 260 260 262 263 266

267 267 269 271 273 274 276 276 276 277

277 279 280 280 281 282 282 283 283 286

287 288 289 289 289 291 291 292 294 296

297 297 297 297 298 298 298 299 299 300

302 302 302 302 302 303 304 304 304 305

306 306 306 307 307 308 309 309 309 310

311 312 312 313 314 314 315 317 318 319

319 322 322 322 323 325 325 328 328 329

329 329 329 330 330 330 330 331 331 331

332 333 333 334 335 336 336 337 337 337

338 339 339 339 340 340 343 344 344 344

345 345 345 346 346 347 348 349 349 349

353 354 354 355 356 357 358 358 359 359

360 361 362 363 363 363 364 365 365 366

366 367 368 368 369 370 370 371 371 372

372 373 373 373 374 375 376 376 378 379

382 383 384 384 385 387 390 390 393 398

398 406 409 409 410 413 414 416 418 430
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Rules for Constructing a Frequency Distribution

The following is a summary of creating a frequency distribution:

•	 Decide on the number of classes (or class intervals) and the 
width of each class.

•	 Decide how many classes to use and the width of each class. 
Note that the width of each class interval should be equal.

•	 Use the previously shown formula (K = 1 + 3.33 log n) to 
determine the approximate number of classes. In general, the 
number of classes should be between 5 and 15. (The number 
of classes depends upon the number of observations and the 
range of data collected.)

•	 The class width is of equal size, the number of classes 
determines the width of each class. Use the following formula 
to determine the class width:

	   From the data in Table 3.2, approximate the number of 
classes using,

K = 1 + 3.33 log10 n = 1 + 3.33 log10 200
K = 1 + 3.33 (2.3010)

= 8.66 or approximately 8 or 9 classes

•	 Note that the number of observations, n = 200 and K = 
number of classes. Using these values, the class width is: 
( ) / .430 203 8 28 375− = .

This width is approximate. You may choose to have a width of 30 
rather than 28.375. From the data in Table 3.2, suppose we decide to 
divide the data into eight class intervals with a class width of 30. Using 
a class width of 30, the frequency distribution is shown in Table 3.3. 
The first column shows the class intervals. The lowest value in the data 

(Largest value in the data – Smallest value)
Width of class interval = 

Number of class intervals
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is 203 so we decided the first class interval to be 200–230. This decision 
is arbitrary. Note that the interval of 200–230 contains the lowest value 
of 203 in the data set. The class interval should be chosen in such a way 
that no results fall on the class boundary. Also, the class intervals should 
include all the data values.

The second column in Table 3.3 contains the frequency or the number 
of observations in each class. This is obtained by sorting the data from the 
lowest to the highest number (as seen in Table 3.2) and counting the 
number of observations in each class. The frequency distribution is shown 
in Table 3.3. Note that the sum of the frequencies must be equal to the 
number of observations (200 in this case).

Next, we want to illustrate the frequency distribution in a graphical 
form as shown in Figure 3.1. This is commonly known as a histogram. 
A histogram is a graph of a frequency distribution. This graph is useful 
because it shows the pattern that is not so obvious when the data are in 
a table form. The histogram is also useful for the study of probability 
distributions (to be discussed later).

In a histogram, the class intervals are plotted on the horizontal axis 
and the frequencies are plotted on the vertical axis. The histogram is a 
series of rectangles (see Figure 3.1), each proportional in width to the 
range of values within each class and is also proportional in height to the 
number of observations falling within each class.

Table 3.3  Frequency distribution of data from Table 3.2

Class interval Frequency (f)
200–230 4

230–260 11

260–290 30

290–320 46

320–350 49

350–380 40

380–410 14

410–440 6

f =∑ 200
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Applications of Histogram in Quality

In quality, histograms are useful in

•	 Determining the shape of the distribution, that is, whether 
the shape is symmetrical or skewed

•	 Determining the concentration of data points, that is, which 
intervals or classes have more values in them

•	 Detecting process problems including a shift in the process
•	 Evaluating process capability (ability of the process to be 

within its specification limits)
•	 Determining how well centered the process is, or how close 

the data values are to the target value, and determining the 
process variation

Using Histograms to Detect the Shift and the Variation in the 
Process

The following histograms demonstrate how the data from a process can 
be examined to detect a shift and the variation in the process, and how the 
process capability of the process can be evaluated. The data are collected 

Figure 3.1  Histogram of lifetime data
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from a manufacturing process that produces a piston ring. The finished 
inside diameter of the ring is of interest. Historical data indicate that the 
diameter of the ring is normally distributed (has a bell-shaped pattern) 
with a mean of 5.01 cm and standard deviation of 0.03 cm. The speci-
fication limits on the diameter are 5 ± 0.05 cm. The data were collected 
for different shifts, operators, and machines and were examined using a 
histogram.

The histograms in Figure 3.2 are useful in examining the possible 
problems and the causes behind them. Once the problems are identified, 
proper actions should be taken to stabilize the process. Note that the 
process capability can only be determined once the process is stable and 
under control. The possible reasons and problems are explained for each 
plot.

Evaluating Process Capability Using Histograms

Histograms can also be used to assess the process capability (the ability 
of a process to be within its specifications). The process capability can 
be determined once the process is stable (e.g., see Figure 3.2(h) and 
(i)). These plots show that the process is stable and within control. The 
difference between Figure 3.2(h) and (i) is the variation. Figure 3.2(h) 
has more variation compared to 3.2(i) but, in both cases the process is 
centered. A capable process is one that shows small variation compared 
to the specification limits. Figure 3.2(i) is the most desirable where the 
process is stable, centered, and close to the target with very small variation. 
An example of a process that is not capable would be Figure 3.2(g).

Histogram with Fit and Groups

This option can be used to compare the mean and variability of two 
sets of data. Suppose we want to compare the variability in diameter of 
the shafts produced by two manufacturers. A sample of 124 shafts from 
manufacturer 1 and a sample of 200 shafts from manufacturer 2 were 
measured. The created histograms with fit and group shown in Figure 3.3 
are useful in measuring the variation of two processes.
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Stem-and-Leaf Plot

Stem-and-leaf plots are very efficient way of displaying data, check-
ing the variation and shape of the distribution. Stem-and-leaf plots 
are obtained by dividing each data value into two parts: a stem and 
a leaf. For example, if the data are two-digit numbers, that is, 34, 56, 
67, and so on, then the first number (the tens digit) is considered the 
stem value, and the second number (the ones digit) is considered the 
leaf value. Thus, in data value 56, 5 is the stem and 6 is the leaf. In a 

(Continued) Figure 3.2  (i) Process stable and close to the target 
(desirable)
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three-digit data value, the first two digits are considered as the stem and 
the last digit as the leaf.

Figure 3.4 shows a stem-and-leaf plot of number of defects created 
using a statistical package.

In a stem-and-leaf plot, the actual data values indicate the frequency 
of each row. The first column (in Figure 3.4) shows the cumulative count, 
the second (middle) column shows the stem values, and the values next to 
the stem are leaf values. The first row has the following values:

5	 5	 23333

This means that there are five observations in this row, the stem value 
is 5 and the leaves are 23333. The five observations are 52, 53, 53, 53, 
and 53. They all have a common stem 5. Similarly, the second row shows:

6	 5	 4

which means there are six observations up to the second row (five in the 
first row and one in the second row); the stem is 5 and the leaf is 4 making 
the value in the second row 54. Note that the first column shows the 
cumulative count. Refer to Figure 3.4, column one again. The values are 
5, 6, 12, 26, 48, and 76. This means that there are 76 observations up to 
row six. The next number is 30 which is enclosed in a parenthesis: (30). 
This indicates that there are 30 observations in this row (the row with 
the parenthesis) and it contains the median value of the data. Once the 

Figure 3.4  Stem-and-leaf plot of number of defects

Stem-and-Leaf Display: No. of Defects (out of 1000) 
Stem-and-leaf of No. of Defects (out of 1000)  N = 200
Leaf Unit = 1.0

5    5  23333
6    5  4
12   5  666777
26   5  88888889999999
48   6  0000000000011111111111
76   6  2222222333333333333333333333

(30)  6  444444444444445555555555555555
94   6  6666666666677777777777777777
66   6  888888888888889999999
45   7  00000000000001111111
25   7  2222222222333
12   7  44444555
4    7  667
1    7  8
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median is determined, the count begins from the bottom row. Look into 
the bottom row that shows

1	 7	 8

This indicates there is one observation in this row which is 78. The 
next to the last row shows

4	 7	 667

which means there are four observations up to this row (from bottom) and 
the values are 76, 76, and 77. The cumulative count continues upward 
just before the median row. The plot provides useful information. You can 
see from Figure 3.4 that the shape of the data is very close to symmetrical, 
the minimum value is 52 and the maximum value is 78. To find the total 
number of observations, add the observations in the median row which 
is (30) and the observations above and below the median row, that is,  
76 + 30 + 94 = 200.

As can be seen, the stem-and-leaf display is an excellent way of showing 
the variation and the distribution (shape) of the data. It takes into account 
all the observations. It also can be used to extract a lot of information 
from the data including the minimum, maximum, the median, and the 
values lying above or below certain values. The one drawback of this plot 
is that it does not take into account the time order of observation.

Using Numerical Measures to Summarize Data Sets

This section deals with the numerical methods of describing and analyzing 
data, that is, describing data using one or more measures like the mean, 
median, variance, and so on.

The numerical methods of describing data can be divided into 
following categories: (1) measures of central tendency or measures of 
location, (2) measures of position, (3) measures of variation or dispersion, 
and (4) the measures of shape.

The important measures of central tendency are the mean and 
median. The mean or the average is a statistical constant which enable us 
to comprehend the significance of the whole. It provides an idea about 
the concentration of the data in the central part of the distribution. The 
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requirements for the ideal measures of central tendency are that they 
should be (1) uniquely defined, (2) based on all observations, (3) affected 
as little as possible by fluctuations in sampling, and (4) suitable for further 
mathematical treatment.

The median is the value of the variable that divides the data into two 
equal parts, such that half of the value lies above the median and the other 
half below it.

Calculating the Mean

The mean of a data set is sum of the values divided by the number of 
observations. The mean of n observations x x xn1 2, ,...,  is given by

or,	  
Mean

x x x x
n

n
=

+ + + +1 2 3 .......

It is important to distinguish whether the summary statistic, such as 
the mean is being calculated from a sample data or a population data. The 
formulas for the sample and population mean are given next.

Mean
all values

n
x

n
= =
∑ ∑ 

Sample Mean Population Mean

x
x

n
i

=
∑

µ =
∑ x

N
i

Example 3.1

The number of accidents for the past 6 months on a particular highway 
is given as follows.

5	 8	 10	 7	 10	 14

The sample mean x  is calculated as

x
x

n
= =

+ + + + +
=

∑ 5 8 10 7 10 14
6

9
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The previous calculation shows that the average number of 
accidents was nine. The mean can be interpreted in the following ways:

•	 It provides a single number presenting the whole data set
•	 It gives us the significance of the whole
•	 It is unique because every data set has only one mean
•	 It is useful for comparing different data sets in terms of the 

average

Calculating the Median

The median is another measure of central tendency. The median is the 
middle value of a data set when the data are arranged in increasing (or 
decreasing) order. The median divides the data into two equal parts, such 
that half of the values lie above the median and the other half below it. 
The median is the value that measures the central item in the data. For 
the ungrouped data (data not grouped into a frequency distribution), the 
median is calculated based on whether the number of observations is odd 
or even.

Calculating Median When the Number of Observations Is Odd

If the number of observations is odd, the median can be calculated by

•	 arranging the data in increasing order and
•	 locating the middle value after the values have been arranged 

in ascending order of magnitude.

Note that there is a distinct median when the number of observations 
is odd. Unlike the mean, the median is not affected by extreme values.

Example 3.2

Suppose we have the following observations arranged in increasing 
order:

1 2 3 4 5 6 7

8.2 8.3 8.9 9.6 9.8 10.2 12.0
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The number of observations is 7 (n = 7), which is odd; therefore, 
the middle value or the median is the fourth value which is 9.6.

Suppose the following data are the annual incomes of eight 
employees (in thousands of dollars) of a manufacturing company for 
the past year. Find the median.

The number of observations is: n = 8 (even)

•	 Arrange the data in increasing order

•	 The location of the median for even observations is given 
by

n +
=

+
=

1
2

8 1
2

4 5.

Therefore, the median is the average of 4th and 5th values

Median =
+

=
45 56

2
50 5.

Measures of Variation

The measures of central tendency provide an idea about the concen-
tration of the observations about the central part of distribution. The 
measures of central tendency (mean and median) are not sufficient to 
give us a complete description of the data. They must be supported by 
other measures. These measures are the measures of variation or measures 
of dispersion. They tell us about the variation or dispersion of the data val-
ues around the average. We may have two or more sets of data all having 
the same average, but their spread or variability may be different. This is 
shown in Figures 3.5 and 3.6. Figure 3.5 shows that the data set A and B 
have the same mean but different variations. In this figure, curve B has 
less spread or variability than curve A. The more variation the data has, 
the more spread out the curve will be. We may also have a case where two 

1 2 3 4 5 6 7 8

70 62 60 45 40 56 38 35

1 2 3 4 5 6 7 8

35 38 40 45 56 60 62 70



58	 MANAGING AND IMPROVING QUALITY

sets of data have the same variation but different means. You can see this 
in Figure 3.6.

If we measure only the mean of different data, we miss other important 
characteristics. Mean, median, and mode tell us only part of what we need 
to know about the characteristic of the data. In order to better analyze 
and understand the data, we must also measure its dispersion; that is, its 
spread or variability.

Dispersion or the variation is often used to compare two or more 
sets of data. In statistical quality control, one of the major objectives is 
to measure and reduce variability. This is done by extracting data from 
the process at different stages or time intervals, and analyzing the data by 
different means in order to measure and reduce variation. As the variation 

Figure 3.5  Data sets A and B with same mean but different variation

B

Two data sets with same mean but different standard deviation

A

Mean

Figure 3.6  Data sets A and B with same variation but different mean

A
B

Mean Mean

Two data sets with different mean but same standard deviation
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in the product and process are reduced, they become more consistent. 
Quality is inversely proportional to the variation. One way of improving 
quality is reducing variation.

The variability in the data is measured using the following measures. 
These are known as the measures of variation.

1.	Range
2.	Variance
3.	Standard Deviation
4.	Coefficient of Variation
5.	Interquartile Range (IQR)

Out of these, the variance and the standard deviation are the most 
widely used.

Sample Variance (Denoted by s2)

Sample variance is the sum of the squared differences between each of the 
observations and the mean. It is the average of squared distances from the 
mean. Suppose we have n number of observations x1, x2, x3,....,xn then 
the variance, s 2 is

or,
	

s
x x x x x x

n
n2 1

2
2

2 2

1
=

− + − + + −

−

( ) ( ) ...... ( )

where, x  = sample mean
n = sample size or number of observations
xi = �ith value of the random variable x (note that x1 is the first value 

of the data point, x2 is the second value of the data point and 
so on).

� ( )x xi∑ −
2 is the sum of all squared differences between each of xi 

values and the mean.

	
s

x x
n

i2
2

1
=

−

−

∑( )
� (3.1)
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Another formula to calculate the sample variance

In Equation (3.2),

x 2
∑  is the sum of the squared values of the variable, x and

x∑  is the sum of the values of the variable, x

Mathematically, both Equations (3.1) and (3.2) are identical and 
provide the same result. Equation (3.2) is computationally easier than 
Equation (3.1) for manual calculation because the first equation requires 
calculating the mean from the data, then subtracting the mean from each 
observation, squaring the values, and finally adding them. This process is 
tedious for large data set. The second equation simplifies the calculation.

Calculating the Sample Variance, s2

The following data represents the length of a sample of parts in millimeters 
(mm).

	 5	 8	 10	 7	 10	 14

Calculate the variance using Equation (3.1). Note that n = 6 (the 
number of observations)
Solution: First, calculate the sample mean using the following formula.

x
x

n
= =

+ + + + +
=

∑ 5 8 10 7 10 14
6

9

Next, subtract each observation from the mean, square, and add the 
squared values. The calculations can be performed using Table 3.4.

The sample variance can now be calculated, using Equation (3.1) as

s
x

x

n
n

2

2

2

1
=

−
( )

−

∑ ∑
� (3.2)

s
x x
n

mmi2
2

2

1
48
5

9 6=
−

−
= =∑( )

. ( )
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Note that the unit in which the data is measured (mm in this case) is 
also squared because we are taking each value in the data, subtracting the 
mean from it, and then squaring it. This results in squared unit which is 
a difficult configuration to interpret. This is the reason we take the square 
root of the variance. The value that is obtained by taking the square root 
of the variance is known as the standard deviation. Usually, we use the 
standard deviation to measure and compare the variability of two or more 
sets of data, not the variance.

Calculating the Variance Using Equation (3.2)

The following example shows the calculation of variance using Equation 
(3.2). Using this equation,

The variance obtained by this method is same as using Equation (3.1) 
in the previous example. Note the following features of variance:

•	 Variance can never be negative.
•	 If all the values in the data set are the same, the variance and 

standard deviation are zero, indicating no variability.

Table 3.4  Calculation for variance

xi  ( )x xi −
2 xi

2

5     (5 − 9)2 = 16 25

8   (8 − 9)2 = 1 64

10 (10 − 9)2 = 1 100

7   (7 − 9)2 = 4 49

10 (10 − 9)2 = 1 100

14   (14 − 9)2 = 25 196

x =∑ 54
 

( )x xi − =∑
2 48 x2 534∑ =

s
x

x

n
n

2

2
2 2

1

534 54
6

5
48
5

9 6=

−
( )

−

=

−

= =

∑
∑

( )

.

The values used in this equation are calculated in Table 3.4.
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•	 Usually, no random phenomena will ever have the same 
measured values; therefore, it is important to know the 
variation in the data.

Calculating the Sample Standard Deviation, s

The sample standard deviation (denoted by s) is calculated by taking the 
square root of the variance. The standard deviation can be calculated 
using the following formulas.

 	
s s

x x
n

i= =
−

−
∑2

2

1
( )

	 or,

	 s s
x

x

n
n

= =
∑ −

( )
−

∑
2

2

2

1
� (3.3)

Example 3.3

Calculate the standard deviation of the data in the previous example.
Solution: To calculate the standard deviation, we first calculate 
the variance. Using the variance in the previous example, standard 
deviation can be calculated as:

The standard deviation is used as a measure of variation because it 
is expressed in the original units of measurements (not in the squared 
units as in the variance).

s
x x
n

i
=

−

−

= =
∑( )

.
2

1
48
5

3 1

The sample standard deviation, s = 3.1 mm
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Relationship Between the Mean and Standard Deviation

There are two important rules in statistics that relate the mean and stan-
dard deviation: (1) the Chebyshev’s Rule and (2) Empirical Rule. These 
rules combine the mean and the standard deviation in a data set and 
provide specific conclusions. The Empirical Rule provides more definite 
results and applies to symmetrical or bell-shaped data. The histogram, 
stem-and-leaf, and box plot discussed earlier provide information about 
the shape (symmetry or lack in symmetry) in the data. 

The empirical rule applies to symmetrical or bell-shaped distribution. 
This is also known as the normal distribution. Unlike Chebyshev’s the-
orem that applies to any shape (skewed or symmetrical), the empirical 
rule applies to symmetrical shape only. This rule states that if the data are 
symmetrical or bell shaped:

•	 Approximately 68 percent of the observations will lie between 
the mean and ± 1 standard deviation.

•	 Approximately 95 percent of the observations will lie between 
the mean and ± 2 standard deviations.

•	 Approximately 99.7 percent of the observations will lie 
between the mean and ± 3 standard deviations.

For a population data, the mean and standard deviation are denoted by 
µ (read as mu) and σ (sigma). Using these symbols, the earlier empirical 
rule can be stated as

The empirical rule is graphically shown in Figure 3.7.
In quality control, the processes were traditionally controlled at 

3-sigma level. This means that for a process that is controlled at 3-sigma 
level, 99.73 percent of the products would be within the specification.

µ σ±1 will contain approximately 68 percent of the observations
µ σ± 2 will contain approximately 95 percent of the observations
µ σ± 3 will contain approximately 99.7 percent of the observations
Note: for a sample data, the mean and standard deviation are denoted 
by x  and s.
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Measures of Position

Other important measures in describing the data are percentile and 
quartiles. These are known as measures of position and are described here.

Quantitative data are sometimes summarized in terms of percentiles. 
A percentile is a point below which a stated percentage or proportion 
of observations lie. Quartiles are special percentiles which divide the 
observations into groups of successive size, each containing 25 percent of 
the data points. The quartiles are denoted by Q1: the first quartile or 25th 
percentile; Q2: the second quartile or 50th percentile (which is also the 
median); and Q3: the third quartile or 75th percentile. Another measure 
calculated using the quartiles is IQR which is the difference between 
the third quartile and the first quartile and encompasses the middle 
50  percent of the values. One very useful data summary called the five 
measure summary provides a visual display of the data in the form of a 
plot known as the box plot. This is a plot of the minimum and maximum 
values and three quartiles, Q1, Q2, and Q3. The box plot shows the data 
extremes, the range, the median, the quartiles, and the IQR.

A percentile tells us how the data values are spread out over the interval 
from the smallest value to the largest value.

Figure 3.7  Areas under the normal curve

The empirical rule

Approx. 68%

Approx. 95%

Approx. 99.7%

–3σ –2σ –1σ +1σµ +2σ +3σ

The pth percentile of a data set is a value, such that at least p percent of the 
values are less than or equal to this value, and at least (100 − p) percent of 
the values are greater than or equal to this value.
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If a score on a SAT test states that a student is at 85th percentile, it 
means that 85 percent who took the test had scores at or below this value 
and 15 percent of those who took the test scored higher than this value. 
The percentile value provides us a comparison in relation to other values.

The quartiles divide the data into four parts. For a large data set, it 
is often desirable to divide the data into four parts. This can be done by 
calculating the quartile. Note that

Q1 = first quartile or 25th percentile
Q2 = second quartile or 50th percentile or the median
Q3 = third quartile or 75th percentile
The first quartile or Q1 is the value such that 25 percent of the 

observations are below Q1 and 75 percent of the values are above Q1. 
The other quartiles can be interpreted in a similar way. Using the formula 
here, we can determine the percentile and quartile for any data set.

Calculating Percentiles and Quartiles

To find a percentile or quartile:

•	 arrange the data in increasing order
•	 find the location of the percentile using the following formula

where Lp = location of the percentile
n = total number of observations
P = desired percentile

L n
P

p = +( )1
100

� (3.4)

Example 3.4

The data in Table 3.5 show the monthly income of 20 part-time 
employees of a company. Find the median, the first quartile, and the 
third quartile values of the income data. Table 3.6 shows the sorted 
values from Table 3.5.
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Table 3.7 shows the descriptive statistics for the data in Table 3.5. 
This table shows the median, first quartile, and the third quartile 
values. We have explained earlier how to obtain these values using the 
percentile formula.
The median or Q2 (50th percentile) is located at

This means that the median is located half way between the 10th and 
11th value, or the average of the 10th and 11th value in the sorted 
data. This value is (1940 + 2038)/2 = 1989. Therefore,

Median or Q2 = 1989

Monthly income
2038 1758 1721 1637 2097 2047 2205 1787

2287 1940 2311 2054 2406 1471 1460 1500 

2250 1650 2100 1850

Table 3.5  Monthly income

Table 3.6  Sorted income data

Sorted data (read row-wise)
1460 1471 1500 1637 1650 1721 1758 1787

1850 1940 2038 2047 2054 2097 2100 2205

2250 2287 2311 2406

Table 3.7  Descriptive statistics of income data using MINITAB

Calculations using MINITAB
Variable N Mean Median TrMean StDev SE Mean

Data 20 1928.5 1989.0 1927.9 295.2 66.0

Variable Minimum Maximum Q1 Q3

Data 1460.0 2406.0 1667.8 2178.8

Note that the number of observations, n = 20.

L n
P

p = + = 



 =( ) .1

100
21

50
100

10 5
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The first quartile (Q1) or 25th percentile is located at

Therefore, Q1 is the 5th value in the sorted data, plus 0.25 times 
the difference between the 5th and the 6th value, which is

1650 + (0.25) (1721 − 1650) = 1667.75 or,
Q1 = 1667.75 or 1667.8

The third quartile (Q3) or 75th percentile is located at

Thus Q3 is the 15th value in the sorted data, plus 0.75 times the 
difference between the 15th and the 16th value, which is

2100 + (0.75) (2205 − 2100) = 2178.75
Therefore,		  Q3 = 2178.75 or 2178.8

The calculated values of the median, Q1, and Q3 are the same as 
in Table 3.7.

L n
P

p = + = 



 =( ) .1

100
21

25
100

5 25

L n
P

p = + = 



 =( ) .1

100
21

75
100

15 75

The Box Plot

A box plot uses a five-number summary as a graphical representation of 
data. These five numbers are as follows:

•	 Smallest or the minimum data value
•	 Q1: the first quartile, or 25th percentile
•	 Q2: the second quartile, or the median or 50th percentile
•	 Q3: the third quartile, or 75th percentile
•	 Largest or the maximum data value

In our earlier discussions, we already explained percentiles and 
quartiles. Calculating these five measures from the data and constructing 
a box plot are explained subsequently.
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Example 3.5

The utility bill for a sample of 50 customers (n = 50) rounded to the 
nearest dollar was collected. The data were sorted using computer 
software. Table 3.8 shows the sorted data. Construct a box plot of the 
utility bill data.
Solution: The descriptive statistics of the data in Table 3.8 was 
calculated using the MINITAB software. The results are shown in 
Table 3.9. You should verify the results provided using the formulas. 
Figure 3.8 shows the box plot of the data.

The box plot simultaneously shows several features of the data 
including the central tendency, variability, the shape of the distribu-
tion (symmetrical or skewed), and the outliers in the data. In a box 
plot, Q1, Q2, and Q3 are enclosed in a box. Q2 is the median. If Q2 
or the median divides the box in approximately two halves, and if the 
distance from the Xmin to Q1 and Q3 to Xmax are equal or approximately 
equal, then the data are symmetrical. In case of right skewed data, the 
Q2 line will not divide the box into two halves. Instead, it will be closer 
to Q1 and the distance from Q3 to Xmax will be greater than the distance 
from Xmin to Q1.

Table 3.8  Sorted data

Sorted data
82 90 95 96 102 108 109 111 114 116

119 123 127 128 129 130 130 135 137 139

141 143 144 147 148 149 149 150 151 153

154 157 158 163 165 166 167 168 171 172

175 178 183 185 187 191 197 202 206 213

Table 3.9  Descriptive statistics of utility bill data

Descriptive Statistics: C1
Variable N Mean Median TrMean StDev SE Mean

Utility Bill 50 147.06 148.50 146.93 31.69 4.48

Variable Minimum Maximum Q1 Q3

Utility Bill 82.00 213.00 126.00 168.75
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In a box plot, the Q1 or 25th percentile is also known as the lower 
quartile, Q2 or 50th percentile is known as middle quartile, and Q3 or 
75th percentile is known as the upper quartile.

In a box plot, the three quartiles Q1, Q2, and Q3 make a box. The 
top and the bottom sides of the rectangle are called the upper and lower 
hinges which are drawn at the quartiles Q3 and Q1 (see Figure 3.9). The 
middle 50 percent of the observations—those between Q1 and Q3—
fall inside the box and the difference between the upper and the lower 
hinge or Q3 and Q1 is known as the IQR.

From Figure 3.9,

Figure 3.8  Box plot of the utility bill data

Box plot of utility data
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Figure 3.9 Box plot of utility data
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The median or Q2 is 148.50 (also shown in Figure 3.9). To 
construct the tails of the box, two sets of limits called inner fences and 
outer fences are used neither of which actually appear on the box plot. 
These fences are located at a distance of 1.5 (IQR) from the hinges. 
The vertical lines extending from the box are known as whiskers. The 
two whiskers extend to the most extreme observation to the fences. 
The lower whisker extends to the most extreme observation inside 
the lower inner fence, whereas the upper whisker extends to the most 
extreme observation inside the upper inner fence. The lower inner and 
upper inner fences can be calculated as shown here.

The lower and upper inner fences are used to determine the outliers 
in the data.

	 Lower inner fence = Lower hinge − 1.5 (IQR)
	 Upper inner fence = Upper hinge + 1.5 (IQR)� (3.5)

Applications of Box Plot

Consider a shaft manufacturing process. Suppose you took five samples 
each of size 36. Four machines were used in the production of these 
shafts. You want to check the consistency of the diameters with respect to 
the machines. Figure 3.10 shows the box plot.

Suppose you took five samples each of size 36. Four machines were 
used in the production of these shafts. You want to check the consistency 

Figure 3.10  Box plot of samples 1 through 5
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of the diameters with respect to the machines. A box plot in Figure 3.11 
can be constructed to check the consistency and distribution of the diam-
eters with respect to the machines.

Probability Distributions

The graphical and numerical techniques discussed in the previous 
sections are used to describe the sample data. These methods help us draw 
conclusions about the process from which data are collected.

The major objective of this section is to gain insight into several of 
the discrete and continuous probability distributions and their properties. 
A good knowledge and understanding of probability distributions is 
critical in being able to apply these distributions in data analysis, decision 
making, modeling, quality, and computer simulation. The probability 
distributions are used to calculate the probability of occurrence of certain 
phenomenon such as, the probability that the next produced item will 
be defective, or the probability or the percent of items not meeting the 
required specifications. In quality, a number of distributions are applied 
in solving quality problems. The probabilities are calculated using a 
number of probability distributions. This section provides an overview 
of probability distribution. Knowledge of these distributions is critical in 
modeling and solving quality problems.

Figure 3.11  Box plot of samples versus machines
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Probability Distribution and Random Variable

The probability distribution is a model that relates the value of a random 
variable with the probability of occurrence of that value.

A random variable is a numerical value that is unknown and may 
result from a random experiment. The numerical value is a variable and 
the value achieved is subject to chance and is, therefore, determined 
randomly. Thus a random variable is a numerical quantity whose value 
is determined by chance. Note that a random variable must be a numerical 
quantity.

Types of random variables: Two basic types of random variables are 
discrete and continuous variables, which can be described by discrete and 
continuous probability distributions.

Discrete Random Variable

A random variable that can assume only integer value or whole number 
is known as discrete. An example would be the number of customers 
arriving at a bank. Another example of a discrete random variable would 
be rolling two dice and observing the sum of the numbers on the top 
faces. In this case, the results are 2 through 12. Also, note that each out-
come is a whole number or a discrete quantity. The random variable can 
be described by a discrete probability distribution.

Table 3.10 shows the discrete probability distribution (in a table form) 
of rolling two dice and observing the sum of the numbers. In rolling  
two dice and observing the sum of the numbers on the top faces, the 
outcome is denoted by x which is the random variable that denotes the 
sum of the numbers.

In Table 3.10, the outcome X (which is the sum of the numbers on 
the top faces) takes on different values each time the pair of dice is rolled. 
On each trial, the sum of the numbers is going to be a number between 
2 and 12 but we cannot predict the sum with certainty in advance. 

Table 3.10  Outcome (X) and Corresponding Probabilities P(X)

X 2 3 4 5 6 7 8 9 10 11 12

P(X) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
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In other words, the outcomes or the occurrence of these numbers is a 
chance factor. The probability distribution is the outcomes Xi , and the  
probabilities for these outcomes P(Xi). The probability of each outcome 
of this experiment can be found by listing the sample space or all 36 
outcomes. These can be shown both in a tabular or a graphical form. 
Figure 3.12 shows the probability distribution graphically.

In summary, the relationship between the values of a random variable 
and their probabilities is summarized by a probability distribution. A proba-
bility distribution of a random variable is described by the set of possible 
random variable’s values and their probabilities. The probability distribu-
tion provides the probability for each possible value or outcome of a random 
variable. A probability distribution may also be viewed as the shape of the 
distribution. The basic foundation of probability distributions is the laws 
of probability. Note that most of the phenomenon in real-world situation 
are random in nature. In a production situation, finding the number of 
defective product might be seen as a random variable because it takes on 
different values according to some random mechanism.

Continuous Random Variable

The random variable that might assume any value over a continuous range 
of possibilities is known as continuous random variables. Some examples of 
continuous variable are physical measurements of length, volume, tempera-
ture, or time. These variables can be described using continuous distributions.

Figure 3.12  Probability distribution of rolling two dice
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The continuous probability distribution is usually described using a 
probability density function. The probability density function, f (x), describes 
the behavior of a random variable. It may be viewed as the shape of the 
data. Figure 3.13 shows the histogram of the diameter of a machined part 
with a fitted curve. It is clear that the diameter can be approximated by 
certain pattern that can be described by a probability distribution.

The shape of the curve in the Figure 3.13 can be described by a 
mathematical function, f x( ) , or a probability density function. The area 
below the probability density function to the left of a given value, x, is equal 
to the probability of the random variable (the diameter in this case) shown on 
the x-axis. The probability density function represents the entire sample space; 
therefore, the area under the probability density function must equal one.

The probability density function, f (x), must be positive for all 
values of x (as negative probabilities are impossible). Stating these two 
requirements mathematically,

f x( ) =
−∞

∞

∫ 1

and, f x( ) > 0 for continuous distributions. For discrete distributions, the 
two conditions can be written as

f x
i

n
( ) .=

=

∑ 1 0
1

 and, f x( ) > 0.

Figure 3.13  Diameter of machined parts
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To demonstrate how the probability density function is used to 
compute probabilities, consider Figure 3.14. The shape in the figure 
can be well approximated by a normal distribution. Assuming a normal 
distribution, we would like to find the probability of a diameter below 
40 mm. The area of the shaded region represents the probability of a 
diameter, drawn randomly from the population having a diameter less 
than 40 mm. This probability is 0.307 or 30.7 percent using a normal 
probability density. Figure 3.15 shows the probability of the diameter of 
one randomly selected machined part having a diameter greater than or 
equal to 50 mm. but less than or equal to 55 mm.

Figure 3.14  An example of calculating probability using probability 
density
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Figure 3.15  Another example of calculating probability using 
probability density

0.148

x = 50 x = 55

Distribution plot of diameters

Pr
ob

ab
ili

ty
 d

en
si

ty

0.05

0.04

0.03

0.02

0.01

0.00

Normal, Mean = 44.42, StDev = 8.77

m = 44.4



76	 MANAGING AND IMPROVING QUALITY

There are a number of distributions used in modeling and solving 
quality problems. Several of the control charts we are going to study later 
are based on the normal, binomial and Poisson distributions. Here we 
discuss some of the important continuous and discrete distributions.

Some Important Continuous Distributions

In this section, we will discuss the continuous probability distributions. When 
the values of random variables are not countable but involve continuous 
measurement, the variables are known as continuous random variables. 
Continuous random variables can assume any value over a specified range. 
Some examples of continuous random variables are as follows:

•	 Length of time to assemble an electronic appliance
•	 Life span of a satellite power source
•	 Fuel consumption in miles-per-gallon of new model of a car
•	 Inside diameter of a manufactured cylinder
•	 Amount of beverage in a 16-ounce can
•	 Waiting time of patients at an outpatient clinic

In all the previous cases, each phenomenon can be described by a 
random variable. The variables could be any value within a certain range 
and are not discrete whole numbers. The graph of a continuous random 
variable x  is a smooth curve. This curve is a function of x, denoted 
by f x( ) and is commonly known as a probability density function. 
The  probability density function is a mathematical expression that 
defines the distribution of the values of the continuous random variable. 
The following figures show the three continuous distributions.

One of the most widely used and important distribution in quality 
is the normal distribution. The other distribution of importance is the 
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exponential distribution. We discuss both of these here. We will leave the 
other important distributions such as, the uniform, gamma, and Weibull 
distribution for the interested readers to explore further.

The Normal Distribution

Background: A continuous random variable X is said to follow a normal 
distribution with parameters µ  and σ , and the probability density func-
tion of X is given by:

where f x( ) is the probability density function, µ = mean, s = standard 
deviation, and e = 2.71828, which denotes the base of the natural 
logarithm. The distribution has the following properties:

The normal curve is a bell-shaped curve. It is symmetrical about the 
line x = µ . The mean, median, and mode of the distribution have 
the same value.

The parameters of normal distribution are the mean µand standard 
deviation σ . The interpretation of how the mean and the standard 
deviation are related in a normal curve is shown in Figure 3.16.

Figure 3.16 states the area property of the normal curve. For a normal 
curve, approximately 68 percent of the observations lie between the mean 
and ± 1σ  (one standard deviation), approximately 95 percent of all 
observations lie between the mean and ± 2σ  (two standard deviations), 
and approximately 99.73 percent of all observations falls between the 
mean and ± 3σ  (three standard deviations). This is also known as the 
empirical rule.

The shape of the curve depends upon the mean (m) and standard 
deviation (σ ). The mean m determines the location of the distribution, 
whereas the standard deviation σ  determines the spread of the distribu-
tion. Note that larger the standard deviation (σ ), more spread out is the 
curve (see Figure 3.17).

f x e x( ) ( ) /= − −1
2

2 22

s p
m s
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The Standard Normal Distribution

To calculate the normal probability, P x X x( )1 2≤ ≤  where X is a normal 
variate with parameters µ  and σ , we need to evaluate:

To evaluate the earlier expression, none of the standard integration 
techniques can be used. However, the expression can be numerically 
evaluated for µ = 0 and σ =1. When the values of the mean m and 
standard deviation σ  are 0 and 1, respectively, the normal distribution is 
known as the standard normal distribution.

Figure 3.16  Areas under the normal curve
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Figure 3.17  Normal curve with different values of mean and standard 
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The probability density function of Z is given by

The cumulative distribution function of Z is given by:

P Z z f y dy
z

( ) ( )≤ =

−∞

∫

which is usually denoted by F (z).
When the random variable X is normally distributed with mean m 

and variance s2, that is; x N∼ ( , )µ σ
2 , we can calculate the probabilities 

involving x  by standardizing. The standardized value is known as the 
standard or standardized normal distribution and is given by:

The normal distribution with µ = 0 and σ =1 is called a standard 
normal distribution. Also, a random variable with standard normal 
distribution is called a standard normal random variable and is usually 
denoted by Z. 

f x e Z( ) /
=

−1
2

2 22

σ π

σ 	 -∞ < z < ∞

As indicated previously, if x  is normally distributed with mean m and 
standard deviation s, then

z
x

=
− µ

σ

� (3.6)

is a standard normal random variable where,
z  = �distance from the mean to the point of interest (x) in terms of 

standard deviation units
x = point of interest
µ  = the mean of the distribution, and
σ  = the standard deviation of the distribution.
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Example 3.6

The inside diameter of a piston ring is normally distributed with a 
mean of 5.07 cm and a standard deviation of 0.07 cm. What is the 
probability of obtaining a diameter exceeding 5.15 cm?

The required probability is the shaded area shown in Figure 3.18. 
To determine the shaded area, we first find the area between 5.07 and 
5.15 using the z  score formula and then subtract the area from 0.5. 
See the calculations here.

z
x

z

=
−

=
−

= →

µ

σ

5 15 5 07
0 07

1 14 0 3729. .
.

. .

Note: 0.3729 is the area corresponding to z = 1.14. This can be read 
from the table of normal distribution provided in Appendix A. There 
are other variations of this normal table.

The required probability is

p x( . ) . . .≥ = − =5 15 0 5 0 3729 0 1271

or, there is 12.71 percent chance that piston ring diameter will exceed 
5.15 cm.

Figure 3.18  Area exceeding 5.15
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Example 3.7

The measurements on certain type of PVC pipes are normally 
distributed with a mean of 5.01 cm and a standard deviation of 
0.03 cm. The specification limits on the pipes are 5.0 ± 0.05 cm. What 
percentage of the pipes is not acceptable?

The percentage of acceptable pipes is the shaded area shown in 
Figure 3.19.

The required area or the percentage of acceptable pipes is explained 
here.

The area 0.4772 is the area between the mean 5.01 and 4.95 (see 
Figure 3.19). The area left of 4.95 is 0.5 − 0.4772 = 0.0228.

The area 0.4082 is the area between the mean 5.01 and 5.05 
(Figure 3.19). The area right of 5.05 is 0.5 − 0.4082 = 0.0918.

Therefore, the percentage of pipes not acceptable = 0.0228 + 
0.0918 = 0.1146 or 11.46%.

z
x

1
4 95 5 01

0 03
2 0 0 4772= − = − = −m

s
. .

.
. .⇒

z
x

2
5 05 5 01

0 03
1 33 0 4082= − = − =m

s
. .

.
. .⇒

Note: the values 0.4772 and 0.4082 are obtained from the normal 
table in Appendix A.

Figure 3.19 The percentage acceptable (shaded area)
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The Exponential Distribution

The exponential distribution has wide applications in modeling. In the 
later section, we will describe a distribution of importance—the Poisson 
distribution which is often used to describe the number of arrivals (or 
occurrences) over a specified time period. The exponential distribution 
is used to describe such phenomenon as the time between failures of 
components, the time between arrivals of customers, or telephone calls, 
or the lifetime of certain types of components in a machine. This distri-
bution is widely used in quality and reliability engineering to describe the 
time to failure of certain types of components.

If X is the random variable that represents the number of arrivals 
over a specified period T, then X is said to follow a Poisson distribution, 
and if Y represents the time between successive arrivals, then Y follows an 
exponential distribution. Thus the Poisson and exponential distributions 
are closely related.

The exponential distribution is an appropriate model to use when 
the failure rate is constant. For example, the time between failures of a 
computer chip is a continuous random variable and the failure rate is 
assumed to be a constant. This means that the probability of the chip 
failing in the next 48 hours would be the same now as it was in the past 
and this probability should be the same at any time in the future provided 
that the chip is functioning properly at a future time.

Probability Density of an Exponential Distribution

If the random variable X follows an exponential distribution then the 
probability density function is given by:

f x e x( ) /
=

−1
µ

µ 	 where x > 0 and µ  > 0� (3.7)

Cumulative probabilities for exponential distribution is given by:

P x x e x( ) /
≤ = −

−

0 1 µ

	 for x > 0� (3.8)
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The parameter 1 / µ  in Equation (3.7) is often referred to as the failure 
rate (time between failures) and is related to the Poisson distribution. 
Consider another example where the number of arrivals per unit time in 
the Poisson distribution and the time between arrivals in the exponential 
distribution can both be used to describe the same thing. For example, if 
the number of arrivals per unit time follows a Poisson distribution with 
mean or average of 10 arrivals per hour, then we can say that the time 
between arrivals is exponentially distributed with mean time between 
arrivals being 1/10= 0.1 hour or 6 minutes.

Unlike the normal distribution, which is described by its location 
and shape parameters (µ  and σ , respectively), exponential distribution 
is described by only one parameter, µ. Each value of µ determines a 
unique exponential distribution. The distribution has no shape or location 
parameter; it is described by a scale parameter which is (1/ )µ . In the section 
that follows, we will investigate the shapes of the exponential distribution.

Investigating the Exponential Distribution

Objective: Investigate the general shape of the exponential distribution 
and observe how the shape of the distribution changes as we change the 
characteristic scale parameter, (µ) of the distribution.

Figure 3.20 shows the plot of the density functions of the exponential 
distribution for different values of ( . , . , . , . )m = 0 5 1 0 1 5 2 0 .

From Figure 3.20, it can be seen that the exponential distribution 
curve steadily decreases as the value of the random variable x increases. 
The larger the value of x; the probability of observing a value of x at 
least this large decreases exponentially. Note also that the distribution is 
not symmetrical and unlike the normal random variable, the exponential 
random variable is always greater than zero.

The mean and standard deviation of the exponential distribution are 
equal and are given by:

Mean = µ

Standard deviation,	 σ µ= � (3.9)
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Finding Exponential Probabilities

The probabilities for exponentially distributed random variables are found 
by evaluating the areas between the points of interest of the exponential 
curve described in Figure 3.20. Suppose X is an exponentially distributed 
random variable with parameter µ , then

The previous equations are used to find the probability between 
the points of interest in exponential distribution. These probabilities 
are explained in the following graph. Figure 3.21 demonstrates the 
probability, P(X ≥ x ) for an exponential random variable. In Figure 3.22, 
the shaded probability is P(X ≤ x ) for an exponential random variable.

The exponential distribution is widely used in the area of reliability 
engineering to describe the time to failure of a system or a component. 
Note that in the exponential distribution, if m is the mean time to failure, 
then 1/ µ is the failure rate of the system.

Figure 3.20  Graph of exponential distribution for different values of µ
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P X x e x( ) /
≥ =

− µ 	 for x ≥ 0� (3.10)

P X x e x( ) /
≤ = −

−1 µ 	 for x > 0� (3.11)

P x X x e ex x( ) / /
1 2

1 2≤ ≤ = −
− −µ µ 	 for x1, x2 > 0�(3.12)
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Figure 3.21  Finding the probability P(X ≥ x)

Finding the probability to the right of X [P(X ≥ x)]
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P(X £ x)

p(
x)
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Figure 3.22  Finding the probability P(X ≤ x)

Finding the probability to the right of X [P(X ≥ x)]
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x)

x

P(X £ x)

Example 3.8

The useful life of an electronic component is described by the expo-
nential distribution with a mean life of 1500 days.

(a) �Find the probability that the component will fail before its 
expected life of 1500 days.

(b) �The component has 2 years or 730 days of warranty. What 
percentage of the components will fail during the warranty 
period?
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Solution:
(a) �Note that the life of the component (x) follows an exponential 

distribution with m = 1500. The probability to be evaluated is 
shown in the Figure 3.23. From this figure, we can see that

	�   There is a 63.2 percent chance that the component will fail 
within 1500 hours.

(b) �We want to find the probability, P(x ≤ 730). This probability 
can be evaluated as

Figure 3.24 shows the graph with the shaded probability.
The preceding probability indicates that the manufacturer will 

have to replace approximately 38.5 percent of the components during 
the warranty period. Note that the average life of the components is 
approximately four years. But this high percentage (38.5 percent) of the 
components failure is due to the fact that the exponential distribution 
is positively skewed and there is high concentration of probability on 
the lower end of the distribution.

P X x e

P x e

x( )

( ) .

/

/

≤ = −

≤ = − =

−

−

1

1500 1 0 6321500 1500

m

P x e e( ) . ./ .≤ = − = − = − =− −730 1 1 1 0 6147 0 3853730 1500 0 4867

Figure 3.23  Probability, P x( 1500)<<

Probability, P(x < 1500)
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Figure 3.24  Probability P(X ≤ 730)

Finding the probability to the left of X [P(X ≤ 730)]

P(X ≥ 730) = 0.3853

x = 7300

p(
x)

P x e e( ) . ./ .≤ = − = − = − =− −730 1 1 1 0 6147 0 3853730 1500 0 4867

Some Important Discrete Distributions

A number of discrete probability distributions are used to solve quality 
problems. Here we discuss some of these distributions. The widely used 
discrete distributions include the binomial, hypergeometric, and Poisson 
distributions.

The Binomial Distribution

The binomial distribution is a very widely used discrete distribution 
which describes discrete data resulting from an experiment known as a 
Bernoulli process.

Bernoulli Trials and Bernoulli Distribution

In many situations, the experiment or the process under study consists of 
n number of trials. Each trial has only two possible outcomes: success (S) 
and failure (F). We can denote this as

	 x j  = 1	 if the experiment results in a success (S)
	 x j = 0	 if the experiments results in a failure (F)

The earlier situation is the basis of the Bernoulli distribution. The 
Bernoulli distribution may be defined as:
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Binomial Probabilities

A random variable that denotes x  number of successes in n Bernoulli 
trials is said to have a Binomial distribution in which the probability of x  
successes is given by the following expression:

A random variable x that takes only two values 1 and 0 with probabilities 
p and q respectively; or,

P( x = 1) = p and
P(x  = 0) = q

where p and q are Bernoulli variates that follow a Bernoulli distribution. In 
the previous expression, p can also be referred to as the probability of success 
and q the probability of failure, such that p = (1 − q).

Example 3.9

1.	Outcomes of n number of tosses of a fair coin is a Bernoulli 
process because:
•	 �Each toss has only two possible outcomes, heads (H) and 

Tails (T), which may be denoted as a success or failure.
•	 �Probability of outcome remains constant over time, that is, 

for a fair coin the probability of success (or probability of 
getting a head) remains 1/2 for each toss regardless of the 
number of tosses.

•	 �The outcomes are independent of each other, that is, the 
outcome of one toss does not affect the outcome of any other 
toss.

2.	Consider a manufacturing process in which the parts produced 
are inspected for defects. Each part in a production run may be 
classified as defective or nondefective. Each part to be inspected 
can be considered as a single trial that results in a success (if the 
part is found to be defective) or a failure (if it is nondefective). 
This is also an example of a Bernoulli trial.
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In the preceding expression,

p x( ) = probability of x  number of successes
n = number of trials
p  = probability of success

( )1− p  = q is the probability of failure

	 p x
n
x

p px n x( ) ( )=






− −1 	 where, x  = 0, 1,…, n� (3.13)

The mean or expected value and the variance of the Binomial distribution 
are given by

E x np( ) = =µ

σ
2 1= −np p( )

Example 3.10: Calculating Binomial Probabilities

A product is supposed to contain 5 percent defective items. Suppose 
a sample of 10 items is selected. What is the probability of finding 
(a) exactly two, (b) more than two.
Solution: To calculate the Binomial probabilities, we must know n (the 
number of trials) and p (the probability of success). For this problem,

n = 10  p = 0.05

(a) �The probability of finding two defects; that is, p (x = 2) can be 
calculated using the Binomial formula

  
p x

n
x n x

p px n x( )
!

!( )!
( )=

−
− −1

p x( )
!

!( )!
( . ) ( . )= =

−
2

10
2 10 2

0 05 0 952 8

   = ( )( . ) ( . )45 0 05 0 952 8

	 = 0.0746 or 7.46%
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This probability can be easily calculated using a binomial 
distribution table or a statistical package. In order to calculate the 
binomial probabilities using the binomial table, you must know the 
number of trials, n, and the probability of success, p. A binomial 
probability distribution table for n = 10 and p = 0.05 would look like 
the one shown in Table 3.11. In this table, p = 0.05 and n = 10. We 
can read the probabilities for x = 0 through x = 10. The probabilities 
for n = 10, p = 0.05, and x  = 0, …., 10 are listed in Table 3.11. We 
will demonstrate the calculations in this example using the probability 
values in this table.

Note that if the number of trials n is 10, then the values under the 
x  column will be from 0 through 10. This is because there cannot be 
more than 10 successes for n  = 10 trials.

From the table below, the probability of x  = 2 or p(x  = 2) can 
be read. This probability is 0.0746, which is same as the value we 
calculated using the formula earlier.

The binomial table below can be used to calculate the probabilities 
of p x p x p x p x( ), ( ), ( ), ( )> = 3 ≥ 3 ≤ 32 , and p x( )< 3 . All the proba-
bility values are read from the binomial table (Table 3.11).

Table 3.11  Binomial distribution table for n = 10 and p = 0.05

n 	 x p = 0 05.

10	 0 0.5987

	 1 0.3151

	 2 0.0746

	 3 0.0105

	 4 0.0010

	 5 0.0001

	 6 0.0000

	 7 0.0000

	 8 0.0000

	 9 0.0000

	 10 0.0000
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(b) Probability of more than two defects 

This probability can also be calculated easily, using the following 
expression

The probability p x p x( ) ( )> = − ≤2 1 2  because the sum of the 
probabilities over 10 trials must add up to 1.0 (verify this by adding the 
second column of  Table 3.11). Therefore, the probability, p x( )> 2 , can 
be calculated by subtracting the probabilities of p x p x( ), ( )= =0 1 , and 
p x( )= 2  from 1.0 or p x p x p x p x( ) [ ( ) ( ) ( )].> = − = + = + =2 1 0 1 2  
Calculating the probability this way reduces the computation 
significantly. The binomial distribution has applications in control 
charts. The control chart for proportion defective is based on this 
distribution.

p( x  > 2) = �p( x  = 3) + p ( x  = 4) + p( x  = 5) + p ( x  = 6)  
+ p( x  = 7) + p ( x  = 8) + p ( x  = 9) + p( x  = 10)

= �0.0105 + 0.0010 + 0.0001 + 0.0000 + 
0.0000 + 0.0000 + 0.0000 + 0.0000

= 0.0116 

p( x > 2) = 1 − p( x  ≤ 2)
= 1 − [p( x = 0) + p ( x = 1) + p( x = 2)]
= 1 − [0.5987 + 0.3151 + 0.0746] = 0.0116

The Poisson Distribution

A random variable X is said to follow a Poisson distribution if it assumes 
only nonnegative values and its probability density function is given by:

p x
e

x

x
( )

!
=

−µ
µ � (3.14)

where, x = 0,1,2,......,n
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where m represents the mean and variance of the distribution where  
m > 0. The Poisson distribution occurs when there are events which do not 
occur as outcomes for a fixed number of trials of an experiment (unlike 
that of the binomial distribution), but which occur at random points of 
time and space. The Poisson distribution is the correct distribution to apply 
when n is very large (that is, the area of opportunity is very large) and an 
event has a constant and very small probability of occurrence.

One of the major applications of Poisson distribution in quality 
control is in modeling the number of defects or nonconformities that 
may occur in one unit of a product. Any random phenomenon that can 
be described to occur on per unit area, per unit volume, or per unit time 
can be modeled using the Poisson distribution.

Example 3.11

It has been found that during the morning hours on any given day, 
a bank teller can expect an average of three customers per minute at 
the counter. If the teller can handle a maximum of two customers per 
minute, what is the probability that during any given minute of the 
morning hour, the teller will be swamped? Assume that the arriving 
customers follow a Poisson distribution.

The probability that a teller will be swamped is the probability 
when the number of customers during any given minute exceeds two. 
We need to find the probability,

p x( )> =2 3given m

which can be calculated as

p x p x
p x p x p x

( ) ( )
[ ( ) ( ) ( )]
[ . .

> = − ≤

= − = + = + =

= − + +

2 1 2
1 0 1 2
1 0 0498 0 1494 00 22400
0 5768

. ]
.=

The mean or expected value and the variance of the Poisson distribution 
are given by

Expected value

Variance

 =

=

µ

σ µ, 2  
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The probabilities of x = 0, x = 1, x = 2 can be obtained from 
the Poisson probability table or a statistical package. In this 
table, we first locate µ = 3 and then read the probabilities for 
p x p x p x( ), ( ) ( )= = =0 1 2 and .

Therefore, the chances are about 1 in 2 that during any given 
minute of the morning hour, the teller will not be able to handle the 
arriving customers adequately.

Example 3.12

Suppose that the number of weld defects per foot in welded joints 
follows a Poisson distribution with an average of 1 defect per 10 feet.

(a) �What is the probability that during an inspection, the inspector 
will find at least two defects in a 5-foot joint?

	�   The average number of defects is 1 per 10 feet. Therefore, 
there is an average of 0.5 defects in 5-foot joint. We need to 
find the probability

p x when( )≥ 2   =0.5µ when p x when( )≥ 2   =0.5µ

	 p x p x
p x p x

( ) ( )
[ ( ) ( )]
[ . . ]

.

≥ = − <

= − = + =

= − +

=

2 1 2
1 0 1
1 0 6065 0 3033
0 0902

	

p x p x
p x p x

( ) ( )
[ ( ) ( )]
[ . . ]

.

≥ = − <

= − = + =

= − +

=

2 1 2
1 0 1
1 0 6065 0 3033
0 0902

	  �[ p(x = 0) and p( x  = 1) are obtained from a Poisson table for m 
= 0.5 or a statistical package.]

(b) �What is the probability that the inspector will find between 8 
and 12 defects (inclusive) in a 50-foot joint?

	�   The average number of defects per 50 feet will be 5. There-
fore, m = 5.0. The probabilities can be obtained from the 
Poisson table or a statistical package.
p x p x p x p x p x p x( ) ( ) ( ) ( ) ( ) ( )

. .
8 12 8 9 10 11 12

0 0653 0 0
≤ ≤ = = + = + = + = + =

= + 3363 0 0181 0 0082 0 0034
0 1313

+ + +
=

. . .
.
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	�   There are other probability distributions both discrete and 
continuous that are extensively used in modeling and solving 
quality problems.

Summary

In this chapter, we provided an overview of statistical methods used in 
quality programs. A number of statistical techniques both graphical and 
numerical were presented. These descriptive statistics tools are used in 
modeling, studying, and solving quality problems. The graphical and 
numerical tools of descriptive statistics presented in this chapter are 
also used to describe variation in the process data. The graphical tools 
of descriptive statistics we presented in this chapter include the con-
cept of frequency distribution, histograms, stem-and-leaf plot, and box 
plot. These are simple but effective tools to study variation in the quality 
characteristic of interest. A number of numerical measures presented in 
this chapter are the measures of central tendency that include the mean 
and the median. Statistics deals with variation and one of the objectives 
of quality improvement is to study and reduce variation in products and 
processes. We presented a number of statistical measures including the 
variance and standard deviation. Standard deviation is a measure of varia-
tion. When combined with the mean it provides useful information. We 
discussed the empirical rule that provides a relationship between the mean 
and standard deviation in a data set. In the second part of this chapter, we 
introduced the concept of probability distribution and random variable. 
A number of probability distributions both discrete and continuous were 
discussed with their properties and applications. We discussed the normal 
and exponential probability distributions and their applications in quality. 
We also studied some discrete distributions including the binomial and 
Poison distribution, their properties and applications in quality. The 
probability distributions have wide applications in process control.



CHAPTER 4

Making Inferences About 
Process Quality

Introduction

In the previous chapter, we discussed probability distributions of discrete 
and continuous random variables and studied several of the distributions. 
The understanding and knowledge of these distributions are critical in 
decisions involving quality-related problems. This chapter extends the 
concept of probability distribution to that of sample statistics. Sample 
statistics are measures calculated from the sample data to describe a 
data set. The commonly used sample statistics are the sample size  
( )n , sample mean ( )x , sample variance ( )s2 , sample standard deviation 
( )s , and sample proportion ( )p . Note that some quality characteristics 
are expressed in proportion or percent. For example, percent of defects 
produced. Proportions are also used in poll results. Proportion is perhaps 
the most widely used statistics after the mean.

Since the above measures are calculated from the population data, 
they are called the population parameters. These parameters are population 
size ( )N , population mean ( )µ , population variance ( )σ

2 , population 
standard deviation ( )σ , and population proportion ( )p . In most cases, 
the sample statistics are used to estimate the population parameters. The 
reason for this estimation is that the parameters of the population are 
unknown and they must be estimated. In estimating these parameters, 
we take samples and use the sample statistics to estimate the unknown 
population parameters. For example, suppose we want to know the 
average height of women in a country. To do this, we would take a rea-
sonable sample of women, measure their heights, and calculate the aver-
age. This average will serve as an estimate. To know the average height of 
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the population (or the population mean), we need to measure the height 
of every women in the country which is not practical. In most cases, we 
don’t know the true value of a population parameter. We estimate these 
parameters using the sample statistics.

In this chapter, we will answer questions related to samples and 
sampling distributions. In sampling theory, we need to consider several 
factors and answer questions such as, why do we use samples? What is a 
sampling distribution and what is the purpose behind it?

Samples are used to make inferences about the population and this 
can be done through sampling distribution. The probability distri-
bution of a sample statistic is called its sampling distribution. We will 
also study the central limit theorem and see how the amazing results 
produced by it are applied in analyzing and solving problems involving 
control charts.

The concepts of sampling distribution form the basis for the 
inference procedures we are going to discuss in this chapter. It is import-
ant to note that a population parameter is always a constant, whereas 
a sample statistic is a random variable. Similar to the other random 
variables, each sample statistic can be described using a probability 
distribution.

Besides sampling and sampling distribution, other key topics in 
this chapter include point and confidence interval estimates of means 
and proportions. We also discuss the concepts of hypothesis testing 
which is directly related to the control charts in statistical process 
control.

Statistical Inference and Sampling Techniques

Statistical Inference

The objective of statistical inference is to draw conclusions or make 
decisions about a population based on the samples selected from the 
population. To be able to draw conclusion from the sample, the distribu-
tion of the samples must be known. Knowledge of sampling distribution 
is very important for drawing conclusion from the sample regarding the 
population of interest.
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Sampling Distribution

Sampling distribution is the probability distribution of a sample statistic 
(sample statistic may be a sample mean x , a sample variance s2, a sample 
standard deviation s, or sample proportion, p ).

As indicated earlier, in most cases the true value of the population 
parameters are not known. We must draw a sample or samples and 
calculate the sample statistic to estimate the population parameter. The 
sampling error of the sample mean is given by

Suppose we want to draw a conclusion about the mean of certain 
population. We would collect samples from this population, calculate the 
mean of the samples, and determine the probability distribution (shape) 
of the sample means. This probability distribution may follow a normal 
or a t-distribution, or other distribution. The distribution will then be 
used to draw conclusion about the population mean.

•	 Sampling distribution of the sample mean (x) is the probability 
distribution of all possible values of the sample mean, x.

•	 Sampling distribution of sample proportion, p  is the probability 
distribution of all possible values of the sample proportion, p .

The process of sampling distribution is illustrated in Figure 4.1.

Sampling Error = x − µ

Figure 4.1  Process of sampling distribution
* 50 samples each of size n = 30 means that 50 different samples are drawn, where each sample will 
have 30 items in it. Also, a probability distribution is similar to a frequency distribution. Using the 
probability distribution, the shape of the sample means is determined.

Population with mean m = ?

Select several samples of size n (for example,
50 samples each of size n = 30)*

Calculate the sample mean x of all the samples
and do a probability distribution of the x
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Example 4.1 Examining the Distribution of the 
Sample Mean, x

The assembly time of a particular electrical appliance is assumed 
to have a mean, µ = 25 minutes, and a standard deviation, σ = 5 
minutes.

1.	Draw 50 samples each of size 5 (n = 5) from this population using 
MINITAB statistical software or any other statistical package.

2.	Determine the average or the mean of each of the samples drawn.
3.	Draw a histogram of the sample means and interpret your 

findings.
4.	Determine the average and standard deviation of the 50 sample 

means. Interpret the meaning of these.
5.	What conclusions can you draw from your answers to (3) and (4)?

Solution to (1): Table 4.1 shows 50 samples each of size 5 using 
MINITAB.

Sample Mean, x
1 24.13 26.53 33.99 17.09 23.39  25.03

2 26.55 30.49 30.57 26.83 28.46  28.58

3 15.39 26.33 23.04 21.12 26.82  22.54

4 15.99 27.09 27.73 24.95 21.90  23.53

5 26.16 26.16 21.37 36.40 27.25  27.47

6 26.68 26.55 26.72 26.24 26.31  26.50

7 30.37 15.32 25.11 24.10 31.68  25.32

8 31.23 24.27 33.72 30.80 25.31  29.06

9 24.87 16.56 31.46 31.51 16.64  24.21

10 26.14 31.61 25.19 24.10 17.42  24.89

:

:

48 22.38 15.57 30.79 19.98 26.68  23.08

49 13.67 26.49 25.37 30.01 23.00  23.71

50 26.01 24.35 21.94 16.89 23.73 22.58

Table 4.1  Fifty samples of size 5 (n = 5)
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Solution to (2): The last column shows the mean of each sample 
drawn. Note that each row represents a sample of size 5.
Solution to (3): Figure 4.2 shows the histogram of the sample means 
shown in the last column of Table 4.1. The histogram shows that the 
sample means are normally distributed. Figure 4.2 is an example of the 
sampling distribution of the sample means x .

In a similar way, we can do the sampling distribution of other 
statistics such as, the sample variance or the sample standard deviation. 
As we will see later, the sampling distribution provides the distribution 
or the shape of the sample statistic of interest. This distribution is 
useful in drawing conclusions.
Solution to (4): The mean and standard deviation of the sample means 
shown in the last column of Table 4.1 were calculated using a com-
puter package. These values are shown in Table 4.2.

The mean of the sample means is 24.98, which indicates that x  
values are centered at approximately the population mean of µ = 25.

However, the standard deviation of 50 sample means is 2.285, 
which is much smaller than the population standard deviation, σ = 5.  

Figure 4.2  Sampling distribution of the sample means

Histogram showing the distribution of sample means
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Descriptive statistics: Sample mean
Mean StDev

24.978 2.285

Table 4.2  Mean and standard deviation of sample means
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Thus we conclude that x—or the sample mean values—have much 
less variation than the individual observations.
Solution to (5): Based on parts (3) and (4), we conclude that the 
sample mean, x  follows a normal distribution, and this distribution is 
much narrower than the population of individual observations, which 
has a standard deviation, σ = 5. This is apparent from the standard 
deviation of x  value, which is 2.285 (see Table 4.2). In general, the 
mean and standard deviation of the random variable x  are given by

For our example, µ = 25, σ = 5, and n = 5. Using these values

µ µx = = 25

and,	 σ
σ

x
n

= = =
5
5

2 236.

From Table 4.2, the mean and the standard deviation of 50 sample 
means were 24.978 and 2.285 respectively. These values will get closer 
to 25 and 2.236 if we take more and more samples of size 5.

Mean of the sample mean, x  is

µ µ µx E x= =    or   ( ) � (4.1)

The standard deviation of the sample mean x  is

σ
σ

x
n

= � (4.2)

Standard Deviation of the Sample Mean or the Standard Error

Both Equations (4.1) and (4.2) are of considerable importance. 
Equation (4.2) shows that the standard deviation of the sample mean, x  
(or the sampling distribution of the random variable x) varies inversely 
as the square root of the sample size. Since the standard deviation of  
the mean is a measure of the scatter of the sample means, it provides the 
precision that we can expect of the mean of one or more samples. The 
standard deviation of the sample mean σ x is often called the standard error 
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of the mean. Using Equation (4.2), it can be shown that a sample of 16 
observations (n = 16) is twice as precise as a sample of 4 (n = 4). It may be 
argued that the gain in precision in this case is small, relative to the effort 
in taking additional 12 observations. However, doubling the sample size 
in other cases may be desirable.

Figure 4.3 shows a comparison between the probability distribution 
of individual observations and the probability distributions of means of 
samples of various sizes drawn from the underlying population.

Note that as the sample size increases, the standard error becomes 
smaller and hence the distribution becomes more peaked. It is obvious 
from Figure 4.3 that a sample of one does not tell us anything about the 
precision of the estimated mean. As more samples are taken, the standard 
error decreases, thus providing greater precision. The sample size plays an 
important role in designing the control charts.

Central Limit Theorem

The other important concept in statistics and sampling is the central 
limit theorem. The theorem states that as the sample size (n) increases, the 
distribution of the sample mean (x) approaches a normal distribution.

This means that if samples of large size ( )n ≥ 30  are selected from 
a population, then the sampling distribution of the sample means  
is approximately normal. This approximation improves with larger 
samples.

Figure 4.3  Probability distribution of sample means (n = 4, 9, 16, 
and 36) compared to individual observations

Distribution of individual observations

Distribution of sample means (n = 4)

n = 9

n = 16

n = 36

m
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The Central Limit Theorem has major applications in sampling and 
other areas of statistics. It tells us that if we take a large sample ( )n ≥ 30 , 
we can use the normal distribution to calculate the probability and draw 
conclusion about the population parameter.

•	 Central Limit Theorem has been proclaimed as “the most 
important theorem in statistics”* and “perhaps the most 
important result of statistical theory.”

•	 The Central Limit Theorem can be proven to show the 
amazing result that the mean values of the sum of a large 
number of independent random variables are normally 
distributed.

•	 The probability distribution resulting from “a large number of 
individual effects … would tend to be Gaussian.”

The results mentioned earlier are useful in drawing conclusions from 
the data. For a sample size of n = 30 (large sample), we can always use the 
normal distribution to draw conclusions from the sample data.

•	 For a large sample, the sampling distribution of the sample 
mean (x) follows a normal distribution and the probability 
that the sample mean (x) is within a specified value of the 
population mean (m) can be calculated using the following 
formulas:

or

*  Ostle (1979, 76).

	 z
x

n

=
− µ

σ
	 (for an infinite population)� (4.3)

	 z
x

n
N n
N

=
−

−

−

µ

σ

1

	 (for a finite population)� (4.4)
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In the above equations, n is the sample size and N is the population 
size. In a finite population, the population size N is known, whereas in an 
infinite population, the population size is infinitely large. Equation (4.3) 
is for an infinite population, and Equation (4.4) is for a finite population.

Review of Estimation, Confidence Intervals, and 
Hypothesis Testing

Estimation and hypothesis testing come under inferential statistics. 
Inferential statistics is the process of using sample statistics to draw 
conclusions about the population parameters. Interference problems are 
those that involve inductive generalizations. For example, we use the 
statistics of the sample to draw conclusions about the parameters of the 
population from which the sample was taken. An example would be to 
use the average grade achieved by one class to estimate the average grade 
achieved in all 10 sections of the same course. The process of estimating 
this average grade would be a problem of inferential statistics. In this case, 
any conclusion made about the 10 sections would be a generalization 
which may not be completely valid so it must be stated how likely it is 
to be true.

Statistical inference involves generalization and a statement about the 
probability of its validity. For example, an engineer or a scientist can make 
inferences about a population by analyzing the samples. Decisions can 
then be made based on the sample results. Making decisions or drawing 
conclusions using sample data raises question about the likelihood of the 
decisions being correct. This helps us understand why probability theory 
is used in statistical analysis.

Tools of Inferential Statistics

Inferential tools allow a decision maker to draw conclusions about the 
population using the information from the sample data. There are two major 
tools of inferential statistics; estimation and hypothesis testing. Figure 4.4 
shows the tools of inferential statistic.

•	 Estimation is the simplest form of inferential statistics in 
which a sample statistic is used to draw conclusion about an 
unknown population parameter.
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•	 An estimate is a numerical value assigned to the unknown 
population parameter. In statistical analysis, the calculated 
value of a sample statistic serves as the estimate. This statistic is 
known as the estimator of the unknown parameter.

•	 Estimation or parameter estimation comes under the broad 
topic of statistical inference.

•	 The objective of parameter estimation is to estimate the 
unknown population parameter using the sample statistic. 
Two types of estimates are used in parameter estimation: point 
estimate and interval estimate.

The parameters of a process are generally unknown; they change 
over time and must be estimated. The parameters are estimated using 
the techniques of estimation theory. Hypothesis testing involves mak-
ing a decision about a population parameter using the information 
in the sample data. These techniques are the basis for most statistical 
methods.

Estimation

There are two types of estimates: (a) the point estimates, which are 
single-value estimates of the population parameter, and (b) the interval 
estimates or the confidence intervals which are a range of numbers that 
contain the parameter with specified degree of confidence known as the 
confidence level. Confidence level is a probability attached to a confidence 
interval that provides the reliability of the estimate. In the discussion of 
estimation, we will also consider the standard error of the estimates, the 
margin of error, and the sample size requirement.

Figure 4.4  Tools of inferential statistics

Statistical inference tools

Estimation Hypothesis testing
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Point Estimate

As indicated, the purpose of a point estimate is to estimate the value of a 
population parameter using a sample statistic. The population parameters 
are µ σ, , p, and so on.

a.	The point estimate of the population mean (m) is the sample mean  

(x), x
x

n
=
∑ .

b.	The point estimate of the population standard deviation ( )σ  is the 
sample standard deviation (s).

s
x x
n

i
=

∑ −( )

−

2

1
	 or,	 s

x
x
n

n

i
i

=

∑ −
∑( )

−

2
2

1

c.	The point estimate of a population proportion (p) is the sample 
proportion (p ): p x

n=  where x = no. of successes and n = sample size.

Interval Estimate

An interval estimate provides an interval or range of values that is used 
to estimate a population parameter. To construct an interval estimate, 
we find an interval about the point estimate so that we can be highly 
confident that it contains the parameter to be estimated. An interval with 
high confidence means that it has a high probability of containing the 
unknown population parameter that is estimated.

An interval estimate acknowledges that the sampling procedure is subject 
to error, and therefore, any computed statistic may fall above or below its 
population parameter target.

The interval estimate is represented by an interval or range of possible 
values so it implies the presence of uncertainty. An interval estimate is 
represented in one of the following ways:

			   16.8 ≤ m ≤ 18.6
or

			   (16.8 to 18.6)
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A formal way of writing an interval estimate is L ≤ m ≤ U, where L 
is the lower limit and U is the upper limit of the interval. The symbol 
µ  indicates the population mean µ  is estimated. The interval estimate 
involves certain probability known as the confidence level.

Confidence Interval Estimate

In many situations, a point estimate does not provide enough information 
about the parameter of interest. For example, if we are estimating the 
mean or the average salary for the students graduating with a bachelor’s 
degree in business, a single estimate which would be a point estimate 
may not provide the information we need. The point estimate would be 
the sample average and will just provide a single estimate that may not 
be meaningful. In such cases, an interval estimate of the following form 
is more useful:

L ≤ m ≤ U

It also acknowledges sampling error. The end points of this interval 
will be random variables since they are a function of sample data.

To construct an interval estimate of unknown parameter b, we must 
find two statistics L and U such that

The resulting interval L ≤ b ≤ U is called a 100 (1 − a) percent 
confidence interval for the unknown parameter b. L and U are known as 
the lower and upper confidence limits, respectively, and (1 − a) is known 
as the confidence level. A confidence level is the probability attached to 
a confidence interval. A 95 percent confidence interval means that the 
interval is estimated with a 95 percent confidence level or probability. 
This means that there is a 95 percent chance that the estimated interval 
would include the unknown population parameter being estimated.

Interpretation of Confidence Interval

The confidence interval means that if many random samples are collected 
and a 100 (1 − a) percent confidence interval computed from each 

P {L ≤ b ≤ U} = 1 − a� (4.5)
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sample for b, then 100 (1 − a) percent of these intervals will contain the 
true value b.

In practice, we usually take one sample and calculate the confidence 
interval. This interval may or may not contain the true value, and it is 
not reasonable to attach a probability level to this specific event. The 
appropriate statement would be that b lies in the observed interval [L, U] 
with confidence 100 (1 − a). That is, we don’t know if the statement is true 
for this specific sample, but the method used to obtain the interval [L, U] 
yields correct statement 100 (1 − a) percent of the time. The interval 
L ≤ b ≤ U is known as a two-sided or two-tailed interval. We can also 
build one-sided interval. The length of the observed confidence interval 
is an important measure of the quality of information obtained from the 
sample. The half interval (b − L) or (U − b) is called the accuracy of the 
estimator. A two-sided interval can be interpreted in the following way:

Confidence Interval for the Mean, Known Variance s2 (or s 
Known)

The confidence interval estimate for the population mean is centered 
around the computed sample mean (x). The confidence interval for the 
mean is constructed based on the following factors:

a.	The size of the sample (n),
b.	The population variance (known or unknown), and
c.	The level of confidence.

Let X be a random variable with an unknown mean m and known vari-
ance s2. A random sample of size n (x x xn1 2, ,..., ) is taken from the popu-
lation. A 100 (1 − a) percent confidence interval on m can be obtained by 
considering the sampling distribution of the sampling mean x . We know 
that the sample mean x  follows a normal distribution as the sample size 

The wider the confidence interval, the more confident we are that the 
interval actually contains the unknown population parameter being esti-
mated. On the other hand, the wider the interval, the less information 
we have about the true value of b. In an ideal situation, we would like to 
obtain a relatively short interval with high confidence.
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n increases. For a large sample n the sampling distribution of the sample 
mean is almost always normal. The sampling distribution is given by:

The distribution of the earlier is normal and is shown in Figure 4.5. 

To develop the confidence interval for the population mean µ , refer to 
Figure 4.5.

From this figure we see that:
or

This can be rearranged to give:

This leads to:

z
x

n

=
− µ

σ � (4.6)

Figure 4.5  Distribution of the sample mean

–Zα/2 Zα/2

α/2α/2
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P z z z− ≤ ≤{ } = −
α α
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P z
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z− ≤

−
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








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= −
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µ

σ

α/ //2 2 1

P x z n x z n− ≤ ≤ +{ } = −a as m s a/ // /2 2 1
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Equation (4.7) is a 100 (1 − α) percent confidence interval for the 
population mean µ.

The Confidence Interval Formula to Estimate the Population 
Mean m for Known and Unknown Population Variances or 
Standard Deviations

The confidence interval is constructed using a normal distribution. The 
following two formulas are used when the sample size is large:

(a) Known population variance (σ 2) or known standard deviation (s)

	 Note that the margin of error is given by

(b) �Unknown population variance (σ 2) or unknown standard devi-
ation (s )

(c) �If the population variance is unknown and the sample size is large, 
the confidence interval for the mean can also be calculated using a 
normal distribution using the following formula:

	�   In the previous confidence interval formula, s is the sample 
standard deviation.

	
x z

n
x z

n
− ≤ ≤ +

α α

σ
µ

σ

/ /2 2 � (4.8)

E z
n

=
α

σ

/2 � (4.9)

x t
s
n

x t
s
nn n− ≤ ≤ +

− −1 2 1 2, / , /α α
µ � (4.10)

        
x z

s
n

±
α /2 � (4.11)
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Confidence Interval for the Mean When the Sample Size is Small 
and the Population Standard Deviation σ  is Unknown

When σ  is unknown and the sample size is small, use t-distribu-
tion for the confidence interval. The t-distribution is characterized 
by a single parameter, the number of degrees of freedom (df ) and its 
density function provides a bell-shaped curve similar to a normal 
distribution.

The confidence interval using t-distribution is given by

where tn−1, a/2  = t-value from the t-table for (n − 1) degrees of freedom and 
a/2.

Confidence Interval for Estimating the Population Proportion p

The confidence interval for the proportion is constructed based on the 
following:

a.	The sampling distribution of the sample proportion (p ) follows a 
normal distribution when the sample size is large.

b.	The value of sample proportion.
c.	The level of confidence, denoted by z.

The confidence interval formula is given by (Assumption: sample size 
n is large so that normal approximation can be used)

In the previous formula, note that p = population proportion and p  
is the sample proportion given by p x n= / .

x t
s
n

x t
s
nn n− ≤ ≤ +

− −1 2 1 2, / , /α α
µ � (4.12)

p z
p p

n
p p z

p p
n

−
−

≤ ≤ +
−

α α/ /
( ) ( )

2 2
1 1 � (4.13)
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Sample Size Determination

Sample Size (n) to Estimate µ

Determining the sample size is an important issue in statistical analysis. 
To determine the appropriate sample size (n), the following factors are 
taken into account:

a.	The margin of error, E (or, tolerable error level, or the accuracy 
requirement) For example, suppose we want to estimate the popula-
tion means salary within $500 or within $200. In the first case, the 
error, E = 500; in the second case, E = 200. A smaller value of the 
error E means more precision is required which in turn, will require a 
larger sample. In general, smaller the error, E, larger the sample size.

b.	The desired reliability or the confidence level.
c.	A good guess for σ .

Both the margin of error E and reliability are arbitrary choices that 
have an impact on the cost of sampling and the risks involved. The 
following formula is used to determine the sample size:

E = margin of error or accuracy (or, maximum allowable error),  
n = sample size

Sample Size (n) to Estimate p

The sample size formula to estimate the population proportion p is deter-
mined similar to the sample size for the mean. The sample size is given by

p = population proportion (if p is not known or given, use p = 0.5).

n
z

E
=

( )/α
σ2

2 2

2
� (4.14)

n
z p p

E
=

−( ) ( )/α 2
2

2
1 � (4.15)
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Example 4.2

A quality control engineer is concerned about the bursting strength 
of a glass bottle used for soft drinks. A sample of size 25 (n = 25) 
is randomly obtained, and the bursting strength (X10 in pounds per 
square inch, psi) is recorded. The strength is considered to be normally 
distributed. Find a 95 percent confidence interval for the mean 
strength using both t-distribution and normal distribution. Compare 
and comment on your results.

26, 27, 18, 23, 24, 20, 21, 24, 19, 27, 25, 20, 24, 21, 26, 19, 21, 
20, 25, 20, 23, 25, 21, 20, 21
Solution:
First, calculate the mean and standard deviation of 25 values given. 
You should use your calculator or a computer to do this. The values 
are

The confidence interval using a t-distribution can be calculated 
using the following formula:

A 95 percent confidence interval using the previous formula

x
s
=

=

22 40
2 723

.
.

x t
s
nn±











−1

2
,α

22 40 2 064 2 723
25

21 28 23 52

. ( . ) .

. .

±












≤ ≤µ

The value 2.064 is the t-value from the t-table (Appendix B) for n − 1 
= 24 degrees of freedom and a/2 = 0.025
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The confidence interval using a normal distribution can be 
calculated using the formula here.

This interval is

The confidence interval using the t-distribution is usually wider. 
This happens because with smaller sample size, there is more uncer-
tainty involved.

x Z
n

±

±












α

σ

/

. . .

2

22 40 1 96 2 723
25

For a 95 percent confidence interval Z Z
α / . .2 0 025 1 96= =  from the 

Normal Table in Appendix A

21 33 23 47. .≤ ≤µ

Example 4.3

The average life of a sample of 36 tires of particular brand is 
38,000 miles. If it is known that the average lifetime of the tires is 
approximately normally distributed with a standard deviation of 3,600 
miles, construct 80 percent, 90 percent, 95 percent, and 99 percent 
confidence intervals for the average tire life. Compare and comment 
on the confidence interval estimates.
Solution: Note the following data:

n x= = =36 38 000 3 600           , ,σ

Since the sample size is large (n ≥ 30), and the population standard 
deviation σ  is known, the appropriate confidence interval formula is

x z
n

±
α

σ

/2
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The confidence intervals using the previous formula are shown 
subsequently.

(a) 80 percent confidence interval

(b) 90 percent confidence interval

(c) 95 percent confidence interval

(d) 99 percent confidence interval

Note that the z  values in the earlier confidence interval calculations 
are obtained from the normal table. Refer to the normal table for the 
values of z. Figure 4.6 shows the confidence intervals graphically.

Figure 4.6 shows that larger the confidence level, the wider is 
the length of the interval. This indicates that for a larger confidence 
interval, we gain confidence. There is higher chance that the true value 
of the parameter being estimated is contained in the interval but at the 
same time, we lose accuracy.

38 000 1 28 3 600
36

37 232 38 768

, . ,

, ,

±










≤ ≤µ

38 000 1 645 3 600
36

37 013 38 987

, . ,

, ,

±










≤ ≤µ

38 000 1 96 3 600
36

36 824 39 176

, . ,

, ,

±




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
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
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Figure 4.6  Effect of increasing the confidence level on the 
confidence interval

80% Confidence interval

90% Confidence interval

95% Confidence interval

99% Confidence interval

37,232 38,768

37,013 38,987

36,824 39,176

36,452 39,548

Example 4.4

During an election year, ABC news network reported that according to 
its poll, 48 percent voters were in favor of the democratic presidential 
candidate with a margin of error of ±3 percent. What does this mean? 
From this information, determine the sample size that was used in this 
study.
Solution: The polls conducted by the news media use a 95 percent 
confidence interval unless specified otherwise. Using a 95 percent 
confidence interval, the confidence interval for the proportion is 
given by

The sample proportion, p = 0 48. . Thus, the confidence interval can 
be given by

Since, the margin of error is ±3 percent, it follows

p
p p

n
±

−( )
1 96

1
.

0 48 1 96
0 48 1 0 48

. .
. .

±
−( )

n

1 96
0 48 1 0 48

0 03.
. .

.
−( )

=

n
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Squaring both sides and solving for n gives

Thus 1066 voters were polled.

n =1066

Example 4.5

A pressure seal used in an assembly must be able to withstand a 
maximum load of 6,000 pounds per square inch (psi) before bursting. 
If the average maximum load of a sample of seals taken from a shipment 
is less than 6,000 psi, then the quality control must reject the entire 
shipment. How large a sample is required if the quality engineer wishes 
to be 95 percent confident that the error in estimating this quantity is 
no more than 15 psi, or the probability that the sample mean differs 
from the population mean by no more than 15 psi is 0.95. From the 
past experience, it is known that the standard deviation for bursting 
pressures of this seal is 150 psi.
Solution: The sample size n can be calculated using

Since, Z Z
α / . .2 0 025 1 96= = , s = 150, and the error E = 15, the 

required sample size will be as follows:

n
z

E
=










α
σ/2

2

n =








 ≈

( . )1 96 150
15

385
2

Hypothesis Testing

A hypothesis is a statement about a population parameter. This statement 
may come from a claim made by a manufacturer, a mathematical model, 
a theory, design specifications, and so on. For example, an automobile 
manufacturer may claim that they have come up with a new fuel injection 
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system design that provides an improved average mileage of 50 miles a 
gallon. In such a case, we may want to test the claim by taking sample 
data. The claim can formally be written as a hypothesis testing problem, 
and can be tested using a hypothesis testing procedure. Several population 
parameters may be of interest. Sometimes we may be interested in testing 
the average or the mean. In other cases, we may be interested in testing a 
variance, a standard deviation, or a population proportion.

Many problems require us to decide whether or not a statement about 
some parameter is true or false. This statement about the population 
parameter is called a hypothesis.

Hypothesis testing is the decision-making procedure about a statement 
being true or false. The statement is about a population parameter of 
interest, such as, a population mean, population variance, or a population 
proportion. It involves making a decision about a population parameter 
based on the information contained in the sample data.

Hypothesis testing is one of the most useful aspects of statistical 
inference because many types of decision problems can be formulated as 
hypothesis testing problems.

In the chapters that follow, we will see that the control charts used in 
statistical process control are closely related to the hypothesis testing. The tests 
are also used in several quality control problems and form the basis of many 
of the statistical process techniques to be discussed in the coming chapters.

Example 4.6: Testing a Single Population  
Mean—An Example

An automobile manufacturer claims that their new hybrid model will 
provide 60 miles per gallon on the average because of an improved 
design. A consumer group wants to test whether this claim is correct. 
They would test a hypothesis stated formally as follows:

Here, H0 is known as the null hypothesis and H1 (also written 
Ha) is called the alternate hypothesis. The hypothesis written with 

H mpg
H mpg

0

1

60
60

:
:

m
m

=
≠
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an ‘equal to’ sign under the null hypothesis and a ‘not equal to’ sign 
under the alternate hypothesis is known as a two-sided or two-tailed 
test. A hypothesis can also be one-sided or one-tailed. The alternate 
hypothesis is opposite of the null hypothesis. To test the validity of 
previous claim:

•	 The consumer group would gather the sample data and 
calculate the sample mean, x

•	 Compare the difference between the hypothesized value of 
(m) and the value of the sample mean (x ).

•	 If the difference is small, there is a greater likelihood that 
the hypothesized value of the population mean is correct. 
If the difference is large, there is less likelihood that the 
claim about the population mean is correct.

In most cases, the difference between the hypothesized population 
parameter and the actual sample statistic is neither so large that we 
reject our hypothesis nor it is so small that we accept it. Thus, in 
hypothesis testing, clear cut solutions are not the rule.

Note that in hypothesis testing, the decision to reject or not to reject 
the hypothesis is based on a single sample and therefore, there is always a 
chance of not rejecting a hypothesis that is false, or rejecting a hypoth-
esis that is true. In fact, we always encounter two types of errors in 
hypothesis testing. These are:

Thus, the type I error, denoted by a Greek letter a (“alpha”) is the 
probability of rejecting a true null hypothesis and the type II error, 
denoted by a Greek letter b (“beta”) is the probability of not rejecting a 
null hypothesis when it is false. In a hypothesis testing situation there 
is always a possibility of making one of these errors.

Type I Error = a = P {Reject H0 H0 is true}

Type II Error = b = P {Fail to reject H0 H0 is false}� (4.16)

We also use another term known as the power of the test  
defined as

Power = 1 − b = P {Reject H0 H0 is false}
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What Does It Mean to Test a Hypothesis at a 5 Percent Level of 
Significance?

Suppose we want to test a hypothesis about a population mean and the 
sample size is large (n ≥ 30) so that the sample mean follows a normal 
distribution. If the level of significance a is set at 5 percent, it means that 
we will reject the null hypothesis if the difference between the sample 
statistic (in this case, x) and the hypothesized population mean m is so 
large that it would occur on the average only five or fewer times in every 
100 samples (see Figure 4.7). This figure shows that if the sample statistic 
falls in the ‘do not reject’ area, we will not reject the null hypothesis. On 
the other hand, if the sample value falls in the rejection areas, we will 
reject the null hypothesis. Rejecting the null hypothesis means that the 
alternate hypothesis is true.

From Figure 4.7, we can see that that by selecting a significance level 
α, the areas of rejection and nonrejection are determined. In other words, 
we set the boundaries that determine when to reject and when not to 
reject the null hypothesis.

The power of the test is the probability that a false null hypothesis is 
correctly rejected. The type I error, a is selected by the analyst. Increasing 
the type I error a will decrease the type II error b and decreasing the type 
I error will increase the type II error b. Thus, the type I error is controlled 
by the analyst and the type II error is determined based on the type I error. 
The type II error is a function of the sample size. The larger the sample size 
n, the smaller is the β .

The type I error a is also known as the level of significance. In 
hypothesis testing, we specify a value of the type I error or the level 
of significance and then design a test that will provide a small value of 
the type II error. Recall that the type I error is the probability of rejecting 
a true null hypothesis. Since we don’t want this to happen, a is set to a 
low value of 1 percent, 5 percent or 10 percent in general cases. If you 
set the value of a = 5 percent, it means that there is a 5 percent chance 
of making an incorrect decision, and a 95 percent chance of making 
a right decision. In a hypothesis testing, there is never a 100 percent 
chance of making a right decision because the test is based on one 
sample (large or small).
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Note that the value of α is selected by the analyst and it must be  
determined before you conduct the test. If we don’t have a significance level 
a, we don’t know when to reject and when not to reject a hypothesis.

In a hypothesis testing situation, there is always a possibility of making 
one of the two types of errors (that is, there is always a chance of rejecting 
a true null hypothesis; similarly there is always a chance of accepting a 
false null hypothesis). In a hypothesis testing, we must consider the cost 
and the risk involved in making a wrong decision. Also, we would like to 
minimize the chance of making either a type I or type II error, therefore, 
it is desirable to have the probabilities of both type I and type II error to be 
low.

In quality control, α is also known as producer’s risk because it denotes 
the probability of rejecting a good lot. The type II error β  is referred as 
the consumer’s risk as it indicates the probability of accepting a bad lot.

Testing a Single Population Mean

Testing a population mean involves testing a one-sided or a two-sided 
test. The hypothesis is stated as:

Figure 4.7 Rejection and nonrejection areas

No significant difference between x-bar
and m (do not reject ho)

95% of the area

Siginificant difference between x-bar and m
reject H0

0.025 0.025

H0 : m = m0

H1 : m ≠ m0

Two-tailed or  
Two-sided Test

H0 : m ≥ m0

H1 : m < m0

Left-tailed or  
Left-sided Test

H0 : m ≤ m0

H1 : m > m0

Right-tailed or  
Right-sided Test
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Note that m0 is the hypothesized value. There are three possible cases 
for testing the population mean. The test statistics or the formulas used to 
test the hypothesis are given here.
Case (1): Testing a single mean with known variance or known 
population standard deviation s and large sample: in this case, the 
sample mean x  follows a Normal distribution and the test statistic is 
given as follows:

Case (2): Testing a single mean with unknown variance or unknown pop-
ulation standard deviation s and large sample: in this case, the sample 
mean x  follows a Normal distribution and the test statistic is given by

Case (3): Testing a single mean with unknown variance or unknown pop-
ulation standard deviation s and small (n < 30) sample. In this case, the 
sample mean, x  follows a t-distribution and the test statistic is given by

Note that s is the sample standard deviation and n is the sample size.
There are different ways of testing a hypothesis. These will be illustrated 

with examples.

z
x

n
= − m

s � (4.17)
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Example 4.7

Examples: Formulating the Correct Hypothesis

A hypothesis test can be formulated as a one-sided or a two-sided 
test. If we have a one-sided test, it can be a left-sided or a right-sided 
test.
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Example of a Left-Sided Test

Suppose a tire manufacturer claims that the average mileage provided 
by a certain type of tire is at least 60,000 miles. A product research 
group has received some complains in the past and wants to check 
the claim. They are interested in testing whether the average mileage 
is below 60,000 miles. They would formulate their hypothesis as 
follows:

The hypothesis is formulated as shown earlier because the claim of 
at least 60,000 miles is m ≥ 60,000 and the opposite of this statement 
is m < 60,000 miles. Since the null hypothesis is written with an ‘equal 
to’ sign, and this is the claim made by the manufacturer, the statement 
m ≥ 60,000 is written under the null hypothesis, and the statement  
m < 60,000 is written under the alternate hypothesis.

Note that the alternate hypothesis is opposite of the null hypoth-
esis. This is an example of a left sided test. The left-sided test will 
reject the null hypothesis (H0) below a specified hypothesized value 
of m.

The alternate hypothesis is also known as the research hypothesis. If 
you are trying to establish certain hypothesis, then it should be written 
as the alternate hypothesis.

The statement about the null hypothesis contains the claim or the 
theory. Therefore, rejecting a null hypothesis is a strong statement. 
This is the reason that the conclusion of a hypothesis test is stated as 
reject the null hypothesis or do not reject the null hypothesis.

Example of a Right-Sided Test

A car manufacturer has made a significant improvement in the fuel 
injection system that is expected to provide an improved gas mileage. 
The average mileage before the modification was 24 miles or less. 
The research group expects that the modified system will provide 
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significant improvement in the gas mileage. The group would like to 
test the following hypothesis to show the improvement:

Example of a Two-Sided Test

A robot welder in an assembly line takes on average 1.5 minutes to 
finish a welding job. If the average time taken to finish the job is higher 
or lower than 1.5 minutes it will disrupt other activities along the 
production line. Since there has been too much variation in the time 
it takes to perform the welding job by the robot, the line supervisor 
wants to take a sample to check if the average time taken by the robot 
is significantly higher or lower than the average of 1.5 minutes. The 
supervisor would be testing the following hypothesis:

Example: A new production method will be implemented if a 
hypothesis test supports the conclusion that the new method results in 
reduced production cost per hour. If the current average operating cost 
per hour is $600 or more, write the appropriate hypothesis. Also, state 
and explain the type I and type II error in this situation.

a.	Write the appropriate null and alternate hypotheses.
The appropriate hypotheses to test the claim:

H
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600

:
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µ
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<

b.	State and explain the type I and type II error in this situation
Type I error: Reject H0 :µ  ≥ 600 and conclude that the average 

production cost is less than $600 (µ  < $600). Type II error would be to 
conclude that the average operating cost is at least $600 when it is not.
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Example 4.8

In a production line, automated machines are used to fill beverage 
cans with an average fill volume of 16 ounces. If the mean weight 
falls above or below this figure, the production line must be stopped 
and some remedial action be taken. A quality control inspector 
samples 30 cans every hour; opens and weighs the content, tests 
the appropriate hypothesis and makes a decision whether to shut 
down the line for making adjustments. Write the appropriate 
hypothesis to be tested in this situation and perform the hypothe-
sis test. A significance level of α = 0.05 is selected for the test. The 
sample results indicate a sample mean of 16.32 oz. and the standard 
deviation is assumed to be 0.8 oz.
Solution: For this problem, the given data are:

1.	State the null and alternate hypothesis

H
H

0

1

16
16

:
:
µ

µ

=

≠

Note that this is a two-sided test.
2.	Determine the sample size or use the given sample size.

The given sample size is n = 30 (large sample)
3.	Determine the appropriate level of significance (a) or use the given a.

The given level of significance, α  = 0.05
4.	Select the appropriate distribution and test statistic to perform the test

�The sample size is large and the population standard deviation 
is known, therefore, use normal distribution with the following 
test-statistic
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5.	Based on  step 3, find the critical value or values and the area or 
areas of rejection. Show the critical value(s) and the area or areas 
of rejection and nonrejection using a sketch

	� This is a two-sided test. The level of significance, α  = 0.05 must 
be split into two halves for a two-tailed test with each tail area 
0.025. The critical value (z -value) for an area of 0.475 is 1.96 
from the normal or z  table. The sketch is shown in Figure 4.8.

6.	Write the decision rule
Reject H0 if z  > 1.96

or,             if z  < −1.96
7.	Use the test data (sample data) and find the value of the test 

statistic.

8.	Find out if the value of the test statistic is in rejection or nonrejection 
region; make appropriate decision and state your conclusion in terms 
of the problem.

z  = 2.19 > Zcritical = 1.96 therefore, reject H0

�  There is an evidence of over filling or under filling. The line 
should be shut down.

Z
x

n
= − = − =m

s
16 32 16
0 8 30

2 19
.
.

.

Figure 4.8  Critical values for a two-sided test

Do not reject H0

0.475

0.025 0.025

0.475
Reject H0Reject H0

Zcritical = 1.960 Zcritical = 1.960
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Example 4.9: Testing the Hypothesis Using the 
P-Value Approach

In the z -value approach of testing the hypothesis, we compared the 
test statistic value to the critical value of z  to either reject or not 
to reject the hypothesis. For example, in the previous example, the 
critical value z  was ±1.96 and the test statistic value 2.19. Since the 
test statistic value of 2.19 is greater than the critical value of +1.96, we 
rejected the null hypothesis. In this method of testing the hypothesis, 
we compared the similar terms (test statistics value of z to the critical 
z value). This method of stating conclusion in the hypothesis test 
requires a predefined level of significance which may not tell if the 
computed test statistic value is barely in the rejection region or it is far 
into the region. In other words, the information may be inadequate 
sometimes.

To overcome this problem, another approach of testing the 
hypothesis is suggested which is widely used in testing hypothesis. 
This is known as p-value (probability value) approach. This method 
compares a probability to the given probability.

You may recall that to test a hypothesis you must have the level of 
significance α, which is decided by the analyst before conducting the 
test. This α is the same as the type I probability, and is often called the 
given level of significance. In a hypothesis testing situation, the type 
I probability is given or known. We then calculate the p-value or the 
probability based on the sample data. This is also the observed level of 
significance. We then compare the given level of significance α to the 
p-value (observed level of significance) to test and draw the conclusion 
about the hypothesis.

The p-value is the probability (assuming that the null hypothesis is true) 
of getting the value of the test statistic at least as extreme as, or more 
extreme than the value actually observed. The p-value is the smallest 
level of significance at which the null hypothesis can be rejected. A small 
p-value for example, p = 0.05 or less is a strong indicator that the null 
hypothesis is not true. The smaller is the value of p, the greater the 
chance that the null hypothesis is false.
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If the computed p-value is smaller than the given level of significance 
α, the null hypothesis H0 is rejected. If the p-value is greater than a 
then H0 is not rejected. For example, a p-value of 0.002 indicates that 
there is less chance that H0 is true, while a p-value of 0.2356 indicates 
a less likelihood of H0 being false. The p-value also provides us insight 
into the strength of the decision. This tells us how confident we are in 
rejecting the null hypothesis.

Example 4.10: Testing the Hypothesis  
Using P-Value Approach

We will test the hypothesis using p-value for the following two-sided 
test:
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The data for the problem: n = 50, x  = 14.2, s = 5, a = 0.02

First; using the appropriate test statistic formula, calculate the test 
statistic value.

This test statistic value of z  = −1.13 will be converted into a 
probability that we call p-value. This is shown in Figure 4.9.

Area corresponding to z  = 1.13 is 0.3708 (from z-table in 
Appendix A).

Probability of z  > 1.13 = 0.5 − 0.3708 = 0.1292
Probability of z  < −1.13 = 0.5 − 0.3708 = 0.1292
For a two-sided test, the p value is the sum of the earlier two values, 

that is, 0.1292 + 0.1292 = 0.2584. Since, p = 0.2584 > a = 0.02; do 
not reject H0.

Decision Rule for p-value approach

If p ≥ a, do not reject H0

If p < a; reject H0

Z
x
s n

= − = − = −m 14 2 15
5 50

1 13
.

.
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Figure 4.9  P-values for the example problem

0.37080.3708

Z = –1.33 Z = +1.33

p-value p-value

Hypothesis Testing Involving Two Population Means

This section extends the concepts of hypothesis testing to two populations. 
Here we are interested in testing two population means. For example, we 
may be interested in comparing the average salaries of male and female 
employees for the same job, or we may be interested in the difference 
between the average starting salaries of business and engineering majors. 
In these cases, we would like to test whether the two population means are 
equal or there is no difference between the two populations (two-sided test). 
In other cases, we may want to test if one population is larger or smaller than 
the other population (one-sided test). The hypothesis testing procedures 
or steps are very similar to those for testing the single mean but the data 
structure and the test statistics or the formulas to test these hypotheses are 
different. In testing hypothesis involving two populations, the samples will 
be drawn from both populations. The hypotheses tested are explained here.

Hypothesis Testing for the Equality of Two Means or the 
Differences Between Two Population Means

Basic Assumptions

The hypothesis for testing the two means can be a two-sided test or 
a one-sided test. The hypothesis is written in one of the following ways:

1.	The populations are independent
2.	The population variances are equal ( )σ σ1

2
2
2

=
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a.	Test if the two population means are equal or there is no difference 
between the two means: a two-sided test

b.	Test if one population mean is greater than the other: a right-sided test

c.	Test if one population mean is smaller than the other: a left-sided test

Since we want to study two population means, the sampling distribution 
of interest is the sampling distribution of the difference between the sample 
means ( )x x1 2−  and the test statistic is based on the information (data) we 
have. The following three cases and test statistics are used to test the means. 
To test two means, the test statistics are selected based on the following cases:

If the sample sizes n1 and n2 are large ( )≥ 30  and the population variances 
σ1

2  and σ2
2 are known, then the sampling distribution of the difference 

between the sample means follows a normal distribution and the test 
statistic is given by

where x x1 2,1 x x1 2, 2 = sample means from populations 1 and 2 respectively
n1, n2 = sample size of sample 1 and 2

H0 1 2: µ µ=  or H0 1 2 0: µ µ− =

 H1 :  m1 ≠ m2 or H1  :  m1 − m2 ≠ 0 � (4.20)

H0 1 2: µ µ≤  or H0 1 2 0: µ µ− ≤

H1 1 2: µ µ>  or H1 1 2 0: µ µ− > � (4.21)

H0 1 2: µ µ≥  or H0 1 2 0: µ µ− ≥

H1 1 2: µ µ<  or H1 1 2 0: µ µ− < � (4.22)

Case 1: Sample sizes n1 and n2 are large (≥ 30) and the population variances 
σ1

2 and σ2
2 are known
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σ σ1
2

2
2,, σ σ1

2
2
2,  = variances of first and second populations, respectively 

(known in this case)

If the sample sizes n1 and n2 are large ( )≥ 30 and the population variances 
σ1

2and σ2
2  are unknown, then the sampling distribution of the differ-

ence between the sample means follows a normal distribution and the test 
statistic is given by

where x x1 2,1 x x1 2, 2 = sample means from populations 1 and 2, respectively
n1, n2 = sample size of sample 1 and 2, respectively
s s1
2

2
2, s s1

2
2
2,  = sample variances of 1st and 2nd sample respectively

If the sample sizes n1 and n2 are small ( )< 30 and the population variances 
σ1

2 and σ2
2  are unknown, then the sampling distribution of the difference 

between the sample means follows a t-distribution and the test statistic is 
given by

where x x1 2,1 x x1 2, 2 = sample means from populations 1 and 2, respectively
n1, n2 = sample size of samples 1 and 2, respectively
s s1
2

2
2, s s1

2
2
2,  = �sample variances of first and second sample, respectively

Case 2: Sample sizes n1 and n2 are large (≥ 30) and the population variances 
σ1

2 and σ2
2 are unknown

			      

z
x x

s
n

s
n

=
− − −

+

( ) ( )1 2 1 2

1
2

1

2
2

2

µ µ

� (4.24)

Case 3: Sample sizes n1 and n2 are small (≥ 30) and the population variances 
σ1

2 and σ2
2 are unknown
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n1 + n2 − 2 = degrees of freedom (df )
s p
2 is the ‘pooled’ or combined variance, given by

Important Note

In Equations (4.20), (4.21), and (4.22) the difference ( )µ µ1 2− is 
zero in most cases. Also, these equations are valid under the following 
assumptions:

•	 The populations are independent and normally distributed
•	 The variances of the two populations are equal; that is  

(σ σ1
2

2
2

= )

The assumption that the two population variances are equal may not 
be correct. In cases where the variances are not equal, the test statistics 
formula for testing the difference between the two means is different.
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n s n s
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( ) ( ) � (4.26)

Example 4.11

Suppose that two independent random samples are taken from two 
processes with equal variances and we would like to test the null 
hypothesis that there is no difference between the means of two 
processes or the means of the two processes are equal; that is,

H0 1 2 0: µ µ− =   or  H0 1 2: µ µ=

H1 1 2 0: µ µ− ≠        H1 1 2: µ µ≠

The data from the two processes are given here:

Sample 1 Sample 2
n1 = 80 n2 = 70
x11 = 104 x22 = 106
s1 = 8.4 s2 = 7.6

α = 0.05
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Note that when n1, n2 are large and σ1, σ2 unknown, we use the 
normal distribution. The test statistic for this problem is

Solution: The test can be done using four methods which are explained 
here.

Method (1): z -Value Approach

Critical values: The critical values and the decision areas based on 
α = 0 05.  are shown in Figure 4.10.

Decision Rule:
Reject H0 if z  > 1.96

or if z  < −1.96
Test Statistic Value:

The test statistic value z, −1.53 > z critical = −1.96; do not reject H0.
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Figure 4.10  Critical values and decision areas
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Method (2): p-value Approach

Calculate the p-value and compare it to α . Note that in this method 
we compare a probability to a probability that is, we compare the 
given level of significance α  or the type I probability to the probability 
obtained from the data (or, the observed level of significance). The 
decision rule and the procedure is explained here.

Decision Rule:	 If p ≥α ; do not reject H0.
If p <α ; reject H0.

Calculating p-value: the p-value is calculated by converting the 
test-statistics value into a probability. In method (1), we calculated 
the test statistic value z . This value was −1.53 or, z  = −1.53. This test 
statistics value is converted to a probability (see the Figure 4.11).

In Figure 4.11, z  = 1.53 is the test statistic value from method 1.
From the standard normal table, z  = 1.53 corresponds to 0.4370. 

The p-value is calculated as shown here.
Probability of z  > 1.53 = 0.5 − 0.4370 = 0.0630
Probability of z  < −1.53 = 0.5 − 0.4370 = 0.0630
In a two-sided test such as, this one the p-value is obtained by 

adding the probabilities in both tails of the distribution. Thus,

p = + =0 0630 0 0630 0 1260. . .

Since p( . ) ( . )= > =0 1260 0 05α ; do not reject H0.

Figure 4.11  p-values

0.4370

Z = −1.53 Z = 1.53

0.4370

p-value
p-value
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Testing Two Means for Dependent (Related) Populations or 
Hypothesis Testing for Paired Samples (Paired t-Test)

In some situations, there may be a relationship between the data values of 
the samples of two populations and the data values or the sample values 
from one population may not be independent of the sample values from 
the other population. The two populations may be considered dependent 
in such cases.

In cases where the populations are considered related, the observations 
are paired to prevent other factors from inflating the estimate of the 
variance. This method is used to improve the precision of comparisons 
between means. The method of testing the difference between the two 
means when the populations are related is also known as matched sample 
test or the paired-test.

We are interested in testing a two-sided or a one-sided hypothesis for 
the difference between the two population means. The hypotheses can be 
written as

Note: the difference, d can be taken in any order; (sample 1 − sample 2) 
 or (sample 2 − sample1).

Test Statistic: If the pairs of data values X1n and X2n are related, and are 
not independent; the average of the differences ( d ) follows a t-distribu-
tion and the test statistic is given by
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N = number of observations (sample size)
t
n−1

2
,α  = critical t-value from the t-table for (n − 1) degrees of 

freedom and appropriate α
The confidence interval given here can also be used to test the 

hypothesis

d t
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2
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� (4.28)

Summary

In this chapter, we discussed three important topics that are critical to 
statistical process control. In particular, we studied sampling and sampling 
distribution, estimation and confidence intervals, and hypothesis testing. 
Samples are used to make inferences about the population and this can 
be done through sampling distribution. The probability distribution of a 
sample statistic is called its sampling distribution. We explained the central 
limit theorem and its role in analyzing and solving problems involving 
control charts. Besides sampling and sampling distribution, other key 
topics covered in this chapter included point and confidence interval 
estimates of means and proportions.

Two types of estimates used in inferential statistics were discussed. 
These are: (a) the point estimates, which are single-value estimates of the 
population parameter, and (b) the interval estimates or the confidence 
intervals, which are a range of numbers that contain the parameter with 
specified degree of confidence known as the confidence level. Confidence 
level is a probability attached to a confidence interval that provides 
the reliability of the estimate. In the discussion of estimation, we also 
discussed the standard error of the estimates, the margin of error, and the 
sample size determination.

We also discussed the concepts of hypothesis testing, which is directly 
related to the control charts in statistical process control. Hypothesis 
testing is one of the most useful aspects of statistical inference. We 
provided several examples on formulating and testing hypothesis about 
the population mean and population proportion. The tests are used in 



136	 MANAGING AND IMPROVING QUALITY

a number of quality control problems and form the basis of many of 
the statistical process control techniques to be discussed in the coming 
chapters.



CHAPTER 5

Process Variation—How It 
Affects Product Quality

Introduction

Variation reduction is one of the major objectives of a quality program. 
Therefore, measuring variation is critical to reducing variation in the 
products and processes. One of the common ways of measuring variation 
in the data is by calculating the variance and standard deviation. The Greek 
letter σ 2 (read as sigma-squared) represents the variance of a population 
data and σ  represents the standard deviation. The corresponding 
symbols for the variance and standard deviation of a sample data are  
s2  and s . The standard deviation σ  is a measure of spread or deviation 
around the mean. Larger the variation, more spread out the data is. Two 
or more sets of data may have the same average, but their spread or vari-
ability may be different. This is shown in Figure 5.1. It can be seen from 
this figure that the data sets A, B, and C have the same mean but different 
variation—curve C has less spread or variability than curve B and Curve 
A has the maximum variation of all the three curves.

Detecting Variation in the Processes

Before we can analyze and control variation in the processes, it is import-
ant to determine the variation and the patterns of variation. One of the 
tools commonly used to study and describe variation in the processes is 
to plot the quality characteristic or the measurements of key variable over 
time or create a time series plot. This plot is commonly known as a run 
chart. Run charts are very useful tool in describing and understanding the 
pattern of variation in processes.
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Measuring Process Variation: Run Charts

A run chart is used in quality to analyze the data either in the preliminary 
or development stage of a product. To be able to see the stability and 
capability of a process, plotting the data over time is very helpful. A run 
chart is a simple and helpful tool that can visually display stability and 
variation in the process over some time period. The chart is also used to 
identify a trend or a shift in the process. The run chart can be converted 
to a control chart by adding the control limits which we will study later 
in this chapter.

Before analyzing the variation in the data, it is important to under-
stand the types of variation. There are two typical causes of variations in 
a process. These are: (1) the random variation (also known as the common 
or natural causes of variation) and (2) the assignable or special causes of 
variation.

The natural variation is always present in a process. This is also known 
as the background noise. If the background noise is relatively small, it is 
considered an acceptable level of process performance. A system that is 
operating with only chance or natural causes of variation is said to be in 
a state of statistical control. The common causes of variation are inherent 
variations that may be attributed to humans, machines, methodology, 
and so on.

The second type of variation is known as the assignable or special cause of 
variation. The assignable cause means that a cause or causes can be assigned 
to a specific problem in the process. In manufacturing, the assignable 

Figure 5.1  Three sets of data with same mean but different variation
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causes may be due to wrong machine adjustments, defective raw material, 
calibration of measurement equipment, changes in the conditions within 
the machine, and so on. These can cause a shift in the process (upward 
or downward). This type of variation is greater than the chance variation 
or the background noise and may show recognizable patterns or trends in 
the run chart. This is unacceptable process performance. It is known as 
the assignable cause of variation because the variation can be related to a 
specific cause or causes. A process that shows patterns, trends, or shifts is 
operating in the presence of assignable cause and is usually out of control.

A run chart can be used to determine whether the process is running 
in a state of control, or whether special or assignable causes are influencing 
the process, thereby making the process out of control. As indicated 
earlier, the process is said to be in control if it is operating with only 
chance or random variations.

Figure 5.2 shows a run chart in which the weights of tea bags are 
monitored. The weights (in ounce) of the bags are plotted as they are 
packaged by a machine. A quality technician plots the weights in the 
order of production. The purpose of the plot is to monitor the varia-
tion in the quality characteristic (the weight of the tea bags). Recall that 
the run chart depicts graphically the variation in the process output over 
time and is also called a time series plot. A visual examination of the plot 

Figure 5.2  Run chart showing the weights of tea bags
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in Figure 5.2 gives us some idea about the variation in the weights of 
the bags. The plot shows the weights of 90 bags that are supposed to be 
2.4 ounces. The variation in the weights of the bags is evident from the 
plot. Although we can clearly see the variation in the weights, it is difficult 
to see any type of patterns (up or down) or oscillations (high and low).

To be able to see the variation in the weights and also the possible pat-
tern, the plot in Figure 5.2 can be further enhanced by joining the plotted 
points using straight lines and also by plotting the average or the mean of 
the weights on the plot. Figure 5.3 shows the resulting plot.

This run chart in Figure 5.3 conveys much more information com-
pared to the plot in Figure 5.2 that just showed the plotted points. We 
can see that the weights of the bags vary and are plotting up and down the 
center line, which is the mean weight. This type of variation is acceptable 
as long as it is within certain specified limit. Later on we will examine this 
type of plot in more depth and provide in depth analysis by adding other 
features in the plot that will enable us to monitor and control the weight 
of the product within acceptable limits.

The plot in Figure 5.3 shows the process variation that may be 
considered stable as the weights are fluctuating up and down the mean 
in a random fashion. The run charts can depict other types of patterns 
such as, an increasing or decreasing trend, a cyclical pattern, a shift in the 

Figure 5.3  Plot created by joining the points using straight lines and 
plotting the mean line in Figure 5.2
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process, or a sudden change in the variation of the process. These patterns 
provide useful information about the process and the variation in the 
process. Figures 5.4(a) to (f ) shows some possible patterns of variation.

The patterns shown in Figure 5.4(a) through (f ) are very helpful in 
studying and monitoring the process variation.

Characteristics of the Measured Output Variable

The run charts described in the Figure 5.4 plot the key quality char-
acteristic or the output variable that are helpful in understanding the 
variation in the process. They are also critical in finding the cause or 
the causes of these variations so that corrective actions can be taken 
to control the variation. Since the output variable is plotted in a time 
sequence, the measured variable can be described by a particular 
probability distribution at any given point in time. This probability 
distribution describes the possible values the variable can assume 
and the likelihood of their occurrence. Figure 5.5 shows the possible 
distributions of the measured output variable at different points in 
time. Note that the distribution of a particular output variable at any 
given time is generated based on the probability distribution of the 
first time period.

The distribution of the output variable described in Figure 5.5 
can change over time. The change may occur in three different ways. 
Over time, there may be a change in the mean or the location of the 
distribution. Also, the variance of the distribution may change resulting 
into change in the shape of the distribution or there may be a change in 
both the mean and the variance of the distribution. All these changes 

Figure 5.5  Distribution of the output variable at four points in time
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affect the process and must be monitored and controlled. Figure 5.6(a) 
to (c) describe these changes. A change in the distribution of the output 
variable is usually referred as a change in the process. Thus, a change in the 
mean of the output variable means a shift in the process mean.

Figure 5.6(a) shows how a change in the mean or location of the 
process may occur. The horizontal line on the graph is the mean of the 
process. It seems like there is an upward shift in the process mean. There 
can also be a downward shift. Figure 5.6(b) shows the change in the 
variability of the measured output variable. The larger variation at a given 
time is indicated by the larger spread in the distribution of the output 
variable being measured. Figure 5.6(c) shows a change in both the mean 
and the variation in the process output.

Note: In the previous illustrations, the distribution of the output 
variable is shown to be normally distributed. The distribution may also 
assume other forms and it may not always be normally distributed.

Describing the Patterns of Run Charts in  
Figure 5.4(a) through (f) in Terms of Distributions

The run charts in Figure 5.4(a) to (f ) showed some of the possible patterns 
in the process output. These patterns were helpful in understanding the 

Figure 5.6  Possible changes over time in the measured output 
variable (a) Change in the mean of the measured variable, (b) Change 
in the variance of the measured variable, and (c) Change in the mean 
and variance of the measured variable
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behavior of the quality characteristic being measured. The plots in this 
figure were time series plots showing the behavior of the output variable 
over time. Sometimes it may be helpful to see the patterns in terms of 
the distribution they might represent. We usually don’t plot the distribu-
tion while studying the patterns of the output variable; we simply create 
a time series plots as in Figure 5.4(a) to (f ). Figure 5.7 shows the run 
charts of Figure 5.4(a) to (f ) in form of distributions. These plots help us 
understand the possible distributions and the patterns at different points 
in time.

The change in the behavior of the process output may occur as a result 
of changing conditions over time. For example, an upward or downward 
trend (Figure 5.7(a) and (c)) in the measured output is an indication of 
the change in the process mean. Consider a manufacturing process where 
a cutting tool is used to machine a rod to certain diameter. If the cutting 
tool gets dull over time or the set parameters of the machine change over 
a long period of use, it may affect the output variable resulting into a 
gradual change.

A shift in the process as shown in Figure 5.7(b) is an indication 
that the process mean has shifted. This type of shift can be up or down 
showing a change in the mean but not necessarily a change in the pro-
cess variance. The shift may be caused due to improper training of the 
operators performing certain jobs. Other reasons may include a change in 
the raw material quality, inexperienced operator or equipment.

The process output shown in Figure 5.7(d) shows a relatively constant 
mean and a constant variance over time. This is an indication of a con-
stant process and this is the most desirable case.

A gradual increase in the process variance as shown in Figure 5.7(e) 
is usually caused by the operator fatigue in a manufacturing process or a 
worker performing repetitive job over a long period of time. Examples 
may be order processing, typing, or preparing orders to customer 
specifications.

A situation shown in Figure 5.7(f ) is an indication of sudden change 
in the process. This may be caused by a damaged or breakage of the cutting 
tool in a machining operation of the manufacturing process. Figure 5.7(g) 
shows a cyclical pattern that may be caused due to continuous upward 
and downward shift in the process.
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A change in the process output over time in one or more ways as 
shown in Figure 5.7 is not desirable. These changes make the process out 
of control. It is critical to maintain the stability in the process output. 
For the process to be stable, the distribution of the process output should 
not change over time. If the output of the process does not change over 
time we say that the process is stable and is in control. On the other 
hand, if the process output changes over time, we say that the process is 
out of control. Figure 5.8(a) shows a stable process or a process that is in 
statistical control. Figure 5.8(b) shows an out of control process.

When a process is in control, it will produce products within the 
desired limits or in other words, it will produce acceptable products. 
A controlled process is stable and its behavior can be predicted over time. 
It means that the future outcomes of the process are expected to repeat the 
past. In a process that is out of control, the future outcomes of the process 
are unpredictable. An out of control process will produce products that 
do not meet the specification requirements. They do not meet the quality 
standards, and will deliver inferior quality products or services. As indi-
cated earlier, poor quality products may result into high costs and will 
make it difficult for the company to stay competitive.

Figure 5.7  Patterns showing variation in the process (a) Upward 
trend, (b) Shift in the process, (c) A downward trend in the process, 
(d) A stable process, (e) A process showing increase in variance, 
(f) Sudden change in the process output, and (g) A cyclical pattern
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The next chapter introduces control charts—a tool that is designed 
to detect and control the processes by identifying and eliminating the 
out-of-control conditions by taking appropriate actions. Monitoring 
the process using control charts and eliminating the cause or causes of 
problems in the process brings the process under control. This helps 
to reduce variation resulting into a stable process that is capable of 
producing quality products. One of the major objectives of the control 
chart is to reduce the variation in the process. The process of detecting 
and eliminating the causes of out-of-control conditions and reducing or 
eliminating the variation using control charts is called statistical process 
control.

Summary

This chapter explained the variation and their effects on the product 
quality. Variation is inherent part of any process. No two products are 
exactly the same. There is always some amount of variation present. If 
the variation is within certain limit, it does not affect the product quality.

We studied two main types of variations in a processes: (1) the random 
variation (also known as the common or natural causes of variation), and 
(2) the assignable or special causes of variation. The natural variation is 
always present in a process. This is also known as the background noise. 
If the background noise is relatively small, it is considered an acceptable 

Figure 5.8 (a)  A stable process or a process in control, (b) An out- 
of-control process
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level of process performance. A system that is operating with only chance 
or natural causes of variation is said to be in a state of statistical control.

The second type of variation is known as the assignable or special 
cause of variation. The assignable cause means that a cause or causes can 
be assigned to a specific problem in the process. These are unacceptable 
process performance. These can cause a shift in the process (upward or 
downward). This type of variation is greater than the chance variation 
or the background noise and may show recognizable patterns or trends. 
A process that shows patterns, trends, or shifts is operating in the presence 
of assignable cause and is usually out of control. Run charts are the tools 
used to measure variation. They help us see visually the patterns, shifts, or 
trends in a process. We presented several examples with cases that helped 
us understand the variation.

When a process is in control (running with only natural variation), 
it will produce products within the desired limits or in other words, it 
will produce acceptable products. A controlled process is stable and its 
behavior can be predicted over time. It means that the future outcomes 
of the process are expected to repeat the past. In a process that is out of 
control, the future outcomes of the process are unpredictable. An out of 
control process will produce products that do not meet the specification 
requirements. They do not meet the quality standards and will deliver 
inferior quality products or services. As indicated earlier, poor quality 
products may result into high costs and will make it difficult for the 
company to stay competitive.





CHAPTER 6

Control Charts: 
Fundamentals and Concepts

Introduction

In the previous chapter, we studied the run charts that helped us describe 
the changes in the process output and also the variation. Just as the run 
chart is a time series plot that plots the process variable over time, a 
control chart is a modified form of a run chart with control limits added 
on the run charts. A control chart is one of the tools used to monitor and 
control a process and systematically reduce process variability. Systematic 
variation reduction in product and process quality characteristics leads to 
better product or service performance, better perceived quality by custom-
ers, and eventually enhanced competitive position and improved market 
share. Since the control charts are used to study the variation in a process, 
an understanding of types of variations is important to understand the 
control charts. These patterns of variation were described in Figures 5.4 
and 5.7 in the previous chapter. As explained earlier, variations can be 
divided into two broad categories commonly known as the chance or 
random causes of variation and assignable cause of variation.

Chance and Assignable Causes of Process Variation

All processes exhibit variation. In any process, a certain amount of 
inherent or natural variability is always present. There are some varia-
tions that we can control (controllable) and others that we cannot control 
(uncontrollable). The natural variability is known as chance (or common) 
causes of variation. These variations are due to unavoidable causes and they 
are difficult to detect and usually difficult to control. A process running 
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under only the chance (or, common causes of variation) is said to be in state 
of statistical control. Thus the variations are identified as:

•	 Random variation: These are chance or uncontrollable 
variation.

•	 Nonrandom variation: These are assignable causes of variation 
and have causes that can be identified.

In the presence of large variations in the products, the parts will not fit 
correctly, products will not function properly, and the product reliability 
will be affected.

A process with random variation is said to have common causes of 
variation, whereas a nonrandom variation has special causes of variation that 
can be attributed to the process. Control charts are designed to signal or detect 
nonrandom (special causes) of variation.

The random variation is centered around the mean and occurs with 
consistent amount of dispersion. This type of variation is natural variation 
and is difficult to control (referred to as uncontrolled variation).

Nonrandom (or special cause) variations are known as assignable 
causes of variation. The cause may be a shift in the process mean or some 
unexpected occurrence. Figure 6.1 shows a process that is running with 
only chance causes of variation.

Figure 6.2 shows a process that is running under assignable causes of 
variation.

The assignable or nonrandom variation occurs with nonconsistent 
amount of dispersion and makes the process out of control. In a control 
chart, control limits are established to control the process. These limits 

Figure 6.1  A process running with only chance causes of variation
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are known as the lower control limit (LCL) and the upper control limit 
(UCL). The LCL and UCL are a specific distance from a center line (CL). 
The CL represents the mean of the process or the mean of the quality 
characteristic being measured. These control limits will be discussed in 
detail later. The quality characteristic to be controlled may be a variable or 
an attribute. Some examples of variables are the diameter of rod, length, 
assembly time, lead time, or other such variable. A quality characteristic, 
such as, the number of defects produced by a production process is an 
example of attribute data.

In a control chart, if the quality characteristic of interest plots within 
the control limits (LCL and UCL) and certain requirements are met, the 
process producing the product is said to be under statistical control.

Control Charts

A control chart is a graphical display of an output variable or a qual-
ity characteristic of interest that plots the variation in that quality 
characteristic. Such quality characteristic may be the weight of food 
cans or diameter of shafts that needs to be controlled. Such quality 
characteristics are known as variables and the chart designed to study the 
variables is known as variables control chart. If the quality characteristic 
to be controlled is the mean or the average of the output variable, the 

Figure 6.2  A process running with assignable causes of variation
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chart is known as the control chart for the mean or the x-bar chart. In this 
chart, the mean of the quality characteristic is calculated using a sample 
of certain size and is plotted on the y-axis, whereas the time or the sample 
number is plotted on the x-axis. The points in the plot are connected 
using straight lines that make it easier to visualize the pattern evolving 
over time. Figure 6.3 shows an example of a typical variable control chart.

The control chart in Figure 6.3 contains a center line (CL) and two 
horizontal lines labeled UCL and LCL. The CL represents the mean of the 
quality characteristic being measured. The CL is calculated when the pro-
cess is in control. The two control limits are equally spaced from the CL 
and are positioned in such a way that when the process is in control, all 
the sample points will fall between these two limits. If the sample points 
(e.g., the average of the quality characteristic calculated using a sample 
of certain size) fall between the control limits, we say that the process 
is in control. However, when the sample point plots above or below the 
control limits, it is an indication of out-of-control condition. In such 
cases, the process must be investigated to find the cause or causes of out- 
of-control condition and corrective action be taken to bring the process in 
control. An out-of-control condition on a control chart is an indication 
that assignable cause or causes are making the process go out of control.

A control chart displays both the natural and unnatural variations 
which are known as common and special causes of variation, respectively. 
The control chart distinguishes between these two variations. The common 
causes of variation are inherent variations that occur naturally in the process 
and are expected. These variations can be attributed to humans, machines, 
materials, or methods. Special causes of variation are not inherent to the 

Figure 6.3  An example of a typical control chart
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process. These variations can usually be attributed to some cause (assignable 
cause of variation) and must be corrected once they are identified. Usually, 
an assignable cause of variation leads to one or more data points falling 
outside of the control limits on the control chart. These variations reflect a 
range of unexpected variability. Thus the total variation in a process is the 
sum of common cause and special cause variation (see the following figure).

+
Total variation
in the process

Common cause
variation

Special cause
variation

If the common cause variation is small, the control chart is used to 
monitor and improve the process over time. However, if the common cause 
variation is large, the cause or causes should be investigated to improve 
the process. Some of the reasons of large common cause variations may 
be worn out or old machines and equipment that warrants replacement to 
further improve the process. Figure 6.4 shows the regions of the common 
and special causes of variation in a control chart.

Statistical Basis of Control Charts

It is important to note that even if all the sample points are plotting within 
the UCL and LCL, the process still may be out of control. The points on 

Figure 6.4  A control chart showing common and special causes of 
variation
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the control charts must plot in a random manner and must meet certain 
conditions before we can say that the process is actually in control. For 
example, if nine of the plotted points in a row are above the CL but below 
the UCL or above the LCL, it may be an indication that the process is 
becoming unstable. Similarly, if 14 of the plotted points alternate up or 
down the CL, it is an indication that something is wrong. A number of 
points plotting above or below the CL in a sequence are an indication 
of nonrandom pattern and out of control condition. Removing these 
conditions may improve the process performance. We will study more 
out-of-control conditions in the analysis part of the control charts.

Figure 6.5 shows the statistical basis of control charts and how the 
control chart works. It shows the importance of sampling and sampling 
theory. The concepts of sampling, sampling distribution and the central 
limit theorem play an important role in the design, construction, and 
analysis of control charts. Note that the variation of individual items is 
always more than the variation of samples of more than one item. There-
fore, we always use a sample of certain size (n = 5 or n = 10). The averages 
or the means of these samples are plotted on the control chart if the mean 
is the quality characteristic of interest (see Figure 6.5).

Three-Sigma Limits in Control Charts

It is a common practice to position the UCL and LCL at three standard 
deviations from the CL. These limits are commonly known as three-sigma 

Figure 6.5  Statistical basis of control chart
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control limits and are calculated when the process is in control. The basic 
assumption for the three-sigma limits is that the process follows a normal 
distribution. In a control chart with three-sigma control limits following 
a normal distribution, the probability of a point falling outside of the 
control limits is 0.0027 or 0.27 percent or less than three chances in 1,000 
(assuming that the process is in control). This can be directly derived from 
the property of normal distribution and empirical rule we studied earlier. 
Figure 6.6 shows a control chart with three-sigma control limits.

Figure 6.7 shows the probability of a point falling outside of a 
control limit. Note that if the process follows a normal distribution 
then the three-sigma limits contain 99.73 percent of the points falling 

Figure 6.6  A control chart with 3-sigma control limits
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Figure 6.7  Probability of a point falling beyond control limits
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within the UCL and LCL and 0.27 percent outside of the control 
limits. Thus the points falling above and below the control limits are 
0.135 percent.

Relationship Between  
Control Chart and Hypothesis Testing

In Chapter 4, we studied the hypothesis testing procedures where we 
conducted hypothesis tests to make inference about population parameter 
or parameters using the information in the sample data. In this section, 
we will see that there is a close relationship between the hypothesis testing 
and control charts. Using the control charts, we can make inference about 
the process. The null and alternate hypothesis for a control chart can 
be stated in terms of whether the process under investigation is under 
control or not. The null and alternate hypotheses for a control chart can 
be written as:

H0 : The process is in control.
H1 : The process is not in control.

These hypotheses can be tested each time we plot a point on the 
control chart. If a point plots within the control limits, we fail to reject 
the null hypothesis and conclude that the process is under control. On 
the other hand, a point plotting outside of the control limits would lead 
to a conclusion that the process is out of control. The control limits are 
analogous to the critical values in the hypothesis testing.

Recall that in a hypothesis test, there is always a possibility of making 
one of the two types of errors—type I and type II errors. Type I error  
(α ) is the probability of rejecting a true null hypothesis, whereas a type II 
error (β ) is failing to reject a null hypothesis when it is false.

In a control chart situation, the probability of a type I error can be 
defined as concluding that the process is out of control when in fact, it 
is in control. Similarly, the probability of type II error for the control 
chart would be to conclude that the process is in control when it is out 
of control. Earlier we noted that the probability of a point falling outside 
of the control limits in a control chart with three-sigma control limits is 
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0.0027 or 0.27 percent. This is the type I error probability for this control 
chart.

The plot of type II errors for a control chart is known as an operating 
characteristic curve or the OC curve. This plot is helpful in detecting the 
process shifts of different magnitudes of a control chart.

Types of Control Charts

Control charts can be divided into two main categories: (1) control charts 
for variables and (2) control charts for attributes.

•	 A variable is a continuous measurement such as weight, 
height, length, volume, diameter, and so on.

•	 An attribute is an either-or situation: a product is defective or 
not. Attributes are also good or bad, pass or fail, and so on.

Table 6.1 shows the major variables and attribute control charts. 
These charts are described separately in the control phase of Six Sigma.

In control charts, type I error occurs when we conclude that an assignable 
cause of variation is present when in fact, a chance cause of variation is 
present. This means that in a control chart with three standard deviations 
limits ( 3σ  limits), type I error will occur 0.27 percent (or, 3 out of 1000) 
of the time that is, if a point is outside the control limits and we conclude 
that the out of control condition is due to assignable cause when it is in 
fact, due to chance cause will occur 0.27 percent of the time. One of main 
reasons of using the three-sigma control limits in the control charts is the 
small type I error associated with the use of three-sigma limits. The other 
advantage is that the three-sigma limits yields very small false-alarm 
signals.

A type II error occurs when we conclude that a chance cause of 
variation is present when in fact, an assignable cause is present. This means 
that a point is inside the control limits and we conclude that it is due to 
the chance cause when it is due to assignable cause then a type II error is 
present.
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Table 6.1  Types of variables and attribute control charts

Variables control chart Attributes control charts

x  (mean or average) p (proportion defective)

R (range) np (number of defective or 
nonconforming)

MR (moving range) c (number of nonconforming in a sample 
space)

s (standard deviation) u (number of defects per unit)

I Chart (control chart for individuals)

Example 6.1: Control Chart for Individual 
Measurements

In this example, we demonstrate the construction of a simple control 
chart. This chart is known as the chart for individual measurements. 
Consider the data in Table 6.2. This data shows 36 measurements on 
the weight (in ounce) of certain beverage container. A control chart 
is to be designed to monitor and control the weight of the beverage 
containers. Using the following data, calculate the mean and standard 
deviation of the sample of n = 36 measurements. Use the calculated 
statistics to construct the three-sigma control limits and construct the 
chart for the individual measurements. What conclusion you can draw 
about this process?
Solution:
Using all the 36 measurements, the descriptive statistics were calculated 
using a computer package. The values are shown here.

Descriptive Statistics of Weight

Variable N N* Mean SE Mean St Dev Minimum Q1

Weight 36 0 67.928 0.0836 0.501 67.093 67.608

Median Q3 Variable Maximum

67.944 68.262 Weight 69.362
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The mean and the standard deviation of the sample of n = 36 from 
the previous table are:

x
s
=

=

67 928
0 501

.
.

 

Taking the earlier sample values as the estimates for the population 
mean µ  and standard deviation σ , the CL and the three-sigma UCL and 
LCL for the control chart are calculated. The CL is the average of all the 36 
measurements which is x = 67 928. . The UCL and LCL for the charts are:

x s

x s

+ = + =

− = − =

3 67 928 3 0 501 69 408

3 67 928 3 0 501 66 447

. ( . ) .

. ( . ) .

Once the CL and the control limits are established, the individual 
values of 36 sample weights are plotted on the chart. Each small solid 
circle on the chart represents an individual value. The control chart is 
shown in Figure 6.8.

The control chart shows that none of points are plotting above 
or below the UCL and LCL. Also, the plotted points appear to be 

Table 6.2 Weight (in ounce) of 36 beverage containers (in order 
they were filled)

Order Weight Order Weight Order Weight
1 67.7963 13 67.8872 25 67.9746

2 67.2499 14 67.4696 26 68.1972

3 67.6538 15 67.9127 27 68

4 67.2936 16 67.7269 28 68.1909

5 68.2796 17 67.6046 29 67.693

6 69.3617 18 68.1529 30 67.3818

7 68.4466 19 68.7936 31 68.0504

8 68.2075 20 67.1496 32 68.3517

9 68.069 21 68.1597 33 68.3711

10 67.2628 22 67.7104 34 67.1913

11 67.8139 23 68.4184 35 67.0927

12 68.373 24 67.6169 36 68.4856
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randomly distributed above and below the CL. There is no obvious 
visible pattern displayed by the plotted points that is, there is no sign 
of these points showing a trend, cyclical, or nonrandom pattern. Recall 
that with each plotted point, the control chart tests the null hypothesis 
that the process is in control. For our example, we fail to reject the 
null hypothesis that the process is in control. Therefore; based on this 
sample data we can conclude the process is in control.

Figure 6.8  Control chart for individual measurements
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Summary

A control chart is one of the tools used to monitor and control a process and 
systematically reduce process variability. Systematic variation reduction 
in product and process quality characteristics leads to better product or 
service performance, better perceived quality by customers, and eventu-
ally enhanced competitive position and improved market share. In this 
chapter, we provided control chart fundamentals and how the control 
charts works. We explained the common and special causes of variation 
related to control charts. The other topics critical to understanding the 
control charts are the statistical basis behind them and the three-sigma 
limits on the control charts. These topics were discussed in detail. We 
also explained the relationship between the control charts and hypothesis 
testing, and different types of control charts used in monitoring and 
improving quality.



CHAPTER 7

Control Charts for Variables

Introduction

In this chapter, we discuss a very widely used control chart—the control 
chart for monitoring the mean and variation of a variable that is to be 
controlled. This chart is used to study the variations that occur in the 
mean or central tendency and dispersion in a process data. The control 
chart for monitoring the mean is referred to as the x  (x-bar) chart and is 
used to monitor the variation in the process mean by plotting the average 
value of samples of certain size. Another chart that is used to monitor and 
study the variation in the process is known as the R chart or the control 
chart for range. In practice, both the x  and R chart are used in conjunc-
tion and are the most widely used charts in industry. Used together, the 
charts are used to monitor and control the process. The x  chart is used to 
determine whether a process has gone out of control because of a shift in 
the process mean. The R chart tells us whether the out of control condi-
tion has occurred because of the change in the variation in the process. 
Recall that out of control conditions may occur because of a change in 
the mean or a change in the variance of the process or both. We will first 
provide an example of x  chart. The example is intended to provide an 
understanding and working of the x  chart.

Example 7.1: Control Chart for Monitoring the 
Process Mean—the x Chart

In the previous chapter, we discussed the construction and working of 
individual value control chart. The chart demonstrated the variation 
in the individual measurements of a variable and also showed if there 
was a shift in the process mean.

In this section, we explain the x  chart. As outlined earlier, the x  
chart is used when the average or the mean of a quality characteristic is 
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of interest. The chart is used to monitor and detect whether the mean 
of the process has shifted. The difference between the individual value 
chart and the x  chart is that the x  chart or chart for the process mean 
uses the mean or the average of the samples drawn from a process 
rather than the individual measurements. Thus the x  chart plots the 
sample means. In this example we will:

a.	Discuss the general structure of the control chart for the mean 
or x  chart with the center line (CL) and upper and lower control 
limits. Show the general form of the x  chart with the UCL, LCL, 
and the CL for the chart and explain how the sampling distribu-
tion of x  is used in determining the mean and standard deviation 
of x . Explain how the chart of averages differs from the chart of 
individual values in the previous chapter.

b.	Discuss the role of Central Limit Theorem in describing the 
sampling distribution of the sample mean (x).

c.	Discuss the advantage of taking samples of certain size and 
plotting the sample average rather than plotting the individual 
values to monitor the mean of the process.

a. General structure of the control chart for the mean or x chart
	� In a control chart for the mean or the x  chart, the data contains k  

samples or subgroups of certain size rather than individual mea-
surements. The mean of each sample is computed and plotted on 
the chart. These means are computed by averaging the values in 
each sample. Since the chart plots the means (x) of each sample, the 
standard deviation for computing the control limits is not the stan-
dard deviation (σ ) of individual observation, but it is the standard 
deviation of x  referred to as σ x.

	�   The rationale for using σ x
 in computing the control limits for 

the x  chart follows from the properties of sampling and sampling 
distribution. Note that the control chart for the average tracks the 
variation in the sample mean (x). It follows from the sampling the-
ory that the distribution of x  of the sample means for a sample size 
of four or more (n ≥ 4) follows a normal distribution with mean µ  
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and standard deviation sx .This is true even if the samples are drawn 
from a non-normal population. Since s sx n= / , the three-sigma 
UCL and LCL are given using the following expressions:

This is graphically shown in Figure 7.1.
b. �Role of Central Limit Theorem in describing the sampling 

distribution of the sample mean (x)
	� The sampling distribution of the sample mean in the x  chart can be 

explained using the Central Limit Theorem discussed in Chapter 4. 
This theorem states that as the sample size increases, the distribution 
of the sample mean x  approaches a normal distribution. For a large 
sample (n ≥ 30), the sampling distribution of x  will be approxi-
mately normally distributed with mean µ  and standard deviation 
σ x. Even for small sample sizes of four or five, the sampling dis-
tribution of the sample mean x  can be approximated by a normal 
distribution. This is why we can use the normal distribution in 
determining the control limits for the x  chart.
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Figure 7.1  The general form of x control chart
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c. �Plotting the sample average rather than plotting the individual 
values
	�Sample averages are used in the x  control chart rather than 
individual values because the average values indicate a change in the 
variation much faster. The chart becomes more sensitive by plotting 
and tracking the sample means compared to the individual values. 
Also, with a sample size of two or more (n ≥ 2), a measure of varia-
tion can be obtained for a sample.

Developing Control Charts for Monitoring the Mean 
and Variation of a Process: The x and R Chart

This section outlines the procedure and steps to develop the control charts 
for the mean and dispersion or the variation—the x  and R  chart. These 
are the control charts for variable. The following are the steps to develop 
these charts:

1.	Select the quality characteristic of interest
2.	Select the samples or subgroups and the sample size n for the chart 

and the frequency with which the samples are to be drawn from the 
process

3.	Collect the data for the charts
4.	Establish the CL and the control limits for the charts
5.	Implement the chart
6.	Revise the CLs and control limits if necessary

Selecting the Quality Characteristic for the Chart

The quality characteristic for the x  and R  charts is a variable that is 
measurable and can be expressed in numbers. The selected quality charac-
teristic should be the one that directly affects the product quality. In case 
of manufacturing, the selected quality characteristic may be one or more 
of the basic units of length, mass, time, temperature, volume, diameter, 
energy, density, or pressure. The variables are often selected based on the 
production problems or cost. These variables affect the product quality 
and contribute to the cost of poor quality. However, one should be careful 
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in selecting the variables to control. Usually, a number of variables are 
involved in manufacturing a product. In such cases, the selection of the 
right quality characteristics or variables is critical. It is a waste of effort 
and uneconomical to control a large number of variables using the x  and 
R  charts.

Selecting the Sample Size (n) or Subgroups for the Charts

The charts for variables are a function of the sample size. This means that 
the sensitivity of the chart is affected by the size of the sample. Therefore, 
selecting the right sample size and also the frequency of the sampling 
(how often the samples will be drawn from the process, for example every 
hour, or twice in a shift) is critical.

The samples are groups of items that are plotted on the control chart. 
These groups or samples are often called rational subgroups. Note that the 
x  chart monitors the subgroup variability, or variability, over time while 
the R chart measures the variability within subgroups, or the process 
variability, at a given time.

In rational subgroups, the size and the frequency of samples are selected 
in such a way that the samples will have a minimum variation within a 
subgroup and a maximum variation between subgroups.

In a rational subgroup scheme, the variation within the subgroup 
is only due to chance causes. This within subgroup variation is used to 
establish the control limits. The variation between subgroups, on the 
other hand, is used to determine the long-term stability of the control 
charts. Two methods are used to select the subgroups:

(a) Instant-Time Method and (b) Period-of-Time Method

In the instant-time method the subgroups are selected from the products 
produced at one instant of time. For example, five consecutive parts 
produced by a machine, or five parts from a lot of recently produced 
products. The next subgroup would be five consecutive parts at a different 
time instant—may be one hour later. This scheme of subgroup selection will 
have a minimum variation within a subgroup and a maximum variation 
between subgroups.
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In the period-of-time method, the subgroups are selected from the 
products produced over a period of time so that they are representative 
of all the products in that time period. Suppose a quality technician is 
responsible for selecting subgroups of samples from a production process. 
He visits the production line every hour. For his first subgroup, he 
randomly selects a subgroup of five products produced in the previous 
hour. He then selects another subgroup of five from the products produced 
between the visits. The period-of-time method of subgroup selection will 
have a maximum variation within a subgroup and minimum variation 
between subgroups.

Out of the previous two methods, the instant-time method of 
subgroup selection is most commonly used. One of the major objectives 
of x  chart is to quickly detect the assignable or special causes of variation. 
The instant-of-time scheme of subgrouping provides a particular time 
reference for determining the assignable causes of variation. It provides 
the measures of changes in the process average that is sensitive to the 
anticipated causes of variation.

Sample Size or Subgroup Size (n)

In selecting the subgroup size, the following should be noted:

a.	The sample size is inversely proportional to the width of the control 
limits in the control chart. This means that as the sample or subgroup 
size increases, the control limits get closer to the CL. As a result, 
the control chart becomes more sensitive to small variations in the 
process average.

b.	For x  and R  chart, at least 20 samples or subgroups of size two or 
more (n ≥ 2) are needed.

c.	Sample size of n = 4 to n = 10 are usually used in developing the 
control chart. A sample size of n = 5 is very commonly used. Note 
that the sample size also depends on the type of product.

d.	For expensive products or where destructive testing is involved a 
small sample of size n = 2 or n = 3 can be used as it will minimize the 
destruction of expensive products.
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e.	Larger subgroup sizes make the control chart more sensitive to 
the small changes in the process average but increases the cost of 
inspection per subgroup. There has to be a tradeoff between the 
increased sensitivity and the cost of inspection due to larger subgroup 
size.

f.	For the sample size of four or more (n ≥ 4), the distribution of the 
sample means x  follows a normal distribution. This property is 
the statistical basis of the control charts and is used in constructing 
the CL and control limits.

g.	For subgroup sizes of more than 10 (n >10), x  and s  charts (control 
charts for the mean and standard deviation) should be used instead 
of x  and R charts (control charts for the mean and range).

h.	The x  chart should be able to detect the shift in the process quickly. 
The sample size plays a great role in detecting the shift in the process. 
If the purpose of the chart is to detect moderate-to-large shifts in the 
process (a shift of 2σ or larger), a sample size of n = 4 to n = 6 should 
be used. If it is required to detect smaller shifts in the process, larger 
sample size (n = 15 to n = 25) is needed.

Collect the Data

To collect the data for the x  and R charts, a form similar to the one shown 
in Table 7.1 can be used. The data consists of k  samples or subgroups 
each of size n. The following form shows that samples of size n = 5 are 
collected. This means that each sample will have five measurements or 
observations. The data are recorded in the ‘Measurements’ column of 
Table 7.1. Since the x  chart plots the average of the subgroups, the aver-
age x  for each of the k samples is calculated and recorded in the ‘Average’ 
column. Also, the range for each sample is calculated and recorded in the 
‘Range’ column. The sample range, R, is used to estimate the standard 
deviation and to develop the R chart. Additional columns such as, date, 
time, and a comment column may be added to the data collection form 
to include additional details.
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Determine the Control Limits for x  and R Charts

To develop the control limits for the x  and R charts, we will use the infor-
mation in Table 7.2. This table shows the general format of the data for 
x  and R charts. Column (1) shows number of samples, 1, 2, … , k for a 
quality characteristic for which the charts are to be developed. Columns 
(2) through (6) show the n number of observations for each sample. For 
example, if each sample is of size five then n = 5. Column (7) shows 
the mean of each sample (or subgroup) and the range for each sample is 
calculated and stored in column (8).

Centerline and Control Limits for x  Chart

The centerline and the control limits for the x  chart are calculated as 
shown. All calculations refer to Table 7.2.
Centerline: The CL or the mean of the process:

where x  = the average of sample averages (read as ‘x double bar’)
x i = average of the ith sample
k = number of samples

Table 7.1  Data collection form for the x and R chart

Sample 
no. Date Time

Measurements
Average

x
Range

R Commentx1  x2  x3  x4  x5

1

2
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:
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k

	 CL: x
x

k
x x x
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k
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=

∑
1 1 2 ... � (7.2)
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The UCL and LCL are determined using the following expressions:

where, σ = process standard deviation, and
n = sample size

In Equations (7.3) and (7.4), the process standard deviation s is 
usually unknown and must be estimated before the control limits can be 
computed. This can be done in several ways including: (1) estimate the 
standard deviation by calculating the standard deviation of each of the 
k samples and find the average of these k standard deviations to get an 
overall estimate of s, (2) use the standard deviation calculated from large 
samples previously generated for this process, that is, use the historical 

Table 7.2  Data format for x and R charts

Measurements

(1) (2) (3) (4) (5) (6) (7) (8)

Sample 
number X1 X2 X3 Xn

Sample 
mean (x i)

Range
(Ri)

1 x1 x2 x3 …  xn x 1
R1

2 x1 x2 x3 …  xn x 2 R2 

3 x1 x2 x3 …  xn x 3 R3 

4 x1  x2 x3 …  xn x 4 R4 

: x1  x2 x3 …  xn : :

: x1  x2 x3 …  xn : :

: x1  x2 x3 …  xn : :

: x1 x2 x3 … xn : :

k x1 x2 x3 … xn x k RK  

x R

	 Upper control limit, UCL: x
n

+
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data generated earlier when the process was in control to estimate the 
standard deviation, and (3) estimate the standard deviation using average 
of range method or R  method to estimate the process standard deviation 
s. The third approach is the most common and used by the industry. 
This approach requires calculating the range R (where R = difference 
between the maximum and minimum values in the sample) of each of the 
k samples and calculating the average of the ranges of k samples denoted 
by R . The calculations to estimate the process standard deviation is as 
follows:

First, calculate the average of the ranges for the k samples:

where Ri = range of sample i,
R  = average of sample ranges
k = number of samples

It can be shown that dividing R  in Equation (7.5) by a constant d2, 

provides an unbiased estimator for σ. The estimated σ, written as σ̂  can 

be given by

σ̂ =
R
d2

The constant d2 depends on the sample size n and its value can be 
obtained for different sample sizes (usually for n = 2 to n = 25) from 
the table of Constants for Control Chart in the appendix. Substituting 
the value of σ̂ , in Equations (7.3) and (7.4) we get

	 UCL = x

R
d

n
+

























3 2 	 and	 LCL = x

R
d

n
−

























3 2

or,	 UCL = x
R

d n
+











3
2

	 and	 LCL = x
d n

R−













3

2

R
R

k
R R R

k

k
i

k

k= =
+ + +=

∑
1 1 2 ... � (7.5)
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The earlier equations can be written as:

UCL = x
d n

R+













3

2
     and     LCL = x

R
d n

−











3
2

� (7.6)

The factor 3 2/ d n  is an estimator of σ x and is denoted by A2. Thus

A
d n2

2

3
=

Therefore, Equation (7.6) can be written as:

where the value of A2 can be obtained from the table of Constants for 
Control Chart in Appendix C.

UCL = x A R+ 2      and     LCL = x A R− 2 � (7.7)

1.	Obtain k samples of size two or more (n ≥ 2) where the number 
of samples, k is at least 20 (k ≥ 20).

2.	Set up a table similar to Table 7.2 and record your observations. 
Use this table as a guide for reference.

3.	Calculate the mean (x i) and the range Ri for each of the samples 
or subgroups (i = 1, 2, …, k).

4.	Calculate the mean of the sample means, x  and the mean of the 
sample ranges, R

	

x
x

k
x x x

k

i

ki

k

= =
+ + +

=

∑
1 1 2 ...

	 and,	 R
R

k
R R R

k

k
i

k

k
= =

+ + +
=

∑
1 1 2 ...

where x  = the average of sample averages (read as ‘x double bar’)
x i = average of the ith sample
k = number of samples

Summary of the Steps for the x Chart
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Ri = range of sample i,
R  = average of sample ranges

5.	Determine the UCL and LCL using:

UCL x A R= + 2

LCL x A R= − 2

�where the value of A2 can be obtained from the table of Constants 
for Control Chart in the appendix.

6.	Plot the means of each of the k samples in the order the samples 
were obtained (i = 1, 2,…, k)

Note: In practice, the necessary calculations and the x  chart are  
developed using a computer package. We will provide computer 
details later.

The R-Chart—Control Chart for Monitoring the 
Variation in a Process

While the x  chart is used to monitor and detect the shift in the mean 
of a process, the R chart is used to study and detect the variation in the 
process. The process can be brought under control by detecting and 
eliminating the causes of shift in the mean and variance of the process. 
Recall that the control charts are used to detect the assignable cause or 
causes of variation. The process can get out of control if the mean of the 
process shifts or the variance changes over time, or both the process mean 
and variance change.

In this section, we will study the R chart—the control chart for 
monitoring the variation in a process. In practice, the x  and R charts are 
constructed together and the R chart is interpreted before the x  chart. We 
will demonstrate the applications of both the charts simultaneously using 
an example. Before we do that, we will present the underlying principles 
behind the R chart, its general structure, and the control limits.

In the R chart, we monitor the variation in the process by plotting 
the sample ranges. The range for each of the sample is calculated and 
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plotted on the R chart (see Table 7.3, column 8). The other chart used 
for monitoring the variation in the process is known as the s-chart (the 
control chart for the standard deviation). In case of the s-chart, we 
calculate the standard deviation of each sample or subgroup and plot the 
sample standard deviation on the chart. The s-chart is preferred when 
the subgroup size is 10 or more (n ≥ 10). For smaller sample size (n ≤ 9), 
the R chart is as effective as the s-chart. The R chart is used more widely 
compared to the s-chart because the sample range is much easier to calcu-
late compared to the sample standard deviation.

Centerline and Control Limits for R Chart

The calculations of the centerline and the control limits for the R chart 
have the same logic as that of the x  chart we developed earlier. The three-
sigma limits for the x  were developed by calculating the CL denoted by x  
(the mean of the sample means) and the control limits by calculating the 
standard deviation of x  or σ x. In a similar way, the CL for the R chart is 
calculated by taking the average of the ranges denoted by R  of the samples 
and the control limits are calculated by calculating the standard deviation 
of R denoted by σR.

The CL for the R chart is calculated as shown here (see Table 7.2 for 
the data format of the chart).

R
R

k
R R R

k

k
i

k

k
= =

+ + +
=

∑
1 1 2 ...

where R1, R2, …, Rk are the range of each of the sample i = 1, 2, …, k, R  is 
the average of sample ranges. Note that R  is an estimate of µR. Figure 7.2  
shows the general form of CL and the control limits for the R chart.

Note: Each solid circle represents the range R for a sample or subgroup 
(see Table 7.2).

In practice, the control limits for the R chart, ±3σR  is calculated 
using an estimator for σR. This estimator is given by
	

σ̂R d
R
d

=










3
2

� (7.8)
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where d2 and d3 are the constants whose values depend on the size of 
the sample. These values can be obtained from the table of Constants for 
Control Chart in Appendix C. Using Equation (7.8) the UCL and LCL 
for the R charts can be calculated as:

	
UCL R R d

R
dR= + = +











3 3 3
2

σ̂ � (7.9)

	
LCL R R d

R
dR= − = −











3 3 3
2

σ̂ � (7.10)

Factoring out R from Equation (7.9),

	
UCL R R d

R
d

R
d

d
RDR= + = +











 = +










 =3 3 1
3

3
2

3

2
4σ

^ � (7.11)

Similarly, Equation (7.10) can be written as

	
LCL R R d

R
d

R
d

d
RDR= − = −


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




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
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
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 =3 3 1
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3
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3

2
3σ̂ � (7.12)

Thus the UCL and LCL for the R chart can be given as:

Figure 7.2  The general from of the R chart
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	 UCL RD= 4	 and	 LCL RD= 3� (7.13)



	 CONTROL CHARTS FOR VARIABLES	 181

In Equations (7.13):

	 D
d

d4
3

2
1

3
= +










 	 and	 D
d

d3
3

2
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3
= −












The values of D3 and D4 can be obtained from the table of Constants 
for Control Chart in the appendix.

Note: The value of D3 is negative for the samples of size n = 2 through 
n = 6. This will result into the LCL value for the R chart to be below zero. 
Since the sample range cannot take negative values, the negative control 
limit is meaningless. Therefore, the D3 values for samples of size n = 2 
through n = 6 in the Constants for Control Chart in the appendix are zero. 
Thus the lower control limit for the R chart for n ≤ 6 is zero or LCL = 0.

Summary of Steps for R Chart

1.	Obtain k samples of size two or more (n ≥ 2) where the number 
of samples, k is at least 20 (k ≥ 20).

2.	Set up a table similar to Table 7.2 and record your observations.
Refer to Table 7.2 for the explanation of calculations here.

3.	Calculate the range Ri for each of the samples or subgroups (i = 
1, 2, …, k).

4.	Calculate the mean of the sample ranges, R using

	
R

R

k
R R R

k

k
i

k

k
= =

+ + +
=

∑
1 1 2 ...

where k = number of samples
Ri = range of sample i,
R  = average of sample ranges

5.	Determine the UCL and LCL using:

CL = R

UCL RD= 4

LCL RD= 3

�  The values of D3 and D4 can be obtained from the table of 
Constants for Control Chart for a given sample size in the appendix.
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6.	Plot the ranges of each of the k sample in the order the samples 
were obtained (i = 1, 2, …, k)

Note: In practice, the necessary calculations for the R chart is developed 
using a computer package. In the next example, we provide manual 
calculations.

Example 7.2: Constructing and Analyzing Control 
Charts for Variables (x and R charts)

In this example, we will demonstrate the construction and application 
of x  and R charts. Consider the data in Table 7.3. This data shows 
20 samples or subgroups each of size five drawn from a process that 
manufactures shafts. The quality inspector visits the process and takes 
a sample of five consecutive cans. He then visits the process every hour 
thereafter and takes a sample of five cans till he has 20 samples. The 
samples show the weight of the cans in ounces. The variable of interest 
is the average amount of fill weight. Table 7.3 column (1) shows the 
sample number. Columns (2) through (6) show the five measurements 
for each sample (each sample is of size five that is, n = 5). Column 
(7) shows the mean of each of the 20 samples and the range for each 
sample is calculated and recorded in column (8).

a.	Construct x  chart for the data in Table 7.3.
b.	Construct R chart for the data in Table 7.3.
c.	What conclusions can be drawn from the x  and R charts?

Constructing the x  chart requires that we calculate the means 
of each of the 20 samples in Table 7.3. Then we calculate the mean 
of these sample means (x) which is the CL for the x  chart. Finally, 
we calculate the UCL and LCL. All these calculations can be easily 
performed using a computer. Here we provide the manual calculations 
that will help us understand the calculations in the chart and also to 
interpret the computer generated control charts.

Refer to Table 7.3 that shows 20 samples or subgroups (k = 20 
subgroups) each of size five or (n = 5). That is, each sample contains 



	 CONTROL CHARTS FOR VARIABLES	 183

the measurements of finished products. The samples are shown in 
columns (2) through (6) of Table 7.3. Once the data are obtained, 
the next step is to calculate the mean of each of the 20 sample means 
and sample ranges. The mean and the range for the first sample can be 
calculated as shown here.

x 1

75 045 75 017 75 034 75 007 75 023
5

75 0252=
+ + + +

=
. . . . . .

Table 7.3 Twenty samples each of size n = 5 (measured in mm)

(1) (2) (3) (4) (5) (6) (7) (8)

Sample 
number

Sample 
mean  
(x i)

Range
(Ri)

1 75.045 75.017 75.034 75.007 75.023 75.0252 0.038

2 75.010 75.007 75.016 75.026 75.019 75.0156 0.019

3 75.003 75.039 75.036 75.020 75.017 75.0230 0.036

4 75.017 75.011 75.008 75.030 75.020 75.0172 0.022

5 75.007 75.022 75.030 75.004 75.029 75.0184 0.026

6 75.024 75.009 75.012 75.000 75.008 75.0106 0.024

7 75.010 75.021 75.009 75.015 75.020 75.0150 0.012

8 75.000 75.018 75.008 75.030 75.003 75.0118 0.030

9 75.023 75.010 75.024 75.020 75.019 75.0192 0.014

10 75.013 75.015 75.005 75.022 75.010 75.0130 0.017

11 75.009 75.013 75.009 75.010 75.005 75.0092 0.008

12 75.019 75.015 75.022 75.015 75.011 75.0164 0.011

13 74.998 75.017 75.013 75.012 75.027 75.0134 0.029

14 75.021 74.982 75.009 75.015 74.999 75.0052 0.039

15 75.027 75.029 75.013 75.014 75.022 75.0210 0.016

16 75.015 74.999 75.02 75.013 75.011 75.0116 0.021

17 75.009 75.027 75.001 75.020 75.022 75.0158 0.026

18 75.021 75.025 75.033 75.018 75.015 75.0224 0.018

19 74.999 75.017 75.018 75.020 75.012 75.0132 0.021

20 75.015 75.025 75.028 75.035 75.018 75.0242 0.020

x = 75 0161. R = 0 02235.
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R1 75 045 75 007 0 038= − =. . .

The mean and the range of remaining samples are calculated in a 
similar way. The means (x i) and ranges (Ri) of the rest of the samples 
are shown in columns (7) and (8). Next, we calculated the mean of 
the sample means (x) and the mean of the sample ranges ( R ). These 
calculations are demonstrated here.

x

R

=
+ + +

=

=
+ + +

75 0252 75 0156 75 0242
20

75 0161

0 038 0 019 0

. . ... . .

. . ... .. .020
20

0 02235=

The above values are shown in the last row of Table 7.3.
Centerline and Control Limits for x  Chart
The CL of the chart is given by x . The control limits for the x  chart 
are given by Equation (7.7). This equation requires the value of the 
constant A2 that can be obtained from the table of Constants for Control 
Chart in the appendix.

For n = 5, the value of A2 is 0.577 or A2 = 0.577. Using this value 
the UCL and LCL are

UCL x A R= + = + =2 75 0161 0 577 0 02235 75 0289. . ( . ) .

LCL x A R= − = − =2 75 0161 0 577 0 02235 75 0032. . ( . ) .

The x  control chart is shown in Figure 7.3.
Constructing the R chart requires that we calculate the range of 

each of the 20 samples in Table 7.3. Then we calculate the mean of 
these sample ranges ( R ), which is the CL for the R chart. Finally, we 
calculate the UCL and LCL. The manual calculations for the centerline 
and control limits are provided here.

Refer to Table 7.3 containing 20 samples or subgroups (k = 20 
subgroups) each of size five or (n = 5). The range for the first sample is

R1 75 045 75 007 0 038= − =. . .

The range of remaining samples is calculated in a similar way. 
The ranges (Ri) of the rest of the samples is shown in column (8) 
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of Table  7.3. Next, we calculate the mean of the sample ranges  
( R ) as:

R =
+ + +

=
0 038 0 019 0 020

20
0 02235. . ... . .

Centerline and Control Limits for R Chart
Determine the UCL and LCL using:

UCL = RD4

LCL = RD3

The values of D3 and D4 can be obtained from the table of 
Constants for Control Chart in the appendix. For n = 5, these values are:  
D3 = 0.000 and D4 2 114= . . Using R = 0 02235.  and the values of D3 
and D4

UCL = = =RD4 0 02235 2 114 0 0472. ( . ) .

LCL = = =RD3 0 02235 0 000 0. ( . )

The R chart is shown in Figure 7.4.
In practice, both the x  and R control charts are constructed 

together and the R chart is interpreted first. Recall that the R control 

Figure 7.3  The x  control chart of the data in Table 7.3
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chart is used to monitor the variability in the process and the x  chart 
should be constructed only when the process variation is stable. If the 
process variation is not stable and the R chart is not in control, the 
control limits of the x  chart are meaningless. This is because the limits 
of the x  are the functions of the process variation. Figure 7.5 shows the 
x  and R control charts together.

From the x  and R control charts, we can see that all the plotted 
points on both the charts are within the UCL and LCL. Therefore, 
we could conclude that the process is under control. However, more 

Figure 7.4  The R control chart of the data in Table 7.3
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Figure 7.5  The x  and R control chart of the data in Table 7.3
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extensive tests are required before we can conclude with certainty  
that the process is under control. These tests determine the presence  
of nonrandom variation in the chart.

A process may be out-of-control even when all the points 
plot within the control limits. This may be due to the presence 
of unnatural runs of variation present in the process that make it 
out-of-control. Specific tests are performed to detect this pattern 
of unnatural variation. These tests are explained in the next section 
under Interpreting the Control Charts.

Interpreting the Control Charts

The control charts are used to determine whether the process is in control 
or out of control. Before we draw any conclusion whether the process is 
in control or not, we need to understand what is meant by state of control; 
that is, what conditions must be met before we can conclude that the 
process is control. Similarly, what conditions lead us to conclude that  
the process is out of control? We discuss here the conditions required for 
the processes to be in control and out of control.

Process in Control

The following conditions are necessary before we can conclude that the 
process is in a state of control:

1.	When all the plotted points in the control chart are within the 
control limits, it usually is an indication that the assignable causes 
have been eliminated from the process and the process is in the state 
of control.

2.	When the process is in control, there exists a natural pattern of 
variation in the plotted points on the chart. This natural pattern of  
variation can be identified by these three conditions: (1) approximately  
34 percent of the plotted points lie between one standard devia-
tion on both sides of the CL, (2) approximately 13.5 percent of the 
plotted points lie between one and two standard deviations on either 
side of the CL, and (3) approximately 2.5 percent of the plotted 



188	 MANAGING AND IMPROVING QUALITY

points lie between two and three standard deviations on both sides 
of the CL.* The previous pattern of variation is illustrated using the 
control chart in Figure 7.6.

Why It Is Important to Have a Process in Control?

Process Out-of-Control

A process is considered out-of-control when one or more points (the average 
of the sample values) plots outside of the control limits. An out-of-control 
condition is an indication that the assignable cause is present indicating a 
change in the process. An out-of-control process is not stable. The unstable 
and assignable causes of variation make it difficult to predict the future 
behavior of the process. Most out-of-control processes affect the quality 
of the products and services. When the cause or the causes of assignable 
causes are found and eliminated, a process attains a stable state.

*  The percentage refers to the imaginary band. In practice, the bands are usually 
not plotted.

Figure 7.6  Pattern of variation in control chart when the process is 
in control

LCL

34.0%

13.5%

2.5%

UCL

X (Center line)

When the process is in control, only chance causes of variation are present, 
and the assignable causes of variation have been eliminated from the 
process.
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The runs of variation of the plotted points on the control chart 
provide information about the process being in control or out-of-control. 
To identify the runs and interpret the control chart to determine whether 
the process is out-of-control, it is usually helpful to divide the chart 
in six zones. This is shown in Figure 7.7. The figure shows a x  control 
chart divided into six zones where each zone is one standard deviation 
wide. These zones are labeled A, B, and C zones. The regions within one 
standard deviation of CL (x) are called Zone C; the regions between one 
and two standard deviations from the CL are called Zone B; whereas, the 
regions between two and three standard deviations from the CL are called 
Zone A.

Figure 7.8 shows six tests—tests (1) to (6) check various out-of-control 
conditions in control charts. Figure 7.8, test (1) shows a point plotting 
above the UCL and a point plotting below the LCL. These are indication 
of the presence of assignable causes that must be corrected. In the control 
charts labeled tests (2) through test (5) of Figure 7.8, the plotted points 

Usually an out-of-control process is identified by the points plotting outside 
of the control limits, but a process can also be considered out-of-control 
even when all the points fall inside the control limits. In cases where all the 
points are plotting inside the control limits, there may be unnatural runs 
of variation present in the process that make it out-of-control.

Figure 7.7  The x  control chart divided into six zones (StDev = 
Standard deviation)
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are inside the control limits but these processes are still out-of-control. 
The reason or reasons these processes are considered out-of-control is that 
the plotted points show the presence of unnatural or nonrandom pattern 
of variation that have not gone beyond the control limits.

The plots in Figure 7.8 refer to the pattern-analysis of control charts. 
The patterns are summarized in Table 7.4.

Computer programs such as, MINITAB has the option of auto-
matically performing the pattern-analysis in control charts. Table 7.5 
summarizes the pattern analysis performed by MINITAB. It shows the 
tests performed by the software for special causes in a control chart.

Table 7.4  Summary of the patterns in Figure 7.8

Test (1) One point beyond zone (A) or outside the upper or lower control limit

Test (2) Six points in a row steadily increasing or decreasing

Test (3) Four out of five points in zone B or beyond

Test (4) Two out of three points in a row in zone A

Test (5) Seven points in a row in zone C or beyond

Test (6) Fourteen points in a row alternating up and down.

Table 7.5  MINITAB* tests for special causes in a control chart

Test for 
special cause K
1. 1 point > K standard deviations from CL 3

2. K points in a row on same side of CL 9

3. K points in a row, all increasing or all decreasing 6

4. K points in a row, alternating up or down 14

5. K out of k + 1 points > 2 standard deviations from the CL 
(same side)

2

6. K out of k + 1 points > 1 standard deviation from the CL 
(same side)

4

7. K points in a row within one standard deviation of CL 
(same side)

15

8. K points in a row within one standard deviation from CL 
(either side)

8

*  MINITAB Statistical Software.
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Note that the pattern analysis or the tests for special causes performed 
by MINITAB are easier to understand and implement because the tests 
do not require the chart to be divided into different zones as shown in 
Figure 7.8.

Example 7.3: Constructing and Analyzing a  
Control Chart

The data in Table 7.6 shows 25 samples each of size five from a 
manufacturing process that produces a certain type of shaft. The 
quality characteristic of interest is the diameter of the machined shaft.

a.	Construct a x  chart for the data in Table 7.6.
b.	Construct a R chart for the data in Table 7.6.
c.	Construct the x  and R charts using one plot. Why is it important 

to analyze the R chart before the x  chart?
d.	From the x  and R chart, can we conclude that the process is stable 

and in control?

Solution: Note the following for the data in Table 7.6:

•	 The quality characteristic (diameter) is a variable
•	 Each row shows a subgroup of size five (n = 5)
•	 There are 25 samples each of size five
•	 To calculate the CL and the UCL and LCL for the x  

control chart, the mean of each sample was calculated and 
recorded in column (7) of Table 7.6.

•	 For the R chart, the range of each sample is calculated. 
These are shown in column (8) of Table 7.6.

•	 The mean of all sample means (x = 80 0256. ) is the CL and
•	 the average of the ranges is R = 0 02252.  (see Table 7.6).

Before we construct the x  chart, we explain the calculations of the 
centerline and the control limits for this chart.



	 CONTROL CHARTS FOR VARIABLES	 195

Centerline and Control Limits for x  Chart

The CL of the chart is given by x . The calculations for the control 
limits for the x  chart are described here. This equation requires the 
value of constant A2 that can be obtained from the table of Constants 
for Control Chart in the appendix.

For n = 5, the value of A2 is 0.577 or A2 = 0.577. Also,

Using this value the UCL and LCL are

UCL x A R= + = + =2 80 0256 0 577 0 02252 80 03859. . ( . ) .

LCL x A R= − = − =2 80 0256 0 577 0 02252 80 01260. . ( . ) .

The x  control chart is shown in Figure 7.9.

Centerline and Control Limits for R Chart

The CL for the R chart is given by R. For our example, R = 0 02252.
Determine the UCL and LCL using:

UCL RD= 4

LCL RD= 3

The values of D3 and D4 can be obtained from the table of 
Constants for Control Chart in the appendix. For n = 5, these values are:  
D3 = 0.000 and D4 2 114= . . Using R = 0 02252.  and the values of D3 

and D4

UCL RD= = =4 0 02252 2 114 0 0476. ( . ) .

LCL RD= = =3 0 02235 0 000 0. ( . )

x
xi

= = =
∑

25
80 0256 0 02252. . and R
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The R chart is shown in Figure 7.10.
Figure 7.11 shows both the x  and R charts in one plot. In practice, 

both the x  and R control charts are constructed together and the R 

Table 7.6  Twenty five samples of size n = 5 from a shaft 
manufacturing process

(1) (2) (3) (4) (5) (6) (7) (8)

Sample 
number

Sample 
mean
(x i)

Range
(Ri)

1 80.056 80.028 80.045 80.018 80.034 80.036 0.038

2 80.011 80.018 80.017 80.017 80.020 80.017 0.009

3 80.014 80.050 80.047 80.031 80.028 80.034 0.036

4 80.028 80.022 80.019 80.041 80.031 80.028 0.022

5 80.018 80.033 80.041 80.015 80.040 80.029 0.026

6 80.035 80.020 80.023 80.011 80.019 80.022 0.024

7 80.021 80.032 80.020 80.026 80.031 80.026 0.012

8 80.011 80.029 80.019 80.041 80.014 80.023 0.030

9 80.034 80.021 80.035 80.031 80.030 80.030 0.014

10 80.024 80.026 80.016 80.033 80.021 80.024 0.017

11 80.020 80.024 80.020 80.021 80.016 80.020 0.008

12 80.030 80.026 80.033 80.026 80.022 80.027 0.011

13 80.009 80.028 80.024 80.023 80.038 80.024 0.029

14 80.032 79.993 80.020 80.026 80.010 80.016 0.039

15 80.038 80.040 80.024 80.025 80.033 80.032 0.016

16 80.026 80.010 80.031 80.024 80.022 80.023 0.021

17 80.020 80.038 80.012 80.031 80.033 80.027 0.026

18 80.032 80.036 80.044 80.029 80.026 80.033 0.018

19 80.010 80.028 80.029 80.031 80.023 80.024 0.021

20 80.026 80.036 80.039 80.046 80.029 80.035 0.020

21 80.014 80.017 80.015 80.021 80.012 80.016 0.009

22 80.020 80.025 80.016 80.012 80.035 80.022 0.023

23 80.016 80.005 80.006 80.035 80.030 80.018 0.030

24 80.041 80.034 80.019 80.026 80.036 80.031 0.022

25 80.008 80.001 80.021 80.043 80.039 80.022 0.042

x = 80 0256. R = 0 02252.
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chart is interpreted first. Since the R control chart is used to moni-
tor the variability in the process, the x  chart should be constructed 
only when the process variation is stable. If the process variation is not 
stable and the R chart is not in control, the control limits of the x  chart 
have no meaning because the limits of the x  chart are the functions of 
the process variation.

The x  and R charts in Figure 7.11 show that all the points plot 
within the control limits indicating no out of control conditions. 
As indicated earlier, it is not enough for the sample points to plot 
within the control limits for the process to be in control. Even if all the 
points fall within the control limits, there may be nonrandom pattern 
of variation that must be identified before we can conclude that the 
process in fact, is in control.

Figure 7.9  The x control chart of the shaft manufacturing process
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Figure 7.10  The R control chart of the shaft diameter
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To identify these nonrandom patterns of variation, tests 1 through 6 
in Figure 7.8 are applied. Referring to Figure 7.8, we see that to apply 
these rules, we need to divide the control chart in A, B, and C zones 
where each zone is one standard deviation wide and are as labeled A, 
B, and C zones. The regions within one standard deviation of CL (x)  
are called Zone C; the regions between 1 and 2 standard deviations 
from the CL are called Zone B, whereas the regions between 2 and 3 
standard deviations from the CL are called Zone A (see Figure 7.8). 
The zone boundaries can be calculated using the expression here:

x k

R
d

n
±

























2

where x = =80 0256 0 02252. , . R , d2 is a constant that depends on 
the sample size. For our example, d2 = 2.326 for n = 5 from the 
table of Constants for Control Chart in the appendix. In the previous 
expression, k is the standard deviation. Setting k = 1, 2, 3 the zone 
boundaries that are 1, 2, and 3 standard deviations from the CL can 
be calculated. Statistical software such as MINITAB can be used to 

Figure 7.11  X-bar and R chart of the shaft diameter
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calculate the zone boundaries. Figure 7.12 shows the x  chart with the 
zone boundaries.

The x  chart with the zone boundaries in Figure 7.12 was compared 
to the six patterns in Figure 7.8. A careful examination revealed no 
out-of-control conditions. All the points are within the control limits 
and there appears to be no nonrandom variation in the control chart. 
Therefore, we can conclude that this process is in control.

Figure 7.12  The x  chart of the shaft diameter with zone 
boundaries

X-bar chart of shaft diameter showing different zones
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Example 7.4: Monitoring the Continued Process

The process in the Example 7.3 continued and 15 new samples of size 
n = 5 were collected. Table 7.7 shows the additional samples along with 
the sample means and ranges. Recall that the quality characteristic of 
interest is the diameter of a machined shaft.

a.	Construct a R chart for the data in Table 7.7.
b.	Construct a x  chart for the data in Table 7.7.
c.	Construct the x  and R charts using one plot. Why is it important 

to analyze the R chart before the x  chart?
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d.	From the, x  and R chart, can we conclude that the process is still 
stable and in control?

Table 7.7  Additional samples from the process

Sample

Sample 
mean  
(x i)

Range  
(Ri)

1 80.056 80.028 80.045 80.018 80.034 80.036 0.038

2 80.011 80.018 80.017 80.017 80.02 80.017 0.009

3 80.014 80.05 80.047 80.031 80.028 80.034 0.036

4 80.028 80.022 80.019 80.041 80.031 80.028 0.022

5 80.018 80.033 80.041 80.015 80.04 80.029 0.026

6 80.035 80.02 80.023 80.011 80.019 80.022 0.024

7 80.021 80.032 80.02 80.026 80.031 80.026 0.012

8 80.011 80.029 80.019 80.041 80.014 80.023 0.030

9 80.034 80.021 80.035 80.031 80.03 80.030 0.014

10 80.024 80.026 80.016 80.033 80.021 80.024 0.017

11 80.02 80.024 80.02 80.021 80.016 80.020 0.008

12 80.03 80.026 80.033 80.026 80.022 80.027 0.011

13 80.009 80.028 80.024 80.023 80.038 80.024 0.029

14 80.032 79.993 80.02 80.026 80.01 80.016 0.039

15 80.038 80.04 80.024 80.025 80.033 80.032 0.016

16 80.026 80.01 80.031 80.024 80.022 80.023 0.021

17 80.02 80.038 80.012 80.031 80.033 80.027 0.026

18 80.032 80.036 80.044 80.029 80.026 80.033 0.018

19 80.01 80.028 80.029 80.031 80.023 80.024 0.021

20 80.026 80.036 80.039 80.046 80.029 80.035 0.020

21 80.014 80.017 80.015 80.021 80.012 80.016 0.009

22 80.02 80.025 80.016 80.012 80.035 80.022 0.023

23 80.016 80.005 80.006 80.035 80.03 80.018 0.030

24 80.041 80.034 80.019 80.026 80.036 80.031 0.022

25 80.008 80.001 80.021 80.043 80.039 80.022 0.042

26 80.038 80.041 80.056 80.012 80.026 80.035 0.044

27 80.021 80.036 80.016 80.041 80.027 80.028 0.025

28 80.013 80.025 80.011 80.026 80.016 80.018 0.015



	 CONTROL CHARTS FOR VARIABLES	 201

Solution:
(a) �Figure 7.13 shows the R chart. From the chart it is evident that 

there are no out-of-control points. The tests for out-of-control 
conditions show that the R chart is in control. Therefore, we 
construct the x  chart and analyze it (see part (b)).

(b) �Figure 7.14 shows the x  chart. The chart also shows differ-
ent zones that make it easy to check for the out-of-control 

29 80.034 80.036 80.029 80.017 80.032 80.030 0.019

30 80.029 80.026 80.027 80.012 80.023 80.023 0.017

31 80.02 80.029 80.041 80.046 80.03 80.033 0.026

32 80.034 80.028 80.044 80.021 80.031 80.032 0.023

33 80.027 80.03 80.016 80.022 80.024 80.024 0.014

34 80.041 80.026 80.042 80.051 80.026 80.037 0.025

35 80.056 80.031 80.026 80.042 80.038 80.039 0.030

36 80.027 80.016 80.021 80.036 80.05 80.030 0.034

37 80.041 80.046 80.046 80.031 80.045 80.042 0.015

38 80.061 80.036 80.038 80.041 80.052 80.046 0.025

39 80.043 80.039 80.062 80.051 80.052 80.049 0.023

40 80.036 80.031 80.055 80.026 80.046 80.039 0.029

x = 80 0286. R = 0 02318.

Figure 7.13  R chart for the data in Table 7.7
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Figure 7.14  The x chart showing the out-of-control conditions
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Table 7.8  Tests for out-of-control conditions

Test results for zone chart
TEST. Cumulative score greater than or equal to zone 4 score.

Test failed at points: 14, 23, 37, 38, 39, 40
* WARNING * If graph is updated with new data, the results above may no longer 
be correct.

Figure 7.15  The x  control chart with out-of-control points
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conditions. We used MINITAB to check for the out-of-control 
conditions. Table 7.8 shows the results of out-of-control con-
ditions and indicates where the tests failed.

	�   Figure 7.15 shows the x  chart with out-of-control points. 
We applied the automatic test options to check for the out-of 
control conditions and also for the check of nonrandom 
patterns in the chart. The results are shown in Table 7.9.

	�   From the previous plots and the test results it is evident that 
the process is out-of-control. Corrective actions are needed to 
bring the process in control.

Table 7.9  Test results for out-of control points for Xbar chart

Test results for out-of control points for Xbar chart
TEST 1. One point more than 3.00 standard deviations from CL.

Test Failed at points: 38, 39

TEST 5. 2 out of 3 points more than 2 standard deviations from CL (on  
one side of CL).

Test Failed at points: 23, 37, 38, 39, 40

TEST 6. 4 out of 5 points more than 1 standard deviation from CL (on  
one side of CL).

Test Failed at points: 25, 38, 39, 40

* WARNING * If graph is updated with new data, the results above may no

* longer be correct.

Revising the Centerline and Control Limits  
if Necessary

The process in Example 7.2 continued and 25 samples of size five  
(n = 5) were collected. The new samples were used to construct the x  
and R control charts. Both the charts showed out-of-control points. At 
this point it is necessary to analyze the control charts and find the cause 
or causes of out-of-control conditions. If there are convincing reasons 
to believe that the conditions are because of the assignable causes, then 
they should be corrected, the out-of-control points should be discarded, 
and the revised control limits should be calculated. The next example 
demonstrates how to calculate the revised control limits.
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Example 7.5: Revising the Control Limits of Control 
Charts (x and R charts)

Table 7.10 shows 25 new samples of the process explained in  
Example 7.2.

a.	Construct the x  and R control charts of the samples. Analyze the 
control charts for out of control conditions and revise the control 
limits if necessary.

b.	If you revised the control limits, construct the x  and R control 
charts using the revised limits and check for the out of control 
conditions.

Table 7.10  Additional samples for Example 7.2

Sample
Sample 
mean x i 

Range: 
Ri

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75.045
75.010
75.003
75.017
75.007
75.024
75.010
75.000
75.023
75.013
75.009
75.019
74.998
75.021
75.002
75.015
75.009
75.021
74.999
75.015
75.013
75.019
75.070
75.030
74.997

75.017
75.007
75.039
75.011
75.070
75.009
75.021
75.018
75.010
75.015
75.013
75.015
75.017
74.982
74.909
74.999
75.027
75.025
75.017
75.025
75.016
75.014
75.064
75.023
74.990

75.034
75.016
75.036
75.008
75.030
75.012
75.009
75.008
75.024
75.005
75.009
75.022
75.013
75.009
74.993
75.020
75.001
75.033
75.018
75.028
75.024
75.005
75.005
75.008
75.010

75.007
75.026
75.020
75.030
75.054
75.000
75.015
75.030
75.020
75.022
75.010
75.015
75.012
75.015
75.004
75.013
75.020
75.018
75.020
75.035
75.020
75.021
75.048
75.015
75.032

75.023
75.019
75.017
75.020
75.046
75.008
75.020
75.003
75.019
75.010
75.005
75.011
75.027
74.999
75.000
75.011
75.022
75.015
75.012
75.018
75.011
75.024
75.099
75.025
75.028

75.0252
75.0156
75.0230
75.0172
75.0414
75.0106
75.0150
75.0118
75.0192
75.0130
75.0092
75.0164
75.0134
75.0052
74.9816
75.0116
75.0158
75.0224
75.0132
75.0242
75.0168
75.0166
75.0572
75.0202
75.0114

0.0380
0.0190
0.0360
0.0220
0.0630
0.0240
0.0120
0.0300
0.0140
0.0170
0.0080
0.0110
0.0290
0.0390
0.0950
0.0210
0.0260
0.0180
0.0210
0.0200
0.0130
0.0190
0.0940
0.0220
0.0420

x = 75 0171. R = 0 03012.
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Solution:
The x  and R control charts for the 25 samples in Table 7.10 are shown 
in Figures 7.16 and 7.17. As can be clearly seen from the charts, the 
process is not in control and there are out-of-control points on both 
the x  and R control charts. The subgroups or samples 5, 15, and 23 are 
out-of-control on the x  chart, and subgroups 15 and 23 on the R chart 
are plotting above the UCL. It can also be seen from these charts that 
a large number of points are plotting below the CL which is due to the 
influence of the large values of the out-of-control points on both the 
x  and R control charts.

Figure 7.16  The x  chart showing out-of-control points
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Figure 7.17  The R chart showing out-of-control points
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First, we analyze the R chart. From this chart, it is evident that the 
process is not stable because of out-of-control points (subgroup 15 and 23 
are out-of-control). An investigation of out-of-control conditions for these 
points found assignable causes that can be related to the machine. This 
could be the reason for the out-of-control conditions. The conditions iden-
tified were dull cutting tool and tool breakage. Therefore, the subgroups 
15 and 23 can be discarded and appropriate corrective actions be taken.

A similar investigation and analysis of x  control chart revealed that 
the out-of-control conditions for the subgroups 5, 15, and 23 were 
also due to assignable causes. Therefore, these points are discarded. 
Note that these points are not part of the natural variation while the 
other points on the chart indicate a stable process.

Revising the Control Limits

Once it is determined that the out-of-control conditions were caused 
due to the assignable causes, the control limits can be revised by 
discarding the out-of-control points. Since the x  and R control charts 
are constructed simultaneously and the R chart is analyzed before the x  
chart, the following two rules are used to discard the subgroups or the 
samples:

1.	If the out-of-control point on either x  and R control charts is 
displayed and has assignable cause, then the point from one chart 
and the corresponding point on the other chart is also discarded.

2.	Only the out-of-control point of the subgroup is discarded.

In this text, we will follow rule (1) mentioned earlier. This 
means that if an out-of-control point on the x  chart is discarded, the 
corresponding point on the R chart is also discarded and vice versa.

x  Chart	 R Chart

X
x x

k k
new

d

d
=

−

−

∑

	
R

R R

k k
new

d

d
=

−

−

∑
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After discarding the data point or points, the revised CL and 
control limits are calculated as shown here.

where X new  = revised CL for the x  chart
x d = discarded subgroup averages

k
d

 = number of discarded subgroups

Rnew  = revised CL for R chart

R
d

 = discarded subgroup ranges

Calculation of X new  after discarding subgroups 5, 15, and 23 (see 
Table 7.10)

X
x x

k k
new

d

d
=

−

−

=
− − −

−

=
∑ 1875 43 75 0414 74 9816 75 0572

25 3
75 0158. . . . .

R
R R

k k
new

d

d
=

−

−

=
− − −

−

=
∑ 0 753 0 0630 0 0950 0 0940

25 3
0 0228. . . . .

The x  and R control charts with revised control limits are shown in 
Figures 7.18 and 7.19. We used MINITAB to construct these charts. 
The control charts passed all the tests for out-of-control conditions. 
Thus we can conclude that the process is stable and in-control.

Figure 7.18  The revised x  chart (after discarding out-of-control 
points)
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Summary

In this chapter, we studied very widely used control charts—the con-
trol charts for monitoring the mean and variation of a process. These 
are control charts for variables commonly known as the x  (x-bar) and R 
chart. The major steps in developing these charts including the selection 
of the quality characteristic, the sample size (n) or subgroups require-
ment, the data collection process, and calculation of the control limits 
were discussed in detail. A major part of the chapter was devoted in 
explaining and interpreting the control charts. The patterns of variation 
in the control charts were explained in detail. The tests for out of control 
conditions using computer software were emphasized. The chapter pre-
sented a number of examples with detailed calculations and explained 
how to interpret the control charts for variables, and how to deal with out 
of control conditions.

Figure 7.19  The revised R chart (after discarding out-of-control 
points)
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CHAPTER 8

Control Charts for 
Attributes

Introduction

Control charts are mainly of two kinds: (1) Control Charts for Variables 
and (2) Control Charts for Attributes

•	 A variable is a continuous measurement such as weight, 
height, length, volume, diameter, and so on. In the previous 
chapter we discussed the control charts for variables—the x  
and R control charts. These charts are most widely used in 
monitoring the quantitative variables.

•	 In this section, we discuss the charts for monitoring the 
qualitative variables known as the control charts for attributes. 
The term attribute refers to those quality characteristics that 
conform or do not conform to specifications. An attribute is 
an either-or situation: a product is defective or not. Attributes 
are also good or bad, pass or fail, and so on. Attribute control 
charts are used to monitor categorical variables that are 
measured on a nominal scale.

•	 One of the most commonly used attribute chart is the 
p-chart. This control chart is used to monitor the proportion 
of defective units in a process. Some examples where the 
p-chart are used include the proportion (percentage) of 
defective motors used in a food processor, proportion of 
defective micron chips used in a computer, the proportion 
of transaction errors made by banks, and the proportion of 
billing errors made by a company providing Internet service.
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The charts for attributes are not as powerful as the chart for 
variables as the variables are numerical measurements and have more 
information compared to attributes where the items are classified 
as conforming or nonconforming. The attribute charts have more 
application in service industries where many quality characteristics are 
difficult to measure on a numerical basic but can be measured easily 
as attributes.

Types of Attribute Control Charts

The p-Chart

The p-chart is similar to a variable control charts in structure, except that 
p-charts plot statistics from count data rather than measurements that are 
variables.

The Rationale Behind the p-Chart

The p-chart can be used in cases where a quality characteristic of interest 
cannot be represented numerically. In such cases, we classify the inspected 
item as either conforming or nonconforming. These are commonly known 
as the item being defective or nondefective.

The p-chart is the chart for fraction nonconforming or fraction of 
defective products produced by a process and is commonly known as 
the control chart for fraction nonconforming. The p-chart represents the 
fraction nonconforming (expressed in decimal) but is also commonly 
expressed as percent of nonconforming or proportion of defective 
items. Thus a p-chart is the chart for fraction nonconforming or a chart for 
proportion defective.

Development of a p-Chart

Just as in the x  and R control charts or charts for variables, the mean and 
variation of the process change over time and need to be controlled, the 
process proportion can also change over time and therefore, the proportion 
of defective or nonconforming products produced by a process needs to 
be controlled.
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The proportion nonconforming is usually denoted by p and is defined 
as the number of nonconforming or defective items in a population 
divided by the population size.

The p-chart is constructed in the same way as the x  and R charts. To 
construct this chart, at least 20 samples are obtained when the process 
is believed to be in control. Let x be the number of nonconforming 
units in the sample, and n is the sample size then the sample proportion 
nonconforming is given by

pi
^
=

Number of nonconforming or defective items in the samplle
Sample size

=
x
n
i

The distribution of random variable pi
^  can be obtained from the bino-

mial distribution and therefore, the mean and standard deviation of pi
^  are

For large samples, the distribution of p̂ is approximately normally 
distributed. Since the chart monitors the process fraction nonconforming 
p, it is known as the p chart.

Center Line and Control Limits for the p-Chart

Suppose the true fraction nonconforming p in a process is known or is 
a specified value that can be used as a standard value, then the center 
line (CL) and the upper and lower control limits UCL and LCL for the 
p chart can be given by

µ

σ

p

p

p

p p
n

^

^

( )

=

=
−1

	

UCL

CL

LCL

= +
−

=

= −
−

p
p p

n
p

p
p p

n

3
1

3
1

( )

( )
�

(8.1)
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Since the true fraction nonconforming p is unknown and therefore, 
must be estimated using the sample data. The approximate estimator of 
p is p . The p  is the overall proportion of nonconforming (or, defective) 
items in the nk units sampled and is given by:

The CL and the control limits for the p chart can now be calculated 
by substituting p  in place of p in Equation (8.1). Figure 8.1 shows the 
general structure of the p chart with the CL, UCL and LCL.

Sample Size for p-Chart

The sample size for the p-chart is usually much larger than the sample size 
used for the x  and R charts. The reasons behind using the large sample is 
that most processes monitored using the p chart in industry have relatively 
small proportion of nonconforming (5 percent or less). In such cases, a 
small sample size would not contain any nonconforming output and the 
proportion nonconforming would be zero.

The following formula provides a rule of thumb (suggested by Mont-
gomery) to avoid the problem mentioned earlier and also to avoid getting 
a negative LCL in situations when both p and n are small.

p =
Total number of nonconforming or defective items in all mm samples

Total number of items sampled

Figure 8.1  The general structure of p chart
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Steps for Constructing a p-Chart

Sample Size for p Chart

Select the sample size, n such that n
p

p>
−9 1 0

0

( )

where n = sample size, and p0 = an estimate of the process proportion
Note that smaller is the process proportion p0 larger is the sample size. 
For example, if p0 0 04= . then the sample size

n >
−

=
9 1 0 04

0 04
216( . )

.

Thus, a sample size of at least 216 should be used.

1.	Select the quality characteristic(s) for which the chart is to be 
developed.
�A p-chart is used to control the proportion of nonconforming. 
It can be used to control the proportion of nonconforming of 
a single quality characteristic, a group of quality characteristics, 
a single product, or a group of products. Once it is determined 
whether the chart is going to be used for a single quality charac-
teristic or a group of quality characteristics, then the data for a 
single characteristic can be used for other quality characteristics.

2.	Determine the sample size or the subgroup size using the 
following strategy:

Select the sample size, n such that n
p

p
>

−9 1 0

0

( )

�  where n = sample size, and p0 = an estimate of the process 
proportion
�  The value of p0 can be determined from the sample data (based 
on the calculation of p̂)or can be pre-established  based on the 
knowledge of the process.
�  Note: The size of the sample is a function of the propor-
tion of nonconforming. For example, if it is known that the 
proportion nonconforming (p) in a product is 0.0015 (0.15 
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percent) and a sample size, n of 1000 is selected then the aver-
age number of nonconforming in the sample would be 1.5 
[ ( . ) . ]np = =1000 0 0015 1 5 . This is very small and is not suffi-
cient to construct an efficient chart. On the other hand if the 
proportion nonconforming is known to be 0.12 and a sample 
of 100 is taken, it would make a good chart. Therefore, it is 
important to select the appropriate sample size that will pro-
vide adequate number of nonconforming for the chart. The 
minimum suggested sample size for a p-chart is 50.

3.	Collect the sample data. The number of samples should be at 
least 25.

4.	Calculate the proportion of nonconforming for each sample 
using the following formula:

pi
^
=

Number of nonconforming or defective items in the samplle
Sample size

=
x
n
i

5.	Establish the CL and control limits:

CL: p =
Total number of nonconforming or defective items in all mm samples

Total number of items sampled

UCL: p
p p

n
+

−
3

1( )

LCL: p
p p

n
−

−
3

1( )

�  In the above equations, m = number of samples, n = sample 
size, and p̂ is the overall proportion of nonconforming in the mn 
items sampled.

6.	Plot the CL, the control limits, and the sample proportions from 
each of the m samples on the control chart.

7.	Revise the CL and the control limits by discarding the out of 
control points if necessary.
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Example 8.1: Construction and Application of 
p Chart

Table 8.1 shows the number of defective motors produced by a 
manufacturing process that produces mini motors for the cooling fans 
used in computers. To monitor the proportion of nonconforming 
(or the proportion of defective motors) a p-chart is to be developed 
for which 25 samples of size 200 were collected from the produc-
tion process. The number of defectives in each sample is shown in 
Table 8.1.

a.	Calculate the proportion defective for each sample.
b.	Calculate p  or the overall proportion defective in 25 samples each 

of size 200.
c.	Calculate the CL and the UCL and LCL.
d.	Show the control limits and the sample proportions on a p-chart.

Solution:
a. �Table 8.2 shows 25 samples each of size 200 from the 

manufacturing process that produces motors. The numbers of 
defectives are shown in column (3) and the proportion of defec-
tive for each sample is shown in column (4) of Table 8.2. The 
proportion defective for the first sample is calculated as follows:

pi
^
=

Number of nonconforming or defective items in the samplle
Sample size

= = =
x
n
i 14

200
0 07.

	�   The proportion defective for each of the samples is calculated 
in a similar way and recorded in column (4) of the table here.

Table 8.1  Number of defective motors

No. of defectives
14 8 13 4 15 20 14 8 12 15 14 22 18

21 10 5 13 16 7 14 20 14 15 6 8
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b. �The overall proportion defective  in 25 samples each of size 200 
is calculated as:

p =
Total number of nonconforming or defective items in all mm samples

Total number of items sampled
= =

326
5000

0 0652.

Table 8.2  Twenty five samples each of size 25

Sample (1)
Sample size 

(2)
No. of 

defective (3)
Sample 

proportion (4)
1 200 14 0.070

2 200 8 0.040

3 200 13 0.065

4 200 4 0.020

5 200 15 0.075

6 200 20 0.100

7 200 14 0.070

8 200 8 0.040

9 200 12 0.060

10 200 15 0.075

11 200 14 0.070

12 200 22 0.110

13 200 18 0.090

14 200 21 0.105

15 200 10 0.050

16 200 5 0.025

17 200 13 0.065

18 200 16 0.080

19 200 7 0.035

20 200 14 0.070

21 200 20 0.100

22 200 14 0.070

23 200 15 0.075

24 200 6 0.030

25 200 8 0.040

Total 5000 326
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c. The CL and the UCL and LCL:
	� The CL for the p chart is p  which was calculated in part (b). The 

UCL and LCL are calculated using the p  and are shown here.

UCL p
p p

n
= +

−
= +

−
=3

1
0 0652 3 0 0652 1 0 0652

200
0 1176

( )
. . ( . ) .

LCL p
p p

n
= −

−
= −

−
=3

1
0 0652 3 0 0652 1 0 0652

200
0 0128

( )
. . ( . ) .

d. �The p-chart along with the control limits and the sample 
proportion for each sample (shown in column (4) of Table 8.2) 
is shown in Figure 8.2.

Figure 8.2  P-chart for the data in Table 8.2
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Analyzing and Interpreting the p-Chart

1.	Process Out-of-control: A process is considered out of control if one 
or more sample proportion points fall outside of the control limits. 
A process can also be out of control if one or more of the conditions 
in Table 8.3 for special causes are detected:
�  The conditions of special causes below can be automatically 
checked using computer packages such as MINITAB.
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2.	Process in-control: If none of the above out-of-control conditions are 
present then we conclude that the process is in control. A process 
that is in-control should be left alone. Sometimes, the process may 
be in-control but may show a large pattern of variation depicted 
by the plotted sample proportion points. It may be an indication 
of the presence of common cause variation. These common cause 
variations should be investigated and eliminated or minimized to 
further improve the process.

Table 8.3  Tests for special causes in p-charts

Test for special 
cause k
1. 1 point > k standard deviations from CL 3

2. K points in a row on same side of CL 9

3. K points in a row, all increasing or all decreasing 6

4. K points in a row, alternating up or down 14

Example 8.2: Construction and Application of p Chart

A manufacturing process produces microchips used in automobile 
computers. Recently, a new process to manufacture these chips was 
implemented that led to an increased percent of defective chips. To 
stabilize the chip manufacturing process, the production manager 
instructed the quality technician to collect a sample of 100 chips every 
day for the next 25 days. The chips were analyzed for defects. Table 8.4 
shows the number of defective chips found in each sample of size 100.

a.	Calculate the proportion defective for each sample.
b.	Calculate p  or the overall proportion defective in 25 samples each 

of size 200.

Table 8.4  Number of defective microchips

Number of defective
13 8 16 11 16 8 11 7 14 18 14

12 23 7 14 18 23 13 9 5 9 12

9 3 6
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c.	Construct a p-chart to monitor the process.
d.	Is the process under control? If not, use the tests for detecting 

special causes of variation.
e.	If out-of-control conditions are detected, investigate the causes 

and suggest ways to stabilize and bring the process under control.

Solution:

a.	Table 8.5 shows 25 samples each of size 100. The numbers 
of defectives are shown in column (3) and the proportion of 
defective for each sample is shown in column (4) of Table 8.5. 
The proportion defective for the first sample is calculated as 
follows:

pi
^
=

Number of nonconforming or defective items in the samplle
Sample size

= = =
x
n
i 13

100
0 13.

The rest of the proportions are calculated in the similar way.
b.	The overall proportion defective p

p =
Total number of nonconforming or defective items in all mm samples

Total number of items sampled
= =

299
2500

0 1196.

c.	The UCL and LCL are calculated and shown here. The p-chart is 
shown in Figure 8.3. Table 8.6 shows the results of the tests for 
special causes.

UCL p
p p

n
= +

−
= +

−
=3

1
0 1196 3 0 1196 1 0 1196

100
0 2169

( )
. . ( . ) .

LCL p
p p

n
= −

−
= −

−
=3

1
0 1196 3 0 1196 1 0 1196

100
0 0223

( )
. . ( . ) .

d.	From the p-chart in Figure 8.3 we can see that the process is not 
in control. The proportion defective for samples 13 and 17 are 
out of control. The test results for special causes in Table 8.6 
reports that the test failed at points 13 and 17. These points are 
more than 3.00 standard deviations from the CL plotting above 
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the UCL. The process proportion defective appears to be much 
higher at these sample points.

e.	Since the process is out-of-control, the control chart should 
not be continued to monitor the process until the reasons for 
out of control conditions are investigated. Since the points 13 

Table 8.5  Number of defective chips

Sample
(1)

Sample size
(2)

No. of 
defective

(3)

Proportion 
defective

(4)
1 100 13 0.13

2 100 8 0.08

3 100 16 0.16

4 100 11 0.11

5 100 16 0.16

6 100 8 0.08

7 100 11 0.11

8 100 7 0.07

9 100 14 0.14

10 100 18 0.18

11 100 14 0.14

12 100 12 0.12

13 100 23 0.23

14 100 7 0.07

15 100 14 0.14

16 100 18 0.18

17 100 23 0.23

18 100 13 0.13

19 100 9 0.09

20 100 5 0.05

21 100 9 0.09

22 100 12 0.12

23 100 9 0.09

24 100 3 0.03

25 100 6 0.06

Total 2500 299
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and 17 are out-of-control, the CL and the control limits are not 
representative of the process.

The two out-of-control points were investigated and it was found 
that a cause can be assigned for the out-of-control conditions. It 
was found that a new technician who was still undergoing training 
was working during that shift when the samples were collected. The 
out-of-control points resulted because of the wrong judgment and 
measurement on the part of the new technician. The two out-of-
control points were discarded from the data set after the cause for out-
of-control condition was identified and a new p-chart was created with 
modified CL and control limits. The chart was tested again for special 
causes and no special causes or nonrandom variation was detected. The 
modified p-chart is shown in Figure 8.4 with revised CL and control 
limits.

Figure 8.3  P-chart for the chip manufacturing process
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Table 8.6  Tests for special causes

Test results for p chart of No. nonconforming
TEST 1. One point more than 3.00 standard deviations from CL.

Test Failed at points: 13, 17

* WARNING * If graph is updated with new data, the earlier results may no longer 
be correct.
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Figure 8.4  The modified p-chart
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P-Chart for Variable Subgroup Size

Usually a p-chart is developed and used with a constant subgroup size. 
In some cases, it may be necessary to have varying sample size. This 
situation occurs when the p-chart is to be used for 100 percent inspection 
of products the output of which varies from day to day. In such cases, 
subgroups of different sizes may be selected from the day’s production. 
If the subgroup size varies, the control limits will vary with the subgroup 
size. This is because the control limits are a function of the sample size. 
The next example illustrates the construction and application of a p-chart 
for a variable subgroup size. 

Example 8.3: Construction and Application of  
p Chart for Variable Subgroup Size

A p-chart for variable subgroup size is to be established for the barcode 
scanners manufactured by an electronic manufacturer. Because of the 
increased customer complains, it was decided to perform 100 percent 
inspection of the day’s production. Table 8.7 shows the subgroup size 
that varies from day to day, the number of nonconforming or defective 
scanners, and also the fraction nonconforming. Since the subgroup size 
varies, the control limits also varies as the control limits are a function 
of subgroup size. For this variable sample size data:
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a.	Calculate the proportion defective for each sample.
b.	Calculate p or the overall proportion defective in 25 samples.
c.	Calculate the UCL and LCL for each subgroup. Construct a 

p-chart with varying subgroup size.

Table 8.7  Varying samples of barcode scanners for the past 25 days

Sample 
no.
(1)

Sample 
size
(2)

No. of 
nonconforming

(3)

Fraction 
nonconforming

(4)
LCL
(5)

UCL
(6)

1 2400 83 0.035 0.023 0.045

2 1466 50 0.034 0.020 0.048

3 1950 50 0.026 0.021 0.046

4 2465 61 0.025 0.023 0.045

5 2012 77 0.038 0.022 0.046

6 2183 62 0.028 0.022 0.045

7 1956 63 0.032 0.021 0.046

8 1977 55 0.028 0.022 0.046

9 2259 60 0.027 0.022 0.045

10 1253 91 0.073 0.018 0.049

11 2304 80 0.035 0.022 0.045

12 1479 40 0.027 0.020 0.048

13 2076 74 0.036 0.022 0.046

14 1682 73 0.043 0.021 0.047

15 2365 62 0.026 0.023 0.045

16 2369 98 0.041 0.023 0.045

17 1524 51 0.033 0.020 0.048

18 2205 82 0.037 0.022 0.045

19 2693 68 0.025 0.023 0.044

20 2267 55 0.024 0.022 0.045

21 1656 90 0.054 0.020 0.047

22 1797 102 0.057 0.021 0.046

23 2008 65 0.032 0.022 0.046

24 2397 56 0.023 0.023 0.045

25 2147 68 0.032 0.022 0.045

Total 50890 1716
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d.	Is the process under control? If not, use the tests for detecting 
special causes of variation.

e.	If out-of-control conditions are detected, investigate the causes 
and suggest ways to stabilize and bring the process under control.

Solution:

a.	The proportion defective for each of the subgroup are calculated 
and shown in column (4) of Table 8.7. The proportion defective 
for the first sample is calculated as follows:

pi
^
=

Number of nonconforming or defective items in the samplle
Sample size

= = =
x
n
i 83

2400
0 035.

  The rest of the proportions are calculated in the similar way.
b.	The overall proportion defective p (see the last row of Table 8.7 

for totals)

p =
Total number of nonconforming or defective items in all mm samples

Total number of items sampled
= =

1716
50890

0 0337.

c.	The UCL and LCL for the first subgroup:
�Using the value of p calculated in part (b), the UCL and LCL for 
each subgroup can be calculated as shown here:
UCL and LCL for the first subgroup (Sample No. 1):

UCL p
p p

n
= +

−
= +

−
=3

1
0 0337 3 0 0337 1 0 0337

2400
0 045

( )
. . ( . ) .

LCL p
p p

n
= −

−
= −

−
=3

1
0 0337 3 0 0337 1 0 0337

2400
0 023

( )
. . ( . ) .

�  These LCL and UCL values are shown under sample 1 and 
columns (5) and (6) of Table 8.7.
  Similarly, UCL and LCL for the sample or subgroup 10:

UCL p
p p

n
= +

−
= +

−
=3

1
0 0337 3 0 0337 1 0 0337

1253
0 049

( )
. . ( . ) .



	 CONTROL CHARTS FOR ATTRIBUTES	 225

LCL p
p p

n
= −

−
= −

−
=3

1
0 0337 3 0 0337 1 0 0337

1253
0 018

( )
. . ( . ) .

�  These LCL and UCL values are shown under sample 10 and 
columns (5) and (6) of Table 8.7. The rest of the proportions are 
calculated in the similar way.
�  The control chart with varying subgroup is shown in 
Figure  8.5. The chart was constructed using MINITAB.

d.	As can be seen from Figure 8.5, the process is out of control. The 
results for the tests for out-of-control conditions are shown in 
Table 8.8.

e.	An investigation of out-of-control conditions indicated that these 
were due to assignable causes. Therefore, it was decided to discard 
the out-of-control points. After removing the subgroups 10, 21, 

Table 8.8  Test results for special causes

Test results for p chart of NCON
TEST 1. One point more than 3.00 standard deviations from center line.

Test Failed at points: 10, 21, 22

* WARNING * If graph is updated with new data, the results above may no

longer be correct.

Figure 8.5  P-chart with variable subgroup size (points 10, 21, and 
22 are out-of-control)
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22 that were responsible for out-of-control points, the process 
was found to be in-control (see Figure 8.6).

Notes on Implementation of p-chart: The control chart with variable 
sample size can be created and implemented using many of the popular 
quality control software, it may be difficult at times for the quality 
personnel to understand and interpret these charts. The problem of 
variable subgroup size may be overcome by using an average sample 
size.

Figure 8.6  P-chart with variable subgroup size (Out-of-control 
points discarded)

0.020

0.025

0.030

0.035

0.040

1 3 5 7 11 13 15 17 19 21

UCL
0.045

P Chart for unequal sample size (discarding the out-of-control points)

Sample

P
ro

po
rt

io
n

9

LCL

Tests performed with unequal sample sizes

P = 0.03103

The np Control Chart or the Control Chart for Number 
Nonconforming (Number of Defects)

Sometimes it may be desirable to base a control chart on number 
of nonconforming rather than the fraction of nonconforming. The 
number of nonconforming chart is known as the np chart and is almost 
identical to the p-chart. One of the advantages of the np chart is that 
it is easier to understand than the p-chart. For the np chart, the sub-
group size is constant. The parameters of the np chart are determined 
as follows: 
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Upper Control limit:	 UCL np np p= + −3 1( )

Center Line:	 CL np=

Lower control Limit:	 LCL np np p= − −3 1( )

Example 8.4: Construction and Application of 
np Chart

The quality department of a company that manufactures bar code 
scanners selects 200 scanners from its production every three days and 
inspects them for number of defects (number of nonconformities). 
Inspection results for the constant sample size of 200 and the 
number of defective scanners found was recorded by the quality 
control inspector and are shown in Table 8.9. The table also shows 
the proportion defective for each sample calculated by dividing the 
number of defective by the sample size. Using the information in the 
table, determine the CL and the UCL and LCL for the np chart and 
construct the chart.

From the data in Table 8.9

	 p = 0 0668. ,	 n = 200

and,	 n p = =200 0 0668 13 36( . ) .

Using the earlier values, the CL and the UCL and LCL for the np 
chart can be calculated as:

UCL n p n p p= + − = + − =3 1 200 0 0668 3 200 0 0668 1 0 0668 23 95( ) ( . ) ( . )( . ) .

CL n p= = =200 0 0668 13 36( . ) .

LCL n p n p p= − − = − − =3 1 200 0 0668 3 200 0 0668 1 0 0668 2 77( ) ( . ) ( . )( . ) .

The chart is shown in Figure 8.7.
Note: The number of nonconforming is a whole number and 

therefore, the UCL and LCL should also be whole numbers; 
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however, they can be left as fractions. Leaving the control limit 
values as fractions prevents a plotted point from falling on control 
limits.

Table 8.9  Data for np chart

Sample 
no. Sample size No. of defective Proportion defective
1 200 14 0.070

2 200 8 0.040

3 200 22 0.110

4 200 4 0.020

5 200 15 0.075

6 200 20 0.100

7 200 14 0.070

8 200 8 0.040

9 200 12 0.060

10 200 15 0.075

11 200 14 0.070

12 200 22 0.110

13 200 10 0.050

14 200 21 0.105

15 200 10 0.050

16 200 5 0.025

17 200 13 0.065

18 200 16 0.080

19 200 7 0.035

20 200 14 0.070

21 200 20 0.100

22 200 14 0.070

23 200 15 0.075 cont…

24 200 6 0.030

25 200 15 0.075

p = 0 0668.
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Figure 8.7  NP-chart for the data in Table 8.9
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The c-Chart or the Control Chart for Count of Nonconformities

The p-chart and the np-chart we discussed earlier are used to monitor 
the proportion of nonconforming units and the number of nonconforming 
unit. It is quite possible for one unit of product to have more than one 
nonconformity. In such cases, we consider the number of nonconformities 
per unit. The chart for the number of nonconformities per unit is known 
as the c-chart. A c-chart can be developed either for the total number of 
nonconformities in a unit or the average number of nonconformities per unit.

Some of the examples where the c-chart can be used are number of 
defective welded joints in every 50 feet of a structure, number of surface 
finish defects in an aircraft, number of blemishes on a tire, and the number 
of surface irregularities or dents on the painted surface of a car. In these 
examples the number of nonconformities is defined per unit where a unit 
is 50 feet of structure, an aircraft, one tire, and the painted surface of a car.

The c-chart is based on the assumption that the occurrences of 
nonconformities in a unit (or a sample of constant size) follow a Poisson 
distribution. This also implies that the number of opportunities of the 
nonconformities is infinitely large and the probability of occurrence 
of nonconformities at any point is small and constant. The other  
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requirement for the c-chart is that the inspection unit must be the same 
for each sample. This way the area of opportunity for the occurrence of 
nonconformities is the same from unit to unit. 

The Poisson distribution is described by the average number of 
occurrence and one important characteristic of this distribution is that 
the mean and variance of the distribution are equal. The control chart 
for the number of nonconformities per unit (denoted by c) is very easy to 
construct. We explain this in the next section.

The conditions of Poisson distribution as applied to the c-chart may 
not hold exactly but slight deviations are tolerable and will still make the 
chart work well.

Development of a c-Chart

The c-chart is used for the number of nonconformities in a single unit 
of inspected product. Note that the inspection unit may be defined as 
one unit or a group of 5 or 10 units of a product considered as one 
unit. If the number of defects or nonconformities in the inspection unit 
occur according to the Poisson distribution with c as the parameter of the 
distribution then

p x
c e

x
x

x c
( )

!
, , ,..= =

−

 where, 0 1 2

Where x is the number of nonconformities and c is the parameter 
of the Poisson distribution which is the mean and the variance of the 
Poisson distribution where c > 0

The parameter c is usually estimated as the average number of non-
conformities, c from the sample of inspected units.

Steps for Constructing a c-Chart

1.	Collect m samples where the number of samples m is at least 
20 units. Since, the c-chart monitors the number of nonconformities 
per unit; therefore, each sample is obtained by observing a single unit.
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2.	Determine the number of nonconformities for each unit. Suppose 
the number of nonconformities in unit i is ci.

3.	Calculate the average number of nonconformities c using:

c
c

m
i

=
∑

where, m is the number of samples.
4.	Establish the control limits as shown:

UCL = c c+ 3

CL = c

LCL = c c− 3

�Note: If the calculation for LCL yields a negative value, set  
LCL = 0.

5.	Construct the chart by plotting the CL, the control limits, and 
the number of nonconformities in unit i, ci.

6.	Revise the CL and the control limits by discarding the out of 
control points if necessary.

Example 8.5: Construction and Application of  
c Chart

A c-chart is to be developed to monitor and control the number of 
nonconformities (paint blemishes) on the outer surface of the hood 
of a new automobile model. Table 8.10 shows the number of paint 
blemishes from a sample of 30 successive samples of 50  hoods. 
This means that the inspection unit is defined as 50 hoods of the 
cars.

a.	Using the data in Table 8.10, calculate the CL and control limits 
for the c-chart.

b.	Construct the c-chart by plotting the CL, the control limits, and 
the number of nonconformities in unit i, ci.

c.	Revise the CL and the control limits by discarding the out of 
control points if necessary.
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Solution:

a.	From Table 8.10, the sum of the nonconformities in the 30 
samples are:

ci∑ = 630

  Therefore, the CL	 c
c

m
i

= = =
∑ 630

30
21

  The UCL and LCL are

UCL c c= + = + =3 21 3 21 34 75.

LCL c c= − = − =3 21 3 21 7 25.

b.	The c-chart is shown in Figure 8.8.

Table 8.10  Data for c-chart

Sample 
no.

No. of 
nonconformities  

(ci) Sample no.

No. of
nonconformities

(ci)
1 21 16 13

2 30 17 22

3 16 18 18

4 10 19 40

5 25 20 30

6 5 21 24

7 28 22 16

8 20 23 28

9 31 24 17

10 25 25 10

11 15 26 28

12 24 27 32

13 19 28 18

14 10 29 27

15 17 30 11
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�  The plotted points on the c-chart in Figure 8.8 are the number 
of nonconformities (ci). From the plot, we can see that samples 6 
and 19 are plotting outside the control limits. The test results for 
the out-of-control points conducted using MINITAB are shown 
in Table 8.11. These points should be investigated further to 
determine the causes for the out-of-control conditions.

c.	Investigation of out-of-control conditions for points 6 and 19 
revealed problems due to the operator and the drying time. An 
inexperienced operator could not classify the blemishes correctly 
that resulted in low number of blemishes in sample 6. A high 
number of blemishes were recorded in sample 19 because of 
the drying time in the furnace exceeded the set time. It seemed 

Figure 8.8  The c-chart for the number of nonconformities data in 
Table 8.10
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Table 8.11  Tests results for assignable or out-of-control conditions 
in the c-chart

Test results for c chart of no. of nonconformities
TEST 1. One point more than 3.00 standard deviations from center line.

Test failed at points: 6, 19
* WARNING * If graph is updated with new data, the results above may no longer 
be correct.
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reasonable to discard both the samples. Figure 8.9 shows the 
modified control chart after removing the out-of-control points.

Figure 8.9 shows that the process is in control. A test for out-of-
control conditions did not indicate any out-of-control condition. It 
is important to note here that although the process is in control, the 
number of nonconformities is still high; therefore, an improvement in 
the process is warranted.

Figure 8.9  Modified c-chart for the data in Table 8.10

C Chart of no. of nonconformities (after discarding out-of-control points)

Sa
m

pl
e 

co
un

t

Sample

UCL = 34.61

C = 20.89

LCL = 7.18

1 4 7 10 13 16 19 22 25 28

10

15

20

25

30

35

Summary

This chapter presented another class of control charts—the control charts 
for monitoring the qualitative variables known as the control charts for 
attributes. The term attribute refers to those quality characteristics that 
conform or do not conform to specifications. An attribute is an either-or 
situation: a product is defective or not. Attributes are also good or bad, 
pass or fail, and so on. Attribute control charts are used to monitor 
categorical variables that are measured on a nominal scale. A number of 
attribute control charts were discussed with their applications. The most 
commonly used attribute charts used in monitoring the product and 
service quality include the p-chart, np-chart and c-chart. The p-chart is 
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used to monitor the proportion of defective units in a process. This chart 
is usually developed and used with a constant subgroup size. Sometimes, 
it may be desirable to have varying sample size on a p-chart. This situation 
occurs when the p-chart is to be used for 100 percent inspection of 
products the output of which varies from day to day. A detailed example 
with varying subgroup size was presented with its advantages and 
limitations. The other chart presented was the control chart for number of  
nonconforming known as the np chart and is almost identical to the p-chart. 
Finally, the chart for the number of nonconformities per unit known 
as the c-chart was discussed. A c-chart can be developed either for the 
total number of nonconformities in a unit or the average number of non- 
conformities per unit. It is important to note that the basis of the p-chart 
and c-chart are the binomial and Poisson distributions respectively.





CHAPTER 9

Process Capability Analysis

Introduction

Process capability analysis is one of the important aspects of overall 
quality improvement. In this chapter we explain different methods of 
assessing the process capability of products and services. We also explain 
the specification limits, and control limits and how they are related to the 
process capability analysis.

Process capability is the ability of the process to meet specifications. 
The ability of the process to meet the specifications is related to the 
variability in the process. This variability can be (1) natural or inherent 
variability at a given time or (2) variability over time. We may think of 
this as short-term and long-term variability. Thus, the process capabil-
ity may be viewed as the short-term process capability or long-term process 
capability.

Control Limits

In previous chapters, we studied the control limits in relation to 
the control charts. It is a common practice to position the upper and 
lower control limits at three standard deviations from the center line. 
These limits are commonly known as three sigma control limits and are 
calculated from the process data when the process is in control. The basic 
assumption for the three sigma limits is that the process follows a normal 
distribution. In a control chart with three sigma control limits following 
a normal distribution, the probability of a point falling outside of the 
control limits is 0.0027 or 0.27 percent or less than three chances in 1000 
(assuming that the process is in control). This can be directly derived from 
the property of normal distribution.
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The control charts are a continuous improvement tool and are designed 
to measure the variation in the data from the measurements of quality char-
acteristics and differentiate the assignable (or special ) causes of variation 
from common causes. Common cause variations are natural variations that 
are inherent to the process and are expected part of the process. These vari-
ations are of much less concern to the manufacturer (as long as they are 
within certain limits) than assignable causes. The control charts are designed 
to detect the assignable causes quickly. They also tell us whether a shift in 
the process has occurred and when an adjustment in the process is required.

Specification Limits

Specification limits are the boundary points that are usually derived 
from customer requirements and should link to what the customer really 
wants. These limits define the acceptable level for a quality characteristic 
or an output variable critical to the customer. The specification limits 
are determined by the customer, design engineers, product designers, or 
may be set by the management. These limits are independent of the control 
limits. The control limits are designed to monitor and control a process 
and show whether or not a process is in statistical control.

More specifically, the specification limits are allowable deviation from 
the target or the nominal value of a product output. A target is what we 
are trying to aim for, whereas; the nominal value is what would be an ideal 
value. The target and the nominal values are usually the same but this is 
not the case always. For example, consider the weight of the fluid content 
printed on the beverage cans. In filling the 16 oz. beverage cans, the 
nominal value is the weight indicated on the cans. But as we know that 
almost all processes show variation and because of this, the weight in the 
filled cans has equal chance of going up and down the 16 oz. of nominal 
value. This may result into cans that are below the nominal value of 16 oz. 
In such cases, we would set the target value higher than the nominal value 
so that we minimize or eliminate the cans that are below 16 oz.

Control limits should not be confused with the specification limits or 
the tolerance limits as they are sometimes referred to. Control limits are 
independent of the specification limits and they are determined differently. 
Control limits determine what a process is capable of producing. These limits 
are sometimes referred to as the “voice of the process.” The specification limits 
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or tolerance limits describe how the product should be manufactured to meet 
the customer’s needs and expectations. Therefore, the specification limits are 
also referred to as the “voice of the customer.”

Process Capability Applications

Process capability analysis is a statistical technique used in:

•	 Assessing process variability
•	 Establishing specification limits (or, setting up realistic 

tolerances)
•	 Determining how well the process will hold the tolerances 

(the difference between specifications).
•	 Analyzing the process variability relative to the specifications
•	 Reducing or eliminating the variability to a great extent in 

products and processes

What Does Process Capability Analysis Tell Us?

The capability of a process should be constantly measured and analyzed. 
Capability analysis can help us answer the following questions:

•	 Is the process meeting customer specifications?
•	 How will the process perform in the future?
•	 Are improvements needed in the process?
•	 Have we sustained these improvements, or has the process 

regressed to its previous unimproved state?

We analyze process capability with capability indexes such as Cp, 
Pp, Cpk, and Ppk. These are explained in more detail in subsequent 
sections.

How Is Process Capability Stated?

Process capability may be stated in the form of a probability distribution; 
for example, a normal distribution with specified mean ( m) and standard 
deviation (s).
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Process capability is also estimated as a percent outside of specifications. 
Normal distribution is widely used to assess the process capability 
(whenever it is reasonable to show or assume that the quality characteris-
tic in question follows a normal distribution). The six sigma spread (three 
sigma on each side of the mean) in the normal distribution is considered the 
measure of process capability (Figure 9.1).

Assessing Process Capability

The following points should be noted before conducting a process 
capability analysis:

•	 Process capability should be assessed once the process has 
attained statistical control. This means that the special causes 
of variation have been identified and eliminated. Once the 
process is stable, the process average and standard deviation 
should be calculated. For a process that is out of control, 
the estimated process average and standard deviation are not 
reliable.

•	 In calculating process capability, in most cases, the 
specification limits are required. Since the process 
capability determines the ability of the process to meet 
the specifications, it is very important to determine the 

Figure 9.1  Six sigma spread as the process capability
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specification limits accurately. Unrealistic or inaccurate 
specification limits may not provide correct process capability.

•	 Process capability analysis using a histogram or a control chart 
is based on the assumption that the process characteristics 
follow a normal distribution. While the assumption of 
normality holds in many situations, there are cases where the 
processes do not follow a normal distribution. Extreme care 
should be exercised where normality does not hold. In cases 
where the data are not normal, it is important to determine 
the appropriate distribution to perform process capability 
analysis. In case of non-normal data, appropriate data 
transformation techniques may be used to bring the data to 
normality before assessing process capability.

In studying the control charts and assessing the process capability, two 
concepts are important—the control limits and the specifications limits. 
A process may be under control but may not be capable of meeting the 
specifications. We first describe the difference between the control limits 
and the specification limits before discussing the process capability.

Assessing Process Capability Graphically

As mentioned earlier, a process maybe in control but not be capable of 
meeting the specifications. Figure 9.2 shows various plots of a quality 
characteristic (the output of a ring diameter being controlled) with the 
lower and the upper specification limits (LSL and USL) plotted on each 
plot.

The plots in Figure 9.2 can be used to assess the process capability of 
the process visually. One way of determining the capability of a process 
is to construct a frequency histogram when the process is believed to be 
in control. Such histogram should be created using a large sample of 
individual measurements preferably, 50 or more. Next, the specification 
limits and the target value of the quality characteristic being studied are 
plotted on the histogram. The plots in Figure 9.2 (a) through (g) are 
explained subsequently.
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Figure (a), (b), (c), and (d) in Figure 9.2 show that a significant 
percentage of products are outside the upper or lower specification limit. 
In Figure 9.2(a), the process is not centered meaning it is off target and 
the process variation is large. Due to this, a large percentage of the prod-
ucts are outside the upper specification limit (USL). In Figure 9.2(b), the 
process is centered but the process variation is large resulting into a large 
percent of the products above and below the specification limits. None of 
these processes is capable as they do not meet the specification require-
ments. Figure 9.2(c) shows that the process variation is small but is shifted 
to the left. As a result, a large percentage is below the lower specification 
limit (LSL). Figure 9.2(d) shows that the process is off centered and has a 
large process variation. The process is not meeting the USL.

In Figure 9.2 (e) and (f ), the process variation is small but off-centered 
or shifted from the target. These processes are within the specification limits 
and are meeting the customer requirements. The processes are capable but 
any change in the process over time or specification requirements will 
make the process incapable resulting into process improvement initiatives 
to restore the process.

The process in Figure 9.2(g) is centered with much less variation. 
The process is meeting the specification limits and is capable of satisfy-
ing the customer requirements. This is the most desirable of all the cases 
described earlier.

Figure 9.2(a)-(g)  Graphical display of process capability of different 
processes in control with LSL and USL plotted on the graphs

LSL Target USL

(g)
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Numerical Measure of Process Capability

There are several methods of quantifying and determining the process 
capability. We discuss the following methods:

1.	Process capability using a histogram and normal distribution—by 
finding the number or percentage of the products outside of the 
specification limits.

2.	Process capability using control charts
3.	Process capability using capability indexes
4.	Process capability using a statistical package

Process Capability Using a Histogram

One way of expressing process capability is to determine the percentage 
of the products outside of the specification limits or the percent of 
nonconforming products. In cases where the process data follow a normal 
distribution, the nonconformance percentage can be estimated even if the 
specification limits are not known. In the example presented here, we will 
use a histogram to estimate the nonconformance rate. When using a his-
togram to assess the nonconformance rate, it is suggested that at least 100 
observations are available and the process is stable so that a reasonable 
estimate of process capability can be obtained.

Example 9.1: Calculating Process Capability 
Using Histograms

We will consider the length of 150 measurements (in cm) of a  
machined part. Using the distribution of the length data, we will 
determine the process capability. Suppose that the specification 
limits on the length are 6.00 ± 0.05. We would like to determine 
the percentage of the parts outside of the specification limits. Since 
the measurements are very close to normal, we can use the normal 
distribution to calculate the nonconforming percentage. Figure 9.3 
shows the histogram of the length data with the target value and 
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specification limits. Figure 9.4 shows that the data are normally 
distributed and the process is operating very close to the target.

From Figures 9.3 and 9.4, it is evident that the process is produc-
ing a small percentage of nonconforming products above the upper 
and below the lower specification limits (see calculations below). The 
percentage above and below the specification limits using normal  
distribution can be calculated as

(Note that m and s are estimated from the data. The estimated 
values are shown in Figures 9.3 and 9.4). From the standard Normal 
Table in Appendix A, Z1 = −2.50 corresponds to 0.4938, and Z2 = 
2.56 corresponds to 0.4948

Therefore, the percentage of products within the specification 
limits

= 0.4938 + 0.4948
= 0.9886 or 98.86 percent

The percentage falling outside of the specification limits is  
(1 − 0.9886) or, 0.0114 (1.14 percent). In parts per million (PPM) 
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Figure 9.3  Histogram of the length data with specification limits 
and target
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it translates to 0.0114 × 106 or 11,400 parts outside the specification 
limits.

Figure 9.4  Fitted normal curve with reference line for the length 
data
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Process Capability Using Control Charts

It is a common practice to take the Six Sigma spread of a process’s inherent 
variation as a measure of process capability when the process is stable. Thus, 
the process capability is the process spread which is equal to Six Sigma. This 
concept is illustrated using an example here.

Example 9.2: Calculating Process Capability 
using Control Charts

A chemical company manufactures and markets 50 lb. nitrogen fertil-
izer for the lawns. Due to some recent problems in their production 
process, overfilling and underfilling of the bags of fertilizer have been 
reported. The problem was investigated and appropriate adjustments 
were made to the machines that were used to fill the fertilizer bags. 
When the process was believed to be stable, the quality supervisor col-
lected 30 samples each of size five. The control charts for x  and R were 
constructed and the tests were conducted for the special or assignable 
causes. The process was found to be in control and no assignable causes 
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were present. The x  and R control charts for the process are shown in 
Figure 9.5. Determine the process capability for this process based on 
the average of range value, or R reported on the R chart. Note that  
R—the average of all subgroup range can be used to estimate the 
process standard deviation.
Solution:

(a) �First, estimate the standard deviation, s from the given 
information using:

σ
^ .

.
.= = =

R
d2

1 958
2 326

0 842

	�   Note: σ̂  is the estimate of s. The value of R  is reported in 
the chart for range in Figure 9.5 and d2 is obtained from the 
table—‘constants for control charts’ in Appendix C. The value 
of d2 from the table for a subgroup size of five (n = 5) is 2.326.

	 The process capability,

6 6 0 842 5 052σ̂ ( . ) .= =

	�   The process capability here is a function of the estimated 
standard deviation. A reduction in the value of process capabil-
ity means reduced process variability and improved capability. 

Figure 9.5  The x and R control charts for Example 9.2
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The process capability obtained here is more meaningful when 
compared to the ongoing process at a later stage.

(b) �The process capability can also be determined by estimating the 
σ̂  using the average of standard deviations, s  of the subgroups 
instead of average of the subgroup range. Here we demonstrate 
the calculation of process capability using the standard devi-
ation. Figure 9.6 shows the x S− —the control charts for the 
average and standard deviation.

	�   Determine the process capability using the value of s  in the 
control chart.

	�   First, estimate the standard deviation, s from the given 
information using:

σ̂
.

.
.= = =

s
c4

0 791
0 9400

0 841

	�   Note: σ^  is the estimate of s. The value of s is reported in 
the chart for standard deviation (s)—the bottom chart in  
Figure  9.5 and c4 is obtained from the table—‘constants for 
control charts’ in Appendix C. The value of c4 from the table 
for a subgroup size of five (n = 5) is 0.9400.

	   The process capability: 6 6 0 841 5 046σ
^ ( . ) .= =

Figure 9.6  The x  and S-control charts
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Example 9.3: Improvement in Process Capability 
Using Control Charts

In an effort to continuously improve and refine the fertilizer bag 
filling process in the previous example, the process was further 
refined and precise adjustments were made in the machines used to 
fill the fertilizer bags. This led to further reduction in the process 
variation and the Six Sigma team was able to reduce the process stan-
dard deviation. The x R−  charts for the improved process are shown 
in Figure 9.7. The process was stable and the tests for the special 
and assignable causes showed no problem. Calculate the standard 
deviation using the R-chart and calculate the process capability for 
the improved process. Determine any improvement in the process 
capability.

First, estimate the standard deviation, s from the information in 
the R-chart in Figure 9.7:

σ
^ .

.
.= = =

R
d2

1 659
2 326

0 713

Note: σ̂  is the estimate of s. The value of R  is reported in the 
chart for range in Figure 9.7 and d2 is obtained from the table—‘con-
stants for control charts’ in Appendix C. The value of d2 from the table 
for a subgroup size of five (n = 5) is 2.326.

The process capability,

6 6 0 713 4 278σ
^ ( . ) .= =

Comparing this process capability to the process capability 
of the initial process in Example 9.2, we find approximately 
15  percent improvement in the process capability. Note that the 
process capability of the initial process in Example 9.2 is 5.052 
and the process capability of the improved process in Example 9.3 
is 4.278.
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Assessing Process Capability Using Capability Indexes

In this section, we will demonstrate how the process capability and 
the specification limits (or the tolerance) are combined to provide the 
capability of the process.

In this section, we will consider capability indexes. The commonly 
used capability indexes defined are: Cp, Cpl, Cpu, Cpk, and Ccpk.

The capability indexes are based on the assumption that the process 
measurements follow a normal or approximately a normal distribution.

The index Cp (also called process capability ratio) is the ratio of allowable 
spread to the actual spread of the process. The allowable spread is the difference 
between the USL and LSL, or the tolerance. This is also known as the 
specification width or the process width. The actual spread of the process is 6s 
for a normally distributed process. Thus,

Figure: 9.7  The x− and R control charts for the improved process
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The capability indexes and the specification limits are combined to 
construct capability indexes that are used to assess the process capability.

	
C

USL LSL
p =

−

6σ
� (9.1)
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Usually, the process standard deviation s is unknown and must be 
estimated. The earlier expression is written more appropriately as

or,

C p =
Specification Width

Process Width

A graphical representation of Cp or the process capability ratio is 
shown in Figure 9.8.

The process capability ratio, Cp is interpreted in the following way:

The above three cases are shown in Figure 9.9. The interpretation of 
Cp earlier is based on the following assumptions:

•	 The underlying process is stable and in statistical control,
•	 The measurements are normally distributed, and
•	 The measurement errors are negligible.

	

C
USL LSL

p =
−

6σ̂
� (9.2)

Figure 9.8  Cp or process capability ratio

Process width

LSL USL+3σ–3σ

Specification width

Cp < 1.0 Process is not capable of meeting the specifications

Cp = 1.0 Process is marginally capable of meeting specifications

Cp > 1.0 Process is capable of meeting the specification limits
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The calculation of Cp in Equation (9.2) assumes that the process has 
both upper and lower specifications. For a one-sided specification limit, 
the Cp is calculated as Cpl and Cpu (for LSL and USL). From these 
measures, the indexes Cpk, and CCpk are calculated.

Figure 9.9 Interpretation of process capability for Cp < 1.0, Cp = 1.0 
and Cp > 1.0

LSL

Process capability (Cp > 1.0)

Process capability (Cp < 1) Process capability (Cp = 1.0)

USL

LSL USL LSL USL

Table 9.1  Capability indexes for process capability

C
USL LSL

p

within

=
−

6σ^

USL = upper specification limit
LSL = lower specification limit

σ̂ within = estimate of within subgroup standard 
deviation

C
x LSL

PL

within

=
−

3σ^

Ratio of the difference between process mean and LSL 
to one-sided process spread

x = process mean

C
USL x

PU

within

=
−

3σ^

Ratio of the difference between USL to one-sided 
process spread

C Min C CPK PU PL= { }. ,

Takes into account the shift in the process. The 
measure of CPK relative to CP is a measure of how 
off-center the process is. If C CP PK=  the process is 
centered; if C CPK P<  the process is off-center.
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Note that all of the indexes (Cp, Cpl, Cpu, Cpk, and CCpk) use an 
estimate of the process standard deviation, and the results obtained by 
these indexes are very sensitive to the estimated value of the standard 
deviation. The standard deviation is estimated using several different 
formulas depending upon the form of data (data with subgroup of size 
one or more).

The estimate of the standard deviation also differs depending upon 
the long-term or short-term process capability being assessed. Using 
the appropriate estimate of standard deviation is critical to assessing the 
correct process capability.

The process capability indexes are summarized in Table 9.1.

Example 9.4

Calculate the capability indexes—Cp, Cpl, Cpu, and Cpk for the 
process for which the data are given here. Interpret their meaning. 
Explain the difference between Cp and Cpk.

USL = 10.050, LSL = 9.950, µ σ
^ .= 9 999 and  =0.0165^  as 

estimates of

µ σ µ and  (  is the same as ^ x).

Solution:

C
USL LSL

p =
−

=
−

=

6
10 050 9 950

6 0 0165
1 01

σ
�

. .
( . )

.

(Note; σ^  is the estimate of standard deviation).

C
x LSL

PL =
−

=
−

=

3

9 999 9 950
3 0 0165

0 99
σ
^

. .
( . )

.

C
x

PU = − = − =USL
3

10 050 9 999
3 0 0165

1 03
σ�

. .
( . )

.

C C C MinPK PU PL= { } = =, .{ . , . } .1 03 0 99 0 99
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Cp = 1.01 means that the process is marginally capable (just able to 
meet the specifications). Cp = Cpk means that the process is centered. 
For this process, these values are not equal; therefore, the process is 
slightly off-centered.

Difference between Cp and Cpk: The process capability ratio or Cp 
does not take into account the shift in the process mean. It does not 
consider where the mean is relative to the specifications. Cp measures 
only the spread of the specifications relative to the six sigma spread or 
the process spread. Cpk on the other hand, takes into account the shift 
in the process mean.

Example 9.5

a. Given x = 70 and  =2^
σ  (as estimates of m and s), LSL = 58,  

USL = 82. Calculate the process capability indexes: Cp, Cpl, Cpu, 
and Cpk.

Solution: The problem is visually shown in Figure 9.10.

C
USL LSL

p =
−

=
−

=

6
82 58

6 2
2 0

σ
� ( )

.

C Min C C MinPK PU PL= { } = =. , { . , . } .2 0 2 0 2 0

b. Calculate the capability indexes for the data in part (a) if the 
mean has shifted from 70 to 73 (all the other values are same as in 
part (a)).

Solution: Figure 9.11 shows the original mean and the shift

C
USL LSL

p =
−

=
−

=

6

82 58
6 2

2 0
( )

.
σ
^

C
USL x

PU = − = − =
3

82 70
3 2

2 0�s ( )
.

	
C

x LSL
PL = − = − =

3
70 58

3 2
2 0�s ( )

.
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C Min C C MinPK PU PL= { } = =. , { . , . } .1 5 2 5 1 5

Figure 9.10  LSL and USL for Example 9.5
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Figure 9.11  Shift in the mean from 70 to 73
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C
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3
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3 2

2 5
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.
σ
^

	
C

USL x
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−
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−
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3

82 73
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.
σ
^
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Process Capability Using a Statistical Package: Process 
Capability for Normally Distributed Data

Process capability can be assessed easily using computer packages. 
Here we present an example of assessing the process capability using 
MINITAB statistical package. MINITAB uses both the graphical and 
numerical approach to process capability. The example demonstrates the 
capability of a production process that produces certain PVC pipe. The 
diameter of the pipe is of concern. The specification limits on the pipes 
are 7.000 ± 0.025 cm. There has been a consistent problem with meeting 
the specification limits, and the process produces a high percentage of 
rejects. The data on the diameter of the pipes were collected to determine 
the process capability of the current process. This would also provide an 
idea about the improvement for the future production runs. A random 
sample of 150 pipes was selected and the diameters measured. A process 
capability report shown in Figure 9.12 was generated using MINITAB.

The process capability report in Figure 9.12 shows that the process 
producing the pipes is stable. The histogram of the data shows that the 
measurements follow a normal distribution. Since the process is stable 
and the measurements are normally distributed, the normal distribution 
option of process capability analysis can be used to assess the process 
capability.

Figure 9.12  Process capability report of pipe diameter: Run 1

Process capability analysis of pipe dia: Run 1
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Interpreting the Results

Refer to the process capability report in Figure 9.12. This figure provides a 
detailed process capability of the pipe manufacturing process divided into 
different sections using boxes. We have labeled the boxes using numbers. 
The entries in box are explained in the following:

1.	The upper left box (Box 1) reports the process data including the 
LSL, target, and the USL. These values are input to the program and 
are reported as a part of the capability report. Based on the sample 
data, the program calculates the sample mean and the estimates of 
within and overall standard deviations.
�  The StDev(Within) is the standard deviation within the subgroup.
The potential or within capability indexes (explained later) are cal-
culated based on the estimate of σ̂ within or the variation within each 
subgroup. If the data are in one column and the subgroup size is 
one (like in our example where a sample of 150 diameters is entered 
in one column), this standard deviation is calculated based on the 
moving range (the adjacent observations are treated as subgroups). If 
the subgroup size is greater than one, the within standard deviation 
is calculated using the range or standard deviation control chart. (In 
MINITAB, you can specify the method you want.)
�  The other standard deviation—StDev(Overall), or the overall 
variation, which is the variation of the entire data in the study. The  
overall capability indexes are calculated based on this estimate. These 
indexes are explained later.

2.	Box 2 in Figure 9.12 shows the histogram of the data along with two 
normal curves overlaid on the histogram. One normal curve (with 
a solid line) is generated using the mean and the estimate of within 
subgroup standard deviation while the other normal curve (the one 
with a dotted line) is plotted using the mean and overall estimate of 
the standard deviation.
�  The histogram and the normal curves can be used to check visually 
whether the process data are normally distributed. To interpret 
the process capability, the normality assumption must hold. The 
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histogram and the normal curves show that the process is normally 
distributed.
�  There is a deviation of the process mean (7.010) from the target 
value of 7.000. Since the process mean is greater than the target 
value, the pipes produced by this process exceed the USL. A signifi-
cant percentage of the pipes are outside of the USL.

3.	Box 3 reports the potential or within process capability and the overall 
capability of the process (see the right hand side of Figure 9.12).
�  The potential capability of the process tells what the process would 
be capable of producing if the process did not have shifts and drifts; 
or how the process could perform relative to the specification limits 
(if the shifts in the process mean could be eliminated).
�  The overall capability of the process tells how the process is actu-
ally performing relative to the specification limits.
�  If there is a substantial difference between within and overall vari-
ation, it may be an indication that the process is out of control, or that 
the other sources of variation are not estimated by within capability 
(MINITAB).
�  In Box 3, The value of Cp = 0.86 indicates that the process is not capable 
(Cp < 1). Also, Cpk = 0.50 is less than Cp = 0.86. This means that the 
process is off-centered. Note that when Cpk = Cp, then the process is cen-
tered midway between the specification limits. The Cpk index provides 
information about how close the process is to the specification limits.
�  The value Cpk = 0.50 (less than 1) is an indication that an improve-
ment in the process is warranted. The process can be improved by 
centering the process and by reducing the variation.
�  In Box 3, the overall capability indexes or the process perfor-
mance indexes Pp, PPL, PPU, Ppk, and Cpm are also calculated 
and reported in the capability report (Figure 9.12). Note that these 
indexes are based on the estimate of overall standard deviation and 
they determine the overall or long-term capability of the process. 
Note that Ppk is the index for the whole process.
�  Pp and Ppk have similar interpretation as Cp and Cpk. For this 
example, Cp and Cpk values (0.86 and 0.50 respectively) are very 
close to Pp and Ppk (0.88 and 0.51). When Cpk equals Ppk then the 
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within subgroup standard deviation is the same as that of the overall 
process standard deviation. For this process, the within and overall 
standard deviations are close.
�  The index Cpm is calculated for the specified target value. If 
no target value is specified, Cpm is not calculated. The Cpm tells 
whether the process is off-center or deviates from the target. A high 
Cpm value index indicates a better process.
�  The process is centered if Cpm, Ppk, and Pp values are the same. 
For this process, Pp = 0.88, Ppk = 0.51, and Cpm = 0.59. A compar-
ison of these values indicates that the process is off-center.

4.	The bottom three boxes (Boxes 4, 5, and 6 ) in Figure 9.12 report the 
observed performance, expected within performance, and expected 
overall process performance in PPM. The observed performance 
(Box 4) in Figure 9.12 shows the following values:

�  This means that the number of pipes below the LSL is zero; 
that is, the process is able to meet the LSL. The number of pipes 
(out of a million) above the USL is 53333.33. The total number of 
nonconforming products produced by this process is 53,333 out of 
a million. These are actual process performances.

5.	The values in expected within performance (Box 5 in Figure 9.12) are 
based on the estimate of within subgroup standard deviation. These 
are the average number of parts below and above the specification 
limits in PPM. For this process, the Expected within Performance 
measures are:

Observed Performance
PPM < LSL 0.00
PPM > USL 53333.33
PPM Total 53333.33

Exp. Within Performance

PPM < LSL 134.53
PPM > USL 66163.57
PPM Total 66298.10
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�  The earlier values show the average or the expected performance 
based on the estimate of the within process standard deviation. These 
may be interpreted as short-term process performance.

6.	Box 6—The Expected Overall Performance is calculated using 
similar formulas used in within performance except the estimate 
of standard deviation is based on overall data. For this process, the 
Expected Overall Performance measures are

�  These values are based on the estimate of overall standard devi-
ation and may be interpreted as the long-term performance of the 
process.
�  As can be seen from the earlier analysis, the process is producing a large 
number of products that do not meet the specifications. An improvement 
in the process is warranted to reduce the nonconforming products.

Summary

Process Capability is the ability of the process to meet specifications and 
is one of the important aspects of overall quality improvement. To attain 
superior quality, the capability of a process should be constantly measured 
and analyzed. The process capability tells us: (a) whether the process is 
meeting customer specifications, (b) how will the process perform in the 
future, (c) whether the process needs improvement, and (d) if we have 
sustained these improvements, or has the process regressed to its previ-
ous unimproved state? The process capability gives us an overall state of 
the quality by telling us the number of products in a million that do 
not conform to the specifications. The chapter explained the specification 
limits and control limits and how they are related to the process capability 
analysis. We demonstrated different ways of assessing process capability: 
(1) graphical method, (2) capability using histograms and normal distri-
bution, (3) process capability using control charts, (4) process capability 

Exp. Overall Performance

PPM < LSL 89.93
PPM > USL 60899.58
PPM Total 60989.51
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using capability indexes, and (5) computer method—assessing process 
capability using MINITAB computer software. Examples were presented 
in all these cases. A detailed process capability report using MINITAB 
was presented with a case.





CHAPTER 10

Summary, Applications, and 
Computer Implementation

Introduction

In this book, we discussed statistical techniques and problem solving 
methods to improve the quality of products and services. The term 
statistical process control is often used to cover all uses of statistical 
techniques for the control of product quality. We presented a number of 
methods and tools to demonstrate how quality improvement methods 
can be applied to several areas of a company. The quality tools discussed 
can be applied to a number of areas including manufacturing, process 
development, engineering design, production and operations, and service 
industries. The technical tools to achieve quality improvement can also 
be applied to other areas of a company. One of the important concepts 
of process control and improvement is the understanding of variability. 
The companies find it difficult to provide their customers with products 
that meet all the quality requirements and are flawless. The reason for 
this is variability. No two products are identical, and there is always a 
certain amount of variability in every product. If this variation is large, 
the product becomes unacceptable. It is important to understand the 
variability and also the sources of variability so that it can be reduced or 
eliminated if possible. In this text, we learned the sources of variability 
and the ways of controlling these using methods of statistical process 
control.

In this chapter, we provide an overview of different control charts, 
which are major tools of process control. We also discuss the applications 
of some other control charts (not discussed in Chapters 7 and 8). These 
charts are used widely in solving quality problems. Finally, the computer 
implementation of the quality tools and control charts are discussed.
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Review and Application Areas of  
Different Control Charts

We discussed a number of control charts both for variables and attributes 
with examples. Here we provide a review of the control charts with their 
application areas. We also discuss some other process control charts and 
their applications, which we did not discuss in the earlier chapters.

The x– and R Chart (Variables Control Chart)

•	 The x– chart is used to monitor the average of the characteristic 
being measured.

•	 The R chart is used to monitor the dispersion of the process. 
It is used in conjunction with the x– chart when the process 
characteristic is a variable.

•	 When interpreting the x– chart, the causes for out of control 
conditions must be examined. MINITAB can perform the 
tests for out of control conditions.

X and Moving Range Charts for Population Data (Control Chart 
for Individual Values and Moving Range)

When it is not possible to draw frequent samples because the process 
is so slow that only one or two products are produced in a day, X 
and moving range (MR) chart can be used to monitor a variable 
measurement.

Median Control Charts

Sometimes there may be concerns about the accuracy of the computed 
subgroup means in the x– chart. In these cases, median charts can be used. 
Note that if odd sample size is used, median can be detected easily from 
the subgroups (use a sample size of 3, 5, or 7). Note that larger the sample 
size, better is the sensitivity of the chart in terms of detecting the special 
causes of variation. This is also true for the x– chart.
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x– and s Chart (Control Chart for the Mean and Standard 
Deviation)

When the variation or the dispersion of the process characteristic is 
of major concern, use the x– chart in conjunction with the s (standard 
deviation) chart.

The standard deviation chart is used where variation in the process is 
small and it is needed to detect small shifts in the process (e.g., production 
of silicon chips for computers). The R chart is not efficient in detecting 
small variations.

Moving Average Chart

This chart is used for monitoring variables and measurements on a 
continuous scale. The chart uses past information to predict what the 
next process outcome will be. This chart can be used to adjust a process in 
advance before it goes out of control.

Cusum Chart

The cumulative sum or cusum chart is used to identify small shifts in the 
process where there is no independence between observations.

Attribute Charts: p Charts for Proportion Defective

The p-chart is used to graph the proportion of items defective (nonconforming 
to specifications) in a sample. These charts are used to determine whether 
there has been a shift in the proportion defective for a product or service 
(e.g., wrong orders, late deliveries, accounting errors, defective parts). 
Subgroup size is usually 50 and 100 units.

np Charts

This is the chart of number of defective (or nonconforming units) in a 
subgroup. The np chart requires that the sample size of each subgroup be 
the same each time a sample is drawn.
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When subgroup sizes are equal, either the p or np chart can be used. 
They are essentially the same charts. Some prefer np chart over the p chart 
as it reflects integers rather than proportions. The applications of both the 
charts are the same.

c Chart

The c chart is a chart of number of defects (nonconformities) per unit. The 
requirement is that the units must be of the same sample space: this 
includes size, height, length, and so on.

The area of opportunity for finding the defects must be the same 
for each unit. Several individual units can make a sample, but they are 
grouped as if they are one unit of a larger size. Some examples are: number 
of flaws in an auto finish for a particular model, number of errors in a 
form, or number of scratches in glass surface of a product.

u Chart

This is the chart of the average number of defects per unit.
It is different from a c chart that shows the actual number of defects 

per unit. The number of units sampled in a u chart can be of different 
size. This chart has the same application as the c chart.

Statistical Process Control Using Computer

Often, in real-world applications, we encounter massive amounts of data 
that cannot be analyzed easily using manual methods. In such cases, 
computers becomes indispensable in constructing and analyzing these 
control charts. Computers are almost always used in modeling, and 
solving quality problems. All the control charts and the process capability 
analysis reports in this text were generated using a computer package.

Computer Applications

There are a number of widely used computer packages used in statistics, 
data analysis, and quality. These include MINITAB, Excel, Stat-graphics, 
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SAS, SPSS, and others. In earlier chapters, we provided a number of 
computer applications using MINITAB. This is one of the popular and 
widely used software for Quality and Six Sigma. Figures 10.1 and 10.2 
show a screen shot from MINITAB showing different types of variable 
and attribute control charts available. Using these options, the control 
charts can be created very easily and can be analyzed for out of control 
conditions.

Some Examples of Statistical Analysis Using Computer

In Chapter 3, we provided an overview of statistical techniques including 
the descriptive and inferential statistics, review of probability and 
probability distributions useful in modeling and solving quality prob-
lems. All these techniques can be easily implemented using computer 

Figure 10.1  Variable control charts in MINITAB

Figure 10.2  Attribute control charts in MINITAB
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packages. In Chapter 3, we used a data set from a manufacturer of 
televisions who was interested in the survival time of one of its compo-
nents. A sample of 200 television components was tested. The results were 
shown in Table 3.1. The table showed the life (in hours) of these com-
ponents rounded to the nearest hours. We used MINITAB to produce a 
descriptive statistics and graphical summary of the data. These are shown 
in Figure 10.3. The results are very useful in data analysis.

Example of Quality Tools Using MINITAB

We discussed a number of graphical techniques including histograms, 
stem-and-leaf-plots, and box plots. There is another set of tools known as 
quality tools. These are a set of graphical tools very widely used in solving 
quality problems and can be created using quality software. Figure 10.4 
shows a commonly used quality tool known as a cause-and-effect diagram 
widely used in quality projects to find the possible causes of a problem. 
The figure shows the possible causes of poor quality. MINITAB provides 
a number of quality tools that are very useful in solving quality problems.

Pareto Chart: A Pareto chart is very similar to a bar chart where the 
bars are arranged by categories from largest to smallest with a line that 

Figure 10.3  Descriptive statistics and graphical summary of 
television component life
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shows the cumulative percentage and count of the bars. This chart is 
widely used in quality improvement projects. Through this chart, the 
problem that occurs most frequently can be identified quickly and easily. 
This helps to focus the improvement efforts on the problem having the 
largest frequency of occurrence. A Pareto chart does not identify the most 
important category; it identifies the categories that occur most frequently. 
Pareto charts are also used widely in nonmanufacturing applications.

Figure 10.5 shows a Pareto charts depicting the causes of rejection in 
a manufactured part. In this chart, the rejection categories are arranged 
from the largest to the smallest. The Pareto chart in Figure 10.6 shows 
the same graph with cumulative percentages and counts. The bottom of 
the chart shows the count, percentage, and cumulative percentage for the 
categories. The Pareto charts are very useful in isolating and studying the 
major problem categories.

The tools mentioned earlier are extremely useful in different phases of 
quality improvement. They are easy to learn and very useful in drawing 
meaningful conclusions and solving quality problems.

Figure 10.4  Cause-and-effect diagram
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Figure 10.6  Pareto chart of causes of rejection with cumulative 
percentage
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Notes on Implementation

In implementing the control charts, the following guidelines should be 
followed:

•	 Understand the process for implementing the process charts
•	 Know how to interpret the charts
•	 Know when different process charts are used
•	 Know how to compute the limits for different charts and the 

statistical basis behind them.
•	 Know how to implement the control charts using computer 

packages.
•	 Identify critical operations in the process where inspection 

might be needed
•	 Identify critical product (quality) characteristics: the 

characteristics that will have effect on the functioning of the 
product

•	 Determine if the product or quality characteristic is a variable 
or an attribute

•	 Select appropriate process control chart
•	 Establish the control limits and use the chart to monitor and 

improve the process
•	 Revise the limits when changes are made to the process

Summary

This book provided the following key concepts related to quality and 
statistical process control:

•	 Use and importance of quality as a field
•	 A brief history of quality as a field
•	 The statistical techniques useful in quality control or process 

control
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•	 Inferential tools necessary for making inference about process 
quality

•	 The methods and philosophy of control charts and why 
control charts work

•	 The control charts for variables x– and R charts, individual 
value charts and x– and s charts, x– charts for variables (MR 
charts, etc.)

•	 Control charts for attributes (p-chart, np-chart, c-chart, 
u-chart)

•	 Use of computer in solving quality related problems and 
implementing control charts

•	 Understand the concepts of process capability analysis and 
techniques of process capability

•	 Realize that the statistical process control is integral part of 
overall quality program—Six Sigma and the control charts are 
the tools used in control phase of Six Sigma quality
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Standard Normal 
Distribution Table

Z0

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.00 0.004 0.008 0.012 0.016 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.091 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.148 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.17 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.195 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.219 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.258 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.291 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.334 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.377 0.379 0.381 0.383

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.398 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.437 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.475 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.483 0.4834 0.4838 0.4842 0.4846 0.485 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.489

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.492 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.494 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.496 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.497 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.498 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.499 0.499
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Partial t-Distribution Table

Degrees of 

Freedom (Df)

1
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:

:

infinity

0.100

3.078

1.886
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1.282

0.050

6.314 12.706 31.821

6.965

4.541

3.747

3.365
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2.821
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2.650
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2.583
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2.539
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2.500

2.492
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2.462

2.457
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2.441
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2.327

4.303

3.182

2.776

2.571

2.447

2.365 2.998

2.306

2.262

2.228

2.179

2.160

2.145

2.1311.341 1.753

2.120
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2.080
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2.069
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2.060

2.056

2.052

2.048

2.045

2.042

2.040

2.037

2.032

2.030

1.960

2.290

2.353

2.132

2.015

1.943

1.895

1.860

1.833

1.812

1.796 2.201

1.782

1.771

1.761

1.746

1.740

1.734

1.729
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1.721

1.717

1.714

1.711

1.708

1.706
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1.701

1.699

1.697

1.696

1.694

1.692 2.035 2.445

1.691

1.690

1.645

0.025 0.010

Area in Uppet Tail

0.005

63.657

9.925

5.841

4.604

4.032

3.707

3.499

3.355

3.250

3.169

3.106

3.055

3.012

2.977

2.131

2.921

2.898

2.878

2.861

2.845

2.831

2.819

2.807

2.797

2.787

2.779

2.771

2.763

2.756

2.750
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2.738

2.733
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2.724
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Table of Control Chart 
Constants

Constants for X-bar
chart Constants for R chart

Constants for 
S chart

Sample  
Size = n A2 A3 d2 D3 D4 B3 B4

2 1.880 2.659 1.128 - 3.267 0 3.267

3 1.023 1.954 1.693 - 2.574 0 2.568

4 0.729 1.628 2.059 - 2.282 0 2.266

5 0.577 1.427 2.326 - 2.114 0 2.089

6 0.483 1.287 2.534 - 2.004 0.030 1.970

7 0.419 1.182 2.704 0.076 1.924 0.118  1.882

8 0.373 1.099 2.847 0.136 1.864 0.185  1.815

9 0.337 1.032 2.970 0.184 1.816 0.239  1.761

10 0.308 0.975 3.078 0.223 1.777 0.284 1.716

11 0.285 0.927 3.173 0.256 1.744 0.321 1.679

12 0.266 0.886 3.258 0.283 1.717 0.354 1.646

13 0.249 0.850 3.336 0.307 1.693 0.382 1.618

14 0.235 0.817 3.407 0.328 1.672 0.406 1.594

15 0.223 0.789 3.472 0.347 1.653 0.428 1.572

16 0.212 0.763 3.532 0.363 1.637 0.448 1.552

17 0.203 0.739 3.588 0.378 1.622 0.466 1.534

18 0.194 0.718 3.640 0.391 1.608 0.482 1.518

19 0.187 0.698 3.689 0.403 1.597 0.497 1.503

20 0.180 0.680 3.735 0.415 1.585 0.510 1.490

21 0.173 0.663 3.778 0.425 1.575 0.523 1.477

22 0.167 0.647 3.819 0.434 1.566 0.534 1.466

23 0.162 0.633 3.858 0.443 1.557 0.545 1.455

24 0.157 0.619 3.895 0.451 1.548 0.555 1.445

25 0.153 0.606 3.931 0.459 1.541 0.565 1.435
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assignable cause variations, 155–157, 
238

assignable variation, 138–139
attribute charts, 267
attribute control charts, 209

c-chart, 229–234
np chart, 226–229
p-chart, 210–226

background noise, 138
bell-shaped distribution, 63
box plot, 64

applications, 70–71
five-number summary, 67–70
of utility bill data, 69

business strategy, 21

capability indexes
process capability using, 252–257

capable process, 49
categorical data, 41
cause-and-effect diagram, 270, 271
c-chart, 268. See also np chart; p-chart

construction and application, 
231–234

development, 230
examples, 229
Poisson distribution, 230
steps for constructing, 230–231

center line (CL), 158, 160
central limit theorem, 96, 101–103

in x  chart, 169–170
chance causes of variation, 155
class frequency, 44
class intervals, 44–45
common cause variations, 238
confidence intervals, 103, 104

estimation, 106
interpretation, 106–107
for mean, 107–110
for population mean, 109
for population proportion, 110

population standard deviation and, 
110

for population variances, 109
for standard deviations, 109
for variance, 107–109

Constants for Control Chart, 
176–178, 180, 184, 195

consumer’s risk, 120
continuous data, 41–42
continuous probability distributions, 

76–77
continuous random variable, 73–76
control charts. See also R chart; x  chart

attribute, 163–164
attribute charts, 267
for attributes, 209
cause-and-effect diagram, 270, 271
c chart, 268
centerline and control limits, 

revising, 203–208
constructing and analyzing, 

194–199
continued process monitoring, 

199–203
cusum chart, 267
definition, 157–158
example, 158
and hypothesis testing, 162–163
implementation, 273
for individual measurements, 

164–166
for individual values and moving 

range, 266
mean, 267
median, 266
for monitoring process mean, 

167–170
moving average chart, 267
np charts, 267–268
out-of-control process, 188–194
Pareto chart, 270–272
pattern of variation, 188
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process capability using, 248–252
process in control, 187–188
standard deviation, 267
statistical basis of, 159–160
three-sigma limits in, 160–162
types of, 163–164
u chart, 268
variables, 163–164, 266

control limits, 155, 237–238
costs of quality (COQ), 4–6
critical quality characteristics (CTQs), 

20, 34, 36
customer-focused approach, 21
cusum chart, 267

data
classification of, 41–42
collection and presentation of, 42
numerical measures to 

summarizing, 54–62
organizing, 42–48

data array, 44
defective products, 210
Defect per Unit (DPU), 27
defects per million opportunities 

(DPMO), 26
Define, Measure, Analyze, Design, 

and Verify (DMADV) 
process, 35–36

Define, Measure, Analyze, Improve, 
and Control (DMAIC) 
model, 29, 30

degrees of freedom, 110
descriptive statistics, 39–40

of utility bill data, 68
Design for Six Sigma (DFSS), 18–20, 

34–37
in product life cycle, 37–38

detection quality systems, 4–6
DFSS. See Design for Six Sigma
discrete data, 41
discrete random variable, 72–73
dispersion

measures of, 57–59
DMADV process. See Define, 

Measure, Analyze, Design, 
and Verify process

DMAIC model. See Define, Measure, 
Analyze, Improve, and 
Control model

DPMO. See defects per million 
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DPU. See Defect per Unit

empirical rule, 77
equal width, 44
estimation

confidence interval, 106–110
interval, 105–106
point, 105
review of, 103
types of, 104
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inner, 70
outer, 70

five measure summary, 64
frequency distribution, 42, 44–48

grouping, 42, 44
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lower, 69
upper, 69

histogram, 47
applications in quality, 48–52
detecting shift and the variation, 

48–49
evaluating process capability using, 

49–52
with fit and groups, 49, 52
of lifetime data, 48
process capability using, 246–248

hypothesis testing, 103, 116–117
control chart and, 162–163
definition, 117
for equality of two means, 128–133
formulating, 121–123
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right-sided test, 122–123
single population mean, 117–125
two-sided test, 123–124
using the p-value approach, 

126–128

Identify, Design, Optimize, and 
Validate (IDOV) process, 36

IDOV process. See Identify, Design, 
Optimize, and Validate 
process

inferential statistics, 40
tools of, 103–104

instant-time method, 171
interference problems, 40, 103
interval estimate, 104–106

just-in-time manufacturing, 31

lean manufacturing, 31
Lean Sigma, 18–20
Lean Six Sigma, 30–32
lean vs. Six Sigma, 32–34
lower class boundary, 44
lower class limit, 44
lower control limit (LCL), 157, 160

manufacturing-based quality, 2
manufacturing process, 31
margin of error, 104
market share, 4
matched sample test, 134
mean

calculating, 55–56
confidence intervals for, 107–110
control chart, 267
and standard deviation, 63–64

measures of dispersion, 57–59
measures of position, 64–65
measures of variation, 57–59
median

calculating, 56–57
control chart, 266

methodology, 21
MINITAB

attribute control charts in, 269
pattern-analysis in control charts, 

193

quality tools using, 270–272
special causes in control chart, 193
variable control charts in, 269

moving average chart, 267

nondefective products, 210
nonrandom variation, 156
normal distribution, 63, 75, 77–78, 

161
np chart, 226–229. See also c-chart; 

p-chart
np charts, 267–268
numerical methods, to summarizing 

data, 54–62

operating characteristic (OC) curve, 
163

ordered array, 42, 44
out-of-control process, 188–194

paired-test, 134
parameters, 40
Pareto chart, 270–272
parts per million defective (PPM), 26
p-chart, 209. See also c-chart; np chart

analyzing and interpreting, 
217–218

center line, 211–212
chip manufacturing process, 221
construction and application, 

215–222
control limits, 211–212
defective chips, 220
defective microchips, 218
defective motors, 215
development, 210–211
general structure of, 212
implementation, 226
modification, 222
rationale behind, 210
sample proportion nonconforming, 

211
sample size for, 212–213
special causes in, 218
steps for constructing, 213–214
tests for special causes, 221
for variable subgroup size, 222–226

percentiles, calculating, 65–67
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percent nonconforming, noncentered 
process, 27–28

period-of-time method, 172
point estimate, 104, 105
population mean, 40, 55

confidence intervals for, 109
population parameters, 40, 95–96, 

116
population proportion, 40

confidence interval for, 110
population standard deviation, 40

and confidence intervals, 110
population variances, 40

confidence intervals for, 109
PPM. See parts per million defective
prevention quality systems, 4–6
probability density function, 74–76
probability distributions, 144

defining, 71
and random variable, 72–76

process, 8–9
in-control, 218
out-of-control, 217
outputs, 9–10
sources of variation in, 10–11

process capability
applications, 239
assessing, 240–245
graphically assessing, 241–245
measurement and analysis, 239
numerical measure, 246
Six Sigma spread as, 240
station, 239–240
using capability indexes, 252–257
using control charts, 248–252
using histogram, 246–248
using statistical package, 258–262

process variation
chance and assignable causes of, 

155–157
change in process, 146, 151
measuring, 138–144
output variable, 144–146

producer’s risk, 120
product-based quality, 2
products, sources of variation in, 

10–11

profitability, 4
project based approach, 21

qualitative data, 41
quality

costs of, 4–6
definitions, 1–3
detection vs. prevention systems, 5
dimensions, 3
as field, 1
history of, 15, 16
importance, 3–4
and percent nonconforming, 27–28
poor quality costs, 4–6
processes, 8–9
systems, 7–8
tools, 270

Quality is Free (Crosby), 4–5
quantitative data, 41, 64
quartiles

calculating, 65–67
lower, 69
middle, 69
upper, 69

random variable
probability distributions and, 

72–76
random variation, 138, 156
rational subgroups, 171
raw data, 43
R chart. See also control charts; x  chart

centerline for, 174–177, 179–181, 
185–187, 195–199

constructing and analyzing, 
182–187

control limits for, 174–177, 
179–181, 185–187, 195–199

data collection, 173–174
general from of, 180
monitoring variation, 178–187
out-of-control points, 205
quality characteristic for, 170–171
sample size for, 171–173
shaft diameter, 197, 198
subgroups for, 171–173
summary of steps, 181–182
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summary of steps for, 177–178
for variable, 170–178

run chart, 137–144
output variable characteristics, 

144–146
patterns, 146–152

sample mean, 40, 55, 100–101
mean and standard deviation of, 99
sampling distribution of, 97–100

sample median, 40
sample proportion

sampling distribution of, 97
sample size determination, 111–116
sample size requirement, 104
sample standard deviation, 40

calculating, 62
sample statistics, 40, 95, 103, 104
sample variance, 40, 59–60

calculating, 60–61
sampling distribution, 96–100

process of, 97
of the sample mean, 97–100
of sample proportion, 97

sigma, 18
single population mean

testing, 117–125
Six Sigma, 18–20

business success of, 22–23
current trends, 23
DMAIC model, 29, 30
lean vs., 32–34
methodology, 29
metrics and measurements in, 26
objective of, 20–22
phases of, 30
in product life cycle, 37–38
Quality Digest survey, 22
service successes of, 28
spread as process capability, 240
statistical basis of, 24–25
three-sigma process vs., 22
and TQM, 17

specification limits, 238–239
standard deviation, 18, 61, 100–101

mean and, 63–64
standard deviation control chart, 267
standard deviations

confidence intervals for, 109
standard error, 100–101, 104
standard normal distribution, 78–81
statistical inference, 96, 104
statistical methods

categories, 39–40
data

classification of, 41–42
collection and presentation of, 

42
numerical methods to 

summarizing, 54–62
organizing, 42–48

histogram, 47
applications in quality, 48–52
detecting shift and the variation, 

48–49
evaluating process capability 

using, 49–52
with fit and groups, 49, 52
of lifetime data, 48

numerical methods of describing 
data, 54–62

stem-and-leaf plots, 52–54
statistical package, process capability 

using, 258–262
statistical process control, 152, 265

computer applications, 268–269
stem-and-leaf plots, 52–54
symmetrical distribution, 63
systems, 7–8

three sigma control limits, 237
three-sigma limits, in control charts, 

160–162
three-sigma process, 24
time series plot, 137
tolerance limits, 238
total quality management (TQM) 

approach, 15–17
transcendent quality, 2
two population means

hypothesis testing for, 128–133

u chart, 268
uncontrolled variation, 156
ungrouped data, 43–44
upper class boundary, 44
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upper class limit, 44
upper control limit (UCL), 157, 160
user-based quality, 2

value-based quality, 2
variables, 43

control chart, 266
x and R chart for, 170–178

variance, confidence intervals for, 
107–109

variation, 137
assignable cause of, 155
assignable/special causes, 138–139
calculating, 61–62
chance/random causes of, 155
detecting in processes (See process 

variation)
measures of, 57–59
measuring, 11–13
outputs, 9–10
in products and processes, 10–11

voice of customer (VOC), 20, 34, 36

whiskers, 70

x chart. See also control charts; R chart
centerline for, 174–177, 184–185, 

195
Central Limit Theorem in, 

169–170
constructing and analyzing, 

182–187
control limits for, 174–177, 

184–185, 195
data collection, 173–174
out-of-control points, 205
process mean monitoring, 167–170
quality characteristic for, 170–171
sample size for, 171–173
shaft diameter, 198, 199
shaft manufacturing process, 197
structure, 168–169
subgroups for, 171–173
summary of steps for, 177–178
for variable, 170–178
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