
�

� �

�

PROCESS MODELING
AND SIMULATION FOR
CHEMICAL ENGINEERS



�

� �

�

PROCESS MODELING
AND SIMULATION FOR
CHEMICAL ENGINEERS
THEORY AND PRACTICE

Simant Ranjan Upreti

Department of Chemical Engineering,
Ryerson University,
Toronto, Canada



�

� �

�

This edition first published 2017
© 2017 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law.
Advice on how to obtain permision to reuse material from this title is available at
http://www.wiley.com/go/permissions.

The right of Simant Ranjan Upreti to be identified as the author of this work has been asserted in accordance with
law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at
www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears
in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of
the contents of this work and specifically disclaim all warranties, including without limitation any implied
warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not
engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every
situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the
constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged
to review and evaluate the information provided in the package insert or instructions for each chemical, piece of
equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for
added warnings and precautions. The fact that an organization or website is referred to in this work as a citation
and/or potential source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further, readers should be
aware that websites listed in this work may have changed or disappeared between when this works was written and
when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the
publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Names: Upreti, Simant Ranjan, author.
Title: Process modeling and simulation for chemical engineers : theory and
practice / Simant Ranjan Upreti.

Description: Chichester, UK ; Hoboken, NJ : John Wiley & Sons, 2017. |
Includes bibliographical references and index.

Identifiers: LCCN 2016053339| ISBN 9781118914687 (cloth) | ISBN 9781118914663
(epub)

Subjects: LCSH: Chemical processes–Mathematical models. | Chemical
processes–Data processing.

Classification: LCC TP155.7 .U67 2017 | DDC 660/.284401–dc23
LC record available at https://lccn.loc.gov/2016053339

Cover image: shulz/Gettyimages
Cover design by Wiley

Set in 10/12pt, NimbusRomNo by SPi Global, Chennai, India.

10 9 8 7 6 5 4 3 2 1



�

� �

�

to my wife and kids



CONTENTS

Preface xiii

Notation xv

1 Introduction 1

1.1 System 1
1.1.1 Uniform System 2
1.1.2 Properties of System 2
1.1.3 Classification of System 3
1.1.4 Model 3

1.2 Process 3
1.2.1 Classification of Processes 4
1.2.2 Process Model 5

1.3 Process Modeling 6
1.3.1 Relations 7
1.3.2 Assumptions 7
1.3.3 Variables and Parameters 8

1.4 Process Simulation 9
1.4.1 Utility 9
1.4.2 Simulation Methods 10

1.5 Development of Process Model 11

1.6 Learning about Process 13

1.7 System Specification 14

Bibliography 16

Exercises 16

2 Fundamental Relations 17

2.1 Basic Form 17
2.1.1 Application 19

2.2 Mass Balance 21



viii

2.2.1 Microscopic Balances 21
2.2.2 Equation of Change for Mass Fraction 23

2.3 Mole Balance 24
2.3.1 Microscopic Balances 24
2.3.2 Equation of Change for Mole Fraction 25

2.4 Momentum Balance 26
2.4.1 Convective Momentum Flux 27
2.4.2 Total Momentum Flux 28
2.4.3 Macroscopic Balance 29
2.4.4 Microscopic Balance 31

2.5 Energy Balance 33
2.5.1 Microscopic Balance 33
2.5.2 Macroscopic Balance 35

2.6 Equation of Change for Kinetic and Potential Energy 38
2.6.1 Microscopic Equation 38
2.6.2 Macroscopic Equation 40

2.7 Equation of Change for Temperature 41
2.7.1 Microscopic Equation 41
2.7.2 Macroscopic Equation 42

2.A Enthalpy Change from Thermodynamics 44

2.B Divergence Theorem 48

2.C General Transport Theorem 50

2.D Equations in Cartesian, Cylindrical and Spherical Coordinate Systems 53
2.D.1 Equations of Continuity 54
2.D.2 Equations of Continuity for Individual Species 54
2.D.3 Equations of Motion 55
2.D.4 Equations of Change for Temperature 56

Bibliography 57

Exercises 57

3 Constitutive Relations 59

3.1 Diffusion 59
3.1.1 Multicomponent Mixtures 60

3.2 Viscous Motion 60
3.2.1 Newtonian Fluids 61
3.2.2 Non-Newtonian Fluids 62

3.3 Thermal Conduction 63

3.4 Chemical Reaction 63

3.5 Rate of Reaction 65



ix

3.5.1 Equations of Change for Moles 66
3.5.2 Equations of Change for Temperature 67
3.5.3 Macroscopic Equation of Change for Temperature 69

3.6 Interphase Transfer 71

3.7 Thermodynamic Relations 72

3.A Equations in Cartesian, Cylindrical and Spherical Coordinate Systems 74
3.A.1 Equations of Continuity for Binary Systems 74
3.A.2 Equations of Motion for Newtonian Fluids 75
3.A.3 Equations of Change for Temperature 76

References 77

Bibliography 77

Exercises 78

4 Model Formulation 79

4.1 Lumped-Parameter Systems 80
4.1.1 Isothermal CSTR 80
4.1.2 Flow through Eccentric Reducer 83
4.1.3 Liquid Preheater 84
4.1.4 Non-Isothermal CSTR 87

4.2 Distributed-Parameter Systems 90
4.2.1 Nicotine Patch 90
4.2.2 Fluid Flow between Inclined Parallel Plates 93
4.2.3 Tapered Fin 96
4.2.4 Continuous Microchannel Reactor 99
4.2.5 Oxygen Transport to Tissues 103
4.2.6 Dermal Heat Transfer in Cylindrical Limb 106
4.2.7 Solvent Induced Heavy Oil Recovery 108
4.2.8 Hydrogel Tablet 112
4.2.9 Neutron Diffusion 117
4.2.10 Horton Sphere 119
4.2.11 Reactions around Solid Reactant 122

4.3 Fluxes along Non-Linear Directions 127
4.3.1 Saccadic Movement of an Eye 128

4.A Initial and Boundary Conditions 131
4.A.1 Initial Condition 131
4.A.2 Boundary Condition 131
4.A.3 Periodic Condition 132

4.B Zero Derivative at the Point of Symmetry 133

4.C Equation of Motion along the Radial Direction in Cylindrical Coordinates 134

References 137



x

Exercises 137

5 Model Transformation 139

5.1 Transformation between Orthogonal Coordinate Systems 139
5.1.1 Scale Factors 139
5.1.2 Differential Elements 142
5.1.3 Vector Representation 143
5.1.4 Derivatives of Unit Vectors 144
5.1.5 Differential Operators 146

5.2 Transformation between Arbitrary Coordinate Systems 155
5.2.1 Transformation of Velocity 155
5.2.2 Transformation of Spatial Derivatives 156
5.2.3 Correctness of Transformation Matrices 156

5.3 Laplace Transformation 161
5.3.1 Examples 162
5.3.2 Properties of Laplace Transforms 164
5.3.3 Solution of Linear Differential Equations 168

5.4 Miscellaneous Transformations 178
5.4.1 Higher Order Derivatives 178
5.4.2 Scaling 178
5.4.3 Change of Independent Variable 179
5.4.4 Semi-Infinite Domain 179
5.4.5 Non-Autonomous to Autonomous Differential Equation 180

5.A Differential Operators in an Orthogonal Coordinate System 180
5.A.1 Gradient of a Scalar 180
5.A.2 Divergence of a Vector 181
5.A.3 Laplacian of a Scalar 184
5.A.4 Curl of a Vector 184

References 186

Bibliography 186

Exercises 186

6 Model Simplification and Approximation 189

6.1 Model Simplification 189
6.1.1 Scaling and Ordering Analysis 190
6.1.2 Linearization 193

6.2 Model Approximation 200
6.2.1 Dimensional Analysis 201
6.2.2 Model Fitting 204

6.A Linear Function 220

6.B Proof of Buckingham Pi Theorem 221



xi

6.C Newton’s Optimization Method 223

References 224

Bibliography 224

Exercises 225

7 Process Simulation 227

7.1 Algebraic Equations 227
7.1.1 Linear Algebraic Equations 227
7.1.2 Non-Linear Algebraic Equations 236

7.2 Differential Equations 241
7.2.1 Ordinary Differential Equations 242
7.2.2 Explicit Runge–Kutta Methods 242
7.2.3 Step-Size Control 246
7.2.4 Stiff Equations 247

7.3 Partial Differential Equations 253
7.3.1 Finite Difference Method 255

7.4 Differential Equations with Split Boundaries 263
7.4.1 Shooting Newton–Raphson Method 264

7.5 Periodic Differential Equations 268
7.5.1 Shooting Newton–Raphson Method 268

7.6 Programming of Derivatives 271

7.7 Miscellanea 274
7.7.1 Integration of Discrete Data 274
7.7.2 Roots of a Single Algebraic Equation 276
7.7.3 Cubic Equations 278

7.A Partial Pivoting for Matrix Inverse 281

7.B Derivation of Newton–Raphson Method 281
7.B.1 Quadratic Convergence 282

7.C General Derivation of Finite Difference Formulas 284
7.C.1 First Derivative, Centered Second Order Formula 285
7.C.2 Second Derivative, Forward Second Order Formula 286
7.C.3 Third Derivative, Mixed Fourth Order Formula 287
7.C.4 Common Finite Difference Formulas 289

References 291

Bibliography 291

Exercises 291

8 Mathematical Review 295

8.1 Order of Magnitude 295



xii

8.2 Big-O Notation 295

8.3 Analytical Function 295

8.4 Vectors 296
8.4.1 Vector Operations 297
8.4.2 Cauchy–Schwarz Inequality 302

8.5 Matrices 302
8.5.1 Terminology 303
8.5.2 Matrix Operations 304
8.5.3 Operator Inequality 305

8.6 Tensors 306
8.6.1 Multilinearity 306
8.6.2 Coordinate-Independence 306
8.6.3 Representation of Second Order Tensor 307
8.6.4 Einstein or Index Notation 308
8.6.5 Kronecker Delta 310
8.6.6 Operations Involving Vectors and Second Order Tensors 310

8.7 Differential 318
8.7.1 Derivative 318
8.7.2 Partial Derivative and Differential 318
8.7.3 Chain Rule of Differentiation 319
8.7.4 Material and Total Derivatives 321

8.8 Taylor Series 322
8.8.1 Multivariable Taylor Series 323
8.8.2 First Order Taylor Expansion 323
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PREFACE

I am delighted to present this book on process modeling and simulation for chemical
engineers. It is a humble attempt to assimilate the amazing contributions of researchers and
academicians in this area.

The goal of this book is to provide a rigorous treatment of fundamental concepts and
techniques of this subject. To that end, the book includes all requisite mathematical analyses
and derivations, which could be sometimes hard to find. Target readers are those at the
graduate level. This book endeavors to equip them to model sophisticated processes, develop
requisite computational algorithms and programs, improvise existing software, and solve
research problems with confidence.

Chapter 1 provides the groundwork by introducing the terminology of process modeling
and simulation. Chapter 2 presents the fundamental relations for this subject. Chapter 3
incorporates important constitutive relations for common systems. Chapter 4 presents model
formulation with the help of several examples. Transformation techniques are introduced
in Chapter 5. Model simplification and approximation methods are discussed in Chapter 6.
The numerical solution of process models is the theme of Chapter 7. Review of important
mathematical concepts is provided in Chapter 8.

This book can be used as a primary text for a one-semester course. Alternatively, 
it could serve as a supplementary text in graduate courses related to modeling 
and simulation. Readers could also study the book on their own. During an 
initial reading, one could very well skim quickly through a derivation, accept the 
result for the time being, and learn more from applications. Computer programs for the 
solutions of book examples can be obtained from the publisher’s website,
www.wiley.com/go/upreti/pms for chemical engineers. 

I am grateful to the editorial team at John Wiley & Sons for providing excellent support
from start to finish.

Finally, I am deeply indebted to my wife Deepa, and children Jahnavi and Pranav. I could
not have completed this book without their unsparing support and understanding.

Ryerson University, Toronto Simant R. Upreti



Notation

Symbol Description Units

a surface area per unit volume m−1

Am area of moving surfaces m2

Ap area of a port of flow m2

A area m2

A area vector m2

c average concentration of a mixture kmolm−3

ci concentration of the ith species kmolm−3

ĈP specific heat capacity of mixture J kg−1K−1

ĈPi ĈP of the ith species in pure form J kg−1K−1

¯
CP,i molar specific heat capacity of the ith species in a

mixture
J kmol−1K−1

C̃P,i partial specific heat capacity of the ith species in a
mixture

J kmol−1K−1

dx differential change in x of x

D diffusivity of species m2 s−1

DAB binary diffusivity of A in a mixture of A and B m2 s−1

D matrix of multicomponent diffusivities m2 s−1

ei the ith component of energy flux Jm−2 s−1

E sum of the squared errors in y in a population of y2

E total energy of a system J

E activation energy of reaction J kmol−1

Ê energy per unit mass J kg−1

fi fugacity of the ith species Pa

F volumetric flow rate m3 s−1

fi mass flux of the ith species kgm−2 s−1

f overall mass flux of a mixture kgm−2 s−1



xvi

Symbol Description Units

Fi molar flux of the ith species kmolm−2 s−1

F overall molar flux of a mixture kmolm−2 s−1

F force vector N

G Gibbs free energy J

Ĝi Gibbs free energy per unit mass of the ith species J kg−1

g gravity, 9.806 65 m s−2

h heat transfer coefficient Wm−2 K−1

H enthalpy J

Ĥ enthalpy per unit mass J kg−1

Hi Henry’s law constant for the ith species Pa

Ĥi enthalpy per unit mass of the ith species J kg−1

H̃i partial specific enthalpy of the ith species in a
mixture

J kg−1

H̄i partial molar enthalpy of the ith species in a mixture J kmol−1

¯
Hi molar enthalpy of the ith species in pure form J kmol−1

¯
H◦

i standard
¯
Hi J kmol−1

H Hessian matrix

I identity matrix

ji diffusive mass flux of the ith species kgm−2 s−1

j vector of ji kgm−2 s−1

J Jacobian matrix
Ji diffusive molar flux of the ith species kmolm−2 s−1

J vector of Ji kmolm−2 s−1

k reaction rate coefficient as per reaction

k thermal conductivity Wm−1 K−1

k0 frequency factor as per reaction

kc mass transfer coefficient ms−1

K equilibrium constant of a chemical reaction

L lower triangular matrix

m mass kg

mi mass of the ith species kg

Mi molecular weight of the ith species kg kmol−1

Nc number of components or species



xvii

Symbol Description Units

Ni number of moles of the ith species
Nr number of chemical reactions

n̂, ñ,
˜
n unit vectors

pi partial pressure of the ith species Pa

P pressure Pa

Pc critical pressure Pa

p momentum kgm s−1

q rate of heat transfer J s−1

qi the ith component of conductive heat flux Jm−2 s−1

Q heat, i.e., energy in transit J

q conductive heat flux Jm−2 s−1

r correlation coefficient
r rate of reaction kg(kmol)m−3 s−1

r radial direction in cylindrical and spherical
coordinates

m

r2 coefficient of determination
R universal gas constant, 8.314 46× 103 J kmol−1 K−1

rgen,i mass rate of ith species generated per unit volume kgm−3 s−1

Rgen,i molar rate of ith species generated per unit volume kmolm−3 s−1

sy standard deviation in values of y of y

S entropy JK−1

Ŝi entropy per unit mass of the ith species JK−1 kg−1

S sum of the squared errors from the average of y in
a population

of y2

t time s

T temperature K, ◦C
Tc critical temperature ◦C

U internal energy J

Û internal energy per unit mass J kg−1

Ûi internal energy per unit mass of the ith species J kg−1

U upper triangular matrix

v magnitude of velocity ms−1

vi the ith component of v, or average velocity along
the xi-direction

ms−1



xviii

Symbol Description Units

V volume m3

¯
V molar volume m3 kmol−1

V̂ specific volume m3 kg−1

V̂i specific volume of the ith species m3 kg−1

v mass average velocity ms−1

ṽ molar average velocity ms−1

Ws shaft work J

ẋ change of x per unit time x -units s−1

xext amount of x from external source of x

xgen generated amount of x of x

X extent of chemical reaction
X̃ extent of chemical reaction per unit volume m−3

x� transpose of x (vector or matrix)
x̂i unit vector along the xi-direction

‖x‖ norm or magnitude of x (vector or matrix)

z axial direction in cylindrical coordinates m

Greek Symbols
γ̇ rate-of-strain tensor s−1

δij Kronecker delta
δQ net Q involved in differential changes, dU and dS J

δ unit dyadic (unit tensor)

ΔH◦
i standard heat of formation of the ith species J kmol−1

ΔHr heat of reaction J kmol−1

ΔH◦
r standard heat of reaction J kmol−1

Δx small amount of, or change in x of x

Δ[x] loss of x from a system through its ports of x

∇ gradient operator (a vector)

η Non-Newtonian viscosity Pa s

θ θ-direction in cylindrical and spherical coordinates rad, ◦

κ dilatational viscosity Pa s

μ viscosity Pa s



xix

Symbol Description Units

νi stoichiometric coefficient of ith species in a
chemical reaction

π molecular stress tensor Pa

Π dimensionless number

ρ density, mass concentration kgm−3

ρi density, mass concentration of the ith species kgm−3

τij , πij , φij the j th component of stress acting on the ith area
component

Pa

τ time period s

τ viscous stress tensor Pa

φ φ-direction in spherical coordinates rad, ◦

φ overall stress tensor Pa

Φ̂ potential energy per unit mass J kg−1

ω mass fraction
ω acentric factor
ω vorticity tensor s−1



1
Introduction

Process modeling and simulation is our intellectual endeavor to explain real-world processes,
foresee their effects, and improve them to our satisfaction. Using foundational rules and
the language of mathematics, we describe a process, i.e., develop its model. Depending on
what needs to be known, we pose the model as a problem. Its solution provides the needed
information, thereby simulating the process as it would unfold in the real world.

This chapter lays the groundwork for process modeling and simulation. We explain the
basic concepts, and introduce the involved terminology in a methodical manner. Our starting
point is the definition of a system.

1.1 System
A system is defined as a set of one or more units relevant to the knowledge that is sought.
Eventually, that knowledge is obtained as system characteristics, and their behavior in time
and space.

We specify a system based on what we want to know about it. Consider for example a well-
mixed reactor shown in Figure 1.1 below. The reactor is fed certain amounts of non-volatile
species A and B in a liquid phase. Inside the reactor, the species react to form a non-volatile
liquid product C. Given that we wish to know the concentration of C in the liquid phase,

B

A system
(reaction mixture of A, B and C)

A + B −→ C

reactor

Figure 1.1 A system of reaction mixture in a reactor

Process Modeling and Simulation for Chemical Engineers: Theory and Practice, First Edition. Simant Ranjan Upreti. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/upreti/pms_for_chemical_engineers
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the system is precisely the reaction mixture as shown in the figure. Anything not relevant –
such as the reactor wall, and the vapor phase over the mixture – is not included in the system.

Everything external to a system constitute its surroundings. A region of zero thickness
in the system separating it from the surroundings is called the boundary. Any interaction
between a system and its surroundings requiring physical contact takes place across the
boundary. For instance, this interaction could be transfer of mass.

For the above system of reaction mixture, the surroundings comprise the reactor wall, and
the vapor phase over the reaction mixture. The system boundary is made of the surface of
mixture in contact with (i) the reactor wall, and (ii) air. An example of interaction between
this system and its surroundings is the evaporation of the species from the mixture through
its top surface (i.e., across the boundary) to air.

1.1.1 Uniform System

A system is said to be uniform or homogenous if it stays the same, regardless of any
recombination of its parts. As an illustration, consider a system in the shape of a cube. We split
it into a set of arbitrary number of small cubes of identical size. Next, we recombine them in
all possible ways to form the initial cube. The system would be uniform if each recombination
(for each set of small cubes) resulted in the original system. If even one recombination
produced a different system, the system would be non-uniform or heterogenous.

1.1.2 Properties of System

We associate a system with the properties it possesses. By property we mean any measurable
characteristic that is related to matter, energy, space, or time. Some common examples of
property are mass, concentration, temperature, enthalpy, pressure, volume, diffusivity, etc.
With the help of the properties of a system, we can keep track of it, and compare it to other
systems of interest.

System properties can be classified into intensive and extensive properties. Given a uniform
system, an extensive property is proportional to the size or extent of the system. Examples
of extensive properties are mass and volume. Thus, the mass of a fraction (say, 1/10th) of a
system is the same fraction (1/10th) of the total mass of the system. On the other hand, an
intensive property of a uniform system does not depend on its size or extent, and is the
same, i.e., has the same value, for each part of the system. Examples of intensive property are
concentration, temperature and pressure.

Thus, if a uniform system is at a certain pressure then any part of the system is at the same
pressure. Equivalently, if all intensive properties of a system do not vary then the system is
uniform. An example is the reaction mixture of Figure 1.1 on the previous page. The mixture
has

1. the same value of concentration of the species A throughout the system (or uniform
concentration of A),

2. uniform concentration of each of the remaining species B and C, and

3. a similar uniformity of any other intensive property, e.g., temperature.
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For a non-uniform system, one or more intensive properties vary within the system. More
precisely, the properties vary with space inside the system. For example, if the reaction
mixture of Figure 1.1 on p. 1 were not well-mixed then the species concentrations, and
temperature would not be the same throughout the mixture. In that situation, the mixture
would be a non-uniform system.

1.1.3 Classification of System
Based on whether or not the intensive properties of a system vary with space, we can call
a system uniform, or non-uniform. A non-uniform system is also known as a distributed-
parameter system. If the intensive properties have variations that are small enough to be
insignificant then the system may be considered as a uniform system by taking into account
the space-averaged values of intensive properties. This system is then called a lumped-
parameter system. Thus, the reaction mixture of Figure 1.1 would be a lumped-parameter
system if the temperature varied slightly within the mixture but the latter was considered to
be at some average temperature throughout.

Depending on the degree of separation from the surroundings, systems are also classified
into open, closed and isolated systems. An open system allows exchanges of mass and energy
with the surroundings. On the other hand, a closed system allows only the exchange of
energy. An isolated system does not allow any exchange of mass, or energy.

Thus, the reaction mixture shown in Figure 1.1 would be an open system if it were heated,
or cooled, and the species volatilized to the air. The mixture would be a closed system if it
were heated, or cooled, but the top surface were covered to prevent any escape of the species.
With the top surface covered and perfectly insulated along with the reactor vessel, the mixture
would become an isolated system.

1.1.4 Model
The reason we conceive a system is that we want to learn about it. This learning is
synonymous with figuring out relations between system properties. These relations give
rise to a model. In mathematical terms, a model is a set of equations that involve system
properties. A simple example of a model is the ideal gas law,

P
¯
V = RT

where P ,
¯
V and T are, respectively, the pressure, molar volume, and temperature (properties)

of a system at sufficiently low pressure, and R is the universal gas constant. The properties in
the model do not depend on time, and the associated system is unchanging or at equilibrium
to be exact.

When a system undergoes a change, it appears as an effect on one or more of the system
properties. This is where the notion of process emerges.

1.2 Process
A process is defined as a set of activities taking place in a system, and resulting in certain
effects on its properties. A process is either natural, or man-made. Natural processes – such
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as blood circulation in a human body, photosynthesis in plants, or planetary motion in the
solar system – happen without human volition, and are responsible for certain effects on the
associated systems. For instance, the process of blood circulation in a human body primarily
involves pulmonary circulation between the heart and lungs, and systemic circulation between
the heart and the rest of the body excluding lungs. This process results in, among other things,
specific levels of oxygen and carbon dioxide concentrations in different parts of the body, i.e.,
the system.

Man-made processes on the other hand are contrived by human beings to produce results
of utility. Common examples include processes to produce various synthetic chemicals and
materials, to extract and refine natural resources, to treat gaseous emissions and wastewaters,
and to control climate in living spaces. The reactor shown in Figure 1.1 on p. 1 enables a
man-made process. It involves a chemical reaction between the reactants A and B, which
results in the product C.

1.2.1 Classification of Processes

Based on how system properties change with time, processes are classified into unsteady state
and steady state processes. A process that changes any property of a system with time is called
an unsteady state process, and the system is called unsteady. Thus, the process of chemical
reaction in the reactor of Figure 1.1 is an unsteady state process. It causes the reactant and
product concentrations to, respectively, decrease and increase with time.

In contrast, a steady state process does not result in any change in system properties with
time. The reason is that any decrease in a property gets instantaneously offset by an equal
increase in the same.

A simple example of a steady state process is the filling of a tank with a non-volatile liquid,
and its simultaneous drainage from the tank at the same flow rate as that of filling. Here, the
system and the property of interest are, respectively, the liquid and its volume inside the tank.
Due to equal inflow and outflow rates, the volume does not change with time.

Another example of a steady state process is a chemical reaction that continues after a
transient period in a constant volume stirred tank reactor with constant flow rates of incoming
reactants, and the outgoing mixture of residual reactants and products. In this process, the
species concentrations, and the volume of the reaction mixture inside the tank do not change
with time.

Steady State versus Equilibrium

It may be noted that the time derivatives of all properties are zero in a system under the
influence of a steady state process. That is also true for a system at equilibrium. But there is
a subtle difference. A system at equilibrium does not sustain any process since the gradients
(i.e., spatial derivatives) of all potentials in the system have decayed to zero. For this reason,
the properties in such a system do not have any propensity to change. However, the properties
in a system under a steady state process undergo simultaneous increments and decrements in
such a way that the net change in each property is zero. In other words, the properties end
up being time-invariant. If a steady state process is stopped then the properties of the system
would begin to change with time until the system eventually arrived at equilibrium.
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1.2.2 Process Model
A process model is a set of equations or relations involving properties of the system under
the influence of a process. The properties represent observable occurrences or phenomena
classifiable into the categories of (i) initiating events, (ii) specifications, and (iii) effects.
Thus, a process model is a scheme according to which a process with given specifications
and initiating events would generate effects in the system.

Figure 1.2 below shows the concept of the model as a triangle, each side of which
represents the relations between the two ends or vertices denoting the categories. If we
know these relations, i.e., the process model, we can use it to unravel one or more unknown
phenomena when the remaining ones are known. And we can do this without having to
execute the process in the real world. Of course, the better the process model the better is
our ability to explain the involved phenomena.

initiating events

effectsspecifications

relations

Figure 1.2 Concept of a process model

In particular, we can predict the effects of a process based on its model, and the knowledge
of initiating events, and specifications. As a matter of fact, we can predict the effects for
different initiating events, and specifications. Doing that enables us to isolate desirable
effects, and the related initiating events, and specifications. We can then apply the latter two
in the real world to achieve the desirable effects from the process. This exercise basically is
process optimization and control.

Referring to Figure 1.1 on p. 1, if we know the model of the process taking place
in the reaction mixture (system) then we can predict the species concentrations (effects)
corresponding to different initial concentrations of A and B (initiating events), and reaction
temperatures (specifications). From the predictions over a given time of reactor operation,
we can pick out a desirable effect, say, the maximum concentration of C, and the related
(optimal) set of initial concentrations, and reaction temperature. Based on this exercise, we
can then expect to achieve the maximum concentration of C in the real world by feeding
the reactor with A and B such that the mixture has the optimal initial concentrations, and is
maintained at the optimal temperature for the given operation time.

In general, using a process model we can predict initiating events, specifications, or effects
in the system. The prediction requires the following courses of action:
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1. Process modeling – the development of a process model, and

2. Process simulation – the solution or simulation of the model, which mimics the process
as it would unfold in the real world.

Types of Process Models

Process models can be categorized based on the process being represented. Thus, a steady
state model represents a steady state process, and has no time derivatives. An unsteady state
model represents a unsteady process, and involves one or more time derivatives.

Based on the nature of system properties, a process model may be a lumped-parameter
model, or distributed-parameter model. The former involves uniform properties while the
latter has at least one property that varies with space.

Based on the type of equations involved, process models are also classified into algebraic,
differential, or differential-algebraic models. Moreover, if all involved equations are linear
then the process model is called linear. Otherwise, the model is called non-linear.

1.3 Process Modeling

Process modeling is essentially an exercise that involves relating together the properties of a
system influenced by a process. Represented as mathematical symbols, the properties are
associated with each other using relevant relations under one or more assumptions. The
outcome is a set of mathematical equations, which is a process model. The system properties –
and through them, the initiating events, specifications and effects of the process – are expected
to abide by the model thus developed. The model is therefore said to represent or describe the
process.

As an example, consider the reaction process in the reactor shown in Figure 1.1 on p. 1.
The involved properties are the concentrations of A, B and C, which can be represented as
cA, cB and cC, respectively, with initial values c̄A, c̄B and c̄C = 0. If we assume that during
the process the reaction mixture

1. is well-mixed,

2. has constant volume, and

3. is at constant temperature

then based on certain relations, the concentrations can be associated with each other at any
time t through the following equations:

dci
dt

= −r, ci(0) = c̄i ; i = A,B (1.1)

dcC

dt
= r, cC(0) = 0 (1.2)

where r = k0 exp

(
− E

RT

)
caAc

b
B (1.3)
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where (i) r, k0, E and T are, respectively, the rate, frequency factor, activation energy, and
temperature of the reaction, (ii) a and b are reaction-specific parameters, and (iii) R is the
universal gas constant.

The above set of equations is the model of the reaction process taking place in the reactor.
This model relates the initiating events, specifications and effects of the process with each
other [see Figure 1.2, p. 5]. The initiating events are represented by the initial concentrations,
c̄A, c̄B and c̄C. The specifications are the values of a, b, k0, E, R and T . Finally, the process
effects at any time t, are represented by the concentrations cA(t), cB(t) and cC(t). Changes
in these properties, or, equivalently, the phenomena they represent, are expected to be in
accordance with the model. Thus, for a given set of initiating events, and specifications, we
expect to find the process effects from the model.

1.3.1 Relations

Relations are the ground rules that are used in process modeling to interlink the properties of
a system under the influence of a process. These rules comprise fundamental relations based
on scientific laws, and constitutive relations. The rules manifest as equations that constitute
process models.

A scientific law is a statement that is generally accepted to be true about one or more
phenomena on the basis of repeated experiments and observations. A common example is
the law of conservation of mass. This law states that if a system does not exchange mass, or
energy (a form of mass) with the surroundings then the mass of the system stays the same, or
is conserved. By applying this law to an individual species, and accounting for its generation,
or consumption in a system, we derive a fundamental relation called the mass balance of
species.

A constitutive relation on the other hand is a rule that is true for systems with a specific
makeup or constitution. An example is Newton’s law of viscosity, which relates shear stress
to strain for a system that is a Newtonian fluid.

In the model given by Equations (1.1)–(1.3) on the previous page, the last equation is a
constitutive relation. It is valid for the specific reaction mixture of species A, B and C. The
two differential equations are the mass balances of the species.

1.3.2 Assumptions

Assumptions of a process model are the necessary conditions that must be satisfied during the
execution of the process in order for it to be represented by the model. In equivalent terms, if
any assumption of a model is not satisfied during the execution of the process then the latter
is not represented by the model.

For example, the assumptions of the model given by Equations (1.1)–(1.3) are perfect
mixing, and constant volume as well as temperature. If any of these assumptions is not
satisfied during the reaction process then it would become different from the process
‘assumed’ by the model, and would not be represented by the model. For instance, if mixing
is not sufficiently close to perfect then there would be spatial changes in the concentrations
of species, and temperature. Consequently, the reaction process would get dominated by
diffusion, convection of species, and heat transfer, which are not accounted for by the model.
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The above example shows that the assumption of perfect mixing excludes from the model
the sub-processes of diffusion, convection and heat transfer in the reaction mixture. In
general, an assumption implies the exclusion of one or more sub-processes from the model.
Hence, an assumption restricts the model to a specific type of process, and in doing so
simplifies the model. Note that the assumption of perfect mixing of the reaction mixture
markedly simplifies the model by obviating the need for the diffusive fluxes of the species,
and partial differential equations of momentum and heat transfer. Because of this assumption,
the concentrations of species, and temperature can be considered uniform throughout the
reaction mixture.

Making an assumption is justifiable under one or more of the following circumstances:

1. It is realistic to satisfy the assumption during the execution of the process.

2. Any sub-process excluded by the assumption has negligible influence on the overall
process.

3. Without the assumption, any sub-process that should be included in the model can
increase its complexity unnecessarily.

Thus, the assumption of perfect mixing can be justified for the reaction process utilizing a
good agitator that sufficiently homogenizes the reaction mixture so that the sub-processes
of diffusion, convection and heat transfer can be excluded from the model. Dropping the
assumption would make the model very complex. Instead it is far more practical to retain the
assumption, and satisfy it by having a good agitator for the reaction process.

Remarks

An assumption limits the scope of a model by making it ignore certain sub-processes or
details. Therefore, it follows that the fewer the assumptions the more detailed the model.
A model with no assumptions would be the most comprehensive, or perfect model with no
limitations whatsoever. This of course is not possible.

As a consequence, no model can be derived without an assumption. It may be noted that
some assumptions are implied, and not mentioned explicitly. For example, the model for the
reaction process given by Equations (1.1)–(1.3) on p. 6 is based on the assumption that there
is no intermediate reaction, or product.

1.3.3 Variables and Parameters

A variable is any property that could vary with time during the execution of a process in
a system. On the other hand, a parameter is a property that is fixed or specified. For the
reaction process modeled by Equations (1.1)–(1.3), variables are species concentrations, and
parameters are the initial concentrations, and process specifications. From the standpoint of
a process model, any symbol whose value is not fixed or specified denotes a variable. The
remaining symbols represent parameters.

Note that for a system that is not isolated, a variable, or parameter may be a property of
mass and (or) energy exchanged with the surroundings.
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1.4 Process Simulation
As the name suggests, process simulation is the imitation of a real-world process. The
imitation is carried out by actors, which are symbols that represent system properties. They
play their roles, and express the effects according to a script, i.e., the process model. In direct
terms, process simulation means solving the equations of a process model to find the values
of the system properties that are unknown. These values tell us about the effects of a process.

Consider the process model given by Equations (1.1)–(1.3) on p. 6. Table 1.1 below lists the
initiating events, and specifications as parameters, which are used for simulating the model
for the given operation time tf.

Table 1.1 Simulation parameters for the process model given by Equations (1.1)–
(1.3)

parameter value parameter value

a 1/2 b 1/3

c̄A, c̄B 5 kgm−3 E/R 500 K

c̄C 0 kgm−3 T 303.15 K

k0 4 kg1/6 m−1/2 min−1 tf 10 min

The simulation results, i.e., the process effects are illustrated in Figure 1.3 on the next page
with the help of a graph – a common visualization tool for such a purpose. Here, the graph
shows how the concentration of species would change with time if the process were executed
in reality with the specified parameters.

Depending on a process, simulations results can be shown using bar charts, graphs, images
and animations with increasing level of visualization as needed.

1.4.1 Utility
The utility of process simulation lies in its ability to predict process effects. During the initial
stage of model development, process simulation helps in improving the process model. The
basis for improvement is the criterion that the better the model the closer the simulation (or
predicted effects) to the actual process carried out in the real world (or experimental effects).
Thus, if the predicted and experimental effects do not agree to a desired extent then we revise
the model to achieve a better agreement.

Once the model of a process is sufficiently improved, process simulation is utilized to
predict process effects under different circumstances, and develop the process as desired. For
instance, if we want a certain effect from a process then we could narrow down predictions to
obtain an appropriate (or optimal) set of initiating events, and specifications from process
simulation. This of course requires process simulation to be done for different initiating
events, and specifications of the process. Note that the process does not need to be executed in
the real world except in the end to verify whether the optimal set leads to the desired effect.
Without process simulation, we would need to carry out the process repeatedly in the real
world right from the beginning, and spend time as well as resources to determine the optimal
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Figure 1.3 Simulation of the process model given by Equations (1.1)–(1.3), for the parameters of
Table 1.1 on the previous page

set. Thus, process simulation helps obviate, or reduce initial experimentation. This is very
advantageous, especially for those processes that are expensive, time consuming, or difficult
to implement.

1.4.2 Simulation Methods

Simulation methods determine the process unknowns by solving mathematical equations,
which constitute process models. The methods are of two types, analytical and numerical.
Analytical methods determine the unknowns explicitly as analytical functions [see
Section 8.3, p. 295] in terms of process parameters and variables. These methods involve
straightforward manipulation of algebraic equations, analytical differentiation, and analytical
integration to extricate the unknowns as analytical functions.

However, only simple process models are amenable to analytical methods. Most process
models are sophisticated, and can only be solved by numerical methods. These methods
determine the process unknowns directly in terms of numerical values. To that end, these
methods approximate the mathematical expressions in process models as finite Taylor
expansions [see Section 8.8, p. 322], and require iterative calculations. A desired accuracy
of the numerical results is realized by selecting sufficiently small step sizes, and adequate
number of terms in the expansions. In general, we can solve any process model using
numerical methods with certain accuracy of results.

Consider for example, the process model given by Equations (1.1)–(1.3) on p. 6. The
unknowns of the model are the concentrations of A, B and C at each time instant during
the process, and are given by

ci(t), 0 < t ≤ tf, i = A,B,C
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An analytical method would solve the equations, and provide analytical expressions or
functions for the concentrations in terms of process parameters, and time. From the functions,
we could then obtain the numerical values of species concentrations at any time. On the other
hand, a numerical method would solve the equations, and directly deliver the numerical values
of the concentrations at desired time instants.

1.5 Development of Process Model

The benchmark for the development of a process model is the agreement between process
simulation, and the process in the real world. At the beginning, a process model is simulated
to obtain the values of process variables that were previously unknown. These variables
relate to the process effects. If they are dependent upon time and space then the variable
values at different time instants, and spatial coordinates are obtained. Next, an experiment is
performed by carrying out the process in the real world with the same parameters as used in
the simulation. The unknown variables are determined from this experiment, and compared to
those obtained earlier from the simulation. If the discrepancy between the experimental and
simulated values of unknown variables is not as small as desired then it means that additional
details or sub-processes need to be incorporated in the process model.

Since assumptions imply a lack of sub-processes, the aforementioned discrepancy
specifically means that some assumptions of the process do not hold when it is carried out
in reality. Such an assumption can sometimes be identified directly from the experiment.
Otherwise, we need to identify an assumption that could be preventing an important sub-
process from being included in the process model. This assumption is therefore made
less restrictive, or simply eliminated from the process model. The corresponding sub-
processes that were ignored earlier are incorporated in the process model. This is achieved
by modifying the mathematical equations, and (or) including additional ones in the process
model. Incorporation of new sub-processes necessitates the inclusion of associated, new
assumptions. The resultant model is more rigorous and complex than the previous one.

Next, the process model thus enhanced is simulated to obtain the values of the unknown
variables. The values should be closer to their experimental counterparts than they were
before. In particular, we expect the discrepancy between the simulation and the experiment to
reduce to a desired level. If that does not happen then another assumption is either moderated,
or eliminated to further enhance the process model. The simulation of this further enhanced
model is expected to bring down the discrepancy further. Elimination of another assumption,
resultant model enhancement, and comparison between the simulation and experiment may
be required until the discrepancy is as small as desired. This cycle of model development is
shown in Figure 1.4 on the next page.

As an example, consider the model given by Equations (1.1)–(1.3) on p. 6 describing the
reaction process shown in Figure 1.1 on p. 1. Suppose that there is some discrepancy between
the simulated and experimental species concentrations. This discrepancy could be due to the
fact that the constant volume assumption does not hold during the experiment, i.e., when the
process is carried out in the real world. Note that this assumption implies that there is neither
any volume change of mixing of the species nor any loss of any species to the vapor phase
due to entrainment, or volatilization. In the first model development cycle, this assumption
may be moderated by limiting it to no volume change of mixing only. Next, the model may
be revised by including the sub-process of the loss of species to the vapor phase. This step
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Figure 1.4 The cycle of model development

modifies Equations (1.1) and (1.2) to
dci
dt

= −r − kia(ci − c̃i)︸ ︷︷ ︸
loss to vapor phase

, ci(0) = ci,0 ; i = A,B

dcC

dt
= r − kCa(cC − c̃C)︸ ︷︷ ︸

loss to vapor phase

, cC(0) = 0

by including the loss of species to the vapor phase. In the modified equations, a is the surface
area of the reaction mixture exposed to the vapor phase per unit mixture volume, ki is the
mass transfer coefficient of the ith species (A, B, or C) for its transfer from the reaction
mixture to the vapor phase, and c̃i is the vapor phase concentration of the species. This
concentration is assumed to be constant for each species, implying thereby a steady flow of air
across the top of the reaction mixture. Observe that this is a new assumption for the process
model being enhanced in this model development cycle. The simulation of the revised model
is expected to yield species concentrations that are closer to the experimental counterparts
than they were before.

Remarks
It may be noted that when eliminating, or moderating an existing assumption, one or more
new assumptions arise for each sub-process that gets included to enhance the process model.



1. Introduction 13

Therefore, the set of model assumptions can never be null, no matter how many times the
cycle of model development is continued, i.e., how much the model is enhanced.

Since an assumption implies one or more ignored sub-processes, there would always
be some discrepancy, however small, between the simulation of a process model, and the
experiment. It is up to us to decide a tolerable level of that discrepancy, and develop a process
model accordingly.

1.6 Learning about Process

Besides predicting the effects of a process by simulating its model, we can learn about
the process itself by utilizing the model. Recall from Figure 1.2 on p. 5 that a process
model relates the phenomena grouped into certain initiating events, specifications and effects.
Suppose that a process model is adequate to simulate the effects from the knowledge of the
initiating effects, and specifications. We can then determine any unknown specifications on
the basis of certain initiating events, and process effects, which are known from the real-world
execution of the process, i.e., the experiment.

As an example, consider the model given by Equations (1.1)–(1.3) on p. 6 for the reaction
process of Figure 1.1 on p. 1. Given the initiating events, and specifications, the model
can simulate the process effects, e.g., the change in species concentrations with time. Now
suppose that we do not know the frequency factor k0 for the reaction process. Based on the
model of the process, and the experiment, we can determine k0 by

1. obtaining the species concentrations at different instants from the experiment, and

2. simulating the model with different trial values of k0 until the predicted species
concentrations are sufficiently close to the experimental concentration values.

The value of k0 is determined when the last step is completed. This step is usually carried out
using sophisticated optimization methods.

Note that unlike simulation, the above procedure solves an inverse problem of finding the
unknowns of the given process model from experimental effects, or data. We can use this
procedure to enhance our knowledge of the process. This is done by proposing different trial
mathematical expressions that relate to the process, and finding the unknown specifications
with the help of experimental data. A trial expression would try to capture more insights
and details about the process. If a trial expression results in a better agreement between the
predicted and experimental effects then it reflects an enhanced understanding of the process.

For the aforementioned example, if the agreement is better with the trial reaction rate
expression

r =

k0 exp

(
E

RT

)
caAc

b
B

(k1 + ccA)

where k1 and c are two new unknowns that are determined then we could infer that a
different reaction mechanism, and kinetics are in operation. Thus, this result would enhance
our understanding of the reaction process.

Having covered the foundational aspects of process modeling and simulation, we now
elucidate how a system is specified for process modeling.
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1.7 System Specification
Specification of the right system is very important when modeling a process. From this
standpoint, a system is the house of elements whose properties change with time under the
action of a process. When interrelating the properties in a process model, it is a prerequisite
that each intensive property be unique, i.e., uniform throughout the system at any time.
Otherwise, say, if the temperature (intensive property) of a reaction mixture (system) in
Figure 1.1 on p. 1 varies from 90◦C at the center to 70◦C at the periphery then there is no
unique temperature as an intensive system property to begin with. In such a situation, the
system must be specified in such a way that it is uniform at all times.

The above requirement is inherently satisfied for uniform and lumped-parameter systems,
which involve uniform intensive properties per se. However, this is not the case for
distributed-parameter systems. To model a process in such a system, the approach is to

1. split the system into sub-systems that are so small that all intensive properties within
each sub-system are unique, i.e., uniform at any time, and

2. model the process for each sub-system thus determined.

A sub-system determined as above is called a differential system, or, simply, a differential
element. Its thickness along each spatial direction of property variation is sufficiently small
to house uniform properties. The thickness tends to zero (but is not zero), and as it does,
the number of differential elements tends to infinity. With contiguous differential elements
of identical shapes, we model the process on a single representative differential element, and
extend the model to cover the entire system. In what follows, we explain the determination
of differential elements by using examples based on the reaction mixture system shown in
Figure 1.1.

As the first example, consider the reaction mixture system under the action of a process
such that the species concentrations vary only along the vertical z-direction. For this system,
Figure 1.5 below shows (rather exaggerated) the differential element, which is a circular disk
of thickness Δz conceived to be so small that the species concentrations in it are uniform
along the z-direction. Put differently, there is no concentration variation in the disk so that

B

A

differential element

reactor

Δz

Figure 1.5 The differential element when a property changes vertically

there is only one representative concentration for each species therein. An infinite number
of these disks fit along the z-direction starting from the bottom of the reaction mixture to
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its top surface. However, for process modeling, we only need to consider the representative
differential element as shown in the figure, and two similar differential elements touching,
respectively, the bottom and the top of the reaction mixture.

For the second example, consider the reaction mixture system influenced by a process,
which causes the species concentrations to vary only along the radial r-direction. For this
system, Figure 1.6 below shows the differential element, which is an annulus of thickness
Δr conceived to be so small that the species concentrations in it are uniform along the r-
direction. Thus, there are no concentration variations in the annulus so that there only one

B

A

differential element

reactor

Δr

Figure 1.6 The differential element when a property changes radially

representative concentration for each species therein. An infinite number of these annuli fit
along the r-direction starting from the center of the reaction mixture to its periphery. But
we only need to model the process for the representative differential element as shown in
the figure, and two similar elements touching, respectively, the center and periphery of the
reaction mixture.

For the third example, consider the reaction mixture system under the influence of a
process, which causes the species concentrations to vary along the vertical as well as radial
direction. For this system, Figure 1.7a on the next page shows the differential element, which
is a thin annulus of thicknesses Δz and Δr along the two directions, respectively. These
thicknesses are conceived to be so small that the species concentrations in the differential
element are uniform along each direction. To model the process, we need to consider this
representative differential element, i.e., a thin annulus, and similar elements touching the
system boundaries along the z- and r-directions.

In the final example, consider the reaction mixture system under the influence of a process,
which causes the species concentrations to vary along the vertical, radial and θ-directions. For
this system, Figure 1.7b on the next page shows the differential element, which resembles
a horseshoe of thicknesses Δz, Δr and Δθ along the three directions, respectively. These
thicknesses are conceived to be so small that the species concentrations in the differential
element are uniform along each direction. To model the process, we need to consider this
representative differential element, and similar elements that touch the system boundaries
along each direction except the circular θ-direction.

To recapitulate, before modeling a process involving a distributed-parameter system, which
has spatial changes in intensive properties, we need to determine a relevant sub-system. Its
thickness along each direction of property variation should be small enough to render the
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Figure 1.7 The differential element when a property changes (a) along the depth z, and the radius r,
and (b) along z, r and the angle θ

resultant differential element uniform with respect to the properties. Only then can we relate
them together in mathematical equations. These when derived for each differential element
of the system constitute the process model.
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Exercises
1.1 What combination of properties results in an intensive property?

1.2 In the model given by Equations (1.1)–(1.3) on p. 6, what sub-processes get excluded
because of assumptions of constant volume and temperature of the reaction mixture?

1.3 What is the assumption that is common to any process model?

1.4 What would be a perfect model for a process? Justify whether or not such a model could
be obtained?

1.5 Describe the differential elements needed to capture all possible spatial property
variations in spherical coordinates.



2
Fundamental Relations

In this chapter, we present fundamental relations, which govern the transport of mass,
momentum and energy. These relations are derived as differential equations, which describe
changes in the involved properties with time and space. Process models rely profoundly on
these relations for accurate simulations.

Fundamental relations make the continuum assumption, i.e., assume that systems are
continuous. A continuous system is divisible into an infinite number of sub-systems such that
the adjacent ones are almost the same while those separated by finite distances are different.
In other words, there is a gradual transition from one point to another in the system without
any abrupt change. Thus, system properties are assumed to be continuous functions of space.

Typically though, systems comprise matter, and are not continuous because of the presence
of discrete molecules with vacant spaces between them. Nevertheless, fundamental relations
are still applicable in many practical situations, and provide accurate results. The reason
is that the volume of vacant spaces is significantly smaller than that of the involved
system. Specifically, Knudsen number, i.e., the ratio of mean free path in the system to its
characteristic length, is considerably smaller than unity.

2.1 Basic Form
A basic form of fundamental relations is a differential equation describing the change in an
entity inside a system with time. This form is also known as a balance equation for an entity.

Consider an entity ε in the system shown in Figure 2.1 on the next page. This entity

1. enters and exits the system via its boundary surfaces as, respectively, εin and εout,

2. enters otherwise as εext, and

3. is generated within the system as εgen.

Then between any two time instants, t1 and t2 > t1, the change in ε in the system is given by

ε(t2)− ε(t1) = [εin(t2)− εin(t1)]︸ ︷︷ ︸
ε that entered via the boundary

surface of the system

− [εout(t2)− εout(t1)]︸ ︷︷ ︸
ε that exited via the boundary

surface of the system

+ [εext(t2)− εext(t1)]︸ ︷︷ ︸
ε induced from external sources

+ [εgen(t2)− εgen(t1)]︸ ︷︷ ︸
ε generated in the system

In the above equation, εin and εout represent the ε that must contact the boundary surface of
the system in order to enter and exit, respectively. For example, εin could be (i) the energy
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system

ε(t)

εgen(t)

εext(t)

εin(t) εout(t)

Figure 2.1 A system with different contributions to an entity ε at time t

of the mass that crosses the boundary surface to enter the system, or (ii) the momentum that
enters the system due to shear stress acting on the boundary surface.

As opposed to εin and εout, the term εext accounts for an external contribution to ε that does
not involve any contact with the boundary surface. An example is the contribution from the
gravitational field to the momentum of a system. Finally, the term εgen stands for the entity
ε generated in the system, e.g., mass of a species produced in a chemical reaction. If ε is
consumed in the system then εgen is negative. This generation term is zero for entities that are
conserved such as the total mass, total energy, and momentum.

Let Δt be the time duration, (t2 − t1). Then for sufficiently small Δt during which the
rates of change of εin, εout, εgen and εext with time t, – respectively, ε̇in, ε̇out, ε̇gen and ε̇ext – are
constant, we can express the equation on the previous page as

ε(t1 +Δt)− ε(t1) = ε̇inΔt− ε̇outΔt+ ε̇extΔt+ ε̇genΔt

Applying the first order Taylor expansion of ε(t1 +Δt) in the limit of Δt tending to zero
[see Section 8.8.2, p. 323], we obtain after simplification

dε
dt

⏐⏐⏐⏐
t1

= ε̇in − ε̇out + ε̇ext + ε̇gen

Since t1 is arbitrary, we can write the above result as

dε
dt

= ε̇in − ε̇out + ε̇ext + ε̇gen (2.1)

for any time instant. The above equation is a general unsteady state balance, which is
applicable to any system entity. It could be scalar, or vector. The equation states that at any
time, the rate of change of an entity in a system is the algebraic summation of different rates
at which contributions to the entity are made.
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2.1.1 Application
Equation (2.1) on the previous page is an ordinary differential equation. It is commonly used
in conjunction with an initial condition, ε(t = 0) = ε0, to determine the temporal change in
entity ε of a system under the influence of a process. The application is straightforward if
the intensive properties of the system either stay uniform, i.e., are space-independent, or are
averaged over space. Figure 2.2a below shows such a system in Cartesian coordinates.

z

(a) (b)

Δz
y

x

Figure 2.2 Schematic of (a) uniform system, and (b) non-uniform system (along the z-direction) in
Cartesian coordinates

Distributed-Parameter Systems

In these systems, Equation (2.1) is applied to suitable differential elements [see Section 1.7,
p. 14]. In Cartesian coordinates for instance, if intensive properties in such a system change
along the z-direction then the system is divided into differential elements along that direction,
as shown in Figure 2.2b above. The thickness of each element, Δz, is considered so small
that the properties within an element are uniform.

If intensive properties in the system also change similarly along another direction, say,
the x-direction, then each existing differential element is sub-divided along that direction, as
shown in Figure 2.3a on the next page. The thickness Δx of each resultant differential element
is considered small enough to ensure the uniformity of the properties within. Likewise,
if intensive properties change also along the remaining y-direction then each existing
differential element is further sub-divided along that direction, as shown in Figure 2.3b on
the next page. The new thickness Δy of each resultant differential element is taken to be
small enough to ensure the uniformity of the properties.

After sub-dividing the system in the above manner depending on the directions of property
changes, Equation (2.1) is applied to a representative differential element. The equations of
all differential elements can then be pieced together, or integrated over the entire system to
simulate the process. For simplicity, we will consider rectangular or Cartesian coordinate
system in this chapter.
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(a) (b)

Δx

Δz

Δy

Δx

Δz

Figure 2.3 Differential elements for property changes along (a) the z- and x-directions, and (b) all
directions

Steady State Balance
Under steady state condition, the time derivatives of all system properties are zero so that
Equation (2.1) on p. 18 becomes

ε̇in − ε̇out + ε̇ext + ε̇gen = 0

Multiplying the above equation by a time duration, say, Δt, we obtain

εin − εout + εext + εgen = 0

which is the steady state balance in terms of various contributions made to an entity ε of a
system.

Generalization
Equation (2.1) can be generalized for multiple ports of entry as well as exit of an entity, and
multiple sources of external contribution, and internal generation. Let the rates of ε entering
and exiting a system through the j th entry and exit ports be ε̇in,j and ε̇out,j , respectively. Then
the rate of loss of ε from the system through Nin entry and Nout exit ports is

Δ[ε̇] ≡
Nout∑
j=1

ε̇out,j −
Nin∑
j=1

ε̇in,j (2.2)

Also, let the rates of external contribution, and internal generation of ε from their respective
j th sources (numbering Next and Ngen) be ε̇ext,j and ε̇gen,j , respectively. The rates are positive
or negative depending on whether they increase or decrease the ε in the system. With this
arrangement, Equation (2.1) can be written in the following general form:

dε
dt

= −Δ[ε̇] +

Next∑
j=1

ε̇ext,j +

Ngen∑
j=1

ε̇gen,j (2.3)
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2.2 Mass Balance
Applying Equation (2.3) on the previous page to the entity that is the mass mi of the ith

species in a system, we obtain the individual mass balance,

dmi

dt
= −Δ[ṁi] +

Nr∑
j=1

ṁgen, ij︸ ︷︷ ︸
V rgen,ij

(2.4)

where V is the system volume, and Nr is the number of chemical reactions with rgen,ij as the
rate of generation per unit volume of the mass of the ith species in the j th reaction. The rate of
generation is positive (negative) if the species is produced (consumed) in the reaction. Note
that there is no external contribution to mi. Summing the above equation for all Nc chemical
species yields the balance for the total mass m of a system, i.e.,

d
dt

Nc∑
i=1

mi︸ ︷︷ ︸
m

= −
Nc∑
i=1

Δ[ṁi] + V

Nc∑
i=1

Nr∑
j=1

rgen,ij

︸ ︷︷ ︸
=0

= −Δ

[ Nc∑
i=1

ṁi︸ ︷︷ ︸
ṁ

]

where ṁi and ṁ are the mass flow rates of, respectively, the ith species and all species through
a port. The generation term in the above equation is zero since the total mass of a system is
conserved. Thus, the overall mass balance of a system is

dm
dt

= −Δ[ṁ] (2.5)

2.2.1 Microscopic Balances
These balances pertain to distributed-parameter systems. For such a system, let ρi and vi

be, respectively, the mass density and average velocity of the molecules of the ith species in
the differential element, as shown in Figure 2.4 on the next page. This element is a cuboid
of fixed volume with dimensions Δx1, Δx2 and Δx1 along the x1-, x2- and x3-directions,
respectively. For the ith species in this element,

1. the mass is ρiΔV where ΔV = Δx1Δx2Δx3,

2. the mass flux of along the j th direction is ρivij ,

3. the mass flow rates in and out of the system along the j th direction are, respectively,
[ρivijΔAj ]xj and [ρivijΔAj ]xj+Δxj where ΔAj = ΔxkΔxl, (j, k, l ∈ {1, 2, 3} and
j �= k �= l), and

4. the rate of generation per unit volume in a j th reaction (of total Nr reactions) is rgen,ij .

With these considerations, the application of Equation (2.1) on p. 18 for the mass of the ith

species in the above element yields

d(ρiΔV )

dt
= ΔV

∂ρi
∂t

=
3∑

j=1

{[
ρivijΔAj

]
xj

−
[
ρivijΔAj

]
xj+Δxj

}
+

Nr∑
j=1

rgen,ijΔV

(2.6)
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vi1

x1

x1 +Δx1
x2

x2 +Δx2
x3

x3 +Δx3

vi1

ΔA1 = Δx2Δx3

ΔV = Δx1Δx2Δx3

ΔA1

x1

x2

x3

Figure 2.4 A differential element of fixed volume in Cartesian coordinates. vi1 is the component of
vi (average molecular velocity of the ith species) along the x1-direction

In the limit of Δxj tending to zero at any time t,[
ρivijΔAj

]
xj+Δxj

=
[
ρivijΔAj

]
xj

+
∂(ρivijΔAj)

∂xj
Δxj

from the first order Taylor expansion. Since ΔAj is independent of xj , the above expansion
leads to

ΔAj

[
ρivij

]
xj+Δxj

= ΔAj

[
ρivij

]
xj

+
∂(ρivij)

∂xj
ΔAjΔxj︸ ︷︷ ︸

ΔV

where ΔV is the volume of the differential element. Substitution of the above result into
Equation (2.6) on the previous page, and simplification yields the individual microscopic
mass balance,

∂ρi
∂t

= −
3∑

j=1

∂(ρivij)

∂xj︸ ︷︷ ︸
≡∇·ρivi

+

Nr∑
j=1

rgen,ij = −∇ · ρivi︸ ︸
fi

+

Nr∑
j=1

rgen,ij (2.7)

where fi is the mass flux of the ith species. The shorthand ∇ · z, which is called the divergence
of vector z, is the sum of partial derivatives of components of z with respect to collinear
Cartesian coordinates.

Summing the above equation for all Nc species, we obtain

∂

∂t

( Nc∑
i=1

ρi︸ ︷︷ ︸
ρ

)
= −∇ ·

Nc∑
i=1

ρivi︸ ︷︷ ︸
≡ f

+

Nc∑
i=1

Nr∑
j=1

rgen,ij

︸ ︷︷ ︸
=0

In the above equation,
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1. ρ is the mass density of the mixture of the Nc species,

2. f is the total mass flux defined as ρv implying v to be the mass average velocity given
by

v =
1

ρ

Nc∑
i=1

ρivi =

Nc∑
i=1

ωivi

where ωi = ρi/ρ is the mass fraction of the ith species, and

3. the last term is zero since the total mass of a system is conserved.

With these considerations, we obtain the overall microscopic mass balance

∂ρ

∂t
= −∇ · ρv (2.8)

which is also known as the equation of continuity.

2.2.2 Equation of Change for Mass Fraction
To obtain this equation, we express the mass flux of the ith species as

fi︸︸
ρivi

= ρi(v + vi − v︸ ︷︷ ︸
vrel,i

) = ρiv + ρivrel,i︸ ︷︷ ︸
ji

(2.9)

where ji is the relative mass flux of the ith species arising from its velocity vrel,i (which is
relative to v), and ρiv is the bulk flux due to v. Since ρi = ωiρ, the above equation can also
be expressed as

fi = ωi ρv︸ ︸
f

+ ji = ωif + ji (2.10)

where ωi is the mass fraction of the ith species, ρ is the mass concentration of the fluid
mixture, or its density, and f is the overall or bulk flux of the mixture. The above equation
shows that the mass flux of a species is the sum of the contribution from bulk flux, and relative
flux.

Substituting Equation (2.9) above in Equation (2.7) on the previous page, we obtain for the
ith species,

∂ρi
∂t

= −∇ · ρiv −∇ · ji +
Nr∑
j=1

rgen,ij

Upon expressing ρi as ωiρ, and expanding the time derivative, the above equation becomes

ρ
∂ωi

∂t
= −ωi

∂ρ

∂t
−∇ · ωiρv −∇ · ji +

Nr∑
j=1

rgen,ij (2.11)

Utilizing Equation (2.8) above as well as the identity [see Equation (8.10), p. 317]

∇ · ωiρv = ωi∇ · ρv + ρv · ∇ωi
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where ∇ωi is the gradient, i.e., the vector given by
[
∂ωi/∂x1 ∂ωi/∂x2 ∂ωi/∂x3

]�,
Equation (2.11) on the previous page can be written as

∂ωi

∂t
= −v · ∇ωi −

1

ρ

(
∇ · ji −

Nr∑
j=1

rgen,ij

)

which is the equation of change for the mass fraction of the ith species. The above equation
can be written in terms of substantial derivative [see Section 8.7.4, p. 321] as

Dωi

Dt
= −1

ρ

(
∇ · ji −

Nr∑
j=1

rgen,ij

)
(2.12)

where the left-hand side stands for (∂ωi/∂t + v · ∇ωi).

2.3 Mole Balance
It is convenient in reactive systems to have mass balances in terms of mole numbers of the
involved species. To obtain this, we express mi in Equation (2.4) on p. 21 as the molecular
weight multiplied (Mi) by the mole numbers (Ni, Nin,ij , Nout,ij , or Ngen,ij), and obtain

d(MiNi)

dt
= −Δ

[
d(MiNi)

dt

]
+

Nr∑
j=1

d(MiNgen,ij)

dt

Since Mi is constant, it drops out from the above equation, and we get the individual mole
balance,

dNi

dt
= −Δ

[
Ṅi

]
+ V

Nr∑
j=1

Rgen,ij (2.13)

where Rgen,ij is the molar rate of generation of the ith species per unit volume (V ) of the
system.

2.3.1 Microscopic Balances
The derivation here is analogous to that for the microscopic mass balances [see Section 2.2.1,
p. 21]. For the differential element shown in Figure 2.4 on p. 22, let ci be the molar
concentration of the ith species with Rgen,ij as the molar rate of generation per unit volume.
Then in that element, the number of moles of the species is ciΔV . Along the xj-direction,
the molar flux is civij , and the molar flow rates in and out of the differential element are
[civijΔAj ]xj and [civijΔAj ]xj+Δxj , respectively. The application of Equation (2.1) on p. 18
for the number of moles of the ith species, and subsequent simplification using the first order
Taylor expansion leads to the individual microscopic mole balance

∂ci
∂t

= −
3∑

j=1

∂(civij)

∂xj
+

Nr∑
j=1

Rgen,ij = −∇ · civi︸ ︸
Fi

+

Nr∑
j=1

Rgen,ij (2.14)



2. Fundamental Relations 25

where Fi is the molar flux of the ith species. Summing the last equation for all Nc species
yields

∂

∂t

( Nc∑
i=1

ci︸ ︷︷ ︸
c

)
= −∇ ·

Nc∑
i=1

civi︸ ︷︷ ︸
≡F

+

Nc∑
i=1

Nr∑
j=1

Rgen,ij

In the above equation,

1. c is the molar concentration of the mixture of the Nc species,

2. F is the total molar flux defined as cṽ, implying ṽ to be the molar average velocity
given by

ṽ =
1

c

Nc∑
i=1

civi =

Nc∑
i=1

yivi

where yi = ci/c is the mole fraction of the ith species, and

3. the last term is not necessarily zero since the number of moles of species may change
in chemical reactions.

With these considerations, we obtain the overall microscopic mole balance

∂c

∂t
= −∇ · cṽ +

Nc∑
i=1

Nr∑
j=1

Rgen,ij (2.15)

2.3.2 Equation of Change for Mole Fraction
We proceed similar to the derivation for the equation for mass fraction, and express the molar
flux of the ith species as

Fi︸ ︸
civi

= ci(ṽ + vi − ṽ︸ ︷︷ ︸
ṽrel,i

) = ciṽ + ciṽrel,i︸ ︷︷ ︸
Ji

(2.16)

where Ji and ciṽ are the relative and bulk molar fluxes, respectively. The above equation can
also be expressed as

Fi = yi cv︸ ︸
F

+ Ji = yiF+ Ji

where yi is the mole fraction of the ith species, c is the molar concentration of the fluid
mixture, and F is the overall molar flux of the mixture, or the bulk molar flux. The molar flux
of a species, like its mass flux, is the sum of the contribution from bulk flux, and relative flux.

Substituting Equation (2.16) above in Equation (2.14) on the previous page for the ith

species, we obtain

∂ci
∂t

= −∇ · ciṽ −∇ · Ji +

Nr∑
j=1

Rgen,ij
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In the last equation, we express ci as yic and utilize Equation (2.15) on the previous page as
well as the identity, ∇ · yicṽ = yi∇ · cṽ + cṽ · ∇yi, [see Equation (8.10), p. 317] to obtain

∂yi
∂t

= −ṽ · ∇yi −
1

c

(
∇ · Ji + yi

Nc∑
k=1

Nr∑
j=1

Rgen,kj −
Nr∑
j=1

Rgen,ij

)
(2.17)

which is the equation of change for mole fraction of the ith species.

2.4 Momentum Balance
This balance involves forces acting on boundary surfaces of a system. These entities are
conceived as pressure and viscous stress, both of which are forces per unit area. Relative to
the surface, while pressure is perpendicular, viscous stress is at an arbitrary angle. Figure 2.5
below shows these forces per unit area (P and τ2, respectively) acting on the x1x3-plane∗

of a system. While P has only one component (i.e., itself) along the x2-direction, τ2

x1

x2

x3

τ2

P

τ22

τ23

τ21

Figure 2.5 Pressure P and viscous stress τ2 acting on the x1x3-plane of a system in Cartesian
coordinates

has components τ21, τ22 and τ23 along the x1-, x2- and x3-directions, respectively. For
convenience, we organize these components into a row vector of molecular stress along the
x2-direction

π2 ≡
[

τ21︸ ︸
x1-component

(π21)

P + τ22︸ ︷︷ ︸
x2-component

(π22)

τ23︸ ︸
x3-component

(π23)

]

∗It is an area vector collinear with the x2-direction. This direction is identified by the subscript ’2’ in τ2.
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Similarly, the molecular stress vectors along the x1- and x3-directions are, respectively,

π1 ≡
[
P + τ11︸ ︷︷ ︸

π11

τ12︸ ︸
π12

τ13︸ ︸
π13

]
and π3 ≡

[
τ31︸ ︸
π31

τ32︸ ︸
π32

P + τ33︸ ︷︷ ︸
π33

]
Together, the three row vectors above form the molecular stress tensor

π ≡

⎡
⎢⎢⎢⎣
π1

π2

π3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
π11 π12 π13

π21 π22 π23

π31 π32 π33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
P + τ11 τ12 τ13

τ21 P + τ22 τ23

τ31 τ32 P + τ33

⎤
⎥⎥⎥⎦

In terms of the unit tensor δ [see Equation (8.8), p. 312], the above equation can be written
compactly as

π = δP + τ (2.18)

Stress as Momentum Flux
From Newton’s second law of motion, force is the rate of change of momentum. Thus each
element of π, which is stress, or force per unit area, is in fact the rate of change of momentum
per unit area, or momentum flux due to molecular forces. To derive momentum balance, it is
convenient to combine π with the momentum flux due to bulk motion of the material, i.e.,
the convective momentum flux.

2.4.1 Convective Momentum Flux
Consider a material crossing a plane of area A with velocity v, as shown in Figure 2.6 on the
next page. Along the x1-direction, the components of A and v are A1 and v1, respectively.
Let ρ be the density of the material. Then in time t, the mass of the material that crosses A1

is ρv1A1t. The convective momentum of this material, written as a row vector, is

p1 = (ρv1tA1)v
�

The corresponding convective momentum flux is then given by
p1

tA1
= ρv1v

� =
[

ρv1v1︸ ︷︷ ︸
x1-component

ρv1v2︸ ︷︷ ︸
x2-component

ρv1v3︸ ︷︷ ︸
x3-component

]
Likewise, the convective momentum fluxes of the material across A2 and A3 (the components
of A, respectively, along the x2- and x3-directions) are given by, respectively,

ρv2v
� =

[
ρv2v1 ρv2v2 ρv2v3

]
and ρv3v

� =
[
ρv3v1 ρv3v2 ρv3v3

]
Together, the three row vectors above form the convective momentum flux tensor written as

ρvv =

⎡
⎢⎢⎢⎣
ρv1v

�

ρv2v
�

ρv3v
�

⎤
⎥⎥⎥⎦ = ρ

⎡
⎢⎢⎢⎣
v1v1 v1v2 v1v3

v2v1 v2v2 v2v3

v3v1 v3v2 v3v3

⎤
⎥⎥⎥⎦ = ρvv�

Note that vv in tensor notation implies vv�, i.e., the matrix multiplication of v and its
transpose.
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x2

x3

x1

v
A

v1

A1

Figure 2.6 Velocity v of material across a plane of area A

2.4.2 Total Momentum Flux
The total momentum flux at the surface of a system is the sum of the molecular and convective
momentum fluxes, and is given by

φ = π + ρvv = δP + τ + ρvv

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P + τ11 + ρv1v1︸ ︷︷ ︸
φ11

τ12 + ρv1v2︸ ︷︷ ︸
φ12

τ13 + ρv1v3︸ ︷︷ ︸
φ13

τ21 + ρv2v1︸ ︷︷ ︸
φ21

P + τ22 + ρv2v2︸ ︷︷ ︸
φ22

τ23 + ρv2v3︸ ︷︷ ︸
φ23

τ31 + ρv3v1︸ ︷︷ ︸
φ31

τ32 + ρv3v2︸ ︷︷ ︸
φ32

P + τ33 + ρv3v3︸ ︷︷ ︸
φ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
φ11 φ12 φ13

]︸ ︷︷ ︸
φ1[

φ21 φ22 φ23

]︸ ︷︷ ︸
φ2[

φ31 φ32 φ33

]︸ ︷︷ ︸
φ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

φ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.19)

Thus, φ is a tensor made of three row vectors, φ1, φ2 and φ3. The vector φ1, for example, is
the total momentum flux acting on the x2x3-plane whose area is along the x1-direction. The
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three components of φ1 are: (i) φ11 along the x1-direction, (ii) φ12 along the x2-direction,
and (iii) φ13 along the x3-direction.

On the other hand, the ith column of φ is the set of total momentum fluxes acting on all
three planes, and along the xi-direction of motion. For example, the first column comprises
φ11, φ21 and φ31, which

1. act, respectively, on the x2x3-, x1x3- and x1x2-planes, and

2. are along the x1-direction.

2.4.3 Macroscopic Balance
This balance pertains to a macroscopic system, which is a uniform system with a number of
ports for the entry and exit of mass, momentum, or energy. The system in this case is of mass
m, and is subject to gravity g as well as a net external force F [see Figure 2.7 below].

mg

F

port 1

material in

material out

material out

port 2

port 3

Figure 2.7 A macroscopic system with material flowing in and out through a number of ports, and
subject to body forces

Applying Equation (2.3) on p. 20 to the momentum (p) of material in the system, we get

dp
dt

= −Δ[ṗ] +

Next∑
j=1

ṗj,ext︸ ︷︷ ︸
F

+mg (2.20)

where ṗj,ext is the rate of momentum stemming from the j th external force (not due to
gravity), F is the sum of such forces, and mg is the external force due to gravity.

Note that there is no generation term, and ṗ stands for the rate of momentum of material
through a port of area A. A component of ṗ, say, ṗ1 along the x1-direction, is obtained by
summing the rates of momentum along the x1-direction, and across all components (A1, A2
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and A3) of the port area A. These momentum rates are contributed by the components in the
first column of φ, which is the total momentum flux tensor defined by Equation (2.19) on
p. 28. Figure 2.8 below shows these components (φ11, φ21 and φ31) for the port of area A.

x2

x3

φ3

A

x1

φ2

φ1
φ31

φ21

φ11

Figure 2.8 Components of φ in the x1-direction – φ11, φ21 and φ31 – for a port of area A in a
macroscopic system

Thus, we can write

ṗ1 =
3∑

j=1

Ajφj1 = A1P +
3∑

j=1

Aj(ρvjv1 + τj1)

and similar equations for the other two components of ṗ, namely, ṗ2 and ṗ3. The equations
can be written together in the tensor notation as [refer Section 8.6.6, p. 310]

ṗ = AP +A · (ρvv + τ ) = AP + (A · ρv)v +A · τ

The material is generally considered to flow perpendicularly across a port. Hence, v = vn̂,
where v is the average velocity, and n̂ is the unit vector normal to the port. Thus, A = An̂,
where A is the magnitude of A. Furthermore, shear stresses at a port are considered to be
insignificant relative to pressure and convective flux. With these simplifications, we can write

ṗ = An̂P + (An̂ · ρvn̂)vn̂ = (P + ρv2)An̂

Substituting the above equation in Equation (2.20) on the previous page, we finally obtain
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dp
dt

= −Δ
[
(P + ρv2)An̂

]
+ F+mg (2.21)

which is the macroscopic momentum balance.

2.4.4 Microscopic Balance
Consider the momentum flux vectors – φ1, φ2 and φ3 – acting on the six faces of differential
element of fixed volume, as shown in Figure 2.9 below. The vector φ2, which is along the
x2-direction, acts on the two parallel faces of area ΔA2 = Δx1Δx3, and at locations x2 and
x2 +Δx2. The momentum rates into the system at x2 due to φ2 along the x1-, x2- and x3-
directions are, respectively, φ21ΔA1, φ22ΔA1 and φ23ΔA1. Note that there is no generation
of momentum. Applying Equation (2.1) on p. 18 for the momentum ΔV ρvi of the differential

φ2(x2)

x1

x3

x1 + Δx1
x2

x2 + Δx2

x3 + Δx3

φ2(x2 +Δx2)

φ1(x1 +Δx1)

φ1(x1)

φ3(x3)

φ3(x3 +Δx3)

x1

x2

x3

Figure 2.9 Molecular flux vectors – φ1, φ2 and φ3 – acting on the six faces of the differential element
of fixed volume in Cartesian coordinates

element along the xi-direction, we obtain

d
dt

(ΔV ρvi) = ΔV
∂

∂t
(ρvi) =

3∑
j=1

[
φji(xj)− φji(xj +Δxj)

]
ΔAj + ρgiΔV

(2.22)

where ΔV = Δx1Δx2Δx3 is the fixed volume of the element. In the limit of Δxj tending
to zero at any time t,

φji(xj +Δxj) = φji(xj) +
∂φji

∂xj
Δxj
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from the first order Taylor expansion. Using this result, Equation (2.22) on the previous page
simplifies to

∂(ρvi)

∂t
= −

3∑
j=1

∂φji

∂xj
+ ρgi; i = 1, 2, 3

for the three directions. In the matrix notation the above set of equations can be written as

∂(ρv)

∂t
= −∇ · φ+ ρg (2.23)

The above equation is known microscopic momentum balance, or the equation of motion.

Equation of Change for Velocity

To obtain this equation, we expand the equation of motion above, and utilize the equation of
continuity [Equation (2.8), p. 23] as follows.

The second term of Equation (2.23) above expands to

−∇ · φ = −∇ · (δP + τ + ρvv) = −∇ · δP −∇ · τ −∇ · ρvv (2.24)

In the above equation [refer Section 8.6.6, p. 310],

∇ · δP =

(
x̂1

∂

∂x1
+ x̂1

∂

∂x2
+ x̂3

∂

∂x3

)
· (x̂1x̂1P + x̂2x̂2P + x̂3x̂3P )

=
3∑

i=1

3∑
j=1

x̂i
∂

∂xi
· x̂j x̂jP =

3∑
i=1

3∑
j=1

x̂i ·
∂

∂xi
(x̂j x̂jP )

=
3∑

i=1

3∑
j=1

[
x̂i ·

∂

∂xi
(x̂j x̂j)︸ ︷︷ ︸
=0

since ∂ x̂j/∂xi=0

P + x̂i · x̂j︸ ︷︷ ︸
= δij

x̂j
∂P

∂xi

]

where

δij =

{
1, if i = j

0, if i �= j

Thus,

∇ · δP = x̂1
∂P

∂x1
+ x̂2

∂P

∂x2
+ x̂3

∂P

∂x3
= ∇P

To expand ∇ · ρvv in Equation (2.24) above, we use the following identity (see p. 315):

∇ · ab = a · ∇b+ b(∇ · a) (8.9)

With a as ρv, and b as v

∇ · ρvv = ρv · ∇v + v(∇ · ρv)
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Thus, Equation (2.24) on the previous page becomes

−∇ · φ = −∇P −∇ · τ − ρv · ∇v − v(∇ · ρv)

Finally, applying the product rule of differentiation to the left-hand side of Equation (2.23)
on the previous page, we get

∂(ρv)

∂t
=

∂ρ

∂t︸ ︸
−∇·ρv

[from Equation (2.8), p. 23]

v + ρ
∂v

∂t
= (−∇ · ρv)v + ρ

∂v

∂t

With the help of the last two equations, Equation (2.23) on the previous page simplifies to

∂v

∂t
= −v · ∇v − 1

ρ
(∇ · τ +∇P ) + g (2.25)

which is the equation of change for velocity.

2.5 Energy Balance
In this section, we will first derive the microscopic balance. We will then integrate it over the
volume of the system to obtain the macroscopic balance. This approach helps in appreciating
certain terms that arise at the molecular level, and that are better conceived in the microscopic
balance.

2.5.1 Microscopic Balance
Consider the differential element of fixed volume, as shown in Figure 2.10 on the next page
where ei denotes the total energy flux across the differential area element ΔAi perpendicular
to the xi-direction. Note that ΔAi = ΔxjΔxk where i, j and k are different from each other,
and take values from the set {1, 2, 3}. Then the energy flux is given by

ei = ρ

(
v2

2
+ Φ̂ + Û

)
vi︸ ︷︷ ︸

energy flux due to
moving mass

+ πi · v︸ ︷︷ ︸
energy flux due to
molecular forces

+ qi︸︸
energy flux due to
heat conduction

(2.26)

where the energy flux due to moving mass stems from the kinetic, potential and internal
energy of the mass crossing ΔAi, where Φ̂ and Û are the potential and internal energy per
unit mass, respectively. The energy flux in the xi-direction due to molecular forces is the dot
product of the molecular stress πi (i.e., shear stress acting on ΔAi), and velocity.

Applying Equation (2.3) on p. 20 to the total energy of the differential element, we get

d
dt

[
ΔV ρ

(
v2

2
+ Φ̂ + Û

)
︸ ︷︷ ︸

total energy of the element

]
=

3∑
i=1

[ei(xi)− ei(xi +Δxi)]ΔAi
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e2(x2)
x1

x3

x1 + Δx1
x2

x2 + Δx2

x3 + Δx3

e2(x2 +Δx2)

e1(x1 +Δx1)

e1(x1)

e3(x3)

e3(x3 +Δx3)

x1

x2

x3

Figure 2.10 Components of the total energy flux vector – e1, e2 and e3 – acting on the six faces of
the differential element of fixed volume in Cartesian coordinates

Since ΔV = Δx1Δx2Δx3 is fixed, the above differential equation can be written as

ΔV
d
dt

[
ρ

(
v2

2
+ Φ̂ + Û

)]
=

3∑
i=1

[ei(xi)− ei(xi +Δxi)]ΔAi

Using the first order Taylor expansion of ei(xi +Δxi) in the limit of Δxi tending to zero at
any time t, the above equation simplifies to

∂

∂t

[
ρ

(
v2

2
+ Φ̂ + Û

)]
= −

3∑
i=1

∂ei
∂xi

(2.27)

We express the right-hand side of the above equation with the help of Equation (2.26) on the
previous page as

−
3∑

i=1

∂ei
∂xi

= −
3∑

i=1

∂

∂xi

[
ρ

(
v2

2
+ Φ̂ + Û

)
vi + πi · v + qi

]

= −
3∑

i=1

∂

∂xi
ρ

(
v2

2
+ Φ̂ + Û

)
vi︸ ︷︷ ︸

∇·ρ
(

v2

2 +Φ̂+Û
)
v

−
3∑

i=1

∂

∂xi

3∑
j=1

πijvj

︸ ︷︷ ︸
∇·Pv+∇·τ ·v

−
3∑

i=1

∂qi
∂xi︸ ︷︷ ︸

∇·q
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where, using the definition of π [see Equation (2.18), p. 27],

3∑
i=1

∂

∂xi

3∑
j=1

πijvj =
3∑

i=1

∂

∂xi

3∑
j=1

(δijP + τij)vj =
3∑

i=1

∂

∂xi
(Pvi) +

3∑
i=1

∂

∂xi

3∑
j=1

τijvj

︸ ︷︷ ︸
τi·v

= ∇ · Pv +∇ · τ · v

Utilizing the above results, Equation (2.27) on the previous page can be finally written as

∂

∂t

[
ρ

(
v2

2
+ Φ̂ + Û

)]
= −∇ ·

[
ρ

(
v2

2
+ Φ̂ + Û

)
v

]
−∇ · Pv −∇ · τ · v −∇ · q

(2.28)

The above equation is the microscopic energy balance.

2.5.2 Macroscopic Balance
This energy balance can be obtained by integrating Equation (2.28) above over the entire
macroscopic system of which the differential element is a part. Figure 2.11 below shows a
macroscopic system, which has a number of ports for the entry and exit of mass and energy.
At any port, the velocity and heat flux are perpendicular to the cross-section area of the port.
As shown in the figure, the boundary surface of the system is made of the fixed surface of wall,
its conductive part or port, the ports of material transfer, and one or more moving surfaces.

Q

Ws

port 1

material in

material out

material out

port 2

port 3

moving surface

part of wall
conductive

of wall
fixed surface

Figure 2.11 A macroscopic system with material flowing in and out through a number of ports and
subject to the transfer of heat (Q) and shaft work (Ws)
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While the ports are open to the exchange of mass, momentum and energy, moving surfaces
such as the surface of the impeller of the mixer only allow momentum to be transferred. This
momentum contributes shaft work to the system. Of course, nothing crosses the fixed surface.

Integrating Equation (2.28) on the previous page over the macroscopic system yields∫
V

∂

∂t

[
ρ

(
v2

2
+ Φ̂ + Û

)]
dV

︸ ︷︷ ︸
first term

=

∫
V

−∇ ·
[
ρ

(
v2

2
+ Φ̂ + Û

)
v

]
dV

︸ ︷︷ ︸
second term

+

∫
V

−∇ · Pv dV

︸ ︷︷ ︸
third term

+

∫
V

−∇ · τ · v dV

︸ ︷︷ ︸
fourth term

+

∫
V

−∇ · q dV

︸ ︷︷ ︸
fifth term

(2.29)

Applying the general transport theorem for fixed volume [see Equation (2.65), p. 53] to the
first term in the above equation, we obtain

∫
V

∂

∂t

[
ρ

(
v2

2
+ Φ̂ + Û

)]
dV =

d
dt

∫
V

[ E︷ ︸︸ ︷
ρ

(
v2

2
+ Φ̂ + Û

) ]
dV ≡ dE

dt

where E is the total energy of the macroscopic system.
Applying the divergence theorem [see Equation (2.55), p. 48] to the second term of

Equation (2.29) above, we obtain∫
V

−∇ ·
[
ρ

(
v2

2
+ Φ̂ + Û

)
v

]
dV =

∫
A

−ρ

(
v2

2
+ Φ̂ + Û

)
v · n̂ dA

where A is the total surface area. However, the above energy flux crosses the system only
through the ports of material transfer. Therefore, with Ap as the cross-section area of all Np
ports of material transfer,∫

A

−ρ

(
v2

2
+ Φ̂ + Û

)
v · n̂ dA =

∫
Ap

−ρ

(
v2

2
+ Φ̂ + Û

)
v · n̂ dAp

=

Np∑
j=1

[
− ρj

( v2j
2
+ Φ̂j + Ûj︸ ︷︷ ︸

Êj

)
vj · n̂jAj︸ ︷︷ ︸

Aj

]

where the ρj , vj , Φ̂j and Ûj are, respectively, the density, velocity magnitude, specific
potential energy, and specific internal energy at the j th port; all of which are considered
uniform over the cross-section of the port. Furthermore, Êj is the total specific energy of
material, which moves with velocity vj through the j th port. As shown in Figure 2.12 on the
next page, the area of the port is Aj = Ajn̂j where Aj is the magnitude, and n̂j is unit vector
normal to the port. Note that vj and Aj are collinear. Taking all surface area elements of the
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x2

x3

vj

Aj

x1

jth port

Figure 2.12 The area and velocity vectors through the j th port of material transfer

macroscopic system as vectors pointing perpendicularly outward from the body,

vj · n̂jAj =

{
−vjAj at the entry port where vj is opposite to Aj

vjAj at the exit port where vj is along Aj

With this consideration, the second term of Equation (2.29) on the last page simplifies as
follows:∫

Ap

−ρ

(
v2

2
+ Φ̂ + Û

)
v · n̂ dAp =

Nin∑
j=1

(ρjÊjvjAj)in −
Nout∑
j=1

(ρjÊjvjAj)out

= −Δ
[
ρÊvA

]
= −Δ

[
ṁÊ

]
(2.30)

where ṁ is the total mass flow rate through a port. Note that we have used the delta notation
of Equation (2.2) on p. 20 in the last step.

The third term of Equation (2.29) involves momentum flow across all ports of material
transfer as well as moving surfaces. Applying the divergence theorem [see Equation (2.55),
p. 48], we get∫

V

−∇ · Pv dV =

∫
A

−Pv · n̂ dA =

∫
Ap

−Pv · n̂ dAp +

∫
Am

−Pv · n̂ dAm

︸ ︷︷ ︸
≡ Ẇs

(2.31)

where Am is the area of all moving surfaces, and Ẇs denotes the rate of shaft work done on
the system. Similar to the input terms in Equation (2.30) above, Ẇs is positive. Following the
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steps used to derive that equation, we simplify the integral over Ap, and obtain∫
V

−∇ · Pv dV = −Δ[PvA] + Ẇs = −Δ

[
ṁ
P

ρ

]
+ Ẇs (2.32)

The fourth term of Equation (2.29) on p. 36 involves shear stresses across the ports as well
as the moving surfaces. However, the stresses are insignificant relative to pressure, and that
term may be ignored.

We are now left with the fifth term of Equation (2.29). This term is not much different from
the second term of that equation, and involves conductive heat flux across and perpendicular
to the parts of the wall (i.e., conductive ports) of the system. Following the steps used to
derive Equation (2.30) on the previous page, the fifth term simplifies to∫

A

−q · n̂ dA = −Δ
[
Q̇
]

(2.33)

where Q̇ is the rate of heat conduction across a conductive port. Based on the above
simplifications, Equation (2.29) finally becomes

dE
dt

= −Δ
[
ṁÊ

]
−Δ

[
ṁ
P

ρ

]
−Δ

[
Q̇
]
+ Ẇs (2.34)

which is the macroscopic energy balance.

Remarks
The microscopic energy balance obtained earlier is the starting point for the derivation of
the equation of change for temperature, which is an important measurable property related
to the energy content of the system, and is of immense practical interest. Next, we need to
derive the equation of change for kinetic and potential energy combined. Subtraction of this
equation from the energy balance will result in the equation of change for internal energy.
This equation, in conjunction with the thermodynamics relation between temperature and
internal energy, will eventually yield the equation of change for temperature.

2.6 Equation of Change for Kinetic and Potential Energy
We first derive the microscopic equation.

2.6.1 Microscopic Equation
The dot product of the equation of motion [Equation (2.23), p. 32] and v is given by

v · ∂(ρv)
∂t

= −v · ∇ · φ+ v · ρg

which is obtained by summing the following three equations:

vi
∂(ρvi)

∂t
= −vi

3∑
j=1

∂φji

∂xj
+ viρgi; i = 1, 2, 3 (2.35)



2. Fundamental Relations 39

We will now expand the terms of Equation (2.35) on the previous page, utilizing the product
rule of differentiation as well as its rearrangement, i.e.,

a
∂b

∂y
=

∂(ab)

∂y
− b

∂a

∂y

The first term of Equation (2.35) can be written as

vi
∂(ρvi)

∂t
= v2i

∂ρ

∂t
+ viρ

∂vi
∂t︸ ︷︷ ︸

∂ (ρv2
i /2)

∂t − v2
i
2

∂ρ
∂t

=
v2i
2

∂ρ

∂t︸ ︸
−∇·ρv

[from Equation (2.8), p. 23]

+
∂

∂t

(
ρv2i
2

)

= −v2i
2

3∑
j=1

∂

∂xj
(ρvj) +

∂

∂t

(
ρv2i
2

)
= −

3∑
j=1

v2i
2

∂

∂xj
(ρvj)︸ ︷︷ ︸

[ ∂
∂xj

(ρvjv
2
i /2)−ρvj

∂
∂xj

(v2
i /2) ]

+
∂

∂t

(
ρv2i
2

)

= −
3∑

j=1

[
∂

∂xj

(
ρvj

v2i
2

)
− ρvjvi

∂vi
∂xj

]
+

∂

∂t

(
ρv2i
2

)

With the help of Equation (2.19) on p. 28, the second term of Equation (2.35) expands as

−vi

3∑
j=1

∂φji

∂xj
= −vi

∂P

∂xi︸ ︷︷ ︸
− ∂ (Pvi)

∂xi
+P

∂vi
∂xi

−
3∑

j=1

[
vi
∂τji
∂xj︸ ︷︷ ︸

∂ (viτji)

∂xj
−τji

∂vi
∂xj

+ vi
∂

∂xj
(ρvjvi)︸ ︷︷ ︸

∂ (viρvjvi)

∂xj
−ρvjvi

∂vi
∂xj

]

= − ∂

∂xi
(Pvi) + P

∂vi
∂xi

−
3∑

j=1

[
∂

∂xj
(viτji)− τji

∂vi
∂xj

+

∂

∂xj
(ρvjv

2
i )− ρvjvi

∂vi
∂xj

]
Finally, assuming that close to the earth’s surface, gravity is equal to the gradient of the

gravitational potential Φ̂, i.e.,

gi =
∂Φ̂

∂xi

the last term of Equation (2.35) can be written as

viρgi = −viρ
∂Φ̂

∂xi
= −∂(ρviΦ̂)

∂xi
+ Φ̂

∂(viρ)

∂xi

Substituting in Equation (2.35), the expressions obtained above for its three terms, we
obtain upon simplification

∂

∂t

(
ρv2i
2

)
= − ∂

∂xi
(Pvi) + P

∂vi
∂xi

−
3∑

j=1

[
∂

∂xj
(viτji)− τji

∂vi
∂xj

+
∂

∂xj

(
ρvjv

2
i

2

)]

− ∂(ρviΦ̂)

∂xi
+ Φ̂

∂(viρ)

∂xi
; i = 1, 2, 3
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Summing the above set of three equations, we obtain the dot product of the equation of motion
[Equation (2.23) on p. 32 and v], i.e.,

∂

∂t

(
ρ

2

v2︷ ︸︸ ︷
3∑

i=1

v2i

)
= −

3∑
i=1

∂

∂xi
(Pvi)︸ ︷︷ ︸

∇·Pv

+ P
3∑

i=1

∂vi
∂xi︸ ︷︷ ︸

∇·v

−
3∑

j=1

∂

∂xj

( τ ·v︷ ︸︸ ︷
3∑

i=1

vi

τij︷ ︷
τji

)
︸ ︷︷ ︸

∇·τ ·v

+
3∑

i=1

3∑
j=1

τji
∂vi
∂xj︸ ︷︷ ︸

τ :∇v

−
3∑

j=1

∂

∂xj

(
ρvj
2

v2︷ ︸︸ ︷
3∑

i=1

v2i

)
︸ ︷︷ ︸

∇· ρv2

2 v

−
3∑

i=1

∂(ρΦ̂vi)

∂xi︸ ︷︷ ︸
∇·ρΦ̂v

+ Φ̂
3∑

i=1

∂(ρvi)

∂xi︸ ︷︷ ︸
∇·ρv

where v is the magnitude of the velocity, and τ is taken to be symmetric, i.e., τij = τji. In
the matrix notation,

∂

∂t

(ρv2
2

)
= −∇ · Pv + P∇ · v −∇ · τ · v + τ : ∇v −∇ · ρ

(v2
2
+ Φ̂

)
v + Φ̂∇ · ρv

where τ : ∇v is the double dot product of τ and ∇v [see Section 8.6.6, p. 317]. The above
equation is the equation of change for kinetic energy whose last term can be written as

Φ̂∇ · ρv = −Φ̂
∂ρ

∂t
= −∂(ρΦ̂)

∂t

based on the equation of continuity [Equation (2.8), p. 23], and time-independent Φ̂
sufficiently close to the earth’s surface. With these considerations, we obtain

∂

∂t

[
ρ

(
v2

2
+ Φ̂

)]
= −∇ · Pv + P∇ · v −∇ · τ · v + τ : ∇v −∇ · ρ

(v2
2
+ Φ̂

)
v

(2.36)

which is the equation of change for kinetic and potential energy.

2.6.2 Macroscopic Equation
The macroscopic equation for the combined kinetic and potential energy is obtained similar
to Equation (2.34) on p. 38. The integral of ∇ · τ · v is discarded. Thus, the integration
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of Equation (2.36) on the previous page over the system volume yields the microscopic
equation of change for kinetic and potential energy,

d
dt

[
ρ

(
v2

2
+ Φ̂

)]
= −Δ

[
ṁ

(
v2

2
+ Φ̂

)]
−Δ

[
ṁ
P

ρ

]
+ Ẇs

−
∫
V

−(P∇ · v) dV

︸ ︷︷ ︸
≡ Ėc

−
∫
V

(−τ : ∇v) dV

︸ ︷︷ ︸
≡ Ėv

(2.37)

where the last two terms, Ėc and Ėv, cannot be simplified, and are the rates of conversion
of kinetic and potential energy, respectively, to thermal energy. While Ėv is due to viscous
effects and is positive, Ėc is due to fluid compressibility and could be positive or negative.
For incompressible fluids, Ec is zero.

2.7 Equation of Change for Temperature
We first obtain the microscopic equation of change for temperature.

2.7.1 Microscopic Equation
Subtracting the Equation (2.36) from Equation (2.28) on p. 35 yields

∂

∂t
(ρÛ) = −∇ · ρÛv −∇ · q− P∇ · v − τ : ∇v (2.38)

which is the equation of change for the internal energy of the system.
Next, we introduce specific enthalpy (Ĥ) in the above equation. Since Û = Ĥ − P/ρ, the

first two terms of Equation (2.38) above expand as

∂(ρÛ)

∂t
=

∂

∂t

[
ρ

(
Ĥ − P

ρ

)]
=

∂(ρĤ)

∂t
− ∂P

∂t
and

−∇ · ρÛv = −∇ · ρ
(
Ĥ − P

ρ

)
v = −∇ · ρĤv + ∇ · Pv︸ ︷︷ ︸

(P∇ · v + ∇P · v)
[see Equation (8.10), p. 317]

Substituting the above expansions in Equation (2.38) above, and expanding the time
derivative yields

ρ
∂Ĥ

∂t
= −Ĥ

∂ρ

∂t
−∇ · ρĤv −∇ · q+

∂P

∂t
+∇P · v − τ : ∇v (2.39)
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Assuming that the change in enthalpy is between successive states of system under
equilibrium, ∂Ĥ/∂t in the last equation is given by Equation (2.54) on p. 47 [see
Appendix 2.A, p. 44]. Utilizing this result, we obtain

ρĈP
∂T

∂t
= −∇ · ρĤv −∇ · q− T

ρ

∂ρ

∂T

⏐⏐⏐
P,m

∂P

∂t
− Ĥ︸︸
Nc∑
i=1

ωiH̃i

[see Equation (2.51), p. 47]

∂ρ

∂t
−

Nc∑
i=1

H̃iρ
∂ωi

∂t

+∇P · v − τ : ∇v

where H̃i is the partial specific enthalpy of the ith species in a mixture of Nc species.
In the above equation, substitution of ∂ωi/∂t from Equation (2.11) on p. 23 yields after
simplification

ρĈP
∂T

∂t
= −∇ · ρĤv −∇ · q− T

ρ

∂ρ

∂T

⏐⏐⏐
P,m

∂P

∂t
+

Nc∑
i=1

H̃i∇ · ωiρv

+

Nc∑
i=1

H̃i∇ · ji −
Nc∑
i=1

Nr∑
j=1

H̃irgen,ij +∇P · v − τ : ∇v (2.40)

where the term involving rgen,ij accounts for the enthalpy change due to the change in system
composition because of chemical reactions. The above equation gets further simplified to [see
Exercise 2.5, p. 58]

∂T

∂t
= −v · ∇T − 1

ρĈP

(
∇ · q+

T

ρ

∂ρ

∂T

⏐⏐⏐
P,m

DP

Dt
−

Nc∑
i=1

H̃i∇ · ji

+

Nc∑
i=1

Nr∑
j=1

H̃irgen,ij + τ : ∇v

)
(2.41)

which is the microscopic equation of change for temperature:

2.7.2 Macroscopic Equation
Let us consider a commonly encountered macroscopic system, which has the following
attributes:

1. The material in the system is well-mixed so that T , ρ, ĈP and H̃is are uniform, i.e.,
independent of space. Moreover, ρ does not change with time.

2. The system pressure is constant and uniform as well as viscous dissipation is negligible.

3. The mass and heat cross the system boundaries at relevant entry and exit ports. At any
port, the applicable velocity, or heat flux is perpendicular to the cross-section area of
the port.

4. Diffusive fluxes of species at a port are insignificant in comparison to the bulk flux.
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Thus, for this system Equation (2.40) on the previous page simplifies to

ρĈP
∂T

∂t
= −∇ · ρĤv −∇ · q+

Nc∑
i=1

H̃i∇ · ωiρv +

Nc∑
i=1

H̃i∇ · ji

−
Nc∑
i=1

Nr∑
j=1

H̃irgen,ij − τ : ∇v

The volume integral of the above equation yields the macroscopic equation of change
for temperature. The approach is similar to that used earlier for energy balances [refer
Section 2.5.2, p. 35]. Following this approach, the volume integral is given by∫

V

ρĈP
∂T

∂t
dV

︸ ︷︷ ︸
first term

=

∫
V

−∇ · ρĤv dV

︸ ︷︷ ︸
second term

+

∫
V

−∇ · q dV

︸ ︷︷ ︸
third term

+

∫
V

Nc∑
i=1

H̃i∇ · ωiρv dV

︸ ︷︷ ︸
fourth term

+

∫
V

Nc∑
i=1

H̃i∇ · ji dV

︸ ︷︷ ︸
fifth term

+

∫
V

Nc∑
i=1

Nr∑
j=1

(−H̃irgen,ij) dV

︸ ︷︷ ︸
sixth term

+

∫
V

(−τ : ∇v) dV

︸ ︷︷ ︸
seventh term

(2.42)

Since T , ρ and ĈP are uniform, the first term of the above equation simplifies as follows:∫
V

ρĈP
∂T

∂t
dV = ρĈP

∫
V

∂T

∂t
dV = ρĈP

d
dt

∫
V

T dV

︸ ︷︷ ︸
from the general transport theorem

[Equation (2.65) on p. 53]

= ρĈP
dT
dt

V = mĈP
dT
dt

Note that we have applied the general transport theorem for the fixed volume V .
Applying the divergence theorem [see Equation (2.55), p. 48], the second term of

Equation (2.42) above is equal to∫
A

−ρĤv · n̂ dA = −
∫
Ap

ρĤv · n̂ dAp −
∫
Am

ρ Ĥ︸︸
(Û+P

ρ )

v · n̂ dAm

= −
∫
Ap

ρĤv · n̂ dAp

︸ ︷︷ ︸
−Δ

[
ṁĤ

]
[see Equation (2.30), p. 37]

−
∫
Am

ρÛv · n̂ dAm

︸ ︷︷ ︸
0, since no material

flows through

+

∫
Am

−Pv · n̂ dAm

︸ ︷︷ ︸
rate of shaft work, Ẇs

[see Equation (2.31), p. 37]

= −Δ
[
ṁĤ

]
+ Ẇs
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where Ap and Am are, respectively, the areas of ports of material transfer and moving surfaces,
and ṁ is the overall bulk mass flow rate through a given port.

The third term of Equation (2.42) on the previous page is given by Equation (2.33)
on p. 38. The fourth term of Equation (2.42) on the previous page gets simplified to [see
Equation (2.30), p. 37]

∫
Ap

Nc∑
i=1

H̃iωiρv · n̂ dAp =

Nc∑
i=1

H̃iΔ
[
ωiρvA︸ ︷︷ ︸

ṁi

]
=

Nc∑
i=1

H̃iΔ
[
ṁi

]

where (i) ṁi is the bulk mass flow rate of the ith species through a given port, and (ii) H̃i is
the property of the species inside the macroscopic system at system conditions.

Similarly, the fifth term of Equation (2.42) on the previous page gets simplified to

∫
A

Nc∑
i=1

H̃iji · n̂ dA =

Nc∑
i=1

H̃iΔ
[
jiA︸ ︸
˜
mi

]
=

Nc∑
i=1

H̃iΔ
[

˙
˜
mi

]
≈ 0

where ˙
˜
mi is the mass flow rate of the ith species through a given port due to diffusion. Since

˙
˜
mis are considered insignificant relative to ṁi at a port, the fifth term can be dropped.

The sixth term of Equation (2.42) simplifies as follows:

∫
V

Nr∑
j=1

Nc∑
i=1

(−H̃irgen,ij) dV = V

Nr∑
j=1

Nc∑
i=1

(−H̃irgen,ij)

where V is the volume of the macroscopic system.
Finally, the seventh term of Equation (2.42) on the previous page is Ėv [see

Equation (2.37), p. 41]. This term can be dropped since the viscous dissipation is assumed
to be negligible. Thus, Equation (2.42) becomes

mĈP
dT
dt

= −Δ
[
ṁĤ

]
−Δ

[
Q̇
]
+

Nc∑
i=1

H̃iΔ
[
ṁi

]
+ V

Nr∑
j=1

Nc∑
i=1

(−H̃irgen,ij) + Ẇs

(2.43)

which is the macroscopic equation of change for temperature.

2.A Enthalpy Change from Thermodynamics

We will derive the equation for enthalpy change in three steps as follows.
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Step 1
The differential changes in the internal energy (U ), and entropy (S) of an open system are
given by, respectively,

dU =

Nc∑
i=1

H̃idmi + δQ− PdV and

dS =

Nc∑
i=1

S̃idmi +
δQ

T
+ dSgen

where (i) H̃i and S̃i are the partial specific enthalpy and partial specific entropy, respectively,
of the ith species of mass mi in the mixture of Nc species, (ii) δQ is the amount of heat
transfer, and (iii) dSgen is amount of entropy generated. Eliminating δQ from the last two
equations, we obtain

dU = TdS − TdSgen − PdV +

Nc∑
i=1

(H̃i − T S̃i︸ ︷︷ ︸
G̃i

)dmi

where G̃i is the partial specific Gibbs free energy. For a reversible process, dSgen is zero, and
therefore

dU = TdS − PdV +

Nc∑
i=1

G̃idmi (2.44)

Since U is a path-independent property, dU given by the above equation is valid for any
process for the same initial and final states.

Now from the definition of enthalpy, H = U + PV , so that

dH = dU + PdV + V dP = TdS + V dP +

Nc∑
i=1

G̃idmi (2.45)

with the help of Equation (2.44) above.

Step 2
From S = S(T, P,m) where m is the vector of all mis, we obtain

dS =
∂S

∂T

⏐⏐⏐⏐
P,m

dT +
∂S

∂P

⏐⏐⏐⏐
T,m

dP +

Nc∑
i=1

∂S

∂mi

⏐⏐⏐⏐
T,P,mj

dmi (2.46)

In the above equation mj is m without the j th species. We will now get expressions for
∂S/∂T |P,m and ∂S/∂P |T,m. In terms of heat capacity, CP ≡ ∂H/∂T |P,m, and the relation
∂H/∂S |P,m = T from Equation (2.45) above, we can express

∂S

∂T

⏐⏐⏐⏐
P,m

=
∂S

∂H

⏐⏐⏐⏐
P,m

× ∂H

∂T

⏐⏐⏐⏐
P,m

=
CP

T
(2.47)



46 Process Modeling and Simulation for Chemical Engineers

From the definition of the Gibbs free energy, G = H − TS, so that

dG = dH − TdS − SdT = −SdT + V dP +

Nc∑
i=1

G̃idmi

where we have used Equation (2.45) on the previous page in the last step. From G =
G(T, P,m), we get

dG =
∂G

∂T

⏐⏐⏐⏐
P,m

dT +
∂G

∂P

⏐⏐⏐⏐
T,m

dP +

Nc∑
i=1

∂G

∂mi

⏐⏐⏐⏐
T,P,mj

dmi

Comparing the last two equations, we get the following relations:

∂G

∂T

⏐⏐⏐⏐
P,m

= −S,
∂G

∂P

⏐⏐⏐⏐
T,m

= V and

∂G

∂mi

⏐⏐⏐⏐
T,P,mj

= G̃i; i = 1, 2, . . . , Nc (2.48)

Since G is a path-independent property, using the first two of the above relations, we get

∂

∂P

⏐⏐⏐⏐
T,m

−S︷ ︸︸ ︷
(∂G/∂T )P,m =

∂

∂T

⏐⏐⏐⏐
P,m

V︷ ︸︸ ︷
(∂G/∂P )T,m or

∂S

∂P

⏐⏐⏐⏐
T,m

= −∂V

∂T

⏐⏐⏐⏐
P,m

Substituting the above result and Equation (2.47) into Equation (2.46) on the previous page
gives

dS =
CP

T
dT − ∂V

∂T

⏐⏐⏐⏐
P,m

dP +

Nc∑
i=1

∂S

∂mi

⏐⏐⏐⏐
T,P,mj

dmi

The above expression for dS when substituted into Equation (2.45) on the previous page
yields

dH = CP dT +

[
V − T

∂V

∂T

⏐⏐⏐⏐
P,m

]
dP +

Nc∑
i=1

(
T
∂S

∂mi

⏐⏐⏐⏐
T,P,mj

+ G̃i︸ ︷︷ ︸
(∂H/∂mi )T,P,mj

)
dmi

(2.49)

where the bracketed expression in the last term of the above equation gets simplified after
applying Equation (2.48) above, and then utilizing the definition, G ≡ H − TS, as shown
below.

T
∂S

∂mi
+ G̃i = T

∂S

∂mi
+

∂G

∂mi
=

∂

∂mi
(TS +G) =

∂H

∂mi
(constant T , P , mj)

Step 3
To obtain dH in terms of specific heat capacity (ĈP), density (ρ), and mass fractions (ωis),
we express Equation (2.49) above as

d(mĤ) = mĈP dT +
[
mV̂ − T

∂(mV̂ )

∂T

⏐⏐⏐⏐
P,m

]
dP +

Nc∑
i=1

∂H

∂mi

⏐⏐⏐⏐
T,P,mj

d(mωi)
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where Ĥ is specific enthalpy, and V̂ is specific volume. Upon expanding the differentials and
derivatives,

mdĤ + Ĥdm = mĈP dT +
[
mV̂ − T

(
m
∂V̂

∂T

⏐⏐⏐⏐
P,m

+ V̂
∂m

∂T

⏐⏐⏐⏐
P,m︸ ︷︷ ︸
=0, since

m is constant

)]
dP

+

Nc∑
i=1

∂H

∂mi

⏐⏐⏐⏐
T,P,mj

(mdωi + ωidm)

Further rearrangement of the above equation yields[
Ĥ −

Nc∑
i=1

ωi
∂H

∂mi

⏐⏐⏐⏐
T,P,mj︸ ︷︷ ︸
H̃i

]
dm+

[
dĤ − ĈP dT −

(
V̂ − T

∂V̂

∂T

⏐⏐⏐⏐
P,m

)
dP

−
Nc∑
i=1

∂H

∂mi

⏐⏐⏐⏐
T,P,mj︸ ︷︷ ︸
H̃i

dωi

]
m = 0 (2.50)

where H̃i is called the partial specific enthalpy of the ith species in the mixture. Since dm and
m are arbitrary, their respective coefficients must be zero. Thus,

Ĥ =

Nc∑
i=1

ωiH̃i (2.51)

dĤ = ĈP dT +
(
V̂ − T

∂V̂

∂T

⏐⏐⏐⏐
P,m

)
dP +

Nc∑
i=1

H̃idωi (2.52)

Because V̂ = 1/ρ,

∂V̂

∂T
=

∂V̂

∂ρ

∂ρ

∂T
= − 1

ρ2
∂ρ

∂T

Using the above result, Equation (2.52) above becomes

dĤ = ĈP dT +
1

ρ

(
1 +

T

ρ

∂ρ

∂T

⏐⏐⏐⏐
P,m

)
dP +

Nc∑
i=1

H̃idωi (2.53)

Let Ĥ be a function of time as well as space. Then the partial differential of Ĥ is given by

∂Ĥ = ĈP ∂T +
1

ρ

(
1 +

T

ρ

∂ρ

∂T

⏐⏐⏐⏐
P,m

)
∂P +

Nc∑
i=1

H̃i∂ωi

Dividing the above equation by the differential time, ∂t, we get the equation of change for
enthalpy from thermodynamics.

∂Ĥ

∂t
= ĈP

∂T

∂t
+

1

ρ

[
1 +

T

ρ

∂ρ

∂T

⏐⏐⏐
P,m

]
∂P

∂t
+

Nc∑
i=1

H̃i
∂ωi

∂t
(2.54)
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2.B Divergence Theorem
According to this theorem, the integral of the divergence of a vector field over the volume
of a system is equal to the net outward flow of the vector field through the boundary surface
area of the system. Thus, given a vector field f in a system of volume V and boundary surface
area A,

∫
V

∇ · f dV =

∫
A

f · n̂ dA (2.55)

To prove this theorem, we split a system into upper and lower parts, as shown in Figure 2.13
below. The two parts are demarcated by a locus of points on the surface where the outward
normal n̂ is perpendicular to the x3-direction.

x1

x2

x3

ñ

˜
n

x̃3

˜
x3

dÃ

d
˜
A

x̂3

x̂3
locus of points with
n̂ at right angle to x̂3

Figure 2.13 A system of volume V split into upper and lower parts by a locus of points with the
outward normal n̂ perpendicular to the x3-direction
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Now from the definition of divergence of a vector,∫
V

∇ · f dV =

∫
V

∂f1
∂x1

dV +

∫
V

∂f2
∂x2

dV +

∫
V

∂f3
∂x3

dV

Let
˜
x3 and x̃3 be, respectively, the upper and lower limits of the system along the x3-direction

at any set of coordinates (x1, x2). Then we can write

∫
V

∂f3
∂x3

dV =

∫
x1

∫
x2

x̃3(x1,x2)∫
˜
x3(x1,x2)

∂f3
∂x3

dx3 dx2 dx1 =

∫
x1

∫
x2

[
f3

]x̃3(x1,x2)

˜
x3(x1,x2)

dx2 dx1

or
∫
V

∂f3
∂x3

dV =

∫
x1

∫
x2

f3(x̃3) dx2 dx1

︸ ︷︷ ︸
for upper surface area, Ã

−
∫
x1

∫
x2

f3(
˜
x3) dx2 dx1

︸ ︷︷ ︸
for lower surface area,

˜
A

(2.56)

Observe that the differential area element in the upper part of the system is

dÃ = (dÃ)ñ

where dÃ is the magnitude, and ñ is the unit vector along dÃ. The projection of dÃ on the
x1x2-plane is

dÃ cos θ = dx1dx2

where θ is the angle between ñ and the unit vector x̂3 along the x3-direction. Thus,
cos θ = x̂3 · ñ so that

dx1dx2 = x̂3 · ñ dÃ (2.57)

Similarly, the differential area element in the lower part of the system is

d
˜
A = (d

˜
A)

˜
n

where d
˜
A is the magnitude, and

˜
n is the unit vector along d

˜
A. The projection of d

˜
A on the

x1x2-plane is

−d
˜
A cos θ = dx1dx2

where θ is the angle between
˜
n and x̂3. Since the magnitude of θ in the lower part is greater

than the right angle, cos θ is negative. To keep the projected area positive, we have multiplied
the left-hand side of the above equation by −1. Since cos θ = x̂3 ·

˜
n,

dx1dx2 = −x̂3 ·
˜
n d

˜
A (2.58)

Substituting Equations (2.57) and (2.58) above, respectively, in the integrals for the upper and
lower surface areas of Equation (2.56) above, we get∫

V

∂f3
∂x3

dV =

∫
Ã

f3(x̃3)x̂3 · ñ dÃ+

∫
˜
A

f3(
˜
x3)x̂3 ·

˜
n d

˜
A =

∫
A

f3x̂3 · n̂ dA
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where n̂ is the unit vector perpendicular to an area element dA.
Proceeding in the same manner as above for the x1- and x2-directions, we obtain,

respectively, ∫
V

∂f1
∂x1

dV =

∫
A

f1x̂1 · n̂ dA and

∫
V

∂f2
∂x2

dV =

∫
A

f2x̂2 · n̂ dA

Adding the last three equations results in the divergence theorem, i.e.,∫
V

(
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

)
dV =

∫
A

(f1x̂1 + f2x̂2 + f3x̂3) · n̂ dA

which can be written compactly as∫
V

∇ · f dV =

∫
A

f · n̂ dA (2.55)

2.C General Transport Theorem
This theorem provides a useful expression for the time derivative of the volume integral of a
scalar function in a system whose volume depends on time.

To derive this theorem, we consider a system whose surface moves with velocity w, which
varies with space and time. As shown in Figure 2.14 on the next page, the volume changes in
time Δt from the initial volume V (t) to the final volume V (t+Δt). The time derivative of
the volume integral of a scalar function F , which depends on time as well as space, is given
by

d
dt

∫
V (t)

F dV = lim
Δt→0

∫
V (t+Δt)

F (t+Δt) dV −
∫

V (t)

F (t) dV

Δt
(2.59)

The final volume can be written as

V (t+Δt) = V (t) + V2(Δt)− V1(Δt)

where, as shown in the figure, V2 is the volume gained or swept forward, and V1 is the
volume lost or swept behind in time Δt by the system of initial volume V (t). Utilizing the
above equation, we can write∫

V (t+Δt)

F (t+Δt) dV =

∫
V (t)

F (t+Δt) dV +

∫
V2(Δt)

F (t+Δt) dV2 −
∫

V1(Δt)

F (t+Δt) dV1
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V (t+Δt)

V1(Δt)
V2(Δt)

dV2

dV1

A1

A2

V (t)

n1

n2

(dotted space)

Figure 2.14 Snapshots of a moving volume V at times t and (t+Δt). V1 and V2 are, respectively,
the volumes left behind and swept forward in duration Δt

The above equation when substituted into Equation (2.59) on the previous page yields

d
dt

∫
V (t)

F dV = lim
Δt→0

∫
V (t)

F (t+Δt) dV −
∫

V (t)

F (t) dV

Δt︸ ︷︷ ︸
≡T0

+ lim
Δt→0

−
∫

V1(Δt)

F (t+Δt) dV1

Δt︸ ︷︷ ︸
≡T1

+ lim
Δt→0

∫
V2(Δt)

F (t+Δt) dV2

Δt︸ ︷︷ ︸
≡T2

(2.60)

We now need to simplify the terms denoted by T0, T1 and T2 in the above equation.

Simplification of T0

The term T0 in the above equation simplifies as follows:

T0 = lim
Δt→0

∫
V (t)

F (t+Δt)− F (t)

Δt
dV =

∫
V (t)

∂F

∂t
dV (2.61)
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where we have used the definition of partial derivative.

Simplification of T2

We first determine dV2 in terms of the surface area of the intersection of V (t) and V (t+Δt).
This area is made of A1 and A2 as shown in Figure 2.14 on the previous page. Consider a
differential area element

dA2 = (dA2)n̂2

where dA2 is the magnitude of the area, and n̂2 is a unit vector along dA2. Let the velocity
of the differential area element be

w = wŵ

where w and ŵ are, respectively, the magnitude of and unit vector along w. If θ is the angle
between ŵ and dA2 then its component along ŵ is dA2 cos θ. This area will sweep a distance
wΔt in time duration Δt. The corresponding volume swept along ŵ is then

dV2 = (wΔt) dA2 cos θ = Δt w cos θ dA2

Note that on A2, the magnitude of θ is less than the right angle so that cos θ is positive. Now
since cos θ = ŵ · n̂2,

dV2 = Δt wŵ · n̂2 dA2 = Δtw · n̂2 dA2

Using the above expression for dV2, we obtain

T2 = lim
Δt→0

∫
A2(t)

F (t+Δt)w · n̂2 dA2 =

∫
A2(t)

F (t)w · n̂2 dA2 (2.62)

Simplification of T1

We proceed in a similar manner as above, and consider a differential area element [see
Figure 2.14, previous page]

dA1 = (dA1)n̂1

where dA1 is the magnitude of the area, and n̂1 is a unit vector along dA1. The corresponding
volume swept along ŵ is given by

dV1 = −Δt w cos θ dA1

where θ is the angle between ŵ and dA1, and the right-hand side is multiplied by −1 to keep
the volume dV1 positive. The reason is that on A2, the magnitude of θ is greater than the right
angle so that cos θ is negative.

Since cos θ = ŵ · n̂1 here, the above equation becomes

dV1 = −Δtw · n̂1 dA1
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Thus, the term T1, after substituting for dV1 given by the above equation, is given by

T1 =

∫
A1(t)

F (t)w · n̂1 dA1 (2.63)

The addition of Equations (2.62) and (2.63) above yields

T1 + T2 =

∫
A(t)

F (t)w · n̂ dA ≡
∫

A(t)

Fw · n̂ dA

where A ≡ A1 + A2, and n̂ denotes the unit vector along the differential element of area A.
Substituting the above equation and Equation (2.61) into Equation (2.60) on p. 51, we finally
obtain

d
dt

∫
V (t)

F dV =

∫
V (t)

∂F

∂t
dV +

∫
A(t)

Fw · n̂ dA (2.64)

The above equation is known as general transport theorem.

Special Case

For a system whose volume is fixed in space, w is zero. In this case the general transport
theorem yields

d
dt

∫
V

F dV =

∫
V

∂F

∂t
dV (2.65)

2.D Equations in Cartesian, Cylindrical and Spherical Coordinate
Systems

In the following sections, we present the important equations derived in this chapter for
the three most common coordinate systems – the Cartesian or rectangular, cylindrical or
polar, and spherical coordinate systems. The equations in the last two systems are derivable
from the equations in Cartesian coordinate system using suitable coordinate transformations.
Coordinate transformations are presented in Chapter 5 on p. 139.

Coordinate Notation

In the equations below we use the following notation for the coordinates:
For Cartesian coordinates, x, y and z denote, respectively, the x1, x2 and x3 coordinates

that were used earlier. For cylindrical coordinates, r is the distance along the radial direction,
θ is the azimuthal angle, and z is the distance along the axial direction. Lastly, for spherical
coordinates, r is the distance along the radial direction, θ is the azimuthal angle, and φ is the
polar angle.
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2.D.1 Equations of Continuity

Cartesian coordinates

∂ρ

∂t
= −ρ

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
− vx

∂ρ

∂x
− vy

∂ρ

∂y
− vz

∂ρ

∂z

Cylindrical coordinates

∂ρ

∂t
= −ρ

(
∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

)
− vr

∂ρ

∂r
− vθ

r

∂ρ

∂θ
− vz

∂ρ

∂z
(2.66)

Spherical coordinates

∂ρ

∂t
= −ρ

(
∂vr
∂r

+
2vr
r

+
vθ

r tan θ
+

1

r

∂vθ
∂θ

+
1

r sin θ

∂vφ
∂φ

)

− vr
∂ρ

∂r
− vθ

r

∂ρ

∂θ
− vφ

r sin θ

∂ρ

∂φ

2.D.2 Equations of Continuity for Individual Species

Cartesian Coordinates

∂ωi

∂t
= −1

ρ

(
∂jix
∂x

+
∂jiy
∂y

+
∂jiz
∂z

−
Nr∑
j=1

rgen,ij

)
− vx

∂ωi

∂x
− vy

∂ωi

∂y
− vz

∂ωi

∂z

Cylindrical Coordinates

∂ωi

∂t
= −1

ρ

(
∂jir
∂r

+
jir
r

+
1

r

∂jiθ
∂θ

+
∂jiz
∂z

−
Nr∑
j=1

rgen,ij

)
− vr

∂ωi

∂r
− vθ

r

∂ωi

∂θ
− vz

∂ωi

∂z

Spherical Coordinates

∂ωi

∂t
= −1

ρ

(
∂jir
∂r

+
2jir
r

+
1

r

∂jiθ
∂θ

+
jiθ

r tan θ
+

1

r sin θ

∂jiφ
∂φ

−
Nr∑
j=1

rgen,ij

)

− vr
∂ωi

∂r
− vθ

r

∂ωi

∂θ
− vφ

r sin θ

∂ωi

∂φ
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2.D.3 Equations of Motion

The following equations of motions are for symmetric stress tensor τ :

Cartesian Coordinates

∂vx
∂t

= −vx
∂vx
∂x

− vy
∂vx
∂y

− vz
∂vx
∂z

− 1

ρ

(
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+
∂P

∂x

)
+ gx

∂vy
∂t

= −vx
∂vy
∂x

− vy
∂vy
∂y

− vz
∂vy
∂z

− 1

ρ

(
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+
∂P

∂y

)
+ gy

∂vz
∂t

= −vx
∂vz
∂x

− vy
∂vz
∂y

− vz
∂vz
∂z

− 1

ρ

(
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+
∂P

∂z

)
+ gz

Cylindrical Coordinates

∂vr
∂t

= −vr
∂vr
∂r

− vθ
r

∂vr
∂θ

− vz
∂vr
∂z

− 1

ρ

(
∂τrr
∂r

+
1

r

∂τrθ
∂θ

+
∂τrz
∂z

+
τrr − τθθ

r
+

∂P

∂r

)
+

v2θ
r

+ gr (2.67)

∂vθ
∂t

= −vr
∂vθ
∂r

− vθ
r

∂vθ
∂θ

− vz
∂vθ
∂z

− 1

ρ

(
∂τrθ
∂r

+
1

r

∂τθθ
∂θ

+
1

r

∂τθz
∂z

+
2τrθ
r

+
1

r

∂P

∂θ

)
− vrvθ

r
+ gθ

∂vz
∂t

= −vr
∂vz
∂r

− vθ
r

∂vz
∂θ

− vz
∂vz
∂z

− 1

ρ

(
∂τrz
∂r

+
1

r

∂τθz
∂θ

+
∂τzz
∂z

+
τrz
r

+
∂P

∂z

)
+ gz
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Spherical Coordinates

∂vr
∂t

= −vr
∂vr
∂r

− vθ
r

∂vr
∂θ

− vφ
r sin θ

∂vr
∂φ

− 1

ρ

(
∂τrr
∂r

+
1

r

∂τrθ
∂θ

+
1

r sin θ

∂τrφ
∂φ

+
2τrr − τθθ − τφφ

r
+

τrθ
r tan θ

+
∂P

∂r

)
+

v2θ + v2φ
r

+ gr

∂vθ
∂t

= −vr
∂vθ
∂r

− vθ
r

∂vθ
∂θ

− vφ
r sin θ

∂vθ
∂φ

− 1

ρ

(
∂τrθ
∂r

+
1

r

∂τθθ
∂θ

+
1

r sin θ

∂τθφ
∂φ

+
3τrθ
r

+
τθθ − τφφ
r tan θ

+
1

r

∂P

∂θ

)
− vrvθ

r
+

v2φ
r tan θ

+ gθ

∂vφ
∂t

= −vr
∂vφ
∂r

− vθ
r

∂vφ
∂θ

− vφ
r sin θ

∂vφ
∂φ

− 1

ρ

(
∂τrφ
∂r

+
1

r

∂τθφ
∂θ

+
1

sin θ

∂τφφ
∂φ

+
3τrφ
r

+
2τθφ
r tan θ

+
1

r sin θ

∂P

∂φ

)
− vrvφ

r
− vθvφ

r tan θ
+ gφ

2.D.4 Equations of Change for Temperature

Cartesian Coordinates

∂T

∂t
= −vx

∂T

∂x
− vy

∂T

∂y
− vz

∂T

∂z
− 1

ρĈP

[
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

+
T

ρ

∂ρ

∂T

⏐⏐⏐
P,m

DP

Dt

−
Nc∑
i=1

H̃i

(
∂jix
∂x

+
∂jiy
∂y

+
∂jiz
∂z

)
+

Nr∑
j=1

Nc∑
i=1

H̃irgen,ij + τ : ∇v

]

Cylindrical Coordinates

∂T

∂t
= −vr

∂T

∂r
− vθ

r

∂T

∂θ
− vz

∂T

∂z
− 1

ρĈP

[
∂qr
∂r

+
qr
r

+
1

r

∂qθ
∂θ

+
∂qz
∂z

+
T

ρ

∂ρ

∂T

⏐⏐⏐
P,m

DP

Dt

−
Nc∑
i=1

H̃i

(
∂jir
∂r

+
jir
r

+
1

r

∂jiθ
∂θ

+
∂jiz
∂z

)
+

Nr∑
j=1

Nc∑
i=1

H̃irgen,ij + τ : ∇v

]
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Spherical Coordinates

∂T

∂t
= −vr

∂T

∂r
− vθ

r

∂T

∂θ
− vφ

r sin θ

∂T

∂φ
− 1

ρĈP

[
∂qr
∂r

+
2qr
r

+
qθ

r tan θ
+

1

r

∂qθ
∂θ

+
1

r sin θ

∂qφ
∂φ

+
T

ρ

∂ρ

∂T

⏐⏐⏐
P,m

DP

Dt
−

Nc∑
i=1

H̃i

(
∂jir
∂r

+
2jir
r

+
jiθ

r tan θ

+
1

r

∂jiθ
∂θ

+
1

r sin θ

∂jiφ
∂φ

)
+

Nr∑
j=1

Nc∑
i=1

H̃irgen,ij + τ : ∇v

]
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Exercises
2.1 Show that the following statement is false: The total number of moles of species in a
system is always conserved.

2.2 Interpret the velocity of fluid under the continuum assumption.

2.3 Show that the equation of motion [see Equation (2.23), p. 32] is equivalent to

ρ
Dv

Dt
= −∇ · π + ρg
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2.4 Obtain the microscopic and macroscopic equations of change of temperature in molar
units.

2.5 Derive the microscopic equation of change for temperature [Equation (2.41), p. 42] from
Equation (2.40).

2.6 For a fluid element of density ρ, and the surface moving with velocity v, show that

d
dt

∫
V

ρA dV =

∫
V

ρ
DA

Dt
dV

where A is a scalar function. The above result is known as the Reynolds Transport Theorem.



3
Constitutive Relations

In this chapter, we present important constitutive relations involving mass, momentum,
energy, chemical reactions, and equilibrium. These relations supplement fundamental
relations by providing expressions for various quantities in terms of measurable intensive
properties. This is what makes constitutive relations so important. Utilizing them, process
models can account for various phenomena in terms of measurable properties.

We begin with constitutive relations for mass transport due to molecular diffusion of
species.

3.1 Diffusion
Consider a mixture of two species, A and B. If their concentrations are not uniform
in the mixture then either species has a propensity for diffusion, i.e., movement from a
region of higher concentration to a region of lower concentration. The constitutive relation
characterizing this phenomenon is Fick’s law of diffusion. According to this law, the relative
mass flux [see Equation (2.9), p. 23] of either of the species, say, A, at infinite dilution, and
steady state is given by

jA = −ρDAB∇ωA

where ρ is the density of the mixture, DAB is the (Fickian) diffusivity of A in the presence of
B, and ∇ωA is the gradient of the mass fraction of A in the mixture. Likewise, for B,

jB = −ρDBA∇ωB

Using the expression for relative mass flux, and expressing ωB as (1− ωA), it can be shown
that

jA = −jB and DAB = DBA

Thus, for binary systems, single diffusivity describes the diffusion of both species.
In terms of the molar quantities, Fick’s law of diffusion at infinite dilution, and steady state

is given by

JA = −cDAB∇yA

Process Modeling and Simulation for Chemical Engineers: Theory and Practice, First Edition. Simant Ranjan Upreti. 
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where JA is the relative molar flux of A [see Equation (2.16), p. 25], c is the molar
concentration of the mixture, and ∇yA is the gradient of the mole fraction of A in the mixture.

It may be noted that Fick’s law of diffusion is applicable to sufficiently dilute systems
in which species are assumed to interact only with the bulk mixture. The law is an infinite
dilution case of Maxwell–Stefan equations1 of mass transfer in multicomponent systems.
In systems with finite concentrations, the diffusivities defined by Fick’s law can vary with
composition.

3.1.1 Multicomponent Mixtures
For a mixture of Nc species where Nc > 2, Fick’s law of diffusion can be generalized as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1

j2

...

jNc−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
j

= −ρ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 . . . D1,Nc−1

D21 D22 . . . D2,Nc−1

...
...

. . .
...

DNc−1,1 DNc−1,2 . . . DNc−1,Nc−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇ω1

∇ω2

...

∇ωNc−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
∇ω

where Dijs are the multicomponent Fickian diffusivities. In the matrix notation, the above
set of equations can be written as

j = −ρD∇ω

where j is the vector of jis, D is the matrix of Dijs, and ∇ω is the vector of ∇ωis. In the
same manner, the relative molar fluxes are given by

J = −cD∇y

where J is the vector of Jis, and ∇y is the vector of ∇yis.
Incorporating Fick’s law of diffusion, Appendix 3.A.1 on p. 74 provides the equations of

continuity for a binary system of constant density and diffusivity in Cartesian, cylindrical,
and spherical coordinates.

Next, we present some important constitutive relations for momentum transport due to
viscous motion.

3.2 Viscous Motion
Consider a moving material body (i.e., fluid) whose velocity v changes with the spatial
location x ≡

[
x1 x2 x3

]� in Cartesian coordinates. Using the first order Taylor
expansion in the limit of Δx tending to zero vector [see Section 8.8.2, p. 323], we obtain

v(x+Δx) = v(x) +∇vΔx
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where ∇v is the velocity gradient tensor given by

∇v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This tensor can be expressed as

∇v =
1

2

[
∇v + (∇v)�︸ ︷︷ ︸

symmetric part
(γ̇)

+ ∇v − (∇v)�︸ ︷︷ ︸
antisymmetric part

(ω)

]

In the above equation, the symmetric part γ̇ is called the rate-of-strain tensor. The
antisymmetric part ω is the vorticity tensor, which represents pure rotation. The constitutive
relations that follow characterize viscous motion based on γ̇.

3.2.1 Newtonian Fluids
In Newtonian fluids, the viscous stress tensor τ is a linear, isotropic (i.e., directionally
independent) function of ∂vi/∂xj s, but independent of ω. For these fluids, a constitutive
relation known as Newton’s law of viscosity relates τ linearly to γ̇ and ∇ · v as2,3

τ = −μγ̇ +

(
2

3
μ− κ

)
(∇ · v)δ

where μ is viscosity is the viscosity of fluid, κ is its dilatational viscosity, and δ is the unit
dyadic [see Equation (8.8), p. 312].

In Cartesian coordinate system, the above equation expands to

τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2μ
∂v1
∂x1

+

(
2

3
μ− κ

) 3∑
i=1

∂vi
∂xi

−μ

(
∂v1
∂x2

+
∂v2
∂x1

)
−μ

(
∂v1
∂x3

+
∂v3
∂x1

)

−μ

(
∂v2
∂x1

+
∂v1
∂x2

)
−2μ

∂v2
∂x2

+

(
2

3
μ− κ

) 3∑
i=1

∂vi
∂xi

−μ

(
∂v2
∂x3

+
∂v3
∂x2

)

−μ

(
∂v3
∂x1

+
∂v1
∂x3

)
−μ

(
∂v3
∂x2

+
∂v2
∂x3

)
−2μ

∂v3
∂x3

+

(
2

3
μ− κ

) 3∑
i=1

∂vi
∂xi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Substituting the above equation in Equation (2.25) on p. 33 yields

∂v

∂t
= −v · ∇v +

1

ρ

[
μ∇ · γ̇︸ ︷︷ ︸

∇2v

−
(
2

3
μ− κ

)
∇(∇ · v)−∇P

]
+ g

which is the equation of motion, or Navier–Stokes equation, for compressible Newtonian
fluids.
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Since ∇ · v = 0 when density is constant [see Equation (2.8), p. 23], the Newton’s law of
viscosity for an incompressible Newtonian fluid is given by τ = −μγ̇. The Navier–Stokes
equation for that fluid having constant viscosity as well simplifies to

∂v

∂t
= −v · ∇v +

1

ρ
(μ∇2v −∇P ) + g (3.1)

Appendix 3.A.2 on p. 75 provides the equations of motion for Newtonian fluids of constant
density and viscosity in Cartesian, cylindrical, and spherical coordinates.

3.2.2 Non-Newtonian Fluids
Many fluids such as molten polymers, and salt solutions have viscosities, which are not
constant but vary, especially with shear rates. A general constitutive relation for momentum
transport in such fluids is given by

τ = −η(‖γ̇‖) γ̇
where η is non-Newtonian viscosity, which is a function of ‖γ̇‖, i.e., the norm of the rate-of-
strain tensor,

‖γ̇‖ =

√
1

2
γ̇ : γ̇

A simple characterization for η is given by the power law model according to which

η = m‖γ̇‖n−1

where m is the consistency index, and n is the power law index of the fluid. The index m is
sensitive to temperature, and is given by

m = m0e
−a(T−T0)

where m0 is the value of m at a reference temperature T0, and a is an empirical constant.
In power law model, if n > 1 then the viscosity increases with the rate of shear, and the

fluid is shear-thickening, or dilatant. If n < 1 then the viscosity decreases with the rate of
shear, and the fluid is shear-thinning, or pseudoplastic. Note that the fluid is Newtonian if
n = 1. The viscosity of many fluids is well-described by the power law model at high shear
rates, i.e., large values of ‖γ̇‖. However, for ‖γ̇‖ tending to zero, the model predicts that η
approaches

1. zero for dilatant fluids with n > 1, and

2. infinity for pseudoplastic fluids with n < 1.

In reality, however, η becomes a non-zero constant as ‖γ̇‖ tends to zero.
A widely used relation that smoothly unifies the constant fluid viscosity at low shear rates

with the power law trend at high shear rates is the Cross–WLF model. The Cross model4

relates η to ‖γ̇‖ as

η =
η0

1 +

(
η0‖γ̇‖
τ�

)(1−n)



3. Constitutive Relations 63

where η0 is the limit of viscosity as ‖γ̇‖ approaches zero, and τ� is the critical stress. This
stress is determined when viscosity, which is constant at low shear rates, begins to change as
‖γ̇‖ increases. The WLF model5 provides the temperature dependence through η0, which is
given by

η0 = D1 exp

[
− A1(T − T �)

A2 + (T − T �)

]
where D1, A1 and A2 are empirical coefficients, T is the fluid temperature, and T � is a
reference temperature. For a polymer, T � is the glass transition temperature.

The next constitutive relation is for energy transfer due to thermal conduction.

3.3 Thermal Conduction
The heat flux due to conduction in a medium is proportional to the temperature gradient. In
an isotropic medium, the flux is given by Fourier’s law of heat conduction, i.e.,

q = −k∇T

where k is the thermal conductivity. It is not necessarily a constant but a function of
temperature, pressure and composition of the medium.

Using Fourier’s law, the microscopic equation of change for temperature [Equation (2.41),
p. 42] can be written as

ρĈP
∂T

∂t
= −ρĈPv · ∇T +∇ · (k∇T ) +

Nc∑
i=1

H̃i∇ · ji −
Nc∑
i=1

Nr∑
j=1

H̃irgen,ij

− T

ρ

∂ρ

∂T

DP

Dt
− τ : ∇v (3.2)

For heat transfer in a non-reactive system with (i) constant density, or constant and
uniform pressure, (ii) constant thermal conductivity, and (iii) negligible viscous dissipation,
Equation (3.2) above becomes

ρĈP
∂T

∂t
= −ρĈPv · ∇T + k∇2T

Appendix 3.A.3 on p. 76 provides the above equation in Cartesian, cylindrical, and spherical
coordinates.

Constitutive relations that are described above associate the flux of mass, momentum,
or energy to the gradients of measurable intensive properties. In the following section,
we introduce an important constitutive relation, which relates the rate of reaction to the
concentrations of species involved in a chemical reaction.

3.4 Chemical Reaction
We consider an elementary chemical reaction in which species react to yield products directly.
The following representation of an elementary reaction

aA+ bB cC+ dD
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signifies that a moles of A and b moles of B disappear to produce c moles of C and d moles
of D. While c and d are defined as stoichiometric coefficients of the products C and D, −a
and −b are defined as stoichiometric coefficients of the reactants A and B.

Let us focus on two states, initial and final, of a mixture of the above species. In the initial
state, the mixture has NA0, NB0, NC0 and ND0 mole numbers of A, B, C and D, respectively.
The mole numbers change to NA, NB, NC and ND in the final state in which the reaction has
progressed to a certain extent. Since, according to the reaction stoichiometry, c moles of C
are produced when a moles of A are consumed,

moles of C produced
moles of A consumed

=
NC −NC0

NA0 −NA
=

c

a

Let ΔNZ ≡ (NZ −NZ0) and νZ denote, respectively, the change in mole numbers, and the
stoichiometric coefficient of species Z. Using this notation, the above relation becomes

ΔNC

−ΔNA
=

νC

−νA

Rearranging the above equation, we get

ΔNC

νC
=

ΔNA

νA
≡ X

where X is defined as the extent of reaction. We can similarly obtain

ΔND

νD
=

ΔNC

νC
=

ΔNB

νB
=

ΔNA

νA
= X

In general, the extent of a reaction (irreversible or reversible) is given by

X =
ΔNZ

νZ
=

NZ −NZ0

νZ
(3.3)

where Z is any species involved in a reaction. Note that X is the same for all reaction-species.
Once X is known, we can obtain the change in mole numbers of all the species from the
reaction stoichiometry. Then given the initial mole numbers of a reaction-species, we can
calculate its final mole numbers, and vice versa.

Example 3.4.1

Consider a mixture of species A, B, C and D, which undergo the following reaction:

4A + 3B C + 2D

The mixture has initially 40, 30, 3 and 0 mol of A, B, C and D, respectively. We would like
to calculate the final mole numbers of the species at 70% conversion of A.

Solution
At the initial state, NA0 = 40 mol. At the final state, NA = (1− 0.70)NA0 = 12 mol. Then
from Equation (3.3) above, the extent of reaction at the final state is

X =
ΔNA

νA
=

NA −NA0

νA
=

12− 40

−4
= 7
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Application of Equation (3.3) on the previous page to species B yields

ΔNB = XνB = 7×−3 = −21 mol

Thus, the number of moles of B at the final state is

NB = ΔNB +NB0 = −21 + 30 = 9 mol

Likewise, the application of Equation (3.3) on the previous page to species C and D results
in their number of moles at the final state: NC = 10 mol and ND = 14 mol, respectively.

�

Generalization
For the general elementary chemical reaction

α1A1 + α2A2 + . . .+ αpAp β1B1 + β2B2 + . . .+ βqBq

the extent of reaction is given by

X =
ΔNA1

νA1

=
ΔNA2

νA2

= · · · =
ΔNAp

νAp

=
ΔNB1

νB1

=
ΔNB2

νB2

= . . . =
ΔNBq

νBq

3.5 Rate of Reaction
Expressing Equation (3.3) on the previous page in terms of X per unit volume of the reaction
mixture (i.e., X̃), and taking the derivative with respect to time, we get

d(X̃V )

dt
= V

dX̃
dt

+ X̃
dV
dt

=
d
dt

(
NZ −NZ0

νZ

)
=

1

νZ

dNZ

dt

Rearrangement of the above equation yields

dX̃
dt︸ ︸
r

= −X̃

V

dV
dt

+
1

νZV

dNZ

dt

where r is called the rate of reaction. The molar rate of generation per unit volume of a
reaction-species Z is given by

1

V

dNZ

dt︸ ︷︷ ︸
Rgen,Z

= νZ

(
r +

X̃

V

dV
dt

)

Note that Rgen,Z would be negative if Z is consumed in the reaction. Similar to the extent of
reaction (X), the rate of reaction (r) is the same for all species involved in a reaction.
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For reaction mixtures with constant volume,

r =
Rgen,Z

νZ
and Rgen,Z = νZr (3.4)

Thus, from the last equation, we can determine the rate of change in mole numbers of all
reaction-species with the help of r, which is furnished by a constitutive relation in terms of
species concentrations.

The constitutive relation for the reaction rate of an elementary reaction, say,

aA+ bB cC+ dD

is of the form

r = k0 exp

(
− E

RT

)
︸ ︷︷ ︸

k

caAc
b
B

where (i) k is the reaction rate coefficient, (ii) cA and cB are, respectively, the concentrations
of species A and B with a and b as stoichiometric coefficients, (iii) k0 is the pre-exponential
factor, (iv) E is the activation energy of the reaction (v) R is universal gas constant, and (vi) T
is absolute temperature.

Reaction rates are included in the equations of change for moles, and temperature as
follows.

3.5.1 Equations of Change for Moles

Let us consider a mixture of Nc species, which take part in Nr reactions. The volume of the
mixture is constant. From Equation (3.4) above, the rate of generation per unit volume of the
ith species of the mixture in the j th reaction is given by

Rgen,ij = νijrj (3.5)

where νij and rj are, respectively, are the associated stoichiometric coefficient, and reaction
rate. Substituting the above equation in Equation (2.13) on p. 24 and Equation (2.17) on p. 26,
we obtain

dNi

dt
= −Δ

[
Ṅi

]
+ V

Nr∑
j=1

νijrj and (3.6)

∂yi
∂t

= −ṽ · ∇yi −
1

c

(
∇ · Ji + yi

Nc∑
k=1

Nr∑
j=1

νkjrj −
Nr∑
j=1

νijrj

)

which are, respectively, the macroscopic mole balance, and the microscopic equation of
change for the mole fraction of the ith species.
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3.5.2 Equations of Change for Temperature
Recall the term involving enthalpy change due to the j th reaction in Equation (2.40) on p. 42.
That term, with the help of Equation (3.5) on the previous page, can be expressed as

−
Nc∑
i=1

H̄i/Mi︷ ︷̃
Hi × rgen,ij︸ ︷︷ ︸

Rgen,ijMi

= −
Nc∑
i=1

H̄i ×Rgen,ij︸ ︷︷ ︸
νijrj

= −rj

Nc∑
i=1

νijH̄i︸ ︷︷ ︸
ΔHr,j

= −ΔHr,jrj

where H̄i and Mi are, respectively, the partial molar enthalpy, and molecular weight of the
ith chemical species, and

ΔHr,j ≡
Nc∑
i=1

νijH̄i (3.7)

is defined as the heat of reaction for the j th reaction. Thus, in terms of ΔHr,j , the microscopic
equation of change for temperature [Equation (3.2), p. 63] can be written as

ρĈP
∂T

∂t
= −ρĈPv · ∇T +∇ · (k∇T ) +

Nc∑
i=1

H̃i∇ · ji +
Nr∑
j=1

(−ΔHr,jrj)

− T

ρ

∂ρ

∂T

DP

Dt
− τ : ∇v (3.8)

Appendix 3.A.3 on p. 76 provides the above equation for a system of constant density (or
constant and uniform pressure), and constant thermal conductivity in Cartesian, cylindrical,
and spherical coordinates.

Incorporating ΔHr,j , the macroscopic equation of change for temperature [Equation (2.43),
p. 44] becomes

mĈP
dT
dt

= −Δ
[
ṁĤ

]
−Δ

[
Q̇
]
+

Nc∑
i=1

H̃iΔ
[
ṁi

]
+ V

Nr∑
j=1

(−ΔHr,jrj) + Ẇs (3.9)

A more useful form of the above equation is obtained with the help of the heats of reaction.
They can be expressed in terms of standard heats of reaction, which are typically available.

Standard Heat of Reaction

Consider the reaction
aA + bB → cC + dD

under the standard condition, or state, which is at 25◦C and 1 bar. Normally, H̄i is assumed
to be the same as molar enthalpy

¯
Hi of each pure component, i. In other words, (H̄i −

¯
Hi)

is assumed negligible in comparison to energy changes due to chemical reaction, and
temperature variations. Using this assumption in Equation (3.7) above, the standard heat of
reaction is given by

ΔH◦
r = c

¯
H◦

C + d
¯
H◦

D − a
¯
H◦

A − b
¯
H◦

B (3.10)
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where the superscript ‘◦’ denotes the standard state. Let Z stand for A, B, C, or D, which are
produced from the stable atomic species, Ais, at the standard state in the formation reaction

z1A1 + z2A2 + · · ·+ znAn → Z

A stable atomic species is either a single atom, or a minimal cluster of identical atoms that
is thermodynamically stable at the standard state. Examples of these species are He, H2, N2,
O2 (as gases), Fe (as alpha iron), C (as graphite), etc.

Note that if Z denotes A then zis are ais, if Z denotes B then zis are bis, and so on.
Moreover, n is large enough to account for all Ais that are needed to form A, B, C and D. A
zi is zero in the formation reaction if the ith species is not involved. With this consideration,
the standard heat of formation reaction (or, the heat of formation) for Z is given by

ΔH◦
Z =

¯
H◦

Z −
n∑

i=1

zi
¯
H◦

Ai
or

¯
H◦

Z = ΔH◦
Z +

n∑
i=1

zi
¯
H◦

Ai

Substituting the last equation in Equation (3.10) on the previous page, we obtain

ΔH◦
r = c

(
ΔH◦

C +

n∑
i=1

ci
¯
H◦

Ai

)
+ d
(
ΔH◦

D +

n∑
i=1

di
¯
H◦

Ai

)

− a
(
ΔH◦

A +
n∑

i=1

ai
¯
H◦

Ai

)
− b
(
ΔH◦

B +
n∑

i=1

bi
¯
H◦

Ai

)

= cΔH◦
C + dΔH◦

D − aΔH◦
A − bΔH◦

B +
n∑

i=1

[
(

units of Ai in
products︷ ︸︸ ︷

cci + ddi )− (

units of Ai in
reactants︷ ︸︸ ︷

aai + bbi )︸ ︷︷ ︸
=0

]
¯
H◦

Ai

The summation term in the last equation is zero since the number of atoms of the ith species
(or, equivalently, the units of Ais) that are included in products is the same as that in reactants.
The above result can be written for the j th elementary chemical reaction as

ΔH◦
r,j =

Nc∑
i=1

νijΔH◦
i (3.11)

where ΔH◦
r,j is the standard heat of that reaction, and νij is the stoichiometric coefficient of

the ith involved species having ΔH◦
i as the heat of formation.

Enthalpy at Temperature above 25◦C

Consider a species Z as a pure component, which is solid at the standard state but liquid at a
higher temperature. At this temperature, the molar enthalpy of Z includes the energy needed
to change itself from the solid to the liquid state. The molar enthalpy is then given by

¯
HZ = ΔH◦

Z

︸ ︷︷ ︸
heat of formation

+

TZ,melt∫
T=25◦C

¯
CPZ,solid dT

︸ ︷︷ ︸
energy intake in
the solid state

+ ΔHZ,melt +

T<TZ,boil∫
TZ,melt

¯
CPZ,liquid dT

︸ ︷︷ ︸
energy intake in
the liquid state
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where TZ,melt,
¯
CPZ,solid, ΔHZ,melt, TZ,boil, and

¯
CPZ,liquid, are, respectively, the melting point,

solid-state molar specific heat capacity, molar latent heat of melting, boiling point, and liquid-
state molar specific heat capacity of Z.

In general, for the ith species that undergoes Nπ changes in states from the standard state,
the molar enthalpy at the temperature of the final state can be written as

¯
Hi = ΔH◦

i +

T<Ti,1∫
T=25◦C

¯
CPi,0 dT +

Nπ∑
k=1

u(T − Ti,k)
[
ΔHi,k +

T<Ti,k+1∫
Ti,k

¯
CPi,k dT

]
︸ ︷︷ ︸

≡ΔHi

In the above equation,

1. the second subscript denotes the state of the species,

2. u(x) is a unit step function, which is zero for negative x but one otherwise,

3. ΔHi,k is the change in molar enthalpy of the ith species associated to its transition to
the kth state from the previous one, and

4. ΔHi is the molar enthalpy in excess of the heat of formation.

Heat of Reaction at Elevated Temperature

Considering H̄i the same as
¯
Hi, and using the last equation in the definition of the heat of

reaction [Equation (3.7), p. 67], we obtain

ΔHr,j =

Nc∑
i=1

νijΔH◦
i︸ ︷︷ ︸

=ΔH◦
r,j

[Equation (3.11), previous page]

+

Nc∑
i=1

νijΔHi = ΔH◦
r,j +

Nc∑
i=1

νijΔHi

which is the heat of reaction for the j th reaction at a temperature above 25◦C.
With the help of the above results, we are now able to derive a practical equation of change

for temperature in a macroscopic system.

3.5.3 Macroscopic Equation of Change for Temperature

Consider a macroscopic system similar to Figure 2.11 on p. 35. The system is fed through
entry ports by fluid streams at different temperatures. The species in the streams react in the
system to form products. There is no change of state, and the system is perfectly mixed so
that the exit ports (usually one) the outgoing fluid streams are at system conditions. For this
system, which is known as CSTR, we will use the above results to simplify Equation (3.9)
on p. 67. Note that H̃i in that equation is not the property of the stream at a port, but of the
system at system conditions – precisely at system temperature, pressure and composition [see
Equation (2.50), p. 47].
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The second term of Equation (3.9) on p. 67 is given by

−Δ
[
ṁĤ

]
=

Nin∑
j=1

(ṁjĤj)in −
Nout∑
j=1

(ṁjĤj)out =

Nin∑
j=1

ṁjf Ĥjf︸ ︸
Nc∑
i=1

ωijfH̃ijTf

−
Nout∑
j=1

ṁjĤj

where H̃ijTf is the partial specific enthalpy of the ith species having mass fraction ωijf in the
feed mixture of temperature Tf at the j th port of entry.

The fourth term of Equation (3.9) on p. 67 is given by,

Nc∑
i=1

H̃iΔ
[
ṁi

]
= −

Nin∑
j=1

Nc∑
i=1

ṁijf︸︷︷︸
ṁjfωijf

H̃i +

Nout∑
j=1

Nc∑
i=1

ṁij︸ ︸
ṁjωij

H̃i

= −
Nin∑
j=1

ṁjf

Nc∑
i=1

ωijfH̃i +

Nout∑
j=1

ṁj

Nc∑
i=1

ωijH̃i︸ ︷︷ ︸
Ĥj

Substituting the above expressions of the second and fourth terms in Equation (3.9) on
p. 67, and simplifying the result, we obtain

mĈP
dT
dt

=

Nin∑
j=1

ṁjf

Nc∑
i=1

ωijf(H̃ijTf − H̃i)−Δ
[
Q̇
]
+ V

Nr∑
j=1

(−ΔHr,jrj) + Ẇs (3.12)

Relative to the system temperature T , and for no change in system state, we can write

H̃ijTf = H̃ijT +

Tjf∫
T

C̃P,ij dT

where H̃ijT is the partial specific enthalpy of the ith species in the j th port of feed mixture
at temperature T , and C̃P,ij is the partial specific heat capacity of the species in that
feed mixture. Substituting the above equation in Equation (3.12) above, we obtain after
simplification

mĈP
dT
dt

=

Nin∑
j=1

ṁjf

Nc∑
i=1

ωijf(H̃ijT − H̃i) +

Nin∑
j=1

ṁjf

Nc∑
i=1

ωijf

Tjf∫
T

C̃P,ij dT −Δ
[
Q̇
]

+ V

Nr∑
j=1

(−ΔHr,jrj) + Ẇs

For ideal mixtures, H̃ijT and H̃i are the same, and C̃P,ij is equal to ĈP,ij . Moreover,
considering the change in ĈP,ij to be negligible over the expected range of temperature
variation in a process, the above equation simplifies to
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mĈP
dT
dt

=

Nin∑
j=1

Nc∑
i=1

ṁijfĈP,ij(Tjf − T )−Δ
[
Q̇
]
+ V

Nr∑
j=1

(−ΔHr,jrj) + Ẇs (3.13)

The above equation is the most widely used macroscopic equation of change for temperature
in reactive chemical systems. For systems that do not involve fluid flow, and chemical
reactions, the above equation simplifies to

mĈP
dT
dt

= −Δ
[
Q̇
]
+ Ẇs (3.14)

3.6 Interphase Transfer
The constitutive relations that have been presented so far are applicable in a continuous
medium, i.e., a phase. In these relations, the fluxes are, respectively, functions of the gradients
(i.e., spatial derivatives) of concentration, velocity and temperature in the medium. However,
the gradients are not defined at an interface, which is a discontinuity, between two phases.
Consequently, the constitutive relations for interphase transfer involve property differences
between the phases. The proportionality constants are coefficients, which are determined
from experiments.

Mass Transfer

A constitutive relation for interphase molar flux of a species A is

J = kcΔcA

where kc is mass transfer coefficient, and ΔcA is the difference between the molar
concentrations of the species in two phases across the interface.

Momentum Transfer

For interphase momentum transfer, the constitutive relation is

F

A
= fEk

where F is the force imparted at the interface, A is contact area, f is drag coefficient, and
Ek is characteristic kinetic energy per unit volume. For fluid flow in conduits, Ek = ρv̄2/2
where v̄ is the average fluid velocity along the axis of the conduit. For fluid flow around
objects, Ek = ρv2∞/2 where v∞ is the velocity of fluid approaching the object from a large
distance.

Heat Transfer

Similarly, for interphase heat transfer, the constitutive relation is

q

A
= hΔT
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where q is the rate of heat transfer across the area A, h is heat transfer coefficient, and ΔT is
the temperature difference between two phases in thermal contact.

Finally, we present some important constitutive relations that associate properties of a
system under equilibrium. These relations stem from thermodynamics.

3.7 Thermodynamic Relations
Some useful thermodynamic relations are as follows.

Dalton’s Law

The partial pressure of a species in a gas mixture is the pressure that species would exert if
it were to occupy the entire volume at the same temperature. According to Dalton’s Law, the
total pressure of a non-reacting, ideal gas mixture of Nc species is given by

P =

Nc∑
i=1

pi

where pi is the partial pressure of the ith species.

Lewis–Randall Rule

According to this rule, the fugacity∗of the ith species in a gaseous mixture is given by

f̄i = yifi

where yi is the mole fraction of the species, and fi is the fugacity of the pure species in the
same physical state, temperature and pressure as that of the mixture.

Raoult’s Law

Consider an ideal solution of a number of species in equilibrium with the vapor phase. Then
according to Raoult’s law, the partial pressure of the ith species in the vapor phase is given by

pi = xip
v
i

where xi is the mole fraction of the species in the solution, and pv
i is the vapor pressure of the

species in the pure state at the same temperature as that of the solution.

Henry’s Law

According to this law, the fugacity of the ith species at close-to-zero concentrations in a liquid
mixture is given by

f̄i = xiHi

where xi is the mole fraction of the species in the mixture, and Hi is Henry’s law constant
for the species.

∗It is the partial pressure of a species in an ideal gas mixture that has the same chemical potential as that in the
given gas mixture.
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If the mixture is under equilibrium with a vapor phase, and at very low pressure then the
partial pressure of the ith species in the vapor phase is given by

pi = xiHi

Antoine’s Equation

This equation relates the vapor pressure (P v) of a pure species to absolute temperature (T ) as

lnP v = A− B

C + T

where A, B and C are constants depending on the species.

Vant Hoff’s Relation

This is the relation between the equilibrium constant (K) of a chemical reaction, and absolute
temperature (T ). According to this relation

d lnK

dT
=

ΔHr

RT 2

where ΔHr is the heat of reaction, and R is universal gas constant. Integrating the above
equation for K varying from K1(T1) to K2(T2), we get

ln

(
K2

K1

)
= −ΔHr

R

(
1

T2
− 1

T1

)
Given T1, K1 and T2, the above equation yields K2.

Equations of State

These are thermodynamic equations that relate two or more intensive variables of a system
at equilibrium. Common, measurable intensive variables are pressure, temperature, specific
volume, and mole fractions of species. From the equation of state for a system, all of
its thermodynamic properties can be obtained. Equations of state are required for the
determination of pressure in compressible systems under motion.

The simplest equation of state is the ideal gas law, which is applicable to systems at
pressures close to zero. Another example is Soave–Redlich–Kwong equation of state6,

P =
RT

¯
V − b

− aα

¯
V (

¯
V + b)

where

a =
0.42747R2T 2

c

Pc
, b =

0.08664RTc

Pc
and

α =

[
1 +

(
0.48 + 1.574ω − 0.176ω2

)(
1−

√
T

Tc

)]2

In the above equations, P is pressure,
¯
V is molar volume, R is universal gas constant, T is

absolute temperature, Tc is critical temperature, Pc is critical pressure, and ω is the acentric
factor of the species.
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3.A Equations in Cartesian, Cylindrical and Spherical Coordinate
Systems

In the following sections, we present the important equations derived in this chapter for
Cartesian, cylindrical and spherical coordinate systems. The equations in the last two
systems are derivable from those in Cartesian coordinate system using suitable coordinate
transformations [see Chapter 5, p. 139]. The coordinate notation is the same as that given on
p. 53.

3.A.1 Equations of Continuity for Binary Systems of Constant Density
and Diffusivity

For constant density systems comprising two chemical species of constant diffusivity, the
equations of continuity of a species A are as follows:

Cartesian Coordinates

∂ωA

∂t
= −vx

∂ωA

∂x
− vy

∂ωA

∂y
− vz

∂ωA

∂z
+DAB

(
∂2ωA

∂x2
+

∂2ωA

∂y2
+

∂2ωA

∂z2

)

+
1

ρ

Nr∑
j=1

rgen,Aj

Cylindrical Coordinates

∂ωA

∂t
= −vr

∂ωA

∂r
− vθ

r

∂ωA

∂θ
− vz

∂ωA

∂z
+DAB

(
∂2ωA

∂r2
+

1

r

∂ωA

∂r
+

1

r2
∂2ωA

∂θ2
+

∂2ωA

∂z2

)

+
1

ρ

Nr∑
j=1

rgen,Aj

Spherical Coordinates

∂ωA

∂t
= −vr

∂ωA

∂r
− vθ

r

∂ωA

∂θ
− vφ

r sin θ

∂ωA

∂φ
+DAB

(
∂2ωA

∂r2
+

2

r

∂ωA

∂r
+

1

r2
∂2ωA

∂θ2

+
1

r2 tan θ

∂ωA

∂θ
+

1

r2 sin2 θ

∂2ωA

∂φ2

)
+

1

ρ

Nr∑
j=1

rgen,Aj
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3.A.2 Equations of Motion for Newtonian Fluids of Constant Density
and Viscosity

Cartesian Coordinates

∂vx
∂t

= −vx
∂vx
∂x

− vy
∂vx
∂y

− vz
∂vx
∂z

+
μ

ρ

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
− 1

ρ

∂P

∂x
+ gx

∂vy
∂t

= −vx
∂vy
∂x

− vy
∂vy
∂y

− vz
∂vy
∂z

+
μ

ρ

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
− 1

ρ

∂P

∂y
+ gy

∂vz
∂t

= −vx
∂vz
∂x

− vy
∂vz
∂y

− vz
∂vz
∂z

+
μ

ρ

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
− 1

ρ

∂P

∂z
+ gz

Cylindrical Coordinates

∂vr
∂t

= −vr
∂vr
∂r

− vθ
r

∂vr
∂θ

− vz
∂vr
∂z

+
μ

ρ

(
∂2vr
∂r2

+
1

r

∂vr
∂r

+
1

r2
∂2vr
∂θ2

+
∂2vr
∂z2

− 2

r2
∂vθ
∂θ

− vr
r2

)
+

v2θ
r

− 1

ρ

∂P

∂r
+ gr

∂vθ
∂t

= −vr
∂vθ
∂r

− vθ
r

∂vθ
∂θ

− vz
∂vθ
∂z

+
μ

ρ

(
∂2vθ
∂r2

+
1

r

∂vθ
∂r

+
1

r2
∂2vθ
∂θ2

+
∂2vθ
∂z2

+
2

r2
∂vr
∂θ

− vθ
r2

)
− vrvθ

r
− 1

rρ

∂P

∂θ
+ gθ

∂vz
∂t

= −vr
∂vz
∂r

− vθ
r

∂vz
∂θ

− vz
∂vz
∂z

+
μ

ρ

(
∂2vz
∂r2

+
1

r

∂vz
∂r

+
1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

)
− 1

ρ

∂P

∂z
+ gz
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Spherical Coordinates

∂vr
∂t

= −vr
∂vr
∂r

− vθ
r

∂vr
∂θ

− vφ
r sin θ

∂vr
∂φ

+
μ

ρ

[
∂2vr
∂r2

+
4

r

∂vr
∂r

+
1

r2
∂2vr
∂θ2

+
1

r2 tan θ

∂vr
∂θ

+
1

r2 sin2 θ

∂2vr
∂φ2

+
2vr
r2

]
+

v2θ + v2φ
r

− 1

ρ

∂P

∂r
+ gr

∂vθ
∂t

= −vr
∂vθ
∂r

− vθ
r

∂vθ
∂θ

− vφ
r sin θ

∂vθ
∂φ

+
μ

ρ

[
∂2vθ
∂r2

+
4

r

∂vθ
∂r

+
1

r2
∂2vθ
∂θ2

+
1

r2 tan θ

∂vθ
∂θ

+
1

r2 sin2 θ

∂2vθ
∂φ2

− 2 cos θ

r2 sin2 θ

∂vφ
∂φ

+
2

r2
∂vr
∂θ

− vθ

r2 sin2 θ

+
2vθ
r2

]
− vrvθ

r
+

v2φ
r tan θ

− 1

rρ

∂P

∂θ
+ gθ

∂vφ
∂t

= −vr
∂vφ
∂r

− vθ
r

∂vφ
∂θ

− vφ
r sin θ

∂vφ
∂φ

+
μ

ρ

[
∂2vφ
∂r2

+
4

r

∂vφ
∂r

+
1

r2
∂2vφ
∂θ2

+
1

r2 tan θ

∂vφ
∂θ

+
1

r2 sin2 θ

∂2vφ
∂φ2

+
2

r2 sin θ

∂vr
∂φ

+
1

r2 sin2 θ

(
2 cos θ

∂vθ
∂φ

− vφ

)

+
2vφ
r2

]
− vrvφ

r
− vθvφ

r tan θ
− 1

rρ sin θ

∂P

∂φ
+ gφ

(3.15)

3.A.3 Equations of Change for Temperature in Non-Reactive,
Non-Viscous Dissipative Systems of Constant Density and Thermal
Conductivity

Cartesian Coordinates

∂T

∂t
= −vx

∂T

∂x
− vy

∂T

∂y
− vz

∂T

∂z
+

k

ρĈP

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
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Cylindrical Coordinates

∂T

∂t
= −vr

∂T

∂r
− vθ

r

∂T

∂θ
− vz

∂T

∂z
+

k

ρĈP

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
+

∂2T

∂z2

)

Spherical Coordinates

∂T

∂t
= −vr

∂T

∂r
− vθ

r

∂T

∂θ
− vφ

r sin θ

∂T

∂φ
+

k

ρĈP

(
∂2T

∂r2
+

2

r

∂T

∂r
+

1

r2
∂2T

∂θ2
+

1

r2 tan θ

∂T

∂θ

+
1

r2 sin2 θ

∂2T

∂φ2

)
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Exercises
3.1 Why does the diffusivity matrix for the mixture of Nc species [see Section 3.1.1, p. 60]
has (Nc − 1) rows, and (Nc − 1) columns?

3.2 Explain the significance of the negative sign in Fick’s law of diffusion, Newton’s law of
viscosity, and Fourier’s law of heat conduction.

3.3 Derive the equations of change in reactive systems with variable volume.

3.4 Do a literature search to find a constitutive relation for the determination of liquid flow
rate in a porous medium.



4
Model Formulation

In this chapter, we present the formulation of process models, which involves carrying out
the following steps:

1. description of objectives
2. specification of system
3. laying out of assumptions
4. interrelation of system properties
5. consolidation of resulting equations

Description of Objectives

Model formulation begins with the description of objectives that are motivated by what is
required to be attained. These objectives are related to one or more processes taking place
in a system, and eventually to measurable properties such as concentration, velocity and
temperature that should be determined. The properties may be subject to changes with time
and space. Consequently, the objectives implicitly include the development of equations by
interconnecting system properties to capture their behavior.

Specification of System

Once the objectives are set in place, they help in a clear specification of a system as the basis
for the process model. Depending on the expected behavior of the properties, the system
could be uniform, or not. If the properties change spatially then the system is non-uniform.
In this case, a differential element is specified according to the geometry of the system. Any
possibility of the change in system size is identified. If a system is a combination of several
systems then each one of them is specified analogously.

Laying out of Assumptions

In this step, we decide on the level of sophistication in the model to be formulated.
Accordingly, we make assumptions that exclude one or more sub-processes from the model.
This step is based on real-world observations, and information from previous experience.
Note that assumptions are open to revision in the cycle of model development.

Process Modeling and Simulation for Chemical Engineers: Theory and Practice, First Edition. Simant Ranjan Upreti. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/upreti/pms_for_chemical_engineers
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Interrelation of System Properties

This is the most involved step of model formulation. In this step, fundamental and constitutive
relations are used to describe system properties as per the objectives and assumptions. If the
objective is to find mass (moles), species mass (mole) composition, or their changes then we
use mass (mole) balances. To find velocity, or how it changes, we use momentum balance. To
find temperature, or its change, we use the equation of change for temperature.

Macroscopic equations are used for a uniform system, or a differential element of the
system having spatial variation in its size. In case of spatial variations in intensive properties,
microscopic equations are applied on a differential element of the system. Chapter 2 on
p. 17 provides fundamental macroscopic equations as well as microscopic ones in Cartesian,
cylindrical and spherical coordinates. Based on these equations, Chapter 3 on p. 59 provides
equations incorporating constitutive relations for common systems.

Consolidation of Resulting Equations

In this step, the equations obtained in the previous step are collated, and checked for
dimensional consistency. Additional constitutive relations applicable to the system are
obtained, and assimilated with existing equations. The initial and boundary conditions of
differential equations [see Section 4.A, p. 131] are ascertained based on specifications and
assumptions. Finally, all parameters are identified that are needed to solve the equations. The
resulting set of equations constitutes the desired model.

In the remaining chapter, we illustrate the aforementioned steps of model formulation using
several examples categorized under uniform, or lumped-parameter systems, and distributed-
parameter systems. In the last category, we take up examples from Cartesian, cylindrical and
spherical coordinate systems. Emphasis is on model formulation from basic principles as
much as possible. All models are developed in a time-dependent scenario. Eliminating the
time derivatives in the models will result in corresponding steady-state models.

4.1 Lumped-Parameter Systems
This section includes the formulation of models incorporating mass, momentum and energy
balances in lumped-parameter systems.

4.1.1 Isothermal CSTR
This example involves macroscopic mass balance in the presence of chemical reactions in
a continuous-flow stirred-tank reactor i.e., CSTR. Widely used in chemical industry, this
reactor is typically used for species in liquid phase. Reactants are continuously fed to the
reactor where they react in an agitated mixture to form products. The latter are simultaneously
withdrawn from the reactor for further processing.

Consider the following set of elementary reactions with rate coefficients k1 and k2:

A+ B
k1

C and B+ C
k2

D

The above reactions are carried out in the liquid phase at a constant temperature in the CSTR
shown in Figure 4.1 on the next page. The reactor is fed by liquid streams of reactants A
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(F, cA, cB, cC, cD)

product stream

(FBf, cBf)

liquid feed B

liquid feed A
(FAf, cAf)

mixer

Figure 4.1 A CSTR carrying out liquid phase reactions at a constant temperature

and B, respectively, with (i) volumetric flow rates FAf and FBf, and (ii) molar concentrations
cAf and cBf. The reactions result in the intermediate product C, and the final product D. The
products along with residual reactants are withdrawn at a volumetric flow rate F from the
reactor. The molar concentrations in the product stream are cA, cB, cC, cD, respectively, for
A, B, C and D.

Objective

It is desired to develop a model that would enable the determination of species concentrations
in the reactor as a function of time.

System

The system for this purpose is the reaction mixture inside the reactor.

Assumptions

We make the following assumptions for the model:

1. The temperature of the feed streams is the same as that of the reaction mixture, which
is kept constant.

2. The reaction mixture is perfectly mixed so that its composition is the same as that of
the product stream.

3. The volume of the reaction mixture is kept constant.

4. There is no vaporization loss of species.
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Model Formulation

To determine species concentrations in the system, we need mole balances in the presence of
chemical reactions. Applying Equation (3.6) on p. 66 for species A in the system (reaction
mixture), we get

d
dt

(V cA︸ ︸
moles of A

in the system

) = FAfcAf − FcA︸ ︷︷ ︸
−Δ[ṄA]

+ (−k1cAcB︸ ︷︷ ︸
rA

)V

where rA is the rate of reaction of A. Since V is constant, the above equation simplifies to

dcA

dt
=

FAfcAf − FcA

V
− k1cAcB (4.1)

The mole balances for species B, C and D are similarly

dcB

dt
=

FBfcBf − FcB

V
+ (−k1cAcB − k2cBcC︸ ︷︷ ︸

rB

) (4.2)

dcC

dt
= −FcC

V
+ (k1cAcB − k2cBcC︸ ︷︷ ︸

rC

) (4.3)

dcD

dt
= −FcD

V
+ k1cBcC︸ ︷︷ ︸

rD

(4.4)

where rB, rC and rD are, respectively, the reaction rates of B, C and D.
Each one of Equations (4.1)–(4.4) is a differential equation of first order with respect to

time and, therefore, needs a condition for integration. The conditions are usually provided at
the initial time, and are as follows.

Initial Conditions
With initial species concentrations in the reactor as cA0, cB0, cC0 and cD0, the initial conditions
for Equations (4.1)–(4.4) are

cj(0) = cj0; j = A,B,C,D (4.5)

Summary

Equations (4.1)–(4.5) constitute the dynamic model of the CSTR. Given the specifications
for the parameter set{

FAf, FBf, F, cAf, cBf, k1, k2, V, cA0, cB0, cC0, cD0

}
the involved differential equations need to be integrated simultaneously to obtain

cA = cA(t), cB = cB(t), cC = cC(t) and cD = cD(t)
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Steady State Model
At steady state, the time derivatives in the differential equations [Equations (4.1)–(4.4),
previous page] become zero. The resulting algebraic equations,

FAfcAf − FcA − V k1cAcB = 0

FBfcBf − FcB − V (k1cAcB + k2cBcC) = 0

−FcC + V (k1cAcB − k2cBcC) = 0

−FcD + V k1cBcC = 0

constitute the steady state model of the reactor. Using the aforementioned specifications, this
model can be solved to obtain the steady state species concentrations.

4.1.2 Flow through Eccentric Reducer
This example involves macroscopic momentum balance in an eccentric reducer, which is
a connector for two different diameter pipes that are not in a straight line. This reducer is
commonly used to connect a pipe carrying liquid to a smaller diameter suction of a centrifugal
pump.

Consider liquid, of density ρ, flowing through a reducer shown in Figure 4.2 below. From

v2n̂

v1x̂

y

x

θ

g(−ŷ)

y

x

A1

A2

Figure 4.2 Liquid flow in and out of an eccentric reducer

the left end, the liquid enters the reducer along the horizontal x-direction with a constant
average velocity v1x̂ across the cross-section area A1x̂. From the right end, the liquid exits
the reducer with a constant average velocity v2n̂ across the smaller cross-section area A2n̂
where n̂ is the unit vector at an angle θ with x̂, the unit vector along the x-direction. The fluid
is subject to gravity g(−ŷ) where ŷ is the unit vector along the vertical y-direction.
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Objective

It is desired to develop a model that would enable the determination of force exerted on the
reducer by the liquid flow.

System

The system for this purpose is the fluid inside the reducer.

Assumptions

We assume that at the entrance as well as exit of the reducer, (i) the fluid velocity is
perpendicular to the cross-section area, (ii) shear stresses are negligible, and (iii) pressures
are identical.

Model Formulation

To determine the force, i.e., rate of change of momentum, we need momentum balance.
Applying Equation (2.21) on p. 31 to the system, i.e., the fluid inside the reducer, we obtain
the rate of change of momentum along the x- and y-directions as, respectively,

dpx
dt

= ρv21A1 − ρv22A2 cos θ and (4.6)

dpy
dt

= −ρv22A2 sin θ − ρV g (4.7)

where (i) px and py are the components of the system momentum along, respectively, the x-
and y-directions, and (ii) V is the volume of the system.

Summary

Equations (4.6) and (4.7) provide, respectively, the x- and y-components of the force exerted
by the fluid on the reducer. To keep it secure, that force needs to be counteracted by an equal
and opposite force. This force is provided by reducer supports, and is given by

F = −dpx
dt

x̂− dpy
dt

ŷ =
(
−ρv21A1 + ρv22A2 cos θ

)
x̂+

(
ρv22A2 sin θ + ρV g

)
ŷ

Given the specifications for the parameter set{
ρ, v1, v2, A1, A2, θ, V, g

}
the above equation can be used to obtain F.

4.1.3 Liquid Preheater
This example involves a macroscopic mass balance, and the equation of change for
temperature in a liquid preheater. It is a unit that is used to mix and heat different liquid
streams. The mass balance accounts for any change in the liquid level inside the preheater.
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(F, T )

output stream

(F2, T2)

liquid stream 2

liquid stream 1
(F1, T1)

heater

mixer

Figure 4.3 A liquid preheater

Figure 4.3 above shows the preheater, which is fed by two liquid streams of the same
composition but at different volumetric flow rates (F1 and F2), densities (ρ1 and ρ2), and
temperatures (T1 and T2). The output stream from the preheater has a volumetric flow rate F ,
density ρ, and temperature T .

Objective

It is desired to develop a model that would enable the determination of liquid level as well
as the temperature inside the preheater. We would like to include the possibility that the flow
rates, and temperatures of the feed streams may change with time.

System

The system for this purpose is the liquid inside the preheater.

Assumptions

We make the following assumptions for the model:

1. There is no chemical reaction, or phase change in the system.

2. The preheater is well-insulated so that the heat loss to the surroundings is negligible.

3. The liquid in the preheater is perfectly mixed so that the system temperature is the same
as that of the output stream.

4. The specific heat capacity of the liquid is constant in the range of temperature variation.
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5. The preheater has uniform cross-section area.

Model Formulation

To determine the liquid level in the preheater, we need mass balance. For the determination
of the system temperature, we will use the equation of change for temperature.

Mass Balance
Applying Equation (2.5) on p. 21 to our system (the liquid inside the preheater), we obtain

d
dt

[
Ahρ︸︷︷︸

mass of the
system

]
= F1ρ1 + F2ρ2 − Fρ

where h is the liquid level inside the preheater of cross-section area A. The left-hand side of
the above equation expands as follows:

A
d
dt

(hρ) = A

[
h

dρ
dt

+ ρ
dh
dt

]
= A

[
h

dρ
dT

dT
dt

+ ρ
dh
dt

]

From the last two equations, we get after some rearrangement,

dh
dt

=
1

ρ

[
F1ρ1 + F2ρ2 − Fρ

A
− h

dρ
dT

dT
dt

]
(4.8)

Equation of Change for Temperature
Applying Equation (3.13) on p. 71 to our system, we get

AhρĈP
dT
dt

= F1ρ1ĈP(T1 − T ) + F2ρ2ĈP(T2 − T ) + Q̇h︸ ︸
−Δ[Q̇]

+ Ẇs

where (i) ĈP is the specific heat capacity of the liquid, which is at temperature T , (ii) Q̇h is
the rate of energy input by the heater, and (iii) Ẇs is the rate of shaft work equivalent to the
power delivered by the mixer. Rearranging the above equation yields

dT
dt

=
1

AhρĈP

[
F1ρ1ĈP(T1 − T ) + F2ρ2ĈP(T2 − T ) + Q̇h + Ẇs

]
(4.9)

Equations (4.8) and (4.9) are differential equations of first order with respect to time. Each
equation needs a condition for integration.

Initial Conditions
The initial conditions for Equations (4.8) and (4.9) are

h(0) = h0 and T (0) = T0 (4.10)

where h0 is the initial height of the liquid with the initial temperature, T0.
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Summary

Equations (4.8)–(4.10) constitute the dynamic model of the liquid preheater. Given the
specifications for the parameter set{

ρ(T ), ρ1, ρ2, F1, F2, F, A, ĈP, T1, T2, Q̇h, Ẇs, h0, T0

}
the involved differential equations need to be integrated simultaneously to obtain

h = h(t) and T = T (t)

At steady state, the time derivatives in the differential equations become zero, and the
model becomes independent of A and h. With the remaining parameters, the resulting
algebraic equations can be solved to obtain any two unknowns at the steady state. For
example, to find F and T , the following set of parameters:{

ρ(T ), ρ1, ρ2, F1, F2, ĈP, T1, T2, Q̇h, Ẇs
}

should be specified.

4.1.4 Non-Isothermal CSTR
This example involves macroscopic mass and energy balances in a water-cooled CSTR that is
used to carry out an exothermic reaction in liquid phase. The following exothermic reaction
takes place in the CSTR [see Figure 4.4, next page]:

aA+ bB
k

cC+ dD

where k is the reaction rate coefficient, and a, b, c and d are stoichiometric coefficients. The
rate of reaction is given by

r = k0 exp

(
− E

RT

)
caAc

b
B (4.11)

where k0 is the pre-exponential factor, and E is the activation energy.
The reactor is fed by liquid streams of reactants A and B, respectively, with (i) volumetric

flow rates FAf and FBf, (ii) molar concentrations cAf and cBf, and (iii) temperatures TAf
and TBf. The reaction results in products C and D. They are withdrawn, along with
residual reactants at temperature T , and volumetric flow rate F from the reactor. The molar
concentrations in the product stream are cA, cB, cC, cD, respectively, for A, B, C and D. The
heat generated in the reaction is taken away by cooling water circulated at temperature TJ in
the jacket around the reactor.

Objective

It is desired to develop a model that would enable the determination of molar concentrations
of species, and the temperature of the reaction mixture as a function of time.

System

The system for this purpose is the reaction mixture inside the reactor.
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(FBf, cBf, TBf)

liquid feed B
(FAf, cAf, TAf)

(F, cA, cB, cC, cD, T )

product stream

liquid feed A

cooling water in

cooling water out

Tj

mixer

Figure 4.4 A CSTR, which carries out a reaction in liquid phase

Assumptions

We make the following assumptions for the model:

1. The reaction mixture is perfectly mixed so that its properties are the same as that of the
product stream.

2. The volume of the reaction mixture is constant.

3. Inside the reactor jacket, cooling water is sufficiently agitated so that it is at uniform
temperature. Moreover, the flow rate of cooling water is high enough so that its
temperature stays constant.

4. The specific heat capacities of all streams are constant in the range of temperature
variation.

5. There is no vaporization loss of any species.

Model Formulation

To determine species concentrations in the system, we need macroscopic mole balances in
the presence of chemical reactions. To model system temperature, we require the macroscopic
equation of change for temperature.
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Mole Balances
Applying Equation (2.13) on p. 24 to our system (the reaction mixture inside the CSTR) for
the ith species, we get

d
dt

(V ci︸ ︸
moles of the ith

species in the system

) = Fifcif − Fci + V ri; i = A,B,C,D

where (i) V is the reactor volume, (ii) ci and cif are, respectively, the molar concentrations
of the ith species in the reactor, and the feed stream, (iii) ri = νir is the rate of change of the
species due to the reaction, and (iv) Fif and F are the volumetric flow rates of, respectively,
the inlet feed stream of the species, and the outlet stream. Note that Fif = cif = 0 for the
products C and D, and νi is the stoichiometric coefficient of the ith species as defined on
p. 64.

Since V is constant, we obtain

dci
dt

=
Fifcif − Fci

V
+ νir; i = A,B,C,D (4.12)

Equation of Change for Temperature
Applying Equation (3.13) on p. 71 to our system, we obtain

V ρĈP
dT
dt

=

B∑
i=A

FifcifMiĈPif(Tif − T ) +
[
−UA(T − Tj)︸ ︷︷ ︸

−Δ[Q̇]

]
+ V (−ΔHr)r + Ẇs

(4.13)

where (i) ρ, ĈP and T are, respectively, the density, specific heat capacity, and temperature of
the system (reaction mixture), (ii) Mi is the molecular weight of the ith species having ĈPif
and Tif as, respectively, the specific heat capacity, and temperature in the feed stream, (iii) U
is the coefficient of heat transfer across the area of thermal contact A between the reaction
mixture, and cooling water, (iv) (−ΔHr) is the heat of reaction, and (v) Ẇs is the rate of shaft
work provided by the mixer.

Equations (4.12) and (4.13) are differential equations of first order with respect to time.
Each of these equations needs a condition for integration.

Initial Conditions
The initial conditions for Equations (4.12) and (4.13) are, respectively,

ci(0) = ci0, i = A,B,C,D, and T (0) = T0 (4.14)

where ci0 is the initial concentration of the ith species in the system at initial temperature T0.

Summary

Equations (4.11)–(4.14) constitute the dynamic model of the non-isothermal CSTR. Given
the specifications for the parameter set

{
FAf, FBf, cAf, cBf, MA, MB, V, k0, a, b, c, d, E, R, ρ, ĈP,

ĈPAf, ĈPBf, TAf, TBf, U, A, Tj, −ΔHr, Ẇs, cA0, cB0, cC0, cD0, T0

}
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the involved differential equations need to be integrated simultaneously to obtain

cA = cA(t), cB = cB(t), cC = cC(t), cD = cD(t) and T = T (t)

At steady state, the time derivatives in the differential equations become zero, and the
model becomes independent of ρ and ĈP. With the remaining parameters, the resulting
algebraic equations can be solved to obtain the species concentrations, and temperature at
steady state.

4.2 Distributed-Parameter Systems
This section illustrates model formulation in distributed-parameter systems in Cartesian,
cylindrical and spherical coordinates. Balance equations are derived on differential elements.
The example on tapered fin [p. 96] illustrates model formulation when a system has a spatial
variation in its size. Time-dependent system volumes with constant and variable density
assumptions are handled, respectively, in examples from solvent induced heavy oil recovery
[p. 108], and hydrogel tablet [p. 112]. The last two examples on Horton sphere [p. 119], and
reactions around solid reactant [p. 122] deal with model formulation in complex interacting
systems.

4.2.1 Nicotine Patch
This example involves microscopic mass balance of nicotine released slowly to the blood
stream from a patch worn on the skin surface. The patch is used as a therapeutic device to
help people quit smoking.

Figure 4.5 on the next page shows the transfer of nicotine from the patch on skin surface
through the skin and fat layers into underlying blood vessels. The breadth and width of the
patch are X and Z, respectively. The mass flux of nicotine is f along the depth, which is the
y-direction across the xz-plane. The thicknesses of skin and fat layers are, respectively, Ys
and (Yf − Ys).

Objective

It is desired to develop a model that would enable the determination of (i) nicotine mass
fraction in the skin and fat layers at different depths and times, and (ii) the rate of nicotine
delivery to the blood stream.

System

In this example, nicotine mass fraction is a function of the y-coordinate in the skin and fat
layers. Hence, the system for nicotine mole balance in each layer comprises a rectangular
differential element of thickness Δy along the y-direction. Figure 4.5 shows the differential
element in the skin layer.

Assumptions

We make the following assumptions for the model:
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Figure 4.5 Nicotine flux through skin and fat into the blood vessels

1. Nicotine mass fraction in the skin and fat layers is a function of depth (i.e., the y-
direction) and time.

2. The diffusivities of nicotine in the two layers are constant.

3. While the flux of nicotine is only along the y-direction, the flux of other species is zero.

4. Nicotine uptake by blood is fast enough so that the nicotine mass fraction is zero at the
interface between fat layer, and blood vessels.

5. The densities and thicknesses of the skin and fat layers are constant.

Model Formulation

To determine nicotine mass fraction, and delivery rate, we need nicotine mass balance in
differential elements in the skin and fat layers. Applying Equation (2.4) on p. 21 to the
differential element in the skin layer, we get

d
dt

(ΔyXZρsωs︸ ︷︷ ︸
nicotine mass
in the system

) = (fn ·A)y − (fn ·A)y+Δy︸ ︷︷ ︸
−Δ[nicotine mass]
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where (i) ωs is the nicotine mass fraction in the skin layer of density ρs, and (ii) fn is the
net mass flux of nicotine in the layer across the area A = XZŷ. In the above mass balance,
using the first order Taylor expansion of (fn ·A)y+Δy, and taking the limit of Δy to zero [see
Section 8.8.2, p. 323], we obtain after simplification

∂

∂t
(dyXZρsωs) = − ∂

∂y
(fn ·A)dy (4.15)

Considering the flux fo of species other than nicotine to be zero in the skin layer,
Equation (2.10) on p. 23 yields

fn = ωs( fn +

=0︷︷
fo︸ ︷︷ ︸

total flux

) + j︸︸
−Dsρs

∂ωs
∂y ŷ

(from Fick’s law)

⇒ fn = − Dsρs

1− ωs

∂ωs

∂y
ŷ

where Ds is the diffusivity of nicotine in the skin layer. Substituting the above expressions of
A and fn in Equation (4.15) above, we obtain

∂

∂t
(dyXZρsωs) = − ∂

∂y

(
− Dsρs

1− ωs

∂ωs

∂y
XZ

)
dy

Since X and Z are constant, dy is independent of t, and Ds and ρs are assumed to be constant,
the above equation simplifies to

∂ωs

∂t
= Ds

∂

∂y

(
1

1− ωs

∂ωs

∂y

)
(4.16)

In the same manner, we obtain for the fat layer

∂ωf

∂t
= Df

∂

∂y

(
1

1− ωf

∂ωf

∂y

)
(4.17)

where ωf and Df are, respectively, the mass fraction, and diffusivity of nicotine in the fat
layer.

Equations (4.16) and (4.17) are partial differential equations of (i) first order with respect to
t, and (ii) second order with respect to y. Thus, for integration, each equation needs an initial
condition, and two conditions on the y-axis. The conditions on a spatial axis are usually
provided at the terminal points, and are called boundary conditions.

Initial Conditions
Initially, nicotine mass fraction is ω0 at the outer skin surface, and zero elsewhere. Thus, the
initial conditions are

ωs(0, 0) = ω0, ωs(y, 0) = 0 ∀ 0 < y ≤ Ys (4.18)

ωf(y, 0) = 0 ∀ Ys ≤ y ≤ Yf (4.19)
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Boundary Conditions
While nicotine mass fraction stays ω0 at the outer skin surface, nicotine flux in the skin layer
is equal to that in the fat layer at the skin–fat interface. Moreover, nicotine mass fraction is
assumed to be zero at the fat–blood interface.

Hence, the boundary conditions for Equation (4.16) on the previous page at any time t > 0
are

ωs(0, t) = ω0 and − Dsρs

1− ωs

∂ωs

∂y
= − Dfρf

1− ωf

∂ωf

∂y
at y = Ys (4.20)

where ρf is the density of the fat layer. The boundary conditions for Equation (4.17) on the
previous page at any time t > 0 are

− Dsρs

1− ωs

∂ωs

∂y
= − Dfρf

1− ωf

∂ωf

∂y
at y = Ys and ωf(Yf, t) = 0 (4.21)

Summary

Equations (4.16)–(4.21) constitute the dynamic, distributed-parameter model of nicotine
transfer through the skin and fat layers. Given the specifications for the parameter set{

Ds, Df, Ys, Yf, ω0, ρs, ρf
}

the involved differential equations need to be integrated simultaneously to obtain

ωs = ωs(y, t) and ωf = ωf(y, t)

Steady State Model
At steady state, the time derivatives become zero in Equations (4.16) and (4.17). The resulting
equations are (

1

1− ωi

∂ωi

∂y

)2

+
1

1− ωi

∂2ωi

∂y2
= 0; i = s, f

which are independent of the diffusivities. With the remaining parameters, the above
differential equations can be integrated simultaneously using the boundary conditions to
obtain steady state mass fraction of nicotine in the skin and fat layers at different depths,
namely, ω̂s = ω̂s(y), and ω̂s = ω̂s(y).

Nicotine Delivery Rate
With additional specifications for X and Z, the rate of nicotine delivery to the blood stream
can be calculated from(

fn ·A
)
Yf

= −Dfρf

(
1

1− ωf

∂ωf

∂y

)
Yf

XZ

4.2.2 Fluid Flow between Inclined Parallel Plates
This example involves microscopic momentum balance in a fluid between two parallel plates
separated by distance Z, and inclined at angle θ with the horizontal [Figure 4.6, next page].
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Figure 4.6 Fluid flow between inclined parallel plates

The width and length of the plates are X and Y , respectively. While the bottom plate is
stationary, the top plate moves at a velocity vp along the y-direction, and pulls the fluid along
with velocity v. The latter is dependent on the z-coordinate. The fluid does not flow in the x-
and z-directions, and is subject to gravity g along the downward, vertical direction. It is at an
angle (π − θ) to ẑ, which is the unit vector along the z-direction.

Objective

It is desired to develop a model that would enable the determination of the fluid velocity
between the parallel plates in the z-direction at different heights and times.

System

In this example, the fluid velocity is a function of the z-coordinate. Hence, the system
for momentum balance is a rectangular differential element of thickness Δz along the z-
direction, as shown in Figure 4.6 above.
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Assumptions

We make the following assumptions for the model:

1. The fluid is Newtonian. It has constant density ρ and viscosity μ, and moves only along
the y-direction.

2. Along the y-direction, the fluid velocity vy is a function of height (the z-coordinate)
and time.

3. Where the fluid comes in contact with a plate (i.e., at z = 0 and z = Z), the fluid
velocity is equal to the plate velocity. This assumption is also known as the no-slip
boundary condition.

4. The system pressure P is constant along the y-direction.

Model Formulation

To determine fluid velocity, we need momentum balance in our system, i.e., the differential
fluid element. We will use Equation (2.1) on p. 18 with ε as the momentum along the y-
direction, and ε̇in or ε̇out as the product of a momentum flux along that direction, and the area
it crosses. The generation term ε̇gen is zero, and ε̇ext is due to gravity.

The momentum fluxes due to motion along the y-direction, and transmitted along the y-,
x- and the negative z-direction are, respectively, [see Equation (2.19), p. 28]

φyy = τyy︸ ︸
=0

+ ρv2y + P = ρv2y + P,

φxy = τxy︸ ︸
=0

+ ρ vx︸︸
=0

vy = 0, and

φzy = −(τzy + ρ vz︸︸
=0

vy) = −τzy

because vy = vy(z) and is the only non-zero velocity. Using Equation (2.1) on our system,
we obtain,

d
dt

(XYΔzρvy︸ ︷︷ ︸
system momentum
in the y-direction

) = (φzyXY )z+Δz − (φzyXY )z + (φyyΔzX)y=0 − (φyyΔzX)y=Y︸ ︷︷ ︸
=0

+ΔzXY ρ(−g sin θ)

In the above equation, the terms with φyy cancel each other out because vy and P do not
vary along the y-direction. Using the first order Taylor expansion of (φzyXY )z+Δz , taking
the limit of Δz to zero, and substituting for φzy, we obtain after simplification

∂

∂t
(XY dzρvy) =

∂

∂z
(−τzyXY )dz − dzXY ρg sin θ

Since ρ, X and Y are constants, and dz is independent of t, the above equation simplifies to

∂vy
∂t

= −1

ρ

∂τzy
∂z

− g sin θ
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Upon substituting for τzy = −μ∂vy/∂z with constant μ, we finally obtain

∂vy
∂t

=
μ

ρ

∂2vy
∂z2

− g sin θ (4.22)

Equation (4.22) is a partial differential equation of (i) first order with respect to t, and
(ii) second order with respect to z. Thus, for integration, that equation needs an initial
condition, and two boundary conditions on the z-axis.

Initial Condition
Initially, the fluid velocity is zero throughout. Thus, the initial condition for Equation (4.22)
above is

vy(z, 0) = 0 ∀ 0 ≤ z ≤ Z (4.23)

Because of the no-slip condition, the fluid velocity is equal to the plate velocity where fluid
and plate contact each other. Therefore, the boundary conditions at any time t > 0 are

vy(z, t) =

{
0 at z = 0

vp at z = Z
(4.24)

Summary

Equations (4.22)–(4.24) constitute the dynamic, distributed-parameter model of momentum
transfer from a moving plate through a fluid layer to an underlying stationary plate. Given the
specifications for the parameter set {

μ, ρ, g, θ, Z, vp
}

the involved differential equation needs to be integrated to obtain vy = vy(z, t).
At steady state, the time derivative in Equation (4.22) becomes zero. The resulting

differential equation can be integrated using the boundary conditions to obtain the steady
state fluid velocity, v̂y = v̂y(z).

4.2.3 Tapered Fin
This example involves the equation of change for temperature in a tapered fin designed to
dissipate heat to the surroundings in tight spaces. Figure 4.7 on the next page shows the
schematic of a tapered fin with the surroundings at temperature Ta. The left end of the fin is
of thickness 2Z, and is at the wall temperature Tw. The fin has width X , and is symmetrical
across the xy-plane.

At a given y, the extent of the fin is z(y) along both the positive and negative z-directions.
The fin has heat flux q due to conduction along the length, which is the y-direction across the
xz-plane. In addition, the fin loses heat to the surroundings from the top and bottom surfaces.

Objective

It is desired to develop a model that would enable the determination of temperature in the fin
at different lengths and times.
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Figure 4.7 Heat transfer in a tapered fin

System

In this example, the fin temperature is a function of the y-coordinate. Hence, the system for
the equation of change for temperature is a rectangular differential element of thickness Δy
along the y-direction, as shown in Figure 4.7 above.

Assumptions

We make the following assumptions for the model:

1. Temperature in the fin is a function of length (the y-coordinate) and time.

2. There are no temperature gradients in the fin along the x- and z-axes.

3. The density ρ, and thermal conductivity k of the fin are constant in the operating range
of temperature.

4. The fin is thin enough so that heat loss to the surroundings is negligible from the sides.
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Model Formulation

To determine the fin temperature we need to apply the equation of change for temperature in
a uniform system, i.e., Equation (3.14) on p. 71. Applying this equation to our system (the
differential fin element), we obtain

ΔV ρ︸ ︷︷ ︸
system
mass

ĈP
dT
dt

= (q ·A)y − (q ·A)y+Δy − h(2XΔy)(T − Ta)︸ ︷︷ ︸
−Δ[Q̇]

where (i) ΔV = 2zXΔy is the volume of the system, (ii) ĈP and T are, respectively,
the specific heat capacity, and temperature of the system, (iii) q = (−k∂T/∂y)ŷ is the
conductive heat flux in the fin across the area A = (2zX)ŷ, and (iv) h is the coefficient
of convective heat transfer between the fin and the surroundings.

In the above equation of change for temperature, the second and third terms account for
conductive heat transfer, respectively, in and out of the system. The last term accounts for
the heat loss from the upper and lower surfaces (each of area XΔy) of the fin element to the
surroundings. Using the first order Taylor expansion of (q ·A)y+Δy, and taking the limit of
Δy to zero, we obtain after simplification

dV ρĈP
∂T

∂t
= − ∂

∂y
(q ·A)dy − 2hXdy(T − Ta)

where dV = 2zXdy. Substituting for dV , q and A in the above differential equation, we get

2zXdyρĈP
∂T

∂t
= − ∂

∂y

[
−k

∂T

∂y
(2zX)

]
dy − h(2Xdy)(T − Ta)

Considering that z = z(y) and X is constant, the above differential equation yields upon
simplification

∂T

∂t
=

1

zρĈP

[
k

(
z
∂2T

∂y2
+

∂T

∂y

dz
dy

)
− h(T − Ta)

]
(4.25)

Equation (4.25) is a partial differential equation of (i) first order with respect to t, and
(ii) second order with respect to y. Thus, for integration, that equation needs an initial
condition, and two boundary conditions on the y-axis.

Initial Condition
The fin is assumed to be initially at uniform temperature T0 except at the wall, which is
always at temperature Tw. Hence, the initial condition for Equation (4.25) above is

T (y, 0) =

{
T0 ∀ 0 < y ≤ Y

Tw at y = 0
(4.26)

Boundary Conditions
While the left end of the fin is at the wall temperature, the right end is assumed to have no heat
transfer, i.e., zero temperature gradient. Hence, the boundary conditions for Equation (4.25)
above at any time t > 0 are

T = Tw at y = 0 and
∂T

∂y
= 0 at y = Y (4.27)
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Summary

Equations (4.25)–(4.27) constitute the dynamic, distributed-parameter model of heat transfer
in a tapered fin. Given the specifications for the parameter set{

ρ, ĈP, z(y), k, h, Ta, T0, Tw, Y
}

the involved differential equation needs to be integrated to obtain T = T (y, t).
At steady state, the time derivative in Equation (4.25) becomes zero. The resulting

differential equation is independent of ρ and ĈP. With the remaining parameters, this equation
can be integrated using the boundary conditions to obtain the steady state fin temperature,
T̂ = T̂ (y).

4.2.4 Continuous Microchannel Reactor
This example involves microscopic mass and momentum balances in a continuous
microchannel reactor designed to grow cells for tissue engineering.1 As shown in Figure 4.8
below, the reactor is a rectangular channel of width X and length Y , and has a cellular layer
of height Z1 at the bottom. A mixture of species, such as nutrients and metabolites needed
for cell growth, flows along the length (i.e., the horizontal y-direction) in the space above

φzy|z

z

Z2

x

X

Y

y Δy

Δz

z

Fi|z+Δz

F i|y

Z1

φyy
|y=0

y

Figure 4.8 Schematic of a continuous microchannel reactor
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the cellular layer up to the height Z2. The species diffuse vertically down along the negative
z-direction to feed the cells in the layer. At the same time, the metabolic products released by
cells diffuse out from the layer, and leave the reactor.

Objective

It is desired to develop a model that would enable the determination of (i) species mole
fractions at different heights, lengths and times, and (ii) the bulk velocity at different heights
and times in the flow region above the cellular layer in the reactor.

System

In this example, species mole fractions are functions of the y- and z-coordinates. Hence, the
system for mole balances is a rectangular differential element of thicknesses Δy and Δz
along the y- and z-directions, respectively. On the other hand, the bulk velocity vy along the
y-direction is a function of only the z-coordinate. Thus, the system for momentum balance
is a rectangular differential element of thickness Δz along the z-direction. Figure 4.8 on the
previous page shows the two differential elements.

Assumptions

We make the following assumptions for the model:

1. Species mole fractions in the flow region are functions of length (y-coordinate), height
(z-coordinate), and time.

2. The change in total molar concentration c with height is negligible at any time in the
flow region.

3. The diffusivities of all species, Nc in number, are constant.

4. Along the y-direction, the diffusive fluxes are insignificant compared to the bulk flux.

5. Along the z-direction, the diffusive flux of the ith species is given by −Dic∂yi/∂z ,
where Di and yi are, respectively, the diffusivity and mole fraction of the species.

6. The heights of the cellular layer and flow region, respectively, Z1 and Z2, are constant.

7. The bulk velocity is only along the y-direction, and is a function of height (z-
coordinate), and time.

8. The species mixture in the flow region behaves as a Newtonian fluid of constant density
ρ and viscosity μ.

9. Mass transfer is negligible across the top surface, i.e., the xy-plane at Z2.

Model Formulation

To determine the species concentrations, and bulk velocity, we need species mole balances,
and momentum balance.
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Species Mole Balances
Applying Equation (3.6) on p. 66 for the ith species in our system (the rectangular differential
element of height Δz, width X , and length Δy in the gas phase), we get

d
dt

(ΔV cyi︸ ︷︷ ︸
moles of the ith

species in the system

) = (Fi ·ΔA)y − (Fi ·ΔA)y+Δy + (Fi ·ΔA)z+Δz − (Fi ·ΔA)z

where yi is the mole fraction of the ith species in the system of volume ΔV = XΔyΔz, c is
the molar concentration in the system, and Fi is the molar flux of the species across the area
ΔA. Note that there is no reaction in the gas phase.

Along the y-direction, Fi = (vycyi)ŷ, and ΔA = (XΔz)ŷ. Along the z-direction, since
there is no bulk movement, Fi = Ji = −Dic∂yi/∂z(−ẑ) across the area ΔA = (ΔyX)ẑ.

In the above mole balance, we use the first order Taylor expansions of (Fi ·ΔA)y+Δy

and (Fi ·ΔA)z+Δz , take the limits of Δy and Δz to zero, and substitute the expressions for
system volume, fluxes and areas. The result after simplification is

∂

∂t
(Xdydzcyi) = − ∂

∂y
(vycyiXdz)dy +

∂

∂z

(
Dic

∂yi
∂z

dyX
)

dz

Because dy is independent of t and z, X is constant, dz is independent of t and y, and c is
assumed to be independent of z, the above equation simplifies to

c
∂yi
∂t

= −yi
∂c

∂t
− ∂

∂y
(vycyi) +Dic

∂2yi
∂z2

(4.28)

Overall Mole Balance
The mole balance of all species in the system is given by

d
dt

(ΔV c︸ ︷︷ ︸
moles of all

species in the system

) = (Fy ·ΔAy)y − (Fy ·ΔAy)y+Δy + (Fz ·ΔAz)z+Δz − (Fz ·ΔAz)z

where (i) Fy = (vyc)ŷ is the flux of all species along the y-direction, and across the area
ΔAy = (XΔz)ŷ, and (ii) Fz is the diffusive flux of all species along the z-direction, and
across the area ΔAz = (XΔy)ẑ.

In the above mole balance, we use the first order Taylor expansions of (Fy ·ΔAy)y+Δy

and (Fz ·ΔAz)z+Δz , take the limits of Δy and Δz to zero, and substitute the expressions
for the fluxes and areas. The result after simplification is

∂c

∂t
= − ∂

∂y
(vyc) + c

Nc∑
j=1

Dj
∂2yj
∂z2

Substituting the above equation in Equation (4.28) above and simplifying the result, we finally
obtain

∂yi
∂t

= −vy
∂yi
∂y

+Di
∂2yi
∂z2

− yi

Nc∑
j=1

Dj
∂2yj
∂z2

(4.29)
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Momentum Balance
Keep in mind that there is only one non-zero velocity vy , which is along the y-direction,
and varies only along the z-direction. The relevant momentum fluxes are φyy, φxy and φzy,
respectively. The first two fluxes, similar to those in Section 4.2.2 on p. 93, are

φyy = ρv2y + P and φxy = 0.

The last one is φzy = τzy, which is taken to be transmitted along the positive z-direction.
Applying Equation (2.1) on p. 18 with ε as the momentum of the system (the rectangular

differential element of height Δz, width X , and length Y in the flow region) in the y-
direction, we obtain

d
dt

(XYΔzρvy︸ ︷︷ ︸
system momentum
in the y-direction

) = (φzyXY )z − (φzyXY )z+Δz + (φyyXΔz)y=0 − (φyyXΔz)y=Y

In the above differential equation, using the first order Taylor expansion of (φzyXY )z+Δz ,
and taking the limit of Δz to zero, we obtain after simplification

∂

∂t
(XY dzρvy) = − ∂

∂z
(φzyXY )dz + (φyyXdz)y=0 − (φyyXdz)y=Y

Since ρ, X and Y are constant, dz is independent of t, and vy is invariant along the y-
direction, the above equation after substituting the fluxes simplifies to

∂vy
∂t

= −1

ρ

(
∂τzy
∂z

+

ΔP︷ ︸︸ ︷
Py=Y − Py=0

Y

)
where ΔP is the pressure difference across the reactor length. Since τzy = −μ∂vy/∂z , and
μ is constant,

∂vy
∂t

=
1

ρ

(
μ
∂2vy
∂z2

− ΔP

Y

)
(4.30)

Equation (4.29) on the previous page is a partial differential equation of (i) first order with
respect to t as well as y, and (ii) second order with respect to z. Thus, for integration, that
equation needs an initial condition, one boundary condition on the y-axis, and two boundary
conditions on the z-axis. Equation (4.30) is a partial differential equation of (i) first order
with respect to t, and (ii) second order with respect to z. Thus, for integration, that equation
needs an initial condition, and two boundary conditions on the z-axis.

Initial Conditions
Initially, the concentration of the ith species is specified as yi0 at the reactor entrance but
zero elsewhere. Moreover, there is no flow of species at the initial time. Hence, the initial
conditions for Equation (4.29) on the previous page and Equation (4.30) above are

yi(y, z, 0) =

{
yi0 at y = 0

0 ∀ 0 < y ≤ Y

}
∀ Z1 ≤ z ≤ Z2 (4.31)

vy(z, 0) = 0 ∀ Z1 ≤ z ≤ Z2 (4.32)
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Boundary Conditions
At all times, the concentration of the ith species is maintained as yi0 at the reactor entrance.
Along the z-direction, and at the cellular-layer–gas interface, the rate of mass transfer of the
ith species is considered equal to its rate of generation in the layer. Since mass transfer is
negligible at the top surface, the mole fraction gradient over there is zero. As to the velocity
vy, it is zero at the cellular-layer–gas interface as well as at the top surface due to the no-slip
condition. With these considerations, the boundary conditions at any time t > 0 are

yi(y, z, t) = yi0 at y = 0 ∀ Z1 ≤ z ≤ Z2

−Dic
∂yi
∂z

= Rgen,iZ1 at z = Z1

∂yi
∂z

= 0 at z = Z2

⎫⎪⎪⎬
⎪⎪⎭ ∀ 0 ≤ y ≤ Y (4.33)

vy(z, t) = 0 at z = Z1, Z2 (4.34)

where Rgen,i is the rate of generation of the ith species in the cellular layer per unit volume.

Summary

Equations (4.29)–(4.34) constitute the dynamic, distributed-parameter model of mass and
momentum transfer in a microchannel reactor. Given the specifications for the parameter set{

c, Dis, yi0s, Rgen,is, μ, ρ, ΔP, Y, Z1, Z2

}
the involved differential equations need to be integrated simultaneously to obtain each
yi = yi(y, z, t), and vy = vy(z, t).

At steady state, the time derivatives become zero in Equations (4.29) and (4.30). The
resulting differential equations can be integrated using the boundary conditions to obtain at
steady state, the species velocity v̂y = v̂y(z), and mole fraction ŷi = ŷi(y, z) of each species.

4.2.5 Oxygen Transport to Tissues
This example involves microscopic mass balance in a cylindrical tissue [see Figure 4.9, next
page] surrounding a capillary that supplies oxygen.2 From the capillary surface at R1, oxygen
penetrates the tissue whose outermost radius is R2. The molar flux of oxygen in the tissue is
F in the r-direction.

As shown in the figure, there are points of symmetry where tissue cylinders touch one
other in a capillary cluster. At these points, the gradient of oxygen concentration is zero [see
Appendix 4.B, p. 133]. Given that tissue cylinders have extremely small radii, the points of
symmetry are so many that the entire surface of tissue at radius R2 has almost zero gradient
of oxygen concentration.

Objective

It is desired to develop a model that would enable the determination of oxygen mole fraction
at different radii and times in the tissue around a capillary.
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front view of a capillary cluster

tissue

capillary with
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R2
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z = 0

z = Z
Δr

r

F

Figure 4.9 Oxygen transfer from blood to the surrounding tissue

System

In this example, the oxygen mole fraction in the tissue is a function of the r-coordinate.
Hence, the system for oxygen mole balance is a cylindrical differential element (an annulus)
of thickness Δr along the r-direction, as shown in Figure 4.9 above.

Assumptions

We make the following assumptions for the model:

1. Oxygen mole fraction in the tissue is a function of radial distance and time.

2. The diffusivity of oxygen in the tissue is constant.

3. The change in total molar concentration with radial distance is negligible at any time
in the tissue.

4. The radial gradient of oxygen at the tissue surface can be neglected due to numerous
points of symmetry of contiguous tissue cylinders of very small radii.

5. The thickness of the tissue is constant.

Model Formulation

To determine oxygen concentration in the tissue, we need mole balance. Applying
Equation (3.6) on p. 66 for the moles of oxygen in the system (the annulus in the tissue),
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we get

d
dt

(ΔV cy︸ ︷︷ ︸
oxygen moles
in the system

) = (FO2 ·A)r − (FO2 ·A)r+Δr −ΔV rO2

where (i) y is the oxygen mole fraction in the system of volume ΔV = π[(r +Δr)2 − r2]Z
with Z as capillary length, (ii) c is the molar concentration of all species in the system,
(iii) FO2 is the molar flux of oxygen across the area A = (2πrZ)r̂, and (iv) rO2 is the rate of
oxygen consumption in the tissue per unit volume.

Since there is no bulk movement along the r-direction, FO2 = (−Dc∂y/∂r)r̂, where D is
the diffusivity of oxygen in the tissue. In the above mole balance, we use the first order Taylor
expansion of (FO2 ·A)r+Δr, take the limit of Δr to zero, and substitute the expressions for
the flux and area. The result after simplification is

∂

∂t
(dV cy) = − ∂

∂r

[
−Dc

∂y

∂r
(2πrZ)

]
dr − (dV )rO2

where dV = 2πrdrZ. Since r and dr are independent of t, and c, D and Z are constant, the
above equation simplifies to

∂y

∂t
=

D

r

∂

∂r

(
r
∂y

∂r

)
− rO2

c
(4.35)

Equation (4.35) is a partial differential equation of (i) first order with respect to t, and
(ii) second order with respect to r. Thus, for integration, that equation needs an initial
condition, and two boundary conditions on the r-axis.

Initial Condition
Initially, oxygen mole fraction in the tissue is y0 except at the blood–tissue interface, which
is always at yf. Hence, the initial condition for Equation (4.35) above is

y(r, 0) =

{
y0 ∀ R1 < r ≤ R2

yf at r = R1

(4.36)

Boundary Conditions
While the blood–tissue interface has oxygen mole fraction yf, the tissue periphery has no
oxygen transfer, i.e., zero gradient of y. Hence, the boundary conditions for Equation (4.35)
above at any time t > 0 are

y = yf at r = R1 and
∂y

∂r
= 0 at r = R2 (4.37)

Summary

Equations (4.35)–(4.37) constitute the dynamic, distributed-parameter model of oxygen
transfer in a tissue around a blood capillary. Given the specifications for the parameter set{

D, c, rO2 , y0, yf, R1, R2

}
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the involved differential equation needs to be integrated to obtain y = y(r, t).
At steady state, the time derivative in Equation (4.35) becomes zero. The resulting

differential equation can be integrated using the boundary conditions to obtain the steady
state oxygen mole fraction in the tissue, ŷ = ŷ(r).

4.2.6 Dermal Heat Transfer in Cylindrical Limb
This example involves the equation of change for temperature in the skin layer of a cylindrical
limb.3 As shown in Figure 4.10 below, the layer surrounds the core of the limb of radius R1,

z

q

z = 0

z = Z

R2

R1

Tc

Ta

Δr
r

(F , Tb)
blood in skin surface

skin tissue

bone

Figure 4.10 Heat transfer in the layer of skin of a cylindrical limb

and extends to the outer radius R2. While the core is at temperature Tc, the layer of skin is fed
by blood, which has volumetric flow rate F , and is at temperature Tb. The limb is exposed to
the surroundings at temperature Ta.

Objective

It is desired to develop a model that would enable the determination of skin temperature at
different radii and times.
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System

In this example, the temperature in the skin layer is a function of the r-coordinate. Hence, the
system for the equation of change for temperature is an annulus of thickness Δr along the
r-direction, as shown in Figure 4.10 on the previous page.

Assumptions

We make the following assumptions for the model:

1. Temperature in the skin layer is a function of radial distance and time.

2. While heat conduction is only along the r-direction, blood flows only along the axial
z-direction.

3. At any fixed radial distance, the temperature of blood in the tissue and at the exit is the
same as the tissue temperature.

4. The density and thermal conductivity of the skin layer as well as blood are constant in
the range of temperature variation.

Model Formulation

To determine the tissue temperature T in the skin layer, we need the equation of change for
temperature. Applying Equation (3.13) on p. 71 to our system (the skin annulus), we obtain

ΔV ρ︸ ︷︷ ︸
system
mass

ĈP
dT
dt

= (ΔV ρbF̃︸ ︷︷ ︸
mass flow rate

of blood

)ĈPb(Tb − T ) + (q ·A)r − (q ·A)r+Δr︸ ︷︷ ︸
−Δ[Q̇]

+ ΔV Hm

where (i) ΔV = π[(r +Δr)2 − r2]Z is the volume of the annulus of length Z, (ii) ρ, ĈP and
T are, respectively, the density, specific heat capacity, and temperature of the tissue (system),
(iii) q = (−k∂T/∂r)r̂ is the conductive heat flux, with k as the heat conductivity, across the
area A = (2πrZ)r̂, (iv) ρb is blood density, (v) F̃ is the rate of blood perfusion (volumetric
blood flow rate per unit tissue volume), (vi) ĈPb is the specific heat capacity of blood, and
(vii) Hm is the rate of metabolic heat generation per unit volume in the tissue.

In the above equation of change for temperature, using the first order Taylor expansion of
(q ·A)r+Δr, and taking the limit of Δr to zero, we obtain after simplification

dV ρĈP
∂T

∂t
= dV ρbF̃ ĈPb(Tb − T )− ∂

∂r
(q ·A)dr + dV Hm

where dV = 2πrdrZ. Substituting for dV , q and A in the above differential equation, and
simplifying the result, we get

∂T

∂t
=

1

ρĈP

[
ρbF̃CPb(Tb − T ) + k

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+Hm

]
(4.38)
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Equation (4.38) is a partial differential equation of (i) first order with respect to t, and
(ii) second order with respect to r. Thus, for integration, that equation needs an initial
condition, and two boundary conditions on the r-axis.

Initial Condition
Initially, the tissue temperature is T0 except at the core–tissue interface, which is always at
the core temperature Tc. Hence, the initial condition for Equation (4.38) on the previous page
is

T (r, 0) =

{
T0 ∀ R1 < r ≤ R2

Tc at r = R1

(4.39)

Boundary Conditions
While the temperature at core–tissue interface is Tc, the conductive heat flux in the tissue at
the periphery is equal to the convective heat flux in the surroundings. Hence, the boundary
conditions for Equation (4.38) on the previous page at any time t > 0 are

T = Tc at r = R1 and − k
∂T

∂r
= h(T − Ta) at r = R2 (4.40)

where Ta is the temperature of the surroundings, and h is the convective heat transfer
coefficient.

Summary

Equations (4.38)–(4.40) constitute the dynamic, distributed-parameter model of heat transfer
in the skin tissue of a cylindrical limb. Given the specifications for the parameter set{

ρ, ĈP, ρb, F̃, ĈPb, Tb, k, Hm, T0, Tc, R1, R2, Ta, h
}

the involved differential equation needs to be integrated to obtain T = T (r, t).
At steady state, the time derivative in Equation (4.38) becomes zero, and the model

becomes independent of ρ and ĈP. With the remaining parameters, the resulting differential
equation can be integrated using the boundary conditions to obtain the steady state oxygen
mole fraction in the tissue, T̂ = T̂ (r).

4.2.7 Solvent Induced Heavy Oil Recovery
This example involves microscopic and macroscopic mass balances in a lab-scale physical
model of a heavy oil reservoir – a porous medium of heavy oil, and glass beads packed
together as a cylinder of radius R, and initial height Z0 [see Figure 4.11, next page].

The physical reservoir model is designed to investigate gravity-assisted oil recovery using
a gas-phase solvent such as carbon dioxide, butane and propane.4 During an experiment, the
solvent penetrates the cylinder from the surroundings, and, upon absorption, brings down the
viscosity of the oil assumed to be of constant density. This oil–solvent mixture flows due
to gravity, and is produced at the bottom. As a result, the height of the physical reservoir
model decreases with time. Hence, this is an example of a moving boundary problem with
constant density assumption.
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Figure 4.11 A lab-scale physical model of a heavy oil reservoir

Objective

It is desired to develop a model that would enable the determination of (i) solvent mass
fraction in the physical reservoir model at different heights, radial distances, and times, (ii) the
height of the oil–solvent mixture in the physical reservoir model at different radial distances
and times, and (iii) rate of production of heavy oil, i.e., the oil–solvent mixture.

System

In this example, the solvent mass fraction in the physical reservoir model is a function of the
r- and z-coordinates. Hence, the system for solvent mass balance is a cylindrical differential
element (an annulus) of thicknesses Δr and Δz, respectively, along the r- and z-directions,
as shown in Figure 4.11 above. Next, the height (and mass) of the oil is a function of time
and r-coordinate. Hence, the system for the oil–solvent mass balance is the same annulus but
of height Z, which is a function of time.
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Assumptions

We make the following assumptions for the model:

1. Solvent mass fraction in heavy oil is a function of radial distance, height and time.

2. The height of heavy oil in the physical reservoir model is a function of radial distance,
and time.

3. Diffusivity of the solvent is not constant but a known function of its mass fraction in
heavy oil.

4. Along the vertical z-direction, the diffusive flux of solvent is insignificant compared to
the bulk flux.

5. Bulk flux is only along the z-direction, and is given by Darcy’s law.

6. The density of the mixture of solvent and heavy oil is constant.

7. There are no chemical reactions.

Model Formulation

To determine solvent mass fraction, we need solvent mass balance. The determination of the
height of the oil, and its production requires mass balance for the oil–solvent mixture.

Solvent Mass Balance
Applying Equation (2.4) on p. 21 for the solvent mass in the system, which is an annulus of
thicknesses Δr and Δz in the physical reservoir model, we obtain

d
dt

(ΔV ρφω︸ ︷︷ ︸
solvent mass
in the system

) = (fr ·ΔAr)r+Δr − (fr ·ΔAr)r + (fz ·ΔAz)z+Δz − (fz ·ΔAz)z

where (i) ΔV = 2πrΔrΔz is the volume of the annulus, (ii) ρ is the density of the oil–solvent
mixture, (iii) φ is the porosity of the physical reservoir model, (iv) ω is solvent mass fraction,
and (v) fr and fz are the solvent mass fluxes, respectively across areas ΔAr = 2πrΔzr̂, and
ΔAz = 2πrΔrẑ.

Along the r-direction, since the total bulk flux is zero, the solvent flux is the diffusive
flux, i.e., fr = −Dρφ∂ω/∂r(−r̂) with D as solvent diffusivity. Along the z-direction, since
diffusive flux is negligible, fz = ωρvz(−ẑ) where vz is downward, vertical velocity of the
oil–solvent mixture.

Using the first order Taylor expansions of (fr ·ΔAr)r+Δr and (fz ·ΔAz)z+Δz , taking the
limits of Δr and Δz to zero, and substituting the expressions for the fluxes and areas, the
solvent mass balance becomes

∂

∂t
(dV ρφω) =

∂

∂r

(
Dρφ

∂ω

∂r
2πrdz

)
dr − ∂

∂z
(ωρvz2πrdr)dz

where dV = 2πrdrdz. Since r and dr are independent of t as well as z, dz is independent of
t as well as r, and ρ and φ are constant, the above equation simplifies to

∂ω

∂t
= D

(
1

r

∂ω

∂r
+

∂2ω

∂r2

)
+

∂D

∂ω

(
∂ω

∂r

)2

− 1

φ

(
vz + ω

∂vz
∂ω

)
∂ω

∂z
(4.41)
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In the last equation, vz is given by Darcy’s law, i.e.,

vz =
Koρg

μ(ω)
(4.42)

where Ko is the effective permeability of the oil, g is gravity, and μ is the oil viscosity as a
known function of solvent mass fraction ω. Note that vz = vz[ω(r, z, t)].

Oil–Solvent Mass Balance
Applying Equation (2.4) on p. 21 for the mass of the oil–solvent mixture in the system, which
is an annulus of differential thickness Δr and height Z (see Figure 4.11 on p. 109), we get
for Δr tending to zero,

∂

∂t
(ρφdV︸ ︷︷ ︸

oil–solvent mass
in the system

) = − ρv0(r)× 2πrdr︸ ︷︷ ︸
rate of oil–solvent mass

out of the system

In the above equation, dV = 2πrdrZ is the annulus volume with Z as the annulus height, and
v0(r) is vz at z = 0 and a radial distance r. Note that v0(r) is obtained from Equation (4.42)
above using ω(r, 0, t).

Simplifying the oil–solvent mass balance, we get

∂Z

∂t
= −v0(r)

φ
(4.43)

Equation (4.41) is a partial differential equation of (i) first order with respect to t,
(ii) second order with respect to r, and (iii) first order with respect to z. Thus, for integration,
that equation needs an initial condition, two boundary conditions on the r-axis, and one
boundary condition on the z-axis. Equation (4.43) above is of first order with respect to t,
and thus needs an initial condition.

Initial Conditions
Initially, there is no solvent in the physical reservoir model except at the surface, where
solvent mass fraction is the interfacial mass fraction ωi. Also, the model height is Z0. Hence,
the initial condition for Equation (4.41) on the previous page is

ω(r, z, 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ωi at

{
r = R ∀ 0 ≤ z ≤ Z0

z = 0, Z0 ∀ 0 ≤ r < R

0 ∀ 0 < z < Z0 and 0 ≤ r < R

(4.44)

The initial condition for Equation (4.43) above is

Z(r, 0) = Z0 ∀ 0 ≤ r ≤ R (4.45)
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Boundary Conditions
While the solvent mass fraction at the surface of the physical reservoir model is ωi, the mass
fraction gradient at the vertical axis is zero due to symmetry [see Appendix 4.B, p. 133].
Hence, the boundary conditions for Equation (4.41) on p. 110 at any time t > 0 are

ω(r, z, t) = ωi at

{
r = R ∀ 0 ≤ z ≤ Z(r, t)

z = 0, Z(r, t) ∀ 0 ≤ r < R
(4.46)

∂ω

∂r
= 0 at r = 0 ∀ 0 ≤ z ≤ Z(r, t) (4.47)

Heavy Oil Production Rate
If Δm is the mass of the oil–solvent produced in time Δt from the annulus of thickness Δr,
radius r, and height Z then

Δm

Δt

⏐⏐⏐⏐
r

= ρ v0(r)× π[(r +Δr)2 − r2]︸ ︷︷ ︸
volumetric flow rate

In the limit of Δt and Δr tending to zero, the overall oil–solvent production rate from the
physical reservoir model is then

dm
dt

= 2πρ

R∫
0

rv0(r) dr

Summary

Equations (4.41)–(4.47) constitute the dynamic, distributed-parameter model of solvent
transfer in the physical reservoir model. Given the specifications for the parameter set{

D, φ, Ko, g, ρ, μ(ω), ωi, R, Z0

}
the involved partial differential equations need to be integrated simultaneously to obtain
ω = ω(r, z, t) and Z = Z(r, t).

4.2.8 Hydrogel Tablet
This example involves microscopic mass balance of drug, polymer and water in a water-
soluble hydrogel tablet.5 As shown in Figure 4.12 on the next page, the tablet is a cylinder
of radius R and height Z. When ingested, water in the stomach diffuses into the tablet. The
polymer begins to diffuse out from the tablet.

From the surface, polymer and drug in the polymer matrix dissolve instantaneously into the
bulk water. The water diffuses simultaneously into the tablet. During this process, the volume
of the tablet changes with time. The tablet swells first but eventually dissolves in water. This
is an example of a moving boundary problem without constant density assumption.

Objective

It is desired to develop a model that would enable the determination of the species mass
concentrations in the tablet at different radial distances and times.
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Figure 4.12 Hydrogel tablet in water

System

In this example, the species concentrations are functions of the r-coordinate. Hence, the
system for mass balance is an annulus of thickness Δr along the r-direction, as shown in
Figure 4.12 above.

Assumptions

We make the following assumptions for the model:

1. Species concentrations in the tablet are functions of the radial distance, and time.

2. Mass fluxes, and the change in tablet shape are along the radial direction only.

3. The fractional change in the length along the radial direction is always uniform (i.e.,
dr/r = dR/R).

4. The diffusion of the drug inside the tablet is insignificant.

5. The drug dissipates fast enough from the tablet surface so that its concentration at the
surface, as well as outside, is negligible.

6. Outside the tablet, the mass concentration of water is not much different from its
density.
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Model Formulation

To determine the concentrations of species (drug, polymer and water), we need mass balances
in our system, which is an annulus of thickness Δr, as shown in Figure 4.12 on the previous
page. Applying Equation (2.4) on p. 21 for the ith species, we get

d
dt

(ΔV ρi︸ ︷︷ ︸
species mass
in the system

) = ΔV
dρi
dt

+ ρi
d(ΔV )

dt
= (fi ·A)r − (fi ·A)r+Δr

where (i) the values of i are 1, 2 and 3 for drug, polymer and water, respectively,
(ii) ΔV = π[(r +Δr)2 − r2]Z is the system volume, (iii) ρi is the mass concentration of
the ith species in the system, and (iv) fi is the mass flux of the ith species across the area
A = (2πrZ)r̂. Note that since Δr changes with time, so do V and ΔV .

The mass flux is given by [Equation (2.10), p. 23]

fi = ρiv + ji = ρivr r̂−Diρ
∂ωi

∂r
r̂

where (i) v is the bulk velocity comprising the only component vr along the r-direction,
(ii) Di and ωi are, respectively, the diffusivity and mass fraction of the ith species in the
tablet, and (iii) ρ is the tablet density. As assumed, D1 = 0 for the drug.

In the above differential equation, we use the first order Taylor expansion of (fi ·A)r+Δr,
take the limit of Δr to zero, and substitute the expressions for the flux and area. The result
after simplification is

2πrdrZ
∂ρi
∂t

+ ρi lim
Δr→0

d(ΔV )

dt

= − ∂

∂r
(fi ·A)dr = −2πZ

[
∂

∂r
(ρivrr)−

∂

∂r

(
rDiρ

∂ωi

∂r

)]
dr

(4.48)

Time Derivative of Annulus Volume
This term, which appears in above equation, is simplified as follows.

With rs ≡ (r +Δr), we have

d(ΔV )

dt
=

d
dt

(πr2s Z − πr2Z) = πZ
d
dt

(r2s − r2) = 2πZ

(
rs

drs

dt
− r

dr
dt

)
Since the fractional change in radius is assumed to be the same at any radial distance,

dr
r

=
drs

rs
=

dR
R

⇒ drs

dt
=

rs

R

dR
dt

and

vr =
dr
dt

=
r

R

dR
dt

(4.49)

With the help of the above expressions for drs/dt and dr/dt, we obtain

d(ΔV )

dt
=

2πZ

R

(
r2s − r2

)dR
dt

=
2πZ

R

[
(r +Δr)2 − r2

]dR
dt
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Taking the limit of Δr to zero,

lim
Δr→0

d(ΔV )

dt
=

2πZ

R
(2rdr)

dR
dt

With the help of the above result, and Equation (4.49) on the previous page, Equation (4.48)
yields

∂ρi
∂t

= − 1

R

dR
dt

[
3ρi +

∂

∂r
(rρi)

]
+

1

r

∂

∂r

(
rDiρ

∂ωi

∂r

)
(4.50)

where

ρ =
3∑

i=1

ρi, and ωi =
ρi
ρ

Polymer Mass Balance
Applying Equation (2.4) on p. 21 for the polymer in the system, which is an annulus of
differential thickness Δr, and height Z [see Figure 4.12, p. 113], we get for Δr tending
to zero

d
dt

R∫
0

2πrZρ2 dr

︸ ︷︷ ︸
polymer mass
in the tablet

= − 2πRZkρ̃2

︸ ︷︷ ︸
polymer mass lost

from the tablet surface

or
d
dt

R∫
0

rρ2 dr

︸ ︷︷ ︸
≡ I[R(t),t]

= −Rkρ̃2 (4.51)

where k is the mass transfer coefficient of polymer in water, and ρ̃2 is ρ2(R, t), i.e., the mass
concentration of polymer at the tablet surface.

Using the chain rule of differentiation [see Section 8.7.3, p. 319], the left-hand side of the
last equation simplifies as follows:

dI
dt

=
∂I

∂R

dR
dt

+
∂I

∂t
= Rρ̃2

dR
dt

+

R∫
0

∂

∂t
(rρ2) dr

︸ ︷︷ ︸
≡ J

where we have used the Leibniz’s rule [see Section 8.10, p. 326] to evaluate ∂I/∂R. The
integral denoted above by J is given by

J =

R∫
0

(
r
∂ρ2
∂t

+ ρ2
dr
dt︸︸

= r
R

dR
dt

[from Equation (4.49), previous page]

)
dr =

R∫
0

r
∂ρ2
∂t

dr +
1

R

dR
dt

R∫
0

rρ2 dr

Eliminating ∂ρ2/∂t with the help of Equation (4.50) above for i = 2, we obtain after
simplification

J = − 1

R

dR
dt

(
R2ρ̃2 +

R∫
0

rρ2 dr
)
+

R∫
0

(
rD2ρ

∂ω2

∂r

)
dr
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Incorporating the expressions for J and dI/dt in Equation (4.51) on the previous page, we
obtain after simplification

dR
dt

=

kρ̃2R+

R∫
0

∂

∂r

(
rD2ρ

∂ω2

∂r

)
dr

1

R

R∫
0

rρ2 dr

(4.52)

Equation (4.50) on the previous page is a partial differential equation of (i) first order
with respect to t, and (ii) second order with respect to r. Thus, for integration, that equation
needs an initial condition, and two boundary conditions on the r-axis. On the other hand,
Equation (4.52) above is a differential equation of first order with respect to t, and thus needs
an initial condition.

Initial Conditions
The initial species concentrations ρi0s, and tablet radius R0 are known. Hence, the initial
conditions are

ρi(r, 0) = ρi0 ∀ 0 ≤ r ≤ R0; i = 1, 2, 3; and R(0) = R0

(4.53)

Boundary Conditions
At the central axis of the tablet, the mass fraction gradients are zero due to symmetry [see
Appendix 4.B, p. 133]. At the tablet surface, while the drug concentration is negligible, the
diffusive flux of polymer as well as water is equal to the convective flux. Hence, the boundary
conditions for Equation (4.50) on the previous page at any time t > 0 are

∂ρi
∂r

⏐⏐⏐⏐
r=0

= 0; i = 1, 2, 3; ρ1(R) = 0 (4.54)

−D2ρ
∂ω2

∂r
= k2ρ̃2 and −D3ρ

∂ω3

∂r
= k3(ρ̃3 − ρw) at r = R (4.55)

where (i) k2 and k3 are, respectively, the mass transfer coefficients of polymer and water,
(ii) ρ̃3 is the mass concentration of water at the tablet surface, and (iii) ρw is the density of
water.

Summary

Equations (4.50)–(4.55) constitute the dynamic, distributed-parameter model of mass transfer
in a hydrogel tablet. Given the specifications for the parameter set{

D1 = 0, D2, D3, ρ10, ρ20, ρ30, R0, k2, k3, ρw
}

the involved Equation (4.50) on the previous page for each species (drug, polymer and water),
and Equation (4.52) above need to be integrated simultaneously to obtain ρ1 = ρ1(r, t),
ρ2 = ρ2(r, t), ρ3 = ρ3(r, t), and R = R(t).
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4.2.9 Neutron Diffusion
This example involves microscopic balance for neutrons in a spherical medium.6 As shown in
Figure 4.13 below, neutrons diffuse outward from a point source at the centre of the medium.

Δr

R

r F

point source

Figure 4.13 Neutron diffusion from a point source

Objective

It is desired to develop a model that would enable the determination of neutron concentration
in the medium at different radial distances, and times.

System

In this example, the neutron concentration in the medium is a function of the r-coordinate.
Hence, the system for neutron balance is a spherical differential element (or shell) of thickness
Δr along the r-direction as shown in Figure 4.13 above.

Assumptions

We make the following assumptions for the model:

1. Neutron concentration in the medium is a function of radial distance, and time.

2. There is no bulk flux, and neutron flux is due to diffusion, which is only along the radial
direction.

3. Diffusivity of neutrons in the medium is constant.
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Model Formulation

To determine neutron concentration, i.e., the number of neutrons per unit volume, we need a
balance of neutrons in our system, which is a spherical shell of thickness Δr. The balance is
given by

d
dt

(ΔV n︸ ︷︷ ︸
number of

neutrons in the system

) = (F ·A)r − (F ·A)r+Δr +ΔV ng

where (i) ΔV = 4π/3[(r +Δr)3 − r3] is the volume of the system (the spherical shell),
(ii) n is the number of neutrons per unit volume, (iii) F = (−Ddn/dr)r̂ is the neutron flux
with D as neutron diffusivity across the area A = (4πr2)r̂, and (iv) ng is the rate of the
number of neutrons emitted per unit volume.

In the neutron balance above, using the first order Taylor expansion of (F ·A)r+Δr, and
taking the limit of Δr to zero, we obtain after simplification

∂

∂t
(dV n) = − ∂

∂r
(F ·A) + dV ng

where dV = 4πr2dr. Substituting the expressions for dV , F and A in the above equation,
we get

∂

∂t

[
(4πr2dr)n

]
= − ∂

∂r

[
−D

∂n

∂r
(4πr2)

]
dr + (4πr2dr)ng

Since r as well as dr is independent of t and D is constant, the above equation simplifies to

∂n

∂t
= D

(
2

r

∂n

∂r
+

∂2n

∂r2

)
+ ng (4.56)

Equation (4.56) is a partial differential equation of (i) first order with respect to t, and
(ii) second order with respect to r. Thus, for integration, that equation needs an initial
condition, and two boundary conditions on the r-axis.

Initial Condition
Neutron concentration is zero everywhere in the beginning. Hence, the initial condition is

n(r, 0) = 0 ∀ 0 ≤ r ≤ ∞ (4.57)

Boundary Conditions
At the centre, the gradient of neutron concentration is zero due to symmetry [see
Appendix 4.B, p. 133]. At an infinite distance from the centre, the concentration is taken
to be zero. Thus, the boundary conditions at any time t > 0 are

∂n

∂r
= 0 at r = 0 and n = 0 at r = R (4.58)

where R is a very large radius tending to infinity.
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Summary

Equations (4.56)–(4.58) on the previous page constitute the dynamic, distributed-parameter
model of neutron transfer from a point source in a spherical infinite medium. Given the
specifications for D, ng and R, Equation (4.56) on the previous page needs to be integrated
to obtain n = n(r, t).

At steady state, the time derivative in Equation (4.56) becomes zero. The resulting
differential equation can be integrated using the boundary conditions to obtain the steady
state neutron concentration, n̂ = n̂(r)

4.2.10 Horton Sphere
This example involves the equations of change for temperature in a Horton sphere. It is a
spherical vessel that is commonly used to store liquified gases. Figure 4.14 below shows the
schematic of the sphere. The core of the sphere is a hollow metal sphere of inside and outside

R3

R1

liquified gas storage

R2

at T1(t)

Ta

Δr

r
q

metal wall
at T2(r, t)

insulation layer
at T3(r, t)

liquified gas in at T1,in

liquified gas out at T1

at T1(t)

Figure 4.14 Schematic of a Horton sphere used to store liquified gas

radii, R1 and R2, respectively. The core is covered externally by a spherical shell of outside
radius R3. From the surroundings, heat flows radially inward across the insulation and the
metal wall to the pool of well-mixed, liquified gas at a uniform temperature T1 in the core. To
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discard this heat, a small amount of the liquified gas is continuously withdrawn, cooled and
fed back to the core.

Objective

It is desired to develop a model that would enable the determination of (i) the temperature
of the liquified gas stored in the core at different times, (ii) the temperature of the metal wall
at different radial distances, and times, and (iii) the temperature of the insulation layer at
different radial distances, and times.

System

In this example, the liquified gas temperature is uniform. Thus, the system for the equation of
change for the gas temperature is the sphere of radius R1. On the other hand, the temperatures
of the metal wall, and insulation layer are functions of the r-coordinate. Therefore, the system
for the equation of change for the temperature in either medium (wall, or insulation) is a
spherical shell of thickness Δr along the r-direction. Figure 4.14 on the previous page shows
the shell in the metal wall.

Assumptions

We make the following assumptions for the model:

1. The liquified gas in the core is sufficiently mixed to have a uniform temperature, which
is a function of time.

2. Temperatures in the insulation layer, and metal wall are functions of radial distance,
and time.

3. Heat conduction is only along the radially inward direction through the insulation layer,
and the metal wall.

4. The density as well as specific heat capacity of liquified gas, and the densities as well
as thermal conductivities of the insulation layer, and the metal wall are constant in the
range of temperature variation.

Model Formulation

We will apply the equation of change for temperature to determine the temperature of liquified
gas, metal wall, and insulation layer. In the following equations, we use subscripts ‘1’, ‘2’ and
‘3’ for the properties of the gas, metal and insulation, respectively. Thus, ρ2, ĈP2, k2 and T2

denote, respectively, the density, specific heat capacity, thermal conductivity, and temperature
of the metal wall.

Temperature of Liquified Gas in the Core
Applying Equation (3.13) on p. 71 to the liquified gas in the core, we obtain

4

3
πR3

1ρ1︸ ︷︷ ︸
system
mass

ĈP1
dT1

dt
= wĈP1(T1in − T1) + h1(4πR

2
1)[T2(R1)− T1]︸ ︷︷ ︸
−Δ[Q̇]
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In the last equation, (i) R1 is the radius of the core, (ii) w is the rate of gas mass that is
withdrawn from the core, and fed back at temperature T1in, and (iii) h1 is the coefficient of
heat transfer between the gas and metal wall. Simplifying the last equation, we get

dT1

dt
=

3

ρ1ĈP1R1

{
wĈP1(T1in − T1)

4πR2
1

+ h1[T2(R1)− T1]

}
(4.59)

Temperature of Metal Wall and Insulation Layer
Applying Equation (3.14) on p. 71 to spherical shells of thickness Δr in the metal wall, and
in the insulation layer, we obtain

ΔV ρi︸ ︷︷ ︸
system
mass

ĈPi
dTi

dt
= (qi ·A)r+Δr − (qi ·A)r︸ ︷︷ ︸

−Δ[Q̇]

; i = 2, 3

where (i) ΔV = 4π/3[(r +Δr)3 − r3] is the volume of the system (spherical shell), and
(ii) qi = (−ki∂Ti/∂r)(−r̂) is the conductive heat flux across the area A = 4πr2(r̂).

In the above differential equation, using the first order Taylor expansion of (q ·A)r+Δr,
and taking the limit of Δr to zero, we obtain after simplification

dV ρiĈPi
∂Ti

∂t
=

∂

∂r
(qi ·A)dr; i = 2, 3

where dV = 4πr2dr. Substituting for dV , qi and A in the above differential equation, and
simplifying the result yields

∂Ti

∂t
=

ki

ρiĈPir2
∂

∂r

(
r2

dTi

dr

)
; i = 2, 3 (4.60)

Equations (4.59) and (4.60) are differential equations of first order with respect to t, and
each needs one initial condition. The last set of equations is additionally of second order with
respect to r, and needs two boundary conditions on the r-axis.

Initial Conditions
The initial temperatures for liquified gas, metal wall, and insulation layer are specified as T10,
T20 and T30, respectively. Hence, the initial conditions are

T1(0) = T10, T2(r, 0) = T20 ∀ R1 ≤ r ≤ R2 and

T3(r, 0) = T30 ∀ R2 ≤ r ≤ R3 (4.61)
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Boundary Conditions
At the inner surface of the metal wall, the conductive heat flux is equal to the convective heat
flux in the liquified gas. At the outer surface of metal wall, the conductive flux is equal to
that in the insulation layer. At the outer surface of insulation layer, the conductive heat flux
is equal to the convective heat flux in surrounding air. Accordingly, the boundary conditions
at any time t > 0 for Equation (4.60) on the previous page in the metal shell, and insulation
layer are, respectively,

k2
∂T2

∂r

⏐⏐⏐⏐
R1

= h1[T2(R1)− T1], k2
∂T2

∂r

⏐⏐⏐⏐
R2

= k3
∂T3

∂r

⏐⏐⏐⏐
R2

and

k3
∂T3

∂r

⏐⏐⏐⏐
R2

= k2
∂T2

∂r

⏐⏐⏐⏐
R2

, k3
∂T3

∂r

⏐⏐⏐⏐
R3

= ha[Ta − T3(R3)] (4.62)

where ha is the coefficient of heat transfer in the surroundings.

Summary

Equations (4.59)–(4.62) constitute the dynamic heat transfer model for the Horton sphere.
Given the specifications for the parameter set{

ρ1, ρ2, ρ3, ĈP1, ĈP2, ĈP3, R1, R2, R3, w, T1in, T10, T20, T30, h1, ha, k2, k3, Ta
}

the involved differential equations need to be integrated to obtain T1 = T1(t), T2 = T2(r, t),
and T3 = T3(r, t).

At steady state, the time derivatives in the differential equations become zero, and the
model becomes independent of ρ1, ρ2, ρ3, ĈP2 and ĈP3. With the remaining parameters,
resulting differential equations can be integrated simultaneously using the boundary
conditions to obtain the steady state temperatures, T̂1, T̂2 = T̂2(r), and T̂3 = T̂3(r).

4.2.11 Reactions around Solid Reactant

This example involves macroscopic and microscopic mass balances with chemical reactions,
and multicomponent diffusion in spherical geometry. As shown in Figure 4.15 on the next
page, gas A diffuses from the surroundings through a porous layer of intermediate product C
to the inside core of solid B. Both B and C have of constant molar densities. The following
non-elementary reactions take place:

a1 A︸︸
gas

+ b B︸︸
solid

k1
c1 C︸︸

solid

and a2 A︸︸
gas

+ c2 C︸︸
solid

k2
d D︸︸

gas

respectively, with reaction rates k1ca1

A (based on per unit area) at the core surface, and k2c
a2

A
(based on per unit volume as usual) in the porous layer. Gas D is produced in the layer, and
diffuses out to the surroundings. The core radius, and porous layer thickness change with
time as the reactions proceed. Hence, this is an example of a moving boundary problem
with constant density assumption.
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R2(t)

bulk gas A

solid reactant B

FA

r

R1(t)

Δr

intermediate
solid product C

FD

Figure 4.15 Solid reactant B covered with a porous layer of intermediate solid product C. Through
the layer, reactant gas A diffuses in while the product gas D diffuses out

Objective

It is desired to develop a model that would enable the determination of (i) the radius of
the core of solid reactant B at different times, (ii) the outer radius of the porous layer of
intermediate product C at different times, (iii) the concentration of the reactant gas A in the
porous layer at different radial distances, and times, and (iv) the concentration of product gas
D in the porous layer at different radial distances, and times.

System

In this example, the core is made of pure solid B. Thus, the system for the mole balance of
B is the core, i.e., the sphere of radius R1. The porous layer has constant molar density of
C. Hence, its mole balance has the layer as the system. On the other hand, concentrations of
A and D in the layer are functions of the r-coordinate. Therefore, the system for the mole
balances of A and D is a spherical shell of thickness Δr along the r-direction, as shown in
Figure 4.15 above.

Assumptions

We make the following assumptions for the model:

1. Mole fractions of the gases A and D in the porous layer (made of solid C) are functions
of radial distance, and time.

2. At the surface of the core, A is consumed instantaneously in the chemical reaction.
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3. In the porous layer, only A and D are mobile. Their mass transfer is solely due to
diffusion along the radial inward and outward directions, respectively.

4. The diffusivities of A and D in the porous layer are constant.

5. At the outer surface of the porous layer, D is dispersed immediately in the surroundings.
Thus, the concentration of D at the outer surface of the layer is zero.

6. The molar densities of solids B and C are constant.

Model Formulation

To determine species concentrations in the system, we need mole balances in the presence of
chemical reactions.

Mole Balance of B in the Core
Applying Equation (3.6) on p. 66 for the moles of B in the system, which is the core, we get

d
dt

(VBcB︸︷︷︸
moles of B

in the system

) = (4πR2
1)rB

where (i) VB = 4πR3
1/3 is the core volume, cB is the molar density of B in the core,

R1 = R1(t) is the radius of the core, and (ii) rB = −bk1[c
a1

A ]R1
is the molar rate of change

of B due to reaction with gas A per unit core surface area. While b and a1 are stoichiometric
coefficients, k1 is the rate coefficient of this reaction.

In the above mole balance, we substitute for VB and rB, and simplify the result considering
cB as constant to obtain

dR1

dt
= −k1b

cB
[ca1

A ]R1
(4.63)

Mole Balances in Porous Layer
Our second system is the porous layer, which is made of C, and has thickness (R2 −R1)
around the core. Gases A and D diffuse, respectively, into and out of this system.

Mole Balance of C Applying Equation (3.6) on p. 66 for the moles of C in the system, we get

d
dt

(VCcC︸︷︷︸
moles of C

in the system

) = (4πR2
1)r1C + Ṙgen,C

where (i) VC = 4π(R3
2 −R3

1)/3 is the layer volume with R2 = R2(t) as the outer radius of
the layer, (ii) cC is the molar density of C in the layer, (iii) r1C = c1k1[c

a1

A ]R1
is the molar

rate of change of C due to reaction between A and B per unit area at the core surface, and
(iv) Ṙgen,C is the molar rate of generation of C due to its reaction with A in the layer, and is
given by

Ṙgen,C = −4πc2k2

R2∫
R1

ca2

A r2 dr
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Since cC is constant, the mole balance of C becomes

4πcC

3

d
dt

(R3
2 −R3

1) = (4πR2
1)c1k1[c

a1

A ]R1
− 4πc2k2

R2∫
R1

ca2

A r2 dr

Simplifying the above equation, and using Equation (4.63) on the previous page for dR1/dt,
we obtain

dR2

dt
= k1[c

a1

A ]R1

(
R1

R2

)2(
c1
cC

− b

cB

)
− c2k2

cCR2
2

R2∫
R1

ca2

A r2 dr (4.64)

Mole Balance of A For this balance, the system is a spherical shell of thickness Δr in the
porous layer. Applying Equation (3.6) on p. 66 for the moles of A in this system, we get

d
dt

(ΔV cA︸ ︷︷ ︸
moles of A

in the system

) = (FA ·A)r+Δr − (FA ·A)r +ΔV rA

where (i) ΔV = 4π/3[(r +Δr)3 − r3] is the system volume, (ii) FA = FA(−r̂) is the molar
flux of A of magnitude FA, and is across the area A = 4πr2r̂, and (iii) rA = −a2k2c

a2

A is the
molar rate of change of A per unit volume due to reaction in the porous layer.

In the above mole balance, we use the first order Taylor expansion of (FA ·A)r+Δr, take
the limit of Δr to zero, and substitute the expressions for system volume, flux and area. The
result after simplification is

∂

∂t
(4πr2drcA) = − ∂

∂r

[
FA(4πr

2)
]
dr − (4πr2dr)a2k2ca2

A

Since r and dr are independent of t, the above equation simplifies to
∂cA

∂t
= − 1

r2
∂

∂r
(r2FA)− a2k2c

a2

A (4.65)

Mole Balance of D Applying Equation (3.6) on p. 66 for the moles of D in the same system
as above (the porous layer), we get

d
dt

(ΔV cD︸ ︷︷ ︸
moles of D

in the system

) = (FD ·A)r − (FD ·A)r+Δr +ΔV rD

where (i) yD mole fraction of D in the system, (ii) FD = FDr̂ is the molar flux of D of
magnitude FD, and is across the area A, and (iii) rD = dk2c

a2

A is the molar rate of change of
D per unit volume due to reaction in the porous layer.

In the above mole balance, we use the first order Taylor expansion of (FD ·A)r+Δr, take
the limit of Δr to zero, and substitute the expressions for system volume, flux and area.
Simplifying as before, we obtain

∂cD

∂t
= − 1

r2
∂

∂r
(r2FD) + dk2c

a2

A (4.66)

For mole balances in the porous layer, we need expressions for FA and FD. They are derived
next.
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Expressions for FA and FD

The molar fluxes of A and D in the porous layer are given by, respectively,

FA =
cA

c
(FA + FD︸ ︷︷ ︸

total flux

) + JA and FD =
cD

c
(FA + FD) + JD

where (i) c is the sum of the concentrations of A, D and C, and (ii) JA and JD are, respectively,
the diffusive fluxes of A and D. Note that the total flux does not involve C, which is stationary.

Eliminating either FA or FD from the above equations, we obtain

Fi =
(c− cj)Ji + ciJj

c− ci − cj
≡ Fir̂; i, j = A,D and i �= j

The diffusive fluxes in the above equations are given by

Ji = −
(
Diic

dyi
dr

+Dijc
dyj
dr

)
r̂; i, j = A,D and i �= j

where (i) Dijs (namely, DAA, DAD, DDD and DDA) are the multicomponent diffusivities in
the porous layer, and (ii) yA and yD are, respectively, the mole fractions of A and D. Since

∂ci
∂r

=
∂

∂r
(yic) = yi︸︸

ci
c

∂c

∂r
+ c

∂yi
∂r

⇒ c
∂yi
∂r

=
∂ci
∂r

− ci
c

∂c

∂r
; i = A,D

the diffusive fluxes simplify to

Ji = −
[
Dii

(
∂ci
∂r

− ci
c

∂c

∂r

)
+Dij

(
∂cj
∂r

− cj
c

∂c

∂r

)]
r̂; i, j = A,D and i �= j

Substituting the above equation in the above expression of Fi leads to

Fi =
1

c− ci − cj

{
(cj − c)

[
Dii

(
∂ci
∂r

− ci
c

∂c

∂r

)
+Dij

(
∂cj
∂r

− cj
c

∂c

∂r

)]

− ci

[
Djj

(
∂cj
∂r

− cj
c

∂c

∂r

)
+Dji

(
∂ci
∂r

− ci
c

∂c

∂r

)]}

i, j = A,D and i �= j (4.67)

In the above equation, since cC is constant,

∂c

∂r
=

∂cA

∂r
+

∂cD

∂r
where c = cA + cC + cD (4.68)
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Equation (4.63) on p. 124, and Equation (4.64) on p. 125 are differential equations of first
order with respect to t, and each equation needs one initial condition. Equations (4.65) and
(4.66) on p. 125 are partial differential equations of (i) first order with respect to t, and
(ii) second order with respect to r. Each of the last two equations needs an initial condition,
and two boundary conditions on the r-axis.

Initial Conditions
Initially, the core radius is known as R10, and there is no porous layer. The bulk concentration
of A is specified as c̃A. In the incipient porous layer, while the concentration of A is c̃A, the
concentration of D is zero. Hence, the initial conditions are

R1(0) = R2(0) = R10 (4.69)

cA(r, 0) = c̃A

cD(r, 0) = 0

}
∀ R1(0) ≤ r ≤ R2(0) (4.70)

Boundary Conditions
At R1, the core–porous-layer interface, there is no D. Moreover, the concentration of A over
there is zero, since A is consumed instantaneously at the core surface. At the outer surface of
the porous layer, while the concentration of A is its bulk concentration in the surroundings,
the concentration of D is zero. Hence, the boundary conditions for Equations (4.65) and (4.66)
at any time t > 0 are, respectively,

cA(R1, t) = 0, cA(R2, t) = c̃A and (4.71)

cD(R1, t) = 0, cD(R2, t) = 0 (4.72)

Summary

Equations (4.63)–(4.72) constitute the dynamic model for the solid reactant covered by a
porous layer of an intermediate product. Given the specifications for the parameter set{

a1, a2, b, c1, c2, d, k1, k2, c̃A, cB, cC, DAA, DAD, DDD, DDA, R10

}
the involved differential equations need to be integrated to obtain R1 = R1(t), R2 = R2(t),
cA = cA(r, t), and cA = cA(r, t).

4.3 Fluxes along Non-Linear Directions
The above examples on distributed-parameter systems involved fluxes only along linear
directions, namely, the directions in Cartesian coordinates, and the radial direction in the
cylindrical or spherical coordinates. In those examples, it was straightforward to apply
fundamental equations on appropriate differential elements, and derive model equations
incorporating suitable constitutive relations. This approach is known as the shell-balance
method, and is an important model development tool.

However, the shell-balance method gets complicated in the presence of fluxes along non-
linear directions, e.g., the θ-direction in cylindrical coordinates. The reason is that such a
flux may make a contribution in some other direction. Appendix 4.C on p. 134 illustrates
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this subtlety by deriving the equation of motion along the radial direction in cylindrical
coordinates. In the involved balance, the momentum flux φθθ, which is along the non-linear
θ-direction, contributes to the momentum along the radially inward direction.

Therefore, when dealing with fluxes along non-linear directions, e.g., in cylindrical and
spherical coordinate systems, it is convenient to directly use the applicable equations that are
readily available [see Appendix 2.D, p. 53]. As a matter of fact, the available equations in
Cartesian, cylindrical and spherical coordinate systems can be directly applied regardless of
the nature of flux path. For any other coordinate system, say, helical, an additional step of
coordinate transformation is required [see Chapter 5, p. 139].

The following example illustrates the direct use of momentum balance in spherical
coordinates.

4.3.1 Saccadic Movement of an Eye

This example involves the microscopic momentum balance in the vitreous humor∗ of an eye
during a saccade, i.e., a quick simultaneous movement of both eyes between two points. This
movement influences drug dispersion in eyes.7

Figure 4.16 on the next page shows the schematic of an eye ball turning about the vertical
z-axis in spherical coordinates.

The angular movement during a saccade can be expressed as

α = −α0 cos(ω0t)

where α0 is a small magnitude, ω0 is the frequency, and t is time. The velocity components
of the vitreous humor along the r- and θ-directions are zero. Moreover, these are the only
directions along which the φ-component of the velocity changes.

Objective

It is desired to develop a model that would enable the determination of the vitreous humor
velocity at different radial distances, θ-positions, and times due to the saccadic movement of
an eye.

Assumptions

We make the following assumptions for the model:

1. The vitreous humor in the eye is a Newtonian fluid of constant density, and moves only
along the φ-direction.

2. Along the φ-direction, the fluid velocity is a function of radial distance, and time.

3. There is a no-slip boundary condition at r = R where the fluid comes in contact with
the inner eye surface. Over there, the fluid velocity is equal to that of the eye velocity.

4. Pressure is constant along the φ-direction.

∗transparent liquid that occupies the space between the lens and the retina of an eye
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Figure 4.16 Schematic of an eye

Model Formulation

Since the involved momentum flux is along non-linear path, i.e., the curvilinear φ-axis, it is
convenient to utilize the microscopic momentum balance available for spherical coordinates.

The applicable equation is Equation (3.15) on p. 76, which is

∂vφ
∂t

= −vr
∂vφ
∂r

− vθ
r

∂vφ
∂θ

− vφ
r sin θ

∂vφ
∂φ

+
μ

ρ

[
∂2vφ
∂r2

+
2

r

∂vφ
∂r

+
1

r2
∂2vφ
∂θ2

+
1

r2 tan θ

∂vφ
∂θ

+
1

r2 sin2 θ

∂2vφ
∂φ2

+
2

r2 sin θ

∂vr
∂φ

+
1

r2 sin2 θ

(
2 cos θ

∂vθ
∂φ

− vφ

)]
− vrvφ

r
− vθvφ

r tan θ

− 1

rρ sin θ

∂P

∂φ
+ ρgφ
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where the grayed out terms are zero, based on the following considerations:

1. vr and vθ are zero, and so are their partial derivatives

2. the partial derivative of vφ is zero with respect to φ

3. along the φ-direction, the pressure does not change, and the gravity is zero

As a result, the last equation simplifies to

∂vφ
∂t

=
μ

ρ

(
∂2vφ
∂r2

+
2

r

∂vφ
∂r

+
1

r2
∂2vφ
∂θ2

+
1

r2 tan θ

∂vφ
∂θ

− vφ

r2 sin2 θ

)
(4.73)

The above equation is of (i) first order with respect to t, and (ii) second order with respect to
each of r and θ. Hence, the equation needs an initial condition, and two boundary conditions
on the r- as well as θ-axis.

Initial Condition
At time t = 0, the eye begins to rotate about the vertical z-axis with velocity∗

v = R sin θ
dα
dt

= α0ω0R sin θ sin(ω0t) (4.74)

which is the fluid velocity vφ at the radial distance R because of the no-slip condition.
Everywhere else, vφ is zero. Thus, the initial condition is

vφ =

{
v at r = R

0 ∀ 0 ≤ r < R

}
∀ 0 ≤ θ ≤ π (4.75)

Boundary Conditions
For times greater than zero, the boundary conditions along the r-direction are

vφ =

⎧⎨
⎩
v at r = R

∂vφ
∂r

= 0 at r = 0

⎫⎬
⎭ ∀ 0 ≤ θ ≤ π (4.76)

The last condition arises from the radial symmetry [see Appendix 4.B, p. 133].
Along the θ-direction, the boundary conditions are

vφ = 0 at θ = 0, π ∀ 0 ≤ r ≤ R

which means zero velocity at the vertical z-axis.

Summary

Equations (4.73)–(4.76) constitute the dynamic, distributed-parameter model of momentum
transfer to vitreous humor in an eye during its saccadic movement. Given the specifications
for the parameter set {

μ, ρ, α0, ω0, R
}

the involved differential equation needs to be integrated to obtain vφ = vφ(r, θ, t) in the θ-
interval [0, π]. This velocity is mirrored in the other θ-interval [π, 2π] due to symmetry.

∗This is the tangential velocity, which is equal to radial distance times angular velocity.
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4.A Initial and Boundary Conditions
These conditions are equations associated with the dependent variables of differential
equations in process models.

4.A.1 Initial Condition
This condition specifies the value of the dependent variable at the initial value of the
independent variable, typically time. Thus, for the differential equation

dT
dt

= g(t) (4.77)

describing a heat transfer process,

T = T0 at t = 0

is the initial condition where T0 is the specified initial temperature.

4.A.2 Boundary Condition
This condition is the requirement that must be satisfied by the dependent variable at a terminal
value of the independent variable.

Boundary conditions can be classified into the following:

Dirichlet Boundary Condition

Also known as the boundary condition of the first type, this condition prescribes the value of
the dependent variable at a terminal value of the independent variable. Given an equation of
change for temperature (T ) along the x-direction in a fin as,

d2T
dx2

= f(x), 0 ≤ x ≤ xf (4.78)

the Dirichlet boundary conditions, e.g., are

T =

{
T0 at x = 0

Tf at x = xf

These conditions fix the temperature at the terminal values of x.

Neumann Boundary Condition

Also known as the boundary condition of the second type, this condition prescribes the value
of the derivative of the dependent variable at a terminal value of the independent variable. An
example is the condition

dT
dx

= 0 at x = xf
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for Equation (4.78) on the previous page. The above condition implies that there is no
temperature gradient, and thus no heat transfer at the final x.

Robin Boundary Condition

Also known as the boundary condition of the third type, this condition prescribes the value of
a linear combination of dependent variables, and their derivatives at a terminal value of the
independent variable. An example pertaining to Equation (4.78) on the previous page is

−k
dT
dx

− h(T − T∞) = 0 at x = xf

where k, h and T∞ denote, respectively, thermal conductivity, convective heat transfer
coefficient, and ambient temperature. The above condition basically equates conductive heat
transfer at the final x in the fin to convective heat transfer in the surroundings.

Mixed Boundary Condition

This boundary condition is a set of two non-overlapping boundary conditions, one being
Dirichlet and the other Neumann. An example of a mixed boundary condition for
Equation (4.78) is

T = T0 at x = 0

dT
dx

= 0 at x = xf

Cauchy Boundary Condition

This boundary condition comprises one Dirichlet, and one Neumann boundary condition,
both at the same location. An example of this condition for Equation (4.78) is

T = T0

dT
dx

= −q0
k

⎫⎬
⎭ at x = 0

where q0 is a known value of heat flux. This condition is posed at a boundary when it is
difficult to prescribe conditions at the other boundaries. The above condition could mean that
the fin at xf is not accessible for temperature measurements due to physical constraints, or
extreme temperatures.

4.A.3 Periodic Condition
This condition appears in a periodic process in which the value of a dependent variable at a
boundary repeats after a time period. Thus, if Equation (4.77) on the previous page describes
a periodic process then

T (0) = T (τ)

is a periodic boundary condition with time period τ .
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4.B Zero Derivative at the Point of Symmetry

Consider a property y(x) across a point of symmetry x2 on the x-axis, as shown in Figure 4.17
below. In such a case, the variable value is the same at equidistant locations from the point of

(point of
symmetry)

x2 x3x1

y(x2)

y(x1) = y(x3)

y

x

y(x)

Figure 4.17 A property that is a symmetrical function, y(x)

symmetry. Thus, given any two locations x1 and x3, each at a distance Δx from the point of
symmetry x2,

y(x2) +

x1∫
x2

dy
dx

dx

︸ ︷︷ ︸
y(x1)

= y(x2) +

x3∫
x2

dy
dx

dx

︸ ︷︷ ︸
y(x3)

where it is assumed that y is differentiable. Simplifying the above equation, and taking the
limit of Δx to zero, we obtain

dy
dx

⏐⏐⏐
x2

(x1 − x2︸ ︷︷ ︸
−Δx

) =
dy
dx

⏐⏐⏐
x2

(x3 − x2︸ ︷︷ ︸
Δx

)

The above equation implies that by necessity

dy
dx

⏐⏐⏐
x2

= 0

Thus, the derivative of a property with respect to an independent variable at the point of
symmetry is zero.
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4.C Equation of Motion along the Radial Direction in Cylindrical
Coordinates

To obtain this equation, we apply momentum balance along the r-direction on the differential
element in cylindrical coordinates [see Figure 4.18 below].

Δz

r

z

θ

Δθ

Δr

rΔθ

Figure 4.18 Differential element in cylindrical coordinates

As shown in Figure 4.19 on the next page, this differential element has faces of areas
Ar = rΔθΔzr̂, Aθ = ΔrΔzθ̂, and Az = rΔθΔrẑ, respectively, along the r-, θ- and z-
directions.

The momentum balance yields

d
dt

(ρΔV vr) = (φrr ·Ar)r − (φrr ·Ar)r+Δr + (φθr ·Aθ)θ − (φθr ·Aθ)θ+Δθ

+ (φzr ·Az)z − (φzr ·Az)z+Δz + ρΔV gr

−
[
− φθθ(θ +Δθ) ·Aθ sinΔθ

]
where ΔV = rΔrΔθΔz.

Note that the last term in the above equation is an output term at the (θ +Δθ)-face, and
stems from the momentum flux φθθ, which is along the non-linear θ-direction. As shown
in Figure 4.20 on p. 136, the term enclosed in square brackets is the component of the
momentum rate φθθ(θ +Δθ) ·Aθ, and is opposite to the r-direction.
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Az(z)

Az(z +Δz)

Ar(r +Δr)

Ar(r)

Aθ(θ +Δθ)

Aθ(θ)

Figure 4.19 Area vectors along the r-, θ- and z-directions

In the differential equation on the previous page, using the first order Taylor expansion for
the third, fifth, seventh and ninth terms, and taking the limit of Δr, Δθ and Δz to zero yields

∂

∂t

[
ρ(rdrdθdz)vr

]
= − ∂

∂r
(φrrrdθdz)dr − ∂

∂θ
(φθrdrdz)dθ − ∂

∂z
(φzrrdθdr)dz +

ρ(rdrdθdz)gr +
(
φθθ +

∂φθθ

∂θ
dθ
)

dθ(drdz)

where we have applied following result for the last term:

lim
θ→0

sinΔθ = dθ

Simplifying the above differential equation for fixed system volume, and discarding the term
that has dθ2, we obtain

ρ
∂vr
∂t

+ vr
∂ρ

∂t
= −1

r

[
∂

∂r
(rφrr) +

∂φθr

∂θ

]
− ∂φzr

∂z
+ ρgr +

φθθ

r



136 Process Modeling and Simulation for Chemical Engineers

r

z

θ

φθθ(θ +Δθ) ·Aθ

Aθ(θ)

Δθ

vector along Aθ(θ)

vector along the r-direction

[φθθ(θ +Δθ) ·Aθ] sinΔθ

Figure 4.20 Momentum rate φθθ(θ +Δθ) ·Aθ and its component [φθθ(θ +Δθ) ·Aθ] sinΔθ,
which is opposite to the r-direction

In the last equation, after substituting for

φrr = P + τrr + ρvrvr φθr = τθr + ρvθvr

φzr = τzr + ρvzvr φθθ = P + τθθ + ρvθvθ

and the continuity equation, Equation (2.66) on p. 54,

∂ρ

∂t
= −ρ

(
∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

)
− vr

∂ρ

∂r
− vθ

r

∂ρ

∂θ
− vz

∂ρ

∂z

we finally obtain after simplification

∂vr
∂t

= −vr
∂vr
∂r

− vθ
r

∂vr
∂θ

− vz
∂vr
∂z

− 1

ρ

(
∂τrr
∂r

+
1

r

∂τrθ
∂θ

+
∂τrz
∂z

+
τrr − τθθ

r
+

∂P

∂r

)
+

v2θ
r

+ gr

which is the desired equation of motion along the r-direction in cylindrical coordinates for
symmetric stress tensor τ i.e., Equation (2.67) on p. 55.
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Exercises
4.1 Derive the CSTR model of Section 4.1.1 on p. 80 without making the assumption of
constant system volume.

4.2 How can we determine the steady state height of liquid in the preheater [see
Section 4.1.3, p. 84] from Equation (4.8) on p. 86?

4.3 Extend the model of fluid flow between inclined parallel plates [see Section 4.2.2, p. 93]
to the flow of two immiscible fluids with one flowing on top of the other.

4.4 Why cannot the microscopic equation of change for temperature be applied directly to
model heat transfer in tapered fin [see Section 4.2.3, p. 96]?

4.5 In the heavy oil recovery process of Section 4.2.7 on p. 108, what is the mass of oil
produced at a given time?

4.6 What happens at steady state in the heavy oil recovery process of Section 4.2.7?

4.7 For the hydrogel tablet dissolution process described in Section 4.2.8 on p. 112

a. Obtain the equations of change for the mass fractions.

b. Derive the expression for the amount of drug release at any time.
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4.8 Explain the steady state of hydrogel dissolution process in Section 4.2.8.

4.9 Interpret the steady state of the reaction process in Section 4.2.11 on p. 122.

4.10 Derive the expression for the total flux in the porous layer around the solid reactant in
Section 4.2.11.

4.11 What is the system in the model describing saccadic eye movement [see Section 4.3.1,
p. 128]?



5
Model Transformation

In this chapter we introduce the tools to transform process models to more suitable forms.
First we take up the transformation from Cartesian coordinate system to other orthogonal
coordinate systems. Then we provide a general procedure to carry out the transformation
between arbitrary coordinate systems. In the second part of the chapter, we present Laplace
transformation, which is widely used to solve and analyze linear process models. Some
important miscellaneous transformations are presented at the end.

5.1 Transformation between Orthogonal Coordinate Systems
Recall that we derived fundamental relations, and associated equations for distributed-
parameter systems in Cartesian coordinate system. To obtain similar results in other
orthogonal coordinate systems, especially the curvilinear ones, it is much easier to transform
the equations in Cartesian coordinate system than to derive the results from scratch. To carry
out this transformation, we need expressions for the following differential operators:

1. Gradient of scalar, e.g., ∇F

2. Divergence of a vector, e.g., ∇ · f
3. Curl of a vector, e.g., ∇× f

4. Laplacian of a scalar, e.g., ∇2F

5. Gradient of a vector, e.g., ∇f

6. Laplacian of a vector, e.g., ∇2f

7. Divergence of a tensor, e.g., ∇ · τ
For an orthogonal coordinate system, these expressions are readily obtained from the scale
factors relative to Cartesian coordinate system. We will first introduce the scale factors, and
then derive important results leading to the expressions for the aforementioned operators.

5.1.1 Scale Factors
Consider a position vector in Cartesian coordinate system (x1, x2, x3) given by

x = x1x̂1 + x2x̂2 + x3x̂3 (5.1)

Process Modeling and Simulation for Chemical Engineers: Theory and Practice, First Edition. Simant Ranjan Upreti. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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where xi and x̂i are, respectively, the component of x, and the unit vector along the xi-
direction. In an orthogonal coordinate system (y1, y2, y3), we can represent x by the relation

x = x(y1, y2, y3)

Using the chain rule of differentiation [see Section 8.7.3, p. 319], the differential change in x
is given by

dx =
∂x

∂y1
dy1 +

∂x

∂y2
dy2 +

∂x

∂y3
dy3 (5.2)

In the above equation, ∂x/∂yi [see Figure 5.1 below] is the tangent vector on the yi-
coordinate curve along which the differential change in x is dyi. Note that ∂x/∂yi is a vector
along the yi-direction.

x1

x2

x3

y1

y2

y3

x

dx

∂x/∂y1

∂x/∂y2

∂x/∂y3

Figure 5.1 Tangent vectors to dx in a system of orthogonal coordinates, (y1, y2, y3)

Let ŷi denote the unit vector along ∂x/∂yi , i.e., along the yi-direction. Then

ŷi =
∂x

∂yi

/0000 ∂x

∂yi

0000︸ ︷︷ ︸
hi

=
1

hi

∂x

∂yi
; i = 1, 2, 3 (5.3)

where hi, which is the magnitude of the tangent vector, is called the metric coefficient, or
scale factor along the yi-direction.

Differentiation of Equation (5.1) on the previous page with respect to yi yields

∂x

∂yi
=

∂x1

∂yi
x̂1 +

∂x2

∂yi
x̂2 +

∂x3

∂yi
x̂3; i = 1, 2, 3
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using which the scale factors in Equation (5.3) on the previous page are given by

hi =

0000 ∂x

∂yi

0000 =

√
∂x

∂yi
· ∂x
∂yi

=

√(
∂x1

∂yi

)2

+

(
∂x2

∂yi

)2

+

(
∂x3

∂yi

)2

i = 1, 2, 3 (5.4)

The above result stems from the fact that

x̂i · x̂j =

{
0, if i �= j

1, if i = j

since x̂1, x̂2 and x̂3 are mutually perpendicular.

Example 5.1.1

Find the scale factors for cylindrical coordinate system.

Solution
The relations between Cartesian coordinates (x1, x2, x3), and cylindrical coordinates (r ≡
y1, θ ≡ y2, z ≡ y3) are [see Figure 5.2, next page]

x1 = r cos θ = y1 cos y2

x2 = r sin θ = y1 sin y2

x3 = z = y3

From Equation (5.4) above, the scale factors are

h1 =

√(
∂x1

∂y1

)2

+

(
∂x2

∂y1

)2

+

(
∂x3

∂y1︸ ︸
=0

)2

=

√
cos2 y2 + sin2 y2 = 1

h2 =

√(
∂x1

∂y2

)2

+

(
∂x2

∂y2

)2

+

(
∂x3

∂y2︸ ︸
=0

)2

=
√
(−y1 sin y2)2 + (y1 cos y2)2 = y1︸︸

r

h3 =

√(
∂x1

∂y3︸ ︸
=0

)2

+

(
∂x2

∂y3︸ ︸
=0

)2

+

(
∂x3

∂y3

)2

=
√
12 = 1

�
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x1

r

x3

(r, θ, z)

θ

r sin θ

r cos θ

z

x2

Figure 5.2 Relations between Cartesian and cylindrical coordinates

5.1.2 Differential Elements
From Equation (5.3) on p. 140, we have

∂x

∂yi
= hiŷi; i = 1, 2, 3

which when substituted in Equation (5.2) on p. 140 yields

dx = h1dy1︸ ︷︷ ︸
dl1

ŷ1 + h2dy2︸ ︷︷ ︸
dl2

ŷ2 + h3dy3︸ ︷︷ ︸
dl3

ŷ3 = dl1ŷ1 + dl2ŷ2 + dl3ŷ3 (5.5)

In the above equation, dli = hidyi is the differential magnitude, or length along the yi-
direction.

Note that ŷ1, ŷ2 and ŷ3 are the basis vectors in the system of orthogonal coordinates
(y1, y2, y3). Consequently,

ŷi · ŷj =

{
0, if i �= j

1, if i = j

The length of the differential vector dx in the orthogonal coordinates (y1, y2, y3) is given by

‖dx‖ =
√

dx · dx =
√
h2
1(dy1)2 + h2

2(dy2)2 + h2
3(dy3)2
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Differential Area and Volume

With the help of Equation (5.5) on the previous page, the differential areas in the (y1, y2, y3)
coordinates are given by

dA1 = dl2 dl3 = h2h3 dy2 dy3 (5.6)

dA2 = dl1 dl3 = h1h3 dy1 dy3 (5.7)

dA3 = dl1 dl2 = h1h2 dy1 dy2 (5.8)

In the above equations, dAi is the differential area on the plane perpendicular to the yi-
direction. Thus, dA1 is the differential area on the y2y3-plane.

The differential volume is similarly given by

dV = dl1 dl2 dl3 = h1h2h3 dy1dy2 dy3

Example 5.1.2

Find the differential areas and volume in cylindrical coordinates.

Solution
Using the scale factors of cylindrical coordinates obtained in the last example, the differential
areas and volume are

dA1 = y1 dy2 dy3 = r dθ dz

dA2 = dy1 dy3 = dr dz

dA3 = y1 dy1 dy2 = r dr dθ

dV = y1 dy1 dy2 dy3 = r dr dθ dz

�

5.1.3 Vector Representation
Given an arbitrary vector v at a position x, we can always vary the latter with a suitable
parameter, say, t, such that dx/dt = v. Considering this fact, we divide Equation (5.5) on the
previous page by dt to obtain

dx
dt︸ ︸
v

= h1
dy1
dt︸ ︸
v1

ŷ1 + h2
dy2
dt︸ ︸
v2

ŷ2 + h3
dy3
dt︸ ︸
v3

ŷ3

or v = h1v1ŷ1 + h2v2ŷ2 + h3v3ŷ3

where vis are the corresponding components of v in the (y1, y2, y3) coordinates. The length
of v is then given by

‖v‖ =
√
v · v =

√
h2
1v

2
1 + h2

2v
2
2 + h2

3v
2
3
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5.1.4 Derivatives of Unit Vectors
The derivative of a unit vector (say, ŷ1) with respect to a coordinate in a different direction
(say, the y2-direction) is zero in Cartesian coordinates. However, the derivative of a unit vector
may be non-zero in other coordinate systems.

Cylindrical Coordinates

For these coordinates, Figure 5.3 below shows the unit vectors r̂, θ̂ and ẑ at a point, along
with the vector components on Cartesian axes. For example, the component of r̂ along the

rθ

r sin θ

r cos θ

z

x1

x3

θ

cos θ

θ
sin θ

cos θ

r̂

θ̂

ẑ−x1 x2

Figure 5.3 Unit vectors r̂, θ̂ and ẑ in cylindrical coordinates, and their projections on Cartesian axes

x1-direction is ‖r̂‖ cos θ = cos θ. Thus, in terms of these components,

r̂ = x̂1 cos θ + x̂2 sin θ (5.9)

θ̂ = −x̂1 sin θ + x̂2 cos θ (5.10)

ẑ = x̂3
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From the above relations,

∂ r̂

∂r
=

∂ r̂

∂z
=

∂ θ̂

∂r
=

∂ θ̂

∂z
=

∂ ẑ

∂r
=

∂ ẑ

∂θ
=

∂ ẑ

∂z
= 0 (5.11)

∂ r̂

∂θ
= −x̂1 sin θ + x̂2 cos θ = θ̂ (5.12)

∂θ̂

∂θ
= −x̂1 cos θ − x̂2 sin θ = −r̂ (5.13)

Spherical Coordinates

For these coordinates, Figure 5.4 below shows the unit vectors r̂, θ̂ and φ̂ at a point,
along with the vector components on Cartesian axes. For example, the projection of r̂

r

θ

φ
x1

x3

θ

φ

r̂

θ̂

φ̂−x1 x2

− sin θ

sin θ

φ

−x3

Figure 5.4 Unit vectors r̂, θ̂ and φ̂ in spherical coordinates, and their projections on Cartesian axes

on the x1x2-plane is ‖r̂‖ sin θ = sin θ, which has components sin θ cosφ and sin θ sinφ,
respectively, along the x1- and x2-directions. Along the x3-direction, the component of r̂
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is ‖r̂‖ cos θ = cos θ. Resolving the components of θ̂ and φ̂ in the same manner, we obtain

r̂ = x̂1 sin θ cosφ+ x̂2 sin θ sinφ+ x̂3 cos θ

θ̂ = x̂1 cos θ cosφ+ x̂2 cos θ sinφ− x̂3 sin θ

φ̂ = −x̂1 sinφ+ x̂2 cosφ

From the above relations,

∂ r̂

∂r
=

∂ θ̂

∂r
=

∂φ̂

∂r
=

∂φ̂

∂θ
= 0

∂ r̂

∂θ
= x̂1 cos θ cosφ+ x̂2 cos θ sinφ− x̂3 sin θ = θ̂

∂ θ̂

∂θ
= −x̂1 sin θ cosφ− x̂2 sin θ sinφ− x̂3 cos θ = −r̂

∂ r̂

∂φ
= (−x̂1 sinφ+ x̂2 cosφ) sin θ = φ̂ sin θ

∂ θ̂

∂φ
= (−x̂1 sinφ+ x̂2 cosφ) cos θ = φ̂ cos θ

∂φ̂

∂φ
= −x̂1 cosφ− x̂2 sinφ = −r̂ sin θ − θ̂ cos θ

5.1.5 Differential Operators
For an orthogonal coordinate system (y1, y2, y3) with scale factors h1, h2 and h3 with respect
to Cartesian coordinate system, the differential operators are as follows.

Gradient of a Scalar

The gradient of a scalar F is given by

∇F =
1

h1

∂F

∂y1
ŷ1 +

1

h2

∂F

∂y2
ŷ2 +

1

h3

∂F

∂y3
ŷ3 (5.14)

This expression for the gradient is derived in Appendix 5.A.1 on p. 180.

Divergence of a Vector

The divergence of a vector

v = v1ŷ1 + v2ŷ2 + v3ŷ3

in the (y1, y2, y3) coordinates is given by

∇ · v =
1

h1h2h3

[
∂(h2h3v1)

∂y1
+

∂(h1h3v2)

∂y2
+

∂(h1h2v3)

∂y3

]
(5.15)

The above expression for divergence is derived in Appendix 5.A.2 on p. 181.
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Curl of a Vector

The curl of the vector v is given by

∇× v =
1

h1h2h3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

h1ŷ1 h2ŷ2 h3ŷ3

∂

∂y1

∂

∂y2

∂

∂y3

h1v1 h2v2 h3v3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(5.16)

This expression for the curl is derived in Appendix 5.A.4 on p. 184.

Laplacian of a Scalar

Using Equations (5.14) and (5.15) on the previous page, the Laplacian of a scalar F is

∇2F = ∇ · ∇F

=
1

h1h2h3

[
∂

∂y1

(
h2h3

h1

∂F

∂y1

)
+

∂

∂y2

(
h1h3

h2

∂F

∂y2

)
+

∂

∂y3

(
h1h2

h3

∂F

∂y3

)]
(5.17)

Example 5.1.3

Find the expressions for the gradient of a scalar, divergence of a vector, curl of a vector, and
Laplacian of a scalar in cylindrical coordinate system.

Solution
From Example 5.1.1 on p. 141, the scale factors for the cylindrical coordinate system are

h1 = 1, h2 = y1, and h3 = 1.

Gradient of a Scalar
From Equation (5.14) on the previous page, the gradient of a scalar F is given by

∇F =
∂F

∂y1
ŷ1 +

1

y1

∂F

∂y2
ŷ2 +

∂F

∂y3
ŷ3

In the (r, θ, z) notation,

∇F =
∂F

∂r
r̂+

1

r

∂F

∂θ
θ̂ +

∂F

∂z
ẑ (5.18)

Divergence of a Vector
From Equation (5.15) on the previous page, the divergence of a vector v is given by

∇ · v =
1

y1

[
∂(y1v1)

∂y1
+

∂v2
∂y2

+ y1
∂v3
∂y3

]
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In the (r, θ, z) notation where v = vr r̂+ vθθ̂ + vz ẑ,

∇ · v =
1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

(5.19)

Curl of a Vector
From Equation (5.16) on the previous page, the curl of v is given by

∇× v =
1

y1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

ŷ1 y1ŷ2 ŷ3

∂

∂y1

∂

∂y2

∂

∂y3

v1 y1v2 v3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
=

1

r

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

r̂ rθ̂ ẑ

∂

∂r

∂

∂θ

∂

∂z

vr rvθ vz

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(5.20)

=
1

y1

[
∂v3
∂y2

− ∂

∂y3
(y1v2)

]
ŷ1 −

[
∂v3
∂y1

− ∂v1
∂y3

]
ŷ2 +

1

y1

[
∂

∂y1
(y1v2)−

∂v1
∂y2

]
ŷ3

In the (r, θ, z) notation,

∇× v =
1

r

[
∂vz
∂θ

− r
∂vθ
∂z

]
r̂−

[
∂vz
∂r

− ∂vr
∂z

]
θ̂ +

1

r

[
∂(rvθ)

∂r
− ∂vr

∂θ

]
ẑ

considering that ∂r/∂z = 0.

Laplacian of a Scalar
From Equation (5.17) on the previous page, the Laplacian of a scalar F is given by

∇2F =
1

y1

[
∂

∂y1

(
y1

∂F

∂y1

)
+

∂

∂y2

(
1

y1

∂F

∂y2

)
+

∂

∂y3

(
y1

∂F

∂y3

)]

=
1

y1

∂

∂y1

(
y1

∂F

∂y1

)
+

1

y21

∂2F

∂y22
+

∂2F

∂y32

In the (r, θ, z) notation,

∇2F =
1

r

∂

∂r

(
r
∂F

∂r

)
+

1

r2
∂2F

∂θ2
+

∂2F

∂z2

�

Gradient of a Vector

The gradient of a vector v is obtained from the long multiplication of the gradient operator
∇ [see Equation (5.14), p. 146], and v in a given orthogonal coordinate system, i.e.,

∇v =

(
ŷ1

h1

∂

∂y1
+

ŷ2

h2

∂

∂y2
+

ŷ3

h3

∂

∂y3

)
︸ ︷︷ ︸

∇

(ŷ1v1 + ŷ2v2 + ŷ3v3)︸ ︷︷ ︸
v
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The resulting expression is then simplified by substituting the derivatives of unit vectors.
These steps are illustrated in the next example.

Example 5.1.4

Find the gradient of a vector v in cylindrical coordinate system.

Solution
In terms of the (r, θ, z) notation for cylindrical coordinates,

v = vr r̂+ vθθ̂ + vz ẑ (5.21)

and its gradient is given by

∇v =

(
r̂
∂

∂r
+

θ̂

r

∂

∂θ
+ ẑ

∂

∂z

)
(r̂vr + θ̂vθ + ẑvz)

= r̂
∂

∂r
(r̂vr) + r̂

∂

∂r
(θ̂vθ) + r̂

∂

∂r
(ẑvz) +

θ̂

r

∂

∂θ
(r̂vr) +

θ̂

r

∂

∂θ
(θ̂vθ) +

θ̂

r

∂

∂θ
(ẑvz)

+ ẑ
∂

∂z
(r̂vr) + ẑ

∂

∂z
(θ̂vθ) + ẑ

∂

∂z
(ẑvz)

The right-hand side terms of the above equation simplify as follows:

r̂
∂

∂r
(r̂vr) = r̂

∂ r̂

∂r︸ ︸
=0

vr + r̂r̂
∂vr
∂r

=
∂vr
∂r

r̂r̂

r̂
∂

∂r
(θ̂vθ) = r̂

∂ θ̂

∂r︸ ︸
=0

vθ + r̂θ̂
∂vθ
∂r

=
∂vθ
∂r

r̂θ̂

r̂
∂

∂r
(ẑvz) = r̂

∂ ẑ

∂r︸ ︸
=0

vz + r̂ẑ
∂vz
∂r

=
∂vz
∂r

r̂ẑ

θ̂

r

∂

∂θ
(r̂vr) =

θ̂

r

∂ r̂

∂θ︸ ︸
= θ̂

vr + θ̂r̂
1

r

∂vr
∂θ

=
vr
r
θ̂θ̂ +

1

r

∂vr
∂θ

θ̂r̂

θ̂

r

∂

∂θ
(θ̂vθ) =

θ̂

r

∂ θ̂

∂θ︸ ︸
=−r̂

vθ + θ̂θ̂
1

r

∂vθ
∂θ

= −vθ
r
θ̂r̂+

1

r

∂vθ
∂θ

θ̂θ̂
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θ̂

r

∂

∂θ
(ẑvz) =

θ̂

r

∂ ẑ

∂θ︸ ︸
=0

vz + θ̂ẑ
1

r

∂vz
∂θ

=
1

r

∂vz
∂θ

θ̂ẑ

ẑ
∂

∂z
(r̂vr) = ẑ

∂ r̂

∂z︸ ︸
=0

vr + ẑr̂
∂vr
∂z

=
∂vr
∂z

ẑr̂

ẑ
∂

∂z
(θ̂vθ) = ẑ

∂ θ̂

∂z︸ ︸
=0

vθ + ẑθ̂
∂vθ
∂z

=
∂vθ
∂z

ẑθ̂

ẑ
∂

∂z
(ẑvz) = ẑ

∂ ẑ

∂z︸ ︸
=0

vz + ẑẑ
∂vz
∂z

=
∂vz
∂z

ẑẑ

With the help of the above terms, the gradient is given by

∇v =
∂vr
∂r

r̂r̂+
∂vθ
∂r

r̂θ̂ +
∂vz
∂r

r̂ẑ +

(
1

r

∂vr
∂θ

− vθ
r

)
θ̂r̂+

(
vr
r

+
1

r

∂vθ
∂θ

)
θ̂θ̂ +

1

r

∂vz
∂θ

θ̂ẑ+
∂vr
∂z

ẑr̂+
∂vθ
∂z

ẑθ̂ +
∂vz
∂z

ẑẑ (5.22)

�

Laplacian of a Vector

The Laplacian of a vector f is a vector. It can be determined using the above relations for the
divergence and curl in the following identity [see Equation (8.3), p. 302]:

∇2f = ∇(∇ · f)−∇× (∇× f) (5.23)

Divergence of a Tensor

The divergence of a tensor is a vector. It is obtained from the long multiplication of the
gradient operator [see Equation (5.14), p. 146], and the tensor. Thus,

∇ · τ =

(
ŷ1

h1

∂

∂y1
+

ŷ2

h2

∂

∂y2
+

ŷ3

h3

∂

∂y3

)
︸ ︷︷ ︸

∇

·
3∑

i=1

3∑
j=1

τij ŷiŷj︸ ︷︷ ︸
τ

where τ is a second order tensor [see Equation (8.7), p. 308]. The resulting expression is
simplified by substituting the derivatives of unit vectors.

Example 5.1.5

Find the r-component of the divergence of a tensor τ in cylindrical coordinate system.
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Solution

In terms of the (r, θ, z) notation for cylindrical coordinates, the last equation yields

∇ · τ =

(
r̂
∂

∂r
+

θ̂

r

∂

∂θ
+ ẑ

∂

∂z

)
· (τrr r̂r̂+ τrθ r̂θ̂ + τrz r̂ẑ

+ τθrθ̂r̂+ τθθθ̂θ̂ + τθzθ̂ẑ + τzrẑr̂+ τzθẑθ̂ + τzz ẑẑ)

The right-hand side of the above equation results in 27 terms of which only the following
contribute to the r-component of ∇ · τ :

r̂
∂

∂r
· (r̂r̂τrr) = r̂ · ∂

∂r
(r̂r̂)︸ ︷︷ ︸
=0

since ∂ r̂/∂r=0

τrr + r̂ · r̂︸ ︸
=1

r̂
∂τrr
∂r

=
∂τrr
∂r

r̂

θ̂

r

∂

∂θ
· (r̂r̂τrr) =

θ̂

r
· ∂

∂θ
(r̂r̂)τrr +

1

r
θ̂ · r̂︸ ︸
=0

r̂
∂τrr
∂θ

=
1

r
θ̂ ·

= θ̂︷ ︷
∂ r̂

∂θ︸ ︷︷ ︸
=1

r̂τrr +
1

r
θ̂ · r̂︸ ︸

=0

∂ r̂

∂θ
τrr =

τrr
r
r̂

θ̂

r

∂

∂θ
· (θ̂r̂τθr) =

θ̂

r
· ∂

∂θ
(θ̂r̂)τθr +

1

r
θ̂ · θ̂︸︷︷︸
=1

r̂
∂τθr
∂θ

=
1

r
θ̂ ·

=−r̂︷ ︷
∂ θ̂

∂θ︸ ︷︷ ︸
=0

r̂τθr +
1

r
θ̂ · θ̂︸︷︷︸
=1

∂ r̂

∂θ︸ ︸
= θ̂

τθr +
r̂

r

∂τθr
∂θ

=
τθr
r
θ̂ +

1

r

∂τθr
∂θ

r̂

θ̂

r

∂

∂θ
· (θ̂θ̂τθθ) =

θ̂

r
· ∂

∂θ
(θ̂θ̂)τθθ +

1

r
θ̂ · θ̂︸︷︷︸
=1

θ̂
∂τθθ
∂θ

=
1

r
θ̂ ·

=−r̂︷ ︷
∂ θ̂

∂θ︸ ︷︷ ︸
=0

θ̂τθθ +
1

r
θ̂ · θ̂︸︷︷︸
=1

∂ θ̂

∂θ︸ ︸
=−r̂

τθθ +
θ̂

r

∂τθθ
∂θ

= −τθθ
r

r̂+
1

r

∂τθθ
∂θ

θ̂
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ẑ
∂

∂z
· (ẑr̂τzr) = ẑ · ∂

∂z
(ẑr̂)τzr + ẑ · ẑ︸ ︸

=1

r̂
∂τzr
∂z

= ẑ · ∂ ẑ
∂z︸ ︸
=0

r̂τzr + ẑ · ẑ ∂ r̂

∂z︸ ︸
=0

τzr + r̂
∂τzr
∂z

=
∂τzr
∂z

r̂

From the last five derivative expansions, we collect the terms with r̂ in common to obtain
the r-component of ∇ · τ , i.e.,

(∇ · τ )r =
∂τrr
∂r

+
τrr
r

+
1

r

∂τθr
∂θ

− τθθ
r

+
∂τzr
∂z

(5.24)

�

With the help of scale factors, derivatives of unit vectors, and differential operators derived
above, we can transform the fundamental relations, and associated equations in Cartesian
coordinate system to other orthogonal coordinate systems of interest.

Example 5.1.6

From the equation of change for velocity in Cartesian coordinate system [see p. 33],

∂v

∂t
= −v · ∇v − 1

ρ
(∇ · τ +∇P ) + g (2.25)

obtain the r-component of the equation in cylindrical coordinate system.

Solution
The r-component of the above equation is

∂vr
∂t

= −(v · ∇v)r −
1

ρ

[
(∇ · τ )r + (∇P )r

]
+ gr (5.25)

for which we need to obtain expressions for (v · ∇v)r and (∇P )r. Equation (5.24) above
provides the expression for (∇ · τ )r.

Expression for (v · ∇v)r
From Equations (5.21) and (5.22) on pp. 149 and 150, respectively, we obtain

v · ∇v = (vr r̂+ vθθ̂ + uvz ẑ) ·
[
∂vr
∂r

r̂r̂+
∂vθ
∂r

r̂θ̂ +
∂vz
∂r

r̂ẑ +

(
1

r

∂vr
∂θ

− vθ
r

)
θ̂r̂

+

(
vr
r

+
1

r

∂vθ
∂θ

)
θ̂θ̂ +

1

r

∂vz
∂θ

θ̂ẑ+
∂vr
∂z

ẑr̂+
∂vθ
∂z

ẑθ̂ +
∂vz
∂z

ẑẑ

]
The right-hand side of the above equation simplifies upon expansion, because of the
orthogonality of the unit vectors. For example,

vr r̂ · r̂︸ ︸
=1

r̂
∂vr
∂r

= vr r̂
∂vr
∂r

and vr r̂ · θ̂︸ ︸
=0

θ̂
vr
r

= 0
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Simplifying in this manner, we get

v · ∇v =

(
vr

∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

+ vz
∂vr
∂z

)
r̂ + (. . . )θ̂ + (. . . )ẑ

The r-component of the equation is

(v · ∇v)r = vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

+ vz
∂vr
∂z

(5.26)

Expression for (∇P )r
From Equation (5.14) on p. 146,

∇P =
∂P

∂r
r̂+

1

r

∂P

∂θ
θ̂ +

∂P

∂z
ẑ

from which

(∇P )r =
∂P

∂r
(5.27)

Substituting the above expressions for (v · ∇v)r, (∇ · τ̂)r and (∇P )r in Equation (5.25) on
the previous page, we finally obtain the desired equation, i.e.,

∂vr
∂t

= −vr
∂vr
∂r

− vθ
r

∂vr
∂θ

− vz
∂vr
∂z

+
v2θ
r

− 1

ρ

(
∂τrr
∂r

+
1

r

∂τrθ
∂θ

+
∂τzr
∂z

+
τrr − τθθ

r
− ∂P

∂r

)
+ gr

Note that τrr/r and −τθθ/r in the above equation arise because of non-zero ∂ r̂/∂θ and
∂ θ̂/∂θ [see Equations (5.12) and (5.13), p. 145].

�

Example 5.1.7

Obtain the r-component of the Navier–Stokes equation [see Equation (3.1), p. 62] for an
incompressible fluid of constant viscosity cylindrical coordinates.

Solution
From Equation (3.1), the r-component of the equation of the Navier–Stokes equation is given
by

∂vr
∂t

= −(v · ∇v)r +
1

ρ

[
μ(∇2v)r − (∇P )r

]
+ gr (5.28)

The expressions for (v · ∇v)r and (∇P )r were derived in the last example. We now derive
(∇2v)r, which from Equation (5.23) on p. 150 is given by

(∇2v)r = [∇(∇ · v)]r − [∇× (∇× v)]r
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Expression for [∇(∇ · v)]r
From Equation (5.18) on p. 147,

∇(∇ · v) =
∂(∇ · v)

∂r
r̂+

1

r

∂(∇ · v)
∂θ

θ̂ +
∂(∇ · v)

∂z
ẑ

The r-component of the above equation is

[∇(∇ · v)]r =
∂

∂r
(∇ · v) =

∂

∂r

(
vr
r
+
∂vr
∂r

+
1

r

∂vθ
∂θ

+
∂vz
∂z︸ ︷︷ ︸

from Equation (5.19) on p. 148

)

= −vr
r2

+
1

r

∂vr
∂r

+
∂2vr
∂r2

− 1

r2
∂vθ
∂θ

+
1

r

∂2vθ
∂r∂θ︸ ︷︷ ︸
=0

+
∂2vz
∂r∂z︸ ︷︷ ︸
=0

= −vr
r2

+
1

r

∂vr
∂r

+
∂2vr
∂r2

− 1

r2
∂vθ
∂θ

Expression for [∇× (∇× v)]r
Using the vector (∇× v) instead of v in Equation (5.20) on p. 148, we get

∇× (∇× v) =
1

r

[
∂(∇× v)z

∂θ
− r

∂(∇× v)θ
∂z

]
︸ ︷︷ ︸

[∇×(∇×v)]r

r̂ − [· · · ] θ̂ + [· · · ] ẑ

We are interested in [∇× (∇× v)]r, which depends on the following derivatives:

∂(∇× v)z
∂θ

=
∂

∂θ

{
1

r

[
∂(rvθ)

∂r
− ∂vr

∂θ

]}
=

∂

∂θ

[
vθ
r

+
∂vθ
∂r

− 1

r

∂vr
∂θ

]

=
1

r

∂vθ
∂θ

+
∂2vθ
∂θ∂r︸ ︷︷ ︸
=0

− 1

r

∂2vr
∂θ2

and

∂(∇× v)θ
∂z

= − ∂

∂z

(
∂vz
∂r

− ∂vr
∂z

)
= − ∂2vz

∂z∂r︸ ︷︷ ︸
=0

+
∂2vr
∂z2

=
∂2vr
∂z2

Utilizing these derivatives,

[∇× (∇× v)]r =
1

r

∂(∇× v)z
∂θ

− ∂(∇× v)θ
∂z

=
1

r2
∂vθ
∂θ

− 1

r2
∂2vr
∂θ2

− ∂2vr
∂z2

With the help of the above expressions for [∇(∇ · v)]r and [∇× (∇× v)]r, we get

(∇2v)r = −vr
r2

+
1

r

∂vr
∂r

+
∂2vr
∂r2

− 1

r2
∂vθ
∂θ︸ ︷︷ ︸

[∇(∇·v)]r

−
(

1

r2
∂vθ
∂θ

− 1

r2
∂2vr
∂θ2

− ∂2vr
∂z2︸ ︷︷ ︸

[∇×(∇×v)]r

)
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Substituting in Equation (5.28) on p. 153, the expressions for (i) (∇2v)r above, (ii) (v · ∇v)r
[see Equation (5.26), p. 153], and (iii) (∇P )r [see Equation (5.27), p. 153], we finally obtain

∂vr
∂t

= −vr
∂vr
∂r

− vθ
r

∂vr
∂θ

− vz
∂vr
∂z

+
μ

ρ

(
∂2vr
∂r2

+
1

r

∂vr
∂r

+
1

r2
∂2vr
∂θ2

+
∂2vr
∂z2

− 2

r2
∂vθ
∂θ

− vr
r2

)
+

v2θ
r

− 1

ρ

∂P

∂r
+ gr

�

5.2 Transformation between Arbitrary Coordinate Systems

In an arbitrary coordinate system, the axes are not necessarily orthogonal, i.e., perpendicular
to each other. In the absence of orthogonal axes, the results of Section 5.1 on p. 139 are not
applicable.

A general approach to transform equations between arbitrary coordinate systems is to
transform the velocity, and spatial derivatives based on the chain rule of differentiation. We
present this approach to transform equations from one arbitrary coordinate system (y1, y2, y2)
to another arbitrary coordinate system (z1, z2, z3).

5.2.1 Transformation of Velocity

The starting point is the set of relations

yi = yi(z1, z2, z3) i = 1, 2, 3

between the two coordinate systems. From the chain rule of differentiation [Section 8.7.3,
p. 319], the velocity component along the y1-direction is given by

u1 =
dy1
dt

=
∂y1
∂z1

⏐⏐⏐⏐z2
z3

· dz1
dt︸ ︸
v1

+
∂y1
∂z2

⏐⏐⏐⏐z1
z3

· dz2
dt︸ ︸
v2

+
∂y1
∂z3

⏐⏐⏐⏐z1
z2

· dz3
dt︸ ︸
v3

In general, the velocity components along the y1-, y2- and y3-directions are given by

ui =
3∑

j=1

∂yi
∂zj

⏐⏐⏐⏐̃
zj

vj ; i = 1, 2, 3

where z̃j is the vector
[
z1 z2 z3

]� without the element zj . The above equations in
matrix notation are given by

u =
∂y

∂z
v (5.29)
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where (i) u and v are the velocity vectors, respectively, in the (y1, y2, y2) and (z1, z2, z3)
coordinate systems, and (ii) ∂y/∂z is the Jacobian of y with respect to z. With the Jacobian
expressed solely in terms of z, we can use the last equation to transform u to the (z1, z2, z3)
coordinate system.

The equation to transform v to the (y1, y2, y2) coordinate system is similarly given by

v =
∂z

∂y
u (5.30)

where ∂z/∂y is the Jacobian of z with respect to y, and expressed solely in terms of y.

5.2.2 Transformation of Spatial Derivatives
Let a quantity q be represented in the two arbitrary coordinate systems as

q = A(y1, y2, y3) = B(z1, z2, z3)

Then from the chain rule of differentiation [Section 8.7.3, p. 319], the partial derivative of q
with respect to y1 is

∂A

∂y1

⏐⏐⏐⏐y2
y3

=
∂B

∂z1

⏐⏐⏐⏐z2
z3

· ∂z1
∂y1

⏐⏐⏐⏐y2
y3

+
∂B

∂z2

⏐⏐⏐⏐z1
z3

· ∂z2
∂y1

⏐⏐⏐⏐y2
y3

+
∂B

∂z3

⏐⏐⏐⏐z1
z2

· ∂z3
∂y1

⏐⏐⏐⏐y2
y3

In general, we can write

∂A

∂yi

⏐⏐⏐⏐̃
yi︸ ︷︷ ︸

∂q
∂yi

=
3∑

j=1

∂zj
∂yi

⏐⏐⏐⏐̃
yi

∂B

∂zj

⏐⏐⏐⏐̃
zj︸ ︷︷ ︸

∂q
∂zi

; i = 1, 2, 3

where ỹi is the vector
[
y1 y2 y3

]� without the element yi. The above set of equations
can be written in matrix notation as

qy =
∂z

∂y

�
qz (5.31)

where qy and qz are the vectors of partial derivatives of q with respect to y and z, and ∂z/∂y
is the Jacobian of z with respect to y. With the Jacobian expressed solely in terms of z, we
can use the above equation to transform qy to the (z1, z2, z3) coordinate system.

The equation to transform qz to the (y1, y2, y2) coordinate system is similarly given by

qz =
∂y

∂z

�
qy

with ∂y/∂z expressed solely in terms of y.

5.2.3 Correctness of Transformation Matrices
From Equation (5.29) on the previous page, and Equation (5.30) above, note that

u =
∂y

∂z
v =

∂y

∂z

∂z

∂y
u ⇒ ∂y

∂z

∂z

∂y
= I (identity matrix)
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This result should be used to verify the correctness of the Jacobian matrices involved in the
transformation of velocity, and spatial derivatives.

Example 5.2.1

Obtain the equation of continuity for a polymer melt flowing through the helical channel of
an extruder shown in Figure 5.5 below. The helical coordinates (z1, z2, z3) are related to the

z

θ

z2
r

helical channel

pitch, f

Figure 5.5 Flow of polymer melt in the helical channel of an extruder

cylindrical coordinates (r, θ, z) through the following equations:

z1 =
r

R
, z2 = −θa , z3 =

z

R
+ fθ (5.32)

where a =

√
(r/R)

2
+ f2, and R and f are constants.1

Solution
For convenience, we will denote r, θ and z by y1, y2 and y3, respectively. The above equations
can be manipulated to get the inverse coordinate transformation, i.e., yis expressed solely in
terms of zis as

y1 = z1R , y2 = −z2
a

, y3 =

(
fz2
a

+ z3

)
R (5.33)

where a =
√
z21 + f2.

The equation of continuity in cylindrical coordinate system [see Equation (2.66), p. 54] can
be written as

∂ρ

∂t
= − 1

y1

[
∂

∂y1
(

q1︷ ︸︸ ︷
ρy1u1 ) +

∂

∂y2
(

q2︷ ︷
ρu2 )

]
− ∂

∂y3
(

q3︷ ︷
ρu3 ) (5.34)
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Based on Equations (5.32) and (5.33) on the previous page, the Jacobians needed to transform
Equation (5.34) to helical coordinate system (z1, z2, z3) are given by

∂y

∂z
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R 0 0

z1z2
a3

−1

a
0

−z1z2fR

a3
fR

a
R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
∂z

∂y
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

R
0 0

z1z2
a2R

−a 0

0 f
1

R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Readers may like to check that the product of the above matrices yields the identity matrix.

Transformation of Velocity
From Equation (5.29) on p. 155, the velocity components in cylindrical coordinates are
expressible in helical coordinates as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R 0 0

z1z2
a3

−1

a
0

−z1z2fR

a3
fR

a
R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
∂y/∂z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.35)

Transformation of Spatial Derivatives
From Equation (5.31) on p. 156, the spatial derivatives in cylindrical coordinates are
expressible in helical coordinates as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂q

∂y1

∂q

∂y2

∂q

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
qy

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

R
−z1z2
a2R

0

0 −a f

0 0
1

R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
∂z/∂y�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂q

∂z1

∂q

∂z2

∂q

∂z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
qz

(5.36)

Transformation of Equation of Continuity
To transform the equation of continuity [Equation (5.34), previous page] to helical coordinate
system, we need to express the following in that system – the yis, uis and the derivatives
with respect to yis. This is done with the help of Equation (5.33) on the previous page, and
Equations (5.35) and (5.36) as explained next.

In Equation (5.34), we carry out the following steps:
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1. We replace

a. the coordinates yis with zis, using the inverse coordinate transformation, and

b. the velocities uis with vis, using the velocity transformation.

2. We introduce temporary variables (qis) for the arguments of spatial derivatives.

3. We repeat Step 1 for each qi.

4. We express ∂qi/∂yj s in terms of ∂qi/∂zj s, using the derivative transformation, and
expand derivatives as needed.

The incorporation of expressions of Step 4 into the equation of Step 2 transforms the equation
of continuity to helical coordinate system (z1, z2, z3).

The aforementioned steps are carried out below.

Steps 1 and 2
We use Equation (5.33) to introduce helical coordinates in Equation (5.34) on p. 157. In terms
of qis, the equation is

∂ρ

∂t
= − 1

z1R

(
∂q1
∂y1

+
∂q2
∂y2

)
− ∂q3

∂y3
(5.37)

Step 3
We expand the qis, and repeat Step 1. Velocity transformation [see Equation (5.35), previous
page] is applicable this time. The following expressions are obtained as a result:

q1 = ρ · z1R ·Rv1 = R2ρz1v1

q2 = ρu2 = ρ
(z1z2v1

a3
− v2

a

)

q3 = ρu3 = ρ

(
−z1z2fR

a3
v1 +

fR

a
v2 +Rv3

)

Step 4
Using Equation (5.36) on the previous page for derivative transformation, and the expressions
for qis in Step 3, we get

∂q1
∂y1

=
1

R

∂q1
∂z1

− z1z2
a2R

∂q1
∂z2

where

∂q1
∂z1

= R2

[
ρ

∂

∂z1
(z1v1) + z1v1

∂ρ

∂z1

]
= R2

[
ρ

(
z1

∂v1
∂z1

+ v1

)
+ z1v1

∂ρ

∂z1

]

∂q1
∂z2

= R2

[
ρ

∂

∂z2
(z1v1) + z1v1

∂ρ

∂z2

]
= R2

[
ρz1

∂v1
∂z2

+ z1v1
∂ρ

∂z2

]
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∂q2
∂y2

= −a
∂q2
∂z2

+ f
∂q2
∂z3

where

∂q2
∂z2

= ρ
∂

∂z2

(
z1z2
a3︸ ︸
≡b

v1 −
v2
a

)
+

( q2/ρ︷ ︸︸ ︷
bv1 −

v2
a

)
∂ρ

∂z2

= ρ

[
z1
a3

(
z2

∂v1
∂z2

+ v1

)
− 1

a

∂v2
∂z2

]
+

q2
ρ

∂ρ

∂z2

∂q2
∂z3

= ρ
∂

∂z3

(
bv1 −

v2
a

)
+

q2
ρ

∂ρ

∂z3
= ρ

(
b
∂v1
∂z3

− 1

a

∂v2
∂z3

)
+

q2
ρ

∂ρ

∂z3

∂q3
∂y3

=
1

R

∂q3
∂z3

where

∂q3
∂z3

= ρ
∂

∂z3

(
− bfRv1 +

fR

a
v2 +Rv3

)
+

( q3/ρ︷ ︸︸ ︷
−bfRv1 +

fR

a
v2 +Rv3

)
∂ρ

∂z3

= ρ

(
−bfR

∂v1
∂z3

+
fR

a

∂v2
∂z3

+R
∂v3
∂z3

)
+

q3
ρ

∂ρ

∂z3

The above set of equations, derived in Steps 1–4, represents the equation of continuity in
helical coordinates. By gathering expressions for ∂qi/∂yj s from this set, and substituting
them in Equation (5.37) on the previous page, we can obtain the helical continuity equation.
Doing so, however, would result in a messy form of the equation, and be prone to errors. Since
a sophisticated differential equation such as this one will have to be integrated numerically, a
better strategy is to order the equations obtained in Steps 1–4 such that when each equation
is evaluated (for the left-hand term), the right-hand side terms are always known. Thus,
equations ordered in this way can be sequentially evaluated beginning with the first equation.

Ordered Set of Transformed Equations
Arranged in the aforementioned order of evaluation, the set of equations representing the
helical continuity equation is as follows:

∂q1
∂z1

= R2

[
ρ

(
z1

∂v1
∂z1

+ v1

)
+ z1v1

∂ρ

∂z1

]
∂q1
∂z2

= R2

[
ρz1

∂v1
∂z2

+ z1v1
∂ρ

∂z2

]
∂q1
∂y1

=
1

R

∂q1
∂z1

− z1z2
a2R

∂q1
∂z2

b =
z1z2
a3
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q2 = ρ
(
bv1 −

v2
a

)
∂q2
∂z2

= ρ

[
z1
a3

(
z2

∂v1
∂z2

+ v1

)
− 1

a

∂v2
∂z2

]
+

q2
ρ

∂ρ

∂z2

∂q2
∂z3

= ρ

(
b
∂v1
∂z3

− 1

a

∂v2
∂z3

)
+

q2
ρ

∂ρ

∂z3

∂q2
∂y2

= −a
∂q2
∂z2

+ f
∂q2
∂z3

q3 = ρ

(
−bfRv1 +

fR

a
v2 +Rv3

)
∂q3
∂z3

= ρ

(
−bfR

∂v1
∂z3

+
fR

a

∂v2
∂z3

+R
∂v3
∂z3

)
+

q3
ρ

∂ρ

∂z3

∂q3
∂y3

=
1

R

∂q3
∂z3

∂ρ

∂t
= − 1

z1R

(
∂q1
∂y1

+
∂q2
∂y2

)
− ∂q3

∂y3
(5.37)

In the ordered set of equations above, Equation (5.37) is evaluated in the end. Its evaluation
yields the left-hand side derivative needed for the numerical integration of the continuity
equation in helical coordinates.

�

5.3 Laplace Transformation
It is an integral transformation defined as

F (s) =

∞∫
0

f(t)e−st dt

︸ ︷︷ ︸
≡L[f(t)]

(5.38)

where (i) F (s) is called the Laplace transform of the function f(t) in the t-domain, (ii) s
is the variable of the Laplace transform domain, and the inverse of time, and (iii) L is the
Laplace transform operator.

The motivation behind Laplace transformation is to have a simpler solution of equations in
the s-domain than that in the original t-domain. Once a solution is obtained in the s-domain,
the inverse Laplace transform provides the actual solution in the t-domain. This objective
is indeed achievable for a large class of linear differential equations used in process control.

Laplace transformation of linear differential equations results in algebraic equations which
are easier to solve. Moreover, the algebraic equations are made of transfer functions, which
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help characterize the solution, i.e., the response of the system modeled by the differential
equations. The inverse Laplace transformation of the solution of algebraic equations yields
the actual solution.

5.3.1 Examples
We will derive the Laplace transforms of some simple functions using the definition given by
Equation (5.38) on the previous page.

Unit Step Function

This function is defined as

u(t) =

{
0, t < 0

1, t ≥ 0

The Laplace transform of u(t) is given by

L[u(t)] =

∞∫
0

u(t)e−st dt =

[
−e−st

s

]∞
0

=
1

s

Pulse Function

This function is defined as

f(t) =

{
0, t < 0, t > T

H, 0 ≤ t ≤ T

The Laplace transform of f(t) is given by

L[f(t)] =

∞∫
0

f(t)e−st dt =

T∫
0

He−stdt =

[
−He−st

s

]T
0

=
H

s

[
1− e−sT

]

Unit Pulse Function

Also known as the Dirac delta function, this function is defined as

δ(t) = lim
T→0

⎧⎨
⎩
0, t < 0, t > T

1

T
, 0 ≤ t ≤ T

The Laplace transform of δ(t) is given by

L[δ(t)] =

∞∫
0

δ(t)e−st dt =
limT→0

T∫
0

1

T
e−stdt =

limT→0

[
−e−st

sT

]T
0

=
limT→0

1− e−sT

sT
= 1
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Sine Wave

From Euler’s formulas [see p. 327], a sine wave of unit amplitude, and frequency ω is given
by

sin(ωt) =
eiωt − e−iωt

2i

The Laplace transform of sin(ωt) is given by

L[sin(ωt)] =

∞∫
0

eiωt − e−iωt

2i
e−st dt =

1

2i

[
−e−(s−iω)t

s− iω
+

e−(s+iω)t

s+ iω

]∞
0

=
1

2i

[
− 0− 1

s− iω
+

0− 1

s+ iω

]
=

ω

s2 + ω2

An Exponential Function

Given an exponential function, tne−at, its Laplace transform is obtained using its definition
followed by integration by parts [see p. 327] as follows.

L
[
tne−at

]
=

∞∫
0

tne−ate−st dt =
[
tn
∫

e−(s+a)t dt
]∞
0

−
∞∫
0

[
ntn−1

∫
e−(s+a)t dt

]
dt

= −
[
tne−(s+a)t

s+ a

]∞
0

+
n

s+ a

∞∫
0

tn−1e−(s+a)t dt

= −
[
tne−(s+a)t

s+ a

]∞
+

n

s+ a

∞∫
0

tn−1e−ate−st dt

Applying L’Hôpital’s rule [see p. 326] successively to the first term on the right-hand side of
the last equation, we get[

tne−(s+a)t

s+ a

]∞
=

[
ntn−1

(s+ a)2e(s+a)t

]∞
=

[
n(n− 1)tn−2

(s+ a)3e(s+a)t

]∞
= · · ·

=

[
n!

(s+ a)n+1e(s+a)t

]∞
= 0

Therefore,

L
[
tne−at

]
=

(
n

s+ a

)
L
[
tn−1e−at

]
=

(
n

s+ a

)(
n− 1

s+ a

)
L
[
tn−2e−at

]
= · · ·

=
n!

(s+ a)n
L
[
e−at

]
=

n!

(s+ a)n+1

Table 5.1 on the next page lists Laplace transforms of some common functions.
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Table 5.1 Laplace transforms of some common functions

f(t) F (s) f(t) F (s)

δ(t) 1 u(t)
1

s

tn
n!

sn+1
(n = 1, 2, . . . ) tne−at n!

(s+ a)n+1

sin(ωt)
ω

s2 + ω2
cos(ωt)

s

s2 + ω2

e−at sin(ωt)
ω

(s+ a)2 + ω2
e−at cos(ωt)

s+ a

(s+ a)2 + ω2

sinh(ωt)
ω

s2 − ω2
cosh(ωt)

s

s2 − ω2

5.3.2 Properties of Laplace Transforms
Properties of Laplace transforms are as follows.

Linearity

Given two constants, a and b,

L[af(t) + bg(t)] = aF (s) + bG(s)

This property can be proved by using the definition of the Laplace transform.

Real Differentiation Theorem

According to this theorem, the Laplace transform of the derivative of a function is an algebraic
expression given by

L
[

df(t)
dt

]
= sF (s)− f(0)

Proof
Using the definition of the Laplace transform, and integration by parts, we get
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L
[

df(t)
dt

]
=

∞∫
0

df(t)
dt

e−st dt =
[
e−stf(t)

]∞
0

−
∞∫
0

−se−stf(t) dt

=
[
0− f(0)

]
+ s

∞∫
0

e−stf(t) dt = sF (s)− f(0)

Similarly, the Laplace transform of the second derivative of a function is given by

L
[

d2f(t)
dt2

]
= L

[
d
dt

(
df
dt

)]
= sL

[
df
dt

]
−
[

df
dt

]
t=0

= s
[
sF (s)− f(0)

]
−
[

df
dt

]
t=0

= s2F (s)− sf(0)−
[

df
dt

]
t=0

In general, the Laplace transform of the nth derivative of a function is given by

L
[

dnf(t)
dtn

]
= snF (s)− sn−1f(0)− sn−2

[
df
dt

]
t=0

− sn−3

[
d2f
dt2

]
t=0

− · · · −
[

dn−1f

dtn−1

]
t=0

(5.39)

Zero-Valued, Initial Steady State Condition
If at t = 0 the function is zero as well as at steady state then

L
[

dnf(t)
dtn

]
= snF (s)

The above transform does not involve any initial value of the function or its derivatives with
respect to t.

Real Integration Theorem

According to this theorem, the Laplace transform of the integral of a function is an algebraic
expression given by

L
[ t∫

0

f(t)dt
]

=
1

s
F (s)
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Proof
Using the definition of the Laplace transform, and integration by parts, we get

L
[ t∫

0

f(t) dt
]

=

∞∫
0

[ t∫
0

f(t) dt × e−st

]
dt

=

[ t∫
0

f(t) dt
∫

e−st dt
]∞
0

−
∞∫
0

[
f(t)

∫
e−st dt

]
dt

= −
[
e−st

s

t∫
0

f(t) dt
]∞
0

+
1

s

∞∫
0

f(t)e−st dt

= −0 +
1

s

t∫
0

f(t) dt

lim t→0

+
1

s
L[f(t)] =

F (s)

s

Similarly, the Laplace transform of the double integral of the function is given by

L
[ t∫

0

t∫
0

f(t) dt dt
]

=

∞∫
0

[ t∫
0

t∫
0

f(t) dt dt × e−st

]
dt

=

[ t∫
0

t∫
0

f(t) dt dt
∫

e−st dt
]∞
0

−
∞∫
0

[ t∫
0

f(t) dt
∫

e−st dt
]

dt

= −
[
e−st

s

t∫
0

t∫
0

f(t) dt dt
]∞
0

+
1

s

∞∫
0

[ t∫
0

f(t) dt
]
e−st dt

= 0 +
1

s
L
[ t∫

0

f(t) dt
]

=
F (s)

s2

In general, the Laplace transform of the nth integral of the function is given by

L
[ t∫

0

t∫
0

· · ·
t∫

0

f(t) · · · dtn
]

=
F (s)

sn

Real Translation Theorem

According to this theorem, the Laplace transform of a function with a time delay td is given
by

L[f(t− td)] = e−stdF (s) (5.40)
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Proof
Applying the definition of the Laplace transform, and introducing τ ≡ t− td, we get

L[f(t− td)] =

∞∫
0

f(t− td)e
−st dt =

∞∫
−td

f(τ)e−s(td+τ) dτ

Since f(τ) = 0 for τ < 0 (i.e., t < td), and td is a constant, the above equation simplifies to

L[f(t− td)] = e−std

∞∫
0

f(τ)e−sτ dτ = e−stdF (s)

Initial Value Theorem

This theorem relates the initial value of a function to an s-domain expression as

f(t)
lim t→0

= sF (s)
lim s→∞

Proof

lim
s→∞ sF (s) = lim

s→∞ s

∞∫
0

f(t)e−st dt = lim
s→∞

{[
sf(t)

e−st

−s

]∞
0

− s

∞∫
0

df
dt

e−st

−s
dt
}

= lim
t→0

f(t) +

∞∫
0

df
dt

(
lim
s→∞ e−st

)
dt

︸ ︷︷ ︸
=0

= lim
t→0

f(t)

Final Value Theorem

This theorem relates the final value of a function to an s-domain expression as

f(t)
lim t→∞

= sF (s)
lim s→0

Proof

lim
s→0

sF (s) = lim
s→0

s

∞∫
0

f(t)e−st dt = lim
s→0

{[
sf(t)

e−st

−s

]∞
0

− s

∞∫
0

df
dt

e−st

−s
dt
}

= f(0) +

∞∫
0

df
dt

(
lim
s→0

e−st
)

dt = f(0) +

∞∫
0

df
dt

dt = f(0) +
[
f(t)

]∞
0

= lim
t→∞ f(t)
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5.3.3 Solution of Linear Differential Equations
Linear differential equations are made of additive terms that are linear functions of the
dependent variables, and their derivatives with respect to the independent variables. Such
an equation gets converted to an algebraic equation upon taking the Laplace transform.
This algebraic equation yields the s-domain solution. With the help of the inverse Laplace
transform, this solution is converted to the t-domain solution.

Example 5.3.1

Obtain the Laplace transform of the following differential equation:

a
d2y
dt2

+ b
dy
dt

+ cy = dx, y(0) =

[
dy
dt

]
t=0

= 0

where a, b, c and d are constants.

Solution
Taking Laplace transform on both sides of the above differential equation, we get

L
[
a

d2y
dt2

+ b
dy
dt

+ cy

]
= L[dx]

Because of the linearity property of Laplace transforms, the above equation becomes

aL
[

d2y
dt2

]
+ bL

[
dy
dt

]
+ cL[y] = dL[x]

Using the real differentiation theorem [Equation (5.39), p. 165], we get

a

{
s2Y (s)− sy(0)−

[
dy
dt

]
t=0

}
+ b[sY (s)− y(0)] + cY (s) = dX(s)

where X(s) and Y (s) denote, respectively, the Laplace transforms of x(t) and y(t). Note that
the above equation is algebraic. We apply the initial conditions, and rearrange the result to
obtain the s-domain solution, i.e.,

Y (s)︸︷︷︸
output

variable

=

(
d

as2 + bs+ c

)
︸ ︷︷ ︸

transfer
function

×X(s)︸ ︷︷ ︸
input

variable

(5.41)

In the above equation, Y and X are the s-domain counterparts of y (system output), and x
(input function) in the t-domain. The coefficient of X is called transfer function.

�

In general, the Laplace transform of a linear differential equation results in an explicit s-
domain solution. It requires to be transferred to the original t-domain of interest. Hence, in
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Example 5.3.1 on the previous page, if x is the unit step function u(t), which signifies a unit
value for t ≥ 0, then X(s) = 1/s and

Y (s) =
d

as2 + bs+ c
× 1

s

Taking the inverse Laplace transform of the above equation, we get

y(t) = L−1[Y (s)] = L−1

[
d

as2 + bs+ c
× 1

s

]
where y is the desired solution of the differential equation in the t-domain. The evaluation of
the inverse Laplace transform requires its argument, i.e., Y (s), expressed in terms of partial
fractions. Their inverse Laplace transforms are readily obtained from previous results [see
Table 5.1, p. 164].

Solution Procedure

The following steps summarize the procedure to solve a linear differential equation using
Laplace transforms:

1. Take the Laplace transform of the differential equation.

2. Get the solution in the s-domain.

3. Express the solution in terms of partial fractions.

4. Take the inverse Laplace transform (L−1) of the partial fractions to obtain the final
solution in the t-domain.

Obtaining Partial Fractions and Inverse Laplace Transforms

The s-domain solution Y (s) is of the form A(s)/B(s), where A(s) and B(s) are polynomials
of s. Based on the roots (r1, r2, . . . , rn) of B(s), Y (s) is expressed as the sum of partial
fractions comprising factors (s− r1), (s− r2), . . . , (s− rn) in their denominators. The
procedure to obtain partial fractions, and the final solution depends on whether or not the
roots repeat.

Non-Repeating Roots
When the roots of B(s) are distinct, Y (s) is expressible as

Y (s) ≡ A1

s− r1
+

A2

s− r2
+ · · · An

s− rn
(5.42)

where the coefficients Ais are given by

Ai = (s− ri)Y (s)
lim s→ri

, i = 1, . . . , n (5.43)

Utilizing Table 5.1 on p. 164, the inverse Laplace transform of Equation (5.42) above yields

y(t) = A1e
r1t +A2e

r2t + · · ·Ane
rnt
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which is the desired t-domain solution of the differential equation.

Repeating Roots
If m out of the n roots of B(s) repeat (i.e., have the same value) then

Y (s) ≡
n−m∑
i=1

Ai

s− ri
+

Ã1

(s− r)m
+

Ã2

(s− r)m−1
+ · · ·+ Ãm

s− r
(5.44)

where r is the value of the repeating roots, and the coefficients Ãis are given by

Ã1 = (s− r)mY (s)
lim s→r

and Ãi =
1

(i− 1)!

d(i−1)

ds(i−1)

[
(s− r)mY (s)

]
lim s→r

i = 2, 3, . . . ,m (5.45)

Utilizing Table 5.1 on p. 164, the inverse Laplace transform of Equation (5.44) above yields

y(t) =
n−m∑
i=1

Aie
rit +

[
Ã1t

m−1

(m− 1)!
+

Ã2t
m−2

(m− 2)!
+ · · ·+ Ãm

]
ert (5.46)

Example 5.3.2

Using Laplace transforms, solve the differential equation of Example 5.3.1 on p. 168 for
a = 1, b = 3, c = 2, d = 1 and x = 2.

Solution
For x = 2, X(s) = 2/s. Using Equation (5.41) on p. 168, and substituting for X(s), we get

Y (s) =
2d

s(as2 + bs+ c)︸ ︷︷ ︸
B(s)

=
2

s(s2 + 3s+ 2)

where the roots of B(s) are r1 = 0, r2 = −1 and r3 = −2, which are all distinct. Using
Equation (5.42) on the previous page, we get

Y (s) =
2

s(s+ 1)(s+ 2)
≡ A1

s
+

A2

s+ 1
+

A3

s+ 2

where, from Equation (5.43),

A1 =
2

(s+ 1)(s+ 2)
lim s→0

= 1

A2 =
2

s(s+ 2)
lim s→−1

= −2
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A3 =
2

s(s+ 1)
lim s→−2

= 1

The solution y(t) is given by the inverse Laplace transform of Y (s). With the help of
Table 5.1 on p. 164, we obtain

y(t) = L−1[Y (s)] = u(t)− 2e−t + 2e−2t

�

Example 5.3.3

Using Laplace transforms, solve the differential equation of Example 5.3.1 on p. 168 for
a = 1, b = 4, c = 4 and d = 1.

Solution
Here the roots of B(s) are r1 = 0 and two repeating roots r2 = r3 = −2. From
Equation (5.44) on the previous page with m = 2,

Y (s) =
2

s(s+ 2)2
≡ A1

s
+

Ã1

(s+ 2)2
+

Ã2

s+ 2

Using Equation (5.43) on p. 169 for the non-repeating root r1,

A1 =
2

(s+ 2)2
lim s→0

=
1

2

Using Equation (5.45) on the previous page for the repeating roots r1 and r2,

Ã1 =
2

s
lim s→−2

= −1 and

Ã2 =
1

1!

d
ds

(
2

s

)
lim s→−2

= − 2

s2
lim s→−2

= −1

2

The solution y(t) is given by the inverse Laplace transform of Y (s). With the help of
Table 5.1, we obtain

y(t) = L−1[Y (s)] =
u(t)

2
−
(
t+

1

2

)
e−2t

�

Example 5.3.4

Using Laplace transforms, solve the differential equation of Example 5.3.1 on p. 168 for
a = 1, b = −2, c = 5 and d = 20.
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Solution
Here the roots of B(s) are r1 = 0, r2 = −1 + 2i and r3 = −1− 2i, which are all distinct.
The last two roots are complex. From Equation (5.42) on p. 169,

Y (s) =
20

s(s+ 1− 2i)(s+ 1 + 2i)
≡ A1

s
+

A2

s+ 1− 2i
+

A3

s+ 1 + 2i

Using Equation (5.43) on p. 169,

A1 =
20

(s+ 1− 2i)(s+ 1 + 2i)
lim s→0

= 4

A2 =
20

s(s+ 1 + 2i)
lim s→−1+2i

= −2 + i

A3 =
20

s(s+ 1− 2i)
lim s→−1−2i

= −2− i

Thus, the solution is given by the inverse Laplace transform of Y (s), i.e.,

y(t) = L−1[Y (s)] = 4u(t) + (−2 + i)e(−1+2i)t + (−2− i)e(−1−2i)t

The above solution has exponential function with complex powers, which is related to
sinusoidal functions through Euler’s formulas [see p. 327]. To express the solution in terms
of a sine wave, we rearrange the solution, and use the formulas as follows:

y(t) = 4u(t)− 2e−te2it + ie−te2it − 2e−te−2it − ie−te−2it

= 4u(t)− 2e−t(e2it + e−2it︸ ︷︷ ︸
2 cos(2t)

) + ie−t(e2it − e−2it︸ ︷︷ ︸
2i sin(2t)

)

= 4u(t)− 2e−t
[
2 cos(2t) + sin(2t)

]
In the last equation, dividing and multiplying the last two terms by

√
22 + 12, we get

y(t) = 4u(t)− 2e−t

[ sin θ︷ ︸︸ ︷
2√

22 + 12
cos(2t) +

cos θ︷ ︸︸ ︷
1√

22 + 12
sin(2t)

]√
22 + 12

where θ = tan−1(2/1) = 1.1072 rad or 63.44◦. Utilizing the trigonometric identity

sin(p+ q) = sin p cos q + cos p sin q

we finally obtain

y(t) = 4u(t)− 2
√
5e−t sin(2t+ θ)

Thus, if t is in s, the solution has a sinusoidal term with angular frequency ω = 2 s−1, and
time lag θ = 63.44◦.

�
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Transformation to Deviation Variables

So far, we have solved linear differential equations with zero-valued, initial steady
state conditions, which simplified the involved Laplace transforms. For linear differential
equations with non-zero initial conditions, the same simplification can be achieved by
transforming the dependent variables to deviation variables.

Given a dependent variable z(t) of a differential equation, a deviation variable is defined
as the difference of z(t) from its initial value, i.e.,

ž(t) ≡ z(t)− z(0) (5.47)

From the above definition,

ž(0) = 0 and
dkž
dtk

=
dkz
dtk

; k = 1, 2, . . .

Thus, the initial value of a deviation variable is zero. Moreover, its derivative is the same as
that of the dependent variable. We utilize these results in a general linear differential equation

an
dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a0y(t) =

bm
dmx(t)

dtm
+ bm−1

dm−1x(t)

dtm−1
+ · · ·+ b0x(t) + c (5.48)

where n ≥ m for linear differential equations describing real-world processes.
Let x̌(t) and y̌(t) be the deviation variables, respectively, for x(t) and y(t). Then in the

above differential equation, the substitution of (i) x̌(t) + x(0) for x, (ii) y̌(t) + y(0) for y,
(iii) the derivatives of x̌ and y̌ for those of x and y, respectively, and (iv) the result obtained
from the differential equation at the initial steady state, i.e.,

a0y(0) = b0x(0) + c

yields

an
dny̌(t)

dtn
+ an−1

dn−1y̌(t)

dtn−1
+ · · ·+ a0y̌(t) =

bm
dmx̌(t)

dtm
+ bm−1

dm−1x̌(t)

dtm−1
+ · · ·+ b0x̌(t)

Note that the initial condition of the above differential equation is y̌(0) = x̌(0) = 0. The
Laplace transform of the equation yields

Y̌ (s) =

(
bmsm + bm−1s

m−1 + · · ·+ b0
ansn + an−1sn−1 + · · ·+ a0

)
X̌(s) ≡ A(s)

B(s)

From the above equation, y̌(t) is obtainable as usual from Equations (5.42)–(5.46) on p. 169–
170. Then from the definition of y̌(t), the solution of Equation (5.48) above is given by

y(t) = y̌(t) + y(0)
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Handling Time Delays

Process models can involve functions with time delays. A simple example is liquid flow rate at
a tank inlet. Any change in the flow rate appears after a certain time duration (delay) required
by the liquid to travel the distance between the pump (which varies the flow rate), and the
tank. If the distance is large then the delay might be large enough to be taken into account.

As illustrated in Figure 5.6 below, a function y with a time delay td is expressible as
y(t− td) by shifting the t-axis such that initial function value (yi) is at the zero shifted time,
i.e., (t− td).

yi

0 td
t →

y(t)

yi

td
t →

y(t)

yi

0

(t− td) →

y(t− td)

Figure 5.6 Representation of a function y(t) with a time lag td as y(t− td)

Laplace transformation of a function with time delay involves the application of the real
translation theorem [Equation (5.40), p. 166], as shown in the following example.

Example 5.3.5

Find the Laplace transform of the function

y(t) = u(t− 5)

[
1− exp

(
− t− 5

7

)]

Solution
The function has a delay of 5 units of time. Applying the Laplace transformation, we get

Y (s) = L
[
u(t− 5)

(
1− e−

t−5
7

)
︸ ︷︷ ︸

≡ z(t−5)

]
= L[z(t− 5)]

Then according to the real translation theorem

Y (s) = e−5sL[z(t)] = e−5sL
[
u(t)

(
1− e−

t
7

)]
= e−5s

{
L[u(t)]− L

[
u(t)e−

t
7

]}
= e−5s

{
1

s
− 1

s+ 1
7

}
=

e−5s

s(7s+ 1)

�
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Solving Linear Differential Equations with Time Delays
When using Laplace transforms to solve such an equation, the real translation theorem is
applied as shown in the last example. This results in a multiplicative exponential delay term,
which is retained until the inverse Laplace transformation is carried out. The real translation
theorem is applied again to get the solution. The following example illustrates this procedure.

Example 5.3.6

Using Laplace transforms, solve the following differential equation:

dy(t)
dt

+ 3y(t) = u(t− 2), y(0) = 0

Solution
Applying the Laplace transformation to the above differential equation, we get

sY (s) + 3Y (s) = e−2s 1

s

Rearranging the above equation yields

Y (s) = e−2s

[
1

s(s+ 3)

]
= e−2s

[
A1

s
+

A2

s+ 3

]
In the above equation, we have set the delay term e−2s aside, and expressed the remaining
terms in the square brackets as partial fractions. Using Equation (5.43) on p. 169, we obtain

A1 =
1

s+ 3
lim s→0

=
1

3
and A2 =

1

s
lim s→−3

= −1

3

Thus, we have

Y (s) = e−2s

[
1

3s
− 1

3(s+ 3)︸ ︷︷ ︸
≡Y1(s)

]
= e−2sY1(s) (5.49)

Now the inverse Laplace transform of Y1(s) as indicated above is

y1(t) =
1

3
u(t)− 1

3
e−3t =

u(t)

3

[
1− e−3t

]
Since Y (s) = e−2sY1(s) from Equation (5.49) above, the inverse Laplace transform of Y (s)
is the solution

y(t) = L−1

[
e−2sY1(s)

]
︸ ︷︷ ︸

= y1(t − 2)

from real translation
theorem

=
u(t− 2)

3

[
1− e−3(t−2)

]

Thus, because of the delayed input function u(t− 2), the solution y(t) is delayed
accordingly.

�
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Simultaneous Differential Equations

Laplace transformation can be used to obtain the solution of simultaneous linear differential
equations. Essentially, the transformed equations are linear and algebraic. They are
manipulated to obtain the expression in terms of partial fractions for each dependent variable
in the Laplace domain. Then the inverse Laplace transforms of the expressions yield the
overall solution in the time domain. The following example illustrates this procedure.

Example 5.3.7

A CSTR carries out a reversible reaction

A
k0

k1

B

where k0 and k1 are the forward and backward reaction rate coefficients. The concentrations
of species A and B, respectively, c0 and c1 in the reactor are given by

dc0
dt

= f(c̃0 − c0)− k0c0 + k1c1, c0(0) = c̄0

dc1
dt

= f(c̃1 − c1)− k1c1 + k0c0, c1(0) = c̄1

where f is the volumetric flow rate per unit volume of the reaction mixture, and c̃0 and c̃1 are,
respectively, the feed concentrations of A and B. Using Laplace transforms, find c0(t) for the
parameters given in Table 5.2 below.

Table 5.2 Values of parameters for the CSTR of Example 5.3.7

parameter value parameter value

f 0.2 s−1 c̃0 1 kmolm−3

c̃1 0 kmolm−3 c̄0, c̄1 0 kmolm−3

k0 200 s−1 k1 10 s−1

Solution
The above differential equations are linear, and therefore can be solved using Laplace
transformation. Taking Laplace transforms of these equations, we get

s C0︸ ︸
L[c0]

− c̄0 =
f c̃0
s

− (f + k0)C0 + k1C1 ⇒ C0 =
c̄0 +

f c̃0
s

+ k1C1

s+ f + k0︸ ︷︷ ︸
≡ a0

s C1︸ ︸
L[c1]

− c̄1 =
f c̃1
s

− (f + k1)C1 + k0C0 ⇒ C1 =
c̄1 +

f c̃1
s

+ k0C0

s+ f + k1︸ ︷︷ ︸
≡ a1
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Substituting the expression for C1 into the one for C0, we get after some rearrangement

C0 =
c̄0(s+ a1)

(s+ a0)(s+ a1)− k0k1
+

f c̃0(s+ a1)

s[(s+ a0)(s+ a1)− k0k1]

+
k1c̄1

(s+ a0)(s+ a1)− k0k1
+

fk1c̃1
s[(s+ a0)(s+ a1)− k0k1]

(5.50)

For the purpose of illustration, let us assume that the values of a0, a1, k0 and k1 are such
that the roots of the quadratic, (s+ a0)(s+ a1)− k0k1, in the above equation, are non-zero
and distinct. In terms of these roots, namely,

s0,1 =
−(a0 + a1)±

√
(a0 + a1)2 − 4(a0a1 − k0k1)

2
(5.51)

we can express the right-hand side of Equation (5.50) above as the sum of partial fractions
using the formula for distinct roots. For example, the last term of that equation can be
expressed as

fk1c̃1
s(s− s0)(s− s1)

≡ A

s
+

B

s− s0
+

C

s− s1
where

A =
lim s→0

[
fk1c̃1

(s− s0)(s− s1)

]
=

fk1c̃1
s0s1

B =
lim s→s0

[
fk1c̃1

s(s− s1)

]
=

fk1c̃1
s0(s0 − s1)

C =
lim s→s1

[
fk1c̃1

s(s− s0)

]
=

fk1c̃1
s1(s1 − s0)

Note that the inverse Laplace transform of the last term of Equation (5.50) is

A+Bes0t + Ces1t

Expressing the remaining right-hand side terms of Equation (5.50) as partial fractions, and
taking the inverse Laplace of the resulting equation, we obtain

c0(t) =
f [c̃0(s0 + a1) + k1c̃1]

s0s1
+

{
c̄0(s0 + a1) + k1c̄1

s0 − s1
+

f [c̃0(s0 + a1) + k1c̃1]

s0(s0 − s1)

}
es0t

+

{
c̄0(s0 + a1) + k1c̄1

s1 − s0
+

f [c̃0(s0 + a1) + k1c̃1]

s1(s1 − s0)

}
es1t

For the parameters given in Table 5.2 on the previous page, s0 = −0.2 and s1 = −210.2 from
Equation (5.51) above. Note that these roots are non-zero and distinct as assumed. Using these
roots and parameters, we finally obtain

c0(t) = 4.7574× 10−2 − 4.7619× 10−2e−0.2t − 4.5308× 10−5e−210.2t

which is the desired expression for the concentration of species A in the reactor. The
concentration of the other species can be found in the similar manner.

�
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5.4 Miscellaneous Transformations
In addition to the major transformations presented above, there are some useful ones, which
help with the handling of equations in process models. These transformations are as follows.

5.4.1 Higher Order Derivatives
Consider the nth order ordinary differential equation of the form

dy0
dt

= f

(
dny0
dtn

,
dn−1y0
dtn−1

, . . . ,
d3y0
dt3

,
d2y0
dt2

, y0

)
in which the right-hand side is a function of the dependent variable, and its derivatives of
order higher than one. With the introduction of

y1 ≡ dy0
dt

y2 ≡ dy1
dt

=
d2y0
dt2

y3 ≡ dy2
dt

=
d2y1
dt2

=
d3y0
dt3

...
...

...

yn ≡ dyn−1

dt
=

d2yn−1

dt2
= · · · =

dny0
dtn

the original differential equation gets transformed into the following set of (n+ 1)
differential equations:

dy0
dt

= f(yn, yn−1, . . . , y3, y2, y0)

dy1
dt

= y2

dy2
dt

= y3

...
...

...

dyn
dt

= yn−1

When the initial values of y0 and its derivatives are known, the above set of equations can be
integrated with standard solvers such as Runge–Kutta methods.

5.4.2 Scaling
Consider the set of n ordinary differential equations

dyi
dt

= fi(y0, y1, . . . , yn−1); i = 0, 1, . . . , n− 1 (5.52)
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with yi(0) specified as ȳi for each ith variable. For better handling of errors in yis during
numerical integration with step-size control, we should normalize or scale each dependent
variable yi, based on its maximum expected value.

Let ŷi be the maximum absolute value of yi over the integration interval. The maximum
value may be known a priori, or could be an estimate. Then based on such values, we define
scaled variables as

ỹi ≡ yi
ŷi
; i = 0, 1, . . . , n− 1

Differentiating both sides of the above equations with respect to t, and using Equation (5.52)
on the previous page, we obtain the set of scaled differential equations

dỹi
dt

=
fi
ŷi
; i = 0, 1, . . . , n− 1 (5.53)

where ỹi(0) = ȳi/ŷi is the initial condition of the ith, scaled dependent variable.

5.4.3 Change of Independent Variable
Sometimes it is desired to solve differential equations until a specified value of a dependent
variable is attained. One way to do that is to transform the equations such that the dependent
variable becomes the independent variable.

For example, to render y0 as the independent variable in the set of equations in
Equation (5.52), we invert the first equation of the set, and use the chain rule of differentiation
[Section 8.7.3, p. 319] on the left-hand sides of the remaining equations to obtain

dt
dy0

=
1

f0
and

dyi
dy0

=
fi
f0

; i = 1, 2, . . . , n− 1

The above differential equations can be integrated from ȳ0 to a final value of y0 with t = 0,
and yi = ȳi for i = 1, 2, . . . , (n− 1) as the initial conditions at y0 = ȳ0.

5.4.4 Semi-Infinite Domain
Sometimes we need to solve differential equations in a semi-infinite domain, i.e., with
conditions specified at the infinite value of the independent variable. Consider for example,
the set of following ordinary differential equations:

dy0
dr

= f0(y0, y1); y0(r = ∞) = ŷ0

dy1
dr

= f1(y0, y1); y1(r = 0) = ȳ1

To handle the semi-infinite r-domain [0,∞], we utilize the hyperbolic function

tanh r =
sinh r

cosh r
=

er − e−r

er + e−r

This function has a special property – it is 0 at r = 0, and 1 at r = ∞. Thus, with

s ≡ tanh r
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as the new independent variable, the domain of integration is [0, 1] for the last set of
differential equations. Using the chain rule of differentiation [Section 8.7.3, p. 319],

dyi
dr

=
dyi
ds

ds
dr

=
dyi
ds

(1− tanh2 r︸ ︷︷ ︸
1−s2

); i = 0, 1

With the help of the above result, the differential equations get transformed to

dy0
ds

=
f0

1− s2
; y0(s = 1) = ŷ0

dy1
ds

=
f1

1− s2
; y1(s = 0) = ȳ1

over the finite s-domain of [0, 1].

5.4.5 Non-Autonomous to Autonomous Differential Equation
An autonomous differential equation does not carry the independent variable explicitly, e.g.,

dy0
dt

= y0 − u

On the other hand, the following is a non-autonomous differential equation:

dy1
dt

= y1t− ut2

Any non-autonomous differential equation can be transformed into a set of autonomous
differential equations by prescribing the independent variable as an additional dependent
variable. For example, with the introduction of the new state variable

y2 ≡ t

the non-autonomous differential equation above is transformed into the following set of
autonomous differential equations:

dy1
dt

= y1y2 − uy22 and
dy2
dt

= 1

5.A Differential Operators in an Orthogonal Coordinate System
In this appendix, we derive the expressions for important differential operators in an
orthogonal coordinate system (y1, y2, y3).

5.A.1 Gradient of a Scalar
The differential change in a scalar function F (y1, y2, y3) is given by

dF =
∂F

∂y1
dy1 +

∂F

∂y2
dy2 +

∂F

∂y3
dy3
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The last equation can be written as

dF =
h1dy1
h1

∂F

∂y1
+

h2dy2
h2

∂F

∂y2
+

h3dy3
h3

∂F

∂y3
(5.54)

where his are the scale factors of the orthogonal coordinate system. Now, taking the dot
product of Equation (5.5) on p. 142 with ŷ1, ŷ2 and ŷ3 yields respectively,

h1dy1 = ŷ1 · dx, h2dy2 = ŷ2 · dx, and h3dy3 = ŷ3 · dx.

Upon substituting the last three relations in Equation (5.54) above, we get

dF =

(
ŷ1

1

h1

∂F

∂y1
+ ŷ2

1

h2

∂F

∂y2
+ ŷ3

1

h3

∂F

∂y3

)
· dx (5.55)

But in Cartesian coordinate system (x1, x2, x3),

dF =
∂F

∂x1
dx1 +

∂F

∂x1
dx2 +

∂F

∂x3
dx3

=

(
x̂1

∂F

∂x1
+ x̂2

∂F

∂x2
+ x̂3

∂F

∂x3︸ ︷︷ ︸
∇F

)
· (dx1x̂1 + dx2x̂2 + dx3x̂3︸ ︷︷ ︸

dx

) = ∇F · dx

where the vector ∇F is called the gradient of F . Comparing the last equation with
Equation (5.55) above, we obtain

∇F = ŷ1

1

h1

∂F

∂y1︸ ︷︷ ︸
(∇F )1

+ ŷ2

1

h2

∂F

∂y2︸ ︷︷ ︸
(∇F )2

+ ŷ3

1

h3

∂F

∂y3︸ ︷︷ ︸
(∇F )3

(5.56)

with (∇F )i as the component of ∇F along the yi-direction. Note that ∇ is the gradient
operator given by

∇ = ŷ1

1

h1

∂

∂y1
+ ŷ2

1

h2

∂

∂y2
+ ŷ3

1

h3

∂

∂y3

5.A.2 Divergence of a Vector

The divergence of a vector f is given by ∇ · f . In the orthogonal coordinate system
(y1, y2, y3),

∇ · f =

∇︷ ︸︸ ︷(
ŷ1

1

h1

∂

∂y1
+ ŷ2

1

h2

∂

∂y2
+ ŷ3

1

h3

∂

∂y3

)
·

f︷ ︸︸ ︷
(f1ŷ1 + f2ŷ2 + f3ŷ3)
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Expanding the right-hand side of the last equation, we get

∇ · f =

≡ t11︷ ︸︸ ︷
ŷ1

1

h1
· ∂(f1ŷ1)

∂y1
+

≡ t12︷ ︸︸ ︷
ŷ2

1

h2
· ∂(f1ŷ1)

∂y2
+

≡ t13︷ ︸︸ ︷
ŷ3

1

h3
· ∂(f1ŷ1)

∂y3︸ ︷︷ ︸
≡ t1

+ ŷ1

1

h1
· ∂(f2ŷ2)

∂y1
+ ŷ2

1

h2
· ∂(f2ŷ2)

∂y2
+ ŷ3

1

h3
· ∂(f2ŷ2)

∂y3︸ ︷︷ ︸
≡ t2

+ ŷ1

1

h1
· ∂(f3ŷ3)

∂y1
+ ŷ2

1

h2
· ∂(f3ŷ3)

∂y2
+ ŷ3

1

h3
· ∂(f3ŷ3)

∂y3︸ ︷︷ ︸
≡ t3

(5.57)

We simplify the above equation in the following three steps:

Step 1
Since the magnitude of the unit vector ŷ1 is unity,

ŷ1 · ŷ1︸ ︷︷ ︸
‖ŷ1‖2

= 1

Differentiating both sides of the above equation with respect to yj , we get

∂

∂yj
(ŷ1 · ŷ1) = 0

Expanding the left-hand side of the above equation results in

ŷ1 ·
∂ ŷ1

∂yj
+ ŷ1 ·

∂ ŷ1

∂yj
= 0 ⇒ ŷ1 ·

∂ ŷ1

∂yj
= 0 (5.58)

Step 2
Next, we consider

∂2x

∂y2∂y1
=

∂

∂y2

(
∂x

∂y1︸ ︸
= h1ŷ1

[from Equation (5.3), p. 140]

)
=

∂

∂y2
(h1ŷ1) = h1

∂ ŷ1

∂y2
+ ŷ1

∂h1

∂y2︸ ︷︷ ︸
s1

Similarly,

∂2x

∂y1∂y2
=

∂

∂y1

(
∂x

∂y2︸ ︸
= h2ŷ2

[from Equation (5.3)]

)
= h2

∂ ŷ2

∂y1
+ ŷ2

∂h2

∂y1︸ ︷︷ ︸
s2
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Since the last two mixed partial derivatives are the same, the vectors denoted as s1 and s2 are
the same as well. Equating their dot products with ŷ1, we get

s1 · ŷ1 = s2 · ŷ1 ⇒ h1
∂ ŷ1

∂y2
· ŷ1︸ ︷︷ ︸

=0
[from Equation (5.58), previous page]

+ ŷ1 · ŷ1︸ ︷︷ ︸
=1

∂h1

∂y2
= h2

∂ ŷ2

∂y1
· ŷ1 + ŷ1 · ŷ2︸ ︷︷ ︸

=0

∂h2

∂y1

The above result can be written as

ŷ1 ·
∂ ŷ2

∂y1
=

1

h2

∂h1

∂y2
(5.59)

For i, j ∈ {1, 2, 3}, Equations (5.58) and (5.59) generalize, respectively, to

ŷi ·
∂ ŷi

∂yj
= 0 (including i = j), and (5.60)

ŷi ·
∂ ŷj

∂yi
=

1

hj

∂hi

∂yj
, i �= j (5.61)

Step 3
We now resolve the terms of Equation (5.57) on the previous page as follows.

t11 =
ŷ1

h1
·
(
f1

∂ ŷ1

∂y1
+ ŷ1

∂f1
∂y1

)
=

f1
h1

ŷ1 ·
∂ ŷ1

∂y1︸ ︷︷ ︸
=0

[from Equation (5.60) above]

+
1

h1

∂f1
∂y1

ŷ1 · ŷ1︸ ︷︷ ︸
=1

=
1

h1

∂f1
∂y1

t12 =
ŷ2

h2
·
(
f1

∂ ŷ1

∂y2
+ ŷ1

∂f1
∂y2

)
=

f1
h2

ŷ2 ·
∂ ŷ1

∂y2
+

1

h2

∂f1
∂y2

ŷ2 · ŷ1︸ ︷︷ ︸
=0

With the help of Equation (5.61) above,

t12 =
f1

h1h2

∂h2

∂y1

Similarly, we obtain

t13 =
f1

h1h3

∂h3

∂y1

Thus,

t1 = t11 + t12 + t13 =
1

h1

∂f1
∂y1

+
f1

h1h2

∂h2

∂y1
+

f1
h1h3

∂h3

∂y1

which can be expressed as

t1 =
1

h1h2h3

∂

∂y1
(f1h2h3)
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In the same manner as above, the terms t2 and t3 in Equation (5.57) on p. 182 are obtained as

t2 =
1

h1h2h3

∂

∂y2
(f2h1h3) and t3 =

1

h1h2h3

∂

∂y3
(f3h1h2)

Substituting the tis in Equation (5.57) on p. 182, we finally obtain

∇ · f =
1

h1h2h3

[
∂

∂y1
(f1h2h3) +

∂

∂y2
(f2h1h3) +

∂

∂y3
(f3h1h2)

]
(5.62)

5.A.3 Laplacian of a Scalar
The Laplacian of a scalar function F is given by

∇2F = ∇ · ∇F︸ ︸
≡ g

= ∇ · g

with g =
[
g1 g2 g3

]�. Using Equation (5.62) above,

∇2F = ∇ · g =
1

h1h2h3

[
∂

∂y1
(g1h2h3) +

∂

∂y2
(g2h1h3) +

∂

∂y3
(g3h1h2)

]
In the above equation, we substitute from Equation (5.56) on p. 181,

gi =
1

hi

∂F

∂yi
; i = 1, 2, 3

and obtain

∇2F =
1

h1h2h3

[
∂

∂y1

(
h2h3

h1

∂F

∂y1

)
+

∂

∂y2

(
h1h3

h2

∂F

∂y2

)
+

∂

∂y3

(
h1h2

h3

∂F

∂y3

)]

5.A.4 Curl of a Vector

The curl of a vector f =
[
f1 f2 f3

]� in the orthogonal coordinate system (y1, y2, y3)
is given by

∇× f = ∇× f1ŷ1 +∇× f2ŷ2 +∇× f3ŷ3

Using the identity

∇× ab = a∇× b+∇a× b (5.63)

where a is a scalar, and b is a vector,

∇× f1ŷ1 = ∇×
[
(f1h1)

(
ŷ1

h1

)]
= (f1h1)∇×

(
ŷ1

h1

)
︸ ︷︷ ︸

≡p

+∇(f1h1)×
(
ŷ1

h1

)
︸ ︷︷ ︸

≡q

(5.64)
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In the last equation, the term denoted p vanishes as follows:

p = (f1h1)∇×
(
ŷ1

h1

)
︸ ︷︷ ︸

=∇y1

[from Equation (5.56) on p. 181
with y1 as F ]

= (f1h1)∇×∇y1︸ ︷︷ ︸
= 0

= 0

In the last step, we have used the following result that the curl of a gradient is zero:
From the definition of the cross product [see Equation (8.2), p. 301],

∇×∇f =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

ŷ1 ŷ2 ŷ3

1

h1

∂

∂y1

1

h2

∂

∂y2

1

h3

∂

∂y3

1

h1

∂f

∂y1

1

h2

∂f

∂y2

1

h3

∂f

∂y3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

=

[
1

h2h3

(
∂2f

∂y2∂y3
− ∂2f

∂y3∂y2

)]
ŷ1 −

[
1

h1h3

(
∂2f

∂y1∂y3
− ∂2f

∂y3∂y1

)]
ŷ2

+

[
1

h1h2

(
∂2f

∂y1∂y2
− ∂2f

∂y2∂y1

)]
ŷ3 = 0

due to the equality of mixed partial derivatives.
Using Equation (5.56) on p. 181, and the definition of the cross product of two vectors, we

get the last term of Equation (5.64) on the previous page as

q =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

ŷ1 ŷ2 ŷ3

1

h1

∂(f1h1)

∂y1

1

h2

∂(f1h1)

∂y2

1

h3

∂(f1h1)

∂y3

1

h1
0 0

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
=

1

h1h3

∂(f1h1)

∂y3
ŷ2 −

1

h1h2

∂(f1h1)

∂y2
ŷ3

which is equal to ∇× f1ŷ1. Thus,

∇× f1ŷ1 =
1

h1h2h3

[
∂(f1h1)

∂y3
h2ŷ2 −

∂(f1h1)

∂y2
h3ŷ3

]
Similarly, we obtain

∇× f2ŷ2 =
1

h1h2h3

[
∂(f2h2)

∂y1
h3ŷ3 −

∂(f2h2)

∂y3
h1ŷ1

]
and
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∇× f3ŷ3 =
1

h1h2h3

[
∂(f3h3)

∂y2
h1ŷ1 −

∂(f3h3)

∂y1
h2ŷ2

]

Combining the last three equations, we finally obtain

∇× f =
1

h1h2h3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

h1ŷ1 h2ŷ2 h3ŷ3

∂

∂y1

∂

∂y2

∂

∂y3

h1f1 h2f2 h3f3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
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Exercises
5.1 Find the scale factors of spherical coordinate system.

5.2 Find the expressions for the gradient of a scalar, divergence of a vector, curl of a vector,
and Laplacian of a scalar in spherical coordinate system.

5.3 Derive the equations to transform a position-independent vector from cylindrical
coordinate system to the helical coordinate system of Example 5.2.1 on p. 157.

5.4 Obtain the helical equation of motion for the polymer melt in Example 5.2.1. Assume
that the melt is a Newtonian fluid of constant density and viscosity.
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5.5 Find the concentration of species B as a function of time in Example 5.3.7 on p. 176.

5.6 Prove the following properties of Laplace transforms:

L[tf(t)] = − d
ds

F (s) (complex differentiation theorem)

L
[
eatf(t)

]
= F (s− a) (complex translation theorem)

where F (s) is the Laplace transform of f(t).

5.7 Use Laplace transforms to solve the following differential equation:

dy
dt

+ ay = u(t− d) + u(t− 2d) + · · · , y(0) = 0

5.8 Obtain the Jacobian of scaled differential equations [see Equation (5.53), p. 179] in terms
of the Jacobian of the original differential equations.

5.9 Explain the rationale behind the logarithmic transformation of functions.

5.10 Propose a transformation to solve a set of differential equations with some dependent
variables of very small orders of magnitude.

5.11 Prove the identity given by Equation (5.63) on p. 184.



6
Model Simplification and
Approximation

In this chapter, we present methods to simplify process models as well as to approximate
them. The motivation behind these methods is to render complicated process models more
amenable to solution, or to develop simpler models based on experimental data.

For model simplification, we present the methods of scaling and ordering analysis, and
model linearization. The methods of dimensional analysis, and model fitting are presented
for model approximation.

6.1 Model Simplification
As a general rule, a process model can be simplified by increasing, or moderating
assumptions. Doing that makes one or more terms unnecessary in the model. The elimination
of those terms therefore results in a simpler model.

We can simplify a process model by assuming the following:

1. Steady state condition, which eliminates the time derivatives in the model.
For example, the differential equations of the isothermal CSTR model [Section 4.1.1,
p. 80] get simplified to algebraic equations under the steady state assumption.

2. Insignificant spatial variations in a property, and using its space-averaged, or lumped
value in order to free the model from the corresponding spatial derivatives.
For example, in the model of tapered fin [Section 4.2.3, p. 96], assuming insignificant
variations in T with respect to y, and using the lumped temperature eliminates from
Equation (4.25) on p. 98 the terms having partial derivatives with respect to y. This
results in a simpler model, which consists of an ordinary differential equation.

3. Negligible changes in a property, and treating it as a constant.
For example, in the model of solvent induced heavy oil recovery [see Section 4.2.7,
p. 108], if diffusivity is additionally assumed to be constant then the term involving
the derivative of diffusivity drops out from the solvent mass balance [Equation (4.41),
p. 110].

4. Linearity of certain terms in the model.

Process Modeling and Simulation for Chemical Engineers: Theory and Practice, First Edition. Simant Ranjan Upreti. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/upreti/pms_for_chemical_engineers



190 Process Modeling and Simulation for Chemical Engineers

For example, we can convert the non-linear differential equations to linear differential
equations, which are easier to handle and solve. Linear equations are in fact extensively
used in process control.

However, model simplification is fruitful only when the added, simplifying assumptions
are justified. The criterion for a valid assumption is that the ensuing model predictions should
be satisfactorily close to reality. This is likely to happen when the terms that get eliminated
due to model simplification are sufficiently weak, i.e., their contributions to the model are not
significant enough.

6.1.1 Scaling and Ordering Analysis
This analysis helps in the identification of weak terms in process models. Given a process
model, the variables are scaled with respect to their maximum expected values, and
introduced in the model. The additive terms of the model are compared with each other to
reveal the weak terms for elimination from the model.

Consider the following process model of an isothermal plug flow reactor with axial mixing:

∂c

∂t
= D

∂2c

∂z2
− v

∂c

∂z
− kc2 (6.1)

t = 0 : c = 0 ∀ 0 ≤ z ≤ L (6.2)

z =

⎧⎪⎪⎨
⎪⎪⎩

0 : vc0 = vc−D
∂c

∂z

L :
∂c

∂z
= 0

⎫⎪⎪⎬
⎪⎪⎭ ∀ 0 ≤ t ≤ tf (6.3)

In the above equations, c is reactant concentration, t is time, D is reactant diffusivity, z is
axial variable, v is fluid velocity, k is reaction rate coefficient, L is reactor length, c0 is c at
the reactor inlet, and tf is final time.

We begin the analysis by defining the following scaled variables:

ĉ ≡ c

c0
, t̂ ≡ t

tf
, ẑ ≡ z

L
(6.4)

Observe that the original variables are normalized with respect to their maximum possible
values so that the resulting scaled variables have the maximum value of unity. With the help
of these definitions, the derivatives of c are given by

∂c

∂t
=

∂

∂t
(c0ĉ) = c0

∂c

∂t̂

∂ t̂

∂t︸ ︸
1/tf

=
c0
tf

∂ĉ

∂t̂
(6.5)

∂c

∂z︸ ︸
≡ f

=
∂

∂z
(c0ĉ) = c0

∂c

∂ẑ

∂ ẑ

∂z︸ ︸
1/L

=
c0
L

∂ĉ

∂ẑ
(6.6)

∂2c

∂z2
=

∂f

∂z
=

∂f

∂ẑ

∂ ẑ

∂z
=

(
c0
L

∂2ĉ

∂ẑ2

)
1

L
=

c0
L2

∂2ĉ

∂ẑ2
(6.7)
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For the comparison of terms of the process model later on, we assume that the magnitude of
∂ĉ/∂t̂ is close to the ratio of the overall change in ĉ to that in t̂, i.e., 1/1 or unity. Similarly,
the values of ∂ĉ/∂ẑ and, by extension, ∂2ĉ/∂ẑ2 are close to unity. Thus, the order is unity
for the derivatives involving only the scaled variables.

Substituting the expressions for t, z, c, and the derivatives of c from Equations (6.4)–(6.7)
on the previous page into Equations (6.1)–(6.3), we obtain the following scaled process model
of the reactor:

1

tf

∂ĉ

∂t̂
=

D

L2

∂2ĉ

∂ẑ2
− v

L

∂ĉ

∂ẑ
− kc0ĉ

2 (6.8)

t̂ = 0 : ĉ = 0 ∀ 0 ≤ ẑ ≤ 1

ẑ =

⎧⎪⎪⎨
⎪⎪⎩
0 : v = vĉ− D

L

∂ĉ

∂ẑ

1 :
∂ĉ

∂ẑ
= 0

⎫⎪⎪⎬
⎪⎪⎭ ∀ 0 ≤ t̂ ≤ 1 (6.9)

Equivalent to the original model given by Equations (6.1)–(6.3), the scaled model offers the
advantage of model simplification depending on the relative magnitude of terms in the scaled
equations. To illustrate this, we use the parameter values shown in Table 6.1 below.

Table 6.1 Parameter values for the plug flow reactor

parameter value parameter value

tf 103 s L 70 m

c0 0.2 kmolm−3 k 5.2× 10−3 m3 kmol−1 s−1

D 10−8 ms−2 v 6.4× 10−2 ms−1

Substituting the parameter values of Table 6.1 in Equation (6.8) above, we get

10−3︸ ︷︷ ︸
1
tf

·
[
∂ĉ

∂t̂

]
= 2× 10−12︸ ︷︷ ︸

D
L2

·
[
∂2ĉ

∂ẑ2

]
− 9.1× 10−4︸ ︷︷ ︸

v
L

·
[
∂ĉ

∂ẑ

]
− 10−3︸ ︷︷ ︸

kc0

·
[
ĉ2
]

where the bracketed terms are of order unity. Upon rearranging the above equation as

∂ĉ

∂t̂
= 2× 10−9 ·

[
∂2ĉ

∂ẑ2

]
︸ ︷︷ ︸

smallest term

− 9.1× 10−1 ·
[
∂ĉ

∂ẑ

]
−

[
ĉ2
]

(6.10)

we observe that the second term of the above equation is the smallest of all the terms. In fact,
that term is significantly smaller – by at least eight orders of magnitude – than the rest of the
terms in the equation. Thus, the relative contribution of the second term being negligible, it
can be ignored and eliminated from the equation.
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Substituting the parameter values of Table 6.1 on the previous page in the first boundary
condition (for ẑ = 0 and 0 ≤ t̂ ≤ 1) in Equation (6.9), we get

6.4× 10−2︸ ︷︷ ︸
v

= 6.4× 10−2︸ ︷︷ ︸
v

· [ĉ] − 1.4× 10−10︸ ︷︷ ︸
D
L

·
[
∂ĉ

∂ẑ

]

which can be rearranged as

1 = [ĉ] − 2.2× 10−9 ·
[
∂ĉ

∂ẑ

]

In the above equation, the last term is significantly smaller – by nine orders of magnitude –
than the rest of the terms, and can therefore be eliminated.

With the aforementioned eliminations, the scaled model of the reactor simplifies to

1

tf

∂ĉ

∂t̂
= − v

L

∂ĉ

∂ẑ
− kc0ĉ

2 (6.11)

t̂ = 0 : ĉ = 0 ∀ 0 ≤ ẑ ≤ 1

ẑ =

⎧⎨
⎩
0 : ĉ = 1

1 :
∂ĉ

∂ẑ
= 0

⎫⎬
⎭ ∀ 0 ≤ t̂ ≤ 1

Remarks
It must be noted that the above model simplification rests on the assumption that the involved
derivatives are sufficiently close to unity. If, for example, ∂2ĉ/∂ẑ2 at some ẑ > 0 is very high,
say, of the order 109, then the second term of Equation (6.10) on the previous page would not
be negligible but comparable to other terms. The elimination of this term would then render
the model predictions erroneous.

In general, before accepting a simplified model, its predictions should be carefully
analyzed, and checked against experimental data. Seemingly negligible terms of a model
can become significant during the process if there are (i) coupled equations that influence
dependent variables strongly, and (ii) combinations of variables and parameters that can
change by several orders of magnitude.

Further Simplification

If the reactor has to run continuously for many months (as is normal in chemical plants) then
Equation (6.11) above could be further simplified after a certain time duration. For example,
when tf = 106 s (i.e., 11.6 days), that equation becomes

10−3 ·
[
∂ĉ

∂t̂

]
= − 9.1× 10−1 ·

[
∂ĉ

∂ẑ

]
−

[
ĉ2
]

in which the first term is at least two orders of magnitude smaller than the remaining terms,
and could be ignored. In other words, the reactor may be assumed to be under steady state
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after 11.6 days from the startup, and describable by

∂ĉ

∂ẑ
= −kLc0

v
ĉ2

ẑ =

⎧⎨
⎩
0 : ĉ = 1

1 :
∂ĉ

∂ẑ
= 0

Note that the above set of equations constitutes a steady state model, which describes the
reaction process when the contribution of the time derivative term in Equation (6.11) on the
previous page becomes relatively insignificant.

6.1.2 Linearization
Linearization is the approximation of a non-linear function by a linear function passing
through a reference point. In its vicinity, the handling of the linear function, and its evaluation
are simpler compared to the original non-linear function. Appendix 6.A on p. 220 provides a
formal description of a linear function.

Consider for example a non-linear function f(x) shown in Figure 6.1 below. The linearized
approximation, or linear function at a reference point x is a tangent line of slope f ′(x). From

x+Δxx

f(x+Δx)

f(x)

f(x) + f ′(x)Δx

error in the estimate

linear estimate of f at x + Δx

true f at x + Δx

non-linear function

linearized function

θ
(slope f ′(x) = tan θ)

Figure 6.1 Linearization of a non-linear function

this approximation, the function value at a nearby location (x+Δx) is [f(x) + f ′(x)Δx].
Note that this estimate involves some error relative to the true function value. As can be seen
from the figure, the smaller the Δx the smaller the error in the estimate.

Linearization of process models is readily carried out with the help of the first order Taylor
expansion.
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Linearization using First Order Taylor Expansion

A function that has first order derivatives with respect to its variables can be linearized using
the first order Taylor expansion [see Section 8.8.2, p. 323]. The expansion of a function f(x)
at the reference point x̄ is given by

f(x) = f(x̄) +
n∑

i=1

fxi(x̄) (xi − x̄i) (6.12)

where x =
[
x1 x2 · · · xn

]�, and fxi(x̄) is ∂f/∂xi evaluated at x = x̄. Observe
that the above equation provides f as a linear function of x. This f is an approximation or
estimate of the actual function value at an x in the vicinity of x̄. The closer the x to x̄ the
better is the function estimate.

The first order Taylor expansion is widely used to linearize differential equations.

Linearization of Differential Equations
Consider the ordinary differential equation

dc
dt

=
F

V
(cin − c)− kc2︸ ︷︷ ︸

≡ f(c)

, c(0) = c0 (6.13)

describing the change in reactant concentration c with time t in a CSTR. In the above
differential equation, the right-hand side f is a non-linear function of c, which depends on
time t, and is c0 initially. The flow rate F , reactor volume V , feed concentration cin, reaction
rate coefficient k, and c0 are known constants.

The differential equation above can be linearized by expressing the non-linear term f(c) as
the first order Taylor expansion about a reference reactant concentration c̄. Doing this yields

dc
dt

= f(c̄) +
df
dc

⏐⏐⏐̄
c
(c− c̄) = f(c̄) +

(
−F

V
− 2kc̄

)
(c− c̄) (6.14)

where c is a concentration in the vicinity of c̄. It is important to note that the linearized
equation is accurate in proportion to the proximity of c to c̄.

Linearization about Steady State
Many chemical engineering processes operate most of the time under steady state condition,
which provides a typical reference point. Under this condition, dc/dt = 0 in Equation (6.13)
above. This means that

f(c̄) = 0

where c̄ is c at the steady state, serving as the reference concentration at t = 0. Using the
above result in Equation (6.14) above, we obtain the linearized equation in the vicinity of the
steady state, i.e.,

dc
dt

= −
(
F

V
+ 2kc̄

)
(c− c̄), c(0) = c̄ (6.15)
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Use of Deviation Variables
It is convenient to express Equation (6.15) on the previous page in terms of the deviation
variable [see Equation (5.47), p. 173] defined as

č ≡ c− c̄

From the above definition,

c = č+ c̄, č(0) = 0, and
dc
dt

=
dč
dt

Using the above expressions of c, c(0) and dc/dt in Equation (6.15) on the previous page,
we obtain

dč
dt

= −
(
F

V
+ 2kc̄

)
č, č(0) = 0

which is the linearization of Equation (6.13) on the previous page in terms of the deviation
variable. This procedure is generalized for a set of ordinary differential equations as follows.

Generalization
Consider a process model given by the following set of ordinary differential equations:

dy
dt

= f(y,p) ≡ f(z), y(0) = ȳ (6.16)

where y, f and p are the vectors of the dependent variables, right-hand sides of the above
equations, and parameters given, respectively, by

y =
[
y1 y2 · · · yn

]�
,

[
f1 f2 · · · fn

]� and

p =
[
p1 p2 · · · pm

]�
The vector z is defined as

z =

⎡
⎣y
p

⎤
⎦

Around a reference point z̄, the linearization of Equation (6.16) above is then given by
dy
dt

= f(z̄) + J(z̄)(z− z̄), y(0) = ȳ (6.17)

where J is the matrix of partial derivatives of f with respect to z, i.e., the Jacobian

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂z1

∂f1
∂z2

· · · ∂f1
∂zl

∂f2
∂z1

∂f2
∂z2

· · · ∂f2
∂zl

...
...

. . .
...

∂fn
∂z1

∂fn
∂z2

· · · ∂fn
∂zl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l = n+m
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Note that Equation (6.17) on the previous page involves J(z̄), which is J evaluated at the
reference point z̄.

For linearization around the steady state, f(z̄) = 0. The linearized equation is then

dy
dt

= J(z̄)(z− z̄), y(0) = ȳ

In terms of deviation variables,

y̌ ≡ y − ȳ, p̌ ≡ p− p̄, i.e., ž ≡ z− z̄

the linearized equation is given by

dy̌
dt

= J(z̄)ž, y̌(0) = 0

Example 6.1.1

Linearize the CSTR model given by Equations (4.1)–(4.5) on p. 82. Express the linearized
model using deviation variables.

Solution
The CSTR model comprises the differential equations in which the vectors of dependent
variables, and right-hand side functions are, respectively,

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cA

cB

cC

cD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FAfcAf − FcA

V
− k1cAcB

FBfcBf − FcB

V
− k1cAcB − k2cBcC

−FcC

V
+ k1cAcB − k2cBcC

−FcD

V
+ k1cBcC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let the vector of the other variables (except t) be p =
[
cAf cBf

]�. Then the augmented
vector z and the matrix of partial derivatives J are, respectively,

z =

⎡
⎣y
p

⎤
⎦ and J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂cA

∂f1
∂cB

∂f1
∂cC

∂f1
∂cD

∂f1
∂cAf

∂f1
∂cBf

∂f2
∂cA

∂f2
∂cB

∂f2
∂cC

∂f2
∂cD

∂f2
∂cAf

∂f2
∂cBf

∂f3
∂cA

∂f3
∂cB

∂f3
∂cC

∂f3
∂cD

∂f3
∂cAf

∂f3
∂cBf

∂f4
∂cA

∂f4
∂cB

∂f4
∂cC

∂f4
∂cD

∂f4
∂cAf

∂f4
∂cBf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Expanding the terms of J, and evaluating them at the reference point z̄, we get

J(z̄) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−F

V
− k1c̄B −k1c̄A 0 0

FAf

V
0

−k1c̄B −F

V
− k1c̄A − k2c̄C −k2c̄B 0 0

FBf

V

k1c̄B k1c̄A − k2c̄C −F

V
− k2c̄B 0 0 0

0 k1c̄C k1c̄B −F

V
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Substituting for y, f(z̄), J(z̄) and z̄ in Equation (6.17) on p. 195, we get the linearized CSTR
model, i.e.,

dcA

dt
=

FAfc̄Af − F c̄A

V
− k1c̄Ac̄B︸ ︷︷ ︸

f1(z̄)

−
(
F

V
+ k1c̄B

)
(cA − c̄A)− k1c̄A(cB − c̄B)

+
FAf

V
(cAf − c̄Af)

dcB

dt
=

FBfc̄Bf − F c̄B

V
− k1c̄Ac̄B − k2c̄Bc̄C︸ ︷︷ ︸
f2(z̄)

− k1c̄B(cA − c̄A)

−
(
F

V
+ k1c̄A + k2c̄C

)
(cB − c̄B)− k2c̄B(cC − c̄C) +

FBf

V
(cBf − c̄Bf)

dcC

dt
= −F c̄C

V
+ k1c̄Ac̄B − k2c̄Bc̄C︸ ︷︷ ︸

f3(z̄)

+ k1c̄B(cA − c̄A) + (k1c̄A − k2c̄C)(cB − c̄B)

−
(
F

V
+ k2c̄B

)
(cC − c̄C)

dcD

dt
= −F c̄D

V
+ k1c̄Bc̄C︸ ︷︷ ︸

f4(z̄)

+ k1c̄C(cB − c̄B) + k1c̄B(cC − c̄C)−
F

V
(cD − c̄D)
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If z̄ corresponds to the steady state then the elements of f(z̄) as indicated above vanish.
Then, in terms of deviation variables, the linearized CSTR model is given by

dčA

dt
= −

(
F

V
+ k1c̄B

)
čA − k1c̄AčB +

FAf

V
čAf

dčB

dt
= −k1c̄BčA −

(
F

V
+ k1c̄A + k2c̄C

)
čB − k2c̄BčC +

FBf

V
čBf

dčC

dt
= k1c̄BčA + (k1c̄A − k2c̄C)čB −

(
F

V
+ k2c̄B

)
čC

dčD

dt
= k1c̄CčB + k1c̄BčC − F

V
čD

with zero initial conditions.

�

Linearization of Partial Differential Equations
Partial differential equations are linearized in the same manner as above using the first order
Taylor expansion.

Consider Equation (4.16) on p. 92, which after expanding, and dropping the subscript ‘s’,
can be written as

∂ω

∂t
= D

[
1

1− ω

∂2ω

∂y2︸ ︸
ωyy

+

(
1

1− ω

∂ω

∂y︸ ︸
ωy

)2 ]
≡ f(ω, ωy, ωyy, D︸ ︷︷ ︸

x

) (6.18)

where f is the right-hand side as a function, which is dependent on the variable vector,
x =

[
ω ωy ωyy D

]�. Applying the first order Taylor expansion to f , we get

∂ω

∂t
= f(x̄) +

[
∂f

∂ω

]
x̄

(ω − ω̄) +

[
∂f

∂ωy

]
x̄

(ωy − ω̄y) +

[
∂f

∂ωyy

]
x̄

(ωyy − ω̄yy)

+

[
∂f

∂D

]
x̄

(D − D̄) (6.19)

where the right-hand side is the first order Taylor expansion of f(x) in the neighborhood of
some reference value of x given by x̄ =

[
ω̄ ω̄y ω̄yy D̄

]�. Note that ω̄y and ω̄yy

are the partial derivatives evaluated at x̄, i.e.,

ω̄y =

[
∂ω

∂y

]
x̄

and ω̄yy =

[
∂2ω

∂y2

]
x̄

From Equation (6.18) above,

f(x̄) = D̄

[
ω̄yy

1− ω̄
+

(
ω̄y

1− ω̄

)2 ]
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and the partial derivatives of f are as follows:

∂f

∂ω
= D

[
ωyy

(1− ω)2
+

2ω2
y

(1− ω)3

]
∂f

∂ωy
=

2ωyD

(1− ω)2

∂f

∂ωyy
=

D

1− ω

∂f

∂D
=

ωyy

1− ω
+

(
ωy

1− ω

)2

Expressing the above derivatives at x̄, and substituting them into Equation (6.19) on the
previous page along with f(x̄) yields the linearization of Equation (4.16) on p. 92, i.e.,

∂ω

∂t
=

f(x̄)︷ ︸︸ ︷
D̄

[
ω̄yy

1− ω̄
+

(
ω̄y

1− ω̄

)2 ]
+ D̄

[
ω̄yy

(1− ω̄)2
+

2ω̄2
y

(1− ω̄)3

]
(ω − ω̄)

+
2ω̄yD̄

(1− ω̄)2
(ωy − ω̄y) +

D̄

1− ω̄
(ωyy − ω̄yy)

+

[
ω̄yy

1− ω̄
+

(
ω̄y

1− ω̄

)2

︸ ︷︷ ︸
f(x̄)/D̄

]
(D − D̄) (6.20)

Linearization around Steady State
Equation (6.20) above becomes the steady state linearization with the following provisions:
With x̄ = x̄(y) as the steady state reference, ∂ω/∂t = f(x̄) = 0. It means that the first and
second terms of Equation (6.20) vanish. Furthermore, assuming D̄ to be non-zero, the last
term of the equation vanishes as well, and f(x̄) = 0 yields

ω̄yy = −
ω̄2
y

1− ω̄

The solution of the above differential equation for the specified boundary conditions provides
ω̄(y), ω̄y(y) and ω̄yy(y), which are needed in the steady state linearization.

Linearization of Functions for Error Analysis
The linearized form of a function can be used to get an estimate of the error in the function
value due to uncertainties in the variable values. Based on the first order Taylor expansion of
a function f(x) at a reference point x̄ [see Equation (6.12) on p. 194], we can write

f(x)− f(x̄)︸ ︷︷ ︸
Δf

≈
n∑

i=1

[
∂f

∂xi

]
x̄︸ ︷︷ ︸

f ′(x̄)

(xi − x̄i)︸ ︷︷ ︸
Δxi

where Δxi is the uncertainty in the ith variable from the reference value x̄i, and Δf is the
associated change or error in the function value. Note that the right-hand side obeys the
operator inequality [see Section 8.5.3, p. 305],

n∑
i=1

f ′(x̄)Δxi ≤
n∑

i=1

|f ′(x̄)||Δxi|
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Combining the above inequality with the expression for Δf , we get

Δf ≤
n∑

i=1

|f ′(x̄)||Δxi|

where the right-hand side provides the approximate, maximum function error, i.e.,

Δf̂ =

n∑
i=1

|f ′(x̄)||Δxi| (6.21)

Example 6.1.2

The half-life period of thermal decomposition of a species is estimated from

t1/2 =
a

P b
exp
( c

T

)
[s]

where P is pressure in Pa, T is temperature in K, and a, b and c are constants. Their numerical
values are a = 1.5× 10−8, b = 0.7, and c = 3× 104.

Estimate the maximum error in t1/2 at P̄ = 4× 104 Pa and T̄ = 800 K if there is 10%
uncertainty in both P and T measurements.

Solution
From Equation (6.21) above, the maximum error in t1/2 is given by

Δt̂1/2 =

(⏐⏐⏐⏐∂t1/2∂P

⏐⏐⏐⏐|ΔP |+
⏐⏐⏐⏐∂t1/2∂T

⏐⏐⏐⏐|ΔT |
)

P̄,T̄

=

⏐⏐⏐⏐− b

P
t1/2

⏐⏐⏐⏐
P̄,T̄

× 0.01P̄ +
⏐⏐⏐− c

T 2
t1/2

⏐⏐⏐
P̄,T̄

× 0.01T̄

= 6.65× 104 s

The half-life at the given P̄ and T̄ is 1.74× 105 s. Hence, the maximum relative error in
the estimate of half-life period, i.e., Δt̂1/2/t1/2, is about 0.38. This implies that the estimate
is sensitive to the uncertainties in P and T measurements.

�

6.2 Model Approximation
Without using fundamental laws, we can still develop an approximate model of a process
based on experimental data. We can either figure out a relation using dimensional analysis,
or simply postulate a relation for the involved variables. In either case, the relation when
fitted on the data becomes the model of the process. This model is also known as empirical
correlation.

We will first present dimensional analysis, and then present techniques for model fitting.
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6.2.1 Dimensional Analysis
Dimensional analysis is the derivation of dimensionless combinations of the variables
involved in a process. These combinations are called dimensionless numbers, which can
be related with each other to form the model of the process.

Consider the vector y =
[
y0 y1 · · · yn−1

]� of n variables in a system, which
are to be related as

y0 = f(y1, y2, . . . , yn−1)

If m is the number of the involved dimensions (e.g., mass, length and time) then according to
the Buckingham pi theorem, the above relation is equivalent to

Π0 = F (Π1,Π2, . . . ,Πn−m−1) (6.22)

where Πis are the dimensionless numbers given by

Πi =
pi

qa1
1 qa2

2 . . . qam
m

; i = 0, 1, . . . , n−m− 1 (6.23)

with the following provisions:

1. A qi is an element of the variable vector y, and carries the ith dimension Di.

2. No two qis are the same.

3. The pis are also the elements of y, but are other than the qis.

The proof of the theorem is provided in Appendix 6.B on p. 221.
The benefit of the Buckingham pi theorem is that its application reduces the number of

variables in a functional relation by the number of involved dimensions. This is advantageous
when experiments need to be done to determine the relation between the variables. Consider
for example, five variables involving three dimensions of mass, length and time. To determine
the relation

y0 = f(y1, y2, y3, y4)

we need to perform experiments with different values of dependent variables, and obtain the
corresponding values of y0. Suppose the requirement is to do experiments for five different
values of each dependent variable. Then the total number of experiments to be done is
54 = 625. However, the application of the Buckingham pi theorem yields an equivalent
relation

Π0 = F (Π1)

whose determination for the same experimental requirement needs only five experiments as
opposed to 625.

Example 6.2.1

Find the dimensionless numbers involved in the transfer of a species between a bubble of gas
and liquid. The variables for this process are bubble diameter, density, viscosity, and approach
velocity of liquid; and the mass transfer coefficient, and gas-phase diffusivity of the species.
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Solution
The six process variables along with their units, and three dimensions are as follows:

d︸︸
bubble

diameter

≡ m ≡ L v︸︸
liquid velocity

approaching the bubble

≡ m · s−1 ≡ LT −1

ρ︸︸
liquid

density

≡ kg · m−3 ≡ ML−3 k︸︸
species mass

transfer coefficient

≡ m · s−1 ≡ LT −1

μ︸︸
liquid

viscosity

≡ kg · m−1 · s−1 ≡ ML−1T −1 D︸︸
species diffusivity

in gas

≡ m2 · s−1 ≡ L2T −1

In the above equations, M, L and T denote, respectively, the dimensions of mass, length and
time. With n = 6 and m = 3, we seek the relation [see Equations (6.22) and (6.23), previous
page]

Π0 = F (Π1,Π2) (6.24)

where

Πi =
pi

qa1
1 qa2

2 qa3
3

; i = 0, 1, 2

are the dimensionless numbers to be determined in terms of the six variables. We begin by
selecting

q1 = d, q2 = v, and q3 = ρ

each of which involves one of the three dimensions, namely, M, L and T . The remaining
variables are

p0 = k, p1 = μ, and p2 = D

Determination of Π0

The zeroth dimensionless number is given by

Π0 =
p0

qa1
1 qa2

2 qa3
3

=
k

da1va2ρa3

Using square brackets to denote dimensions, we have

[Π0] =

[
k

da1va2ρa3

]
which means that

M0L0T 0 =
LT −1

(L)a1(LT −1)
a2(ML−3)

a3
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Equating the powers of M, L, and T in the last equation, we obtain, respectively,

0 = −a3, 0 = 1− a1 − a2 + 3a3, and 0 = −1 + a2.

From these relations, a1 = a3 = 0, and a2 = 1. As a result,

Π0 =
k

v

Determination of Π1

The next dimensionless number is given by

Π1 =
p1

qa1
1 qa2

2 qa3
3

=
μ

da1va2ρa3

As before,

[Π1] =

[
μ

da1va2ρa3

]
which means that

M0L0T 0 =
ML−1T −1

(L)a1(LT −1)
a2(ML−3)

a3

Equating the powers of M, L, and T in the above equation, we obtain, respectively,

0 = 1− a3, 0 = −1− a1 − a2 + 3a3, and 0 = −1 + a2.

From these relations, a1 = a2 = a3 = 1. As a result,

Π1 =
μ

dvρ

Determination of Π2

The last dimensionless number is given by

Π2 =
p2

qa1
1 qa2

2 qa3
3

=
D

da1va2ρa3

As before,

[Π2] =

[
D

da1va2ρa3

]
which means that

M0L0T 0 =
L2T −1

(L)a1(LT −1)
a2(ML−3)

a3

Equating the powers of M, L, and T in the above equation, we obtain, respectively,

0 = −a3, 0 = 2− a1 − a2 + 3a3, and 0 = −1 + a2.
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From these relations, a1 = a2 = 1, and a3 = 0. As a result,

Π2 =
D

dv

Recombination
The dimensionless numbers are often recombined to obtain alternate dimensionless numbers
that allow for easy physical interpretation and quantification. For example,

1. The ratio
Π0

Π2
=

kd

D
≡ Sh

where Sh is called Sherwood number. It is the ratio of the convective rate of mass
transfer to the rate of diffusive mass transfer.

2. The inverse of Π1, i.e.,
1

Π1
=

dvρ

μ
≡ Re

is called Reynolds number. It is the ratio of force arising from momentum to that from
fluid viscosity. This ratio helps quantify the relative contribution of the two forces.

3. The ratio
Π2Π0 =

μ

ρD
≡ Sc

where Sc is called Schmidt number. It is the ratio of kinematic viscosity (μ/ρ) to
diffusivity.

Thus, we can replace Π0, Π1 and Π2 with, respectively, Sh, Re and Sc. Instead of determining
the relation given by Equation (6.24) on p. 202, we can determine

Sh = g(Re,Sc)

from experiments. With this approach, we can obtain realistic interpretation of the process
through the numerical values of the Sh, Re and Sc. For example, a low value of Sh would
mean the dominance of diffusion over convection in the process. This information is not
revealed by Π0, Π1 or Π2 as such.

From experimental studies, several correlations of the form

Sh = aReb Scc

with fitted values of parameters a, b and c are available.

�

6.2.2 Model Fitting
Given a set of experimental y versus x data points –

{
(x1, y1) (x2, y2) · · · (xn, yn)

}
– where x and y are process variables, we can find the unknown coefficients of a specified
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relation, e.g., a, b and c in the relation

y = ax2 + bx+ c

such that it predicts y values from x values satisfying certain criterion of accuracy. This
procedure is known as model fitting. The relation and fitted coefficients constitute the fitted
process model.

There are two main criteria for model fitting:

1. minimum least-squares error

2. perfect agreement of predictions at data points

Using the first criterion, a model is fitted such that the square of the errors between
experimental data points, and the corresponding model predictions is minimum. Model fitting
based on this criterion is known as least-squares regression.

The second criterion makes it necessary for the model prediction to match exactly with
each data point. Model fitting based on this criterion is called interpolation.

Least-Squares Regression

We will first describe least-squares regression to fit a straight line, and a polynomial to a set
of experimental y versus x data points:

{
(x1, y1) (x2, y2) · · · (xn, yn)

}
. Then we will

present a generalized method for least-squares regression.

Statistical Terminology
For the aforementioned set of y versus x data points, the mean of yis is defined as

ȳ =
1

n

n∑
i=1

yi

The sum of the squared errors around the mean is given by

S =
n∑

i=1

(ȳ − yi)
2

The variance of yi-values is defined as

s2y =
S

n− 1
=

1

n− 1

n∑
i=1

(ȳ − yi)
2

where (n− 1) is called the degree of freedom. The standard deviation in yi-values is sy, i.e.,
the square root of variance. Finally, the coefficient of variation in yi-values is the ratio, sy/ȳ.

For the model y = y(x) fitted on the data set, the sum of the squared errors is given by

E =
n∑

i=1

(ẙi − yi)
2

where ẙi is the model prediction for xi. Then the coefficient of determination is defined as

r2 =
S − E

S
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The square root of the coefficient of determination (i.e., r) is called correlation coefficient. It
relates to the improvement in prediction by the model y = y(x) over that by ȳ. For perfect
fit, E = 0 and r2 = r = 1.

Least-Squares Regression to Fit a Straight Line
The objective here is to fit to the data set, a straight line

y = a1 + a2x ⇒ ẙi = a1 + a2xi

such that the sum of the squared errors,

E =
n∑

i=1

(ẙi − yi)
2 =

n∑
i=1

(a1 + a2xi − y)2

is minimum. The necessary conditions for the minimum are

∂E

∂a1
= 2

n∑
i=1

(a1 + a2xi − yi) = 0 and

∂E

∂a2
= 2

n∑
i=1

[(a1 + a2xi − yi)xi] = 0

It is easy to check that the sufficient conditions (∂2E/∂a1
2 > 0 and ∂2E/∂a2

2 > 0) are
satisfied for the minimum of E. Thus, the minimum corresponds to the solution of the
necessary conditions, which yield

a1 = ȳ − a2x̄ and a2 =

n
n∑

i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi

n
n∑

i=1

x2
i −

( n∑
i=1

xi

)2

as the fitted coefficients of the straight line.

Least-Squares Regression to Fit a Quadratic
In this case, the objective is to fit to the data set, a quadratic

y = a1 + a2x+ a3x
2 ⇒ ẙi = a1 + a2xi + a3x

2
i

such that the sum of the squared errors,

E =
n∑

i=1

(ẙi − yi)
2 =

n∑
i=1

(a1 + a2xi + a3x
2
i − yi)

2
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is minimum. The necessary conditions for the minimum are

∂E

∂a1
= 2

n∑
i=1

(a1 + a2xi + a3x
2
i − yi) = 0

∂E

∂a2
= 2

n∑
i=1

[(a1 + a2xi + a3x
2
i − yi)xi] = 0

∂E

∂a3
= 2

n∑
i=1

[(a1 + a2xi + a3x
2
i − yi)x

2
i ] = 0

It is easy to check that the sufficient conditions (i.e., ∂2E/∂a1
2 > 0, ∂2E/∂a2

2 > 0, and
∂2E/∂a3

2 > 0) are satisfied for the minimum of E. Thus, the minimum corresponds to the
solution of the necessary conditions recast as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n∑

i=1

xi

n∑
i=1

x2
i

n∑
i=1

xi

n∑
i=1

x2
i

n∑
i=1

x3
i

n∑
i=1

x2
i

n∑
i=1

x3
i

n∑
i=1

x4
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

yi

n∑
i=1

xiyi

n∑
i=1

x2
i yi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.25)

whose solution provides the fitted coefficients (namely, a1, a2 and a3) of the quadratic.

Generalized Least-Squares Regression
Consider in general, the least square fit of a function

y = y(a1, a2, . . . , am︸ ︷︷ ︸
≡ a�

, x1, x2, . . . , xl︸ ︷︷ ︸
≡x�

) ≡ y(a,x)

to the experimental set of n data points:
{
(x1, y1) (x2, y2) · · · (xn, yn)

}
.

In the above equation, a is the coefficient vector, and x is the variable vector. Its ith

experimental value is xi =
[
x1i x2i · · · xli

]� corresponding to yi. The objective
here is to minimize the sum of the squared errors given by

E(a) =
n∑

i=1

( ẙi − yi︸ ︷︷ ︸
≡ ei(a)

)2 =
n∑

i=1

[ei(a)]
2 (6.26)

where ẙi = y(a,xi) is the predicted value of y corresponding to xi.
From Newton’s optimization method [see Appendix 6.C, p. 223], the algorithm to find the

a that minimizes E is

a(k+1) = a(k) −
[
∂

∂a

(
∂E

∂a

)]−1

a(k)︸ ︷︷ ︸
{H[a(k)]}−1

[
∂E

∂a

]
a(k)︸ ︷︷ ︸

∇E[a(k)]

= a(k) −
{
H[a(k)]

}−1

∇E[a(k)]

k = 0, 1, 2, . . .
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where ∇E and H are, respectively, the gradient and Hessian of E with respect to a.
Using Equation (6.26) on the previous page,

∇E = 2
n∑

i=1

ei(a)
∂ei
∂a

= 2
[
e1 e2 · · · en

]
︸ ︷︷ ︸

e�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1
∂a1

∂e1
∂a2

. . .
∂e1
∂am

∂e2
∂a1

∂e2
∂a2

. . .
∂e2
∂am

...
...

...
...

∂en
∂a1

∂en
∂a2

· · · ∂en
∂am

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
J

= 2J�e

where J is the Jacobian of the error vector e. Moreover,

H =
∂

∂a

[
2

n∑
i=1

ei(a)
∂ei
∂a

]
= 2

[ n∑
i=1

(
∂ei
∂a

)2

︸ ︷︷ ︸
J�J

+
n∑

i=1

ei
∂2ei
∂a2

]

Gauss–Newton Algorithm
In this algorithm, the second order derivatives are discarded from the last equation, and
the Hessian is approximated as H ≈ 2J�J. An initial guess vector a(0) is then iteratively
improved using,

a(k+1) = a(k) −
[
J�J

]−1

J�e; k = 0, 1, 2, . . . (6.27)

Example 6.2.2

Fit a quadratic to the following data of carbon dioxide diffusivity (D) versus its concentration
(c) in polypropylene at 190◦C and 2.67 MPa:1

c (kgm−3) 0 1.0847 2.1694 3.2541 4.3389 5.4236 6.5083 7.5536

D × 109

(m2 s−1)
3.9004 6.8729 7.0911 6.8354 6.3765 5.7881 5.0680 4.2123

Next, use the Gauss–Newton algorithm to fit the following logarithmic function:

D = a1 + a2 log10(1 + c) + a3

[
log10(1 + c)

]2
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Solution
To fit a quadratic, we use Equation (6.25) on p. 207, which results in

⎡
⎢⎢⎢⎣

8 30.3325 164.1269

30.3325 164.1269 993.8141

164.1269 993.8141 6404.8981

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a1

a2

a3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

46.1447

168.9424

859.1468

⎤
⎥⎥⎥⎦

The solution of the above equation provides a1 = 4.7260, a2 = 1.2737 and a3 = −0.1846.
Hence, the fitted quadratic is

D = 4.7260 + 1.2737c− 0.1846c2 (6.28)

Next, we apply Gauss–Newton algorithm to fit the given logarithmic function. The ith error,
and its partial derivatives with respect to the fitting coefficients (a1, a2 and a3) are given by

ei = a1 + a2 log10(1 + ci) + a3

[
log10(1 + ci)

]2
−Di

∂ei
∂a1

= 1;
∂ei
∂a2

= log10(1 + ci);
∂ei
∂a3

=
[
log10(1 + ci)

]2
; i = 1, 2, . . . , 8

The above expressions form the error and Jacobian, respectively, as

e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

...

e8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1
∂a1

∂e1
∂a2

∂e1
∂a3

∂e2
∂a1

∂e2
∂a2

∂e2
∂a3

...
...

...

∂e8
∂a1

∂e8
∂a2

∂e8
∂a3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which are needed in the algorithm [see Equation (6.27), previous page].
With the initial guess of a(0) =

[
1, 1, 1

]
, the algorithm converges in the second iteration to

a1 = 3.9036, a2 = 13.6387 and a3 = −14.1466. Hence, the fitted logarithmic function is

D = 3.9036 + 13.6387 log10(1 + c)− 14.1466
[
log10(1 + c)

]2
(6.29)

The two fitted functions along with data points are plotted in Figure 6.2 on the next page. It
is observed from the figure that the logarithmic function fits the data significantly better than
the quadratic function.
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Figure 6.2 The fitted quadratic and logarithmic functions [Equations (6.28) and (6.29) on the previous
page] along with data points

Table 6.2 below shows the sum of the squared errors (E), and the coefficient of
determination (r2) for the two fitted functions. With the logarithmic function r2 > 0.99, and
E is two orders of magnitude less than that with the quadratic function.

Table 6.2 Quality of the fitting functions

fitted function E r2

quadratic, Equation (6.28) 2.3831 0.7810
logarithmic, Equation (6.29) 0.0432 0.9921

�

Interpolation

Interpolation is typically carried out with polynomials. In this section, we present
interpolation with polynomials and splines where the latter involve low-order polynomials.

We can express a polynomial of degree n, which is given by

y(x) = α0 + α1x+ α2x
2 + . . .+ αnx

n

for a set of (n+ 1) experimental data points:
{
(x0, y0) (x1, y1) · · · (xn, yn)

}
. The

solution of the resulting equations yields the (n+ 1) coefficients (αis) that are needed to fit
the polynomial so that its prediction matches each data point exactly.

The coefficients can be determined systematically using Newton’s interpolation method,
or Lagrange’s interpolation formula.
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Newton’s Interpolation Method
In this method, the nth degree polynomial is expressed involving the experimental xis as

y(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2) + · · ·

+ an(x− x0)(x− x1) · · · (x− xn−1) (6.30)

The unknown coefficients ais are found by substituting xis for x in the above equation.
Substituting x0 for x in the above equation yields

a0 = y(x0)

Substituting x1 for x in Equation (6.30) above yields

a1 =
y(x1)− a0
x1 − x0

=
y(x1)− y(x0)

x1 − x0
≡ y(x1, x0)︸ ︷︷ ︸

divided difference

where multiple function arguments as in y(x1, x0) imply a divided difference expression.
Substituting x2 for x in Equation (6.30) yields

a2 =
y(x2)−

y(x0)︷︷
a0 − a1(x2 − x0)

(x2 − x0)(x2 − x1)
=

y(x2)− y(x1) +

a1(x1−x0)︷ ︸︸ ︷
y(x1)− y(x0) − a1(x2 − x0)

(x2 − x0)(x2 − x1)

=
y(x2)− y(x1)− a1(x2 − x1)

(x2 − x0)(x2 − x1)
=

1

x2 − x0

[
y(x2)− y(x1)

x2 − x1︸ ︷︷ ︸
y(x2,x1)

− y(x1)− y(x0)

x1 − x0︸ ︷︷ ︸
a1

]

=
y(x2, x1)− y(x1, x0)

x2 − x0
≡ y(x2, x1, x0)

Substituting x3 for x in Equation (6.30) similarly yields

a3 =
y(x3, x2, x1)− y(x2, x1, x0)

x3 − x0
≡ y(x3, x2, x1, x0)

Thus, in general

ai =
y(xi, xi−1, . . . , x1)− y(xi−1, xi−2, . . . , x0)

xi − x0
≡ y(xi, xi−1, . . . , x0)

i = 1, 2, . . . , n (6.31)

which involves the divided difference formula,

y(xj , xj−1, . . . , xk−1, xk) =
y(xj , xj−1, . . . , xk−1)− y(xj−1, xj−2, . . . , xk)

xj − xk
(6.32)
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Example 6.2.3

Find the interpolating polynomial for the following data using Newton’s interpolation:

i 0 1 2 3

xi 1.5 3 7 9

yi 1 5 2 3.5

Solution
Since the number of data points is four, we need the third degree polynomial, i.e.,

y(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2)

where the coefficients ais are obtained as follows.

a0 = y(x0) = y(1) = 1

For the remaining ais, we use Equations (6.31) and (6.32) sequentially.

a1 = y(x1, x0) =
y(x1)− y(x0)

x1 − x0
= 2.6667

a2 = y(x2, x1, x0) =
y(x2, x1)− y(x1, x0)

x2 − x0

y(x2, x1) =
y(x2)− y(x1)

x2 − x1
= −0.7500

⇒ a2 = −0.6212

a3 = y(x3, x2, x1, x0) =
y(x3, x2, x1)− y(x2, x1, x0)

x3 − x0

y(x3, x2, x1) =
y(x3, x2)− y(x2, x1)

x3 − x1

y(x3, x2) =
y(x3)− y(x2)

x3 − x2
= 0.7500

⇒ y(x3, x2, x1) = 0.2500

y(x2, x1, x0) =
y(x2, x1)− y(x1, x0)

x2 − x0
= −0.6212

⇒ a3 = 0.1162

Thus, the interpolating polynomial is

y(x) = 1 + 2.6667(x− 1.5)− 0.6212(x− 1.5)(x− 3)

+ 0.1162(x− 1.5)(x− 3)(x− 7)
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The interpolating polynomial along with the data points is plotted in Figure 6.3 below.
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polynomial

Figure 6.3 The fitted polynomial along with data points

�

Lagrange’s Interpolation Formula
This is a straightforward formula for the interpolating polynomial, and is given by

y(x) =
n∑

i=0

Li(x)yi where Li(x) =
n∏

j=0
j �=i

x− xj

xi − xj
(6.33)

Example 6.2.4

Find the first and second order interpolating polynomials using Lagrange’s interpolation
method.

Solution
For the first order polynomial,

y(x) = L0y0 + L1y1

=

(
x− x1

x0 − x1

)
y0 +

(
x− x0

x1 − x0

)
y1
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For the second order polynomial,

y(x) = L0y0 + L1y1 + L2y2

=

(
x− x1

x0 − x1

)(
x− x2

x0 − x2

)
y0 +

(
x− x0

x1 − x0

)(
x− x2

x1 − x2

)
y1

+

(
x− x0

x2 − x0

)(
x− x1

x2 − x1

)
y2

�

Interpolation with Splines
Consider fitting a polynomial to a set of 11 data points. The interpolating polynomial y(x)
will be of 10th degree, and have 10 roots. This means that the y-curve will cross the x-axis up
to 10 times at the root locations, thereby giving rise to oscillations. They may occur in the x-
interval of the data points, and cause erroneous predictions. This situation is avoided by fitting
low-degree polynomials for each subset of two consecutive data points, while maintaining
continuity at the internal data points. These polynomials are called splines.

We will derive linear, quadratic and cubic splines for the n intervals of the set of (n+ 1)
experimental data points:

{
(x0, y0) (x1, y1) · · · (xn, yn)

}
.

Linear Splines
These are equations of a straight line for each subset of two consecutive data points, or the
corresponding x-interval. Over the ith interval, [xi−1, xi], linear splines are simply

yi(x) = mi(x− xi−1) + yi−1, xi−1 ≤ x ≤ xi; i = 1, 2, . . . , n

where mi is the slope in the interval, and is determined from

mi =
yi − yi−1

xi − xi−1

To find y at a given x, the surrounding j th interval [xj−1, xj ] is identified at first. The
y-value is then obtained from the corresponding j th spline, i.e., yj(x).

Quadratic Splines
These are quadratic polynomials for each subset of two consecutive data points, or the
corresponding x-interval. Over the ith interval, [xi−1, xi], quadratic splines are given by

yi(x) = aix
2 + bix+ ci, xi−1 ≤ x ≤ xi; i = 1, 2, . . . , n

where ai, bi and ci are 3n unknown coefficients. They are determined based on the following
considerations:

Function Equality at Intermediate Points At an intermediate xi, both the ith and (i+ 1)th

splines should yield the same yi. This condition provides the following 2(n− 1) equations:

aix
2
i + bixi + ci = ai+1x

2
i + bi+1xi + ci+1 = yi; i = 1, 2, . . . , n− 1
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Derivative Equality at Intermediate Points Again, at an intermediate xi, both the ith and
(i+ 1)th splines should yield the same derivative with respect to x. This condition provides
the following (n− 1) equations:

2aixi + bi = 2ai+1xi + bi+1; i = 1, 2, . . . , n− 1

Terminal Function Values At the terminal points, we have the following two equations from
the corresponding splines:

a1x
2
0 + b1x0 + c1 = y0

anx
2
n + bnxn + cn = yn

Zero Second Derivative Lastly, we specify that d2y/dx2 = 0 at x0. This specification yields

d2y1
dx2

⏐⏐⏐⏐
x0

= 2a1 = 0 ⇒ a1 = 0

The 3n equations above appear as the following matrix equation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
0 x0 1 0 0 0 0 0 0 0 · · · 0

x2
1 x1 1 0 0 0 0 0 0 0 · · · 0

0 0 0 x2
1 x1 1 0 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 x2
n−1 xn−1 1 0 · · · 0

0 0 0 0 0 0 0 · · · 0 x2
n−1 xn−1 1

0 0 0 0 0 0 0 · · · 0 x2
n xn 1

2x1 1 0 −2x1 −1 0 0 0 0 0 · · · 0

0 0 0 2x2 1 0 −2x2 −1 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 2xn−2 1 0 −2xn−2 −1 0 0 0

0 0 0 0 · · · 0 2xn 1 0 −2xn −1 0

1 0 0 0 0 0 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

c1

a2

b2

c2

...

an−1

bn−1

cn−1

an

bn

cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y1

y2

y2

...

yn−1

yn−1

yn

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.34)
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The solution of Equation (6.34) on the previous page provides the 3n unknowns, namely,
ai, bi, ci for i = 1, 2, . . . , n. The value of y at a given x is obtained in the surrounding j th

interval [xj−1, xj ] from the corresponding quadratic spline, i.e., yj(x).

Example 6.2.5

Fit a set of quadratic splines to the following data:

x 0 1 2 3 4

y 2 3 1 5 4

Use the splines to calculate y(2.5).

Solution
Applying Equation (6.34) on the previous page to the above data for n = 4, we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 4 2 1 0 0 0 0 0 0

0 0 0 0 0 0 4 2 1 0 0 0

0 0 0 0 0 0 9 3 1 0 0 0

0 0 0 0 0 0 0 0 0 9 3 1

0 0 0 0 0 0 0 0 0 16 4 1

2 1 0 −2 −1 0 0 0 0 0 0 0

0 0 0 4 1 0 −4 −1 0 0 0 0

0 0 0 0 0 0 6 1 0 −6 −1 0

1 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3

3

1

1

5

5

4

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The solution of the above equation is⎡
⎢⎢⎢⎢⎢⎢⎣
a1

b1

c1

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
0

1

2

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
for x ∈ [0, 1]

,

⎡
⎢⎢⎢⎢⎢⎢⎣
a2

b2

c2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
−3

7

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
for x ∈ [1, 2]

,

⎡
⎢⎢⎢⎢⎢⎢⎣
a3

b3

c3

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

9

−41

47

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
for x ∈ [2, 3]

, and

⎡
⎢⎢⎢⎢⎢⎢⎣
a4

b4

c4

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−14

97

−160

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
for x ∈ [3, 4]
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Since, x = 2.5 lies in the third interval [2, 3],

y(2.5) = 9︸︸
a3

× 2.52 + (−41)︸ ︷︷ ︸
b3

× 2.5 + 7︸︸
c3

= 0.75.

�

Note that in quadratic splines, the specification of zero derivative results in a straight line
interpolation between the first two data points. This is obviated in cubic splines.

Cubic Splines
These are cubic polynomials for each subset of two consecutive data points, or the
corresponding x-interval. Over the ith interval, [xi−1, xi], cubic splines are given by

yi(x) = aix
3 + bix

2 + cix+ di, xi−1 ≤ x ≤ xi; i = 1, 2, . . . , n

where ai, bi, ci and di are 4n unknown coefficients. Their determination requires 4n
equations, which can be obtained from the same procedure as followed above for quadratic
splines. There is an efficient procedure, however, which reduces the number of equations.
That procedure is as follows.

Let p and q denote, respectively, the first and second derivatives of y with respect to x.
Then the equations for cubic spline interpolation are obtained in the following three steps:

Step 1
We express q over the ith interval, [xi−1, xi] using Lagrange’s interpolation formula [see
Equation (6.33), p. 213] for n = 1. Thus,

qi(x) =
x− xi

xi−1 − xi
q(xi−1) +

x− xi−1

xi − xi−1
q(xi), xi−1 ≤ x ≤ xi; i = 1, 2, . . . , n

Step 2
Next, we integrate the above equations twice. The integration constants are resolved using
the condition yi(x) = y(xi) at each intermediate xi. This results in

yi(x) =
q(xi−1)

6(xi − xi−1)
(xi − x)3 +

q(xi)

6(xi − xi−1)
(x− xi−1)

3

+

[
y(xi−1)

xi − xi−1
− q(xi−1)(xi − xi−1)

6

]
(xi − x)

+

[
y(xi)

xi − xi−1
− q(xi)(xi − xi−1)

6

]
(x− xi−1); i = 1, 2, . . . , n (6.35)

The above equation has unknown qs at xi−1 and xi. They are found in the next step.
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Step 3
We differentiate the last set of equations to obtain pi(x) for i = 1, 2, . . . , n. Considering the
equality of dy/dx at xi obtained from pi(x) and pi+1(x), we get

(xi − xi−1)q(xi−1) + 2(xi+1 − xi−1)q(xi) + (xi+1 − xi)q(xi+1)

=
6

xi+1 − xi
[y(xi+1)− y(xi)] +

6

xi − xi−1
[y(xi−1)− y(xi)]

i = 1, 2, . . . , n− 1

With the specification of q(x0) = q(xn) = 0, the above equations can be expressed as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(x2 − x0) (x2 − x1) 0 0 . . . . . . 0

(x2 − x1) 2(x3 − x1) (x3 − x2) 0 . . . . . . 0

0 (x3 − x2) 2(x4 − x2) (x4 − x3) . . . . . .
...

0 0 (x4 − x3) 2(x5 − x3) (x5 − x4) . . .
...

...
...

...
... . . .

...
...

...
...

... 0 (xn−2 − xn−3) 2(xn−1 − xn−3) (xn−1 − xn−2)

0 0 0 . . . 0 (xn−1 − xn−2) 2(xn − xn−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(x1)

q(x2)

...

...

...

q(xn−2)

q(xn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(x2)− y(x1)

x2 − x1
+

y(x0)− y(x1)

x1 − x0

y(x3)− y(x2)

x3 − x2
+

y(x1)− y(x2)

x2 − x1

...

...

...

y(xn−1)− y(xn−2)

xn−1 − xn−2
+

y(xn−3)− y(xn−2)

xn−2 − xn−3

y(xn)− y(xn−1)

xn − xn−1
+

y(xn−2)− y(xn−1)

xn−1 − xn−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.36)

Equation (6.36) above is solved once to obtain the q(xi)s. The value of y at a given x is
then obtained in the surrounding j th interval [xj−1, xj ] from Equation (6.35) on the previous
page for i = j.

Example 6.2.6

Fit a set of cubic splines to the data of Example 6.2.5 on p. 216. Compare the fit with that of
the quadratic splines.
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Solution
Applying Equation (6.36) on the previous page to those data, we obtain⎡

⎢⎢⎢⎢⎢⎢⎣
4 1 0

1 4 1

0 1 4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
q(1)

q(2)

q(3)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
−18

36

−30

⎤
⎥⎥⎥⎥⎥⎥⎦

The solution of the above equation is[
q(1) q(2) q(3)

]
=
[
−7.93 13.71 −10.93

]
Note that q(0) = q(4) = 0. With these q(xi)-values, Equation (6.35) on p. 217 enables the

calculation of y at a given value of x. Thus, y(2.5) = 2.83 from that equation for i = 3, i.e.,
the third x-interval.

Comparison with Quadratic Splines
Figure 6.4 below shows the y-values obtained from cubic splines of this example, and
quadratic splines of Example 6.2.5 on p. 216, along with data points. The y-values outside
the x-interval [0, 4] are linear extrapolations from the terminal splines.

From the figure, it is observed that cubic splines provide a tighter fit to the data than
quadratic splines. The latter have oscillations that grow beyond x = 2. No such oscillations
are present in cubic splines. The value of y(2.5) is 0.75 from quadratic splines as opposed to
2.83 from cubic splines.

−1 1 3 5
x

−9

−6

−3

0

3

6

9

y

2.5

data point

cubic splines

quadratic splines

Figure 6.4 The y-values obtained from cubic splines of this example, and quadratic splines of
Example 6.2.5, along with data points

�
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6.A Linear Function
Let f be a function of the variable vector∗ x =

[
x1 x2 · · · xn

]�. Then f is a
linear function if it satisfies the superposition principle, i.e.,

f [α1x
(1) + α2x

(2)] = α1f [x
(1)] + α2f [x

(2)]

for all x(1) and x(2) in the x-domain, and all scalars α1 and α2.

Example 6.A.1

Determine whether the following functions:
i. f(x) = x1 + x2

ii. g(x) = x1 + x2
2

are linear with respect to x =
[
x1 x2

]�.

Solution
In order to be linear, f(x) and g(x) must satisfy the superposition principle.

Given two arbitrary variable vectors in the x-domain,

x(1) =

⎡
⎢⎣x(1)

1

x
(1)
2

⎤
⎥⎦ and x(2) =

⎡
⎢⎣x(2)

1

x
(2)
2

⎤
⎥⎦

the first function is linear because

f
[
α1x

(1) + α2x
(2)
]

=
[
α1x

(1)
1 + α2x

(2)
1︸ ︷︷ ︸

x1

]
+
[
α1x

(1)
2 + α2x

(2)
2︸ ︷︷ ︸

x2

]

= α1

[
x
(1)
1 + x

(1)
2︸ ︷︷ ︸

f [x(1)]

]
+ α2

[
x
(2)
1 + x

(2)
2︸ ︷︷ ︸

f [x(2)]

]

= α1f
[
x(1)

]
+ α2f

[
x(2)

]
However, the second function is not linear because

g
[
α1x

(1) + α2x
(2)
]

=
[
α1x

(1)
1 + α2x

(2)
1︸ ︷︷ ︸

x1

]
+
[
α1x

(1)
2 + α2x

(2)
2︸ ︷︷ ︸

x2

]2

= α1

{
x
(1)
1 + α1

[
x
(1)
2

]2
+ 2α2x

(1)
2 x

(2)
2︸ ︷︷ ︸

�=g[x(1)]

}
+ α2

{
x
(2)
1 + α2

[
x
(2)
2

]2︸ ︷︷ ︸
�=g[x(2)]

}

�= α1g
[
x(1)

]
+ α2g

[
x(2)

]
�

∗It could be a scalar with just one element.
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General Form

The general form of a linear function of x =
[
x1 x2 · · · xn

]� is

f(x) = a · x+ b

where a =
[
a1 a2 · · · an

]� is a vector of constants, and b is another constant.

Linearity Check

A quick way to determine whether a function is linear is to check the interaction of the
variables. A function is linear if its variables satisfy all of the following conditions:

1. There is no multiplication or division between variables.

2. No variable is raised to a power other than unity.

3. No variable is an argument to a transcendental function (such as exponential,
logarithmic and trigonometric functions).

Put differently, a function is non-linear if any of the above conditions is violated.

6.B Proof of Buckingham Pi Theorem
Consider n variables, y0 to yn−1, which can be related as

y0 = f(y1, y2, . . . , yn−1) (6.37)

Let the set of yis carry m dimensions, D1 to Dm. Then according to the Buckingham pi
theorem, the above relation can be expressed as

Π0 = F (Π1,Π2, . . . ,Πn−m−1)

where Πis are dimensionless numbers.

Scaling Transformation
Note that the dimensions of yi are given by

[yi] = Dαi1
1 ×Dαi2

2 × · · · ×Dαim
m ; i = 0, 1, . . . , n− 1

Thus, when the first dimension is scaled by a factor eβ to give the transformed dimension,

D̃1 = eβD1

the variables get transformed accordingly to

ỹi = (eβ)αi1yi; i = 0, 1, . . . , n− 1

Because of dimensional consistency on both sides of Equation (6.37) above, we have

ỹ0 = f(ỹ1, ỹ2, . . . , ỹn−1)
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Elimination of D1

Let yj for j > 0 be the variable depending on D1, i.e., with αj1 not zero. Then we define

zi = yiy
−αi1/αj1

j ; i = 0, 1, . . . , j − 1

zn−1 = yj

zi−1 = yiy
−αi1/αj1

j ; i = j + 1, j + 2, . . . , n− 1

Let the zis be related to each other as

z0 = g(z1, z2, . . . , zn−1) (6.38)

Then if zis undergo the aforementioned scaling transformation then

z̃0 = g(z̃1, z̃2, . . . , z̃n−1) (6.39)

Invariance
It is interesting to note that zis other than zn−1 are invariant with respect to the dimension
D1 since they are not affected by the scaling transformation. For example,

z̃i = eβαi1yi(e
βαj1yj)

−αi1/αj1 = yiy
−αi1/αj1

j

= zi ; i = 0, 1, . . . , n− 2

Thus, we can write Equation (6.39) above as

z0 = g(z1, z2, . . . , zn−2, e
βαj1zn−1)

Comparison of the last equation with Equation (6.38) above shows that g is independent of
zn−1. Scaling it does not change z0. Consequently, we can write

z0 = g(z1, z2, . . . , zn−2)

where zis are invariant with respect to D1 as shown above. Moreover, the number of
arguments of g is reduced by one.

Repeated Elimination
Repeating the above steps, we can eliminate the remaining dimensions one by one using a
new yj each time, and obtain the final relation

Π0 = F (Π1,Π2, . . . ,Πn−m−1)

where

Πi ≡ yi

y
αi1/αj1

j × y
αi2/α(j+1),2

j+1 × · · · × y
αim/α(j+m−1),m

j+m−1

; i = 0, 1, . . . , n−m− 1
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is invariant with respect to all dimensions, or is a dimensionless number.

Simplification of Πi

In terms of

qk ≡ yj+k−1, ak ≡ αik

α(j+k−1),k
; k = 1, 2, . . . ,m

and pi ≡ yi ; i = 0, 1, . . . , n−m− 1

we can write

Πi =
pi

qa1
1 qa2

2 · · · qam
m

; i = 0, 1, . . . , n−m− 1

where

1. a qi is a variable yi, which carries the ith dimension Di,

2. no two qis are the same, and

3. the pis are also the yis, but are other than the qis.

6.C Newton’s Optimization Method

This method is used to find the root of the derivative of a twice-differentiable function, f(x).
At that root, the function satisfies the necessary condition to be optimum.

The second order Taylor expansion of f(x) at x(k+1) near a reference point x(k) is given
by

f [x(k+1)] = f [x(k)] + f ′[x(k)]�
[
x(k+1) − x(k)

]

+
1

2

[
x(k+1) − x(k)

]�
H[x(k)]

[
x(k+1) − x(k)

]
(6.40)

where x =
[
x1 x2 · · · xn

]�, f ′[x(k)] is the vector of partial derivatives of f (i.e.,
the gradient of f ) evaluated at x(k), and is given by

f ′[x(k)] =

⎡
⎣ ∂f

∂x1

⏐⏐⏐⏐
x(k)

∂f

∂x2

⏐⏐⏐⏐
x(k)

· · · ∂f

∂xn

⏐⏐⏐⏐
x(k)

⎤
⎦
�
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and H[x(k)] is the matrix of second order partial derivatives of f(x), or Hessian, evaluated at
x(k), i.e.,

H[x(k)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂x1
2

⏐⏐⏐⏐
x(k)

∂2f

∂x1∂x2

⏐⏐⏐⏐
x(k)

· · · ∂2f

∂x1∂xn

⏐⏐⏐⏐
x(k)

∂2f

∂x2∂x1

⏐⏐⏐⏐
x(k)

∂2f

∂x2
2

⏐⏐⏐⏐
x(k)

· · · ∂2f

∂x2∂xn

⏐⏐⏐⏐
x(k)

...
...

. . .
...

∂2f

∂xn∂x1

⏐⏐⏐⏐
x(k)

∂2f

∂xn∂x2

⏐⏐⏐⏐
x(k)

· · · ∂2f

∂xn
2

⏐⏐⏐⏐
x(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Differentiating Equation (6.40) on the previous page throughout with respect to x(k+1),
and assuming that it is the desired root of the derivative of f(x), we obtain

f ′[x(k+1)]︸ ︷︷ ︸
=0

= f ′[x(k)] +H[x(k)]
[
x(k+1) − x(k)

]

The above equation upon rearrangement yields the algorithm of Newton’s optimization
method, i.e.,

x(k+1) = x(k) −
{
H[x(k)]

}−1

f ′[x(k)]; k = 0, 1, . . .
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Exercises
6.1 The steady state reactant concentration c in a fluid flowing in a circular pipe is given by

v
∂c

∂z
=

D

r

∂

∂r

(
r
∂c

∂r

)
v =

3v̄

2

[
1−

( r

R

)2]

z = 0 : c = c0 ∀ 0 < r ≤ R

r =

⎧⎪⎪⎨
⎪⎪⎩

0 :
∂c

∂r
= 0

R : kc = −D
∂c

∂r

⎫⎪⎪⎬
⎪⎪⎭ ∀ 0 ≤ z ≤ L

where v is fluid velocity under laminar flow condition with an average of v̄, z is axial variable,
r is radial variable, D is reactant diffusivity in liquid, R is inside pipe radius, c0 is inlet
reactant concentration, k is the rate coefficient of the reaction at pipe wall, and L is pipe
length.

Simplify the above model for (a) kR/D � 1 and (b) kR/D � 1.

6.2 Among the T and P measurements of Example 6.1.2 on p. 200, which one needs to be
taken more accurately. Justify your answer with calculations.

6.3 Heat transfer in a turbulent fluid in a pipe involves its diameter (d) as well as the velocity
(v), density (ρ), viscosity (μ), thermal conductivity (k), heat capacity (ĈP), and heat transfer
coefficient (h) of the fluid. Apply Buckingham pi theorem to relate these variables through
dimensionless numbers.

Recombine these numbers as necessary into Nusselt, Prandtl, and Reynold numbers, which
are defined, respectively, as

Nu =
hd

k
, Pr =

μĈP

k
and Re ≡ dvρ

μ

6.4 For the least-squares fit of a plane

z = ax+ by + c

on the data points:

(x1, y1, z1) (x2, y2, z2) . . . (xn, yn, zn)

derive the equations to determine the coefficients a, b and c.

6.5 Derive the divided difference formula for the polynomial interpolation of equispaced
data points.
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6.6 Write a computer program to generate quadratic splines. Enable linear extrapolation
outside the end points of a given data set. Use the program to fit the following data:

x 3 4.5 7 9 11 13

y 2 30 4 50 6 7

6.7 Solve the last problem using cubic splines. Compare the results with those obtained with
quadratic splines in that problem.



7
Process Simulation

Process simulation is the solution of process models. While analytical methods provide
solutions as explicit analytical expressions for the unknowns, the equations involved in most
process models are too difficult to be solved in this manner. Numerical methods circumvent
this problem by approximating model equations with Taylor expansions, and often involve
iterative calculations. They require initial guesses, which improve and converge to solutions.
Their accuracies therefore depend upon the convergence criteria, and the approximations they
utilize.

In this chapter, we focus on simple and effective numerical methods that are widely used
in process simulation to solve algebraic equations, ordinary differential equations, and partial
differential equations.

7.1 Algebraic Equations

In process modeling, algebraic equations typically result from the steady state description
of processes with lumped parameters. These equations also result from the finite difference
approximations of differential equations.

We first describe the numerical solution of linear algebraic equations, which forms the
basis for the solution of non-linear algebraic equations.

7.1.1 Linear Algebraic Equations

In general, a set of linear algebraic equations can be expressed as

a00x0 + a01x1 + · · ·+ a0,n−1xn−1 = b0

a10x0 + a11x1 + · · ·+ a1,n−1xn−1 = b1

...
...

...

an−1,0x0 + an−1,1x1 + · · ·+ an−1,n−1xn−1 = bn−1

Process Modeling and Simulation for Chemical Engineers: Theory and Practice, First Edition. Simant Ranjan Upreti. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/upreti/pms_for_chemical_engineers
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where aijs and bis are constants, and xis are variables. In matrix notation,

A︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

a00 a01 . . . a0,n−1

a10 a01 . . . a0,n−1

...
... . . .

...

an−1,0 an−1,1 . . . an−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

x︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

x0

x1

...

xn−1

⎤
⎥⎥⎥⎥⎥⎥⎦ =

b︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

where the function f(x) ≡ Ax− b is linear with respect to x. The vector x for which
f(x) = 0 is the solution of the equations. It is also called the root of f .

To solve linear algebraic equations, we present the method of lower-upper decomposition,
followed by forward and back substitution. This method is illustrated for a set of three
equations as follows.

Lower-Upper Decomposition

This is the first step in which a matrix A is decomposed into lower and upper triangular
matrices, which are, respectively,

L =

⎡
⎢⎢⎢⎣
1 0 0

l10 1 0

l20 l21 1

⎤
⎥⎥⎥⎦ and U =

⎡
⎢⎢⎢⎣
u00 u01 u02

0 u11 u12

0 0 u22

⎤
⎥⎥⎥⎦

such that

A = LU (7.1)

Forward Substitution

This is the second step in which an intermediate vector d =
[
d0 d1 d2

]� is obtained
by solving the set of equations

Ld = b (7.2)

starting from the first equation. Note that the first equation immediately yields d0, which when
substituted forward into the second equation yields d1. Finally, d0 and d1 when substituted
forward into the third equation yield d3.

Backward Substitution

This is the last step in which the solution x is obtained by solving the set of equations

Ux = d (7.3)
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starting from the last equation. Note that the last equation straightaway yields x2, which when
substituted backward into the previous (i.e., second) equation yields x1. Finally, x2 and x1

when substituted backward into the first equation yield x0.

Proof
The solution vector x satisfies Equation (7.3) on the previous page. Multiplying both sides of
the equation by L, we get,

LU︸ ︸
A

x = Ld︸ ︸
b

In the above equation, the coefficient of x on the left-hand side is A from Equation (7.1) on
the previous page. Also, the right-hand side is b from Equation (7.2) on the previous page. In
other words, x is the solution of

Ax = b

Method for Lower-Upper Decomposition
Based on Gaussian elimination, this method employs elementary row operations
systematically to yield triangular matrices L and U such that their product is A. The
operations are presented in three steps. The goal is to eliminate the elements below the
diagonal in

A =

⎡
⎢⎢⎢⎣
a00 a01 a02

a10 a11 a12

a20 a21 a22

⎤
⎥⎥⎥⎦

Step 1 The first row of A is selected, and called the pivotal row. Its element that is on the
diagonal, a00, is the pivotal element. Its column is the pivotal column. To minimize
round-off errors in operations that will follow, the pivotal row is switched with
another suitable row to obtain a pivotal element with maximum absolute value in
the pivotal column. At the same time, the identical rows of b are switched so that
the equations in the set, Ax = b, do not change. This process is known as partial
pivoting.

a. The first row is multiplied throughout by the factor l10 = a10/a00, and subtracted
from the second row. The result is the modified second row in the matrix shown
below with a10 eliminated. ⎡

⎢⎢⎢⎣
a00 a03 a02

0 a
(1)
11 a

(1)
12

a20 a21 a22

⎤
⎥⎥⎥⎦

The superscript ‘(1)’ denotes the modified elements.

b. Similarly, the third row is modified. The 1st row is multiplied by the factor
l20 = a20/a00, and subtracted from the third row to obtain the modified third



230 Process Modeling and Simulation for Chemical Engineers

row as shown below with a20 eliminated.⎡
⎢⎢⎢⎣
a00 a03 a02

0 a
(1)
11 a

(1)
12

0 a
(1)
21 a

(1)
22

⎤
⎥⎥⎥⎦

At this point, all elements below the pivotal element in the same column are
eliminated.

Step 2 The second row is selected as the pivotal row with the diagonal element, a(1)11 , as the
pivotal element. If partial pivoting is done, the lijs corresponding to the two switched
rows are also interchanged.

a. The second row is multiplied by the factor l21 = a
(1)
21 /a

(1)
11 , and subtracted from

the third row to obtain the modified third row with a
(1)
21 eliminated.

At this point, all elements below the diagonal are eliminated, and the resulting
matrix is the upper triangular matrix,

U =

⎡
⎢⎢⎢⎣
a00 a03 a02

0 a
(1)
11 a

(1)
12

0 0 a
(2)
22

⎤
⎥⎥⎥⎦

The superscript ‘(2)’ denotes the modified element.

Step 3 The factors lijs used in the previous steps are collected according to their subscripts
to form the lower triangular matrix,

L =

⎡
⎢⎢⎢⎣
1 0 0

l10 1 0

l20 l21 1

⎤
⎥⎥⎥⎦

Remarks
Using matrix multiplication, and expanding lijs, readers can verify that the multiplication of
L and U yields a matrix, say, A′, which is A, but after the rows switches that happen due
to any partial pivoting. Note that the above steps apply the same row switches in b during
partial pivoting, and modify b to, say, b′. Thus, eventually when any ith row of A becomes
the kth row in A′, bi becomes b′k. As a result, the solution of Ax = b is equivalent to that
of A′x = b′. It is this last set of equations that is solved using the decomposed L and U in
forward and backward substitution. In the absence of partial pivoting, A′ = A and b′ = b.
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Example 7.1.1

Solve the following equation using the method of lower-upper decomposition, and forward
and backward substitution:

⎡
⎢⎢⎢⎣

10−9 3 −2

−5 4 8

3 −20 4

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣
x0

x1

x2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x

=

⎡
⎢⎢⎢⎣
1

2

3

⎤
⎥⎥⎥⎦

︸︷︷︸
b

(7.4)

Solution

We begin with lower-upper decomposition of A.

Lower-Upper Decomposition
The steps of the method, which was described earlier in Section 7.1.1 on p. 229, are as
follows.

Step 1
The first row is the pivotal row, and the pivotal element is a00 = 10−9, which is not the
absolute maximum in its column. Therefore, we need to do partial pivoting, i.e., switch
appropriate rows of A in order to have the maximum absolute value for a00 in the first
column. Note that the same rows of b need to be switched simultaneously.

The following operations are carried out in this step:

⎡
⎢⎢⎢⎣

10−9 3 −2

−5 4 8

3 −20 4

⎤
⎥⎥⎥⎦ pivot: switch top two rows

(and corresponding b0 and b1)

⎡
⎢⎢⎢⎣
−5 4 8

10−9 3 −2

3 −20 4

⎤
⎥⎥⎥⎦

replace second row with:

second row−
(

10−9

−5

)
︸ ︷︷ ︸

l10

× first row

⎡
⎢⎢⎢⎣
−5 4 8

0 3 −2

3 −20 4

⎤
⎥⎥⎥⎦ replace third row with:

third row −
(

3

−5

)
︸ ︷︷ ︸

l20

× first row

⎡
⎢⎢⎢⎣
−5 4 8

0 3 −2

0 −17.6 8.8

⎤
⎥⎥⎥⎦
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Step 2
Here, the second row is the pivotal row, and a11 is the pivotal element. The operations for this
step are as follows:

pivot: switch bottom two rows

(and corresponding b1 and b2, and l10 and l20)

⎡
⎢⎢⎢⎣
−5 4 8

0 −17.6 8.8

0 3 −2

⎤
⎥⎥⎥⎦

replace third row with:

third row −
(

3

17.6

)
×︸ ︷︷ ︸

l21

second row

⎡
⎢⎢⎢⎣
−5 4 8

0 −17.6 8.8

0 0 −0.5

⎤
⎥⎥⎥⎦ = U

Step 3
In the final step, we gather the lijs to form

L =

⎡
⎢⎢⎢⎣
1 0 0

l10 1 0

l20 l21 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0

−0.6 1 0

−2× 10−10 −0.1705 1

⎤
⎥⎥⎥⎦

Effect of Partial Pivoting
Note that during partial pivoting in Step 2 above, l10 and l20 were swapped. Now the product
of L and U gives

⎡
⎢⎢⎢⎣
−5 4 8

3 −20 4

10−9 3 −2

⎤
⎥⎥⎥⎦ ≡ A′

which is A after applying the row switches of Steps 1 and 2. This A′ corresponds to b′,
which is b with its elements swapped in Steps 1 and 2. Thus, the equation to be solved is

⎡
⎢⎢⎢⎣
−5 4 8

3 −20 4

10−9 3 −2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A′

⎡
⎢⎢⎢⎣
x0

x1

x2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x

=

⎡
⎢⎢⎢⎣
2

3

1

⎤
⎥⎥⎥⎦

︸︷︷︸
b′

Note that the above equation is equivalent to Equation (7.4) on the previous page.
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Forward Substitution
We find d in this step as follows:

Ld = b′ ⇒

⎡
⎢⎢⎢⎣

1 0 0

−0.6 1 0

−2× 10−10 −0.1705 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
d0

d1

d2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
2

3

1

⎤
⎥⎥⎥⎦

⇒

d0 = 2

d1 = 3− l10d0 = 4.2

d2 = 1− l20d0 − l21d1 = 1.7159

⇒ d =

⎡
⎢⎢⎢⎣
2

4.2

1.7159

⎤
⎥⎥⎥⎦

Backward Substitution
Finally, we find x as follows:

Ux = d ⇒

⎡
⎢⎢⎢⎣
−5 4 8

0 −17.6 8.8

0 0 −0.5

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x0

x1

x2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
2

4.2

1.7159

⎤
⎥⎥⎥⎦

⇒

x2 =
1.7159

−0.5
= − 3.4318

x1 =
4.2− 8.8x2

−17.6
= − 1.9546

x0 =
2− 4x1 − 8x2

2
= − 7.4546

⇒ x =

⎡
⎢⎢⎢⎣
−7.4546

−1.9546

−3.4318

⎤
⎥⎥⎥⎦

�

Inverse of Square Matrix

The above method to solve linear algebraic equations also enables the determination of the
inverse of a square matrix. Given a square matrix A, its inverse A−1 is the solution of the
following equation:⎡
⎢⎢⎢⎢⎢⎢⎣

a00 a01 · · · a0,n−1

a10 a11 · · · a0,n−1

...
... · · ·

...

an−1,0 an−1,1 · · · an−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎣

ã00 ã01 · · · ã0,n−1

ã10 ã01 · · · ã0,n−1

...
...

. . .
...

ãn−1,0 ãn−1,1 · · · ãn−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0

...
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
I
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where the ith column of A−1 satisfies

A

⎡
⎢⎢⎢⎢⎢⎢⎣

ã0i

ã1i
...

ãn−1,i

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
xi

=

⎡
⎢⎢⎢⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
bi

; i = 0, 1, . . . , n− 1 (7.5)

with all elements of bi zero except the ith one, which is unity. Observe that the ith column
of A−1 is the solution of the above equation. Hence, the inverse of a square matrix is
determinable as follows:

1. A is decomposed into L and U.

2. To obtain the ith column of A−1, the vector bi is obtained by setting all its elements to
zero except bi, which is set to unity.

3. Using forward substitution, d is obtained from Ld = bi.

4. Using backward substitution, xi is obtained from Uxi = d. This xi is the ith column of
A−1.

5. Steps 2–4 are repeated to obtain the rest of the columns of A−1.

If during the decomposition of A, its ith row eventually became the kth row of A′ (due to
one or more instances of partial pivoting) then i is set to k in Step 2 above. See Appendix 7.A
on p. 281 for the explanation.

Example 7.1.2

Find the inverse of A in Example 7.1.1 on p. 231.

Solution
We will make use of L and U that were determined in that example. Due to partial pivoting,
LU = A′, which is different from the original A. Similarly, b′ is different from the original
b. Compared to the originals, the rows in A′ and b′ are switched. Specifically,

b′2 = b0, b′0 = b1 and b′1 = b2 (7.6)

First column of A−1

To find this column, we set the first element of b to unity, and rest of the elements to zero,
i.e.,

b =
[
1 0 0

]�
The above b from Equation (7.6) above corresponds to

b′ =
[
0 0 1

]�
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We use this b′, and solve equation A′x1 = b′ using the lower-upper decomposition, and
forward and backward substitution:

Ld = b′ ⇒ d =
[
0 0 1

]�
Ux1 = d ⇒ x1 =

[
−4 −1 −2

]�
The solution x is the first column of A−1.

Second column of A−1

To find the second column of A−1, we set the second element of b to unity, and the rest of
the elements to zero. This b from Equation (7.6) on the previous page corresponds to

b′ =
[
1 0 0

]
With this b′, we solve equation A′x2 = b′ as before to obtain

x2 =
[
−0.6364 −0.1364 −0.2045

]�
which is the second column of A−1.

Third column of A−1

Finally, to find the third column of A−1, we set the third element of b to unity, and the rest
of the elements to zero. This b from Equation (7.6) on the previous page corresponds to

b′ =
[
0 1 0

]
With this b′, we solve equation A′x3 = b′ as before to obtain

x3 =
[
−0.7273 −0.2273 −0.3409

]�
which is the third column of A−1.

Putting the three columns together, we obtain,

A−1 =

⎡
⎢⎢⎢⎣
−4 −0.6364 −0.7273

−1 −0.1364 −0.2273

−2 −0.2045 −0.3409

⎤
⎥⎥⎥⎦

�
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7.1.2 Non-Linear Algebraic Equations

A set of non-linear algebraic equations can be written in general as

f0(x0, x1, . . . , xn−1) = 0

f1(x0, x1, . . . , xn−1) = 0

...
...

...

fn−1(x0, x1, . . . , xn−1) = 0

or, in vector notation, f(x) = 0

where f is a non-linear function of x. These equations are solvable using the Newton–
Raphson method.

Newton–Raphson Method

This method involves a computational algorithm to solve non-linear algebraic equations using
derivative information.

For a single equation, f(x) = 0, Figure 7.1 below illustrates the steps of the algorithm. The
tangent f ′[x(0)] to the function at the initial guess x(0) provides an improved estimate x(1) for
the root, i.e., the solution of f(x) = 0. Another tangent at x(1) does the same by providing a
further improved estimate x(2). This procedure is repeated until the function value at the final
estimate is sufficiently close to zero at the root xr.

f [x(2)]

x(0)x(1)x(2)xr

x

f [x(1)]

f [x(0)]

θ(0)

f [x(0)]

tan θ(0)
︸ ︷︷ ︸

f ′[x(0)]

θ(1)

f [x(1)]

tan θ(1)
︸ ︷︷ ︸

f ′[x(1)]

Figure 7.1 Steps of the Newton–Raphson method for a single equation, f(x) = 0
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Thus, the Newton–Raphson method has the following algorithm:

x(k+1) = x(k) − f [x(k)]

f ′[x(k)]
; k = 0, 1, 2, . . . (7.7)

For a set of simultaneous algebraic equations, f(x) = 0, the algorithm becomes

x(k+1) = x(k) − J−1[x(k)] f [x(k)]; k = 0, 1, 2, . . . (7.8)

where J[x(k)] is the matrix of partial derivatives of f , or Jacobian, evaluated at x(k), i.e.,

J[x(k)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f0
∂x0

⏐⏐⏐⏐
x(k)

∂f0
∂x1

⏐⏐⏐⏐
x(k)

· · · ∂f0
∂xn−1

⏐⏐⏐⏐
x(k)

∂f1
∂x0

⏐⏐⏐⏐
x(k)

∂f1
∂x1

⏐⏐⏐⏐
x(k)

· · · ∂f1
∂xn−1

⏐⏐⏐⏐
x(k)

...
...

. . .
...

∂fn−1

∂x0

⏐⏐⏐⏐
x(k)

∂fn−1

∂x1

⏐⏐⏐⏐
x(k)

· · · ∂fn−1

∂xn−1

⏐⏐⏐⏐
x(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Appendix 7.B on p. 281 provides the derivation of the Newton–Raphson method. Essentially,
the method uses x(0) to calculate the left-hand side of Equation (7.8) above, which is x(1) –
an improvement of x(0).

In the next iteration, the method improves x(1) to x(2). As the iterations continue, the left-
hand side of the equation improves progressively, and converges to the root. The iterations
are stopped when any of the following happens:

1. The improvement in x(k) becomes negligible.
For example, given the vector of absolute relative errors,

e =

⎡
⎣⏐⏐⏐⏐⏐1− x

(k)
0

x
(k+1)
0

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐1− x

(k)
1

x
(k+1)
1

⏐⏐⏐⏐⏐ · · ·
⏐⏐⏐⏐⏐1− x

(k)
n−1

x
(k+1)
n−1

⏐⏐⏐⏐⏐
⎤
⎦
�

either the magnitude, or the largest element of e becomes less than a specified, small
positive number (i.e., accuracy).

2. The function vector at x(k) gets sufficiently close to 0.
For example, either the magnitude of f [x(k)], or the largest absolute value among the
elements of f [x(k)] becomes less than a specified, small positive number (or accuracy).

3. The Jacobian becomes singular.

4. The number of iterations exceeds a specified maximum number.
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Example 7.1.3

Obtain the molar volume
¯
V of n-butane at temperature T = 510.24 K, and different values of

pressure (P ) from 1 atm to the critical pressure Pc using Redlich–Kwong equation of state,
i.e.,

z3 − z2 + (A−B −B2)z −AB = 0

where

z =
P
¯
V

RT
, A = 0.42748

Pr

Tr
F, Pr =

P

Pc
,

Tr =
T

Tc
, F =

1√
T 3

r

, and B = 0.08664
Pr

Tr
.

The parameters in the above equations are R = 82.06× 10−3 atmm3 kmol−1 K−1, Pc =
37.45 atm, Tc = 425.15 K, and ω = 0.193.

Solution
For a given P in the specified range, we need to find the root zr of the equation of state, and
use the root to determine

¯
V from

¯
V =

zrRT

P

For f(z) ≡ z3 − z2 + (A−B −B2)z −AB = 0, the Newton–Raphson algorithm to find
the root is [see Equation (7.7), previous page]

z(k+1) = z(k) − f [z(k)]

f ′[z(k)]
; k = 0, 1, 2, . . .

where f ′[z(k)] is the derivative of f with respect to z, and evaluated at z = z(k). For
P = 1 atm, Table 7.1 below shows the results of the Newton–Raphson iterations starting
with an initial guess of z0 = 1.2, and the accuracy of 10−8 in the absolute relative change in
zi, or f(zi). At convergence, z = 0.9947, which corresponds to

¯
V = 41.6477 m3 kmol−1.

Table 7.1 Iterations of the Newton–Raphson method for P = 1 atm

i zi zi+1 |1− zi/zi+1| f(zi) f ′(zi)

0 1.2000 1.0471 1.5288× 10−1 2.9435× 10−1 1.9253

1 1.0471 0.9995 4.7648× 10−2 5.7198× 10−2 1.2004

2 0.9995 0.9947 4.7384× 10−3 4.7535× 10−3 1.0032

3 0.9947 0.9947 4.5477× 10−5 4.4763× 10−5 0.9843

4 0.9947 0.9947 4.1698× 10−9 4.1035× 10−9 0.9841

To obtain
¯
V for the next P , say, 1.1 atm we use the converged z = 0.9947 at 1 atm as the

guess for the next round of the Newton–Raphson iterations. They converge to the new root
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of z, which yields the corresponding
¯
V . These steps are thus repeated for increasing P . The

results are plotted in Figure 7.2 below.

0 10 20 30 40
P , atm

0

1

2

3

4

¯V
/
1
0
,
m

3
k
m
o
l−

1

Figure 7.2 Molar volume of n-butane versus pressure at 510.24 K

�

Example 7.1.4

Find the steady state concentrations of species in the CSTR described by Equations (4.1)–
(4.4) on p. 82. Use the parameters given in Table 7.2 below. The volume of reactants in the
reactor is 9.5 m3.

Table 7.2 Values of parameters for the CSTR in Example 7.1.4 above

parameter value parameter value

cAf 2 kmolm−3 cBf 3 kmolm−3

k1 3 m3 kmol−1 s−1 k2 6 m3 kmol−1 s−1

FAf 2× 10−3 m3 s−1 FBf 2× 10−3 m3 s−1

Solution
Setting the time derivatives to zero in Equations (4.1)–(4.4), we obtain

f0 ≡ F0fc0f − Fc0
V

− k1c0c1 ≡ 0

f1 ≡ F1fc1f − Fc1
V

− k1c0c1 − k2c1c2 ≡ 0
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f2 ≡ −Fc2
V

+ k1c0c1 − k2c1c2 ≡ 0

f3 ≡ −Fc3
V

+ k1c1c2 ≡ 0

or f(c) = 0 where f =
[
f0 f1 f2 f3

]�
is the function vector, which depends

upon c =
[
c0 c1 c2 c3

]�
. The latter is the variable vector of the concentration of

species A, B, C and D denoted by subscripts ‘0’, ‘1’, ‘2’ and ‘3’, respectively. The Newton–
Raphson algorithm for the above set of equations is

c(k+1) = c(k) − J−1[c(k)] f [c(k)]; k = 0, 1, 2, . . .

where J is the Jacobian given by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−F

V
− k1c1︸ ︷︷ ︸

∂f0/∂c0

− k1c0︸ ︷︷ ︸
∂f0/∂c1

0︸︸
∂f0/∂c2

0︸︸
∂f0/∂c3

− k1c1︸ ︷︷ ︸
∂f1/∂c0

−F

V
− k1c0 − k2c2︸ ︷︷ ︸
∂f1/∂c1

− k2c1︸ ︷︷ ︸
∂f1/∂c2

0︸︸
∂f1/∂c3

k1c1︸︷︷︸
∂f2/∂c0

k1c0 − k2c2︸ ︷︷ ︸
∂f2/∂c1

−F

V
− k2c1︸ ︷︷ ︸

∂f2/∂c2

0︸︸
∂f2/∂c3

0︸︸
∂f3/∂c0

k1c2︸︷︷︸
∂f3/∂c1

k1c1︸︷︷︸
∂f3/∂c2

−F

V︸ ︸
∂f3/∂c3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Given an initial guess c(0) =
[
0.1 0.1 0.1 0.1

]�, the algorithm yields

c(1) =

⎡
⎢⎢⎢⎣
0.1

0.1

0.1

0.1

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣
−0.3004 −0.3000 0.0000 0.0000

−0.3000 −0.9004 −0.6000 0.0000

0.3000 −0.3000 −0.6004 0.0000

0.0000 0.3000 0.3000 −0.0004

⎤
⎥⎥⎥⎦
−1

︸ ︷︷ ︸
J[c(0)]

⎡
⎢⎢⎢⎣
−0.0296

−0.0894

−0.0300

0.0300

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
f [c(0)]

=
[
0.1505 −0.0493 0.1498 0.3499

]�
Applying the algorithm repeatedly we get c(2), c(3), etc. until convergence. It is attained in six
iterations with the specified accuracy of (i) machine epsilon, of O(10−16), for the maximum,
absolute relative change in an element of c(k), and (ii) 10−8 for the maximum absolute value
among the elements of f [c(k)]. At convergence

c =
[
0.2049 0.0006 0.0908 0.3522

]�
which is the vector of species concentrations in the CSTR at steady state.

�
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Secant Method
This method implements the Newton–Raphson method with finite difference approximation
of the involved derivatives. The derivatives required for the solution of f(x) = 0 are given by

∂ f

∂xi
=

f(x̃, xi +Δxi)− f(x)

Δxi

where x̃ is x excluding xi, and Δxi = εxi with ε as a small, positive fraction such as 10−4.
The secant method is helpful when dealing with complicated functions whose derivatives

are difficult to obtain analytically. For a single equation, f(x) = 0, Figure 7.3 below
illustrates the secant method. It provides improved estimates of the root using a chord
connecting two points on the function curve at a given x, and its neighborhood.

f [x(1) + Δx]

x(0)x(1)x(2)xr

x

f [x(1)]

f [x(0)]

f [x(0) + Δx]

f [x(2)]
f [x(2) + Δx]

f [x(3)]

x(3)

Δx

Figure 7.3 Steps of the secant method for a single equation, f(x) = 0

7.2 Differential Equations
Frequently encountered in process models, differential equations describe the change in
system properties with space and time. A differential equation that involves one independent
variable is called an ordinary differential equation. A differential equation with two or
more independent variables is called a partial differential equation.

The analytical solution of a differential equation is the explicit, analytical expression for the
dependent variable in terms of the involved independent variables. In numerical methods we
obtain the set of values of the dependent variable for specific discrete values of the involved
independent variables.
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7.2.1 Ordinary Differential Equations
Ordinary differential equations typically describe temporal property changes in uniform, or
lumped-parameter parameters. Under steady state conditions, these equations describe spatial
property changes in distributed-parameter systems. These equations also result from finite
difference approximation of partial differential equations.

Recall that the derivatives of order higher than one in differential equations can be
expressed as additional dependent variables [see Section 5.4.1, p. 178]. Thus, a general form
for ordinary differential equations is dy/dt = f(t,y), where y is the vector of dependent
variables, and t is the independent variable. We focus on the numerical solution of this form
of equation with y specified at the initial t. Ordinary differential equations that are linear
can be solved analytically using the well-developed theory [Section 8.13, p. 327], or Laplace
transformation [Section 5.3, p. 161].

7.2.2 Explicit Runge–Kutta Methods
These methods have been used widely to solve ordinary differential equations. Utilizing a
slope estimate at a given t where y is known, these methods find y at the next value of t.

Figure 7.4 below illustrates the application of the simplest of these methods, the explicit
Euler’s method, to solve dy/dt = f(t, y). Given the initial condition, y(0) = y0, this method
estimates the slope of y(t) at t0 as f(t0, y0). Using the slope, y1 ≡ y(t1) is then calculated
from y0 + f(t0, y0)(t1 − t0) where (t1 − t0) is the first time step. These calculations are
repeated at t1 to calculate y2 ≡ y(t2), then at t2 to calculate y3 ≡ y(t3), and so on. The set
of y values thus obtained is the numerical solution of the differential equation. The solution
is more accurate if smaller time steps are used.

t1t0

y1

y0

y2

slope f(t0, y0)

unknown function y(t)

t2 t3 t4

slope f(t1, y1)

slope f(t2, y2)
slope f(t3, y3)y3

y4

numerical solution

Figure 7.4 Application of the explicit Euler’s method to solve dy/dt = f(t, y) with y(0) = y0
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General Formulation

For the ordinary differential equation

dy
dt

= f(t,y), y = y0 at t = t0

The nth stage explicit Runge–Kutta method is given by

yi+1 = yi + h
n∑

i=1

biki︸ ︷︷ ︸
slope estimate

where yi ≡ y(ti), h is a constant interval between any ti and ti+1, and kis are the different
slopes, which are given by

k1 = f(ti, yi)

k2 = f(ti + c2h, yi + a21k1h)

k3 = f [ti + c3h, (yi + a31k1 + a32k2)h]

... =
...

kn = f [ti + cnh, (yi + an1k1 + an2k2 + · · ·+ annkn)h]

The coefficients cis, bis and aijs in the above equations are conveniently tabulated in a form
called a Butcher tableau, which is shown in Table 7.3 below. Depending on the formulation,
some of the coefficients may need to be specified.

Table 7.3 Butcher tableau for the nth order explicit
Runge–Kutta method

0

c2 a21

c3 a31 a32

c4 a41 a42 a43
...

...
...

...
cn an1 an2 an3 . . . an,n−1

b1 b2 b3 . . . bn−1 bn

For example, the formulation for the second stage explicit Runge–Kutta methods is

yi+1 = yi + (b1k1 + b2k2)h

k1 = f(ti,yi)

k2 = f(ti + c2h,yi + a21k1h)
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Using the first order Taylor expansion [Equation (8.12) on p. 322 for n = 1] for the right-hand
side of the last equation, we get

k2 = f(ti,yi) + c2h
∂ f

∂t

⏐⏐⏐⏐
ti,yi

+ a21k1h
∂ f

∂y

⏐⏐⏐⏐
ti,yi

+O(h2)

Combining the above equation with the previous ones for k1 and yi+1, we obtain

yi+1 = yi + (b1 + b2)f(ti,yi)h+

[
b2c2

∂ f

∂t

⏐⏐⏐⏐
ti,yi

+ b2a21f(ti,yi)
∂ f

∂y

⏐⏐⏐⏐
ti,yi

]
h2

+O(h3) (7.9)

But, from the second order Taylor expansion [Equation (8.12) for n = 2]

yi+1 = yi +
dy
dt

⏐⏐⏐⏐
ti,yi

h+
d2y
dt2

⏐⏐⏐⏐
ti,yi

h2

2!
+O(h3)

= yi + f(ti,yi)h+
df
dt

⏐⏐⏐⏐
ti,yi

h2

2!
+O(h3)

= yi + f(ti,yi)h+

[
∂ f

∂t
+

∂ f

∂y

dy
dt︸ ︸
f

]
ti,yi

h2

2!
+O(h3) (7.10)

Comparison of Equations (7.9) and (7.10) above results in three equations

b1 + b2 = 1 b2c2 = 0.5 b2a21 = 0.5

whereas there are four unknowns, namely, c2, a21, b1 and b2. Thus, one unknown needs to
be specified. Specification of b2 = 1 results in the midpoint method with c2 = 0.5, a21 = 0.5
and b1 = 0. For Heun’s and Ralston’s methods, b2 = 0.5 and b2 = 2/3, respectively.

Note that the order of a Runge-Kutta method is the order of the derivative of f (not y) that
would appear in the first term of the truncation error. For the midpoint, Heun’s and Ralston’s
methods, the truncation error is of O(h3), which means that these are second order methods.

Fourth Order Runge–Kutta Method

Higher order methods are derived in a similar manner as above. They have better accuracy
but at the cost of increased function evaluations. A balanced choice for simple ordinary
differential equations is the classical, fourth-order Runge–Kutta method, which is given by

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) (7.11)

k1 = f(ti, yi) (7.12)

k2 = f(ti + 0.5h, yi + 0.5k1h) (7.13)

k3 = f(ti + 0.5h, yi + 0.5k2h) (7.14)

k4 = f(ti + h, yi + k3h) (7.15)
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Example 7.2.1

Using the fourth order Runge–Kutta method with a step size of 0.1, integrate the following
equations:

dy0
dt

= e−at +
y20
y1

− y0, y0(0) = 1 (7.16)

dy1
dt

= y20 − by1, y1(0) = 1 (7.17)

up to t = 1 for a = 0.1 and b = 1.

Solution
Given a time instant, and the known values of y at that instant, we apply Equations (7.12)–
(7.15) on the previous page to obtain the values of y from Equation (7.11) at the next time
instant. At the ith time instant, the right-hand side of the differential equations is given by

f(ti,yi) = f(ti, y0i, y1i) =

⎡
⎢⎢⎢⎢⎢⎣
e−ati +

y20i
y1i

− y0i

y20i − by1i

⎤
⎥⎥⎥⎥⎥⎦

We begin with the subscript counter i = 0 when the time is t0 = 0. From the initial condition,

y0 =

⎡
⎣1
1

⎤
⎦

k1 = f(t0,y0) = f(0, 1, 1) =

⎡
⎣1
0

⎤
⎦

k2 = f(t0 + 0.5h,y0 + 0.5k1h) = f(0.05, 1.05, 1) =

⎡
⎣1.0475
0.1025

⎤
⎦

k3 = f(t0 + 0.5h,y0 + 0.5k2h) = f(0.05, 1.0524, 1.0051) =

⎡
⎣1.0445
0.1024

⎤
⎦

k4 = f(t0 + h,y0 + k3h) = f(0.1, 1.1044, 1.0102) =

⎡
⎣1.0930
0.2096

⎤
⎦

y1 = y0 +
h

6
(k1 + 2k2 + 2k3 + k4) =

⎡
⎣2.0462
1.1032

⎤
⎦
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For the next step, we increment the counter i by one. Then the time is t1 = t0 + h = 0.1.
We recalculate k1, k2, k3 and k4 to obtain y2. This procedure is repeated until y is obtained
at t = 1. Figure 7.5 below plots the solution, i.e., values of y at the discrete time instants.

0 0.2 0.4 0.6 0.8 1
t

0

5

10

15

20

25

y
0
,
y
1

y0

y1

Figure 7.5 Solution of Equations (7.16) and (7.17) on the previous page using the fourth order Runge–
Kutta method with a step size of 0.1

�

7.2.3 Step-Size Control
When dependent variables change rapidly, the magnitudes of their derivatives are large, and
lead to large truncation errors. To reduce them to maintain a desired accuracy, we must reduce
the size of integration steps. This increases computations, which is necessary though. On the
other hand, when the dependent variables change slowly, the derivatives are small. Then we
can afford to use large step sizes, yet maintaining the accuracy with reduced computations.
This is the concept of step-size control in numerical integration.

Since the analytical solution of a differential equation would not necessarily exist, we have
to rely on an approximate but more accurate solution to determine the errors. This additional
solution can be obtained by using multiple, smaller integration steps, or a higher order method
in parallel. The last approach is efficiently implemented by embedded Runge–Kutta methods,
which provide a nominal and a higher order (more accurate) solution simultaneously with
common function evaluations.

Implementation

The step size of numerical integration is controlled using the procedure that is explained next.
The error in an integration step is calculated from
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e = |ỹ − y|

where ỹ and y are, respectively, the more and less accurate solutions of the differential
equation dy/dt = f(y) at the next step. Each element of e, i.e., ei is normalized by a scaled
absolute value ŷi for the corresponding dependent variable, yi. Then for a given accuracy ε,
one requirement is∗

ei
ŷi

≤ ε or
ei
εŷi

≤ 1; i = 0, 1, . . . , n− 1

Let E be the maximum among all values of ei/(εŷi). Then for the mth order method,

E ∝ hm+1

If integration carried out with the step size hnew results in Enew then

Enew ∝ hm+1
new ⇒ Enew

E
=

(
hnew

h

)m+1

⇒ hnew = h

(
Enew

E

) 1
m+1

Note that if hnew enables integration in the limit of the given accuracy then Enew = 1.
Substitution of this result in the last equation yields

hnew = h

(
1

E

) 1
m+1

(7.18)

which is the step size at the limit of the given accuracy.
Thus, the step-size control procedure at each integration step is as follows:

1. Obtain E based on a standard and more accurate solution.

2. If E > 1 then calculate hnew from Equation (7.18).

3. Repeat calculations until E ≤ 1.

When the procedure is successful, the more accurate solution is used to advance the solution.
This approach is known as local extrapolation.

The aforementioned procedure requires the specification for ε as well as ŷis. A general
specification for the latter is

ŷi = |yi|+
⏐⏐⏐⏐hdyi

dt

⏐⏐⏐⏐

7.2.4 Stiff Equations
Accurate solutions of certain differential equations require very small step sizes with explicit
methods in general. Such equations are called stiff equations. The reason for stiffness is the
presence of terms that cause rapid accumulation of truncation errors as numerical integration
progresses.

∗Using the norm of the normalized error is another choice, which is less stringent.
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Consider, for example, the ordinary differential equation,

dy
dt

= −αy︸︷︷︸
f

, y(0) = 1 (7.19)

where α is a positive constant. The above equation has the analytical solution, y = e−αt.
We examine the numerical solutions obtained from the explicit and implicit Euler’s methods
given, respectively, by

yi+1 = yi + f(ti, yi)h and yi+1 = yi + f(ti+1, yi+1)h; i = 0, 1, . . .

The last method is implicit with respect to yi+1 because it uses f at the next time instant.
From the explicit Euler’s method,

yi = (1− αh)i; i = 0, 1, . . .

where h is a fixed time step. In order for the numerical solution to attain a stable value of y
at infinite t,

lim
i→∞

yi = lim
i→∞

(1− αh)i = lim
t→∞ y(t) = lim

t→∞ e−αt = 0

This result in conjunction with Equation (7.19) above implies that

|(1− αh)| ≤ 1 or h ≤ 2

α

for a stable numerical solution.
The explicit Euler’s method, on the other hand, yields the solution

yi =
1

(1 + αh)i
; i = 0, 1, . . .

which is stable regardless of the step size h because

lim
i→∞

yi = lim
i→∞

1

(1 + αh)i
= 0

Thus, for a stable solution when α = 2× 105, the explicit method requires a step size less
than 10−5. It comes down to excessive computational overhead of more than 105 function
evaluations over the [0, 1] t-interval. In contrast, the implicit Euler’s method does not have
such restriction. It generates good quality solutions with significantly larger step sizes, and
less computations than those with the explicit method.

Truncation Errors

Using Taylor series, the accumulated truncation errors in yn calculated from the explicit and
implicit Euler’s methods are, respectively,

εn =
[
(1− αh)n−1e−αt0 + (1− αh)n−2e−αt1 + · · ·+ e−αtn−1

]
C

where C =
(αh)2

2!
− (αh)3

3!
+

(αh)4

4!
− · · ·
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and

ε̃n =

[
ẽ−αt1

(1 + αh)n−1
+

ẽ−αt2

(1 + αh)n−2
+ · · ·+ ẽ−αtn

]
C̃

where C̃ = − (αh)2

2!
− (αh)3

3!
− (αh)4

4!
− · · ·

Comparing term-wise with εn, the ith exponential term of ε̃n has a more negative index, and
(1 + αh) > 1 in the denominator. Moreover, C̃ < 0. The implication is that for the same h,
the truncation errors with the implicit method

1. are smaller than those with the explicit method, and

2. being always negative, cannot cause oscillations in the solution that may happen with
the explicit method due to alternating signs of the terms in C.

Figure 7.6 below compares the numerical solutions for α = 17 and h = 0.125. It is
observed that the solution from the implicit method follows the true solution closely. On
the other hand, the solution from the explicit method oscillates and diverges. A good quality
solution from this method would require h considerably smaller than 2/α.

0 0.2 0.4 0.6 0.8 1
t
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Figure 7.6 Comparison of the true solution of Equation (7.19) on the previous page with those
obtained from implicit and explicit Euler’s methods for α = 17 and h = 0.125

In general, implicit integration methods are effective in solving stiff differential equations.
The differential equations, if non-linear, must be linearized at each integration step when
using these methods. This is explained next.
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Linearization

Consider an implicit integration method of the form

yi+1 = yi + hf(yi+1); i = 0, 1, 2, . . .

If f(y) is non-linear then it needs to be linearized before an explicit expression for yi+1 could
be obtained.

Using the first order Taylor expansion for f at yi [see Section 8.8.2, p. 323], we get

yi+1 = yi + h
[
f(yi) + Ji(yi+1 − yi)

]
; i = 0, 1, 2, . . .

where Ji is the Jacobian of f with respect to y, and is evaluated at yi. The above equation,
upon rearrangement, yields

yi+1 = yi +

[
I

h
− Ji

]−1

f(yi); i = 0, 1, 2, . . .

where I is the identity matrix.
Thus, to solve a stiff set of ordinary differential equations

dy
dt

= f(t,y)

we need to provide the Jacobian of f . The calculation of the new y at each step requires the
inversion of the matrix (I/h− J). This extra computation is more than compensated for by
the ability to take significantly larger steps relative to an explicit integration method.

Example 7.2.2

Polymerization of methyl methacrylate (MMA) in a batch reactor is described by the
following differential equations:1

dV
dt

= −KpmλVMm

[
1

ρp
− 1

ρm

]
, V (0) = V0

dm
dt

= −Kpmλ− m

V

dV
dt

, m(0) = m0

di
dt

= Kdi−
i

V

dV
dt

, i(0) = i0

ds
dt

= −Kssλ− s

V

dV
dt

, s(0) = s0

dz
dt

= −Kzzλ− z

V

dV
dt

, z(0) = z0

dT
dt

=
−ΔHKpmλ

ρmĈP
− UA(T − Tj)

V ρmĈP
, T (0) = T0

dλ
dt

= 2fKdi−Ktλ
2 −Kzzλ− λ

V

dV
dt

, λ(0) = λ0
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where (i) V is the volume of reactants, (ii) m, i, s and z, are, respectively, the concentrations
of monomer (MMA), initiator, solvent and inhibitor, (iii) T is the temperature of reactants,
(iv) λ is the zeroth moment of the polymer radical, (v) Kp, Kd, Ks, Kz and Kt are,
respectively, the rate coefficients for propagation, initiation, solvent chain transfer, inhibitor
chain transfer, and termination, (vi) Mm is the monomer molecular weight, (vii) ρm and ρp
are, respectively, the densities of monomer and polymer, (viii) −ΔH is the heat of reaction,
(ix) U and A are, respectively, the heat transfer coefficient, and area, (x) Tj is the coolant
temperature in the reactor jacket, (xi) ĈP is the specific heat capacity of the reaction mixture,
and (xii) f is initiator efficiency. Expressions for the relevant variables are as follows.

Kp = Kp1Kp2 [Lmol−1 min−1]

where Kp1 = 2.95× 107 exp

[
−4350

R(T + 273.15)

]
[Lmol−1 min−1]

Kp2 =

{
7.1× 10−5 exp(171.53Vf), if Vf < 0.05

1, if Vf ≥ 0.05

Vf = 0.025 +
αM(T − TgM)mMwM

ρM
+

αP(T − TgP)(m0 −m)MwM

ρP

+
αS(T − TgS)sMwS

ρS
[L]

Kt = Kt1Kt2 [Lmol−1 min−1]

where Kt1 = 3.12× 1010 exp

[
−1394

R(T + 273.15)

]
[Lmol−1 min−1]

Kt2 =

{
2.3× 10−6 exp(75Vf), if Vf < Vft

0.10575 exp(17.15Vf − 0.01715T ), if Vf ≥ Vft

Vft = 0.1856− 2.965× 10−4T [L]

Kd = 1.014× 1016 exp

[
−3× 104

R(T + 273.15)

]
[min−1]

Ks = 1.58× 10−5Kp Lmol−1 min−1

Kz = 106Kp Lmol−1 min−1

ρm = 309.85× 0.25357−[1−(T+273.15)/564]0.28571 [g L−1]

ρp = 1.18× 103 − (T + 273.15) [g L−1]

ρs = 300.9× 0.2677−[1−(T+273.15)/562.16]0.2818 [g L−1]

ĈP = 0.10113342 + 2.575065× 10−3(T + 273.15)− 7.53159× 10−6(T + 273.15)2

+ 9.0138× 10−9(T + 273.15)3 [cal gMMA−1 ◦C−1]
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For the parameters given in Table 7.4 below, solve the above differential equations to obtain
the dependent variables versus time for one hour of reactor operation. Analyze the effect of
increase in the initial temperature of reactants.

Table 7.4 Parameters for the polymerization of MMA in a batch reactor

parameter value parameter value

V0 1 L λ0 0

m0 1.7648 mol L−1 f 0.6

i0 4.13× 10−2 mol L−1 Mm 100.12 gmol−1

s0 8.4692 mol L−1 Ms 78.11 gmol−1

z0 10−5 mol L−1 UA 156.49 calmin−1 ◦C−1

T0, Tj 90 ◦C −ΔH 13.2553× 103 calmol−1

TgM −106 ◦C αS, αM 10−3

TgP 114 ◦C αP 4.8× 10−4

TgS −102 ◦C R 1.987 calmol−1 K−1

Solution
The above differential equations are very stiff. We present the results obtained using (i) the
explicit, fifth order Runge–Kutta-Fehlberg (RKF) method with adaptive step-size control, and
(ii) a stiff solver2 with analytical expressions for the Jacobian elements. Figure 7.7 on the next
page shows the dependent variables thus obtained with the integration accuracy, ε = 10−10

[see Section 7.2.3, p. 246]. The stiffness of the differential equations can be ascertained
from the small steps [of O(10−4) min] taken by the explicit method to meet the accuracy
requirement [see Figure 7.8, next page]. In contrast, the stiff solver took considerably larger
steps – as large as 27 min – to integrate the differential equations.

Computational Overhead
Figures 7.9 and 7.10 on p. 254 show computational overheads of the two integration methods
for different initial temperatures, T0s. Compared to the explicit method, the stiff solver

1. needed considerably less number of steps and derivative evaluations – at least by three
orders of magnitude, and

2. notwithstanding the Jacobian evaluation at each step, used computation time, which
was 103 to 104 times less, and mostly decreased with the rise in stiffness with T0.

Effect of Temperature
The high initial temperature of reactants (T0) contributes to the stiffness of the above
differential equations. The reason is that temperature appears as e−α/T in the kinetic rate
expressions used in the differential equations. The terms of the form e−α/T persist in the
derivatives that make up the truncation errors of the numerical method. As a result, an increase
in T , which means an increase in e−α/T , raises the truncation errors. To curb them, the
method has to use smaller steps, and consequently do more computations. This is evident
for the explicit method, especially when T0 is increased from 120◦C to 130◦C. The effect of
increase in T0 on the stiff solver is relatively very mild.

�
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Figure 7.7 Dependent variables versus time in Example 7.2.2 on p. 250
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Figure 7.8 Sizes of steps taken by the stiff solver, and the explicit, fifth order RKF method in
Example 7.2.2

7.3 Partial Differential Equations
A partial differential equation is a differential equation with more than one independent
variable. These equations are frequently encountered in engineering practice. Those with
time as independent variable describe unsteady state phenomena, which under steady state
are described by ordinary differential equations.
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Figure 7.9 Computational overhead versus T0 with the explicit, fifth order RKF method in
Example 7.2.2 on p. 250
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Figure 7.10 Computational overhead versus T0 with the stiff solver in Example 7.2.2. Fractional
computation time is the ratio of time taken by this solver to that by the explicit, fifth order RKF method

The majority of process models involving partial differential equations are expressed in
Cartesian, cylindrical, or spherical coordinate system. In the simple geometries of these
coordinates systems, the method of finite differences is an effective means for the numerical
solution of partial differential equations. This method is illustrated next.
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7.3.1 Finite Difference Method
Basically, this method replaces the derivatives in a partial differential equation with their
finite difference approximations, or formulas. With systematic replacement of derivatives,
this method converts

1. a partial differential equation into a set of simultaneous, ordinary differential equations,
and

2. an ordinary differential equation into a set of simultaneous algebraic equations.

Either the intermediate ordinary differential equations or the final algebraic equations
can be solved to obtain the solution of the original PDEs. The former approach is called
the method of lines. It is often preferable because ordinary differential equations can
be efficiently solved with adaptive step-size control, thereby reducing the amount of
computation.

Finite Difference Formulas

These formulas are approximations of derivatives using discrete data points. Consider for
example, the first order Taylor expansion [Equation (8.12) on p. 322 for n = 1] of a function
f(x) at a reference point x = xi for n = 1. With slight rearrangement, the series yields the
finite difference formula for the first derivative of the function, i.e.,

[
df
dx

]
xi︸ ︷︷ ︸

f(1)(xi)

=
f(

≡ xi+1︷ ︸︸ ︷
xi + h )− f(xi)

h
− h

2

[
d2f
dx2

]
ζ︸ ︷︷ ︸

O(h)

, xi < ζ < xi+1

where h = (xi+1 − xi) is the step size. In the limit of h → 0,

f (1)(xi) =
f(xi+1)− f(xi)

h

The above equation is the forward, first order finite difference formula for the first derivative
of f(x). For a finite step size, the formula has the truncation error of O(h).

In the same manner as above for a step size −h, we obtain the O(h)-accurate backward,
first order finite difference formula

f (1)(xi) =
f(xi)− f(xi−1)

h

where xi−1 = xi − h.
To obtain the centered, first order finite difference formula, we subtract Equation (8.12)

for n = 2 and step size −h from the same equation, but for step size h. This results in the
O(h2)-accurate formula,

f (1)(xi) =
f(xi + h)− f(xi − h)

2h
+O(h2)

A general derivation of finite difference formulas is provided in Appendix 7.C on p. 284.
Higher order formulas have higher accuracy but require more function values, and arithmetic
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operations. In most problems, the second order formulas provide a good balance between
accuracy, and computational overhead. Appendix 7.C.4 on p. 289 provides the first and
second order-accurate finite difference formulas for the derivatives of a function up to the
fourth order.

In a given application of the finite difference method, the finite difference formulas of the
same order of accuracy are used consistently. When a finite difference formula is needed at
the ‘left’ boundary of the interval of an independent variable, a forward formula is used since
it does not depend on function values at the backward points in the interval. Similarly, at the
‘right’ boundary of the interval, a backward finite difference formula is applicable.

Solution Procedure

The procedure to solve partial differential equations using the finite difference method is as
follows:

1. An independent variable is selected, and its interval is discretized using grid points.

2. The differential equations are expressed at the internal grid points using finite
difference formulas for the derivatives with respect to the selected variable.

3. The associated initial, or boundary conditions are expressed similarly at the first and
last grid points. At either of them, if the dependent variable is not specified then
the differential equation is first simplified using the associated condition, and then
expressed as in Step 2 above.
The outcome is a set of finite-differenced equations at each grid point, without the
partial derivatives with respect to the selected independent variable. If the equations
are ordinary differential equations then they can be integrated to obtain the solution,
the approach being that of the method of lines.

4. The next independent variable is then selected. Starting at each existing grid point, the
interval of the newly selected variable is discretized using grid points.

5. Steps 2–4 above are repeated for all independent variables that are involved.
The outcome is a set of algebraic equations. They can be solved using a relevant method
such as the Newton–Raphson method. The solution yields the values of dependent
variables at each grid point.

Strategy
The quality of solution obtained with the above procedure depends on the number of grid
points employed to obtain finite-differenced equations. More grid points mean smaller step
sizes in finite difference formulas, thereby leading to smaller truncation errors, and a more
accurate solution. However, there is a caveat. Increasing the number of grid points also results
in more equations, which need more computation time for their solution. In addition, the
arithmetic operations increase, which increase round-off errors. The latter begin to offset the
decrease in truncation errors, and may reduce the solution accuracy beyond a certain number
of grid points.

Therefore, a recommended strategy is to solve the equations with an increasing number
of grid points until the change in the solution is either negligible, or small enough to be
acceptable within a reasonable computational time limit.
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Example 7.3.1

Oxygen concentration in a blood capillary is described by

∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r

)
− rO2 (7.20)

with the following initial and boundary conditions:

c(r, 0) =

{
c̄ ∀ R1 < r ≤ R2

cf at r = R1

(7.21)

c(r, t) = cf at r = R1 (7.22)

∂c

∂r
= 0 at r = R2 (7.23)

⎫⎬
⎭ ∀ 0 < t ≤ tf

Solve the above model using the method of finite differences.

Solution
We apply the solution procedure outlined on p. 256. The steps are as follows:

Step 1
The model has c as dependent variable, and t and r as independent variables. We first select
r, and discretize its interval using Ni equispaced grid points, as shown in Figure 7.11a on
the next page. The Ni grid points divide the r-interval into (Ni − 1) sub-intervals. At the
ith grid point, the radial distance, and the dependent variable are given by, respectively,
ri = (r0 + iΔr) and c(ri, t) ≡ ci where Δr = (R2 −R1)/(Ni − 1) is the size of sub-
intervals, or the distance between any two consecutive grid points. Note that ci depends on
the remaining independent variable, i.e., t. Thus, ci = ci(t).

Step 2
Next, we express Equation (7.20) above at each grid point. This equation has first and second
order derivatives with respect to r. We replace them with centered, first and second order
finite difference formulas, respectively. Thus, for the internal grid points, we obtain

dci
dt

= D

(
ci+1 − 2ci + ci−1

Δr2
+

1

ri

ci+1 − ci−1

2Δr

)
− rO2 , i = 1, 2, . . . , (Ni − 2)

(7.24)
Step 3
At the first grid point, the concentration is specified to be cf by the initial and boundary
conditions, i.e., Equations (7.21) and (7.22). Thus, we have at all times

c0 = cf (7.25)

At the last grid point, rN−1, the concentration is not specified. At that point, we have
the second boundary condition given by Equation (7.23) above. Because of this condition,
Equation (7.20) above at r = R2 simplifies to

∂c

∂t
= D

∂2c

∂r2
− rO2
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z

R2

R1

z = 0

z = Z

c(rNi−1) ≡ cNi−1

c(rNi−2) ≡ cNi−2

c(r0) ≡ c0

c(r1) ≡ c1

R1 = r0

r1

ri c(ri) ≡ ci

c(ri, t0) ≡ ci0

t0 t1 tj tNj−2 tNj−1

c(ri, t1) ≡ ci1 c(ri, tj) ≡ cij

c(ri, tNj−2) ≡ ci,Nj−2

c(ri, tNj−1) ≡ ci,Nj−1

rNi−2

(a)

(b)

R2 = rNi−1

(0) (tf)

Figure 7.11 Grid points for oxygen concentration in the capillary along (a) the radial direction from
R1 to R2, and (b) the time axis from 0 to tf, at a radial position ri

In the last equation, using the centered, second order finite difference formula for the second
derivative, we get

dcNi−1

dt
= D

cNi − 2cNi−1 + cNi−2

Δr2
− rO2 (7.26)

Note that in the above equation, cNi ≡ c(rNi) is the concentration at the grid point rNi

outside the interval [r0, rNi−1]. This concentration gets resolved through the second boundary
condition. Using the centered, second order finite difference formula for the first derivative,
that condition is expressible as

cNi − cNi−2

2Δr
= 0 ⇒ cNi = cNi−2

With the help of the above result, Equation (7.26) above becomes

dcNi−1

dt
= 2D

cNi−2 − cNi−1

Δr2
− rO2 (7.27)
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Now the remaining independent variable is t, for which we have the initial condition,
Equation (7.21) on p. 257. In terms of ci, this condition becomes

ci(0) = c̄ ; i = 1, 2, . . . , Ni − 1 (7.28)

At this juncture, we have a set of ordinary differential equations, Equation (7.24) on
p. 257 and Equation (7.27) on the previous page, with one less independent variable. These
equations can be integrated using the initial conditions given by Equation (7.28) above to
obtain the solution. This approach is the method of lines. Alternatively, the equations can be
discretized further as follows.

Step 4 – Selection of the Next Independent Variable
We select the next and the last independent variable, i.e., t, and discretize its interval using Nj
equispaced grid points tj . As shown in Figure 7.11b on the previous page, for each existing
radial location ri, we have Nj grid points, which divide the t-interval into (Nj − 1) sub-
intervals of the same duration. At the j th grid point, the time duration, and the dependent
variable are, respectively, given by

tj = t0 + jΔt and c(ri, tj) ≡ cij

where Δt =
tf − 0

Nj − 1

is the duration between any two consecutive time instants, and tf is the final time.
Next, we repeat Steps 2–4 of the solution procedure outlined on p. 256.

Step 2
We express at each time instant Equations (7.24) and (7.25) on p. 257, and Equation (7.27)
on the previous page.

Equation (7.24) and Equation (7.27) have first order derivatives with respect to t. We
replace them with their centered, second order finite difference formulas. Thus, for the
internal grid points in the t-interval, we obtain

ci,j+1 − ci,j−1

2Δt
= D

(
ci+1,j − 2ci,j + ci−1,j

Δr2
+

1

ri

ci+1,j − ci−1,j

2Δr

)
− rO2

i = 1, 2, . . . , Ni − 2; j = 1, 2, . . . , Nj − 2 (7.29)

cNi−1,j+1 − cNi−1,j−1

2Δt
= 2D

cNi−2,j − cNi−1,j

Δr2
− rO2 ; j = 1, 2, . . . , Nj − 2 (7.30)

where from Equation (7.25) on p. 257, c0j = cf for j = 0, 1, . . . , Nj − 1.

Step 3
At the first grid point of the t-interval, the initial concentration at r > R is specified to be c̄
by Equation (7.21) on p. 257. Thus, we have ci0 = c̄ for i = 1, 2, . . . , Ni − 1.

We now need to discretize Equation (7.24) on p. 257, and Equation (7.27) on the previous
page at the last grid point in the t-interval, i.e., tNj−1. Note that the centered, second order
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finite difference formula requires the out-of-interval concentrations, ciNj s, which cannot
be resolved since there is no final condition. This situation is addressed by utilizing the
backward, second order finite difference formula. With this approach, Equation (7.24) and
Equation (7.27) get discretized at the last grid point (tNj−1) into the following equations:

3ci,Nj−1 − 4ci,Nj−2 + ci,Nj−3

2Δt
= D

(
ci+1,j − 2ci,j + ci−1,j

Δr2

+
1

ri

ci+1,j − ci−1,j

2Δr

)
− rO2

i = 1, 2, . . . , Ni − 2 (7.31)

3cNi−1,Nj−1 − 4cNi−1,Nj−2 + cNi−1,Nj−3

2Δt
= 2D

cNi−2,Nj−1 − cNi−1,Nj−1

Δr2
− rO2 (7.32)

Thus, the partial differential equation of the process model given by Equations (7.20)–
(7.23) on p. 257 gets discretized to the set of Equations (7.29)–(7.32). Readers should verify
that this set comprises (Ni − 1)(Nj − 1) equations involving the same number of unknown
cijs. Solution of the discretized equations will provide these unknown cijs, i.e., the values of
oxygen concentration for t > 0 and r > R1 at the grid points shown in Figure 7.12 below.

cf = c00

0 = t0

t1

tj

tNj−2

tNj−1

R1 = r0

r1

ri

rNi−2

rNi−1 = R2

c̄ = c10
c̄ = ci0

c̄ = cNi−2,0

c̄ = cNi−1,0

cij

c0j = cf

cNi−1,j

cNi−1,Nj−1

cNi−2,Nj−1

cNi−1,Nj−2

c0,Nj−1 = cf

c0,Nj−2 = cf

c01 = cf

t

r

Figure 7.12 Oxygen concentrations at grid points in the r- and t- intervals in the capillary

Programming Discretized Equations
Because of the repeating patterns in discretized equations at intermediate grid points, it is easy
to program the equations. For the method of lines, Figure 7.13 on the next page shows the
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// Note: No equation is needed at the first grid point where concentration is already specified

// Thus, in the program, the total no. of differential equations (n ) is one less than the no. of grid points

const double rate = k ; // first order reaction rate

// Equation (7.24) on p. 257 for the second grid point at radial distance r [0] ≡ R1 + Δr

// ‘0’ is the index of the first equation for the second grid point where concentration is c [0]

dcdt[0] = D ∗( (c[1]−2∗c[0]+cf )/drSqr + (c[1]−cf )/dr2 /r [0] ) − rate;
// drSqr ≡ Δr2, dr2 ≡ 2Δr

// Equation (7.24) for the remaining grid points except the last one

for (unsigned i=1; i<n −1; ++i) {
dcdt[i] = D ∗( (c[i+1]−2∗c[i]+c[i−1])/drSqr + (c[i+1]−c[i−1])/dr2 /r [i] ) − rate;
// r [i] ≡ r [i-1] + Δr

}

// Equation (7.27) on p. 258 for the last grid point at radial distance R2

// ‘n -1’ is the index of the last (n th) equation for the last or (n +1)th grid point where concentration is c [n -1]

dcdt[n −1] = 2∗D ∗(c[n −2]−c[n −1])/drSqr − rate;

Figure 7.13 Program code in C language for the ordinary differential equations [Equation (7.24),
p. 257, and Equation (7.27), p. 258]

program code for the ordinary differential equations that can be integrated using a suitable
solver. The program code for the algebraic equations [see Figure 7.14, next page] is more
involved because they carry unknown concentrations in the two dimensions of r and t.

Solution of Ordinary Differential Equations
For the parameter values given in Table 7.5 below, Figure 7.15 on p. 263 shows the oxygen
concentration at different grid points versus time obtained from the integration of the ordinary
differential equations using the fifth order Runge–Kutta–Fehlberg method with adaptive
steps. The concentration closer to the capillary rises faster to its oxygen concentration (cf). A
steady state is achieved in about 1.5 s.

Table 7.5 Values of parameters for the oxygen transfer process in a blood capillary

parameter value parameter value

R1 5× 10−6 m cf 8× 10−3 kgm−3

R2 2.25× 10−5 m c̄ 10−3 kgm−3

k 9× 10−6 kgm−3 s−1 D 10−9 m2 s−1

Accuracy of Solution
Figure 7.16 on p. 263 shows the effect of doubling the number of radial grid points on oxygen
concentration at the radial location furthest from the centre. The error relative to half as many
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// Note: No equations are needed at R1 where concentration is specified

// Radial index i = 0 corresponds to (R1 + Δr), the second radial grid point

// No equations are needed at t = 0 when concentration is already specified

// Temporal index j = 0 corresponds to (0 + Δt), the second time instant

const double rate = k ; // first order reaction rate

// For intermediate time instants — — —

unsigned i,j; double p,q;
for (j=0; j<nj −1; ++j) { // loop over time

// From Equation (7.29) on p. 259 for all radial grid points except the last one

for (i=0; i<ni −1; ++i) { // loop over radial distance

if (i == 0) p = cf ; /∗ first boundary condition ∗/ else p = c[i−1][j];
if (j == 0) q = cs ; /∗ initial condition ∗/ else q = c[i][j−1];
f[i][j] = (c[i][j+1]−q)/dt2 − D ∗( (c[i+1][j]−2∗c[i][j]+p)/drSqr

+ (c[i+1][j]−p)/dr2 /r [i] ) + rate;
// dt2 ≡ 2Δt, drSqr ≡ Δr2, dr2 ≡ 2Δr, r [i] ≡ r [i-1] + Δr

}
// From Equation (7.30) on p. 259 for the last radial grid point

i = ni −1;
if (j == 0) q = cs ; /∗ initial condition ∗/ else q = c[i][j−1];
f[i][j] = (c[i][j+1]−q)/dt2 − 2∗D ∗(c[i−1][j]−c[i][j])/drSqr + rate;

}

// For the last time instant — — —

j = nj −1;
// From Equation (7.31) on p. 260 for all radial grid points except the last one

for (i=0; i<ni −1; ++i) { // loop over radial distance

if (i == 0) p = cf ; /∗ first boundary condition ∗/ else p = c[i−1][j];
f[i][j] = (3∗c[i][j]−4∗c[i][j−1]+c[i][j−2])/dt2 − D ∗( (c[i+1][j]−2∗c[i][j]+p)/drSqr

+ (c[i+1][j]−p)/dr2 /r [i] ) + rate;
}
// From Equation (7.32) on p. 260 for the last radial grid point

i = ni −1;
f[i][j] = (3∗c[i][j]−4∗c[i][j−1]+c[i][j−2])/dt2 − 2∗D ∗(c[i−1][j]−c[i][j])/drSqr

+ rate;
}

Figure 7.14 Program code in C language for the algebraic equations given by Equations (7.29)–(7.32)
on pp. 259 and 260

radial grid points decreases with the number of grid points. The maximum absolute error with
eight grid points is 4.7%. The error goes down to 0.3% with 32 grid points.

Note that the errors peak close to the initial time. The reason is that during that time
period, the oxygen concentration undergoes rapid changes. Its time derivatives are very
large compared to those at a later time. Being part of the truncation errors of the numerical
integration method, the larger derivatives result in larger errors.

�
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Figure 7.15 Oxygen concentration versus time with five grid points along the r-direction in
Example 7.3.1 on p. 257
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Figure 7.16 Error in c(R2, t) relative to that obtained with half as many radial grid points in
Example 7.3.1

7.4 Differential Equations with Split Boundaries
Sometimes process models result in coupled ordinary differential equations with split
boundary conditions. In other words, not all equations have conditions specified at the
same boundary of the independent variable interval. For example, some equations have final
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conditions instead of initial conditions. Such equations can be solved using the shooting
Newton–Raphson method.

7.4.1 Shooting Newton–Raphson Method
Based on the Newton–Raphson algorithm, this method solves the differential equations with
guessed missing conditions. They are improved iteratively until all conditions are satisfied.
To illustrate the method, consider the following differential equation:

d2p
dx2

= f

(
x, p,

dp
dx

)
with the following boundary conditions:

p = pi at x = xi and
dp
dx

= p′f at x = xf

With the help of

q ≡ dp
dx

⇒ dq
dx

=
d2p
dx2

the differential equation can be expressed as the set of the following coupled ordinary
differential equations:

dp
dx

= q (7.33)

dq
dx

= f(x, p, q) (7.34)

with the following initial and final conditions:

p = pi at x = xi (7.35)

q = p′f at x = xf

Note that the initial value of q is missing. We provide it as

q = qi at x = xi (7.36)

With this arrangement, we can now integrate Equations (7.33) and (7.34) from xi to the final
xf. However, in order for qi to be valid, the final q, i.e., qf should be equal to p′f. This criterion
is expressed by the following equation:

qf(qi)− p′f = 0 or [q(qi)]xf
− p′f︸ ︷︷ ︸

≡ g(qi)

= 0 (7.37)

Observe that qf is a function of qi. The satisfaction of the above equation requires finding
the root of the right-hand side denoted as the function g(qi). Thus, the Newton–Raphson
algorithm to determine qi is,

q
(k+1)
i = q

(k)
i −

[
g

g′

]
q
(k)
i

; k = 0, 1, 2, . . .
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where, on the basis of Equation (7.37) on the previous page,

g′ =
dg
dqi

=

[
∂q

∂qi

]
xf

With the help of the last equation, the Newton–Raphson algorithm [see Equation (7.7), p. 237]
is given by

q
(k+1)
i = q

(k)
i −

{[
∂q

∂qi

]−1

xf

g

}
q
(k)
i

; k = 0, 1, 2, . . . (7.38)

Differential Equations for Derivatives

To obtain the derivative [∂q/∂qi ]xf
for use in the above algorithm, we first need to differentiate

Equations (7.33) and (7.34) on the previous page with respect to qi as follows:

∂

∂qi

(
dp
dx

)
=

d
dx

(
∂p

∂qi

)
=

∂q

∂qi
(7.39)

∂

∂qi

(
dq
dx

)
=

d
dx

(
∂q

∂qi

)
=

∂f

∂p

∂p

∂qi
+

∂f

∂q

∂q

∂qi
(7.40)

Equations (7.39) and (7.40) above need to be integrated simultaneously with Equations (7.33)
and (7.34) to obtain [∂q/∂qi ]xf

, which is required by the Newton–Raphson algorithm of
Equation (7.38). The initial conditions for Equations (7.39) and (7.40) are

∂p

∂qi
= 0 at x = xi (7.41)

∂q

∂qi
= 1 at x = xi (7.42)

which are obtained, respectively, from Equations (7.35) and (7.36) on the previous page by
differentiating them with respect to qi.

Computational Algorithm

The shooting Newton–Raphson algorithm to solve the boundary value problem is as follows:

1. Set the iteration counter k = 0, and provide the initial guess q(k)i .

2. Set q = q
(k)
i at x = xi. Obtain [∂q/∂qi ]xf

by integrating Equations (7.33), (7.34), (7.39)
and (7.40) using the initial conditions given by Equations (7.35), (7.36), (7.41) and
(7.42).

3. Obtain the improved q
(k+1)
i from the Newton–Raphson algorithm, i.e., Equation (7.38)

above.

4. Assign q
(k+1)
i → q

(k)
i , increment k by one, and go to Step 2 above until convergence

when either the absolute relative change in q
(k)
i , or the absolute value of g[q

(k)
i ]

becomes less than a specified, small positive number (i.e., accuracy).
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Upon successful convergence, the above algorithm yields qi and the desired solution, i.e., the
values of p at different values of x.

Example 7.4.1

At steady state, the temperature in a tapered fin can be obtained from the unsteady state model
[see Section 4.2.3, p. 96] as

d2T
dy2

=
1

Z − ay

[
a

dT
dy

+
h

k
(T − Ta)

]
︸ ︷︷ ︸

≡ f

with z = (Z − ay) where a defines the taper, and the following boundary conditions:

T = Tw at y = 0 and
dT
dy

= 0 at y = Y

Convert the above steady state model into an initial value problem, and solve it using the
shooting Newton–Raphson method for the parameter values given in Table 7.6 below.

Table 7.6 Values of parameters for the tapered fin

parameter value parameter value

a 3× 10−2 h/k 0.125 m−1

Ta 23 ◦C Tw 200 ◦C
Z 2× 10−3 m Y 0.05 m

Solution
Comparing this problem to the general one in Section 7.4.1 on p. 264, we observe that T ≡ p,
y ≡ x, and the right-hand side of the given differential equation is f .

Following the development of Section 7.4.1, and having q ≡ dT/dy , the set of equations
for the initial value problem is

dT
dy

= q (7.43)

dq
dy

=
1

Z − ay

[
aq +

h

k
(T − Ta)

]
(7.44)

d
dy

(
∂T

∂qi

)
=

∂q

∂qi
(7.45)

d
dy

(
∂q

∂qi

)
=

∂f/∂T︷ ︸︸ ︷
h/k

Z − ay

∂T

∂qi
+

∂f/∂q︷ ︸︸ ︷
a

Z − ay

∂q

∂qi
(7.46)
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with the following initial conditions:

T = Tw, q = qi,
∂T

∂qi
= 0, and

∂q

∂qi
= 1

To solve this problem, we carry out the computational algorithm outlined on p. 265. Thus, we
make a guess for qi, i.e., provide q

(0)
i , and integrate Equations (7.43)–(7.46) on the previous

page up to y = Y in order to obtain [∂q/∂qi ]
(0)
Y . This derivative value is used in the following

Newton–Raphson algorithm for k = 0 to improve q
(0)
i to q

(1)
i :

q
(k+1)
i = q

(k)
i −

{[
∂q

∂qi

]−1

Y

g

}
q
(k)
i

; k = 0, 1, 2, . . .

where g ≡ qf − 0 = q(Y ). Equations (7.43)–(7.46) on the previous page are integrated again
with the improved q

(1)
i to obtain [∂q/∂qi ]

(1)
Y , which is used in the above Newton–Raphson

algorithm for k = 1 to obtain the further improved q
(2)
i . These calculations are repeated until

convergence.
Figure 7.17 below shows the results for the parameters of Table 7.6 on the previous page.

With q
(0)
i = 1, and the specified accuracy of (i) machine epsilon, of O(10−16), for the

maximum, absolute relative change in q
(k)
i , and (ii) 10−8 for the maximum absolute value

of g(q(k)i ), the algorithm converged in one iteration. Observe that the boundary condition of
dT/dy = 0 is satisfied at the end of the fin.

0 1 2 3 4 5

y × 102 (m)

180

190

200

T
(◦
C
)

−4

−2

0

d
T
/
d
y
×

1
0
−
2

T dT/dy

Figure 7.17 Steady state temperature distribution in the tapered fin at the convergence of the shooting
Newton–Raphson algorithm

�
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Simplified Approach

The shooting Newton–Raphson method may be simplified by using the secant method.
In this case, the derivative equations are not needed. Thus, in the above example, only
Equations (7.33) and (7.34) need to be solved, albeit two times with two slightly different
guesses for qi in order to approximate the derivative in the Newton–Raphson algorithm.

7.5 Periodic Differential Equations

These differential equations describe periodic processes, which repeat after a time period.
Nature abounds with periodic processes, such as photosynthesis, which follow the circadian
rhythm. Man-made periodic processes are devised to achieve specialized objectives that are
difficult to realize under the normal operations.

We can describe a periodic process in a uniform system as a set of ordinary differential
equations

dy
dt

= f(y) (7.47)

subject to the periodicity conditions

y0 = y(τ) (7.48)

where (i) y =
[
y0 y1 · · · yn−1

]�
is the vector of dependent variables, (ii) y0 is y

at time t = 0, (iii) f =
[
f0 f1 · · · fn−1

]� is the vector of right-hand sides of the
above differential equations, and (iv) τ is time period.

The periodic ordinary differential equations can be solved using the shooting Newton–
Raphson method.

7.5.1 Shooting Newton–Raphson Method
The approach is similar to the one introduced in Section 7.4.1 on p. 264. In the present
case, the initial values y0 should be such that the periodicity conditions are satisfied, i.e.,
the dependent function

g(y0) ≡
[
y(y0)

]
τ︸ ︷︷ ︸

y at t = τ

− y0︸ ︸
initial y

= 0

To zero out g(y0), the Newton–Raphson algorithm [see Equation (7.8), p. 237] can be
expressed as

y
(k+1)
0 = y

(k)
0 −

[
J−1g

]
y
(k)
0

; k = 0, 1, 2, . . . (7.49)

where J is the Jacobian of g with respect to y0 at t = τ , and is given by
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y0
∂y00

− 1
∂y0
∂y10

. . .
∂y0

∂yn−1,0

∂y1
∂y00

∂y1
∂y10

− 1 . . .
∂y1

∂yn−1,0

...
... . . .

...

∂yn−1

∂y00

∂yn−1

∂y10
. . .

∂yn−1

∂yn−1,0
− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
τ

(7.50)

Determination of the Jacobian

Note that in Equation (7.50) above, J is made of partial derivatives evaluated for a given
y
(k)
0 at t = τ . Each of these derivatives is a dependent variable of a differential equation

derivable from Equations (7.47) and (7.48) on the previous page. For example, differentiating
the differential equation, and its initial condition for yi, i.e.,

dyi
dt

= fi and yi(0) = yi0

with respect to yj0, we obtain the following differential equation for the derivative ∂yi/∂yj0
along with the initial condition:

d
dt

(
∂yi
∂yj0

)
=

n−1∑
k=1

∂fi
∂yk

∂yk
∂yj0

,

[
∂yi
∂yj0

]
t=0

=

{
1 if i = j

0 if i �= j
(7.51)

Integration of the differential equations for all ∂yi/∂yj0s along with Equation (7.47) up to
t = τ provides the elements of J.

Computational Algorithm

The shooting Newton–Raphson algorithm to solve the periodic, ordinary differential
equations is as follows:

1. Set the iteration counter k = 0, and provide the initial guess y(k)
0 for Equation (7.48)

on the previous page.

2. Set y0 = y
(k)
0 . Obtain the elements of J by integrating up to t = τ , Equation (7.47) on

the previous page simultaneously with Equation (7.51) above for i, j = 0, 1, . . . , n− 1
(i.e., the differential equations for all ∂yi/∂yj0s).

3. Obtain the improved y
(k+1)
0 from the Newton–Raphson algorithm, i.e., Equation (7.49)

on the previous page.

4. Assign y
(k+1)
0 → y

(k)
0 , increment k by one, and go to Step 2 above until convergence

when either the absolute relative change in y
(k)
0 , or the magnitude of g[y(k)

0 ] (or the
maximum absolute value among its elements) becomes less than a specified, small
positive number (i.e., accuracy).



270 Process Modeling and Simulation for Chemical Engineers

Example 7.5.1

The process model of a CSTR in periodic operation is given by

dy0
dt

= F̃0(yf − y0)− k0y
2
0y1 (7.52)

dy1
dt

= F̃1 − F̃0y1 (7.53)

subject to the periodicity conditions

y0(0) = y0(τ) and y1(0) = y1(τ)

In the model equations, (i) y0 and y1 are the concentrations of, respectively, the reactant and
catalyst, (ii) yf is the reactant concentration in the feed, (iii) τ is time period, and (iv) F̃0

and F̃1 are, respectively, the volumetric and catalyst mass flow rates per unit volume of the
reaction mixture. The flow rates are periodic, i.e.,

F̃0(0) = F̃0(τ) and F̃1(0) = F̃1(τ)

For the parameter values provided in Table 7.7 below, use the shooting Newton–Raphson
method to find the species concentrations versus time in the CSTR for τ = 10 min.

Table 7.7 Values of parameters for the periodic CSTR

parameter value parameter value

F̃0 2 + sin(2πt/τ) cm3 min−1 yf 4 g cm−3

k0 5× 107 cm6 g−2 min−1 F̃1 10 + 5 sin(2πt/τ) g s−1

Solution
In order to solve this problem using the shooting Newton–Raphson method, we need the
derivative differential equations.

Differential Equations for Derivatives
These equations are obtained from Equation (7.51) on the previous page for i, j = {1, 2}, and
f0 and f1 as the right-hand sides of Equations (7.52) and (7.53), respectively. The differential
equations for derivatives are as follows:

d
dt

(
∂y0
∂y00

)
= −(F̃0 + 2k0y0y1)

∂y0
∂y00

− k0y
2
0

∂y1
∂y00

,

[
∂y0
∂y00

]
t=0

= 1

d
dt

(
∂y0
∂y10

)
= −(F̃0 + 2k0y0y1)

∂y0
∂y10

− k0y
2
0

∂y1
∂y10

,

[
∂y0
∂y10

]
t=0

= 0

d
dt

(
∂y1
∂y00

)
= −F̃0

∂y1
∂y00

,

[
∂y1
∂y00

]
t=0

= 0

d
dt

(
∂y1
∂y10

)
= −F̃0

∂y1
∂y10

,

[
∂y1
∂y10

]
t=0

= 1
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Computational Algorithm
The following is the shooting Newton–Raphson algorithm to find the species concentrations:

1. Set the counter k = 0, and provide the initial guess yk
0 =

[
yk00 yk10

]�
.

2. Set y0 = y
(k)
0 . Obtain ∂yi/∂yj0s by simultaneously integrating the above differential

equations for derivatives, and Equations (7.52) and (7.53) on the previous page from
t = 0 to τ .

3. Obtain the improved y
(k+1)
0 by applying Equations (7.49) and (7.50) on p. 268–269,

i.e.,⎡
⎢⎢⎢⎢⎣
y
(k+1)
00

y
(k+1)
10

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y
(k+1)
0

=

⎡
⎢⎢⎢⎢⎣
y
(k)
00

y
(k)
10

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y
(k)
0

−

⎡
⎢⎢⎢⎢⎣
∂y0
∂y00

− 1
∂y0
∂y10

∂y1
∂y00

∂y1
∂y10

− 1

⎤
⎥⎥⎥⎥⎦
−1

τ︸ ︷︷ ︸
J−1[y

(k)
0 ]

⎡
⎢⎢⎢⎢⎣
y0(τ)− y

(k)
00

y1(τ)− y
(k)
10

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
g[y

(k)
0 ]

4. Assign y
(k+1)
0 → y

(k)
0 , increment k by one, and go to Step 2 on the previous page

until convergence when either the absolute relative change in y
(k)
0 , or the magnitude

of g[y(k)
0 ] (or the maximum absolute value among its elements) becomes less than a

specified, small positive number (i.e., accuracy).

Figure 7.18 on the next page shows the species concentrations obtained from the above
algorithm for the parameters of Table 7.7 on the previous page. With y

(0)
0 = y

(0)
1 = 1, and the

specified accuracy of (i) machine epsilon, of O(10−16), for the maximum, absolute relative
change in an element of y

(k)
0 , and (ii) 10−8 for the maximum absolute value among the

elements of g[y(k)
0 ], the algorithm converged in one iteration.

�

Simplified Approaches

The shooting Newton–Raphson method may be simplified by using the secant method to
approximate the Jacobian in Equation (7.49) on p. 268. Another approach is to use the
method of successive substitution. In this method, the equations are integrated using guessed
initial conditions. The final values of the dependent variables are substituted for the initial
conditions. The integration and substitution are repeated until the initial conditions are
sufficiently close to the final values of dependent variables.

7.6 Programming of Derivatives
Derivatives have a significant role in (i) the solution of non-linear algebraic equations,
and differential equations that are stiff, or have periodic or split boundary conditions,
(ii) non-linear regression, and (iii) optimization. With regards to accuracy and computational
effort, it is considerably more efficient to use analytical expressions for derivatives than
their approximations as done, for example, in the secant method. There is a caveat though.
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F̃1 g s−1

Figure 7.18 The reactant and catalyst concentrations (respectively, y0 and y1) in the periodic CSTR
at the convergence of the shooting Newton–Raphson algorithm in Example 7.5.1 on p. 270

Even small errors in derivative expressions may lead to erroneous results. Thus, it is of utmost
importance in computer programs to have derivatives without errors.

Analytical expressions for the derivatives of functions can be flawlessly programmed with
the help of finite difference approximation. This can be accomplished using a robust method,
which involves systematic evaluation of a derivative followed by its scrutiny. We explain this
method with the help of the following function:

f(T ) =
ak

ρ

where

k = k0e
−b/T and ρ =

ρ0
1 + b(T − T0)

with a, k0, b and ρ0 as specified constants.
The goal is to accurately program the derivative df/dT , which is given by

df
dT

= a

[
1

ρ

dk
dT

+ k
d

dT

(
1

ρ

)]
= a

(
1

ρ

dk
dT

− k

ρ2
dρ
dT

)

where

dk
dT

= k0e
−b/T b

T 2
=

bk

T 2

and

dρ
dT

= − ρ0b

[1 + b(T − T0)]2
= −bρ2

ρ0
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Evaluation of the Derivative

When evaluating complicated expressions, it is recommended to use dummy variables to
preclude errors due to substitutions unless the latter are very simple. Thus, with this approach,
the expression for the derivative df/dT in a computer program is evaluated using the
following sequence of calculations:

d1 = −bρ2/ρ0 (i.e., dρ/dT )

d2 =
bk

T 2
(i.e., dk/dT )

fT = a

(
d1
ρ

− kd2
ρ2

)
(i.e., df/dT )

where d1 and d2 are dummy variables.

Scrutiny of the Derivative

The above expression for the derivative (fT ) is checked using the following steps:

Step 1 For the specified values of constants, evaluate the function values f1 = f(T1) and
f2 = f(T2) where T2 = T1(1 + α), and α is a small and adjustable positive fraction
such as 10−4.

Step 2 Evaluate the finite difference approximation of fT at T1 from

f̃T =
f2 − f1
αT1

Step 3 Ensure that the error between fT and f̃T , i.e.,

ε =

⎧⎪⎪⎨
⎪⎪⎩
⏐⏐⏐1− f̃T /fT

⏐⏐⏐ if |fT | > 0

⏐⏐⏐fT − f̃T

⏐⏐⏐ if fT = 0

is less than a small positive number, say, 10−4.

Step 4 Repeat calculations with smaller values of α, and ensure that ε reduces with α.

The above steps catch any errors right away in the expression of the analytical derivative.
If a function is made of additive terms then the derivative of each term may be checked
individually to pinpoint and correct any error. For the purpose of checking, the values of
involved constants may be suitably changed to avoid any subtractive cancellation [see p. 277].

Analytical derivative expressions that are scrutinized in this manner are error free. With this
method, we can be completely assured of the accuracy of derivative expressions in computer
programs.
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7.7 Miscellanea
In this section, we present Simpson’s rules for the integration of discrete data, and methods
to find roots of quadratic and cubic equations.

7.7.1 Integration of Discrete Data
Integration is the calculation of an integral, i.e., the area under a curve. For example, the
integral

I =

b∫
a

f(x) dx

is the area between the integrand, i.e., the function f(x), and the x-axis in the interval [a, b].
If f(x) = dy/dx then I = y(b)− y(a). Hence, solving the differential equation,

dy
dx

= f(x)

with the initial condition y(a) = 0 to find y(b) is equivalent to calculating the integral.
Numerical integration methods use Taylor expansions to approximate the integrand f(x).

These methods are employed when either the integrand is known at discrete values of the
independent variable, or analytical integration is hard or impossible to do. The simplest
method is the trapezoidal rule, which uses the first order Taylor expansion, and yields the
integral as the area of the resultant trapezium. A more accurate method is Simpson’s 1/3 rule.

Simpson’s 1/3 Rule

This method uses the third order Taylor expansion [Equation (8.12) on p. 322 for n = 3] of
the integrand for the data set{

[x0, f(x0)] [x1, f(x1)] [x2, f(x2)]
}

at x = x1 with equispaced xis. Thus, the integral is given by

I =

x2∫
x0

[
f(x1) + hf (1)(x1) +

h2

2
f (2)(x1) +

h3

3!
f (3)(x1) +

h4

4!
f (4)(ζ)

]
dx

where h is the constant step size given by

h = x1 − x0 = x2 − x1 = (x2 − x0)/2

and x1 < ζ < x1 + h. The above integral with the help of the finite difference formula,

f (2)(x1) =
f(x2)− 2f(x1) + f(x0)

h2
+O(h2)
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simplifies to Simpson’s 1/3 rule, i.e.,

I =
h

3

[
f(x0) + 4f(x1) + f(x2)

]
︸ ︷︷ ︸

Simpson’s 1/3 rule

+ O(h5)︸ ︷︷ ︸
truncation error

The accuracy of numerical integration can be increased by increasing the order of the
involved Taylor expansion, which would require more data points. However, when more data
points are present, a preferred approach to increase the accuracy of calculation is that of
composite application of integration formulas based on low-order Taylor expansions. In this
approach, the formulas are applied sequentially over the sub-intervals. The accuracy is higher
because of smaller step sizes, and smaller truncation errors as a consequence.

Composite Application
The integral over the interval [x0, x1, . . . , xn] can be expressed as

I =

xn∫
x0

f(x) dx =

x2∫
x0

f(x) dx+

x4∫
x2

f(x) dx+ · · ·+
xn∫

xn−2

f(x) dx

For an even n, the application of Simpson’s 1/3 rule to each integral on the right-hand side of
the above equation yields the composite Simpson’s 1/3 rule, i.e.,

I =
h

3

[
f(x0) + 4

n−1∑
i=1,3,5,...

f(xi) + 2
n−2∑

i=2,4,6,...

f(xi) + f(xn)

]

If the number of data points (n+ 1) is even, and greater than five then Simpson’s 1/3 rule
can be applied, excluding the last three intervals. The latter are covered by Simpson’s 3/8
rule, which has the same order of accuracy.

Simpson’s 3/8 rule
Proceeding similar to the derivation of the 1/3 rule but with an additional data point
[x3, f(x3)], and f(x) approximated by the fourth order Taylor expansion at (x3 − x0)/2,
the integral is given by

I =
3h

8

[
f(x0) + 3f(x1) + 3f(x2) + f(x3)

]
︸ ︷︷ ︸

Simpson’s 3/8 rule

+ O(h5)︸ ︷︷ ︸
truncation error

Example 7.7.1

Gas flow rate in a pipeline is measured every hour. The data over a 9 h period are:

t (h) 0 1 2 3 4 5 6 7 8 9

F × 10−6

(m3 h−1)
0 0.12 0.24 0.55 0.98 1.22 1.34 1.31 1.28 1.25

Calculate the volume of gas transported by the pipeline during this time period.
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Solution
The volume of gas transported is given by

I =

9∫
0

F (t) dt

where F (t) is given at nine, equispaced values of t with h = 1. Since the number of data
points is even, and greater than five, we apply Simpson’s 3/8 rule to the last three x-intervals.
For the remaining intervals, we apply composite Simpson’s 1/3 rule. Thus,

I =
1

3

{
F (0) + 4[F (1) + F (3) + F (5)] + 2F [(2) + F (4)] + F (6)

}
︸ ︷︷ ︸

6∫
0

F (t) dt

+
3

8

[
F (6) + 3F (7) + 3F (8) + F (9)

]
︸ ︷︷ ︸

9∫
6

F (t) dt

= 7.6650× 106 m3

�

7.7.2 Roots of a Single Algebraic Equation
Process simulation often requires finding the roots of a single non-linear equation of the form
f(x) = 0. Roots could be real, or complex numbers.

Quadratic Equations

The roots of a quadratic equation

ax2 + bx+ c = 0

are given by the standard formulas,

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
(7.54)

If 4ac is very small in comparison to b2 and b > 0 then

x1 =
−b+

≡ b1︷ ︸︸ ︷√
b2 − 4ac

2a

In this case, the calculation of x1 would involve subtracting b from a very close, positive
number b1 as denoted above. On calculators and computers, which use floating-point
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arithmetic, subtracting nearly equal numbers increases the relative error, and causes loss in
significance. This phenomenon is called subtractive cancellation.

For the calculation of x1 in this case, subtractive cancellation can be avoided by
multiplying the numerator and denominator of the right-hand side of the equation for x1

by the factor, (−b−
√
b2 − 4ac). After simplification, we get

x1 =
−2c

b+
√
b2 − 4ac

(7.55)

which does not involve the subtraction between b and
√
b2 − 4ac, both of which are positive.

If 4ac � b2 as before but b < 0 then Equation (7.54) on the previous page for x2 would
risk subtractive cancellation. Similar to the previous case, the use of the multiplicative factor
(−b+

√
b2 − 4ac) results in

x2 =
−2c

b−
√
b2 − 4ac

(7.56)

which is free of subtractive cancellation.

Example 7.7.2

Find the roots of the quadratic equation,

0.5x2 + x+ 1.0000005× 10−6 = 0.

Solution
In this equation, a = 0.5, b = 1 and c = 1.0000005× 10−6. Note that b ≈

√
b2 − 4ac, so the

calculation of x1 using Equation (7.54) on the previous page involves subtractive cancellation.
Table 7.8 below shows the roots obtained with single and double precisions. While x1 and x2

are obtained from Equation (7.54), x̃1 is obtained from Equation (7.55).
Note that the numerical accuracy of the calculated roots increases with precision.

Equation (7.55), which precludes subtractive cancellation, gives a more accurate result for
the same precision.

Table 7.8 Roots calculated with single and double precisions (correct to 15 significant
figures) along with their exact values

root single precision double precision

x1 9.536743164062500× 10−7 9.999999999177334× 10−7

x̃1 9.999999974752427× 10−7 1.000000000000000× 10−6

(exact value of x1: 10−6)

x2 −2.000000953674316 −2.000001000000000

(exact value of x2: −2.000002000001)

�
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7.7.3 Cubic Equations
A number of thermodynamic equations of state are cubic equations. The general form of a
cubic equation is

ax3 + bx2 + cx+ d = 0

The procedure to solve the above equation defines

p ≡ 3ac− b2

3a2
, q ≡ 2b3 + 27a2d− 9abc

27a3
and r ≡ 4p3 + 27q2

108
(7.57)

and involves the following three cases based on the sign of r:

Case 1

If r < 0 then there are three real unequal roots. They are given by

xj = −2q

|q|

√
−p

3
cos

[
φ

3
+

2π

3
(j − 1)

]
− b

3a
, j = 1, 2, 3 (7.58)

where φ = cos−1

√
−27q2

4p3
(rad) (7.59)

If r �< 0 then the roots are given by

x1 = u+ v − b

3a
(7.60)

x2,3 = −u+ v

2
− b

3a
± i

√
3

2
(u− v) (7.61)

where u =
(
−q

2
+
√
r
)1/3

, v =
(
−q

2
−
√
r
)1/3

(7.62)

and i =
√
−1.

Case 2

If r = 0 then u = v, and Equations (7.60) and (7.61) above yield three real roots, of which at
least two are equal.

Case 3

Finally, if r > 0, and a, b, c and d are all real then Equations (7.60)–(7.62) yield one real root
(x1), and two complex conjugate roots (x2 and x3).

Example 7.7.3

Find the roots of the following cubic equation:

ax3 + bx2 + cx+ d = 0

for the following parameter sets:

1. a = −2, b = 3, c = 2, and d = −2

2. a = 2, b = 1, c = 4, and d = −2
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Solution
For the first set of parameters, Equation (7.57) on the previous page provides

p = −1.7500, q = 0.2500 and r = −0.1829

Since r < 0, we use Equation (7.59) on the previous page, and obtain φ = 1.2864.
Equation (7.58) then yields

x1 = −0.8892, x2 = 1.7446 and x3 = 0.6446

For the second set of parameters, Equation (7.57) provides

p = 1.9167, q = −1.3241 and r = 0.6991

Since r > 0, we use Equation (7.62) to obtain u = 1.1442 and v = −0.5584. Equation (7.60)
and Equation (7.61) then yield

x1 = 0.4192, x2 = −0.4596 + 1.4745i and

x3 = −0.4596− 1.4745i

where i =
√
−1.

�

General Equations

One method to find the real and any imaginary roots of a non-linear algebraic equation is
Muller’s method. This method carries out the following algorithm:

1. Select three initial values of x as the roots of a given function.

2. Fit a quadratic to the function at the three x values.

3. Find the roots of the quadratic. Select one of the roots as the new x value, which is
expected to be closer to the root of the function.

4. Go to Step 2 above, and repeat the calculations with the new x value, and two other x
values until convergence when the absolute value of the function becomes less than a
specified, small positive number (or accuracy).

Fitting of a Quadratic
This is the second step of the above algorithm in which the quadratic

f(x) = a(x− x2)
2 + b(x− x2) + c

is expressed at x0, x1 and x2 to yield

f(x0) = a(x0 − x2)
2 + b(x0 − x2) + c

f(x1) = a(x1 − x2)
2 + b(x1 − x2) + c

f(x2) = c
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Then in terms of

h0 ≡ x1 − x0, h1 ≡ x2 − x1,

d0 ≡ f(x1)− f(x0)

h0
and d1 ≡ f(x2)− f(x1)

h1

the coefficients of the quadratic are

a =
d1 − d0
h1 + h0

, b = ah1 + d1 and c = f(x2)

From Equations (7.55) and (7.56) on p. 277, the root of the quadratic f(x3) is

x3 − x2 =
−2c

b±
√
b2 − 4ac

⇒ x3 = x2 −
2c

b±
√
b2 − 4ac

(7.63)

For the next iteration, the value of x3 that is closest to x2 is selected. That value is
calculated from the above equation by having the sign of the square root term the same as
that of b. Then, x1 is assigned to x0, x2 is assigned to x1, and x3 is assigned to x2. If all xis
are real then the value of x (among x0, x1 and x2) that is furthest from x3 is discarded. In
this manner, the iterations are continued. When they converge, the root (either a real root, or
a complex conjugate pair of imaginary roots) is given by x3.

Example 7.7.4

Apply Muller’s method to obtain the roots of the function

f(x) = x4 + 14x3 + 159x2 + 554x+ 1378

Solution
We use Equation (7.63) above to obtain the roots from the quadratic fitted on three x-values,
namely, x0, x1 and x2. With their initial values as, respectively, 0, 1 + i, and 2 + 2i, we
obtain

h0 = 1 + i a = 201 + 56i

h1 = 1 + i b = 1146 + 960i

d0 = 711 + 189i c = 2198 + 2604i

d1 = 1001 + 703i x3 = −2.4912 + 1.2178i

Calculations are repeated after the assignments: x1 → x0, x2 → x1, and x3 → x2. With
the accuracy of 10−8 in the absolute value of the function, the method converges in seven
iterations to the pair of imaginary roots: xr1 = (−2 + 3i) and xr2 = (−2− 3i).

To find the remaining roots, this method needs to be applied repeatedly to the given
function after dividing it each time by all the known factors, i.e., the (x− xri)s.

�
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7.A Partial Pivoting for Matrix Inverse

Partial pivoting causes row switches in the lower-upper decomposition of a matrix. To account
for this effect when finding the matrix inverse, we make use of the following equivalence:

Switching the rows of an n× n matrix (or an n vector) is equivalent to its pre-
multiplication by the n× n identity matrix I with the same rows switched. For example,
given a 3× 3 matrix with the second and third rows switched,⎡

⎢⎢⎢⎣
a00 a01 a02

a20 a21 a22

a10 a11 a12

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 0 0

0 0 1

0 1 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a00 a01 a02

a10 a11 a12

a20 a21 a22

⎤
⎥⎥⎥⎦

Now during the lower-upper decomposition of a square matrix A, suppose that each time
when we switch rows during partial pivoting, we switch the identical rows in I. Thus, along
with L and U, we obtain I′, which is I with all row switches that happened during the lower-
upper decomposition. Note that the product of L and U is A′ (see p. 230), which is A with
the same row switches. Based on the aforementioned equivalence, I′A = A′, which means

A = (I′)−1A′

Moreover, from Equation (7.5) on p. 234, the ith column of A−1 is xi. This vector is given
by the solution of

Axi = bi

where bi is a vector with all elements zero, except the ith one, which is unity.
From the last two equations,

(I′)−1A′xi = bi

Multiplying the above equation by I′, and considering that I′(I′)−1 = I, we obtain

A′xi = I′bi = bk

where k is the index of a row in I′ (or A′, or b′) to which the ith row of I (or A, or b)
eventually got switched during the lower-upper decomposition of A.

The above result simply means that if the ith row of b eventually becomes the kth row of
b′ due to partial pivoting in the lower-upper decomposition then bk is to be used to get the
ith column of A from A′xi = bk.

7.B Derivation of Newton–Raphson Method

Given a set of non-linear equations in the form f(x) = 0, the first order Taylor expansion of
f at x(k+1) near a reference point x(k) is given by [see Section 8.8.2, p. 323]

f [x(k+1)] = f [x(k)] + J[x(k)]
[
x(k+1) − x(k)

]
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where J[x(k)] is the matrix of partial derivatives of f , or Jacobian, evaluated at x(k), i.e.,

J[x(k)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f0
∂x0

⏐⏐⏐⏐
x(k)

∂f0
∂x1

⏐⏐⏐⏐
x(k)

· · · ∂f0
∂xn−1

⏐⏐⏐⏐
x(k)

∂f1
∂x0

⏐⏐⏐⏐
x(k)

∂f1
∂x1

⏐⏐⏐⏐
x(k)

· · · ∂f1
∂xn−1

⏐⏐⏐⏐
x(k)

...
... · · ·

...

∂fn−1

∂x0

⏐⏐⏐⏐
x(k)

∂fn−1

∂x1

⏐⏐⏐⏐
x(k)

· · · ∂fn−1

∂xn−1

⏐⏐⏐⏐
x(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

When x(k+1) is sufficiently close to the root, say, xr, the corresponding f [x(k+1)] is close to
0, and the Taylor expansion above can be approximated by

0 = f [x(k)] + J[x(k)]
[
x(k+1) − x(k)

]
(7.64)

where x(k) is obviously farther from xr than x(k+1). The above equation, upon
rearrangement, yields

x(k+1) = x(k) − J−1[x(k)] f [x(k)]

which, as assumed, is the new value of x that is closer to the root than x(k). In other words,
x(k+1) is the improvement on x(k). Beginning with a guessed x(0), the iterative application
of the above equation to improve x with k is known as the Newton–Raphson method.

Abnormal Behavior

Depending on the non-linearity, and the location of function evaluation, the Newton–Raphson
method may behave abnormally. Figure 7.19 on the next page shows the method stuck in an
infinite loop because the improved value of x leads to its old value.

For another function [see Figure 7.20, p. 284] the improved value of x leads the method
away from the root. Sometimes the Jacobian may become singular. When solving equations
with the computer program of this method, these abnormalities are dealt with by specifying
appropriate convergence criteria, maximum number of iterations, and different initial guesses.

7.B.1 Quadratic Convergence
Sufficiently close to the root xr, we have from the second order Taylor expansion [see
Equation (8.13), p. 323],

f(xr) = 0 = f [x(k)] + J[x(k)]
[
xr − x(k)︸ ︷︷ ︸

e

]
+ a (7.65)

where a =
1

2

[
D2
[
f1(ζ)

]︸ ︷︷ ︸
= e�H1e

D2
[
f2(ζ)

]︸ ︷︷ ︸
= e�H2e

· · · D2
[
fn(ζ)

]︸ ︷︷ ︸
= e�Hne

]�
,
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x(k)x(k+1)xr

x

f [x(k+1)]

f [x(k)]

Figure 7.19 Example of the abnormal behavior of the Newton–Raphson method – infinite number of
iterations

e is the vector of current errors, and Hi(ζ) is the Hessian of the ith function fi evaluated at ζ
in the interval (x0,x0 + h).

Subtracting Equation (7.64) on the previous page from Equation (7.65), we obtain

xr − x(k+1)︸ ︷︷ ︸
ê

= −J−1[x(k)]a

where ê is the vector of new errors, and J[x(k)] is assumed to be invertible. Taking the norm
on both sides of the above equation, we get

‖ê‖ =
000−J−1[x(k)]a

000 ≤
000−J−1[x(k)]

000︸ ︷︷ ︸
≡ p

‖a‖

where we have utilized the operator inequality [see Section 8.5.3, p. 305] in the last step.
Now, let n be the number of elements of x, and q be the maximum absolute value among

the elements of all His. Noting that ai = e�Hie,

‖a‖ ≤ q
√
n
( n∑

i=1

ei

)2
≤ qn3/2‖e‖2

where in the last step we have used Cauchy–Schwarz inequality [Section 8.4.2, p. 302] with
e as the first vector, and all elements of the second vector equal to one. Combining the above
inequalities involving ‖ê‖ and ‖a‖, we obtain

‖ê‖ ≤ pqn3/2‖e‖2
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x(1)x(0) xr

x

f [x(1)]

f [x(0)]

leads to x(2)

away from xr

Figure 7.20 Example of the abnormal behavior of the Newton–Raphson method – divergence

This result shows that in the Newton–Raphson method, when x(k) is sufficiently close to xr,
the magnitude of the new error is proportional to the square of that of the previous error. This
phenomenon is called quadratic convergence. For example, close enough to the root, if the
magnitude of error is 10−2 then the magnitude of the next error would be of the order 10−4.

7.C General Derivation of Finite Difference Formulas
In this section, we present a general formula to obtain finite difference formulas of specified
accuracy, and number of equispaced grid points ahead of, and behind a reference grid point.

Consider l and r equispaced grid points, respectively, to the left and right of the reference
grid point denoted by i, as shown in Figure 7.21 below.

reference grid point

−l −(l− 1) −2 −1 1 2 (r − 1) r

grid points on the left grid points on the right

index j:

Figure 7.21 Grid points for a general finite difference formula

Thus, we have

xi+j − xi = jh; j = −l, −(l − 1), . . . , −2, −1, 1, 2, . . . , (r − 1), r
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where h is the distance between two consecutive grid points. Using Taylor expansion
[Equation (8.12), p. 322], the function value at the j th grid point is given by

fi+j = fi + (jh)f
(1)
i +

(jh)2

2!
f
(2)
i +

(jh)3

3!
f
(3)
i + · · ·+ (jh)n

n!
f
(n)
i +O(hn+1)

j = −l, −(l − 1), . . . , −2, −1, 1, 2, . . . , (r − 1), r

where fk ≡ f(xk) and f
(k)
i ≡ f (k)(xi).

Multiplying each j th equation of the above expansion by a constant pj , and summing the
resulting equations yields

r∑
j=−l
j �=0

pj(fi+j − fi)

︸ ︷︷ ︸
≡Q

=

⎛
⎝ r∑

j=−l
j �=0

pjj

︸ ︷︷ ︸
≡ q1

⎞
⎠hf

(1)
i +

⎛
⎝ r∑

j=−l
j �=0

pjj
2

︸ ︷︷ ︸
≡ q2

⎞
⎠h2

2!
f
(2)
i

+

⎛
⎝ r∑

j=−l
j �=0

pjj
3

︸ ︷︷ ︸
≡ q3

⎞
⎠h3

3!
f
(3)
i + · · ·+

⎛
⎝ r∑

j=−l
j �=0

pjj
n

︸ ︷︷ ︸
≡ qn

⎞
⎠hn

n!
f
(n)
i

+O(hn+1)

In terms of Q and qis as denoted above,

Q = q1hf
(1)
i + q2

h2

2!
f
(2)
i + q3

h3

3!
f
(3)
i + · · ·+ qn

hn

n!
f
(n)
i +O(hn+1) (7.66)

The above equation generates all finite difference formulas with appropriate choices of qis.
We show this with the help of a few examples.

7.C.1 First Derivative, Centered Second Order Formula
To obtain this formula, we express Equation (7.66) above with the remainder term of order
O(h3), i.e.,

Q = q1hf
(1)
i + q2

h2

2!
f
(2)
i +O(h3)

Note that the above equation will lead to the O(h2)-accurate formula as

f
(1)
i =

1

q1h

(
Q− q2

h2

2!
f
(2)
i

)
+

O(h2)︷ ︸︸ ︷
O(h3)

−q1h

In the above equation, specifying

q1 = 1 (7.67)

q2 = 0 (7.68)
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yields the formula

f
(1)
i =

Q

h
+O(h2) (7.69)

To satisfy the two conditions – Equations (7.67) and (7.68) on the previous page – we
need two grid points (xjs). For the centered formula, they are xi−1 and xi+1 with the
corresponding unknown coefficients p−1 and p1, respectively. Thus, j = {−1, 1}, and the
two equations expand, respectively, to

p−1(−1) + p1(1)︸ ︷︷ ︸
q1

= 1 and p−1(−1)2 + p1(1)
2︸ ︷︷ ︸

q2

= 0

whose solution is p−1 = −1/2 and p1 = 1/2. Thus,

Q = p−1(fi−1 − fi) + p1(fi+1 − fi) =
fi+1 − fi−1

2

so that, from Equation (7.69) above, we get the desired finite difference formula,

f
(1)
i =

fi+1 − fi−1

2h
+O(h2)

7.C.2 Second Derivative, Forward Second Order Formula
In this case, O(h3)-accuracy requires that we express Equation (7.66) on the previous page
with the remainder term of order O(h4) so that

Q = q1hf
(1)
i + q2

h2

2!
f
(2)
i + q3

h3

3!
f3
i +O(h4)

Note that the above equation will lead to the O(h2)-accurate formula as

f
(2)
i =

2

q2h2

(
Q− q1hf

(1)
i − q3

h3

3!
f
(3)
i

)
+

O(h2)︷ ︸︸ ︷
O(h4)

−q2h2/2

In the above equation, specifying the following three conditions:

q2 = 1, q1 = 0, and q3 = 0

yields the formula

f
(2)
i =

2Q

h2
+O(h2) (7.70)

The three conditions above require three grid points, which for the forward scheme are xi+1,
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xi+2 and xi+3. Thus, j = {1, 2, 3}, and the three conditions expand as

q2 = p1(1)
2 + p2(2)

2 + p3(3)
2 = 1

q1 = p1(1) + p2(2) + p3(3) = 0

q3 = p1(1)
3 + p2(2)

3 + p3(3)
3 = 0

Solving the above equations we get

p1 = −5/2 p2 = 2, and p3 = −1/2

Thus, we have

Q = p1(fi+1 − fi) + p2(fi+2 − fi) + p3(fi+3 − fi)

=
−fi+3 + 4fi+2 − 5fi+1 + 2fi

2

so that from Equation (7.70) on the previous page, we get the desired finite difference formula,

f
(2)
i =

−fi+3 + 4fi+2 − 5fi+1 + 2fi
h2

+O(h2)

7.C.3 Third Derivative, Mixed Fourth Order Formula

In this case, O(h4)-accuracy for the third derivative requires Equation (7.66) on p. 285 with
the remainder term of order O(h7) so that

Q = q1hf
(1)
i + q2

h2

2!
f
(2)
i + q3

h3

3!
f3
i + q4

h4

4!
f4
i + q5

h5

5!
f5
i + q6

h6

6!
f6
i +O(h7)

leads to

f
(3)
i =

6

q3h3

(
Q− q1hf

(1)
i − q2

h2

2!
f
(2)
i − q4

h4

4!
f4
i − q5

h5

5!
f5
i − q6

h6

6!
f6
i

)
+

O(h4)︷ ︸︸ ︷
O(h7)

−q3h3/6

In the above equation, specifying the six conditions

q3 = 1 and qi = 0; i = 1, 2, 4, 5, 6

yields the formula

f
(3)
i =

6Q

h3
+O(h4) (7.71)
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To satisfy the six conditions above, we require six grid points. Let us choose them to be xi−4,
xi−3, xi−2, xi−1, xi+1 and xi+2 in a mixed scheme of two forward, and four backward grid
points, relative to the reference grid point xi. Then the six conditions expand to

q3 =
2∑

j=−4
j �=0

pj(j)
3 = 1 and qi =

2∑
j=−4
j �=0

pj(j)
i = 0; i = 1, 2, 4, 5, 6

The above equations in the matrix form are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−4)3 (−3)3 (−2)3 (−1)3 13 23

−4 −3 −2 −1 1 2

(−4)2 (−3)2 (−2)2 (−1)2 12 22

(−4)4 (−3)4 (−2)4 (−1)4 14 24

(−4)5 (−3)5 (−2)5 (−1)5 15 25

(−4)6 (−3)6 (−2)6 (−1)6 16 26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p−4

p−3

p−2

p−1

p1

p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose solution is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p−4

p−3

p−2

p−1

p1

p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/48

1/6

−29/48

1

1/6

1/48

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus,

Q =
2∑

j=−4
j �=0

pj(fi+j − fi) =
fi+2 + 8fi+1 − 35fi + 48fi−1 − 29fi−2 + 8fi−3 − fi−4

48

Substituting the above in Equation (7.71) on the previous page, we get

f
(3)
i =

fi+2 + 8fi+1 − 35fi + 48fi−1 − 29fi−2 + 8fi−3 − fi−4

8h3
+O(h4)

which is the desired finite difference formula.
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7.C.4 Common Finite Difference Formulas
In this section, we list O(h)- and O(h2)-accurate finite difference formulas for the first to
fourth order derivatives. The number of grid points required by a finite difference formula is
proportional to the order of the derivative as well as the order of accuracy.

In any given problem, the finite difference formulas that are used should of the same
order of accuracy. Generally, the O(h2)-accurate finite difference formulas are preferred.
The backward and forward finite difference formulas find use at the terminal values of the
independent variables.

Formulas of O(h)

First Derivative

f (1)(xi) =
f(xi+1)− f(xi)

h

f (1)(xi) =
f(xi)− f(xi−1)

h

Second Derivative

f (2)(xi) =
f(xi+2)− 2f(xi+1) + f(xi)

h2

f (2)(xi) =
f(xi)− 2f(xi−1) + f(xi−2)

h2

Third Derivative

f (3)(xi) =
1

h3

[
f(xi+3)− 3f(xi+2) + 3f(xi+1)− f(xi)

]

f (3)(xi) =
1

h3

[
f(xi)− 3f(xi−1) + 3f(xi−2)− f(xi−3)

]

Fourth Derivative

f (4)(xi) =
1

h4

[
f(xi+4)− 4f(xi+3) + 6f(xi+2)− 4f(xi+1) + f(xi)

]

f (4)(xi) =
1

h4

[
f(xi)− 4f(xi−1) + 6f(xi−2)− 4f(xi−3) + 4f(xi−4)

]



290 Process Modeling and Simulation for Chemical Engineers

Formulas of O(h2)

First Derivative

f (1)(xi) =
−f(xi+2) + 4f(xi+1)− 3f(xi)

2h

f (1)(xi) =
3f(xi)− 4f(xi−1) + f(xi−2)

2h

f (1)(xi) =
f(xi+1)− f(xi−1)

2h

Second Derivative

f (2)(xi) =
1

h2

[
− f(xi+3) + 4f(xi+2)− 5f(xi+1) + 2f(xi)

]
f (2)(xi) =

1

h2

[
2f(xi)− 5f(xi−1) + 4f(xi−2)− f(xi−3)

]
f (2)(xi) =

f(xi+1)− 2f(xi) + f(xi−1)

h2

Third Derivative

f (3)(xi) =
1

2h3

[
− 3f(xi+4) + 14f(xi+3)− 24f(xi+2) + 18f(xi+1)− 5f(xi)

]
f (3)(xi) =

1

2h3

[
5f(xi)− 18f(xi−1) + 24f(xi−2)− 14f(xi−3) + 3f(xi−4)

]
f (3)(xi) =

1

2h3

[
f(xi+2)− 2f(xi+1) + 2f(xi−1)− f(xi−2)

]
Fourth Derivative

f (4)(xi) =
1

h4

[
− 2f(xi+5) + 11f(xi+4)− 24f(xi+3) + 26f(xi+2)− 14f(xi+1)

+ 3f(xi)
]

f (4)(xi) =
1

h4

[
3f(xi)− 14f(xi−1) + 26f(xi−2)− 24f(xi−3) + 11f(xi−4)

− 2f(xi−5)
]

f (4)(xi) =
1

h4

[
f(xi+2)− 4f(xi+1) + 6f(xi)− 4f(xi−1) + f(xi−2)

]
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Exercises
7.1 Repeat Example 7.1.3 on p. 238 with Peng–Robinson equation of state:

z3 + (B − 1)z2 + (A− 3B2 − 2B)z − (AB −B2 −B3) = 0

where

A = 0.45724
Pr

Tr
F, B = 0.0778

Pr

Tr
, and

F =
1

Tr

[
1 + (0.37464 + 1.5422ω − 0.26992ω2)(1−

√
Tr)
]2
.

7.2 Write the algorithm to find the determinant of a square matrix using lower-upper
decomposition.
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7.3 The solution of the tridiagonal system of equations⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 r1 0 0 . . . . . . 0

p2 q2 r2 0 . . . . . . 0

0 p3 q3 r3 0 . . .
...

0 0
. . . . . . . . .

...
...

...
... 0 pn−2 qn−2 rn−2 0

...
...

... 0 pn−1 qn−1 rn−1

0 0 0 . . . 0 pn qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

...

...

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2
...
...
...

bn−1

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

can be efficiently obtained using Thomas algorithm as

xn = b̃n and

xi = b̃i − r̃ixi+1; i = n− 1, n− 2, . . . , 1

where b̃is and r̃is are calculated as follows:

b̃1 =
b1
q1

b̃i =
bi − pib̃i−1

qi − pir̃i−1
; i = 2, 3, . . . , n

r̃1 =
r1
q1

r̃i =
ri

qi − pir̃i−1
; i = 2, 3, . . . , n− 1

Implement the above algorithm to fit cubic splines using Equation (6.35) on p. 217, and
Equation (6.36) on p. 218. Test them using the data of Example 6.2.5 on p. 216.

7.4 Apply finite differences to the following process model:

1

Pe
d2y
dx2

− dy
dx

− Da y2 = 0

with the following boundary conditions:

dy
dx

= Pe(y − 1) at x = 0

dy
dx

= 0 at x = 1

7.5 Solve the finite-differenced equations obtained in Exercise 7.4 above for Pe = 104, and
Da = 1.1. Obtain y versus x for different number of grid points starting with 11, i.e., 10
x-intervals. Find the effect of increasing the number of grid points.

7.6 The concentration of a species during reaction inside a porous spherical catalyst is
described by the following model:

∂c

∂t
=

D

r2
∂

∂r

(
r2

∂c

∂r

)
− kc
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The above partial differential equation has the following initial and boundary conditions:

c(r, 0) = 0

∂c

∂r
= 0 at r = 0

−D
∂c

∂r
= kg(c− ca) at r = R

Apply finite differences to the above model, and obtain a set of ordinary differential equations
for concentrations on the grid points along the radial direction.

7.7 Derive the expressions for the accumulated truncation errors involved in solution of
Equation (7.19) on p. 248 obtained from the explicit and implicit Euler’s methods.

7.8 A composite function is given by

f(T ) = ak/ρ where k = k0e
−b/T , ρ = ρ0c

−(1−T/d)e ,

and a, k0, b, ρ0, c, d and e are some constants. Obtain the analytical expression for
the derivative of the function with respect to T . Write a computer program to check the
expression.

7.9 Simulate the original and simplified plug flow reactor models in Section 6.1.1 on p. 190.
Compare the results.

7.10 Solve the ordinary differential equations obtained in Exercise 7.6 on the previous page
for different number (N ) of radial grid points, and parameters given in Table 7.9 below.
Comment on the results.

Table 7.9 Values of parameters for Exercise 7.10

parameter value parameter value

D 10−8 m2 s−1 k 2 s−1

kg 2× 10−3 ms−1 ca 0.3 molm−3

R 5× 10−3 m N 11, 21, 41, . . . , 321

7.11 The reactant concentration c, and the temperature T in a tubular reactor under steady
state, and laminar flow are given by the following model:

∂c

∂z
= − k0c

2R2

2v̄(R2 − r2)
exp
(
− a

T

)

∂T

∂z
=

R2

2v̄(R2 − r2)ρĈP

[
k

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+ (−ΔHr)k0 exp

(
− a

T

)
c2
]
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where z is axial coordinate, k0 is Arrhenius rate constant, r is radial distance, v̄ is average
axial velocity, R is the inside radius of the reactor, a is the ratio of activation energy of the
reaction to universal gas constant, and (−ΔHr) is the heat of reaction. The density, thermal
conductivity, and specific heat capacity of the reaction mixture are ρ, k and ĈP, respectively.
The model equations are subject to the following conditions:

c = cf at z = 0,
∂T

∂r
= 0 at r = 0,

T = Tf at z = 0, and T = Tw at r = R

where cf and Tf are, respectively, the values of c and T at the reactor inlet, and Tw is the wall
temperature of the reactor.

Apply the method of lines on the above reactor model, and obtain a set of ordinary
differential equations.

7.12 Solve the ordinary differential equations obtained in Exercise 7.11 above for different
number (N ) of radial grid points, and parameters given in Table 7.10 below. Comment on the
results.

Table 7.10 Values of parameters for Exercise 7.12

parameter value parameter value

cf 1 molm−3 Tf 293 K

k0 1.6 m3 mol−1 s−1 v̄ 0.02 m s−1

a 103 K Tw 333 K

R 0.03 m ρ 103 kgm−3

ĈP 12 J kg−1 K−1 −ΔHr −1.2× 108 Jmol−1

k 10 Wm−1 K−1 N 11, 21, 41

7.13 Using finite differences, convert the model in Exercise 7.6 on p. 292 to a set of algebraic
equations. Solve these equations for the parameters given in Table 7.9 on the previous page.
Compare the solution with that obtained in Exercise 7.10.

7.14 Express the model in Exercise 7.6 at steady state, and solve it using the shooting
Newton–Raphson method.

7.15 Write a computer program to implement composite Simpson’s 1/3 rule. The program
should utilize Simpson’s 3/8 rule if the number of data points is (i) four, or (ii) even and
greater than five.

7.16 Find the remaining roots in Example 7.7.4 on p. 280.



8
Mathematical Review

This chapter reviews the important mathematical concepts underpinning the topics covered
in this book.

8.1 Order of Magnitude

The order of magnitude of a real number is the power of ten included in the number. Thus,
the order of magnitude of y is the integer part of the log10 y.

The n orders-of-magnitude difference between two real numbers means that the ratio of
the bigger number to the other is m× 10n where 1 ≤ m < 10.

8.2 Big-O Notation

Consider a function f(x) in the limit of x tending to some value x0. If the upper bound of
|f(x)| is the product of a positive constant c and |x| when x is sufficiently close to x0 then

lim
x→x0

|f(x)| ≤ c|x|, |x− x0| < δ > 0

A brief form of the above expression is

lim
x→x0

f(x) = O(x)

where O(x) represents the upper bound, or the order of the function f with respect to the
variable x.

8.3 Analytical Function

An analytical function is an infinitely differentiable function, which can be represented as a
convergent Taylor series at any point in the domain of the function. Examples of analytical
functions are polynomials, and exponential, logarithmic and trigonometric functions.

The sums and products of analytical functions are analytical functions. So are the functions
of analytical functions as well as the inverses of analytical functions whose first derivatives
are not zero.
Process Modeling and Simulation for Chemical Engineers: Theory and Practice, First Edition. Simant Ranjan Upreti. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/upreti/pms_for_chemical_engineers
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Analytical Methods
These methods solve equations, and provide answers in terms of analytical functions. For
example, an analytical method would solve

dy
dt

= f(y), y(0) = ȳ

providing answer as an analytical function y = y(t, ȳ). In this function, we could plug values
for t and ȳ to obtain the associated value of y. However, there are limited types of equations
that could be solved by analytical methods.

Numerical Methods
These methods approximate equations, or their parts using Taylor expansions with finite
terms. These methods frequently require iterative calculations, and provide answers as direct
numerical values.

While answers from analytical methods are exact, those from numerical methods are
accurate to the degree of the involved approximation. But the latter can be applied to solve
any equations including those that cannot be solved by analytical methods.

8.4 Vectors

A vector in general is an ordered list of finite number of elements. A vector is usually denoted
by a lowercase boldface letter, e.g., a. Thus, in the vector notation

a =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

an

⎤
⎥⎥⎥⎥⎥⎥⎦

where ais are the elements or components of a. By default, a vector is considered as a column
vector. The transpose of a column vector is a row vector, and vice versa. Thus, the transpose
of a is

a� =
[
a1 a2 . . . an

]
In a Euclidean space such as the three-dimensional Cartesian coordinate system, a vector

is an entity characterized by a magnitude, and a direction. As shown in Figure 8.1 on the
next page, a vector a is represented by an arrow. While the length of the arrow represents the
magnitude or norm of the vector, the arrow itself points to the direction of the vector. The tail
of the arrow is implicitly assumed to lie on the origin. The endpoint of the arrow is the set of
coordinates for the vector components. In terms of the unit vectors (x̂is) along the coordinate
axes, the vector is expressed as

a = a1x̂1 + a2x̂2 + a3x̂3
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x1

x2

x3

a

a1

a2

a3

x̂1

x̂2

x̂3

Figure 8.1 A vector a in the three-dimensional Cartesian coordinate system

where ais are the vector components. As shown in Figure 8.1 above, these components are
the projections of the vector on the coordinate axes. Thus, the length of a, which is also the
magnitude or norm, is given by

‖a‖ =
√
a21 + a22 + a23

In general, the Euclidean norm of a vector v =
[
v1 v2 · · · vn

]� is given by

‖v‖ =

√√√√ n∑
i=1

v2i

8.4.1 Vector Operations
The operations defined for vectors are as follows.

Addition and Subtraction

The sum of two vectors of the same size is the vector with each element equal to the sum of
corresponding elements of the added vectors. The order of addition is not important. Thus,

a+ b = c = b+ a where ci = ai + bi; i = 1, 2, . . . , n

where a, b and c are vectors of the same size n, and have elements ai, bi and ci, respectively.
Similarly for subtraction,

a− b = c = −b+ a where ci = ai − bi; i = 1, 2, . . . , n
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Figure 8.2 below shows vector addition and subtraction in a Euclidean space.

a

b

a+ b
a

a− b

−b

b

(a) (b)

Figure 8.2 (a) Addition and (b) subtraction of vectors a and b

Multiplication by a Scalar

Multiplication of a vector by scalar results in each vector element multiplied by the scalar.

Differentiation

The derivative of a vector

y =
[
y1 y2 · · · ym

]�
with respect to a scalar variable x is written as the column vector

dy
dx

=

[
dy1
dx

dy2
dx

· · · dym
dx

]�

The derivative of a scalar y with respect to a vector

x =
[
x1 x2 · · · xn

]�
is written as the row vector

∂y

∂x
=

[
∂y

∂x1

∂y

∂x2
. . .

∂y

∂xn

]

For n = 3,

∂

∂x
≡ ∇ =

[
∂

∂x1

∂

∂x2

∂

∂x3

]
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is called the gradient operator in the coordinates of Cartesian coordinate system (x1, x2, x3).
The derivative of the vector y with respect to the vector x is written as the matrix

∇y ≡ ∂y

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y1
∂x1

∂y1
∂x2

. . .
∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . .
∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

. . .
∂ym
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.1)

The above matrix follows the numerator layout convention. According to this convention,
the row index is that of the numerator entity, i.e., ∂yi, and the column index is that of the
denominator entity, i.e., ∂xj .

Dot or Scalar or Inner Product

This product for two vectors a and b is defined as

a · b = ‖a‖‖b‖ cos θ

where θ is the angle between the two vectors. Figure 8.3 below shows the geometrical
interpretation of the dot product. Note that a · a = ‖a‖2.

a

bθ

‖b‖

‖a‖ cos θ

area = ‖a‖‖b‖ cos θ = a · b

Figure 8.3 Dot product of vectors a and b shown as the shaded area

The dot product has the following properties:

Commutativity a · b = b · a

Distributivity c · (a+ b) = c · a+ c · b

Non-Associativity (a · b)c �= a(b · c)

Scaling Homogeneity (αa) · b = a · (αb) = α(a · b)

Non-Cancellation a · b = a · c (where a �= 0) �=⇒ b = c
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In an orthogonal coordinate system (y1, y2, y3) having unit vectors ŷ1, ŷ2 and ŷ3, using
the distributive property of the dot product,

a · b = (a1ŷ1 + a2ŷ2 + a3ŷ3) · (b1ŷ1 + b2ŷ2 + b3ŷ3)

= a1b1ŷ1 · ŷ1 + a1b2ŷ1 · ŷ2 + a1b3ŷ1 · ŷ3

+ a2b1ŷ2 · ŷ1 + a2b2ŷ2 · ŷ2 + a2b3ŷ2 · ŷ3

+ a3b1ŷ3 · ŷ1 + a3b2ŷ3 · ŷ2 + a3b3ŷ3 · ŷ3

Note that from the definition of the dot product,

ŷ1 · ŷ1 = ŷ2 · ŷ2 = ŷ3 · ŷ3 = 1

ŷ1 · ŷ2 = ŷ2 · ŷ1 = ŷ2 · ŷ3 = ŷ3 · ŷ2 = ŷ3 · ŷ1 = ŷ1 · ŷ3 = 0

Therefore,

a · b = a1b1 + a2b2 + a3b3

Differentiation

The differentiation of the dot product follows the product rule of differentiation, i.e.,

d
dx

(a · b) =
da
dx

· b+ a · db
dx

Cross or Vector or Outer Product

This product for two vectors a and b is defined as

a× b = (‖a‖‖b‖ sin θ)n̂ ≡ c

where θ is the angle between the two vectors, and n̂ is the unit vector perpendicular to a and
b in the right-handed system, as shown in Figure 8.4 below.

b

a
‖b‖ sin θ

θ

‖a‖
a× b

area = ‖a‖‖b‖ sin θ = ‖a × b‖

Figure 8.4 Cross product of vectors a and b

The result of the cross product is the vector c such that looking opposite to it, θ is the angle
obtained by turning counter-clockwise from a to b. Thus, c is along the upward pointing
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right-hand thumb with the remaining fingers curled counter-clockwise in the direction of θ
increasing from a to b.

From the definition of cross product, a× a = 0. The cross product has the following
properties:

Anti-Commutativity a× b = −(b× a)

Distributivity c× (a+ b) = c× a+ c× b

Non-Associativity (a× b)× c �= a× (b× c)

Scaling Homogeneity (αa)× b = a× (αb) = α(a× b)

Non-Cancellation a× b = a× c (where a �= 0) �=⇒ b = c

In an orthogonal coordinate system (y1, y2, y3) having unit vectors ŷ1, ŷ2 and ŷ3, using
the distributive property of the cross product,

a× b = (a1ŷ1 + a2ŷ2 + a3ŷ3)× (b1ŷ1 + b2ŷ2 + b3ŷ3)

= a1b1ŷ1 × ŷ1 + a1b2ŷ1 × ŷ2 + a1b3ŷ1 × ŷ3

+ a2b1ŷ2 × ŷ1 + a2b2ŷ2 × ŷ2 + a2b3ŷ2 × ŷ3

+ a3b1ŷ3 × ŷ1 + a3b2ŷ3 × ŷ2 + a3b3ŷ3 × ŷ3

Note that from the definition of the cross product,

ŷ1 × ŷ1 = ŷ2 × ŷ2 = ŷ3 × ŷ3 = 0

ŷ1 × ŷ2 = −ŷ2 × ŷ1 = ŷ3

ŷ2 × ŷ3 = −ŷ3 × ŷ2 = ŷ1

ŷ3 × ŷ1 = −ŷ1 × ŷ3 = ŷ2

Therefore,

a× b = (a2b3 − a3b2)ŷ1 − (a1b3 − a3b1)ŷ2 + (a1b2 − a2b1)ŷ3

= ŷ1

∣∣∣∣∣∣
a2 a3

b2 b3

∣∣∣∣∣∣− ŷ2

∣∣∣∣∣∣
a1 a3

b1 b3

∣∣∣∣∣∣+ ŷ3

∣∣∣∣∣∣
a1 a2

b1 b2

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
ŷ1 ŷ2 ŷ3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣
(8.2)
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Differentiation

The differentiation of the cross product follows the product rule of differentiation, i.e.,

d
dx

(a× b) =
da
dx

× b+ a× db
dx

Triple Cross Product

The triple cross product is the cross product of a vector by another vector resulting from the
cross product of two vectors, i.e., a× (b× c). This product satisfies the identity

a× (b× c) = b(a · c)− c(a · b)

which can be verified by expanding both of its sides using the definitions of the cross and dot
vector products. By setting

a = b = ∇

where ∇ is the gradient operator (a vector), the above identity yields

∇× (∇× c) = ∇(∇ · c)− c(∇ · ∇︸ ︷︷ ︸
=∇2

)

Upon rearrangement, the above result provides an important formula for the Laplacian of a
vector c, i.e.,

∇2c = ∇(∇ · c)−∇× (∇× c) (8.3)

8.4.2 Cauchy–Schwarz Inequality
According to this inequality,

(x · y)2 ≤ ‖x‖2‖y‖2

where x and y are two vectors having the same number of elements, n.
For n = 2, let

x ≡
[
x1 x2

]� and y ≡
[
y1 y2

]�
In this case,

(x2
1 + x2

2)︸ ︷︷ ︸
‖x‖2

(y21 + y22)︸ ︷︷ ︸
‖y‖2

− (x1y1 + x2y2)
2︸ ︷︷ ︸

(x·y)2
= (x1y2 − x2y1)

2︸ ︷︷ ︸
≥ 0

Thus, (x · y)2 ≤ ‖x‖2‖y‖2, which can be easily generalized for higher dimensions.

8.5 Matrices
Matrices are two-dimensional collections of elements. They are arranged in rows and
columns, and impart brevity in dealing with sets of linear equations.
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8.5.1 Terminology
A square matrix has equal numbers of rows and columns. A diagonal matrix has a principal
diagonal, and all remaining elements 0, e.g.,⎡

⎢⎢⎢⎣
A11 0 0

0 A22 0

0 0 A33

⎤
⎥⎥⎥⎦

The trace of a matrix is the sum of its diagonal elements,
n∑

i=1

Aii. An identity matrix is the

diagonal matrix I with elements Iii = 1 for all values of i. A symmetric matrix has Aij = Aji

for all i and j, e. g., ⎡
⎢⎢⎢⎣
1 4 5

4 2 6

5 6 3

⎤
⎥⎥⎥⎦

An upper triangular matrix has all elements 0 in the triangular part below the diagonal, e.g.,⎡
⎢⎢⎢⎣
A11 A12 A13

0 A22 A23

0 0 A33

⎤
⎥⎥⎥⎦

On the other hand, a lower triangular matrix has all elements 0 in the triangular part above
the diagonal, e.g., ⎡

⎢⎢⎢⎣
A11 0 0

A21 A22 0

A31 A32 A33

⎤
⎥⎥⎥⎦

The inverse A−1 of a square matrix A is another square matrix of the same size, which
satisfies

A−1 ×A = A×A−1 = I

where I is the identity matrix of the same size.
The transpose of a matrix A is the matrix denoted by A�, which is obtained by turning

the rows of A into its columns.
Lastly, similar to the Euclidean norm of a vector, the Frobenius norm of a matrix A of n

rows and m columns is defined as

‖A‖ =
n∑

i=1

m∑
j=1

A2
ij

where Aij is the element in the ith row and j th column of the matrix.
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8.5.2 Matrix Operations

The operations defined for matrices are as follows.

Addition and Subtraction

The sum of two matrices of the same size is the matrix with each element equal to the sum of
corresponding elements in the matrices being added. The order of addition is not important.
Thus, for matrices with n rows and m columns,

A+B = C = B+A where Cij = Aij +Bij

i = 1, 2, . . . , n; j = 1, 2, . . . ,m

where Cij , Aij and Bij are, respectively, the elements in the ith row and j th column of C, A
and B. Similarly for subtraction,

A−B = C = −B+A where Cij = Aij −Bij

i = 1, 2, . . . , n; j = 1, 2, . . . ,m

Multiplication by a Scalar

Multiplication of a matrix by a scalar results in the multiplication of each matrix element by
the scalar.

Multiplication of Matrices

Multiplication of two matrices is defined if the number of columns of the first matrix is equal
to the number of rows of the second matrix. The result is a matrix that has number of rows of
the first matrix, and the number of columns of the second matrix. Thus, if A has n rows and
m columns, and B has m rows and l columns then

An×m ×Bm×l = Cn×l

The elements of the product C are given by

Cij =
m∑

k=1

AikBkj ; i = 1, 2, . . . , n; j = 1, 2, . . . ,m

The product of two matrices is associative, i.e., (AB)C = A(BC) as well as distributive,
i.e., (A+B)C = AC+BC. Note that A×B �= B×A.
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Differentiation

The derivative of a matrix A (of n rows and m columns) with respect to a scalar x is written
as

dA
dx

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dA11

dx
dA12

dx
. . .

dA1m

dx

dA21

dx
dA22

dx
. . .

dA2m

dx

...
...

...
...

dAn1

dx
dAn2

dx
. . .

dAnm

dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.5.3 Operator Inequality
According to this inequality

‖Ab‖ ≤ ‖A‖‖b‖

where A is an n×m operator (matrix), and b is an m-dimensional vector.
For n = m = 2, let

A ≡

⎡
⎣A11 A12

A21 A22

⎤
⎦ and b ≡

⎡
⎣b1
b2

⎤
⎦

Then

Ab =

⎡
⎣A11b1 +A12b2

A21b1 +A22b2

⎤
⎦

and

‖Ab‖2 = (A11b1 +A12b2)
2︸ ︷︷ ︸

p

+ (A21b1 + A22b2)
2︸ ︷︷ ︸

q

Because

(A2
11 +A2

12)(b
2
1 + b22)− p = (A11b2 −A12b1)

2 ≥ 0

we obtain

p ≤ (A2
11 +A2

12)(b
2
1 + b22)

Similarly we get,

q ≤ (A2
21 +A2

22)(b
2
1 + b22)
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Combining the last two inequalities yields

p+ q︸ ︷︷ ︸
‖Ab‖2

≤ (A2
11 +A2

12 +A2
21 +A2

22)︸ ︷︷ ︸
‖A‖2

(b21 + b22)︸ ︷︷ ︸
‖b‖2

The above result in terms of A and b is

‖Ab‖ ≤ ‖A‖‖b‖
which easily generalizes to higher dimensions.

8.6 Tensors
A tensor is a multilinear and coordinate-independent relation between scalars, vectors, or
higher-dimensional objects. Examples are

1. the relation s that yields the distance d between two position vectors (a and b), i.e.,

d = s(a,b)

2. the relation f between the force F acting on a particle moving with an acceleration a,
i.e.,

F = f(a) = ma

3. the relation T between the differential force dF acting on a differential area element
dA, i.e.,

dF = T (dA) (8.4)

Given a coordinate system, a tensor is represented as collection of numerical values in one
or more dimensions. The number of dimensions needed for this purpose is called the order of
the tensor.

8.6.1 Multilinearity
Multilinearity of a tensor means that it is linear with respect to all of its arguments. Thus, for
example,

s(α1a+ α2a,b) = α1s(a,b) + α2s(a,b)

s(a, β1b+ β2b) = β1s(a,b) + β2s(a,b)

where αis and βis are any scalars.

8.6.2 Coordinate-Independence
Coordinate-independence of tensor means that its output is preserved under coordinate
transformation. For example, the shortest distance between two position vectors stays the
same regardless of the coordinate system. However, note that the representation of a tensor
does change according to the coordinate system. Thus, the shortest distance d between the
position vectors a and b in Cartesian coordinate system is given by the tensor

s(a,b) =
√
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2
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In cylindrical coordinate system (r, θ, z),

a =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1 =
√
a21 + a22

θ1 = tan−1

(
a2
a1

)
z1 = a3

⎤
⎥⎥⎥⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

r2 =
√
b21 + b22

θ2 = tan−1

(
b2
b1

)
z2 = b3

⎤
⎥⎥⎥⎥⎥⎥⎦

and the shortest distance d between the two vectors is given by the tensor

s(a,b) =
√
r21 + r22 − 2r1r2 cos(θ2 − θ1) + (z1 − z2)2

Note that the above representation of s is different from that in Cartesian coordinate system.
But the output d (readers can easily verify) for any given pair of a and b stays the same in
both coordinate systems.

8.6.3 Representation of Second Order Tensor
We are interested in finding the representation of the tensor T of Equation (8.4) on the
previous page in an orthogonal coordinate system (y1, y2, y3). We will find out shortly that T
is a second order tensor.

Equation (8.4) on the previous page can be written as

dF1ŷ1 + dF2ŷ2 + dF3ŷ3︸ ︷︷ ︸
dF

= T (dA1ŷ1 + dA2ŷ2 + dA3ŷ3︸ ︷︷ ︸
dA

)

where dFis and dAis are, respectively, the components of dF and dA along the unit vector
ŷi of the coordinate system. Using the linearity property of T , the above equation becomes

dF1ŷ1 + dF2ŷ2 + dF3ŷ3 = dA1T (ŷ1) + dA2T (ŷ2) + dA3T (ŷ3) (8.5)

Consistency requires that T (ŷi)s should be vectors. Like any vector, T (ŷi)s can be expressed
in terms of unit vectors as

T (ŷi) = T1iŷ1 + T2iŷ2 + T3iŷ3; i = 1, 2, 3

with T1i, T2i and T3i as the components of T (ŷi), respectively, along the y1-, y2- and
y3-directions. Substituting the above expressions in Equation (8.5), we obtain after some
rearrangement,

dF1ŷ1 + dF2ŷ2 + dF3ŷ3 = (T11dA1 + T12dA2 + T13dA3)ŷ1

+ (T21dA1 + T22dA2 + T23dA3)ŷ2

+ (T31dA1 + T32dA2 + T33dA3)ŷ3

Upon comparing the coefficients of ŷis on both sides of the above equation, we obtain

dF1 = T11dA1 + T12dA2 + T13dA3

dF2 = T21dA1 + T22dA2 + T23dA3

dF3 = T31dA1 + T32dA2 + T33dA3
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The above relations can be written succinctly as the matrix equation⎡
⎢⎢⎢⎣

dF1

dF2

dF3

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
dF

=

⎡
⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
T

⎡
⎢⎢⎢⎣

dA1

dA2

dA3

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
dA

(8.6)

where the matrix T is called the representation of the tensor T , or just the tensor.

Order of a Tensor

Since the number of dimensions involved in the above representation is two, the tensor is said
to be of the second order. By the same token, a tensor represented by a vector is of the first
order. The tensor having only one component is a scalar, and is of the zeroth order.

Alternative Representation

Using the identities

(ab) · c = a(b · c)

ŷi · ŷj =

{
1 if i = j

0 if i �= j

it is straightforward to verify that Equation (8.6) above can also be expressed as

dF = T · dA

with T represented alternatively by

T = T11ŷ1ŷ1 + T12ŷ1ŷ2 + T13ŷ1ŷ3 + T21ŷ2ŷ1 + T22ŷ2ŷ2 + T23ŷ2ŷ3

+ T31ŷ3ŷ1 + T32ŷ3ŷ2 + T33ŷ3ŷ3

To summarize, a second order tensor in an orthogonal coordinate system is represented as

T =

⎡
⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎥⎥⎦ =

3∑
i=1

3∑
j=1

Tij ŷiŷj (8.7)

The transpose and trace of T are similar to those for matrices.

8.6.4 Einstein or Index Notation
This notation obviates the use of summation symbol to imply summation. In this notation,
two instances of an index in a term mean its summation over all index values. Hence,

aibi ≡
n∑

i=1

aibi = a1b1 + a2b2 + · · ·+ anbn
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where the index i has values 1, 2, . . . , n.
In the index notation, multiple indices can repeat in a term, but not more than once. For

example, consider the term AijBjkck, which has indices i, j and k where the last two repeat
once. Let these indices take values from the set {1, 2, 3}. Then,

AijBjkck =

( 3∑
j=1

AijBjk

︸ ︷︷ ︸
≡ dk

)
ck =

3∑
k=1

dkck =
3∑

k=1

( 3∑
j=1

AijBjk

)
ck

= (Ai1B11 +Ai2B21 +Ai3B31)c1 + (Ai1B12 +Ai2B22 +Ai3B32)c2

+ (Ai1B13 +Ai2B23 + Ai3B33)c3

where we first summed over j and then k. The order of summation does not matter. Thus,
summing first over k and then j gives the same result, i.e.,

AijBjkck = Aij

( 3∑
k=1

Bjkck

)
=

3∑
j=1

Aij

( 3∑
k=1

Bjkck

)

= Ai1(B11c1 +B12c2 +B13c3) + Ai2(B21c1 +B22c2 +B23c3)

+ Ai3(B31c1 +B32c2 +B33c3)

= (Ai1B11 +Ai2B21 +Ai3B31)c1 + (Ai1B12 +Ai2B22 +Ai3B32)c2

+ (Ai1B13 +Ai2B23 + Ai3B33)c3

Dummy and Free Indices

In index notation, renaming the repeating indices j and k to, respectively, l and m changes
the term AijBjkck to AilBlmcm but not the expansion. A once-repeating index such as j is
therefore called a dummy index.

The dummy indices take up all values from the specified set. In contrast, any non-repeating
index such as i in AijBjkck is free to take any value, and is called a free index.

Range of Indices

All indices in index notation take values from the same set unless specified otherwise. Thus,
with the free index i taking values from the same set {1, 2, 3}, the term AijBjkck stands for
the set {A1jBjkck, A2jBjkck, A3jBjkck}.

Putting it all together, the term AijBjkck represents

A1jBjkck = (A11B11 +A12B21 +A13B31)c1 + (A11B12 + A12B22 +A13B32)c2

+ (A11B13 +A12B23 +A13B33)c3

A2jBjkck = (A21B11 +A22B21 +A23B31)c1 + (A21B12 + A22B22 +A23B32)c2

+ (A21B13 +A22B23 +A23B33)c3
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A3jBjkck = (A31B11 +A32B21 +A33B31)c1 + (A31B12 + A32B22 +A33B32)c2

+ (A31B13 +A32B23 +A33B33)c3

Note how index notation enables brevity. It is necessary for efficient handling of expressions
involving vector and tensors.

Substitution of Expressions

In index notation, when substituting one term into another, the dummy indices of one of the
terms should be renamed suitably to avoid any duplication between the terms. Consider for
example the substitution of the term Dikei for ck in the main term AijBjkck. The two terms
have the index i in common, which is a dummy index in the first term, i.e., Dikei. Before
doing the substitution, this index should be renamed to, say, l, which does not appear in the
main term. Thus,

AijBjkck = AijBjkDlkel

Representation of Vectors and Tensors

In index notation, a vector a of an orthogonal coordinate system is represented by aiŷi

where ai is the component of a along the unit vector ŷi associated with the yi-coordinate. A
second order tensor T in the same system is represented by Tijŷiŷj where Tij is the tensor
component associated with the yi- and yj-coordinates.

8.6.5 Kronecker Delta
This term is defined as

δij =

{
1 for i = j

0 for i �= j

Hence, when present in a term, the Kronecker delta knocks out terms with unequal indices.
For example, when the index values are 1, 2 and 3,

aibjδij = a1bjδ1j + a2bjδ2j + a3bjδ3j

= a1b1δ11 + a1b2δ12 + a1b3δ13 + a2b1δ21 + a2b2δ22 + a2b3δ23

+ a3b1δ31 + a3b2δ32 + a3b3δ33

= a1b1 + a2b2 + a3b3 = aibi

8.6.6 Operations Involving Vectors and Second Order Tensors

These operations in an orthogonal coordinate system are best understood with the help of
tensors called dyads, and the unit dyadic.
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Dyads

A dyad is a tensor resulting from the multiplication of two vectors as follows:

ab ≡ ab� =

⎡
⎢⎢⎢⎣
a1

a2

a3

⎤
⎥⎥⎥⎦
[
b1 b2 b3

]
=

⎡
⎢⎢⎢⎣
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎤
⎥⎥⎥⎦

If a and b are unit vectors then their product yields a matrix with one unit element, and the
rest of the elements zero. For example, in an orthogonal coordinate system,

ŷ1ŷ1 =

⎡
⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦, ŷ1ŷ2 =

⎡
⎢⎢⎢⎣
0 1 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦,

ŷ1ŷ3 =

⎡
⎢⎢⎢⎣
0 0 1

0 0 0

0 0 0

⎤
⎥⎥⎥⎦, . . . , ŷ3ŷ3 =

⎡
⎢⎢⎢⎣
0 0 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎦

where ŷiŷj is a unit dyad. It is a 3× 3 matrix with all elements zero except one, which is
unity and lies on the ith row and j th column.

A tensor can be expressed as a linear combination of unit dyads as follows:

T = T11

⎡
⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ + T12

⎡
⎢⎢⎢⎣
0 1 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

+ T13

⎡
⎢⎢⎢⎣
0 0 1

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ + · · · + T33

⎡
⎢⎢⎢⎣
0 0 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎥⎥⎦

where Tijs are scalar coefficients. Or, in index notation,

T = Tij ŷiŷj
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Dyadic

A dyadic is a linear combination of dyads with scalar coefficients, and is a second order
tensor. A unit dyadic (or unit tensor) is a tensor denoted by δ such that for any second order
tensor T,

δ ·T = T

In an orthogonal coordinate system,

δ = ŷ1ŷ1 + ŷ2ŷ2 + ŷ3ŷ3 =

⎡
⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦ (8.8)

Operations

The following operations apply to the second order tensors in an orthogonal coordinate
system:

Addition and Subtraction
These two operations are similar to that for matrices.

Product of a Tensor with a Vector
The product of a tensor A with a vector b is a vector

a = A · b
In matrix representation, the product is Ab, i.e.,⎡

⎢⎢⎢⎣
a1

a2

a3

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
a

=

⎡
⎢⎢⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣
b1

b2

b3

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
b

=

⎡
⎢⎢⎢⎣
A11a1 +A12a2 +A13a3

A21a1 +A22a2 +A23a3

A31a1 +A32a2 +A33a3

⎤
⎥⎥⎥⎦

In index notation, this product is denoted by

ai = Aijaj

Product of a Vector with a Tensor
The product of a vector b with a tensor A is a vector

a = b ·A
In matrix representation, the product is b�A, i.e.,⎡

⎢⎢⎢⎣
a1

a2

a3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
b1

b2

b3

⎤
⎥⎥⎥⎦
�⎡⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
b1A11 + b2A21 + b3A31

b1A12 + b2A22 + b3A32

b1A13 + b2A23 + b3A33

⎤
⎥⎥⎥⎦



8. Mathematical Review 313

In index notation, this product is denoted by

ai = bjAji

Thus, A · b �= b ·A unless A is symmetric, i.e., Aij = Aji.

Product of Two Tensors
The product of two tensors A and B is written as A ·B. It is tensor C that is obtained by
multiplying A and B as matrices. In index notation, the product is denoted by

Cij = AikBkj

Similar to the product of two matrices, A ·B �= B ·A.

Scalar or Double Dot Product
The scalar product of two tensors results in a scalar, and is based on the following definition
of the product of two dyads:

ŷiŷj : ŷkŷl = (ŷi · ŷl)(ŷj · ŷk) = δilδjk (scalar)

Using the above definition, the product is given by

A : B = Aij ŷiŷj : Bklŷkŷl = AijBklŷiŷj : ŷkŷl = AijBklδilδjk

= AijBji (scalar)

= Ai1B1i +Ai2B2i +Ai3B3i

= A11B11 +A21B12 +A31B13 + A12B21 +A22B22 +A32B23

+A13B31 +A23B32 +A33B33

Tensor Product
The tensor product of two tensors results in a tensor, and is based on the following definition
of the dot product of two dyads:

ŷiŷj · ŷkŷl = ŷi(ŷj · ŷk)ŷl = ŷi(δjk)ŷl = ŷiŷl (dyad, i.e., tensor)

= ŷiŷ1 + ŷiŷ2 + ŷiŷ3

= ŷ1ŷ1 + ŷ2ŷ1 + ŷ3ŷ1 + ŷ1ŷ2 + ŷ2ŷ2 + ŷ3ŷ2

+ ŷ1ŷ3 + ŷ2ŷ3 + ŷ3ŷ3
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Thus,

A ·B = Aij ŷiŷj ·Bklŷkŷl = AijBklŷi(ŷj · ŷk)ŷl = AijBklŷi(δjk)ŷl

= AijBjlŷiŷl = (Ai1B1l +Ai2B2l +Ai3B3l)︸ ︷︷ ︸
≡Cil

ŷiŷl

= Cilŷiŷl (tensor)

= Ci1ŷiŷ1 + Ci2ŷiŷ2 + Ci3ŷiŷ3

= C11ŷ1ŷ1 + C21ŷ2ŷ1 + C31ŷ3ŷ1 + C12ŷ1ŷ2 + C22ŷ2ŷ2 + C32ŷ3ŷ2

+ C13ŷ1ŷ3 + C23ŷ2ŷ3 + C33ŷ3ŷ3

Dot Product of a Tensor and a Vector
This product results in a vector, and is based on the following definition of the dot product of
a dyad, and a unit vector:

ŷiŷj · ŷk = ŷi(ŷj · ŷk) = ŷi(δjk) = ŷi (unit vector)

Thus,

A · b = Aij ŷiŷj · bkŷk = Aijbkŷi(ŷj · ŷk) = Aijbkŷi(δjk)

= Aijbj ŷi (vector)

= Ai1b1ŷi +Ai2b2ŷi +Ai3b3ŷi

= A11b1ŷ1 +A21b1ŷ2 +A31b1ŷ3 + A12b2ŷ1 +A22b2ŷ2 +A32b2ŷ3

+ A13b3ŷ1 +A23b3ŷ2 +A33b3ŷ3

= (A11b1 +A12b2 +A13b3)ŷ1 + (A21b1 +A22b2 +A23b3)ŷ2

+ (A31b1 +A32b2 +A33b3)ŷ3

Similarly,

b ·A = (A11b1 +A21b2 +A31b3)ŷ1 + (A12b1 +A22b2 +A32b3)ŷ2

+ (A13b1 +A23b2 +A33b3)ŷ3

Thus, unless A is symmetric (i.e., Aij = Aji), A · b �= b ·A.
The operations described next involve the gradient operator ∇, which is a vector. In index

notation, this operator is written as

∇ = ŷi

∂

∂yi
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Gradient of a Vector
The gradient of a vector is a tensor given by Equation (8.1) on p. 299. In index notation,

∇a =

(
ŷi

∂

∂yi︸ ︷︷ ︸
∇

)
(ajŷj︸︷︷︸

a

) = ŷi

∂aj
∂yi

ŷj =
∂aj
∂yi

ŷiŷj

=

(
∂aj
∂y1

ŷ1 +
∂aj
∂y2

ŷ2 +
∂aj
∂y3

ŷ3

)
ŷj =

∂aj
∂y1

ŷ1ŷj +
∂aj
∂y2

ŷ2ŷj +
∂aj
∂y3

ŷ3ŷj

=
∂a1
∂y1

ŷ1ŷ1 +
∂a2
∂y1

ŷ1ŷ2 +
∂a3
∂y1

ŷ1ŷ3 +
∂a1
∂y2

ŷ2ŷ1 +
∂a2
∂y2

ŷ2ŷ2 +
∂a3
∂y2

ŷ2ŷ3

+
∂a1
∂y3

ŷ3ŷ1 +
∂a2
∂y3

ŷ3ŷ2 +
∂a3
∂y3

ŷ3ŷ3

Divergence of a Tensor
The divergence of a tensor A is given by

∇ ·A = ŷk

∂

∂yk︸ ︷︷ ︸
∇

·Aij ŷiŷj︸ ︷︷ ︸
A

= ŷk · ∂Aij

∂yk
ŷiŷj =

∂Aij

∂yk
(ŷk · ŷi)ŷj

=
∂Aij

∂yk
(δki)ŷj =

∂Aij

∂yi
ŷj

=

(
∂A1j

∂y1
+

∂A2j

∂y2
+

∂A3j

∂y3

)
ŷj =

∂A1j

∂y1
ŷj +

∂A2j

∂y2
ŷj +

∂A3j

∂y3
ŷj

=

(
∂A11

∂y1
ŷ1 +

∂A12

∂y1
ŷ2 +

∂A13

∂y1
ŷ3

)
+

(
∂A21

∂y2
ŷ1 +

∂A22

∂y2
ŷ2 +

∂A23

∂y2
ŷ3

)

+

(
∂A31

∂y3
ŷ1 +

∂A32

∂y3
ŷ2 +

∂A33

∂y3
ŷ3

)

=

(
∂A11

∂y1
+

∂A21

∂y2
+

∂A31

∂y3

)
ŷ1 +

(
∂A12

∂y1
+

∂A22

∂y2
+

∂A32

∂y3

)
ŷ2

+

(
∂A13

∂y1
+

∂A23

∂y2
+

∂A33

∂y3

)
ŷ3

Divergence of a Dyad
The divergence of a dyad ab is given by the identity

∇ · ab = a · ∇b+ b(∇ · a)
(8.9)
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We prove the validity of the Equation (8.9) on the previous page by expanding its terms. The
first right-hand side term of this equation is given by

a · ∇b =
3∑

i=1

aiŷi ·
3∑

j=1

ŷj

∂

∂yj

3∑
k=1

bkŷk =
3∑

i=1

ŷiai ·
3∑

j=1

3∑
k=1

ŷj

∂(bkŷk)

∂yj

=
3∑

i=1

3∑
j=1

3∑
k=1

ai ŷi · ŷj︸ ︷︷ ︸
δij

∂(bkŷk)

∂yj
=

3∑
i=1

3∑
k=1

ai
∂(bkŷk)

∂yi

=

3∑
i=1

3∑
k=1

(
aibk

∂ ŷk

∂yi︸ ︸
=0

+ ai
∂bk
∂yi

ŷk

)
=

3∑
i=1

3∑
k=1

ai
∂bk
∂yi

ŷk

The second right-hand term of Equation (8.9) is given by

b(∇ · a) =
3∑

k=1

ŷkbk

( 3∑
j=1

ŷj

∂

∂yj
·

3∑
i=1

ŷiai

)
=

3∑
k=1

ŷkbk

3∑
j=1

3∑
i=1

ŷj ·
∂(ŷiai)

∂yj

=
3∑

k=1

ŷkbk

3∑
j=1

3∑
i=1

ŷj ·
(

∂ ŷi

∂yj
ai︸ ︷︷ ︸

=0

+ ŷi

∂ai
∂yj

)

=
3∑

k=1

ŷkbk

3∑
j=1

3∑
i=1

ŷj · ŷi︸ ︷︷ ︸
δji

∂ai
∂yj

=
3∑

k=1

ŷkbk

3∑
i=1

∂ai
∂yi

=
3∑

k=1

3∑
i=1

∂ai
∂yi

bkŷk

Finally, the left-hand side of Equation (8.9) is given by

∇ · ab =
3∑

i=1

ŷi

∂

∂yi
·

3∑
j=1

3∑
k=1

ŷj ŷkajbk =
3∑

i=1

3∑
j=1

3∑
k=1

ŷi ·
∂

∂yi
(ŷj ŷkajbk)

=
3∑

i=1

3∑
j=1

3∑
k=1

[
ŷi ·

∂(ŷj ŷk)

∂yi︸ ︷︷ ︸
=0

ajbk + ŷi · ŷj︸ ︷︷ ︸
δij

ŷk

∂

∂yi
(ajbk)

]

=
3∑

i=1

3∑
k=1

ŷk

∂

∂yi
(aibk) =

3∑
i=1

3∑
k=1

∂ai
∂yi

bkŷk︸ ︷︷ ︸
=b(∇·a)

+
3∑

i=1

3∑
k=1

ai
∂bk
∂yi

ŷk︸ ︷︷ ︸
= a·∇b

which is the sum of the two right-hand side terms derived above.



8. Mathematical Review 317

Dot Product of a Vector and Gradient of a Vector
This product for vectors a and b is given by

a · ∇b = akŷk · ∂bj
∂yi

ŷiŷj = ak
∂bj
∂yi

(ŷk · ŷi)ŷj = ak
∂bj
∂yi

(δki)ŷj

= ai
∂bj
∂yi

ŷj (vector)

=

(
a1

∂bj
∂y1

+ a2
∂bj
∂y2

+ a3
∂bj
∂y3

)
ŷj

=

(
a1

∂b1
∂y1

+ a2
∂b1
∂y2

+ a3
∂b1
∂y3

)
ŷ1 +

(
a1

∂b2
∂y1

+ a2
∂b2
∂y2

+ a3
∂b2
∂y3

)
ŷ2

+

(
a1

∂b3
∂y1

+ a2
∂b3
∂y2

+ a3
∂b3
∂y3

)
ŷ3

Double Dot Product of a Tensor and the Gradient of a Vector
This product for a tensor A, and a vector b is given by

A : ∇b = Aklŷkŷl :
∂bj
∂yi

ŷiŷj = Akl
∂bj
∂yi

ŷkŷl : ŷiŷj = Akl
∂bj
∂yi

(ŷk · ŷj)(ŷl · ŷi)

= Akl
∂bj
∂yi

δkjδli = Aji
∂bj
∂yi

(scalar)

= A1i
∂b1
∂yi

+A2i
∂b2
∂yi

+A3i
∂b3
∂yi

= A11
∂b1
∂y1

+A12
∂b1
∂y2

+ A13
∂b1
∂y3

+ A21
∂b2
∂y1

+A22
∂b2
∂y2

+A23
∂b2
∂y3

+ A31
∂b3
∂y1

+A32
∂b3
∂y2

+A33
∂b3
∂y3

It may be noted that the above product is the trace of the product of the two matrices,
namely, A and ∇b.

Divergence of the Product of a Scalar and a Vector
Using the product rule of differentiation,

∇ · ab =
3∑

j=1

∂(abj)

∂xj
= a

3∑
j=1

∂bj
∂xj

+
3∑

j=1

bj
∂a

∂xj
= a∇ · b+ b · ∇a (8.10)
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8.7 Differential
Consider a function f(x). Then the differential of f at x = x0 is defined as the change df in
f associated with the change h in x0 that satisfies the following requirements:

1. Compared to h, the change df is closer to the actual function change

f(x0 + h)− f(x)

2. The change df is a linear and continuous function of h at x0.

Remarks
The motivation for the above requirements is to obtain a simple function df relating function
change to the variable change with little or no error. Utilizing this function, we can calculate
the new function value f(x0 + h) simply from∗

f(x0 + h) = f(x0) + df(x0;h)

for sufficiently small changes h around x0. Note that df is evaluated at x0, and is a linear
function of h. The error involved in the above calculation is the remainder term of the first
order Taylor expansion. As per the first requirement, this error must reduce faster than h.
Thus, if h is reduced progressively then at some h0 there would be no error left, and df
would accurately represent the function changes in the interval [x0, x0 + h0].

8.7.1 Derivative
The definition of the derivative stems from that of the differential. Consider the last equation
in the limit of h tending to zero when there is no error involved. Then multiplying and dividing
df(x0;h) by h in the equation yields

f(x0 + h) = f(x0) +
df(x0;h)

h︸ ︷︷ ︸
derivative

h; limh → 0

where the derivative as shown above is the coefficient of h. More precisely, the derivative of
f(x) at x0 is defined as

df
dx

⏐⏐⏐⏐
x0

≡ lim
h→0

df(x0;h)

h
= lim

h→0

f(x0 + h)− f(x0)

h

In terms of the derivative, the differential of f(x) for a change dx in x is given by

df =
df
dx

dx

8.7.2 Partial Derivative and Differential

For a multivariable function f(x), where x
[
x1 x2 · · · xn

]�, the partial derivative
of f with respect to the xi is the derivative

df
dxi

⏐⏐⏐⏐̃
x

≡ ∂f

∂xi
= lim

h→0

f(xi + h, x̃)− f(xi, x̃)

h

∗Instead of evaluating f(x0 + h) all over again from f(x).
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that is obtained keeping all variables except xi (i.e., the vector x̃) constant. Thus, the partial
differential with respect to xi is

∂f

∂xi
dxi

The sum of all partial differentials of f(x), i.e.,

n∑
i=1

∂f

∂xi
dxi

is called the total differential.

8.7.3 Chain Rule of Differentiation
This rule provides the derivative of a function with respect to an indirectly related variable.
The derivative is obtained by combining and simplifying the involved differentials.

For example, consider f = f(y) where y = y(x). Here f is indirectly related to x. To
obtain df/dx, we first write down the differentials of the involved functions. The differential
of f is given by

df =
df
dy

dy

Similarly, the differential of y is given by

dy =
dy
dx

dx

Combining the last two equations, and dividing the result by dx, we obtain

df
dx

=
df
dy

dy
dx

Multivariable Function

Let f = f(x, y) with x = x(t) and y = y(t). Thus,

f = f [x(t), y(t)]

Here, f is indirectly related to t. To obtain the derivative of f with respect to t, we first write
down the differentials of the involved functions. The differential of f is given by

df =
∂f

∂x
dx+

∂f

∂y
dy

The differentials of x and y in turn are, respectively, given by

dx =
dx
dt

dt and dy =
dy
dt

dt
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Combining the last three equations, and dividing the result by dt we obtain

df
dt

=
∂f

∂x

dx
dt

+
∂f

∂y

dy
dt

If f additionally depends explicitly on t, i.e.,

f = f [x(t), y(t), t]

then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂t
dt

so that

df
dt

=
∂f

∂x

dx
dt

+
∂f

∂y

dy
dt

+
∂f

∂t

Function of Several Multivariable Functions

Let f = f(x, y) with x = x(s, t) and y = (s, t). Thus,

f = f [x(s, t), y(s, t)]

Here, f is indirectly related to t and s, and the last two variables are independent of each
other. To obtain the derivative of f with respect to s, we first write down the differentials of
the involved functions. The differentials are

df =
∂f

∂x
dx+

∂f

∂y
dy, dx =

∂x

∂s
ds+

∂x

∂t
dt, and dy =

∂y

∂s
ds+

∂y

∂t
dt.

Combining the last three equations, and dividing the result by ds, we obtain

df
ds

=
∂f

∂x

(
∂x

∂s
+

∂x

∂t

dt
ds︸︸
=0

)
+

∂f

∂y

(
∂y

∂s
+

∂y

∂t

dt
ds︸︸
=0

)
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

since t does not depend on s.
In the same manner, the derivative of f with respect to t is given by

df
dt

=
∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

If f additionally depends explicitly on t, i.e.,

f = f [x(s, t), y(s, t), t]

then

df
dt

=
∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂t
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8.7.4 Material and Total Derivatives
Consider a particle moving in space, as shown in Figure 8.5 below. At time t, the position of
the particle is given by

xi(t) = xi(0)︸ ︷︷ ︸
x̄i

+

t∫
0

dxi

dt
dt; i = 1, 2, 3

or, in vector notation,

x = x̄+

t∫
0

dx
dt

dt

where x =
[
x1 x2 x3

]� is the spatial position vector, and x̄ =
[
x̄1 x̄2 x̄3

]�
is the material position vector. The latter identifies a particle that occupies a position at a
reference time, t = 0. This identification is unique because only one particle can occupy a
position at a given time.

x2

x1

x1(0)

x1(t)

x1(t+Δt)

x2(0)

x2(t)

x2(t+Δt)

x3

x3(0)

x3(t)

x3(t+Δt)

particle at reference
or material
coordinates

particle at spatial
coordinates

Figure 8.5 A particle moving in space from material coordinates at initial time (t = 0) to spatial
coordinates at time t
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We express the particle position symbolically as

x = x(x̄, t)

and consider a property, say temperature T , which varies with x as well as t. Then

T = T (x, t) = T [x(x̄, t), t] = T [x1(x̄, t), x2(x̄, t), x3(x̄, t), t]

For a given particle, x̄ is constant so that

T = T [x1(t), x2(t), x3(t), t]

and the derivative of T with respect to t is called the material or substantial derivative.
Using the chain rule of differentiation, the substantial derivative is given by

dT
dt

≡ DT

Dt
=

∂T

∂x1

dx1

dt
+

∂T

∂x2

dx2

dt
+

∂T

∂x3

dx3

dt
+

∂T

∂t

Note that dxi/dt is the ith component of the particle velocity, i.e., vi. Thus,

DT

Dt
=

∂T

∂x1
v1 +

∂T

∂x2
v2 +

∂T

∂x3
v2 +

∂T

∂t
= ∇T · v +

∂T

∂t
(8.11)

If an observer moves around, sampling T then

T = T [x1(t), x2(t), x3(t), t]

where the xis are the coordinates of the observer. In this case, the derivative of T with respect
to t is called the total derivative. It is given by

dT
dt

=
∂T

∂x1

dx1

dt︸ ︸
w1

+
∂T

∂x2

dx2

dt︸ ︸
w2

+
∂T

∂x3

dx3

dt︸ ︸
w3

+
∂T

∂t

where the wis are components of the observer velocity. Thus,

dT
dt

= ∇T ·w +
∂T

∂t

where w is the observer velocity.

8.8 Taylor Series
Consider a function f(x) that is differentiable at least n times with respect to x. Then f(x)
at a distance h from the reference point x = x0 is given by the nth order Taylor series or
expansion

f(x0 + h) = f(x0) + h

[
df
dx

]
x0

+
h2

2!

[
d2f
dx2

]
x0

+
h3

3!

[
d3f
dx3

]
x0

+ · · ·+ hn

n!

[
dnf
dxn

]
x0

+
hn+1

(n+ 1)!

[
dn+1f

dxn+1

]
ζ︸ ︷︷ ︸

remainder of O(hn+1)

(8.12)



8. Mathematical Review 323

where ζ lies in the interval (x0, x0 + h). The last term of Equation (8.12) on the previous
page is called the remainder. It is the sum of the remaining infinite number of terms, i.e.,

hn+1

(n+ 1)!

[
dn+1f

dxn+1

]
x0

+
hn+2

(n+ 2)!

[
dn+2f

dxn+2

]
x0

+ · · ·

Note that when h is a fraction, the remainder decreases with n. For sufficiently large n,
or small h, the remainder becomes negligible, and is therefore discarded. Equation (8.12)
without the remainder is called the nth order Taylor approximation of f(x) at x0.

8.8.1 Multivariable Taylor Series
Consider a function f(x) where x is a vector of m independent variables: x1, x2, . . . , xm. The
function is differentiable at least n times with respect to x. Let x0 be the vector of reference
values of x, and x1 = (x0 + h) be a point in the neighborhood of x0. Then the nth-order,
multivariable Taylor series or expansion of f(x1) is given by

f(x0 + h) = f(x0) +D
[
f(x0)

]
+

1

2!
D2
[
f(x0)

]
+

1

3!
D3
[
f(x0)

]
+ · · ·

+
1

n!
Dn
[
f(x0)

]
+

1

(n+ 1)!
Dn+1

[
f(ζ)

]
︸ ︷︷ ︸

remainder

(8.13)

where ζ lies in the interval (x0,x0 + h), and Di
[
f(x0)] is the ith differential of f evaluated

at x0, i.e.,

Di
[
f(x0)

]
=

m∑
k1=1

m∑
k2=1

· · ·
m∑

ki=1

{
hk1hk2 · · ·hki

[
∂if

∂xk1∂xk2 · · · ∂xki

]
x0

}
(8.14)

For sufficiently large n, or small ‖h‖, the remainder term of Equation (8.13) above becomes
negligible, and is therefore discarded. Equation (8.13) without the remainder is the nth-order
Taylor approximation of f(x) at x0.

8.8.2 First Order Taylor Expansion
A function f(x) that is infinitely differentiable at a reference point x = x0 can be expressed
at x = (x0 + h) by the Taylor series, i.e.,

f(x0 + h) = f(x0) +
∞∑
i=1

[
dif
dxi

]
x0

(h)i

In the above series, the smaller the h the less significant the terms containing its higher
powers. In fact, for fractional h, the terms with powers of h two or more vanish faster than h.
When those terms disappear with h tending to zero, we can write

f(x0 + h) = f(x0) +

[
df
dx

]
x0

h
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In general, for any reference point x, and h tending to zero

f(x+ h) = f(x) +
df
dx

h

The above equation is called the first order Taylor expansion. Given a function whose
derivative exists at a reference point, this expansion provides the function value in the vicinity
of the reference point.

Expansion of a Vector Function

For a vector function f(x) ≡
[
f1(x) f2(x) . . . fn(x)

]�, the first order Taylor
expansion at a distance h away from a given x is

f(x+ h) = f(x) +

[
df1
dx

df2
dx

. . .
dfn
dx

]�
h

If the function argument is a vector, say, x ≡
[
x1 x2 . . . xm

]�, then

f(x+ h) = f(x) + Jh

where

J ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xm

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and h ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

...

hm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 8.8.1

Find the second order Taylor expansion of

f(x1, x2, x3) =
x3
1

x2
+ sinx3

in the vicinity of x = x0 =

[
1 1

π

2

]�
.

Solution
From Equation (8.13) on the previous page, the second order Taylor expansion is

f(x0 + h) = f(x0) +D
[
f(x0)

]
+

1

2!
D2
[
f(x0)

]
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In the last equation, f(x0) = 2. The differentials are obtained using Equation (8.14) on
p. 323. Thus, the first differential is given by

D
[
f(x0)

]
=

3∑
k1=1

hk1

[
∂f

∂xk1

]
x0

=

[
h1

∂f

∂x1
+ h2

∂f

∂x2
+ h2

∂f

∂x2

]
x0

=

[
h1

(
3x2

1

x2

)
+ h2

(
−x3

1

x2
2

)
+ h3(cosx3)

]
x0

= 3h1 − h2

Similarly, the second differential is given by

D2
[
f(x0)

]
=

3∑
k1=1

3∑
k2=1

{
hk1hk2

[
∂2f

∂xk1∂xk2

]
x0

}

=

[
h1

(
h1

∂2f

∂x1
2
+ h2

∂2f

∂x1∂x2
+ h3

∂2f

∂x1∂x3

)

+ h2

(
h1

∂2f

∂x2∂x1
+ h2

∂2f

∂x2
2
+ h3

∂2f

∂x2∂x3

)

+ h3

(
h1

∂2f

∂x3∂x1
+ h2

∂2f

∂x3∂x2
+ h3

∂2f

∂x3
2

)]
x0

=

[
h2
1

∂2f

∂x1
2
+ h2

2

∂2f

∂x2
2
+ h2

3

∂2f

∂x3
2
+ 2h1h2

∂2f

∂x1∂x2
+ 2h1h3

∂2f

∂x1∂x3

+ 2h2h3
∂2f

∂x2∂x3

]
x0

(
since

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

)

=

[
h2
1

(
6x1

x2

)
+ h2

2

(
2x3

1

x3
2

)
+ h2

3(− sinx3) + 2h1h2

(
−3x2

1

x2
2

)
+ 2h1h3(0)

+ 2h2h3(0)

]
x0

= 6h2
1 + 2h2

2 − h2
3

With the help of the above function and differentials at x0, the second order Taylor expansion
is given by

f(x0 + h) = 2 + 3h1 − h2 + 6h2
1 + 2h2

2 − h2
3

�
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8.9 L’Hôpital’s Rule
As per this rule, the limit (if it exists) of a ratio of two differentiable functions, whose limits
are either both zero or infinity, is the limit of the ratio of their derivatives. Thus,

lim
x→a

f(x)

g(x)
= lim

x→a

df/dx
dg/dx

= L

This rule helps circumvent “0/0” or “∞/∞” forms. For example,

lim
x→1

lnx

x− 1
=

ln 1

1− 1
=

0

0

However, applying L’Hôpital’s rule, we get

lim
x→1

lnx

x− 1
= lim

x→1

d
dx

(lnx)

d
dx

(x− 1)

= lim
x→1

1/x

1
= 1

8.10 Leibniz’s Rule
This rule provides the derivative of a definite integral with respect to its limit.

For the definite integral

I =

u∫
l

f dx

the derivative of I with respect to the upper limit u is given by

dI
du

= lim
Δu→0

I(u+Δu)− I(u)

Δu
= lim

Δu→0

u+Δu∫
l

f dx−
u∫
l

f dx

Δu

= lim
Δu→0

u+Δu∫
u

f dx

Δu
= lim

Δu→0

f(u)Δu

Δu
= f(u)

In the same manner, the derivative of I with respect to the lower limit l is given by

dI
dl

= −f(l)
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8.11 Integration by Parts
This is the integration of the product of two functions, and is given by the following formula:

u∫
l

yz dx =

[
y

∫
z dx

]u
l

−
u∫
l

[
dy
dx

∫
z dx

]
dx

where y and z are continuous functions of x, and y is differentiable with respect to x. Note
that the right-hand side of the above equation carries the integral of z. This feature enables
simplification when z is a derivative of a function with respect to x.

8.12 Euler’s Formulas
For a real number x, the Euler’s formula is

eix = cosx+ i sinx

where e is the base of natural logarithm, and i is
√
−1. Replacing x by −x, we get the second

Euler’s formula, i.e.,

e−ix = cosx− i sinx

Solving the last two equations for sinx and cosx yields, respectively,

sinx =
eix − e−ix

2i
and

cosx =
eix + e−ix

2

8.13 Solution of Linear Ordinary Differential Equations
The nth-order, linear ordinary differential equation is given by

f

(
dny
dxn

,
dn−1y

dxn−1
, . . . ,

dy
dx

, y, x

)
= 0

where f is a linear function of y, its derivatives with respect to x, and x. The above equation
can be transformed into a set of first order equations by introducing a dependent variable for
each derivative of order higher than one [see Section 5.4.1, p. 178].

8.13.1 Single First Order Equation
Consider the general first order differential equation expressed as

dy
dx

+ p(x)y = q(x) (8.15)
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Let μ(x) be a function that satisfies

dμ
dx

= μp

Suppose that μ > 0, so that the integration of the above equation yields

μ = e

∫
p dx

(8.16)

where the arbitrary constant of integration is taken to be zero. Note that μ > 0 as supposed.
Multiplying both sides of Equation (8.15) on the previous page by μ, we get

μ
dy
dx

+

dμ/dx︷ ︷
μp y︸ ︷︷ ︸

d(μy)/dx

= μq ⇒ d(μy)
dx

= μq

Integration of the above equation yields the following solution of Equation (8.15) on the
previous page:

y =
1

μ

( ∫
μq dx+ c

)

In the above equation, c is the constant of integration, and μ is called the integrating factor,
which is given by Equation (8.16) above.

8.13.2 Simultaneous First Order Equations
Consider the set of simultaneous first order linear equations

dy1
dx

= P11(x)y1 + P12(x)y2 + · · ·+ P1n(x)yn + q1(x)

dy2
dx

= P21(x)y1 + P22(x)y2 + · · ·+ P2n(x)yn + q2(x)

...
...

...

dyn
dx

= Pn1(x)y1 + Pn2(x)y2 + · · ·+ Pnn(x)yn + qn(x)

where Pijs and qis are continuous functions of x. The above equations can be expressed as
the matrix equation,

dy
dx

= P(x)y + q(x) (8.17)

The solution of the above equation stems from that of the corresponding homogenous
equation, i.e., Equation (8.17) with q = 0.

Solution of Homogenous Equation

Consider the homogenous equation
dy
dx

= P(x)y (8.18)
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Given a set of n independent solutions of the last equation,

y1(x), y2(x), . . . , yn(x)

which is called the fundamental set of solutions, their linear combination

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

is the general solution of Equation (8.18) on the previous page where cis are some constants.
The matrix of the fundamental set of solutions,

Ψ =
[
y1(x) y2(x) . . . yn(x)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

y11(x) y12(x) . . . y1n(x)

y21(x) y22(x) . . . y2n(x)

...
... . . . ...

yn1(x) yn2(x) . . . ynn(x)

⎤
⎥⎥⎥⎥⎥⎥⎦

is called fundamental matrix. It is non-singular since its columns are linearly independent.
Suppose that the solution of Equation (8.18) is given by

y = ζerx

where ζ is a vector of constants, and r is some exponent. Then

dy
dx

= rζerx

Substituting the last two equations in Equation (8.18), we get

rζerx = Pζerx ⇒ Pζ = rζ

Thus,

(P− rI)ζ = 0 (8.19)

where r and ζ are, respectively, the eigenvalue and eigenvector of P, and I is the n× n
identity matrix. For a non-zero ζ,

P− rI = 0

The above equation yields the values of r for which the associated ζ is obtained from
Equation (8.19) above. For the system of n homogenous differential equations, the number of
eigenvalues is n. When all eigenvalues (r1, r2, . . . , rn) are distinct, the fundamental solutions
are given by

yi = ζie
rix; i = 1, 2, . . . , n

Then the general solution of Equation (8.18) is given by

y = c1 ζ1e
r1x︸ ︷︷ ︸

y1

+ c2 ζ2e
r2x︸ ︷︷ ︸

y2

+ · · ·+ cn ζne
rnx︸ ︷︷ ︸

yn
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where the ζi is the eigenvector corresponding to the ith eigenvector, ri.
When some eigenvalues are complex, they appear in conjugate pairs, and the solution

is oscillatory. Sometimes, however, some eigenvalues may be identical, and need special
treatment to determine the fundamental set of solutions. For example, consider the case
when two eigenvalues have an identical value r, and only one eigenvector ζ. Then the
corresponding solution is

y1 = ζerx

It can be easily verified that the solution given by

y2 = (ζx+ η)erx

is linearly independent of the previous solution. In the above equation, η is called a
generalized eigenvector corresponding to eigenvalue r. This eigenvector is determined from

(P− rI)η = ζ

Once η is known, the general solution is given by

y = c1 ζe
rx︸︷︷︸

y1

+ c2 (ζx+ η)erx︸ ︷︷ ︸
y2

Generalization
If m out of n eigenvalues have an identical value r with one eigenvector ζ, and the remaining
eigenvalues are distinct then the general solution is given by

y =
m∑
i=1

ciyi +
n∑

i=m+1

ciyi︸ ︷︷ ︸
terms corresponding to

distinct eigenvalues

where the m independent solutions corresponding to r are given by

y1 = ζerx

y2 = (η1 + ζx)erx

y3 =

[
η2 + η1x+ ζ

x2

2!

]
erx

y4 =

[
η3 + η2x+ η1

x2

2!
+ ζ

x3

3!

]
erx

...
...

...

ym =

[
ηm−1 + ηm−2x+ ηm−3

x2

2!
+ · · ·+ η1

xm−2

(m− 2)!
+ ζ

xm−1

(m− 1)!

]
erx
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For the last set of equations, ζ and the generalized eigenvectors ηis are obtained from

(P− rI)ζ = 0

(P− rI)η1 = ζ

(P− rI)η2 = η1

...
...

...

(P− rI)ηm−1 = ηm−2

For m eigenvalues that have the same value, several eigenvectors (say, ζ1, ζ2, . . . , ζk) up
to m may be present. In that case, the above procedure is used with each ζi to find several
ηis until m independent solutions are obtained.

Solution of Non-Homogenous Equation

We assume that the solution of the non-homogenous equation [Equation (8.17) on p. 328] is
given by

y = Ψ(x)z(x) (8.20)

where Ψ is the fundamental matrix for the corresponding homogenous equation
[Equation (8.18) on p. 328], and z(x) is the function that needs to be determined.
Differentiating Equation (8.20) above with respect to x, we get

dy
dx

= Ψ
dz
dx

+
dΨ
dx

z

Also, the substitution of Equation (8.20) into Equation (8.17) yields

dy
dx

= PΨz+ q

Comparing the last two equations, and noting that Ψ is a fundamental matrix,

dΨ
dx

= PΨ

we obtain

Ψ
dz
dx

= q

Since P(x) is continuous, Ψ is non-singular so that its inverse Ψ−1 exists. Therefore,

dz
dx

= Ψ−1q

Integrating the above equation, we get

z =

∫
Ψ−1q dx+ c
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where c is the vector of integration constants. The last equation upon substitution in
Equation (8.20) on the previous page yields the solution of the non-homogenous equation
[Equation (8.17), p. 328], i.e.,

y = Ψ

∫
Ψ−1q dx+Ψc (8.21)

Initial Value Problem

In this problem,

dy
dx

= P(x)y + q(x), y(x = x0) = ȳ

where ȳ is y at the initial value of x, i.e., x0. To obtain the solution of this problem, we select
c in Equation (8.21) above such that the integral term becomes zero at x0. This is done by
expressing that equation as

y = Ψ

x∫
x0

Ψ−1q dx+Ψc (8.22)

Thus, from the above equation at the initial x, when x = x0,

ȳ = Ψ(x0)c ⇒ c = Ψ−1(x0)ȳ

Substituting the above expression of c in Equation (8.22) above, we obtain

y = Ψ

x∫
x0

Ψ−1q dx+ΨΨ−1(x0)ȳ

which is the desired solution.
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Algebraic equations, 227
cubic, 278, 278
general, 279
linear, 227
non-linear, 236
quadratic, 276, 277

Analytical
function, 295
methods, 296

Antoine’s equation, 73

Backward substitution, 228, 233
Balance equation, 17

application, 19
multiple ports, 20
steady state, 20
unsteady state, 18

Batch polymerization, 250
Big-O notation, 295
Boundary condition

Cauchy, 132
Dirichlet, 131
Mixed, 132
Neumann, 131
periodic, 132
Robin, 132

Buckingham pi theorem, 201, 201, 221
Butcher Tableau, 243

Cartesian coordinates
equation of change

temperature, 56
equation of continuity, 54

binary systems, 74
individual species, 54

equation of motion, 55
Newtonian fluid, 75

Newton’s law of viscosity, 61
Cauchy boundary condition, 132
Cauchy–Schwarz inequality, 283, 302
Chain rule of differentiation, 115, 140,

319
function of multivariable functions,

320
multivariable function, 319

Coefficient of determination, 205, 210
Coefficient of variation, 205
Column vector, 296
Constitutive relations, 59
Continuous microchannel reactor, 99
Continuum assumption, 17
Correlation coefficient, 206
Cross product, 300

product rule of differentiation, 302
triple, 302
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isothermal, 80, 196
periodic operation, 270
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Cubic splines, 217, 218, 219
Curl, 150
Curl of vector

orthogonal coordinates, 184
Cylindrical coordinates

divergence, 147
equation of change

temperature, 56
equation of continuity, 54

binary systems, 74
individual species, 54

equation of motion, 55
Newtonian fluid, 75

gradient, 147
gradient of vector, 149
Laplacian, 147
scale factors, 141
unit vector derivatives, 144

Dalton’s law, 72
Derivative

accurate programming, 271
material, 322
partial, 318
substantial, 322
total, 322

Dermal heat transfer, 106
Deviation variables, 195, 196
Differential

partial, 319
total, 319

Differential change, 45, 140, 180
Differential element, 14, 15, 19, 22, 33,

49, 52, 53, 90, 94, 95, 97, 100,
104, 109, 117, 127, 134, 306

equation of change
temperature, 98, 107, 121

individual mass balance, 91, 115
mass balance

individual, 110, 111, 114
mole balance

individual, 101, 105, 125
overall, 101

momentum balance, 95, 102

non-linear flux direction, 134
neutron number balance, 118
variable volume, 114

Differential equations
autonomous, 180
for derivatives, 265, 270
non-autonomous, 180
periodic, 268, 270

computational algorithm, 269,
271

split boundaries, 263, 266
computational algorithm, 265

stiff, 247, 250
transformation

non-autonomous to autonomous,
180

with time delays, 175
Diffusion, 59
Diffusivity

binary, 59, 74, 92, 105, 110, 117,
118, 189, 190, 208, 225

multicomponent, 60, 126
Dilatant fluid, 62
Dilatational viscosity, 61
Dimensional analysis, 201, 201
Dimensionless numbers, 201–204
Dirichlet boundary condition, 131
Distributed-parameter systems, 14, 90
Divergence, 150

cylindrical coordinates, 147
orthogonal coordinates

dyad, 315
product of scalar and vector, 317
tensor, 315

spherical coordinates, 186
tensor, 139
vector, 139, 146

Cartesian coordinates, 22
vector field, 48, 49

Divergence of vector
orthogonal coordinates, 181, 184

Divergence theorem, 36, 43, 50
Dot product, 299

product rule of differentiation, 300
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second order tensor and vector, 312
two second order tensors, 313
vector and second order tensor, 312

Double dot product
second order tensor and vector, 314
vector and second order tensor, 314
two second order tensors, 313

Dyad, 311
Dyadic, 312

Eccentric reducer, 83
Eigenvalue, 329

complex, 330
Eigenvector, 329

generalized, 330
Einstein notation, see index notation
Elementary reaction, 63
Energy balance

macroscopic, 38
microscopic, 35

Equation of change
enthalpy from thermodynamics, 42,

47
macroscopic

kinetic and potential energy, 41
temperature, 44, 67, 71, 86, 89,

120
mass fraction, 24
microscopic

kinetic and potential energy, 40
kinetic energy, 40
mole fraction, 66
temperature, 42, 63, 67

mole fraction, 26
temperature, 38

Cartesian coordinates, 56
cylindrical coordinates, 56
spherical coordinates, 56

velocity, 33
Equation of continuity, 23

binary systems
Cartesian coordinates, 74
cylindrical coordinates, 74
spherical coordinates, 74

Cartesian coordinates, 54
cylindrical coordinates, 54, 157
helical coordinates, 160
individual species

Cartesian coordinates, 54
cylindrical coordinates, 54
spherical coordinates, 54

spherical coordinates, 54
Equation of motion, 32, 152

Cartesian coordinates, 55
cylindrical coordinates, 55
Newtonian fluid

Cartesian coordinates, 75
cylindrical coordinates, 75
spherical coordinates, 75

spherical coordinates, 55
Equation of state, 73

Redlich–Kwong, 238
Soave–Redlich–Kwong, 73

Equilibrium versus steady state, 4
Euclidean norm, 297
Euler’s formulas, 327
Euler’s method

explicit, 248
implicit, 248
truncation errors, 248

Exothermic reaction, 87
Explicit Runge–Kutta methods, 242

fourth order, 244, 245
general formulation, 243
second order, 244

Extent of reaction, 64, 64, 65

Fick’s law of diffusion, 59
multicomponent system, 60

Finite difference approximation, 227
Finite difference formulas, 255

first–fourth derivative
first order, 289
second order, 290

general derivation, 284
Finite difference method, 254, 257

accuracy, 261
solution procedure, 256
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First order Taylor expansion, 18, 22, 24,
32, 34, 60, 92, 95, 98, 101, 102,
105, 107, 110, 114, 118, 121,
125, 135, 194, 198, 199, 244,
250, 255, 274, 281, 324, 324

Flow between inclined parallel plates, 93
Fluxes along non-linear directions, 127
Forward substitution, 228, 233
Fourier’s law of heat conduction, 63
Frobenius norm, 303
Function

derivative, 318
differential, 318
partial derivative, 318
partial differential, 319
total differential, 319

Function error, 199, 200
Fundamental relations, 7, 17

application, 19
basic form, 17
constitutive relation, 7
continuum assumption, 17

Gauss–Newton algorithm, 208, 208
Gaussian elimination, 229
General transport theorem, 36, 43, 53
Gradient

cylindrical coordinates, 147
of vector, 315
operator, 299
orthogonal coordinates, 181
scalar, 208

Cartesian coordinates, 24
spherical coordinates, 186
vector, 139

Heat of reaction, 67
Heavy oil recovery, 108
Helical coordinates, 157
Henry’s law, 72
Hessian, 208, 224, 283
Heun’s method, 244
Horton sphere, 119
Hydrogel tablet, 112

Ideal gas law, 73
Independent variable, 180
Index notation, 308

tensor, 310
vector, 310

Inner product, see dot product
Integrating factor, 328
Integration by parts, 327
Interpolation, 205, 210

Lagrange’s formula, 210, 213
Newton’s method, 210, 211, 212
splines, 214

cubic, 217, 218
linear, 214
quadratic, 214, 216

Inverse Laplace transform, 161, 168
Inverse problem, 13

Jacobian, 156–158, 187, 208, 209, 237,
240, 250, 252, 268, 271, 282

Knudsen number, 17
Kronecker delta, 310

L’Hôpital’s rule, 163, 326
Lagrange’s interpolation formula, 210,

213, 213
Laplace transform, 161

an exponential function, 163
handling of time delay, 174
linear differential equation, 168,

170, 171
pulse function, 162
simultaneous differential equations,

176
sine wave, 163
unit pulse function, 162
unit step function, 162

Laplace transform properties
final value theorem, 167
initial value theorem, 167
linearity, 164
real differentiation theorem, 164
real integration theorem, 165
real translation theorem, 166
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Laplacian
cylindrical coordinates, 147
scalar, 184
spherical coordinates, 186
vector, 302

Least-squares regression
Gauss–Newton algorithm, 208, 208
generalized, 207
linear, 206
quadratic, 206

Leibniz’s rule, 115, 326
Lewis–Randall rule, 72
Linear function, 220

check, 221
general form, 221

Linear ordinary differential equations,
327

first order, 327, 328
fundamental matrix, 329
fundamental solutions, 329
homogenous, 328
initial value problem, 332
non-homogenous, 331

simultaneous, 328
Linear splines, 214
Linearization

function, 193, 199, 200
implicit numerical integration, 250
ordinary differential equation, 194,

196, 196
partial differential equation, 198

Liquid preheater, 84
Local extrapolation, 247
Lower-upper decomposition, 228, 231
Lumped-parameter systems, 80

Macroscopic mole balance, 66
Macroscopic system, 42
Mass balance

individual, 21
microscopic, 22

macroscopic
individual, 86

overall, 21

Material derivative, 322
Material position vector, 321
Matrix

addition, 304
derivative with respect to scalar, 305
diagonal, 303
identity, 303
inverse, 233, 234
lower triangular, 230, 303
multiplication by constant, 304
numerator layout, 299
operations, 304
scalar multiplication, 304
square, 303
subtraction, 304
symmetric, 303
trace, 303
transpose, 303
upper triangular, 230, 303

Method of lines, 255, 256, 259, 294
Methods

analytical, 296
numerical, 296

Metric coefficients, see scale factors
Microscopic balances, 21, 24
Midpoint method, 244
Miscellaneous transformations, 178
Mixed boundary condition, 132
Model, 3

algebraic, 6, 83, 87, 90, 239
differential, 6
differential-algebraic, 6
distributed-parameter, 6, 93, 96, 99,

103, 105, 108, 112, 116, 119,
122, 127, 129, 130, 190

linear, 6
linearized, 197, 199
lumped-parameter, 6, 82, 84, 87, 89,

197, 250, 270
non-linear, 6, 82, 87, 89, 93, 99,

103, 105, 108, 112, 116, 119,
122, 127, 129, 130, 250, 257,
266, 270
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steady state, 6, 83, 87, 90, 93, 96,
99, 103, 106, 108, 119, 122,
193, 266

unsteady state, 6, 82, 84, 87, 89, 93,
96, 99, 103, 105, 108, 112, 116,
119, 122, 127, 129, 130, 250,
257, 270

Model approximation, 200
Model development cycle, 11
Model fitting, 204

least squares regression, 205
least-squares regression

linear, 206
quadratic, 206

splines, 214
cubic, 217, 218
linear, 214
quadratic, 214, 216

Model formulation, 79
Model simplification, 189, 191

linearization, 193
scaling and ordering, 190

Mole balance
individual, 24

microscopic, 24
macroscopic, 66, 82

individual, 89, 124
overall

microscopic, 25
Molecular stress tensor, 27
Momentum balance, 26

macroscopic, 31, 32, 84
microscopic

Newtonian fluid, 129
Momentum flux, 27

convective, 27
total, 28

Moving boundary
constant density, 108, 111, 122
variable density, 112, 116

Moving surfaces, 35, 37, 38, 44
Muller’s method, 279, 280
Multilinearity, 306
Multivariable Taylor series, 323

Navier–Stokes equation, 61, 153
Necessary conditions, 7, 206, 207, 223
Neumann boundary condition, 131
Neutron Diffusion, 117
Newton’s interpolation method, 210, 211,

212
Newton’s law of viscosity, 61

Cartesian coordinates, 61
Newton’s optimization method, 207, 223

algorithm, 224
Newton–Raphson method

abnormal behavior, 282
algorithm, 237
derivation, 281
multiple equations, 239
quadratic convergence, 282
shooting method, 236, 264, 270

differential equations with split
boundaries, 264, 266

periodic differential equations,
268, 270

using secant method, 268
single equation, 238

Newtonian fluids, 61
Nicotine patch, 90
No-slip condition, 95, 96, 103, 128, 130
Non-Newtonian fluids, 62
Numerator layout convention, 299
Numerical methods, 227

Operator
divergence, 139
gradient, 139, 181, 299, 302
Laplace transform, 161
Laplacian, 139

Operator inequality, 283, 305
Order of magnitude, 295
Ordinary differential equation, 19, 178,

179, 194, 248, 253, 255, 261,
263, 264, 268, 293, 294

nth order, 178
linear, 327

linear, 327
linearization, 194, 196, 196
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Ordinary differential equations, 189, 241,
242–244, 250, 256, 259, 268,
294

Orthogonal coordinates, 300, 301
curl of vector, 147, 184
differential areas, 143
differential operators, 146, 180
differential volume, 143
divergence

dyad, 315
product of scalar and vector, 317
tensor, 150, 315
vector, 146, 181, 184

dot product
vector and gradient of vector, 317

double dot product
product of tensor and gradient of

vector, 317
gradient, 181

scalar, 146
vector, 148, 315

Laplacian of scalar, 147, 184
Laplacian of vector, 150
tensor

index notation, 310
vector

index notation, 310
vector representation, 143

Outer product, see cross product
Oxygen concentration in capillary, 257
Oxygen transport to tissues, 103

Parameter, 8
Partial differential equation, 8, 92, 96, 98,

102, 105, 108, 111, 112, 116,
118, 127, 241, 242, 253, 255,
256, 293

linearization, 198
Partial fractions

non-repeating roots, 169
repeating roots, 170

Partial pivoting, 229, 232, 281
Partial specific enthalpy, 42, 70
Partial specific heat capacity, 70

Periodic boundary condition, 132
Plug flow reactor, 190
Point of symmetry, 103, 104, 112, 116,

118, 130, 133, 133
Polymer flow in helical extruder, 157
Process, 3

control, 5
model, 5, 6

development, 11
modeling, 6
optimization, 5
periodic, 268
simulation, 6

methods, 10
utility, 9

steady state, 4
unsteady state, 4

Process model
assumptions, 7

effect of moderation or
elimination, 11, 189

effect of moderation, or
elimination, 12

validity, 8
Process simulation, 9, 227
Product rule of differentiation

cross product, 302
dot product, 300

Property, 2
extensive, 2
intensive, 2

Property balance, 17
Pseudoplastic fluid, 62

Quadratic splines, 214, 216, 219

Ralston’s method, 244
Raoult’s law, 72
Rate of reaction, 65, 87
Rate-of-strain tensor, 61, 62
Reaction

elementary, 63
exothermic, 87
extent, 64, 65
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rate, 65, 87
rate coefficient, 66
stoichiometric coefficient, 64, 66

Reaction rate coefficient, 87
Reactions around solid reactant, 122
Rectangular coordinates, see Cartesian

coordinates
Reynolds number, 204
Reynolds transport theorem, 58
Robin boundary condition, 132
Row vector, 296, 298

Saccadic movement of eye, 128
Scalar product, see dot product
Scale factors, 140

cylindrical coordinates, 141
spherical coordinates, 186

Scaled model, 191
Scaled variables, 190, 191
Scaling and ordering, 190
Schmidt number, 204
Scientific law, 7
Secant method, 241
Second order Taylor expansion, 324, 325
Second order tensor, 307

addition, 312
dot product with vector, 312
dyad, 311
Dyadic, 312
representation, 308, 311
scalar product, 313
tensor dot product, 313
tensor product, 313
unit dyad, 311

Shaft work, 35, 36
rate, 37, 43, 86

Shear-thickening fluid, 62
Shear-thinning fluid, 62
Sherwood number, 204
Shooting Newton–Raphson method, 264,

271
Simpson’s 1/3 rule, 274, 275

composite application, 275, 275
Simpson’s 3/8 rule, 275, 275

Simulation methods
analytical, 10
numerical, 10

Spherical coordinates
divergence, 186
equation of change

temperature, 56
equation of continuity, 54

binary systems, 74
individual species, 54

equation of motion, 55
Newtonian fluid, 75

gradient, 186
Laplacian, 186
scale factors, 186
unit vector derivatives, 145

Standard deviation, 205
Standard heat of formation, 68
Standard heat of reaction, 67, 68
Standard state, 67
Steady state model, 83, 90, 93, 96, 99,

103, 106, 108, 119, 122
Steady state versus equilibrium, see

equilibrium versus steady state
Step-size control, 246
Stoichiometric coefficient, 64, 66, 68, 87
Substantial derivative, 322
Subtractive cancellation, 273, 277
Sufficient conditions, 207
Sum of the squared errors, 205, 206, 210
Surroundings, 2
System, 1

at equilibrium, 4
boundary, 2
classification, 3
closed, 3
differential system, see differential

element
distributed-parameter, 3
heterogenous, 2
homogenous, 2
isolated, 3
lumped-parameter, 3
modeling prerequisite, 14
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non-uniform, 2
open, 3
sub-systems, 14
under change, 3
uniform, 2, 14

Tapered fin, 96, 266
Taylor expansion

nth order, 322
remainder, 323
second order, 223, 324, 325

Taylor series, 322, 323
multivariable , 323

Tensor, 306
coordinate-independence, 306
multilinearity, 306
second order, 307

Thomas algorithm, 292
Time delays, 174
Total derivative, 322
Transformation

arbitrary coordinate system, 155
derivatives, 156
velocity, 155

between orthogonal coordinates, 139
deviation variables, 173
helical coordinates, 157
higher to first order derivative, 178
Laplace, 161
non-autonomous to autonomous

differential equation, 180
of independent variable, 179
scaling of variables, 178
semi-infinite to finite domain, 179

Transformation to helical coordinates

derivatives, 158
velocity, 158

Triple cross product, 302

Unit dyad, 311
Unit dyadic, 312
Unit tensor, see unit dyadic
Unit vector, 296

derivatives
cylindrical coordinates, 144
spherical coordinates, 145

Vant Hoff’s relation, 73
Variable, 8
Variance, 205
Vector, 296

addition, 297
components, 296, 297
derivative

with respect to scalar, 298
with respect to vector, 299

dot product with second order
tensor, 312

magnitude, 296
material position, 321
scalar multiplication, 298
subtraction, 297
transpose, 296

Vector product, see cross product
Velocity gradient tensor, 61
Viscosity, 61

non-Newtonian, 62
Viscosity model

Cross–WLF, 62
power law, 62

Vorticity tensor, 61


