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ABSTRACT
is book is a gentle but rigorous introduction to Formal Logic. It is intended primarily for use
at the college level. However, it can also be used for advanced secondary school students, and it
can be used at the start of graduate school for those who have not yet seen the material.

e approach to teaching logic used here emerged from more than 20 years of teaching
logic to students at Stanford University and from teaching logic to tens of thousands of others
via online courses on the World Wide Web. e approach differs from that taken by other books
in logic in two essential ways, one having to do with content, the other with form.

Like many other books on logic, this one covers logical syntax and semantics and proof
theory plus induction. However, unlike other books, this book begins with Herbrand semantics
rather than the more traditional Tarskian semantics. is approach makes the material consider-
ably easier for students to understand and leaves them with a deeper understanding of what logic
is all about.

In addition to this text, there are online exercises (with automated grading), online logic
tools and applications, online videos of lectures, and an online forum for discussion. ey are
available at
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Preface
is book is a first course in Formal Logic. It is intended primarily for use at the college level.
However, it can also be used for advanced secondary school students, and it can be used at the
start of graduate school for those who have not yet seen the material.

ere are just two prerequisites. e book presumes that the student understands sets and
set operations, such as union, intersection, and so forth. It also presumes that the student is
comfortable with symbolic manipulation, as used, for example, in solving high-school algebra
problems. Nothing else is required.

e approach to teaching Logic used here emerged from more than 10 years of experience
in teaching the logical foundations of Artificial Intelligence and more than 20 years of experience
in teaching Logic for Computer Scientists. e result of this experience is an approach that differs
from that taken by other books in Logic in two essential ways, one having to do with content,
the other with form.

e primary difference in content concerns that semantics of the logic that is taught. Like
many other books on Logic, this one covers first-order syntax and first-order proof theory plus
induction. However, unlike other books, this book starts with Herbrand semantics rather than
the more traditional Tarskian semantics.

In Tarskian semantics, we define an interpretation as a universe of discourse together with
a function (1) that maps the object constants of our language to objects in a universe of discourse
and (2) that maps relation constants to relations on that universe. We define variable assignments
as assignments to variables. We define the semantics of quantified expressions as variations on
variable assignments, saying, for example, that a universally quantified sentence is true for a given
interpretation if and only if it is true for every variation of the given variable assignment. It is a
mouthful to say and even harder for students to understand.

In Herbrand semantics, we start with the object constants, function constants, and relation
constants of our language; we define the Herbrand base (i.e. the set of all ground atoms that can be
formed from these components); and we define a model to be an arbitrary subset of the Herbrand
base. at is all. In Herbrand semantics, an arbitrary logical sentence is logically equivalent to the
set of all of its instances. A universally quantified sentence is true if and only if all of its instances
are true. ere are no interpretations and no variable assignments and no variations of variable
assignments.

Although both approaches ultimately end up with the same deductive mechanism, we get
there in two different ways. Deciding to use Herbrand semantics was not an easy to choice to
make. It took years to get the material right and, even then, it took years to use it in teaching
Logic. Although there are some slight disadvantages to this approach, experience suggests that
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the advantages significantly outweigh those disadvantages. is approach is considerably easier
for students to understand and leaves them with a deeper understanding of what Logic is all
about. at said, there are some differences between Herbrand semantics and Tarskian semantics
that some educators and theoreticians may find worrisome.

First of all, Herbrand semantics is not compact—there are infinite sets of sentences that
are inconsistent while every finite subset is consistent. e upshot of this is that there are infi-
nite sets of sentences where we cannot demonstrate unsatisfiability with a finite argument within
the language itself. Fortunately, this does not cause any practical difficulties, since in all cases of
practical interest we are working with finite sets of premises.

One significant deficiency of Herbrand semantics vis a vis Tarskian semantics is that with
Herbrand semantics there are restrictions on the cardinality of the worlds that can be axioma-
tized. Since there is no external universe, the cardinality of the structures that can be axiomatized
is equal to the number of ground terms in the language. (To make things easy, we can always
choose a countable language. We can even choose an uncountable language, though doing so
would ruin some of the nice properties of the logic. On the positive side, it is worth noting that in
many practical applications we do not care about uncountable sets. Although there are uncount-
ably many real numbers, remember that there are only countably many floating point numbers.)
More significantly, recall that the Lowenheim-Skolem eorem for Tarskian semantics assures
us that even with Tarskian semantics we cannot write sentences that distinguish models of dif-
ferent infinite cardinalities. So, it is unclear whether this restriction has any real significance for
the vast majority of students.

Herbrand semantics shares most important properties with Tarskian semantics. In the ab-
sence of function constants, the deductive calculus is complete for all finite axiomatizations. In
fact, the calculus derives the exact same set of sentences. When we add functions, we lose this
nice property. However, we get some interesting benefits in return. For one, it is possible with
Herbrand semantics (with functions) to finitely axiomatize arithmetic. As we know from Godel,
this is not possible in a first-order language with Tarskian semantics. e downside is that we
lose completeness. However, it is nice to know that we can at least define things, even though
we cannot prove them. Moreover, as mentioned above, we do not actually lose any consequences
that we are able to deduce with Tarskian semantics.

at’s all for what makes the content of this book different from other books. ere is also
a difference in form. In addition to the text of the book in print and online, there are also online
exercises (with automated grading), some online Logic tools and applications, online videos of
lectures, and an online forum for discussion.

e online offering of the course began with an experimental version early in the 2000s.
While it was moderately successful, we were at that time unable to combine the online mate-
rials and tools and grading program with videos and an online forum, and so we discontinued
the experiment. Recently, it was revived when Sebastian run, Daphne Koller, and Andrew Ng
created technologies for comprehensive offering online courses and began offering highly suc-
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cessful online courses of their own. With their technology and the previous materials, it was easy
to create a comprehensive online course in Logic. And this led to completion of this book.

anks also to Pat Suppes, Jon Barwise, John Etchemendy, David-Barker Plummer, and
others at the Stanford Center for the Study of Language and Information for their pioneering
work on online education in Logic. Language, Proof, and Logic (LPL) in particular is a wonder-
ful introduction to Logic and is widely used around the world. Although there are differences
between that volume and this one in theory (especially semantics) and implementation (notably
the use here of browser-based exercises and applications), this volume is in many ways similar to
LPL. In particular, this volume shamelessly copies the LPL tactic of using online worlds (like
Tarski’s World) as a teaching tool for Logic.

And thanks as well to the thousands of students who over the years have had to endure early
versions of this material, in many cases helping to get it right by suffering through experiments
that were not always successful. It is a testament to the intelligence of these students that they
seem to have learned the material despite multiple bumbling mistakes on our part. eir patience
and constructive comments were invaluable in helping us to understand what works and what
does not.

Finally, we need to acknowledge the enormous contributions of a former graduate
student—Tim Hinrichs. He is a co-discoverer of many of the results about Herbrand seman-
tics, without which this book would not have been written.

Michael Genesereth and Eric J. Kao
October 2016
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C H A P T E R 1

Introduction
1.1 INTRODUCTION
Logic is one of the oldest intellectual disciplines in human history. It dates back to Aristotle. It
has been studied through the centuries by people like Leibniz, Boole, Russell, Turing, and many
others. And it is still a subject of active investigation today.

We use Logic in just about everything we do.We use the language of Logic to state observa-
tions, to define concepts, and to formalize theories. We use logical reasoning to derive conclusions
from these bits of information. We use logical proofs to convince others of our conclusions.

And we are not alone! Logic is increasingly being used by computers—to prove mathemat-
ical theorems, to validate engineering designs, to diagnose failures, to encode and analyze laws
and regulations and business rules.

Logic is also becoming more common at the interface between man and machine, in “logic-
enabled” computer systems, where users can view and edit logical sentences. ink, for example,
about email readers that allow users to write rules to manage incoming mail messages—deleting
some, moving others to various mailboxes, and so forth based on properties of those messages.
In the business world, eCommerce systems allow companies to encode price rules based on the
product, the customer, the date, and so forth.

Moreover, Logic is sometimes used not just by users in communicating with computer
systems but by software engineers in building those systems (using a programming methodology
known as logic programming).

is chapter is an overview of Logic as presented in this book. We start with a discussion of
possible worlds and illustrate the notion in an application area known as Sorority World. We then
give an informal introduction to the key elements of Logic—logical sentences, logical entailment,
and logical proofs. We then talk about the value of using a formal language for expressing logical
information instead of natural language. Finally, we discuss the automation of logical reasoning
and some of the computer applications that this makes possible.

1.2 POSSIBLEWORLDS
Consider the interpersonal relations of a small sorority. ere are just four members—Abby, Bess,
Cody, and Dana. Some of the girls like each other, but some do not.

Figure 1.1 shows one set of possibilities. e checkmark in the first row here means that
Abby likes Cody, while the absence of a checkmark means that Abby does not like the other girls
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(including herself ). Bess likes Cody too. Cody likes everyone but herself. And Dana also likes the
popular Cody.

Abby Bess Cody Dana

Abby ü

Bess ü

Cody ü ü ü

Dana ü

Figure 1.1: One state of Sorority World.

Of course, this is not the only possible state of affairs. Figure 1.2 shows another possible
world. In this world, every girl likes exactly two other girls, and every girl is liked by just two girls.

Abby Bess Cody Dana

Abby ü

Bess

Cody

Dana

ü

ü ü

ü ü

ü ü

Figure 1.2: Another state of Sorority World.
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As it turns out, there are quite a few possibilities. Given four girls, there are sixteen possible
instances of the likes relation—Abby likes Abby, Abby likes Bess, Abby likes Cody, Abby likes
Dana, Bess likes Abby, and so forth. Each of these sixteen can be either true or false. ere are
216 (65,536) possible combinations of these true-false possibilities, and so there are 216 possible
worlds.

1.3 LOGICAL SENTENCES
Let’s assume that we do not know the likes and dislikes of the girls ourselves but we have infor-
mants who are willing to tell us about them. Each informant knows a little about the likes and
dislikes of the girls, but no one knows everything.

Here is where Logic comes in. By writing logical sentences, each informant can express
exactly what he or she knows—no more, no less. For our part, we can use the sentences we have
been told to draw conclusions that are logically entailed by those sentences. And we can use logical
proofs to explain our conclusions to others.

Figure 1.1 shows some logical sentences pertaining to our sorority world. e first sentence
is straightforward; it tells us directly that Dana likes Cody. e second and third sentences tell us
what is not true without saying what is true. e fourth sentence says that one condition holds or
another but does not say which. e fifth sentence gives a general fact about the girls Abby likes.
e sixth sentence expresses a general fact about Cody’s likes. e last sentence says something
about everyone.

Dana likes Cody.
Abby does not like Dana.
Dana does not like Abby.
Bess likes Cody and Dana.
Abby likes everyone that Bess likes.
Cody likes everyone who likes her.
Nobody likes herself.

Figure 1.3: Logical sentences describing Sorority World.

Sentences like these constrain the possible ways the world could be. Each sentence divides
the set of possible worlds into two subsets, those in which the sentence is true and those in which
the sentence is false. Believing a sentence is tantamount to believing that the world is in the first
set. Given two sentences, we know the world must be in the intersection of the set of worlds in
which the first sentence is true and the set of worlds in which the second sentence is true. Ideally,
when we have enough sentences, we know exactly how things stand.

Effective communication requires a language that allows us to express what we know, no
more and no less. If we know the state of the world, then we should write enough sentences to
communicate this to others. If we do not know which of various ways the world could be, we
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need a language that allows us to express only what we know. e beauty of Logic is that it gives
us a means to express incomplete information when that is all we have and to express complete
information when full information is available.

1.4 LOGICALENTAILMENT
Logical sentences can sometimes pinpoint a specific world from among many possible worlds.
However, this is not always the case. Sometimes, a collection of sentences only partially constrains
the world. For example, there are four different worlds that satisfy the sentences in Figure 1.3,
viz. the ones shown in Figure 1.4.

Abby Bess Cody Dana

Abby ü

Bess ü

Cody ü ü ü

Dana ü

Abby Bess Cody Dana

Abby ü ü

Bess ü

Cody ü ü ü

Dana ü

Abby Bess Cody Dana

Abby ü

Bess ü

Cody ü ü ü

Dana ü ü

Abby Bess Cody Dana

Abby ü ü

Bess ü

Cody ü ü ü

Dana ü ü

Figure 1.4: Four states of Sorority World.
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Even though a set of sentences does not determine a unique world, it is often the case that
some sentences are true in every world that satisfies the given sentences. A sentence of this sort
is said to be a logical conclusion from the given sentences. Said the other way around, a set of
sentences logically entails a conclusion if and only if every world that satisfies the sentences also
satisfies the conclusion.

What can we conclude from the bits of information in Figure 1.3? Quite a bit, as it turns
out. For example, it must be the case that Bess likes Cody. Also, Bess does not like Dana. ere
are also some general conclusions that must be true. For example, in this world with just four
girls, we can conclude that everybody likes somebody. Also, everyone is liked by somebody.

Bess likes Cody.
Bess does not like Dana.
Everybody likes somebody.
Everybody is liked by somebody.

Figure 1.5: Conclusions about Sorority World.

One way to check whether a set of sentences logically entails a conclusion is to examine the
set of all worlds in which the given sentences are true. For example, in our case, we notice that,
in every world that satisfies our sentences, Bess likes Cody, so the statement that Bess likes Cody
is a logical conclusion from our set of sentences.

1.5 LOGICAL PROOFS
Unfortunately, determining logical entailment by checking all possible worlds is impractical in
general. ere are usually many, many possible worlds; and in some cases there can be infinitely
many.

e alternative is logical reasoning, viz. the application of reasoning rules to derive logical
conclusions and produce logical proofs, i.e., sequences of reasoning steps that leads from premises
to conclusions.

e concept of proof, in order to bemeaningful, requires that we be able to recognize certain
reasoning steps as immediately obvious. In other words, we need to be familiar with the reasoning
“atoms” out of which complex proof “molecules” are built.

One of Aristotle’s great contributions to philosophy was his recognition that what makes a
step of a proof immediately obvious is its form rather than its content. It does not matter whether
you are talking about blocks or stocks or sorority girls. What matters is the structure of the facts
with which you are working. Such patterns are called rules of inference.

As an example, consider the reasoning step shown below. We know that all Accords are
Hondas, and we know that all Hondas are Japanese cars. Consequently, we can conclude that all
Accords are Japanese cars.
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All Accords are Hondas.
All Hondas are Japanese.
erefore, all Accords are Japanese.

Now consider another example. We know that all borogoves are slithy toves, and we know
that all slithy toves are mimsy. Consequently, we can conclude that all borogoves are mimsy.
What’s more, in order to reach this conclusion, we do not need to know anything about borogoves
or slithy toves or what it means to be mimsy.

All borogoves are slithy toves.
All slithy toves are mimsy.
erefore, all borogoves are mimsy.

What is interesting about these examples is that they share the same reasoning structure,
viz. the pattern shown below.

All x are y.
All y are z.
erefore, all x are z.

e existence of such reasoning patterns is fundamental in Logic but raises important ques-
tions. Which patterns are correct? Are there many such patterns or just a few?

Let us consider the first of these questions. Obviously, there are patterns that are just plain
wrong in the sense that they can lead to incorrect conclusions. Consider, as an example, the (faulty)
reasoning pattern shown below.

All x are y.
Some y are z.
erefore, some x are z.

Now let us take a look at an instance of this pattern. If we replace x by Toyotas and y by
cars and z by made in America, we get the following line of argument, leading to a conclusion that
happens to be correct.

All Toyotas are cars.
Some cars are made in America.
erefore, some Toyotas are made in America.

On the other hand, if we replace x by Toyotas and y by cars and z by Porsches, we get a line
of argument leading to a conclusion that is questionable.

All Toyotas are cars.
Some cars are Porsches.
erefore, some Toyotas are Porsches.
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What distinguishes a correct pattern from one that is incorrect is that it must *always* lead
to correct conclusions, i.e., they must be correct so long as the premises on which they are based
are correct. As we will see, this is the defining criterion for what we call deduction.

Now, it is noteworthy that there are patterns of reasoning that are sometimes useful but
do not satisfy this strict criterion. ere is inductive reasoning, abductive reasoning, reasoning by
analogy, and so forth.

Induction is reasoning from the particular to the general. e example shown below illus-
trates this. If we see enough cases in which something is true and we never see a case in which it
is false, we tend to conclude that it is always true.

I have seen 1000 black ravens.
I have never seen a raven that is not black.
erefore, every raven is black.
Now try red Hondas.

Abduction is reasoning from effects to possible causes. Many things can cause an observed
result. We often tend to infer a cause even when our enumeration of possible causes is incomplete.

If there is no fuel, the car will not start.
If there is no spark, the car will not start.
ere is spark.
e car will not start.
erefore, there is no fuel.
What if the car is in a vacuum chamber?

Reasoning by analogy is reasoning in which we infer a conclusion based on similarity of
two situations, as in the following example.

e flow in a pipe is proportional to its diameter.
Wires are like pipes.
erefore, the current in a wire is proportional to diameter.
Now try price.

Of all types of reasoning, deduction is the only one that guarantees its conclusions in all
cases. It has some very special properties and holds a unique place in Logic. In this book, we
concentrate entirely on deduction and leave these other forms of reasoning to others.

1.6 FORMALIZATION
So far, we have illustrated everything with sentences in English. While natural language works
well in many circumstances, it is not without its problems. Natural language sentences can be
complex; they can be ambiguous; and failing to understand the meaning of a sentence can lead
to errors in reasoning.
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Even very simple sentences can be troublesome. Here we see two grammatically legal sen-
tences. ey are the same in all but the last word, but their structure is entirely different. In the
first, the main verb is blossoms, while in the second blossoms is a noun and the main verb is sank.

e cherry blossoms in the Spring.
e cherry blossoms in the Spring sank.

As another example of grammatical complexity, consider the following excerpt taken from
the University of Michigan lease agreement. e sentence in this case is sufficiently long and
the grammatical structure sufficiently complex that people must often read it several times to
understand precisely what it says.

e University may terminate this lease when the Lessee, having made application and
executed this lease in advance of enrollment, is not eligible to enroll or fails to enroll in the
University or leaves the University at any time prior to the expiration of this lease, or for
violation of any provisions of this lease, or for violation of any University regulation rela-
tive to resident Halls, or for health reasons, by providing the student with written notice of
this termination 30 days prior to the effective date of termination, unless life, limb, or prop-
erty would be jeopardized, the Lessee engages in the sales of purchase of controlled substances
in violation of federal, state or local law, or the Lessee is no longer enrolled as a student,
or the Lessee engages in the use or possession of firearms, explosives, inflammable liquids,
fireworks, or other dangerous weapons within the building, or turns in a false alarm, in
which cases a maximum of 24 hours notice would be sufficient.

As an example of ambiguity, suppose I were to write the sentence ere’s a girl in the room
with a telescope. See Figure 1.6 for two possible meanings of this sentence. Am I saying that there
is a girl in a room containing a telescope? Or am I saying that there is a girl in the room and she
is holding a telescope?

Figure 1.6: ere’s a girl in the room with a telescope.
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Such complexities and ambiguities can sometimes be humorous if they lead to interpreta-
tions the author did not intend. See the examples below for some infamous newspaper headlines
with multiple interpretations. Using a formal language eliminates such unintentional ambiguities
(and, for better or worse, avoids any unintentional humor as well).

Crowds Rushing to See Pope Trample 6 to Death
Journal Star, Peoria, 1980

Scientists Grow Frog Eyes and Ears British LeftWafflesOn Falkland Islands
e Daily Camera, Boulder, 2000

Food Stamp Recipients Turn to Plastic IndianOcean Talks
e Miami Herald, 1991 e Plain Dealer, 1977

Fried Chicken Cooked inMicrowaveWins Trip
e Oregonian, Portland, 1981

Figure 1.7: Various newspaper headlines.

As an illustration of errors that arise in reasoning with sentences in natural language, con-
sider the following examples. In the first, we use the transitivity of the better relation to derive a
conclusion about the relative quality of champagne and soda from the relative quality of cham-
pagne and beer and the relative quality or beer and soda. So far so good.

Champagne is better than beer.
Beer is better than soda.
erefore, champagne is better than soda.

Now, consider what happens when we apply the same transitivity rule in the case illustrated
below. e form of the argument is the same as before, but the conclusion is somewhat less
believable. e problem in this case is that the use of nothing here is syntactically similar to the
use of beer in the preceding example, but in English it means something entirely different.

Bad sex is better than nothing.
Nothing is better than good sex.
erefore, bad sex is better than good sex.

Logic eliminates these difficulties through the use of a formal language for encoding infor-
mation. Given the syntax and semantics of this formal language, we can give a precise definition
for the notion of logical conclusion. Moreover, we can establish precise reasoning rules that pro-
duce all and only logical conclusions.
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In this regard, there is a strong analogy between the methods of Formal Logic and those
of high school algebra. To illustrate this analogy, consider the following algebra problem.

Xavier is three times as old as Yolanda. Xavier’s age and Yolanda’s age add up to twelve.
How old are Xavier and Yolanda?

Typically, the first step in solving such a problem is to express the information in the form
of equations. If we let x represent the age of Xavier and y represent the age of Yolanda, we can
capture the essential information of the problem as shown below.

x � 3y D 0

x C y D 12

Using the methods of algebra, we can then manipulate these expressions to solve the prob-
lem. First we subtract the second equation from the first.

x � 3y D 0

x C y D 12

� 4y D �12

Next, we divide each side of the resulting equation by �4 to get a value for y. en substi-
tuting back into one of the preceding equations, we get a value for x.

x D 9

y D 3

Now, consider the following logic problem.

If Mary loves Pat, then Mary loves Quincy. If it is Monday and raining, then Mary loves
Pat or Quincy. If it is Monday and raining, does Mary love Quincy?

As with the algebra problem, the first step is formalization. Let p represent the possibility
that Mary loves Pat; let q represent the possibility that Mary loves Quincy; let m represent the
possibility that it is Monday; and let r represent the possibility that it is raining.

With these abbreviations, we can represent the essential information of this problem with
the following logical sentences. e first says that p implies q, i.e., if Mary loves Pat, then Mary
loves Quincy. e second says that m and r implies p or q, i.e., if it is Monday and raining, then
Mary loves Pat or Mary loves Quincy.
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p ) q

m ^ r ) p _ q

As with Algebra, Formal Logic defines certain operations that we can use to manipulate
expressions. e operation shown below is a variant of what is called Propositional Resolution. e
expressions above the line are the premises of the rule, and the expression below is the conclusion.

p1 ^ ... ^ pk ) q1 _ .. _ ql

r1 ^ ... ^ rm ) s1 _ ... _ sn
p1 ^ ... ^ pk ^ r1 ^ ... ^ rm ) q1 _ ... _ ql _ s1 _ ... _ sn

ere are two elaborations of this operation. (1) If a proposition on the left hand side of
one sentence is the same as a proposition on the right hand side of the other sentence, it is okay to
drop the two symbols, with the proviso that only one such pair may be dropped. (2) If a constant
is repeated on the same side of a single sentence, all but one of the occurrences can be deleted.

We can use this operation to solve the problem of Mary’s love life. Looking at the two
premises above, we notice that p occurs on the left-hand side of one sentence and the right-hand
side of the other. Consequently, we can cancel the p and thereby derive the conclusion that, if is
Monday and raining, then Mary loves Quincy or Mary loves Quincy.

p ) q

m ^ r ) p _ q

m ^ r ) q _ q

Dropping the repeated symbol on the right hand side, we arrive at the conclusion that, if
it is Monday and raining, then Mary loves Quincy.

m ^ r ) q _ q

m ^ r ) q

is example is interesting in that it showcases our formal language for encoding logical
information. As with algebra, we use symbols to represent relevant aspects of the world in ques-
tion, and we use operators to connect these symbols in order to express information about the
things those symbols represent.

e example also introduces one of the most important operations in Formal Logic, viz.
Resolution (in this case a restricted form of Resolution). Resolution has the property of being
complete for an important class of logic problems, i.e., it is the only operation necessary to solve
any problem in the class.

1.7 AUTOMATION
e existence of a formal language for representing information and the existence of a corre-
sponding set of mechanical manipulation rules together have an important consequence, viz. the
possibility of automated reasoning using digital computers.
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e idea is simple. We use our formal representation to encode the premises of a problem
as data structures in a computer, and we program the computer to apply our mechanical rules
in a systematic way. e rules are applied until the desired conclusion is attained or until it is
determined that the desired conclusion cannot be attained. (Unfortunately, in some cases, this
determination cannot be made; and the procedure never halts. Nevertheless, as discussed in later
chapters, the idea is basically sound.)

Although the prospect of automated reasoning has achieved practical realization only in
the last few decades, it is interesting to note that the concept itself is not new. In fact, the idea of
building machines capable of logical reasoning has a long tradition.

One of the first individuals to give voice to this idea was Leibnitz. He conceived of “a
universal algebra by which all knowledge, including moral and metaphysical truths, can some day
be brought within a single deductive system.” Having already perfected a mechanical calculator
for arithmetic, he argued that, with this universal algebra, it would be possible to build a machine
capable of rendering the consequences of such a system mechanically.

Boole gave substance to this dream in the 1800s with the invention of Boolean algebra and
with the creation of a machine capable of computing accordingly.

e early twentieth century brought additional advances in Logic, notably the invention of
the predicate calculus by Russell and Whitehead and the proof of the corresponding completeness
and incompleteness theorems by Godel in the 1930s.

e advent of the digital computer in the 1940s gave increased attention to the prospects for
automated reasoning. Research in artificial intelligence led to the development of efficient algo-
rithms for logical reasoning, highlighted by Robinson’s invention of resolution theorem proving
in the 1960s.

Today, the prospect of automated reasoning has moved from the realm of possibility to that
of practicality, with the creation of logic technology in the form of automated reasoning systems,
such as Vampire, Prover9, the Prolog Technology eorem Prover, Epilog, and others.

e emergence of this technology has led to the application of logic technology in a wide
variety of areas. e following paragraphs outline some of these uses.

Mathematics. Automated reasoning programs can be used to check proofs and, in some
cases, to produce proofs or portions of proofs.

Engineering. Engineers can use the language of Logic to write specifications for their prod-
ucts and to encode their designs. Automated reasoning tools can be used to simulate designs and
in some cases validate that these designs meet their specification. Such tools can also be used to
diagnose failures and to develop testing programs.

Database Systems. By conceptualizing database tables as sets of simple sentences, it is pos-
sible to use Logic in support of database systems. For example, the language of Logic can be used
to define virtual views of data in terms of explicitly stored tables, and it can be used to encode
constraints on databases. Automated reasoning techniques can be used to compute new tables, to
detect problems, and to optimize queries.
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Data Integration e language of Logic can be used to relate the vocabulary and structure
of disparate data sources, and automated reasoning techniques can be used to integrate the data
in these sources.

Logical Spreadsheets.Logical spreadsheets generalize traditional spreadsheets to include log-
ical constraints as well as traditional arithmetic formulas. Examples of such constraints abound.
For example, in scheduling applications, we might have timing constraints or restrictions on who
can reserve which rooms. In the domain of travel reservations, we might have constraints on
adults and infants. In academic program sheets, we might have constraints on how many courses
of varying types that students must take.

Law and Business. e language of Logic can be used to encode regulations and business
rules, and automated reasoning techniques can be used to analyze such regulations for inconsis-
tency and overlap.

1.8 READINGGUIDE

Although Logic is a single field of study, there is more than one logic in this field. In the three
main units of this book, we look at three different types of logic, each more sophisticated than
the one before.

Propositional Logic is the logic of propositions. Symbols in the language represent “condi-
tions” in the world, and complex sentences in the language express interrelationships among these
conditions. e primary operators are Boolean connectives, such as and, or, and not.

Relational Logic expands upon Propositional Logic by providing a means for explicitly talk-
ing about individual objects and their interrelationships (not just monolithic conditions). In order
to do so, we expand our language to include object constants and relation constants, variables and
quantifiers.

Herbrand Logic takes us one step further by providing a means for describing worlds with
infinitely many objects. e resulting logic is much more powerful than Propositional Logic and
Relational Logic. Unfortunately, as we shall see, many of the nice computational properties of
the first two logics are lost as a result.

Despite their differences, there are many commonalities among these logics. In particular,
in each case, there is a language with a formal syntax and a precise semantics; there is a notion of
logical entailment; and there are legal rules for manipulating expressions in the language.

ese similarities allow us to compare the logics and to gain an appreciation of the fun-
damental tradeoff between expressiveness and computational complexity. On the one hand, the
introduction of additional linguistic complexity makes it possible to say things that cannot be
said in more restricted languages. On the other hand, the introduction of additional linguistic
flexibility has adverse effects on computability. As we proceed though the material, our attention
will range from the completely computable case of Propositional Logic to a variant that is not at
all computable.
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One final comment. In the hopes of preventing difficulties, it is worth pointing out a poten-
tial source of confusion. is book exists in the meta world. It contains sentences about sentences;
it contains proofs about proofs. In some places, we use similar mathematical symbology both for
sentences in Logic and sentences about Logic. Wherever possible, we try to be clear about this
distinction, but the potential for confusion remains. Unfortunately, this comes with the territory.
We are using Logic to study Logic. It is our most powerful intellectual tool.

RECAP
Logic is the study of information encoded in the form of logical sentences. Each logical sentence
divides the set of all possible world into two subsets—the set of worlds in which the sentence
is true and the set of worlds in which the set of sentences is false. A set of premises logically
entails a conclusion if and only if the conclusion is true in every world in which all of the premises
are true. Deduction is a form of symbolic reasoning that produces conclusions that are logically
entailed by premises (distinguishing it from other forms of reasoning, such as induction, abduction,
and analogical reasoning). A proof is a sequence of simple, more-or-less obvious deductive steps
that justifies a conclusion that may not be immediately obvious from given premises. In Logic, we
usually encode logical information as sentences in formal languages; and we use rules of inference
appropriate to these languages. Such formal representations and methods are useful for us to use
ourselves.Moreover, they allow us to automate the process of deduction, though the computability
of such implementations varies with the complexity of the sentences involved.

1.9 EXERCISES
1.1. Consider the state of the Sorority World depicted below.

Abby Bess Cody Dana

Abby ü ü

Bess ü

Cody ü ü ü

Dana ü ü
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For each of the following sentences, say whether or not it is true in this state of the world.
(a) Abby likes Dana.
(b) Dana does not like Abby.
(c) Abby likes Cody or Dana.
(d) Abby likes someone who likes her.
(e) Somebody likes everybody.

1.2. Come up with a table of likes and dislikes for the Sorority World that makes all of the
following sentences true. Note that there is more than one such table.
Dana likes Cody.
Abby does not like Dana.
Bess likes Cody or Dana.
Abby likes everyone whom Bess likes.
Cody likes everyone who likes her.
Nobody likes herself.

1.3. Consider a set of Sorority World premises that are true in the four states of Sorority
World shown in Figure 1.4. For each of the following sentences, say whether or not it is
logically entailed by these premises.
(a) Abby likes Bess or Bess likes Abby.
(b) Somebody likes herself.
(c) Everybody likes somebody.

1.4. Say whether or not the following reasoning patterns are logically correct.
(a) All x are z. All y are z. erefore, some x are y.
(b) Some x are y. All y are z. erefore, some x are z.
(c) All x are y. Some y are z. erefore, some x are z.
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C H A P T E R 2

Propositional Logic
2.1 INTRODUCTION

Propositional Logic is concerned with propositions and their interrelationships. e notion of a
proposition here cannot be defined precisely. Roughly speaking, a proposition is a possible condi-
tion of the world that is either true or false, e.g., the possibility that it is raining, the possibility
that it is cloudy, and so forth. e condition need not be true in order for it to be a proposition.
In fact, we might want to say that it is false or that it is true if some other proposition is true.

In this chapter, we first look at the syntactic rules that define the language of Propositional
Logic. We then introduce the notion of a truth assignment and use it to define the meaning
of Propositional Logic sentences. After that, we present a mechanical method for evaluating
sentences for a given truth assignment, and we present a mechanical method for finding truth
assignments that satisfy sentences. We conclude with some examples of Propositional Logic in
formalizing Natural Language and Digital Circuits.

2.2 SYNTAX

In Propositional Logic, there are two types of sentences—simple sentences and compound sen-
tences. Simple sentences express simple facts about the world. Compound sentences express log-
ical relationships between the simpler sentences of which they are composed.

Simple sentences in Propositional Logic are often called proposition constants or, sometimes,
logical constants. In what follows, we write proposition constants as strings of letters, digits, and
underscores (“_”), where the first character is a lower case letter. For example, raining is a propo-
sition constant, as are rAiNiNg, r32aining, and raining_or_snowing. Raining is not a proposition
constant because it begins with an upper case character. 324567 fails because it begins with a
number. raining-or-snowing fails because it contains hyphens (instead of underscores).

Compound sentences are formed from simpler sentences and express relationships among the
constituent sentences. ere are five types of compound sentences, viz. negations, conjunctions,
disjunctions, implications, and biconditionals.

A negation consists of the negation operator : and an arbitrary sentence, called the target.
For example, given the sentence p, we can form the negation of p as shown below.

(:p)
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A conjunction is a sequence of sentences separated by occurrences of the ^ operator and
enclosed in parentheses, as shown below. e constituent sentences are called conjuncts. For ex-
ample, we can form the conjunction of p and q as follows.

(p ^ q)

A disjunction is a sequence of sentences separated by occurrences of the _ operator and
enclosed in parentheses. e constituent sentences are called disjuncts. For example, we can form
the disjunction of p and q as follows.

(p _ q)

An implication consists of a pair of sentences separated by the) operator and enclosed in
parentheses. e sentence to the left of the operator is called the antecedent, and the sentence to
the right is called the consequent. e implication of p and q is shown below.

(p) q)

A biconditional is a combination of an implication and a reverse implication. For example,
we can express the biconditional of p and q as shown below.

(p, q)

Note that the constituent sentences within any compound sentence can be either simple
sentences or compound sentences or a mixture of the two. For example, the following is a legal
compound sentence.

((p _ q)) r)

One disadvantage of our notation, as written, is that the parentheses tend to build up and
need to be matched correctly. It would be nice if we could dispense with parentheses, e.g., sim-
plifying the preceding sentence to the one shown below.

p _ q) r

Unfortunately, we cannot do without parentheses entirely, since then we would be unable
to render certain sentences unambiguously. For example, the sentence shown above could have
resulted from dropping parentheses from either of the following sentences.

((p _ q)) r)
(p _ (q) r))

e solution to this problem is the use of operator precedence. e following table gives a
hierarchy of precedences for our operators. e : operator has higher precedence than ^; ^ has
higher precedence than _; and _ has higher precedence than) and,.
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:

^

_

),

In sentences without parentheses, it is often the case that an expression is flanked by op-
erators, one on either side. In interpreting such sentences, the question is whether the expression
associates with the operator on its left or the one on its right. We can use precedence to make this
determination. In particular, we agree that an operand in such a situation always associates with
the operator of higher precedence. When an operand is surrounded by operators of equal prece-
dence, the operand associates to the right. e following examples show how these rules work in
various cases. e expressions on the right are the fully parenthesized versions of the expressions
on the left.

: p ^ q ((: p) ^ q)
p ^ :q (p ^ (: q))
p ^ q _ r ((p ^ q) _ r)
p _ q ^ r (p _ (q ^ r))
p) q) r (p)(q) r))
p) q, r (p) (q, r))

Note that just because precedence allows us to delete parentheses in some cases does not
mean that we can dispense with parentheses entirely. Consider the example shown earlier. Prece-
dence eliminates the ambiguity by dictating that the sentence without parentheses is an implica-
tion with a disjunction as antecedent. However, this makes for a problem for those cases when
we want to express a disjunction with an implication as a disjunct. In such cases, we must retain
at least one pair of parentheses.

We end the section with two simple definitions that are useful in discussing Propositional
Logic. A propositional vocabulary is a set of proposition constants. A propositional language is the
set of all propositional sentences that can be formed from a propositional vocabulary.

2.3 SEMANTICS
e treatment of semantics in Logic is similar to its treatment in Algebra. Algebra is unconcerned
with the real-world significance of variables. What is interesting are the relationships among the
values of the variables expressed in the equations we write. Algebraic methods are designed to
respect these relationships, independent of what the variables represent.

In a similar way, Logic is unconcerned with the real world significance of proposition con-
stants. What is interesting is the relationship among the truth values of simple sentences and the
truth values of compound sentences within which the simple sentences are contained. As with
Algebra, logical reasoning methods are independent of the significance of proposition constants;
all that matter is the form of sentences.
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Although the values assigned to proposition constants are not crucial in the sense just de-
scribed, in talking about Logic, it is sometimes useful to make truth assignments explicit and to
consider various assignments or all assignments and so forth. Such an assignment is called a truth
assignment.

Formally, a truth assignment for a propositional vocabulary is a function assigning a truth
value to each of the proposition constants of the vocabulary. In what follows, we use the digit
1 as a synonym for true and 0 as a synonym for false; and we refer to the value of a constant or
expression under a truth assignment i by superscripting the constant or expression with i as the
superscript.

e assignment shown below is an example for the case of a propositional vocabulary with
just three proposition constants, viz. p, q, and r .

pi D 1

qi D 0

r i D 1

e following assignment is another truth assignment for the same vocabulary.
pi D 0

qi D 0

r i D 1

Note that the formulas above are not themselves sentences in Propositional Logic. Proposi-
tional Logic does not allow superscripts and does not use the = symbol. Rather, these are informal,
metalevel statements about particular truth assignments. Although talking about Propositional
Logic using a notation similar to that of Propositional Logic can sometimes be confusing, it al-
lows us to convey meta-information precisely and efficiently. To minimize problems, in this book
we use such meta-notation infrequently and only when there is little chance of confusion.

Looking at the preceding truth assignments, it is important to bear in mind that, as far as
logic is concerned, any truth assignment is as good as any other. Logic itself does not fix the truth
assignment of individual proposition constants.

On the other hand, given a truth assignment for the proposition constants of a language,
logic does fix the truth assignment for all compound sentences in that language. In fact, it is
possible to determine the truth value of a compound sentence by repeatedly applying the following
rules.

If the truth value of a sentence is true, the truth value of its negation is false. If the truth
value of a sentence is false, the truth value of its negation is true.

' :'

1 0
0 1

e truth value of a conjunction is true if and only if the truth values of its conjuncts are
both true; otherwise, the truth value is false.
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'  ' ^ 

1 1 1
1 0 0
0 1 0
0 0 0

e truth value of a disjunction is true if and only if the truth value of at least one its
disjuncts is true; otherwise, the truth value is false. Note that this is the inclusive or interpretation
of the _ operator and is differentiated from the exclusive or interpretation in which a disjunction
is true if and only if an odd number of its disjuncts are true.

'  ' _ 

1 1 1
1 0 1
0 1 1
0 0 0

e truth value of an implication is false if and only if its antecedent is true and its conse-
quent is false; otherwise, the truth value is true. is is called material implication.

'  ') 

1 1 1
1 0 0
0 1 1
0 0 1

A biconditional is true if and only if the truth values of its constituents agree, i.e., they are
either both true or both false.

'  ', 

1 1 1
1 0 0
0 1 0
0 0 1

Using these definitions, it is easy to determine the truth values of compound sentences with
proposition constants as constituents. As we shall see in the next section, we can determine the
truth values of compound sentences with other compound sentences as parts by first evaluating
the constituent sentences and then applying these definitions to the results.

We finish up this section with a few definitions for future use. We say that a truth assign-
ment satisfies a sentence if and only if the sentence is true under that truth assignment. We say
that a truth assignment falsifies a sentence if and only if the sentence is false under that truth as-
signment. A truth assignment satisfies a set of sentences if and only if it satisfies every sentence in
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the set. A truth assignment falsifies a set of sentences if and only if it falsifies at least one sentence
in the set.

2.4 EVALUATION
Evaluation is the process of determining the truth values of compound sentences given a truth
assignment for the truth values of proposition constants.

As it turns out, there is a simple technique for evaluating complex sentences. We substitute
true and false values for the proposition constants in our sentence, forming an expression with
1s and 0s and logical operators. We use our operator semantics to evaluate subexpressions with
these truth values as arguments. We then repeat, working from the inside out, until we have a
truth value for the sentence as a whole.

As an example, consider the truth assignment i shown below.

pi D 1

qi D 0

r i D 1

Using our evaluation method, we can see that i satisfies (p _ q) ^ (:q _ r).

(p _ q) ^ (: q _ r)
(1 _ 0) ^ (:0 _ 1)
1^ (:0 _ 1)
1^ (1 _ 1)
1 ^ 1

1

Now consider truth assignment j defined as follows.

pj D 0

qj D 1

rj D 0

In this case, j does not satisfy (p _ q) ^ (:q _ r).

(p _ q) ^ (:q _ r)
(0 _ 1) ^ (:1 _ 0)

1 ^ (:1 _ 0)
1 ^ (0 _ 0)

1 ^ 0
0

Using this technique, we can evaluate the truth of arbitrary sentences in our language.
e cost is proportional to the size of the sentence. Of course, in some cases, it is possible to
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economize and do even better. For example, when evaluating a conjunction, if we discover that
the first conjunct is false, then there is no need to evaluate the second conjunct since the sentence
as a whole must be false.

2.5 SATISFACTION
Satisfaction is the opposite of evaluation. We begin with one or more compound sentences and try
to figure out which truth assignments satisfy those sentences. One nice feature of Propositional
Logic is that there are effective procedures for finding truth assignments that satisfy Propositional
Logic sentences. In this section, we look at a method based on truth tables.

A truth table for a propositional language is a table showing all of the possible truth assign-
ments for the proposition constants in the language. e columns of the table correspond to the
proposition constants of the language, and the rows correspond to different truth assignments for
those constants.

e following figure shows a truth table for a propositional language with just three propo-
sition constants (p, q, and r). Each column corresponds to one proposition constant, and each row
corresponds to a single truth assignment. e truth assignments i and j defined in the preceding
section correspond to the third and sixth rows of this table, respectively.

p q r

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Note that, for a propositional language with n proposition constants, there are n columns
in the truth table and 2n rows.

In solving satisfaction problems, we start with a truth table for the proposition constants of
our language. We then process our sentences in turn, for each sentence placing an x next to rows
in the truth table corresponding to truth assignments that do not satisfy the sentence. e truth
assignments remaining at the end of this process are all possible truth assignments of the input
sentences.

As an example, consider the sentence p _ q ) q ^ r . We can find all truth assignments
that satisfy this sentence by constructing a truth table for p, q, and r . See below. We place an x
next to each row that does not satisfy the sentence (rows 2, 3, 4, 6). Finally, we take the remaining
rows (1, 5, 7, 8) as answers.
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p q r

1 1 1
x 1 1 0 x
x 1 0 1 x
x 1 0 0 x

0 1 1
x 0 1 0 x

0 0 1
0 0 0

e disadvantage of the truth table method is computational complexity. As mentioned
above, the size of a truth table for a language grows exponentially with the number of proposition
constants in the language. When the number of constants is small, the method works well. When
the number is large, the method becomes impractical. Even for moderate sized problems, it can
be tedious. Even for an application like Sorority World, where there are only 16 proposition
constants, there are 65,536 truth assignments.

Over the years, researchers have proposed ways to improve the performance of truth table
checking. However, the best approach to dealing with large vocabularies is to use symbolic ma-
nipulation (i.e., logical reasoning and proofs) in place of truth table checking. We discuss these
methods in Chapters 4 and 5.

2.6 EXAMPLE–NATURALLANGUAGE
As an exercise in working with Propositional Logic, let’s look at the encoding of various English
sentences as formal sentences in Propositional Logic. As we shall see, the structure of English
sentences, along with various key words, such as if and no, determine how such sentences should
be translated.

e following examples concern three properties of people, and we assign a different propo-
sition constant to each of these properties. We use the constant c to mean that a person is cool.
We use the constant f to mean that a person is funny. And we use the constant p to mean that
a person is popular.

As our first example, consider the English sentence If a person is cool or funny, then he is
popular. Translating this sentence into the language of Propositional Logic is straightforward.
e use of the words if and then suggests an implication. e condition (cool or funny) is clearly a
disjunction, and the conclusion (popular) is just a simple fact. Using the vocabulary from the last
paragraph, this leads to the Propositional Logic sentence shown below.

c _ f ) p

Next, we have the sentence A person is popular only if he is either cool or funny. is is similar
to the previous sentence, but the presence of the phrase only if suggests that the conditionality
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goes the other way. It is equivalent to the sentence If a person is popular, then he is either cool or
funny. And this sentence can be translated directly into Propositional Logic as shown below.

p) c _ f

A person is popular if and only if he is either cool or funny. e use of the phrase if and only if
suggests a biconditional, as in the translation shown below. Note that this is the equivalent to the
conjunction of the two implications shown above. e biconditional captures this conjunction in
a more compact form.

p, c _ f

Finally, we have a negative sentence. ere is no one who is both cool and funny. e word
no here suggests a negation. To make it easier to translate into Propositional Logic, we can first
rephrase this as It is not the case that there is a person who is both cool and funny. is leads directly
to the following encoding.

:(c ^ f )

Note that, just because we can translate sentences into the language of Propositional Logic
does not mean that they are true. e good news is that we can use our evaluation procedure to
determine which sentences are true and which are false?

Suppose we were to imagine a person who is cool and funny and popular, i.e., the propo-
sition constants c and f and p are all true. Which of our sentences are true and which are false.

Using the evaluation procedure described earlier, we can see that, for this person, the first
sentence is true.

c _ f ) p

(1 _ 1)) 1
1) 1

1

e second sentence is also true.

p) c _ f

1) (1 _ 1)
1) 1

1

Since the third sentence is really just the conjunction of the first two sentences, it is also
true, which we can confirm directly as shown below.

p, c _ f

1, (1 _ 1)
1, 1

1
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Unfortunately, the fourth sentence is not true, since the person in this case is both cool and
funny.

:(c ^ f )
:(1 ^ 1)
:1
0

In this particular case, three of the sentences are true, while one is false. e upshot of this
is that there is no such person (assuming that the theory expressed in our sentences is correct). e
good news is that there are cases where all four sentences are true, e.g. a person who is cool and
popular but not funny or the case of a person who is funny and popular but not cool. Question to
consider: What about a person is neither cool nor funny nor popular? Is this possible according
to our theory? Which of the sentences would be true and which would be false?

2.7 EXAMPLE–DIGITALCIRCUITS
Now let’s consider the use of Propositional Logic in modeling a portion of the physical world, in
this case, a digital circuit like the ones used in building computers.

e diagram below is a pictorial representation of such a circuit. ere are three input nodes,
some internal nodes, and two output nodes. ere are five gates connecting these nodes to each
other—two xor gates (the gates on the top), two and gates (the gates on the lower left), and one
or gate (the gate on the lower right).

Figure 2.1: Click on p, q, r to toggle their values.

At a given point in time, a node in a circuit can be either on or off. e input nodes are set
from outside the circuit. A gate sets its output either on or off based on the type of gate and the
values of its input nodes. e output of an and gate is on if and only if both of its inputs are on.
e value of an or node is on if and only if at least one of its inputs is on. e output of an xor
gate is on if and only if its inputs disagree with each other.

Given the Boolean nature of signals on nodes and the deterministic character of gates, it
is quite natural to model digital circuits in Propositional Logic. We can represent each node of a
circuit as a proposition constant, with the idea that the node is on if and only if the constant is
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true. Using the language of Propositional Logic, we can capture the behavior of gates by writing
sentences relating the values of the inputs nodes and out nodes of the gates.

e sentences shown below capture the five gates in the circuit shown above. Node omust
be on if and only if nodes p and q disagree.

(p ^ :q) _ (:p ^ q), o

r ^ o, a

p ^ q, b

(o ^ :r)_ (:o ^ r), s

a _ b, c

Once we have done this, we can use our formalization to analyze the circuit - to determine if
it meets it specification, to test whether a particular instance is operating correctly, and to diagnose
the problem in cases here it is not.

RECAP
e syntax of Propositional Logic begins with a set of proposition constants. Compound sentences
are formed by combining simpler sentences with logical operators. In the version of Propositional
Logic used here, there are five types of compound sentences—negations, conjunctions, disjunc-
tions, implications, and biconditionals. A truth assignment for Propositional Logic is a mapping
that assigns a truth value to each of the proposition constants in the language. A truth assignment
satisfies a sentence if and only if the sentences is true under that truth assignment according to
rules defining the logical operators of the language. Evaluation is the process of determining the
truth values of a complex sentence, given a truth assignment for the truth values of proposition
constants in that sentence. Satisfaction is the process of determining whether or not a sentence
has a truth assignment that satisfies it.

2.8 EXERCISES
2.1. Say whether each of the following expressions is a syntactically legal sentence of Propo-

sitional Logic.

(a) p ^ : p

(b) :p _ :p

(c) :(q _ r) :q)::p
(d ) (p ^ q) _ (p :^ q)
(e) p _ : q ^ :p _ : q) p _ q

2.2. Consider a truth assignment in which p is true, q is false, r is true. Use this truth assign-
ment to evaluate the following sentences.
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(a) p) q ^ r

(b) p) q _ r

(c) p ^ q) r

(d ) p ^ q):r

(e) p ^ q, q ^ r

2.3. A small company makes widgets in a variety of constituent materials (aluminum, copper,
iron), colors (red, green, blue, grey), and finishes (matte, textured, coated). Although
there are more than one thousand possible combinations of widget features, the com-
pany markets only a subset of the possible combinations. e following sentences are
constraints that characterize the possibilities. Suppose that a customer places an order
for a copper widget that is both green and blue with a matte coating. Your job is to de-
termine which constraints are satisfied and which are violated.

(a) aluminum _ copper _ iron
(b) aluminum) grey
(c) copper ^ :coated ) red
(d ) coated ^ :copper) green
(e) green _ blue,:textured ^ :iron

2.4. Consider the sentences shown below.ere are three proposition constants here, meaning
that there are eight possible truth assignments. How many of these assignments satisfy
all of these sentences?

p _ q _ r

p) q ^ r

q): r

2.5. A small company makes widgets in a variety of constituent materials (aluminum, cop-
per, iron), colors (red, green, blue, grey), and finishes (matte, textured, coated). Although
there are more than one thousand possible combinations of widget features, the company
markets only a subset of the possible combinations. e sentences below are some con-
straints that characterize the possibilities. Your job here is to select materials, colors, and
finishes in such a way that all of the product constraints are satisfied. Note that there are
multiple ways this can be done.

aluminum _ copper _ iron
red _ green _ blue _ grey
aluminum) grey
copper ^ :coated ) red
iron) coated
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2.6. Consider a propositional language with three proposition constants—mushroom, pur-
ple, and poisonous—each indicating the property suggested by its spelling. Using these
proposition constants, encode the following English sentences as Propositional Logic
sentences.
(a) All purple mushrooms are poisonous.
(b) A mushroom is poisonous only if it is purple.
(c) A mushroom is not poisonous unless it is purple.
(d ) No purple mushroom is poisonous.

2.7. Consider the digital circuit described in Section 2.7. Suppose we set nodes p, q, and
r to be on, and we observe that all of the other nodes are on. Running our evaluation
procedure, we would see that the first sentence in our description of the circuit is not
true. Hence the circuit is malfunctioning. Is there any combination of inputs p, q, and r
that would result in all other nodes being on in a correctly functioning circuit? Hint: To
answer this, you need consider a truth table with just eight rows (the possible values for
nodes p, q, and r) since all other nodes are observed to be on.
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C H A P T E R 3

Logical Properties and
Relationships

3.1 INTRODUCTION

Satisfaction is a relationship between specific sentences and specific truth assignments. In Logic,
we are usually more interested in properties and relationships of sentences that hold across all
truth assignments. We begin this chapter with a look at logical properties of individual sentences
(as opposed to relationships among sentences)—validity, contingency, and unsatisfiability. We
then look at three types of logical relationship between sentences—logical entailment, logical
equivalence, and logical consistency. We conclude with a discussion of the connections between
the logical properties of individual sentences and logical relationships between sentences.

3.2 LOGICAL PROPERTIES

In the preceding chapter, we saw that some sentences are true in some truth assignments and
false in others. However, this is not always the case. ere are sentences that are always true and
sentences that are always false as well as sentences that are sometimes true and sometimes false.
is leads to a partition of sentences into three disjoint categories.

A sentence is valid if and only if it is satisfied by every truth assignment. For example, the
sentence (p _ :p) is valid. If a truth assignment makes p true, then the first disjunct is true and
the disjunction as a whole true. If a truth assignment makes p false, then the second disjunct is
true and the disjunction as a whole is true.

A sentence is unsatisfiable if and only if it is not satisfied by any truth assignment. For
example, the sentence (p ^ :p) is unsatisfiable. No matter what truth assignment we take, the
sentence is always false. e argument is analogous to the argument in the preceding paragraph.

Finally, a sentence is contingent if and only if there is some truth assignment that satisfies
it and some truth assignment that falsifies it. For example, the sentence (p ^ q) is contingent. If
p and q are both true, it is true. If p and q are both false, it is false.

In one sense, valid sentences and unsatisfiable sentences are useless. Valid sentences do not
rule out any possible truth assignments, and unsatisfiable sentences rule out all truth assignments.
us, they tell us nothing about the world. In this regard, contingent sentences are themost useful.
On the other hand, from a logical perspective, valid and unsatisfiable sentences are useful in that,



32 3. LOGICAL PROPERTIESANDRELATIONSHIPS

as we shall see, they serve as the basis for legal transformations that we can perform on other
logical sentences.

For many purposes, it is useful to group validity, contingency, and unsatisfiability into two
groups. We say that a sentence is satisfiable if and only if it is valid or contingent. In other words
the sentence is satisfied by at least one truth assignment. We say that a sentence is falsifiable if
and only if it is unsatisfiable or contingent. In other words, the sentence is falsified by at least one
truth assignment.

3.3 LOGICALEQUIVALENCE

Intuitively, we think of two sentences as being equivalent if they say the same thing, i.e., they are
true in exactly the same worlds. More formally, we say that a sentence ' is logically equivalent
to a sentence  if and only if every truth assignment that satisfies ' satisfies  and every truth
assignment that satisfies  satisfies '.

e sentence :(p _ q) is logically equivalent to the sentence (:p ^ :q). If p and q are
both true, then both sentences are false. If either p is true or q is true, then the disjunction in the
first sentence is true and the sentence as a whole false. Similarly, either p is true or q is true, then
one of the conjuncts in the second sentence is false and so the sentence as a whole is false. Since
both sentences are satisfied by the same truth assignments, they are logically equivalent.

By contrast, the sentences (p ^ q) and (p _ q) are not logically equivalent. e first is false
when p is true and q is false, while in this situation the disjunction is true. Hence, they are not
logically equivalent.

One way of determining whether or not two sentences are logically equivalent is to check
the truth table for the proposition constants in the language. is is called the truth table method.
(1) First, we form a truth table for the proposition constants and add a column for each of the
sentences. (2) We then evaluate the two expressions. (3) Finally, we compare the results. If the
values for the two sentences are true in every case, then the two sentences are logically equivalent;
otherwise, they are not.

As an example, let’s use this method to show that :(p _ q) is logically equivalent to (:p ^
:q). We set up our truth table, add a column for each of our two sentences, and evaluate them for
each truth assignment. Having done so, we notice that every row that satisfies the first sentence
also satisfies the second. Hence, the sentences are logically equivalent.

p q :.p _ q/ :p ^ :q

1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 1



3.4. LOGICALENTAILMENT 33

Now, let’s do the same for (p ^ q) and (p _ q). We set up our table as before and evaluate
our sentences. In this case, there is only one row that satisfies first sentence while three rows satisfy
the second. Consequently, they are not logically equivalent.

p q p ^ q p _ q

1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

One of the interesting properties of logically equivalence is substitutability. If a sentence '
is logically equivalent to a sentence  , then we can substitute ' for  in any Propositional Logic
sentence and the result will be logically equivalent to the original sentence. (Note that this is not
quite true in Relational Logic, as we shall see when we cover that logic.)

3.4 LOGICALENTAILMENT
We say that a sentence ' logically entails a sentence  (written ' |=  ) if and only if every truth
assignment that satisfies ' also satisfies .More generally, we say that a set of sentences� logically
entails a sentence  (written � |=  ) if and only if every truth assignment that satisfies all of the
sentences in � also satisfies  .

For example, the sentence p logically entails the sentence (p _ q). Since a disjunction is
true whenever one of its disjuncts is true, then (p _ q) must be true whenever p is true. On the
other hand, the sentence p does not logically entail (p ^ q). A conjunction is true if and only if
both of its conjuncts are true, and q may be false. Of course, any set of sentences containing both
p and q does logically entail (p ^ q).

Note that the relationship of logical entailment is a purely logical one. Even if the premises
of a problem do not logically entail the conclusion, this does not mean that the conclusion is
necessarily false, even if the premises are true. It just means that it is possible that the conclusion
is false.

Once again, consider the case of (p ^ q). Although p does not logically entail this sentence,
it is possible that both p and q are true and, therefore, (p ^ q) is true. However, the logical
entailment does not hold because it is also possible that q is false and, therefore, (p ^ q) is false.

Note also that logical entailment is not the same as logical equivalence. e sentence p log-
ically entails (p _ q), but (p _ q) does not logically entail p. Logical entailment is not analogous
to arithmetic equality; it is closer to arithmetic inequality.

As with logical equivalence, we can use truth tables to determine whether or not a set of
premises logically entails a possible conclusion by checking the truth table for the proposition
constants in the language. (1) We form a truth table for the proposition constants and add a
column for the premises and a column for the conclusion. (2) We then evaluate the premises.
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(3) We evaluate the conclusion. (4) Finally, we compare the results. If every row that satisfies the
premises also satisfies the conclusion, then the premises logically entail the conclusion.

As an example, let’s use this method to show that p logically entails (p _ q). We set up our
truth table and add a column for our premise and a column for our conclusion. In this case the
premise is just p and so evaluation is straightforward; we just copy the column. e conclusion is
true if and only if p is true or q is true. Finally, we notice that every row that satisfies the premise
also satisfies the conclusion.

p q p p _ q

1 1 1 1
1 0 1 1
0 1 0 1
0 0 0 0

Now, let’s do the same for the premise p and the conclusion (p ^ q). We set up our table as
before and evaluate our premise. In this case, there is only one row that satisfies our conclusion.
Finally, we notice that the assignment in the second row satisfies our premise but does not satisfy
our conclusion; so logical entailment does not hold.

p q p p ^ q

1 1 1 1
1 0 1 0
0 1 0 0
0 0 0 0

Now, let’s look at the problem of determining whether the set of propositions {p, q} log-
ically entails (p ^ q). Here we set up our table as before, but this time we have two premises to
satisfy. Only one truth assignment satisfies both premises, and this truth assignment also satisfies
the conclusion; hence in this case logical entailment does hold.

p q p q p ^ q

1 1 1 1 1
1 0 1 0 0
0 1 0 1 0
0 0 0 0 0

As a final example, let’s return to the love life of the fickle Mary. Here is the problem from
the course introduction. We know (p) q), i.e., if Mary loves Pat, then Mary loves Quincy. We
know (m) p _ q), i.e., if it is Monday, then Mary loves Pat or Quincy. Let’s confirm that, if
it is Monday, then Mary loves Quincy. We set up our table and evaluate our premises and our
conclusion. Both premises are satisfied by the truth assignments on rows 1, 3, 5, 7, and 8; and
we notice that those truth assignments make the conclusion true. Hence, the logical entailment
holds.
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m p q m) p _ q p) q m) q

1 1 1 1 1 1
1 1 0 1 0 0
1 0 1 1 1 1
1 0 0 0 1 0
0 1 1 1 1 1
0 1 0 1 0 1
0 0 1 1 1 1
0 0 0 1 1 1

3.5 LOGICALCONSISTENCY
A sentence ' is consistent with a sentence  if and only if there is a truth assignment that satisfies
both ' and  . A sentence  is consistent with a set of sentences � if and only if there is a truth
assignment that satisfies both � and  .

For example, the sentence (p _ q) is consistent with the sentence (p ^ q). However, it is
not consistent with (:p ^ :q).

As with logical equivalence and logical entailment, we can use the truth table method to
determine logical consistency.e following truth table shows all truth assignments for the propo-
sitional constants in the examples just mentioned. e third column shows the truth values for
the first sentence; the fourth column shows the truth values for the second sentence, and the fifth
column shows the truth values for the third sentence. e second and third truth assignments
here make (p _ q) true and also (:p _ :q); hence (p _ q) and (:p _ :q) are consistent. By
contrast, none of the truth assignments that makes (p _ q) true makes (:p ^ :q) true; hence,
they are not consistent.

p q p _ q :p _ :q :p ^ :q

1 1 1 0 0
1 0 1 1 0
0 1 1 1 0
0 0 0 1 1

e distinction between entailment and consistency is a subtle one and deserves some at-
tention. Just because two sentences are consistent does not mean that they are logically equivalent
or that either sentence logically entails the other.

Consider the sentences in the previous example. As we have seen, the first sentence and the
second sentence are logically consistent, but they are clearly not logically equivalent and neither
sentence logically entails the other.

Conversely, if one sentence logically entails another this does not necessarily mean that
the sentences are consistent. is situation occurs when one of the sentences is unsatisfiable. If
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a sentence is unsatisfiable, there are no truth assignments that satisfy it. So, by definition, every
truth assignment that satisfies the sentence (there are none) trivially satisfies the other sentence.

An interesting consequence of this fact is that any unsatisfiable sentence or set of sentences
logically entails everything. Weird fact, but it follows directly from our definitions. And it makes
clear why we want to avoid unsatisfiable sets of sentences in logical reasoning.

3.6 CONNECTIONSBETWEENPROPERTIESAND
RELATIONSHIPS

Before we end this chapter, it is worth noting that there are some strong connections between
logical properties like validity and satisfiability and the logical relationships introduced in the
preceding three sections.

First of all, there is a connection between the logical equivalence of two sentences and the
validity of the biconditional sentence built from the two sentences. In particular, we have the
following theorem expressing this connection.

Equivalence eorem: A sentence ' and a sentence  are logically equivalent if and only if the
sentence (',  ) is valid.

Why is this true? Consider the definition of logical equivalence. Two sentences are logically
equivalent if and only if they are satisfied by the same set of truth assignments. Now recall the
semantics of sentences involving the biconditional operator. A biconditional is true if and only if
the truth values of the conditional sentences are the same. Clearly, if two sentences are logically
equivalent, they are satisfied by the same truth assignments, and so the corresponding bicondi-
tional must be valid. Conversely, if a biconditional is valid, the two component sentences must
be satisfied by the same truth assignments and so they are logically equivalent.

ere is a similar connection between logical entailment between two sentences and the
validity of the corresponding implication. And there is a natural extension to cases of logical
entailment involving finite sets of sentences. e following theorem summarizes these results.

Deduction eorem: A sentence ' logically entails a sentence  if and only if (' )  ) is valid.
More generally, a finite set of sentences {'1, ... , 'n} logically entails ' if and only if the compound
sentence ('1 ^ ... ^ 'n) ') is valid.

If a sentence ' logically entails a sentence  , it means that any truth assignment that satis-
fies ' also satisfies  . Looking at the semantics of implications, we see that an implication is true
if and only if every truth assignment that makes the antecedent true also makes the consequent
true. Consequently, logical entailment holds exactly when the corresponding implication is valid.

ere is also a connection between logical entailment and unsatisfiability. In particular, if a
set � of sentences logically entails a sentence ', then � together with the negation of ' must be
unsatisfiable. e reverse is also true.
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Unsatisfiability eorem: A set � of sentences logically entails a sentence ' if and only if the set
of sentences � [ {:'} is unsatisfiable.

Suppose that� logically entails '. If a truth assignment satisfies�, then it must also satisfy
'. But then it cannot satisfy :'. erefore, � [ {:'} is unsatisfiable. Suppose that �[{:'} is
unsatisfiable. en every truth assignment that satisfies � must fail to satisfy :', i.e., it must
satisfy '. erefore, � must logically entail '.

An interesting consequence of this result is that we can determine logical entailment by
checking for unsatisfiability. is turns out to be useful in various logical proof methods, as de-
scribed in the following chapters.

Finally, consider the definition of logical consistency. A sentence ' is logically consistent
with a sentence  if and only if there is a truth assignment that satisfies both ' and  . is is
equivalent to saying that the sentence (' ^  ) is satisfiable.

Consistency eorem: A sentence ' is logically consistent with a sentence  if and only if the
sentence (' ^  ) is satisfiable. More generally, a sentence ' is logically consistent with a finite set
of sentences {'1, ... , 'n} if and only if the compound sentence ('1 ^ ... ^ 'n ^ ') is satisfiable.

In thinking about these various connections, the main thing to keep in mind is that logical
properties and logical relationships are metalevel. ey are things we assert in talking about log-
ical sentences; they are not sentences within our formal language. By contrast, implications and
biconditionals and conjunctions are statements within our formal language; they are not met-
alevel statements. What the preceding paragraphs tell us is that we can implicitly express some
logical relationships within our formal language by writing the corresponding biconditionals and
implications and conjunctions and checking for the logical properties of these sentences.

RECAP

A sentence is valid if and only if it is satisfied by every truth assignment. A sentence is unsat-
isfiable if and only if it is not satisfied by any truth assignment. A sentence is contingent if and
only if it is both satisfiable and falsifiable, i.e., it is neither valid nor unsatisfiable. A sentence is
satisfiable if and only if it is either valid or contingent. A sentence is falsifiable if and only if it is
unsatisfiable or contingent. A sentence ' is logically equivalent to a sentence  if and only if every
truth assignment that satisfies ' satisfies  and every truth assignment that satisfies  satisfies
'. A set of sentences � logically entails a sentence ' (written � |= ') if and only if every truth
assignment that satisfies � also satisfies '. A sentence ' is consistent with a set of sentences � if
and only if there is a truth assignment that satisfies both� and '. e Equivalence eorem states
that sentence ' and a sentence  are logically equivalent if and only the sentence (' ,  ) is
valid. e Deductioneorem states that a sentence ' logically entails a sentence  if and only the
sentence (' )  ) is valid. More generally, a finite set of sentences {'1, ... , 'n} logically entails
' if and only if the compound sentence ('1 ^ ... ^ '1) ') is valid. e Unsatisfiability eorem
states that a set � of sentences logically entails a sentence ' if and only if the set of sentences �
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[ {:'} is unsatisfiable. e Consistency eorem states that a sentence ' is consistent with a set
of sentences � if and only if the set of sentences � [ {'} is satisfiable. A sentence ' is consistent
with a set of sentences {'1, ... , 'n} if and only if the compound sentence ('1 ^ ... ^ '1 ^ ') is
satisfiable. Finally, a consequence of our definitions—any unsatisfiable set of sentences logically
entails everything.

3.7 EXERCISES

3.1. Say whether each of the following sentences is valid, contingent, or unsatisfiable.

(a) (p) q) _ (q) p)
(b) p ^ (p):q) ^ q
(c) (p) (q ^ r)), (p) q) ^ (p) r)
(d ) (p) (q) r))) ((p ^ q)) r)
(e) (p) q) ^ (p):q)
(f ) (:p _ :q)):(p ^ q)
(g) ((:p) q)) (:q) p)) ^ (p _ q)
(h) (:p _ q)) (q ^ (p, q))
(i) ((:r ):p ^ :q) _ s), (p _ q) r _ s)
(j ) (p ^ (q) r)), ((:p _ q)) (p ^ r))

3.2. For each of the following pairs of sentences, determine whether or not the sentences are
logically equivalent.

(a) (p) q _ r) and (p ^ q) r)
(b) (p) (q) r)) and (p ^ q) r)
(c) (p ^ q) r) and (p ^ r ) q)
(d ) ((p) q _ r) ^ (p) r)) and (q) r)
(e) ((p) q) _ (q) r)) and (p _ :p)

3.3. Use the Truth Table Method to answer the following questions about logical entailment.

(a) {p) q _ r} |= (p) r)
(b) {p) r} |= (p) q _ r)
(c) {q) r} |= (p) q _ r)
(d ) {p) q _ r , p) r} |= (q) r)
(e) {p) q _ r , q) r} |= (p) r)

3.4. Let � and � be sets of sentences in Propositional Logic, and let ' and  be individual
sentences in Propositional Logic. State whether each of the following statements is true
or false.
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(a) If � |= ' and � |= ', then � \ � |= '.
(b) If � |= ' and � |= ', then � [ � |= '.
(c) If � |= ' and � |# ', then � [ � |= '.
(d ) If � |#  , then � |= : .
(e) If � |= : , then � |#  .

3.5. In each of the following cases, determine whether the given individual sentence is con-
sistent with the given set of sentences.
(a) {p _ q, p _ :q, :p _ q} and (:p _ :q)
(b) {p) r , q) r , p _ q} and r
(c) {p) r , q) r , p _ q} and :r
(d ) {p) q _ r , q) r} and p ^ q
(e) {p) q _ r , q) r} and q ^ r

3.6. Logical equivalence, logical entailment, and logical consistency are related to each other
in interesting ways, but they are not identical. Answer the following true or false questions
about the relationships between these concepts.
(a) If ' is equivalent to  , then ' entails  .
(b) If ' is equivalent to  , then ' is consistent with  .
(c) If ' entails  , then ' is equivalent to  .
(d ) If ' entails  , then ' is consistent with  .
(e) If ' is consistent with  , then ' is equivalent to  .
(f ) If ' is consistent with  , then ' entails  .
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C H A P T E R 4

Propositional Proofs
4.1 INTRODUCTION
Checking logical entailment with truth tables has the merit of being conceptually simple. How-
ever, it is not always the most practical method. e number of truth assignments of a language
grows exponentially with the number of logical constants. When the number of logical constants
in a propositional language is large, it may be impossible to process its truth table.

Proof methods provide an alternative way of checking logical entailment that addresses this
problem. In many cases, it is possible to create a proof of a conclusion from a set of premises that
is much smaller than the truth table for the language; moreover, it is often possible to find such
proofs with less work than is necessary to check the entire truth table.

We begin this lesson with a discussion of linear reasoning and linear proofs. We then move
on to hypothetical reasoning and structured proofs. Once we have seen both linear and struc-
tured proofs, we show how they are combined in the popular Fitch proof system, and we provide
some tips for finding proofs using the Fitch system. We finish with definitions for soundness and
completeness—the standards by which proof systems are judged.

4.2 LINEARREASONING
As we saw in the introductory lesson, the essence of logical reasoning is symbolic manipulation.
We start with premises, apply rules of inference to derive conclusions, stringing together such
derivations to form logical proofs. e idea is simple. Getting the details right requires a little
care. Let’s start by defining schemas and rules of inference.

A schema is an expression satisfying the grammatical rules of our language except for the
occurrence of metavariables (written here as Greek letters) in place of various subparts of the
expression. For example, the following expression is a schema with metavariables ' and  .

')  

A rule of inference is a pattern of reasoning consisting of some schemas, called premises,
and one or more additional schemas, called conclusions. Rules of inference are often written as
shown below. e schemas above the line are the premises, and the schemas below the line are
the conclusions.

')  

'
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e rule in this case is called Implication Elimination (or IE), because it eliminates the
implication from the first premise.

Implication Creation (IC), shown below, is another example. is rule tells us that, if a
sentence  is true, we can infer (')  ) for any ' whatsoever.

 

')  

Implication Distribution (ID) tells us that implication can be distributed over other impli-
cations. If (') ( ) �)) is true, then we can infer ((')  )) (') �)).

') ( ) �)
(')  )) (') �)

An instance of a rule of inference is the rule obtained by consistently substituting sen-
tences for the metavariables in the rule. For example, the following is an instance of Implication
Elimination.

p) q

p

q

If a metavariable occurs more than once, the same expression must be used for every occur-
rence. For example, in the case of Implication Elimination, it would not be acceptable to replace
one occurrence of ' with one expression and the other occurrence of ' with a different expression.

Note that the replacement can be an arbitrary expression so long as the result is a legal
expression. For example, in the following instance of Implication Elimination, we have replaced
the variables by compound sentences.

(p) q)) (q) r)
(p) q)
(q) r)

Remember that there are infinitely many sentences in our language. Even though we start
with finitely many propositional constants (in a propositional vocabulary) and finitely many oper-
ators, we can combine them in arbitrarily many ways. e upshot is that there are infinitely many
instances of any rule of inference involving metavariables.

A rule applies to a set of sentences if and only if there is an instance of the rule in which all
of the premises are in the set. In this case, the conclusions of the instance are the results of the
rule application.

For example, if we had a set of sentences containing the sentence p and the sentence (p
) q), then we could apply Implication Elimination to derive q as a result. If we had a set of
sentences containing the sentence (p) q) and the sentence (p) q)) (q) r), then we could
apply Implication Elimination to derive (q) r) as a result.
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In using rules of inference, it is important to remember that they apply only to top-level
sentences, not to components of sentences. While applying to components sometimes works, it
can also lead to incorrect results.

As an example of such a problem, consider the incorrect application of Implication Elimi-
nation shown below. Suppose we believe (p) q) and (p) r). We might try to apply Implication
Elimination here, taking the first premise as the implication and taking the occurrence of p in
the second premise as the matching condition, leading us to conclude (q) r).

p) q

p) r

q) r

Unfortunately, this is not a proper logical conclusion from the premises, as we all know
from experience and as we can quickly determine by looking at the associated truth table. It is
important to remember that rules of inference apply only to top-level sentences.

By writing down premises, writing instances of axiom schemas, and applying rules of in-
ference, it is possible to derive conclusions that cannot be derived in a single step. is idea of
stringing things together in this way leads to the notion of a linear proof.

A linear proof of a conclusion from a set of premises is a sequence of sentences terminating
in the conclusion in which each item is either (1) a premise, (2) an instance of an axiom schema,
or (3) the result of applying a rule of inference to earlier items in sequence.

Here is an example. Suppose we have the set of sentences we saw earlier. We start our proof
by writing out our premises. We believe p; we believe (p) q); and we believe that (p) q))
(q) r). Using Implication Elimination on the first premise and the second premise, we derive
q. Applying Implication Elimination to the second premise and the third premise, we derive (q
) r). Finally, we use the derived premises on lines 4 and 5 to arrive at our desired conclusion.

1. p Premise
2. p) q Premise
3. (p) q)) (q) r) Premise
4. q Implication Elimination: 2, 1
5. q) r Implication Elimination: 3, 2
6. r Implication Elimination: 5, 4

Here is another example. Whenever p is true, q is true. Whenever q is true, r is true. With
these as premises, we can prove that, whenever p is true, r is true. On line 3, we use Implication
Creation to derive (p) (q ) r)). On line 4, we use Implication Distribution to distribute the
implication in line 3. Finally, on line 5, we use Implication Elimination to produce the desired
result.
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1. p) q Premise
2. q) r Premise
3. p) (q) r) Implication Creation: 2
4. (p) q)) (p) r) Implication Distribution: 3
5. p) r Implication Elimination: 4, 1

Let R be a set of rules of inference. If there exists a proof of a sentence ' from a set � of
premises using the rules of inference in R, we say that ' is provable from � using R. We usually
write this as� |-R ', using the provability operator |- (which is sometimes called single turnstile).
If the set of rules is clear from context, we usually drop the subscript, writing just � |- '.

Note that the set of rules presented here is not powerful enough to prove everything that
is entailed by a set of premises in Propositional Logic. ere is no support for using or deducing
negations or conjunctions or disjunctions or biconditionals. Even if we restrict ourselves to im-
plications, we need more rules. While such rules of inference exist, they are a little complicated.
For many people, it is easier to reason about implications using hypothetical reasoning.

4.3 HYPOTHETICALREASONING
Structured proofs are similar to linear proofs in that they are sequences of reasoning steps. However,
they differ from linear proofs in that they have more structure. In particular, sentences can be
grouped into subproofs nested within outer superproofs.

As an example, consider the structured proof shown below. It resembles a linear proof except
that we have grouped the sentences on lines 3 through 5 into a subproof within our overall proof.

1. p ⇒ q Premise

2. q ⇒ r Premise

3. p Assumption

4. q Implication Elimination: 3, 1

5. r Implication Elimination: 4, 2

6. p r Implication Introduction: 3, 5

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ 

e main benefit of structured proofs is that they allow us to prove things that cannot
be proved using only ordinary rules of inference. In structured proofs, we can make assumptions
within subproofs; we can prove conclusions from those assumptions; and, from those derivations,
we can derive implications outside of those subproofs, with our assumptions as antecedents and
our conclusions as consequents.

e structured proof above illustrates this. On line 3, we begin a subproof with the assump-
tion that p is true. Note that p is not a premise in the overall problem. In a subproof, we can make
whatever assumptions that we like. From p, we derive q using the premise on line 1; and, from
that q, we prove r using the premise on line 2. at terminates the subproof. Finally, from this
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subproof, we derive (p) r) in the outer proof. Given p, we can prove r ; and so we know (p)
r). e rule used in this case is called Implication Introduction, or II for short.

As this example illustrates, there are three basic operations involved in creating useful
subproofs—(1) making assumptions, (2) using ordinary rules of inference to derive conclusions,
and (3) using structured rules of inference to derive conclusions outside of subproofs. Let’s look
at each of these operations in turn.

In a structured proof, it is permissible to make an arbitrary assumption in any subproof. e
assumptions need not be members of the initial premise set. Note that such assumptions cannot
be used directly outside of the subproof, only as conditions in derived implications, so they do not
contaminate the superproof or any unrelated subproofs.

For example, in the proof we just saw, we used this assumption operation in the nested
subproof even though p was not among the given premises.

An ordinary rule of inference applies to a particular subproof of a structured proof if and
only if there is an instance of the rule in which all of the premises occur earlier in the subproof or in
some superproof of the subproof. Importantly, it is not permissible to use sentences in subproofs
of that subproof or in other subproofs of its superproofs.

For example, in the structured proof we have been looking at, it is okay to apply Implication
Elimination to 1 and 3. And it is okay to use Implication Elimination on lines 2 and 4.

However, it is not acceptable to use a sentence from a subproof in applying an ordinary rule
of inference in a superproof.

e last line of the malformed proof shown below gives an example of this. It is not permis-
sible to use Implication Elimination as shown here because it uses a conclusion from a subproof
as a premise in an application of an ordinary rule of inference in its superproof.

1. p ⇒ q Premise

2. q ⇒ r Premise

3. p Assumption

4. q Implication Elimination: 1, 3

5. r Implication Elimination: 2, 4

6. p ⇒ r Implication Introduction: 3, 5

Wrong! 7. r Implication Elimination: 2, 4 Wrong!

e malformed proof shown below is another example. Here, line 8 is illegal because line
4 is not in the current subproof or a superproof of this subproof.
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1. p ⇒ q Premise

2. q ⇒ r Premise

3. p Assumption

4. q Implication Elimination: 1, 3

5. r Implication Elimination: 2, 4

6. p ⇒ r Implication Introduction: 3, 5

7. r Assumption

Wrong! 8. r Implication Elimination: 2, 4 Wrong!

9. r r Implication Introduction: 7, 8

Correctly utilizing results derived in subproofs is the responsibility of a new type of rule of
inference. Like an ordinary rule of inference, a structured rule of inference is a pattern of reasoning
consisting of one or more premises and one or more conclusions. As before, the premises and
conclusions can be schemas. However, the premises can also include conditions of the form ' |-
 , as in the following example. e rule in this case is called Implication Introduction, because
it allows us to introduce new implications.

' |-  
')  

Once again, looking at the correct example above, we see that there is an instance of Im-
plication Introduction (shown here on the left) in deriving line 6 from the subproof on lines 3–5.
e application of Implication Introduction in the malformed proof is also okay in deriving line 7
from the subproof in lines 4–6.

Finally, we define a structured proof of a conclusion from a set of premises to be a sequence
of (possibly nested) sentences terminating in an occurrence of the conclusion at the top level of
the proof. Each step in the proof must be either (1) a premise (at the top level) or an assumption
(other than at the top level) or (2) the result of applying an ordinary or structured rule of inference
to earlier items in the sequence (subject to the constraints given above).

4.4 FITCH
Fitch is a proof system that is particularly popular in the Logic community. It is as powerful
as many other proof systems and is far simpler to use. Fitch achieves this simplicity through its
support for structured proofs and its use of structured rules of inference in addition to ordinary
rules of inference.

Fitch has ten rules of inference in all. Nine of these are ordinary rules of inference. e
other rule (Implication Introduction) is a structured rule of inference.

And Introduction (shown below on the left) allows us to derive a conjunction from its con-
juncts. If a proof contains sentences '1 through 'n, then we can infer their conjunction. And
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Elimination (shown below on the right) allows us to derive conjuncts from a conjunction. If we
have the conjunction of '1 through 'n, then we can infer any of the conjuncts.

And Introduction
'1

...
'n

'1 ^ ... ^ 'n

And Elimination
'1 ^ ... ^ 'n

'i

Or Introduction allows us to infer an arbitrary disjunction so long as at least one of the
disjuncts is already in the proof.OrElimination is a little more complicated thanAndElimination.
Since we do not know which of the disjuncts is true, we cannot just drop the _. However, if we
know that every disjunct entails some sentence, then we can infer that sentence even if we do not
know which disjunct is true.

Or Introduction
'i

'1 _ ... _ 'n

Or Elimination
'1 _ ... _ 'n

'1)  

...
'n)  

 

Negation Introduction allows us to derive the negation of a sentence if it leads to a con-
tradiction. If we believe (' )  ) and (' ) : ), then we can derive that ' is false. Negation
Elimination allows us to delete double negatives.

Negation Introduction
')  

'): 

:'

Negation Elimination
::'

'

Implication Introduction is the structured rule we saw in Section 4.3. If, by assuming ',
we can derive  , then we can derive (' )  ). Implication Elimination is the first rule we saw
Section 4.2.

Implication Introduction
' |-  
')  

Implication Elimination
')  

'

 

Biconditional Introduction allows us to deduce a biconditional from an implication and its
inverse. Biconditional Elimination goes the other way, allowing us to deduce two implications
from a single biconditional.
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Biconditional Introduction
')  

 ) '

',  

Biconditional Elimination
',  

')  

 ) '

In addition to these rules of inference, it is common to include in Fitch proof editors sev-
eral additional operations that are of use in constructing Fitch proofs. For example, the Premise
operation allows one to add a new premise to a proof. e Reiteration operation allows one to
reproduce an earlier conclusion for the purposes of clarity. Finally, the Delete operation allows
one to delete unnecessary lines.

4.5 REASONINGTIPS
e Fitch rules are all fairly simple to use; and, as we discuss in the next section, they are all that
we need to prove any result that follows logically from any set of premises. Unfortunately, figuring
out which rules to use in any given situation is not always that simple. Fortunately, there are a few
tricks that help in many cases.

If the goal has the form (' )  ), it is often good to assume ' and prove  and then use
Implication Introduction to derive the goal. For example, if we have a premise q and we want
to prove (p) q), we assume p, reiterate q, and then use Implication Introduction to derive the
goal.

1. q Premise

2. p Assumption

3. q Reiteration: 1

4. p q Implication Introduction: 2, 3

If the goal has the form (' ^  ), we first prove ' and then prove  and then use And
Introduction to derive (' ^  ).

If the goal has the form (' _  ), all we need to do is to prove ' or prove  , but we do
not need to prove both. Once we have proved either one, we can disjoin that with anything else
whatsoever.

If the goal has the form (:'), it is often useful to assume ' and prove a contradiction,
meaning that ' must be false. To do this, we assume ' and derive some sentence  leading to ('
)  ). We assume ' again and derive some sentence : leading to (' ) : ). Finally, we use
Negation Introduction to derive :' as desired.

More generally, whenever we want to prove a sentence ' of any sort, we can sometimes
succeed by assuming :', proving a contradiction as just discussed and thereby deriving ::'. We
can then apply Negation Elimination to get '.

e following two tips suggest useful things we can try based on the form of the premises
and the goal or subgoal we are trying to prove.
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If there is a premise of the form (')  ) and our goal is to prove  , then it is often useful
to try proving '. If we succeed, we can then use Implication Elimination to derive  .

If we have a premise (' _  ) and our goal is to prove �, then we should try proving (')
�) and ( ) �). If we succeed, we can then use Or Elimination to derive �.

As an example of using these tips in constructing the proof, consider the following problem.
We are given p _ q and :p, and we are asked to prove q. Since the goal is not an implication or
a conjunction or a disjunction or a negation, only the last of the goal-based tips applies. Unfortu-
nately, this does not help us in this case. Luckily, the second of the premise-based tips is relevant
because we have a disjunction as a premise. To use this all we need is to prove p) q and q )
q. To prove p) q, we use the first goal-based tip. We assume p and try to prove q. To do this
we use that last goal-based tip. We assume ~q and prove p. en we assume ~q and prove :p.
Since we have proved p and :p from :q, we can infer q. Using Implication Introduction, we
then have p) q. Proving q) q is easy. Finally, we can apply or elimination to get the desired
result.

1.    p | q Premise

2. p Premise

3. p Assumption

4. q Assumption

5. p Reiteration: 3

6. q ⇒ p Implication Introduction: 4, 5

7. q Assumption

8. p Reiteration: 2

9. q ⇒ p Implication Introduction: 7, 8

10. q Negation Introduction: 6, 9

11. q Negation Elimination: 10

12. p ⇒ q Implication Introduction: 3, 11

13. q Assumption

14. q ⇒ q Implication Introduction: 13

15. q Or Elimination: 1, 12, 14

In general, when trying to generate a proof, it is useful to apply the premise tips to derive
conclusions. However, this often works only for very short proofs. For more complex proofs, it
is often useful to think backward from the desired conclusion before starting to prove things
from the premises in order to devise a strategy for approaching the proof. is often suggests
subproblems to be solved. We can then work on these simpler subproblems and put the solutions
together to produce a proofs for our overall conclusion.
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4.6 SOUNDNESSANDCOMPLETENESS
In talking about Logic, we now have two notions—logical entailment and provability. A set
of premises logically entails a conclusion if and only if every truth assignment that satisfies the
premises also satisfies the conclusion. A sentence is provable from a set of premises if and only if
there is a finite proof of the conclusion from the premises.

e concepts are quite different. One is based on truth assignments; the other is based on
symbolic manipulation of expressions. Yet, for the proof systems we have been examining, they
are closely related.

We say that a proof system is sound if and only if every provable conclusion is logically
entailed. In other words, if� |- ', then� |= '. We say that a proof system is complete if and only
if every logical conclusion is provable. In other words, if � |= ', then � |- '.

e Fitch system is sound and complete for the full language. In other words, for this
system, logical entailment and provability are identical. An arbitrary set of sentences � logically
entails an arbitrary sentence ' if and only if ' is provable from � using Fitch.

e upshot of this result is significant. On large problems, the proof method often takes
fewer steps than the truth table method. (Disclaimer: In the worst case, the proof method may
take just as many or more steps to find an answer as the truth table method.) Moreover, proofs are
usually much smaller than the corresponding truth tables. So writing an argument to convince
others does not take as much space.

RECAP
A pattern is an expression satisfying the grammatical rules of our language except for the occur-
rence of metavariables in place of various subparts of the expression. An instance of a pattern is
the expression obtained by substituting expressions of the appropriate sort for the metavariables
in the pattern so that the result is a legal expression. A rule of inference is a pattern of reasoning
consisting of one set of patterns, called premises, and a second set of schemas, called conclusions. A
linear proof of a conclusion from a set of premises is a sequence of sentences terminating in the
conclusion in which each item is either (1) a premise or (2) the result of applying a rule of infer-
ence to earlier items in sequence. If there exists a proof of a sentence ' from a set � of premises
and the axiom schemas and rules of inference of a proof system, then ' is said to be provable from
� (written as � |- ') and is called a theorem of �. Fitch is a powerful yet simple proof system
that supports structured proofs. A proof system is sound if and only if every provable conclusion
is logically entailed. A proof system is complete if and only if every logical conclusion is provable.
Fitch is sound and complete for Propositional Logic.

4.7 EXERCISES
4.1. Given p and q and (p ^ q) r), use the Fitch system to prove r .

4.2. Given (p ^ q), use the Fitch system to prove (q _ r).
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4.3. Given p) q and q, r , use the Fitch system to prove p) r .

4.4. Given p) q and m) p _ q, use the Fitch System to prove m) q.

4.5. Given p) (q) r), use the Fitch System to prove (p) q)) (p) r).

4.6. Use the Fitch System to prove p) (q) p).

4.7. Use the Fitch System to prove (p) (q) r))) ((p) q)) (p) r)).

4.8. Use the Fitch System to prove (:p) q)) ((:p):q)) p).

4.9. Given p, use the Fitch System to prove ::p.

4.10. Given p) q, use the Fitch System to prove :q):p.

4.11. Given p) q, use the Fitch System to prove :p _ q.

4.12. Use the Fitch System to prove ((p) q)) p)) p.

4.13. Given :(p _ q), use the Fitch system to prove (:p ^ :q).

4.14. Use the Fitch system to prove the tautology (p _ :p).
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Propositional Resolution
5.1 INTRODUCTION
Propositional Resolution is a powerful rule of inference for Propositional Logic. Using Proposi-
tional Resolution (without axiom schemata or other rules of inference), it is possible to build a
theorem prover that is sound and complete for all of Propositional Logic. What’s more, the search
space using Propositional Resolution is much smaller than for standard Propositional Logic.

is chapter is devoted entirely to Propositional Resolution. We start with a look at clausal
form, a variation of the language of Propositional Logic. We then examine the resolution rule
itself. We close with some examples.

5.2 CLAUSAL FORM
Propositional Resolution works only on expressions in clausal form. Before the rule can be applied,
the premises and conclusions must be converted to this form. Fortunately, as we shall see, there
is a simple procedure for making this conversion.

A literal is either an atomic sentence or a negation of an atomic sentence. For example, if
p is a logical constant, the following sentences are both literals.

p

:p

A clausal sentence is either a literal or a disjunction of literals. If p and q are logical constants,
then the following are clausal sentences.

p

:p

:p _ q

A clause is the set of literals in a clausal sentence. For example, the following sets are the
clauses corresponding to the clausal sentences above.

{p}
{:p}

{:p, q}

Note that the empty set {} is also a clause. It is equivalent to an empty disjunction and,
therefore, is unsatisfiable. As we shall see, it is a particularly important special case.
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As mentioned earlier, there is a simple procedure for converting an arbitrary set of Proposi-
tional Logic sentences to an equivalent set of clauses.e conversion rules are summarized below
and should be applied in order.

1. Implications (I):

')  ! :' _  

'(  ! ' _ : 

',  ! (:' _  ) ^ (' _ : )

2. Negations (N):

::' ! '

:(' ^  ) ! :' _ : 

:(' _  ) ! :' ^ : 

3. Distribution (D):

' _ ( ^ �) ! (' _  ) ^ (' _ �)
(' ^  ) _ � ! (' _ �) ^ ( _ �)
' _ ('1 _ ... _ 'n) ! ' _ '1 _ ... _ 'n

('1 _ ... _ 'n) _ ' ! '1 _ ... _ 'n _ '

' ^ ('1 ^ ... ^ 'n) ! ' ^ '1 ^ ... ^ 'n

('1 ^ ... ^ 'n) ^ ' ! '1 ^ ... ^ 'n ^ '

4. Operators (O):

'1 _ ... _ ' ! {'1, ... , 'n}
'1 ^ ... ^ 'n ! {'1}, ... , {'n}

As an example, consider the job of converting the sentence (g ^ (r ) f )) to clausal form.
e conversion process is shown below.

g ^ (r ) f )
I g ^ (:r _ f )
N g ^ (:r _ f )
D g ^ (:r _ f )
O {g}

{:r , f }

As a slightly more complicated case, consider the following conversion. We start with the
same sentence except that, in this case, it is negated.
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:(g ^ (r ) f ))
I :(g ^ (:r _ f ))
N :g _ :(:r _ f )
:g _ (::r ^ :f )
:g _ (r ^ :f )

D (:g _ r) ^ (:g _ :f )
O {:g,r}

{:g, :f }

Note that, even though the sentences in these two examples are similar to start with (dis-
agreeing on just one : operator), the results are quite different.

5.3 RESOLUTIONPRINCIPLE
e idea of Propositional Resolution is simple. Suppose we have the clause {p, q}. In other words,
we know that p is true or q is true. Suppose we also have the clause {:q, r}. In other words, we
know that q is false or r is true. One clause contains q, and the other contains :q. If q is false,
then by the first clause p must be true. If q is true, then, by the second clause, r must be true.
Since q must be either true or false, then it must be the case that either p is true or r is true. So
we should be able to derive the clause {p, r}.

is intuition is the basis for the rule of inference shown below. Given a clause containing
a literal � and another clause containing the literal :�, we can infer the clause consisting of
all the literals of both clauses without the complementary pair. is rule of inference is called
Propositional Resolution or the Resolution Principle.

{'1, ... , �, ... , 'm}
{ 1, ... , :�, ... ,  n}
{'1, ... , 'm,  1, ...,  n}

e case we just discussed is an example. If we have the clause {p, q} and we also have the
clause {:q, r}, then we can derive the clause {p, r} in a single step.

{p, q}
{:q, r}
{p, r}

Note that, since clauses are sets, there cannot be two occurrences of any literal in a clause.
erefore, in drawing a conclusion from two clauses that share a literal, we merge the two occur-
rences into one, as in the following example.

{:p, q}
{p, q}
{q}
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If either of the clauses is a singleton set, we see that the number of literals in the result is
less than the number of literals in the other clause. For example, from the clause {p, q, r} and the
singleton clause {:p}, we can derive the shorter clause {q, r}.

{p, q, r}
{:p}
{q, r}

Resolving two singleton clauses leads to the empty clause; i.e., the clause consisting of no
literals at all, as shown below. e derivation of the empty clause means that the database contains
a contradiction.

{p}
{:p}
{ }

If two clauses resolve, they may have more than one resolvent because there can be more
than one way in which to choose the resolvents. Consider the following deductions.

{p, q}
{:p, :q}
{p, :p}
{q, :q}

Note, however, when two clauses have multiple pairs of complementary literals, only one
pair of literals may be resolved at a time. For example, the following is not a legal application of
Propositional Resolution.

{p, q}
{:p, :q} Wrong!
{ }

If we were to allow this to go through, we would be saying these two clauses are inconsistent.
However, it is perfectly possible for (p _ q) to be true and (:p _ :q) to be true at the same time.
For example, we just let p be true and q be false, and we have satisfied both clauses.

It is noteworthy that resolution subsumes many of our other rules of inference. Consider,
for example, Implication Elimination, shown below on the left. If we have (p) q) and we have
p, then we can deduce q. e clausal form of the premises and conclusion are shown below on
the right. e implication (p) q) corresponds to the clause {:p, q}, and p corresponds to the
singleton clause {p}. We have two clauses with a complementary literal, and so we cancel the
complementary literals and derive the clause {q}, which is the clausal form of q.

p) q

p

q

{:p, q}
{p}
{q}
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As another example, recall the example of formal reasoning introduced in Chapter 1. We
said that, whenever we have two rules in which the left hand side of one contains a proposition
constant that occurs on the right hand side of the other, then we can cancel those constants and
deduce a new rule by combining the remaining constants on the left hand sides of both rules
and the remaining constants on the right hand sides of both rules. As it turns out, this is just
Propositional Resolution.

Recall that we illustrated this rule with the deduction shown below on the left. Given (m
) p _ q) and (p ) q), we deduce (m ) q). On the right, we have the clausal form of the
sentences on the left. In place of the first sentence, we have the clause {:m, p, q}; and, in place
of the second sentence, we have {:p, q}. Using resolution, we can deduce {:m, q}, which is the
clausal form of the sentence we derived on the left.

m) p _q

p) q

m) q

{:m, p, q}
{:p, q}
{:m, q}

5.4 RESOLUTIONREASONING
Reasoning with the Resolution Principle is analogous to reasoning with other rules of inference.
We start with premises; we apply the Resolution Principle to those premises; we apply the rule
to the results of those applications; and so forth until we get to our desired conclusion or we run
out of things to do.

Formally, we define a resolution derivation of a conclusion from a set of premises to be a
finite sequence of clauses terminating in the conclusion in which each clause is either a premise
or the result of applying the Resolution Principle to earlier members of the sequence.

Note that our definition of resolution derivation is analogous to our definition of linear
proof. However, in this case, we do not use the word proof, because we reserve that word for a
slightly different concept, which is discussed below.

In many cases, it is possible to find resolution derivations of conclusions from premises.
Suppose, for example, we are given the clauses {:p, r} and {:q, r} and {p, q}. en we can
derive the conclusion {r} as shown below.

1. {:p, r} Premise
2. {:q, r} Premise
3. {p, q} Premise
4. {q, r} 1, 3
5. {r} 2, 4

It is noteworthy that the resolution is not generatively complete, i.e., it is not possible to find
resolution derivations for all clauses that are logically entailed by a set of premise clauses.

For example, given the clause {p} and the clause {q}, there is no resolution derivation of
{p, q}, despite the fact that it is logically entailed by the premises in this case.
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As another example, consider that valid clauses (such as {p, :p}) are always true, and so
they are logically entailed by any set of premises, including the empty set. However, Propositional
Resolution requires some premises to have any effect. Given an empty set of premises, we would
not be able to derive any conclusions, including these valid clauses.

On the other hand, we can be sure of one thing. If a set � of clauses is unsatisfiable, then
there is guaranteed to be a resolution derivation of the empty clause from �. More generally, if a
set� of Propositional Logic sentences is unsatisfiable, then there is guaranteed to be a resolution
derivation of the empty clause from the clausal form of �.

As an example, consider the clauses {p, q}, {p, :q}, {:p, q}, and {:p, :q}. ere is no
truth assignment that satisfies all four of these clauses. Consequently, starting with these clauses,
we should be able to derive the empty clause; and we can. A resolution derivation is shown below.

1. {p, q} Premise
2. {p, :q} Premise
3. {:p, q} Premise
4. {:p, :q} Premise
5. {p} 1, 2
6. {:p} 3, 4
7. { } 5, 6

e good news is that we can use the relationship between unsatisfiability and logical en-
tailment to produce a method for determining logical entailment as well. Recall that the Un-
satisfiability eorem introduced in Chapter 3 tells that a set � of sentences logically entails a
sentence ' if and only if the set of sentences �[{:'} is inconsistent. So, to determine logical
entailment, all we need to do is to negate our goal, add it to our premises, and use Resolution to
determine whether the resulting set is unsatisfiable.

Let’s capture this idea with some definitions. A resolution proof of a sentence ' from a set
� of sentences is a resolution derivation of the empty clause from the clausal form of � [ {:'}.
A sentence ' is provable from a set of sentences � by Propositional Resolution (written � |- ')
if and only if there is a resolution proof of ' from �.

As an example of a resolution proof, consider one of the problems we saw earlier. We have
three premises—p, (p) q), and (p) q)) (q) r). Our job is to prove r . A resolution proof
is shown below. e first two clauses in the proof correspond to the first two premises of the
problem. e third and fourth clauses in the proof correspond to the third premise. e fifth
clause comes from the negation of the goal. Resolving the first clause with the second, we get
the clause q, shown on line 6. Resolving this with the fourth clause gives us r . And resolving this
with the clause on line 5 gives us the empty clause.
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1. {p} Premise
2. {:p, q} Premise
3. {p, :q, r} Premise
4. {:q, r} Premise
5. {:r} Premise
6. {q} 1, 2
7. {r} 4, 6
8. { } 5, 7

Here is another example, this time illustrating the way in which we can use Resolution to
prove valid sentences. Let’s say that we have no premises at all and we want to prove (p) (q)
p)), an instance of the Implication Creation axiom schema.

e first step is to negate this sentence and convert to clausal form. A trace of the conversion
process is shown below. Note that we end up with three clauses.

:(p) (q) p))
I :(:p _ (:q _ p))
N ::p ^ :(:q _ p)

p ^ (::q ^ :p)
D p ^ q ^ :p

O {p}
{q}
{:p}

Finally, we take these clauses and produce a resolution derivation of the empty clause in
one step.

1. {p} Premise
2. {q} Premise
3. {:p} Premise
4. { } 1, 3

One of the best features of Propositional Resolution is that it much more focussed than
the other proof methods we have seen. ere is no need to choose instantiations carefully or to
search through infinitely many possible instantiations for rules of inference.

Moreover, unlike the othermethods we have seen, Propositional Resolution can be used in a
proof procedure that always terminates without losing completeness. Since there are only finitely
many clauses that can be constructed from a finite set of proposition constants, the procedure
eventually runs out of new conclusions to draw, and when this happens we can terminate our
search for a proof.
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RECAP
Propositional Resolution is a rule of inference for Propositional Logic. Propositional Resolution
works only on expressions in clausal form. A literal is either an atomic sentence or a negation
of an atomic sentence. A clausal sentence is either a literal or a disjunction of literals. A clause
is the set of literals in a clausal sentence. e empty set {} is also a clause; it is equivalent to
an empty disjunction and, therefore, is unsatisfiable. Given a clause containing a literal � and
another clause containing the literal:�, we can infer the clause consisting of all the literals of both
clauses without the complementary pair. is rule of inference is called Propositional Resolution
or the Resolution Principle. A resolution derivation of a conclusion from a set of premises is a finite
sequence of clauses terminating in the conclusion in which each clause is either a premise or the
result of applying the Resolution Principle to earlier members of the sequence. A resolution proof
of a sentence ' from a set � of sentences is a resolution derivation of the empty clause from the
clausal form of � [ {:'}. A sentence ' is provable from a set of sentences � by Propositional
Resolution (written � |- ') if and only if there is a resolution proof of ' from �. Resolution is
not generatively complete, i.e., it is not possible to find resolution derivations for all clauses that are
logically entailed by a set of premise clauses. On the other hand, it is complete in another sense—
if a set � of clauses is unsatisfiable, then there is guaranteed to be a resolution derivation of the
empty clause from�. More generally, if a set� of Propositional Logic sentences is unsatisfiable,
then there is guaranteed to be a resolution derivation of the empty clause from the clausal form
of �. Propositional Resolution can be used in a proof procedure that always terminates without
losing completeness.

5.5 EXERCISES
5.1. Convert the following sentences to clausal form.

(a) p ^ q) r _ s

(b) p _ q) r _ s

(c) :(p _ q _ r)
(d ) :(p ^ q ^ r)
(e) p ^ q, r

5.2. What are the results of applying Propositional Resolution to the following pairs of
clauses.
(a) {p, q, :r} and {r , s}
(b) {p, q, r} and {r , :s, :t}
(c) {q, :q} and {q, :q}
(d ) {:p, q, r} and {p, :q, :r}

5.3. Use Propositional Resolution to show that the clauses {p, q}, {:p, r}, {:p, :r}, {p, :q}
are not simultaneously satisfiable.
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5.4. Given the premises (p ) q) and (r ) s), use Propositional Resolution to prove the
conclusion (p _ r ) q _ s).
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Relational Logic
6.1 INTRODUCTION
Propositional Logic allows us to talk about relationships among individual propositions, and it
gives us the machinery to derive logical conclusions based on these relationships. Suppose, for
example, we believe that, if Jack knows Jill, then Jill knows Jack. Suppose we also believe that Jack
knows Jill. From these two facts, we can conclude that Jill knows Jack using a simple application
of Implication Elimination.

Unfortunately, when we want to say things more generally, we find that Propositional Logic
is inadequate. Suppose, for example, that we wanted to say that, in general, if one person knows
a second person, then the second person knows the first. Suppose, as before, that we believe that
Jack knows Jill. How do we express the general fact in a way that allows us to conclude that Jill
knows Jack? Here, Propositional Logic is inadequate; it gives us no way of succinctly encoding
this more general belief in a form that captures its full meaning and allows us to derive such
conclusions.

Relational Logic is an alternative to Propositional Logic that solves this problem. e trick
is to augment our language with two new linguistic features, viz. variables and quantifiers. With
these new features, we can express information about multiple objects without enumerating those
objects; and we can express the existence of objects that satisfy specified conditions without saying
which objects they are.

In this chapter, we proceed through the same stages as in the introduction to Propositional
Logic. We start with syntax and semantics. We then discuss evaluation and satisfaction. We look
at some examples. en, we talk about properties of Relational Logic sentences and logical en-
tailment for Relational Logic. Finally, we say a few words about the equivalence of Relational
Logic and Propositional Logic and its decidability.

6.2 SYNTAX
In Propositional Logic, sentences are constructed from a basic vocabulary of propositional con-
stants. In Relational Logic, there are no propositional constants; instead we have object constants,
relation constants, and variables.

In our examples here, we write both variables and constants as strings of letters, digits, and
a few non-alphanumeric characters (e.g., “_”). By convention, variables begin with letters from
the end of the alphabet (viz. u, v, w, x, y, z). Examples include x, ya, and z_2. By convention,
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all constants begin with either alphabetic letters (other than u, v, w, x, y, z) or digits. Examples
include a, b, 123, comp225, and barack_obama.

Note that there is no distinction in spelling between object constants and relation constants.
e type of each such word is determined by its usage or, in some cases, in an explicit specification.

As we shall see, relation constants are used in forming complex expressions by combining
them with an appropriate number of arguments. Accordingly, each relation constant has an as-
sociated arity, i.e., the number of arguments with which that relation constant can be combined.
A relation constant that can combined with a single argument is said to be unary; one that can
be combined with two arguments is said to be binary; one that can be combined with three ar-
guments is said to be ternary; more generally, a relation constant that can be combined with n
arguments is said to be n-ary.

A vocabulary consists of a set of object constants, a set of relation constants, and an as-
signment of arities for each of the relation constants in the vocabulary. (Note that this definition
here is slightly non-traditional. In many textbooks, a vocabulary (sometimes called a signature)
includes a specification of relation constants but not object constants, whereas our definition here
includes both types of constants.)

A term is defined to be a variable or an object constant. Terms typically denote objects
presumed or hypothesized to exist in the world; and, as such, they are analogous to noun phrases
in natural language, e.g., Joe or someone.

ere are three types of sentences in Relational Logic, viz. relational sentences (the analog
of propositions in Propositional Logic), logical sentences (analogous to the logical sentences in
Propositional Logic), and quantified sentences (which have no analog in Propositional Logic).

A relational sentence is an expression formed from an n-ary relation constant and n terms.
For example, if q is a relation constant with arity 2 and if a and y are terms, then the expression
shown below is a syntactically legal relational sentence. Relational sentences are sometimes called
atoms to distinguish them from logical and quantified sentences.

q(a, y)

Logical sentences are defined as in Propositional Logic. ere are negations, conjunctions,
disjunctions, implications, and equivalences. See below for examples.

Negation: (:p(a))
Conjunction: (p(a) ^ q(b, c))
Disjunction: (p(a) _ q(b, c))
Implication: (p(a)) q(b, c))
Biconditional: (p(a), q(b, c))

Note that the syntax here is exactly the same as in Propositional Logic except that the
elementary components are relational sentences rather than proposition constants.

Quantified sentences are formed from a quantifier, a variable, and an embedded sentence.
e embedded sentence is called the scope of the quantifier. ere are two types of quantified
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sentences in Relational Logic, viz. universally quantified sentences and existentially quantified
sentences.

A universally quantified sentence is used to assert that all objects have a certain property. For
example, the following expression is a universally quantified sentence asserting that, if p holds of
an object, then q holds of that object and itself.

(8x.(p(x)) q(x,x)))

An existentially quantified sentence is used to assert that some object has a certain property.
For example, the following expression is an existentially quantified sentence asserting that there
is an object that satisfies p and, when paired with itself, satisfies q as well.

(9x.(p(x) ^ q(x,x)))

Note that quantified sentences can be nested within other sentences. For example, in the
first sentence below, we have quantified sentences inside of a disjunction. In the second sentence,
we have a quantified sentence nested inside of another quantified sentence.

((8x.p(x)) _ (9x.q(x,x)))
(8x.(9y.q(x,y)))

As with Propositional Logic, we can drop unneeded parentheses in Relational Logic, re-
lying on precedence to disambiguate the structure of unparenthesized sentences. In Relational
Logic, the precedence relations of the logical operators are the same as in Propositional Logic,
and quantifiers have higher precedence than logical operators.

e following examples show how to parenthesize sentences with both quantifiers and
logical operators. e sentences on the right are partially parenthesized versions of the sentences
on the left. (To be fully parenthesized, we would need to add parentheses around each of the
sentences as a whole.)

8x.p(x)) q(x) (8x.p(x))) q(x)
9x.p(x) ^ q(x) (9x.p(x)) ^ q(x)

Notice that, in each of these examples, the quantifier does not apply to the second relational
sentence, even though, in each case, that sentence contains an occurrence of the variable being
quantified. If we want to apply the quantifier to a logical sentence, we must enclose that sentence
in parentheses, as in the following examples.

8x.(p(x)) q(x))
9x.(p(x) ^ q(x))

An expression in Relational Logic is ground if and only if it contains no variables. For
example, the sentence p(a) is ground, whereas the sentence 8x.p(x) is not.

An occurrence of a variable is free if and only if it is not in the scope of a quantifier of that
variable. Otherwise, it is bound. For example, y is free and x is bound in the following sentence.



66 6. RELATIONALLOGIC

9x.q(x,y)

A sentence is open if and only if it has free variables. Otherwise, it is closed. For example,
the first sentence below is open and the second is closed.

p(y)) 9x.q(x,y)
8y.(p(y)) 9x.q(x,y))

6.3 SEMANTICS
e semantics of Relational Logic presented here is termed Herbrand semantics. It is named after
the logician Herbrand, who developed some of its key concepts. As Herbrand is French, it should
properly be pronounced “air-brahn”. However, most people resort to the Anglicization of this,
instead pronouncing it “her-brand”. (One exception is Stanley Peters, who has been known at
times to pronounce it “hare-brained”.)

e Herbrand base for a vocabulary is the set of all ground relational sentences that can be
formed from the constants of the language. Said another way, it is the set of all sentences of the
form r(t1,...,tn), where r is an n-ary relation constant and t1, ... , tn are object constants.

For a vocabulary with object constants a and b and relation constants p and q where p has
arity 1 and q has arity 2, the Herbrand base is shown below.

{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

It is worthwhile to note that, for a given relation constant and a finite set of terms, there
is an upper bound on the number of ground relational sentences that can be formed using that
relation constant. In particular, for a set of terms of size b, there are bn distinct n-tuples of object
constants; and hence there are bn ground relational sentences for each n-ary relation constant.
Since the number of relation constants in a vocabulary is finite, this means that the Herbrand
base is also finite.

A truth assignment for a Relational Logic language is a function that maps each ground
relational sentence in the Herbrand base to a truth value. As in Propositional Logic, we use the
digit 1 as a synonym for true and 0 as a synonym for false; and we refer to the value assigned
to a ground relational sentence by writing the relational sentence with the name of the truth
assignment as a superscript. For example, the truth assignment shown below is an example for
the case of the language mentioned a few paragraphs above.

p(a) ! 1
p(b) ! 0
q(a,a) ! 1
q(a,b) ! 0
q(b,a) ! 1
q(b,b) ! 0
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As with Propositional Logic, once we have a truth assignment for the ground relational
sentences of a language, the semantics of our operators prescribes a unique extension of that
assignment to the complex sentences of the language.

e rules for logical sentences in Relational Logic are the same as those for logical sentences
in Propositional Logic. A truth assignment satisfies a negation:' if and only if it does not satisfy
'. A truth assignment satisfies a conjunction ('1 ^ ... ^ 'n) if and only if it satisfies every 'i . A
truth assignment satisfies a disjunction ('1 _ ... _ 'n) if and only if it satisfies at least one 'i .
A truth assignment satisfies an implication (' )  ) if and only if it does not satisfy ' or does
satisfy  . A truth assignment satisfies an equivalence (' ,  ) if and only if it satisfies both '
and  or it satisfies neither ' nor  .

In order to define satisfaction of quantified sentences, we need the notion of instances.
An instance of an expression is an expression in which all free variables have been consistently
replaced by ground terms. Consistent replacement here means that, if one occurrence of a variable
is replaced by a ground term, then all occurrences of that variable are replaced by the same ground
term.

A universally quantified sentence is true for a truth assignment if and only if every instance
of the scope of the quantified sentence is true for that assignment. An existentially quantified
sentence is true for a truth assignment if and only if some instance of the scope of the quantified
sentence is true for that assignment.

A truth assignment satisfies a sentence with free variables if and only if it satisfies every
instance of that sentence. A truth assignment satisfies a set of sentences if and only if it satisfies
every sentence in the set.

6.4 EVALUATION
Evaluation for Relational Logic is similar to evaluation for Propositional Logic. e only differ-
ence is that we need to deal with quantifiers. In order to evaluate a universally quantified sentence,
we check that all instances of the scope are true. (We are in effect treating it as the conjunction
of all those instances.) In order to evaluate an existentially quantified sentence, we check that at
least one instance of the scope. (We are in effect treating it as the disjunction of those instances.)

Once again, assume we have a language with a unary relation constant p, a binary relation
constant q, and object constants a and b; and consider our truth assignment from the last section.

What is the truth value of the sentence 8x.(p(x)) q(x,x)) under this assignment? ere
are two instances of the scope of this sentence. See below.

p(a)) q(a,a)
p(b)) q(b,b)

We know that p(a) is true and q(a,a) is true, so the first instance is true. q(b,b) is false, but
so is p(b) so the second instance is true as well.
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(p(a)) q(a,a)) ! 1
(p(b)) q(b,b)) ! 1

Since both instances are true, the original quantified sentence is true as well.

8x.(p(x)) q(x,x))! 1

Now let’s consider a case with nested quantifiers. Is 8x.9y.q(x,y) true or false for the truth
assignment shown above? As before, we know that this sentence is true if every instance of its
scope is true. e two possible instances are shown below.

9y.q(a,y)
9y.q(b,y)

To determine the truth of 9y.q(a,y), we must find at least one instance of q(a,y) that is
true. e possibilities are shown below.

q(a,a)
q(a,b)

Looking at our truth assignment, we see that the first of these is true and the second is
false.

q(a,a) ! 1
q(a,b) ! 0

Since one of these instances is true, the existential sentence as a whole is true.

9y.q(a,y)! 1

Now, we do the same for the second existentially quantified. e possible instances in this
case are shown below.

q(b,a)
q(b,b)

Of these, the first is true, and the second is false.

q(b,a) ! 1
q(b,b) ! 0

Again, since one of these instances is true, the existential sentence as a whole is true.

9y.q(b,y)! 1

At this point, we have truth values for our two existential sentences. Since both instances
of the scope of our original universal sentence are true, the sentence as a whole must be true as
well.

8x.9y.q(x,y)! 1
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6.5 SATISFACTION

As in Propositional Logic, it is in principle possible to build a truth table for any set of sentences in
Relational Logic. is truth table can then be used to determine which truth assignments satisfy
a given set of sentences.

As an example, let us assume we have a language with just two object constants a and b
and two unary relation constants p and q. Now consider the sentences shown below, and assume
our job is to find a truth assignment that satisfies these sentences.

p(a) _ p(b)
8x.(p(x)) q(x))
9x.q(x)

A truth table for this problem is shown below. Each of the four columns on the left repre-
sents one of the elements of the Herbrand base for this language. e three columns on the right
represent our sentences.

p(a) p(b) q(a) q(b) p(a)_ p(b) 8x.(p(x)) q(x)) 9x.q(x)
1 1 1 1 1 1 1
1 1 1 0 1 0 1
1 1 0 1 1 0 1
1 1 0 0 1 0 0
1 0 1 1 1 1 1
1 0 1 0 1 1 1
1 0 0 1 1 0 1
1 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 1 0 1 0 1
0 1 0 1 1 1 1
0 1 0 0 1 0 0
0 0 1 1 0 1 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1
0 0 0 0 0 1 0

Looking at the table, we see that there are twelve truth assignments that make the first
sentence true, nine that make the second sentence true, twelve that make the third sentence true,
and five that make them all true (rows 1, 5, 6, 9, and 11).
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6.6 EXAMPLE–SORORITYWORLD
Consider once again the Sorority World example introduced in Chapter 1. Recall that this world
focusses on the interpersonal relations of a small sorority. ere are just four members—Abby,
Bess, Cody, and Dana. Our goal is to represent information about who likes whom.

In order to encode this information in Relational Logic, we adopt a vocabulary with four
object constants (abby, bess, cody, dana) and one binary relation constant (likes).

If we had complete information about the likes and dislikes of the girls, we could completely
characterize the state of affairs as a set of ground relational sentences or negations of ground rela-
tional sentences, like the ones shown below, with one sentence for each member of the Herbrand
base. (In our example here, we have written the positive literals in black and the negative literals
in grey in order to distinguish the two more easily.)

:likes(abby,abby) :likes(abby,bess) likes(abby,cody) :likes(abby,dana)
:likes(bess,abby) :likes(bess,bess) likes(bess,cody) :likes(bess,dana)
likes(cody,abby) likes(cody,bess) :likes(cody,cody) likes(cody,dana)
:likes(dana,abby) :likes(dana,bess) likes(dana,cody) :likes(dana,dana)

To make things more interesting, let’s assume that we do not have complete information,
only fragments of information about the girls’ likes and dislikes. Let’s see how we can encode
such fragments in Relational Logic.

Let’s start with a simple disjunction. Bess likes Cody or Dana. Encoding a sentence with a
disjunctive noun phrase (such as Cody or Dana) is facilitated by first rewriting the sentence as a
disjunction of simple sentences. Bess likes Cody or Bess likes Dana. In Relational Logic, we can
express this fact as a simple disjunction with the two possibilities as disjuncts.

likes(bess,cody) _ likes(bess,dana)

Abby likes everyone Bess likes. Again, paraphrasing helps translate. If Bess likes a girl, then
Abby also likes her. Since this is a fact about everyone, we use a universal quantifier.

8y.(likes(bess,y)) likes(abby,y))

Cody likes everyone who likes her. In other words, if some girl likes Cody, then Cody likes that
girl. Again, we use a universal quantifier.

8y.(likes(y,cody)) likes(cody,y))

Bess likes somebody who likes her. e word somebody here is a tip-off that we need to use an
existential quantifier.

9y.(likes(bess,y) ^ likes(y,bess))

Nobody likes herself. e use of the word nobody here suggests a negation. A good technique
in such cases is to rewrite the English sentence as the negation of a positive version of the sentence
before translating to Relational Logic.
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:9x.likes(x,x)

Everybody likes somebody. Here we have a case requiring two quantifiers, one universal and
one existential. e key to this case is getting the quantifiers in the right order. Reversing them
leads to a very different statement.

8x.9y.likes(x,y)

ere is someone everyone likes. e preceding sentence tells us that everyone likes someone,
but that someone can be different for different people. is sentence tells us that everybody likes
the same person.

9y.8x.likes(x,y)

6.7 EXAMPLE–BLOCKSWORLD
e Blocks World is a popular application area for illustrating ideas in the field of Artificial In-
telligence. A typical Blocks World scene is shown in Figure 6.1.

Figure 6.1: One state of Blocks World.

Most people looking at this figure interpret it as a configuration of five toy blocks. Some
people conceptualize the table on which the blocks are resting as an object as well; but, for sim-
plicity, we ignore it here.

In order to describe this scene, we adopt a vocabulary with five object constants, as shown
below, with one object constant for each of the five blocks in the scene. e intent here is for each
of these object constants to represent the block marked with the corresponding capital letter in
the scene.

{a, b, c, d , e}

In a spatial conceptualization of the Blocks World, there are numerous meaningful rela-
tions. For example, it makes sense to think about the relation that holds between two blocks if
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and only if one is resting on the other. In what follows, we use the relation constant on to refer to
this relation. We might also think about the relation that holds between two blocks if and only
if one is anywhere above the other, i.e., the first is resting on the second or is resting on a block
that is resting on the second, and so forth. In what follows, we use the relation constant above to
talk about this relation. ere is the relation that holds of three blocks that are stacked one on top
of the other. We use the relation constant stack as a name for this relation. We use the relation
constant clear to denote the relation that holds of a block if and only if there is no block on top of
it. We use the relation constant table to denote the relation that holds of a block if and only if that
block is resting on the table. e set of relation constants corresponding to this conceptualization
is shown below.

{on, above, stack, clear, table}

e arities of these relation constants are determined by their intended use. Since on is
intended to denote a relation between two blocks, it has arity 2. Similarly, above has arity 2. e
stack relation constant has arity 3. Relation constants clear and table each have arity 1.

Given this vocabulary, we can describe the scene in Figure 6.1 by writing ground literals
that state which relations hold of which objects or groups of objects. Let’s start with on. e
following sentences tell us directly for each ground relational sentence whether it is true or false.
(Once again, we have written the positive literals in black and the negative literals in grey in order
to distinguish the two more easily.)

:on(a,a) on(a,b) :on(a,c) :on(a,d ) :on(a,e)
:on(b,a) :on(b,b) on(b,c) :on(b,d ) :on(b,e)
:on(c,a) :on(c,b) :on(c,c) :on(c,d ) :on(c,e)
:on(d ,a) :on(d ,b) :on(d ,c) :on(d ,d ) on(d ,e)
:on(e,a) :on(e,b) :on(e,c) :on(e,d ) :on(e,e)

We can do the same for the other relations. However, there is an easier way. Each of the
remaining relations can be defined in terms of on. ese definitions together with our facts about
the on relation logically entail every other ground relational sentence or its negation. Hence, given
these definitions, we do not need to write out any additional data.

A block satisfies the clear relation if and only if there is nothing on it.

8y.(clear(y),:9x.on(x,y))

A block satisfies the table relation if and only if it is not on some block.

8x.(table(x),:9y.on(x,y))

ree blocks satisfy the stack relation if and only if the first is on the second and the second
is on the third.

8x.8y.8z.(stack(x,y,z), on(x,y) ^ on(y,z))
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e above relation is a bit tricky to define correctly. One block is above another block if
and only if the first block is on the second block or it is on another block that is above the second
block. Also, no block can be above itself. Given a complete definition for the on relation, these
two axioms determine a unique above relation.

8x.8z.(above(x,z), on(x,z) _ 9y.(on(x,y) ^ above(y,z)))
:9x.above(x,x)

One advantage to defining relations in terms of other relations is economy. If we record on
information for every object and encode the relationship between the on relation and these other
relations, there is no need to record any ground relational sentences for those relations.

Another advantage is that these general sentences apply to Blocks World scenes other than
the one pictured here. It is possible to create a Blocks World scene in which none of the on
sentences we have listed is true, but these general definitions are still correct.

6.8 EXAMPLE–MODULARARITHMETIC
In this example, we show how to characterize Modular Arithmetic in Relational Logic. In Mod-
ular Arithmetic, there are only finitely many objects. For example, in Modular Arithmetic with
modulus 4, we would have just four integers—0, 1, 2, 3—and that’s all. Our goal here to define
the addition relation. Admittedly, this is a modest goal; but, once we see how to do this; we can
use the same approach to define other arithmetic relations.

Let’s start with the same relation, which is true of every number and itself and is false for
numbers that are different. We can completely characterize the same relation by writing ground
relational sentences, one positive sentence for each number and itself and negative sentences for
all of the other cases.

same(0,0) :same(0,1) :same(0,2) :same(0,3)
:same(1,0) same(1,1) :same(1,2) :same(1,3)
:same(2,0) :same(2,1) same(2,2) :same(2,3)
:same(3,0) :same(3,1) :same(3,2) same(3,3)

Now, let’s axiomatize the next relation, which, for each number, gives the next larger num-
ber, wrapping back to 0 after we reach 3.

next(0,1)
next(1,2)
next(2,3)
next(3,0)

Properly, we should write out the negative literals as well. However, we can save that work
by writing a single axiom asserting that next is a functional relation, i.e., for each member of the
Herbrand base, there is just one successor.
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8x.8y.8z.(next(x,y) ^ next(x,z)) same(y,z))

In order to see why this saves us the work of writing out the negative literals, we can write
this axiom in the equivalent form shown below.

8x.8y.8z.(next(x,y) ^ :same(y,z)):next(x,z))

e addition table for Modular Arithmetic is the usual addition table for arbitrary numbers
except that we wrap around whenever we get past 3. For such a small arithmetic, it is easy to write
out the ground relational sentences for addition, as shown below.

plus(0,0,0) plus(1,0,1) plus(2,0,2) plus(3,0,3)
plus(0,1,1) plus(1,1,2) plus(2,1,3) plus(3,1,0)
plus(0,2,2) plus(1,2,3) plus(2,2,0) plus(3,2,1)
plus(0,3,3) plus(1,3,0) plus(2,3,1) plus(3,3,2)

As with next, we avoid writing out the negative literals by writing a suitable functionality
axiom for plus.

8x.8y.8z.8w.( plus(x,y,z) ^ :same(z,w)):plus(x,y,w))

at’s one way to do things, but we can do better. Rather than writing out all of those
relational sentences, we can use Relational Logic to define plus in terms of same and next and
use that axiomatization to deduce the ground relational sentences. e definition is shown below.
First, we have an identity axiom. Adding 0 to any number results in the same number. Second
we have a successor axiom. If z is the sum of x and y, then the sum of the successor of x and y
is the successor of z. Finally, we have our functionality axiom once again.

8y.plus(0,y,y)
8x.8y.8z.8x2.8z2.( plus(x,y,z) ^ next(x,x2) ^ next(z,z2)) plus(x2,y,z2))
8x.8y.8z.8w.( plus(x,y,z) ^ :same(z,w)):plus(x,y,w))

One advantage of doing things this way is economy. With these sentences, we do not need
the ground relational sentences about plus given above. ey are all logically entailed by our sen-
tences about next and the definitional sentences. A second advantage is versatility. Our sentences
define plus in terms of next for arithmetic with any modulus, not just modulus 4.

6.9 LOGICAL PROPERTIES
As we have seen, some sentences are true in some truth assignments and false in others. However,
this is not always the case. ere are sentences that are always true and sentences that are always
false as well as sentences that are sometimes true and sometimes false.

As with Propositional Logic, this leads to a partition of sentences into three disjoint cat-
egories. A sentence is valid if and only if it is satisfied by every truth assignment. A sentence is
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unsatisfiable if and only if it is not satisfied by any truth assignment. A sentence is contingent if
and only if there is some truth assignment that satisfies it and some truth assignment that falsifies
it.

Alternatively, we can classify sentences into two overlapping categories. A sentence is satis-
fiable if and only if it is satisfied by at least one truth assignment, i.e., it is either valid or contingent.
A sentence is falsifiable if and only if there is at least one truth assignment that makes it false, i.e.,
it is either contingent or unsatisfiable.

Note that these definitions are the same as in Propositional Logic. Moreover, some of our
results are the same as well. If we think of ground relational sentences as propositions, we get
similar results for the two logics - a ground sentence in Relational Logic is valid / contingent /
unsatisfiable if and only if the corresponding sentence in Propositional Logic is valid / contingent
/ unsatisfiable.

Here, for example, are Relational Logic versions of common Propositional Logic
validities—the Law of the Excluded Middle, Double Negation, and deMorgan’s laws for dis-
tributing negation over conjunction and disjunction.

p(a) _ :p(a)
p(a),::p(a)

:(p(a) ^ q(a,b)), (:p(a) _ :q(a,b))
:(p(a) _ q(a,b)), (:p(a) ^ :q(a,b))

Of course, not all sentences in Relational Logic are ground. ere are valid sentences of
Relational Logic for which there are no corresponding sentences in Propositional Logic.

e Common Quantifier Reversal tells us that reversing quantifiers of the same type has no
effect on truth assignment.

8x.8y.q(x,y),8y.8x.q(x,y)
9x.9y.q(x,y), 9y.9x.q(x,y))

Existential Distribution tells us that it is okay to move an existential quantifier inside of a
universal quantifier. (Note that the reverse is not valid, as we shall see later.)

9y.8x.q(x,y))8x.9y.q(x,y)

Finally, Negation Distribution tells us that it is okay to distribute negation over quantifiers
of either type by flipping the quantifier and negating the scope of the quantified sentence.

:8x.p(x), 9x.:p(x)
:9x.p(x),8x.:p(x)

6.10 LOGICALENTAILMENT
A set of Relational Logic sentences � logically entails a sentence ' (written � |= ') if and only if
every truth assignment that satisfies � also satisfies '.
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As with validity and contingency and satisfiability, this definition is the same for Relational
Logic as for Propositional Logic. As before, if we treat ground relational sentences as propositions,
we get similar results. In particular, a set of ground premises in Relational Logic logically entails a
ground conclusion in Relational Logic if and only if the corresponding set of Propositional Logic
premises logically entails the corresponding Propositional Logic conclusion.

For sentences without variables, we have the following results. e sentence p(a) logically
entails (p(a) _ p(b)). e sentence p(a) does not logically entail (p(a) ^ p(b)). However, any set
of sentences containing both p(a) and p(b) does logically entail (p(a) ^ p(b)).

e presence of variables allows for additional logical entailments. For example, the premise
9y.8x.q(x,y) logically entails the conclusion 8x.9y.q(x,y). If there is some object y that is paired
with every x, then every x has some object that it pairs with, viz. y.

9y.8x.q(x,y) |= 8x.9y.q(x,y)

Here is another example. e premise 8x.8y.q(x,y) logically entails the conclusion
8x.8y.q(y,x). e first sentence says that q is true for all pairs of objects, and the second sentence
says the exact same thing. In cases like this, we can interchange variables.

8x.8y.q(x,y) |= 8x.8y.q(y,x)

Understanding logical entailment for Relational Logic is complicated by the fact that it is
possible to have free variables in Relational Logic sentences. Consider, for example, the premise
q(x,y) and the conclusion q(y,x). Does q(x,y) logically entail q(y,x) or not?

Our definition for logical entailment and the semantics of Relational Logic give a clear an-
swer to this question. Logical entailment holds if and only if every truth assignment that satisfies
the premise satisfies the conclusion. A truth assignment satisfies a sentence with free variables if
and only if it satisfies every instance. In other words, a sentence with free variables is equivalent
to the sentence in which all of the free variables are universally quantified. In other words, q(x,y)
is satisfied if and only if 8x.8y.q(x,y) is satisfied, and similarly for q(y,x). So, the first sentence
here logically entails the second if and only if 8x.8y.q(x,y) logically entails 8x.8y.q(y,x); and,
as we just saw, this is, in fact, the case.

6.11 RELATIONALLOGICANDPROPOSITIONALLOGIC
One interesting feature of Relational Logic (RL) is that it is expressively equivalent to Proposi-
tional Logic (PL). For any RL language, we can produce a pairing between the ground relational
sentences in that language and the proposition constants in a Propositional Logic language. Given
this correspondence, for any set of arbitrary sentences in our RL language, there is a correspond-
ing set of sentences in the language of PL such that any RL truth assignment that satisfies our
RL sentences agrees with the corresponding Propositional Logic truth assignment applied to the
Propositional Logic sentences.
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e procedure for transforming our RL sentences to PL has multiple steps, but each step
is easy. We first convert our sentences to prenex form, then we ground the result, and we rewrite
in Propositional Logic. Let’s look at these steps in turn.

A sentence is in prenex form if and only if it is closed and all of the quantifiers are on the
outside of all logical operators.

Converting a set of RL sentences to a logically equivalent set in prenex form is simple. First,
we rename variables in different quantified sentences to eliminate any duplicates. We then apply
quantifier distribution rules in reverse to move quantifiers outside of logical operators. Finally, we
universally quantify any free variables in our sentences.

For example, to convert the sentence 8y.p(x,y) _ 9y.q(y) to prenex form, we first rename
one of the variables. In this case, let’s rename the y in the second disjunct to z. is results in
the sentence 8y.p(x,y) _ 9z.q(z). We then apply the distribution rules in reverse to produce
8y.9z.(p(x,y) _ q(z)). Finally, we universally quantify the free variable x to produce the prenex
form of our original sentence, viz. 8x.8y.9z.(p(x,y) _ q(z)).

Once we have a set of sentences in prenex form, we compute the grounding. We start with
our initial set � of sentences and we incrementally build up our grounding � . On each step we
process a sentence in �, using the procedure described below. e procedure terminates when �
becomes empty. e set � at that point is the grounding of the input.

(1) e first rule covers the case when the sentence ' being processed is ground. In this case, we
remove the sentence from Delta and add it to Gamma.

�iC1 D �i - {'}
� iC1 D � i [ {'}

(2) If our sentence is of the form 8�.'[�], we eliminate the sentence from�i and replace it with
copies of the scope, one copy for each object constant � in our language.

�iC1 D �i - {8�.'[�]} [ {'[�] | � an object constant}
� iC1 D � i

(3) If our sentence of the form 9�.'[�], we eliminate the sentence from �i and replace it with a
disjunction, where each disjunct is a copy of the scope in which the quantified variable is replaced
by an object constant in our language.

�iC1 D �i - {9�.'[�]} [ {'[�1] _ ... _ '[�n]}
� iC1 D � i

e procedure halts when �i becomes empty. e set � i is the grounding of the input. It
is easy to see that � i is logically equivalent to the input set.

Here is an example. Suppose we have a language with just two object constants a and b. And
suppose we have the set of sentences shown below. We have one ground sentence, one universally
quantified sentence, and one existentially quantified sentence. All are in prenex form.
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{p(a), 8x.(p(x)) q(x)), 9x.:q(x)}

A trace of the procedure is shown below. e first sentence is ground, so we remove it from
� add it to � . e second sentence is universally quantified, so we replace it with a copy for each
of our two object constants. e resulting sentences are ground, and so we move them one by one
from � to � . Finally, we ground the existential sentence and add the result to � and then move
the ground sentence to � . At this point, since � is empty, � is our grounding.

�0 D {{p(a), 8x.(p(x)) q(x)), 9x.:q(x)}
�0 D { }

�1 D {8x.(p(x)) q(x)), 9x.:q(x)}
�1 D {p(a)}

�2 D {p(a)) q(a), p(b)) q(b), 9x.:q(x)}
�2 D {p(a)}

�3 D {p(b)) q(b), 9x.:q(x)}
�3 D {p(a), p(a)) q(a)}

�4 D {9x.:q(x)}
�4 D {p(a), p(a)) q(a), p(b)) q(b)}

�5 D {:q(a) _ :q(b)}
�5 D {p(a), p(a)) q(a), p(b)) q(b)}

�6 D { }
�6 D {p(a), p(a)) q(a), p(b)) q(b), :q(a) _ :q(b)}

Once we have a grounding � , we replace each ground relational sentence in � by a propo-
sition constant. e resulting sentences are all in Propositional Logic; and the set is equivalent
to the sentences in � in that any RL truth assignment that satisfies our RL sentences agrees
with the corresponding Propositional Logic truth assignment applied to the Propositional Logic
sentences.

For example, let’s represent the RL sentence p(a) with the proposition pa; let’s represent
p(b) with pb; let’s represent q(a) with qa; and let’s represent q(b) with qb. With this correspon-
dence, we can represent the sentences in our grounding with the Propositional Logic sentences
shown below.

{pa, pa) qa, pb) qb, :qa _ :qb}
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Since the question of unsatisfiability for PL is decidable, then the question of unsatisfiability
for RL is also decidable. Since logical entailment and unsatisfiability are correlated, we also know
that the question of logical entailment for RL is decidable.

Another consequence of this correspondence between RL and PL is that, like PL, RL is
compact—every unsatisfiable set of sentences contains a finite subset that is unsatisfiable. is is
important as it assures us that we can demonstrate the unsatisfiability by analyzing just a finite
set of sentences; and, as we shall see in the next chapter, logical entailment can be demonstrated
with finite proofs.

RECAP
Relational Logic is an alternative to Propositional Logic that includes some linguistic features, viz.
constants and variables and quantifiers. In Relational Logic, simple sentences have more struc-
ture than in Propositional Logic. Furthermore, using variables and quantifiers, we can express
information about multiple objects without enumerating those objects; and we can express the
existence of objects that satisfy specified conditions without saying which objects they are. e
syntax of Relational Logic begins with object constants and relation constants. Relational sen-
tences are the atomic elements from which more complex sentences are built. Logical sentences are
formed by combining simpler sentences with logical operators. In the version of Relational Logic
used here, there are five types of logical sentences - negations, conjunctions, disjunctions, impli-
cations, and equivalences. ere are two types of quantified sentences, viz. universal sentences and
existential sentences. eHerbrand base for a Relational Logic language is the set of all ground rela-
tional sentences in the language. A truth assignment for a Relational Logic language is a mapping
that assigns a truth value to each element of it Herbrand base. e truth or falsity of compound
sentences is determined from a truth assignment using rules based on the five logical operators
of the language. A truth assignment satisfies a sentence if and only if the sentences is true under
that truth assignment. A sentence is valid if and only if it is satisfied by every truth assignment.
A sentence is satisfiable if and only if it is satisfied by at least one truth assignment. A sentence
is falsifiable if and only if there is at least one truth assignment that makes it false. A sentence is
unsatisfiable if and only if it is not satisfied by any truth assignment. A sentence is contingent if
and only if it is both satisfiable and falsifiable, i.e., it is neither valid nor unsatisfiable. A set of
sentences � logically entails a sentence ' (written � |= ') if and only if every truth assignment
that satisfies � also satisfies '.

6.12 EXERCISES

6.1. Say whether each of the following expressions is a syntactically legal sentence of Re-
lational Logic. Assume that jim and molly are object constants; assume that person is a
unary relation constant; and assume that parent is a binary relation constant.
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(a) parent(jim, molly)
(b) parent(molly, molly)
(c) :person(jim)
(d ) person(jim, molly)
(e) parent(molly, z)
(f ) 9x.parent(molly, x)
(g) 9y.parent(molly, jim)
(h) 8z.(z(jim, molly)) z(molly, jim))

6.2. Consider a language with n object constants and a single binary relation constant.

(a) How many ground terms are there in this language - n, n2, 2n, 2n2 , 22n?
(b) How many ground atomic sentences are there in this language - n, n2, 2n, 2n2 ,

22n?
(c) How many distinct truth assignments are possible for this language - n, n2, 2n,

2n2 , 22n?

6.3. Consider a language with object constants a and b and relation constantsp and q wherep
has arity 1 and q has arity 2. Imagine a truth assignment that makes p(a), q(a,b), q(b,a)
true and all other ground atoms false. Say whether each of the following sentences is true
or false under this truth assignment.
(a) 8x.(p(x)) q(x,x))
(b) 8x.9y.q(x,y)
(c) 9y.8x.q(x,y)
(d ) 8x.(p(x))
(e) 8x.p(x)) 9y.q(y,y)

6.4. Consider a state of the Sorority World that satisfies the following sentences.

:likes(abby,abby) likes(abby,bess) :likes(abby,cody) likes(abby,dana)
likes(bess,abby) :likes(bess,bess) likes(bess,cody) :likes(bess,dana)
:likes(cody,abby) likes(cody,bess) :likes(cody,cody) likes(cody,dana)
likes(dana,abby) :likes(dana,bess) likes(dana,cody) :likes(dana,dana)

Say which of the following sentences is satisfied by this state of the world.
(a) likes(dana,cody)
(b) :likes(abby,dana)
(c) likes(bess,cody) _ likes(bess,dana)
(d) 8y.(likes(bess,y) => likes(abby,y))
(e) 8y.(likes(y,cody)) likes(cody,y))
(f ) 8x.:likes(x,x)
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6.5. Consider a version of the Blocks World with just three blocks—a, b, and c. e on relation
is axiomatized below.

:on(a,a) on(a,b) :on(a,c)
:on(b,a) :on(b,b) on(b,c)
:on(c,a) :on(c,b) :on(c,c)

Let’s suppose that the above relation is defined as follows.

8x.8z.(above(x,z), on(x,z) _ 9y.(above(x,y) ^ above(y,z)))

A sentence ' is consistent with a set � of sentences if and only if there is a truth assign-
ment that satisfies all of the sentences in � [ {'}. Say whether each of the following
sentences is consistent with the sentences about on and above shown above.
(a) above(a,c)
(b) above(a,a)
(c) above(c,a)

6.6. Say whether each of the following sentences is valid, contingent, or unsatisfiable.
(a) 8x.p(x)) 9x.p(x)
(b) 9x.p(x))8x.p(x)
(c) 8x.p(x)) p(x)
(d) 9x.p(x)) p(x)
(e) p(x))8x.p(x)
(f ) p(x)) 9x.p(x)
(g) 8x.9y.p(x,y)) 9y.8x.p(x,y)
(h) 8x.(p(x)) q(x))) 9x.(p(x) ^ q(x))
(i) 8x.(p(x)) q(x)) ^ 9x.(p(x) ^ :q(x))
(j) (9x.p(x))8x.q(x)) _ (8x.q(x)) 9x.r(x))

6.7. Let � be a set of Relational Logic sentences, and let ' and  be individual Relational
Logic sentences. For each of the following claims, state whether it is true or false.
(a) 8x.' |= '
(b) ' |= 8x.'
(c) If � |= :'[�] for some ground term � , then � |# 8x.'[x]
(d) If � |= '[�] for some ground term � , then � |= 9x.'[x]
(e) If � |= '[�] for every ground term � , then � |= 8x.'[x]
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C H A P T E R 7

Relational Analysis
7.1 INTRODUCTION

In Relational Logic, it is possible to analyze the properties of sentences in much the same way
as in Propositional Logic. Given a sentence, we can determine its validity, satisfiability, and so
forth by looking at possible truth assignments. And we can confirm logical entailment or logical
equivalence of sentences by comparing the truth assignments that satisfy them and those that
don’t.

e main problem in doing this sort of analysis for Relational Logic is that the number of
possibilities is even larger than in Propositional Logic. For a language with n object constants and
m relation constants of arity k, the Herbrand base has m � nk elements; and consequently, there
are 2m�nk possible truth assignments to consider. If we have 10 objects and 5 relation constants
of arity 2, this means 2500 possibilities.

Fortunately, as with Propositional Logic, there are some shortcuts that allow us to analyze
sentences in Relational Logic without examining all of these possibilities. In this chapter, we start
with the truth table method and then look at some of these more efficient methods.

7.2 TRUTHTABLES

As in Propositional Logic, it is in principle possible to build a truth table for any set of sentences
in Relational Logic. is truth table can then be used to determine validity, satisfiability, and so
forth or to determine logical entailment and logical equivalence.

As an example, let us assume we have a language with just two object constants a and b and
two relation constants p and q. Now consider the sentences shown below, and assume we want
to know whether these sentences logically entail 9x.q(x).

p(a) _ p(b)
8x.(p(x)) q(x))

A truth table for this problem is shown below. Each of the first four columns represents
one of the elements of the Herbrand base for this language. e two middle columns represent
our premises, and the final column represents the conclusion.
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p(a) p(b) q(a) q(b) p(a) _ p(b) 8x.(p(x)) q(x)) 9x.q(x)
1 1 1 1 1 1 1
1 1 1 0 1 0 1
1 1 0 1 1 0 1
1 1 0 0 1 0 0
1 0 1 1 1 1 1
1 0 1 0 1 1 1
1 0 0 1 1 0 1
1 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 1 0 1 0 1
0 1 0 1 1 1 1
0 1 0 0 1 0 0
0 0 1 1 0 1 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1
0 0 0 0 0 1 0

Looking at the table, we see that there are 12 truth assignments that make the first premise
true and nine that make the second premise true and five that make them both true (rows 1, 5,
6, 9, and 11). Note that every truth assignment that makes both premises true also makes the
conclusion true. Hence, the premises logically entail the conclusion.

7.3 SEMANTICTREES
While the Truth Table method works in principle, it is impractical when the tables get very large.
As with Propositional Logic, we can sometimes avoid generating such tables by incrementally
constructing the corresponding “semantic trees.” By interleaving unit propagation and simplifica-
tion with tree generation, we can often prune away unrewarding subtrees before they are generated
and thereby reduce the size of the trees.

7.4 BOOLEANMODELS
Truth tables and semantic trees are good ways of explicitly representing multiple models for a set
of sentences. In some cases, there is just one model.

In this approach, we write out an empty table for each relation and then fill in values based
on the constraints of the problem. For example, for any unit constraint, we can immediately enter
the corresponding truth value in the appropriate box. Given these partial assignments, we then
simplify the constraints (as in the semantic treesmethod), possibly leading to new unit constraints.
We continue until there are no more unit constraints.
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As an example, consider the Sorority problem introduced in Chapter 1. We are given the
constraints shown below, and we want to know whether Dana likes everyone that Bess likes. In
other words, we want to confirm that, in every model that satisfies these sentences, Dana likes
everyone that Bess likes.

Dana likes Cody.
Abby does not like Dana.
Dana does not like Abby.
Abby likes everyone that Bess likes.
Bess likes Cody or Dana.
Abby and Dana both dislike Bess.
Cody likes everyone who likes her.
Nobody likes herself.

In this particular case, it turns out that there is just one model that satisfies all of these
sentences. e first step in creating this model is to create an empty table for the likes relation.

Abby Bess Cody Dana

Abby

Bess

Cody

Dana

e data we are given has three units—the fact that Dana likes Cody and the facts that
Abby does not like Dana and Dana does not like Abby. Using this information we can refine our
model by putting a one into the third box in the fourth row and putting zeros in the fourth box
of the first row and the first box of the fourth row.
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Abby Bess Cody Dana

Abby 0

Bess

Cody

Dana 0 1

Now, we know that Abby likes everyone that Bess likes. If Bess likes Dana, then we could
conclude that Abby likes Dana as well. We already know that Abby does not like Dana, so Bess
must not like Dana either.

Abby Bess Cody Dana

Abby 0

Bess 0

Cody

Dana 0 1

At the same time, we know that Bess likes Cody or Dana. Since Bess does not like Dana,
she must like Cody. Once again using the fact that Abby likes everyone whom Bess likes, we
know that Abby also likes Cody.
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Abby Bess Cody Dana

Abby 1 0

Bess 1 0

Cody

Dana 0 1

Abby and Dana both dislike Bess. Using this fact we can add 0s to the first and last cells of
the second column.

Abby Bess Cody Dana

Abby 0 1 0

Bess 1 0

Cody

Dana 0 0 1

On the other hand, Cody likes everyone who likes her. is allows us to put a 1 in every
column of the third row where there is a 1 in the corresponding rows of the third column.
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Abby Bess Cody Dana

Abby 0 1 0

Bess 1 0

Cody 1 1 1

Dana 0 0 1

Since nobody likes herself, we can put a 0 in each cell on the diagonal.

Abby Bess Cody Dana

Abby 0 0 1 0

0 0 1 0

1 1 0 1

Bess 0 1 0

Cody

Dana

Finally, using the fact that Abby likes everyone that Bess likes, we conclude that Bess does
not like Abby. (If she did then Abby would like herself, and we know that that is false.)
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Abby Bess Cody Dana

Abby 0 0 1 0

0 0 1 0

1 1 0 1

Bess 00 1 0

Cody

Dana

At this point, we have a complete model, and we can check our conclusion to see that this
model satisfies the desired conclusion. In this case, it is easy to see that Dana indeed does like
everyone that Bess likes.

We motivated this method by talking about cases where the given sentences have a unique
model, as in this case. However, the method can also be of value even when there are multiple
possible models. For example, if we had left out the belief that Cody likes everyone who likes her,
we would still have eight models (corresponding to the eight possible combinations of feelings
Cody has for Abby, Bess, and Dana). Yet, even with this ambiguity, it would be possible to de-
termine whether Dana likes everyone Bess likes using just the portion of the table already filled
in.

7.5 NON-BOOLEANMODELS
As defined in Chapter 6, a model in Relational Logic is an assignment of truth values to the
ground atoms of our language. We treat each ground atom in our language as a variable and
assign it a single truth value (1 or 0). In general, this is a good way to proceed. However, we can
sometimes do better.

Consider, for example, a theory with four object constants and two unary relation con-
stants. In this case, there would be eight elements in the Herbrand base and 28 (256) possible
truth assignments. Now, suppose we had the constraint that each relation is true of at most a
single object. Most of these assignments would not satisfy the single value constraint and thus
considering them is wasteful.

Luckily, in cases like this, there is a representation for truth assignments that allows us to
eliminate such possibilities and thereby save work. Rather than treating each ground atom as a
separate variable with its own Boolean value, we can think of each relation as a variable with 4
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possible values. In order to analyze sentences in such a theory, we would need to consider only 42

(16) possibilities.
Even if we search the entire space of assignments, this a significant saving over the pure

truth table method. Moreover, we can combine this representation with the techniques described
earlier to find assignments for these non-Boolean variables in an even more efficient manner.

e game of Sukoshi illustrates this technique and its benefits. (Sukoshi is similar to Su-
doku, but it is smaller and simpler.) A typical Sukoshi puzzle is played on a 4x4 board. In a typical
instance of Sukoshi, several of the squares are already filled, as in the example below. e goal of
the game is to place the numerals 1 through 4 in the remaining squares of the board in such a way
that no numeral is repeated in any row or column.

We can formalize the rules of this puzzle in the language of Logic. Once we have done
that, we can use the techniques described here to find a solution.

In our formalization, we use the expression cell(1,2,3) to express the fact that the cell in the
first row and the second column contains the numeral 3. For example, we can describe the initial
board shown above with the following sentences.

cell(1,2,4)
cell(1,4,1)
cell(2,1,2)
cell(3,4,3)
cell(4,3,4)

We use the expression same(x,y) to say that x is the same as y. We can axiomatize same by
simply stating when it is true and where it is false. An abbreviated axiomatization is shown below.

same(1,1) :same(2,1) :same(3,1) :same(4,1)
:same(1,2) same(2,2) :same(3,2) :same(4,2)
:same(1,3) :same(2,3) same(3,3) :same(4,3)
:same(1,4) :same(2,4) :same(3,4) same(3,4)

Using this vocabulary, we can write the rules defining Sukoshi as shown below. e first
sentence expresses the constraint that two cells in that same row can contain the same value. e
second sentence expresses the constraint that two cells in that same column can contain the same
value. e third constraint expresses the fact that every cell must contain at least one value.
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8x.8y.8z.8w.( cell(x,y,w) ^ cell(x,z,w)) same(y,z))
8x.8y.8z.8w.( cell(x,z,w) ^ cell(y,z,w)) same(x,y))
8x.8y.9w.cell(x,z,w)

As a first step in solving this problem, we start by focussing on the fourth column, since
two of the cells in that column are already filled. We know that there must be a 4 in one of the
cells. It cannot be the first, since that cell contains a 1, and it cannot be the third since that cell
contains a 3. It also cannot be the fourth, since there is already a 4 in the third cell of the fourth
row. By process of elimination, the 4 must go in the fourth cell of the second row, leading to the
board shown below.

At this point, there is a four in every row and every column except for the first column in
the third row. So, we can safely place a four in that cell.

Since there is just one empty cell in the fourth column, we know it must be filled with the
single remaining value, viz. 2. After adding this value, we have the following board.

Now, let’s turn our attention to the first column. We know that there must be a 1 in one of
the cells. It cannot be the first, since there is already a 1 in that row, and it cannot be the second



92 7. RELATIONALANALYSIS

or third since those cell already contain values. Consequently, the 1 must go in the first cell of the
fourth row.

Once again, we have a column with all but one cell filled. Column 1 has a 2 in the second
cell, a 4 in the third, and a 1 in the fourth. So, we can place a 3 in the first cell of that column.

At this point, we can fill in the single empty cell in the first row, leading to the following
board.

And we can fill in the single empty cell in the fourth row as well.



7.5. NON-BOOLEANMODELS 93

Now, let’s consider the second column. We cannot put a 2 in the second cell, since there is
already a 2 in that row. Since the first and last cells are already full, the only option is to put the
2 into the third cell.

Finishing off the third row leads to the board below.

Finishing off the third column leads to the following board.

Finally, we can place a 1 in the second cell of the second row. And, with that, the board is
full. We have a distinct numeral in every row and every column, as required by the rules.
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Given the initial assignment in this case, it is fairly easy to find a complete assignment
that satisfies the Sukoshi constraints. For other initial assignments, solving the problem is more
difficult. However, the techniques described here still work to cut down on the amount of work
necessary. In fact, virtually all Sukoshi puzzles can be solved using these techniques without any
form of trial and error.

7.6 EXERCISES
7.1. Mr. Red, Mr. White, and Mr. Blue meet for lunch. Each is wearing a red shirt, a white

shirt, or a blue shirt. No one is wearing more than one color, and no two are wearing
the same color. Mr. Blue tells one of his companions, “Did you notice we are all wearing
shirts with different color from our names?”, and the other man, who is wearing a white
shirt, says, “Wow, that’s right!” Use the Boolean model technique to figure out who is
wearing what color shirt.

7.2. Amy, Bob, Coe, and Dan are traveling to different places. One goes by train, one by car,
one by plane, and one by ship. Amy hates flying. Bob rented his vehicle. Coe tends to
get seasick. And Dan loves trains. Use the Boolean models method to figure out which
person, used which mode of transportation.

7.3. Sudoku is a puzzle consisting of a 9 � 9 board divided into nine 3 � 3 subboards. In a
typical puzzle, several of the squares are already filled, as in the example shown below.
e goal of the puzzle is to place the numerals 1 through 9 into the remaining squares
of the board in such a way that no numeral is repeated in any row or column or 3 � 3
subboard.
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Use the techniques described in the Chapter to solve this puzzle.
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C H A P T E R 8

Relational Proofs
8.1 INTRODUCTION
As with Propositional Logic, we can demonstrate logical entailment in Relational Logic by writ-
ing proofs. As with Propositional Logic, it is possible to show that a set of Relational Logic
premises logically entails a Relational Logic conclusion if and only if there is a finite proof of the
conclusion from the premises. Moreover, it is possible to find such proofs in a finite time.

In this chapter, we start by extending the Fitch system from Propositional Logic to Rela-
tional Logic. We then illustrate the system with a few examples. Finally, we talk about soundness
and completeness.

8.2 PROOFS
Formal proofs in Relational Logic are analogous to formal proofs in Propositional Logic. e
major difference is that there are additional mechanisms to deal with quantified sentences.

e Fitch system for Relational Logic is an extension of the Fitch system for Propositional
Logic. In addition to the ten logical rules of inference, there are four ordinary rules of inference
for quantified sentences and one additional rule for finite languages. Let’s look at each of these in
turn. (If you’re like me, the prospect of going through a discussion of so many rules of inference
sounds a little repetitive and boring. However, it is not so bad. Each of the rules has its own quirks
and idiosyncrasies, its own personality. In fact, a couple of the rules suffer from a distinct excess
of personality. If we are to use the rules correctly, we need to understand these idiosyncrasies.)

Universal Introduction (UI) allows us to reason from arbitrary sentences to universally quantified
versions of those sentences.

Universal Introduction
'

8�:'

where � does not occur free in both ' and an active assumption

Typically, UI is used on sentences with free variables to make their quantification explicit.
For example, if we have the sentence hates(jane,y), then, we can infer 8y.hates(jane,y).

Note that we can also apply the rule to sentences that do not contain the variable that
is quantified in the conclusion. For example, from the sentence hates(jane,jill), we can infer
8x.hates(jane,jill). And, from the sentence hates(jane,y), we can infer 8x.hates(jane,y). ese
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are not particularly sensible conclusions. However, the results are correct, and the deduction of
such results is necessary to ensure that our proof system is complete.

ere is one important restriction on the use of Universal Introduction. If the variable
being quantified appears in the sentence being quantified, it must not appear free in any active
assumption, i.e., an assumption in the current subproof or any superproof of that subproof. For
example, if there is a subproof with assumption p(x) and from that we have managed to derive
q(x), then we cannot just write 8x.q(x).

If we want to quantify a sentence in this situation, we must first use Implication Introduc-
tion to discharge the assumption and then we can apply Universal Introduction. For example, in
the case just described, we can first apply Implication Introduction to derive the result (p(x))
q(x)) in the parent of the subproof containing our assumption, and we can then apply Universal
Introduction to derive 8x.(p(x)) q(x)).

Universal Elimination (UE) allows us to reason from the general to the particular. It states that,
whenever we believe a universally quantified sentence, we can infer a version of the target of that
sentence in which the universally quantified variable is replaced by an appropriate term.

Universal Elimination
8�:'[�]
'[�]
where � is substitutable for � in '

For example, consider the sentence 8y.hates(jane,y). From this premise, we can infer
that Jane hates Jill, i.e., hates(jane,jill). We also can infer that Jane hates her mother, i.e.,
hates(jane,mother(jane)). We can even infer than Jane hates herself, i.e., hates(jane,jane).

In addition, we can use Universal Elimination to create conclusions with free variables. For
example, from 8x.hates(jane,x), we can infer hates(jane,x) or, equivalently, hates(jane,y).

In using Universal Elimination, we have to be careful to avoid conflicts with other variables
and quantifiers in the quantified sentence. is is the reason for the constraint on the replace-
ment term. As an example of what can go wrong without this constraint, consider the sentence
8x.9y.hates(x,y), i.e., everybody hates somebody. From this sentence, it makes sense to infer
9y.hates(jane,y), i.e., Jane hates somebody. However, we do not want to infer 9y.hates(y,y); i.e.,
there is someone who hates herself.

We can avoid this problem by obeying the restriction on the Universal Elimination rule.
We say that a term � is free for a variable � in a sentence ' if and only if no free occurrence of
� occurs within the scope of a quantifier of some variable in � . For example, the term x is free
for y in 9z.hates(y,z). However, the term z is not free for y, since y is being replaced by z and y
occurs within the scope of a quantifier of z. us, we cannot substitute z for y in this sentence,
and we avoid the problem we have just described.
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Existential Introduction (EI) is easy. If we believe a sentence involving a ground term � , then we
can infer an existentially quantified sentence in which one, some, or all occurrences of � have been
replaced by the existentially quantified variable.

Existential Introduction
'[�]
9�:'[�]

For example, from the sentence hates(jill,jill), we can infer that there is someone who hates
herself, i.e., 9x.hates(x,x). We can also infer that there is someone Jill hates, i.e., 9x.hates(jill,x),
and there is someone who hates Jill, i.e., 9y.hates(x,jill). And, by two applications of Existential
Introduction, we can infer that someone hates someone, i.e., 9x.9y.hates(x,y).

Note that, in Existential Introduction, it is important to avoid variables that appear in
the sentence being quantified. Without this restriction, starting from 9x.hates(jane,x), we might
deduce 9x.9x.hates(x,x). It is an odd sentence since it contains nested quantifiers of the same
variable. However, it is a legal sentence, and it states that there is someone who hates himself,
which does not follow from the premise in this case.

Existential Elimination (EE). Suppose we have an existentially quantified sentence with target ';
and suppose we have a universally quantified implication in which the antecedent is the same as
the scope of our existentially quantified sentence and the conclusion does not contain any occur-
rences of the quantified variable.en, we can use Existential Elimination to infer the consequent.

Existential Elimination
9�:'[�]
8�.('[�])  )
 

where � does not occur free in  
For example, if we have the sentence 8x.(hates(jane,x) ) :nice(jane)) and we have the

sentence 9x.hates(jane,x), then we can conclude :nice(jane)).
It is interesting to note that Existential Elimination is analogous to Or Elimination. is

is as it should, as an existential sentence is effectively a disjunction. Recall that, in Or Elimina-
tion, we start with a disjunction with n disjuncts and n implications, one for each of the disjuncts
and produce as conclusion the consequent shared by all of the implications. An existential sen-
tence (like the first premise in any instance of Existential Elimination) is effectively a disjunction
over the set of all ground terms; and a universal implication (like the second premise in any in-
stance of Existential Elimination) is effectively a set of implications, one for each ground term
in the language. e conclusion of Existential Elimination is the common consequent of these
implications, just as in Or Elimination.

Finally, for languages with finite Herbrand bases, we have the Domain Closure (DC) rule.
For a language with object constants �1, ... , �n, the rule is written as shown below. If we believe a
schema is true for every instance, then we can infer a universally quantified version of that schema.
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Domain Closure
'[�1]
...
'[�n]
8�.'[�]

For example, in a language with four object constants a and b and c and d , we can derive
the conclusion 8x.'[x] whenever we have '[a] and '[b] and '[c] and '[d ].

Why restrict DC to languages with finitely many ground terms? Why not use domain
closure rules for languages with infinitely many ground terms as well? It would be good if we
could, but this would require rules of infinite length, and we do not allow infinitely large sentences
in our language. We can get the effect of such sentences through the use of induction, which is
discussed in a later chapter.

As in Chapter 4, we define a structured proof of a conclusion from a set of premises to be
a sequence of (possibly nested) sentences terminating in an occurrence of the conclusion at the
top level of the proof. Each step in the proof must be either (1) a premise (at the top level) or an
assumption (other than at the top level) or (2) the result of applying an ordinary or structured
rule of inference to earlier items in the sequence (subject to the constraints given above and in
Chapter 3).

8.3 EXAMPLE
As an illustration of these concepts, consider the following problem. Suppose we believe that
everybody loves somebody. And suppose we believe that everyone loves a lover. Our job is to
prove that Jack loves Jill.

First, we need to formalize our premises. Everybody loves somebody. For all y, there exists
a z such that loves(y,z).

8y.9z.loves(y,z)

Everybody loves a lover. If a person is a lover, then everyone loves him. If a person loves
another person, then everyone loves him. For all x and for all y and for all z, loves(y,z) implies
loves(x,y).

8x.8y.8z.(loves(y,z)) loves(x,y))

Our goal is to show that Jack loves Jill. In other words, starting with the preceding sen-
tences, we want to derive the following sentence.

loves(jack,jill)

A proof of this result is shown below. Our premises appear on lines 1 and 2. e sentence
on line 3 is the result of applying Universal Elimination to the sentence on line 1, substituting jill
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for y. e sentence on line 4 is the result of applying Universal Elimination to the sentence on line
2, substituting jack for x. e sentence on line 5 is the result of applying Universal Elimination to
the sentence on line 4, substituting jill for y. Finally, we apply Existential Elimination to produce
our conclusion on line 6.

1. 8y.9z.loves(y,z) Premise
2. 8x.8y.8z.(loves(y,z)) loves(x,y)) Premise
3. 9z.loves(jill,z) UE: 1
4. 8y.8z.(loves(y,z)) loves(jack,y)) UE: 2
5. 8z.(loves(jill,z)) loves(jack,jill)) UE: 4
6. loves(jack,jill) EE: 3, 5

Now, let’s consider a slightly more interesting version of this problem. We start with the
same premises. However, our goal now is to prove the somewhat stronger result that everyone
loves everyone. For all x and for all y, x loves y.

8x.8y.loves(x,y)

e proof shown below is analogous to the proof above. e only difference is that we
have free variables in place of object constants at various points in the proof. Once again, our
premises appear on lines 1 and 2. Once again, we use Universal Elimination to produce the result
on line 3; but this time the result contains a free variable. We get the results on lines 4 and 5 by
successive application of Universal Elimination to the sentence on line 2. We deduce the result on
line 6 using Existential Elimination. Finally, we use two applications of Universal Introduction
to generalize our result and produce the desired conclusion.

1. 8y.9z.loves(y,z) Premise
2. 8x.8y.8z.(loves(y,z)) loves(x,y)) Premise
3. 9z.loves(y,z) UE: 1
4. 8y.8z.(loves(y,z)) loves(x,y)) UE: 2
5. 8z.(loves(y,z)) loves(x,y)) UE: 4
6. loves(x,y) EE: 3, 5
7. 8y.loves(x,y) UI: 6
8. 8x.8y.loves(x,y) UI: 7

is second example illustrates the power of free variables. We can manipulate them as
though we are talking about specific individuals (though each one could be any object); and,
when we are done, we can universalize them to derive universally quantified conclusions.

8.4 EXAMPLE
As another illustration of Relational Logic proofs, consider the following problem. We know that
horses are faster than dogs and that there is a greyhound that is faster than every rabbit. We know
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that Harry is a horse and that Ralph is a rabbit. Our job is to derive the fact that Harry is faster
than Ralph.

First, we need to formalize our premises. e relevant sentences follow. Note that we have
added two facts about the world not stated explicitly in the problem: that greyhounds are dogs
and that our faster than relationship is transitive.

8x.8y.(h(x) ^ d (y)) f (x,y))
9y.(g(y) ^ 8z.(r(z)) f (y,z)))
8y.(g(y)) d (y))
8x.8y.8z.(f (x,y) ^ f (y,z)) f (x,z))
h(harry)
r(ralph)

Our goal is to show that Harry is faster than Ralph. In other words, starting with the
preceding sentences, we want to derive the following sentence.

f (harry,ralph)

e derivation of this conclusion goes as shown below. e first six lines correspond to the
premises just formalized. On line 7, we start a subproof with an assumption corresponding to the
scope of the existential on line 2, with the idea of using Existential Elimination later on in the
proof. Lines 8 and 9 come from And Elimination. Line 10 is the result of applying Universal
Elimination to the sentence on line 9. On line 11, we use Implication Elimination to infer that y
is faster than Ralph. Next, we instantiate the sentence about greyhounds and dogs and infer that
y is a dog. en, we instantiate the sentence about horses and dogs; we use And Introduction
to form a conjunction matching the antecedent of this instantiated sentence; and we infer that
Harry is faster than y. We then instantiate the transitivity sentence, again form the necessary con-
junction, and infer the desired conclusion. Finally, we use Implication Introduction to discharge
our subproof; we use Universal Introduction to universalize the results; and we use Existential
Elimination to produce our desired conclusion.
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1. ∀x.∀y.(h(x) ˄ d(y) ⇒ f(x,y)) Premise

2. ∃y.(g(y) ˄ ∀z.(r(z) ⇒ f(y,z)) Premise

3. ∀y.(g(y) ⇒ d(y)) Premise

4. ∀x.∀y.∀z.f(x,y)) ˄ f(y,z) ⇒ f(x,z)) Premise

5. h(harry) Premise

6. r(ralph) Premise

7. g(y) ˄ ∀z.(r(z) ⇒ f(y,z)) Assumption

8. g(y) AE: 7

9. ∀z.(r(z) ⇒ f(y,z)) AE: 7

10. r(ralph) ⇒ f(y,ralph)) UE: 9

11. f(y,ralph)) IE: 10, 6

12. g(y) ⇒ d(y) UE: 3

13. d(y) IE: 12, 8

14. ∀y.(h(harry) ˄ d(y) ⇒ f(harry,y)) UE: 1

15. h(harry) ˄ d(y) ⇒ f(harry,y) UE: 14

16. h(harry) ˄ d(y) AI: 5. 13

17. f(harry,y) IE: 15, 16

18. ∀y.∀z.(f(harry,y) ˄ f(y,z) ⇒ f(harry,z)) UE: 4

19. ∀z.(f(harry,y) ˄ f(y,z) ⇒ f(harry,z)) UE: 18

20. f(harry,y) ˄ f(y,ralph) ⇒ f(harry,ralph) UE: 19

21. f(harry,y) ˄ f(y,ralph) AI: 17, 11

22. f(harry,ralph) IE: 20, 21

23. g(y) ˄ ∀z.(r(z) ⇒ f(y,z)) ⇒ f(harry,ralph) II: 7, 22

24. ∀y.(g(y) ˄ ∀z.(r(z) ⇒ f(y,z)) ⇒ f(harry,ralph)) UI: 23

25. f(harry,ralph) EE: 2, 24

is derivation is somewhat lengthy, but it is completely mechanical. Each conclusion fol-
lows from previous conclusions by a mechanical application of a rule of inference. On the other
hand, in producing this derivation, we rejected numerous alternative inferences. Making these
choices intelligently is one of the key problems in the process of inference.

8.5 EXAMPLE

In this section, we use our proof system to prove some basic results involving quantifiers.
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Given 8x.8y.(p(x,y)) q(x)), we know that 8x.(9y.p(x,y)) q(x)). In general, given a
universally quantified implication, it is okay to drop a universal quantifier of a variable outside the
implication and apply an existential quantifier of that variable to the antecedent of the implication,
provided that the variable does not occur in the consequent of the implication.

Our proof is shown below. As usual, we start with our premise. We start a subproof with
an existential sentence as assumption. en, we use Universal Elimination to strip away the outer
quantifier from the premise. is allows us to derive q(x) using Existential Elimination. Finally,
we create an implication with Implication Introduction, and we generalize using Universal Intro-
duction.

1. ∀x.∀y.(p(x,y) q(x)) Premise

2. ∃y.p(x,y) Assumption

3. ∀y.(p(x,y) q(x)) UE: 1

4. q(x) EE: 2, 3

5. y.p(x,y) q(x) II: 4

6. x( y.p(x,y) q(x)) UI: 5x

y.

y.y.y.

e relationship holds the other way around as well. Given 8x.(9y.p(x,y)) q(x)), we
know that 8x.8y.(p(x,y)) q(x)). We can convert an existential quantifier in the antecedent of
an implication into a universal quantifier outside the implication.

Our proof is shown below. As usual, we start with our premise. We start a subproof by
making an assumption. en we turn the assumption into an existential sentence to match the an-
tecedent of the premise. We use Universal Implication to strip away the quantifier in the premise
to expose the implication. en, we apply Implication Elimination to derive q(x). Finally, we
create an implication with Implication Introduction, and we generalize using two applications of
Universal Introduction.

1.  ∀x.(∃y.(p(x,y) ⇒ q(x)) Premise

2. p(x,y) Assumption

3. ∃y.p(x,y) EI: 2

4. ∃y.p(x,y) ⇒ q(x) UE: 1

5. q(x) E: 4, 3

6. p(x,y) q(x) II

I

: 5

7. x. y.(p(x,y) q(x)) 2 × UI: 6yy

RECAP
A Fitch system for Relational Logic can be obtained by extending the Fitch system for Propo-
sitional Logic with four additional rules to deal with quantifiers. e Universal Introduction rule
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allows us to reason from arbitrary sentences to universally quantified versions of those sentences.
e Universal Elimination rule allows us to reason from a universally quantified sentence to a
version of the target of that sentence in which the universally quantified variable is replaced by an
appropriate term. e Existential Introduction rule allows us to reason from a sentence involving
a term � to an existentially quantified sentence in which one, some, or all occurrences of � have
been replaced by the existentially quantified variable. Finally, the Existential Elimination rule al-
lows us to reason from an existentially quantified sentence 9�.'[�] and a universally quantified
implication 8�.('[�])  ) to the consequent  , under the condition that � does not occur in
 .

8.6 EXERCISES
8.1. Given 8x.(p(x) ^ q(x)), use the Fitch System to prove 8x.p(x) ^ 8x.q(x).

8.2. Given 8x.(p(x)) q(x)), use the Fitch System to prove 8x.p(x))8x.q(x).

8.3. Given the premises 8x.(p(x)) q(x)) and 8x.(q(x)) r(x)), use the Fitch system to
prove the conclusion 8x.(p(x)) r(x)).

8.4. Given 8x.8y.p(x,y), use the Fitch System to prove 8y.8x.p(x,y).

8.5. Given 8x.8y.p(x,y), use the Fitch System to prove 8x.8y.p(y,x).

8.6. Given 9y.8x.p(x,y), use the Fitch system to prove 8x.9y.p(x,y).

8.7. Given 9x.:p(x), use the Fitch System to prove :8x.p(x).

8.8. Given 8x.p(x), use the Fitch System to prove :9x.:p(x).
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C H A P T E R 9

Herbrand Logic
9.1 INTRODUCTION
Relational Logic, as defined in Chapter 6, allows us to axiomatize worlds with varying numbers
of objects. e main restriction is that the worlds must be finite (since we have only finitely many
constants to refer to these objects).

Often, we want to describe worlds with infinitely many objects. For example, it would be
nice to axiomatize arithmetic over the integers or to talk about sequences of objects of varying
lengths. Unfortunately, this is not possible due to the finiteness restriction of Relational Logic.

One way to get infinitely many terms is to allow our vocabulary to have infinitely many
object constants. While there is nothing wrong with this in principle, it makes the job of axiom-
atizing things effectively impossible, as we would have to write out infinitely many sentences in
many cases.

In this chapter, we explore an alternative to Relational Logic, called Herbrand Logic, in
which we can name infinitely many objects with a finite vocabulary. e trick is to expand our
language to include not just object constants but also complex terms that can be built from object
constants in infinitely many ways. By constructing terms in this way, we can get infinitely many
names for objects; and, because our vocabulary is still finite, we can finitely axiomatize some things
in a way that would not be possible with infinitely many object constants.

In this chapter, we proceed through the same stages as in the introduction to Relational
Logic. We start with syntax and semantics. We then discuss evaluation and satisfaction. We look
at some examples. And we conclude with a discussion of some of the properties of Herbrand
Logic.

9.2 SYNTAXANDSEMANTICS
e syntax of Herbrand Logic is the same as that of Relational Logic except for the addition of
function constants and functional expressions.

As we shall see, function constants are similar to relation constants in that they are used
in forming complex expressions by combining them with an appropriate number of arguments.
Accordingly, each function constant has an associated arity, i.e., the number of arguments with
which that function constant can be combined. A function constant that can combined with a
single argument is said to be unary; one that can be combined with two arguments is said to be
binary; one that can be combined with three arguments is said to be ternary; more generally, a
function constant that can be combined with n arguments is said to be n-ary.
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A functional expression, or functional term, is an expression formed from an n-ary function
constant and n terms enclosed in parentheses and separated by commas. For example, if f is a
binary function constant and if a and y are terms, then f (a,y) is a functional expression, as are
f (a,a) and f (y,y).

Note that, unlike relational sentences, functional expressions can be nested within other
functional expressions. For example, if g is a unary function constant and if a is a term, g(a) and
g(g(a)) and g(g(g(a))) are all functional expressions.

Finally, in Herbrand Logic, we define a term to be a variable or an object constant or a func-
tional expression. e definition here is the same as before except for the addition of functional
expressions to this list of possibilities.

And that is all. Relational sentences, logical sentences, and quantified sentences are defined
exactly as for ordinary Relational Logic. e only difference between the two languages is the
Herbrand Logic allows for functional expressions inside of sentences whereas ordinary Relational
Logic does not.

e semantics of Herbrand Logic is effectively the same as that of Relational Logic. e
key difference is that, in the presence of functions, the Herbrand base for such a language is
infinitely large.

As before, we define the Herbrand base for a vocabulary to be the set of all ground relational
sentences that can be formed from the constants of the language. Said another way, it is the set
of all sentences of the form r(t1,...,tn), where r is an n-ary relation constant and t1, ... , tn are
ground terms.

For a vocabulary with a single object constant a and a single unary function constant f and
a single unary relation constant r , the Herbrand base consists of the sentences shown below.

{r(a), r(f (a)), r(f (f (a))), ...}

A truth assignment for Herbrand Logic is a mapping that gives each ground relational
sentence in the Herbrand base a unique truth value. is is the same as for Relational Logic.
e main difference from Relational Logic is that, in this case, a truth assignment is necessarily
infinite, since there are infinitely many elements in the Herbrand Base.

Luckily, things are not always so bad. In some cases, only finitely many elements of the
Herbrand base are true. In such cases, we can describe a truth assignment in finite space by
writing out the elements that are true and assuming that all other elements are false. We shall see
some examples of this in the coming sections.

e rules defining the truth of logical sentences in Herbrand Logic are the same as those
for logical sentences in Propositional Logic and Relational Logic, and the rules for quantified
sentences in Herbrand Logic are exactly the same as those for Relational Logic.
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9.3 EVALUATIONANDSATISFACTION

e concept of evaluation for Herbrand Logic is the same as that for Relational Logic. Unfortu-
nately, evaluation is usually not practical in this case for two reasons. First of all, truth assignments
are infinite in size and so we cannot always write them down. Even when we can finitely char-
acterize a truth assignment (e.g., when the set of true sentences is finite), we may not be able
to evaluate quantified sentences mechanically in all cases. In the case of a universally quantified
formula, we need to check all instances of the scope, and there are infinitely many possibilities. In
the case of an existentially quantified sentence, we need to enumerate possibilities until we find
one that succeeds, and we may never find one if the existentially quantified sentence is false.

Satisfaction has similar difficulties. e truth tables for Herbrand Logic are infinitely large
and so we cannot write out or check all possibilities.

e good news is that, even though evaluation and satisfaction are not directly computable,
there are effective procedures for indirectly determining validity, contingency, unsatisfiability, log-
ical entailment, and so forth that work in many cases even when our usual direct methods fail. e
key is symbolic manipulation of various sorts, e.g., the generation of proofs, which we describe
in the next few chapters. But, first, in order to gain some intuitions about the power of Herbrand
Logic, we look at some examples.

9.4 EXAMPLE–PEANOARITHMETIC

Peano Arithmetic differs from Modular Arithmetic (axiomatized in Section 6.8) in that it applies
to all natural numbers (0, 1, 2, 3, ...). Since there are infinitely many such numbers, we need
infinitely many terms.

As mentioned in the introduction, we can get infinitely many terms by expanding our vo-
cabulary with infinitely many object constants. Unfortunately, this makes the job of axiomatizing
arithmetic effectively impossible, as we would have to write out infinitely many sentences.

An alternative approach is to represent numbers using a single object constant (e.g., 0) and
a single unary function constant (e.g., s). We can then represent every number n by applying the
function constant to 0 exactly n times. In this encoding, s(0) represents 1; s(s(0)) represents 2;
and so forth. With this encoding, we automatically get an infinite universe of terms, and we can
write axioms defining addition and multiplication as simple variations on the axioms of Modular
Arithmetic.

Unfortunately, even with this representation, axiomatizing Peano Arithmetic is more chal-
lenging than axiomatizing Modular Arithmetic. We cannot just write out ground relational sen-
tences to characterize our relations, because there are infinitely many cases to consider. For Peano
Arithmetic, we must rely on logical sentences and quantified sentences, not just because they are
more economical but because they are the only way we can characterize our relations in finite
space.
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Let’s look at the same relation first. e axioms shown here define the same relation in
terms of 0 and s.

8x.same(x,x)
8x.(:same(0,s(x)) ^ :same(s(x),0))
8x.8y.(:same(x,y)):same(s(x),s(y)))

It is easy to see that these axioms completely characterize the same relation. By the first
axiom, the same relation holds of every term and itself.

same(0,0)
same(s(0),s(0))
same(s(s(0)),s(s(0)))

...

e other two axioms tell us what is not true. e second axiom tells us that 0 is not the
same as any composite term. e same holds true with the arguments reversed.

:same(0,s(0)) :same(s(0),0)
:same(0,s(s(0))) :same(s(s(0)),0)
:same(0,s(s(s(0)))) :same(s(s(s(0))),0)

... ...

e third axiom builds on these results to show that non-identical composite terms of
arbitrary complexity do not satisfy the same relation. Viewed the other way around, to see that
two non-identical terms are not the same, we just strip away occurrences of s from each term till
one of the two terms becomes 0 and the other one is not 0. By the second axiom, these are not
the same, and so the original terms are not the same.

:same(s(0),s(s(0))) :same(s(s(0)),s(0))
:same(s(0),s(s(s(0)))) :same(s(s(s(0))),s(0))
:same(s(0),s(s(s(s(0))))) :same(s(s(s(s(0)))),s(0))

... ...

Once we have the same relation, we can define the other relations in our arithmetic. e
following axioms define the plus relation in terms of 0, s, and same. Adding 0 to any number
results in that number. If adding a number x to a number y produces a number z, then adding
the successor of x to y produces the successor of z. Finally, we have a functionality axiom for plus.

8y.plus(0,y,y)
8x.8y.8z.(plus(x,y,z)) plus(s(x),y,s(z)))
8x.8y.8z.8w.( plus(x,y,z) ^ :same(z,w)):plus(x,y,w))

e axiomatization of multiplication is analogous. Multiplying any number by 0 produces
0. If a number z is the product of x and y and w is the sum of y and z, then w is the product of
the successor of x and y. As before, we have a functionality axiom.
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8y.times(0,y,0)
8x.8y.8z.8w.( times(x,y,z) ^ plus(y,z,w)) times(s(x),y,w))
8x.8y.8z.8w.( times(x,y,z) ^ :same(z,w)):times(x,y,w))

at’s all we need—just three axioms for same and three axioms for each arithmetic func-
tion.

Before we leave our discussion of Peano arithmetic, it is worthwhile to look at the concept of
Diophantine equations. A polynomial equation is a sentence composed using only addition, mul-
tiplication, and exponentiation with fixed exponents (that is numbers not variables). For example,
the expression shown below in traditional math notation is a polynomial equation.

x2 C 2y D 4z

A naturalDiophantine equation is a polynomial equation in which the variables are restricted
to the natural numbers. For example, the polynomial equation here is also a Diophantine equation
and happens to have a solution in the natural numbers, viz. x D 4 and y D 8 and z D 8.

Diophantine equations can be readily expressed as sentences in Peano Arithmetic. For ex-
ample, we can represent the Diophantine equation above with the sentence shown below.

9x.9y.9z.8u.8v.8w.(times(x,x,u) ^ times(2,y,v) ^ plus(u,v,w)) times(4,z,w))

is is a little messy, but it is doable. And we can always clean things up by adding a little
syntactic sugar to our notation to make it look like traditional math notation.

Once this mapping is done, we can use the tools of logic to work with these sentences. In
some cases, we can find solutions; and, in some cases, we can prove that solutions do not exist.is
has practical value in some situations, but it also has significant theoretical value in establishing
important properties of Relational Logic, a topic that we discuss in a later section.

9.5 EXAMPLE–LINKEDLISTS
A list is finite sequence of objects. Lists can be flat, e.g., [a, b, c]. Lists can also be nested within
other lists, e.g., [a, [b, c], d ].

A linked list is a way of representing nested lists of variable length and depth. Each element
is represented by a cell containing a value and a pointer to the remainder of the list. Our goal in
this example is to formalize linked lists and define some useful relations.

To talk about lists of arbitrary length and depth, we use the binary function constant cons,
and we use the object constant nil to refer to the empty list. In particular, a term of the form
cons(�1, �2) designates a sequence in which �1 denotes the first element and �2 denotes the rest
of the list. With this function constant, we can encode the list [a, b, c] as follows.

cons(a, cons(b, cons(c, nil)))

e advantage of this representation is that it allows us to describe functions and relations
on lists without regard to length or depth.
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As an example, consider the definition of the binary relation member, which holds of an
object and a list if the object is a top-level member of the list. Using the function constant cons,
we can characterize the member relation as shown below. Obviously, an object is a member of a
list if it is the first element; however, it is also a member if it is member of the rest of the list.

8x.8y.member(x, cons(x, y))
8x.8y.8z.(member(x, z)) member(x, cons(y, z)))

In similar fashion, we can define functions to manipulate lists in different ways. For exam-
ple, the following axioms define a relation called append. e value of append (its last argument) is
a list consisting of the elements in the list supplied as its first argument followed by the elements
in the list supplied as its second. For example, we would have append(cons(a,nil), cons(b, cons(c,
nil)), cons(a, cons(b, cons(c, nil)))). And, of course, we need negative axioms as well (omitted
here).

8z.append(nil, z, z)
8x.8y.8z.(append(y, z, w))append(cons(x, y), z, cons(x,w)))

We can also define relations that depend on the structure of the elements of a list. For
example, the among relation is true of an object and a list if the object is a member of the list, if
it is a member of a list that is itself a member of the list, and so on. (And, once again, we need
negative axioms.)

8x.among(x, x)
8x.8y.8z.(among(x, y) _ among(x, z)) among(x, cons(y, z)))

Lists are an extremely versatile representational device, and the reader is encouraged to be-
come as familiar as possible with the techniques of writing definitions for functions and relations
on lists. As is true of many tasks, practice is the best approach to gaining skill.

9.6 EXAMPLE–PSEUDOENGLISH
Pseudo English is a formal language that is intended to approximate the syntax of the English
language. One way to define the syntax of Pseudo English is to write grammatical rules in Backus-
Naur Form (BNF). e rules shown below illustrate this approach for a small subset of Pseudo
English. A sentence is a noun phrase followed by a verb phrase. A noun phrase is either a noun
or two nouns separated by the word and. A verb phrase is a verb followed by a noun phrase. A
noun is either the word Mary or the word Pat or the word Quincy. A verb is either like or likes.

<sentence> ::D <np> <vp>
<np> ::D <noun>
<np> ::D <noun> “and” <noun>
<vp> ::D <verb> <np>
<noun> ::D “mary” | “pat” | “quincy”
<verb> ::D “like” | “likes”
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Alternatively, we can use Herbrand Logic to formalize the syntax of Pseudo English. e
sentences shown below express the grammar described in the BNF rules above. (We have dropped
the universal quantifiers here to make the rules a little more readable.) Here, we are using the
append relation defined in the section of lists.

np(x) ^ vp(y) ^ append(x,y,z)) sentence(z)
noun(x)) np(x)
noun(x) ^ noun(y) ^ append(x,and,z) ^ append(z,y,w)) np(w)
verb(x) ^ np(y) ^ append(x,y,z)) vp(z)
noun(mary)
noun(pat)
noun(quincy)
verb(like)
verb(likes)

Using these sentences, we can test whether a given sequence of words is a syntactically
legal sentence in Pseudo English and we can use our logical entailment procedures to enumerate
syntactically legal sentences, like those shown below.

mary likes pat
pat and quincy like mary
mary likes pat and quincy

One weakness of our BNF and the corresponding axiomatization is that there is no concern
for agreement in number between subjects and verbs. Hence, with these rules, we can get the
following expressions, which in Natural English are ungrammatical.

� mary like pat
� pat and quincy likes mary

Fortunately, we can fix this problem by elaborating our rules just a bit. In particular, we
add an argument to some of our relations to indicate whether the expression is singular or plural.
Here, 0 means singular, and 1 means plural. We then use this to block sequences of words where
the numbers do not agree.

np(x,w) ^ vp(y,w) ^ append(x,y,z)) sentence(z)
noun(x)) np(x,0)
noun(x) ^ noun(y) ^ append(x,and,z) ^ append(z,y,w)) np(w,1)
verb(x,w) ^ np(y,v) ^ append(x,y,z)) vp(z,w)
noun(mary)
noun(pat)
noun(quincy)
verb(like,1)
verb(likes,0)
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With these rules, the syntactically correct sentences shown above are still guaranteed to
be sentences, but the ungrammatical sequences are blocked. Other grammatical features can be
formalized in similar fashion, e.g., gender agreement in pronouns (he vs. she), possessive adjectives
(his vs. her), reflexives (like himself and herself ), and so forth.

9.7 EXAMPLE–METALEVELLOGIC
roughout this book, we have been writing sentences in English about sentences in Logic, and
we have been writing informal proofs in English about formal proofs in Logic. A natural question
to ask is whether it is possible formalize Logic within Logic. e answer is yes. e limits of what
can be done are very interesting. In this section, we look at a small subset of this problem, viz.
using Relational Logic to formalize information about Propositional Logic.

e first step in formalizing Propositional Logic in Relational Logic is to represent the
syntactic components of Propositional Logic.

In what follows, we make each proposition constant in our Propositional Logic language
an object constant in our Relational Logic formalization. For example, if our Propositional Logic
language has relation constants p, q, and r , then p, q, and r are object constants in our formal-
ization.

Next, we introduce function constants to represent constructors of complex sentences.
ere is one function constant for each logical operator—not for :, and for ^, or for _, if for
), and iff for,. Using these function constants, we represent Propositional Logic sentences
as terms in our language. For example, we use the term and(p,q) to represent the Propositional
Logic sentence (p ^ q); and we use the term if (and(p,q),r) to represent the Propositional Logic
sentence (p ^ q) r).

Finally, we introduce a selection of relation constants to express the types of various ex-
pressions in our Propositional Logic language. We use the unary relation constant proposition to
assert that an expression is a proposition. We use the unary relation constant negation to assert
that an expression is a negation. We use the unary relation constant conjunction to assert that an
expression is a conjunction. We use the unary relation constant disjunction to assert that an expres-
sion is a disjunction. We use the unary relation constant implication to assert that an expression
is an implication. We use the unary relation constant biconditional to assert that an expression is
a biconditional. And we use the unary relation constant sentence to assert that an expression is a
proposition.

With this vocabulary, we can characterize the syntax of our language as follows. We start
with declarations of our proposition constants.

proposition(p)
proposition(q)
proposition(r)

Next, we define the types of expressions involving our various logical operators.
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8x.(sentence(x)) negation(not(x)))
8x.8y.(sentence(x) ^ sentence(y)) conjunction(and(x,y)))
8x.8y.(sentence(x) ^ sentence(y)) disjunction(or(x,y)))
8x.8y.(sentence(x) ^ sentence(y)) implication(if (x,y)))
8x.8y.(sentence(x) ^ sentence(y)) biconditional(iff (x,y)))

Finally, we define sentences as expressions of these types.

8x.(proposition(x)) sentence(x))
8x.(negation(x)) sentence(x))
8x.(conjunction(x)) sentence(x))
8x.(disjunction(x)) sentence(x))
8x.(implication(x)) sentence(x))
8x.(biconditional(x)) sentence(x))

Note that these sentences constrain the types of various expressions but do not define them
completely. For example, we have not said that not(p) is not a conjunction. It is possible to make
our definitions more complete by writing negative sentences. However, they are a little messy, and
we do not need them for the purposes of this section.

With a solid characterization of syntax, we can formalize our rules of inference. We start by
representing each rule of inference as a relation constant. For example, we use the ternary relation
constant ai to represent And Introduction, and we use the binary relation constant ae to represent
And Elimination. With this vocabulary, we can define these relations as shown below.

8x.8y.(sentence(x) ^ sentence(y)) ai(x,y,and(x,y)))
8x.8y.(sentence(x) ^ sentence(y)) ae(and(x,y),x))
8x.8y.(sentence(x) ^ sentence(y)) ae(and(x,y),y))

In similar fashion, we can define proofs—both linear and structured. We can even define
truth assignments, satisfaction, and the properties of validity, satisfiability, and so forth. Hav-
ing done all of this, we can use the proof methods discussed in the next chapters to prove our
metatheorems about Propositional Logic.

We can use a similar approach to formalizing Relational Logic within Relational Logic.
However, in that case, we need to be very careful. If done incorrectly, we can write paradoxical
sentences, i.e., sentences that are neither true nor false. For example, a careless formalization
leads to formal versions of sentences like is sentence is false, which is self-contradictory, i.e., it
cannot be true and cannot be false. Fortunately, with care it is possible to avoid such paradoxes
and thereby get useful work done.

9.8 UNDECIDABILITY
e good news about Herbrand Logic is that it is highly expressive. We can formalize things
in Herbrand Logic that cannot be formalized (at least in finite form) in Relational Logic. For
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example, we showed how to define addition and multiplication in finite form. is is not possible
with Relational Logic and in other logics (e.g., First-Order Logic).

e bad news is that the questions of unsatisfiability and logical entailment for Herbrand
Logic are not effectively computable. Explaining this in detail is beyond the scope of this course.
However, we can give a line of argument that suggests why it is true. e argument reduces a
problem that is generally accepted to be non-semidecidable to the question of unsatisfiability /
logical entailment for Herbrand Logic. If our logic were semidecidable, then this other question
would be semidecidable as well; and, since it is known not to be semidecidable, then Herbrand
Logic must not be semidecidable either.

As we know, Diophantine equations can be readily expressed as sentences in Herbrand
Logic. For example, we can represent the solvability of Diophantine equation 3x2 D 1 with the
sentence shown below.

9x.9y.(times(x, x, y) ^ times(s(s(s(0))), y, s(0)))

We can represent every Diophantine equation in an analogous way. We can express the
unsolvability of a Diophantine equation by negating the corresponding sentence. We can then
ask the question of whether the axioms of arithmetic logically entail this negation or, equivalently,
whether the axioms of Arithmetic together with the unnegated sentence are unsatisfiable.

e problem is that it is well known that determining whether Diophantine equations
are unsolvable is not semidecidable. If we could determine the unsatisfiability of our encoding
of a Diophantine equation, we could decide whether it is unsolvable, contradicting the non-
semidecidability of that problem.

Note that this does not mean Herbrand Logic is useless. In fact, it is great for expressing
such information; and we can prove many results, even though, in general, we cannot prove ev-
erything that follows from arbitrary sets of sentences in Herbrand Logic. We discuss this issue
further in later chapters.

RECAP

Herbrand Logic is an extended version of Relational Logic that includes functional expressions.
Since functional expressions can be composed with each other in infinitely many ways, the Her-
brand base for Herbrand Logic is infinite, allowing us to axiomatize infinite relations with a
finite vocabulary. Other than the addition of functional expressions, the syntax and semantics of
Herbrand Logic is the same as that of Relational Logic. Questions of unsatisfiability and logical
entailment can sometimes be computed in Herbrand Logic, though in general those questions
are not effectively computable.
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9.9 EXERCISES
9.1. Saywhether each of the following expressions is a syntactically legal sentence ofHerbrand

Logic. Assume that a and b are object constants, f is a unary function constant, and p
is a unary relation constant.
(a) p(a)
(b) p(f (a))
(c) f (f (a))
(d ) p(f (f (a)))
(e) p(f (p(a)))

9.2. Say whether each of the following sentences is logically entailed by the sentences in Sec-
tion 9.4.
(a) same(s(0),s(s(s(0))))
(b) plus(s(s(0)),s(s(s(0))),s(s(s(s(s(0))))))
(c) times(s(s(0)),s(s(s(0))),s(s(s(s(s(0))))))
(d ) times(s(0),s(s(s(0))),s(s(s(0))))

9.3. Say whether each of the following sentences is logically entailed by the sentences in Sec-
tion 9.5.
(a) append(nil, nil, nil)
(b) append(cons(a, nil), nil, cons(a, nil))
(c) append(cons(a, nil), cons(b, nil), cons(a, b))
(d ) append(cons(cons(a, nil), nil), cons(b, nil), cons(a, cons(b, nil)))

9.4. Say whether each of the following sentences is a grammatical sentence of Pseudo English
according to the enhanced grammar presented at the end of Section 9.6.
(a) Mary likes Pat and Quincy.
(b) Mary likes Pat and Mary likes Quincy.
(c) Mary likes Mary.
(d ) Mary likes herself.

9.5. Say whether each of the following sentences is logically entailed by the sentences in Sec-
tion 9.7.
(a) conjunction(and(not(p), not(q)))
(b) conjunction(not(or(not(p), not(q))))
(c) ae(and(p, or(p, q)), or(p, q))
(d ) ae(and(p, or(p, q)), and(p, q))
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C H A P T E R 10

Herbrand Proofs
10.1 INTRODUCTION
Logical entailment for Herbrand Logic is defined the same as for Propositional Logic and Rela-
tional Logic. A set of premises logically entails a conclusion if and only if every truth assignment
that satisfies the premises also satisfies the conclusions. In the case of Propositional Logic and
Relational Logic, we can check logical entailment by examining a truth table for the language.
With finitely many proposition constants, the truth table is large but finite. For Herbrand Logic,
things are not so easy. It is possible to have Herbrand bases of infinite size; and, in such cases,
truth assignments are infinitely large and there are infinitely many of them, making it impossible
to check logical entailment using truth tables.

All is not lost. As with Propositional Logic and Relational Logic, we can establish logical
entailment in Herbrand Logic by writing proofs. In fact, it is possible to show that, with a few
simple restrictions, a set of premises logically entails a conclusions if and only if there is a finite
proof of the conclusion from the premises, even when the Herbrand base is infinite. Moreover,
it is possible to find such proofs in a finite time. at said, things are not perfect. If a set of
sentences does not logically entail a conclusion, then the process of searching for a proof might
go on forever. Moreover, if we remove the restrictions mentioned above, we lose the guarantee of
finite proofs. Still, the relationship between logical entailment and finite provability, given those
restrictions, is a very powerful result and has enormous practical benefits.

In this chapter, we talk about the non-compactness of Herbrand Logic and the loss of
completeness in our proof procedure. In the next chapter, we look at an extension to Fitch, called
Induction, that allows us to prove more results in Herbrand Logic.

10.2 NON-COMPACTNESSAND INCOMPLETENESS
In light of the negative results above, namely that Herbrand Logic is inherently incomplete, it
is not surprising that Herbrand Logic is not compact. Recall that compactness says that, if an
infinite set of sentences is unsatisfiable, then there is some finite subset that is unsatisfiable. It
guarantees finite proofs.

Non-Compactness eorem: Herbrand Logic is not compact.

Proof. Consider the following infinite set of sentences.

p(a), p(f (a)), p(f (f (a))), ...
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Assume the vocabulary is {p, a, f }. Hence, the ground terms are a, f (a), f (f (a)), ....
is set of sentences entails 8x.p(x). Add in the sentence 9x.:p(x). Clearly, this infinite set
is unsatisfiable. However, every finite subset is satisfiable. (Every finite subset is missing either
9x.:p(x) or one of the sentences above. If it is the former, the set is satisfiable; and, if it is the
latter, the set can be satisfied by making the missing sentence false.) us, compactness does not
hold.

Corollary (Infinite Proofs): In Herbrand Logic, some entailed sentences have only infinite proofs.

Proof. e above proof demonstrates a set of sentences that entail 8x.p(x). e set of premises
in any finite proof will be missing one of the above sentences; thus, those premises do not entail
8x.p(x). us no finite proof can exist for 8x.p(x).

e statement in this Corollary was made earlier with the condition that checking whether
a candidate proof actually proves a conjecture is decidable. ere is no such condition on this
theorem.
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C H A P T E R 11

Induction
11.1 INTRODUCTION
Induction is reasoning from the specific to the general. If various instances of a schema are true
and there are no counterexamples, we are tempted to conclude a universally quantified version of
the schema.

p(a)) q(a)
p(b)) q(b) ! 8x.p(x)) q(x)
p(c)) q(c)

Incomplete induction is induction where the set of instances is not exhaustive. From a reason-
able collection of instances, we sometimes leap to the conclusion that a schema is always true even
though we have not seen all instances. Consider, for example, the function f where f .1/ D 1,
and f .nC 1/ D f .n/C 2nC 1. If we look at some values of this function, we notice a certain
regularity—the value of f always seems to be the square of its input. From this sample, we are
tempted to leap to the conclusion that f .n/ D n2. Lucky guess. In this case, the conclusion hap-
pens to be true; and we can prove it.

n f (n) n2

1 1 1
2 4 22

3 9 32

4 16 42

5 25 52

Here is another example. is one is due to the mathematician Fermat (1601–1665). He
looked at values of the expression 22n

C 1 for various values of n and noticed that they were all
prime. So, he concluded the value of the expression was prime number. Unfortunately, this was
not a lucky guess. His conjecture was ultimately disproved, in fact with the very next number in
the sequence. (Mercifully, the counterexample was found after his death.)

n 22n
C 1 Prime?

1 5 Yes
2 17 Yes
3 257 Yes
4 65537 Yes



122 11. INDUCTION

For us, this is not so good. In Logic, we are concerned with logical entailment. We want
to derive only conclusions that are guaranteed to be true when the premises are true. Guesses like
these are useful in suggesting possible conclusions, but they are not themselves proofs. In order
to be sure of universally quantified conclusions, we must be sure that all instances are true. is
is called complete induction. When applied to numbers, it is usually called mathematical induction.

e technique used for complete induction varies with the structure of the language to
which it is applied. We begin this chapter with a discussion of domain closure, a rule that applies
when the Herbrand base of our language is finite. We then move on to Linear Induction, i.e., the
special case in which the ground terms in the language form a linear sequence. We look at tree
induction, i.e., the special case in which the ground terms of the language form a tree. And we
look at Structural Induction, which applies to all languages. Finally, we look at two special cases
that make inductive reasoning more complicated—Multidimensional Induction and Embedded
Induction.

11.2 DOMAINCLOSURE
Induction for finite languages is trivial. We simply use the Domain Closure rule of inference. For
a language with object constants �1, ... , �n, the rule is written as shown below. If we believe a
schema is true for every instance, then we can infer a universally quantified version of that schema.

'[�1]
...
'[�n]
8�.'[�]

Recall that, in our formalization of the Sorority World, we have just four constants—abby,
bess, cody, and dana. For this language, we would have the following Domain Closure rule.

Domain Closure (DC)
'[abby]
'[bess]
'[cody]
'[dana]
8�.'[�]

e following proof shows howwe can use this rule to derive an inductive conclusion.Given
the premises we considered earlier in this book, it is possible to infer that Abby likes someone,
Bess likes someone, Cody likes someone, and Dana likes someone. Taking these conclusions
as premises and using our Domain Closure rule, we can then derive the inductive conclusion
8x.9y.likes(x,y), i.e., everybody likes somebody.



11.3. LINEAR INDUCTION 123

1. 9y.likes(abby,y) Premise
2. 9y.likes(bess,y) Premise
3. 9y.likes(cody,y) Premise
4. 9y.likes(dana,y) Premise
5. 8x.9y.likes(x,y) Domain Closure: 1, 2, 3, 4

Unfortunately, this technique does not work when there are infinitely many ground terms.
Suppose, for example, we have a language with ground terms �1, �2, ... A direct generalization
of the Domain Closure rule is shown below.

'[�1]
'[�2]
...
8�.'[�]

is rule is sound in the sense that the conclusion of the rule is logically entailed by the
premises of the rule. However, it does not help us produce a proof of this conclusion. To use the
rule, we would need to prove all of the rule’s premises. Unfortunately, there are infinitely many
premises. So, the rule cannot be used in generating a finite proof.

All is not lost. It is sometimes possible to write rules that cover all instances without enu-
merating them individually. e method depends on the structure of the language. e next
sections describe how this can be done for languages with different structures.

11.3 LINEAR INDUCTION
Imagine an infinite set of dominoes placed in a line so that, when one falls, the next domino in the
line also falls. If the first domino falls, then the second domino falls. If the second domino falls,
then the third domino falls. And so forth. By continuing this chain of reasoning, it is easy for us
to convince ourselves that every domino eventually falls. is is the intuition behind a technique
called Linear Induction.

Consider a language with a single object constant a and a single unary function constant
s. ere are infinitely many ground terms in this language, arranged in what resembles a straight
line. See below. Starting from the object constant, we move to a term in which we apply the
function constant to that constant, then to a term in which we apply the function constant to that
term, and so forth.

a! s(a)! s(s(a))! s(s(s(a)))! ...

In this section, we concentrate on languages that have linear structure of this sort. Hereafter,
we call these linear languages. In all cases, there is a single object constant and a single unary
function constant. In talking about a linear language, we call the object constant the base element
of the language, and we call the unary function constant the successor function.
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Although there are infinitely many ground terms in any linear language, we can still gen-
erate finite proofs that are guaranteed to be correct. e trick is to use the structure of the terms
in the language in expressing the premises of an inductive rule of inference known as Linear In-
duction. See below for a statement of the induction rule for the language introduced above. In
general, if we know that a schema holds of our base element and if we know that, whenever the
schema holds of an element, it also holds of the successor of that element, then we can conclude
that the schema holds of all elements.

Linear Induction
'[a]
8�.('[�]) '[s(�)]
8�.'[�]

A bit of terminology before we go on. e first premise in this rule is called the base case
of the induction, because it refers to the base element of the language. e second premise is
called the inductive case. e antecedent of the inductive case is called the inductive hypothesis,
and the consequent is called, not surprisingly, the inductive conclusion. e conclusion of the rule
is sometimes called the overall conclusion to distinguish it from the inductive conclusion.

For the language introduced above, our rule of inference is sound. Suppose we know that
a schema is true of a and suppose that we know that, whenever the schema is true of an arbitrary
ground term � , it is also true of the term s(�). en, the schema must be true of everything, since
there are no other terms in the language.

e requirement that the signature consists of no other object constants or function con-
stants is crucial. If this were not the case, say there were another object constant b, then we would
have trouble. It would still be true that ' holds for every element in the set {a, s(a), s(s(a)),...}.
However, because there are other elements in the Herbrand universe, e.g., b and s(b), 8x.'(x)
would no longer be guaranteed.

Here is an example of induction in action. Recall the formalization of Arithmetic intro-
duced in Chapter 9. Using the object constant 0 and the unary function constant s, we represent
each number n by applying the function constant to 0 exactly n times. For the purposes of this ex-
ample, let’s assume we have just one ternary relation constant, viz. plus, which we use to represent
the addition table.

e following axioms describe plus in terms of 0 and s. e first sentence here says that
adding 0 to any element produces that element. e second sentence states that adding the suc-
cessor of a number to another number yields the successor of their sum. e third sentence is a
functionality axiom for plus.

8y.plus(0,y,y)
8x.8y.8z.(plus(x,y,z))plus(s(x),y,s(z)))
8x.8y.8z.8w.( plus(x,y,z) ^ :same(z,w)):plus(x,y,w))
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It is easy to see that any table that satisfies these axioms includes all of the usual addition
facts. e first axiom ensures that all cases with 0 as first argument are included. From this fact
and the second axiom, we can see that all cases with s(0) as first argument are included. And so
forth.

e first axiom above tells us that 0 is a left identity for addition—0 added to any number
produces that number as result. As it turns out, given these definitions, 0 must also be a right
identity, i.e., it must be the case that 8x.plus(x,0,x).

We can use induction to prove this result as shown below. We start with our premises. We
use Universal Elimination on the first premise to derive the sentence on line 3. is takes care
of the base case of our induction. We then start a subproof and assume the antecedent of the
inductive case. We then use three applications of Universal Elimination on the second premise to
get the sentence on line 5. We use Implication Elimination on this sentence and our assumption
to derive the conclusion on line 6. We then discharge our assumption and form the implication
shown on line 7 and then universalize this to get the result on line 8. Finally, we use Linear
Induction to derive our overall conclusion.

1. ∀y.plus(0,y,y) Premise

2. ∀x.∀y.∀z.(plus(x,y,z) ⇒  plus(s(x),y,s(z))) Premise

3. plus(0,0,0) UE: 1

4. plus(x,0,x) Assumption

5. plus(x,0,x) ⇒ plus(s(x),0,s(x)) 3 × UE: 2

6. plus(s(x),0,s(x)) IE: 5, 4

7. plus(x,0,x) ⇒ plus(s(x),0,s(x)) II: 4, 6

8. x.(plus(x,0,x) ⇒ plus(s(x),0,s(x))) UI: 7

9. x.(plus(x,0,x) Ind: 3, 8

Most inductive proofs have this simple structure. We prove the base case. We assume the
inductive hypothesis; we prove the inductive conclusion; and, based on this proof, we have the
inductive case. From the base case and the inductive case, we infer the overall conclusion.

11.4 TREE INDUCTION
Tree languages are a superset of linear languages. While in linear languages the terms in the
language form a linear sequence, in tree languages the structure is more tree-like. Consider a
language with an object constant a and two unary function constants f and g. Some of the terms
in this language are shown below.
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                a 

     ↙            ↘ 

           f(a)                 g(a) 

     ↙      ↘               ↙           ↘

f(f(a))     g(f(a))      f(g(a))        g(g(a)) 

As with linear languages, we can write an inductive rule of inference for tree languages. e
tree induction rule of inference for the language just described is shown below. Suppose we know
that a schema ' holds of a. Suppose we know that, whenever the schema holds of any element, it
holds of the term formed by applying f to that element. And suppose we know that, whenever
the schema holds of any element, it holds of the term formed by applying g to that element. en,
we can conclude that the schema holds of every element.

Tree Induction
'[a]
8�.('[�]) '[f (�)])
8�.('[�]) '[g(�)])
8�.'[�]

In order to see an example of tree induction in action, consider the ancestry tree for a
particular dog. We use the object constant rex to refer to the dog; we use the unary function
constant f to map an arbitrary dog to its father; and we use g map a dog to its mother. Finally,
we have a single unary relation constant purebred that is true of a dog if and only if it is purebred.

Now, we write down the fundamental rule of dog breeding—we say that a dog is purebred
if and only if both its father and its mother are purebred. See below. (is is a bit oversimplified
on several grounds. Properly, the father and mother should be of the same breed. Also, this for-
malization suggests that every dog has an ancestry tree that stretches back without end. However,
let’s ignore these imperfections for the purposes of our example.)

8x.(purebred(x), purebred(f (x)) ^ purebred(g(x)))

Suppose now that we discover the fact that our dog rex is purebred. en, we know that
every dog in his ancestry tree must be purebred. We can prove this by a simple application of tree
induction.

A proof of our conclusion is shown below. We start with the premise that Rex is purebred.
We also have our constraint on purebred animals as a premise. We use Universal Elimination to
instantiate the second premise, and then we use Biconditional Elimination on the biconditional
in line 3 to produce the implication on line 4. On line 5, we start a subproof with the assumption
the x is purebred. We use Implication Elimination to derive the conjunction on line 6, and then
we use And Elimination to pick out the first conjunct. We then use Implication Introduction to
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discharge our assumption, and we Universal Introduction to produce the inductive case for f .
We then repeat this process to produce an analogous result for g on line 14. Finally, we use the
tree induction rule on the sentences on lines 1, 9, and 14 and thereby derive the desired overall
conclusion.

1.  purebred(rex) remise

2. ∀x.(purebred(x) ⟺ purebred(f(x)) ˄ purebred(g(x))) Pr

P

emise

3. (purebred(x)⟺purebred(f(x)) ˄ purebred(g(x)) UE: 2

4. (purebred(x) ⇒ purebred(f(x)) ˄ purebred(g(x)) BE: 3

5. purebred(x) ssumption

6. purebred(f(x)) ˄ purebred(g(x)) IE: 4, 5

7. purebred(f(x)) AE

A

A

: 6

8. purebred(x) ⇒ purebred(f(x)) II: 5, 7

9. ∀x.purebred(x) ⇒ purebred(f(x)) UI: 8

10. purebred(x) ssumption

11. purebred(f(x)) ˄ purebred(g(x)) IE: 4, 10

12. purebred(g(x)) AE: 11

13. purebred(x) ⇒ purebred(g(x)) II: 10,  12

14. x.purebred(x) ⇒ purebred(g(x)) UI: 13

15. x.purebred(x) Ind: 1, 9, 14x.

x.

11.5 STRUCTURAL INDUCTION

Structural Induction is the most general form of induction. In Structural Induction, we can have
multiple object constants, multiple function constants, and, unlike our other forms of induction,
we can have function constants with multiple arguments. Consider a language with two object
constants a and b and a single binary function constant c. See below for a list of some of the
terms in the language. We do not provide a graphical rendering in this case, as the structure is
more complicated than a line or a tree.

a, b, c(a,a), c(a,b), c(b,a), c(b,b), c(a,c(a,a)), c(c(a,a),a), c(c(a,a),c(a,a)), ...

e Structural Induction rule for this language is shown below. If we know that ' holds
of our base elements a and b and if we know 8�.8�.(('[�] ^ '[�])) '[c(�,�)]), then we can
conclude 8�.'[�] in a single step.



128 11. INDUCTION

Structural Induction
'[a]
'[b]
8�.8�.(('[�] ^ '[�])) '[c(�,�)])
8�.'[�]

As an example of a domain where Structural Induction is appropriate, recall the world of
lists and trees introduced in Chapter 9. Let’s assume we have two object constants a and b, a
binary function constant c, and two unary relation constants p and q. Relation p is true of a
structured object if and only if every fringe node is an a. Relation q is true of a structured object if
and only if at least one fringe node is an a. e positive and negative axioms defining the relations
are shown below.

p(a) q(a)
8u.8v.(p(u) ^ p(v)) p(c(u,v))) 8u.8v.(q(u)) q(c(u,v)))
:p(b) 8u.8v.(q(v)) q(c(u,v)))
8u.8v.(p(c(u,v))) p(u)) :q(b)
8u.8v.(p(c(u,v))) p(v)) 8u.8v.(q(c(u,v))) q(u) _ q(v))

Now, as an example of Structural Induction in action, let’s prove that every object that
satisfies p also satisfies q. In other words, we want to prove the conclusion 8x.(p(x)) q(x)). As
usual, we start with our premises.

1. p(a) remise

2. ∀u.∀v.(p(u)) ˄ p(c(u,v))) Pr

P

P

emise

3. p(b) Premise

4. ∀u.∀v.(p(c(u,v)) ⇒ p(u)) Premise

5. ∀u.∀v.(p(c(u,v)) ⇒ p(v)) Premise

6. q(a) remise

7. ∀u.∀v.(q(u) ⇒ q(c(u,v)) Premise

8. ∀u.∀v.(q(v) ⇒ q(c(u,v)) Premise

9. q(b) Premise

10. u. v.(q(c(u,v)) q(u) ˅ q(v)) Premise

To start the induction, we first prove the base cases for the conclusion. In this world, with
two object constants, we need to show the result twice—once for each object constant in the
language.

Let’s start with a. e derivation is simple in this case. We assume p(a), reiterate q(a) from
line 6, then use Implication Introduction to prove (p(a)) q(a)).
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11. p(a) Assumption

12. q(a) eiteration: 6

13. p(a) q(a) Implication Introduction

R

Now, let’s do the case for b. As before, we assume p(b), and our goal is to derive q(b). is
is a little strange. We know that q(b) is false. Still, we should be able to derive it since we have
assumed p(b), which is also false. e trick here is to generate contradictory conclusions from
the assumption :q(b). To this end, we assume :q(b) and first prove p(b). Having done so, we
use Implication Introduction to get one implication. en, we assume :q(b) again and this time
derive :p(b) and get an implication. At this point, we can use Negation Introduction to derive
::q(b) and Negation Elimination to get q(b). Finally, we use Implication Introduction to prove
(p(b)) q(b)).

14. p(b) Assumption

15. q(b) Assumption

16. p(b) Reiteration: 14

17. q(b) ⇒ p(b) Implication Introduction: 14, 16

18. q(b) Assumption

19. p(b) Reiteration: 3

20. q(b) ⇒ p(b) Implication Introduction: 18, 19

21. q(b) Negation Elimination: 17, 20

22. q(b) Negation Elimination: 21

23. p(b) q(b) Implication Introduction: 17, 19

Having dealt with the base cases, the next step is to prove the inductive case. We need to
show that, if our conclusion holds of u and v, then it also holds of c(u,v). To this end, we assume
the conjunction of our assumptions and then use And Elimination to split that conjunction into
its two conjuncts. Our inductive conclusion is also an implication; and, to prove it, we assume its
antecedent p(c(u,v)). From this, we derive p(u); from that, we derive q(u); and, from that, we
derive q(c(u,v)). We then use Implication Introduction to get the desired implication. A final use
of Implication Introduction and a couple of applications of Universal Introduction gives us the
inductive case for the induction.
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24. (p(u) ⇒ q(u)) ˄ (p(v) ⇒ q(v)) Assumption

25. p(u) ⇒ q(u) And Elimination: 24

26. p(v) ⇒ q(v) And Elimination: 24

27. p(c(u,v)) Assumption

28. ∀v.(p(c(u,v)) ⇒ p(u)) Universal Elimination: 4

29. p(c(u,v)) ⇒ p(u) Universal Elimination: 28

30. p(u) Implication Elimination: 29, 27

31. q(u) Implication Elimination: 25, 30

32. ∀v.(q(u) ⇒ q(c(u,v))) Universal Elimination: 7

33. q(u) ⇒ q(c(u,v)) Universal Elimination: 32

34. q(c(u,v)) Implication Elimination: 33, 31

35. p(c(u,v)) ⇒ q(c(u,v)) Implication Elimination: 27, 34

36. (p(u) ⇒ q(u)) ˄ (p(v) ⇒ q(v)) ⇒ p(c(u,v)) ⇒ q(c(u,v)) Implication Elimination: 24, 35

37. ∀v.((p (u) ⇒ q(u)) ˄ (p(v) ⇒ q(v)) ⇒ p(c(u,v))) ⇒ 

q(c(u,v)))

Universal Introduction: 36

38. u. v.((p (u) q(u)) ˄ (p(v) q(v)) p(c(u,v)))

q(c(u,v)))

Universal Introduction: 37

Finally, using the base case on lines 13 and 23 and the inductive case on line 38, we use
Structural Induction to give us the conclusion we set out to prove.

39. x.(p (x) q(x)) Induction: 13, 23, 38

Although the proof in this case is longer than in the previous examples, the basic inductive
structure is the same. Importantly, using induction, we can prove this result where otherwise it
would not be possible.

11.6 MULTIDIMENSIONAL INDUCTION

In our look at induction thus far, we have been concentrating on examples in which the conclu-
sion is a universally quantified sentence with just one variable. In many situations, we want to
use induction to prove a result with more than one universally quantified variable. is is called
multidimensional induction or, sometimes, multivariate induction.

In principle, multidimensional induction is straightforward. We simply use ordinary induc-
tion to prove the outermost universally quantified sentence. Of course, in the case of multidimen-
sional induction the base case and the inductive conclusion are themselves universally quantified
sentences; and, if necessary we use induction to prove these subsidiary results.
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As an example, consider a language with a single object constant a, a unary function con-
stant s, and a binary relation constant e. e axioms shown below define e.

e(a,a)
8x.:e(a,s(x))
8x.:e(s(x),a)
8x.8y.(e(x,y)) e(s(x),s(y)))
8x.8y.(e(s(x),s(y))) e(x,y))

e relation e is an equivalence relation—it is reflexive, symmetric, and transitive. Proving
reflexivity is easy. Proving transitivity is left as an exercise for the reader. Our goal here is to prove
symmetry.

Goal: 8x.8y.(e(x,y)) e(y,x)).

In what follows, we use induction to prove the outer quantified formula and then use induc-
tion on each of the inner conclusions as well. is means we have two immediate subgoals—the
base case for the outer induction and the inductive case for the outer induction.

Goal: 8y.(e(a,y)) e(y,a)).
Goal: 8x.(8y.(e(x,y) D> e(y,x)))8y.(e(s(x),y) D> e(y,s(x)))).

As usual, we start with our premises. We then prove the base case of the inner induction.
is is easy. We assume e(a,a) and then use Implication Introduction to prove the base case in
one step.

1. e(a, a) Premise

2. ∀x. e(a,s(x)) Premise

3. ∀x. e(s(x),a) Premise

4. ∀x.∀y.(e(x,y) ⇒ (e(s(x), s(y))) Premise

5. ∀x.∀y.(e(s(x), s(y)) ⇒ e(x, y)) Premise

6. e(a, a) Assumption

7. e(a, a) e(a, a) Implication Introduction: 6, 6

e next step is to prove the inductive case for the inner induction. To this end, we assume
the inductive hypothesis and try to prove the inductive conclusion. Since the conclusion is itself
an implication, we assume its antecedent and prove the consequent. As shown below, we do
this by assuming the consequent is false and proving a sentence and its negation. We then use
Negation Introduction and Negation Elimination to derives the consequent. We finish with two
applications of Implication Introduction and an application of Universal Introduction.
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8. e(a, y) ⇒ e(y, a)) Assumption

9. e(a,s(y)) Assumption

10. e(s(y),a) Assumption

11. e(a,s(y)) Reiteration: 9

12. e(s(y),a) ⇒ e(a,s(y)) Implication Introduction: 10, 11

13. e(s(y),a) Assumption

14. e(a,s(y)) Universal Instantiation: 2

15. e(s(y),a) ⇒ e(a,s(y)) Implication Introduction: 13, 14

16. e(s(y),a) Negation Elimination: 12, 15

17. e(s(y),a) Negation Elimination: 16

18. e(a, s(y)) ⇒ e(s(y),a) Implication Introduction: 9, 17

19. e(a, y) ⇒  e(y, a)) ⇒ (e(a,s(y)) ⇒ e(s(y),a)) Implication Introduction: 8, 18

20. y.((e(a, y)  e(y, a))  (e(a,s(y))  e(s(y),a))) Universal Introduction: 19

21. y.(e(a, y) e(y, a)) Induction: 7, 20

y.

y.

at’s a lot of work just to prove the base case of the outer induction. e inductive case of
the outer induction is even more complex, and it is easy to make mistakes. e trick to avoiding
these mistakes is to be methodical.

In order to prove the inductive case for the outer induction, we assume the inductive hy-
pothesis 8y.(e(x,y) D> e(y,x)); and we then prove the inductive conclusion 8y.(e(s(x),y) D>
e(y,s(x)))). We prove this by induction on the variable y.

We start by proving the base case for this inner induction. We start with the inductive
hypothesis. We then assume the antecedent of the base case.
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22. ∀y. e(x, y) ⇒ e(y, x)) Assumption

23. e(s(yx),a) Assumption

24. e(a,s(x)) Assumption

25. e(s(x),a) Reiteration: 23

26. e(a,s(x))) ⇒  e(s(x),a) Implication Introduction: 24, 25

27. e(a,s(x)) Assumption

28. e(s(x),a) Universal Elimination: 3

29. e(a,s(x))) ⇒ e(s(x),a) Implication Introduction: 27, 28

30. e(a,s(x))) Negation Elimination: 26, 29

31. e(a,s(x))) Negation Elimination: 30

32. e(s(x),a) e(a,s(x))) Implication Introduction: 23, 31

Next, we work on the inductive case for the second inner induction. We start by assuming
the inductive hypothesis. We then assume the antecedent of the inductive conclusion.

33. e(s(x),y) ⇒ e(y,s(x)) Assumption

34. e(s(x),s(y)) Assumption

35. ∀y.(e(s(x)),s(y)) ⇒ e(x,y)) Universal Elimination: 5

36. e(s(x),s(y)) ⇒ e(x,y) Universal Elimination: 35

37. e(x,y) Implication Elimination: 36, 34

38. e(x,y) ⇒ e(y,x) Universal Elimination: 22

39. e(y,x) Implication Elimination: 38, 37

40. ∀y.(e(y,x) ⇒ e(s(y),s(x))) Universal Elimination: 4

41. e(y,x) ⇒ e(s(y),s(x)) Universal Elimination: 40

42. e(s(y),s(x)) Implication Elimination: 41, 39

43. e(s(x)s(y)) ⇒ e(s,(y),s(x)) Implication Introduction: 34, 42

44. e(s(x),y)  e(y,s(x)))  (e(s(x),s(y))  e(s,(y),s(x))) Implication Introduction: 33, 43

45. y.((e(s(x),y) e(y,s(x))) (e(s(x),s(y)) e(s,(y),s(x)))) Universal Introduction: 43y

From the results on lines 32 and 45, we can conclude the inductive case for the outer in-
duction.

46. ∀y.(e(s(x),y) ⇒ e(y,s(x))) Induction: 32, 45

47. ∀y.(e(x,y)  e(y,x))   ∀y.(e(s(x),y)  e(y,s(x))) Implication Introduction: 22, 46

48. x.( y.(e(x,y) e(y,x)) y.(e(s(x),y) e(y,s(x))) Universal Introduction: 47yyyyyyyyy yyyyyy
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Finally, from the base case for the outer induction and this inductive case, we can conclude
our overall result.
49. x. y.(e(x,y) e(y,x)) Induction: 7, 48yyyy

As this proof illustrates, the technique of using induction within induction works just fine.
Unfortunately, it is tedious and error-prone. for this reason, many people prefer to use specialized
forms of multidimensional induction.

11.7 EMBEDDED INDUCTION
In all of the examples in this chapter thus far, induction is used to prove the overall result. While
this approach works nicely in many cases, it is not always successful. In some cases, it is easier
to use induction on parts of a problem or to prove alternative conclusions and then use these
intermediate results to derive the overall conclusions (using inductive or non-inductive methods).

As an example, consider a world characterized by a single object constant a, a single unary
function constant s, and a single unary relation constant p. Assume we have the set of axioms
shown below.

8x.(p(x)) p(s(s(x))))
p(a)
p(s(a))

A little thought reveals that these axioms logically entail the universal conclusion 8x.p(x).
Unfortunately, we cannot derive this conclusion directly using Linear Induction. e base case is
easy enough. And, from p(x) we can easily derive p(s(s(x))). However, it is not so easy to derive
p(s(x)), which is what we need for the inductive case of Linear Induction.

e good news is that we can succeed in cases like this by proving a slightly more com-
plicated intermediate conclusion and then using that conclusion to prove the result. One way to
do this is shown below. In this case, we start by using Linear Induction to prove 8x.(p(x) ^
p(s(x)). e base case p(a) ^ p(s(a)) is easy, since we are given the two conjuncts as axioms.
e inductive case is straightforward. We assume p(x) ^ p(s(x)). From this hypothesis, we use
And Elimination to get p(x) and p(s(x)). We then use Universal Elimination and Implication
Elimination to derive p(s(s(x))). We then conjoin these results, use Implication Introduction and
Universal Introduction to get the inductive case for our induction. From the base case and the
inductive case, we get our intermediate conclusion. Finally, starting with this conclusion, we use
Universal Elimination, And Elimination, and Universal Introduction to get the overall result.
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1. ∀y.(p(x) ⇒ p(s(s(x)))) Premise

2. p(a) Premise

3. p(s(a)) Premise

4. p(a) ˄ p(s(a)) And Introduction

5. p(x) ˄ p(s(x)) Assumption

6. p(x) And Elimination

7. p(s(x)) And Elimination

8. p(x) ⇒ p(s(s(x))) Universal Elimination: 1

9. p(s(s(x))) Implication Elimination: 8, 6

10. p(s(x)) ˄ p(s(s(x))) And Introduction: 7, 9

11. p(x) ˄ p(s(x)) ⇒ p(s(x)) ˄ p(s(s(x))) Implication Introduction: 5, 10

12. ∀x.(p(x) ˄ p(s(x))) ⇒ p(s(x)) ˄ p(s(s(x))) Universal Introduction: 11

13. ∀x.(p(x) ˄ p(s(x))) Induction: 4, 12

14. p(x) ˄ p(s(x)) Universal Elimination: 13

15. p(x) And Elimination: 14

16. p(s(x) And Elimination: 14

17. x.p(x) Universal Introduction: 16

In this case, we are lucky that there is a useful conclusion that we can prove with standard
Linear Induction. ings are not always so simple; and in some cases we need more complex
forms of induction. Unfortunately, there is no finite collection of approaches to induction that
covers all cases. If there were, we could build an algorithm for determining logical entailment for
Herbrand Logic in all cases; and, as we discussed in Chapter 10, there is no such algorithm.

RECAP
Induction is reasoning from the specific to the general. Complete induction is induction where the
set of instances is exhaustive. Incomplete induction is induction where the set of instances is not
exhaustive. Linear Induction is a type of complete induction for languages with a single object
constants and a single unary function constant. Tree Induction is a type of complete induction
for languages with a single object constants and multiple unary function constants. Structural
Induction is a generalization of both Linear Induction and Tree Induction that works even in the
presence of multiple object constants and multiple n-ary function constants.

11.8 EXERCISES
11.1. Assume a language with the object constants a and b and no function constants. Given

q(a) and q(b), use the Fitch system with domain closure to prove 8x.(p(x)) q(x)).
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11.2. Assume a language with the object constant a and the function constant s. Given r(a),
8x.(p(x)) r(s(x))), 8x.(q(x)) r(s(x))), and 8x.(r(x)) p(x) _ q(x)), use the Fitch
system with Linear Induction to prove 8x.r(x).

11.3. Assume a language with object constant a and unary function constants f and g. Given
p(a), 8x.(p(x)) p(f (x))), and 8x.(p(f (x))) p(g(x))), use the Fitch system with
Tree Induction to prove 8x.p(x).

11.4. Consider a language with object constants a and b, binary function constant c, and unary
relation constants m and p and q. e definitions for the relations are shown below.
Relation m is true of a and only a. Relation p is true of a structured object if and only
if it is a linear list (as defined in Chapter 9) with a top-level element that satisfies m.
Relation q is true of a structured object if and only if there is an element anywhere in the
structure that satisfies m.

m(a) 8u.8v.(m(u)) p(c(u,v))) 8u.(m(u)) q(u)))
:m(b) 8u.8v.(p(v)) p(c(u,v))) 8u.8v.(q(u)

) q(c(u,v)))
8u.8v.:m(c(u,v)) :p(a) 8u.8v.(q(v)

) q(c(u,v)))
:p(b) :m(a)):q(a)
8u.8v.(p(c(u,v))) m(u) _ p(v)) :m(b)):q(b)

8u.8v.(q(c(u,v))
) q(u) _ q(v))

Your job is to show that any object that satisfies p also satisfies q. Starting with the pre-
ceding axioms, use Fitch with Structural Induction to prove 8x.(p(x)) q(x)). Beware:
e proof requires more than 50 steps (including the premises). e good news is that it
is very similar to the proof in Section 11.5.

11.5. Starting with the axioms for e given in Section 11.6, it is possible to prove that e is
transitive, i.e.,8x.8y.8z.(e(x,y)^ e(y,z)) e(x,z)). Doing this requires a three variable
induction, and it is quite messy. Your job in this problem is to prove just the base case for
the outermost induction, i.e., prove 8y.8z.(e(a,y) ^ e(y,z) ) e(a,z)). Hint: Use the
strategy illustrated in Section 11.6. Extra credit: Do the full proof of transitivity.

11.6. Consider a language with a single object constant a, a single unary function constant s,
and two unary relation constants p and q. We start with the premises shown below. We
know that p is true of s(a) and only s(a). We know that q is also true of s(a), but we do
not know whether it is true of anything else.
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:p(a)
p(s(a))
8x.:p(s(s(x)))
q(s(a))

Prove 8x.(p(x)) q(x)). Hint: Break the problem into two parts—first prove the result
for s(x), and then use that intermediate conclusion to prove the overall result.
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C H A P T E R 12

Resolution
12.1 INTRODUCTION
e Resolution Principle is a rule of inference for Relational Logic analogous to the Propositional
Resolution Principle for Propositional Logic. Using the Resolution Principle alone (without ax-
iom schemata or other rules of inference), it is possible to build a reasoning program that is sound
and complete for all of Relational Logic.e search space using the Resolution Principle is smaller
than the search space for generating Herbrand proofs.

In our tour of resolution, we look first at unification, which allows us to unify expressions
by substituting terms for variables. We then move on to a definition of clausal form extended to
handle variables. e Resolution Principle follows. We then look at some applications. Finally,
we examine strategies for making the procedure more efficient.

12.2 CLAUSAL FORM
As with Propositional Resolution, Resolution works only on expressions in clausal form. e def-
initions here are analogous. A literal is either a relational sentence or a negation of a relational
sentence. A clause is a set of literals and, as in Propositional Logic, represents a disjunction of the
literals in the set. A clause set is a set of clauses and represents a conjunction of the clauses in the
set.

e procedure for converting relational sentences to clausal form is similar to that for
Propositional Logic. Some of the rules are the same. However, there are a few additional rules to
deal with the presence of variables and quantifiers. e conversion rules are summarized below
and should be applied in order.

In the first step (Implications out), we eliminate all occurrences of the ), (, and ,
operators by substituting equivalent sentences involving only the ^, _, and : operators.

')  ! :' _  

'(  ! ' _ : 

',  ! (:' _  ) ^ (' _ : )

In the second step (Negations in), negations are distributed over other logical operators and
quantifiers until each such operator applies to a single atomic sentence. e following replacement
rules do the job.
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::' ! '

:(' ^  ) ! :' _ : 

:(' _  ) ! :' ^ : 

:8�.' ! 9�.:'
:9�.' ! 8�.:'

In the third step (Standardize variables), we rename variables so that each quantifier has a
unique variable, i.e., the same variable is not quantified more than once within the same sentence.
e following transformation is an example.

8x.(p(x)) 9x.q(x)) ! 8x.(p(x)) 9y.q(y))
In the fourth step (Existentials out), we eliminate all existential quantifiers. e method

for doing this is a little complicated, and we describe it in two stages.
If an existential quantifier does not occur within the scope of a universal quantifier, we

simply drop the quantifier and replace all occurrences of the quantified variable by a new constant;
i.e., one that does not occur anywhere else in our database. e constant used to replace the
existential variable in this case is called a Skolem constant. e following example assumes that a
is not used anywhere else.

9x.p(x) ! p(a)
If an existential quantifier is within the scope of any universal quantifiers, there is the pos-

sibility that the value of the existential variable depends on the values of the associated universal
variables. Consequently, we cannot replace the existential variable with a constant. Instead, the
general rule is to drop the existential quantifier and to replace the associated variable by a term
formed from a new function symbol applied to the variables associated with the enclosing univer-
sal quantifiers. Any function defined in this way is called a Skolem function. e following example
illustrates this transformation. It assumes that f is not used anywhere else.

8x.(p(x) ^ 9z.q(x, y, z)) ! 8x.(p(x) ^ q(x, y, f (x, y)))
In the fifth step (Alls out), we drop all universal quantifiers. Because the remaining variables

at this point are universally quantified, this does not introduce any ambiguities.
8x.(p(x) ^ q(x, y, f (x, y))) ! p(x) ^ q(x, y, f (x, y))

In the sixth step (Disjunctions in), we put the expression into conjunctive normal form, i.e.,
a conjunction of disjunctions of literals. is can be accomplished by repeated use of the following
rules.

' _ ( ^ �) ! (' _  ) ^ (' _ �)
(' ^  ) _ � ! (' _ �) ^ ( _ �)
' _ ('1 _ ... _ 'n) ! ' _ '1 _ ... _ 'n

('1 _ ... _ 'n) _ ' ! '1 _ ... _ 'n _ '

' ^ ('1 ^ ... ^ 'n) ! ' ^ '1 ^ ... ^ 'n

('1 ^ ... ^ 'n) ^ ' ! '1 ^ ... ^ 'n ^ '



12.2. CLAUSAL FORM 141

In the seventh step (Operators out), we eliminate operators by separating any conjunctions
into its conjuncts and writing each disjunction as a separate clause.

'1 ^ ... ^ 'n ! '1

! ...
! 'n

'1 _ ... _ 'n ! {'1, ... , 'n}

As an example of this conversion process, consider the problem of transforming the follow-
ing expression to clausal form. e initial expression appears on the top line, and the expressions
on the labeled lines are the results of the corresponding steps of the conversion procedure.

9y.(g(y) ^ 8z.(r(z)) f (y, z)))
I 9y.(g(y) ^ 8z.(:r(z) _ f (y, z)))
N 9y.(g(y) ^ 8z.(:r(z) _ f (y, z)))
S 9y.(g(y) ^ 8z.(:r(z) _ f (y, z)))
E g(gary) ^ 8z.(:r(z) _ f (gary, z))
A g(gary) ^ (:r(z) _ f (gary, z))
D g(gary) ^ (:r(z) _ f (gary, z))
O {g(gary)}

{:r(z), f (gary, z)}

Here is another example. In this case, the starting sentence is almost the same. e only
difference is the leading :, but the result looks quite different.

:9y.(g(y) ^ 8z.(r(z)) f (y, z)))
I :9y.(g(y) ^ 8z.(:r(z) _ f (y, z)))
N 8y.(:(g(y) ^ 8z.(:r(z) _ f (y, z)))
8y.(:g(y) _ :8z.(:r(z) _ f (y, z)))
8y.(:g(y) _ 9z.:(:r(z) _ f (y, z)))
8y.(:g(y) _ 9z.(::r(z) ^ :f (y, z)))
8y.(:g(y) _ 9z.(r(z) ^ :f (y, z)))

S 8y.(:g(y) _ 9z.(r(z) ^ :f (y, z)))
E 8y.(:g(y) _ (r(k(y)) ^ :f (y, k(y))))
A :g(y) _ (r(k(y)) ^ :f (y, k(y)))
D (:g(y) _ r(k(y))) ^ (:g(y) _ :f (y, k(y)))
O {:g(y) _ r(k(y))}

{:g(y) _ :f (y, k(y))}

In Propositional Logic, the clause set corresponding to any sentence is logically equivalent
to that sentence. In Relational Logic, this is not necessarily the case. For example, the clausal
form of the sentence 9x.p(x) is {p(a)}. is is not logically equivalent. It is not even in the same
language. Since the clause exists in a language with an additional object constant, there are truth
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assignments that satisfy the sentence but not the clause. On the other hand, the converted clause
set has a special relationship to the original set of sentences: over the expanded language, the
clause set is satisfiable if and only if the original sentence is satisfiable (also over the expanded
language). As we shall see, in resolution, this equivalence of satisfiability is all we need to obtain
a proof method as powerful as the Fitch system presented in Chapter 7.

12.3 UNIFICATION
What differentiates Resolution from propositional resolution is unification. In propositional res-
olution, two clauses resolve if they contain complementary literals, i.e., the positive literal is iden-
tical to the target of the negative literal. e same idea underlies Resolution, except that the
criterion for complementarity is relaxed. e positive literal does not need to be identical to the
target of the negative literal; it is sufficient that the two can be made identical by substitutions for
their variables.

Unification is the process of determining whether two expressions can be unified, i.e., made
identical by appropriate substitutions for their variables. As we shall see, making this determina-
tion is an essential part of resolution.

A substitution is a finite mapping of variables to terms. In what follows, we write substitu-
tions as sets of replacement rules, like the one shown below. In each rule, the variable to which
the arrow is pointing is to be replaced by the term from which the arrow is pointing. In this case,
x is to be replaced by a, y is to be replaced by f (b), and z is to be replaced by v.

{x a, y f (b), z v}

e variables being replaced together constitute the domain of the substitution, and the
terms replacing them constitute the range. For example, in the preceding substitution, the domain
is {x, y, z}, and the range is {a, f (b), v}.

A substitution is pure if and only if all replacement terms in the range are free of the variables
in the domain of the substitution. Otherwise, the substitution is impure. e substitution shown
above is pure whereas the one shown below is impure.

{x a, y f (b), z x}

e result of applying a substitution � to an expression ' is the expression '� obtained
from the original expression by replacing every occurrence of every variable in the domain of the
substitution by the term with which it is associated.

q(x, y){x a, y f (b), z v} D q(a, f (b))
q(x, x){x a, y f (b), z v} D q(a, a)
q(x, w){x a, y f (b), z v} D q(a, w)
q(z, v){x a, y f (b), z v} D q(v, v)

Note that, if a substitution is pure, application is idempotent, i.e., applying a substitution
a second time has no effect.
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q(x, x, y, w, z){x a, y f (b), z v} D q(a, a, f (b), w, v)
q(a, a, f (b), w, v){x a, y f (b), z v} D q(a, a, f (b), w, v)

However, this is not the case for impure substitutions, as illustrated by the following ex-
ample. Applying the substitution once leads to an expression with an x, allowing for a different
answer when the substitution is applied a second time.

q(x, x, y, w, z){x a, y f (b), z x} D q(a, a, f (b), w, x)
q(a, a, f (b), w, x){x a, y f (b), z x} D q(a, a, f (b), w, a)

Given two or more substitutions, it is possible to define a single substitution that has the
same effect as applying those substitutions in sequence. For example, the substitutions {x a,
y f (u), z v} and {u d , v e} can be combined to form the single substitution {x a,
y f (d ), z e, u d , v e}, which has the same effect as the first two substitutions when ap-
plied to any expression whatsoever.

Computing the composition of a substitution � and a substitution � is easy. ere are two
steps. (1) First, we apply � to the range of � . (2) en we adjoin to � all pairs from � with different
domain variables.

As an example, consider the composition shown below. In the right hand side of the first
equation, we have applied the second substitution to the replacements in the first substitution.
In the second equation, we have combined the rules from this new substitution with the non-
conflicting rules from the second substitution.

{x a, y f (u), z v}{u d , v e, z g}
D {x a, y f (d ), z e}{u d , v e, z g}
D {x a, y f (d ), z e, u d , v e}

It is noteworthy that composition does not necessarily preserve substitutional purity. e
composition of two impure substitutions may be pure, and the composition of two pure substitu-
tions may be impure.

is problem does not occur if the substitutions are composable. A substitution � and a sub-
stitution � are composable if and only if the domain of � and the range of � are disjoint. Otherwise,
they are noncomposable.

{x a, y b, z v}{x u, v b}

By contrast, the following substitutions are noncomposable. Here, x occurs in both the
domain of the first substitution and the range of the second substitution, violating the definition
of composability.

{x a, y b, z v}{x u, v x}

e importance of composability is that it ensures preservation of purity. e composition
of composable pure substitutions must be pure. In the sequel, we look only at compositions of
composable pure substitutions.
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A substitution � is a unifier for an expression ' and an expression  if and only if '�= � ,
i.e., the result of applying � to ' is the same as the result of applying � to  . If two expressions
have a unifier, they are said to be unifiable. Otherwise, they are nonunifiable.

e expressions p(x, y) and p(a,v) have a unifier, e.g., {x a, y b, v b} and are, there-
fore, unifiable. e results of applying this substitution to the two expressions are shown below.

p(x, y){x a, y b, v b}=p(a, b)
p(a, v){x a, y b, v b}=p(a, b)

Note that, although this substitution unifies the two expressions, it is not the only unifier.
We do not have to substitute b for y and v to unify the two expressions. We can equally well
substitute c or d or f (c) or f (w). In fact, we can unify the expressions without changing v at all
by simply replacing y by v.

In considering these alternatives, it should be clear that some substitutions are more general
than others. We say that a substitution � is as general as or more general than a substitution � if
and only if there is another substitution ı such that �ı D � . For example, the substitution {x a,
y v} is more general than {x a, y f (c), v f (c)} since there is a substitution {v f (c)}
that, when applied to the former, gives the latter.

{x a, y v}{v f (c)}D{x a, y f (c), v f (c)}

In resolution, we are interested only in unifiers with maximum generality. A most general
unifier, or mgu, � of two expressions has the property that it as general as or more general than
any other unifier.

Although it is possible for two expressions to have more than one most general unifier,
all of these most general unifiers are structurally the same, i.e., they are unique up to variable
renaming. For example, p(x) and p(y) can be unified by either the substitution {x y} or the
substitution {y x}; and either of these substitutions can be obtained from the other by applying
a third substitution. is is not true of the unifiers mentioned earlier.

One good thing about our language is that there is a simple and inexpensive procedure for
computing a most general unifier of any two expressions if it exists.

e procedure assumes a representation of expressions as sequences of subexpressions. For
example, the expression p(a, f (b),z) can be thought of as a sequence with four elements, viz. the
relation constant p, the object constant a, the term f (b), and the variable z. e term f (b) can
in turn be thought of as a sequence of two elements, viz. the function constant f and the object
constant b.

We start the procedure with two expressions and a substitution, which is initially the empty
substitution. We then recursively process the two expressions, comparing the subexpressions at
each point. Along the way, we expand the substitution with variable assignments as described
below. If, we fail to unify any pair of subexpression at any point in this process, the procedure as
a whole fails. If we finish this recursive comparison of the expressions, the procedure as a whole
succeeds, and the accumulated substitution at that point is the most general unifier.
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In comparing two subexpressions, we first apply the substitution to each of the two expres-
sions; and we then execute the following procedure on the two modified expressions.

1. If two modified expressions being compared are identical, then nothing more needs to be done.

2. If two modified expressions are not identical and both expressions are constants, then we fail,
since there is no way to make them look alike.

3. If one of the modified expressions is a variable, we check whether the second expression con-
tains the variable. If the variable occurs within the expression, we fail; otherwise, we update our
substitution to the composition of the old substitution and a new substitution in which we bind
the variable to the second modified expression.

4. e only remaining possibility is that the two modified expressions are both sequences. In this
case, we simply iterate across the expressions, comparing as described above.

As an example, consider the computation of the most general unifier for the expressions
p(x,b) and p(a,y) with the initial substitution {}. A trace of the execution of the procedure for
this case is shown below. We show the beginning of a comparison with a line labeled Compare
together with the expressions being compared and the input substitution. We show the result of
each comparison with a line labeled Result. e indentation shows the depth of recursion of the
procedure.

Compare: p(x,b), p(a,y), { }
Compare: p, p, { }
Result: { }
Compare: x, a, { }
Result: {x a}
Compare: y, b, {x a}
Result: {x a, y b}

Result: {x a, y b}

As another example, consider the process of unifying the expression p(x,x) and the expres-
sion p(a,y). A trace is shown below. e main interest in this example comes in comparing the
last argument in the two expressions, viz. x and y. By the time we reach this point, x is bound to
a, so we replace it by a before comparing. y has no binding so we leave it as is. Finally we compare
a and y, which results in a binding of y to a.
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Compare: p(x,x), p(a,y), { }
Compare: p, p, { }
Result: { }
Compare: x, a, { }
Result: {x a}
Compare: a, y, {x a}
Result: {x a, y a}

Result: {x a, y a}

One especially noteworthy part of the unification procedure is the test for whether a variable
occurs within an expression before the variable is bound to that expression. is test is called an
occur check since it is used to check whether or not the variable occurs within the term with which
it is being unified. Without this check, the algorithm would find that expressions such as p(x)
and p(f (x)) are unifiable, even though there is no substitution for x that, when applied to both,
makes them look alike.

12.4 RESOLUTIONPRINCIPLE
e Relational Resolution Principle is analogous to that of propositional resolution. e main
difference is the use of unification to unify literals before applying the rule. Although the rule is
simple, there are a couple complexities, so we start with a simple version and then refine it to deal
with these complexities.

A simple version of the Resolution Principle for Relational Logic is shown below. Given a
clause with a literal ' and a second clause with a literal : such that ' and  have a most general
unifier � , we can derive a conclusion by applying � to the clause consisting of the remaining literals
from the two original clauses.

{'1, ... , ', ... , 'm}
{ 1, ... , : , ... ,  n}
{'1, ... , 'm,  1, ...,  n}�
where �Dmgu(',  )

Consider the example shown below. e first clause contains the positive literal p(a,y) and
the second clause contains a negative occurrence of p(x, f (x)). e substitution {x a, y f (a)}
is a most general unifier of these two expressions. Consequently, we can collect the remaining
literals r (y) and q(g(x)) into a clause and apply the substitution to produce a conclusion.

{p(a, y), r(y)}
{:p(x, f (x)), q(g(x))}
{r(f (a)), q(g(a))}

Unfortunately, this simple version of the Resolution Principle is not quite good enough.
Consider the two clauses shown below. Given the meaning of these two clauses, it should be
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possible to resolve them to produce the empty clause. However, the two atomic sentences do not
unify. e variable x must be bound to a and b at the same time.

{p(a, x)}
{:p(x, b)}

Fortunately, this problem can easily be fixed by extending the Resolution Principle slightly
as shown below. Before trying to resolve two clauses, we select one of the clauses and rename any
variables the clause has in common with the other clause.

{'1, ... , ', ... , 'm}
{ 1, ... , : , ... ,  n}
{'1� , ... , 'm� ,  1, ... ,  n}�
where � is a variable renaming on {'1, ... , ', ... , 'm}
where �Dmgu('� ,  )

Renaming solves this problem. Unfortunately, we are still not quite done. ere is one
more technicality that must be addressed to finish the story. As stated, even with the extension
mentioned above, the rule is not quite good enough. Given the clauses shown below, we should
be able to infer the empty clause {}; however, this is not possible with the preceding definition.
e clauses can be resolved in various ways, but the result is never the empty clause.

{p(x), p(y)}
{:p(u), :p(v)}

e good news is that we can solve this additional problem with one last modification to our
definition of the Resolution Principle. If a subset of the literals in a clause ˆ has a most general
unifier  , then the clause ˆ’ obtained by applying  to ˆ is called a factor of ˆ. For example, the
literals p(x) and p(f (y)) have a most general unifier {x f (y)}, so the clause {p(f (y)), r(f (y),
y)} is a factor of {p(x), p(f (y)),r(x, y)}. Obviously, any clause is a trivial factor of itself.

Using the notion of factors, we can give a complete definition for the Resolution Principle.
Suppose that ˆ and ‰ are two clauses. If there is a literal ' in some factor of ˆ and a literal : 
in some factor of ‰, then we say that the two clauses ˆ and ‰ resolve and that the new clause
((ˆ’�{'})[(‰’�{: }))� is a resolvent of the two clauses.

ˆ

‰

((ˆ’�{'})[(‰’�{: }))�
where � is a variable renaming on ˆ
where ˆ’ is a factor of ˆ� and '2ˆ’
where ‰’ is a factor of ‰ and : 2‰’
where �Dmgu(',  )

Using this enhanced definition of resolution, we can solve the problem mentioned above.
Once again, consider the premises {p(x), p(y)} and {:p(u), :p(v)}. e first premise has the
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factor {p(x)}, and the second has the factor {:p(u)}, and these two factors resolve to the empty
clause in a single step.

12.5 RESOLUTIONREASONING
Reasoning with the Resolution Principle is analogous to reasoning with the Propositional Res-
olution Principle. We start with premises; we apply the Resolution Principle to those premises;
we apply the rule to the results of those applications; and so forth until we get to our desired
conclusion or until we run out of things to do.

As with Propositional Resolution, we define a resolution derivation of a conclusion from
a set of premises to be a finite sequence of clauses terminating in the conclusion in which each
clause is either a premise or the result of applying the Resolution Principle to earlier members of
the sequence. And, as with Propositional Resolution, we do not use the word proof, because we
reserve that word for a slightly different concept, which is discussed in the next section.

As an example, consider a problem in the area kinship relations. Suppose we know that Art
is the parent of Bob and Bud; suppose that Bob is the parent of Cal; and suppose that Bud is the
parent of Coe. Suppose we also know that grandparents are parents of parents. Starting with these
premises, we can use resolution to conclude that Art is the grandparent of Coe. e derivation
is shown below. We start with our five premises—four simple clauses for the four facts about
the parent relation p and one more complex clause capturing the definition of the grandparent
relation g. We start by resolving the clause on line 1 with the clause on line 5 to produce the
clause on line 6. We then resolve the clause on line 3 with this result to derive that conclusion
that Art is the grandparent of Cal. Interesting but not what we set out to prove; so we continue
the process. We next resolve the clause on line 2 with the clause on line 5 to produce the clause
on line 8. en we resolve the clause on line 5 with this result to produce the clause on line 9,
which is exactly what we set out to prove.

1. {p(art, bob)} Premise
2. {p(art, bud)} Premise
3. {p(bob, cal)} Premise
4. {p(bud, coe)} Premise
5. {:p(x, y), :p(y, z), g(x, z)} Premise
6. {:p(bob, z), g(art, z)} 1, 5
7. {g(art, cal)} 3, 6
8. {:p(bud, z), g(art, z)} 2, 5
9. {g(art, coe)} 4, 8

One thing to notice about this derivation is that there are some dead-ends. We first tried
resolving the fact about Art and Bob before getting around to trying the fact about Art and
Bud. Resolution does not eliminate all search. However, at no time did we ever have to make
an arbitrary assumption or an arbitrary choice of a binding for a variable. e absence of such
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arbitrary choices is why Resolution is so much more focussed than natural deduction systems like
Fitch.

Another worthwhile observation about Resolution is that, unlike Fitch, Resolution fre-
quently terminates even when there is no derivation of the desired result. Suppose, for example,
we were interested in deriving the clause {g(cal,art)} from the premises in this case. is sen-
tence, of course, does not follow from the premises. And resolution is sound, so we would never
generate this result. e interesting thing is that, in this case, the attempt to derive this result
would eventually terminate. With the premises given, there are a few more resolutions we could
do, e.g., resolving the clause on line 1 with the second literal in the clause on line 5. However,
having done these additional resolutions, we would find ourselves with nothing left to do; and,
unlike Fitch, the process would terminate.

Unfortunately, like Propositional Resolution, Resolution is not generatively complete, i.e., it
is not possible to find resolution derivations for all clauses that are logically entailed by a set of
premise clauses. For example, the clause {p(a),:p(a)} is always true, and so it is logically entailed
by any set of premises, including the empty set of premises. Resolution requires some premises to
have any effect. Given an empty set of premises, we would not be able to derive any conclusions,
including this valid clause.

Although Resolution is not generatively complete, problems like this one are solved by
negating the goal and demonstrating that the resulting set of sentences is unsatisfiable.

12.6 UNSATISFIABILITY
One common use of resolution is in demonstrating unsatisfiability. In clausal form, a contradiction
takes the form of the empty clause, which is equivalent to a disjunction of no literals. us,
to automate the determination of unsatisfiability, all we need do is to use resolution to derive
consequences from the set to be tested, terminating whenever the empty clause is generated.

Let’s start with a simple example. See the derivation below. We have four premises. e
derivation in this case is particularly easy. We resolve the first clause with the second to get the
clause shown on line 5. Next, we resolve the result with the third clause to get the unit clause on
line 6. Note that r(a) is the remaining literal from clause 3 after the resolution, and r(a) is also
the remaining literal from clause 5 after the resolution. Since these two literals are identical, they
appear only once in the result. Finally, we resolve this result with the clause on 4 to produce the
empty clause.

1. {p(a,b), q(a,c)} Premise
2. {:p(x,y), r(x)} Premise
3. {:q(x,y), r(x)} Premise
4. {:r(z)} Premise
5. {q(a,c), r(a)} 1, 2
6. {r(a)} 5, 3
7. { } 6, 4



150 12. RESOLUTION

Here is a more complicated derivation, one that illustrates renaming and factoring. Again,
we have four premises. Line 5 results from resolution between the clauses on lines 1 and 3. is
one is easy. Line 6 results from resolution between the clauses on lines 2 and 4. In this case,
renaming is necessary in order for the unification to take place. Line 7 results from renaming and
factoring the clause on line 5 and resolving with the clause on line 6. Finally line 8 results from
factoring line 5 again and resolving with the clause on line 7. Note that we cannot just factor 5
and factor 6 and resolve the results in one step. Try it and see what happens.

1. {:p(x,y), q(x,y,f (x,y))} Premise
2. {r(y,z), :q(a,y,z)} Premise
3. {p(x, g(x)), q(x,g(x),z)} Premise
4. {:r(x,y), :q(x,w,z)} Premise
5. {q(x,g(x),f (x,g(x))), q(x,g(x),z)} 1, 3
6. {:q(a,x,y), :q(x,w,z)} 2, 4
7. {:q(g(a),w,z)} 5, 6 (factoring 5)
8. { } 5, 7 (factoring 5)

In demonstrating unsatisfiability, Resolution and Fitch without DC are equally powerful.
Given a set of sentences, Resolution can derive the empty clause from the clausal form of the
sentences if and only if Fitch can find a proof of a contradiction. e benefit of using Resolution
is that the search space is smaller.

12.7 LOGICALENTAILMENT
As with Propositional Logic, we can use a test for unsatisfiability to test logical entailment as well.
Suppose we wish to show that the set of sentences � logically entails the formula '. We can do
this by finding a proof of ' from �, i.e., by establishing � |� '. By the refutation theorem, we
can establish that � |� ' by showing that �[{:'} is unsatisfiable. us, if we show that the set
of formulas �[{:'} is unsatisfiable, we have demonstrated that � logically entails '.

To apply this technique of establishing logical entailment by establishing unsatisfiability
using resolution, we first negate ' and add it to� to yield�’. We then convert�’ to clausal form
and apply resolution. If the empty clause is produced, the original �’ was unsatisfiable, and we
have demonstrated that � logically entails '. is process is called a resolution refutation ; it is
illustrated by examples in the following sections.

As an example of using Resolution to determine logical entailment, let’s consider a case
we saw earlier. e premises are shown below. We know that everybody loves somebody and
everybody loves a lover.

8x.9y.loves(x,y)
8u.8v.8w.(loves(v,w)) loves(u,v))

Our goal is to show that everybody loves everybody.
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8x.8y.loves(x,y)

In order to solve this problem, we add the negation of our desired conclusion to the premises
and convert to clausal form, leading to the clauses shown below. Note the use of a Skolem function
in the first clause and the use of Skolem constants in the clause derived from the negated goal.

{loves(x,f (x))}
{:loves(v,w), loves(u,v)}
{:loves(a,b)}

Starting from these initial clauses, we can use resolution to derive the empty clause and
thus prove the result.

1. {loves(x,f (x))} Premise
2. {:loves(v,w), loves(u,v)} Premise
3. {:loves(a,b)} Premise
4. {loves(u, x)} 1, 2
5. { } 4, 3

As another example of resolution, once again consider the problem of Harry and Ralph
introduced in the preceding chapter. We know that every horse can outrun every dog. Some
greyhounds can outrun every rabbit. Greyhounds are dogs. e relationship of being faster is
transitive. Harry is a horse. Ralph is a rabbit.

8x.8y.(h(x) ^ d (y)) f (x, y))
9y.(g(y) ^ 8z.(r(z)) f (y, z)))
8y.(g(y)) d (y))
8x.8y.8z.(f (x, y) ^ f (y, z)) f (x, z))
h(harry)
r(ralph)

We desire to prove that Harry is faster than Ralph. In order to do this, we negate the desired
conclusion.

:f (harry, ralph)

To do the proof, we take the premises and the negated conclusion and convert to clausal
form. e resulting clauses are shown below. Note that the second premise has turned into two
clauses.
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1. {:h(x), :d (y), f (x, y)} Premise
2. {g(gary)} Premise
3. {:r(z), f (gary, z)} Premise
4. {:g(y), d (y)} Premise
5. {:f (x, y), :f (y, z), f (x, z)} Premise
6. {h(harry)} Premise
7. {r(ralph)} Premise
8. {:f (harry, ralph)} Negated Goal

From these clauses, we can derive the empty clause, as shown in the following derivation.

9. {d (gary)} 2, 4
10. {:d (y), f (harry, y)} 6, 1
11. {f (harry, gary)} 9, 10
12. {f (gary, ralph)} 7, 3
13. {:f (gary, z), f (harry, z)} 11, 5
14. {f (harry, ralph)} 12, 13
15. { } 14, 8

Don’t be misled by the simplicity of these examples. Resolution can and has been used in
proving complex mathematical theorems, in proving the correctness of programs, and in various
other applications.

12.8 ANSWEREXTRACTION
In a previous section, we saw how to use resolution in answering true-or-false questions (e.g.,
Is Art the grandparent of Coe?). In this section, we show how resolution can be used to answer
fill-in-the-blank questions as well (e.g., Who is the grandparent of Coe?).

A fill-in-the-blank question is a sentence with free variables specifying the blanks to be
filled in. e goal is to find bindings for the free variables such that the database logically entails
the sentence obtained by substituting the bindings into the original question.

For example, to ask about Jon’s parent, we would write the question p(x,jon). Using the
database from the previous section, we see that art is an answer to this question, since the sentence
p(art, jon) is logically entailed by the database.

An answer literal for a fill-in-the-blank question ' is a sentence goal(�1, ... , �n), where
�1, ... , �n are the free variables in '. To answer ', we form an implication from ' and its answer
literal and convert to clausal form.

For example, the literal p(x, jon) is combined with its answer literal goal(x) to form the
rule (p(x, jon)) goal(x)), which leads to the clause {:p(x, jon), goal(x)}.

To get answers, we use resolution as described above, except that we change the termination
test. Rather than waiting for the empty clause to be produced, the procedure halts as soon as it
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derives a clause consisting of only answer literals. e following resolution derivation shows how
we compute the answer to Who is Jon’s parent?

1. {f (art, jon)} Premise
2. {f (bob, kim)} Premise
3. {:f (x, y), p(x, y)} Premise
4. {:p(x, jon), goal(x)} Goal
5. {:f (x, jon), goal(x)} 3, 4
6. {goal(art)} 1, 5

If this procedure produces only one answer literal, the terms it contains constitute the only
answer to the question. In some cases, the result of a fill-in-the-blank resolution depends on the
refutation by which it is produced. In general, several different refutations can result from the
same query, leading to multiple answers.

Suppose, for example, that we knew the identities of both the father and mother of Jon and
that we asked Who is one of Jon’s parents? e following resolution trace shows that we can derive
two answers to this question.

1. {f (art, jon)} Premise
2. {m(ann, jon)} Premise
3. {:f (x, y), p(x, y)} Premise
4. {:m(x, y), p(x, y)} Premise
5. {:p(x, jon), goal(x)} Goal
6. {:f (x, jon), goal(x)} 3, 5
7. {goal(art)} 1, 6
8. {:m(x, jon), goal(x)} 4, 5
9. {goal(ann)} 2, 8

Unfortunately, we have no way of knowing whether or not the answer statement from a
given refutation exhausts the possibilities. We can continue to search for answers until we find
enough of them. However, due to the undecidability of logical entailment, we can never know in
general whether we have found all the possible answers.

Another interesting aspect of fill-in-the-blank resolution is that in some cases the procedure
can result in a clause containing more than one answer literal. e significance of this is that no
one answer is guaranteed to work, but one of the answers must be correct.

e following resolution trace illustrates this fact. e database in this case is a disjunction
asserting that either Art or Bob is the father of Jon, but we do not know which man is. e goal
is to find a parent of John. After resolving the goal clause with the sentence about fathers and
parents, we resolve the result with the database disjunction, obtaining a clause that can be resolved
a second time yielding a clause with two answer literals. is answers indicates not two answers
but rather uncertainty as to which is the correct answer.
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1. {f (art, jon), f (bob, jon)} Premise
2. {:f (x, y), p(x, y)} Premise
3. {:p(x, jon), goal(x)} Goal
4. {:f (x, jon), goal(x)} 2, 3
5. {f (art, jon), goal(bob)} 1, 4
6. {goal(art), goal(bob)} 5, 4

In such situations, we can continue searching in hope of finding a more specific answer.
However, given the undecidability of logical entailment, we can never know in general whether
we can stop and say that no more specific answer exists.

12.9 STRATEGIES

One of the disadvantages of using the resolution rule in an unconstrained manner is that it leads
to many useless inferences. Some inferences are redundant in that their conclusions can be derived
in other ways. Some inferences are irrelevant in that they do not lead to derivations of the desired
result.

is section presents a number of strategies for eliminating useless work. In reading this
material, it is important to bear in mind that we are concerned here not with the order in which
inferences are done, but only with the size of a resolution graph and with ways of decreasing that
size by eliminating useless deductions.

PURELITERALELIMINATION

A literal occurring in a clause set is pure if and only if it has no instance that is complementary
to an instance of another literal in the clause set. A clause that contains a pure literal is useless
for the purposes of refutation, since the literal can never be resolved away. Consequently, we can
safely remove such a clause. Removing clauses with pure literals defines a deletion strategy known
as pure-literal elimination.

e clause set that follows is unsatisfiable. However, in proving this we can ignore the
second and third clauses, since they both contain the pure literal s. e example in this case
involves clauses in Propositional Logic, but it applies equally well to Relational Logic.

{:p, :q, r}
{:p, s}
{:q, s}
{p}
{q}
{:r}
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Note that, if a database contains no pure literals, there is no way we can derive any clauses
with pure literals using resolution. e upshot is that we do not need to apply the strategy to a
database more than once, and in particular we do not have to check each clause as it is generated.

TAUTOLOGYELIMINATION
A tautology is a clause containing a pair of complementary literals. For example, the clause
{p(f (a)), :p(f (a))} is a tautology. e clause {p(x), q(y), :q(y ), r(z)} also is a tautology,
even though it contains additional literals.

As it turns out, the presence of tautologies in a set of clauses has no effect on that set’s
satisfiability. A satisfiable set of clauses remains satisfiable, no matter what tautologies we add. An
unsatisfiable set of clauses remains unsatisfiable, even if we remove all tautologies. erefore, we
can remove tautologies from a database, because we need never use them in subsequent inferences.
e corresponding deletion strategy is called tautology elimination.

Note that the literals in a clause must be exact complements for tautology elimination to
apply. We cannot remove non-identical literals, just because they are complements under unifi-
cation. For example, the clauses {:p(a), p(x)}, {p(a)}, and {:p(b)} are unsatisfiable. However,
if we were to remove the first clause, the remaining clauses would be satisfiable.

SUBSUMPTIONELIMINATION
In subsumption elimination, the deletion criterion depends on a relationship between two clauses
in a database. A clause ˆ subsumes a clause ‰ if and only if there exists a substitution � such that
ˆ� � ‰. For example, {p(x), q(y)} subsumes {p(a), q(v), r(w)}, since there is a substitution
{x a, y v} that makes the former clause a subset of the latter.

If one member in a set of clauses subsumes another member, then the set remaining after
eliminating the subsumed clause is satisfiable if and only if the original set is satisfiable. erefore,
subsumed clauses can be eliminated. Since the resolution process itself can produce tautologies
and subsuming clauses, we need to check for tautologies and subsumptions as we perform reso-
lutions.

UNITRESOLUTION
A unit resolvent is one in which at least one of the parent clauses is a unit clause, i.e., one containing
a single literal. A unit derivation is one in which all derived clauses are unit resolvents. A unit
refutation is a unit derivation of the empty clause.

As an example of a unit refutation, consider the following proof. In the first two inferences,
unit clauses from the initial set are resolved with binary clauses to produce two new unit clauses.
ese are resolved with the first clause to produce two additional unit clauses. e elements in
these two sets of results are then resolved with each other to produce the contradiction.
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1. {p, q} Premise
2. {:p, r} Premise
3. {:q, r} Premise
4. {:r} Premise
5. {:p} 2, 4
6. {:q} 3, 4
7. {q} 1, 5
8. {p} 1, 6
9. {r} 3, 7

10. { } 6, 7
Note that the proof contains only a subset of the possible uses of the resolution rule. For

example, clauses 1 and 2 can be resolved to derive the conclusion {q, r}. However, this conclusion
and its descendants are never generated, since neither of its parents is a unit clause.

Inference procedures based on unit resolution are easy to implement and are usually quite
efficient. It is worth noting that, whenever a clause is resolved with a unit clause, the conclusion
has fewer literals than the parent does. is helps to focus the search toward producing the empty
clause and thereby improves efficiency.

Unfortunately, inference procedures based on unit resolution generally are not complete.
For example, the clauses {p, q}, {:p, q}, {p ,:q}, and {:p, :q} are inconsistent. Using general
resolution, it is easy to derive the empty clause. However, unit resolution fails in this case, since
none of the initial clauses contains just one literal.

On the other hand, if we restrict our attention to Horn clauses (i.e., clauses with at most
one positive literal), the situation is much better. In fact, it can be shown that there is a unit
refutation of a set of Horn clauses if and only if it is unsatisfiable.

INPUTRESOLUTION
An input resolvent is one in which at least one of the two parent clauses is a member of the initial
(i.e., input) database. An input deduction is one in which all derived clauses are input resolvents.
An input refutation is an input deduction of the empty clause.

It can be shown that unit resolution and input resolution are equivalent in inferential power
in that there is a unit refutation from a set of sentences whenever there is an input refutation and
vice versa.

One consequence of this fact is that input resolution is complete for Horn clauses but
incomplete in general. e unsatisfiable set of clauses {p, q}, {:p, q}, {p ,:q}, and {:p, :q}
provides an example of a deduction on which input resolution fails. An input refutation must (in
particular) have one of the parents of {} be a member of the initial database. However, to produce
the empty clause in this case, we must resolve either two single literal clauses or two clauses having
single-literal factors. None of the members of the base set meet either of these criteria, so there
cannot be an input refutation for this set.



12.9. STRATEGIES 157

LINEARRESOLUTION
Linear resolution (also called ancestry-filtered resolution) is a slight generalization of input resolu-
tion. A linear resolvent is one in which at least one of the parents is either in the initial database
or is an ancestor of the other parent. A linear deduction is one in which each derived clause is a
linear resolvent. A linear refutation is a linear deduction of the empty clause.

Linear resolution takes its name from the linear shape of the proofs it generates. A linear
deduction starts with a clause in the initial database (called the top clause) and produces a linear
chain of resolution. Each resolvent after the first one is obtained from the last resolvent (called
the near parent) and some other clause (called the far parent). In linear resolution, the far parent
must either be in the initial database or be an ancestor of the near parent.

Much of the redundancy in unconstrained resolution derives from the resolution of inter-
mediate conclusions with other intermediate conclusions. e advantage of linear resolution is
that it avoids many useless inferences by focusing deduction at each point on the ancestors of
each clause and on the elements of the initial database.

Linear resolution is known to be refutation complete. Furthermore, it is not necessary to
try every clause in the initial database as top clause. It can be shown that, if a set of clauses � is
satisfiable and �[{ˆ} is unsatisfiable, then there is a linear refutation with ˆ as top clause. So,
if we know that a particular set of clauses is consistent, we need not attempt refutations with the
elements of that set as top clauses.

Amerge is a resolvent that inherits a literal from each parent such that this literal is collapsed
to a singleton by the most general unifier. e completeness of linear resolution is preserved even
if the ancestors that are used are limited to merges. Note that, in this example, the first resolvent
(i.e., clause {q}) is a merge.

SETOF SUPPORTRESOLUTION
If we examine resolution traces, we notice that many conclusions come from resolutions between
clauses contained in a portion of the database that we know to be satisfiable. For example, in
many cases, the set of premises is satisfiable, yet many of the conclusions are obtained by resolving
premises with other premises rather than the negated conclusion As it turns out, we can eliminate
these resolutions without affecting the refutation completeness of resolution.

A subset � of a set� is called a set of support for� if and only if��� is satisfiable. Given a
set of clauses � with set of support � , a set of support resolvent is one in which at least one parent
is selected from � or is a descendant of � . A set of support deduction is one in which each derived
clause is a set of support resolvent. A set of support refutation is a set of support deduction of the
empty clause.

e following derivation is a set of support refutation, with the singleton set {:r} as the set
of support. e clause {:r} resolves with {:p, r} and {:q, r} to produce {:p} and {:q}. ese
then resolve with clause 1 to produce {q} and {p}, which resolve to produce the empty clause.
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1. {p, q} Premise
2. {:p, r} Premise
3. {:q, r} Premise
4. {:r} Set of Support
5. {:p} 2, 4
6. {:q} 3, 4
7. {q} 1, 5
8. { } 7, 6

Obviously, this strategy would be of little use if there were no easy way of selecting the set of
support. Fortunately, there are several ways this can be done at negligible expense. For example,
in situations where we are trying to prove conclusions from a consistent database, the natural
choice is to use the clauses derived from the negated goal as the set of support. is set satisfies
the definition as long as the database itself is truly satisfiable. With this choice of set of support,
each resolution must have a connection to the overall goal, so the procedure can be viewed as
working backward from the goal. is is especially useful for databases in which the number of
conclusions possible by working forward is larger. Furthermore, the goal-oriented character of
such refutations often makes them more understandable than refutations using other strategies.

RECAP
e Resolution Principle is a rule of inference for Relational Logic analogous to the Propositional
Resolution Principle for Propositional Logic. As with Propositional Resolution, Resolution works
only on expressions in clausal form. Unification is the process of determining whether two expres-
sions can be unified, i.e., made identical by appropriate substitutions for their variables. A substi-
tution is a finite mapping of variables to terms. e variables being replaced together constitute
the domain of the substitution, and the terms replacing them constitute the range. A substitution
is pure if and only if all replacement terms in the range are free of the variables in the domain
of the substitution. Otherwise, the substitution is impure. e result of applying a substitution �
to an expression ' is the expression '� obtained from the original expression by replacing every
occurrence of every variable in the domain of the substitution by the term with which it is as-
sociated. e composition of two substitutions is a single substitution that has the same effect as
applying those substitutions in sequence. A substitution � is a unifier for an expression ' and an
expression  if and only if '�D � , i.e., the result of applying � to ' is the same as the result of
applying � to  . If two expressions have a unifier, they are said to be unifiable. Otherwise, they
are nonunifiable. A most general unifier, or mgu, � of two expressions has the property that it is
as general as or more general than any other unifier. Although it is possible for two expressions
to have more than one most general unifier, all of these most general unifiers are structurally the
same, i.e., they are unique up to variable renaming. e Resolution Principle is analogous to that
of Propositional Resolution. e main difference is the use of unification to unify literals before
applying the rule. A resolution derivation of a conclusion from a set of premises is a finite sequence
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of clauses terminating in the conclusion in which each clause is either a premise or the result of
applying the Resolution Principle to earlier members of the sequence. Resolution and Fitch with-
out DC are equally powerful. Given a set of sentences, Resolution can derive the empty clause
from the clausal form of the sentences if and only if Fitch can find a proof of a contradiction. e
benefit of using Resolution is that the search space is smaller.

12.10 EXERCISES
12.1. Consider a language with two object constants a and b and one function constant f .

Give the clausal form for each of the following sentences in this language.
(a) 9y.8x.p(x,y)
(b) 8x.9y.p(x,y)
(c) 9x.9y.(p(x,y) ^ q(x,y))
(d ) 8x.8y.(p(x,y)) q(x))
(e) 8x.(9y.p(x,y)) q(x))

12.2. For each of the following pairs of sentences, say whether the sentences are unifiable and
give a most general unifier for those that are unifiable.
(a) p(x,x) and p(a,y)
(b) p(x,x) and p(f (y),z)
(c) p(x,x) and p(f (y),y)
(d ) p(f (x,y),g(z,z)) and p(f (f (w,z),v),w)

12.3. Give all resolvents, if any, for each of the following pairs of clauses.
(a) {p(x,f (x)), q(x)} and {:p(a,y), r(y)}
(b) {p(x,b), q(x)} and {:p(a,x), r(x)}
(c) {p(x), p(a), q(x)} and {:p(y), r(y)}
(d ) {p(x), p(a), q(x)} and {:p(y), r(y)}
(e) {p(a), q(y)} and {:p(x), :q(b)}
(f ) {p(x), q(x,x)} and {:q(a, f (a))}

12.4. Given the clauses {p(a), q(a)}, {:p(x), r(x)}, {:q(a)}, use Resolution to derive the clause
{r(a)}.

12.5. Given the premises 8x.(p(x)) q(x)) and 8x.(q(x)) r(x)), use Resolution to prove
the conclusion 8x.(p(x)) r(x)).

12.6. Given 8x.(p(x)) q(x)), use Resolution to prove 8x.p(x))8x.q(x).

12.7. Use Resolution to prove 8x.(((p(x)) q(x))) p(x))) p(x)).

12.8. Given 8x.8y.8z.(p(x,y) ^ p(y,z)) p(x,z)), 8x.p(x,a), and 8y.p(a,y), use Resolu-
tion to prove 8x.8y.p(x,y).



160 12. RESOLUTION

12.9. Use resolution to show that the clauses {:p(x,y), q(x,y,f (x,y))}, {:r(y,z), q(a,y,z)},
{r(y,z),:q(a,y,z)}, {p(x,g(x)), q(x,g(x),z)}, and {:r(x,y),:q(x,w,z)} are unsatisfiable.
is one is a little tricky. Be careful about factoring.

12.10. Given p(a) and 8x.(p(x)) q(x) _ r(x)), use Answer Extraction to find a � such that
(q(�) _ r(�)) is true.
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