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Abstract

Ellipsometry is an experimental technique for determining the thickness 
and optical properties of thin films. It is ideally suited for films ranging 
in thickness from subnanometer to several microns. Spectroscopic 
measurements have greatly expanded the capabilities of this technique and 
introduced its use into all areas where thin films are found: semiconductor 
devices, flat panel and mobile displays, optical coating stacks, biological 
and medical coatings, protective layers, and more. While several scholarly 
books exist on the topic, this book provides a good introduction to the 
basic theory of the technique and its common applications. It follows in 
the footsteps of two previous books written by one of the authors with 
important updates to emphasize modern instrumentation and applications. 
The target audience is not the ellipsometry scholar, but process engineers 
and students of materials science who are experts in their own fields and 
wish to use ellipsometry to measure thin film properties without becoming 
an expert in ellipsometry itself.
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Cauchy equation, dispersion equations, ellipsometry, optical constants, 
polarized light, refractive index, thin film thickness
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Preface

Ellipsometry is an experimental technique for determining the thickness 
and optical properties of thin films ranging in thickness from submono-
layer coverage to several micrometers thick. Elliptically polarized light 
is used as a probe to determine these properties. Many different wave-
lengths of light are used, hence the term “Spectroscopic.” This provides 
the optical properties in the ultraviolet, visible, and infrared spectral 
range. The ellipsometric quantities measured are delta, the phase shift of 
the component of light in the plane of incidence compared to the com-
ponent perpendicular to the plane of incidence, and psi, the tangent of 
which equals the ratio of the amplitudes of the electric fields in those two 
directions. The quantities of interest are film thickness and spectral optical 
functions. In order to determine these, it is necessary to do a regression 
analysis to determine the best fit of the proposed values of thickness and 
optical functions to the aforementioned measured ellipsometric values.

In this book, we discuss the physical properties of polarized light, 
how the ellipsometric values are measured, and how we transform these 
ellipsometric values to values of interest, that is, the thickness and optical 
functions.

The target audience for this book are process engineers who are 
experts in their respective fields and who want to understand how 
their ellipsometer does what it does. Graduate students and advanced 
undergraduates in a scientific or engineering field will also benefit from 
reading this work.
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CHAPTER 1

Perspective,  
Previous Works, and 

Purpose of This Volume

1.1  HISTORICAL ASPECTS

Ellipsometry is an experimental technique for determining the thickness 
and optical properties of thin films. The name “ellipsometry” comes from 
the fact that the technique uses elliptically polarized light as a probe in 
order to determine the thickness of thin films and the optical properties 
of the film material. Originally, ellipsometry was practiced using one 
wavelength. That practice is now called “single-wavelength ellipsometry.” 
Starting in the 1990s, many wavelengths from the ultraviolet (UV) to the 
near infrared (NIR) spectral range were used and this practice is called 
“spectroscopic ellipsometry” or simply “SE.” The primary strength of SE 
is the ability to analyze multiple layers and determine the optical constant 
dispersion (variation with wavelength). From the optical dispersion, 
additional material properties can be deduced. Examples include the 
degree of crystallinity of annealed amorphous silicon and the aluminum 
fraction in AlxGa1-xAs.

1.2 �F OCUS OF THIS BOOK AND TARGET 
AUDIENCE

There are several scholarly books on SE [1–9] for those interested in 
leading-edge technology and researching further in the field. However, there 
has always been a need for a preliminary introduction to ellipsometry for 
the nonellipsometry expert. The first such work was introduced in 1993—



2   •   SPECTROSCOPIC ELLIPSOMETRY

“A User’s Guide to Ellipsometry” by H.G. Tompkins [3], which covered 
the subject of single-wavelength ellipsometry. This was followed in 1999 
by the publication of “Spectroscopic Ellipsometry and Reflectometry: 
A User’s Guide” by H.G. Tompkins and W.A. McGahan [4]. The target 
audience for these books was not the ellipsometry scholars, but process 
engineers, who were experts in their own field (e.g., a thin-film deposition 
engineer) and who wanted to use ellipsometry to measure the properties 
of their films without having to become an expert in ellipsometry itself. 
These books were also a perfect starting-point for materials-science 
students, where ellipsometry is only one of many tools used to study thin 
film properties. While very well received, the natural evolution of the 
field, particularly SE instrumentation, has left the most recent book some-
what out of date.

The focus of the previous book was on rotating-analyzer instruments, 
which had no compensator and often used monochromators to scan through 
select wavelengths. This was the prevailing type of instrument used at 
that time. Rotating-analyzer ellipsometers, with a phase-shifting element, 
are still used, primarily in academia. However, the rotating-compensator 
instrument, with fast charge-coupled device (CCD)-detection, has become 
the prevailing ellipsometer type used in both industry and academia. 
Whereas the monochromator-based rotating-analyzer instrument took  
5 to 10 minutes to collect a spectrum at one angle, the newer CCD-based 
detection allows spectra to be collected in seconds. This has greatly 
expanded the use of SE for applications requiring high-speed, such as real-
time dynamic measurements or large-area uniformity maps.

It seems reasonable that a new book be written emphasizing the faster 
ellipsometer technology. Accordingly, the purpose of the present work 
is to give a brief summary of the SE technique, as currently practiced, 
directed toward the casual user who is an expert in his or her own field 
(e.g., a process engineer), who wants to use an ellipsometer but does not 
feel the need to become an expert in ellipsometry. This is in keeping with 
the intent of the previous books by one of the authors.

1.3  OVERVIEW OF TOPICS

The usual methods for determining thickness (calipers, micrometers, yard 
sticks, etc.) are ineffective for films thinner than about one micrometer. 
On the other hand, microelectronic devices, optical coating components, 
and so on often have layers that are significantly thinner (e.g., down to 
monolayer thicknesses). Interferometry methods (where intensity is the 
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measured quantity) are ineffective below thicknesses of several thousand 
angstroms. The ellipsometry technique is useful for film thicknesses of 
several micrometers down to submonolayer coverages.

The probe for ellipsometry is a polarized light beam. The sample of 
interest is illuminated by a light beam of known polarization; the light 
beam is reflected by the sample and is directed back into the instrument. 
The ellipsometer measures what the sample did to the polarization state of 
the reflected light beam. The entities that are measured by the ellipsometer 
involve the mutually perpendicular components (called the p-waves 
and the s-waves) of the probing beam. The entities are the ratio of the 
amplitudes (giving us the quantity called “psi”) and the phase shift (giving 
us the quantity called “delta”) of the mutually perpendicular components. 
Y and D are measured for various wavelengths of light, hence the term 
“spectroscopic” in the technique name.

Software is used to convert the ellipsometric quantities Y and D 
into the ultimate quantities of interest such as film thickness and optical 
functions of the film (and substrate). The methods that provide sample 
information from the measured ellipsometric quantities will be the focus 
throughout the second half of this book.

The general format of this book will be as follows. We start with the 
physics of light and interaction between light and matter in Chapter  2.  
This chapter will also define the basic measurement quantities of interest. 
In Chapter 3, we describe the primary components of any spectro-
scopic ellipsometer, along with example optical configurations for the 
instrumentation currently available. In Chapter 4, we discuss the SE data 
features from common sample types including bare substrates and thin 
film coatings. As we consider a wide spectral range, we also need methods 
for representing the optical functions of each material. In Chapter 5, we 
introduce common dispersion relationships used for both transparent and 
absorbing optical functions.

In Chapter 6, we move to the processes and applications used 
to determine material properties such as film thickness and index of 
refraction. Chapter 7 is dedicated to the most common application of 
ellipsometry—the measure of film thickness and index from a transparent 
layer on a known substrate. This is followed by chapters introducing 
roughness (Chapter 8) and very thin films (Chapter 9). We then describe 
films which absorb over a specific spectral region (Chapter 10) or over all 
wavelengths (Chapter 11). Finally, we introduce the basic approaches to 
consider multilayer characterization in Chapter 12.

We provide references which consist of books on ellipsometry [1–9], 
the SE conference proceedings [10–15], works on optical properties 
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[16–21], instrumentation [22–25], optics and polarized light [26–29], and 
specific papers on SE methods and applications [30–37]. Throughout, we 
introduce methods that can be applied irrespective of the instrument and 
software at your disposal.



CHAPTER 2

Basic Physical Phenomena

Ellipsometry uses polarized light as a probe of thin films on a substrate. 
In this chapter, we discuss the physical phenomena of light and how it 
interacts with the sample of interest to provide film thickness and optical 
properties.

2.1 T HE ELECTROMAGNETIC WAVE

In much of the historical understanding, the concept of light and sight were 
convoluted. From Greek antiquity to the 19th century, light was thought to 
be a stream of particles going either from the object being observed to the 
eye or vice versa [38]. Christiaan Huygens (Figure 2.1), in 1673, proposed 
that light was actually a wave [39].

This concept was developed extensively in the early 1800s by Thomas 
Young, Augustin-Jean Fresnel, David Brewster (Figure 2.2), and others, 
although it was not known what actual material was waving.

In 1864, in a paper presented before the Royal Society, James Clerk 
Maxwell (Figure 2.3) proposed a theory which required the light wave 
vibrations to be strictly transverse (perpendicular to the propagation 
direction) and provided a definite connection between light and electric-
ity. The results of this theory were expressed as four equations which are 
known as Maxwell’s Equations.

The quantity which was waving was not an actual material, but 
instead was both an electric field (E) and magnetic field (B). The vector 
fields, E and B, are perpendicular to each other and both are perpendicular 
to the direction of propagation, as shown in Figure 2.4.

It is generally accepted that the human eye reacts to the electric vibration. 
The two vibrations are not independent and specification of the electric field 
vector completely determines the magnetic field vector. For these reasons, 
and for simplicity, we consider only the electric field vibration.
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Figure 2.1.  Christiaan Huygens 
proposed, in 1673, that light was 
a wave.

Figure 2.2.  (a) Thomas Young, (b) Augustin-Jean Fresnel, and (c) David 
Brewster developed the concept of light waves in the early 1800s.

(a) (b)

(c)
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The equation for an electromagnetic plane wave can be expressed 
several ways. It describes the electric field as a function of both position 
and time. If we consider motion in one dimension (z), with the electric 
field oscillating only within the x-plane, the solution to the wave equation 
can be expressed as

	
E z t E z tx , sin( ) = − −( ) +



0

2p x
l

v � (2.1)

Figure 2.4.  Light is shown as an electromagnetic wave. Both the electric 
field (E) and the magnetic field (B) are perpendicular to each other and to 
the direction of wave propagation.

Figure 2.3.  In 1864, James Clerk 
Maxwell developed the theory 
which showed that light was an 
electromagnetic wave.
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where E is the electric field strength at any time or place, E0 is the maxi-
mum field strength or wave “amplitude,” z is the distance along the direc-
tion of travel, t is the time, ν is the phase velocity, λ is the wavelength, and 
ξ is an arbitrary phase angle (which will allow us to offset one wave from 
another when we combine waves).

Although light waves can occur in several different forms (e.g., 
spherical, plane, etc.), we shall deal exclusively with plane waves.

2.1.1  WAVELENGTH, FREQUENCY, AND PHOTON ENERGY

Light is often described by its wavelength, frequency, or photon energy. 
The wavelength, l, is the distance between two consecutive peaks of 
the electric field, as shown in Figure 2.4. Wavelength is specified for the 
electric field in free space*, where phase velocity is equal to the speed 
of light, c. The wave frequency, f, refers to how often the electric field 
vibrates per unit time. These terms are related by the following:

	
f v

=
l

� (2.2)

Both phase velocity and wavelength are altered when electric fields 
travel through materials. However, the frequency remains constant.

Typical ellipsometry measurements use light from the ultraviolet (λ ~ 
200 nm) to the near infrared (λ ~ 2000 nm). This is equivalent to frequencies 
of ~1.5 × 1015 − 1.5 × 1014 oscillations per second (Hz), respectively.

Because the oscillations are at extremely high frequencies, we cannot 
directly measure the electric field. Instead, we measure the flux of energy 
of the radiation. The quantity of energy being transferred across a unit 
area which is perpendicular to the propagation direction is called the 
“intensity” or “irradiance” of the wave (here denoted as I ). The intensity 
is proportional to the square of the wave amplitude, that is,

	 I Eoµ 2 � (2.3)

While light can be described as an electromagnetic wave, it also 
behaves as a collection of quanta, called photons. Each photon carries 
a specific amount of energy, referred to as photon energy (Ephoton), which 

*  Throughout this book, we will refer to the wavelength for light in free space.
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is related to the frequency. Higher frequencies provide larger photon 
energies. The wavelength is inversely related to both the frequency and 
photon energy, as shown in Equation 2.4. Thus, short wavelengths carry 
more energy than long wavelengths. Our wavelength range from 200 nm 
to 2000 nm has photon energies of ~6.2 eV to 0.62 eV, respectively.

	
E hf hc
photon = =

l
, where h is Planck’s constant� (2.4)

2.1.2  INTERFERENCE

We now consider the combination of multiple electromagnetic waves of 
the same frequency propagating along the same direction. Under certain 
conditions, the combination of waves leads to interference, which is the 
algebraic sum of the electric fields at each position. Interference will not 
occur if the electric fields are orthogonal. However, when electric fields 
are oriented along the same direction, they will interfere. The resultant 
electric field amplitude of the combined wave can be enlarged (constructive 
interference) or reduced (destructive interference).

Constructive interference occurs when each electric field is displaced 
in the same direction, as shown in Figure 2.5a. This occurs when the 

Figure 2.5.  (a) Constructive and (b) destructive interference.
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waves are in-phase, that is, their phase difference is near 0°. Destructive 
interference occurs when each electric field is displaced in opposite 
directions, as shown in Figure 2.5b. This occurs when the waves are 
out-of-phase, that is, their phase difference is close to 180°.

2.2 �INT ERACTIONS BETWEEN THE 
ELECTROMAGNETIC WAVE AND MATTER

In this section, we describe the relationship between materials and light. 
The material properties of interest are referred to as “optical properties” or 
“optical constants”. Because they vary with the wavelength, they are also 
referred to as optical functions. Two common descriptions for the optical 
constants of a material are the complex refractive index and the complex 
dielectric function.

2.2.1  COMPLEX REFRACTIVE INDEX

When light interacts with different materials, several phenomena occur. 
Each can be described by considering the optical properties of the 
material. First, the wave can change directions. Figure 2.6 depicts a plane 
wave light beam arriving at an interface between air and another material. 
Some of the light is reflected back into the first medium (air) and does not 
enter the second medium. The light entering the second medium travels 
in a new direction, which is covered in a later section on light refraction.

Second, the phase velocity of the light wave can be altered. This 
is represented by the three parallel-lines in Figure 2.6 that represent 

Figure 2.6.  A light beam is shown 
interacting with an interface 
between air and a material with a 
complex index of refraction Ñ2.
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corresponding wavelengths. The phase velocity is faster (and thus 
the wavelength longer) in the first medium than the second. Third,  
the light wave can change amplitude. This occurs either by division of the  
light wave (some part of it reflects and the remaining part transmits) or 
from the loss of energy when traveling through an absorbing material. 
Each of these phenomena can be described by considering the complex 
refractive index of the material.

The complex refractive index, Ñ, is composed of both a real and 
imaginary component:

	 �N n ik= ± � (2.5)

where n is the “index of refraction” or simply “index,” k is the “extinction 
coefficient,” and i is the imaginary number. Whether we use the plus or 
the minus sign depends on how one sets up their mathematical universe.

The index of a dielectric material, such as glass, is the inverse of the 
ratio of the phase velocity of light in the material to the speed of light in 
free space (c), that is,

	
n c

v
= � (2.6)

In silicon nitride, where n ≈ 2, the phase velocity of light is half that 
of light in free space.

The extinction coefficient is a measure of how rapidly the intensity 
decreases as light passes through the material. To better understand the 
extinction coefficient, let us consider first the “absorption coefficient” 
which is denoted by α.

As depicted in Figure 2.7, the light beam approaches the absorbing material 
from the left along the z-axis. Some intensity loss occurs upon reflection at  
the air and material interface. We denote I0 as the intensity just inside the mate-
rial. The intensity decrease in the absorbing material is given by:

	
dI z

dz I z( )
= − ( )α � (2.7)

The solution to this equation is

	 I z I e z
( ) =

−

0
α � (2.8)
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Loss of light due to reflection or scattering does not contribute to 
the magnitude of α, which is only dependent on intensity loss due to 
absorption.

This is the familiar negative exponential function that decreases but 
never quite reaches zero. The extinction coefficient, k, is related to the 
absorption coefficient and is defined as

	
k = ( )λ

π
α4 � � (2.9)

Note the unit for the absorption coefficient, α, is cm−1. Since α is mul-
tiplied by the wavelength, λ, with unit cm, the extinction coefficient, k, is 
unitless, as is the index, n.

For the negative exponential curve described by Equation 2.8, we can 
identify the “Characteristic Depth” (sometimes called Penetration Depth), 
where the intensity drops to 1/e or approximately 37 percent of the origi-
nal value. This occurs when

	 α z =1 � (2.10)

We denote the value of z at this point as the Characteristic Depth, Cp

	
Cp = 1

α
� (2.11)

Figure 2.7.  A light beam enters an absorbing 
material at position z = 0. Not considering losses due 
to reflection at each interface, the intensity decreases 
exponentially as a function of the distance into the 
material.
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or, using Equation 2.9,

	
C kp =

λ

4π
� (2.12)

Absorbing films can be considered opaque when thickness is greater 
than 6 times the characteristic depth. 

While the refractive index and extinction coefficient are often referred 
to as the “optical constants” of a material, neither n nor k are constant. 
Rather, they are functions of the frequency of the light wave (i.e., they are 
wavelength-dependent). They also vary with temperature of the material. 
We will consider the wavelength-dependence of optical properties in 
Chapter 5.

2.2.2  COMPLEX DIELECTRIC FUNCTION

The complex dielectric function is an alternate description for the 
optical properties of a material. Whereas n and k describe how a light 
wave is affected by a material, the dielectric function describes how the 
material is affected by the light wave. There are four equations, called 
the “constitutive” or “material” equations, which describe the response of 
a material to electromagnetic radiation. For nonconductive, nonmagnetic 
materials, the equation of interest relates the electric displacement, D, to 
the electric field, E, as:

	 D E= e e0 � � (2.13)

where ε0 is the permittivity in vacuum, and �e  is the dielectric constant 
for the material. The dielectric constant will also vary with the light wave 
frequency or wavelength, so it is commonly referred to as the dielectric 
function. The dielectric function can be complex. The real component, 
denoted by ε1, is the electric polarizability and describes how the electric 
field may distort the charge distribution within a material. The imaginary 
component, denoted by ε2, describes the absorption properties of the mate-
rial. The “complex dielectric function”, then, is

	 �e e e= ±1 2i � (2.14)

The relationship between the complex dielectric function and the 
complex index of refraction is

	 �e = Ñ 2 � (2.15)
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2.3  LAWS OF REFLECTION AND REFRACTION

When a light beam interacts with a surface, as suggested by Figure 2.6, 
some of the light is reflected and some is transmitted into the material. It 
was known by the ancients (Euclid, 300 BC) that the angle of reflection is 
equal to the angle of incidence, that is,

	 f fi r= � (2.16)

In Figure 2.6, both angles are listed as f1. The law of refraction is  
somewhat more involved and is called “Snell’s Law” after Willebrord 
Snellius, who discovered the principle in 1621. Snell’s law, in its most 
general form is

	 Ñ Ñ1 1 2 2sin sinf f= � (2.17)

where subscripts indicate the two materials per Figure 2.6. When dealing 
with a dielectric material, that is, k = 0, the law simplifies to the more familiar

	 n n1 1 2 2sin sinf f= � (2.18)

All terms in Equation 2.18 are real numbers. For Equation 2.17, 
generally k = 0 for the ambient, hence Ñ1 is real, and the sine function for 
the first medium is a real number (as we would expect). If Ñ2 is a complex 
number (k2 is nonzero), then the sine function in the second medium is a 
complex function rather than the familiar function (opposite side over the 
hypotenuse). There is a corresponding complex cosine function such that

	 sin cos2
2

2
2 1f f+ = � (2.19)

We shall see later that Fresnel’s equations use the complex cosine 
function. Along with Snell’s law, Equation 2.19 can be used to compute 
the complex cosine.

2.4  POLARIZED LIGHT

The polarization of a light beam describes the shape of the electric field as 
viewed by looking along the direction of propagation. In this section, we 
will discuss the properties of unpolarized and polarized light.
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2.4.1  POLARIZATION

The electric field orientation for a single photon occurs along a single 
plane. As mentioned in Section 2.1.2, the superposition of multiple electric 
fields propagating in the same direction can lead to interference when 
electric fields are aligned. Alternately, orthogonal electric fields travel 
together without interference. The shape of the resultant electric field as it 
passes a stationary observer is referred to as polarization.

2.4.2  UNPOLARIZED LIGHT

“Unpolarized” light has photons in random orientations. The electric field 
of a single photon from the light source is oriented in a given direction. 
The electric field of the next photon will be oriented in a different direc-
tion, and in general, photons are emitted with electric fields all oriented 
in different directions. The most common unpolarized source of light is 
sunlight. However, the orientation of the electric field is altered upon 
reflection, refraction, and scattering. The indirect sunlight that reaches an 
observer has a preferred electric field orientation. This is generally called 
“partially polarized” light to describe the electric field with a preferred 
orientation that is not well-defined.

2.4.3  LINEARLY POLARIZED LIGHT

In Figure 2.8, we depict the electric field strength for two light beams with 
the same frequency and the same amplitude traveling along the same path 
(we show them offset for clarity). One is polarized in the vertical direction 
and one is polarized in the horizontal direction. Each individual wave 
is considered linearly polarized, because the electric field would appear 
along a single line when observed along the propagation direction. In this 
case, note specifically that the maximum, minimum, and zero points of 
the vertical wave coincide with those of the horizontal wave, that is, the 
waves are in-phase. Because the two waves are orthogonal, they do not 
interfere. The vector sum of the components of the two waves are added at 
each point in space, resulting in a linear wave which is polarized at 45° to 
the vertical, as shown in Figure 2.8. If the two waves remain in-phase but 
the amplitudes are not equal, the result would be a linearly polarized wave 
at an angle different from 45°. Specifically, when two linearly polarized 
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waves with the same frequency are combined in-phase, the resultant wave 
is linearly polarized.

2.4.4  CIRCULARLY POLARIZED LIGHT

In Figure 2.9, we again depict two light beams with the same frequency 
and amplitude traveling along the same path. Again, one is polarized 
vertically and the other horizontally. In this case, however, the maximum, 
zero, and minimum of the electric field strength of the horizontal wave 
have been displaced from that of the vertical wave: the two waves are out 
of phase by a quarter wave or by 90°. When the two waves are combined, 
the tips of the arrows of the resultant wave do not move back and forth in 
a plane as in the previous illustration. Instead, the electric field moves in 
a manner which, viewed end-on, describes a circle. This is referred to as 

Figure 2.8.  Two orthogonal light waves of the same frequency 
are traveling in the same direction (shown offset for clarity). 
Because the two waves have equal amplitude and are in-phase, 
the resultant electric field is linearly polarized at an orientation 
of 45° between the x- and y-axes.
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circularly polarized light and only occurs when the two linearly polarized 
waves with the same frequency have the same amplitude and a phase 
difference of 90°.

2.4.5  ELLIPTICALLY POLARIZED LIGHT

Had the phase shift been anything other than 90° or had the amplitudes not 
been equal, the electric field, viewed end-on, would have appeared to be 
moving on an ellipse, and this is referred to as elliptically polarized light. 
Specifically, when two linearly polarized waves with the same frequency 
are combined out of phase, the resultant wave is elliptically polarized.

Figure 2.9.  Combining two linearly polarized 
light beams with the same frequency, which are a 
quarter-wavelength out of phase and have the same 
amplitude produce circularly polarized light.
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Elliptically polarized light is used in ellipsometry, and in fact, is the 
reason for the name ellipsometry. Elliptically polarized light is generated 
when linearly polarized light reflects from a surface under certain 
conditions. The change in polarization depends on the surface (optical 
constants, presence of films, etc.). Ellipsometry measures this polarization 
change to determine sample properties of interest.

2.5 �T HE REFLECTION AND TRANSMISSION  
OF LIGHT

We saw earlier that light is separated into reflected and transmitted 
components when incident upon an interface between different materials. 
In this section, we will consider the details of this interaction and how it 
depends on the angle of incidence and polarization of the electric field.

2.5.1  ORIENTATION

The reflection and transmission of light at an interface is subject to the 
light polarization. There are two orientations where linearly polarized 
light is maintained along the same plane.* We use these two orientations 
to establish our coordinate system.

Figure 2.10 shows schematically a light beam reflecting from the 
surface. The incident beam and the normal to the surface define a plane 
which is perpendicular to the surface and this is called the “plane of 
incidence.” Note that if the reflection is specular, the outgoing beam is 
also in the plane of incidence.

As indicated in Figure 2.10, the angle of incidence is defined between 
the light beam and the normal to the surface.

The effect of the reflection depends on the polarization state of the 
incoming light and the angle-of-incidence. In Figure 2.10, we show the 
amplitude of the electric field which is vibrating in the plane of incidence 
as Ep and the amplitude of the electric field which is vibrating perpendic-
ular to the plane of incidence as Es. The respective waves are referred to 
as p-waves and s-waves. The subscripts “p” and “s” stand for the German 
words for parallel (“parallel”) and perpendicular (“senkrecht”), referring 
to the orientation relative to the plane of incidence.

*  This applies to isotropic materials, where the optical properties are the same for 
all directions.
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2.5.2  THE EQUATIONS OF FRESNEL

Boundary conditions describe the reflected and transmitted electromagnetic 
waves across an interface. These conditions, developed from Maxwell’s 
equations, maintain that tangential E-fields and normal B-fields must be 
continuous across the interface. The solution to these conditions leads 
to a description of the change in amplitude and phase at the interface. 
The ratios of the reflected and transmitted electric field components to 
the incident field components are referred to as the “Fresnel coefficients” 
of reflection or transmission from a single interface. The boundary con-
ditions lead to different equations for s-waves and p-waves, as their field 
components are oriented along different planes.

Consider a single interface between the first medium and the second 
medium, where each is described optically by their respective complex 
refractive indices, Ñ1 and Ñ2. When the beam is incident from the first 
medium onto the second one, the Fresnel reflection coefficients for 
p-waves and s-waves are given by
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Figure 2.10.  The plane of incidence contains the incoming beam and 
the normal to the surface. The component of the electric field parallel 
to the plane of incidence is denoted as Ep, and is called the p-wave. The 
component perpendicular to the plane of incidence is denoted as Es, and 
is called the s-wave.
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with angles of incidence and refraction as f1 and f2 (related by Snell’s 
law). The corresponding Fresnel transmission coefficients are
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As intensity is related to the square of the amplitude of the elec-
tric-field, we can determine the ratio of reflected and transmitted intensity 
to the incident intensity, as:
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These are referred to as the polarized reflectance and transmittance.

2.5.3  THE BREWSTER ANGLE

The equations of Fresnel contain several complex numbers. If both materials 
are transparent (i.e., k = 0), however, all of the terms in the previous Fresnel 
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equations are real numbers. Figure 2.11a shows a plot of both Fresnel coef-
ficients as a function of the angles of incidence, for a dielectric material 
such as TiO2. This material has n = 2.2 and k = 0 at a wavelength of 632 nm.

At normal incidence, rp and rs have equal magnitudes, but opposite 
signs. This is due to our definition of positive directions for the p- and 
s-electric fields of incident and reflected beams. For a single interface, 
the reflectance is simply the square of the Fresnel reflection coefficient. 
Figure 2.11b shows the reflectance, ℜ, also plotted versus the angle of 
incidence. At normal incidence, cosine terms are equal to +1, the index for 
air is unity, and we have
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Figure 2.11.  (a) Fresnel reflection coefficients, and (b) the 
reflectance, plotted versus the angle of incidence for light incident 
from air onto a dielectric such as TiO2, with n = 2.2 and k = 0 at a 
wavelength of 632 nm. At the Brewster angle, all of the reflected 
light is polarized with the electric vector perpendicular to the 
plane of incidence.
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The reflectance of the two waves must be equal at normal incidence 
since the plane of incidence is no longer uniquely defined.

For oblique angles, we see that rs is always negative and nonzero 
whereas rp is positive for angles near-normal, passes through zero, and 
is negative for near-grazing angles of incidence. This can be rationalized 
algebraically [3] from the relationship n2 > n1 and cos f1 > 0.

At the angle of incidence where rp crosses zero, the reflectance ℜp is 
also zero, hence all of the reflected light is polarized with the electric field 
perpendicular to the plane of incidence, that is, s-waves. This is shown in 
Figure 2.11b as the “Brewster angle.” This phenomenon was discovered 
by David Brewster in the early 1800s. This angle is also known as the 
“Polarizing Angle” and sometimes the “Principal Angle.”

Two significant ramifications of the Brewster angle are that at that 
angle, designated as fB,

	
tan fB =

n
n
2

1 �
(2.24)

and

	 cos sinf f2 1= � (2.25)

Equation 2.25 implies that the angle between the reflected beam 
and the transmitted beam is a right angle. One additional feature of the 
Brewster angle for transparent materials is that the phase of the p-wave 
on reflection shifts abruptly from zero to 180°. No such shift occurs for 
the s-wave.

The Brewster angle is a function of the index of refraction, and as 
indicated earlier, the index of refraction is a function of wavelength. 
Hence, the Brewster angle is a function of wavelength. The term “Brewster 
wavelength” is sometimes used with a single angle-of-incidence. This is 
simply the wavelength where the value of the index of refraction matches 
the Brewster condition for that angle-of-incidence.

The concept of the Brewster angle or polarizing angle is used routinely 
by photographers for objects that are under water. The light coming from 
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the underwater object (e.g., fish or alligators) is often significantly less 
than the light reflected from the top surface of the water and the reflected 
light will obscure the underwater object. If the angle of incidence of the 
reflected light is roughly equal to the Brewster angle, a polarizer adjusted 
to the correct azimuth will remove the surface reflection, which is purely 
s-polarized, allowing the camera to capture the light from the underwater 
object.

When the reflecting surface is not transparent, that is, k is nonzero, the 
situation becomes more complicated. The Fresnel reflection coefficients 
are now complex numbers and the concepts of “greater than zero” and 
“less than zero” have no meaning. Normally, there is no situation where 
both the real and imaginary parts of the complex number are zero; hence 
there is no analogous version for Figure 2.11a for metals or semiconduc-
tors. The reflectance values, ℜp and ℜs, are real numbers, however, and can 
be plotted, as indicated in Figure 2.12, for Tantalum. Although ℜp does 
not go to zero, it does go through a minimum at an angle that is called the 
principal angle.

For a transparent material, the phase difference between the p-wave 
and s-wave abruptly changes from 180° to zero when increasing through 
the Brewster angle, as shown in Figure 2.13. For absorbing materials, the 
phase difference shifts gradually, rather than abruptly, again as shown in 
Figure 2.13. For metals, as for all other materials, the phase difference 
passes through 90° at the principal angle.

It might be noted that high reflectance is obtained when the index 
of the substrate is significantly different from that of the ambient. This 

Figure 2.12.  The reflectance, plotted versus the angle of 
incidence, for a metal such as Ta with n = 1.72 and k = 2.09 at a 
wavelength of 632 nm.
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can occur when n2 is significantly different from 1.0 or when k2 is large 
(significantly different from zero).

2.5.4  REFLECTIONS WITH FILMS

For reflection ellipsometry, when only one interface is present (i.e., the sample 
is a substrate), the light which is reflected is often measured and used. The 
light which passes through the interface (i.e., is transmitted) can normally 
be ignored. However, this is not the case when more than one interface is 
present (i.e., with a film). As suggested by Figure 2.14, the resultant reflected 
wave returning to the first medium will consist of light which is initially 
reflected from the first interface as well as light which is transmitted by the 
first interface, reflected from the second interface, and then transmitted by 
the first interface going in the reverse direction, and so on. Each succes-
sive transmission back into the first medium is smaller than the last, and the 
infinite series of partial waves makes up the resultant reflected wave.

From a macroscopic point of view, the quantities of interest are 
the amplitude of the incoming wave and the amplitude of the resultant 
outgoing wave. For the ellipsometry technique, we are interested in the 
phase and amplitude relationships between the p-wave and the s-wave.

The ratio of the amplitude of the outgoing resultant wave to the 
amplitude of the incoming wave is defined as the “Total Reflection 

Figure 2.13.  Phase shift, as a function of angle-of-incidence for a 
transparent material (k = 0) and for materials with successively larger 
values of k. The optical constants have been adjusted such that the 
principal angle is the same for all of the materials.
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Coefficient” and is analogous to the Fresnel reflection coefficients for a 
single interface. For a single film (two interfaces) this is
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These equations are derived in Tompkins and McGahan [4].
When k ≠ 0, the Fresnel coefficient, Ñ2, and cosf2 (and hence, β) are 

complex numbers. When k = 0, these numbers are real. In general, except 
for very special circumstances, Rp and Rs are complex numbers. β is the 
phase change in the wave, as it moves from the top of the film to the 
bottom of the film. Hence, 2β is the phase difference between the part of 
the wave reflecting from the top surface and the part of the wave which has 
traversed the film twice (in and out).

Figure 2.14.  Reflections and transmissions for two 
interfaces. The resultant reflected beam is made up of the 
initially reflected beam and the infinite series of beams, 
which are transmitted from the second medium back into 
the first medium.
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2.5.5  STACK CALCULATIONS

We now consider the interaction of light with more than one layer 
on a substrate. Each additional interface gives rise to reflection and 
transmission and it soon becomes cumbersome to track all the wave com-
ponents traveling within each layer.

Matrix methods provide an elegant representation of each layer and 
simplify the math involved [1, 40]. In one such approach, each thin film 
is represented by two matrices—one for the interface and another for the 
bulk of the film. Figure 2.15 shows such a multilayer stack and how the 
math is constructed using 2 × 2 layer (L) and 2 × 2 interface (I) matrixes. 
Matrix multiplication leads to a single transfer matrix that describes the 
outgoing to the incoming p- and s-electric fields.

2.6  MEASUREMENT QUANTITIES

2.6.1  REFLECTANCE AND TRANSMITTANCE

The reflectance is defined as the ratio of the intensities of the outgoing 
wave to the incoming wave. The total reflection coefficients, Rp and Rs, are 
defined as the ratio of amplitudes of the outgoing wave to the incoming 
wave. Hence, the reflectance is the square of the magnitude of the total 
reflection coefficient, that is,

	
ℜ p pR=

2
� (2.28a)

	 ℜs sR= 2 � (2.28b)

Figure 2.15.  Matrix representation of a multilayer stack.
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Similar equations can be shown for the transmitted intensity 
(transmittance). The reflectance and transmittance are very common 
measurement quantities from devices such as spectrophotometers. 
Measurements are often at normal incidence (0°), such that the polarization 
state is of no concern. Even when measurements are performed at 
oblique angles, it is common to use unpolarized light as this simplifies 
the instrumentation required. An unpolarized reflectance or transmittance 
measurement will be equivalent to the average of the p- and s-polarized 
values.

2.6.2  DELTA AND PSI

In Figure 2.10, we showed the p-waves and s-waves reflecting from a 
surface. When each reflects, there is a possible phase shift for the p-waves 
and s-waves, and the shift is not necessarily the same for each. Let us 
denote the phase difference between the p-wave and the s-wave before the 
reflection as d1 and the phase difference after the reflection as d2. We define 
the parameter ∆, called “delta” as

	 ∆ = d1 − d2.� (2.29)

∆, then, is the phase shift induced by the reflection and this value can be 
from −180° to +180° (or alternatively, from 0° to 360°).

In addition to a phase shift, the reflection will also induce an 
amplitude reduction for both the p-wave and s-wave, and again, it will 
not necessarily be the same for each. The total reflection coefficient for 
the p-wave (Rp) and s-wave (Rs) was previously defined as the ratio of 
the outgoing wave amplitude to the incoming amplitude and, in general, 
this is a complex number. We define the quantity Ψ, called “psi,” such 
that

	
tanΨ =

R

R
p

s

� (2.30)

Ψ is the angle whose tangent is the ratio of the magnitudes of the total 
reflection coefficients, and its value can range from 0° to 90°.  The effect 
of Ψ and ∆ is such that linearly polarized light will be altered to elliptically 
polarized light upon reflection from the surface of a sample, as shown in 
Figure 2.16.



28   •   SPECTROSCOPIC ELLIPSOMETRY

2.6.3  FUNDAMENTAL EQUATION OF ELLIPSOMETRY

As discussed, tan Ψ is defined as the ratio of the magnitudes of the total 
reflection coefficients, and is hence a real number. Let us define a complex 
number ρ (rho) to be the complex ratio of the total reflection coefficients, 
that is,
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The fundamental equation of ellipsometry [1] then is
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Then tan Ψ is the magnitude of ρ and the exponential function is the 
phase of ρ. The quantities Ψ and ∆ (sometimes only cos ∆ ) are measured 
by ellipsometers. These are properties of our probing light beam. The 
information about our sample is contained in the total reflection coeffi-
cients, and hence in ρ. It should be noted that assuming our instrument is 
operating correctly, the measured quantities ∆ and Ψ are always correct. 
We deduce the quantities such as thickness and optical constants from 
regression analysis. Whether these quantities are correct or not depends on 

Figure 2.16.  Ellipsometry measurement is shown with incident linearly 
polarized light oriented with both p- and s-components. The interaction 
with the sample leads to different amplitudes and phase for the reflected 
p- and s-polarizations, producing elliptically polarized light.
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our model assumptions. As an example, incorrect values of n and k can be 
deduced if we assume that our material is a substrate when in fact we have 
a thin layer of one material on top of a substrate of another material. This 
simply makes the point that the quantities that ellipsometers measure are 
∆ and Ψ. Quantities such as thickness and optical constants are calculated 
quantities based on an assumed model.

2.6.4  N, C, AND S

There are many ways to represent the polarization change that is 
measured by an ellipsometer. Ψ and ∆ have become ubiquitous due to 
their early adoption in null-ellipsometers. In these early single-wavelength 
instruments, the optical elements were oriented until the detected light 
vanished (was null). Ψ and ∆ were directly related to optical readings from 
these early devices used predominately before 1990. In Chapter 3, we will 
discuss the operation of modern ellipsometers, which do not measure 
Ψ and ∆ directly. Rather, they collect a modulated intensity that can be 
related to the polarization change. The actual values most directly related 
to the instrumentally measured intensities are referred to as N, C, and S 
and are given in relation to Ψ and ∆ as:

	 N = cos( )2Ψ � (2.33a)

	 C = sin( ) cos( )2Ψ ∆ � (2.33b)

	 S = sin( )sin( )2Ψ ∆ 	 (2.33c)

By their nature, each of these three parameters is bounded between −1 
and +1. Determination of all three parameters is equivalent to measurement 
of the full range of Ψ and ∆ values. As we will see in the next chapter, early 
rotating-analyzer ellipsometer configurations were limited to a measure of 
N and C, which reduced the range of ∆ to 180°, rather than the full 360°.

2.6.5  JONES AND MUELLER MATRIXES

The ellipsometry measurement can be represented by a set of linear 
equations to describe the interaction of p-waves and s-waves with the 
sample. The Jones vector notation treats polarized light as two complex 
numbers (amplitude and phase) describing the p- and s-electric fields. 
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A 2×2 Jones matrix is then used to describe the sample, or any optical 
element that may alter the polarization. For an isotropic sample, there is 
no cross-polarization between p- and s-waves. In other words, p-polarized 
light will remain p-polarized and s-polarized light will remain s-polarized. 
However, they will undergo their own amplitude reduction and phase 
change. This is represented by a sample Jones matrix (in different forms), 
as:
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The Jones description is limited to polarized light and is not able to 
describe partially polarized or unpolarized light. For these important cases, 
the sample (or optical element) can be described using the Stokes–Mueller 
representation. Here, each light beam is described by four real intensities 
making up a Stokes vector, while a 4×4 Mueller matrix describes the 
transformation of light. For the Stokes-Mueller description, an isotropic 
sample will have off-diagonal 2×2 blocks that are zero (because of no 
cross-polarization between p- and s-waves), as:
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where N, C, and S are the ellipsometric parameters discussed in the prior 
section and m11 is the reflected intensity for unpolarized light. Note the 
importance of N, C, and S when considering the Mueller-matrix for an 
isotropic sample. The full implications of these mathematical descriptions 
are beyond the scope of this book, but can be found in Humlicek [40] and 
Jellison [41].



CHAPTER 3

Spectroscopic  
Ellipsometry Components 

and Instrumentation

In this chapter, we review the key components of any spectroscopic 
ellipsometer. Many are essential, such as a light source, a detector, and 
a method to separate wavelengths. Of equal significance are optical 
elements to control and detect light polarization—typically polarizers, 
compensators, or phase modulators (PMs). With these basic components, 
a variety of ellipsometry configurations are achieved. We review the most 
common: rotating analyzer or polarizer, rotating compensator, and phase 
modulation ellipsometers.

3.1 � COMPONENTS OF A SPECTROSCOPIC 
ELLIPSOMETER

We start with a review of the individual components within an ellipsometer. 
These components can be divided into two categories, depending on 
whether they manipulate the light polarization. Every ellipsometer must 
have a source of light and a method to detect that light. In addition, spec-
troscopic ellipsometers must have a means to discriminate the different 
wavelengths. While these are essential, they could also be used to construct 
a simple photometric instrument to detect reflected or transmitted intensity.

The essence of an ellipsometer is the measure of polarization. Thus, 
optical elements are required to manipulate the light polarization—both 
forming a known polarization before the sample and detecting the result-
ing polarization after the sample. We introduce the key polarizing optics 
used by spectroscopic ellipsometers. There may be additional optical 
elements, such as lenses, mirrors, and pinholes, within the ellipsometer 
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to guide the measurement beam. However, we restrict discussion to the 
optical elements required to make the ellipsometry measurement.

3.1.1  POLARIZATION STATE GENERATOR AND DETECTOR

One key difference between spectroscopic ellipsometers and other optical 
instruments is the measure of polarization. Photometric tools, such as 
reflectometers, simply measure the light intensity—in this case, reflected 
from the sample surface. This makes ellipsometry unique and introduces 
important system requirements. Specifically, ellipsometry needs both a 
means of creating and then measuring light polarization.

Ellipsometer instrumentation can be split into two primary sections, 
separated by the sample. The optical elements before the sample have the 
general role of producing a known polarization state for the light that is 
to interact with the sample, and are thus referred to collectively as the 
polarization state generator (PSG). The polarization generated within this 
section does not have to be linear and can even vary with time—but it 
should be “known.” The polarized light interacts with the sample (reflection  
or transmission), which produces a change to the initial polarization. 
The change in polarization needs to be determined in order to access the 
sample properties that caused this change. Thus, the optical components 
after the sample function to detect the new “unknown” polarization state. 
They are referred to collectively as the polarization state detector (PSD). 
The basic ellipsometry components are shown in Figure 3.1.

Figure 3.1.  Light passes through the PSG to create a known polarization 
that reflects from the sample surface at a specified angle of incidence. The 
light reflects to the PSD which determines the polarization change caused 
through interaction with the sample.
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3.1.2  SOURCES

Spectroscopic Ellipsometers require a light source that covers a broad 
range of wavelengths. Thus, we will not discuss laser or light emitting 
diode sources, as their spectral output is confined to a single or narrow 
range of wavelengths. Lamps are the most common spectroscopic 
light sources. Arc-lamps, such as Xenon and Deuterium lamps, operate 
by exciting molecules within a plasma of ionized gas that emits light 
when returning to their initial state. Incandescent lamps, such as quartz-
tungsten-halogen (QTH), operate by passing electricity through a material 
(filament) to increase the temperature to the point where it radiates light. 
A similar physical process is used by SiC globars, which produce infrared 
blackbody radiation by heating the SiC material.

Figure 3.2 shows the approximate wavelength coverage for various 
lamps. As shown, Deuterium lamps produce light at ultraviolet wave-
lengths below about 400 nm. Xenon lamps can produce light from 
185 nm to 2000 nm. Halogen lamps radiate wavelengths above 350 nm 
extending into the near infrared. Silicon carbide globars cover mid- 
infrared wavelengths.

The output of each lamp can vary widely within their useable 
wavelength range. For ellipsometry, it is important that light is available 
at all measured wavelengths and that any intensity fluctuations are on 
a different time-scale from the measurement cycle. For example, if an 

Figure 3.2.  Wavelength range is shown for common spectroscopic 
ellipsometry (SE) sources and detectors.
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ellipsometer requires 1/10th of a second to complete a measurement cycle, 
the light source should be stable within that time-frame.

3.1.3  DETECTORS

The electric field oscillates too quickly to measure directly, so the 
polarization state is determined from the irradiance (intensity). Thus, every 
ellipsometer contains a detector to convert the electromagnetic field to a 
measureable property. This is generally done with a photodiode detector 
or detector array. Photodetection works by converting the electromagnetic 
wave into a voltage or current that scales with the amount of light. The 
type of photodetector and detector material depends on wavelength range. 
The operational wavelengths of semiconductor detectors are related to 
the material bandgap. Bandgap energy is defined by the minimum photon 
energy of light that can excite an electronic transition within the material 
and is inversely related to light wavelength, as:

	
Egap

nm
=
1 240,
l

� (3.1)

Detection occurs at wavelengths shorter than calculated from 
Equation  3.1 and smaller bandgap energies allow detection of longer 
wavelengths.

The most common photodetector material is silicon, which can detect 
ultraviolet and visible wavelengths. Silicon has a bandgap of 1.1eV, so 
the upper detection wavelength is about 1100 nm. Photodetectors using 
InGaAs ternary alloys have a lower bandgap near 0.5 to 0.7 eV, depending 
on composition and strain. This allows operation at near infrared 
wavelengths up to 1700 nm to 2500 nm. Mid-infrared detectors, such as 
mercury-cadmium-tellurium (MCT) ternary alloys and deuterated triglycine 
sulfate (DTGS), have even smaller bandgaps. Figure 3.2 illustrates the 
 useful detection wavelength range for a few common detector materials.

Another type of detector found in spectroscopic ellipsometers is the 
photomultiplier tube (PMT). It uses a photosensitive material called the 
photocathode, which will release electrons when struck by photons (light). 
The released electrons are accelerated through a series of dynodes, which 
release additional electrons. In this manner, the number of electrons related 
to the initial photon flux is multiplied before the final signal detection. 
PMT detectors are useful for very low light levels. The useful wavelength 
range of the PMT is primarily related to the photocathode material [42].

While photodiodes refer to a single detection element, many ellip-
someters use photodetector arrays. This allows simultaneous collection 
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of light over many separate detector elements (pixels). While a few 
ellipsometers use the array to collect spatial image from the measurement 
spot at a single wavelength (imaging ellipsometry), it is more common to 
use the array to detect different wavelengths on each pixel. This is further 
described in the following section.

3.1.4 � SPECTROMETERS, MONOCHROMATORS, AND 
INTERFEROMETERS

Spectroscopic ellipsometers must have a method to separate the wave-
lengths during measurement. Wavelength separation is most commonly 
achieved by refracting light through a prism or scattering light from a 
grating. Prisms refract different colors at different angles, as shown in 
Figure 3.3a. Their applicable wavelength range is limited to the transparent 
region of the prism material, but they maintain most of the light intensity 
when not absorbing. Gratings scatter different colors at different angles 
from a structured surface that has repeated features of size similar to the 
wavelength of light as shown in Figure 3.3b. As shown, some light can 
be specularly reflected (reflection angle equal to incident angle) and there 
can be multiple orders of scattered light in multiple directions. Thus, 
gratings are not as efficient as prisms, as the light is divided into different 
reflections. Gratings also have limited wavelength range, but this range can 
be shifted by using different feature sizes to scatter different wavelengths. 
Modern spectroscopic ellipsometers commonly combine multiple disper-
sive elements to cover wider-and-wider wavelength ranges.

While the grating or prism is the wavelength-dispersing optical ele-
ment, they are integrated into an optical device such as a monochromator 
or spectrometer. The monochromator converts spectroscopic light to 

Figure 3.3.  Colors can be dispersed in different directions 
by (a) refraction through a prism, or (b) scattering from a 
diffraction grating.
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a single wavelength, by isolating a narrow spatial section of the wave-
length-dispersed light. Figure 3.4a shows light passing through a 
single-chamber monochromator where white light is first collimated 
onto the grating to achieve the wavelength dispersion and then a single 
wavelength is focused onto the exit slit. The slit allows only a narrow 
spectral region of the beam to pass through—essentially limiting the out-
going light to a single, narrow wavelength range. While not as narrow 
as a laser-wavelength, the bandwidth of the outgoing light can be con-
trolled by closing or opening the slit. Thus, bandwidth can be tailored 
depending on application requirements. It is not always preferred to have 
the narrowest wavelength, as this also greatly reduces measurement signal 
intensity. The monochromator is used in ellipsometers that have a single 
photodiode or PMT detection system. Spectroscopic ellipsometers that 
utilize a monochromator are inherently slow since they measure only one 
wavelength at any given time. However, monochromators offer inherent 
advantages: (i) the measurement can be optimized at each individual 
wavelength, and (ii) the monochromator can be situated before the  
sample to avoid illuminating photosensitive sample surfaces (such 
as photolithographic films) with intense spectroscopic light. The first 
advantage not only includes modifying the slit width to optimize intensity 
versus bandwidth but also the possibility to switch between different 
dispersive gratings that are optimized for different wavelength ranges.

A dispersive spectrometer is commonly used in ellipsometers that 
have a detector array. The broadband light is dispersed such that different 
wavelengths are imaged onto the detector array. Thus, each individual 
detecting element collects a different color. This is demonstrated in  
Figure 3.4b where white light (all colors) in the spectrometer is dispersed 

Figure 3.4.  (a) A monochromator is used to isolate a single 
wavelength of light, while (b) a spectrometer is used to image 
the refracted light directly onto a detector array for simultane-
ous collection of all wavelengths.



SE COMPONENTS AND INSTRUMENTATION •   37

from a grating before being collected at the detector array. While we 
show only 3 colors, in reality an entire spread of wavelengths is imaged 
across the detector array. In this manner, spectrometers can detect many 
different wavelengths at the same time. This significantly increases the 
spectroscopic measurement speed such that a thousand wavelengths can 
be simultaneously detected. One drawback is that dispersive spectrome-
ters cover a limited wavelength range. Several methods are often used to 
divide the beam and use multiple spectrometers to stitch different wave-
length ranges together.

Infrared ellipsometers generally utilize Fourier transform infrared 
(FTIR) spectroscopy for wavelength separation. FTIR uses a Michelson 
Interferometer where a scanning mirror changes the interferometer path 
length to modulate the light beam. Different wavelengths are modulated 
at different rates. A Fourier transform of the interferogram produces the 
intensity spectrum to measure all wavelengths simultaneously. FTIR uses 
the entire light beam for measurement, can cover much wider wavelength 
ranges than dispersive spectrometers, and wavelength resolution can be 
optimized for the application.

3.1.5  MANIPULATING POLARIZATION

The ellipsometry measurement is essentially a measure of polarization. 
Thus, there are critical components within all ellipsometers to either create 
or detect the polarization. Before discussing the most common polarizing 
optical components, we review how polarization can be manipulated.

Polarization is formed through the interaction of light and mate-
rials. The interaction can include reflection, refraction, transmission, or 
absorption. The optical constants (n, k) of each material establish these 
optical interactions. We need to first differentiate between isotropic and 
anisotropic optical properties. The former have the same optical constants 
in all directions. The latter refer to materials that have different optical 
constants depending on the orientation of the electric field in the material. 
Optically anisotropic materials are also called birefringent materials. 
Their distinct optical axes are commonly referred to as the ordinary and 
the extraordinary directions. We consider the interactions that may affect 
light polarization, keeping in mind the distinction between isotropic and 
anisotropic materials.

Reflection: Reflection from a surface can produce a polarization 
change. For isotropic materials, this relies on the difference between the 
p- and s-electric field interactions at the interface. Reflection at normal 
incidence reduces intensity but does not change polarization. Reflec-
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tion at oblique angles (Figure 3.5a) produces different amplitudes and 
phases for reflected and transmitted p- and s-electric fields. Thus, any 
light reflecting at an oblique angle that contains electric fields in both 
planes will experience a polarization change. In Figure 3.5, this is repre-
sented by showing the phases of the p- and s-waves as arrows and circles, 
respectively. If the incoming light is linearly polarized along only the p- or 
s-plane, the reflected light remains linearly polarized in the same plane. 
Reflection at the Brewster angle from transparent substrates produces a 
special effect where only the linearly polarized light along the s-direction 
is reflected, regardless of the incoming polarization.

Anisotropic materials also produce a polarization change upon 
reflection. In addition, it is possible to produce cross-polarization 
between the p- and s-components. Thus, linearly polarized p- or s-light 
reflected from anisotropic materials can experience a polarization change, 
depending on the alignment of the anisotropic optical axes with respect to 
the plane of incidence.

Total internal reflection: The amount of light that is reflected from a 
surface depends on the angle of incidence, the electric field direction, and 
the change in optical constants across the interface. For the special case 
where light is incident at an interface from a higher index to a lower index, 
there is total internal reflection at angles equal to or above the critical 
angle (qc):
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where nt and ni are the indexes for transmitted and incident materials, 
respectively. This effect is beneficial in optics as light intensity is 
maintained and yet a polarization change can occur. Figure 3.5b shows 

Figure 3.5.  Polarization change can occur upon (a) reflection from a 
surface, (b) total internal reflection, which maintains the light intensity, and 
(c) refraction into a birefringent material. The p- and s-light components are 
represented by arrows and circles, respectively.
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this effect going from the higher index of n1 to the lower index of n0.  
All of the light is reflected back into the material, yet a polarization change 
occurs, as represented by the shift between p- and s-reflected components.

Refraction: The refracted light at an interface can also experience 
a polarization change (Figure 3.5a). In addition, the refracted angle is 
different from the incoming incident angle—changing the direction of 
the light. For anisotropic materials, an interesting effect can be observed 
where the p- and s-polarizations refract at different angles (Figure 3.5c). 
For this reason, anisotropic materials are also called birefringent (two 
refractions) materials.

Transmission and absorption: Polarization is not affected by travel 
through an isotropic material. However, the polarization can change when 
traveling through anisotropic materials due to two different effects. First, 
the polarization can be modified due to different phase velocities that occur 
as a result of different indexes of refraction. Second, the polarization can 
be modified due to different amounts of absorption when the anisotropic 
material has different extinction coefficients.

Figure 3.6 shows light traveling through an anisotropic material. The 
different indexes of refraction along the x- and y-directions lead to different 
phase velocities for electric fields along these directions. Consider linearly 
polarized light, where x- and y-electric fields are in-phase, traveling 
into the material. The electric field that experiences the lower index of 
refraction will have a faster phase velocity. For this reason, the lower 
index of refraction is along what is referred to as the “fast-axis” of the 
material. The total phase delay between the x- and y-electric fields due 
to travel through the anisotropic material is referred to as retardance (d).

Figure 3.7 shows light traveling through an anisotropic material that 
has different extinction coefficients along the x- and y-directions. This 

Figure 3.6.  Demonstration of retardance caused by light traveling 
through anisotropic material with different indexes of refraction along 
the x- and y-directions.
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is referred to as a linearly dichroic material because it absorbs different 
amounts of light along orthogonal linear polarizations. The amplitude 
is diminished along the y-direction due to a larger extinction coefficient 
along this direction. The effect of reducing light intensity between 
orthogonal directions is also called diattenuation. Figure 3.7 demonstrates 
linear diattenuation from a linearly dichroic material. Some materials 
differentiate between left- and right-circularly polarized light and are thus 
called circularly dichroic. They can produce circular diattenuation, which 
reduces the amplitude of right and left circular polarizations by different 
amounts.

Now that we have reviewed the common methods to change 
polarization, we will see how they are utilized within the polarizing optical 
elements of a spectroscopic ellipsometer.

3.1.6  POLARIZERS

Polarizers are a common optical element found in almost every spectro-
scopic ellipsometer. Their basic function is to change any polarization 
into linearly polarized light. This is demonstrated in Figure 3.8 where 
unpolarized light enters a polarizer. The extinction axis of the polarizer 
blocks that direction of light, allowing only the orthogonal, linearly 
polarized component to transmit through the polarizer.

Polarizers isolate the linear polarization via some of the phenomena 
discussed in Section 3.1.5. Polarizers can reflect light at the Brewster angle 
to isolate only the s-reflected component. Polarizers can use diattenuation 
through a dichroic material, such as a thin film Polaroid sheet or wire-grid 
(which is used to polarize mid-infrared wavelengths). However, the most 
common method used by polarizers is to send light through birefringence 
crystal prisms. Many polarizer designs exist such as Wollaston, Nicol, 

Figure 3.7.  Diattenuation of a light beam is shown due 
to travel through a linearly dichroic material with stronger 
extinction coefficient along the y-direction.
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Glan–Taylor, and Glan–Thompson prisms, to name a few. Each design 
works by separating the beam direction within anisotropic prisms through 
refraction or total internal reflection. Figure 3.9 shows two different crystal 
polarizers. The Rochon polarizer (Figure 3.9a) transmits the ordinary 
ray, while refracting the extraordinary ray. The Glan-Foucault polarizer 
(Figure 3.9b) transmits the extraordinary ray, while reflecting the ordinary 
ray. In either case, a linear polarization can be isolated from its orthogonal 
direction for use within the ellipsometer.

The polarizer quality is judged by how close to linearly polarized the 
exiting light has become. This is often specified by the extinction ratio, 
which compares the intensity of the desired direction to the intensity of 
the orthogonal, unwanted direction. An extinction ratio of 100,000 to 
1 is considered excellent. Lower quality polarizers may still be used, 
especially for special wavelength regions, but require special corrections 
to calculate accurate data.

Figure 3.8.  Basics of polarizer operation.

Figure 3.9.  Two examples of crystal polarizers, which 
use anisotropic prisms with optical axes denoted by black 
arrows to separate the ordinary and extraordinary beams 
via refraction as shown in (a) a Rochon prism, or total 
internal reflection as shown in (b) a Glan–Foucault prism.
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3.1.7  COMPENSATORS

Compensators are another common optical element used within an 
ellipsometer to manipulate polarization. Compensators delay the phase 
between orthogonal electric field orientations. Compensators are also 
referred to as waveplates or retarders because they delay (or retard) 
the wave along one direction relative to another. A compensator can 
retard the wave by any specified phase and this amount is typically 
wavelength dependent. When the compensator is designed to impart 
90° or 180° of total phase retardation at the designed wavelength, it is 
referred to as a Quarter Waveplate (QWP) or Half Waveplate (HWP), 
respectively.

The primary function of a compensator is to change the polarization 
state of the light. When the retardance is 90° (1/4 of the wavelength), the 
compensator, or QWP, can change linearly polarized light into circularly 
polarized light and vice versa. A HWP can rotate the polarization 
direction—changing linear horizontal polarization to linear vertical polar-
ization, for example. A HWP can also change left-circular polarized light 
to right-circular polarized light, and vice versa.

The phase compensation can be achieved via reflection or more 
commonly via transmission through an anisotropic material. Figure 
3.10 illustrates a compensator with 90° of retardance, which changes 
the linear polarization to circular polarization. This requires alignment 
of the compensator fast axis such that equal amounts of linearly polar-

Figure 3.10.  Linearly polarized light passes through a compensator to 
become circularly polarized light.
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ized light components travel along both the fast and slow axes of the 
compensator. The main drawback to compensators that use transmission 
through anisotropic media is that they have strong wavelength 
dependence, as shown in Figure 3.11a. Using multiple compensators 
that are rotated relative to each other is one way to modify the wave-
length dependence, as shown in Figure 3.11b. Total Internal Reflection 
(TIR) can be a useful method to produce phase retardance. This has the 
benefit of transmitting most of the light and providing flat wavelength 

Figure 3.11.  Three different compensators are compared. A single-element 
compensator (a) shows a large amount of variation in total phase retarda-
tion. The wavelength dependence is reduced by stacking two compensator 
elements (b) at different orientations. A total internal reflection compensator 
(c) has the flattest wavelength dependence.

Figure 3.12.  The polarization changes from linear to 
elliptical due to multiple total-internal-reflections within 
this rhombohedral prism.
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dependence for the phase retardance, as shown in Figure 3.11c. The 
TIR compensator works by passing light through one or more prisms, 
as shown in Figure 3.12 for a rhombohedral prism. The light experi-
ences a polarization change at each oblique reflection, adding to the 
total amount of retardance.

The total amount of phase compensation (retardance) does not have 
to equal 90° or 180°. For example, the TIR compensator of Figure 3.11c 
was designed to introduce 130° of phase retardance versus wavelength, as 
optimized for this specific ellipsometer design.

3.1.8  PHASE MODULATORS

A PM is similar to a compensator. It also functions to delay the phase 
between orthogonal directions. While compensators provide a fixed 
amount of retardance, PMs vary the retardation versus time. To do this, 
the optical anisotropy that produces the compensation is varied either 
through stress or alignment. In the case of crystal photoelastic modulators 
(PEM), a time-varying stress in the crystal produces time-varying 
compensation for transmitted light. Another approach is to use liquid 
crystals to modulate the light. Applying an electric field can align the 
liquid crystal that provides a different anisotropy and thus different 
amounts of phase compensation.

Figure 3.13 shows basic operation of a PEM, where linearly polar-
ized light enters the device and exits with time-dependent modulated 
polarization. The compression and expansion within the crystal quartz 
(as shown with gray arrows) is electrically stimulated at a resonant 
frequency—typically around 50 kHz to 100 kHz. This leads to the 
opposite expansion or compression in the fused quartz side. The fused 
quartz is amorphous and would not alter the polarization, but the com-
pression or expansion produces slight anisotropy which is the basis for 
the phase compensation. In Figure 3.13 a total phase compensation of 
±90° occurs, so the exiting light modulates between right and left cir-
cular polarizations. The total amount of compensation depends on the 
device properties and applied voltage. It does not have to be 90° and 
there are good reasons to choose a different value in actual ellipsometry 
applications [24].

While PMs and compensators perform a similar function, the phase 
can be changed very quickly within a PEM. To change the retardance from 
a compensator requires it be rotated. We will show how both are involved 
in SE designs.
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3.2  SPECTROSCOPIC ELLIPSOMETERS

In this section, we describe how the optical components from the previous 
section come together in different ellipsometer configurations.

3.2.1  MEASUREMENT ANGLE

Ellipsometry measurements require interaction of a polarized light beam 
with a sample surface at a specified angle of incidence. It is important to 
precisely know or determine the measurement angle, as it is an integral 
part of the equations leading to film thickness and refractive index. Angle 
errors can lead directly to errors in determined material properties, such 
as thin film index.

For the majority of ellipsometry measurements, the angle of 
incidence is oblique to the sample surface near the Brewster angle 
(Section 2.5.3). Too much emphasis is often placed on the Brewster 
angle. Modern ellipsometers can accurately determine material proper-
ties using a wide range of angles. The choice is based more on data 
variation, which is largest near the Brewster angle for very thin films. 

Figure 3.13.  Linearly polarized light is modulated upon travel 
through a photoelastic modulator, where the compression and 
expansion (gray arrows) of the crystal quartz are resonating at  
50 kHz to 100 kHz to produce the opposite effect in the amor-
phous fused quartz section, with the goal of producing enough 
strain-birefringence to retard the transmitted light.
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Thus, the Brewster angle is still an appropriate indicator of approximate 
measurement angles.

In Figure 3.14, the angle dependence of Y and D is shown for a series 
of thin silicon nitride films on silicon substrate. The Brewster angle for 
bare silicon is 75° for 633 nm wavelength. Data variation is largest near the 
Brewster angle but spreads over a wider angle range as thickness increases.

Because silicon is a very common substrate, 75° has become one 
of the most common ellipsometry angles. The Brewster angle depends 
on the refractive index and with glass substrates is closer to 55°. Thus, a 
general angle range for ellipsometry lies between 50° and 80° for thin film 
measurements.

3.2.1.1  Ex Situ

Ex situ refers to table-top instruments where the sample is measured away 
from the thin film processing. It is beneficial to have an accurate and 

Figure 3.14.  Angle dependence of ellipsometric Y and D 
calculated at 633 nm wavelength for different Si3N4 coating 
thicknesses on Si substrate.
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reproducible method to position the sample at a known angle of incidence. 
Many stages provide sample tip and tilt with feedback positioning sensors 
to reproduce beam alignment from sample-to-sample.

Ex situ instruments can be configured for a single angle or, with 
mechanical adjustment, for varied angles. In either case, the angles 
generally lie between 50° and 80°. A representative ex situ ellipsometer is 
shown in Figure 3.15a.

3.2.1.2  In Situ

In situ refers to measurements of a sample “in the original position.” The 
sample is often undergoing some processing step and is still in the same 
location for the in situ measurement. In situ measurements can be per-
formed before, during, and after processing, which allows characterization 
of properties not available during ex situ measurements. For example, in 
situ measurements can determine growth or etch rates, monitor surface 
development (roughness or oxidation), and provide real-time feedback 
control [37].

For vacuum processes, the ellipsometer is external to the chamber and 
light enters through windows to interact with the sample surface. In situ 
ellipsometry is often restricted to a single angle of incidence and the angle 
choice can be dictated by chamber geometry.

In Figure 3.15b, we show a spectroscopic ellipsometer attached to a  
process chamber, where source and receiver are attached to separate 
window ports. For in situ measurements, the angle depends on the 
construction geometry of the chamber and may not be specified exactly. 
The angle of incidence is determined by measuring a well-characterized 
sample, such as a thermal SiO2 film on silicon. The optical properties of  
the silicon substrate and the thermal oxide film have been carefully 

Figure 3.15.  Image of (a) ex situ spectroscopic ellipsometer and (b) in 
situ spectroscopic ellipsometer attached to a vacuum process chamber.
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determined [43], which leaves two unknown properties—oxide thickness 
and angle of incidence. This method can provide a unique angle 
determination. If the equipment geometry is not changed, the predeter-
mined measurement angle can be used for subsequent measurements.

3.2.2  MEASUREMENT CAPABILITIES

As we compare different ellipsometer instrumentation, we will consider 
key measurement aspects including speed, accuracy, sensitivity, and 
capabilities.

Measurement speed will be judged by how quickly a single, spec-
troscopic measurement can be achieved. Each configuration operates 
by adjusting optical elements placed before or after the sample. In this  
manner, the polarization is modulated with time, either by rotating an 
optical element (polarizer, compensator) or varying the phase (PEM, Liquid 
Crystal). The time-varying signal can be transformed to corresponding, 
independent frequency components, as shown in Figure  3.16. These 
contain the maximum information available to determine the SE data 
parameters, such as Y and D, or NCS. As we will see in future chapters, the 
Y and D data are then used to determine sample properties of interest, such 
as film thickness and optical constants.

Measurement accuracy depends on our ability to know the polariza-
tion state of light before the sample and measure the new polarization state 
after the sample. This requires calculation (also known as calibration) of 
the optical effects in both the PSG and PSD. Polarizers are generally easier 
to calibrate because their behavior is typically independent of wavelength. 
We primarily need to determine their orientation relative to the sample 

Figure 3.16.  The modulating time-signal can be transformed into the 
unique frequency signal components, which are available to determine 
the SE data parameters. The SE data parameters represent the change in 
polarization, which is then used to determine sample properties, such as 
film thickness and refractive index.
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plane of incidence to understand their optical effects. Compensators and 
PMs are more difficult to calibrate accurately as their optical effects depend 
not only on orientation but are also wavelength-dependent and, in the case 
of PEMs, drive-voltage dependent. Once we calibrate the effects of all 
optics, our measurement accuracy relies on the stability of this calibration.

The ellipsometer capabilities relate to the type of data the ellipsom-
eter can collect. The primary goal of any ellipsometer is to collect Y and 
D. The possible parameter range of Y and D is 90º and 360º, respectively. 
Recall from Section 2.6.4 that Y and D can also be represented by three 
parameters: NCS. If all three NCS parameters are determined, then the full 
parameter ranges of Y and D are also known. In addition, a measure of  
NCS can be used to estimate the “percent depolarization.” This simply 
informs whether the detected light is partially polarized due to either 
sample or instrumentation during the measurement. In an ideal situation, 
the light would remain polarized and the percent depolarization would  
be zero.

3.2.3  ROTATING POLARIZER OR ANALYZER ELLIPSOMETRY

A common early SE configuration consisted solely of polarizers in the 
PSG and PSD. One polarizer is held at a fixed position while the other 
is rotated. If the rotating polarizer is before or after the sample, the 
configuration is called a Rotating Polarizer Ellipsometer (RPE) or Rotat-
ing Analyzer Ellipsometer (RAE), respectively. Measurement speed is 
limited by the motor rotation frequency, w which is typically 10 to 30 Hz. 
An entire spectrum can be collected, using a diode array, in a fraction of 
a second. Longer averaging of a few seconds is typical to reduce noise.

Figure 3.17 is an overview of an RAE operation. Light from the 
source is polarized in the PSG by a linear polarizer oriented to provide 
both p- and s-electric fields. The light reflects from the sample, changing 
the polarization to generally an elliptical state. The elliptically polarized 
light travels through the rotating analyzer to the detector. The detected 
signal modulates as the analyzer rotates, with maximum and minimum 
intensities occurring when the analyzer is aligned with long and short 
ellipse axes, respectively. The maximum and minimum values occur twice 
per rotation, leading to a 2w frequency signal for RAE and RPE ellipsom-
eters. The detected signal for an RAE can be written as:

	 I N N CRAE ∝ − + −( ) +1 2 2 2 2 2cos( ) cos( ) cos( ) sin( ) sin( )P P A P A

� (3.3)
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where N and C are SE data values, P is the fixed polarizer angle, and A 
is the angle of the rotating analyzer. The RAE signal can be divided into 
a DC term (common offset from zero at all rotations) and both 2w cosine 
and 2w sine terms, as shown in Figure 3.17.

To avoid measuring absolute signal values, the frequency terms  
(a, b) are normalized to the DC term. The two remaining ratios are referred 
to as normalized Fourier coefficients (NFCs). For RAE and RPE, the 
normalized cosine and sine terms are referred to as a and b, respectively, 
as shown here for RAE configuration:
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Fixing the input polarizer at 45°, these equations simplify to:

	 a = −N � (3.5a)

	 b = C � (3.5b)

Figure 3.17.  An RAE operation is reviewed. Light reaching the 
sample is linearly polarized, but reflects at a distinct elliptical 
polarization that passes through the rotating analyzer. This leads to 
a time-varying detected signal consisting of a DC and 2w frequency 
terms (both cosine and sine).
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Thus, the signal from an RAE ellipsometer can directly access N and C. 
However, there is no measurement of the S parameter. This is equivalent to stat-
ing that the measured D range is limited to 0° to 180° rather than the full 360°.

RAE and RPE designs were very popular for early spectroscopic 
ellipsometers because of their simplicity. These configurations are highly 
sensitive to Y and D when the reflected light is close to being circularly 
polarized. Because light arriving at the sample is linearly polarized, D must 
be 90° to convert the light to circularly polarized and achieve the high-
sensitivity region of an RAE or RPE ellipsometer. This caused emphasis 
on measurements at the Brewster angle where D goes through a 90° phase 
change. However, an appropriate Y value from the sample is also required 
to achieve circularly polarized light.

The biggest limitation of RAE and RPE is related to their lack of a 
compensating element. This prevents measurement of S, which in turn 
prevents measurement of the full range of D and prevents measurement of 
percent depolarization. More significantly, RAE and RPE instruments suf-
fer from greatly reduced sensitivity for D values near 0° or 180°. Modern 
ellipsometers overcome this deficiency by adding a compensating element 
into the PSG or PSD, as we describe in subsequent sections.

3.2.4  ROTATING COMPENSATOR ELLIPSOMETRY

Spectroscopic ellipsometers using rotating compensator ellipsometry 
(RCE) were developed in the mid-1990s [32]. A key enabling factor was 
developing compensators that provided adequate retardance over a wide 
wavelength range. The compensators are not used by themselves, as they 
have no effect on unpolarized light. Rather, they are used in combination 
with a polarizer. The compensator can be situated either before or after 
the sample. To differentiate between these two configurations, we refer 
to the order of polarization-altering components: Polarizer-Compensator-
Sample-Analyzer (PCSA) or Polarizer-Sample-Compensator-Analyzer 
(PSCA). Measurement speed is again limited by motor rotation speeds, 
with entire spectra accessible in a fraction of a second.

The rotation of the compensator next to the fixed polarizer introduces 
both 2w and 4w frequencies into the detected signal. Normalizing to the 
DC term produces four possible NFCs.

Figure 3.18 shows the components of a representative PCSA 
ellipsometer configuration. The light is polarized and then enters the 
rotating compensator. The polarization exiting the compensator var-
ies with time as the compensator orientation changes with respect to 
the linear polarization. For the special case of a QWP, the light will 
modulate between left-circular and right-circular polarizations. When the 
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compensator axes align with the polarizer axes, no polarization change 
occurs and linearly polarized light passes through to the sample. The 
compensator is continuously rotating so the light polarization after the 
compensator is continuously changing its shape from linear to circular 
with elliptical states in between, as shown in Figure 3.18. Regardless of 
the incident polarization state, it is altered by the sample, such that the 
reflected light is also modulating versus time but with a different variation 
of polarizations. The fixed analyzer passes only electric fields aligned with 
the analyzer orientation. In general, the detected signal is modulated with 
DC, 2w and 4w variations.

The signal intensity for an RCE ellipsometer is more complex than 
with the RAE or RPE designs of the previous section. However, the 
intensity can be simplified by choosing fixed polarizer and analyzer 
orientations. With P = 0° and A = 45°, the PCSA intensity becomes:
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where d is the compensator retardance and C is the rotating com- 
pensator orientation. Our choice of polarizer and analyzer orientations 
reduced the number of Fourier coefficients, as the cosine (2C) term is zero 
and no longer appears. The NFCs of Equation 3.6 can be written in terms 
of the cosines (a2, a4) and sines (b2, b4) of the modulating compensator 
frequency:

Figure 3.18.  Basic RCE configuration.
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	 a2 0= 	 (3.7a)

	 b d2 ∝ S sin( ) 	 (3.7b)

	 a d4 1∝ −( )N cos( ) 	 (3.7c)

	 b d4 1∝ −( )C cos( ) 	 (3.7d)

With an ideal QWP where d = 90°, the equations further simplify to:

	 a2 0= 	 (3.8a)

	 b2 ∝ S 	 (3.8b)

	 a4 ∝ N 	 (3.8c)

	 b4 ∝ C 	 (3.8d)

It is clear that RCE ellipsometers can measure N, C, and S. In fact, 
in this configuration, the three SE Data Parameters are determined from 
three independent NFCs.

There are many advantages to including a compensating element 
within the ellipsometer, as the compensator overcomes the primary 
limitations of the RAE and RPE. With a compensator, the full ranges 
of Y and D can be measured. In addition, percent depolarization can be 
measured from isotropic samples. Finally, the rotating compensator 
provides sensitivity to any value of Y or D.

A thorough treatment of RCE can be found in Collins et al. [23].

3.2.5  DUAL ROTATING INSTRUMENTS

It can be beneficial to rotate more than one optical element simultaneously. 
Rotating multiple optical elements produces a larger number of NFCs.  
Care must be taken when choosing the separate optical rotation frequen-
cies, such that any new frequencies, which are naturally generated (sums 
and differences of the base frequencies), are not overlapping. The extra 
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frequencies contain the same inherent information as when one element 
is continuously rotated and the second element is stepped to multiple 
positions. However, continuous rotation of both optical elements improves 
measurement speed. Now, the total measurement time is related to a single 
optical cycle, which is the completion of a certain number of rotations for 
each optic. Thus, a dual rotating element SE is slower than a single rotating 
element SE, but with additional measurement information. Considering 
the two instrument configurations we have previously listed, dual rotating 
instruments could be constructed by the following: (i) rotating both polar-
izer and analyzer, (ii) rotating compensator on one side of sample while 
rotating polarizer on the opposite side of the sample, and (iii) rotating 
compensators on both sides of the sample.

Each case leads to more NFCs, which contain sample information. 
In the case of dual rotating compensators, there are potentially 24 
NFCs. These can be used to significantly overdetermine Y and D or 
even determine all 16 normalized Mueller matrix elements for advanced 
samples (Section 2.6.5).

3.2.6  PHASE MODULATION ELLIPSOMETRY

Phase modulation ellipsometry (PME) has many similarities to RCE. 
Both have an optical element that provides phase retardance. The main 
difference is how each varies the amount of compensation versus time. 
The RCE rotates the compensator orientation, while PME varies optical 
anisotropy with a fixed optical orientation.

Just like a compensator, the PM must be used in combination with a 
polarizer. To achieve the largest range of modulation, the PM is typically 
rotated 45° from the polarizer axis. The PM can be situated before or 
after the sample, leading to two common configurations, which we will 
denote by the order of polarization-altering components: Polarizer-Phase 
Modulator-Sample-Analyzer (P-PM-S-A) or Polarizer-Sample-Phase 
Modulator-Analyzer (P-S-PM-A).

The signal from a PME is very complex and will not be detailed here. 
A full account can be found in Jellison [24].

The implementation of a single PEM can measure either N and S 
or C and S, but not all three simultaneously. To determine all three 
simultaneously requires movement of the PEM axis and a second 
measurement or additional PEM in the optical path. Thus, a single 
measurement with PME does not measure the full range of Y and D and 
can’t provide percent depolarization.
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PME is often used for very fast SE data measurements with the 
measurement signal around 50 to 100 kHz. However, this speed advan-
tage comes with a disadvantage—it makes the device incompatible with 
modern linear detector arrays such as charge-coupled device detectors. To 
collect parallel wavelengths with this type of ellipsometer requires paral-
lel detection from different detectors with their own lock-in circuitry. This 
has been demonstrated by collecting approximately 50 different wave-
lengths, but does not come close to achieving over 1,000 wavelengths 
common in rotating element ellipsometers. Thus, the speed advantage has 
the caveat of limited wavelengths.

Another important consideration with PME systems is the stability of 
the calibration. The calibration is inherently more difficult, as the PM is 
not only wavelength-dependent but also dependent on drive voltage and 
sensitive to temperature variations. For this reason, accurate measurement 
may require frequent calibration.





CHAPTER 4

General Data Features

In this chapter, we illustrate the appearance of Y and D data collected 
with a spectroscopic ellipsometer. We show general data features from 
dielectric, semiconductor, and metal substrates. We then demonstrate the 
effect of thin films on a substrate, specifically how thickness affects the 
spectra.

A spectroscopic ellipsometry spectra is shown in Figure 4.1. The 
measurement includes two data curves, Y and D, which describe the 
polarization change. Curves are shown from a single angle of incidence; 
however, it is common to measure multiple angles and each will have Y 
and D curves.

The general range of Y is between 0° and 90°, while D covers a 360° 
total range. Because we do not collect absolute phase, the minimum D 
value on the graph can be arbitrarily selected. Here we have graphed the 
curves with 0° as the D minimum. The sharp step at 410 nm is actually a 
graphing artifact when D exceeds the maximum and enters the graph at 
the minimum range. If we select a different minimum value for D, it will 
change where this “step” appears.

While Y and D curves are interesting, they do not typically hold 
quantitative information about sample properties. Film thickness and 
optical constants are determined via regression analysis, which will be 
covered in Chapter 6. However, a basic overview of the spectral features 
from typical substrates and single-layer coatings is helpful to build an 
intuitive understanding of the measured sample. A cursory glance at the 
data should inform whether our sample is a bare substrate or has a thin 
film coating. If the substrate has a single-layer coating, we can deduce 
the general film properties. Is it a thin or thick layer? Is it transparent or 
absorbing? The spectroscopic ellipsometry spectra suggest the answers to 
these questions.
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4.1  SPECTRA FOR SUBSTRATES

For substrates, we consider a single surface reflection from the material 
without any surface coatings, as shown in Figure 4.2. We also consider 
the substrate to be infinitely thick. This latter condition is met whenever 
the light entering the material does not return to the detector. This can be 
accomplished in a number of ways. First, there can be adequate physical 
separation between the surface reflection and any additional beams from 
the backside of the substrate (e.g., a 5 mm thick optical flat). The light 
can also be scattered from a rough surface, such as the backside of a 

Figure 4.1.  Ellipsometry spectra (Y and D) for a 75° measurement of 
a thin-film coated substrate.

Figure 4.2.  A “substrate” 
consists of a single interface, 
where only light reflecting 
from the surface will reach the 
detector.
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single-side polished semiconductor substrate. Finally, the light can be 
strongly absorbed within the substrate. This final case is met by metals 
which are only 100 to 200 nm thick. Thus, when referring to a metal  
substrate, we may actually be measuring a thin film of the metal. Because 
we only detect the top-reflection from the metal surface, it is effectively 
our substrate.

Interestingly for substrates in general (transparent and absorbing), 
the data range reduces to Y ≤ 45° and D between 0° and 180°. The Y 
range is evident from Figures 2.11 and 2.12, where the reflectance of 
s-waves is always greater than that of p-waves. From the definition of 
the tangent of Y (Equation 2.30) we see that, for substrates, tan Y ≤ 1,  
and hence, Y ≤ 45°. The D range for substrates is demonstrated in 
Figure 2.13.

4.1.1  DIELECTRIC SUBSTRATES

We consider dielectric materials to be essentially transparent over our 
spectroscopic ellipsometry (SE) measurement wavelength range. With  
k = 0, the SE data simplify with Y tracking the index and D equal to 
either  0° or 180°. As an example of a dielectric substrate, we consider 
Schott N-BK7®, a common glass. In Figure 4.3, we show the values of 
Y and D for three angles-of-incidence. Each of the Y curves is relatively 
flat and smooth, with mild curvature at shortest wavelengths. This is due 
to the glass index, which is also relatively smooth and flat across this 
spectral range. The refractive index for the N-BK7 substrate is shown in 
Figure 4.4. The slight variation of the index, n, which increases toward 
shorter wavelength, is called “normal” dispersion (Section 5.2.1). This is 
common to all dielectric materials.

The extinction coefficient, k, is zero throughout the entire spectral 
range of interest. For a “pure” substrate (no surface coating), the value of 
D would be exactly 0° or 180°. Pure substrates are rarely seen in nature. 
The deviation of D from ideal values can be attributed to a very thin sur-
face layer. To match the data, the N-BK7 was modeled with a 1.3 nm 
roughness layer on the interface that consists of half air and half glass 
(Chapter 8). With this surface, we note that for an angle-of-incidence of 
51°, the value of D is almost 180° and for an angle-of-incidence of 63° the 
value of D is almost 0°.

The Brewster angle for bare substrates occurs when D crosses 90° and 
Y goes through a minimum. For the angle-of-incidence of 57°, D changes 
gradually from near 180° to near 0°, passing 90° at about 366 nm. This is 
to say that for l ≈ 366 nm, the middle angle, 57°, is the Brewster angle. 
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Figure 4.4.  The values of the index of refraction, n, for a dielectric, 
N-BK7 glass.

Figure 4.3.  The values of Y and D for a dielectric substrate of 
N-BK7 glass with 1.3 nm of surface roughness. Three angles-of-in-
cidence are shown.
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From the definition of the “Brewster angle” (Equation 2.24), we see 
that for each value of the index of refraction, there is a corresponding  
Brewster angle. In Figure 4.4, we see that the values of the index of 
refraction for this sample are between about 1.5 and 1.63. The index of 
refraction for a Brewster angle of 51° and for a Brewster angle of 63° 
falls outside this range. However, the index of refraction for a Brewster 
angle of 57° is 1.54, and this occurs at a wavelength of about 366 nm 
for this sample. Accordingly, we could call this wavelength the Brewster 
wavelength (for an angle of incidence of 57°). We also note that the value 
of Y for this angle-of-incidence and at this wavelength is almost zero. If it 
were a pure substrate, Y would be equal to zero.

We can expect similar data behavior from other dielectric substrates 
such as fused silica, sapphire, calcium fluoride, and plastic materials. The 
Y curves will be relatively flat and their relative value will depend on the 
substrate index and the angle of incidence. If we remain in the transparent 
region of the dielectric, D will only show variation from 0° and 180° due 
to surface coatings.

4.1.2  METAL SUBSTRATES

Metals absorb light at all wavelengths. Thus, we can expect significantly 
different SE spectra compared to the dielectric substrates, which are trans-
parent. The two primary differences are: (i) Y will not get close to zero, and 
(ii) D will not touch 0° or 180°. The absorption mechanism within metals 
generally causes the extinction coefficient, k, to rise toward longer wave-
lengths. This also leads to increasing D values toward longer wavelengths.

For typical Y and D spectra for metal substrates, we show those 
for cobalt in Figure 4.5. In contrast to the dielectrics, note that Y is 
considerably larger and D is in the middle of the range between 0° and 
180°. We show four angles-of-incidence, all below the principal angle. It 
is less practical to collect data above the principal angle, which is usually 
between 80° and 90°.

The optical functions for cobalt are shown in Figure 4.6. Because, 
metals absorb all wavelengths of interest, we note that the extinction 
coefficient, k, is not zero, as was the case for dielectrics. As discussed 
above, k increases for longer wavelengths. For this metal, n is also 
increasing toward longer wavelengths; however, there is plenty of 
variation for different metals, so this is not a rule.

It is very difficult to obtain spectra for a pure metal substrate due to 
roughness, oxidation, or adventitious carbonaceous contamination from 
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Figure 4.5.  The values of Y and D for a cobalt substrate.

Figure 4.6.  The values of the optical functions for cobalt.
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the atmosphere. These very thin layers can contribute to the Y and D 
spectra, but we likely will not notice their effect, as they will slightly shift 
the values of Y and D. These thin layers are usually detected with another 
analytical technique such as Auger electron spectroscopy or scanning 
probe microscopy. The metal sample can then be modeled with these 
layers present, thus giving a better representation of the optical functions 
of the pure metal surface.

4.1.3  SEMICONDUCTOR SUBSTRATES

Semiconductor substrates contain the general features of both dielectrics 
and metals. Semiconductors have much lower bandgap energies than for 
dielectrics, so they will be absorbing at short wavelengths (above the band-
gap) and transparent at longer wavelengths (below their bandgap). Thus, 
the semiconductor data curves will behave similar to dielectrics at long 
wavelengths and similar to metals at short wavelengths. Additionally, most 
semiconductor substrates are crystalline, which adds one more feature to 
the data for us to examine. The crystalline structure leads to much sharper 
absorption features at short wavelengths. These features are related to  
specific electronic transitions that occur within that semiconductor.

In Figure 4.7, we show Y and D spectra for a typical semiconductor 
substrate, single-crystal silicon. Note that for wavelengths greater than 
about 500 nm, the Y or D behavior is not all that different from a dielectric. 
Here, D remains close to 0° or 180°, except at 75° where there is a transition 
through the Brewster angle. The Y spectra is flat and smooth, with values 
approaching 0° when measured near the Brewster angle.

For wavelengths shorter than 500 nm, the behavior is more like that 
of an absorbing material. Here, D remains away from both 0° and 180°, 
while Y remains at larger values away from 0°. The sharper features at 
270 nm and 360 nm are due to critical point energies within the crystalline 
silicon. They act as a “fingerprint” for the type of semiconductor. If we 
measured a GaAs substrate, we would see features at 240 nm, 390 nm, and 
425 nm. GaAs becomes transparent above 880 nm and shows “dielectric” 
behavior at longer wavelengths. We can expect similar behavior from all 
semiconductor substrates.

In Figure 4.8, we show the optical functions of a single-crystal silicon. 
For wavelengths longer than about 500 nm, the extinction coefficient, k, 
is very small, and for wavelengths longer than 1100 nm, the extinction 
coefficient is exactly zero. On the other hand, the extinction coefficient is 
quite large for wavelengths below about 450 nm. Accordingly, this material 
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Figure 4.7.  The values of Y and D for a typical semiconductor 
substrate, silicon.

Figure 4.8.  The values of the optical functions for a typical 
semiconductor, silicon.
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has some features similar to a dielectric and some features characteristic 
of absorbing materials.

4.2  SPECTRA FOR FILMS ON A SUBSTRATE

The SE data from a sample which consists of a thin film on substrate will 
depend on the light interactions that reach the detector. Thus, we need to 
consider (i) transparent films, (ii) films that have an absorbing spectral 
region, and (iii) absorbing films. The absorbing films are easy to dismiss, 
as they behave exactly like absorbing substrates. That leaves transparent 
films and films with absorbing spectral regions.

4.2.1  TRANSPARENT THIN FILMS

To illustrate the spectra for a sample which consists of a transparent film 
on a substrate, we have chosen thermal oxide (SiO2) on a single-crystal 
silicon substrate. As the film is transparent, light will travel through the 
film and return to the detector, as shown in Figure 4.9. The Y spectrum 
is shown in Figure 4.10. The thickness of this particular film is 1 µm, or 
1000 nm. For comparison, we have included the Y spectrum for a bare 
silicon substrate.

We observe oscillations in the spectrum, going from a value near that 
of the bare substrate to near 90° (at least at longer wavelengths). The data 
oscillations are caused by constructive and destructive interference between 
the light reaching the detector. This is illustrated in Figure 4.11, where (a) 
destructive interference occurs when the light combines “out-of-phase” and 
(b) constructive interference occurs when the light combines “in-phase”. As 
the wavelength changes, it shifts the interference giving rise to the up-and-

Figure 4.9.  Reflection of light 
within a thin transparent film 
on substrate.
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Figure 4.10.  The Y spectrum for a transparent film on a substrate. For 
this particular example, we show a single-crystal silicon substrate with 
a 1 µm thermal oxide film. Also shown is the spectrum for the bare 
substrate. The peaks and valleys correspond to wavelengths where the 
detected light from the thin film exhibits constructive and destructive 
interference.

Figure 4.11.  Destructive and constructive interference from within a thin 
film. Different wavelengths will produce different effects, depending on 
how the final light components “align” in-phase or out-of-phase as they 
recombine traveling to the detector.

down data fluctuations as shown in Figure 4.10. A few points in Figure 4.10 
are marked to indicate the effect of constructive and destructive interference.

The data fluctuations are a direct indicator of film thickness as illustrated 
in Figure 4.12. If we were to make the film slightly thicker, the interference 
features (peaks and valleys) would move toward longer wavelengths. In 
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addition, the interference features would come closer together. Conversely, 
for thinner films, these features move toward shorter wavelengths and would 
move farther apart. In a given spectral range, thinner films have fewer inter-
ference features than thicker films. We also note that the interference fea-
tures are closer together for shorter wavelength than for longer wavelength.

The large Y fluctuations of nearly 90° from Figures 4.10 and 4.12 
were caused by the large optical contrast between silicon and silicon 

Figure 4.12.  The Y spectrum for a series of SiO2 coatings on crystalline 
Si with different film thicknesses. As the thickness increases, so do the 
number of interference features within the measurement wavelength range.

Figure 4.13.  Comparison of the index of refraction for the thin film 
and glass substrate. This small index difference leads to smaller 
amplitude data fluctuations.
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Figure 4.14.  Y and D spectra for a coating on BK7 
glass substrate. The coating has a slightly higher 
index of refraction than the substrate. This leads to 
interference oscillations as compared to the data from 
the bare substrate (also shown). Note the interference 
features for Y have one edge along the bare substrate 
curves—high or low edge depends on the angle of 
incidence. The D interference features fluctuate around 
the central curve of the bare substrate.

dioxide (Dn ~2.5). In contrast, a dielectric coating on a glass substrate will 
have smaller optical contrast, as shown in Figure 4.13. In Figure 4.14, we 
show the Y and D curves at two angles of incidence for a thin dielectric on 
glass. The fluctuations in Y are now closer to 3°. We also graph the bare 
substrate data for comparison. Note how the Y fluctuations are bounded 
by the substrate curves. This boundary can be either at the top or bottom of 
the interference features, depending on the angle of incidence and whether 
the film index is lower or higher than the substrate index. The D spectra 
also fluctuates, but as shown for the two angles (one below and one above 
the Brewster condition), D fluctuates around the bare substrate curve.

4.2.2  THIN FILMS WITH ABSORBING SPECTRAL REGIONS

Some films are transparent over a portion of the measured wavelengths 
and absorbing at other wavelengths. In the transparent region, we expect 
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the same behavior as with transparent films of the previous section—the Y 
and D curves should oscillate. It is important to measure some wavelengths 
in this region, as the film thickness can only be determined where the light 
can probe the film depth.

As the film becomes absorbing, the light traveling through the film 
is no longer able to return to the surface and reach our SE detector. The 

Figure 4.15.  Y and D spectra from a semiabsorbing film show the 
interference features of a transparent film over the spectrum above 
600 nm. However, absorption within the film prevents interference at 
shorter wavelengths. Thus, the data curves appear like an absorbing 
substrate at these wavelengths, as only light from the film surface 
reaches the detector.
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data are now similar to the absorbing substrates discussed earlier. The Y 
spectra will be away from 0° and follow the shape of the optical functions. 
The D spectra will stay between 0° and 180° and will also follow the 
optical functions. If the material is amorphous, it is likely to have smooth 
absorbing features and thus we expect Y and D also to be smooth in this 
region. Figure 4.15 shows Y and D for an amorphous semiconductor film 
on a substrate. The data oscillate above 600 nm, where the thin film is 
transparent. The amplitude of these oscillations diminishes as light is 
more strongly absorbed until no light is able to return from the substrate 
interface. Here, the Y and D data are smooth and show only the surface of 
the thin film.

Now that we have considered the spectral shape for both transparent 
and absorbing materials, we will discuss the nature of the optical functions. 
Chapter 5 will introduce the general approaches to represent the optical 
functions of both transparent and absorbing materials.



CHAPTER 5

Representing  
Optical Functions

In the previous chapter, we illustrated the general shape of experimental 
data curves. The Y and D spectra describe how the polarization has been 
altered. We wish to extract material properties from the measurement. This 
requires model-based regression analysis, which we describe in Chapter 6. 
An important part of this process requires the user to estimate the sample 
structure. Specifically, each layer must be described by its thickness and 
optical constants. As the optical constants vary with wavelength, we also 
refer to the optical constant spectral shapes as the optical functions. In 
this chapter, we introduce the standard methods of representing optical 
functions.

Our choice of method for each material depends on the following 
questions:

1.	 Are the optical constants known?
2.	 Are they different from the reference values or expected to differ 

from sample to sample?
3.	 If values are unknown or expected to vary, is the material transpar-

ent or absorbing?

We introduce four common methods for representing the optical 
functions: tabulated lists, the Cauchy dispersion equation, oscillator models,  
and the b-spline.

5.1 T ABULATED LIST

When the optical constants are known for a material, they can be listed 
directly for use in model calculations. The optical constants are entered 
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into a table consisting of columns for wavelength, values of n, and values 
of k. Table 5.1 is an example of a tabulated list. The first lines provide 
comments and instructions to the software concerning the list. Following 
this are rows listing the wavelength in nm, the value of n and the value of 
k. The list should cover the same wavelength range as the measured SE 
spectra, with allowances for minor extrapolation.

There are two common sources for tabulated lists. The first is to obtain 
published optical constants. The second is to measure a reference sample 
and save the values for future use. Example collections of published 
optical constant spectra include those by Palik and Adachi [17–20].

Tabulated lists are useful for two situations. First, they can be used 
when the optical constants are not expected to differ from the reference 
values. Second, they provide the general shape of optical functions for a 
material. This allows the user to get a preliminary calculation and then 
proceed to a dispersion model with knowledge of the shape of the optical 
function.

The values in the tabulated list cannot be conveniently adjusted. This 
form of the optical function is useful for materials which are extremely 
reproducible. The best applications of tabulated lists are for single-crystal 

Gallium arsenide substrate

Wavelength (nm) n k

210 1.3153 2.6163

215 1.3383 2.7205

220 1.3691 2.8515

225 1.4149 3.0071

230 1.4793 3.1894

235 1.5688 3.4146

240 1.7322 3.7145

245 2.0855 4.0432

250 2.6568 4.2026

255 3.2408 4.0501

260 3.6159 3.7094

Table 5.1.  Example of a tabulated list to represent the optical functions 
of GaAs
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materials. For example, a tabulated list of silicon optical constants can 
be used effectively from the ultraviolet to near infrared for any silicon 
wafer you may encounter, regardless of batch, crystal cut, or doping 
concentration. Tabulated lists are also useful for thin films which can be 
repeatedly prepared, such as thermal oxides of silicon and low-pressure 
chemical vapor deposition (LPCVD) silicon nitride. Tabulated Lists are 
less practical for polycrystalline materials as the optical constants depend 
on grain size, impurities, and so on.

There are tabulated lists for many metals in the literature. However, 
these should only be used as a starting point, since metal optical constants 
will vary with fabrication process and conditions. For example, it has been 
shown [44] that the optical functions of sputtered chromium depend on 
the pressure of the sputtering gas (usually argon). Thus, users should each 
create a metal reference for their own process.

Normally, it is expected that the analyst will determine the optical 
functions of a material of interest rather than use an existing tabulated list. 
The primary exceptions are the ubiquitous silicon and other semiconductors 
that can be readily obtained as single-crystal wafers. This leads us to the 
remaining types of optical function representations—all of which allow 
the optical functions to adjust to match the measured sample.

5.2  DISPERSION EQUATIONS

The primary disadvantage of tabulated lists is that they do not provide a 
method to vary the optical functions in a useful and efficient manner. Each 
individual value can be adjusted, but this introduces a maximum number 
of “free” parameters to describe the optical functions. This method is 
referred to as “point-by-point” or “wavelength-by-wavelength” fitting. It 
is very inefficient as neighboring wavelengths do not support each other. 
Rather, each wavelength is allowed to vary without knowledge of the 
optical constants at neighboring wavelengths. This often leads to noisy 
and possibly correlated results that are not unique and often wrong.

A better, more efficient approach is to use a dispersion equation. 
Dispersion refers to the variation of optical constants at different wave-
lengths. Thus, a dispersion equation relates to the wavelength-dependence 
of the optical functions. In this manner, neighboring wavelengths help 
support each other at arriving at a consistent answer to match the spectro-
scopic data curves.

We introduce here a variety of dispersion equations. Some are designed 
to work for transparent materials. Others describe both transparent and 



74   •   SPECTROSCOPIC ELLIPSOMETRY

absorbing optical functions. Some are empirical and were developed 
purely from the observation of the optical constant shapes, without 
physical meaning for this underlying shape. Others are rooted in a physical 
understanding of the material and the nature of its optical properties. 
Regardless, each provides the added benefits of (1) significantly reducing 
the number of free parameters, (2) maintaining smooth, continuous curves 
to describe the optical functions versus wavelength, and (3) allowing easy 
access to vary certain properties of the optical functions.

Before describing a few common dispersion equations, we consider 
the basic dispersion shape expected for transparent and absorbing materi-
als, referred to as normal and anomalous dispersion, respectively.

5.2.1  NORMAL DISPERSION

For any transparent material, the index of refraction increases as the 
wavelength is decreased. This is referred to as normal dispersion. Even 
materials with absorbing regions must follow normal dispersion at 
the wavelengths where they are transparent. The optical functions of 
polyimide are shown in Figure 5.1. This material is transparent (k = 0) for 
wavelengths above 500 nm, and the index of refraction increases as the 
wavelength decreases down to 500 nm.

There are two common dispersion relations to describe the index 
of refraction of transparent materials: Sellmeier and Cauchy. Each can 
describe the normal dispersion of the index of refraction. However, the 

Figure 5.1.  The optical functions for polyimide are shown with both 
normal and anomalous dispersion regions.
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Cauchy equation (Section 5.3) is empirical and does not force the normal 
dispersion shape. Thus, it is possible to achieve a result where the index 
decreases toward shorter wavelengths, while the material is transparent. 
This result is not physically plausible and can be ruled incorrect.

5.2.2  ANOMALOUS DISPERSION

For wavelengths where a material is absorbing, the optical functions will 
follow anomalous dispersion. In general, the index will flip over near 
the peak in the extinction coefficient. Thus, the index decreases toward 
shorter wavelengths where the material is absorbing. This is also shown 
in Figure 5.1 for polyimide at wavelengths near 250 nm. The effect on 
the index depends on the strength and shape of the absorbing region. 
This is due to a physical tie between the real and imaginary optical 
functions referred to as Kramers-Kronig (KK) consistency (Section 
5.4.1). There are many dispersion equations to describe the absorbing 
region of a material, including oscillator models (Section 5.4) and the 
b-spline (Section 5.5).

5.3 �T HE CAUCHY EQUATION—A DISPERSION 
EQUATION FOR TRANSPARENT REGIONS

In this section, we shall consider the wavelength range in which the film 
of interest is transparent. This is important for ellipsometry as light can 
penetrate the film and provide thickness information. When the index of 
the material is not known, or is expected to vary from sample-to-sample, 
we turn to a “dispersion” equation. For transparent wavelengths, it is 
common to use the “Cauchy Equation,”

	
n A B C( )l

l l
= + +2 4

	 (5.1)

where the index of refraction is described by three parameters (called the 
Cauchy coefficients) and the wavelength is given in units of microns. The 
optical function for the extinction coefficient is simple, that is, k = 0. The 
Cauchy coefficients are normally determined, along with the film thick-
ness, during regression analysis of the ellipsometry data.

The general shape provided by the Cauchy equation is plotted in 
Figure 5.2. The value of the curve at longer wavelengths is determined 



76   •   SPECTROSCOPIC ELLIPSOMETRY

by the “A” parameter which is basically an “offset” for all wavelengths. 
Curvature is controlled by “B” and “C” parameters.

Because the Cauchy equation can be used anytime if a material is 
transparent, it is applicable to dielectrics, organics, and even semicon-
ductors. If the material is absorbing at some wavelengths, the fit can be 
restricted to the transparent wavelength range. As discussed in the previ-
ous chapter, the transparent wavelength range can be estimated by looking 
for oscillations in the Y/D data curves.

Figure 5.3 shows the index using a Cauchy equation for a variety 
of dielectric materials. The corresponding Cauchy coefficients are listed 
in Table 5.2. The curvature tends to increase for materials with a larger 
index. The values of “B” are commonly between 0.002 and 0.02 for many 
transparent materials, while “C” remains near 0.000. It is important for 
the index to increase toward shorter wavelengths as required to maintain 
a “physical” shape when the material is transparent. This is not restricted 
by the Cauchy equation. If either “B” or “C” is a negative number, it is 
possible for the Cauchy equation to show an “unphysical” shape, where 
the index decreases toward short wavelengths. Thus, it is important to 
check the final shape of the index to ensure it follows normal dispersion 
(Section 5.2.1).

5.3.1  ADDING SLIGHT ABSORPTION IN THE UV

The Cauchy equation, by itself, assumes that k = 0. Some films which 
have slight absorption in the UV spectral region can still be described by 

Figure 5.2.  The optical function for n is shown as described by the 
Cauchy equation.
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the Cauchy Equation, with slight modification. The index, n(l), is still 
described by the usual Cauchy equation, described in Equation 5.1. The 
extinction coefficient k(l) is described by the Urbach equation [45],

	 k A ek
B E Ek b( ) ( )l = − 	 (5.2)

where E is the photon energy, and

	
Eb

b
ª

l
1240

	 (5.3)

The input parameters for the Urbach equation are Ak, Bk, and lb, which 
suggest, at first glance, a three-parameter equation. However, there are 
an infinite number of combinations of Ak and lb which result in the same 

Figure 5.3.  The optical function for n is shown for several dielectric 
materials as described by the Cauchy equation.

Material A B C

MgF2 1.3831 0.00205 0.000000

SiO2 1.4544 0.00313 0.000036

Al2O3 1.7528 0.00572 −0.000064

TiO2 2.1564 0.02182 0.004485

Table 5.2.  Cauchy coefficients associated with each index curve shown 
in Figure 5.3



78   •   SPECTROSCOPIC ELLIPSOMETRY

curve shape. Accordingly, during regression analysis, the value of lb is 
set by the analyst and the parameters Ak and Bk are allowed to vary. It is 
suggested that the value of lb be set to a value near the shortest wavelength 
in the spectral region. When the wavelength l is equal to the assigned 
value of lb, the exponent is zero and k(l) = Ak. Figure 5.4 shows the optical 
functions of a silicon nitride film described by the Cauchy equation along 
with Urbach absorption. The coefficient values are shown in Table 5.3.

While the Urbach absorption helps extend the useful wavelength 
range of the Cauchy, it should not be used when the material becomes 
significantly absorbing. In the next sections, we introduce models useful 
for both transparent and absorbing regions.

Figure 5.4.  The optical functions for a silicon nitride film, 
described using the Cauchy equation for n with Urbach 
absorption to describe k.

Parameter Value

A 2.0037

B 0.00831

C 0.000499

Ak 0.0039

Bk 2.7136

lb 248 nm

Table 5.3.  Cauchy and Urbach parameter values related to 
the optical functions plotted in Figure 5.4
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5.4  OSCILLATOR MODELS

We introduce here two common models for absorbing materials with 
unknown optical properties: oscillator model and the b-spline model. Our 
choice depends on the complexity of the optical functions. The oscilla-
tor model is most useful when there are a small number of absorption 
features. The b-spline is advantageous when describing more complex 
optical function shapes.

Let’s consider the general shape of the optical constants in the 
absorbing region. There will be peaks in absorption at resonant frequen-
cies where the material is most likely to absorb the incoming light of that 
wavelength. This is analogous to the resonance of a mechanical system 
such as a mass on a spring (Figure 5.5), which absorbs energy from the 
driving force when the driving force (the finger) is near the resonant 
frequency of the vibrating system.

For an optical system the incoming light provides the driving force 
and the material experiences a resonant vibration that absorbs this energy. 
At short UV to NIR wavelengths (very high frequencies) the electrons can 
absorb the light. If we slow down the frequency to mid IR wavelengths, 
lighter atoms can vibrate relative to the heavier atoms in a molecule.

There are many oscillator equations which can describe a resonant 
absorption. We introduce a few common oscillator functions here, but the 
equations for each (and others) are available in optics textbooks or hand-
books [46, 47]. Rather than deal with the equations, we describe the shapes 
of the optical functions (see Section 2.2.2), either as the complex dielectric 
functions (e2 and e1) or the complex refractive index (n and k). The theory 
behind oscillator shapes is based on how the material reacts to incoming 

Figure 5.5.  A mechanical oscillator, 
which is a forced harmonic oscillator 
with damping, is shown.
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electromagnetic waves, thus it generally describes the complex dielectric 
function. Additionally, the response is frequency dependent, so it is com-
mon to show absorption features on a frequency scale (or photon-energy 
scale) rather than on a wavelength scale.

Oscillator models are beneficial for many reasons. First, they can 
describe both transparent and absorbing materials. Second, they maintain 
the physical tie between real and imaginary optical functions, referred 
to as KK consistency (Section 5.4.1). Third, they describe the optical 
functions with a greatly reduced number of free parameters.

A single Gaussian oscillator is shown in Figure 5.6. The dielectric 
function shape is described by four parameters. Three parameters describe 
the absorption shape (imaginary dielectric function, e2) and are analogous 
to the aforementioned vibrating oscillator. These parameters are similar 
for many oscillators we encounter: center energy (the resonant frequency), 
amplitude, and broadening. The fourth parameter (e1 offset) is used to shift 
the real component of the dielectric function.

This general shape is the basis for many simple oscillators, such as 
the Lorentz, Harmonic, and Gaussian. Their slight differences are easiest 
to visualize in comparison. Figure 5.7 shows e2 for both a Lorentz and 

Figure 5.6.  General shape for a Gaussian oscillator is shown. The 
imaginary dielectric function (e2) is described by the center energy, 
amplitude, and broadening of the resonant absorption. The real 
dielectric function is produced from KK transformation of the e2 
curve, along with an offset added to e1.
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Gaussian oscillator. Neither curve goes quite to zero on either side of the 
resonant absorption peak, but the Gaussian oscillator approaches zero 
much faster than the Lorentz oscillator.

Both Lorentz and Gaussian curves are nearly symmetric around the 
resonant absorption. A few asymmetric oscillators were developed for 
materials with a bandgap, where no absorption occurs at lower ener-
gies. These include the Tauc-Lorentz [48], which is commonly used 
for amorphous dielectrics and semiconductors. Figure 5.8 illustrates the 

Figure 5.7.  e2 versus photon energy plotted for a Gaussian oscillator 
and a Lorentz oscillator.

Figure 5.8.  A Tauc-Lorentz oscillator describing the optical 
functions of Ta2O5 is shown.
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shape of a Tauc-Lorentz oscillator describing the dielectric function of 
a Ta2O5 film. The Tauc-Lorentz introduces an additional parameter, the 
“bandgap energy,” to the four traditional oscillator parameters intro-
duced earlier. Adding the band gap term tilts the absorption to an asym-
metric shape which moves much of the absorption to higher energies 
and shifts the absorption peak above the center energy within the equa-
tion. Regardless of the subtleties within the equation, it is very effective 
at describing the natural shape of amorphous materials with five simple 
free parameters.

5.4.1  KRAMERS-KRONIG RELATIONSHIP

The optical functions (e1 and e2) are not independent. They are physically 
connected by the KK relationship. If all the spectral values of e2 are known, 
then the values of e1 can be calculated by,
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where P is the principal part of the integration [7].
The key to this equation is the direct link between the real and 

imaginary optical functions. It forms the basis for each of the oscillator 
equations that we considered. The oscillator parameters are primarily 
used to describe the absorption shape. The KK integral allows calculation 
of the real part. An integral determines the area under a curve; thus the 
shape of e1 is tied to the area within the absorption shape. The integration 
covers all frequencies, yet our SE measurement collects but a small range 
of frequencies. Thus, the KK transform produces the general curve shape, 
but not the absolute magnitude of e1. This is the reason that most oscillator 
models include an offset for the real part. The offset is often called either 
“e1-offset”, or “e∞”, and represents the value of e1 far from the oscilla-
tor location, which corrects for missing e2 absorption not included in the 
integration. 

Consider application of the KK transformation to a series of oscillators 
shown in Figure 5.9. The result is shown for e1 offsets of 1 and 2. The 
absorption is shown as “bumps” in the plot of e2. Recall from Section 5.2.2 
that anomalous dispersion says that the real part of the optical function 
will flip directions near the peak of the absorption. In Figure 5.9, each 
absorption “bump” produces a “wiggle” in the plot of e1. They go together 
in that there is always a wiggle with every bump.
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Looking closely at the dielectric function shapes of Figure 5.9, we 
can divide the curves into two distinct spectral regions. First, there are 
regions with little to no absorption (e2 ~ 0). In this region, the e1 curve 
rises as we increase photon energy (normal dispersion, Section 5.2.1). 
Second, there are regions with strong absorption around the e2 peaks. 
These are the bumps that cause the e1 curve to flip-over or wiggle (anom-
alous dispersion, Section 5.2.2). Looking closely at the region of the 
absorption peak, the e1 curve has decreased about half-way near the e2 
peak energy. The final shape of the e1 wiggle depends on the amplitude 
and broadening of the e2 bump, as shown by the variation of absorptions 
in Figure 5.9.

We have shown the absorption band using the dielectric func-
tion versus photon energy. In Figure 5.10, we show a Gaussian oscilla-
tor formatted as complex refractive index versus wavelength. Because 
wavelength is inversely related to photon energy, the wiggle of the index is 

Figure 5.9.  Optical functions for a material with three separate 
absorptions described by Gaussian oscillators. Each absorption 
“bump” has a corresponding “wiggle” in e1. The general shape is 
determined from the KK transform, with an additional e1 offset 
(shown for two different values).
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reversed compared to that shown for the dielectric function versus energy.  
Also, the bump in extinction coefficient is no longer symmetric.

5.5  B-SPLINE

A key benefit of “dispersion” equations is to describe the optical constants 
over a wide wavelength range with few free parameters. While we may 
measure 500 wavelengths, each of which has different n and k, their shape 
versus wavelength can often be represented by 5 to 10 parameters of a 
dispersion equation. It is nice if the dispersion equation is founded on an 
underlying “physics-based” model, such as many of the oscillator models 
of the previous section. However, it is often not necessary, or practical, 
to know the physics behind our material—we simply want a smooth, 
continuous curve that is described by a minimum of free parameters. One 
such example would be a curve given by a polynomial to the nth degree, 
which is represented as:

	 p a an n
n

n
n( )l l l º+ a l+ a= + +−

−
1

1
01 	 (5.5)

You may see some similarities of the preceding curve to the Cauchy 
equation described earlier in the chapter. These equations are often 
empirical, which means they are designed to best match the known shape 
of optical constants. Polynomial equations may be adequate for narrow 
wavelength ranges or regions where the optical properties do not vary 

Figure 5.10.  The optical functions, n and k, are shown versus 
wavelength for a Gaussian oscillator.
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significantly (such as the transparent region that is fit well by the Cauchy). 
However, they are not acceptable for wide wavelength regions with 
varying optical features (such as the absorbing region of most materials).

A better solution that adds significant flexibility is the use of a spline 
function. The spline divides the total wavelength range into intervals. Each 
interval is described by a simple function, such as a polynomial. With the 
spline, the interval size can be increased or decreased depending on how 
much variation is required over each wavelength range. There are many 
types of splines and they are designed to maintain continuous and smooth 
curves across the spectral range by matching values and derivatives where 
the segments are joined.

One special type of spline is called a basis-spline [49] (or b-spline). 
Rather than joining curves that are described for each segment, the 
b-spline sums individual basis functions to construct the final curve. Each 
individual basis function is constructed from polynomials, but now they 
are localized. This means that if the curve needs to vary at one specific 
wavelength, it will only be adjusted by the basis function that is in that 
region and avoid moving the optical functions at remote wavelengths. To 
visualize how this works, consider Figure 5.11. The “nodes” represent 
the amplitude applied to each individual basis function. The individual 
basis functions or “spline components” sum together to form the final 
b-spline curve. Notice that the final curve does not touch each control 
point (node). They simply adjust the general shape of the curve in a local 
region, but are summed with the edges of surrounding components to form 
the final shape. To increase control over the shape of the b-spline, the user 

Figure 5.11.  A b-spline curve is described by a series of nodes that 
adjust the amplitude of individual basis functions  which are summed to 
form the final curve.
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can increase the number of nodes within an energy range. If the optical 
functions are featureless, fewer nodes could be used to decrease the total 
number of “free parameters” describing the final shape.

In Figure 5.12, we show a b-spline representation of the dielectric 
functions of a phenyl-C61-butyric acid methyl ester (PCBM) thin film. 
Here, there are two b-spline curves, one for the real dielectric function and 
one for the imaginary dielectric function. One of the key benefits of the 
b-spline curve is that it is amenable to the KK transformation. Thus, we 
can further simplify the b-spline description of a material by describing 
only the e2 function with a b-spline and then performing the KK transform 
to get the e1 shape.

This is represented in Figure 5.13 for PCBM, where now only 
the e2 curve is represented by a b-spline function. Recall that the KK 
transformation covers all frequencies and the final shape of e1 depends 
on the full integration. To add extra absorption outside of our measured 
spectral range that can be used within the integration, a few extra b-spline 
control points are allowed at higher photon energies.

Figure 5.12.  A b-spline is shown representing the optical 
functions for PCBM.
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Figure 5.13.  A KK consistent b-spline is shown representing the 
optical functions for PCBM.





CHAPTER 6

Optical Data Analysis

Up to this point, we focused on the measurement of Y and D spectra. The 
goal, however, is to determine sample properties such as film thickness 
and optical functions. In this chapter, we consider the approaches used 
to obtain sample properties from the measured ellipsometry data, as 
illustrated in Figure 6.1.

We start by discussing the special case where optical functions of a bare 
substrate can be directly calculated from the experimental spectroscopic 
ellipsometry (SE) data. More commonly, our sample consists of one or 
more thin films on the substrate, which makes the determination of optical 
functions more involved.

Using the equations from Chapter 2, Y and D can be calculated for a 
given angle of incidence, layer thicknesses, and complex optical functions 
for each material. Some of these equations are transcendental, so they 
can’t be inverted to represent the sample properties as a simple function of 
measured quantities. Rather, regression analysis methods are implemented 
as described in Section 6.3.

6.1 � DIRECT CALCULATION: PSEUDO-OPTICAL 
CONSTANTS

If our sample is a bare substrate with a single, perfect interface between 
the material of interest and surrounding ambient, the measured values of 
Y and D for each wavelength can be directly inverted to give the complex 
optical functions:
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where f is the angle of incidence, and r is given by Equation 2.32 (r contains 
the Y and D information). The assumption here is that the measurement 
comes from a single reflection at the surface. However, if there are any 
surface layers, regardless of how thin, the calculation will not produce the 
true optical functions. To distinguish between the true optical functions 
of a material and the direct-calculation values that may be influenced by 
the surface, we use triangle brackets around the optical functions and refer 
to these calculations as “pseudo” optical functions. The presence of even 
subnanometer surface roughness, oxidation, or contamination will produce 
pseudo-optical functions that vary from the actual optical functions.

Because most surfaces will not be pure, the direct calculation has 
limited use. However, it is applied to opaque metal surfaces to estimate 
the optical functions, even with the understanding that these surfaces may 
include roughness or oxidation. In this case, there is often not enough 
information from SE alone to fully characterize all unknown sample 
properties (complex optical function and surface layer). The calculated 
pseudo-optical functions are used to approximate the metal surface. The 
metal can then be coated with thin films and characterization of the films 
can use the pseudo optical functions for the metal.

An important test of the pseudo-substrate calculation is to compare 
results from multiple angles of incidence. In Figure 6.2, we show the pseudo 
optical functions calculated for an opaque metal surface. The Y and D curves 
for three angles of incidence all convert to the same pseudo-dielectric 
functions. This is not a guarantee the surface is coating-free. It merely 
indicates that any surface coatings are thin enough to appear similar when 
viewed from different angles. In essence, it also says that while our ellipso-
metric spectra look very different from each angle of incidence, they contain 
exactly the same sample information. With this in mind, it can be helpful to 
use the direct calculation on samples that are not bare substrates.

Figure 6.1.  With ellipsometry, it is important to consider the methods to 
bridge from experimental measurements to desired sample quantities.
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By varying the angle of incidence, the pseudo-optical functions can 
indicate if new sample information is available and whether the sample 
appears similar to a single surface reflection. If pseudo-optical functions from 
different angles lie on top of each other, there is no new information from 
different measurement angles. This also suggests that the sample appears 
to be similar to a single surface reflection. However, even a 20 nm thick 
surface layer can meet this requirement. We can also consider whether the 
pseudo-optical functions maintain a “physically plausible” result. Consider 
the SE data in Figure 6.3 from a multilayer SOI (semiconductor on insulator) 
stack. The pseudo-optical functions from two angles separate above 400 nm. 
In addition, the <e2> value goes negative, which is not physically plausible 
for e2. Thus, the measured light did not come from a single surface reflection. 
Interestingly, the pseudo-optical functions do lie on top of each other for 
ultraviolet wavelengths (<350 nm). Here, the silicon film is strongly absorb-
ing, and no light returns from the underlying interfaces. Even here there will 
be a native surface oxide that will affect the pseudo-optical functions.

6.2  DATA ANALYSIS—THE PROBLEM

The general purpose of ellipsometry characterization is to transform 
the measured quantities, Y and D, into sample properties such as 
optical functions and film thickness. For a substrate (i.e., no films), this 
transformation is straight forward, as discussed in Section 6.1. When a 

Figure 6.2.  Y and D spectra were measured from an opaque metal film at 
three angles of incidence. These spectra are directly transformed to show 
pseudo-dielectric function curves corresponding with each angle. Because 
light is reflected from a single interface, the pseudo-dielectric function curves 
from the three angles overlie each other.
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film is present, the Y and D can’t be directly transformed into sample 
properties. However, we can transform the sample description into values 
of Y and D using the equations from Chapter 2. This is referred to as 
the inverse problem, as shown in Figure 6.4. Hence, to obtain optical 
functions and thickness from the measured ellipsometric quantities, we 
must use an approach that is more involved than simply plugging values 
into an equation and solving algebraically.

6.3  DATA ANALYSIS—THE APPROACH

Since we can transform our sample description into ellipsometric quan-
tities, we shall do just that. Our goal is to find a unique set of sample 

Figure 6.3.  Y and D spectra from a multilayer SOI sample, along 
with the direct transformation to pseudo-dielectric functions. The 
pseudo-dielectric functions separate at longer wavelengths where light 
is detected from multiple interfaces within the thin film stack.

Figure 6.4.  Demonstration of the “Inverse” problem, where sample 
properties cannot be directly calculated from measured ellipsometric 
quantities, but the ellipsometric quantities can be calculated for any given 
sample structure.
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properties (thicknesses and optical functions) from which we calculate the 
same Y and D that we measure. This process can be divided into various 
steps, as illustrated in Figure 6.5. In general, (1) the experimental Y and 
D data are measured, (2) the sample is described by a model that allows 
calculation of corresponding “generated” data curves, (3) the model 
calculations are fit to the experimental data by adjusting any unknown 
sample properties, and (4) the results are evaluated. Each step is further 
detailed in the following sections.

6.3.1  MEASUREMENT

We start by measuring our sample to obtain Y and D data. The data are 
collected for each wavelength and angle of incidence combination. 

Figure 6.5.  The typical flow for SE data analysis involves: (1) Measure 
the SE data, (2) describe sample with a model, (3) fit the experimental 
data and model-calculations by varying unknown model properties, and  
(4) evaluate results.
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Our primary goal is to collect adequate data to uniquely determine all 
unknown sample properties. It is okay to overdetermine the problem, so 
more wavelengths and angles are welcome. However, as we demonstrated 
in Section 6.2, increasing the number of angles does not necessarily lead 
to new information. Thus, our primary source of new information comes 
from additional wavelengths. This is the driving force behind modern 
ellipsometers with expanded wavelength ranges from ultraviolet to near 
infrared with 1,000 or more individual wavelengths. If there are too 
many unknown sample properties to determine uniquely, we may need to 
either divide the problem by measuring additional samples that provide 
supporting information or use additional characterization techniques to 
complement our SE measurements.

6.3.2  MODEL

Next, a model is constructed to describe our sample. The model consists of 
the structure of all materials the light may encounter. Each material must 
include a proposed thickness and optical functions to allow calculation 
of the ellipsometric response. The optical functions can be in any of the 
formats discussed in Chapter 5 (i.e., tabulated lists or dispersion equations). 
We start by entering all sample properties that we know—such as optical 
functions for our substrate and possibly even our thin films. Next, we 
need to provide initial estimates (our best guess) for the unknown sample 
properties. An example model is shown in Figure 6.6. With this initial 
sample description, the equations from Chapter 2 are used to calculate 

Figure 6.6.  A model representing the measured sample with both fixed 
values (known properties) and fit parameters (unknown properties).
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Y and D spectra. It is unlikely this initial estimate will produce a perfect 
match to the measured Y and D, but hopefully it will come close to the 
measured values. If not, we may need to reconsider our initial guesses, 
based on comparisons between the model-calculated and experimental 
data curves.

6.3.3  FIT

The sample properties that are not well known are identified as the “fit” 
parameters. The software will adjust these unknown sample properties 
in an attempt to find the best match between the model-calculated and 
experimental curves. This is called data fitting and involves regression 
analysis. A “goodness of fit” is used to quantify any discrepancies 
between the model-generated and experimental data curves. One such 
goodness of fit is the “Mean-Squared-Error” or simply “MSE,” and it 
provides a quantitative comparison between the generated and measured 
data curves. There are many formulations for MSE (also Chi-Square), 
but with each, a lower value represents a better match between the model 
and the experiment. The goal of the regression analysis is to minimize the 
MSE by adjusting the unknown sample properties. Once the minimum 
MSE is found, the fit will stop and present this answer to the user for 
evaluation.

To demonstrate the iterative Data Regression Analysis process, 
consider the experimental data of Figure 6.7. In this case, hundreds of 
wavelengths are measured at a single angle of incidence, with only a 
single unknown value to consider (film thickness). The initial thickness 
is estimated at 700 nm (basically, an educated guess), which produces 
the initial generated curve with similar overall shape but shifted to 
shorter wavelengths. The software will quantify the difference between 
this generated curve and the experimental curve, leading to an MSE 
over 500. The MSE contour for this case is shown in Figure 6.8. The 
contour is not known at time of fitting and is only convenient to graph 
for simple cases with one or two unknown parameters. As Figure 6.8 
suggests, the MSE slopes down toward thicker films from this initial 
guess of 700 nm thickness. The algorithm to find minimum MSE 
follows the slope to adjust the estimated thickness to a larger value, 
leading to a lower MSE. This is repeated until the minimum MSE is 
found. This produces a final thickness value of 749.18 nm after nine 
iterations in our example.
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Figure 6.7.  The curve generated from an initial thickness guess of 
700 nm has a shape similar to the experimental data curve but is offset 
toward shorter wavelengths. An iterative data analysis algorithm 
searches for a minimum MSE value by adjusting the thickness guess. 
A few iterations are shown along with the final thickness result of 
749.18 nm, which lies on top of the experimental data.

Figure 6.8.  The MSE profile for the fit from Figure 6.7 versus thick-
ness is shown. The initial guess has an MSE over 500. The slope of 
the MSE curve at this point shows that a thicker film will produce a 
lower MSE. The fit iterations progress toward the minimum MSE, 
which is reached for a thickness of 749.18 nm.
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6.3.4  EVALUATION

After the regression process obtains the best fit, the analyst must then 
make an assessment of the results to decide whether the fit is reasonable. 
The first thing to consider is whether the fit was successful in finding the 
best MSE value. If the model-generated curves do not visually match 
the experimental data curves, then the fit may have failed to find a good 
solution. This is referred to as “chi-by-eye,” as the user makes a quick 
visual assessment of the fit results.

The final MSE is simply a minimum in the MSE shape with vari-
ation of the unknown parameter. However, it is possible for the regres-
sion algorithm to find a minimum that is not the best MSE. Consider 
the shape of the MSE in Figure 6.9. There are six separate MSE minima 
within this range of film thickness. The film thickness near 750 nm is the 
lowest MSE minimum, which we refer to as the global minimum. The 
other minima are referred to as local minima, and it is important to avoid 
results from these minima. For this case, all local MSE minima have a 
much higher MSE and should show visible differences between the mod-
el-generated and experimental curves. This will be the first clue that the 
analysis has fallen into a local minima. This graph shows the importance 
of estimating a good starting point for each parameter to allow the regres-
sion analysis algorithms to drop into the Global MSE minimum. Either 

Figure 6.9.  An MSE plot versus film thickness shows both the 
“best fit” MSE minimum (black circle) and many “local minima” 
that may stop a standard regression algorithm from proceeding 
but would not result in the best-fit result.
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the user needs to start the model with guesses close to the final answer or 
sophisticated software methods need to be implemented to search for the 
Global Minimum.

Once the fit appears to have found the global minimum, there are 
other evaluation criteria to consider.

1.	 Is each “unknown” fit parameter uniquely determined? A good test 
for this criterion is to adjust the fit parameters away from their final 
solution and see if they reproducibly return to the same final values 
when the MSE is minimized.

2.	 What is the sensitivity to each fit parameter? This can be judged 
by the variation of the MSE as the fit parameter is adjusted from 
its minimum value. Are multiple fit parameters uncorrelated? This 
relates to whether we can uniquely discriminate the response from 
each fit parameter. If more than one fit parameter will adjust the 
calculated response in a similar manner, these parameters are cor-
related and neither set of parameters can be assumed to be correct.

3.	 Are the results physically plausible? This final consideration may 
be difficult to assess but becomes easier as the user becomes more 
experienced. For example, any determined optical functions should 
maintain Kramers-Kronig consistency (Section 5.4.1).

The uniqueness and sensitivity of our fit parameters can be estimated 
by studying the MSE profile. We saw in Figure 6.9 that multiple MSE 
minima may be found. However, only a single MSE minimum had a low 
value to suggest a good data fit; so the other minima could be dismissed. 
If multiple minima have similar MSE values, the result would not be 
unique.

The MSE minimum can also demonstrate parameter sensitivity. The 
faster the MSE rises on each side of the minimum, the more certain we 
can be in the obtained value of the identified fit parameter. As an example, 
we compare two MSE profiles in Figure 6.10. The MSE minimum is 
located at the same value for film thickness, but Model #1 is much more 
sensitive to the final fit result than Model #2. This is often the case when 
models become more complicated. It is common to introduce additional 
model complexity to improve the MSE. However, in doing so, we likely 
reduce our sensitivity to each of the fit parameters. Thus, a good rule-of-
thumb is to use the minimum set of fit parameters that provides a good 
match to the data. For most cases, an MSE improvement of less than 
10 to 20 percent may not warrant added model complexity. The simpler 
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model still adequately matches the data and will have better sensitivity 
and uniqueness.

If the fit assessment indicates that the results are reasonable, then the 
values of the thickness and optical functions are accepted as the proper 
result of the regression analysis.

If the fit evaluation shows that the result is not a unique, sensitive 
description of the sample, it may be required to further extend the 
characterization of the sample. Following are three possibilities:

1.	 More SE data: It can be beneficial to measure more wavelengths 
or more angles of incidence, as all the data are used simultane-
ously to determine the unknown parameters. Even in the case of an 
overdetermined problem, the additional data can help reduce the 
statistical estimate of each unknown parameter.

2.	 More samples: When the measured data is inadequate to deter-
mine all unknown sample properties, it is often helpful to measure 
additional samples. For example, the problem can be divided by 
first measuring the bare substrate so that these properties can be 

Figure 6.10.  The MSE profile versus the fit parameter (in this 
case, film thickness) verifies how sensitive the data analysis will 
be to the fit parameter of interest. If the MSE rises quickly from 
the minimum value as the fit parameter varies, then the result 
has high sensitivity (e.g., Model #1). If the MSE stays nearly the 
same value around the minimum, it shows that other answers 
give similar results, which calls into question the uniqueness and 
sensitivity of the final answer (e.g., Model #2).
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fixed when considering coated samples. If dealing with multilayers, 
it is common to also measure single-layer films to help get a good 
understanding of their optical functions and reduce the unknowns 
when considering the multiple layer thicknesses. In some cases, the 
uniqueness can be further enhanced by measuring multiple samples 
with the same thin films but with varying layer thicknesses. This 
works when the films maintain their same optical functions inde-
pendent of film thickness, which is not always the case.

3.	 Supporting characterization methods: While SE is a great tool 
for characterizing thin films, it is not the only tool. The user should 
consider other characterization methods they have at their disposal.

In the remaining chapters, we will consider typical SE characterization 
examples including transparent films, very thin films, films with rough 
surface, films with absorbing regions, and more.



CHAPTER 7

Transparent Thin Films

The most common spectroscopic ellipsometry measurement is deter-
mination of thickness and refractive index from a transparent thin film. 
The film thickness can range from subnanometer to many microns. How-
ever, the optimum range for UV-vis-NIR spectroscopic ellipsometry to 
determine both thickness and index accurately is generally from 50 nm to 
2 µm. If the layer is very thin (<10 to 20 nm), it is difficult to determine the 
index of refraction, as we discuss in Chapter 9. When films become many 
microns thick, the spectral features come very close together and can be 
affected by small nonidealities in either sample or measurement. Thus, 
although spectroscopic ellipsometry can successfully measure films up to 
20 µm and thicker, it is only so with increasing difficulty and hence, other 
characterization methods may be preferred.

The approach outlined in this chapter can be applied to any 
transparent film. It can also be applied to films that are absorbing at some 
wavelengths if one simply restricts the wavelength region to where the 
film is transparent. We discuss how to identify the transparent wavelength 
region in Chapter 10, which also describes how to further analyze films 
that absorb at some wavelengths.

Many inorganic films, such as fluorides, oxides, nitrides, and carbides 
(Figure 7.1), are transparent for visible and near infrared (NIR) wave-
lengths. Many organic films are transparent over these same spectral 
regions. Semiconducting films may also be transparent if we restrict the 
wavelength range to longer, infrared wavelengths. When a material is 
transparent, it must exhibit normal dispersion (Section 5.2.1), where the 
index of refraction increases toward shorter wavelengths. This is true for 
all curves shown in Figure 7.1.
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7.1  DATA FEATURES OF TRANSPARENT FILMS

For transparent films, the Y and D spectra are dominated by interference 
features from light traveling through the film and recombining with the sur-
face reflection, as described in Section 4.2.1. This produces peaks and val-
leys in the spectral data. The interference oscillation shape depends on both 
film thickness and index, in addition to the substrate’s optical properties. 
As film thickness increases, the oscillation positions shift toward longer 
wavelengths, as shown in Figure 7.2. As these interference features shift to 
longer wavelengths, additional features appear from shorter wavelengths 
that come increasingly close together. In this manner, the total number of 
oscillations in the spectral range of interest will increase as films become 
thicker, as demonstrated in Figure 4.12. Simply stated, the more peaks and 
valleys within the transparent spectral region, the larger the film thickness.

As the index of refraction increases, it also shifts the oscillation 
positions toward longer wavelengths, as shown in Figure 7.3. This occurs 
because increasing either the thickness or the index delays the light 
traveling through the film relative to the surface reflection. The increase 
in thickness directly affects the length of the light path, while increasing 
the index reduces the phase velocity. While both thickness and index shift 
the oscillation positions, only the index will also affect the Y oscillation 
amplitudes (also seen in Figure 7.3). Note how the increase in the index 
causes both a shift in the Y peaks to longer wavelength and a gradual 

Figure 7.1.  The indexes for various inorganic films are shown in their 
transparent spectral regions.
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decrease in the overall Y peak amplitude. The amplitude of the Y valley 
is not affected in this case, as the valleys were established by the silicon 
substrate optical constants. While the substrate formed the lower boundary 
for our curves in this case, it can also form the upper boundary depending 
on the angle of incidence and optical constants for both film and substrate. 
To judge whether the film is forming the peaks or valleys, you can simulate 
data from a bare substrate to compare with the experimental data and this 
will show the substrate boundary.

Figure 7.3.  As the film index increases, the interference features shift 
toward longer wavelengths and with reduced Y peak amplitudes. 
This is a result of reduced phase velocity and reduced optical contrast 
between film and substrate.

Figure 7.2.  As film thickness increases, the interference features shift 
toward longer wavelengths. This is a result of longer path lengths 
within the film.
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7.2 �FITTING  A TRANSPARENT FILM WITH KNOWN 
INDEX

If the optical functions are known for both the substrate and thin film, then 
the film thickness is the only unknown sample property. The interference fea-
tures will guide us to the correct thickness result. The oscillation shapes and 
amplitudes should already be matched. As an example, consider Figure 7.4 
where the Y spectrum from an SiO2 coating on silicon is shown. There are 
five Y peaks in our measured spectrum. A curve was also generated for 
an initial SiO2 thickness estimate of 150 nm. Note that 150 nm thickness 
produces only two Y peaks, so it is obvious that this estimate is too thin 
to describe the measured layer. If the regression process is started with the 
thickness seed value of 150 nm, the mean-squared-error (MSE) would fall 
into a local minimum rather than the global minimum and the regression 
process will fail. At this point, the user can refine the thickness estimate 
and generate another spectrum. The challenge for this type of analysis is 
to somehow choose an initial thickness estimate which is close enough to 
the correct value that the MSE falls into the global minimum. If the starting 
thickness is between 261 nm and 461 nm, the analysis will be successful 
and the best thickness fit will be determined to be 351 nm for the sample 
illustrated in Figure 7.4. Any value outside this range will result in the MSE 
falling into a local minimum, resulting in a failure of the regression process.

There are several methods for choosing an appropriate starting 
thickness. The first is brute force where the user repeatedly guesses 

Figure 7.4.  The measured Y spectrum for a thermal oxide on silicon is 
shown along with simulated data for a film thickness of 150 nm.
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a thickness and then generates the data until the correct number of 
interference features is present. Some software allows the user to rapidly 
vary the thickness with a mechanical device (e.g., the scroll wheel on the 
mouse) while the generated data are continually updated to match the 
changing thickness value. A second method, often called a “global fit,” 
is to allow a computer algorithm to search a range of thickness values. In 
this case, the software repeatedly calculates the MSE with different thick-
nesses and reports the best MSE minimum found over the desired search 
range. With modern computing speeds, this can be done in a fraction of 
a second. Next, we consider the more common example of a transparent 
film where the index is unknown.

7.3 �FITTING  A TRANSPARENT FILM WITH AN 
UNKNOWN INDEX

When the optical functions of a transparent film are unknown, it is common 
to use the Cauchy dispersion relationship (Section 5.3) to describe the 
index of refraction. The simplest way to fit both the index and the thickness 
is to simply assume a value for the parameter and use the afore-described 
methods to find the best thickness fit. As discussed in Section 7.1, the film 
index will affect the overall oscillation amplitude and position of inter-
ference features. An incorrect “A” parameter, and thus incorrect index 
estimate, may prevent us from successfully fitting the data. However, we 
may be able to estimate the “A” parameter quite successfully. For most 
dielectric films, the value for the “A” parameter lies between 1.45 (silicon 
dioxide) and 2.2 (metal oxides or silicon nitride). Organic layers often 
have an “A” parameter near 1.6. Thus, the user may be able to estimate 
the “A” parameter quite successfully based on the material in question. 
When uncertain, it can also be practical to assume a value in the mid-
dle, for example, a value of 1.7. With the estimated Cauchy index, the 
thickness is varied, as described in Section 7.2, until the correct number 
of interference features is matched. Following the thickness fit, the “A” 
parameter is then allowed to vary until both the thickness and the “A” 
parameter are matched. Finally, the “B” and “C” parameters are included 
in the fit to obtain the best solution for a uniform film with no roughness.

In the event that this process is not successful, it may be necessary to 
obtain a better estimate of the correct index value. The following process 
illustrates how this is done.

Figure 7.5 illustrates this approach for any transparent film. We start 
by estimating the index of refraction, then estimating thickness, and finally 
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fitting both thickness and Cauchy dispersion parameters. If the fit is not 
adequate, optional model complexity can be considered. We now discuss 
each step in further detail.

7.3.1  ESTIMATING THE INDEX

If our transparent film thickness is between about 50 nm and a couple 
of microns, there should be one or more interference oscillations which 
will provide information to allow us to estimate the proper index value. 
As previously discussed and shown in Figures 7.2 and 7.3, the index of 
refraction affects the data in two ways. First, the index determines the 
phase velocity for light within the film, which adjusts the position and 
number of interference features. Second, the index determines how much 
light reflects from each interface, which affects the Y oscillation ampli-
tudes. Because the former effect also occurs as the thickness changes, 
these two are potentially correlated—doing the same thing. However, the 
latter effect is unique to the variation  in the index and is used to determine 
uniquely both the thickness and the index by ellipsometry.

As an alternate method for predetermination of the seed value for the 
index of refraction, it is beneficial to first adjust the index to match the Y 
oscillation amplitudes. To do this, a nominal thickness estimate is required 
to demonstrate the interference features. Figure 7.6 shows an experimen-
tal measurement from the transparent film along with simulated curves for 
different film indexes. We have modified the thickness of each guess to visu-
alize the effect on the interference Y peak amplitude with changing index. 

Figure 7.5.  Advanced procedure is 
shown for fitting thickness and index 
of transparent thin film using the 
Cauchy dispersion relation.
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The real curves would also shift the Y peaks to different wavelengths. From 
this simulation, it is clear that the measured film has an index between 1.75 
and 2.00.

7.3.2  ESTIMATING FILM THICKNESS

Once you have the correct Y amplitudes, the thickness can be adjusted to 
match the position and number of interference features. For our example, 
we can estimate an index of 1.9 based on the Y peak amplitudes. Next, 
the thickness was adjusted to match the Y peak positions, as shown in 
Figure 7.7. Up to this point, we have not adjusted the index dispersion, 
which accounts for the increasing curve differences at shorter wavelengths. 
However, our goal in this step was not to perfectly match the data, but 
simply estimate the thickness close enough to fit into the global MSE 
minimum. We now fit the thickness, the Cauchy “A” and “B” parameters, 
and possibly the “C” parameter. Be careful not to find a false solution by 
choosing a physically implausible “B” or “C” parameter. The “B” and 
“C” parameters are typically near 0.00X to 0.0X and 0.0000X to 0.000X, 
respectively.

7.3.3  ADDITIONAL CONSIDERATIONS

It is possible to still have discrepancies between our model and experi-
mental data curves after determining the thickness and refractive index as 

Figure 7.6.  The index for this film on silicon can be estimated between 
1.75 and 2.00 based on Y peak height.



108   •   SPECTROSCOPIC ELLIPSOMETRY

described earlier. This is likely related to an incorrect assumption about 
our transparent film. We have assumed up to this point that the film is 
a uniform material with a constant index throughout and with perfectly 
smooth interfaces. Ellipsometry measurements are often highly sensitive 
to surface condition, so the data can be affected by even small amounts 
of roughness. We explore this in more detail in Chapter 8. In addition, 
ellipsometry data can be affected by depth-variations of the index, 
which we refer to as index gradients. Another possibility that generally 
occurs with polymer films and oriented microstructures is for the index 
to be anisotropic (different along different directions). If this is the 
case, separate Cauchy equations may be needed to describe the indexes 
parallel and perpendicular to the film surface. As the model becomes more 
complex, it is appropriate to monitor the MSE improvement. We expect 
MSE reductions that exceed 10 to 25 percent for each additional model 
complexity. If the MSE does not significantly improve, it is recommended 
to return to the simpler model. If all model complexities fail to provide 
adequate MSE improvement, the film may not be transparent as first 
suspected. We will consider thin films that absorb over certain spectral 
regions in Chapter 10. Now, let’s consider a few examples of thin  
transparent films.

7.4  EXAMPLE: DIELECTRIC SiNx FILM ON Si

Figure 7.8 shows data for a sample of silicon nitride where we desire to char-
acterize the index (using Cauchy) and thickness of the film. In the previous 

Figure 7.7.  With estimated film index of 1.9, the thickness is 
adjusted to 148 nm to match the interference feature position.



Transparent Thin Films   •   109

example we illustrated two methods for this determination, both of which 
could be used in the present example. The thickness and Cauchy parameters 
can be determined either by starting with the Cauchy “A” parameter assumed 
to be 2.0 (typical of silicon nitride), doing a global fit for thickness, add-
ing the “A” parameter into the fit, and finally including the “B” parameter. 
The alternate method of predetermining the value of the “A” parameter, dis-
cussed in Section 7.3.1, will also work. For this determination, we note that 
the experimental data in Figures 7.6 and 7.7 was a single angle of incidence 
selected from the example we will describe here—a SiNx layer on silicon 
substrate. We have already demonstrated how the index of refraction was 
estimated near 1.9 and thickness near 148 nm. Now, we proceed by fitting all 
three angles over the wavelength range down to 400 nm. Our resultant MSE 
is near five and one can visually see a good match between the model-gen-
erated and experimental Y and D curves in Figure 7.8. Only two Cauchy 
parameters were required as adding the “C” parameter only reduced the MSE 
by about 4 percent. When there is insignificant MSE improvement, it is pref-

Figure 7.8.  Data fits to both Y and D using a Cauchy dispersion 
relation for the SiNx thin film.
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erable to stay with fewer fit parameters. The final index as described by the 
Cauchy relation is shown in Figure 7.9 and follows normal dispersion, which 
is required when a film is transparent.

7.5  EXAMPLE: DIELECTRIC SiO2 FILM ON GLASS

Our attention up to this point has been on coatings on silicon substrates. 
However, we now consider a thick oxide coating on a glass substrate. 
The first difference we notice occurs when we estimate the film index. 
Because glass has a very low index compared to silicon, the interference 
oscillation behavior is also very different. This behavior can also change 
depending on the angle of incidence that we consider, so the example here 
is just a representation of what you may see. Figure 7.10 shows the index 
variation for a series of films on fused silica substrate. The thickness for 
each simulated curve was adjusted such that the primary effect we witness 
is related only to the film index. As the index increases, the Y valleys 
have lower amplitudes. In this case, our bare substrate defines the upper 
boundary, while the film is responsible for the valleys. This is in contrast 
to our previous examples on silicon. Again, this may not be the case for 
all angles of incidence, but we have chosen to simulate at 70°, which is 
significantly above the Brewster angle for the glass substrate. We also 
stopped our simulation when the film reached an index of 2.1. Above an 
index of 2.1, the minimum Y valley starts to rise again, which may lead to 
some confusion during our estimation.

Figure 7.9.  Cauchy index is shown for SiNx.
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When multiple index values produce the same general Y amplitudes, 
the correct result can be ensured by considering the D curve. In all analyses, 
one should at least glance at the D curves.

Figure 7.11 shows the experimental data for both Y and D from a 
single angle for our SiO2 coated glass. We have also generated a curve 
assuming bare glass. The bare glass is obviously defining our Y peaks. 
We adjusted our film index to a value just above 1.52, while the glass 
substrate index is near 1.50. This produces the correct Y oscillation ampli-
tudes. Next, we adjusted the thickness to better match the number of 
interference oscillations. After fitting thickness and Cauchy parameters, 
we noticed a great match to Y, but the D curves were not well matched. 
The overall tilt of D is caused by a thin surface roughness layer. Adding  
less than 6 nm of surface roughness to the 3,824 nm thick SiO2 layer 
produces our final fit result. We discuss surface roughness further in 
Chapter 8. The final refractive index for our film is compared to the 
substrate index and that of the roughness layer in Figure 7.12.

Figure 7.10.  Index variation is shown for films on fused silica.
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Figure 7.11.  Data fit for SiO2 coating on glass substrate. 
While Y curves are well matched with a single-layer model, 
the tilt in D spectra is only matched with the inclusion of a thin 
surface roughness layer.

Figure 7.12.  The index is shown for the glass substrate, our SiO2 
film as described by a 3-term Cauchy relation and the surface 
roughness layer as described by a 50-50 effective medium 
approximation.



CHAPTER 8

Roughness

As we model substrates and films, we assume that the interfaces are planar 
and parallel. For actual samples, the interfaces are not necessarily planar, 
but may have roughness. We distinguish between two types of roughness. 
When the spacing between the asperities (or the hill-to-valley distance) 
is greater than the wavelength of the light beam, we have macroscopic 
roughness. When the spacing between the asperities is less than the 
wavelength, we have microscopic roughness. These two situations are 
treated differently.

Roughness may be at the surface of the sample or at the interface 
between layers in the sample. It is not generally our intent to characterize 
the sample roughness. Rather, we wish to ensure that the roughness does 
not negatively impact the accuracy and precision of our film thickness and 
optical constant measurements.

8.1  MACROSCOPIC ROUGHNESS

Macroscopic roughness is illustrated in Figure 8.1. We note that the 
dimensions of the roughness (peak-to-peak distance and peak-to-valley 
distance) are much greater than the wavelength of the probing light beam.

When a collimated light beam is used, all incoming light rays are 
traveling in the same direction. The reflection of rays #1 and #2 occur from 
parallel regions on the surface, resulting in reflected rays traveling in the 
same direction. Both will go into the instrument detector. While ray #3 was 
also parallel to the other incoming rays before reaching the surface, the 
macroscopic roughness resulted in a different direction for the outgoing 
ray #3. Hence, this ray will not go into the instrument detector and will not 
impact the measurement. This particular aspect of macroscopic roughness 
simply causes much of the light to be scattered and not included in the 
measurement. Fortunately, ellipsometry is not concerned with the absolute 
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intensity of light, so any lost light can be ignored without affecting the 
accuracy of the ellipsometry measurement. The resulting ellipsometry data 
will only represent the surface region that reflected light into the detector.

Another aspect of macroscopic roughness is that when rays #1 and 
#2 enter the detector, ray #1 will have traveled a different distance than 
ray #2. This can result in a loss of coherence between the two beams, 
depending on the spatial separation between these rays. If this surface is a 
substrate, the data should not be affected, as each detected light ray “sees” 
the same sample. However, if the macroscopic rough surface is actually 
a thin film on the substrate, this may appear as a nonuniform thickness 
as each detected ray may experience different film thicknesses. The net 
effect from a nonuniform thickness is to round-off any sharp features 
in the ellipsometry spectra. Some ellipsometry software has a feature to 
model the effects of nonuniform film thickness.

8.2  MICROSCOPIC ROUGHNESS

A roughness with dimensions that are much less than the wavelength of 
the light probe is shown in Figure 8.2. Because the surface features are 
significantly smaller than the wavelength, they do not scatter the reflected 
light rays to different angles. Rather, we can expect to collect all of the 
reflected light in our detector. However, the rough surface will have an 
effect on our ellipsometry data.

Figure 8.1.  A representation of macroscopic 
roughness. Note that the wavelength of the light is 
much shorter than the roughness dimensions.
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The bulk material (below the bottom dashed line) has well defined 
optical constants. The ambient (above the top dashed line) also has well 
defined optical constants. The region between the two dashed lines may or 
may not have well defined optical constants; if it does, they will certainly 
not be the same as those of the bulk material or the ambient. We can con-
sider the region bounded by the dashed lines to be (effectively) a film with 
well-defined optical constants that are different from both those of the 
bulk material and the ambient.

In this case, the presence of roughness at the surface has an effect similar 
to the presence of a thin film at the surface, where the thin film has optical 
constants somewhere between those of the regions above and below the 
interface. For this reason it is often adequate to model surface or interfacial 
roughness as a discrete thin film. This is shown schematically in Figure 8.3.

Figure 8.2.  A representation of microscopic roughness 
is shown. Note that the wavelength of the light is much 
longer than the roughness dimensions.

Figure 8.3.  (A) A bulk material which has microscopic roughness.  
(B) A model of the material shown in (A) where the roughness is modeled 
as a thin layer whose index of refraction is intermediate between that of 
the bulk material and empty space.
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8.3  EFFECTIVE MEDIUM APPROXIMATIONS

Next, we consider the common approach to modeling the rough surface. As 
suggested in Figure 8.3, we will treat this surface as a layer consisting of 
a mixture of the materials above and below the interface. We will assume 
that both materials mix together, but retain their own optical properties. 
The resulting mixture is called an effective medium approximation (EMA) 
as it approximates the new material based on the mixed constituents. The 
simplest EMA model consists of linear interpolation between the dielectric 
functions of the constituent materials:

	
� � �e e e
EMA A A B B

f f= + � (8.1)

where �eEMA  is the effective complex dielectric function of the composite 
material, �e A and �eB  are the complex dielectric functions of the constituent 
materials, and fA and fB  are the volume fractions of each constituent, 
the sum of which must equal unity. The linear EMA, while simple to cal-
culate, is not particularly accurate. It is much more common to use the 
Bruggemann EMA, in which the effective dielectric function is obtained 
by solving the following equation:
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For a thorough review of EMA modeling, consider the work of 
Aspnes, Theeten, and Hottier [50] and Losurdo and Hingerl [8].

8.4  ROUGH FILM EXAMPLE

Normally, the thickness of a roughness layer is less than about 100 Å. In 
Chapter 9, we will show that for films this thin, there is a strong correlation 
between the index of refraction and thickness. Thus, we face this same 
difficulty when modeling most rough surfaces. We may be highly sensitive 
to the thickness, but have little sensitivity to actual optical constants. With 
the EMA, we can vary the index of refraction by adjusting the volume 
fraction between the two constituents. When approximating roughness 
with an EMA, the optical constants are totally dependent on the fraction of 
the overlying and underlying material. However, for very thin roughness 
layers, it is inappropriate to try to determine both the relative fraction of the 
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two materials and the thickness. Accordingly, for convenience, the relative 
fraction is generally assumed to be half and half. With this assumption, the 
thickness can then be precisely determined.

The sensitivity to roughness also depends on the material we are encoun-
tering. Because roughness reduces the optical constants of  any material 
toward that of the void (n = 1, k = 0), it has a much more pronounced effect 
when the roughness occurs on high-index or absorbing materials. The effect 
is much less pronounced on low-index films such as SiO2 or MgF2.

Let’s consider a single-layer coating of niobium oxide on glass. 
The total layer thickness is nearly 7,000 Å, and interference within this 
transparent layer produces the data oscillations versus wavelength. In 
Figure 8.4, we show only the 65° data, as the Y curves are suppressed 
at this angle and will allow easier visualization as the model is varied. 
First, we fit the data as a single-layer film using the Cauchy dispersion 
equation to describe the index of refraction. The index for this film is quite 
high for a dielectric layer (n ~ 2.3 to 2.4). This increases our sensitivity 
to roughness, as the lower-index surface mixed with void will have an 
index, n ~ 1.6. Both the model-fits without roughness and with roughness 
are shown compared to the experimental Y data. There is significant 
improvement (MSE decreases from 1.5 to 0.6) with the addition of a 30 Å 
thick roughness layer. Since this layer is very-thin, we do not try to fit the 
volume fraction parameter, but rather leave it fixed as a 50-50 mixture.

Figure 8.4.   Experimental Y from a niobium oxide layer on BK7 
glass, along with two model fits—one without roughness and 
the second with roughness. The MSE for the model-fit without 
roughness is 1.5; while the MSE reduces to 0.6 with the addition 
of a 30 Å roughness layer modeled using a 50-50 EMA approach.





CHAPTER 9

Very Thin Films

One purpose of this book is to demonstrate the rather impressive capabilities 
of the spectroscopic ellipsometry (SE) technique. In this chapter, we focus 
on very thin films, that is, films which are thinner than 100 Å (or 10 nm). 
Examples in this category include self-assembled monolayers, adsorbed 
layers, native oxides, some gate dielectrics for microelectronic devices, 
metal layers in magnetic random access memory devices, and so on.

However, it is important to show both what the technique can and 
cannot do, and in this chapter we will identify each of these features.

The areas of consideration are:

•	 Determining film thickness when optical constants are known;
•	 Determining film optical constants of a very thin layer; and
•	 Distinguishing one film material from another.

We shall find that SE is very good in the first area while the second 
and third are much more difficult, if not impossible.

9.1 � DETERMINING THICKNESS WITH KNOWN 
OPTICAL FUNCTIONS

For transparent films, it is possible to precisely measure the thickness of 
very thin films when the optical functions are known. Figure 9.1 shows 
ellipsometric spectra for a film-free silicon surface and for various thermal 
oxide thicknesses (up to 100 Å) on silicon. It would appear that in certain 
parts of the spectrum, we could easily distinguish between a 5 Å film and 
a 6 Å film. We note that this extreme sensitivity comes from the D values. 
The Y values for these very thin films show much less variation. This is 
to say that the phase shift between the p-waves and the s-waves is very 
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sensitive to film thickness whereas the reflectance for either the p-waves 
or the s-waves is not very sensitive to film thickness.

With a modern spectroscopic ellipsometer, the thickness for a very 
thin oxide film can be measured repeatedly with a precision of .002 nm 
(1s from 30 measurements). This is significantly smaller than the diameter 
of a hydrogen atom, which raises the question of how to interpret the 
precision of thickness at this level. In general, the measurement beam 
will cover a surface area measured in square millimeters and thus the 
ellipsometric response is averaged from the total interaction at the surface.

9.2 � DETERMINING OPTICAL CONSTANTS OF A 
VERY THIN FILM

Although we are able to determine the thickness of a very thin film if 
we are willing to assume the optical constants of the film-material, we 
shall find that it is very difficult to determine the optical constants of 

Figure 9.1.  Ellipsometry spectra are graphed for film-free silicon 
and for oxide on silicon. Plots are shown for 20 Å, 40 Å, 60 Å,  
80 Å, and 100 Å oxide films at a 75° angle-of-incidence.
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any transparent film which is thinner than about 100 Å. To understand 
the rationale behind this statement, let us consider a concept taken from 
single-wavelength ellipsometry. Consider a substrate of a single-crystal 
silicon with a film having an index, n. Let’s first consider a wavelength 
of 632.8 nm and an angle of incidence of 70°. Figure 9.2 shows a series 
of Y-D trajectories where the data variation is shown for increasing film 
thickness. This is done for a series of different film indexes, n. The open 
circles indicate an increment of 50 Å each in film thickness.

From these trajectories, we see that most thickness sensitivity comes 
from the changes in D, while the index information (separation between 
curves) is related more to Y. For thicknesses of 300 Å, the trajectories 
are better separated and it is reasonable to determine both thickness and 
index if we can accurately measure Y and D. As the film gets thinner, the 
separation between different trajectories is less and less. For thicknesses 
less than 100 Å, the trajectories overlay one another and a slight uncertainty 
in Y will cause a large uncertainty in the index. Note that the majority of 
data change occurs in D, while Y is separating on a much smaller scale. 
Accordingly, one should not attempt to determine the index for very thin 
films.

The quandary, then, is how to proceed? Let us assume an index value 
and consider the consequences of being wrong. Keeping in mind that 

Figure 9.2.  The first part of the Y-D trajectories 
for a single wavelength for transparent films on 
silicon with index of refraction of the films as 
indicated. These trajectories are for an  
angle-of-incidence of 70° and a wavelength of 
632.8 nm.
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most index values for dielectrics fall between 1.4 and 2.0, if we know the 
identity of the material we can often guess the index to within 10 percent. 
If we assume an index of 1.5, and if the truth were known and the value is 
1.65, our answer to the value of thickness might be off by 10 percent. In 
other words, if we conclude that the thickness was 100 Å, the true value 
might be 90 Å, but it would not be 50 Å or 200 Å. Thus, we can precisely 
determine the thickness with the assumed index, but the accuracy of our 
thickness relies on the accuracy of our assumed index value.

Interestingly, we can improve the sensitivity to very thin layers by 
reducing the wavelength of our ellipsometry measurement. This can 
also be demonstrated using the Y-D trajectories in Figure 9.3, but now 
we compare curves for the same index (n = 2) and angle (70°) but for 
different probe wavelengths (200 nm, 600 nm, and 1800 nm). We inten-
tionally chose wavelengths that were 3X apart to show that the sensitivity to  
thickness scales similarly with decreasing wavelength. Consider the 
sensitivity to thickness as we progress along the Y-D trajectory to that point 
from the bare substrate point. At 500 Å for the 1800 nm wavelength, we travel 
less distance than the length to the 200 Å point for the 600 nm wavelength.  
Similarly, the 500 Å point for l = 600 nm is less distance along the trajectory 
than the 200 Å point for the 200 nm wavelength. Thus, we should be able 
to reduce our “cutoff” thickness where we can still obtain both the thick-
ness and index by decreasing the wavelength. Following this logic, it would 
require a wavelength around 67 nm to get another 3X sensitivity improve-
ment. Unfortunately, it is impractical to reduce the SE wavelength much 
below 150 to 200 nm. Since we are actually sensitive to the optical thickness 

Figure 9.3.  Y-D trajectories are plotted for the first 500 Å of 
a film with index of 2.0 at a 70° angle of incidence. Each open 
circle represents 100 Å increments along the trajectories.
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(thickness–index product), this cutoff also depends on the index of the film. 
The cutoff thickness will be thinner for a higher index film.

In addition to sensitivity to the thickness, shorter wavelengths also 
produce improved discrimination between the curves for different index 
values. This is demonstrated in Figure 9.4 where the Y-D trajectories are 
repeated at a wavelength of 200 nm for only the first 100 Å thickness 
range. The Y and D range for this figure were set to match those of  
Figure 9.2 to allow easier comparison between the effects at 200 nm and 
632 nm wavelengths. Not only will shorter wavelengths help us distinguish 
between the thickness and index for thinner layers, it is also more likely 
that the index will be higher at these short wavelengths for many materials, 
which also leads to better discrimination. Of course, we have not considered 
the effects of ultraviolet absorption on these trajectories—so there are still 
considerations that can affect these simple comparative simulations.

9.3 � DISTINGUISHING ONE FILM MATERIAL FROM 
ANOTHER

Although we may have difficulty determining the index with good 
accuracy, it may still be possible for us to distinguish between different 

Figure 9.4.  The first part of the Y-D 
trajectories for a single wavelength for 
transparent films on silicon with index of 
refraction of the films as indicated. These 
trajectories are for an angle-of-incidence of 
70° and a wavelength of 200 nm.
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materials. To illustrate this concept, let us consider a thin thermal oxide 
film on silicon. If we model this sample using thermal oxide film optical 
constants, the best-fit thickness is determined to be 96.5 Å. The measured 
and modeled values are shown in Figure 9.5. In this case, the mean squared 
error (MSE) is 1.85, implying a very good fit.

Now, suppose that this were an unknown film, and we guessed it was 
actually a Si3N4 layer, using index values from the literature. The measured 
and modeled values are shown in Figure 9.6. Now, the thickness value 
obtained is 76.6 Å with an MSE of 22.1. In this case, we could clearly see 
that the nitride model is inappropriate, whereas the oxide model fits nicely. 

Figure 9.5.  Experimental data along with modeled data for 
a thermal oxide on silicon, modeled with a tabulated list for 
the thermal oxide. The resulting thickness was 96.5 Å and the 
MSE was 1.85.

Figure 9.6.  The same data as shown in Figure 9.5, modeled 
as a silicon nitride film, using a tabulated list for LPCVD 
Si3N4. The resulting thickness is 76.6 Å and the MSE is 22.1.
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If this were an unknown film, we could not say with all certainty that it is 
SiO2, since other materials may have similar optical functions, but we can 
say that it is not an Si3N4 layer. For unknown materials, it is much easier 
to make statements regarding what the material is not, rather than what 
the material is.

Next, let us consider a sample that is much thinner (a native oxide 
on silicon). When modeled as an oxide, using optical constants from the 
literature, the thickness fits to 17 Å with an MSE of 2.4. The measured 
values and modeled values are shown in Figure 9.7.

Figure 9.7.  A native oxide film on silicon, modeled as SiO2, 
with tabular values for the index of refraction. The thickness 
value was determined to be 17 Å with an MSE of 2.4.

Figure 9.8.  The same data as shown in Figure 9.7, modeled as a 
silicon nitride film, using a tabulated list for LPCVD Si3N4. The 
resulting thickness is 13.6 Å and the MSE is 3.82.
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Let us consider the situation if this were an unknown film. Again, we 
approach the data with a guess that the film is Si3N4. In Figure 9.8, the 
nitride model matches the experimental data quite well visually. In fact, 
the MSE is only slightly higher (3.82) with a resulting nitride thickness 
of 13.6 Å.

The point illustrated here is that for films which are thicker than 50 Å 
to 100 Å, many materials can be distinguished from each other. However, 
for very thin films even this becomes difficult to deduce.

In order to distinguish one material from another, it is necessary 
that they have optical constants which are significantly different. 
Accordingly it is much easier to distinguish a thin metal film from 
a thin dielectric film because of the different shape of their optical 
functions. On the other hand, most dielectrics have similar dispersion 
shapes (with different magnitudes). Accordingly, it is very difficult to 
distinguish a very thin film of one dielectric from a very thin film of 
another dielectric.



CHAPTER 10

Thin Films with Absorbing 
Spectral Regions

In Chapter 7, we discussed an important application of ellipsometry—
measuring the thickness and index for thin transparent films. If we are 
only interested in film thickness, it is preferable to restrict the data analysis 
wavelengths where the film remains transparent. However, with the 
expanded wavelength range of modern ellipsometers we may now access 
interesting optical features where our films are absorbing, even for films 
that are traditionally transparent. Thus, an important process for modern 
ellipsometry data analysis is the determination of the thickness and optical 
functions for films that absorb at some wavelengths. Figure 10.1 shows 
the extinction coefficient spectra for a few materials that are transparent at 
longer wavelengths, but absorbing at shorter wavelengths. These include 
organic films, inorganic dielectrics, and even semiconductors.

The general data features for thin films that are transparent for some 
wavelengths and absorbing for other wavelengths was discussed in 
Section 4.2.2. As mentioned, we expect to see interference features when 
the film is transparent and these interference features will be dampened 
or completely eliminated as the film becomes more absorbing. This is 
demonstrated in Figure 10.2. If the material is absorbing at all wavelengths, 
it produces a special challenge, which we will discuss in Chapter 11. 
Let us consider how to proceed with films that are both transparent and 
absorbing, depending on the wavelength range we consider.

Films that absorb are more challenging because there are additional 
unknown sample properties; the thickness, n and k. Also, we can no 
longer  expect the index (n) to follow “normal” dispersion. Our general 
approach for data analysis is to divide the problem. We will first fit the 
transparent region, as covered in Chapter 7. To accomplish this, we need 
to determine at which wavelengths the film is absorbing and at which it is  
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transparent. After we fit the transparent spectral region, we can fix the thick-
ness and move to the absorbing spectral region. The thickness we determine is 
a physical property and is independent of the wavelength we use to probe the 
sample. Thus, we have reduced the total number of unknown sample prop-
erties and can determine complex optical functions more directly from our 
Y and D spectra. We step through this approach, as illustrated in Figure 10.3.

Figure 10.1.  Example materials, which are transparent at longer 
wavelengths, but absorbing at shorter wavelengths, are graphed.

Figure 10.2.  Ellipsometry spectra from a film that is transparent above 
and absorbing below 800 nm.
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10.1 � SELECTING THE TRANSPARENT 
WAVELENGTH REGION

The interference features will be dampened and eventually eliminated as 
the film becomes more absorbing. If the film becomes fully absorbing, 
it can be much easier to identify the transparent and absorbing spectral 
regions. For example, consider the measured spectra for an amorphous 
semiconductor on a germanium substrate, shown in Figure 10.4. The 
interference features occur below 2.0 eV; however, their amplitudes start 
to dampen above 1.75 eV. The spectra versus photon energy were plotted 
to illustrate that the spacing of interference features is nearly constant 
when plotted on a frequency scale. The slight compression of interference 
features at higher energies (shorter wavelengths) is due to the natural 
increase in refractive index from normal dispersion. A dashed curve has 
been added to show the natural upper trajectory of the interference ampli-
tude if the film remains transparent. At higher photon energies, the light 
is no longer able to penetrate the film and return to the surface, so no 
interference is present.

This visualization is not always as straight-forward as the case for 
amorphous dielectrics and semiconductors. For organics, bumps asso-
ciated with small absorptions often appear in the visible and ultraviolet 
spectrum. Also, organic absorptions are often weaker and may not absorb 
the light entirely. Consider the data measured from an organic layer on 
silicon featured in Figure 10.5, where the interference features are more 
irregular. This is because the normal interference shape we see in the 
near infrared is modified by the organic absorptions in the ultraviolet and 
visible—many of which absorb only a fraction of the total light traveling 
through the film. Thus, we have a convolution of interference and 

Figure 10.3.  The general procedure for data 
analysis of a thin film with absorbing spectral 
regions is shown.
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absorption that produces the final spectral data shape. We would conclude 
that the transparent spectral region is above 850 nm where the interference 
features do not appear dampened by any absorption.

After the transparent wavelength region is identified, the data can be 
analyzed using the procedure described in Chapter 7. The main goal is to 
determine an accurate thickness such that this value can be fixed when 
extending to wavelengths where the film is absorbing.

Figure 10.4.  Graph of the transparent and absorbing spectral regions 
for an amorphous semiconductor film on a germanium substrate.

Figure 10.5.  Visualizing the transparent and absorbing spectral regions 
for this organic layer on silicon is more complicated as small absorptions 
may not completely dampen the interference features.
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10.2  MODELS FOR THE ABSORBING REGION

The Cauchy is great for describing the index of refraction in the wave-
length region where the film is transparent. However, it is not capable of 
handling the spectral region where the film absorbs, as the optical func-
tions exhibit anomalous dispersion that causes the index to turn-over. For 
this wavelength region, there are three primary methods to describe the 
index of refraction: Direct fit for n and k, B-spline fit, or Oscillator Model 
fit. We will discuss each and then compare their merits and limitations.

10.2.1  DIRECT FIT FOR N AND K

One of the most common methods for the absorbing spectral region 
is to directly fit both n and k with the thickness fixed. The Direct 
Fit is also commonly referred to as the “Point-by-Point” Fit or 
“Wavelength-by-Wavelength” Fit. All parameters of the model must be 
fixed except the n and k values for the desired thin film. Then, the n and k 
values are allowed to vary independently at each wavelength. Even with a 
single angle of incidence, the two measured data (Y and D) are adequate to 
determine the best optical constants (n and k) that match. It is common to 
start the Direct Fit at the same wavelengths that were already fit using the 
Cauchy and this can be a good way to compare how the resulting optical 
constants are affected by data noise or lack of measurement sensitivity. 
This is demonstrated in Figure 10.6 for a 99 nm silicon oxynitride layer  
deposited on silicon. The Cauchy fit was used to determine the film 
thickness. Next, the thickness was fixed and the optical constants (n and k) 
were allowed to vary independently at all wavelengths. The measurement 
consisted of three angles of incidence, so there were a total of six data 
values at each wavelength to help determine our two unknowns. No 
constraints on the optical constant values were imposed, so that we can 
visualize the sensitivity to n and k on a wavelength-by-wavelength basis. 
Obviously any nonzero k values at wavelengths above 300 nm are incorrect 
and show our sensitivity to k is in the low third decimal place for the 100 
nm thick layer. The downward tilt of k to negative values is actually due 
to an insufficient model assumption. If we had allowed 3 nm of roughness 
in our model, k would flatten and average to zero. We also see noise in  
n, which increases at longer wavelengths where sensitivity to this thin layer 
is reduced. Some of our issues could be resolved by placing constraints on 
the possible values. For example, we could constrain k to positive values 
or even force k to remain zero for wavelengths above 300 nm. However, if 
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we are only looking at the noise, we are missing the point of this strategy. 
Our goal was to extend our analysis to shorter wavelengths where the film 
absorbs and this was a success. Notice the increasing k values at wave-
lengths below 275 nm, which are produced from the Direct NK fit. The 
next two approaches will accomplish something similar, but will help 
retain smooth, noise-free curves throughout the spectrum.

10.2.2  B-SPLINE FIT

In Section 5.5, we introduced the b-spline function to describe both the 
real and imaginary optical functions. Once we have our thickness from 
the Cauchy fit, we could extend to absorbing wavelengths by using the 
b-spline. In fact, the b-spline could be used directly in the transparent  
range, without relying on the Cauchy, if we set it up correctly. This assumes 
we can control the b-spline to force a transparent region (k = 0). When 
extending into the absorbing wavelength range the primary concern is how 
close can the nodes be spaced. In general, we wish to have enough nodes 
to give the b-spline flexibility to match the actual shape of the optical dis-
persion but not so many that the shape follows the noise. To further reduce 
the total number of free parameters, we can force the two b-spline curves 
to maintain Kramers–Kronig (KK) consistency, as discussed in Chapter 5. 

Figure 10.6.  Optical functions from the Cauchy fit and Direct fit 
are shown for a 99 nm SiON film on a Si substrate.
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Our Example in Section 10.4 will show application of the b-spline for an 
organic photoresist on silicon.

10.2.3  OSCILLATOR MODEL FIT

In Section 5.4, we introduced the concept of oscillator models for describing 
both the real and imaginary optical functions. Again, we can use this 
approach to extend our fit after gaining thickness insight from the Cauchy 
fit. We could also start directly with the Oscillator model to get the thick-
ness, as it significantly reduces the number of fit parameters such that we 
can fit both transparent and absorbing spectral regions while simultaneously 
allowing the thickness to vary. The main difficulty is how to construct an 
oscillator model that describes the correct shape for our optical functions. 
Figure 10.7 shows the general strategy used in this regard. One approach is 
to start with known reference material optical constants, such as tabulated 
values from a book or journal article. The second approach is to determine 
the shape by first fitting the data with the Cauchy and then using either the 
Direct fit or b-spline such that both absorbing and transparent regions are 
known for the sample. These optical constant values can then be used as a 
reference to build up the oscillator shapes.

When building the oscillator model, it is generally divided into two 
steps. First, the imaginary dielectric function is matched with an oscillator 
or a sum of oscillators. Next, the KK transformation should produce the 
appropriate real dielectric function shape. We may not have a perfect 
match strictly from the KK transformation, as additional absorption  
features may exist outside the spectral region that is accessible to the 
ellipsometry measurement. We then match the real dielectric function 
with a simple offset or via unbroadened poles outside the upper and lower 

Figure 10.7.  General procedure for oscillator modeling is 
shown. 
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measured energies. When finished, the oscillator model can then be used 
to fit the data—with each free value allowed to vary. In this way, it is 
common to also add the thickness as a fit parameter or even add roughness 
or index gradients simultaneously with the varied oscillator functions.

10.2.4 � COMPARISON OF METHODS FOR FILMS WITH 
ABSORBING REGIONS

Each of the afore-described methods can be used to extend fits from the 
transparent spectral region into the absorbing spectral region. However, 
the choice of model depends on the type of material in question and on 
finding a balance between ease-of-use, robustness, and physically reliable 
descriptions. Table 10.1 lists advantages and disadvantages for each 
method.

As a general rule, it is common to choose the Direct NK fit or 
B-spline fit when many absorption features are present, such as with 
many organic films. The Oscillator Model fit is preferred for simpler 
absorption shapes such as we may find for amorphous dielectrics and 
semiconductors. We will consider two examples that represent different 
preferred methods.

10.3 � EXAMPLE: AMORPHOUS Si ON GLASS,  
USING THE OSCILLATOR METHOD

Our first example is that of an amorphous silicon film on glass. This 
material is commonly used for many different applications—as a thin 
film photovoltaic, as thin film transistors in mobile displays, and even 
as a high-index optical coating. The silicon film is transparent in the 
near infrared, but strongly absorbs light in the visible and ultraviolet. 
Because the material is amorphous, the shape of the absorption is very 
broad without any sharp, individual features. A few oscillator dispersion  
models, Tauc-Lorentz (T-L) and Cody-Lorentz (C-L) [47, 48], were 
developed specifically to describe the shape of this absorption. Thus, the 
preferred model for this type of film is often an oscillator model. The 
Direct fit and B-spline approach may also work, but would result in a 
larger number of fit parameters and would not have the same physical 
origin as the T-L or C-L models.

Figure 10.8 shows the experimental data from three angles, along 
with the model-fits when a single T-L oscillator is used to describe the a-Si 
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optical functions. The resulting optical constants are shown in Figure 10.9. 
The resulting a-Si thickness was 47 nm with 2.6 nm of surface oxide. It 
is important that the oxide layer is added to the model, as the a-Si has a 
high index of refraction and ellipsometry is very sensitive to the surface 
conditions in this situation.

Figure 10.8.  Data and fits are shown for an a-Si film on 
glass.

Figure 10.9.  Optical functions for a-Si as determined using a T-L 
oscillator function.
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10.4 � EXAMPLE: PHOTORESIST ON Si, USING  
THE B-SPLINE METHOD

In this example, we consider an organic layer on silicon. The organic layer 
is photosensitive, which means its properties will change when exposed  
to certain wavelengths of light. This is useful in the microelectronics 
industry, as the layer can be used to define lines and patterns. However, we 
must use care, when measuring with ellipsometry, that the measurement 
beam does not “expose” the photoresist layer and thus modify its properties. 
This may be accomplished by collecting the spectra very quickly and 
using very low amounts of ultraviolet radiation.

Figure 10.10 shows the measured spectra for the photoresist layer 
on silicon substrate. The interference features are present at wavelengths 
above 300 nm. They are dampened significantly below 300 nm, but 
there are even small absorption features that affect our data curves at 
wavelengths up to 450 nm. For this reason, the Cauchy fit is only extended 
down to 450 nm to get accurate thickness. Because of the large number 
of absorption features, it is less common to approach this type of material 

Figure 10.10.  Data and fits are shown for a photoresist on Si.
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with a summation of oscillators. Rather, the Direct fit or B-spline fit is 
preferred. Figure 10.11 shows the final photoresist optical constants which 
were obtained from a KK consistent b-spline layer. The final b-spline 
nodes and optical functions are shown in Figure 10.12.

Figure 10.11.  Optical functions are shown for the photoresist film.

Figure 10.12.  KK consistent B-spline model results are plotted for the 
photoresist.



CHAPTER 11

Metallic Films

In this chapter, we consider films that absorb over the full measured 
spectrum. We assume that our spectroscopic ellipsometer has adequate 
wavelength range such that we can find a transparent region for any 
dielectric, organic, or semiconductor layer. However, metals absorb 
everywhere and present a unique challenge. Thus, we are not able to go 
to the transparent region to determine thickness using the methods of 
Chapters 7 and 10. We must solve for the thickness and both n and k 
simultaneously. This situation is only of concern when the metal film is 
thin enough for light to penetrate without being fully absorbed. Typically, 
this requires the metal layer to be thinner than 50 to 100 nm. Otherwise, 
there is no sensitivity to the metal thickness.

11.1  CHALLENGE OF ABSORBING FILMS

Simply said, the primary challenge of absorbing films is that we have 
more unknown sample properties than we have measured data parameters, 
as illustrated in Figure 11.1. We need to determine n, k, and thickness, but 
we only measure Y and D. Of course, we could try to add Y and D values 
from additional angles of incidence, but often the information from other 
angles contains nearly the same data content. If it is not uniquely different, 
the data from additional angles doesn’t actually solve our problem.

11.2  STRATEGIES FOR ABSORBING FILMS

The strategies to overcome the challenge of absorbing films are divided 
into two categories. First, there are strategies that obtain extra measurement 
information. Second, there are strategies that attempt to reduce the num-
ber of unknown sample properties. Table 11.1 lists each of the potential  
methods, which are more fully reviewed in Hilfiker et al. [34, 35].
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Methods which reduce sample 
unknowns

Methods which  
increase the data content

•	 Opaque layer
•	 Optical constant 

parameterization
•	 Measure and fix thickness by 

other characterization methods

•	 SE + T
•	 Interference enhancement
•	 Multisample analysis
•	 In-situ SE

Table 11.1.  Methods for absorbing films are listed based on their 
primary goal

To test the merits of each absorbing-film method, it is helpful to 
consider “uniqueness graphs.” Here, the thickness is varied while all 
other fit parameters are allowed to fit. Then the mean squared error (MSE) 
profile is graphed, showing the best fit results from each thickness value 
(see Section 6.3.4). A flat MSE minimum demonstrates there is still strong 
correlation between the thickness and optical constants, which prevents 
a unique result. If the MSE profile dips to a single minimum value, then 
the correlation is broken by that method as only a single thickness result 
provides the best MSE. As shown in Figure 11.2, a comparison of absorb-
ing-film methods shows that the direct fit of thickness and optical constants 
for a metal on silicon will not provide a unique answer as there are many 
thicknesses that provide essentially the same minimum MSE. Interference 
enhancement (IE, Section 11.2.4) also fails to provide a unique answer if a 
single angle of incidence is analyzed. However, interference enhancement 
with multiple angles of incidence does provide a unique result for thickness 
and optical constants of a thin metal layer. Another method which provides 
a unique result is to combine spectroscopic ellipsometry (SE) data with 

Figure 11.1.  The basic challenge of absorbing films is that the 
number of unknown sample properties outweighs the number 
of measured data.
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intensity transmission data (SE + T, Section 11.2.3), as demonstrated for a 
metal layer on glass.

11.2.1  OPAQUE LAYER

One method to reduce the total number of sample properties is to measure 
an absorbing metal thick enough that no light can travel through the film. 
There is no longer sensitivity to the thickness and the measured Y and D can 
be directly used to determine the remaining unknowns: n and k. Of course, 
if determining layer thickness was the objective, this approach is not a 
direct solution. However, you can use the layer optical constants determined 
from the opaque metal to determine thickness of the thinner layers. This 
assumes that the optical constants for thinner layers will remain the same as  
the thicker opaque layers, which is not a very safe assumption for metals. 
The typical thickness where metals become opaque is around 50 to 100 nm.

11.2.2  OPTICAL CONSTANT PARAMETERIZATION

This method relies on a more efficient description of the n and k spectra by 
a dispersion equation. While this does reduce the number of fit parameters, 

Figure 11.2.  Comparison of methods for metal films is shown. 
Methods are successful if they provide a distinct MSE minimum 
for one thickness. The data are from different samples, which 
explains the different resulting thickness values.
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it does not reduce the number of unknown sample properties. The method 
can show some improvement to the overall problem, but is better when 
used in collaboration with other methods.

11.2.3  SE + TRANSMISSION

In this approach, the SE data is supplemented by a transmission intensity 
measurement as shown in Figure 11.3. The transmission intensity provides 
the extra data content to solve for all sample unknowns. However, this 
approach can only be used when the substrate is transparent and requires 
an accurate measure of the transmitted intensity over the same spectral 
range as the ellipsometry measurement.

11.2.4  INTERFERENCE ENHANCEMENT

This method has been developed extensively by McGahan, Johs, and  
Woollam [51]. In this approach, we actually make the sample more 
complicated (adding an additional layer) in order to gain the benefit 
of significant change in light interaction with the metal layer. The new 
layer must be a thick, transparent film—preferably between 100 nm and 
1,000  nm. This produces new information content when the angle of 
incidence is changed, which then allows all sample unknowns to be deter-
mined—including the new layer thickness, as shown in Figure 11.4.

The drawback to this method is that an additional layer must be 
introduced into the sample processing. However, it really is the best 
approach when dealing with absorbing substrates, such as silicon wafers, 
where we can’t access the transmission intensity data.

Figure 11.3.  SE + T can be used to provide a unique solution for 
thickness and optical constants when the metal is deposited on a 
transparent substrate.
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11.2.5  MULTISAMPLE ANALYSIS OR IN SITU DATA

Multisample analysis has been developed extensively by Tompkins  
et al. [52], and in situ methods have been reviewed by Johs et al. [32] and 
Hilfiker [37]. Both multisample analysis and in situ measurements rely on 
a similar aspect to increase the data content. If we can measure multiple 
different thicknesses of the same material, we can use the additional  
measurement data to solve for all unknown sample properties. This is 
demonstrated in Figure 11.5 where three different film thicknesses are 
measured from the same material. While we now have three different 
thicknesses to determine, it is assumed that we only have one common set 
of optical constants that will describe all of the samples.

Figure 11.4.  Interference enhancement method adds a thick transparent film 
below the metal to change the overall interaction of light with the metal layer 
for different angles of incidence. This can break the correlation and provide 
unique thickness and optical constants for the metal film.

Figure 11.5.  Multisample analysis, whether from multiple samples of 
varying thickness or directly from a dynamic measurement during film 
growth, can provide additional sample information to help solve for optical 
constants and each thickness.





CHAPTER 12

Multilayer Thin Film Stacks

There are many examples where multiple thin films are used in a stack 
and it is desired to determine the film properties without destroying the 
sample. Spectroscopic ellipsometry (SE) allows optical access to any 
and all layers that do not completely absorb the light. Thus, if we have 
a stack of transparent layers, the light will travel through all, returning 
to the surface with information from each of the various interfaces. 
This increases the complexity of our measured data, as the interference 
features depend on the dominating light components, which change on a 
wavelength-by-wavelength basis. For example, consider the ellipsometry 
spectra in Figure 12.1, which comes from a four-layer optical coating 
stack. The higher Y amplitude features occur when the interference 
is primarily due to the low-index film, while the lower Y amplitude 
features are due to the higher index layers in the stack. There is plenty 
of information contained in a multiangle SE measurement to determine 
all four layer thicknesses, along with the index for the two different 
transparent materials.

When some of the layers are absorbing, they will eliminate infor-
mation from underlying layers. It is also common to have reduced 
sensitivity to layers that are lower in the stack than the films near the 
surface. Because of the increasing sample complexity and large possible 
number of unknown sample properties, there are two different methods 
of approach in order to simplify the data analysis. The first is to approach 
the layers one at a time. We will have two different strategies for dealing 
with this approach. The second method can be used when several of the 
layers in the stack have something in common. These methods could be 
called “coupling.”
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12.1  MULTILAYER STRATEGIES

We consider four different strategies for multilayers. Each is designed to 
reduce the number of unknown parameters to provide unique fit results 
when tackling multilayer stacks. The four strategies include:

1.	 Divide and conquer
2.	 Consecutive layers
3.	 Coupled thicknesses
4.	 Coupled optical constants

The first strategy, which we have termed “Divide and conquer,” is all 
about getting information from single-layer films that can then be used 
when analyzing the multilayer structure. This is illustrated in Figure 12.2, 
where three single-layer films are first measured to determine their optical 
constants. Then, these optical constants can be fixed and only thicknesses 
for each layer needs to be determined when considering the multilayer.

One potential problem with “Divide and conquer” is that we hope the 
single-layer films will have the same optical constants when deposited 
directly on the substrate as they will within the multilayer stack. However, 
some layers are affected by the underlying material, which can cause 
changes in the film optical constants. In this case, “Consecutive Layers” 
may be preferred, where the stack is separated and measured after each 
layer is deposited, as shown in Figure 12.3.

Figure 12.1.  Measured spectra and model-generated fit 
from a four-layer optical coating stack consisting of high 
and low index dielectric layers.
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In addition to these two general approaches to divide up the layers 
and determine single layer optical constants, there are also approaches 
that involve the entire stack. Here, in a sample which might be called a 
“superlattice,” we can reduce the total number of unknowns by either 
coupling optical constants for “like” materials or coupling thicknesses. 
This is demonstrated in Figure 12.4 for a repeating stack structure with 

Figure 12.2.  “Divide and conquer” approach to multilayer 
characterization is illustrated where the optical constants are 
first determined from single-layer films.

Figure 12.3.  “Consecutive layers” approach to 
multilayers works by measuring each new layer as 
it is added to the overall stack.

Figure 12.4.  Consecutive films with the same 
thickness are simplified by using the same optical 
constants for each layer of the same material and 
assuming that the thickness for repeated layers that 
were designed and deposited is the same.
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two materials of repeated thicknesses. This method can still work to 
reduce unknown sample properties even when none of the layers repeat 
exact thicknesses. If we trust the deposition process to be stable, we may 
be able to couple different thicknesses using the ratio of time that was 
established to deposit each layer, at least for each different film type.

We now consider two examples of multilayer stacks.

12.2 � EXAMPLE: TWO LAYER ORGANIC STACK, 
USING “DIVIDE AND CONQUER”

In this example, we have two organic layers on top of a silicon wafer. 
The underlying organic layer is used as a bottom antireflection coat-
ing layer, while the upper layer is a photoresist. As both layers are 
organic, their optical properties are quite similar at visible and near 
infrared wavelengths. In fact, if our spectroscopic ellipsometer was 
constrained to these wavelengths, there would not be adequate optical 
contrast to determine both layer thicknesses independently and we 
would only be able to assess the total stack thickness. However, the 
two organics are optically different in the ultraviolet, as shown in 
Figure 12.5, and we can use this spectral range to uniquely determine 
both layer thicknesses. In this case, we had previously determined 
each individual layer’s optical functions from single-layer coatings of 
the same material.

Figure 12.5.  Optical functions for an antireflection 
coating and a photoresist, which are measured as a stack.
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12.3 � EXAMPLE: HIGH-LOW OPTICAL STACK, 
USING “COUPLING”

In this example, we consider a much more complicated multilayer stack 
consisting of high and low index coatings designed to enhance the 
reflection of light within a spectral window near 1,064 nm. The optical 
functions for both layers, shown in Figure 12.6, were determined from 
single-layer coatings and were modeled using dispersion equations. This 
allows the optical functions to be refined later if we are unable to fit the 
multilayer stack with only thicknesses.

The final multilayer consisted of 37 layers with a total thickness 
of over 4.5 µm with no two layer thicknesses the same. However, the 
deposition system is believed to be quite stable throughout this process, so 
we can significantly reduce the number of unknowns (37 thicknesses) by  
establishing ratios between each layer and the “base” layer for the high-
index or low-index film. In this way, we are fitting only two thickness  
values that represent every layer thickness in the stack. Our results 
showed that while the high-index films were consistent with the designed 
thicknesses, the low-index films throughout the stack were about 2 percent 
thinner than designed. The Y spectra from two of our four total angles 
are shown in Figure 12.7. The measured spectra are significantly more 
complex due to all the interference features, which, with our model, 
requires an accurate description of all layers to reproduce.

Figure 12.6.  Optical functions for a high-index and a 
low-index film, which are used to construct a 37-layer 
optical coating stack.
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Figure 12.7.  Measured spectra and corresponding model fits are 
shown from a 37-layer optical coating stack consisting of repeated 
high-index and low-index films.
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fitting data, 105–107
transparent wavelengths, 75–76
UV absorption, 76–78

Characteristic Depth, 12–13
Circularly polarized light, 16–17
Compensators, 42–44
Complex dielectric function, 13

Complex refractive index, 10–13
Constructive interference, 9–10, 

65–66

D
Data regression analysis process, 

95
Delta, 27–28, 57
Destructive interference, 9–10, 66
Detectors, 34–35
Dielectric function, See Complex 

dielectric function
Dielectrics

Substrates, 59–61
Films, 65–68, 101–112

Dispersion equation
anomalous dispersion, 75
Cauchy dispersion equation, 

75–78
b-spline, 84–87
Gaussian, 80–84
Kramers-Kronig relation, 82–84
Lorentz, 80–81
oscillator models, 79–84
Tauc-Lorentz, 81–82, 134
normal dispersion, 74–75

E
Effective medium approximation 

(EMA), 116
Electromagnetic wave

electric vibration, 5
interference, 9–10
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Maxwell’s equations, 5, 7
photon energy, 8–9
wave equation, 7
wavelength and frequency, 8–9

Ellipsometry
Equations, 27–30
historical aspects, 1
Instrumentation, See 

Spectroscopic Ellipsometers
Parameters

N, C, & S, 29
Psi and Delta, 28

spectra. See Spectrum
Elliptically polarized light, 17–18
EMA. See Effective medium 

approximations
Extinction coefficient, 11–12

F
Fitting Data, 92–96
Fourier coefficients, 50, 53
Fourier transform infrared (FTIR) 

spectroscopy, 37
Fresnel, Augustin-Jean, 6
Fresnel Equations, 19–20

G
Gaussian oscillator, 80–84
Gratings, 35

I
Index of refraction, 10–13
Infrared ellipsometers, 37
In situ ellipsometry, 47, 143
Intensity, 8
Interference, 9–10, 65–66
Interference Enhancement, 140, 

142–143 

J
Jones matrixes, 29–30

K
Kramers-Kronig (KK) consistency, 

75

Kramers-Kronig relationship, 
82–84

L
Laws of reflection, 14
Laws of refraction, 14
Light

polarized light, 14–18
reflectance and transmittance, 

20, 26–27
reflection and refraction, 14
reflection and transmission

Brewster angle, 20–24
equations of Fresnel, 19–20
Interaction with films, 18–30
orientation, 18–19
Stack calculations, 26

Light Source, 33
Linearly polarized light, 15–16
Lorentz oscillator, 80–81

M
Macroscopic roughness, 113–114
Maxwell’s equation, 5, 7
Mean-squared-error (MSE), 95, 96
Metals

Substrates, 61–63
Films, 139–143

Microscopic roughness, 114–115
Model, 94
Monochromator, 35–36
Mueller matrixes, 30
Multi-sample analysis, 143
Multilayers, 145–150

N
N, C, & S, 29, 48–49
Normal dispersion, 74–75

O
Opaque layer, 141
Optical constant

complex refractive index, 10–13
complex dieletric function, 13

Optical constant parameterization, 
141–142
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Optical data analysis
data analysis

“fit” parameters, 95–96
“inverse” problem, 91–92
evaluation, 97–100
measurement, 93–94
model, 94–95
SE data analysis, 93

Pseudo-optical constants, 89–91
Optical functions

B-spline
KK consistent, 87
spline components, 85

dispersion equation
anomalous dispersion, 75
Cauchy dispersion equation, 

75–78
Gaussian, 80–84
Kramers-Kronig relation, 

82–84
Lorentz, 80–81
normal dispersion, 74–75
Oscillator Models, See 
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134
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P
Phase modulation ellipsometry 
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Photon energy, 8–9
PME. See Phase modulation 
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Polarization state generator and 
detector (PSG/PSD), 32
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reflection, 37–38
refraction, 39
total internal reflection, 38–39
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Polarized light
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polarization, 15
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RCE. See Rotating compensator 
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RPE/RAE. See rotating polarizer/
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Refraction, 14
Refractive Index, See Complex 

Refractive Index
Reflectance and transmittance, 26
Reflection and transmission

Brewster angle, 20–24
equations of Fresnel, 19–20
Laws of, 14, 19–25
orientation, 18–19
Stack calculations, 26
with films, 25–26

Rotating compensator ellipsometry 
(RCE), 51–53

Rotating polarizer/analyzer 
ellipsometry (RPE/RAE), 49–51

Roughness
effective medium 

approximations, 116
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analyzer ellipsometry
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Substrates, 63–65
Films, 127, 134–136
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91, 92

Silicon nitride film, 124
Single-wavelength ellipsometry, 121
SOI. See Semiconductor on 

insulator
Source, See Light Source
Spectroscopic ellipsometer

compensators, 42–44
detectors, 34–35
dual rotating instruments, 53–54
measurement angle

angle errors, 45
Brewster angle, 45
Ex situ, 46–47
In situ, 47–48

measurement capabilities, 48–49
phase modulation ellipsometry, 

54–55
phase modulators, 44–45
polarization

reflection, 37–38
refraction, 39
total internal reflection, 38–39
transmission and absorption, 

39–40
polarization state generator and 
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polarizers, 40–41
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constructive interference, 65
destructive interference, 66
oscillations, 65
reflection of light, 65
Ψ fluctuation, 67–68
Ψ spectrum, 66
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Thermal oxide film optical 

constants, 124
Thin films

absorbing region models
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direct fit, 131–132, 135
oscillator model fit, 133–135
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multilayer strategies
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approach, 147, 148
coupling, 149–150

optical constant determination
mean squared error, 124
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silicon nitride film, 124
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thickness determination, known 

optical functions, 119–120
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110–112
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104–105

fitting with unknown index
film thickness estimation, 107
index estimation, 106–107
thickness and refractive 
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