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Abstract 

Statistics is the branch of mathematics that deals with real life problems. 
As such, it is an essential tool for economists. Unfortunately, the way 
the concept is introduced to students is not compatible with the way 
economists think and learn. The problem is worsened by the use of 
mathematical jargon and complex derivations. However, as this book 
demonstrates, neither is necessary. The book is written in simple English 
with minimal use of symbols, mostly for the sake of brevity and to make 
reading literature more meaningful. 

All the examples and exercises in the book are constructed within the 
field of economics, thus eliminating the difficulty of learning statistics 
with examples from fields that have no relation to business, politics, or 
policy. Statistics is in fact, no more difficult than economics. Anyone 
that can comprehend economics can understand and use statistics suc-
cessfully within this field.  

In my opinion, the most important aspect of statistics is its ability to 
summarize the information imbedded in numerous data into few  
parameters and capture the essence of data. The ability of capturing the 
inherent core of data from seemingly random and varying bits of infor-
mation is unique to statistics. It seems that somehow, statistics is able to 
find order in chaos.  

The second edition incorporates Stata 14.1 and duplicates the  
answers for all the examples using Stata as well.  This will enable the 
more serious users to be prepared for the next level when more powerful 
tools are necessary. In most cases no further reading is necessary to per-
form a more sophisticated method. In the rest of the cases additional 
subcommands in the form of an option is all that is needed. The book 
utilizes Microsoft Excel to obtain statistical results as well as to perform 
additional necessary computations. The spreadsheet is not the software 
of choice for performing sophisticated statistical analysis. However, it is 
widely available and almost everyone has some degree of familiarity with 
it. Using Excel will eliminate the need for students and readers to buy 
and learn new software, the need for which would itself prove to be  
another impediment to learning and using statistics. 
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Statistics is the Science  
of Finding Order in Chaos

 
I wrote this manuscript to share my affection for statistics and to show 
that comprehending statistics does not require mastery of mathematical 
jargon or complex formulations and derivations. I do not claim that 
upon learning the material in this book, you will be considered a statis-
tician or can start a career in statistics; however, I promise you will have 
a much better understanding of the subject and will be able to apply its 
methods. I also hope you will gain the wisdom of knowing where the 
things you have learned will not work and realize that you have to learn 
new material to handle such cases. 

Statistics is the science of life. It does not live outside of real life. 
Conclusions in statistics are probabilistic in nature compared with de-
terministic in most branches of mathematics. Every aspect of life bene-
fits from statistics. 

Learning statistics is like learning to play a musical instrument or 
learning a foreign language. Reading and comprehending the material 
are not sufficient. Simply reading your books and notes is not enough 
for learning statistics either; you also need to practice. Memorizing the 
material is also important. It is not sufficient to know the material or 
where to find it. The same is true about learning foreign languages. Un-
less you like to walk around with a dictionary or a statistics books under 
your arm, you must know the material by heart. 

The objective of this book is to address the fundamentals of statistical 
analysis in a simple and easy-to-comprehend way. Instead of covering 
numerous topics, the book covers interrelated subjects that are necessary 
for the comprehension of the presented topics. For example, the chapter 
on distribution functions avoids detailed technical discussions of numer-
ous density functions and instead focuses on comprehension of the mate-
rial as needed and related to the rest of the book. On the other hand, this  
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book provides more details on subjects of great use in economics and 
business such as the mean of several rates, which is hardly mentioned in 
most statistics books. This knowledge is useful, for example, when trying 
to average several interest rates. To this end, the geometric and harmonic 
means are explained in detail, with examples.  

The concept of “degrees of freedom” is a good example of the  
approach taken in the book. Customarily, degrees of freedom are defined 
as the denominator of sample variance without any explanation or clarifi-
cation, so the reader must memorize it. In this book, the relationship of 
the degrees of freedom with the number of parameters that must be esti-
mated is established and the notion is clarified by providing an example, 
which demonstrates the determination of how many degrees of freedom 
are lost. Another concept that has received much more attention than is 
customary is the concept of error. The notion of the error is at the heart of 
statistical analysis and differentiates statistics from mathematics. The hope 
is that such attention to detail and explanation of difficult concepts will 
enable the reader to go beyond mechanical generation of statistical output 
and instead assist in comprehension of the subject. Most software  
programs are capable of producing a huge amount of output with few 
commands, rendering the ability to compute statistical formulas by hand 
unnecessary. Therefore, the attention is devoted to explanation and  
comprehension of the subject.  

The second edition has augmented the explanations in the first to 
clarify the subjects even more. The examples are based on economic 
theory utilizing actual data. The hope is that the use of theory will prove 
useful in relating the subject to actual empirical applications and help 
with research.  

The only software utilized in the first edition was MS Excel to make 
the book accessible to more people even if they did not have dedicated 
statistical software. The second edition also incorporates Stata software 
for use by more technically oriented readers who have access to sophisti-
cated software. The idea is not to provide a users’ guide for Stata. There-
fore, the commands and procedures are explained to the extent that they  
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pertain to the topic at hand, instead of providing a comprehensive list of 
the software’s capabilities. Instead of providing statistical tables Excel, 
Stata, and the Internet are used to obtain the exact p values used in some 
of the formulas.  

This manuscript has benefited from the tireless and dedicated contri-
butions of Madeline Messick. Her contributions are substantial and with-
out her perseverance the improvements to the second edition would not 
have been possible; any remaining shortcomings are my responsibility. 
 

  



 

 

  



 

 

Introduction
 

Economics is a very interesting subject. The scope of the economic do-
main is vast. Economics deals with market structure, consumer behav-
ior, investment, growth, fiscal policy, monetary policy, the roles of 
banks, etc. The list can go on for quite some time. It also predicts how 
economic agents behave in response to changes in economic and none-
conomic factors such as price, income, political affiliation, and stability. 
Economic theory, however, is not specific in its predictions. For exam-
ple, the theory proves that when the price of a good increases, the quan-
tity supplied increases, provided all the other pertinent factors remain 
constant, which is also known as ceteris paribus.  

What the theory does not and cannot state is how much the quanti-
ty supplied of a good increases for a given increase in price. The answer 
to this question seems to be more interesting to most people than the 
fact that the quantity will increase as a result of an increase in price. 
While the theory that explains the above relationship is important for 
economists, for the rest of the population, knowledge of that relation-
ship is worthless if the magnitude of the change is unknown. Assume 
that for a 10% increase in price, the quantity supplied increases by 1%. 
This has a different consequence than if the quantity supplied increases 
by 10%, and totally different consequence than if the quantity supplied 
increases by 20%. The knowledge of the magnitude of change is as im-
portant, if not more important, than the knowledge of the direction of 
change. In other words, predictions are valuable when they are specific.  

Statistics can answer the question of how much the quantity will  
increase. The science of statistics provides the necessary theories that form 
the foundation for answering such specific questions, including the neces-
sary conditions to set up the study and collect data and the means to  
analyze and clarify the meaning of the findings. It also provides the foun-
dation to explain the meaning of the findings using statistical inference.  

In order to make an economic decision, it is necessary to know the 
economic conditions. This is true for all economic agents, from the  
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smallest to the largest. The smallest economic agent might be an indi-
vidual with little disposable income, while the largest can be a multina-
tional corporation with thousands of employees or a government.  

The first step in making any economic decision is to gain knowledge 
of the state of the economy. Economic conditions are always in a state 
of flux. Sometimes it seems that we are not very concerned with mun-
dane economic basics. For example, we may not try to forecast the price 
of a loaf of bread or a pound of meat. We know the average prices for 
these items; we consume them on a regular basis and will continue do-
ing so as long as nothing drastic happens. However, if you were to buy a 
new car you would most likely call around and check some showrooms 
to learn about available features and prices because we tend not to have 
up-to-date information on big-ticket items or goods and services that we 
do not purchase regularly.  

The process described above is a kind of sampling, and the infor-
mation that you obtain is called sample statistics, which are used to make 
an informed decision about the average price of an automobile. When 
the process is performed according to strict and formal statistical meth-
ods, it is called statistical inference. This specific sample statistic is called 
the sample mean. The mean is one of numerous statistical measures at 
the disposal of modern economists.  

Another useful measure is the sample median. The median is a value 
that divides the observations into two equal halves, one with values less 
than the median and the other with values more than median. Statistics 
explains when each measure should be used and what determines which 
one is the appropriate measure. For example, the median is the appro-
priate measure when dealing with home prices and incomes.  

Other areas of application of statistics include engineering.  For exam-
ple, to build a bridge, it is important to use the appropriate measure to 
estimate the necessary capacity of the bridge. In this case neither the mean 
nor the median would be appropriate, as the bridge must be able to with-
stand the maximum load. Statistics of extreme outcomes is a main branch 
of the subject. The estimation would require information about variance 
and probability as well. In addition to identifying the appropriate tools for 
the task at hand, statistics also provides methods for obtaining suitable data 
and procedures for performing analysis to deliver the necessary inference.  
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One cannot imagine an economic problem that does not depend on 
statistical analysis. Every year, the Government Printing Office compiles 
the Economic Report of the President. The majority of the statistics in 
the report are fact-based information about different aspects of econom-
ics; however, many of the statistics are based on some statistical analysis, 
albeit descriptive statistics. Descriptive statistics provide simple yet power-
ful insight to economic agents and enable them to make more informed 
decisions. 

Another component of statistical analysis is inferential statistics. In-
ferential statistics allow economists and political leaders to test hypothe-
ses about economic conditions. For example, in the presence of infla-
tion, the Federal Reserve Board of Governors may choose to reduce the 
money supply to cool down the economy and slow down the pace of 
inflation. The knowledge of how much to reduce the supply of money is 
not only based on economic theory, but also depends on proper estima-
tion of the current state of the economy as well as the effect of a particu-
lar change in the supply of money on the final outcome.  

Another widely used application of statistical analysis is in policy de-
cisions. We hear a lot about the erosion of the middle class or that the 
middle class pays a larger percentage of its income in taxes than do lower 
and upper classes. How do we know who the middle class is? A set dol-
lar amount of income would be inadequate to define the middle class 
because of inflation. However, statistical analysis has a much more 
meaningful and more elegant solution. The concept of interquartile 
range identifies the middle 50% of the population or income. Formally, 
the interquartile range is explained as the difference between the first 
and third quartile; specifically, the difference between the observations 
above the 75% level of income and those below the 25% represents the 
50% of incomes that are in the middle.  

Knowledge of statistics can also help us to identify and comprehend 
daily news. Recently, a report indicated that the chance of accident for 
teenage drivers increases by 40% when there are passengers in the car 
that are under 21 years of age. This is a meaningless report. Few teenag-
ers drive alone or have passengers over 21 years of age. Total miles driv-
en by teenagers when there are passengers less than 21 years of age far 
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exceeds any other types of teenage driving. Other things equal, the more 
you drive, the higher the probability of an accident. This example indi-
cates that knowledge of statistics is helpful in understanding everyday 
events and in making sound analysis. 

One of the most important aspects of statistics is the establishment 
of rules that allow the use of a sample to draw inferences about popula-
tion parameters. Inferential statistics allows us to make decisions about 
the possibility of an outcome based on its probability, not dissimilar to 
what we do in real life anyway. If we know that a friend is usually late, 
we use this information to estimate his approximate arrival time. When 
we do this, we informally draw conclusions based on our previous expe-
riences with the individual. In statistics the process is formal. We take 
random samples, and based on statistical theories of sampling distribu-
tion and the probabilities of outcomes, we make inferences and predic-
tions about the outcomes. In essence, statistics formalizes the human 
experience of estimation and prediction and provides theoretical proofs 
for anticipated outcomes.  

This book focuses on a few introductory topics in statistics and  
provides examples from economics. It takes a different orientation for 
covering the material than most other books. Chapters 1 and 2 cover 
descriptive statistics from tabular, graphical, and numeric points of view. 
A summary table of all the tools introduced in these chapters is provided 
in Chapter 1 to help you see the big picture of what belongs where. This 
grouping helps relate topics to each other. Chapter 3 provides some ap-
plications of these basic tools in different areas of economics. The pur-
pose of Chapter 3 is to demonstrate that even simple statistics, when 
used properly, can be very useful and beneficial. Interestingly, some, if 
not most, of descriptive statistics are either intuitive or commonly uti-
lized in everyday life. However, as the first three chapters demonstrate, it 
is useful to demonstrate their power using examples from economics. 

Chapter 4 introduces some commonly used distribution functions. 
Most likely these will be new for you. These distribution functions are 
used as yardsticks to measure different statistics to determine whether they 
behave as expected or if the statistic should be considered an unusual out-
come. When we sample, the resulting sample statistics, such as sample 
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mean, follow certain distribution functions. These important properties 
are discussed in Chapter 5, named “Sampling Distribution of Sample 
Statistics.” Chapter 6 formally discusses estimation. Point estimation uses 
sample statistics directly, while a confidence interval provides a range that 
covers the population parameter with a desired level of confidence. Final-
ly, Chapter 7 combines materials from Chapters 4 through 6 to perform 
statistical inference. Statistical inference is a probabilistic statement about 
the expected outcome of a study. Chapter 8 presents an introduction to 
regression analysis and Chapter 9 is the conclusion. 

 
 

  



 

 

 



 

CHAPTER 1 

Descriptive Statistics 

Introduction 

A simple fact of life is that most phenomena have a random component. 
Human beings have a natural height that is different from the natural 
height of a dog or a tree. However, human beings are not all of the same 
height. The usually small range is governed by random variation, called 
error. For example, the range of height for adult human beings is roughly 
from 52 to 75 inches. This does not mean that 100% of all mankind are 
in this range. The small portions that are outside this range are considered 
outliers. Summarizing the height of human beings is very common in 
statistics. However, in science it is helpful to provide the associated level of 
confidence in a statement. For example, it is important to state that a par-
ticular percentage, say 90%, of women living in the United States have a 
height between 59 and 69 inches. 

One might think that it is important or maybe even necessary to 
provide a range that covers all cases. However, such a range may prove 
to be too wide to be of actual use. For example, one might be able to say 
with 100% certainty that the annual income in the United States is be-
tween zero and $100,000,000,000. However, although the lower end is 
a certainty, the upper end is not as definite. Granted that the chance of 
anyone making $100,000,000,000 in a year is very low, nevertheless 
there is no compelling reason against it. Therefore, one has to provide 
the probability of someone making such a huge income. Since the like-
lihood is very low, it would be more meaningful to state an income 
range for a meaningful majority, such as the income range of 95% of 
people. 

For example, it is useful to know that 99% of all people in the United 
States earned less than $434,682 per individual return in 2012 (Internal 
Revenue Service 20141), which is the same as saying that the top 1% made 
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at least that much per return in the same year. According to the same 
source, the top 10% made more than $125,195 per return. The particular 
percentage is not important as the choice of the top 1% versus the top 
10% (or some other percentages) depends on the task at hand.  

For example, the government might want to help the middle class by 
granting them a tax break to lower their tax burden to an equivalent 
burden as the upper or lower classes. One way of determining the mid-
dle class income of a population is to find the 50% of people whose in-
comes are in the middle. Another way of stating this is to identify the 
cutoff income level for the lower 25% of incomes, and the cutoff in-
come level for the upper 25% of incomes. The two cutoffs mark the 
income range that contains the 50% of incomes in the middle. Compu-
tations necessary to determine these and other useful values are the sub-
ject of descriptive statistics. 

Descriptive statistics provide quick and representative information 
about a population or a sample, such as that a typical man is 5 ft 10 in, 
the average high temperature on Fourth of July in Washington, DC, is 
85° Fahrenheit,2 eight out of nine runners in the men’s 100-meter dash 
at the 2012 Olympics finished in less than 10 seconds,3 etc. These statis-
tics are describing something of interest about the population and  
condense all the facts into a single parameter. Note the subtle differences 
in terms such as the “most common,” “typical,” or “average.” Descrip-
tive statistics is the science of summarizing and condensing information 
in few parameters. 

There are many ways of condensing information to create descrip-
tive statistics. Different types of data require different tools. Data can be 
qualitative or quantitative. These naming conventions actually refer to 
the way variables are measured and not to an inherent characteristic of a 
phenomenon. Variables are used for statistical analysis and are measured 
based on their characteristics. The preferred name for qualitative varia-
bles is categorical variables, because the word “qualitative” has a value 
connotation, which is often reflected in the literature. 

In many cases, analyzing qualitative and quantitative variables requires 
different tools, but in some cases the tools are similar for both, if not iden-
tical. However, the interpretations of qualitative and quantitative variables 
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are usually different. Note that a population is not defined as either quali-
tative or quantitative. Rather, it is the variable of interest in the popula-
tion that is either qualitative or quantitative. For example, the population 
may consist of people. If the age of the person is of interest, then the vari-
able is quantitative; but if the gender of the person is of interest, then the 
variable is qualitative. If the population under study is a firm and the vari-
able is the firm’s status as a polluter (i.e., the firm either pollutes or does 
not pollute), then it is a qualitative variable. However, if the amount of 
pollution is of interest, then it is a quantitative variable.  

Definition 1.1 Qualitative variables are nonnumeric. They represent a 
label for a category of similar items. For example, the status of a firm as 
a polluter is a qualitative variable.  

Definition 1.2 Quantitative variables are numerical. The distance each 
student travels to get to school is a quantitative variable. 

Measurement Scales 

Variables must be measured in a meaningful way. The following defini-
tions provide brief descriptions of different types of measurement scales. 
Most of the methods in this text require interval or measurement scales 
with stronger relational requirements. 

Definition 1.3 Nominal or categorical data are the “count” of the num-
ber of times an event occurs. Countries might be grouped according to 
their policy toward trade and might be classified as open or closed econ-
omies. Care must be taken to assure that each case belongs to only one 
group. An ID number is an example of nominal data. Since the relative 
size does not matter for nominal data, the customary arithmetic compu-
tations and statistical methods do not apply to these numbers.  

Definition 1.4 When there are only two nominal types, the data is di-
chotomous. When there is no particular order, a dichotomous variable is 
called a discrete dichotomous variable. Gender is an example of a discrete 
dichotomous variable. Alternatively, when one can place an order on the 
type of data, as in the case of young and old, then the variable is a con-
tinuous dichotomous variable.  
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Definition 1.5 An ordinal scale indicates that data is ordered in some 
way. 

Although orders or ranks are represented by numerical values, such 
values are void of content and cannot be used for typical computations 
such as averages. The distances between ranks are meaningless. The in-
come of the person who is ranked 20th in a group of ordered income is 
not one half of the income of someone who is ranked 40th. In an ordi-
nal scale, only the comparisons “greater,” “equal,” or “less” are meaning-
ful. Ordinal scales are very important in economics, as in the case of 
utility and indifference curves. It is not necessary to measure the amount 
of utility (i.e., satisfaction or happiness) one receives from different 
goods and services; it is sufficient to rank consumer’s utility. The cus-
tomary arithmetic computations (such as adding and multiplication) 
and statistical methods do not apply to ordinal numbers.  

Definition 1.6 A Likert scale is a special type of ordinal scale, where the 
subjects provide the ranking of each variable.  

Customarily, an odd number of choices are used in ranking scales to 
allow the center value to represent the “neutral” case. For example, a 
subject is asked to rank his or her preference on a scale of 1, very low, to 
5, very high. In this case, a choice of 3 would represent a neutral  
response, indicating no preference. 

Definition 1.7 In an interval scale, the relative distances of any two se-
quential values are the same. In the interval scale, the size of the differ-
ence between measurements is also important. Each numerical scale is 
actually measured from an accepted zero. This makes use of the type of 
scale irrelevant as in the case of Celsius and Fahrenheit scales for tem-
peratures. Both scales have an arbitrary zero. Some arithmetic computa-
tions such as addition and subtraction are meaningful. 

Definition 1.8 A ratio scale provides meaningful use of the ratio of 
measurements in addition to interval size and order of values. 

For example, the ratio of sales, gross domestic product (GDP), and 
output are expressed as a ratio scale. There are numerous other meas-
urement scales, but these have little practical use in economics.  
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Types of Available Tools 

Descriptive statistics provide summaries of information about a popula-
tion or sample, both of which will be defined shortly. In real life, the 
amount of information available is vast, and comprehending their  
intrinsic value is difficult. Descriptive statistics provide some means of 
condensing massive amounts of information in as few parameters as pos-
sible.  

Definition 1.9 A population comprises all possible values of a variable. 

Definition 1.10 A parameter is a characteristic of a population that is of 
interest. Parameters are constant and usually unknown.  

Examples of parameters include population mean, population vari-
ance, and regression coefficients. One of the main purposes of statistics 
is to obtain information from a sample that can be used to make infer-
ences about population parameters. The estimated parameter value ob-
tained from a sample is called a statistic.  

Table 1.1 summarizes the descriptive methods for quantitative and 
qualitative variables. Note that these are only the descriptive statistics 
and by no means all the methods at our disposal. 

Descriptive Statistics for Qualitative Variables 

The available descriptive statistics for qualitative variables can be divided 
into graphical and tabular methods. Each one consists of several cus-
tomarily used tools. In order to be able to graph the data, it must be 
tabulated in some fashion; therefore, we will discuss the tabular methods 
first.  

Tabular Methods for Qualitative Variables 

The most common tabular methods for qualitative variables are fre-
quency and relative frequency. 

 �  
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Table 1.1 Descriptive statistics 

Qualitative 
Variables 

Tabular Methods Frequency 
Relative Frequency 

Graphical 
Methods 

Bar Graphs 
Pie Charts 

Quantitative 
Variables 

Tabular Methods Frequency Distribution 
Relative Frequency 
Cumulative Distribution 
Percentiles 
Quartiles  
Hinges 

Graphical 
Methods 

Histograms 
Ogive 
Stem and Leaf 
Dot Plot 
Scatter Plot 
Box Plot 

Numerical 
Methods 

Measures of 
Location 

Mean Ungrouped 
Data 
Grouped Data 

Trimmed Mean 
Median 
Mode 

Measures of 
Dispersion 

Range 
Interquartile Range 
Variance Ungrouped 

Data 
Grouped Data 

Standard Deviation 

Coefficient of Variation 
Measures of 
Association 

Covariance 
Correlation Coefficient 

Frequency Distribution for Qualitative Variables 

A frequency distribution shows the frequency of occurrence for 
nonoverlapping classes. 

Example 1.1 In a small town, a small company is responsible for refill-
ing soda dispensers of 30 businesses. The type of business, the average 
number of cans of soda (in 100 cans), the gender, and race of the owner 
are presented in Table 1.2. Find the frequencies of the types of business-
es of the soda dispensers.  
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Table 1.2 Some information about soda dispensers 

Business Type Average Gender Race 

Gas Station 3.8 Male Black 

Drug Store 2.4 Male Black 

Mechanic Shop 3.4 Female White 

Sporting Goods 4 Female White 

Tire Shop 2.8 Female White 

Hardware Store 3.1 Female White 

Drug Store 2.7 Male White 

Mechanic Shop 1.8 Female Black 

Gas Station 2.6 Male White 

Hardware Store 2.8 Male Black 

School 3.7 Female White 

Mechanic Shop 4 Female White 

Hardware Store 2.6 Male White 

Sporting Goods 2.4 Female Black 

Mechanic Shop 2.6 Female White 

Gas Station 3.5 Female Black 

Mechanic Shop 2.1 Male Black 

Drug Store 3.6 Female Black 

Hardware Store 3.4 Male White 

Sporting Goods 3.2 Male White 

Hardware Store 3.5 Male Black 

Mechanic Shop 1.9 Male White 

Mechanic Shop 1.9 Female White 

Hardware Store 1.8 Female White 

Sporting Goods 1.7 Male White 

Drug Store 2.7 Female White 

Hardware Store 2.1 Female White 

Mechanic Shop 2.7 Male White 

Drug Store 3.2 Female White 

Mechanic Shop 3.7 Male White 
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Solution 1.1 

A frequency distribution for the variable Business Type will clarify the 
information. For each business, put a line next to its type and cross the 
lines when the count is five. This will allow a quick reference for deter-
mining the frequency.  

Gas Stations ///  
Mechanic Shop ////  //// 
Drug Store ////  
Hardware Store ////  // 
Sporting Goods ////  
School /  
Tire Shop /  

This is certainly an improvement in making the information more 
easily understandable, but Table 1.3 makes it even clearer and more 
condensed. It is easier to determine the locations, how many times each 
is restocked, as well as finding the most frequent, and the least frequent 
locations. 

 
Table 1.3 Business Types and frequencies of Business Types 

Business Type Frequency 
Gas Stations 3 
Mechanic Shop 9 
Drug Store 5 
Hardware Store 7 
Sporting Goods 4 
School 1 
Tire Shop 1 
Total 30 

 
The same results can be obtained from Stata using the following 

command: 

tabulate businesstype 

To obtain the results in Stata, first type table 1.2 into the data editor. 
Then paste the above command into the command window. If the data  
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is copied from Excel, the column heading “Business Type” in Excel will 
be changed “businesstype” in Stata due to its naming conventions  
(Figure 1.1). 

 
Figure 1.1 Stata presentation of frequencies using the tabulate 

command 

Note that Stata sorted the Business Type variable alphabetically. The 
column “Percent” depicts the relative frequencies and the column 
“Cum.” displays cumulative frequencies, which will be explained  
shortly. 

A table with 30 rows has been reduced to a two-column table with 
seven rows. If there were 20,000 locations, the resulting table would not 
be any larger as long as the number of types of business remained the 
same. Although no one can really understand anything from a table with 
20,000 entries, the resulting frequency table would be very clear. This 
signifies the power of statistics to condense information in as few pa-
rameters as possible. The results can be graphed for a more visual 
presentation. One possible graph is called a bar graph. Other graphs, 
such as pie charts, are also available.  

The question could have been about the gender or the race of the 
owner as well. The example could have been about the types of indus-
tries in a state, the kinds of automobiles produced at a plant, the kinds 
of services provided by a firm, or the kinds of goods sold in a store. The 
method of determining the frequencies would be the same in all such 
cases.  



10 STATISTICS FOR ECONOMICS 

 

Relative Frequency for Qualitative Data 

Except in rare occasions the magnitudes of the frequencies vary for dif-
ferent populations and samples, making comparison difficult. For better 
comparison between populations or samples, the relative frequency is 
used. The relative frequency shows the percentage that each class makes 
up of the total population or sample (Table 1.4). It is obtained by divid-
ing the frequency for each class by the total number in the population or 
the sample. 
 
Table 1.4 Business Types, frequencies, and relative frequencies of 

Business Types 

Business Type Frequency Relative Frequency 
Gas Stations 3 0.1 
Mechanic Shop 9 0.3 
Drug Store 5 0.166 
Hardware Store 7 0.233 
School 1 0.033 
Sporting Goods 4 0.133 
Tire Shop 1 0.033 
Total 30 0.9998 

 
The sum of the relative frequency is always 1.0. Here, however, the 

sum is not exactly 1 due to rounding error. Relative frequencies can be 
displayed in percentages by multiplying the values by 100, a common 
practice in many software programs, as is the case in Stata as shown in a 
previous example. 

Graphical Methods for Qualitative Variables 

The two most commonly used graphical methods for qualitative varia-
bles are bar graphs and pie charts. Many other graph types have been 
introduced with the advent of spreadsheet programs such as Excel and 
more are available in specialty software such as Stata.  

Bar Graphs 

A bar graph is a graphical representation of the frequency distribution or 
relative frequency distribution of qualitative data. The names of the 
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qualitative variables are placed on the X-axis and the frequency is de-
picted on the Y-axis. A histogram and a bar graph are identical except for 
the fact that the bar graph is used for qualitative variables, while the 
histogram is used for quantitative variables. 

Example 1.2 The following table represents the frequency of the Busi-
ness Type variable for 30 businesses. Provide a bar graph of the business 
types where soda dispensers are located. 

 
Business Type Frequency
Gas Stations 3 

Mechanic Shop 9 

Drug Store 5 

Hardware Store 7 

Sporting Goods 4 

School 1 

Tire Shop 1 

Total 30 

 
Solution 1.2 

The bar graph in Excel is rotated 90 degrees horizontally to the right. In 
this case, we will use what Excel calls a “column” graph for our bar 
graph. The sequence of commands to plot a bar graph in Excel is pro-
vided for your reference (instructions are similar but may vary slightly 
for Mac users).  
 

1. Open a new spreadsheet in Excel.  
2. Enter in the data from the above table, making sure to leave a 

space before the line for the total. The data should be captured 
in cells A1 through B8.  

3. Go to “Insert,” which is the second tab at the top left on the 
spreadsheet. 

4. Click on “Column” (which looks like a bar graph) and then 
click on the first chart (top left). 

5. Excel will populate a chart similar to the one shown in Figure 1.2.  
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Figure 1.2 Excel display of bar graph of Business Types 

In this case, creating a bar graph of the relative frequencies would 
not provide additional meaningful results. The graph would be identical 
to the above graph, except the scales on the vertical axis would be the 
relative frequencies (percentages) and not the actual frequencies. How-
ever, the relative frequencies are already known, so further benefit is not 
gained. Often it is more meaningful to plot the relative frequencies in-
stead of the actual frequencies because you can easily compare relative 
frequencies, and they are similar to probabilities.  

Using the option “plot” for the “tabulate” command in Stata dis-
plays a frequency table combined with a horizontally drawn bar chart 
(Figure 1.3). Use the ungrouped data from Table 1.2. 

tabulate businesstype, plot 

 
Figure 1.3 Stata display of tabulate with bar graph 

An alternative to this simple display is to download a subroutine, 
which is written by Stata users. One such subroutine is written by Cox,4 
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called “catplot” for creating bar graphs for categorical data (Figure 1.4). 
It is accessed by typing the following into the command line: 

 
Figure 1.4 Stata display of (horizontal) bar graph of Business Types 

ssc install catplot 

Once the software finishes downloading, and again using the data 
from Table 1.2, type the following command to create the graph: 

catplot businesstype 

It is only necessary to have the actual type of the business listed; 
Stata will calculate the frequencies. Labels and other information can be 
added to improve the readability and presentation of the graph.  

Pie Chart 

A pie chart is a graphical presentation of frequency distribution and rela-
tive frequency. In this regard, the pie chart is similar to the bar graph be-
cause one cannot differentiate between the graphs of actual and relative 
frequencies, except for the scale. Pie charts are more effective when there 
are few categories or variables; otherwise, the graph becomes cluttered.  

A circle is divided into wedges representing each of the categories or 
variables in a table. If frequencies are charted, their magnitude is placed 
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under their name. When the pie chart is based on the relative frequen-
cies instead of the frequencies, the scale will be different but not the sizes 
of the slices on the pie.  

Example 1.3 Provide a pie graph for the Business Type variable in  
Table 1.2. 

Solution 1.3 

1. Open a new spreadsheet in Excel.  
2. Use the data that you entered into Excel in Example 1.2. 
3. Go to “Insert,” which is the second tab at the top left-hand 

corner of the spreadsheet. Click on the “Pie.”  
4. Several options become available. You can select whichever pie 

shape you wish. Excel will populate a chart similar to the ones 
below (Figure 1.5).  

 
Figure 1.5 Excel display of pie charts of Business Types for soda 

dispensers 
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Notice that due to space limitation the legend is placed on the side 
in the above pie chart.  

Type the following in Stata to obtain Figure 1.6: 

graph pie, over(businesstype) 

 
Figure 1.6 Stata display of pie charts of Business Types for soda 

dispensers 

Descriptive Statistics for Quantitative Variables 

As depicted in Table 1.1 above, there are more methods available to 
describe quantitative data. Some are similar to the methods used in 
qualitative methods, but their interpretations are usually broader. 

Tabular Methods for Quantitative Variables 

There are three commonly used tabular descriptive statistics for quanti-
tative variables. They are frequency distribution, relative frequency dis-
tribution, and cumulative distribution. 
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Frequency Distribution for Quantitative Variables 

A frequency distribution shows the frequency of occurrence for non-
overlapping classes. Unlike the qualitative frequency distribution, there 
are no set and predefined classes or groups. The researcher will deter-
mine the size of each class and the number of classes. Such data are 
called grouped data. 

Definition 1.11 Grouped data refers to data that are summarized or 
organized to provide a better and more compact picture of reality. The 
grouping can be in the form of relative frequency or summarized in 
cross-tabulation tables or into classes. 

Example 1.4 An anthropologist is studying a small community of gold 
miners in a remote area. The community consists of nine (9) families. 
The family income is reported in $1,000 of dollars below. 

66, 58, 71, 73, 64, 70, 66, 55, and 75 

Group the data in a meaningful way.  

Solution 1.4 

We deliberately chose a small set to demonstrate the point better with-
out boring calculations. In practice, datasets will be much larger, and it 
would make more sense to condense the data by grouping them into 
classes. Since only one value is repeated, it does not make sense to build 
a frequency distribution; no real summary will emerge. If we divide the 
data into classes, however, we can build the frequency distribution. The 
range of data is from 55 to 75 (Table 1.5). If the researcher wishes to 
have five classes, the size of each class would be: 

− −= = =75 55Class width 4
  5

Maximum Minimum
Number of classes

 

Table 1.5 Classes and their frequencies 

Classes Frequency
55–59 2 
60–64 1 
65–69 2 
70–74 3 
75 1 
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The number of classes is arbitrary, and any reasonable number of 
classes and class widths will work. Avoid extremities and unbalanced 
classes. An unbalanced class is where the intervals covered by the groups 
do not match (e.g., 55–57 and 58–68). To avoid decimal points in clas-
ses, we added an extra class for values greater than or equal to 75. Other 
choices for number of classes or class width would be equally valid. The 
quantitative data groups can include decimal numbers; however, in this 
case, extra caution is needed to avoid overlapping the classes. 

The histogram command in Excel provides the frequency as well as 
the cumulative frequency. If the option Chart Percentage is selected 
from the histogram dialog box, the histogram and the ogive will be 
graphed too. The graph for the cumulative frequencies is called ogive. In 
carpentry, there is a molding bit for shaping the edge of the wood called 
Roman ogive. The graphs of the cumulative frequencies usually resem-
ble the finished edge of the Roman ogive molding common on quality 
furniture. 

A list of nine values has been reduced to a two-column table with 
five rows as shown in Table 1.5. The procedure would be the same for a 
larger dataset, for example, for the family incomes of the United States 
with population of over 300,000,000 people. The result can be graphed 
for more visual presentation. One such graph is called a dot plot (see 
Example 1.12). Other graphs such as a histogram are also available (see 
Example 1.9). 

Relative Frequency Distribution for Quantitative Variables 

The relative frequency for quantitative variables is computed in the same 
way as those of qualitative variables. The frequency for each class is di-
vided by the total number of observations in the population or sample 
to obtain the relative frequency.  

Example 1.5 Table 1.6 provides the relative frequencies for the family 
incomes example in the above section.  
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Solution 1.5 

Table 1.6 Relative and cumulative frequencies of family incomes 

Class Frequency Relative Frequency Cumulative Frequency

55–59 2 0.222222222 0.222222222 

60–64 1 0.111111111 0.333333333 

65–69 2 0.222222222 0.555555556 

70–74 3 0.333333333 0.888888889 

75 1 0.111111111 1 

Cumulative Frequency Distribution for Quantitative Variables 

In the case of quantitative variables, the classes or values of interest are 
sequential and have meaningful order, usually from smallest to the larg-
est, as in the previous two examples. This allows us to obtain cumulative 
frequencies. Cumulative frequencies consist of sums of frequencies up to 
the value or class of interest. The last value is always one (1) since it rep-
resents 100% of observations. See Table 1.6.  

Percentiles 

A percentile is the demarcation value below which the stated percentage 
of the population or sample lie. For example, 17% of a population or 
sample lies below the 17th percentile. To obtain a percentile, identify 
the value that corresponds to the stated percentile. To do this, first sort 
the data and then find the index (i): 

=
100

p
i n

 

where p is the desired percentile and n is either the population or the 
sample size. When the index is an integer, add 1 to it to get the position 
of the percentile. If the result is a decimal value, use the next higher  
integer to get the position of the percentile. Note that the next higher 
integer is used not the rounded-up value. 

For example, the 17th percentile of a dataset containing 84 observa-
tions is the 15th observation of the sorted group. We find this by using 
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the above formula to get the index (i = 0.17 × 84 = 14.28). To find the 
17th percentile, we then raise the index, 14.28, to the next higher inte-
ger, 15. We conclude that the 15th observation of the sorted data marks 
the 17th percentile for a sample size of 84. 

Example 1.6 A retail store has collected sales data, in thousands of dol-
lars, for 18 weeks. Find the 80th and the 50th percentiles for weekly 
sales. 

66, 58, 71, 73, 64, 70, 66, 55, 75, 65, 57, 71, 72, 63, 71, 65, 55, and 71. 

Solution 1.6 

Sorting the combined data gives: 

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75 

The 80th percentile is obtained by: 

= × =80 18 14.4
100

i
 

Since the result is a real value (i.e., a value with a decimal), use the 
next higher integer, which is 15 in this example. The number in the 
15th position is the 80th percentile. That value is 71. Therefore, 80% of 
weekly sales are below $71,000. 

The 50th percentile is: 

= ×50 18=9
100

i
 

Since the index is an integer, use the next higher integer, namely the 
10th observation, which is 66. Therefore, 50% of weekly sales are below 
$66,000.  

Quartiles 

Quartiles divide the population into four equal portions, each equal to 
25% of the population. Like the median and percentiles, the data must 
be sorted first. The first quartile, Q1, is the data point such that 25% of 
the observations are below it. The second quartile, Q2, is the data point 
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such that 50% of the observations are below it. The third quartile, Q3, is 
the data point such that 75% of the observations are below it.  

The first quartile is the same as the 25th percentile. The second 
quartile is the same as the 50th percentile, as well as the median. The 
third quartile is the same as the 75th percentile. The quartiles are calcu-
lated the same way as the 25th, 50th, and 75th percentiles using the 
following indices. 

Use = 25
100

i n  for the first quartile. 

Use = 50
100

i n  for the second quartile. 

Use = 75
100

i n  for the third quartile. 

If the result of an index is an integer, use the next higher integer to 
find the location of the quartile. If the result of the index is a real value 
(i.e., a value with a decimal) the next higher integer will determine the 
position of the quartile.  

Example 1.7 For the weekly sales data of the retail store in Example 
1.6, find the first, second, and the third quartiles. The data are repeated 
for your convenience. 

66, 58, 71, 73, 64, 70, 66, 55, 75, 65, 57, 71, 72, 63, 71, 65, 55, and 71. 

Solution 1.7 

The three quartiles are calculated using the following indexes. 

= × =25 18 4.5
100

i  the first quartile is in the 5th position. 

= × =50 18 9
100

i  the second quartile is in the 10th position. 

= × =75 18 13.5
100

i  the third quartile is in the 14th position 

Sort the combined data. 

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75 

Q1 Q2 Q3 
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Stata provides a detailed output for preset percentiles. See Figure 1.7 
for output showing Stata’s preset percentiles. Obtaining other percen-
tiles is tedious and not worth the effort in this software. The Stata 
command is displayed: 

summarize varlist, detail 

Varlist is used as a placeholder to indicate where you should place 
the name of the variable (or variables) which you wish to summarize. 
This is a common practice in Stata help files (Figure 1.7). 

 

Figure 1.7 Stata display of summary statistics 

Hinges 

Hinges also divide the data into four equal portions. The hinges, how-
ever, use the concept of the median. To obtain hinges, first sort the data 
then find the median as in examples 1.5 and 1.6. Find the median of the 
lower half and call it the llower hinge. Find the median of the second 
half and call it the uupper hinge.  

Example 1.8 For the weekly sales data of the retail store in Example 1.6, 
find the lower and upper hinges.  
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Solution 1.8 
Sort the combined data. 

55, 55, 57, 58, 663, 64, 65, 65, 66, 66,, 70, 71, 71, 771, 71, 72, 73, 75 

lower hinge Median upper hinge 

Graphical Methods for Quantitative Variables 

The numbers of available graphical methods for quantitative variables 
far exceed the number of graphical methods available for qualitative 
variables. Here, we will address histograms, ogive, stem and leaf, dot 
plot, scatter plot, and box plot. Box plot uses some of the concepts that 
are introduced in Chapter 2. 

Histogram 

A histogram is a graphical representation of the frequency distribution or 
relative frequency distribution of quantitative data. The boundaries of the 
classes are used for the demarcation of the vertical bars. A histogram and a 
bar graph are identical except quantitative values are used in the histogram 
on the X-axis compared with qualitative values for a bar graph.  

Example 1.9 The following data represent incomes of gold miners in a 
small community (this is the same data used in Example 1.4). The cor-
responding histogram follows (Table 1.7). 

Table 1.7 Histogram and related setup in Excel 

Classes Frequency 
55–59 2 
60–64 1 
65–69 2 
70–74 3 
>75 1 

Solution 1.9 

1. For many of the exercises in this class, you will need to use the da-
ta analysis tools add-in in Excel. If you have not already done so, 
you will need to access the add-in using either step 2 or 3 below. 

2. For PCs, go to “file,” “options,” and “add-ins.” In the “manage” 
drop-down list, select “Excel Add-ins” and in the dialog box  
select “Analysis Toolpak.” 
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3. For Macs, you will need to go to http://www.analystsoft.com/en/ 
products/statplusmacle/download.phtml to download StatPlus. 

4. If you have problems with the installation, see “Analysis Took-
pak” in Microsoft Support for more help. 

5. Enter the data from Example 4.1 into a new spreadsheet in Excel. 
6. In Column B, you will enter the bin range, which are the de-

marcation points for each group. In cell B1, type 59, followed 
in the cells below by 64, 69, and 74. 

7. Click on the “Data” tab, then “Data Analysis” in the Analysis 
group. Select “Histogram.” 

8. In the dialog box, Column A should be entered as the input 
range and Column B as the Bin Range. 

9. Before clicking “ok,” check the box that says “Chart Output.” 
10. Excel will populate a table and chart similar to the ones below 

(Figure 1.8). 

 
Figure 1.8 Histogram Output from Excel 

The above graph can represent the relative frequencies, too. Only 
the unit of measurement on the Y-axis will differ. 

Ogive 

In Excel the ogive is obtained from the histogram dialog box by select-
ing the cumulative percentage option. 

Example 1.10 For the nine incomes of the community of gold miners, 
graph the frequency, relative frequency, and cumulative frequency. 

66, 58, 71, 73, 64, 70, 66, 55, and 75. 
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Solution 1.10 

The frequency, relative frequency, and cumulative frequency for these 
data are given in Table 1.8. 
 

Table 1.8 Frequency, relative frequency, and cumulative frequency 

Class Frequency 
Relative 
Frequency 

Cumulative 
Frequency 

55–59 2 0.222 0.222 
60–64 1 0.111 0.333 
65–69 2 0.222 0.555 
70–75 4 0.444 0.999 

 
The ogive gives the cumulative area under the relative frequency his-

togram (Figure 1.9). 

 

Figure 1.9 Ogive superimposed on a histogram 

Stem and Leaf 

Stem and leaf is another descriptive way of summarizing information. 
Tukey introduced the concept of the stem and leaf.5 Some authors place 
stem and leaf under exploratory data.6 

In the stem and leaf, usually the last digit of a value is recorded as the 
leaf and is placed after the first value which is called a stem. A vertical  
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line for easy visualization separates the leaves and stems. To create a 
stem-and-leaf display, place the first digit(s) of each observation to the 
left of a vertical line. Place the last digit of each observation to the right 
of the line. The leaf for each observation that shares a stem is placed on 
the same row (see Figure 1.10). 

Example 1.11 Provide a stem-and-leaf graph for the gold miners’ data. 

66, 58, 71, 73, 64, 70, 66, 55, and 75. 

Solution 1.11 

5  8 5 

6  6  4  6 

7  1  3  0 5 

Figure 1.10 Stem-and-leaf graph 

Notice that the result resembles a rotated histogram. If the data for 
each leaf are also sorted, a better summary is obtained, as in Figure 1.11. 

5  5 8  

6  4  6  6 

7  0 1  3  5 

Figure 1.11 Sorted stem-and-leaf graph 

If the numbers are too large, the first two or more digits could be 
placed on the left side. The idea is to select the digits in a manner that 
makes the summary useful. Stata will display a stem-and-leaf graph of all 
values when the following command is used: stem varlist. 

Dot Plot 

The dot plot is useful when only one set of data is under consideration. 
The actual data are placed on the X-axis. For each occurrence of the 
value, a dot is placed above it. All the dots of equal frequency are at the 
same height, which has no significant meaning other than reflecting the 
occurrence of the observation. In the case of multiple occurrences, addi-
tional dots are placed above the previous ones. The dots are placed at 
equal distances for visual as well as representation purpose.  
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Example 1.12 Provide a dot plot for the gold miners’ data (Figure 1.12): 

66, 58, 71, 73, 64, 70, 66, 55, and 75. 

Solution 1.12 

 

Figure 1.12 Dot plot 

A dot plot resembles an exaggerated histogram. Stata uses the com-
mand “dotplot” followed by the name(s) of variable(s) to display a dot plot. 

Scatter Plot 

An observant reader would notice that all the previous examples have 
been based on only one variable with numerous classifications and cate-
gories. In economics and many other branches of science, it is also bene-
ficial to present graphics of two or more variables. Scatter plots are one 
visual method of presenting several variables graphically, as two or more 
variables can be combined into one graph.  

Example 1.13 Graph a scatter plot of annual income and consumption 
for the United States (in billions of dollars) for years 1990 through 2014 
using the data from Table 1.9. 

Solution 1.13 

To obtain a scatter plot, type the information from Table 1.9 in an Excel 
spreadsheet. 

1. In cell A1 type “I” for Income followed by the income data 
from the second column in Table 1.9.  

2. In cell B1, type “C” for Consumption followed by consump-
tion data from the third column in Table 1.9.  

3. Highlight cells A1 through B22. Go to “Insert,” which is the 
second tab on the top left hand corner of the spreadsheet; 
choose “Charts.”  
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Table 1.9 Annual income (I) and consumption (C) in the United 

States, 1990–2014 

Year I C 
1990   4,904.5   3,825.6 

1991   5,071.1   3,960.2 

1992   5,410.8   4,215.7 

1993   5,646.8   4,471.0 

1994   5,934.7   4,741.0 

1995   6,276.5   4,984.2 

1996   6,661.9   5,268.1 

1997   7,075.0   5,560.7 

1998   7,587.7   5,903.0 

1999   7,983.8   6,307.0 

2000   8,632.8   6,792.4 

2001   8,987.1   7,103.1 

2002   9,149.5   7,384.1 

2003   9,486.6   7,765.5 

2004 10,048.3   8,260.0 

2005 10,609.3   8,794.1 

2006 11,389.0   9,304.0 

2007 11,994.9   9,750.5 

2008 12,429.6 10,013.6 

2009 12,087.5   9,847.0 

2010 12,429.3 10,202.2 

2011 13,202.0 10,689.3 

2012 13,887.7 11,083.1 

2013 14,166.9 11,484.3 

2014 14,733.9 11,930.3 

Sources: Bureau of Economic Analysis, National Income and Product Account Tables: Table 2.1. 
Personal Income and Its Disposition and Table 2.3.5. Personal Consumption Expenditures by 
Major Type of Product.  

 

4. Click on “Scatter,” which will reveal several options. Select the 
option at the top left to obtain a graph similar to Figure 1.13.  

5. Examine different options for different effects.  
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Figure 1.13 Excel display of scatter plot of income–consumption for 

United States, 1990–2014 

Stata provides numerous options for plotting two or more variables 
in a scatter plot. The simplest form consists of the command “scatter” 
followed by the names of two variables. 

The graph depicted in Figure 1.14 is by no means the extent of possi-
ble ways to represent data, for either qualitative or quantitative variables. 
Many other imaginative ways can be used, some of which are available in 
popular software such as Excel or dedicated software such as Stata.  

Box plot 

A box plot is a visual representation of several descriptive statistics in a con-
cise manner. Some of the descriptive statistics that are used in a box plot 
and not explained yet will be explained in Chapter 2. In a box plot, the  
box visually demonstrates the 25th to 75th percentiles, while a vertical line is 
used to represent the median (see Figure 1.12 for an example). The graph 
consists of one box per variable. To form a box plot, draw a box connecting 
the first and third quartiles, the 25th and the 75th percentiles, respectively. 
The height of the box is arbitrary. Draw a vertical line at the median to di-
vide the box. Draw lines from the first and third quartiles to data points on  
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the extreme left and extreme right, but do not extend them to the ooutliers. 
These lines are called wwhiskers. Whiskers, extend from the edges of the box  
to the adjacent values, capped by an aadjacent line.7 The values further  
away from the box extending past the adjacent lines in either direction are 
called ooutside values or ooutliers. An outlier is defined as any value that 
exceeds 1.5 times the interquartile range to the left of the first quartile or to 
the right of the third quartile.  

 
Figure 1.14 Stata display of scatter plot of income–consumption for 

United States, 1990–2014 

Example 1.14 Use the data from Table 1.2 to obtain the box plot of 
income by the type of business and by gender.  

Solution 1.14 

The following graph of a box plot is created in Stata (Figure 1.15). Note 
that there are no outliers for any of the average weekly sales data for any 
of the Business Types.  
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Figure 1.15 Stata display of a box plot of income by location by gender 



 

CHAPTER 2 

Numerical Descriptive 
Statistics for Quantitative 

Variables 

Introduction 

One of the purposes of descriptive statistics is to summarize the infor-
mation in the data for a variable into as few parameters as possible. 
Measures of central tendency provide concise summaries of a population. 
They are also called measures of location as in Table 1.1 in Chapter 1. 
Measures of central tendency are addressed first. However, they are of-
ten not enough to provide the full picture of reality, as will be demon-
strated when the concept of variance is introduced shortly. The addition 
of measures of dispersion, such as the variance, provides a more complete 
picture of reality. Measures of dispersion are followed by measures of 
association.  

Measures of Central Tendency 

This section discusses statistics that represent information about the 
nucleus of data. 

Mean 

The arithmetic mean, or simply the mean, is the most commonly used 
descriptive measure. Other names for the mean are the average, mathe-
matical expectation, and the expected value. This section deals with raw 
or ungrouped data. 
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Arithmetic Mean 

The arithmetic mean is the representative or typical value that represents a 
population. The mean is the sum of all the elements in the population 
divided by the number of the elements. 

1

N

i i

X

N
μ ==
�

 (2.1) 

The symbol �, pronounced mu, is used to represent the population 
mean. The symbol � , called capital sigma, represents the sum of the 
values for a variable. The subscript “i” represents observations 1 through 
N. When there is no ambiguity, the index and subscripts are not included: 

( )μ
�

=
X

N
 (2.2) 

The population mean is a parameter and provides information about 
the central tendency of the data. The mean is susceptible to extreme values. 
Since all values of the population are used in calculation of the mean, a sin-
gle very large or very small value can have a major impact on the mean. This 
is not quite as important in the case of a population as it is with samples. 

Sample Mean  

The sample mean is the sum of the sample values divided by the sample 
size. 

� ( )X
X

n
μ �

= =  (2.3) 

Both, �,μ  pronounced mu-hat, and ,X  pronounced x-bar, are 

commonly used in the literature to represent the sample mean. Both are 
widely accepted. However, �μ has several advantages over X . First it 

reduces the number of symbols that one has to learn in half. The popu-
lation parameter is μ  and its estimate is �μ . Second, it eliminates guess-

ing which statistic represents a particular population parameter. Third, 
it provides a reasonably simple rule to follow. Population parameters are 
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represented by Greek letters, and sample statistics are represented by the 
same Greek letter with a hat on it. 

Definition 2.1 A statistic is a numeric fact or summary obtained from a 
sample. It is always known, because it is calculated by the researcher, 
and it is a variable. A statistic is also used to make inferences about the 
corresponding population parameter.  

Example 2.1 An anthropologist is studying communities of gold miners 
in a remote area. She selects nine (9) families at random from a com-
munity. The family income is reported in $1,000 of dollars below. Find 
the sample mean. These data are hypothetical but plausible.  

66, 58, 71, 73, 64, 70, 66, 55, and 75 

Solution 2.1 

We use these data to show computational detail. A careful reader would 
remember that the same data were used in Example 1.4 but with a ma-
jor difference. There, the data were presented as population data. The 
idea of a small community with nine families is acceptable but a sample 
of nine is more plausible. We use the same data to avoid wasting time 
entering new data and we limit data size to avoid tedious computations. 
The sample mean is as follows: 

� 66 58 71 73 64 70 66 55 75 598 66.444
9 9

Xμ + + + + + + + += = = =  

The expected income of a family from this sample is $66,444.44. 
This statistic is an estimate of the population parameter �. 

The procedure for obtaining the population mean is the same. How-
ever, there is a major conceptual difference between the sample mean and 
population mean, as between any statistic and the corresponding parame-
ter. The former is a variable, while the latter is a constant. In actual  
research we seldom, if ever, know population parameters, which necessi-
tates collecting samples and obtaining sample statistics to make inferences 
about the unknown population parameters. It is possible to have small 
population, for example, the population can consist of the two children in 
a household; but usually they are of little use in economic studies.  
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If one of few extreme members of the population appears in a sam-
ple, especially a small sample, the impact will be detrimental. If the 
sample mean is erroneous, the estimate of the population mean will be 
misleading.  Irrespective of what values appear in the sample, the sample 
mean does provide an unbiased estimate of the population mean, pro-
vided the sample points are taken at random, a point which will be ad-
dressed in more detail in Chapters 5 to 7.  

Example 2.2 The closing stock prices for Wal-Mart and Microsoft from 
May 21 to July 2, 2015 are provided in Table 2.1. We will use these 
data in many of the examples in this book.  

 
Table 2.1 Closing stock prices for Wal-Mart (WMT) and Microsoft 

(MSFT) May 21 through July 2, 2015 

Date MSFT WMT Date MSFT WMT

5/21/2015 47.42 76.11 6/12/2015 45.97 72.43 

5/22/2015 46.9 75.86 6/15/2015 45.48 71.93 

5/26/2015 46.59 74.9 6/16/2015 45.83 72.35 

5/27/2015 47.61 75.19 6/17/2015 45.97 72.73 

5/28/2015 47.45 74.84 6/18/2015 46.72 72.98 

5/29/2015 46.86 74.27 6/19/2015 46.1 72.74 

6/1/2015 47.23 74.73 6/22/2015 46.23 72.79 

6/2/2015 46.92 74.53 6/23/2015 45.91 72.57 

6/3/2015 46.85 74.89 6/24/2015 45.64 72.38 

6/4/2015 46.36 74.15 6/25/2015 45.65 71.86 

6/5/2015 46.14 73.06 6/26/2015 45.26 72.12 

6/8/2015 45.73 72.61 6/29/2015 44.37 71.42 

6/9/2015 45.65 72.47 6/30/2015 44.15 70.93 

6/10/2015 46.61 72.93 7/1/2015 44.45 71.88 

6/11/2015 46.44 72.94 7/2/2015 44.4  71.86 

 
Find the (sample) average price for Wal-Mart for the period from 

June 12 to July 2, 2015. 
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Solution 2.2 

� ( ) 1082.97 $72.20
15

X
X

n
μ �

= = = =  

From the data verify that the mean for the period from May 21 to 
June 11, 2015 is $74.23. This indicates that on average the price of the 
Wal-Mart stock has been falling between May 21 and July 2, 2015. 

Example 2.3 Suppose the researcher in Example 2.1 samples incomes 
from another community; see below. Calculate the sample mean of their 
incomes. 

65, 57, 71, 72, 63, 71, 65, 55, 71 

Solution 2.3 

� 590 = 65.5555
9

Xμ = =  

The sample mean changed since it is a statistic, which is a variable. 
This sample mean provides another estimate of the population mean �. 
The mean of the combined samples of incomes of miners can be  
obtained using the individual data from the two groups. 

� 1188= 66
18

Xμ = =
 

The same result can be obtained from the previously calculated sample 
means. 

� 66.4444 65.555= 66
2

Xμ += =
 

In this case, the sample sizes are equal, so simple arithmetic average 
works. When sample sizes differ, the weighted average is used, where the 
weights would be the corresponding sample sizes. 

Trimmed Mean  

Trimmed mean is a modification of the mean. It is used when there are 
unusually high or low observations in the data. Such data are also called 
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outliers and their exclusions provide more meaningful and representative 
statistics. The sample data are sorted and a given percentage, say 5%, of 
the top and the bottom of the data are discarded, and the regular mean 
is calculated for the remaining data. The trimmed mean is less suscepti-
ble to extreme values. 

Geometric Mean  

The geometric mean is useful when the values change in geometric pro-
gression instead of arithmetic progression, as is the case with growth rates 
or interest rates. The geometric mean is calculated using the following 
formula. 

= 1 2G.M ...N
NX X X  (2.4) 

The formula can be expressed using logarithm to avoid taking the 
nth root, as shown in the next section. This was more important before 
the advent of powerful calculators. The logarithmic formula is a linear 
sum of its elements. 

Example 2.4 Assume that a new company grew at 28% the first year, 
15% the second year, and 13% the third year. What is the rate of the 
growth of company? 

Solution 2.4 

Note that at the beginning of each year, the following amounts are 
available.  
 

End of  Growth Rate 
Year 1 28% = (100 + 100 × 0.28) = 128 

Year 2 15% = (128 + 128 × 0.15) = 147.2 

Year 3 13% = (147.2 + 147.2 ×0.13) = 166.336 

 
Therefore, $100 will grow to $166.336 over 3 years at the above 

growth rates for each year. The geometric mean for the growth rate over 
3 years is  

= × × = =33G.M 1.28 1.15 1.13 1.66336 1.184846  



 NUMERICAL DESCRIPTIVE STATISTICS FOR QUANTITATIVE VARIABLES 37 

 

The growth rate is (1.184846 � 1) × 100 = 18.4846%. Therefore, 
$100 will grow to $166.336 over 3 years at this rate as well, which is the 
case as seen below: 

End of  
Total at the End of Period 

Using Actual Rates Using the Average Rate 
Year 1 28% (100 + 100 × 0.28)  

= 128 
18. 4846%  (100 + 100 × 0.1848) 

= 118.48 
Year 2 15% (128 + 128 × 0.15)  

= 147.2 
18.4846 % (118.48 + 118.48  

× 0.1848) = 140.39 
Year 3 13% (147.2 + 147.2 × 0.13)  

= 166.336 
18.4846 % (140.39 + 140.39  

× 0.1849) = 166.336 

In the case of the average growth rate, the same result is obtained if 
the rate is raised to power 3: 

= 100 × (1 + 0.184846)3 = 166.336 

The expression for calculating the geometric mean in Excel is given 
below: 

= geomean(range) 

where the range is any valid Excel range. Make sure the above data are 
entered as 128, 115, and 113 but not as 28, 15, and 13. In Stata, the 
following command will display arithmetic, geometric, and harmonic 
means. In addition, it will display their 95% confidence intervals. The 
level of confidence can be modified.  

ameans varlist 

Remember that you should enter in your variable name instead of 
varlist. The result of command ameans in Stata is displayed in Figure 2.1. 
In addition to each mean a 95% confidence interval is also provided.  

 

Figure 2.1 Stata display of arithmetic, geometric, and harmonic means 
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Expressing Geometric Mean in Logarithmic Form 
Since the elements of the geometric mean are multiplicative, it can be 
expressed in natural logarithm form as in Equation (2.5). 

( ) ( ) ( ) ( ) ( )
=

+ +
= =� 1 2

1

...+1
. .

n
n

i
i

Ln X Ln X Ln X
Ln G M Ln X

n n
 (2.5) 

To verify the result using the natural logarithm, use the built-in nat-
ural log equation in Excel. In three empty cells, enter the following: 

=ln(1.28) Excel will display 0.24686 
=ln(1.15) Excel will display 0.139762 
=ln(1.13) Excel will display 0.122218 

Calculate the arithmetic mean of the resulting values. 

(0.24686 + 0.139762 + 0.122218)/3 = 0.169613 

This value is in natural logarithm. Take the antilogarithm by raising 
the number “e” to the power of 0.169613 to obtain the correct number. 

= exp(0.169613) Excel will display 1.184846 

This is the formula for compound interest. To generalize, let P0 be 
the initial investment, Pn the amount after n years, and r the interest rate 
or the rate of growth. 

Pn = P0(1 + r)n (2.6) 

In the above example, the ending value is known to be Pn = 166.336, 
the beginning value is P0 = 100, and n = 3. The (average) rate of growth is 

166.336 = 100(1 + r)3 

+ = =3(1 ) 1.66336 1.18484r   

r = 1.18484 − 1= 0.1848 

The geometric mean is also the proper mean when dealing with the 
ratio of items.  

Example 2.5 The ratio of the average income in a country to the price 
of an average car is 4 in year one and 5 in year two. What is the average 
ratio of income to the price of a car?  
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Solution 2.5 

Since the average of the ratios of prices to incomes is of interest using the 
arithmetic mean would be incorrect. The correct statistic for the geo-
metric mean is obtained with 

4 5 20 4.472136× = =   

The average income is 4.47 times the price of average car. The aver-
age of the ratio of the average price to average income is given by 

1 1 0.2 0.025 0.05 0.223607
4 5

× = × = =
 

The geometric mean of the ratio of income to the price of car is the 
same as the reciprocal of the geometric mean of the price of car to income.  

Harmonic Mean 

Monetary policy must be transparent and stated policies must be pur-
sued in order for rational expectations to be formed and to maintain 
economic stability.1 Therefore, when the Federal Reserve Bank an-
nounces a target interest or exchange rate, it should strive to achieve and 
maintain that rate. Economic conditions change, so the actual interest 
or exchange rate fluctuates over time. In order to maintain the desired 
rate, the government must change the rate several times over the target-
ed period. To maintain the targeted rate over a period, it is necessary to 
have the average of the actual rates be equal to the targeted rate. This is 
achieved by using the harmonic mean. The harmonic mean is calculated 
using the following formula: 

=

=
+ + +�

1 21 1

H.M= 1 1 11 ...
N

Ni

N N

X X XX

 (2.7) 

The harmonic mean is the reciprocal of the arithmetic mean of the 
reciprocal of the values. 

Example 2.6 A salesman travels to another city to meet a client. To 
make sure he does not miss the appointment, he drives at 90 miles per 
hour. After the meeting, he returns more leisurely at 45 miles per hour. 
What is his average speed?  
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Solution 2.6 

The average speed is not (90 + 45)/2 = 67.5 miles per hour.  For sim-
plicity, assume he traveled 90 miles; any other value will work as well.  

Time while going = =90 1
90

 

Time while returning = =90
2

45
 

Total travel time = 1 + 2 = 3 

Average speed += = =
+

90 90 60miles per hour
1 2

distance
time

 

The harmonic mean will give the correct answer where the arithme-
tic mean failed.  

2 2 2 90
H.M= 60miles per hour1 1 1 2 3

90 45 90

×= = =++  

Using the traveled distance, verify that it would not have taken 3 
hours to travel 180 miles as suggested by 67.5 miles per hour obtained 
by the arithmetic mean. Using the ameans command in Stata introduced 
in Example 2.4 provides the following output. 

 

Figure 2.2 Stata display of arithmetic, geometric, and harmonic Means 

The Excel command is 

=harmean(range) 

where “range” is any valid Excel range holding the data. 

Rule 2.1 

When n = 2, the geometric mean is equal to the square root of the 
arithmetic mean times the harmonic mean. 

( )( )G.M.= A.H. H.M.  (2.8) 
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Relationship between Arithmetic, Geometric, and Harmonic Means  

H.M.  G.M.  A.M. (2.9) 

The equality sign holds only in the trivial case when all sample val-
ues are identical. 

Mean of Data Summarized as Frequencies  

The expanded presentation of arithmetic mean will be informative. 

1 2 1 2
1 2

1 1

1

N N

N

X X X XX X
X X

N N N N N N

X
N

μ + + +
= = + + + = +

+ +

� �

�
 (2.10) 

The mean is the sum of 1/Nth of each observation. In other words, 
each observation gets a weight equal to 1/Nth of the total number of 
observations. Sometimes, each value might have a different weight, say, 
f1, f2, … fN  for each of X1, X2, … , XN. In that case the mean is expressed 
in terms of frequencies of each value. 

1 1 2 2  N Nf X f X f X f Xμ Σ= + + … =  (2.11) 

Note that the sum of relative frequencies is ( )Σ =1 1f  and, hence, 

is not written. In general, the formula for the frequencies would be 

μ + + +
=

+ + +
1 1 2 2

1 2

...
...

N N

N

f X f X f X
f f f  (2.12) 

The formula for the population mean is 

μ =

=

=
�

�

1
1

1

N

i
i

N

i
i

f X

f
 (2.13) 

The formula for the sample mean is similar. 

� 1

1

n

i i
i

n

i
i

f X

f
μ =

=

=
�

�
 (2.14) 

≤ ≤
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Weighted Mean  

The weighted mean is similar to the mean using relative frequencies, 
except that the sum of weights need not add up to one.  

μ + + +
=

+ + +
1 1 2 2

1 2

...
...

N N

N

w X w X w X
w w w

 (2.15) 

Example 2.7 Refer to Examples 2.1 and 2.3 regarding the incomes of 
gold miners from two samples.  

66, 58, 71, 73, 64, 70, 66, 55, and 75 

65, 57, 71, 72, 63, 71, 65, 55, and 71 

List the data according to incomes and their frequencies in a table. 
Use the number of cases, which is the same as frequencies in this exam-
ple, as weight and calculate the weighted average.  

Solution 2.7 

Tabulation of the data is exactly the same as in frequency tables, except 
the number of occurrences of incomes is named weights instead of fre-
quencies. Recall the sample mean for the 18 family incomes is equal to  

� 1188 66
18

μ = =  

Observation Weights
55 2 
57 1 
58 1 
63 1 
64 1 
65 2 
66 2 
70 1 
71 4 
72 1 
73 1 
75 1 

Total 18 
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Adding the observations and dividing by 12 (the number of rows of 
data) will give an incorrect answer, except when the frequencies are all 
equal to 1. To obtain the correct mean, each observation must be 
weighted by the number of times it occurs. 

Note that the sum for the population is over the population size (N), 
while the sum for the sample is for the sample size (n). 

�

�

55 2 57 1 63 1 64 1 65 2 66 2 70 1 71 4
72 1 73 1 75 1

18
1188

66
18

μ

μ

× + × + × + × + × + × + × + ×
+ × + × + ×

=

= =

 

Therefore, summarizing the data in a frequency distribution does 
not affect the mean. Soon, it will be shown that it does not affect the 
variance either. The following Stata command will calculate the 
weighted mean for tabulated data. The command can be used to obtain 
the mean when the weights are actually frequencies. Note that the 
weights could be values other than frequencies such as the case of calcu-
lating the grade point averages where the weights are the credit hours 
and not the frequencies. The data points are named “observation” and 
their frequencies are named “weights.” 

mean observation, stdize (observation) stdweight(weights) 

 

Figure 2.3 Stata display of output for weighted average 

The following Stata command will also compute the weighted aver-
age: 

sum observation [fw= weights], detail 
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Mean of Grouped Data 

Often, the data are available only after being summarized in tables of 
grouped data making it impossible to obtain statistics using the methods 
discussed so far. Grouped data provide condensed information about 
the population without requiring knowledge of statistics. With a slight 
modification of the previous formulas, one can calculate the appropriate 
statistics.  

The formula for the mean of the population grouped data is 

fM
f

μ �=
�  (2.16) 

The formula for the mean of the sample grouped data is 

� fM
f

μ �=
�

 (2.17) 

where “M” is the midpoint of each class. Once again, the only apparent 
difference between the population and sample formulas is in the number of 
elements and where they originate; however, the former produces a param-
eter, while the latter produces a statistic. The mean for grouped data is the 
same as the weighted mean where the weights are the frequencies. Each 
value is given a weight equal to its number of occurrences or its frequency. 

Example 2.8 Group the data from Example 2.7 into four groups each 
representing 5-year intervals. Calculate the mean using the grouped data. 

Solution 2.8 

Classes Frequency M 
55–59 4 57 
60–64 2 62 
65–69 4 67 
70–75 8 72.5 

� 4 57 2 62 4 67 8 72.5
18

228 124 268 580 66.6667
18

μ × + × + × + ×=

+ + += =
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The result has changed slightly. Other groupings will result in dif-
ferent calculated means. The lack of accuracy is due to lack of precise 
information about the actual magnitude of each observation. The Stata 
command for weighted average is applicable here as well. 

Median 

Fifty percent of observations are below the median. The median is the 
value in the middle of sorted data. When there is an even number of 
observations, use the average of the two numbers in the middle for the 
median. Customarily the letter M is used to designate the median. The 
median is the same as the 50th percentile, as well as the second quartile. 

Example 2.9 Refer to Example 2.7. Calculate the median for each 
community separately. Then find the median for the combined data.  

Solution 2.9 

Sort the incomes for each community; pick the income in the middle. 
The medians are 66 and 65, respectively, and are shown in boldface 
numbers.  

55, 58, 64, 66, 666, 70, 71, 73, 75 

55, 57, 63, 65, 665, 71, 71, 71, 72 

The median of combined samples cannot be obtained from the sepa-
rate component sample medians. Therefore, it is necessary to combine 
the two sets and sort them first.  

55, 55, 57, 58, 63, 64, 65, 65, 66, 66, 70, 71, 71, 71, 71, 72, 73, 75 

Since there is even number of observations in the combined data, 
the median is (66 + 66)/2 = 66 

Although there is not a specific command in Stata to obtain the me-
dian, the command “summarize” provides the 50th percentile, which is 
the same as the median. To obtain the median in Excel, type the follow-
ing and include an acceptable range, usually several cells in a column. 

=median(range) 
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Mode 

The mode is the most frequent value of a population or a sample. A popu-
lation, or a sample, may have more than one mode or no mode at all. If all 
members of the population occur equally frequently, there is either no 
mode or every element is a mode.  If there are two modes, it is called bi-
modal. When the incomes of men and women are measured, there are 
two, usually distinct, modes, one for men and another for women. 

Example 2.10 For the data in Example 2.7, obtain the mode for the 
incomes of the two communities.  Find the mode for the combined data 
as well. 

Solution 2.10 

The mode for the first community is 66, and for the second community 
it is 71. From the frequency distribution table provided in Example 2.7, 
the mode for the combined data is 71, since there are four families with 
that income. The mode for the combined population cannot be ob-
tained from the separate component population modes; therefore, it is 
necessary to combine the two sets of data. 

When the data are grouped, the mode is the midpoint of the interval 
with the greatest frequency. In this case, the range 70 to 75 is the mode. 
In a bar graph or a histogram, the tallest bar represents the modal value. 

The Stata command modes varlist will display the most frequent val-
ue for the variable. As usual, “varlist” should be replaced by the specific 
variable name. Data must be in its raw form and not tabulated as fre-
quency tables for this command to work. It might be necessary to install 
the command by clicking on the download, after typing “help modes” in 
the command line. Excel offers two functions to obtain the mode: 
mode.sngl and mode.mult. The former displays the mode, while the latter 
displays a vertical array of the more frequently occurring values in the 
designated range. 

Empirical Relationship between the Mean, Median, and Mode 

There are some interesting relationships among the three measures of 
central tendencies.  

Mean − Mode = 3 (Mean − Median) (2.18) 
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Measures of Dispersion 

Measures of dispersion are statistics that indicate how the data are scattered.  

Range 

The range (R) reflects how the data are scattered. It is calculated by sub-
tracting the minimum from the maximum. 

R = Maximum − Minimum (2.19) 

Example 2.11 For the data in Example 2.7, obtain the range for the 
combined data.  

Solution 2.11 

R = 75 − 55 = 20 

Interquartile Range 

The interquartile range (IQR) is a measure of dispersion that measures 
the distance between the first and the third quartiles.  

IQR = Q3 − Q1 (2.20) 

Example 2.12 For data in Example 2.7, obtain the interquartile range 
for the combined data.  

Solution 2.12 

Combine and sort the data. 

55, 55, 57, 58, 663, 64, 65, 65, 66, 666, 70, 71, 71,  71, 71, 72, 73, 75 

Q1 Q2 Q3 

IQR = 71 − 63 = 8 

The IQR can be used to find the “middle class” of a population or a 
sample. It gives the range containing the middle 50%.  
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Variance 

The variance is one of the more important parameters of a population 
and measures of dispersion. The concept of variance is used in many 
aspects of statistics. To demonstrate the usefulness of the variance, con-
sider the following two hypothetical samples. 

44.7778, 44.7778, 44.7778, 44.7778, 44.7778, 44.7778, 44.7778, 
44.7778, 44.7778 

And 

66, 58, 71, 73, 64, 70, 66, 55, and 75 

The means for both samples is 44.7778, but the two samples have 
different spreads. The knowledge of the mean is not sufficient to distin-
guish the two, so the variance is needed.  

The variance is the average of the squared errors. The need for the 
variance arises from the need to determine and calculate the error, which 
is an important statistical measure. Seldom, every member of the popu-
lation has the same value and if they did, statistical analysis would be 
trivial and irrelevant. Each member of the population will vary from the 
expected value by some magnitude. The deviation may be positive or 
negative depending on whether the observation is above or below the 
mean, respectively. This deviation from the mean is often referred to as 
individual error. 

Understanding and analyzing the individual errors would be difficult 
and often meaningless as there are as many individual errors as there are 
observations. Averaging individual errors would have been a reasonable 
solution, except for the fact that the average of deviations from mean  
(X − �) is always zero because the sum of individual errors (X − �) is 
always zero, a useless statistic. To overcome this problem, the deviations 
are squared to obtain: 

2( )X μ� −   

This value cannot be zero unless all observations are identical; a triv-
ial case. Since larger populations will have larger sum of squared devia-
tions, their average is calculated to enable comparison of different-sized 
populations. The result is called the variance. 

Σ
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Population Variance 

The population variance is the sum of the squares of the deviations of 
values from their mean, divided by population size. Therefore, the vari-
ance is the mean of the squared deviations (MSE), thus an average; the 
distinction is that it is the average of deviations, so it is a measure of 
dispersion not a measure of central tendency.   

( )2
2 X

N
μ

σ
� −

=  (2.21) 

The variance is also called sigma squared to reflect the fact that it is a 
squared measure. The variance reflects how much a data point deviates 
from the expected value, that is, the mean for data. The numerator, the 
sum of squares of deviations, is abbreviated as SST. 

Sample Variance 

The sample variance is the sum of the squares of the deviations of sam-
ple observations from the sample mean divided by the degrees of freedom. 
The concept of degrees of freedom is discussed in Chapter 3, although it 
will be used in explaining variance concept in the next few pages. Since 
the sample variance is a statistic, its value will change from one sample 
to another. 

�
�( )2

2

1
XX

n

μ
σ

� −
=

−
 (2.22) 

Example 2.13 Refer to the gold miners’ income data of Example 2.1. 
Calculate the sample variances of the incomes for each community. 

Solution 2.13 

The sample variance for the first community is calculated by first calcu-
lating the mean then subtracting the observation, X, from the mean (see 
column 2 below), and finally squaring the result (see column 3). The 
last step involves summing the values in column 3 and dividing by the 
number of observations minus 1. 
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Income �−(X μ ) �−(X μ ) 2

66 −0.444     0.198 

58 −8.444   71.309 

71   4.556   20.753 

73   6.556   42.975 

64 −2.444     5.975 

70   3.556   12.642 

66 −0.444     0.198 

55 −11.444 130.975 

75   8.556   73.198 

Sum   0.00 358.222 

�
�( )2

12
1

358.2222 44.7778
1 8

X

n

μ
σ

� −
= = =

−
 

Similarly, the sample variance for the second community is calculat-
ed and is equal to 

�σ =2
2 40.277778  

Verify that the variance of the combined samples is 40.23529, which 
is neither the sum of the variances of the two samples, nor the average of 
their variances. Later, the correct formula to average two variances to 
obtain the variance of the combined data will be presented in the section 
titled “Average of Sample Variances.” You should also verify that the 
sum of (X − �� �) equals zero for both samples, as expected. As shown 
earlier, the Stata command summarize varlist, detail will display the vari-
ance for all the variables. The function in Excel is 

=var.s(range) 

where “range” is a valid range of numbers. 

Standard Deviation  

The variance, population or sample, is in the square of the unit of the 
measurement of the observations; for example, if the unit of observation 
is a yard, the unit of the variance will be in yards-squared. The former is 
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a measure of length, while the latter is a measure of area. To make the 
variance comparable to the actual observations, take the square root of 
the variance. 

( )2X
N

μ
σ

� −
=  (2.23)  

The � is called the standard deviation, and is pronounced sigma. Its 
counterpart is called sample standard deviation, which is denoted by �,σ  
pronounced sigma hat.  

�
�( )2

1
XX

n

μ
σ

� −
=

−
 (2.24)  

The standard deviation represents the average error of a population 
or sample. The standard deviation is a measure of risk, too. It reflects 
how much, on average, a data point deviates from the expected value, 
that is, the mean of the data. 

The standard deviation is the statistical “yardstick” that allows com-
parison of dissimilar entities. To measure the length of a room, you 
place a yardstick at the beginning of the room, mark the end of the 
yardstick, move to the mark and place the yardstick, mark the end of the 
yardstick, and so on until the entire length is covered. In other words, 
you divide the length of the room by the length of the yardstick, and the 
result will be a value in terms of the yard. The divisor provides the unit 
of measurement. Hence, the unit of measurement of standardized values 
is the standard deviation. 

The Standard Deviation of the Sample Mean  

When the value under consideration is the sample mean, its distribution 
is explained by the sampling distribution of the sample mean, a topic 
which is covered in Chapter 5. For the time being, we will simply pro-
vide the relationship without background information. 

� �

2
2Var( )

nμ
σμ σ= =  (2.25) 
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If the population variance is not known, replace it with the sample 
variance. 

��
�

� �2
2( )Var

nμ
σμ σ= =  (2.26)  

where 2σ  is the population variance and �2σ  is the sample variance. 

Definition 2.2 The square root of the variance of the sample mean is 
called the standard deviation of the sample mean. 

Definition 2.3 When the expected value is a sample statistic such as 
sample mean instead of a parameter such as population mean, the result-
ing standard deviation is called the standard error.  

Note the distinction between the standard deviation of a sample and 
the standard deviation of sample means. In the case of the former, one 
sample is taken and its standard deviation is calculated. In the case of the 
latter, many samples are taken, their means are calculated, and the stand-
ard deviation for those means is calculated. The standard error is an alter-
native name for this latter concept. Another important point that causes 
confusion is the way the standard error is obtained. Although only one 
sample is taken to estimate the sample standard error, the calculated value 
represents the standard deviation of a distribution function of the sample 
means, a concept that is explained in more detail in Chapter 5. 

Error 

In statistics, error is the amount by which each data point misses the 
expected value or the average. To avoid using error for two different 
things, �, or the standard deviation, is called the error and �2, the  
variance, is referred to as mean squared error (MSE). The term MSE is 
usually used in situations where part of the variation in the data can be 
explained by a trend line, treatment effect, block effect, etc. and the  
remaining unexplained portion is called MSE. The term variance is 
more commonly used for the population variance, when no portion of it 
could be explained by other factors.  
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The expected value is the parameter that represents the population. 
The actual observations deviate from their mean due to random error, 
which cannot be explained. In statistics, this is called the error. The error 
is the portion of the total variation that cannot be explained. The error 
is not necessarily a fixed amount. It is the amount not explained by the 
given tool; change the tool and the error will change. 

Some Algebraic Relations for Variance 

Two important relationships are used in dealing with variances and are 
worth reviewing.  
 

1. The variance of constants is zero. Given a constant “C,” then 

Var (C) = 0 (2.27) 

2. The variance of a constant multiple of a variable is equal to the 
square of the constant times the variance of the variable. 

Var (CX) = C2 Var (X) (2.28) 

Computational Formula (Shortcut) 

The definitional formula for variance may result in lots of rounding 
during computation, especially for a large population or sample, and 
cause an erroneous difference. When the estimated mean is an irrational 
real number, deviations from it will also be irrational real numbers. An 
irrational real number does not have terminating or repeating decimal 
places. When this deviation is squared and added up, the small amount 
of rounding can add up and become substantial. The following formulas 
correct for this problem by not introducing rounding into the computa-
tion until the last stages when values are finally divided by the sample 
size. The computation for the population variance is 

( )2
2

2

X
X

N
N

σ

�
� −

=
 (2.29) 
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The derivation of the computational formula is relatively simple. It 
is important to point out that the letters X and N, and so on, are dum-
my notations and are used to represent a variable. Sometimes other let-
ters, such as Y and M, might be used instead. The concept is the same, 
only the notation is different. Therefore, the variance can also be written 
as follows: 

( )2
2

2

Y
Y

N
N

σ

�
� −

=
 (2.30) 

Another computational formula delays division another step. 

( )22
2

2

N X X
N

σ
� − �

=  (2.31) 

The corresponding computational formulas for the sample variance are 

�
( )2

2

2

1

X
X

n
n

σ

�
� −

=
−

 (2.32) 

This is the more commonly used formula in most texts: 

� ( )
( )

22
2

1
n X X

n n
Σ Σ

σ
−

=
−

 (2.33) 

Example 2.14 Use the family income of gold miners from Example 2.1 
to calculate the sample variance for family incomes using the computa-
tional formula.  

Income X2  
66 4356

58 3364

71 5041

73 5329

64 4096

70 4900

66 4356

55 3025

75 5625

  

598 40092
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Solution 2.14 

�
( )2 2

2

2

59840092 40092 3973.77789
1 8 8

358.2222
44.7777778

8

X
X

n
n

σ

� −� − −= = =
−

= =

 

Or 

� ( )
( )

22
2 9 40092 357604 44.7777778

1 9 8
n X X

n n
σ

� − � × −= = =
− ×

 

In this example, the choice of the formula did not make any differ-
ence in the accuracy of the results because there was not much of round-
ing off to begin with. 

Average of Several Variances 

Sometimes it is important to average several variances. Suppose two or 
more samples are taken from the same population and estimated (sample) 
variances are obtained. In order to gain a better estimate of the popula-
tion variance, all the variances should be averaged. If the sample sizes are 
the same, a simple average will provide the desired mean. If sample sizes 
are different, however, the observations, which in this case are the vari-
ances, should be weighted. The logical weights are the sample sizes. 
When estimating variances, sample sizes are replaced by degrees of free-
dom. This weighted mean of variances is usually called a “pooled” vari-
ance. Recall that the formula for the weighted mean is 

1 1 2 2

1 2

...
...

N N

N

w X w X w X
w w w

μ + + +
=

+ + +
 (2.34) 

Since we are dealing with pooled variances, and since we use the hat 
symbol for sample statistics, we will use the commonly used symbol 2 .pooledσ  

The weights 1 2( , ,..., )w w w  are degrees of freedom (ni − 1), and the Xs are 

the sample variances, � � �2 2 2
1 2, ,..., ,kσ σ σ  where 1 2, ,..., kn n n  are sample sizes. 

The formula for the case of two sample (estimated) variances is 
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� ( )� ( )�
( ) ( )

2 2
2 1 2 22

1 2

1 1
1 1pooled

n n
n n

σ σ
σ

− + −
=

− + −
 (2.35) 

Repeat the pattern for averages of three or more sample variances. 
The case when samples are from different populations is discussed in 
Chapter 5.  

Example 2.15 Calculate the weighted variance for the variances of the 
Microsoft stock prices between May 21 to June 11 and June 12 to July 
2, 2015 from Example 2.2.  

Solution 2.15 

We already have the following results: 

�2
1 0.348735σ =  �2

2 0.614498σ =  

Since the two samples are from the same company and same year, it is 
likely that the population variance has not changed and these are two esti-
mates of the same variance. Therefore, the two sample variances should be 
pooled.  We also know that the sample size for each sample is 15. 

� ( )� ( )�

( )( ) ( )( )

2 2
1 1 2 22

1 2

1 1
1

15 1 0.348735 15 1 0.614498
15 15 2

4.88229 8.602969 13.48526 0.48
28 28

pooled

n n
n n
σ σ

σ
− + −

=
+ −

− + −
=

+ −
+= = =

 

In this and similar examples, when the sample sizes are the same, the 
outcomes of using the weighted average and simple arithmetic average 
will be the same. 

Variance of Data with Frequencies 

Earlier, the method of obtaining a mean for data presented in a frequen-
cy table was shown. In a similar way, the variance of data from a fre-
quency table can be obtained. The formula for the population variance 
for the frequency distribution is 
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( )2
2 f X

f
μ

σ
� −

=
�

 (2.36) 

The formula for the sample variance for the frequency distribution is 

� ( )2
2

1
f X

f
μ

σ
� −

=
� −

 (2.37) 

where “f ” represents the frequency of each variable. The limit of “� ” 
for a population is “N,” while that of a sample is “n.” 

The computational formula for a population is 

( )2
2

2

f X
f X

f
f

σ

�
� −

�=
�

 (2.38) 

The computational formula for a sample is 

�

2
2

2

( )

1

f Xf X
f

f
σ

�
� −

�=
� −

 (2.39) 

Example 2.16 Use the family income of gold miners from Example 2.7 
to calculate the sample variance using the frequency table. 

Solution 2.16 

The sample variance for the combined 18 family incomes is equal to 

� � 2
2 ( )

40.23529412
1

XX
n

μσ � −= =
−

 

Create a frequency table. Note that there are 18 observations and 
not 12. The calculation of the sample variance for the above data using 
the computational formula follows: 

 
X f Xf X2 X2f 

55 2 110 3025 6050 

57 1 57 3249 3249 

58 1 58 3364 3364 

63 1 63 3969 3969 

64 1 64 4096 4096 
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X f Xf X2 X2f 

65 2 130 4225 8450 

66 2 132 4356 8712 

70 1 70 4900 4900 

71 4 284 5041 20164 

72 1 72 5184 5184 

73 1 73 5329 5329 

75 1 75 5625 5625 

Total 18 1188  79092 

�
( )2

2

1188
79092 79092 78408 68418 40.23529

17 17 17
σ

− −= = = =
 

The answer is the same as the one obtained using the raw data. 
Therefore, summarizing the data into frequency distributions does not 
affect the variance. The variance of the grouped data, however, will most 
likely be different from the actual variance. The following command in 
Stata will yield the same result.  

 

Figure 2.4 Stata display of the variance 

The variable name is “observation” and the weights are named “fre-
quency.” If your variables have different names, make sure to substitute 
the correct name in the command. 
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Variance for Grouped Data 

The formula for the variance of the grouped data for the population is 

( )2
2

2

fM
f M

f
f

σ

�
� −

�=
�

 (2.40) 

where M is the midpoint of each class. The formula for the variance of 
the grouped data for the sample is 

�
( )2

2

2

1

fM
fM

f
f

σ

�
� −

�=
� −

 (2.41) 

where M is the midpoint of each class.  

Measures of Association 

Measures of association determine the association between two variables 
or the degree of association between two variables. The extension to 
more variables is less common since more advanced methodologies have 
been developed.  

Population Covariance 

The covariance is a measure of association between two variables. Covar-
iance associates the deviation of one variable from its own mean to the 
deviation of another variable from its mean, on average.  Let the varia-
bles be X and Y and their corresponding means be �X and �Y. The covar-
iance is defined as 

( ) ( )( )
Cov , = X YX Y

X Y
N

μ μ� − −  (2.42) 

The covariance is the sum of the cross product of the deviations of 
the values of X and Y from their means divided by the population size. 
Sometimes it is written as ,XYσ  which should not be mistaken as a 
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standard deviation. This compares to the notation of 2
Xσ  for the variance 

of the population. The covariance of a variable with itself is actually its 

variance, that is, 2
, .X X Xσ σ=  

The definitional formula for covariance suffers from the rounding 
error and also can become very tedious if the means have long signifi-
cance digits. The computational formula for covariance is 

( )( )

XY

X Y
XY

N
N

σ

� �
� −

=
 (2.43) 

Sample Covariance 

In the sample covariance, the population means are not known and have 
to be replaced by the sample means. Consequently, the covariance loses a 
degree of freedom. The theoretical formula for the sample covariance is 

� � �( )( )
1

X Y
XY

X Y
n
μ μσ � − −=

−
 (2.44) 

The computational formula for the sample covariance is 

�
( )( )

1XY

X Y
XY

n
n

σ

� �
� −

=
−

 (2.45) 

The covariance shows association between two variables. The magni-
tude of the covariance is a function of the degree of association as well as 
the units of measurement of the values of the two variables. Changing 
the unit of measurement, from inch to yard for example, will change the 
covariance.  

Example 2.17 What is the covariance for the closing prices for Microsoft 
from May 21 to June 11 and June 12 to July 2, 2015, from Example 2.2? 

Solution 2.17 

Stata calculates the covariance as part of computations for the correla-
tion coefficient. Covariance is obtained as an option with the correlate 
command. 
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correlate msft1 msft2, covariance 

 

Figure 2.5 Stata display of covariance 

Excel command for covariance is 

=covariance.s(range1,range2) 

where range is any valid Excel range, such as cells in a column. In this 
case, you will enter the May 21 to June 11 data as the first range, and 
the June 12 to July 1 data as the second range, with the two ranges sepa-
rated by a comma. Verify that in Excel you get 0.372772381 for the 
covariance. 

Correlation Coefficient 

The correlation coefficient  (rho) uses the measures of association and 
dispersion to provide a new measure without a unit allowing comparisons 
of associations between unrelated things measured in different units. The 
measure of association is the covariance and is placed on the numerator. 
The measures of dispersion are the standard deviation of X and the stand-
ard deviation of Y, which are placed in the denominator. All three are 
subject to change when the unit of measurement changes, but the correla-
tion coefficient is immune. The formula for the correlation coefficient is 

σρ
σ σ

= XY

X Y

 (2.46)  

where σ XY  is the covariance, Xσ  is the standard deviation of the X values, 
and Yσ  is the standard deviation of the Y values. The sample correlation 
coefficient �ρ  is written as 

� �
��

XY

X Y

σρ
σ σ

=  (2.47) 

ρ
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Substitute the formulas for the population covariance and the stand-
ard deviations: 

( )( )

( ) ( )2

X Y

X Y

X Y
N

X Y
N N

μ μ

ρ
μ μ

� − −

=
� − � −

 (2.48) 

similarly for the sample correlation coefficient, 

�

� �

� �2 2

( ) ( )
1

( ) ( )
1 1

X Y

X Y

X Y
n

X Y
n n

μ μ

ρ
μ μ

� − � −
−=

� − � −
− −

 (2.49) 

The corresponding computational forms for the population and the 
sample are given in equations 2.50 and 2.51, respectively. 

( )( )

( ) ( )2 2
2 2

X Y
XY

N

X Y
X Y

N N

ρ

� �
� −

=
� �

� − � −

 (2.50) 

( )( )

( ) ( )2 2

1

1 1

X Y
XY

n
n

X Y
X Y

n n
n n

ρ

� �
� −

−=
� �

� − � −

− −

 (2.51) 

In practice (n − 1) are not even written in the formula, as they cancel 
out. They are shown here for pedagogical reasons. Do not overlook the 
fact that ρ  is a parameter and a constant, while �ρ  is the statistic and a 

variable. The sample correlation coefficient �ρ  is used to estimate and 

draw inference about the population correlation coefficient ρ . 

Example 2.18 What is the correlation coefficient for the closing prices 
for Microsoft from May 21 to June 11 and June 12 to July 2, 2015, from 
Example 2.2? 



 NUMERICAL DESCRIPTIVE STATISTICS FOR QUANTITATIVE VARIABLES 63 

 

Solution 2.18 

Stata calculates correlation coefficient using the following command: 

correlate msft1 msft2 

where msft1 and msft2 are the variable names. 

 

Figure 2.6 Stata display of correlation coefficient 

The Excel command for correlation is 

=correl(range1,range2) 

where range1 and range2 should be valid Excel ranges, such as cells in a 
column. It is necessary for the two ranges to be of equal size, that is, have 
the same numbers of rows. Verify that you get a result of 0.805258913  
using Excel. 
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CHAPTER 3 

Some Applications of 
Descriptive Statistics 

Introduction 

The descriptive statistics that were covered in Chapters 1 and 2 provide 
summary statistics and graphical methods to present data in concise and 
meaningful ways. Although those measures and methods are useful in 
their own right, they are also used to create more powerful statistical 
measures, some of which are discussed in this chapter. Later, in Chapter 7, 
these measures are utilized to provide statistical inference. Statistical infer-
ence is the foundation of testing hypotheses in every branch of science.  

Coefficient of Variation 

The coefficient of variation (CV) is the ratio of the standard deviation to 
the mean. In other words, CV expresses the standard deviation (the  
average error) as the percentage of the average of the data. It is a relative 
measure of dispersion.  

CV σ
μ=  (3.1) 

CV is independent of the unit of measurement of the variable. If 
two populations have the same standard deviation, the one with the 
smaller mean has relatively more variation. In general, the smaller the 
CV is, other things equal, the more uniform and compact are the data 
points. A smaller CV indicates less volatility and risk. 

Example 3.1 The manager of the mortgage department in a local bank 
has gathered the amount of approved second mortgage loans for every 
100th customer. Calculate the CV. 
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5,672 6,578 9,700 12,000 9,000 6,350 4,495 6,900 7,835 

8,750 10,000 12,000 6,500 7,200 8,000 18,000 19,000 12,000 

4,560 1,500 5,900 5,450 6,500 1,800 1,900 10,500 

Solution 3.1 

First calculate the standard deviation, �σ , followed by the mean, �.μ  To 

obtain the CV, divide �σ  by �.μ  

� �
�

4257.58 0.532
8003.46

CV
σ
μ

= = =  

Assume that two stocks are rated similarly where they have the same 
characteristics such as objectives and the amount and frequency of divi-
dends. In order to compare the relative risk of the two stocks, use the CV. 
The stock with the lower CV indicates lower variation and hence lower 
risk. The CV is also useful in comparisons of unrelated data, especially 
when the units of measurement are different. For example, if the reliabil-
ity of a gas-powered lawnmower is compared with the reliability of an 
electric edger, then the machine with the lower CV is more reliable. 

The most effective use of the CV is to compare two different exper-
iments by finding the ratios of their respective CVs, as demonstrated in 
the following example. 

Example 3.2 Refer to the stock prices for Wal-Mart and Microsoft from 
Example 2.2. Determine which one is riskier using all 30 observations. 

Solution 3.2 

Let’s refer to Wal-Mart stock as “1” and to the Microsoft stock as “2.” 
Recall we calculated the means and standard deviations for these stocks.  

�1 73.215μ =  �
1 1.3721σ =  

�2 46.096μ =  �
2 0.9295σ =  

1
1.3721CV 0.01874
73.215

= =  

2
0.9295CV 0.0202
46.096

= =  
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1

2

CV 0.01874 0.929
CV 0.0202

= =
 

Therefore, stock 1, Wal-Mart, is less risky than stock 2, Microsoft, 
for the sample period.  

Z Scores 

The Z score is a useful and intuitive concept and is used often in statis-
tics. The Z score uses two of the more common parameters, the mean 
and the standard deviation. The problem of accurate and consistent 
measurement has been a challenge throughout history. The yardsticks 
differed from one time to another and across different locations and 
cultures. Different countries and rulers tried to unify the units of meas-
urement. The closest unit to become universally accepted is the meter. 
One problem with any system of measurement is differences in scale of 
the items being measured. The following example demonstrates the 
problem. 

County fairs give prizes for the “best” in different categories. For  
example, the farmer with the biggest produce receives a prize. However, 
by nature, even the largest peach on record is not a match for any water-
melon. Would it be fair to compare the amount of milk a cow produces 
with that of a goat? In economic terms, how can we compare the output 
of a small manufacturer with that of a larger one to compare productivity? 

In statistics, everything is measured in relative terms. Let’s have a 
peach that weighs 8.4 ounces and a watermelon that weighs 274.9 
ounces. Although the watermelon is actually heavier, that might not be 
the case when other factors are considered. One factor is the average 
weight of peaches and watermelons. A typical peach is about 6 ounces, 
whereas a typical watermelon is 22 pounds, or 352 ounces. The peach in 
this example is somewhat heavier than an average peach, while the  
watermelon is actually lighter than an average watermelon. Therefore, 
relatively speaking, the peach is heavier than the watermelon. However, 
we can do even more meaningful and more precise comparisons.  

Dividing the deviation from the mean by the standard deviation takes 
into account the spread of the data as well. Let’s assume that the standard 
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deviation for peaches is 1.15 ounces. Therefore, the amount this particular 
peach exceeds its average as measured by its own yardstick is (8.4 − 6) 
/1.15 = 2.086 standard deviations. Let’s assume that the standard devia-
tion for the watermelon is 2.57 pounds or 16 × 2.57 = 41.12 ounces.  
Therefore, the watermelon is (274.9 − 352)/41.12 = −1.875 standard  
deviations below its expected weight. This is the essence of what is called a 
Z score and the procedure is known as standardization. The Z score is  
defined as follows: 

Observed Expected
Standard Deviation of the Observed

Z
−=  (3.2) 

x
Z

μ
σ
−=  (3.3) 

The expected value of an observation is its mean or ( );μ  its standard 
deviation is (�). The distance of an observation (X ) from its expected 
value, ( ),X μ−  is also called its (individual) error. Some of the different 
aspects of error will be discussed later in this chapter. The Z score is a 
scaled error. The unit of measurement of a Z score is the standard devia-
tion of the population or its sample estimate. The standardization pro-
cess can be applied to any data or observation. 

Suppose two students are given the task of measuring the error of an 
observation. The first student finds that the observation deviates from 
the mean by 41.6666 feet. In fact there are infinite numbers of decimal 
digits; such numbers are called irrational numbers. Disliking decimal 
points and especially the irrational ones, he decides to measure the devi-
ation of the data point from the mean in inches and is relieved to find 
out that it has no decimal point. He presents the error of the observa-
tion as 500 inches. The second student, using an electronic measuring 
tape, subtracts the observation from the mean and reports 0.007891414 
miles as the error. While the first error seems large and the second seems 
small, both are the same; 500 inches is 41.66667 feet or 0.007891414 
miles. Z scores provide a unique and comparable measure of error to 
avoid the confusion that may arise from changes in units of measure-
ment. Every error is reported in the units of its own standard deviation. 
Since Z scores are reported in terms of the standard deviation, they  
allow comparison of unrelated data measured in different units. 
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Z Score for a Sample Mean 

If the value under consideration is the sample mean, �,μ  the resulting Z 

score would be 

�

�

Z
μ

μ μ
σ
−=  (3.4) 

where ��  is the sample mean, � is its expected value, which is also the 

population mean, and the standard deviation of the sample is � .
nμ

σσ =  

The standard deviation of the sample mean is also known as the stand-
ard error.  In order to calculate the Z score for a sample mean, it is nec-
essary to know the population variance. When the population variance 
is unknown, we must use a t value instead of a Z value. We will discuss t 
distributions in more detail in Chapter 4. For the time being, we will 
assume we know the population variance.  

Example 3.3 Calculate the Z scores for closing prices of Microsoft stock 
from May 21 to July 2, 2015. Assume the population’s mean and vari-
ance are equal to the sample mean and variance, respectively. Treat the 
sample variance as the population variance. 

Solution 3.3 

Use Equation (3.4) and the following values from Example 3.2. 

�2 46.096μ μ= =  �
2 0.9295σ σ= =

 

Note that we are using the notation for population mean and popula-
tion standard deviation to make sure that the theorem applies (see Table 
3.1). The sum of Z scores is provided at the bottom, which is zero. Add-
ing up to zero is a mathematical property of the individual errors. See 
Definition 3.5.  

Theorem 3.1 Chebyshev’s Theorem  

The proportion of observations falling within K standard deviations of 
the mean is at least 

2

11
k

� �−� �
� �

 (3.5) 
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Date MSFT Z Score 

5/21/2015 47.42   1.424079 

5/22/2015 46.9   0.864636 

5/26/2015 46.59   0.531117 

5/27/2015 47.61   1.628496 

5/28/2015 47.45   1.456358 

5/29/2015 46.86   0.8216 

6/1/2015 47.23   1.219668 

6/2/2015 46.92   0.886149 

6/3/2015 46.85   0.810838 

6/4/2015 46.36   0.28367 

6/5/2015 46.14   0.046978 

6/8/2015 45.73 −0.39412 

6/9/2015 45.65 −0.48019 

6/10/2015 46.61   0.552635 

6/11/2015 46.44   0.369736 

6/12/2015 45.97 −0.13592 

6/15/2015 45.48 −0.66309 

6/16/2015 45.83 −0.28654 

6/17/2015 45.97 −0.13592 

6/18/2015 46.72   0.67098 

6/19/2015 46.1   0.003942 

6/22/2015 46.23   0.143807 

6/23/2015 45.91 −0.20047 

6/24/2015 45.64 −0.49095 

6/25/2015 45.65 −0.48019 

6/26/2015 45.26 −0.89978 

6/29/2015 44.37 −1.8573 

6/30/2015 44.15 −2.09398 

7/1/2015 44.45 −1.77123 

7/2/2015 44.4 −1.82502 

Mean 46.09633   0 
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This is the same as the Z score concept. The theorem indicates that 
we need to find the difference of a value from its mean, that is, (X − �). 
Since the theorem applies to all the values within K standard deviations, 
that is, K�, on either side of the mean, the absolute value is desired. The 
theorem sets a minimum limit for the |X − �| < K �. Therefore, Cheby-
shev’s theorem states, 

( ) 2

11P X K
K

μ σ � �− < ≥ −� �
� �  (3.6) 

Since � is a nonnegative value, dividing both sides of the inequality  
|X − �| < K � by � will not change the sign. Therefore, 

2

11
X

P K
K

μ
σ
−� � � �= < ≥ −� � � �

� �� �

 

( ) 2

11P Z K
K

� �= < ≥ −� �
� �  (3.7) 

As is evident, the Z score is the core of the Chebyshev’s theorem.  
Chebyshev’s Theorem is used in the Central Limit Theorem, which will 
be covered in Chapter 5. The first part of the equation {P(|Z| < K )} is the 
same as the confidence interval of a range, which is covered in Chapter 6.  

Example 3.4 Determine what percentage of the Microsoft stock prices 
from May 21 through July 2, 2015, fall within 2 standard deviations of 
their mean. Verify the correctness of the theorem by counting the prices 
that are within 2 standard deviations of the mean. Assume the popula-
tion’s mean and variance are the same as the sample mean and variance, 
respectively. See Example 3.2 for data.  

Solution 3.4 

The sample mean and sample variance are the same as given in  
Example 3.2: 

�
2 46.096μμ = =  � 2 0.9295σ σ= =  

Note that we are using the notation for population mean and population 
standard deviation to make sure that the theorem applies. The theorem 
requires the knowledge of population mean and standard deviation, and 
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we are assuming we know them to be the values we obtained from the 
sample. Insert the information in Equation (3.6):  

( ) 2

11P X K
K

μ σ � �= − < ≥ −� �
� �

 

1(| 46.096 | 2 (0.9295) 1
4

P X � �− < ≥ −� �
� �

 

(| 46.096 | 1.8590) 0.75P X − < ≥  

Therefore, at least 75% of the 15 observations will be within 2 standard 
deviations of the mean. Next we calculate the range “within 2 standard 
deviations.” 

46.096 − 1.8590 = $44.237 

46.096 + 1.8590 = $47.955 

The easiest way to verify the validity of the result is to sort the data. 
It is evident that only the price on June 30, 2015, is outside the range 
$44.237 to $47.955. Therefore, 29 out of 30 prices (96.67%) are within 
two standard deviations of the mean, which exceeds the predicted min-
imal percentage of 75% guaranteed by the theorem. 

Correlation Coefficient Is the Average of the Product of Z Scores 

The correlation coefficient was introduced in Chapter 2. It measures the 
degree of association between two variables. 

( )( ) ( ) ( )X YX Y

X YXY

X Y X Y

X Y

X YX Y
N

N

Z Z
N

μ μμ μ
σ σσρ

σ σ σ σ

− −� �� − − � ×� �
� �= = =

�=

 

The above derivation depends on the definition of a parameter as a 
constant. This allows moving parameters, such as standard deviations, 
into a summation notation. Note that anything that is added and divided 
by the number of observations is an average number. In this case, the 
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product of two Z scores (ZX ZY) are added and divided by N. Hence, the 
correlation coefficient is the average of the product of two Z scores.  

Standard Error 

When data are obtained from a sample, the standard deviation of the 
estimated sample mean is called a standard error. This concept will be 
addressed in detail when the sampling distribution of the sample mean 
is discussed in Chapter 5. Since the distributional properties of the sam-
ple standard deviation are different from that of the population standard 
deviation, we had to assume that the standard deviations obtained from 
the samples in Examples 3.2 and 3.4 were actually those of the popula-
tion standard deviation. 

Standard error = � �
2

μ μσ σ=  

Usually, the standard deviation of the sample mean is also unknown 
and has to be estimated, which is represented with a hat.  

Sample standard error = �� �
�2

μμ σσ =  

When the population variance is not known, the distributional prop-
erties of the Z score changes, and thus the resulting equation obtains a  
t distribution function. Distribution functions are explained in Chapter 4. 
The correct standardization of the sample mean in this case is 

�

�
�t

μ

μμ
σ
−=  (3.8) 

Equation (3.8) has a t distribution instead of a “normal” distribution 
and is called a t instead of a Z. If the population variance is unknown 
and has to be estimated by the sample variance, the resulting standardi-
zation does not have a normal distribution but instead has a Student’s t 
distribution.1 

Definition 3.1 A degree of freedom is the number of elements in a sam-
ple that are unconstrained. Degrees of freedom only apply to samples, as 
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population parameters are constant values. “When computing the vari-
ance, if the mean is unknown we lose a degree of freedom.” 

Example 3.5 

This example is designed to demonstrate that the population mean gov-
erns the outcome of the sample mean and how as a result a degree of 
freedom is lost. Let us have a small population, say of five persons. For 
example, consider a family with five children ages 3, 5, 7, 8, and 9. Let 
us take samples without replacement of size 3 from this population.  
(If those chosen are not returned back into the pool of possible values, 
the sampling is considered to be without replacement.) Although sam-
pling without replacement affects the probability of an outcome, we are 
not concerned with that here. This will assure the same child is not in-
cluded more than once in any sample. There will be 10 different possi-
ble samples.  The population mean is 32/5 = 6.4, that is, the average age 
of the children is 6.4 years. The 10 possible samples and their corre-
sponding means are 

Sample  Mean 
8, 3, 7 6 
8, 3, 5 5.333 
8, 3, 9 6.667 
8, 7, 5 6.667 
8, 7, 9 8 
8, 5, 9 7.333 
3, 7, 5 5 
3, 7, 9 6.333 
3, 5, 9 5.667 
7, 5, 9 7 
Total 64 

 
Even though none of the sample means equals the population mean, 

the population mean has exerted its influence on the sample means. The 
average of the 10 possible sample means, that is, (64/10) = 6.4 is exactly 
equal to the population mean. Even if we do not know the population 
mean, every population has a mean, and that mean will influence all the 
sample means and the average of all the sample means is always equal to the 
population mean, a rather simple exercise in algebra, that is, E �( )μ  = .μ  
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In the above example, any 9 of the 10 possible samples can be chosen 
freely. After nine samples are obtained, the 10th, or the last one, is 
forced to have a mean value such that the average of all the 10 samples 
means equals the population mean. Let us assume that the fourth possi-
ble sample in the above list is the one that is not taken yet, and its mean 
has not been calculated.  Using the sum of the other samples, the mean 
of this sample has to be (64 − 57.222) = 6.778. Within this last remain-
ing sample, any two numbers can be selected at random, but the last one 
must be such a number that the average of the three sample units equals 
6.778. Two of the three numbers 8, 7, and 5 can be randomly and 
freely selected; say 5 and 7 are selected. The last number must be 8, 
since this is the only number that will make the average of this sample 
equal to 6.778 and the average of all sample means equal to � = 6.4. In 
general, n − 1 sample points can be selected at random, but the value of 
the remaining one will be determined automatically by the value of the 
population. One degree of freedom is lost for every parameter that is 
unknown and must be estimated by a statistic. 

Remember from Chapter 2 that computation of the variance re-
quires the knowledge of the population mean: 

( )2
2 X

N
μ

σ
� −

=
 

If the population mean μ  is not known, the value of 2σ  cannot be 
determined. If instead of ,μ  an estimate is obtained, then the sample 
mean, or �,μ  is used. The sample variance then is 

�
�( )2

2

1

X

n

μΣ
σ

−
=

−

 

and it will lose one degree of freedom. The result of the adjustment to 
the sample variance, that is, dividing by the degrees of freedom, n − 1, 
instead of the sample size, n, is that the sample variance becomes an 
unbiased estimate of the population variance.1 
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Properties of Estimators 

Sample statistics are used as estimators of population parameters. Since 
sample statistics provide a single value, they are also called point esti-
mates. It is desirable to be able to compare different point estimates of 
the same parameters.  

Let �, pronounced theta, be the population parameter of interest. Let 
its estimate be �,θ pronounced theta hat.  Like any other point estimates, 
�θ  is a sample statistic and a known variable.  

Definition 3.2 Unbiasedness If the expected value of a point estimate 
equals the population parameter, then the estimate is unbiased. In  
symbols 

E( �θ ) = � (3.9) 

It can be shown that the sample mean �( ),μ  variance �2( ),σ  and  propor-
tion �( )π  are all unbiased estimates of their corresponding population 
parameters. 

E �( )μ  = � 

E �2( )σ  = 2σ  

E �( )π  = π 

Definition 3.3 Efficiency A point estimator is a more efficient estimator if 

it has a smaller variance. If �1θ  and � 2θ  are two point estimates of � and 
Var �1( )θ  < Var � 2( ),θ  then �1θ  is more efficient than � 2 .θ  For example, 
the sample mean is more efficient than the sample median in estimating 
the population mean. 

Definition 3.4 Consistency A point estimator is a consistent estimator if 
its variance gets smaller as the sample size increases. The variance of the 
sample mean is defined as 

� 2
2

n
σσ =

 

This ratio decreases as the sample size increases. Since the population 
variance is a parameter, it is a constant; therefore, as the sample size  
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increases the ratio decreases. Since it is an unbiased estimate of the pop-
ulation mean, it will get closer and closer to the population mean.  

Error 

Statistics deals with random phenomena. For a set of values X1, X2, ..., 
Xn, there is a representative or expected value (mean). The Greek letter � 
is used to represent the expected value. The difference of each value 
from the expected value, also called the deviation from the mean, repre-
sents what is called individual error.  

Definition 3.5 The individual error is the difference between the value 
of an observation and its expected value. It is also called the residual, as 
it is the residual amount that remains unexplained. 

The expected value or the mean is the best estimate or representative 
of a population. For example, according to PayScale.com, the median 
starting salary for economic majors in 2015 was $48,500.2 If a recent 
economics graduate is selected at random and his or her actual income is 
$48,000, then the error associated with this observation is $500. In  
other words, the observation missed the expected value by $500. The 
reason for calling the deviation an error is that we do not have any  
explanation for the deviation other than a random error. Therefore, the 
error is what we cannot explain.  

Since observations vary at random, the errors vary at random as well. 
Furthermore, the portion that cannot be explained depends on the 
model or procedure used. Sometimes, it is possible to explain part of the 
variation of observations from their expected value by developing more 
sophisticated methods.3 The portions that can be explained by the new 
procedure are no longer “unexplained” and, thus, not part of the error 
any more. The remaining unexplained portion is still called an error. 
Note that unless all the observations in a sample or population are iden-
tical, they will deviate from their expected value and, hence, have a ran-
dom error. A regression model explains part of the individual error using 
a line, thus improving estimation of the parameter. Regression models 
are covered in more detail in Chapter 8. 

Since there are as many individual errors as there are observations, 
we need to summarize them into fewer values. A popular and useful 
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statistic is the average or mean. However, the average of the individual 
errors is always zero because the sum of all the errors is zero. Recall that 
individual errors are deviations from their expected values, some of 
which are negative and the others are positive. Thus, by definition, they 
cancel each other out and the sum of all deviations from their expected 
values is always zero.  

Distributions that are symmetrical have equal numbers of positive 
and negative individual errors, but this is not a necessary condition for 
their sum to add to zero. The sum of individual errors for non-
symmetric distributions is also zero, in spite of the fact that the counts 
of negative values are different from the counts of the positive values. 
This is due to the fact that the expected value or the mean is the same as 
the center of gravity of the data. Imagine data on a line where they are 
arranged from smallest to largest. Placing a pin at the point of the aver-
age will balance the line.  

There are several ways to overcome individual errors canceling each 
other out. One way is to use the absolute value of the individual errors. 
The average of the absolute values of the individual errors is called mean 
absolute error (MAE). The mean absolute error is commonly used in 
time series analysis. One advantage of MAE is that it has the same unit 
of measurement as the actual observations. Another way to prevent indi-
vidual errors from canceling each other out is to square them before 
averaging them. We are already familiar with this concept, which is 
called the variance. 

Definition 3.6 The variance is the average of the sum of the squared 
individual errors. 

One advantage of the variance over the mean absolute error is that it 
squares the errors, which gives more power to values that are further 
away from the expected value. This makes the variance more sensitive in 
signaling outlying data points, as values farther away from the mean 
have a larger impact on the variance than those closer to the mean.  

The variance’s use of the squared values of the individual errors is its 
shortcoming as well because the unit of measurement for the variance is 
the square of the unit of measurement of the observations. If the obser-
vations are about length in feet, then the variance will be in feet squared, 
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which is the unit of measurement of an area and not length. Seldom, if 
ever, the squared values of economic phenomenon have any meaning. If 
the variable of interest is price measured in dollars, then the unit of 
measurement of its variance is in dollars-squared, which has no econom-
ic meaning. To remedy this problem, it is necessary to take the square 
root of variance. 

Definition 3.7 The standard deviation is the square root of the variance. 

Definition 3.8 The standard deviation is the average error. 

How Close Is Close Enough? 

By definition, the sum of the residual is zero; if yours fail to be exactly 
zero, check your formulas and computations. When the formula is correct 
and there is no computational error, then the problem is due to rounding. 
Use of computational formulas and less rounding of the data will reduce 
or eliminate this problem provided the sample size is sufficiently large. If 
you use five decimal places, the final result can be accurate to about four 
significant digits. If you have been using five decimal places in your calcu-
lations and the sum of the residual is 0.00007, the property has not been 
violated. It is zero to four decimal places as expected. 

Sum of Squares 

The sum of squares of deviations of values from their expected value 
(mean) is a prominent component of statistics. As we saw above, the 
sum of squares of these individual errors divided by the population size 
is called population variance. The concept is the same for a sample,  
except that the divisor is the degree of freedom instead of the sample size. 
Earlier, it was explained that the portion of the phenomenon that can-
not be explained is called an error, and that the variance is one way of 
representing it. When alternative models are used to explain part of the 
error, it is more meaningful to focus on the numerator alone, at least at 
first. The numerator of the variance is also called the total sum of squares 
(SST). Once a set of data is collected, then the total sum of squares  
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becomes fixed and will not change. The total sum of squares will change 
only if another sample from the same population is collected at random.  

Decomposition of SST is very common in a branch of statistics 
called Experimental Design. In experimental design methodology, SST is 
decomposed into different components based on the design. These 
components include treatment SS, block SS, main effect SS, etc. In all 
cases, there is always a component that remains unexplained, and is re-
ferred to as the residual or error SS. By definition, dividing this unex-
plained remainder by appropriate degrees of freedom would result in the 
variance of the experiment, customarily known as mean squared error 
(MSE). As one would expect, the square root of MSE is called root MSE, 
which is the same as the standard error. Just as a reminder: 

( ) 2Sum Observed Expected
MSE =

n k
−

−

 

Note that the term in the parentheses is the individual error. The (K ) in 
the denominator is the number of parameters in the model, and the 
entire denominator is the degrees of freedom.  

Nonsymmetry of Data 

In Chapter 2, several of the relationships between the mean, mode, and 
median were described. The relationship between these parameters indi-
cates if a graph of the data is symmetric, skewed, or pointed.  

Definition 3.9 Skewness refers to the extent that a graph of a distribu-
tion function deviates from symmetry toward the left or the right.  

A distribution function that is not symmetric is either negatively 
skewed, as in Figure 3.1, or positively skewed, as in Figure 3.2. 

Relationship between the Mean, Median, and Mode 

The mean, median, and mode of symmetrical distributions are identical. 
If the distribution is positively skewed, the order of magnitude for these 
three parameters is  
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Figure 3.1 Negatively skewed distribution 

 

Figure 3.2 Positively skewed distribution 

Mode < Median < Mean (3.10) 

If the distribution is negatively skewed, the order of magnitude is 

Mean < Median < Mode (3.11) 

Skewness is used to test if the data follows a normal distribution. 
The normal distribution function is discussed in Chapter 4. 

Definition 3.10 The Pearson’s coefficient of skewness is defined as 

( )3 mean median
S

standard deviation
−

=
 

The range of skewness is −3 < S < 3, and for a symmetric distribution S 
= 0. The sign of the Pearson’s coefficient of skewness determines wheth-
er it is positively or negatively skewed.  

Definition 3.11 Kurtosis is a measure of pointedness or flatness of a 
symmetric distribution.  
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A positive kurtosis indicates the distribution is more pointed than the 
normal distribution, and a negative value for kurtosis indicates the distri-
bution is flatter than the normal distribution. Kurtosis and skewness are 
commonly used to test whether a data set follows a normal distribution.  

One formulation for computing kurtosis is available that only uses 
the concepts discussed earlier.  

90 10

Q
K

P P
=

−  (3.12) 

where Q is one half of the interquartile range, P90 is the 90th percentile 
and P10 is the 10th percentile. A distribution which is more pointed will 
have a larger kurtosis value and is called leptokurtic. A less pointed dis-
tribution will have a smaller kurtosis value and is called platykurtic. 
Skewness and kurtosis will be discussed in greater detail in Chapter 4. 



 

CHAPTER 4 

Distribution Functions 
This chapter covers distribution functions. Section “Probability Distri-
bution Functions” provides an overview of probability functions and 
introduces the reader to some relevant definitions and concepts. The last 
section, on continuous distribution functions, introduces the reader to 
some of the commonly used distribution functions in parametric statis-
tics such as the normal, chi-squared, t, and F distributions. 

Probability Distribution Functions 

Probability distributions use charts, equations, or tables to represent the 
distribution of data. Net worth in the United States can be presented  
using all the three methods. For example, the U.S. Census provides the 
following tabular information on the distribution of wealth in the United 
States:1 
 

Table 4.1 Household net worth distribution for persons with 

baccalaureate degrees 

Household Net Worth Percent 

Zero or Negative 13.2  

$1–4,999 3.9 

$5,000–9,999 3.2 

$10,000–24,999 5.5 

$25,000–49,999 7.1 

$50,000–99,999 10.0 

$100,000–249,999 19.4 

$250,000–499,999 16.7 

$500,000 or over 21.0 

Table 4.1 indicates that the net household worth of 10% of people 
with a baccalaureate degree is between $50,000 and $99,999. The dis-
tribution can also be represented as a chart as shown in Figure 4.1. 
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Figure 4.1 Household net worth distribution for persons with 

bachelor’s degrees 

However, to determine the effect of a baccalaureate degree on net 
worth, it would be revealing to compare the distribution of the net 
worth of those with a bachelor’s degree with the net worth of people 
with a high school diploma. This comparison is shown in Figure 4.2. 

It seems to be evident that earning a baccalaureate degree results in 
higher net worth on average. Although there are people with and with-
out a baccalaureate’s degree in all income categories, higher percentages 
of those with a high school degree dominate lower net worth categories 
while people with a baccalaureate degree dominate higher categories of 
net worth.  

Probability distribution functions include discrete and continuous 
functions. Whether a distribution is discrete or continuous depends on 
whether the variable being modeled is a discrete or continuous variable. 
This chapter focuses primarily on continuous distribution functions. 

Definitions and Concepts 

Sometimes it is possible to represent random variables as a function in a 
way that the function can determine the probability of an outcome of 
the random variable.  
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Figure 4.2 Household net worth distribution by educational status 

Definition 4.1 The outcome of a random variable is determined by 
chance.  The outcome of a random variable might be an “integer num-
ber” as in seeing “2” when a die is rolled, or it could be a real number 
such as the length of time it takes for students to learn this chapter. The 
subject statistics is used to study the properties of random variables and 
how they behave.  

In its simplest form, the probability distribution consists of values 
and probabilities. The probability distribution for flipping a coin is 

( )
1Head with probability 2

1Tail with probability 2
f x

	
= �

�

 

There are more formal ways to define probability distributions that are 
beyond the scope of the present text. A distribution function can be 
presented in the form of a function, a table, or a statement. The subject 
of probability distributions is vast, but we will focus on the few items 
needed to continue our discussion. There are two types of random vari-
ables, discrete and continuous.  

Definition 4.2 A discrete random variable consists of integers (whole 
numbers) only. 
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Definition 4.3 A continuous random variable can take any value over a 
range. 

Definition 4.4 The probability density function of a discrete random var-
iable provides the probability for valid values of the discrete random 
variable. Probability density functions are depicted as f (x). 

Definition 4.5 The probability density function of a continuous random 
variable provides the probability for valid ranges of the continuous ran-
dom variable. Probability density functions are depicted as f (x). 

Definition 4.6 A probability distribution or distribution functions is the 
cumulative value of a probability density function f (x). In a sense, it is 
the sum or total of all probabilities up to a particular point. 

Probability density functions are also called probability functions, 
probability mass functions, or frequency functions but universally are 
shown by f (x). In this text, we may use the term distribution function for 
both discrete and continuous probability density functions as a matter 
of convenience.  

Continuous Distribution Functions 

Continuous distribution functions include normal, chi-squared, t, and F 
distributions.  Probably the best known is the normal distribution, as it 
forms the foundation of many statistical analyses.  The normal distribu-
tion is sometimes called a bell curve because it takes the shape of a 
symmetrical bell.   

Normal Distribution Functions 

The normal distribution function is widely used, especially in the stand-
ardized form. If the observations used to calculate Z scores are from a 
normal distribution, the result is standardized normal values or simply 
standardized values. Converting values from different normal distribu-
tions with different means and variances to standard normal (with a 
mean of 0 and standard deviation of 1) allows us to compare them with 
each other or with the normal table.  
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Since the normal distribution is a continuous distribution function, 
and there are infinitely many points on any continuous interval, the 
probability of any single point is “one out of infinity” or zero. Therefore, 
for continuous distribution functions, the probability is calculated for an 
interval instead of a point. Direct computation of such probabilities  
requires integral calculus. Fortunately, there are tables, both paper-based 
and electronic, as well as software-generated, that calculate the probabil-
ity for ranges of values from a normal distribution. All quality statistics 
software, even spreadsheets such as Excel, are capable of computing the 
probability for standard normal values. A table of values for the normal 
distribution can be accessed in Stata by using findit probtabl to locate and 
download a program that once installed will allow you to obtain the 
normal distribution table by typing the command ztable.  For tabulated 
values of chi-squared, t, or F distributions, use chitable, ttable, or ftable. If 
you do not wish to use Stata, you can always do an online search for 
“normal distribution table Aplet” and many results will appear. Aplets are 
interactive programs that have windows for input, display appropriate 
probabilities, and provide a graph depicting the probability. Version 14 
of Stata can display probabilities and inverse probabilities for most of 
customary distribution functions. In the command line type help function 
to display a list of available commands. 

Properties of Normal Distributions 

A normal distribution is depicted in Figure 4.3. The normal distribution 
curve is unimodal (has only one mode) and symmetric. Consequently, 
its mean, mode, and median are all the same and fall in the middle of 
the curve. The tails of the normal curve do not touch the X-axis. The  
X-axis is actually an asymptote of the functions, which means the curve 
does not touch the axis even at infinity. One implication is that the 
probability of an outcome is never zero regardless of how far away that 
outcome might be from the mean. Nevertheless, the probability of the 
tail areas becomes very negligible not too far from the center, making it 
unnecessary to be concerned with infinity. A normal distribution has 
two parameters, which are its mean and variance. Since this distribution 
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is commonly used and has numerous applications, it has become known 
as the normal distribution. The mean and variance of the normal distri-
bution are represented by � and � 2, respectively. 
 

 

Figure 4.3 Normal distribution with mean = � and variance = �2 

The area under the normal curve is equal to 1, as is the area under 
any distribution density function. Customarily, the distance from the 
center of a normal distribution is measured by its standard deviation.  

When the population variance is not known, using the normal dis-
tribution for inference is misleading. The problem is more acute when 
the sample size is small. 

Standardizing Values from a Normal Distribution 

Standardizing observations from a normal distribution converts any 
normal distribution to a normal distribution with a mean equal to 0 and 
variance equal to 1. For a random variable called X, the notation would 
be X ~ N(0,1), where the symbol “~” is pronounced “distributed as.” 
Since the square root of “1” is still “1,” the variance and the standard 
deviation are the same and one could as correctly state “standard devia-
tion” instead of “variance.” The distribution can also be called normal 
standard N(0,1). The normal standard distribution is used to determine 
the probability of a statistic in inferential statistics as will be seen in 
Chapters 6 and 7. A single table of probabilities of values for N(0,1) is 
sufficient for calculating probabilities for areas under normal distribu-
tions with different means and variances. The graph for N(0,1) is exactly 
the same as the graph in Figure 4.3; however, the one depicted in Figure 
4.4 has the added feature that marks the point which is one standard 
deviation to the right of the center.  
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Area under a Normal Distribution with Mean 0 and Variance 1 

A property of N(0,1) is that inflection points are one standard deviation 
from the mean. Roughly two-thirds of all observations are within one 
standard deviation from the mean of N(0,1); the actual percentage, to 
two decimal place accuracy, is 68.25%. The percentage of values within 
two standard deviations, to two decimal place accuracy, is 95.45%. The 
knowledge that the data have a normal distribution improves the proba-
bility of observations being within two standard deviations from the 
75% indicated by Chebyshev’s theorem to over 95% using the normal 
distribution. In Example 3.3, it was shown that the observed probability 
was 96.67% instead of 75%. The reason is that the Chebyshev’s theorem 
provides the minimum percentage and that under attainable guidelines 
the statistics for most real-life outcomes approximate a normal distribu-
tion as will be demonstrated in Chapter 5. 

 

Figure 4.4 The area under the normal distribution between 0 and 1 

To calculate the area under a normal distribution, we can use the 
probtabl download from Stata. In this table, the first column represents 
the tens digit and the first place after the decimal point.  The first row 
represents the second decimal point. As an example, let’s say we wanted 
to find the probability for Z = 2.45. On the first column, we would look 
for 2.4, and on the first row we would look for 0.05 (2.4 + 0.05 = 2.45). 
At the intersection of the row 2.4 and column 0.05, the probability 
0.4929 is presented. The Stata command for obtaining normal proba-
bilities is normal(Z) and normalden(z). 

As another example, to obtain the probability of a Z score of 1.0, go 
to the left margin of the table and identify the row marked 1.0. Then 
identify the column marked “0.” The value at their intersection is 
0.3413. This number gives the area under the curve from the midpoint 
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to one side.  To get the area on both sides of the midpoint, we need to 
double the value. Doubling the probability value provides the probability 
of an observation falling within one standard deviation on either side of 
the mean, and is equal to approximately 68% (0.3413 × 2 = 0.6826,  
or 68%). Computations of other values are similar. 

Example 4.1 Find the probabilities for the following Z scores using the 
normal distribution. 

a. P(−1.52 < Z < 1.49) 
b. P(−1.69 < Z < −1.58) 

Solution 4.1a 

In general, it is best to shade the area for which the probability is needed 
and perform simple algebra to obtain the results. For example, 

P(−1.52 < Z < 1.49 ) = P(−1.52 < Z < 0) + P(0 < Z < 1.49)  
= 0.4357 + 0.4319 = 0.8676 

See Figure 4.5 for clarification. The above equation represents the prob-
ability between −1.52 and 1.49.  

 

Figure 4.5 Area under the normal distribution curve between −1.52 

and 1.49 

Solution 4.1b 

See Figure 4.6 for finding the shaded area for the second example. Make 
sure to subtract the number with the smaller absolute value from the 
larger in order to guarantee that you do not get a negative probability, 
which would not make any sense.  

P(−1.69 < Z < −1.58 ) = P(−1.69 < Z < 0) − P(−1.58 < Z < 0)  
= 0.4545 − 0.4429 = 0.0116 
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Obtaining Probability Values for the Normal Distribution with Excel 

The above results can be obtained by using the following command in 
Excel: 

=NORM.DIST(1.49,0,1,1) - 0.5 

 

Figure 4.6 Area under the normal distribution between −1.69  

and −1.58 

which should return the result of 0.43188. The area under the first half 
of the curve, namely 0.5 must be subtracted since the desired area is 
from the center to 1.49, while Excel provides the entire area to a point 
such as 1.49. 

When the normal distribution is not standardized, the probability 
can be obtained directly by using the following command and inserting 
the mean and standard deviation of the distribution. 

=NORM.DIST(X, mean, standard deviation, cumulative) 

where “1” represents logical “true” which signals the software to report the 
cumulative probability to the point 1.49. 

Alternatively, point to the arrow on the side of the “� AutoSum” on 
Excel’s command ribbon and choose “more functions.” From the drop-
down window choose “Statistical” in the window labeled “or select a cate-
gory” and scroll down and select NORM.DIST command (Figure 4.7).  

Place the appropriate values in the correct boxes and press OK. The 
probability is displayed in the cell and the formula is displayed in the 
function window. The command in Stata is 

display normal(1.86) - 0.5 

The “display” is necessary to display the output. Without it, the value 
will be calculated but not displayed. Remember Stata is case sensitive, so 
type the command as shown. 
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Figure 4.7 Pull-down Window for Excel Functions 

Upon selecting the option, a new window opens up as shown in 
Figure 4.8. 

 

Figure 4.8 Excel Window for inserting the parameters for a normal 

distributions  
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Area under a Normal Distribution with any Mean and Variance 

To calculate the probability for a normal distribution with any mean 
and variance, first convert the distribution to the standard normal by 
standardizing all values.  To do so, follow these steps: 

1. Rewrite the question using probability notations (see Example 4.1 
for some examples). 

2. Convert the values into Z scores. 
3. Draw a graph and shade the area under investigation. 
4. Look up the probability from a table or use a software program 

to obtain the probability. 

When finding the area between two Z values, if the Z values are on 
different sides of zero, that is, one is positive and the other is negative, 
find the area between 0 and each Z value for each and  add the corre-
sponding probabilities. If the Z values are on the same side of 0, that is, 
either both are negative or both are positive, find the area between 0 and 
each Z value and subtract the smaller probability from the larger one.  

Continuous distribution functions such as normal distributions 
share two characteristics: (1) length and (2) area. A Z score is a length 
measure. It shows how far a point is from the center (which is also the 
mean) in terms of standard deviations. In other words, Z scores indicate 
the number of units a point deviates from the mean. The probability of 
a particular Z value from the mean is an area. The area between the 
mean (zero) and a point is the value provided in the standard normal 
table. 

Example 4.2 Assume that the random variable X has a normal distribu-
tion with mean 16.9 and standard deviation of 3.01. Find the area asso-
ciated with the probabilities below using the normal distribution. 
 

a. P(X < 22.51) 
b. P(X > 11.3) 
c. P(13.93 < X < 23.41) 
d. P(11.43< X <15.61) 
e. P(17.64 < X < 21.45) 
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Solution 4.2 

The first step is to standardize the values, both alphabetically and  
numerically. 

a. ( ) ( )

( )

22.51 16.9
22.51 1.86

3.01
0 1.86 0.5 0.4686 0.5 0.9686

X
P X P P Z

P Z

μ
σ
− −� �< = < = <� �

� �
= < < + = + =

 

Note that the area of interest is everything to the left of 1.86.  Excel 
and Stata commands are listed below. Note that Stata requires typing 
the Z formula.  

=NORM.DIST(22.51, 16.9, 3.01, 1) = 0.9688 

display normal((22.51-16.9)/3.01) = 0.9688 

The display command before any valid algebraic equation will  
display the result. 

b. ( ) ( )

( )

11.3 16.911.3 1.86
3.01

1.86 0 0.5 0.4689 0.5 0.9689

X
P X P P Z

P Z

μ
σ
− −� �> = > = > −� �

� �
= − < < + = + =

 

c. ( )

( ) ( ) ( )

13.93 16.9 23.41 16.913.93 23.41
3.01 3.01

0.99 2.16 0.99 0 0 2.16

0.3389 0.4846 0.8235

X
P X P

P Z P Z P z

μ
σ

− − −� �< < = < <� �
� �

+= − < < = − < < < <

= + =

 

d. ( )

( ) ( ) ( )

11.43 16.9 15.61 16.911.43 15.61
3.01 3.01

1.82 0.43 1.82 0 0.43 0
0.4656 0.1664 0.2992

X
P X P

P Z P Z P Z

μ
σ

− − −� �< < = < <� �
� �

= − < < − = − < < − − < <
= − =

 

e. ( )

( ) ( ) ( )

17.64 16.9 21.45 16.917.64 21.45
3.01 3.01

0.25 1.51 0 1.51 0 0.25

0.4345 0.0987 0.3358

X
P X P

P Z P Z P Z

μ
σ

− − −� �< < = < <� �
� �

= < < = < < − < <

= − =

 

Finding the Value that Corresponds to a Given Probability 

Example 4.3 Let the random variable X have a normal distribution with 
a mean of 15 and a standard deviation of 3. 

a. What is the cutoff value for the top 1% of this population? 
b. Find the interquartile range. 
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Solution 4.3 

a. In this example, the probability of the outcome is given and the 
value that determines the desired probability is the objective.  

P(Z > z) = 0.01 

Search for the probability that corresponds to 0.5 − 0.01 = 0.49 in 
the body of the normal table.  You will need to scan through the body 
of the table to find the value that most closely matches 0.49. In this 
case, the closest that we can find is 0.4901.  If you then reverse the pro-
cess that was used before, and add the leftmost row value and top-most 
column value, you get 2.33. The following Excel and Stata commands 
can also be used to provide the Z value: 

=norm.s.inv(1-0.01) 

display invnormal(1-.01) 

Next, determine the X value by reversing the computation of the Z 
score. 

15 2.33
3

X X
Z

μ
σ
− −= = =  

X = 15 + 3(2.33) = 21.99 

Therefore, 1% of the population has an X value greater than 21.99. 
Note that 21.99 is the 99th percentile. The following Excel command 
accomplishes the same task. 

=norm.inv(1-.01,15,3) 

b. Note that by definition the first quartile is to the left of the mean. 

P(Z < z) = 0.25 

P(z < Z < 0) =0.5 − 0.25= 0.25 

Search the body of the table for 0.25. The closest number is 0.2517 
that corresponds to the Z score of z = −0.675. In the Z score formula 
solve for the X. 

15 0.68
3

X X
Z

μ
σ
− −= = = −  

X = 15 + 3(−0.675) = 12.975 
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Therefore X = 12.975 is the first quartile. 
For the third quartile, 

P(Z < z)= 0.75 

P(0 < Z < z) = 0.75 − 0.5 = 0.25 

Following the previous procedure Z = +0.675, 

15 0.68
3

X X
Z

μ
σ
− −= = =

 

X = 15 + 3(0.675) = 17.025 

Therefore, the third quartile is 17.025. The interquartile range for the 
population is 12.975 to 17.025. 

Using the Menus in Excel 

Note that in Excel the top 1% is entered as 0.99 for probability. Point 
to the arrow on the side of the “� AutoSum” on Excel’s ribbon com-
mand and choose “more functions.” From the drop-down window, 
choose “Statistical” in the window labeled “or select a category” and 
scroll down until you get to the NORM.INV command. See Figure 4.7 
for more details.  

Place the appropriate values in the correct boxes and press OK  
(Figure 4.9). 

The result 21.97904 is displayed, which is slightly different from the 
result from the table due to rounding. You could have entered the fol-
lowing formula as well. 

= NORM.INV(0.99,15,3)  

a.  

= NORM.INV(0.25,15,3) = 12.97653 

= NORM.INV(0.75,15,3) = 17.02347 

Again the results are slightly different due to rounding and the  
degree of precision of the normal table. Interestingly, both the above 
values and the values for the normal distribution table are obtained from 
Excel.  
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In Stata, enter the following command to obtain the Z value associ-
ated with a probability: 

display invnorm(0.25) 

To obtain the X values, enter the following commands. Note that both 
syntaxes use the plus (+) sign because Stata assigns the correct signs of 
negative and positive for values to the left and to the right of the center, 
respectively. 

display 15+ invnorm(0.25)*3 

display 15+ invnorm(0.75)*3 

Nonconformity with the Normal Distribution 

Nonconformity with the normal distribution could be due to a devia-
tion from symmetry, which is called skewness or due to a deviation in 
the pointedness of the distribution, which is called kurtosis. 

Normality versus Skewness 

Normal distributions are essential for statistical analysis. The exact shape of 
the normal curve depends on the probability density function of the normal 
distribution. Any deviation from the normal probability density function 
results in skewness or kurtosis as explained in Chapter 3. It is easy to detect 
skewness visually because skewed distributions are not symmetric. In  
Figures 4.9 and 4.10, the graphs for positive and negatively skewed func-
tions are superimposed on that of the normal distribution for comparison. 

 

Figure 4.9 Comparison of negative skewness with a normal 

distribution 
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Figure 4.10 Comparison of positive skewness with a normal 

distribution 

The commands for computing skewness in Excel and Stata are 

=skew(range) 

summarize varlist, detail 

The range is a valid range in Excel and varlist is the name(s) of the 
variable(s) in Stata. 

Normality versus Kurtosis 

Kurtosis measures the degree of flatness or pointedness of a symmetric 
curve compared with a normal distribution, as explained in Chapter 3. 
It is beneficial to depict the graph of a flatter curve, called platykurtic, 
which corresponds to a kurtosis measure with negative value. The more 
peaked curve, called leptykurtic corresponds to a kurtosis measure with a 
positive value. Figures 4.11 and 4.12 demonstrate the comparison to the 
normal curve. 

 

Figure 4.11 Comparison of negative kurtosis (platykurtic or flatter) 

with normal 
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Figure 4.12 Comparison of positive kurtosis (leptokurtic or pointed) 

with normal 

Example 4.4 Calculate the skewness and kurtosis for the Microsoft 
stock prices from May 21 to July 2, 2015.  Use the data from Table 2.1. 

Solution 4.4 

Use the following two commands, the first in Excel and the second in 
Stata, to answer the question. 

=skew(range) 

summarize varlist, detail 

The range is a valid range in Excel and varlist is the name(s) of vari-
able(s) in Stata. The results of skew and kurtosis commands from Excel 
may differ from the Stata summarize command as the two programs use 
different methods of computing the results.  With the Microsoft stock 
price data, Excel gives a result of −0.4967 and Stata gives −0.4715. The 
output from Stata was presented earlier. 

Chi-squared (��) Distribution Functions 

The chi-squared distribution is one of the distribution functions that are 
derived from normal distribution function.  

Theorem 4.1 Let the random variable X have a normal distribution 
with mean and positive variance: 

( )2~ ,X N μ σ  
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Then, the random variable 

( )2

2

X
V

μ
σ
−

=  

will have a chi-squared 2( )χ  distribution with one (1) degree of freedom. 

( )2~ 1V χ  

Note that ;X
Z

μ
σ
−=  hence, Z 2 is a 2χ  (1). Therefore, the stand-

ard normal values can be squared to obtain probabilities for the chi-square 
distribution with 1 degree of freedom. 

P(|Z| < 1.96) = 0.95 

P(Z 2 < (1.96)2) = P(Z 2 = 3.842)=0.95 

This is identical to the chi-squared value with one degree of free-
dom. In confidence intervals and tests of hypothesis, one can use either 
a normal distribution or a chi-squared distribution. Each one is benefi-
cial in different settings. In Stata, the user-defined command chitable 
displays a table of chi-squared values (first you must install probtabl; for 
more information, see the discussion under normal distribution func-
tions earlier in the chapter). Probabilities are listed at the top row and 
the degrees of freedom are on the left margin. The Stata command for 
obtaining chi-squared probabilities are chi2(df, x) and chi2dn(df, x) for 
cumulative and probability density, respectively, where df stands for 
degrees of freedom and the x inside the parentheses is the desired chi-
squared value. 

The Excel command is 

=Chisq.dist(x, deg_freedom, cumulative) 

where x is the desired value, deg_freedom is the degrees of freedom, and 
cumulative is either 0 or 1. To obtain the probability for the right or left 
hand area, add “.r” and “.l” before the left parenthesis, respectively. 
  



 DISTRIBUTION FUNCTIONS 101 

 

Theorem 4.2 Let X1, X2, . . . , Xn be a random sample of size n from a 
distribution N( �, 2σ ). Recall that 

� X
n

Σμ =  and �
�( )2

2

1

X

n

μΣ
σ

−
=

−

 

It can be proven that 
i. �μ  and �2σ are independent 

ii. 
�2

2

( 1)n σ
σ
−  is distributed as a chi-squared with (n − 1) degrees of 

freedom 

( )� ( )
2

2
2

1
~ 1

n
n

σ
χ

σ
−

−  

t Distribution Functions 

This is another distribution function, which is derived from the normal 
distribution. This distribution corrects for loss of degrees of freedom in 
empirical studies. In addition, it is also related to the chi-squared distri-
bution.  

Theorem 4.3 

Let X be a random variable that is N(0,1), and let U be a random varia-

ble that is
2χ  (r). Assume Z and U are independent. Then  

X
t

U
r

=
 

has a t distribution with r degrees of freedom.  

Theorem 4.4 Let X be a random variable that is N( �, 2σ ). Use the 
customary “hat” notation to represent sample mean and sample vari-
ance. Then the following relationship has a t distribution with (n − 1) 
degrees of freedom. 
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�

�2

2

( )

( 1)

nt
n

n

μ μ
σ

σ
σ

−

=

−

 

The Stata command for obtaining t probabilities are t(df,t) and 
tden(df,t) for cumulative and probability density, respectively, where df 
stands for degrees of freedom and the t inside the parenthesis is the de-
sired t value. The command ttable will display the table of t values. This 
command will work only if you have installed probtabl in the previous 
section (using the command findit probtabl). The Excel commands are 
t.dist, t.dist.2t, and t.dist.rt, for left-tailed, two-tailed, and right-tailed 
probabilities. The inverse is obtained by t.inv and t.inv.2t. 

F Distribution Functions 

The final continuous distribution function that is considered is derived 
from the ratios of two chi-squared distributions; hence, it too belongs to 
the family of normal distributions.   

Theorem 4.5 

Let U and V be independent chi-squared variables with r1 and r2 degrees 
of freedom, respectively. Then 

1

2

U
r

F V
r

=  

has an F distribution with r1, r2 degrees of freedom.  

1

2

U
r

V
r

 ~ Fr1, r2 

The relation between F and Z is such that  

F= e2Z 
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The F-statistic consists of the ratio of two variables, each with a chi-

squared, 2 ,χ  distribution divided by their corresponding degrees of 
freedom. 

The Stata command for obtaining F probabilities is ftable (probtabl 
must be installed first using findit probtabl). The Stata command for 
obtaining F probabilities are f(df1, df2,x) and fdn(df1, df2, x) for cumu-
lative and probability density, respectively, where df stands for degrees of 
freedom and the x inside the parenthesis is the desired F value. The 
commands in Excel are f.dist and f.dist.rt for left-tailed and right-tailed 
probabilities, respectively. The syntaxes are 

=f.dist(x, deg_freedom1, deg_freedom2, cumulative) 

=f.dist.rt(x, deg_freedom1, deg_freedom2) 

The following command returns the inverse of the left hand tail  
value for a particular probability: 

=f.inv(probability, deg_freedom1, deg_freedom2) 

 
  



 

 

 



 

CHAPTER 5 

Sampling Distribution of 
Sample Statistics 

Sampling 

Samples, which are subsets of a population, can be collected in a variety of 
ways. As will become evident in this chapter, random sampling is  
important for establishing the necessary foundation for statistical analysis. 
However, sampling techniques are not limited to random sampling.  
Sampling theory establishes the customary properties of statistics for each 
non-random sample. Although each sampling technique has its advantages 
and disadvantages, the present text will not focus on various sampling 
techniques. After a brief discussion about sampling, the attention will be  
focused on the properties and advantages of random sampling. Theories 
that are necessary for performing statistical inference and are related to 
sampling are discussed in this chapter.  

In Chapter 2, a statistic was defined as 

A statistic is a numeric fact or summary obtained from a sample. It 
is always known, because it is calculated by the researcher, and it is a 
variable. Usually, a statistic is used to draw inferences about the cor-
responding population parameter.  

The only way to know the parameters of a population is to conduct 
a census. A census is a survey of everyone or everything in a population. 
Censuses are expensive, and contrary to common belief, they are not 
always more accurate than a sample or necessarily correct. On average, it 
takes more than 2 years to release the census results in the United States. 
During this time, data change; for example, new babies are born, some 
people die, and others move. Sometimes, in order to expedite the release 
of census information, a sample is obtained from the census data.  
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Sometimes, taking a census is not an option. This is not only due to 
the time and money involved, but also because the census itself might be 
destructive. For example, in order to find out the average life of light 
bulbs, they must be turned on and left until they burnout. Barring mis-
takes, this would provide the average life of the light bulbs, but then 
there will not be any light bulbs left. Similarly, determining whether 
oranges were not destroyed by frost requires cutting them open. There 
are lots of other reasons where it is unrealistic, if not impossible, to  
conduct a census to obtain information about a population and its  
parameters. 

Surveying a sample can address some of the problems associated 
with conducting a census. However, collecting sample data is neither 
inexpensive nor effortless. Sampling textbooks devote substantial effort 
to explain how to obtain random samples from a population. One  
simple, but not necessarily pragmatic or efficient way is to assign ID 
numbers to all members of the population and then pull the desired 
number of sample units by using random drawings of the ID numbers.  

In this instance, our interest in sampling is very limited. We are  
interested in obtaining an estimate from a relatively small portion of a 
population to obtain insight about the population parameter. The 
knowledge of parameters allows meaningful analysis about the nature of 
the characteristics of interest in the population and is vital for making 
decisions about the population of the study. 

As indicated earlier, summary values obtained from a sample are 
called statistics. Since statistics are random variables, different samples 
result in slightly different outcomes. It is possible to have many samples 
and thus many sample statistics, such as the sample mean. It turns out 
that the sample means have certain properties that are useful as they 
allow us to conduct statistical inference.  

Definition 5.1 Statistical inference is the method of using sample statis-
tics to draw conclusions about a population parameter.  

Statistical inference requires the population of interest to be defined 
clearly and exclusively. Furthermore, the sample must be random. Theo-
ries that explain how statistics are used to make inferences about popula-
tion parameters will be explained shortly.  
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The method of using information from a sample to make an  
inference about a population is called inductive statistics. In inductive 
statistics, we observe specifics to draw an inference about the general 
population. This chapter introduces the necessary theories for inductive 
inference, whereas Chapters 6 and 7 provide specific methods for mak-
ing inferences under different situations. The alternative procedure of 
deductive inference starts from the general and makes assertions about 
the specific. For example, if a firm has 500 employees and 300 of them 
are men, then the probability of choosing a male worker at random is 
300/500 = 0.60 or 60%.  

Statistical inference makes probabilistic statements about the  
expected outcome. It is essential to realize that since random events  
occur probabilistically, there is no “certain” or “definite” outcome value. 
Therefore, it is essential to provide the probability associated with the 
expected outcome.  

Sample Size 

Before we discuss the role of randomness and the usefulness or effective-
ness of a sample, it is important to understand how other factors influence 
the effectiveness of the sample statistics in providing reliable inferences 
about a population parameter. Even if a sample is chosen at random, two 
other factors attribute to the reliability of the sample statistics. They are 
the variance of the population and the sample size.  

In order to provide the perfect inference about a population parameter 
for a population with identical members, the necessary sample size is one 
(1). For example, if the output of a firm is always the same, say 500 units 
per day, then choosing any single given day at random would be sufficient 
to determine the firm’s output. Note that in the previous example, there 
was no need to sample at random, although one can argue that any day 
that is chosen is a random day. However, if the output changes every day 
due to random factors such as sickness, mistakes during production, or 
breakdown of equipment, then the sample size must increase.  

It is important to understand the possible difference in output among 
the days of the week and the month, if applicable. For example, Mondays 
and Fridays might have lower output. By Friday, workers might be tired 
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and not very productive. Machinery might need cleaning and break more 
often toward the end of the week. On Mondays, workers might be slug-
gish and cannot perform up to their potential. Workers might be preoc-
cupied toward the end of the month or early in the month when they are 
running out of money, or when their bills are due.  

These are just some of the issues that might affect the outcome, 
hence the sample size. Therefore, there should be a direct relationship 
between the sample size chosen and the variance of the population, and 
larger samples must be taken from populations with larger variance. 
Since statistical inference is probabilistic, to obtain higher levels of con-
fidence, we should take larger samples. It can be shown that the required 
sample size for estimating a mean is given by 

2 2

2
2

Z
n

E
α σ

=  

where 2

2
Zα  is the square of the Z score for the desired level of signifi-

cance, 2σ  is the variance of the population, and E is the tolerance level 
of error. The reason for dividing the level of significance by 2 is that the 
probabilities of extreme values are evenly spread on both the low end 
and the high end of the distribution.  

Definition 5.2 The reliability of a sample mean �( )μ  is equal to the 

probability that the deviation of the sample mean from the population 
mean is within the tolerable level of error (E ). 

Reliability �( )P E Eμ μ= − ≤ − ≤  

Example 5.1 Assume that a population’s standard deviation for a par-
ticular output level is 29. Also, assume that we desire to limit our error 
to 5%, which makes the level of significance 95%. Let the tolerable level 
of error to be 4. Determine the required sample size. 

Solution 5.1 

First obtain a Z score. In Figure 5.1, the area in the middle is 95% of 
the area under the curve. Therefore, the area at the two tails adds up to 
5%, or 0.05 probability. 
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Figure 5.1 Graph of a normal distribution 

Since most tables are designed to calculate the area between zero and 
a demarcation point on the right-hand side, it is necessary to obtain that 
area first. Half of the level of significance, or 0.025, is on the right hand, 
which makes the area between zero and the demarcation point equal to 
0.5 − 0.025= 0.475, which according to the table corresponds to a Z 
score of 1.96. The commands in Stata and Excel are 

=NORMINV(1-0.025,0,1)  

display invnormal(.975) 

Note that the answer from Excel is 1.959964. The necessary sample 
size is given by  

2 2

2

(1.96 )(29 ) (3.84)(841)
201.9241

4 16
n = = =  

Therefore, the minimum sample size should be 202. Since fractional 
samples are not possible, we must always use the next higher integer to 
assure the minimum desired level of accuracy. 

Example 5.2 A 95% reliability for the sample mean is given by the 
shaded area in Figure 5.2. 

Reliability �( ) .95P E Eμμ μ= − ≤ ≤ + =  

Shortly, we will see that the tolerable level of error is equal to  

1.96E
n

σ=  

An astute student will notice that in order to estimate the sample size, it is 
necessary to know the variance. It is also imperative to understand that in 
order  to  calculate the variance,  one needs the  mean,  which, apparently, is  
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Figure 5.2 The range for 95% reliability of the sample mean 

not available; otherwise we would not have to estimate it. Sometimes one 
might have enough evidence to believe that the variance of a population has 
not changed, while its mean has shifted. For example, everybody in a coun-
try is heavier, but the spread of the weights among people have remained 
the same. In situations that the known variance is also believed to have 
changed, the only solution is to take a pre-sample to have a rough idea 
about the mean and the variance of the population and then use the sample 
estimates as a starting point to determine a more dependable sample size.  

Sampling Distribution of Statistics 

As stated earlier, sample statistics are random variables and change from 
sample to sample. This means that the actual observed statistics are only 
one outcome of all the possible outcomes. A sampling distribution of any 
statistic explains how the statistic differs from one sample to another. 
The most commonly used statistics are the sample mean, proportion, 
and variance. Therefore, we will study their sampling distributions in a 
systematic way. We begin with the sampling distribution for one sample 
mean and distinguish between the cases when the population variance is 
known and when it is unknown. Next, we introduce two sample means 
and address the cases of known and unknown variances. However,  
before embarking on this mission, it is necessary to discuss the Law of 
Large Numbers and the Central Limit Theorem, which are the founda-
tions of inferential statistics.  

Theorem 5.1 Law of Large Numbers  

For a sequence of independent and identically distributed random vari-
ables each with mean ( )μ  and variance 2( ),σ the probability that the 



 SAMPLING DISTRIBUTION OF SAMPLE STATISTICS 111 

 

difference between the sample mean and the population mean is greater 
than an arbitrary small number will approach zero as the sample size 
approaches infinity.  

The theorem indicates that as the number of observations increases, 
the average of their means approaches the population’s mean. Since 
sample means are statistics and random, their values vary. The theory 
neither requires nor implies that any of the observations will be equal to 
the population mean. The law of large numbers is essential for the cen-
tral limit theorem. 

Theorem 5.2 Central Limit Theorem  

Assume a sequence of random variables X1, X2, … Xn are independent 
and are identically distributed, each with mean ( )μ  and variance 2( ),σ  
then the distribution function of the Z scores of the sample means will 
converge to standard normal as the sample size increases. 

The distribution function of the sample means, not the actual obser-
vations, will be standard normal. The theorem depends on sampling 
with replacement. In practice, however, sampled units are not returned 
to the population to be included in the next draw of a sample unit.  
Exclusion of a member of the population from successive draws for a 
sample changes the probability of the remaining population members, 
thus invalidating the outcome. When a population is substantially large, 
the change in probability of excluding one member is very small. For 
example, if the unit of observation is people, then excluding one person 
in the United States from a population after being drawn would affect 
the probability by about 1 in 330,000,000. When a population is finite, 
a correction factor is added to the formula to reduce the problem, which 
will be explained and demonstrated shortly.  

Sampling Distribution of a One Sample Mean 

In this section, we will consider separately the case where the population 
variance is known, and that where the population variance is unknown. 
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Population Variance Is Known 

The sample mean is a statistic. Assume we know the variance of a popu-
lation from which the sample mean is obtained. Let �( )μ  be the mean of 

a random sample of size n from a distribution with a finite mean ( )μ  
and a finite and known positive variance 2( ).σ  Using the Central Limit 
Theorem, the following is true about the sample mean �( )μ :  

 

1. The distribution function for �( )μ  can be approximated by a 

normal distribution  
2. �( )E μ μ=  

3. 
�

2
2

nμ
σσ =  

Therefore, we can use the standard normal table values for compari-
son of the standardized values of the sample mean. The knowledge of 

population variance 2σ  is essential for calculation of �
2 ,μσ  Property 2, 

above, states that the expected value of the sample mean �μ  will be 
equal to the population parameter μ . In other words, the average of all 
such sample statistics will equal the actual value of the population pa-
rameter. As the sample size increases, the sample variance of the estimate 
�2

μσ  decreases. Therefore, as the sample size increases, the sample statis-

tic (estimate) gets closer and closer to the population parameter μ . 
The distribution function of the sample mean for samples of size 30 

will be close to the normal distribution even when the variance is esti-
mated rather than known. For random variables from a population that 
is symmetric, unimodal, and of the continuous type, a sample of size 4 
or 5 might result in a very close approximation of the normal distribu-
tion. If the population is approximately normal, then the sample mean 
would have a normal distribution when sample size is as little as 2 or 3. 

Example 5.3 Assume that the variance for the daily production of a 
good is 2,800 pounds. Find the sampling distribution of the sample 
mean �( )μ  for a sample of size 67. 
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Solution 5.3 

1. The sampling distribution of the sample mean �( )μ  is normal 

2. �( )E μ μ=  

3. �
2 2800

41.79
67μσ = =  

As we see, there is very little computation involved. Nevertheless, the 
theoretical application is enormous. The magnitude of the variance of 
the sample mean (41.79) is much smaller than the variance of the popu-
lation (2,800). 

Example 5.4 Assume that the variance for daily production of a good is 
2,800 pounds. What is the probability that in a sample of 67 randomly 
selected days the output is 15 pounds or more below average? 

Solution 5.4 

Note that no sample mean is obtained and there is no need to know the 
population mean. We are interested in the deviation from the popula-
tion average. 

�( ) �

[ ]

[ ]

2

15 1515
2800 41.79
67

15 2.32
6.47

0.5 0 2.32 0.5 0.4898 0.0102

P P P Z

n

P Z P Z

P Z

μ μμ μ
σ


 �
� � 
 �− − −
 � � �− < − = < = <� �� � � � � �
� �
� �

−
 �= < = < −� �� �
= − < < = − =

 

Therefore, for this production process the chance of a sample mean  
being more than 15 pounds below the target is 102 in 10,000. Accordingly, 
potentially over 100 customers in every 10,000 or roughly 1 in 100 might 
receive a “lighter” product and would ask for a refund or replacement. 

Population Variance Is Unknown 

Let �( )μ  be the mean of a random sample of size n from a distribution 

with a finite mean and a finite and unknown positive variance 2( ).σ  
According to the Central Limit Theorem, 
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1. The distribution of �( )μ  can be approximated by a t distribution 

function 
2. �( )E μ μ=  

3. �
� �2

2

nμ
σσ =  

Therefore, we can use the t table values, which can be obtained from 
Stata through the ttable command, for comparison of the standardized 
values of the sample mean. As the sample size increases, the distinction 
between the normal distribution and the t distribution vanishes. The 
results can be proven for sample proportions as well. In each case, the 
mean and variance of the estimator will be different.  

When the population size is finite, which is relatively small com-
pared to the sample size, it is necessary to add a correction factor to the 

formulas. When the ratio of sample size to population size, n
N

, is greater 

than 5%, you should use a correction factor with the variance. The  

correction factor is 
1

N n
N

−
−

. For finite populations, the variance of the 

sample mean becomes 

�

2
2

1
N n

n Nμ
σσ −=

−
 known variance 

�
� �2

2

1
N n

n Nμ
σσ −=

−
 unknown variance 

Summary 

Distribution function for a one sample mean 

 Distribution Mean Variance
Population Variance Is Known Normal μ  σ 2

n  

Population Variance Is Unknown t μ  �σ 2

n
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Sampling Distribution of a One Sample Proportion 

Let �( )π  be a proportion from a random sample of size n from a distri-

bution with a finite proportion ( )π and a finite positive variance 2( ).σ  
When both n 5π ≥  and n (1 ) 5,π− ≥  then the following theorem is 
correct based on the Central Limit Theorem: 
 

1. The distribution of �( )π  can be approximated by a normal dis-
tribution function 

2. �( )E ππ =  

3. �
� �2 (1 )

nπ
ππσ −=  

Note that in order to obtain the variance of the sample proportion, 
we must estimate the population proportion using the sample propor-

tion. Thus, � �
�2 2 .π πσ σ=  Therefore, standard normal table values can be 

used to obtain occurrence probabilities. The symbol ( )π  is used to  
represent the population proportion and has nothing to do with the 
mathematical constant ( )π  = 3.141593. 

An added advantage of using the sampling distribution of the sample 
proportion is that you can use the normal approximation to estimate the 
probability of outcomes for the binomial distribution function without 
direct computation or the use of a binomial distribution table. When 
both n 5π ≥  and n (1 ) 5,π− ≥  it is reasonable to approximate a bino-
mial distribution using a normal distribution. 

Sampling Distribution of Two Sample Means 

The extension from the distribution function of a single sample mean to 
two means is simple and follows naturally. However, it is necessary to 
introduce the appropriate theories. 

Theorem 5.3 The Expected Value of the Sum of Random Variables  

Let Y = X1 + X2 + … Xn, where Xs are independent random variables. The 
expected value of Y is equal to the sum of the expected values of Xs. 

E(Y ) = E(X1) + E(X2) + … + E(Xn) 

Theorem 5.3 requires that the Xs be independent.  
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Sampling Distribution of the Difference of Two Means 

When conducting inferences about two population parameters, there are 
two sample statistics, one from each population. Often, in order to con-
duct an inference, the relationship between the parameters, and hence 
the corresponding statistics, has to be modified and written as either the 
difference of the parameters or the ratio of the parameters. This requires 
knowledge of the distribution function for the difference of two sample 
statistics or the distribution function for the ratio of two sample statis-
tics. In this section, the sampling distribution of the difference of two 
sample means is discussed, followed by the distribution function for the 
difference of two sample proportions. Later the distribution function for 
the ratio of two variances will be addressed. 

The Two Sample Variances are Known and Unequal 

Let �1( )μ  and �
2( )μ  be the means of two random samples of sizes n1 and 

n2 from distributions with finite means 1μ  and 2μ  and finite positive 
known and unequal variances of 2

1σ  and 2
2 .σ  According to the Central 

Limit Theorem and Theorem 5.3, 
 

1. The distribution of � �
1 2( )μ μ−  can be approximated by a normal 

distribution function 
2. � �

1 12 2( )E μ μ μ μ− = −   

3. � �
2 2
1 2

1 2
1 1

Var( )
n n
σ σμ μ− = +  

Note that the variances of the two samples are added together, while 
the means are subtracted. Therefore, we can use the normal table values 
for comparison of the standardized values of the differences of sample 
means. 

The Two Sample Variances are Known and Equal 

Let �1( )μ  and �
2( )μ  be the means of two random samples of sizes n1 and 

n2 from distributions with finite means 1μ  and 2μ  and finite positive 
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known and equal variances 2
1σ  and 2

2 .σ  Let n1 and n2 be the respective 
sample sizes. According to the Central Limit Theorem and Theorem 5.3, 
 

1. The distribution of � �
1 2( )μ μ−  can be approximated by a normal 

distribution function 
2. � �

1 12 2( )E μ μ μ μ− = −  

3. � � 2
1 2

1 2

1 1Var( )
n n

σμ μ
� �

− = +� �
� �

 

Since 2 2 2
1 2σ σ σ= =   

The Two Sample Variances are Unknown and Unequal 

Let �1( )μ  and �
2( )μ  be the means of two random samples of sizes n1 and 

n2 from distributions with finite means 1μ  and 2μ  and finite positive 
unknown and unequal variances 2

1σ  and 2
2 ,σ  respectively. According to 

the Central Limit Theorem and Theorem 5.3, 
 

1. The distribution of � �
1 2( )μ μ−  can be approximated by a t dis-

tribution function 
2. � �

1 12 2( )E μ μ μ μ− = −   

3. � �
� �2 2

1 2
1 2

1 2

Var( )
n n
σ σμ μ− = +   

The Two Sample Variances are Unknown and Equal 

Let �1( )μ  and �
2( )μ  be the means of two random samples of sizes n1 and 

n2 from distributions with finite means 1μ  and 2μ  and finite positive 
unknown and equal variances 2

1σ  and 2
2 ,σ  respectively. According to 

the Central Limit Theorem and Theorem 5.3, 
 

1. The distribution of � �
1 2( )μ μ−  can be approximated by a t dis-

tribution function 
2. � �

1 12 2( )E μ μ μ μ− = −  
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3. � � �2
1 2

1 1

1 1Var( ) Pooled n n
σμ μ

� �
− = +� �

� �
  

where 

� � �2 2
2 1 1 2 2

1 2

( 1) ( 1)
2Pooled

n n
n n
σ σσ − + −=

+ −
 

The concept of pooled variances was discussed in Chapter 2 in the 
section named “Average of Several Variances.” 

Summary of the Sampling Distribution of Sample Means 

Do not let these seemingly different and possibly difficult formulas con-
fuse you. They are similar. The most common case is case 3 (The Two 
Sample Variances are Unknown and Unequal). The first three cases can 
use this formula without any problem. The last case takes advantage of 
the fact that there are two estimates of the single unknown variance of 
the population instead of one. Logic dictates that it would be better to 
average the two estimates using their respective sample sizes as weights as 
explained in Chapter 2. Table 5.1 provides a summary of the various 
sample statistics, their distribution functions, and their parameters for 
one and two sample means. 
 
Table 5.1 Summary of sampling distribution for sample mean statistics 

Sample 
Statistic 

Population 
Variance(s) 

Distribution 
Function 

Mean Variance of the 
Sample Statistic 

�μ  Known Normal  μ  σ 2

n  

�μ  Unknown t μ  �σ 2

n
 

� �μ μ−1 2  Known and 
Unequal 

Normal μ μ−1 2  σ σ+
2 2
1 2

1 1
n n  

� �μ μ−1 2  Known and 
Equal 

Normal μ μ−1 2  σ
� �

+� �
� �

2

1 2

1 1
n n  

� �μ μ−1 2  Unknown and 
Unequal 

t μ μ−1 2  � �σ σ+
2 2
1 2

1 2
n n  

� �μ μ−1 2  Known and 
Equal 

t μ μ−1 2  �σ
� �

+� �
� �

2

1 2

1 1
Pooled n n  
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Sampling Distribution of the Difference of Two 
Proportions 

Let �1π  and �2π  be proportions of interest in two random samples of sizes 

n1 and n2 from distributions with finite proportions of 1π  and 2π  and 

finite positive variances of 2
1σ  �and 2

2 .σ  According to the Central Limit 
Theorem,  
 

1. The distribution of � �
1 2( )π π−  can be approximated by a normal 

distribution function 
2. � �

1 2 1 2( )E π π π π− = −  

3. � � � � � �
1 1 2 2

1 2
1 2

(1 ) (1 )
Var( )

n n
π π π ππ π − −− = +  

Therefore, we can use the normal table values for comparison of the 
standardized values of sample proportions. In practice, 1 2π π−  are not 
known; otherwise, it would have been an exercise in futility. Therefore, 
their estimates, �1π  and �2 ,π  respectively, are used in calculating the vari-

ance of � �
1 2( ).π π−  The distribution function, expected value (mean), 

and variance for one and two sample proportions are given in Table 5.2. 
 

Table 5.2 Summary of the sampling distributions of sample proportions 

Sample 
Statistic 

Population 
Variance(s) 

Distributio
n Function 

Mean Variance of the Sample 
Statistic 

�π  NA Normal π  � �π π−(1 )
n

 

� �π π−1 2  NA Normal π π−1 2  � � � �π π π π− −+1 1 2 2

1 2

(1 ) (1 )
n n

 

Sampling Distribution of the Sample Variance 

Theorem 5.4 Let random variable X have a normal distribution with 
mean μ  and variance 2,σ  then the random variable  

2
2X

V Z
μ

σ
−� �= =� �

� �
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has a chi-squared distribution with one (1) degree of freedom, which is 
shown as 2χ (1) as was shown in Chapter 4. Z is the same Z score as 

discussed in previous chapters, which consists of individual error (devia-
tion from the mean) divided by average error (standard deviation). Chi-
squared distributions are cumulative. Therefore, when n chi-squared 
distribution functions are added up, the result is another chi-squared 
distribution with n degrees of freedom. 

Theorem 5.5 Let random variables X1, X2, … Xn have normal distribu-
tions each with mean μ  and variance 2,σ  then the following sum 

2X μ
σ
−� �

� �
� �

�  

has a chi-squared distribution with n degrees of freedom. From this rela-
tion, we can build confidence intervals for one and two variances, and 
conduct tests of hypothesis for one and two variances.  

Sampling Distribution of Two Samples Variances 

When conducting inferences about two population parameters, there are 
two sample statistics, one from each population. Often, in order to con-
duct an inference, the relationship between the parameters, and hence 
the corresponding statistics, has to be modified and written as either the 
difference of the parameters or the ratio of the parameters. This requires 
knowledge of the distribution function of the difference of two sample 
statistics or the distribution function of the ratio of two sample statistics. 
In this section, the sampling distribution of the ratio of two sample vari-
ances is discussed.  

Theorem 5.6  

Let random variables X1, X2, … Xm have normal distributions with mean 

1μ  and variance  2
1 ,σ  and the random variables Y1, Y2, …, Yn have 

normal distributions each with mean 2μ  and variance 2
2 ,σ  then the 

random variable 
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2
1

2
2

X

F
Y

μ
σ

μ
σ

−� �
� �
� �=

−� �
� �
� �

�

�
 

has an F distribution with m and n degrees of freedom.  
Note that in Theorem 5.6, we could have expressed the numerator 

and denominator in terms of the corresponding chi-square distributions 
as stated in Theorem 5.5, which in turn is built upon Theorem 5.4.  

In practice, when population variances are not known, they are sub-
stituted by their respective sample variances. 

�
�

2
1

2
2

F σ
σ

=
 

Customarily, the larger sample variance is placed in the numerator 
to make comparison with the F-table easier. Tabulated values of F are 
greater than or equal to 1.  

The most common use of F distributions at this level is the test of 
hypothesis of equality of two variances. This test also provides a way of 
determining whether or not to pool variances when testing for the 
equality of two means with unknown population variances. To do this, 
first test the equality of the variances. If the hypothesis of no difference 
is rejected, then the variances are different and are not pooled. 

Another use of the F distribution is in testing three or more means. 
When testing a hypothesis that involves more than two means, t distri-
butions cannot be used. Tests of hypothesis and the use of t and F dis-
tributions are discussed more in Chapter 6.  

Efficiency Comparison between the Mean and the 
Median 

Let �μ  be the sample mean and �M  be the sample median. The expected 
value of both the sample mean and sample median is equal to population 
mean. That is, both provide unbiased estimates of the population mean. 
However, the sample mean is more efficient than the sample median  
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in estimating the population mean as shown below. Remember from 
Chapter 1, an estimator of a parameter is more efficient than another  
estimator if it has smaller variance. The variance of the sample mean  
�( )μ  is 

�
� 2

2

nμ

σσ =  

It can be shown that the variance of the median is 

Variance (Sample Median) = 
2

2n
πσ  

where π = 3.141593… 

�
�

2

2

var( ) 2 2 0.64
3.14159var( )

2

n
M

n

σ
μ

πσ π
= = = =  

Therefore, �μ  is more efficient than the median in estimating the 

population mean. The variance of the sample median from a sample of 
size 100 is about the same as the variance of the sample mean from a 
sample of size 64. Therefore, the sample mean from a sample of size 64 
is as efficient as a sample of size 100 using the sample median in esti-
mating the population mean.  

It is worthwhile to note the following discrepancy, which is caused 
by having different orientations or starting points: 

� �Var( ) 1.57 Var( )M μ=  

� �Var( ) 0.6366 Var( )Mμ =  

In other words, to obtain the same efficiency in estimating the popula-
tion mean using a sample mean with a sample of size 100, it is necessary 
to obtain a sample of size 157 when using sample median.  

Recall that when extreme observations exist, the sample median is 
preferred to the sample mean because it is not influenced by extreme 
values. For example, in real estate, it is of interest to know the price of a 
typical house. The industry reports the prices of homes sold each 
month. Usually, only a small fraction of existing homes is sold in any 
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given month. This causes large fluctuations in the average prices of 
homes sold, which constitutes the sample. The industry reports the  
median instead of the average price for the listings to avoid large fluctua-
tions, which can send the wrong signal and cause uncertainty or panic in 
the market. Since the sample median is less efficient than the sample 
mean in estimating the population mean, larger samples are needed in 
order to obtain a realistic estimate of home values. Therefore, it is advisable 
to use median prices over several months. 

 
  



 

 

 



 

CHAPTER 6 

Point and Interval 
Estimation 

Estimation versus Inference 

There are two applications of statistics: descriptive and inferential.  
Descriptive statistics summarize data in forms of tables, graphs, or com-
puted values and are used for estimation. We can use descriptive statistics 
to describe population data or sample data. Inferential statistics is used to 
draw conclusions about a population parameter using sample statistics—
they are used to make decisions. Obtaining sample statistics for inferential 
statistics is the same as obtaining them for descriptive statistics. Whether 
or not a statistic is considered to be descriptive or inferential depends on 
its use. The statistics obtained from a sample are called estimates, to  
emphasize the fact that they are estimates for their respective parameters. 
Estimation is important as we have demonstrated in previous chapters. 

Discussions up to this point have pertained to descriptive statistics. 
When sample estimates are used to test claims about a population  
parameter and to indicate how far the estimates are from parameters, we 
are in the domain of inferential statistics. Some statisticians believe that 
the primary objective of statistics is to make inferences about population 
parameters using sample statistics. Using sample statistics to make  
deductions about the population parameters is called statistical infer-
ence. Statistical inference can be based on point estimations or confidence 
intervals, both of which will be covered shortly. They are closely related, 
and in some cases, they are interchangeable.  
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Point Estimation 

A point estimate is the statistic obtained from a sample. The reason for 
the name is because the estimate consists of a single value. Examples of 
point estimates include the sample mean �( ),μ  sample proportion �( ),π  

sample variance �2( ),σ  and sample median �.M  These statistics are used 
to estimate the population mean ( ),μ  population proportion ( ),π   
population variance 2( ),σ  and population median (M ), respectively. 
The sample median can be used to estimate both the population median 
and the population mean as seen in Chapter 5. Any single-valued esti-
mate obtained from a sample is a point estimate. Good estimates are 
close to their corresponding population parameter, have low variation, 
and converge to their respective parameters as the sample size increases. 
Proper sampling provides accurate estimates of the unknown population 
parameter. As discussed in Chapter 3, a suitable estimate is unbiased, 
consistent, and efficient. 

Although point estimates are useful in providing descriptive infor-
mation about a population, their usefulness is limited because it is not 
possible to ascertain how far they are from the targeted parameter. In 
order to provide levels of confidence and a probability for the margin of 
error, one needs to know the distribution function of the sample  
statistics. 

Once the sampling distribution of the sample statistic is known, the 
probability of observing a certain sample statistic can be calculated with 
the aid of the corresponding table.  

Example 6.1 Calculate point estimates of the mean, median, variance, 
standard deviation, and coefficient of variation for the stock prices of 
Microsoft for May 21 to July 2, 2015. 

Solution 6.1 

The necessary computations as well as the procedure for obtaining the 
results from Excel and Stata were provided starting with Example 2.2 in 
Chapter 2 (Figure 6.1).  
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Figure 6.1 Stata command and output for detailed summary statistics 

� � � �246.096, 0.864, 46.12, 0.9295, 0.020M CVμ σ σ= = = = =  

Interval Estimation 

Statistics deals with random phenomena. Nothing remains constant in 
life. Methods of production change; processes are modified; machines 
get out of calibration; and new techniques are applied. In all these cases, 
statistics are used to determine what remains constant and what changes. 
In descriptive statistics, sample statistics are used to estimate the popula-
tion parameters.  

Interval estimation, such as the use of confidence intervals, augments 
point estimates by providing a margin of error for the point estimate. 
The margin of error is a range that is added to or subtracted from the 
point estimate of the population parameter. Confidence intervals are 
based on the point estimate of the parameter and the distribution func-
tion of the point estimate. It is affected by the desired level of certainty, 
the variance of the data, and the sample size. 

Calculating Confidence Intervals 

Interval estimation is a simple notion and is defined as 

Point estimate � Margin of error (6.1) 
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Definition 6.1 The margin of error is obtained by multiplying the Z 
score corresponding to a desired level of certainty and the standard devi-
ation of the estimate of a parameter. 

 

Figure 6.2 Margin of error on the normal distribution 

Figure 6.2 depicts the margin of error of 95% certainty. This means 
that we are 95% certain that the confidence interval covers the true 
population parameter. The Z score for a normal probability of 0.475 
(half of 0.95) is 1.96. Thus, the margin of error in this case is 1.96 times 
the standard deviation of the estimate. When the estimate of the popula-
tion mean is the sample mean, instead of a single observation, the result-
ing standard deviation is called the standard error. On the basis of the 
Central Limit Theorem, when the statistic is the sample mean or sample 
proportion, the margin of error is obtained by 

2
 Margin of Error Z

nα
σ=  (6.2) 

It is important to realize that the margin of error formula in Equation 
(6.2) depends on the knowledge of the population variance. When the 
population variance is unknown and the sample variance has to be used, 
then the formula must be adjusted by replacing the population standard 
deviation with the sample standard deviation, and consequently the Z 
value must be replaced by the t value as in Equation (6.3) 

�
2

Margin of Error t
nα

σ=  (6.3) 

Example 6.2 Calculate the margin of error for the Microsoft stock price 
for the period May 21 to July 2, 2015, using an 83% level of confi-
dence.  
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Solution 6.2 

First obtain the Z value that corresponds to half of the 0.83 level of con-
fidence. 

( ) 0.83
0  0.415

2
P Z X � �< < = =� �

� �
 

Using any of the previously shown methods, obtain the Z score of 
1.375, which corresponds to the probability of 0.415. Note that we are 
using the sample variance as if it were the actual population variance. 
According to Example 6.1, the variance of all 30 observations is 0.864. 

Margin of Error

0.864(1.375) (1.375) 0.0288 (1.375)(0.1697) 0.233
30

= = = =
 

This would have been the correct margin had we known population 
variance. Since the population variance is unknown, we must use the  
t value instead of Z value. Unfortunately, t values for an alpha of  
(1 − 0.83)/2 = 0.085 are not readily available from conventional t tables. 
However, Microsoft Excel provides the necessary number by using the 
following command: 

=t.inv(0.085, 29) 

where the first number, (1 − 0.83)/2 = 0.085, is half of the desired con-
fidence level, and 29 is equal to n − 1. Excel displays −1.407. The nega-
tive sign indicates the point is to the left of the center. Therefore, the 
probability between −1.407 and 1.407 equals to 0.83. In order to get 
the positive-signed value instead use 0.085 + 0.83 = 0.915. Alternatively 
1 − 0.085 = 0.915 can be used. 

=t.inv(0.915, 29) 

The above formula in Excel gives the positive result of 1.407. There-
fore, 

Margin of Error

0.864(1.407) (1.407) 0.0288 (1.407)(0.1697) 0.238768
30

= = = =
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This is the correct value of the margin of error because it is using the t 
value, as required when the population variance is unknown. The con-
sequence of not having normal distribution is the widening of the mar-
gin of error from ± 0.233 to ± 0.239.  

The concept of margin of error applies to sample statistics but not to 
population parameters. Population parameters are constant values and 
do not have a margin of error. Sample statistics, which are random vari-
ables used for estimating their respective population parameters, have a 
margin of error in estimating the parameter of interest. As seen in Equa-
tion (6.2), the margin of error is directly related to the square root of 
variance of the population and the level of confidence, as indicated by 
the Z score, and inversely related to the square root of the sample size.  

The probability between −Z and +Z from a standard normal, that is, 
a normal distribution with mean of zero (0) and variance of one (1), is 
shown by (1 )α− %. This is because the sum of the areas outside of the 
above range is equal to .α  Chapter 7 provides more explanation for the 
naming of these areas and more detail on the meaning of the term .α  
Customarily, normal distribution tables are calculated for half of the 
area, because of symmetry. Thus, the Z value, which corresponds to one 
half of the ,α  is shown as 

2
Zα . 

Interval Estimation for One Population Mean 

Definition 6.2 The  (1 )α− % confidence interval for the mean of one 
population ( )μ  when the variance is known is given by  

�
2

Z
nα

σμ ±  (6.4) 

Definition 6.3 The (1 )α− % confidence interval for the mean of one 
population ( )μ  when the variance is unknown is given by  

� �
2

t
nα

σμ ±  

To obtain the confidence interval, it is necessary to calculate the following 
two values: 
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( ) � �
�

2 2
Lower Bound LB : orZ t

n nα α
σ σμ μ− −  (6.5) 

( ) � �
�

2 2
Upper Bound UB : orZ t

n nα α
σ σμ μ+ +  (6.6) 

Example 6.3 Provide a 95% confidence interval for Microsoft stock 
price for the period of May 21 to July 2, 2015. 

Solution 6.3 

Since the population variance is  unknown and the sample size is small, 
we need to use the t distribution. The t value for the 95% confidence 
interval is ± 2.04523. The 95% probability refers to the center of the 
graph while customarily the formula uses the notation referring to the 
two end points, and hence the use of α , and its half in the formula. 
Therefore, 1 − 0.95 = 0.05 and half of that is 0.025 for each end. To 
obtain the correct t value, look for the 2.5% probability with 29 degrees 
of freedom in the t table or use the following Excel command: 

=t.inv(.025,29) = -2.04523 

The value reported by Excel is negative because it is designed to report 
the lower-end critical value. To obtain a positive value, use 0.95 + 0.025 
= 0.975 in the built-in command. 

For this example, we will use the average Microsoft stock price of 
46.096, the t value calculated directly above, and 0.1697, which is the 
standard error. 

Lower Bound = 46.096 − 2.04523 (0.1697) = 45.75 

Upper Bound = 46.096 + 2.04523 (0. 1697) = 46.44 

A 95% confidence interval for the mean Microsoft stock price is giv-
en by the range $45.75 to $46.44, compared with the smaller range 
$45.86 to $46.33 obtained using Z, which requires the knowledge of 
the population variance and normality. Estimating a parameter adds 
uncertainty and error; thus, t values are larger than Z values to account 
for the fact that the population variance is unknown and must be esti-
mated (Figure 6.3). Accordingly, the corresponding confidence interval  
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is wider than the one calculated using a Z table when we assume to 
know the population variance. 

The corresponding command in Stata is 

means varlist 

where varlist is the name of the variable. Recall that this command 
displays three commonly used means (see Example 2.4 and Figure 2.1).  

 

Figure 6.3 Stata command and output for confidence interval for 

Microsoft stock prices  

Stata also provides the more powerful command ci. Use both the 
Microsoft and the Walmart data from Example 2.2 (Figure 6.4).  

 

Figure 6.4 Stata command and output using CI command 

To compare the time periods from the first half of the dataset to the 
second half, you will first have to create a new column named “period.” 
Assign the value of 1 for rows from May 21 through June 11 and the 
value 2 for period June 12 through July 2, 2015. To do this, first type 
gen period=1. Then go to the data editor and change the number for 
period to 2 for the dates from June 12 through July 2. You can do this 
by clicking in the cell and typing the number. Alternatively, enter the 
data in Excel before copying them into Stata. 

Although this is a sorted data by definition, it is necessary to sort the 
data in Stata to be able to create confidence intervals. Adding the option 
by (period) total will provide the confidence interval for the first, second, 
and combined periods (Figure 6.5). The last block is the same as the one 
demonstrated above. 



 POINT AND INTERVAL ESTIMATION 133 

 

 

Figure 6.5 Stata command and output using CI command using an 

option 

Definition 6.4 The (1 )α− % confidence interval for the proportion of 
one population ( )π  is given by equation:  

� � �
2

(1 )
Z

nα
π ππ −±  (6.7) 

Example 6.4 Calculate a 95% confidence interval for the proportion of 
stock prices of Microsoft that are higher than $46.90. Use the sample 
between May 21 and June 11, 2015 provided in Example 3.2. 

Solution 6.4 

Upon verification, there are 6 stock prices over $46.90 among the 15 
observations in this period. 

� 6 0.4
15

π = =  

The Z value corresponding to 95% confidence is 1.96. 

0.4 0.6LB 0.4 1.96  0.4 1.96 0.1265
15

0.4 0.2479 0.1521

� �×= − = − ×� �
� �

= − =
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0.4 0.6UB 0.4 1.96  0.4 1.96 0.1265
15

0.4 0.2479 0.6479

� �×= + = + ×� �
� �

= + =
 

The range 0.1521 to 0.6479 covers the true population proportion of 
Microsoft stock prices that are $46.90 or higher.  

Since the population variance is not known and the sample size is 
smaller than 30, we should have used the t distribution instead of the 
normal distribution. In practice, the sample size is much larger when 
proportions are used. The results using the t values are given by 

0.4 0.6LB 0.4 2.145  0.4 2.145 0.1265
15

0.4 0.2713 0.1287

� �×= − = − ×� �
� �

= − =

 

0.4 0.6UB 0.4 2.145 0.4 2.145 0.1265
15

0.4 0.2713 0.6713

� �×= + = + ×� �
� �

= + =

 

The range 0.1287 to 0.6713 covers the true population proportion of 
Microsoft stock prices that are $46.90 or higher. Notice that the range 
became wider when a t distribution value is used.  

The Stata option of binomial provides the confidence interval for 
proportions (Figure 6.6). For the above example, create a new column 
where any price higher than $46.90 receives the value of 1; call it “higher” 
(try using gen higher=(msft>46.90) to create the variable). The results are 
slightly different due to difference in methods. 

 

Figure 6.6 Stata command and output using binomial distribution 

Note that the confidence interval is narrower than the one using Z 
or t. In fact even this interval covers more than 95% of cases.1 The agres-
ti option provides an even narrower interval (Figure 6.7).  
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Figure 6.7 Stata command and output using binomial distribution 

modified 

Definition 6.5 The (1 )α− % confidence interval for the difference of 
means of two populations 1 2( )μ μ−  when the population variances are 
known and unequal  is given by Equation (6.8). 

� �
2 2
1 2

21
2 1 2

Z
n nα
σ σμ μ− ± +  (6.8) 

Definition 6.6 The (1 )α− % confidence interval for the difference of 
means of two populations 1 2( )μ μ−  when the population variances are 
known and equal is given by Equation (6.9). 

� �( ) 2
21

2
1 2

1 1
Z

n nαμ μ σ
� �

− ± +� �
� �

 (6.9) 

Definition 6.7 The (1 )α− % confidence interval for the difference of 
means of two populations 1 2( )μ μ−  when the population variances are 
unknown and unequal is given by Equation (6.10). 

� �( )
� �2 2

1 2
21

2 1 2

t
n nα
σ σμ μ− ± +  (6.10) 

Example 6.5 Obtain a 95% confidence interval for the difference in 
mean Microsoft stock prices between May 21 to June 11 and June 12 to 
July 2 of 2015.  

Solution 6.5 

Use the data from Example 6.3 where you created the period variable. 
The necessary formula for when the population variance is unknown is 
given in Equation (6.10). Assume the variances of the two samples are 
not equal in order to be able to compare the outcome with those from 
the next example. To improve the estimate, average the two variances 
using the formula for pooled variance. Avoid rounding the values and 
use computational formulas to avoid computational error. 
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� �2
1 146.72 0.348735μ σ= =

 

� �2
2 245.48 0.614498μ σ= =

 

= t.inv(.025,28) = –2.04841 

Recall that we need to use both positive and negative t values. 

� �
� �2 2

1 2
1 2

2 1 2

LB ( )

0.348735 0.614498
(46.72 45.48) 2.04841

15 15
1.24 2.04841 0.0232 0.0409 1.24 2.04841 0.064216
1.24 2.04841(0.253408) 1.24 0.519083 0.72

t
n nα
σ σμ μ= − − +

= − − +

= − + = −
= − = − =

 

� �
� �2 2

1 2
1 2

2 1 2

UB ( )

0.348735 0.614498
(46.72 45.48) 2.04841

15 15
1.24 2.04841 0.0232 0.0409 1.24 2.04841 0.064216
1.24 2.04841(0.253408) 1.24 0.519083 1.76

t
n nα
σ σμ μ= − + +

= − + +

= + + = +
= + = + =

 

The range $0.72 to $1.76 covers the difference of the means of the 
two periods of stock prices for Microsoft with 95% probability. Note 
that the range does not cover zero, which indicates that the averages of 
the stock prices for the two periods are not the same. The price has been 
falling steadily. The average price of the first 15 observations is higher 
than the average price of the last 15 as is evident in Figure 6.8. 

The easiest way to obtain confidence interval for differences of means 
in Stata is through the ttest command that provides test of hypotheses 
about the equality of two means, which is covered in Chapter 7.  

Definition 6.8 The (1 )α− % confidence interval for the difference of 
means of two populations 1 2( )μ μ−  when the population variances are 
unknown and equal is given by Equation (6.11). 

� � 2
1 2

2
1 2

1 1( ) Pooledt
n nαμ μ σ
� �

− ± +� �
� �

 (6.11) 
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Figure 6.8 Microsoft stock prices, May 21 to July 2, 2015 

where  

� �2 2
2 1 2 2 1

1 2

( 1) ( 1)
2Pooled

n n
n n
σ σσ − + −=

+ −
 

Example 6.6 Obtain a 95% confidence interval for the difference in  
Microsoft stock prices between May 21 to June 11 and June 12 to July 2, 
2015.  

Solution 6.6 

Since the data belong to the same company and are so close in time  
period, it is reasonable to assume that there is one variance for the com-
pany’s stock prices and the two sample statistics are two estimates of the 
same population variance. Therefore, it is necessary to find their 
weighted average and then use Equation (6.11). We already have the 
following results: 

� �2
1 146.71 0.348735μ σ= =

 

� �2
2 245.48 0.614498μ σ= =  

= t.inv(.025,28) = −2.04841 

� �2 2
2 1 1 2 2

1 2

( 1) ( 1)
2Pooled

n n
n n
σ σσ − + −=

+ −
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(15 1)(0.348735) (15 1)(0.614498)
15 15 2

− + −=
+ −

 

4.88229 8.60297 0.48162
28
+= =  

� � �
αμ σμ

� �
= − − +� �

� �

� �= − − +� �
� �

= − +

= −
= − = − =

2
21 2 1 2

1 1LB ( )

1 1(46.72 45.48) 2.04841 0.48162
15 15

1.24 2.04841 0.48162(0.0667 0.0667)

1.24 2.04841 0.64216
1.24 2.04841(0.253409) 1.24 0.51908 0.72

Pooledt
n n

 

� � �
αμ σμ

� �
= − − +� �

� �

� �= − + +� �
� �

= + +

= +
= + = + =

2
21 2 1 2

1 1UB ( )

1 1(46.72 45.48) 2.04841 0.48162
15 15

1.24 2.04841 0.48162(0.0667 0.0667)

1.24 2.04841 0.64216
1.24 2.04841(0.253409) 1.24 0.51908 1.76

Pooledt
n n

 

The range $0.72 to $1.76 covers the difference of the means of the two 
periods of stock prices for Microsoft with 95% probability.  

The reason these results are exactly the same as the result for the pre-
vious case, where we did not assume the equality of the variances, is that 
the two sample sizes are equal. When weights for variances are equal, the 
results of the arithmetic and weighted average are always identical. 
When samples have different sizes, the results will be different.  

Definition 6.9 The (1 )α− % confidence interval for the difference of 
two population proportions 1 2( )π π−  is given by: 

� � � � � �
1 1 2 2

1 2
2

1 2

(1 ) (1 )
( ) Z

n nα
π π π ππ π − −− ± +  (6.12) 

Example 6.7 Calculate a 95% confidence interval for the difference of 
the proportion of stock prices of Microsoft that are more than or equal 
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to $45.90 for periods May 21 to June 11 and June 12 to July 2, 2015 
provided in Example 3.2. 

Solution 6.7 

Upon inspection, it becomes evident that 13 of the first 15 observations 
and 6 of the second group are greater than or equal to $45.90. Their 
respective sample proportions are 

� �
1 2

13 60.867 = 0.4
15 15

π π= = =  

The Z value corresponding to 95% confidence is 1.96. Insert these val-
ues in Equation (6.12) to obtain the results. 

( ) ( )( )

0.867(1 0.867) 0.4(1 0.4)LB  (0.867 0.4) 1.96
15 15

0.467 1.96   0.007687 0.016  0.467 1.96 0.153906
 0.467 0.302  0.165

− −= − − +

= − + = −
= − =

 

( ) ( )( )

0.867(1 0.867) 0.4(1 0.4)UB  (0.867 0.4) 1.96
15 15

0.467 1.96   0.007687 0.016  0.467 1.96 0.153906
 0.467 0.302  0.769

− −= − + +

= + + = −
= + =

 

The range 0.165 to 0.769 covers the difference of the proportion of 
stock prices for Microsoft that is greater than or equal to $45.90 in the 
two periods May 21 to June 11 and June 12 to July 2, 2015. 

Definition 6.10 The (1 )α− % confidence interval for one population 
variance 2( )σ  is given by 

� �2 2
2

2 2
1

2 2

( 1) ( 1)n n

α α

σ σσ
χ χ −

− −≤ ≤  (6.13) 

Note that the chi-squared distribution is not symmetric; therefore, we can-
not use the ±  signs to form the confidence interval. Also, it is important to 

note that the term 
2

2
αχ  refers to the right side of the distribution and, 

hence, it is larger than 
2
1 2

,αχ
−  which refers to the left side of the distribu-

tion. Dividing the same numerator by a larger number provides a smaller 
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result, hence the lower bound, whereas dividing the same numerator by a 
smaller value gives a larger result, hence the upper bound. 

Example 6.8 Find the 95% confidence interval for the variance of stock 
prices for Microsoft. Use the same sample for May 21 to June 11, 2015 
as in Example 6.5. 

Solution 6.8 

To obtain the boundaries of the 95% confidence interval, it is necessary 
to find the demarcations for 2.5% and 97.5% probabilities, which cor-
respond to the lower 2.5% and the upper 2.5% (=1 − 0.975). The sam-
ple variance for the 15 observations and the chi-squared values for 0.025 
and 0.975 (from the chi-squared table) with 14 degrees of freedom are 

�2 0.348735σ =  

14
0.025  5.629χ = . 

14
0.975  26.119χ =  

Use Equation (6.13) to build the confidence interval, 

�2

2

2

( 1) (15 1)0.348735
LB    0.1869

26.119
n

α

σ
χ
− −= = =  

�2

2
1

2

( 1) (15 1)0.348735UB    0.8674
5.629

n

α

σ
χ −

− −= = =

 

The range 0.1869 to 0.8674 covers the population variance of Microsoft 
stock prices with 95% confidence. 

Definition 6.11 The (1 )α− % confidence interval for the ratio of two 

population variances 
2
1
2
2

σ
σ

 is given  by Equation (6.14). 

�
�

�
�

1

2 2
1 1

2 2 2
2 1 2

2
2

2 2
F Fα α

σ σ
σ σ σ

σ
−

≤ ≤  (6.14) 

Since the F distribution is not symmetric, we cannot use the ±  signs to 
form the confidence interval. The term 

2
Fα  refers to the right side of the 
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distribution and, hence, it is larger than 
21F α− � which refers to the left side of 

the distribution. Dividing the same numerator by a larger number provides 
a smaller result, hence the lower bound, whereas dividing the same numera-
tor by a smaller value gives a larger result, hence the upper bound. 

Example 6.9 Find the confidence interval for the ratio of the variances 
for the two periods May 21 to June 11and June 12 to July 2, 2015, for 
Microsoft stock prices. 

Solution 6.9 

Let’s mark the data from May 21 to June 11 with the subscript “1” and 
from June 12 to July 2 with the subscript “2.” The variances and the F 
values for 0.025 and 0.975 with 14 and 14 degrees of freedom are  

2
1 0.348735σ =  

2
2  0.614498σ =  

14.14
0.025 2.978588F =  

14.14
0.975  0.339061F =  

0.614498
1.762076520.348735LB 0.59158

2.978588 2.978588
= = =  

0.614498
1.762076520.348735UB  5.19693

0.339061 0.339061
= = =  

The range 0.59158 to 5.19693 covers the ratio of variances for the two 
periods for Microsoft stock prices with 95% confidence.  

The Stata command for testing the equality of two variances pro-
vides the confidence interval for the ratio of two variances and is pre-
sented in Chapter 7. 

Determining the Sample Size 

In Chapter 4, we showed the necessary sample size for estimating the 
single mean of a population. The sample size in that case was obtained 
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by algebraic manipulation of the margin of error in Equation (6.4), 
which is repeated below for your reference. 

�
2

aZ
n

σμ ±  

Setting the margin of error equal to a desired margin of error, E, and 
solving for n results are given in the following formula. 

( )2
2

2
2

Z
n

E

ασ
=  (6.15) 

Example 6.10 What size sample is needed to be within $0.10 of the 
actual price with 95% confidence if the variance is 0.372182? 

Solution 6.10 
2 2

2

0.372182 1.96 53.21
0.1

n
×= =  

Therefore, the necessary sample size is 54. Note that the variance in 
this formula is the population variance. When the population variance is 
unknown, use the sample variance instead, but remember to use the t 
value instead of the Z value. 

Similar algebraic manipulations are applied to obtain sample sizes 
for cases with unknown variances involving either the one or two popu-
lation means. We will only show the formula for one population pro-
portions for reference.  

� � ( )2

2
2

(1 ) Z
n

E

απ π−
=  (6.16) 

Example 6.11 What size sample is needed to be within 5% of the popula-
tion proportion with 95% confidence when the sample proportion is 0.4? 

Solution 6.11 
2

2

(0.4 0.6)1.96 368.79
0.05

n
×= =  

Therefore, the necessary sample size is n = 369. 
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Inference with Confidence Intervals 

The primary objective of statistics is to make inferences about popula-
tion parameters using sample statistics. Using sample statistics to make 
deductions about population parameters is called statistical inference. 
Statistical inference can be based on point estimation, confidence inter-
vals, or a test of hypothesis. These are closely related and in some aspects 
they are interchangeable. The inference can be based on the estimation 
theory or decision theory. A test of hypothesis is a tool for decision theo-
ry. Estimation theory consists of point estimation and interval estima-
tion. This section deals with confidence interval estimation. 

Population parameters are unknown and constants. Sample statis-
tics, which are random by nature, are used to provide estimates of popu-
lation parameters. If sampling is random, then the sample statistic is a 
good estimate of the corresponding population parameter. A good sam-
ple statistic has certain desirable properties, as discussed in Chapter 3. 
These statistics are called point estimates because they provide a single 
value as the estimate of the population parameter. If the estimator is 
“good,” then it should be close to the unknown true value of the popu-
lation parameter. The single estimate does not indicate proximity to the 
true parameter or probability of being close to the true parameter. Con-
fidence intervals give both an idea of the actual value of the population 
parameter and a probability, or a level of confidence, that the interval 
includes the population parameter (Tables 6.1 and 6.2). Confidence 
intervals can be used for decision theory as well. The level of significance 
is (1 )α− %. Fail to reject the null hypothesis whenever the confidence 
interval covers the hypothesized parameter. 

 
Table 6.1 Summary of confidence intervals for one population parameter 

Parameter Statistics Distribution Variance Confidence Interval 
 
 
 
 
μ  

 
 
 
 
�μ  

 
 
Normal 

 
Known 

�
α

σμ ±
2

Z
n

 

 
Unknown 

� �
α

σμ ±
2

t
n

 

 
 

 
Known 

�
α

σμ ±
2

t
n
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Parameter Statistics Distribution Variance Confidence Interval 
Unknown  

Unknown 
� �

α
σμ ±

2
t

n
 

 
π  

 
�π  

 
Normal or  
Unknown 

 
Always 
Unknown  

� � �
α

π ππ −±
2

(1 )
Z

n
 

 
σ 2  

�σ 2

 

 
Normal 
 

 
Always 
Unknown 

α α

σ σσ
χ χ −

− −≤ ≤
2 2

2
2 2

1
2 2

( 1) ( 1)n n
 

 

Table 6.2 Confidence intervals for two samples  

Parameter Statistic Status of 
Variances 

Confidence Interval 

 
 
 
 
 
 
μ μ−1 2  

 
 
 
 
 
 
� �μ μ−1 2  

 
Known and 
Unequal 

� � α

σ σμ μ− ± +
2

2 2
1 2

1 2
1 1

Z
n n

 

 
Known and 
Equal 

� � α σμ μ
� �

− ± +� �
� �

2
1 2

2 2 2

1 1
( ) Z

n n
 

 
Unknown and 
Unequal 
 

� �
� �

α

σ σμ μ− ± +
2

2 2
1 2

1 2
1 1

( ) t
n n

 

 
Unknown and 
Equal 
 

� � �
α σμ μ

� �
− ± +� �

� �2

2
1 2

1 2

1 1
( ) Pooledt

n n
 

 
π π−1 2  

 
� �π π−1 2  

 
Always 
Unknown 

� � � � � �
α

π π π ππ π Ζ
2 1

(1− ) (1−− ± +1 1 2 2
1 2

2

)
( )

n n
 

 

σ
σ

2
1
2
2

 

 
�
�
σ
σ

2
1

2
2

  

 
Always 
Unknown 

�
�

�
�

α α

σ σ
σ σσ

σ−

≤ ≤

2 2
1 1

2 22
2 21

2
1 2

2 2
F F

 

 



 

CHAPTER 7 

Statistical Inference with 
Test of Hypothesis 

Hypothesis 

A hypothesis is a claim about a population parameter. Hypothesis test-
ing allows researchers to draw inferences about population parameters 
using sample statistics. The process of statistical inference involves a 
decision about the plausibility of a hypothesis. 

Definition 7.1 The null hypothesis reflects the status quo, how things 
have been, or are currently. A null hypothesis can represent a historical 
fact or deliberate setting of a mechanical device. The null hypothesis is 
depicted by the symbol HH0, pronounced h-sub-zero. 

Definition 7.2 The alternative hypothesis is the researcher’s claim that 
there exists some difference or change from the null hypothesis. Although 
hypothesis and claim are used interchangeably in conversation, in statistics 
the word claim is used for the alternative hypothesis. The alternative  
hypothesis is depicted by the symbol HH1, pronounced h-sub-one. 

Statistical Inference 

Utilizing the distributional properties of sample statistics, the likelihood 
of an occurrence of an outcome is calculated given that the null hypoth-
esis is true. If the outcome is unlikely the null hypothesis is refuted. 
When the observed statistic is reasonably close to the hypothesized value 
nothing unexpected has occurred and any (minor) difference is attribut-
ed to random error. If the observed statistic is substantially different from 
the hypothesized value, either the null hypothesis is true and an unusual 
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event with very low probability has occurred, or the null hypothesis is 
false since the more likely outcomes would appear in a random sample. 
Statistical inference consists of accepting outcomes with high probability 
and rejecting outcomes with low probability.  

Definition 7.3 A statistical hypothesis is an assertion about the distribu-
tion of one or more random variables.  

Definition 7.4 When a hypothesis completely specifies the distribution, 
it is called a simple statistical hypothesis; otherwise, it is called a compo-
site statistical hypothesis. In this text, we deal with the simple hypothesis 
exclusively. The format for a simple hypothesis is 

H0: A parameter = A constant (7.1) 

Null Hypothesis 

The null hypothesis reflects the status quo. It is about how things have been 
or are currently. For example, the average life of a car is 7 years. The null 
hypothesis can be a statement about the nature of something; the height of 
an average man is 5 ft 10 in. The null hypothesis might be the deliberate 
setting of equipment, such as that a soda-dispensing machine deposits 12 
ounces of liquid in a can. It is important to realize that the researcher is not 
making any claims; these are common knowledge for which there is a con-
sensus. A hypothesis can be about any parameter of a distribution function 
such as 54% of adults are Democrats; or the variance for weekly sales is 50. 
The following represents the above (null) hypotheses. Notice that the stated 
null hypotheses are simple hypotheses. 
 

Single Mean Single Proportion 
H0: μ  = 7  H0: π = 0.54 
H0: μ  = 5’10’’  Single Variance 
H0: μ  = 12 H0: σ 2 = 50 

 
In hypothesis testing, the expected value of the outcome of an exper-

iment is the hypothesized value. The hypothesized value reflects the 
status quo and will prevail until, through a process of inference, we 
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gather enough evidence to reject it. The observed statistic is not a hy-
pothesis. The null hypothesis for a variance, such as the weekly sales null 
above, must be nonnegative. 

A hypothesis is tested only when there is a justification to question 
the status quo. For example, your soda can is finished too quickly and 
you are still thirsty. There is a possibility that the can was under-filled, a 
justification for testing to see whether the cans actually have 12 ounces 
of soda, on average. It is tempting to state that the manufacturer is mak-
ing the “claim” that the can contains 12 oz.; however, their statement is 
of an assertion or a promise and not a claim. As we will see shortly, the 
alternative hypothesis is the claim of the researcher, which is also known 
as the research question.  

Null Hypothesis for the Equality of Two Parameters 

A hypothesis can be used to test the equality of two parameters as well. 
Comparable things should be equal. For example, average productivity 
of a man and a woman would be assumed to be the same until proven 
otherwise. Let 1θ and 2θ  (pronounced theta) be two parameters from 
two populations. We want to test whether they are the same. The null 
hypothesis should not be written as 

0 1 2H : θ θ=  (7.2) 

This hypothesis is setting one parameter equal to the other, which makes 
it a composite hypothesis. Using algebra, the hypothesis can be modified 
to convert it to a simple hypothesis. There are two possible modifications. 
Equation (7.2) can be written in the following two forms.  

0 1 2H : 0θ θ− =  (7.3) 

1
0

2

H : 1
θ
θ

=  (7.4) 

Chapter 5 provided distributional properties for comparing two  
parameters. A brief summary is presented here. The distribution func-
tion for the difference of two means of random variables, each with a 
normal distribution, is also normal. Therefore, the normal distribution 



148 STATISTICS FOR ECONOMICS 

 

should be used for testing the equality of two means: 0 1 2H : 0.μ μ− =  
When the variance is unknown and sample size is small, a t distribution 
should be used. 

The distribution function for the difference of two proportions of ran-
dom variables, each with a normal distribution, is also normal. There-
fore, the normal distribution should be used for testing the equality of 
two proportions: 0 1 2H : .π π=  This hypothesis too should be modified 
to resemble a simple hypothesis as 0 1 2H : 0.π π− =  The distribution 
function for the ratios of two variances of random variables, each with a 
chi-squared distribution, is an F distribution. Therefore, the F distribu-
tion should be used for testing the equality of two variances: 

2
1

0 2
2

H : 1.
σ
σ

=  

Alternative Hypothesis 

The alternative hypothesis is the claim a researcher has against the null 
hypothesis, designated by HH1. It is the research question or the main 
purpose of the research. A test, or alternative, hypothesis is used when 
the plausibility of the null hypothesis is in doubt. 

How to Determine the Alternative Hypothesis 

The claim of the research, that is, the research question, determines  
the alternative hypothesis. Every alternative hypothesis is a claim that 
the null hypothesis has changed. When the claim is that the value of the 
parameter in the null hypothesis has declined, the appropriate sign is the 
“less than” sign (<). Focus on the meaning and not the wording. When 
the claim is that the value of the parameter in the null hypothesis has 
increased, then the appropriate sign is the “greater than” sign (>). These 
two alternative hypotheses are known as one-tailed hypotheses. When the 
claim is not specific or is indeterminate, meaning we are unsure if the 
value of the parameter has decreased or increased, then the appropriate 
sign is the “not equal sign” (	). This alternative is known as a two-tailed 
hypothesis. None of the three alternative cases include the equal sign (=), 
because the equal sign is used in the null hypothesis.  
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The formation of the null and the alternative hypotheses are the 
main problem of the novice. Remember the following: 

• A simple null hypothesis is always of the form:  

H0: A parameter = A constant 

• An alternative hypothesis can take on a number of forms: 

The claim might be that the parameter is greater than (>), less 
than (<), or not equal to ( )≠  to a constant, which reflects the 
claim that the parameter has increased (>), decreased (<), or it 
simply has changed( ).≠  Only one of the alternatives listed be-
low is used in a given test. 
H1: A parameter < A constant 
H1: A parameter > A constant 
H1: A parameter ≠  A constant 

Examples of an Alternative Hypothesis for a Single Mean 

Possible claims against the above examples of null hypothesis are used 
for demonstration. A consumer advocacy group claims that car manu-
facturers are cutting corners to improve profitability and making inferior 
cars that do not last as long. The claim is that the average life of a car is 
less than the historically established 7 years. 

0H : 7μ =  

1H : 7μ <  

Men are getting taller because of better nutrition and more exercise.  

0H : 5 10μ ′ ′′=  

0H : 5 10μ ′ ′′>  

The quality manager claims the soda dispensing machine is out of 
calibration. The expected calibrated value is 12. 

0H : 12μ =  

1H : 12μ ≠  
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A political science researcher believes that, due to economic globali-
zation and political turmoil around the world, the percent of Democrats 
has declined. She has information from a previous study that the per-
centage of Democrats was 54%. 

0H : 0.54π =  

1H : 0.54π <  

Increased promotional advertising by a firm and its competitors has 
increased the variance of weekly sales. 

2
0H : 50σ =  

2
1H : 50σ >  

The alternative hypothesis is a claim against the status quo. If there 
is no claim, there is no alternative hypothesis and, hence, no need for a 
test. The nature of the claim determines the sign of the alternative. The 
sign of the alternative hypothesis depends on the claim and nothing else. 
Table 7.1 provides a summary of null and alternative hypotheses for 
testing one mean, proportion, and variance as well as the hypotheses for 
testing the equality of two means, proportions, and variances. 

 
Table 7.1 Summary of null and alternative hypotheses 

Case 
Null 

Hypothesis 
Alternative 
Hypothesis Comments 

Single 
Mean 

μ  = a constant 
μ > a constant

μ < a constant 

μ ≠  a constant 

The claim determines the 
sign of the alternative 
hypothesis 

Single 
Proportion 

π  = a constant 
π > a constant

π < a constant 

π ≠  a constant 

The claim determines the 
sign of the alternative 
hypothesis 

Single 
Variance 

σ 2 = a constant 

σ 2 > a constant 

σ 2 < a constant 

σ ≠2  a constant 

The claim determines the 
sign of the alternative 
hypothesis 

Two Means 
μ μ−1 2 = a 

constant 

μ μ−1 2 > a constant 

μ μ−1 2 < a constant 

μ μ− ≠1 2 a constant 

Use to test the equality of 
two means 

(Continued)
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Case 
Null 

Hypothesis 
Alternative 
Hypothesis Comments 

Two 
Proportions 

π π−1 2 = a 

constant 

π π−1 2 > a constant 

π π−1 2 < a constant 

π π− ≠1 2  a constant 

Use to test the equality of 
two proportions 

Two 
Variances 

σ
σ

2
1
2
2

= a constant 
σ
σ

2
1
2
2

> a constant 
Use to test the equality of 
variances. Usually, no 
other alternative is tested. 

Test Statistics 

In Chapter 5, we saw that when the statistic is a sample mean �( ),μ  a 

sample proportion �( ),π  a difference of two sample means � �
1 2( ),μ μ−  or 

a difference of two sample proportions � �
1 2( ),π π−  the Central Limit 

Theorem asserts that each of these sample statistics has a normal distri-

bution. The sample variance �2( )σ  has a chi-squared distribution, 

whereas the ratio of two sample variances 
�
�

2
1

2
2

σ
σ

� �
� �
� �
� �

 has an F distribution. 

Usually, cases involving two statistics test their equality. The test statistic 
for a single mean ( ),μ  two means 1 2( ),μ μ−  single proportion ( ),π  
and two proportions 1 2( )π π−  is provided by 

Observed Expected
Standard Deviat

Te
io

st Stati
n of Obs

sti
ed

c
erv

= −
 (7.5a) 

In the context of test of hypothesis regarding a parameter it is better 
to express Equation (7.5) as 

 Statistic
Standard Error

Estimated Hypothesized
Test

−=  (7.5b) 

where observed is the sample statistic, expected is the value of the null 
hypothesis, and standard deviation of the observed value is the standard 
error. The Central Limit Theorem provides the distribution function 
and the standard error. The sampling distribution of sample statistics 
covered in Chapter 5 provides a summary of parameters, statistics, and 
sampling variances of one and two populations. Whether the correct 
statistic for this hypothesis is a Z-test or t-test depends on whether the 
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population variance is known and the sample size. Use Z-test when the  
population variance is known or when it is unknown and the sample 
size is large. Z and t statistics are used to test hypotheses about one 
mean, one proportion, two means, or two proportions. In the case of 
two means or two proportions, the hypotheses must be modified to  
resemble a simple hypothesis.  

The test statistic for a single variance (
�) is given by 

�2
2

2
0

( 1)n σχ
σ
−=  (7.6) 

Subscript zero represents the hypothesized null value, which is a con-
stant.  

The test statistic for equality of two variances 
2
1
2
2

σ
σ
� �
� �
� �

 is given by  

�
�

2
1

2
2

F
σ
σ

=  (7.7) 

Table 7.2 summarizes the relevant materials from Chapters 5, 6, and 7. 
 

Table 7.2 Test statistics for testing hypotheses 

Case 
Null 

Hypothesis Variance
Test 

Statistics 
 
 
Single Mean 

 
 
�  

Known �μ μ
σ
−= 0Z

n

 

Unknown �
�

μ μ
σ
−= 0t

n

 

Single 
Proportion 

 
�  

Unknown �π π
π π

−=
−

0

0 0(1 )
Z

n

 

Single Variance 
�  Unknown �σχ
σ
−=

2

2
0

( 1)n
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Case 
Null 
Hypothesis Variance Test Statistics 

 
 
 
 
 
 
 
Two 
Means. 

 
 
 
 
 
 
 
μ μ−1 2  

Known and 
Unequal 

� �( )μ μ μ μ

σ σ

− − −
=

+

1 2 1 2

2 2
1 2

1 2

( )
Z

n n

 

Known and 
Equal 

� �μ μ μ μ

σ

− − −=
� �

+� �
� �

1 2 1 2

2

1 2

( ) ( )

1 1
Z

n n
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and 
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� �
� �

μ μ μ μ

σ σ

− − −=

+

1 2 1 2

2 2
1 2

1 2

( ) ( )
t

n n

 

Unknown 
and Equal 

� �

�

μ μ μ μ

σ

− − −=
� �

+� �
� �

1 2 1 2

2

1 2

( ) ( )

1 1
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t

n n
 

Two 
Proportions 

 
π π−1 2  

Unknown  
� �
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π π ππ

π π π π−

−

−

− −=

+

2 1 2

1 2

1

1

1 2

2

(

( ) ( )

1 ) (1 )
n

Z

n

 

Two 
Variances 

σ
σ

2
1
2
2

 
Unknown �

�
σ
σ

=
2
1

2
2

F  

 
All the null hypotheses are set equal to a constant. In the case of 

equality of two means and two proportions, the constant is zero. In the 
case of equality of two variances, the constant is one. Subscript zero rep-
resents the hypothesized null value, which is a constant. 

Probability of Event Occurrence 

Any event that has a probability of occurrence will occur sometime. 
Some events have a higher probability of occurrence than others, so they 
will occur more often. The essence of statistical inference is that events 
with high probability of occurrence are assumed to occur while events 
with a low probability of occurrence are assumed not to occur. Every 
event has a complement event, which completes and exhausts all possible 
outcomes of an event. The complement of seeing a “head” in a coin toss 
is “not seeing a head” or “seeing a tail.” The complement of having an  
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economic recession is “not having an economic recession,” which is not 
necessarily “having an economic boom.” The sum of the probabilities of 
an event and its complement is one (1). Unless the probability of an 
event is exactly 50% for one of the two possible outcomes, the event or 
its complement must have a higher probability of occurrence than the 
other.  

The probability of having an accident while driving through an in-
tersection when the traffic light is green is lower than when the light is 
red. Therefore, it is assumed that accidents do not occur when crossing 
an intersection while the traffic light is green. Note that there is still a 
chance of having an accident when crossing during a green light. It is 
also possible to go through a red light without having an accident. 
When an event has low probability we “assume” it will not occur. This 
example has a special twist to it. For every car involved in an accident 
while crossing an intersection when the light is green, there is another 
car that ran the red light. The probability of an accident for the latter is 
high while the probability for the former is low. Of the few people who 
run a red light most end up in an accident, while the majority of people 
who drive through a green light do not have an accident. Although the 
number of people who have an accident going through a green light is 
equal to the number of people that have an accident running a red light, 
nevertheless, the corresponding probabilities are very different. The null 
and alternative hypotheses are formed in the following way: 

 
H0: Driving through a red traffic light does not cause an accident 
H1: Driving through a red traffic light does cause an accident 

Types of Error 

The process of testing a hypothesis is similar to convicting a criminal. 
The null hypothesis is a conjecture to the effect that everybody is assumed 
to be innocent unless proven otherwise. If there is any reason to doubt 
this innocence, a claim is made against the null hypothesis, which is called 
an alternative hypothesis. Within this domain the evidence is collected, 
which is the same as taking a sample. The type of crime is decided, as 
indicated by charges of misdemeanor, felony, etc., which is similar to a 
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test statistic. Finally, based on the evidence a judgment is rendered, either 
innocent or guilty, which is the inference. If the prosecutor fails to pro-
vide evidence of guilt, it does not mean the accused is innocent. The 
degree or the probability that the person was innocent (but was convict-
ed) is the probability of type I error or the p value. 

The null hypothesis of innocence is rejected if the probability of being 
innocent is low in light of the evidence. Otherwise, we fail to reject the 
null hypothesis. It is possible that the null hypothesis is false, a sample 
statistic with a low probability was observed, and we erroneously fail to 
reject the null hypothesis (i.e., the person was guilty but found not guilty). 
This kind of error is known as type II error. Note that the jury’s verdict is 
either “guilty” or “not guilty” and never “innocent.” Similarly, in inferen-
tial statistics we either “reject the null hypothesis” or “fail to reject the null 
hypothesis” but never “accept the null hypothesis” or “accept the alterna-
tive hypothesis” (Table 7.3). 

Definition 7.5 Type I Error occurs when the null hypothesis is true but 
it is rejected. 

Definition 7.6 Type II error occurs when the null hypothesis is false but 
is not rejected.  
 
Table 7.3 Summary of types of error in inference 

 H0 is Rejected H0 is Not Rejected 
H0 is True Type I Error No Error 
H0 is False No Error Type II Error 

It is not possible to commit a type I error if the null hypothesis is 
not rejected. It is not possible to commit a type II error if the null hy-
pothesis is rejected. There is also a type III error, which is defined below.  

Definition 7.7 Type III error is rejecting a null hypothesis in favor of an 
alternative hypothesis with the wrong sign. 

As an example of type III error, let’s return to an example from 
above about the life of cars. If you recall, we had the following null and 
alternative hypotheses: 

0H : 7μ =  

H1: 7μ <  
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A type III error would have occurred if a researcher rejected the null 
hypothesis that cars last 7 years in favor of the alternative hypothesis 
that they last fewer than 7 years, when in fact they are actually lasting 
longer than 7 years. Because the alternative hypothesis claimed that cars 
were lasting fewer than 7 years, the null cannot be rejected in favor of 
the alternative hypothesis. 

Statistical Inference with the Method of p Value 

There are two approaches for ascertaining an inference, the method of p 
value and the method of critical region. The two approaches are similar. 
In both, the observed values of the sample statistics, such as the sample 
mean or proportion, are standardized as Z or t statistics. When the null 
hypothesis is true, the observed statistic should be close to the hypothe-
sized value, which means the corresponding Z or t statistic should be 
close to zero. This is because the numerator of Z or t statistics is the dif-
ference between the sample statistic and the hypothesized population 
parameter. Z or t becomes larger as the calculated statistic increases, 
which indicates the observed statistic is distinct from the hypothesized 
parameter value. Consequently, the area under the corresponding distri-
bution function between the center and the Z or t value, which represents 
the probability, becomes larger and at the same time the area under curve 
further away from Z or t value becomes smaller. This probability, corre-
sponding to the area under the tail section, reflects the probability of  
observing a more extreme value than the observed statistic. The smaller this 
probability is, the less likely the null hypothesis is correct. This probability 
is actually the probability of committing a type I error if the null hypothe-
sis is rejected. 

Definition 7.8 The value representing the probability of the area under 
the tail end of the distribution is called the p value. It is also called the 
Observed Significance Level (OSL). 

Rule 7.1 Reject the null hypothesis when the p value is small enough. 
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For a given sample size, reducing type I error increases type II error. 
In order to reduce both types of error, it is necessary to increase the 
sample size.  

When the null hypothesis is true, the significance level indicates the 
probability or likelihood that the observed results could have happened 
by chance. When the null hypothesis is true, the observed results should 
have high probability. Consequently, when the p value is “large,” there 
is no reason to doubt the null hypothesis. However, if the observed out-
comes happen to have low probability, it casts doubt about the plausi-
bility of the null hypothesis. When the outcome contradicts the null 
hypotheses, it implies that the null hypothesis is less likely to be true by 
virtue of observing the outcome obtained from the sample. In other 
words, the p value is the probability of “seeing what you saw,” which is 
reflected in the other common name for p value, OSL. 

Statistical Inference with the Method of Critical Region 

An alternative approach to the p value decision rule is to calculate a criti-
cal value from an appropriate distribution function based on a pre-
selected level of type I error, customarily 1%, 5%, or 10%, and compare 
the test statistic with it. The Z or t corresponding to the selected type I 
error is obtained from a table or software program, as shown in Chapter 
6. For example, the critical value for a two-tailed test at 5% is ±1.96. 
Reject the null hypothesis when the calculated statistic is more extreme 
than ±1.96 (i.e., when the critical value is either greater than +1.96 or 
less than −1.96). 

Rule 7.2 Reject the null hypothesis when the test statistic is more ex-
treme than the critical value.  

Either method will yield the same conclusion for a given level of 
type I error. The method of p value is preferred because it gives the exact 
probability of making a type I error. In contrast, in the method of criti-
cal region, the probability of type I error is never exact, except by rare 
chance. Another advantage of the p value is that it allows the researcher 
to make a better informed decision. 
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Steps for a Test of Hypothesis 

1. Determine the Scope of the Test 
2. State the Null Hypothesis 
3. Determine the Alternative Hypothesis 
4. Determine a Suitable Test Statistic 
5. Calculate the Test Statistic 
6. Provide Inference 

Statistical Inference Using Confidence Intervals 

Confidence intervals are obtained using a point estimate, a margin of  
error, and the probability of type I error. Therefore, they have all the  
necessary components for drawing inferences. For example, a 95% confi-
dence interval indicates that the range has 95% probability of covering the 
true parameter, which also means the probability of type I error is 5%. 

Rule 7.3 Reject the null hypothesis when the confidence interval does 
not cover the hypothesized value. Fail to reject when the confidence  
interval does cover the hypothesized value. 

A test of hypothesis using confidence intervals is identical to a two-
tailed test. The approach is based on the critical region method.  

Example 7.1 Determine whether the closing price of Microsoft stock 
exceeds $46.35. Use data from May 21 to June 11, 2015. 

Solution 7.1 

Based on the statement in the problem, the alternative hypothesis is 

0H : 46.35μ =  1H : 46.35μ >  

From previous examples, we have the following statistics. 

� 46.71733μ =  �2 0.348735σ =  

Since the population variance is unknown, we need to use 

�
�

0

2

46.71733 46.35 0.36733 0.36733
2.409

0.1524760.348735 0.023249
15

t

n

μμ

σ

− −= = = = =
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Using the following Excel command, we obtain the exact p value for the 
right-hand tail. 

= t.dist.rt(2.409,14) = 0.015 

Figure 7.1 depicts the Stata command and output for performing 
the same t test. 

 

Figure 7.1 Stata command and output for testing a mean 

The probability of obtaining an average stock price of $46.71, if the 
true population average is $46.35, is 0.015. This is a low probability. It 
indicates that if the null hypothesis were to be rejected 100 times, only 
1.5 times would the decision be incorrect and a type I error committed. 
Therefore, we reject the null hypothesis in favor of the alternative  
hypothesis. To avoid a fraction for the number of cases with type I  
error, the statement could be reworded as 15 in 1,000 rejections. Since 
the OSL is low enough, the null hypothesis is rejected. 

Stata displays all three possible alternatives, including left-tailed, 
two-tailed, and right-tailed hypotheses, to choose from. The results for 
each alternative hypothesis can be seen along the bottom of the output. 

Example 7.2 Test the claim that more than 50% of the stock prices for 
Microsoft close higher than $46.75. Use the sample from May 21 to 
June 11, 2015.  

Solution 7.2 Sorting the data makes it easier to obtain the portion of 
sample prices over $46.75. Upon inspection, there are 8 closing prices 
higher than $46.75 during the sample period. Dividing the number of 
days (8) that the stock closed over $46.75 by the number of days in the  
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sample (15) gives the result that on 53% of the days the stock closed 
over $46.75. 

� 8 0.53
15

π = =  

While on the face of it this number appears to be higher than 50%, 
we want to know the likelihood that the result was due to chance. Based 
on the statement in the problem, the alternative hypothesis is 

0H : 0.50π =  1H : 0.50π >  

From Table 7.2, the correct formula is 

�
0

0 0

0.53 0.5 0.03 0.03 0.23
0.13(1 ) 0.5(1 0.5) 0.01667

15

Z

n

π π
π π

− −= = = = =
− −  

The probability of the region more extreme than Z = 0.23 is given by 

P(Z > 0.23) = 0.5 − P(0 < Z <0.23) = 0.5 − 0.0910 = 0.4090 

Since the probability of type I error would be high (at 0.409) if the null 
hypothesis is rejected, the decision should be to “fail to reject” the null 
hypothesis. We cannot confidently say that the result of 53% was not due 
to chance. The Stata output is presented in Figure 7.2 (use gen higher = 
(msft1 > 46.75) to create the “higher” variable). 

 

Figure 7.2 Stata command and output for testing a proportion 

Example 7.3 Test the claim that the variance for the stock prices of  
Microsoft is greater than 0.30. Use the sample from May 21 to June 11, 
2015. 
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Solution 7.3 Based on the statement in the problem, the alternative 
hypothesis is 

2
0H : 0.30σ =  2

1H : 0.30σ >  

From Table 7.2, the appropriate formula is 

�2
2

2

( 1) (15 1)(0.348735) 4.88229 16.2743
0.3 0.3

n σχ
σ
− −= = = =  

Using the following Excel command, we obtain the p value for the 
right-hand side probability. The sign of the alternative hypothesis  
determines which tail should be used. An alternative hypothesis of 
“greater than” will use the right-hand tail, while “less than” will use the 
left-hand tail. 

= chisq.dist.rt(16.2743,14) = 0.2969 

The probability of committing a type I error is almost 30%. Since 
the probability of type I error is too high, we fail to reject the null hy-
pothesis that the variance is greater than 0.30. Stata uses the standard 
deviation in its computation. First find the square root of the null hy-
pothesis, in this case 0.5477, and then use it for comparison. The sign 
“= =” in Stata is a logical command and means “if equal to.” Check that 
the probability associated with a chi-squared statistic of 16.2743 matches 
the result of direct computation above (the probability for a right-tailed 
test can be found at the bottom right-hand corner of the table in  
Figure 7.3).  

 

Figure 7.3 Stata command and output for testing a variance 
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Example 7.4 Are the means for Microsoft stock prices for periods May 21 
to June 11 and June 12 to July 2, 2015 the same? 

Solution 7.4 

The objective is to determine whether 1 2 .μ μ=  Since this format is not of 
the form “a parameter equal to a constant,” we rewrite the hypothesis as 

0 1 2H : 0μ μ− =  
1 1 2H : 0μ μ− ≠  

Since no particular directional claim has been made, the test is a two-
tailed test. The following information is available. 

� �2
1 146.72 0.348735μ σ= =  

� �2
2 245.48 0.614498μ σ= =  

Since we do not know whether the variances are equal, we will test their 
equality first, that is, 2 2

1 2 .σ σ=  Since this is in the form of “a parameter 

equal to another parameter,” it has to be modified to resemble “a parameter 
= a constant format.”  

2
1

0 2
2

H : 1
σ
σ

=  
2
1

1 2
2

H : 1
σ
σ

>  

It is customary to express the alternative hypothesis for a ratio as 
“greater than one” rather than less than one. To assure the ratio of the 
sample variances is actually greater than one, always place the sample 
variance that is larger in the numerator. 

From Table 7.2, the appropriate formula to test the equality of two 
variances is 

�

�

2
1

2
2

0.614498
1.762

0.348735
F

σ

σ
= = =  

The p value for this statistic is obtained from the following Excel  
command: 

=f.dist.rt(1.762,14,14) = 0.1505 

The Stata test for equality of two variances is displayed in Figure 7.4. 
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Figure 7.4 Stata command and output for testing two variances 

Note that the reported probabilities are cumulative for all values up 
to the calculated statistic. Since the probability of type I error is not low 
enough, we fail to reject the null hypothesis that the two variances are 
equal. Therefore, from Table 7.2 the following test statistic is used for 
testing the equality of the mean prices for the two periods when the var-
iances are equal and should be pooled. 

� �
1 2 1 2

2

1 2

( ) ( ) (45.47533 46.71733) (0)
1 11 1 0.1916

15 15

1.242 1.242 7.77
0.15980.0255

Pooled

t

n n

μ μ μ μ

σ

− − − − −= =
� � � �++ � �� � � �� �

− −= = = −

 

Since the alternative hypothesis is two-tailed, we use the following 
Excel command to obtain the exact p value: 

= t.dist.2t(7.77,28) = 1.83012E-08 

The Stata command is displayed below. Note the “Paired t test” at 
the top left-hand corner, which indicates the use of pooled variances. 
Since the test is two-tailed, the relevant results are listed under Ha: 
mean(diff)! = 0 in the center of the last line (Figure 7.5). 

Since the p value is low enough, we reject the null hypothesis that 
the average prices of Microsoft stock are the same for the periods of May 
21 to June 11 and June 12 to July 2, 2015. 
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Figure 7.5 Stata command and output for testing two means 



 

CHAPTER 8 

An Introduction to 
Regression Analysis 

Until this point, with the exception of the covariance and correlation coef-
ficient, the focus has been on a single variable. Most economic concepts 
are complex and studying them requires considering other economic,  
social, cultural, and political factors. Even the simplest economic concepts 
such as quantity demanded have at least two variables, a quantity and a 
price. To estimate or forecast income, it is necessary to decide whether the 
orientation of the study is macro- or microeconomics. At the microeco-
nomic level, income depends on acquired human capital, natural ability, 
talent, work ethic, exertion, years of experience, and seniority, to name a 
few. Some seemingly unrelated factors such as race and gender also affect 
one’s income. At the macroeconomic level, the determinants of income, 
which in this case should be referred to as the national income, are func-
tions of national productivity, resources, population size, overall level of 
education, economic cycles, seasonal cycles, and other factors.  

There are many powerful tools in statistical analysis that permit sim-
ultaneously analyzing the factors that determine a phenomenon such as 
income. One such tool is regression analysis. Regression analysis gives a 
general idea of how one or more variables are associated with another 
variable. For example, if we did a regression analysis of income using the 
variables mentioned in the above paragraph, we would find that, on 
average, an additional year of education leads to higher income. Regres-
sion also helps us know if the association between education and income 
is purely due to chance and if that association is positive or negative. For 
education, we would expect to see a positive association between educa-
tion and income. 

In addition, regression provides an indication of how strong the asso-
ciation is between variables. As we saw in Chapter 4, those with bachelor’s 
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degrees have a higher net worth than those with only a high school  
diploma. Regression results provide specific details as to how much more, 
on average, each additional year of schooling is worth. 

Regression methodology acknowledges that most real life occurrences 
are subject to random error. Per capita income is the expected income of a 
person selected at random after all the contributing factors are considered. 
However, the income is not necessarily the same for all people with  
identical contributing factors such as those listed above, for example,  
education and seniority. In addition to natural deviations in outcomes, 
sometimes some factors are not accounted for either because they are not 
known, no valid measurement is available, or the data are not collected. 
Regression methodology minimizes these errors to obtain a linear model 
that better approximates the reality. 

Recall that a basic definition of error in statistics is whatever that 
cannot be explained. A correctly specified regression model explains part 
of the unexplained error using explanatory variables such as those listed 
in the first paragraph. Note that errors are deviations of observations 
from the expected value. In descriptive statistics, the expected value is 
simply the mean. In regression analysis, the regression line is the expected 
value. Consequently, models with more explanatory power will have 
smaller errors and a better fit to the data. In statistics it makes more 
sense to focus on averages rather than individual outcomes, which are 
subject to variance. Averaging individual errors removes the random 
error, which by definition has an expected value of zero. To overcome 
this problem individual errors are squared, as discussed in Chapter 2 
when the concept of variance was introduced. Analogously, regression 
methodology minimizes the squares of individual error, which explain 
the customary name of least squares for the method. A more detailed 
explanation of this process is available in Regression for Economics.1 

Explanatory Variables 

Explanatory variables are factors that are not affected by the model but 
influence the dependent or response variable. The dependent variable or 
response variable is the phenomenon of interest that is claimed to be  
affected by explanatory variable(s). As the number of explanatory variables 
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increases, the explanatory power of the regression model should increase. 
This statement is valid only if the added variables are contributing factors 
and not correlated with each other. The most reliable estimates are  
obtained by including the correct explanatory variables, also called the 
independent variables. Independent variables to be included in the model 
are identified by researchers through the use of theories in economic and 
related fields of study as well as experience. Although there is no intellec-
tual reason that justifies or even explains lower incomes of females or  
minorities, studies have established discernable differences in income  
attributable to gender and race. Variables that affect the response variable 
but are not based on theory are known as control variables. In economics, 
the control variables are accounted for under ceteris paribus, which means 
“other things equal.” 

The simple regression model consists of one dependent variable and 
one independent variable plus an error term.  

Income = �0 + �1 Education + � (8.1) 

where Income is the dependent variable, Education is the independent 
variable, �0 is the intercept, �1 is the slope, and 
 is the error term. 

The independent variables are exogenous to the model and are not to 
be explained in any manner. The model in Equation (8.1) does not pro-
vide any input on why or how people decide on their level of education, 
while income is explained, in a linear fashion, by levels of education. The 
latter is the response variable, while the former is the determining factor. 
The Greek letters �0 and �1 are the parameters of the model. They are also 
called the intercept and the slope, respectively. The interpretation of �1 is 
that for every unit change in education, income will change by the magni-
tude of �1 and in the direction of its sign. The intercept �0 provides an 
estimate of income when education level is zero. Finally, �, the error term, 
accounts for everything else that affects income, other than education, 
plus the random error.  

This simplistic model explains income with one variable. The hypothe-
sized claim for the slope of the regression line, �1, is that it is expected to be 
positive. This claim is based on theory and common sense. One expects 
higher income with more education, since education is a kind of invest-
ment called human capital. An educated person is more knowledgeable 
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and hence, more productive, and thus, deserves higher income per unit of 
time than someone with less education, other things equal. 

An advantage of regression analysis is that in addition to estimating 
the magnitude of the effect of each explanatory variable on the response 
variable, it also provides a test of hypothesis about its statistical signifi-
cance. A typical inference about a regression model consists of two dif-
ferent tests. The one that tests the overall significance of the model is 
based on the F test. In this case, the amount of the variation in the de-
pendent variable that is explained by the model is compared with the 
amount that still remains unexplained. The portion that is explained by 
the model is called mean squared model (MSM). Recall that the sum of 
squares of the portions not explained, divided by the appropriate degrees 
of freedom, is the same as the variance, which in the jargon of regression 
analysis is called mean squared error (MSE).  

Like any other variance, mean squared regression also has a chi-
squared distribution. Theorem 4.5 from Chapter 4 states that the ratio 
of two chi-squared distribution functions follows an F distribution. 
Therefore, a test of the relative magnitude of the portion of the variation 
in the dependent variable that is explained by the model to the portion 
that is not is done using an F statistic. The null and alternative hypothe-
ses for the model are 

H0: Model is not good H1: Model is good 

Inference is the same: reject the null hypothesis when p value is small 
enough; fail to reject it otherwise. 

Once the null hypothesis that the model is not good is rejected, the 
slopes of individual variables are tested for significance using t statistics. 
The customary null hypothesis is that the slope of the independent vari-
able is zero. A slope equal to zero indicates that the corresponding varia-
ble does not have any explanatory power.  

H0: �Education = 0 H1: �Education > 0 

The appropriate test statistic for this hypothesis is a t statistic. Testing 
procedure here too is the same as usual. Reject the null hypothesis if the 
corresponding p value is low enough. All software designed to perform 
statistical analysis can perform regression analysis with a relatively easy set 
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of commands and/or procedures. In fact, many of the commercially avail-
able software programs are menu-driven similar to a typical application 
software. Most have reasonably good help features that will show the nec-
essary steps or commands. Even Excel, a spreadsheet software program, 
has a menu-driven procedure to perform regression analysis, to provide 
test statistics for testing the model and slopes, and to provide estimates of 
slopes and the explanatory power of the model. For more detail, refer to 
Regression for Economics.2 

Example 8.1 Test the hypothesis that education increases income.  

Solution 8.1 

As pointed out earlier, there are numerous measures of income, from per 
capita personal income to national income; the former represents a micro-
economics aspect of income, while the latter is a macroeconomics perspec-
tive. For this example, we use the national income that is obtained from 
http://www.bea.gov/histdata/Releases/Regional/2010/PI/state/preliminary
_March-23-2011/SA1-3.csv. You will need to use the first line of data, 
Personal Income, for the years 1970 to 2010. The data on education, 
which are in 1,000s, are obtained from Table A-1 at http://www.census 
.gov/hhes/socdemo/education/data/cps/historical/index.html (look at the 
right of the page for a link to the data in Excel). A copy of retrieved data is 
provided in Table 8.1. 

First, we regress income on the total number of people in the United 
States with education, regardless of the level of education; the variable is 
named “Education.” There is not enough space to discuss and explain 
all the numbers that are generated; for a full explanation, see Regression 
for Economics.2 Figures 8.1A and 8.1B display Excel and Stata outputs, 
respectively. We will focus on the row named “Education.” Data for 
education are in the thousands of people and income is in billions of 
dollars. The coefficient for the independent variable is 0.13647217353. 
This indicates that for every one unit increase in the number of educat-
ed people, that is, 1,000 additional people, national income increases by 
$0.13647217353 billion or $136,472,173.53. Equivalently, for one 
more educated person, national income increases by $136,472.17. 
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Figure 8.1B Stata regression of income on total education, 1970–
2010, United States 

 
To run a regression in Excel, use the following: 

Data| Data Analysis| Regression 

In the “Input Y Range:” enter the column coordinates of the  
dependent variable. In the “Input X Range:” enter the coordinates of the 
cells containing the independent variable (while there can only be one 
dependent variable, there can be as many independent variables as nec-
essary). The range must be rectangular in shape and the number of rows 
must be the same as those assigned to the dependent variable. Click on 
“labels” if the first row of data contains variable names and press return 
for results. 

The Stata command for regression is of the form as given below: 
regress varname varlist 
where varname is the dependent variable income and varlist can con-

sist of several independent variables separated by space. Do not include 
any punctuation marks.  

 
Next, let us regress income on the number of people with 4 or more 

years of college (Figures 8.2A and 8.2B). 



 

 

Su
m

m
ar

y 
O

ut
pu

t 

R
eg

re
ss

io
n 

St
at

is
ti

cs
 

M
ul

tip
le

 R
 

0.
99

42
59

50
1 

R
 S

qu
ar

e 
0.

98
85

51
95

6 

A
dj

us
te

d 
R

 S
qu

ar
e 

0.
98

82
85

72
3 

St
an

da
rd

 E
rr

or
 

46
5.

13
96

78
 

O
bs

er
va

tio
ns

 
45

 

A
N

O
V

A
 

  
df

 
SS

 
M

S 
F 

Si
gn

ifi
ca

nc
e 

F 

R
eg

re
ss

io
n 

1 
80

33
47

50
8.

7 
8.

03
E+

08
 

37
13

.1
 

2.
23

E −
43

 

R
es

id
ua

l 
43

 
93

03
26

1.
56

3 
21

63
54

.9
 

T
ot

al
 

44
 

81
26

50
77

0.
2 

  
  

  

  
C

oe
ffi

ci
en

ts
 

St
an

da
rd

 E
rr

or
 

t  S
ta

t 
p  

va
lu

e 
Lo

w
er

 9
5%

 
U

pp
er

 9
5%

 

In
te

rc
ep

t 
−3

29
9.

37
93

58
 

17
2.

11
36

01
8 

−1
9.

16
98

 
1.

09
E −

22
 

−3
64

6.
48

 
−2

95
2.

28
 

≤4
 

0.
26

22
61

68
41

9 
0.

00
43

03
94

 
60

.9
35

21
 

2.
23

E −
43

 
0.

25
35

82
 

0.
27

09
41

 

 

F
ig

u
re

 8
.2

A
 
E

xc
el

 r
eg

re
ss

io
n
 o

f 
in

co
m

e 
o
n

 4
 o

r 
m

or
e 

ye
a
rs

 o
f 
co

ll
eg

e 
e
d
u
ca

ti
on

, 
1
9
7
0
– 2

0
1
0
, 

U
n
it

ed
 S

ta
te

s 

 

 AN INTRODUCTION TO REGRESSION ANALYSIS 175 



176 STATISTICS FOR ECONOMICS 

 

 
 

Figure 8.2B Stata regression of income on 4 or more years of college 

education, 1970–2010, United States 

The coefficient for the variable representing people with 4 or more 
years of college is 0.26226168419. Therefore, every additional person 
with 4 or more years of college education increases the national income 
by $262,261.68. Higher levels of education increases national income.  

One shortcoming of these examples is that they do not consider other 
factors that affect income, as discussed earlier. The simple regression anal-
ysis is easily extended to include all the variables that a researcher deems 
necessary. The main determining factor for including a variable in a  
regression model is the theory in the discipline in which the research is 
conducted. Literature on the economic impact of education suggests a 
model given in Equation (8.2).  

Income = �0 + �1 Education + �2 Experience  
+ �3 Race + �4 Gender + �5 Determination + � (8.2) 

The list of variables need not be exhaustive. In general, the explanato-
ry power of a model, as measured by R2 (pronounced r-squared), increases 
as the number of variables increases. However, the possibility of including 
irrelevant variables also increases. Because numerous factors can inflate R2, 
you should choose variables based on theory and not because of the value 
of R2.2 One reason is that variables in social sciences are often somewhat 
correlated. For example, education is not really independent of race or 
gender. Although there is no biological reason for education to be influ-
enced by race or gender, the reality of the United States is that it is.  

. 

                                                                              
       _cons    -3299.281   172.1261   -19.17   0.000    -3646.406   -2952.155
   Fouryears     .2622619   .0043043    60.93   0.000     .2535815    .2709423
                                                                              
      Income        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     812653454        44  18469396.7   Root MSE        =    465.17
                                                   Adj R-squared   =    0.9883
    Residual    9304614.66        43  216386.387   R-squared       =    0.9886
       Model     803348840         1   803348840   Prob > F        =    0.0000
                                                   F(1, 43)        =   3712.57
      Source         SS           df       MS      Number of obs   =        45

. regress Income Fouryears
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Similarly, there is no reason to include race and gender as control variables 
in the model explaining the determinants of income. The second reason for 
limiting the number of variables is that usually a few important variables are 
sufficient to provide reasonable estimates or forecasts of the dependent vari-
able. Parsimony is a desired feature of models; if two models are performing 
about the same, the one with fewer variables is preferred. However, neither 
the desire for parsimony nor to increase R2 should be the determining factor 
for selecting the exogenous variables. It can be shown that a model with the 
correct variables will result in unbiased, consistent, and efficient estimation 
of parameters. 

In Equation (8.2), the variable named “determination” merits addi-
tional comments. There is no doubt that the amount of effort that a 
person exerts affects his or her income. Thus, the hypothesized sign of 
�� is positive. However, there is no acceptable way of measuring one’s 
resolve. It is fairly easy to identify those that slack off or those that exert 
themselves, but neither can be measured. More importantly, any arbi-
trary ranking or measurement of the “determination” of a person is  
inaccurate and incomplete in the sense that it cannot be compared  
because it is a not a cardinal measure; a common problem in economics. 
For example, there is no cardinal measure of utility, which is a very  
important economic concept. A detailed discussion of how we deal with 
the inability to measure utility with cardinal measures is beyond the 
scope of the present text. In brief, there are two possible options. The 
first one is to accept that it is not a measurable phenomenon and not 
worry about including it in the model. The consequence is that the error 
term is enlarged, and there will be more variation in the dependent variable 
that remains unexplained than if we could have measured “determina-
tion” and used it in the model. This exclusion has serious consequences 
and is usually covered under misspecification of the model. The second 
method is to use a proxy variable that could represent the desired variable, 
albeit not precisely or accurately. A proxy variable is a variable that is highly 
correlated with a variable that cannot be observed or measured, such as 
determination in this example, but is not correlated with other independent 
variables in the model. One such variable is the difference of one’s income 
from the average income in the previous job. 



178 STATISTICS FOR ECONOMICS 

 

A generic presentation of a model with an unknown number of vari-
ables is of the form as given below: 

Y = �0 + �1 X1 + �2 + X2 + . . . + �K XK + � (8.3) 

Each beta represents the contribution of the corresponding factor to 
an explanation of the dependent variable, keeping all the other factors 
constant.  

Regression analysis is a powerful and useful tool used in many areas 
of science but has a special place in economics. As one might expect, 
there are many issues that pertain to economic research that are not nec-
essarily applicable to other areas of science. We have already seen two 
such issues. One is the fact that the independent variables are often 
somewhat related to each other in economics. This is due to the fact 
that many, if not all, economic factors are subject to the same economic 
and social realities. The same applies to individual firms and people. In 
other fields, it is easier to ensure exogenous variables are independent 
from each other, which is a requirement of regression analysis.2 The  
second issue is the role of factors that are social in nature and reflect the 
social/cultural structure of a country. For example, the fact is that race 
and gender influence one’s income. Consequently, a special branch of 
science has been created called econometrics. Econometrics is the applica-
tion of statistical methods, including regression, to economics. 



 

CHAPTER 9 

Conclusion 
The present text is a brief introduction to statistics. The main focuses 
have been on explanation, application, interpretation, and a sense of 
appreciation for statistics. The hope is that the reader has become inter-
ested in statistics and will pursue the topic further. In fact, the main 
reason for including the regression chapter, Chapter 8, is to show addi-
tional possibilities that go beyond a single-variable analysis. It demon-
strates that we can explore the influence of one or more variables on a 
variable of interest. Within the subject of regressions, one can explore 
theoretical and empirical aspects of cross section and time series data. 
Regression analysis has been augmented to utilize data that are qualita-
tive in nature. The qualitative data can be used as dependent variables or 
independent variables. Many economics decisions can be represented as 
qualitative dependent variables, for example, the decision to buy a good 
or not to buy it, obtain a college degree, take a vacation (i.e., consume 
leisure), or to save, to name a few. Qualitative variables can also be  
independent variables, such as race, gender, political persuasion, or  
nationality.  

The present text groups related topics and focuses on the interrelation-
ship of different topics; a good example is Table 1.1. The table divides 
descriptive statistics into two major categories of qualitative variables and 
quantitative variables. The scope of methods for quantitative variables is 
much broader than those for the qualitative variables because the methods 
used for qualitative variables are also applicable for quantitative variables, 
but the reverse is not true necessarily. Within each category, the analytical 
methods are broken down to tabular methods and graphical methods. 
Recall that these are all descriptive methods and their purposes is to pro-
vide insight to the nature of data and to condense massive amounts of 
information into as few parameters as possible. Descriptive statistics are 
estimates.  
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Although graphical and tabular methods are very helpful in provid-
ing a visual description of data, the analytical power of statistics is more 
evident in the numerical methods that apply to quantitative variables. It 
is customary to distinguish among three different classifications of quan-
titative variables: measures of central tendency, measures of dispersion, 
and measures of association. Each of these measures provides different 
analytical perspectives and allows researchers to differentiate among dif-
ferent types of data where certain aspects might be similar while the na-
ture of data is very different, for example, as in the case of two popula-
tions with the same means but different variances.  

The knowledge about parameters provides an insight into the nature 
of data. Massive databases are overwhelming and chaotic collection of 
numbers. In spite of the fact that the human brain is extremely good at 
finding order in events when the order is not easy to detect, the data are 
too large, or the relationships are too complex, it needs statistics to 
comprehend what is going on. A good example to clarify the above 
point is the saying “to miss the forest for the trees.” Statistics provides a 
way of summarizing the evidence.  

Inferential statistics is used to test and to determine the likelihood of 
the outcome. The human brain is susceptible to finding patterns and 
association even when there is none. All superstitions are based on se-
quences of events that are random but erroneously are considered pat-
terns or causal relationships. It is necessary to use statistical analysis to 
identify real patterns and avoid superstition.    

Statistics provides tools to determine, with an appropriate level of 
probability, the outcome of a certain phenomenon or how to explain 
one or more variables using one or more other variables. It removes con-
jecture out of estimation by providing necessary and sufficient condi-
tions to obtain unbiased, consistent, and efficient estimators. It replaces 
opinion-based conclusions with a probabilistic inference, which would 
result in the same conclusion for a given level of significance.  

In Chapter 3, we put the few descriptive tools that were introduced in 
Chapter 2 into use by showing the applications of Z scores and the coeffi-
cient of variation. That chapter also provided additional tools to improve 
the analytical power of statistics. The concept of error is one of the major 
contributions of statistics to science. This notion allows us to divide  
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variations in a phenomenon, which is ever present in all real life situations, 
into two components: one that can be explained and one that cannot be  
explained. One object of statistical analysis is to reduce the magnitude of 
the part that is unexplained using theory and improved model selection. 
For example, the mean explains part of the variation in data and leaves 
part unexplained. In Chapter 8, we saw a glimpse of regression analysis 
where part of the previously “unexplainable” error is explained by appro-
priate independent variables that are identified using theories from  
economics and other disciplines. There are numerous modifications to the 
simple regression analysis that allows further reduction of the unexplained 
portion of variations.  

A contributing factor is the discovery of a host of distribution func-
tions. These mathematical relationships have certain known properties 
that are used as benchmarks in inferential statistics. The most important 
one among distribution functions is the normal distribution. Although 
many of natural events resemble the normal distribution function, many 
do not. Nevertheless, the use of theorems such as the Chebyshev’s Theo-
rem and the Central Limit Theorem allows us to use the properties of 
the normal distribution in dealing with some of the statistics obtained 
from real data that either have a complicated distribution function or do 
not even have a known distribution function. For example, the distribu-
tion function of the quantity demanded of a good is usually unknown. 
However, the average quantity demanded of several samples has a nor-
mal distribution. The link between the above theorems and statistics is 
the main subject of sampling distribution of sample statistics. We devot-
ed Chapter 5 to this topic exclusively. Sample statistics are compared 
with corresponding distributions to make inferences. 

The next step for most economists is to learn regression analysis using 
cross section data, followed by time series, and finally using panel data. 
Almost all economic programs require at least one course in econometrics, 
which is the application of linear models such as regression analysis to 
economic issues. More serious students that pursue graduate work in eco-
nomics are required to learn and sometimes prove the applicable theorems 
used in econometrics; however, a purely pragmatic approach of learning 
the methods is utilized by many curriculums.  
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Theoretical requirements for analyzing cross section data are different 
from those of time series data. When cross section and time series data are 
combined  the data set is called panel data. In panel data analysis, the 
problems that cause difficulty in the regressions using cross section or time 
series data are utilized to provide a better analysis. For example, the exist-
ence of correlation among units over time and the presence of correlations 
among independent variables are incorporated into the analysis rather 
than excluded or avoided. Probably the best example of this point is the 
analysis based on seemingly unrelated data. In this methodology, the fact 
that similar firms are subject to similar economic conditions, and thus, 
respond in similar manners in certain areas is the foundation of the meth-
odology. Another recent development is Spatial Econometrics where spatial 
information is incorporated in the form of weights assigned to economic 
events. For example, it is reasonable to expect “neighboring” counties to 
act more similar than distant counties. There are numerous ways of defin-
ing neighbors, such as distance and shared borders. Finally, the hope is 
that this manuscript has been able to answer some of the questions readers 
had and also sparked an interest in this fascinating subject. 



 

Glossary 

Bar graph is a graphical representation of the frequency distribution or relative 
frequency distribution of qualitative data. 

Binomial distribution function is a probability distribution representing a 
dichotomous variable with a constant probability of occurrence. 

Box plot is a graphical representation of several basic descriptive statistics in a 
concise manner. 

Categorical variable contains qualitative values. 
Center of gravity of the data is the same as the expected value, or mean.  

Central limit theorem states that in repeated random samples from a 
population, the sample means will have a normal distribution function; the 
expected value of the sample mean is equal to the true value of the population 
mean, and the variance of the sample mean is equal to population variance 
divided by the sample size.  

Ceteris paribus is Latin for “other things being equal.” 

The ccoefficient of variation is the ratio of the standard deviation to the mean. 
Chi-square represents the distribution function of a variance. 

Claim is a testable hypothesis. 
Confidence interval provides an interval that contains the population 
parameter with a desired level of confidence.  

Consistent estimator is an estimator whose variance becomes smaller as sample 
size increases. 

Continuous dichotomous variables exist when one can place an order on the 
type of data such as being young versus old. 

Continuous random vvariable can assume any real value. It represents all the 
values over a range. 

Correction factor is used when the sample size is small or the sample is more 
than 5% of the population. 

Cross-sectional analysis is a study of a snapshot of regions at a given time. 
Cumulative frequencies consist of sums of frequencies up to the value or class 
of interest. 

Deductive statistics starts from general information to make inferences about 
specifics. 

Degree of freedom is the number of elements that can be chosen freely in a 
sample. 
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Dependent variable is the variable of interest that is explained by statistical 
analysis. Other names such as endogenous variable, Y-variable, response 
variable, or output are used as well.   

Descriptive statistics provide summary estimates of data. 
Dichotomous variables, exist when there are only two variables measured in 
nominal scale, can take only one of the two values (i.e., yes or no, off or on, 0 or 
1), also called dummy variables in econometrics. 

Discrete dichotomous is a dichotomous variable that can take only integer 
values. 

Discrete random variable is a variable with integer values. 
Dot plot is a histogram consisting of points depicting frequencies.  

Dummy variable is a dichotomous variable that  can take only on a value of 0 
or 1. Dummy variables are used to indicate the presence or absence of a 
characteristic, such as female. It is a special case of nominal data.   

Econometrics is the application of statistics to economics. 

Efficient estimator is an estimator with the smallest variance compared with 
other estimator(s). 

Error is the difference between an observed value and its expected value. Error 
is the portion of variation that cannot be explained.  

Errors in measurement refer to incorrectly measuring or recording the values 
of sample points. 

Expected value is the theoretically expected outcome, such as the arithmetic 
mean.   

Experimental design is a statistics method where the experiment is controlled 
for different variables to ensure desired levels of confidence for the estimates.  

F statistic is used to test hypotheses about ratios of variances. 
Frequency distribution shows the frequency of occurrence for nonoverlapping 
classes. 

Grouped data are summarized or organized to provide a better and more 
compact picture of reality.  

Harmonic mean is the average of rates. It is the reciprocal of the arithmetic 
mean of the reciprocal of the values. 

A hhistogram is a graphical representation of the frequency distribution or 
relative frequency distribution of quantitative data.  

Independent vvariable is a variable that is used to explain the response or 
dependent variable. It also has other names such as exogenous variable,  
X-variable, regressor, input, factor, or predictor variable.   
Individual error is the difference between an observed value and its expected 
value. 
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Inductive statistics observes specifics to make inferences about the general 
population. 

Inferential statistics is a methodology that allows making decisions based on 
the outcome of statistics from a sample.  
An iinterval scale includes relative distances of any two sequential values, such 
as a Fahrenheit scale. 

Kurtosis is a measure of pointedness or flatness of a symmetric distribution. 

A LLikert scale is an ordinal scale, where the subjects provide the ranking of each 
variable. 

The llower hinge is the 25th percentile of a box plot.  
Mean is the arithmetic average. It represents the center of gravity of data.  

Mean aabsolute error (MAE) is the average of the absolute values of individual 
errors.  

Mean squared error is the same as variance.  
Measurement scales indicate the type of variable such as ordinal, cardinal, or 
interval scales. 

Measures of association determine the association between two variables or the 
degree of association between two variables. They consist of covariance and 
correlation coefficients. 

Measures of central tendency, such as the mean and median, provide concise 
meaningful summaries of the central properties of a population. 

Measures of dispersion reflect how data are scattered. The most important 
dispersion measures are the variance and the standard deviation.  

Median is a value that divides observations into two equal groups.  It is the 
midpoint between a group of numbers ranked in order.  

Mode is the most frequent value of a population.   
Nominal or  categorical data are the “count” of the number of times an event 
occurs. 
Normal distribution is a common distribution function that reflects many 
randomly occurring events in life. 

Null hypothesis reflects the status quo or how things have been or are 
currently.  

Observed significance level is another name for the p-value, which is the 
probability of seeing what you saw.  

Observed value is the value of a sample point. 
Ogive is a graph for cumulative frequencies.  

Ordinal scale indicates that data are ordered in some way, but the numbering 
has no value other than representing rank.  
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P value represents the probability of type I error for inference about a 
coefficient. 

A  parameter is a characteristic of a population that is of interest; it is constant 
and usually unknown. 

A ppercentile is the demarcation value below which the stated percentage of the 
population or sample lie. 

A ppie chart is a graphical presentation of frequency distribution and relative 
frequency. 

Point estimate is a statistic that consists of a single value, such as the mean or 
variance. 

Probability is the likelihood of occurrence of an event, expressed in the form of 
a ratio or a percentage.  

Probability distribution determines the probability of the outcomes of a 
random variable. 
Probability density distribution ffor a discrete random vvariable determines 
the probability of an occurrence of a discrete random variable and is represented 
as f (x). 

Probability distribution for a continuous random variable determines the 
probability of occurrence of a continuous random variable and is represented as f 
(x). 

Qualitative variables are non-numeric and represent a label for a category. 
Quantitative variables are numerical and countable values.   
Quartiles divide the population into four equal portions, each equal to 25% of 
the population. 
Random variables are selected in a random fashion and by chance.  
A rratio scale is an interval scale, with the additional criteria that it has an 
absolute zero value. 

Real numbers consist of all rational and irrational numbers. They include all 
possible values on a line. 

Relative frequency shows the percentage of each class to the total population or 
sample. 

Relative variability is the comparison of variability using the coefficient of 
variation.  

Reliability of a sample mean �( )μ  is equal to the probability that the deviation 
of the sample mean, from the population mean, is within the tolerable level of 
error (e). 

Root mean squared error is the square root of the mean square error and is the 
same as the standard error.  
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Sample standard deviation is the average error of the sample. This is the 
standard deviation obtained from a sample, but it is not the same as standard 
error. 

Sample statistics are random values obtained from a sample. They estimate the 
corresponding population parameters and are used to make inferences about 
them. 

Sample variance is an estimate of the population variance. It is the sum of the 
squares of the deviations of values from the sample mean divided by the degrees 
of freedom.  
Sampling is the process of obtaining a sample from a population. 
Sampling distribution explains the governing rules and characteristics of 
sample statistics. 

Scatter plot is a graph customarily used in presenting data from a regression 
analysis model.  

Simple hypothesis gives an exact value for the unknown parameter of the 
assumed distribution function based on established rules.  

Skewness is a measure of deviation from symmetry in a distribution. 
Standard deviation is the square root of variance and represents the average 
error of a population or sample. 

Standard error is the standard deviation of the estimated sample statistics.  
Standardization is the conversion of the value of an observation into its Z score 
equivalent.  

A sstatistic is a numerical value calculated from a sample that is variable and 
known. 

Statistical hypothesis is an assertion about distribution of one or more random 
variables.  

Statistical inference is the process of drawing conclusions based on evidence 
obtained from a sample. All statistical inferences are probabilistic. 
Stem and leaf is a graphical way of summarizing data and is a type of a 
descriptive statistic.  

Stochastic means probabilistic. Stochastic variables are random.   

t distribution is a modification of the normal distribution function for small 
samples or when the variance is not known. 

A ttestable hypothesis is a claim against established norms and beliefs.  
Time series analysis is a special branch of statistics that deals with time series 
data. 

Tolerable level of error is the amount of error that the researcher is willing to 
accept.  
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Tolerance level is a measure for detecting multicolinearity. It is the reciprocal 
of Variance Inflation Factor (VIF). A tolerance value less than 0.1 is an 
indicative of the presence of multicollinearity. 

Total sum of square represents the total variation in the dependent variable.  
Trimmed mean is a modification of the mean, where outliers are discarded. 
Type I error is rejecting the null hypothesis when it is true.  
Type II error is failure to reject the null hypothesis when it is false.  

Type III error is rejecting a null hypothesis in favor of an alternative hypothesis 
with the wrong sign.  

Typical refers to the average value. 
Unbiased refers to an estimate whose expected value is equal to the corresponding 
population parameter. 
The uupper hinge is the 75th percentile of a box plot.  
Validity is the lack of measurement error. 
Variance is the sum of the squares of the deviations of values from their mean, 
divided by population size. It is the average of the squared individual errors.  
Weighted mean is similar to the mean except the weights for the observations 
are not equal and instead represent their contribution to the total. Calculation 
of GPA, where the grade received is weighted by the number of credit hours of 
the class, is an example of a weighted mean. 

Z score is a statistic that is based on standard units. It is standardized for the 
purpose of comparing variables that are measured in different units. 
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applications of, 65---82 
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Dot plot, 25–26 
Dummy variable, 54 
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type III, 155---156 
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41 
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41 

Hinges, 21–22 
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Inference 
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for one population mean, 130---141 
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geometric, 36---39 
of grouped data, 44---45 
harmonic, 39---40 
sample, 32---35 
trimmed, 35---36 
weighted, 42---43 
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(MSE), 49 
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168 
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Measures of association, 59–63 
correlation coefficient, 61---63 
covariance, 59---61 

Measures of central tendency, 31–46 
mean, 31---45 
median, 45 
mode, 46 

Measures of dispersion, 47–59 
interquartile range, 47 
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standard deviation, 50---59 
variance, 48---50 
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Median, 45 
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mean and mode, 46 
Mode, 46 
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Nominal data, 3 
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Normal distribution functions,  
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area under, 89---97 
nonconformity with, 97 
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Ogive, 23–24 
One sample mean, sampling 
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One sample mean (Cont.) 
population variance is known, 

112---113 
population variance is unknown, 

113---114 
One sample proportion, sampling 

distribution of, 115 
One-tailed hypothesis, 148 
Ordinal scale, definition of, 4 
Outliers, 29, 35–36 
Outside values. See Outliers 
 
Parameter, definition of, 5 
Pearson’s coefficient, of skewness, 81 
Percentiles, 18–19 
Pie chart, 13–15 
Point estimates, 76 
Point estimation, 126–127 

sample size, determining, 141---142 
Population covariance, 59–60 
Population, definition of, 5 
Population variance, 49 
Positively skewed distribution, 81 
Probability density function 

continuous random variable, 86 
discrete random variable, 86 

Probability distribution functions, 
83–86 

definitions and concepts, 84---86 
Probability functions. See Probability 

density function 
p value, definition of, 156 
 
Qualitative variables 

definition of, 3 
descriptive statistics for, 5---15 
graphical methods for, 10---15 

bar graphs, 10–13 
pie chart, 13–15 

tabular methods for, 5---10 
frequency distribution for, 6–9 
relative frequency for, 10 

Quantitative variables 
definition of, 3 

descriptive statistics for, 15---30 
graphical methods for, 22---30 

box plot, 28–30 
dot plot, 25–26 
histogram, 22–23 
ogive, 23–24 
scatter plot, 26–28 
stem and leaf, 24–25 

numerical methods for, 31---63 
introduction to, 31 
measures of association, 59–63 
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31–46 
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tabular methods for, 15---22 
cumulative frequency for, 18 
frequency distribution for,  

16–17 
hinges, 21–22 
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quartiles, 19–21 
relative frequency for, 17–18 

Quartiles, 19–21 
 
Random error, 145 
Random variable, 85 
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discrete, 85 

Range, 47 
Ratio scale, definition of, 4 
Regression analysis, 165–178 

explanatory variables, 166---178 
Regression line, 166 
Relative frequency 

for qualitative variables, 10 
for quantitative variables, 17---18 

Reliability, of sample mean, 108 
Residual error. See Individual error 
Response variable. See Dependent 

variable 
Root mean squared error, 80 
 
Sample covariance, 60–61 
Sample mean, 32–35 
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Sample size, 107–110 
Sample standard deviation, 51 
Sample variance, 49–50, 119–120 
Sampling, 105–107 
Sampling distribution, 105–123 

of difference of two means,  
116---118 

efficiency comparison between 
mean and median, 121---123 

of one sample mean, 111---114 
of one sample proportion, 115 
sample size, 107---110 
of sample variance, 119---120 
sampling technique, 105---107 
of statistics, 110---111 
of the difference of two 

proportions, 119 
of two sample means, 115 
of two samples variances, 120---121 

Scatter plot, 26–28 
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Simple statistical hypothesis, 146 
Skewness, 80 
Spatial econometrics, 182 
Standard deviation, 50–51, 79 

of the sample mean, 51---52 
Standard error, 52, 73–75 
Standardization, 68 
Standardized values, 86 
Statistical hypothesis, 146 
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simple, 146 

Statistical inference, 106, 125 
with hypothesis testing, 145---164 

alternative hypothesis, 148–151 
hypothesis, 145–146 
null hypothesis, 146–148 
probability of event occurrence, 

153–164 
test statistics, 151–153 

with method of critical region, 
157---158 
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