Sput'l. gtnn

I(1.d5 [an [nde
-

Understanding Coding like a

PROGRAMINET

Understanding Coding like a

PROGR

Patricia Harris

PowerKiDS

press.

Mew York

Published in 2017 by The Rosen Publishing Group, Inc.
29 East 2 1st Street, Mew Yark, MY 10010

Copyright @ 2017 by The Rasen Publishing Group, Inc.

All rights reserved. Mo part of this book may be reproduced in any form without permission in writing
fiom the publisher, except by a reviewer

First Edificn

Editor: Caifie Mchneney
Book Design: Michael |. Flnn

Phato Credits: Cover {boy using computer] Samuel Ashfield/ Science Photo Librarny/ Getty Images; cover,

pp. 1, 3-24 koding bockground | Lukas Rs /Shutierstock.com; p. 5 {bottom| ESB Essentials/ Shutierstock.com;

p. 5tiop leff| Blend Images/ Shutterstock. com; p. 5 top right] Kaspars Grinvalds/ Shuterstock cam;

p. 7 VGsiocksiudio /Shutiersiock.com; p. 8 India Ficture,/ Shutierstock.com; p. 9 Dan Bannisier/ Getty Images;

p. 11 dotshock/Shutiersiock.com; p. 13 {iop| Photobank gallery Shuttersiock.com; p. 13 {botiom| Andiey_Popos/
Shutierstock.com; p. 15 Jocek Chabraszewski/ Shuterstock.com; g 16 Olimpik/Shutiersack.com;

p. 17 Caigimage,/ Robert Daly/ OO+ /Getty Images; p. 21 Bruce lavrance,/ The Image Bank,/ Getty Images;

p. 22 photastic /Shuttersiack. com.

Cotaloging-in-Publication Daia

Mames: Harmis, Patricia.

Title: Undermsianding coding like o programmer / Faticia Harris.

Description: Mew York @ Powerkids Press, 2017, | Series: Spatlight on kids con code | Includes index.

Identifiers: 15BN 9781492427350 {pbk.| | 15BN 97 81492428254 {library bound| | 15BN 2781499428834
16 pock]

Subjects: LCSH: Computer programming-Juvenile literature.

Classification: LOZ QAZA 73 PR3 H3AS5 2017 | DDC 005 1-dc23

Manufactured in the Uniled States of America

CPRA Complance Informabion: Bakch #80W | TPE Far Further Inf cinEack Fosen By g, Mew Yok, Mow York ak 1800 23 F.28k

AC08 AR CINT SH T The Biomen Pub i shing Group, Inc

Many people are afraid of learning about coding. They

-+ believe that they could never understand coding or think

‘ like a programmer thinks. However, computer programmers

don't have superpowers. Instead, they use an organized way
of thinking called computational thinking.

Computational thinking involves solving problems. o
It also involves using thinking skills to recognize what you om .~ NS
know and don't know. Programmers break big problems into
smaller parts. They organize their solution so it can be put o
in place. Then they test the solution to make sure it actually =
solves the problem. P

BEEEE =100

Computational thinking isn't just for computer
programmers. It's used by anyone who wants to solve
1010
problems effectively—whether or not a computer is involved.
17101 1
RO 1on
rruaoa
10100490
1818 TET-01-1
i 1l r 1010

111jB1 1

The first step in thinking like a programmer is

defining the big problem. You must know what problem
needs to be solved. This may seem obvious, but
sometimes people try to code before they really know what
they want the program to do.

Maybe you have a program that keeps track of your
schedule. However, it shows all the entries in black. You
want your soccer practice times to stand out. So, you
add the ability to show the color green to your program.
However, the program either makes every entry green or
you have to add the color green for soccer times whenever
you go into the program. You may realize that the big
problem wasn't adding a color. The big problem was
making the program recognize an entry for soccer and
make that entry green.

10100490

N ¢ 10 e

ft Wiof1oiioiholl 119hh

jooToo11 101010010 {1Q1110101
i) N

100101

011

B 10100

1Mo

[y |

BEEEE =100

1010

17101 1
RO 1on
rruaoa
1818 TET-01-1

1010

111jB1 1

[FOTCNRT ¥

rrant

O

Oror

F RO

Irororsr

roo TR rod

O TIAr

Oro

I rorr

What Do You Know??

Tl g Programmers also have to think about what they
1 know and what they don't know. You probably think this

way without being aware of it. Imagine you need to buy a

birthday present for a friend. With little effort, you consider =101
what you know about your friend and what you don't know.

You know your friend likes board games because you often =1

play games at their house. You don't _ E‘h_m -
know if your friend has the newest < \ ___'
release of their favorite game. / TR
(L
Programmers think this B
way when they begin to write a —
Sgiroioo

new program or change one that

was already written. For example,

they might know what work

“needs to be done, but they I
mjglg’g pat know the skills of &{1 o117
e peop h il in \l:l'n:u:n
‘“; k 0 " ;t?a usl g E\T\\B_'I [m R

L
O
o =
e
—O
—
———
=
2 \
P rm—
=74
o =]

| e

You might think like a
programmer when you're making
snacks for class. You know
that your class really enjoys
cupcakes and chocolate, but
you may not know if anyone has
a food allergy.

Another thinking activity for programmers is splitting

.+ big problems into smaller parts. You probably use this way

~ ofthinking in school. It's a good strategy for completing

difficult math problems.

Programmers who work for a company often work
as part of a team. Each member of the team may have
programming skills that other members don't have. The
team may break a big problem into smaller parts and
then each member may write one or more of the smaller
parts. When the separate parts are done, a programmer
can incorporate all the separate parts to make a
whole program.

It's important that the team communicates about their
parts and that each team member only does their part of
the work. Then the program parts can work together as a

whole program.

10100490
L I,T]Dil
vEl,lflll:l'l 1000 81011

:FE:FEIﬁ.-. I . : fia1 110101
= Iwﬂlgﬂ?lﬂ

100101

011

B 10100

1Mo

=R

BEEEE =100

1010

17101 1

RO 1on

rruaoa

1818 TET-01-1

1010

111jB1 1

Frarong ¥

CHE-EEE R

F RO

I TOTETLE

roo oo

I I |

S0 AR CIRT SH T The Biomen Pub i shing Group, Inc

Just as programmers reuse modules, they can also
reuse their ideas to solve new computer problems in

1T 1

‘ programming. When you learned to solve division problems

in math, you may have used your prior knowledge of solving
multiplication problems. Similarly, programmers often reuse
methods learned from solving old problems when solving
new ones.

Perhaps a programmer has already written a program
to allow users to add the state name to an address using a

list of state names that drop down
Choose a State

Alaska d
Alabama

Arkansas

Arizona

California

Colorado

on the screen. The programmer can
then reuse that knowledge to create
similar drop-down lists with different
information. The list structure will be

Connecticut
Delaware
Florida
Georgia
Hawaii

lowa

Idaho

the same, but the information in the
list will be different. Reusing
old methods for new problems

1010049 0

means the programmer can be

OoTo01110101D010 Saifaly

(I 16010

B 10100

1Mo

BEEEE =100

1010

17101 1

L0101 1

rruaoa

L = e

1010

181 1

Think of your math
homework. How do you
solve new problems
with prior knowledge?

e

ooroLol

A=t dsb s

u-uv:q:.' T I

s ["ubli shing Graup, Inc.

1T 1

1

How can you reuse your ideas for new problems in

real life? These new problems can be everyday issues, such

as your sister or brother hogging your favorite game.
You can reuse your ideas from when you faced this
problem, or one like it, in the past. Think about what you did
before that solved a problem or made the problem worse.
Maybe you complained to your mom about your brother
using your game, but you just got in trouble for not sharing.
That didn't help. Maybe giving your brother or sister a set
time to play your game was enough to make them happy.
That did help. You can apply that knowledge to solve the
current problem. That may help end a fight between you

LIOl10J:1

o1l

LS b= = B

) o=

IlI

—

L HenEoREeieg

|14

[11

1

Programmers must think about the data structures they
need. Data structures are ways of organizing data so that a
computer can use it. The better the data structure, the faster
the computer can access data and complete a job. L1010

Think of data structures as ways to organize items so
they can be found easily. You could just pile all your clothes =1
in a big heap on the floor. However, that's not a smart ey e
way to organize your clothes. The heap would have clean
clothes and used clothes piled together. It would take a
while to find your favorite shirt or matching socks! Similarly,

) o=

£

If programmers don't organize their data, the computer will =

have to take more time to find the information it needs. gGraroo
Breaking the (ode B
An array is a list of variables under one variable name. For iy “|:” et
example, an array of your favorite foods might look Llike this: N
myfruits = [oranges, pears, apples, grapes). If you want to print 1:2“ grool
the first item in the array, you would use the statement “print 8
myfruits[0].” The first itemin a list if called the zero item. If you " gL e
print “myfruits[1]” you get the word “pears” on the screen. If you A Sl

print “myfruits” you will see the whole list on the screen.

0 PR GIT S T Tha Bicmsn Fub i shiing G up, e a1 1

ARRAY

clements llllllllll

index

size 10 N

RGNV PO T Ty 1T

[FOTCNR T b=

T TS N punEarbil L-.'-il-i.:-‘-¥llf
R o o b e 2 3w .

Firgin TREE
= elements

O

Oror

F RO

N

[T MR i] T e——

T e b || TTTTTTTVIT huuuulhul

=18 i -~

i=fOTF

I I |

aron 1 |
I Ol w Wy [o e W T

I 0O
orogroforn L ragroo

% i
coror e N

L1 D100 0

When they finish a program, programmers must ask
the question: is this work really correct? To find out, they
must test the program parts and the whole program.

When you check your work in math or edit a paper,
you're using this way of thinking. Imagine you're writing
an important paper. When you finish, you need to check
spelling, grammar, and punctuation. You also have to make
sure your paragraphs are organized. Then you need to
reread your paper to make sure the whole paper makes
sense. In the same way, programmers test the parts of their
programs and then test the whole program to be sure the
parts work together. If even one part is incorrect, it could
ruin the whole program.

Breaking the (ode

Computer programmers use debugging tools when testing
code. The tools are usually a part of the programming
environment. These environments are called integrated

=ro4

development environments (IDE). An IDE shows places in the
code that have syntax errors, or errors in the ways the words
are put together. This happens before you run your code.

AC08 AR CINT SH T The Biomen Pub i shing Group, Inc

M110101

1001

=

SEE=1-0 0

1

o

;
u]

M

=R

gt 11

e
[

e R =R

e
o

8101007
I a1
nTol1n

e

-F O IRl F

[-E e ===l

L B

FrFa-rgrror

How can you practice thinking like a programmer

if you don't know how to code? One example is a math

LT 1

f game. You will need paper, a pencil, and two dice. Write

down the number 100 at the top of the paper. Roll the

dice to get two numbers. Your goal is to get from

100 to O as quickly as possible. Decide which operation—
addition, subtraction, division, or multiplication—you can
use between the two numbers to get the highest result.
Subtract that number from 100. Continue until you arrive at
or below zero as quickly as possible.

Now play the game in a way that must get you exactly
to zero. How is this a different problem? What do you know
and what do you need to know? How can you reuse your
thinking? Can you mentally test an operation before writing
it on the paper? These are
great ways of thinking like
a bomputar programmer!

1010010

%N 100

sshhafi1o1ioihol 11000
13 100

dﬁ#ﬂﬁi 10101 D8 1O
. u,i;i

1010

011

= ijlo101 1

1FELT T

= e N |

o

HedhoRRelel

P -

11811
10107 10
=R pm e
MR T ET-O-T-7

1010

1101 1

[FOTCRT b=

rrant

3
‘o

i

[-E e ===l

oror

rroirr

rror oy

Hoo-roT ol

R o e

m e

I o

Glossary

access: The ability to use or enter something.

array: A group of numbers or symbols that are arranged in rows r o
and columns.

define: To describe something clearly and completely.

efficient: Done in the quickest, best way possible.

implement: To carry out.

incorporate: To combine something with something else.
module: A part of a computer program that does a particular job.
obvious: Easy to see or notice.

prior: Earlier in time or order.

routine: A sequence of computer instructions for performing a
particular task.

strategy: A plan of action to achieve a goal.

variable: A quantity that may change when other conditions change.

I-[-D%=F

'—'lr.
.—-ru

[{El
rrr_'lrrrl‘:lrrl:nrr_'ll
Tl om0
m i mruurururlrnm

oaormr

orarn

H

Index

J
1 B A P T

architects, 4 pmblem. 4,6,7,10, 14, team, 10,11
e array, 18,19 15, 16, 22 tree format, 19 =1

program, 6, 8, 10,12,]

.{(C 13,14,17,20,21 V e =101

company, 10, 11 programmer, 4, 6, 8,9, vanable, 12,18

computational thinking, 10, 11,12, 13,14, Q1 10I1n

4 18, 20,22 < a6

D R

data structures, 18,19 reusing, 12,13, 14, 16,

doctors, 4 17, 22

defining, 6, 12 routine, 12

L 5
ibrary, 12 software, 11
solution, 4
M steps, 6, 12
math, 10,14,15,20, strategy, 10
22

- modules, 12,13, 14

1TO7T 1161

o1o1 IOt 0e 10110

2

D00y goiin oo i oo a

3 '-'.I_‘::.i_ _ .I .||| 11 -
Webs1it b
Due fo the changing nature of Internet links, Powerkids Press u , sloped an 6018 LOOE

online list of websites related fo the subject of this book.This site is: updated regularly.
Please use this link fo access the list: www.powerkidslinks.com/kec/prog
O e

24

LD VODAYLD ER LD L LD OO | ol i

Book IndeXx

Understanding Coding Like a Programmer

Understanding Coding Like a Programmer Patricia Harris.
Spotlight on Kids Can Code New York, NY. PowerKids Press, 2017. 24

PP-

This book explores several attributes of thinking used by
programmers, empowering young coders to think about
problems differently, both in coding and in life. Important
STEM concepts are incorporated into the text to give readers
an understanding of how STEM fits into the everyday work of
a programmer.

Index

A

architects

array
118 4 dLI

c

company
118 | 1-11

computational thinking

D

data structures
1-18 | 1-19

doctors
14

defining
16 | 1:12

library
1:12
M

math
140 | 1:44 | 1:15 [1:20 | 1:22

modules
112 | 1:13 | 1:14

P

problem
1:4 |16 |17 [1:10 [1:14 | 1:15 [1:16 | 1:22

program
16 [18 [140 (142 [1:13 [1:14 | 117 [1:20 | 1:21

programmer
1:4 (16 |18 | 1:9 | 1140 [441 (142 [143 (144 [148 |[1:20 | 1:22

R

reusing
142 [1:43 | 1:44 [1:46 | 147 | 1:22

routine
112

software
1:11

solution
14

steps
16112

strategy
110

T

team
110 | 1:11

tree format
1:19

v

variable
1:12 | 1:18

