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Preface

There are those that have a very cynical view of statistics. One only has to search the Internet to
find quotations such as those from the author Mark Twain:

There are three kinds of lies: lies, damned lies, and statistics.
Facts are stubborn, but statistics are more pliable.

From the American humourist Evan Esar:

Statistics is the science of producing unreliable facts from reliable figures.

From the UK’s shortest-serving prime minister George Canning:

I can prove anything by statistics except the truth.

And my personal favourite, attributed to many – all quoting different percentages!

76.3% of statistics are made up.

However, in the hands of a skilled process control engineer, statistics are an invaluable
tool. Despite advanced control technology being well established in the process industry,
the majority of site managers still do not fully appreciate its potential to improve process
profitability. An important part of the engineer’s job is to present strong evidence that such
improvements are achievable or have been achieved. Perhaps one of the most insightful
quotations is that from the physicist Ernest Rutherford.

If your experiment needs statistics, you ought to have done a better experiment.

Paraphrasing for the process control engineer:

If you need statistics to demonstrate that you have improved control
of the process, you ought to have installed a better control scheme.

Statistics is certainly not an exact science. Like all the mathematical techniques that are applied
to process control, or indeed to any branch of engineering, they need to be used alongside good
engineering judgement. The process control engineer has a responsibility to ensure that statis-
tical methods are properly applied. Misapplied they can make a sceptical manager even more
sceptical about the economic value of improved control. Properly used they can turn a sceptic
into a champion. The engineer needs to be well versed in their application. This book should
help ensure so.

After writing the first edition of Process Control: A Practical Approach, it soon became
apparent that not enough attention was given to the subject. Statistics are applied extensively
at every stage of a process control project from estimation of potential benefits, throughout
control design and finally to performance monitoring. In the second edition this was partially
addressed by the inclusion of an additional chapter. However, in writing this, it quickly became
apparent that the subject is huge. In much the same way that the quantity of published process
control theory far outstrips more practical texts, the same applies to the subject of statistics – but
to a much greater extent. For example, the publisher of this book currently offers over 2,000



titles on the subject but fewer than a dozen covering process control. Like process control the-
ory, most published statistical theory has little application to the process industry, but within it
are hidden a few very valuable techniques.
Of course, there are alreadymany statistical methods routinely applied by control engineers –

often as part of a software product. While many use these methods quite properly, there are
numerous examples where the resulting conclusion later proves to be incorrect. This typically
arises because the engineer is not fully aware of the underlying (incorrect) assumptions behind
the method. There are also too many occasions where the methods are grossly misapplied or
where licence fees are unnecessarily incurred for software that could easily be replicated by the
control engineer using a spreadsheet package.
This book therefore has two objectives. The first is to ensure that the control engineer prop-

erly understands the techniques with which he or she might already be familiar. With the rap-
idly widening range of statistical software products (and the enthusiastic marketing of their
developers), the risk of misapplication is growing proportionately. The user will reach the
wrong conclusion about, for example, the economic value of a proposed control improvement
or whether it is performing well after commissioning. The second objective is to extract, from
the vast array of less well-known statistical techniques, those that a control engineer should
find of practical value. They offer the opportunity to greatly improve the benefits captured
by improved control.
A key intent in writing this book was to avoid unnecessarily taking the reader into

theoretical detail. However the reader is encouraged to brave the mathematics involved.
A deeper understanding of the available techniques should at least be of interest and potentially
of great value in better understanding services and products that might be offered to the control
engineer. While perhaps daunting to start with, the reader will get the full value from the book
by reading it from cover to cover. A first glance at some of the mathematics might appear com-
plex. There are symbols with which the reader may not be familiar. The reader should not
be discouraged. The mathematics involved should be within the capabilities of a high school
student. Chapters 4 to 6 take the reader through a step-by-step approach introducing each
term and explaining its use in context that should be familiar to even the least experienced
engineer. Chapter 11 specifically introduces the commonly used mathematical functions
and their symbology. Once the reader’s initial apprehension is overcome, all are shown to
be quite simple. And, in any case, almost all exist as functions in the commonly used spread-
sheet software products.
It is the nature of almost any engineering subject that the real gems of useful information

get buried among the background detail. Listed here are the main items worthy of special atten-
tion by the engineer because of the impact they can have on the effectiveness of control design
and performance.

• Control engineers use the terms ‘accuracy’ and ‘precision’ synonymously when describing
the confidence they might have in a process measurement or inferential property. As
explained in Chapter 4, not understanding the difference between these terms is probably
the most common cause of poorly performing quality control schemes.

• The histogram is commonly used to help visualise the variation of a process measurement.
For this, both the width of the bins and the starting point for the first bin must be chosen.
Although there are techniques (described in this book) that help with the initial selection,
they provide only a guide. Some adjustment by trial and error is required to ensure the result-
ing chart shows what is required. Kernel density estimation, described in Chapter 6, is a sim-
ple-to-apply, little-known technique that removes the need for this selection. Further it
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generates a continuous curve rather than the discontinuous staircase shape of a histogram.
This helps greatly in determining whether the data fit a particular continuous distribution.

• Control engineers typically use a few month’s historical data for statistical analysis. While
adequate for some applications, the size of the sample can be far too small for others. For
example, control schemes are often assessed by comparing the average operation post-
commissioning to that before. Small errors in each of the averages will cause much larger
errors in the assessed improvement. Chapter 7 provides a methodology for assessing the
accuracy of any conclusion arrived at with the chosen sample size.

• While many engineers understand the principles of significance testing, it is commonly mis-
applied. Chapter 8 takes the reader through the subject from first principles, describing the
problems in identifying outliers and properly explaining the impact of repeatability and
reproducibility of measurements.

• In assessing process behaviour it is quite common for the engineer to simply calculate, using
standard formulae, the mean and standard deviation of process data. Even if the data are nor-
mally distributed, plotting the distribution of the actual data against that assumed will often
reveal a poor fit. A single data point, well away from the mean, will cause the standard devi-
ation to be substantially overestimated. Excluding such points as outliers is very subjective
and risks the wrong conclusion being drawn from the analysis. Curve fitting, using all the
data, produces a much more reliable estimate of mean and standard deviation. There are a
range of methods of doing this, described in Chapter 9.

• Engineers tend to judge whether a distribution fits the data well by superimposing the con-
tinuous distribution on the discontinuous histogram. Such comparison can be very unreliable.
Chapter 6 describes the use of quantile–quantile plots, as a much more effective alternative
that is simple to apply.

• The assumption that process data follows the normal (Gaussian) distribution has become the
de facto standard used in the estimation of the benefits of improved control. While valid for
many datasets, there are many examples where there is a much better choice of distribution.
Choosing the wrong distribution can result in the benefit estimate being easily half or double
the true value. This can lead to poor decisions about the scope of an improved control project
or indeed about whether it should be progressed or not. Chapter 10 demonstrates that while
the underlying process data may be normally distributed, derived data may not be. For exam-
ple, the variation in distillation column feed composition, as source of disturbance, might
follow a normal distribution, but the effect it has on product compositions will be highly
asymmetrical. Chapter 12 describes a selection of the more well-known alternative distribu-
tions. All are tested with different sets of real process data so that the engineer can see in detail
how they are applied and how to select the most appropriate. A much wider range is cata-
logued in Part 2.

• While process control is primarily applied to continuous processes, there are many examples
where statistics can be applied to assess the probability of an undesirable event. This might
be important during benefit estimation, where the improvement achievable by improved con-
trol is dependent on other factors – for example, the availability of feed stock or of a key piece
of process equipment. Failure to take account of such events can result in benefits being over-
estimated. Event analysis can also be applied to performance monitoring. For example, it is
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common to check an inferential property against the latest laboratory result. Estimating the
probability of a detected failure being genuine helps reduce the occasions where control is
unnecessarily disabled. Chapter 12 and Part 2 describe the wide range of statistical methods
that are applicable to discrete events. Again, the description of each technique includes a
worked example intended to both illustrate its use and inspire the engineer to identify
new applications.

• One objective of control schemes is to prevent the process operating at conditions classed as
extreme. Such conditions might range from a minor violation of a product specification to
those causing a major hazard. Analysing their occurrence as part of the tail of distribution
can be extremely unreliable. By definition the volume of data collected in this region will
be only a small proportion of the data used to define the whole distribution. Chapter 13
describes techniques for accurately quantifying the probability of extreme process behaviour.

• Rarely used by control engineers, the hazard function described in Chapter 14 is simply
derived from basic statistical functions. It can be beneficial in assessing the ongoing relia-
bility of the whole control scheme or of individual items on which it depends. It can be a
very effective technique to demonstrate the need to invest in process equipment, improved
instrumentation, additional staff and training.

• Engineers often overlook that some process conditions have ‘memory’. It is quite reasonable
to characterise the variability of a product composition by examining the distribution of a
daily laboratory result. However the same methodology should not be applied to the level
of liquid in a product storage tank. If the level yesterday was very low, it is extremely unlikely
to be high today. The analysis of data that follow such a time series is included in Chapter 15.
The technique is equally applicable to sub-second collection frequencies where it can be used
to detect control problems.

• Regression analysis is primarily used by process control engineers to build inferential proper-
ties. While sensibly performed with software, there are many pitfalls that arise from not fully
understanding the techniques it uses. The belief that the Pearson R coefficient is a good meas-
ure of accuracy is responsible for a very large proportion of installed inferentials, on being
commissioned, causing unnoticed degradation in quality control. Chapter 16 presents the
whole subject in detail, allowing the engineer to develop more effective correlations and
properly assess their impact on control performance.

• Engineers, perhaps unknowingly, apply time series analysis techniques as part of model
identification for MPC (multivariable predictive control). Often part of a proprietary software
product, the technique is not always transparent. Chapter 17 details how such analysis is per-
formed and suggests other applications in modelling overall process behaviour.

• Process control engineers frequently have to work with inconsistent data. An inferential prop-
erty will generate a different value from that recorded by an on-stream analyser which, in
turn, will be different from the laboratory result. Mass balances, required by optimisation
strategies, do not close because the sum of the product flows differs from the measured feed
flow. Data reconciliation is a technique, described in Chapter 18, which not only reconciles
such differences but also produces an estimate that is more reliable than any of the measure-
ments. Further, it can be extended to help specify what additional instrumentation might be
installed to improve the overall accuracy.
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• Much neglected, because of the perception that the mathematics are too complex to be
practical, Fourier transforms are invaluable in helping detect and diagnose less obvious con-
trol problems. Chapter 19 shows that the part of the theory that is applicable to the process
industry is quite simple and its application well within the capabilities of a competent
engineer.

To logically sequence the material in this book was a challenge. Many statistical techniques are
extensions to or special cases of others. The intent was not to refer to a technique in one chapter
unless it had been covered in a previous one. This proved impossible. Many of the routes
through the subject are circular. I have attempted to enter such circles at a point that requires
the least previous knowledge. Cross-references to other parts of the book should help the reader
navigate through a subject as required.

A similar challenge arose from the sheer quantity of published statistical distributions.
Chapter 12 includes a dozen, selected on the basis that they are well known, are particularly
effective or offer the opportunity to demonstrate a particular technique. The remainder are
catalogued as Part 2 – offering the opportunity for the engineer to identify a distribution that
may be less well known but might prove effective for a particular dataset. Several well-known
distributions are relegated to Part 2 simply because they are unlikely to be applicable to process
data but merit an explanation as to why not. A few distributions, which have uses only
tenuously related to process control, are included because I am frequently reminded not to
underestimate the ingenuity of control engineers in identifying a previously unconsidered
application.

As usual, I am tremendously indebted to my clients’ control engineers. Their cooperation in
us together applying published statistical methods to their processes has helped hugely in prov-
ing their benefit. Much of the material contained in this book is now included in our training
courses. Without the feedback from our students, putting what we cover into practice, the
refinements that have improved practicability would never have been considered.

Finally, I apologise for not properly crediting everyone that might recognise, as theirs, a sta-
tistical technique reproduced in this book. While starting with the best of intentions to do so, it
proved impractical. Many different statistical distributions can readily be derived from each
other. It is not always entirely clear who thought of what first, and there can be dozens of papers
involved. I appreciate that academics want to be able to review published work in detail.
Indeed, I suspect that the pure statistician might be quite critical of the way in which much
of the material is presented. It lacks much of the mathematical detail they like to see, and
there are many instances where I have modified and applied their techniques in ways of which
they would not approve. However this book is primarily for practitioners who are generally
happy just that a method works. A simple Internet search should provide more detailed
background if required.

Myke King
Isle of Wight
June 2017
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1
Introduction

Statistical methods have a very wide range of applications. They are commonplace in demo-
graphic, medical and meteorological studies, along with more recent extension into financial
investments. Research into new techniques incurs little cost and, nowadays, large quantities of
data are readily available. The academic world takes advantage of this and is prolific in
publishing new techniques. The net result is that there are many hundreds of techniques, the
vast majority of which offer negligible improvement for the process industry over those
previously published. Further, the level of mathematics now involved in many methods puts
them well beyond the understanding of most control engineers. This quotation from Henri
Poincaré, although over 100 years old and directed at a different branch of mathematics, sums
up the situation well.

In former times when one invented a new function it was for a practical purpose; today one invents
them purposely to show up defects in the reasoning of our fathers and one will deduce from them
only that.

The reader will probably be familiar with some of the more commonly used statistical
distributions – such as those described as uniform or normal (Gaussian). There are now over
250 published distributions, the majority of which are offspring of a much smaller number of
parent distributions. The software industry has responded to this complexity by developing pro-
ducts that embed the complex theory and so remove any need for the user to understand it. For
example, there are several products in which their developers pride themselves on including
virtually every distribution function. While not approaching the same range of techniques, each
new release of the common spreadsheet packages similarly includes additional statistical
functions. While this has substantial practical value to the experienced engineer, it has the
potential for an under-informed user to reach entirely wrong conclusions from analysing data.

Very few of the mathematical functions that describe published distributions are developed
from a physical understanding of the mechanism that generated the data. Virtually all are empir-
ical. Their existence is justified by the developer showing that they are better than a previously
developed function at matching the true distribution of a given dataset. This is achieved by the
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inclusion of an additional fitting parameter in the function or by the addition of another non-
linear term. No justification for the inclusion is given, other than it provides a more accurate fit.
If applied to another dataset, there is thus no guarantee that the improvement would be
replicated.
In principle there is nothing wrong with this approach. It is analogous to the control engineer

developing an inferential property by regressing previously collected process data. Doing so
requires the engineer to exercise judgement in ensuring the resulting inferential calculation
makes engineering sense. He also has to balance potential improvements to its accuracy against
the risk that the additional complexity reduces its robustness or creates difficult process dynam-
ics. Much the same judgemental approach must be used when selecting and fitting a distribution
function.
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2
Application to Process Control

Perhaps more than any other engineering discipline, process control engineers make extensive
use of statistical methods. Embedded in proprietary control design andmonitoring software, the
engineer may not even be aware of them. The purpose of this chapter is to draw attention to the
relevance of statistics throughout all stages of implementation of improved controls – from
estimation of the economic benefits, throughout the design phase, ongoing performance
monitoring and fault diagnosis. Those that have read the author’s first book Process Control:
A Practical Approachwill be aware of the detail behind all the examples and so most of this has
been omitted here.

2.1 Benefit Estimation

The assumption that the variability or standard deviation (σ) is halved by the implementation of
improved regulatory control has become a de facto standard in the process industry. It has no
theoretical background; indeed it would be difficult to develop a value theoretically that is any
more credible. It is accepted because post-improvement audits generally confirm that it has
been achieved. But results can be misleading because the methodology is being applied, as
we will show, without a full appreciation of the underlying statistics.

There are a variety of ways in which the benefit of reducing the standard deviation is
commonly assessed. The Same Percentage Rule[1,2] is based on the principle that if a certain
percentage of results already violate a specification, then after improving the regulatory control,
it is acceptable that the percentage violation is the same. Halving the standard deviation permits
the average giveaway to be halved.

Δx = 0 5 xtarget−x (2.1)

This principle is illustrated in Figure 2.1. Using the example of diesel quality data that we
will cover in Chapter 3, shown in Table A1.3, we can calculate the mean as 356.7 C and the
standard deviation as 8.4 C. The black curve shows the assumed distribution. It shows that the
probability of the product being on-grade, with a 95% distillation point less than 360 C, is 0.65.
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In other words, we expect 35% of the results to be off-grade. Halving the standard deviation, as
shown by the coloured curve, would allow us to increase the mean while not affecting the prob-
ability of an off-grade result. From Equation (2.1), improved control would allow us to more
closely approach the specification by 1.7 C.
We will show later that it is not sufficient to calculate mean and standard deviation from the

data. Figure 2.2 again plots the assumed distribution but also shows, as points, the distribution

0.0

0.2

0.4

0.6

0.8

1.0

320 330 340 350 360 370 380

cu
m

ul
at

iv
e 

di
st

ri
bu

ti
on

gas oil 95% (°C)

Δx = 1.7°C

Figure 2.1 Same percentage rule

0.0

0.2

0.4

0.6

0.8

1.0

320 330 340 350 360 370 380

cu
m

ul
at

iv
e 

di
st

ri
bu

ti
on

gas oil 95% (ºC)

Figure 2.2 Properly fitting a distribution

6 Statistics for Process Control Engineers



of the actual data. The coloured curve is the result of properly fitting a normal distribution to
these points, using the method we will cover in Chapter 9. This estimates the mean as 357.7 C
and the standard deviation as 6.9 C. From Equation (2.1), the potential improvement is now
1.2 C. At around 30% less than the previous result, this represents a substantial reduction in the
benefit achievable.

A second potential benefit of improved control is a reduction in the number of occasions
the gasoil must be reprocessed because the 95% distillation point has exceeded 366 C. As
Figure 2.1 shows, the fitted distribution would suggest that the probability of being within
this limit is 0.888. This would suggest that, out of the 111 results, we would then expect
the number of reprocessing events to be 12. In fact there were only five. It is clear from
Figure 2.2 that the assumed distribution does not match the actual distribution well – partic-
ularly for the more extreme results. The problem lies now with the choice of distribution.
From the large number of alternative distributions it is likely that a better one could be cho-
sen. Or, even better, we might adopt a discrete distribution suited to estimation of the prob-
ability of events. We could also apply an extreme value analytical technique. Both these
methods we cover in Chapter 13.

2.2 Inferential Properties

A substantial part of a control engineer’s role is the development and maintenance of infer-
ential property calculations. Despite the technology being well established, not properly
assessing their performance is the single biggest cause of benefits not being fully captured.
Indeed, there are many examples where process profitability would be improved by their
removal.

Most inferentials are developed through regression of previously collected process data.
Doing so employs a wide range of statistical techniques. Regression analysis helps the engineer
identify the most accurate calculation but not necessarily the most practical. The engineer has to
apply other techniques to assess the trade-off between complexity and accuracy.

While there are ‘first-principle’ inferentials, developed without applying statistical meth-
ods, once commissioned both types need to be monitored to ensure the accuracy is main-
tained. If an accuracy problem arises, then the engineer has to be able to assess whether
it can be safely ignored as a transient problem, whether it needs a routine update to its bias
term or whether a complete redesign is necessary. While there is no replacement for relying
on the judgement of a skilled engineer, statistics play a major role in supporting this
decision.

2.3 Controller Performance Monitoring

Perhaps the most recent developments in the process control industry are process control per-
formancemonitoring applications. Vendors ofMPC packages have long offered these as part of
a suite of software that supports their controllers. But more recently the focus has been on mon-
itoring basic PID control, where the intent is to diagnose problems with the controller itself or
its associated instrumentation. These products employ a wide range of statistical methods to
generate a wide range of performance parameters, many of which are perhaps not fully under-
stood by the engineer.
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2.4 Event Analysis

Event analysis is perhaps one of the larger opportunities yet to be fully exploited by process
control engineers. For example, they will routinely monitor the performance of advanced
control – usually reporting a simple service factor. Usually this is the time that the controller
is in service expressed as a fraction of the time that it should have been in service. While val-
uable as reporting tool, it has limitations in terms of helping improve service factor. An
advanced control being taken out of service is an example of an event. Understanding the fre-
quency of such events, particularly if linked to cause, can help greatly in reducing their
frequency.
Control engineers often have to respond to instrument failures. In the event of one, a control

scheme may have to be temporarily disabled or, in more extended cases, be modified so that it
can operate in some reduced capacity until the fault is rectified. Analysis of the frequency of
such events, and the time taken to resolve them, can help justify a permanent solution to a recur-
ring problem or help direct management to resolve a more general issue.
Inferential properties are generally monitored against an independent measurement, such as

that from an on-stream analyser or the laboratory. Some discrepancy is inevitable and so the
engineer will have previously identified how large it must be to prompt corrective action.
Violating this limit is an event. Understanding the statistics of such events can help
considerably in deciding whether the fault is real or the result of some circumstance that needs
no attention.
On most sites, at least part of the process requires some form of sequential, rather than con-

tinuous, operation. In an oil refinery, products such as gasoline and diesel are batch blended
using components produced by upstream continuous processes. In the polymers industry plants
run continuously but switch between grades. Downstream processing, such as extrusion, has to
be scheduled around extruder availability, customer demand and product inventory. Other
industries, such as pharmaceuticals, are almost exclusively batch processes. While most
advanced control techniques are not applicable to batch processes, there is often the opportunity
to improve profitability by improved scheduling. Understanding the statistical behaviour of
events such as equipment availability, feedstock availability and even the weather can be cru-
cial in optimising the schedule.
Many control engineers become involved in alarm studies, often following the guidelines[3]

published by Engineering Equipment and Materials Users’ Association. These recommend the
following upper limits per operator console:

• No more than 10 standing alarms, i.e. alarms which have been acknowledged
• No more than 10 background alarms per hour, i.e. alarms for information purposes that may
not require urgent attention

• No more than 10 alarms in the first 10 minutes after a major process problem develops

There are also alarm management systems available that can be particularly useful in
identifying repeating nuisance and long-standing alarms. What is less common is examination
of the probability of a number of alarms occurring. For example, if all major process proble-
mshave previously met the criterion of not more than 10 alarms, but then one causes 11, should
this prompt a review? If not, how many alarms would be required to initiate one?
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2.5 Time Series Analysis

Often overlooked by control engineers, feed and product storage limitations can have a signif-
icant impact on the benefits captured by improved control. Capacity utilisation is often the
major source of benefits. However, if there are periods when there is insufficient feed in storage
or insufficient capacity to store products, these benefits would not be captured. Indeed, it may
be preferable to operate the process at a lower steady feed rate rather than have the advanced
control continuously adjust it. There is little point in maximising feed rate today if there will be
a feed shortage tomorrow.

Modelling the behaviour of storage systems requires a different approach to modelling proc-
ess behaviour. If the level in a storage tank was high yesterday, it is very unlikely to be low
today. Such levels are autoregressive, i.e. the current level (Ln) is a function of previous levels.

Ln = a0 + a1Ln−1 + a2Ln−2 +… (2.2)

The level is following a time series. It is not sufficient to quantify the variation in level in
terms of its mean and standard deviation. We need also to take account of the sequence of
levels.

Time series analysis is also applicable to the process unit. Key to effective control of any
process is understanding the process dynamics.Model identification determines the correlation
between the current process value (PVn), previous process values (PVn–1, etc.) and previous
values of the manipulated variable (MV) delayed by the process deadtime (θ). If ts is the data
collection interval, the autoregressive with exogenous input (ARX) model for a single MV has
the form

PVn = a0 + a1PVn−1 + a2PVn−2 +…+ b1MVn−θ ts + b2MVn−1−θ ts… (2.3)

For a first order process, this model will include only one or two historical values. Simple
formulae can then be applied to convert the derived coefficients to the more traditional para-
metric model based on process gain, deadtime and lag. These values would commonly be used
to develop tuning for basic PID controllers and for advanced regulatory control (ARC) tech-
niques. Higher order models can be developed by increasing the number of historical values
and these models form the basis of some proprietary MPC packages. Other types of MPC
use the time series model directly.

There is a wide range of proprietary model identification software products. Control engi-
neers apply them without perhaps fully understanding how they work. Primarily they use
regression analysis but several other statistical techniques are required. For example, increas-
ing the number of historical values will always result in a model that is mathematically more
accurate. Doing so, however, will increasingly model the noise in the measurements and reduce
the robustness of the model. The packages include statistical techniques that select the optimum
model length. We also need to assess the reliability of the model. For example, if the process
disturbances are small compared to measurement noise or if the process is highly nonlinear,
there may be little confidence that the identified model is reliable. Again the package will
include some statistical technique to warn the user of this. Similarly statistical methods might
also be used to remove any suspect data before model identification begins.
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3
Process Examples

Real process data has been used throughout to demonstrate how the techniques documented can
be applied (or not). This chapter simply describes the data and how it might be used. Where
practical, data are included as tables in Appendix 1 so that the reader can reproduce the
calculations performed. All of the larger datasets are available for download.

The author’s experience has been gained primarily in the oil, gas and petrochemical indus-
tries; therefore much of the data used come from these. The reader, if from another industry,
should not be put off by this. The processes involved are relatively simple and are explained
here. Nor should the choice of data create the impression that the statistical techniques covered
are specific to these industries. They are not; the reader should have no problem applying them
to any set of process measurements.

3.1 Debutaniser

The debutaniser column separates C4− material from naphtha, sending it to the de-ethaniser.
Data collected comprises 5,000 hourly measurements of reflux (R) and distillate (D) flows.
Of interest is, if basic process measurements follow a particular distribution, what distribution
would a derived measurement follow? In Chapter 10 the flows are used to derive the reflux ratio
(R/D) to demonstrate how the ratio of two measurements might be distributed.

3.2 De-ethaniser

The overhead product is a gas and is fed to the site’s fuel gas system, along with many other
sources. Disturbances to the producers cause changes in fuel gas composition – particularly
affecting its molecular weight and heating value. We cover this later in this chapter.

The bottoms product is mixed LPG (propane plus butane) and it routed to the splitter. The C2

content of finished propane is determined by the operation of the de-ethaniser. We cover, later
in this chapter, the impact this has on propane cargoes.
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3.3 LPG Splitter

The LPG splitter produces sales grade propane and butane as the overheads and bottoms pro-
ducts respectively. Like the debutaniser, data collected includes 5,000 hourly measurements of
reflux and distillate flows. These values are used, along with those from the debutaniser, to
explore the distribution of the derived reflux ratio.
The reflux flow is normally manipulated by the composition control strategy. There are col-

umns where it would be manipulated by the reflux drum level controller. In either case the
reflux will be changed in response to almost every disturbance to the column. Of concern
on this column are those occasions where reflux exceeds certain flow rates. Above 65 m3/hr
the column can flood. A flow above 70 m3/hr can cause a pump alarm. Above 85 m3/hr, a trip
shuts down the process.
Figure 3.1 shows the variation in reflux over 5,000 hours. Figure 3.2 shows the distribution

of reflux flows. The shaded area gives the probability that the reflux will exceed 65 m3/hr. We
will show, in Chapter 5, how this value is quantified for the normal distribution and, in sub-
sequent chapters, how to apply different distributions.
Alternatively, a high reflux can be classed as an event. Figure 3.1 shows 393 occasions when

the flow exceeded 65 m3/hr and 129 when it exceeded 70 m3/hr. The distribution can then be
based on the number of events that occur in a defined time. Figure 3.3 shows the distribution
of the number of events that occur per day. For example, it shows that the observed probability
of the reflux not exceeding 70 m3/hr in a 24 hour period (i.e. 0 events per day) is around 0.56.
Similarly themost likely number of violations, of the 65 m3/hr limit, is two per day, occurring on
approximately 29% of the days. We will use this behaviour, in Chapter 12 and Part 2, to show
how many of the discrete distributions can be applied. Another approach is to analyse the var-
iation of time between high reflux events. Figure 3.4 shows the observed distribution of the inter-
val between exceeding 65 m3/hr. For example, most likely is an interval of one hour – occurring
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on about 9% of the occasions. In this form, continuous distributions can then be applied to
the data.

Table A1.1 shows the C4 content of propane, not the finished product but sampled from the
rundown to storage. It includes one year of daily laboratory results, also shown in Figure 3.5. Of
interest is the potential improvement to composition control that will increase the C4 content
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closer to the specification of 10 vol%. To determine this we need an accurate measure of the
current average content and its variation. The key issue is choosing the best distribution. As
Figure 3.6 shows, the best fit normal distribution does not match well the highly skewed data.
Indeed, it shows about a 4% probability that the C4 content is negative. We will clearly need to
select a better form of distribution from the many available.
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Also of concern are the occasional very large changes to the C4 content, as shown by
Figure 3.7, since these can cause the product, already in the rundown sphere, to be put off-
grade. We will show how some distributions can be used to assess the impact that improved
control might have on the frequency of such disturbances.

There is an analyser and an inferential property installed on the bottoms product measuring
the C3 content of butane. Figure 3.8 shows data collected every 30 minutes over 24 days, i.e.

0

10

20

30

40

50

0 4 8 12 16

da
ys

 p
er

 y
ea

r

C4 vol%

Figure 3.6 Skewed distribution of C4 results

0

4

8

12

16

Jan Mar May Jun Aug Oct Dec

ab
so

lu
te

 c
ha

ng
e 

in
 C

4
vo

l%

Figure 3.7 Changes in C4 content

Process Examples 15



1,152 samples. Such line plots are deceptive in that they present the inferential as more accurate
than it truly is. Figure 3.9 plots the same data as a scatter diagram showing that, for example, if
the analyser is recording 1 vol%, the inferential can be in error by ±0.5 vol%. Further, there is
tendency to assume that such errors follow the normal distribution. Figure 3.10 shows the best
fit normal distribution. The actual frequency of small errors is around double that suggested by
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the normal distribution. We will look at how other distributions are better suited to analysing
this problem.

3.4 Propane Cargoes

Propane from the LPG splitter is routed to one of two spheres. Once a sphere is full, production
is switched to the other sphere. Cargoes are shipped from the filled sphere once the laboratory
has completed a full analysis for the certificate of quality. The maximum C2 content permitted
by the propane product specification is 5 vol%. Table A1.2 includes the results, taken from the
certificates of quality, for 100 cargoes. While primarily used to illustrate, in Chapter 6, methods
of presenting data, it is also used to draw attention to the difference between analysing finished
product data as opposed to data collected from the product leaving the process.

3.5 Diesel Quality

A property commonly measured for oil products is the distillation point. Although its precise
definition is more complex, in principle it is the temperature at which a certain percentage of the
product evaporates. Gasoil, for example, is a component used in producing diesel and might
have a specification that 95% must evaporate at a temperature below 360 C. There is an eco-
nomic incentive to get as close as possible to the specification.

Table A1.3 shows the results of 111 daily laboratory samples taken from the gasoil rundown.
The product is routed to a storage tank which is well-mixed before being used in a blend.
A certain amount of off-grade production is permissible provided it is balanced by product
in giveaway, so that the filled tank is within specification. Indeed, as Figure 3.11 shows,
40 of the results violate the specification. But the simple average, represented by the coloured
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line, shows giveaway of 3.3 C. Improving composition control would reduce the variation and
so allow closer approach to the specification and an increase in product yield. We will use these
data to show how to more properly estimate the average operation and its variation.
Of course there are industries where no amount of off-grade production is permitted. Most

notable are the paper and metals industries where the off-grade material cannot be blended with
that in giveaway. Our example has a similar situation. At a distillation point above 366 C unde-
sirable components can be present in the product that cannot be sufficiently diluted by mixing
in the tank. Any material this far off-grade must be reprocessed. The figures highlighted in
Table A1.3 and Figure 3.11 show the five occasions when this occurred. Improved control
would reduce the number of occasions and so reduce reprocessing costs. We will use these data
to explore the use of discrete distributions that might be used to determine the savings.

3.6 Fuel Gas Heating Value

In common with many sites all fuel gas from producers, such as the de-ethaniser, is routed to a
header from which all consumers take their supply. A disturbance on any producer causes a
change in NHV (net heating value) that then upsets a large number of fired heaters and boilers.
Some consumers of fuel gas are also producers; a disturbance to the gas supplied to these units
propagates through to further disturb the header NHV.
The data, included as Table A1.4, comprises laboratory results collected daily for a period of

six months. It was collected to identify the best approach to handling variations to reduce the
process disturbances. There are several solutions. One might be to install densitometers, use
these to infer NHV and effectively convert the flow controllers on each consumer to duty con-
trollers. Another might be to switch from conventional orifice plate type flowmeters to coriolis
types on the principle that heating value measured on a weight basis varies much less than that
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measured on a volume basis. Understanding the variation in NHV permits each solution to be
assessed in terms of the achievable reduction in disturbances.

Figure 3.12 shows the variation of the NHV of fuel gas routed to a fired heater. The distur-
bances (x) are determined from Table A1.4 as

xn =
NHVn−NHVn−1

NHVn−1
× 100 n > 1 (3.1)

These disturbances are plotted as Figure 3.13. Figure 3.14 shows that the best fit normal dis-
tribution is unsuitable since it has tails much fatter than the distribution of the data. The data will
therefore be used to help assess the suitability of alternative distributions, some of which do not
accommodate negative values. For this type of data, where it would be reasonable to assume
that positive and negative disturbances are equally likely, one approach is to fit to the absolute
values of the disturbances.

Table A1.5 comprises analyses of 39 of the samples of fuel gas showing the breakdown by
component. These we will use to illustrate how a multivariate distribution might be applied.

3.7 Stock Level

While the control engineer may feel that there is little application of process control to product
storage, understanding its behaviour can be crucial to properly estimating benefits of improved
control and in assessing what changes might be necessary as a result of a control improvement.
For example, the final product from many sites is the result of blending components. Properly
controlling such blending can substantially improve profitability but, in estimating the benefits
of a potential improvement we need to assess the availability not only of the blend components
but also available capacity for finished product. There are many projects that have been justified

32

34

36

38

40

42

44

Jan Feb Mar Apr May Jun Jul

N
H

V
 (

M
J/

sm
3 )

Figure 3.12 Variation in site’s fuel gas heating value

Process Examples 19



on increasing production rates only to find that this cannot be fully accommodated by the stor-
age facilities.
The data, included in Table A1.6, is the daily stock level of a key component collected over a

seven month period or 220 days. The variation is also shown in Figure 3.15. Figure 3.16 shows

0

10

20

30

40

50

60

70

–10 –5 0 5 10

da
ys

change in NHV (%)

Figure 3.14 Small tails compared to normal distribution

–10

–5

0

5

10

Jan Feb Mar Apr May Jun Jul

N
H

V
 c

ha
ng

e 
(%

)

Figure 3.13 Disturbances to heating value

20 Statistics for Process Control Engineers



the non-symmetrical distribution of the data. The main concern is those occasions when the
inventory drops to 300, below which a blend cannot be started. There are three occasions, high-
lighted as bold in Table A1.6, when this occurred. The data will be used to demonstrate how
discrete distributions might estimate the probability of such an occurrence in the future.We will
also apply a time series technique to predict the future variation in level.
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3.8 Batch Blending

Batch blending is common to many industries, including quite large continuous processes such
as oil refineries. In this particular example, a batch is produced by blending components and
then taking a laboratory sample of the product. The key specification is 100; if the laboratory
result is less than this, a corrective trim blend is added to the product and it is then retested. Each
blend takes a day, including the laboratory analysis of its quality. This is repeated as necessary
until the product is on-grade. 100 m3 is then routed to a downstream process and then to sales.
The material remaining in the blend vessel forms part of the next batch.
There is large incentive to improve the control and so reduce the number of trim blends. This

would permit an increase in production and reduction in storage requirements. Table A1.7 and
Figure 3.17 show the intermediate and finished laboratory results for the 78 blends resulting in
44 finished batches. This example is used to explore the use of both continuous and discrete
distributions in assessing the improvement that might arise from improved control. Wewill also
show how to use some distributions to explore what change in storage facilities might be
required if production is increased.
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4
Characteristics of Data

4.1 Data Types

Data fall into one of three types:

Dichotomous data can have one of only two values. In the process industry examples might
include pass/fail status of a check against a product specification. Similarly it might be
the pass/fail status from validating a measurement from an on-stream analyser or inferential.
Such data can be averaged by assigning a numerical value. For example, we might assign 1 if
a MPC application is in use and 0 if not. Averaging the data would then give the service
factor of the application.

Nominal data have two or more categories but cannot be ranked sensibly. For example, the oil
industry produces multiple grades of many products. Specifications can vary by application,
by season and by latitude. For example, a data point might have the value ‘summer grade
European regular gasoline’. Only limited mathematical manipulation is possible with such
data. For example, it would be possible to determine what percentage of cargoes fell into this
category.

Cardinal data have two or more categories that can be ranked. Most process data fall into this
category. Within this type, data can be continuous or discrete. Process measurements might
generally be considered as continuous measurements. Strictly a DCS can only generate dis-
crete values although, for statistical purposes, the resolution is usually such that they can be
treated as continuous. Laboratory results are usually discrete values. This arises because test-
ing standards, for example, those published by the ASTM, specify the resolution to which
they should be reported. This is based on the accuracy of the test. For example, the flash point
of products like jet fuel is quoted to the nearest 0.5 C, whereas the cloud point of diesel is
quoted to the nearest 3 C. Another common example of a discrete variable is the number of
events that occur in a fixed time. In principle, the reciprocal of this, which is the elapsed time
between events, is a continuous variable. However, real-time databases historise data at a
fixed interval, for example one minute, and so even time can then be treated as a discrete
variable.
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4.2 Memory

Data can arise from a process that hasmemory. This occurs when the current measurement is in
any way dependent on the preceding measurement. For example, we might wish to assess the
probability of violating the maximum permitted inventory in a storage tank. It is extremely
unlikely that the level in the tank will be very low today if it was very high yesterday. Today’s
inventory will be largely influenced by what it was yesterday.
The same might apply to assessing the likelihood of equipment failure. As equipment ages it

might become more prone to failure. The time to failure is no longer an independent variable; it
becomes shorter as the length of memory increases.
Process events, such as alarms, can also showmemory. The condition that activates the alarm

might also trigger several others. Analysis of alarm frequency would show that, rather than
follow a random pattern, they tend to occur in batches. In other words the likelihood of an alarm
increases if one has just occurred.
Most process data do not have memory. For example, product composition can change quite

rapidly on most processes. While the composition now will be closely related to what it was a
few seconds ago, it will show little correlation with what it was an hour ago. If composition data
were collected as daily laboratory measurements, the process will almost certainly appearmem-
oryless or forgetful. However measuring a property that changes slowly over time, such as cat-
alyst activity, will show memory.

4.3 Use of Historical Data

We have seen that the process control engineer requires historical process data for a wide range
of applications. Primarily these fall into two categories – assessing current performance and
predicting future performance.
There are three basic methods of using the data for prediction:

• The simplest is to assume that future operation will be identical to the past. Process data are
used directly. For example, in studying how a new control scheme might react to changes in
feed composition, it is assumed that it will have to deal with exactly the same pattern of
changes as it did in the past.

• The secondmethod is to analyse historical data to identify parameters that accurately describe
the distribution of the data as a probability density function (PDF) or cumulative density
function (CDF). This distribution is then used in assessing future process behaviour. This
is perhaps the most common method and a large part of this book presents these density
functions in detail.

• The third approach isMonte Carlo simulation. This uses the derived distribution to generate
a very large quantity of data that have the same statistics as the historical data. The synthe-
sised data is then used to study the likely behaviour of a process in the future. For example,
it is commonly used in simulating imports to and exports from product storage to determine
what storage capacity is required. Provided the simulated imports and exports have the
same statistical distribution as the real situation then the law of large numbers tells us
the average of the results obtained from a large enough number of trials should be close
to the real result.

Key to the success of the latter two methods is accurately defining the shape of the
distribution of historical data.
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4.4 Central Value

A dataset requires two key parameters to characterise its properties. Firstly, data generally show
central tendency in that they are clustered around some central value. Secondly, as we shall see
in the next section, a parameter is needed to describe how the data is dispersed around the cen-
tral value. The most commonly used measure of the central value is the mean –more colloqui-
ally called the average. There are many versions of the mean. There are also several alternative
measures of the central value. Here we define those commonly defined and identify which
might be of value to the control engineer.

The arithmetic mean of the population (μ) of a set of N values of x is defined as

μ=

N

i = 1

xi

N
(4.1)

We will generally work with samples of the population. A sample containing n values will
have the mean

x =

n

i= 1

xi

n
(4.2)

For example, as part of benefits study, we might examine the average giveaway against the
maximum amount of C4 permitted in propane product. If propane attracts a higher price than
butane, we would want to maximise the C4 content. We would normally take a large number of
results to calculate the mean but, as an illustration, let us assume we have only three results of
3.9, 4.7 and 4.2. From Equation (4.2) we calculate the mean as 4.27. If the maximum permitted
content is 5, the average giveaway is 0.73. Knowing the annual production of propane, we
could use this to determine how much additional C4 could be sold at the propane price rather
than at the lower butane price.

However we should more properly use the weighted mean. Imagine that the three results
were collected for three cargoes, respectively sized 75, 25 and 50 km3. If w is the weighting
factor (in this case the cargo size) then the mean butane content is

x=

n

i= 1

wixi

n

i= 1

wi

(4.3)

The true mean C4 content is therefore 4.13 and the giveaway 0.87. Calculating how much
more C4 could be included in propane would, in this example, give a result some 19% higher
than that based on the simple mean. Equation (4.3) is effectively the total C4 contained in all the
cargoes divided by the total propane shipped. The additional C4 that could have been included
in propane is therefore 1.3 km3

– given by

5
n

i= 1

wi−
n

i = 1

wixi

100
(4.4)

We might to keep track of the mean C4 content over an extending period. Imagine that the
three results are the first in a calendar year and wewant to update the mean as additional cargoes
are shipped to generate a year-to-date (YTD) giveaway analysis. We could of course recalculate
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the mean from all the available results. Alternatively we can simply update the previously deter-
mined mean. In the case of the simple mean, the calculation would be

xn+ 1 =
nxn + xn+ 1

n + 1
= xn +

xn + 1−xn
n + 1

(4.5)

For example, the fourth cargo of the year contains 3.7 vol% C4. The year-to-date mean then
becomes

xn + 1 = 4 27 +
3 7−4 27
3 + 1

= 4 13 (4.6)

Note that this is different from a rolling average, in which the oldest result is removedwhen a
new one is added. If is the number of values in the average (m) is 3, then

xn+ 1 = xn +
xn+ 1−xn−m+ 1

m
= 4 27 +

3 7−3 9
3

= 4 20 (4.7)

While not normally used as part of improved control studies, the rolling average can be applied
as a means of filtering out some of the random behaviour of the process and measurement.
Indeed, in some countries, finished product specifications will permit wider variation in the
property of a single cargo, provided the rolling average is within the true specification.
To update a weighted average

xn + 1 =

xn
n

i= 1

wi +wn+ 1xn+ 1

n

i= 1

wi +wn+ 1

= xn +
wn+ 1 xn + 1−xn

n

i= 1

wi +wn+ 1

(4.8)

So, if the fourth cargo was 60 km3

xn+ 1 = 4 13 +
60 3 7−4 13

150 + 60
= 4 01 (4.9)

Table 4.1 shows the result of applying the calculations described as additional cargoes are
produced.
In addition to the arithmetic mean there is the harmonic mean, defined as

xh =
n
n

i= 1

1
xi

(4.10)

The weighted harmonic mean is

xh =

n

i= 1

wi

n

i= 1

wi

xi

(4.11)

Using heavy fuel oil as an example, its maximum permitted density is 0.991. Giveaway is
undesirable because density is reduced by adding diluent, such as gasoil, that would otherwise
be sold at a price higher than heavy fuel oil. Consider three cargoes sized 80, 120 and 100 kt
with densities of 0.9480, 0.9880 and 0.9740. The weighted average, if calculated from
Equation (4.3), would be 0.9727. However, density does not blend linearly on a weight basis.
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To properly calculate the mean we should first convert each of the cargoes to km3. Volume is
mass (w) divided by density (x), so Equation (4.11) effectively divides the total mass of the
cargoes by their total volume and gives the mean density of 0.9724. While an error in the fourth
decimal place may seem negligible, it may be significant when compared to the potential
improvement. For example, if improved control increased the mean density to 0.9750, the
increase would be about 13% higher than that indicated by Equation (4.3) and so too would
be the economic benefit.

Table 4.2 shows how the harmonic mean changes as additional cargoes are produced.
There is also the geometric mean derived by multiplying the n values together and taking the

nth root of the result, i.e.

xg =
n

i= 1

xi
n

(4.12)

The geometric mean can be useful in determining the mean of values that have very different
ranges. For example, in addition to density, heavy fuel oil is subject to a maximum viscosity
specification of 380 cSt and amaximum sulphur content of 3.5 wt%. If only one diluent is avail-
able then it must be added until all three specifications are met. The most limiting specification
will not necessarily be the same for every cargo since the properties of the base fuel oil and the
diluent will vary. To assess giveaway we would have to divide cargoes into three groups, i.e.
those limited on density, those limited on viscosity and those limited on sulphur. In principle we
can avoid this by calculating, for each cargo, the geometric mean of the three properties. If all
three specifications were exactly met, the geometric mean of the properties would be 10.96. If
any property is in giveaway, for example by being 10% off target, then the geometric mean
would be reduced by 3.2% – no matter which property it is. However, this should be considered

Table 4.1 Averaging C4 content of propane cargoes

C4 vol% YTDmean rolling average n = 3 cargo km3 YTDweighted mean

3.9 3.90 75
4.7 4.30 25
4.2 4.27 4.27 50 4.13
3.7 4.13 4.20 60 4.01
4.7 4.24 4.20 60 4.16
4.4 4.27 4.27 80 4.22
4.7 4.33 4.60 75 4.30
4.0 4.29 4.37 25 4.29
4.8 4.34 4.50 70 4.35
4.2 4.33 4.33 25 4.35
4.1 4.31 4.37 80 4.32
4.0 4.28 4.10 65 4.29
4.0 4.26 4.03 25 4.28
4.4 4.27 4.13 75 4.29
4.8 4.31 4.40 80 4.34
3.9 4.28 4.37 60 4.31
4.3 4.28 4.33 25 4.31
4.0 4.27 4.07 80 4.28
4.8 4.29 4.37 60 4.31
4.1 4.29 4.30 75 4.30
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as only an indicative measure of the potential to reduce giveaway. The amount of diluent
required to reduce density by 10% is not the same as that required to reduce viscosity by
10%. A more precise approach would be to calculate, for each cargo, exactly how much less
diluent could have been used without violating any of the three specifications.
Laws of heat transfer, vaporisation and chemical reaction all include a logarithmic function.

Taking logarithms of Equation (4.12)

log xg =

n

i= 1

log xi

n
(4.13)

Rather than taking the logarithm of each measurement before calculating the mean, we could
instead calculate the geometric mean.
Not to be confused with this definition of the geometric mean, there is also the logarithmic

mean. It is limited to determining the mean of two positive values. If these are x1 and x2 then it is
defined as

xl =
x1 + x2

ln x1 − ln x2
=

x1 + x2

ln
x1
x2

(4.14)

It has limited application but is most notably used in calculating the log mean temperature dif-
ference (LMTD) used in heat exchanger design. While Equation (4.14) uses the natural loga-
rithm, the logarithm to any base (e.g. 10) may be used.

Table 4.2 Averaging SG of heavy fuel oil cargoes

SG cargo kt YTD harmonic mean

0.9480 80 0.9480
0.9880 120 0.9716
0.9740 100 0.9724
0.9830 120 0.9754
0.9510 100 0.9706
0.9520 80 0.9681
0.9830 80 0.9698
0.9560 100 0.9680
0.9640 80 0.9677
0.9560 120 0.9662
0.9840 100 0.9678
0.9700 100 0.9680
0.9600 80 0.9675
0.9770 100 0.9682
0.9550 80 0.9675
0.9700 120 0.9676
0.9730 80 0.9679
0.9730 80 0.9681
0.9770 100 0.9686
0.9840 100 0.9694
0.9830 80 0.9699
0.9580 120 0.9693
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The definition of mean can be extended to multidimensional space. Table 4.3 shows the com-
position of 10 cargoes of propane. Propane must be at least 95 vol% pure and so the total of the
C2 content and the C4 content must not exceed 5 vol%. Both these components have a lower
value than propane and so their content should be maximised. To quantify what improvement is
possible we can determine the centroid. This is the point at which the residual sum of the
squares (RSS) of the distances from it to the data points is a minimum. In our example we have
three variables: vol% C2 (x1), vol% C3 (x2) and vol% C4 (x3). We therefore adjust the coordi-
nates a, b and c to minimise the function

RSS =
n

i= 1

x1i−a
2 +

n

i= 1

x2i−b
2 +

n

i= 1

x3i−c
2 (4.15)

To identify the minimum we set the partial derivatives of this function to zero. For example,
partially differentiating with respect to x1 gives

∂RSS

∂x1
= 2

n

i= 1

x1i−a = 0 (4.16)

∴
n

i1

x1i−na= 0 and so a =

n

i= 1

x1i

n
= x1 (4.17)

Therefore RSS will be at a minimum when the coordinates of the centroid are the arithmetic
means of x1, x2 and x3, i.e. (1.65, 96.13, 2.22). The centroid is therefore mathematically no dif-
ferent from calculating the means separately. Its main advantage, for the two-dimensional case,
is the way it presents the data. This is shown by Figure 4.1, which plots two of the three dimen-
sions. The coloured points are the compositions of the cargoes; the white point is the centroid. It
shows that giveaway could be eliminated by increasing the C2 content to 2.96 or increasing the
C4 content to 3.35. Of course any combination of increases in the two components is possible,
provided they sum to 1.13. Indeed one of the components could be increased beyond this value,
provided the other is reduced. The strategy adopted would depend on the relative values of C2

and C4 when routed to their next most valuable alternative disposition.
In the same way we can add weighting factors to the arithmetic mean, we can do so to the

calculation of the centroid. Indeed its alternative name, centre of mass, comes from using it to
calculate the position of the centre of gravity of distributed weights.

Table 4.3 Analyses of propane cargoes

vol% C2 vol% C3 vol% C4

1.3 97.8 0.9
3.2 95.2 1.6
1.1 96.2 2.7
2.9 96.0 1.1
0.8 95.8 3.4
0.5 95.1 4.4
1.5 95.2 3.3
0.3 97.7 2.0
2.4 95.4 2.2
2.5 96.9 0.6
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While using the mean makes good engineering sense in assessing opportunities for process
improvements, it can give a distorted measure of performance. The inclusion of a single meas-
urement that is very different from the others can, particularly if the sample size is small, sig-
nificantly affect the estimate of the mean. An example might be a measurement collected under
very unusual conditions, such as a process upset, or simply an error. We will present later how
such outliersmight be excluded. Doing so results in a trimmed (or truncated) mean. For exam-
ple, we could simply exclude the lowest and highest values. So, after ranking the values of x
from the lowest (x1) to the highest (xn), the trimmed arithmetic mean becomes

xt =

n−1

i= 2

xi

n−2
(4.18)

The Winsorised mean is based on a similar approach but the most outlying values are
replaced with the adjacent less outlying values. For example, if we Winsorise the two most
outlying values, the mean would be calculated as

xw =

x2 + xn−1 +
n−1

i= 2

xi

n
(4.19)

If n is 10, Equation (4.19) describes the 10% Winsorised mean; we have removed 10% of the
lower and upper outliers. If the sample size were increased to 20 then, to maintain the same level
of Winsorisation, we would replace x1 and x2 with x3, and x19 and x20 with x18.
We will show later that exclusion of outliers carries the risk that an important aspect of proc-

ess behaviour will be overlooked. An alternative approach is to define the centre of our sample
using the median. In order to determine the median we again rank the dataset. If there is an odd
number of measurements in the set then the median is the middle ranked value. If there is an
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Figure 4.1 Centroid of propane composition
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even number, it is the average of the two middle values. The addition of an outlier (no matter
what its value) to the dataset will therefore have very little effect on the median – shifting it half
the distance between two adjacent values ranked in the middle. The median can also be
described as the 50 percentile, i.e. 50% of the values lie below (or above) the median.

We can also define quartiles – 25% of the values lie below the first quartile (Q1) and 75% lie
below the third quartile (Q3). While the principle of determining the quartiles is clear, there are
two different ways they can be calculated. These are known as the inclusive and exclusivemeth-
ods. The inclusivemethod is based on the intervals between the ranked data. If there are n samples
in the dataset, then there are n− 1 intervals. The first quartile is then the value (n− 1)/4 intervals
from the start, i.e. the value ranked (n− 1)/4 + 1. The third quartile is the value ranked 3(n− 1)/
4 + 1. For example, in the dataset containing the values 10, 20, 30, 40 and 50, the first quartile is
20 and the third is 40. It is quite likely, however, that the calculated rank will not be an integer. If
so, then we obtain the quartile by interpolating between the adjacent values. For example, if we
were to add the value 60 to the dataset, the ranking for the first quartile becomes 2.25. Since this is
nearer 2 than 3, we interpolate as (0.75 × 20) + (0.25 × 30) or 22.5. The third quartile is 47.5.

The exclusive approach effectively adds a value ranked 0 to the data. The first quartile is then
the value ranked (n + 1)/4. For example, if we were to increase n to 7 by adding 70 to the data-
set, the first quartile would be the value ranked at 2, i.e. 20. The third quartile would be the value
ranked 3(n + 1)/4, i.e. 60. Non-integer results would similarly be dealt with by interpolation.
For example, if we revert to the dataset without the 70, the first quartile is given by (0.25 ×
10) + (0.75 × 20), or 17.5. The third quartile is 52.5.

While each method gives very different results, this is primarily because the dataset is very
small. The difference would be negligible if the dataset is large and well dispersed.

The median can also be described as the second quartile (Q2). The average of the first and
third quartile is known at the midhinge – another parameter representing the central value.
There is also the trimean, defined as (Q1 + 2Q2 +Q3)/4. Finally there is the midrange, which
is simply the average of the smallest and largest values in the dataset.

There is a multidimensional equivalent to the median, the geometric median. It is similar to
the centroid but is positioned to minimise the sum of the distances, not the sum of their squares.
For the three-dimensional case the penalty function (F) is described by

F =
n

i= 1

x1i−a
2 + x2i−b

2 + x3i−c
2 (4.20)

Unlike the centroid, the coordinates of the geometric median cannot be calculated simply. An
iterative approach is necessary that adjusts a, b and c to minimise F. Applying this to the data in
Table 4.3 gives the coordinates as (1.62, 96.02, 2.36). This is very close to the centroid deter-
mined from Equation (4.17). However, like its one-dimensional equivalent, the geometric
median is less sensitive to outliers. For example, if we increase the value of the last C2 content
in Table 4.3 from 2.5 to 12.5, the mean increases from 1.65 to 2.65. The geometric median
moves far less to (1.74, 95.77, 2.49).

Unlike the median, the geometric median will not be one of the data points. The data point
nearest to the geometric mean is known as the medoid.

In process engineering, the mean value of a parameter has a true engineering meaning. For
example, daily production averaged over a year can be converted to an annual production (sim-
ply by multiplying by 365) and any cost saving expressed per unit production can readily be
converted to an annual saving. The same is not true of the median. While of some qualitative
value in presenting data, it (and its related parameters) cannot be used in any meaningful
calculation.
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4.5 Dispersion

Oncewehavedefined the central value,weneedsomemeasureof thedispersionof thedata around
it – often described as variability or spread. There are several simple parameters that we might
consider. They include the range, which is simply the difference between the highest and lowest
values in thedataset. It is sensitive tooutliers, butwecandealwith this inmuch the samewayaswe
did indetermining themean.Forexample,wecanuse the trimmedrangeor truncatedrangewhere
some criterion is applied to remove outliers. We can similarlyWinsorise the range (by replacing
outliers with adjacent values nearer the central value), although here this will give the same result
as truncation. However these measures of dispersion, while offering a qualitative view, cannot
readily be used in engineering calculations, for example, to assess potential improvements.
We can base measures of dispersion on the distance from the median. The most common of

these is the interquartile range – the difference between the third and first quartile. It is equiv-
alent to the 25% Winsorised range. There is also the quartile deviation, which is half of the
interquartile range. There are measures based on deciles. For example, 10% of the values
lie below the first decile (D1) and 10% lie above the ninth decile (D9). The difference between
the two is another measure of dispersion. However, as described in the previous section, all
such parameters are largely qualitative measures.
A better approach is to use the mean as the central value. We then calculate the deviation

from the mean of each value in the dataset. In principle we could then sum these deviations
as a measure of dispersion. However, from the definition of the arithmetic mean given by
Equation (4.2), they will always sum to zero.

n

i= 1

xi−x =
n

i= 1

xi−nx=
n

i= 1

xi−
n

i= 1

xi = 0 (4.21)

A possible solution is to use the absolute value (D) of the deviation from the mean. This
suffers the problem that increasing the number of data points in the set will increase the
sum of the absolute deviations, even if there is no increase in dispersion. To overcome this
we divide by n to give the mean absolute deviation

D =

n

i= 1

xi−x

n
(4.22)

However, this does lend itself to use in further mathematical analysis. For example, if we know
only the mean absolute deviation for each of two datasets, we cannot derive it for the com-
bined set.
A more useful way of removing the sign of the deviation is to square it. The average sum of

the squares of the deviations is the variance. Its positive square root is the standard devia-
tion (σ).

σ2 =

n

i= 1

xi−x
2

n
(4.23)

Expanding gives

σ2 =

n

i= 1

xi
2−2x

n

i= 1

xi + nx
2

n
(4.24)
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Combining with Equation (4.2) gives an alternative way of calculating the variance.

σ2 =
1
n

n

i= 1

x2i −x
2 (4.25)

Themain advantage of variances is that they are additive. If, in addition to the series of values
for x, we have one for values of y then from Equation (4.25)

σ2x+ y =

n

i= 1

xi + yi
2

n
− x + y 2 (4.26)

=

n

i= 1

x2i + 2
n

i= 1

xiyi +
n

i= 1

y2i

n
− x2 + 2xy + y2 (4.27)

=
1
n

n

i= 1

x2i −x
2 +

1
n

n

i= 1

y2i −y
2 + 2

1
n

n

i = 1

xiyi−xy (4.28)

= σ2x + σ
2
y + 2σxy (4.29)

Following the same method we can determine the variance of the difference between two
variables.

σ2x−y = σ
2
x + σ

2
y −2σxy (4.30)

The term σxy is the covariance. We cover this in more detail in Section 4.9 but, if x and y are
independent variables, their covariance will be zero. The variance of the sum of (or difference
between) two variables will then be the sum of their variances.

Variance, because of the squaring of the deviation from the mean, is very sensitive to out-
liers. For example, the variance of C2 vol% in Table 4.3 is 1.05. Increasing just the last value
from 2.5 to 5.0 increases the variance to 2.11.

We may wish to compare dispersions that have different ranges or engineering units. Some
texts suggest we modify the measure of dispersion to make it dimensionless. For example,
dividing standard deviation by the mean gives the coefficient of variation. Other commonly
documented dimensionless measures include the coefficient of range (the range divided by
the sum of the lowest and highest values) and the quartile coefficient (the interquartile range
divided by the sum of the first and third quartiles). In practice these values can be misleading.
Consider a product that comprises mainly a component A and an impurity B. Assume the per-
centage of B in the product has a mean of 5 vol% and a standard deviation of 1%. The coef-
ficient of variation is therefore 0.20. It follows therefore that the mean percentage of component
A is 95 vol%. Its standard deviation will also be 1 vol% – giving a coefficient of variation of
0.01. This would appear to suggest that control of product purity is 20 times better than control
of impurity where, in a two-component mixture, they must be the same.

4.6 Mode

Another measure commonly quoted is the mode. In principle it is the value that occurs most
frequently in the dataset. However, if the values are continuous, it is quite possible that no
two are the same. Instead we have to partition the data into ranges (known as bins); the mode
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is then the centre of the most populated range. While in most cases the mode will be towards the
centre of the dataset, there is no guarantee that it will be. It has little application in the statistics
associated with process control. However it is important that we work with distributions that are
unimodal, i.e. they have a single mode. A distribution would be bimodal, for example, if a sec-
ond grade of propane was produced (say, with a minimum purity target of 90%) and the ana-
lyses included in the same dataset as the higher purity grade. A distribution can also be
multimodal – having two or more modes.

A multimodal distribution can be easily mistaken for a unimodal one. Figure 4.2 illustrates
this. Two distributions, with different means, have been combined. Both have a standard devi-
ation of 1. In general, if the difference between the means is greater than double the standard
deviation, the distribution will be clearly bimodal. In our example, where μ2–μ1 is 2, a second
mode is not visible. Calculating the standard deviation without taking account of the modality
would substantially overestimate the dispersion of the data. In this example it would be around
40% higher than the true value.
If a product is produced to different specifications, then the distribution will certainly be mul-

timodal, even if not visibly so. A number of the distributions described in this book can be
bimodal. However, their use is better avoided by segregating the data so that the standard devi-
ation is determined separately for each grade of product. Alternatively, instead of obtaining the
statistics for the propane purity, we obtain them for the deviation from target. Indeed this is
exactly how we might assess the performance of a PID controller. We determine the standard
deviation of the error, not the measurement. We need, however, to be more careful in assessing
the performance of an inferential property. We might do so by monitoring the standard devi-
ation of the difference between it and the laboratory. However, a change in operating mode
might cause a bias error in the inferential. A bias error only contributes to standard deviation
when it changes. Frequent changes in mode will therefore increase the standard deviation, sug-
gesting that the inferential is performing poorly. To properly check its performance we should
segregate the data for each operating mode.
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Figure 4.2 Multimodal distributions
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Although not generally encountered in the process industry, a distribution can pass
through a minimum, rather than a maximum. The minimum is known as the anti-mode –

the value that occurs least often in the dataset. The distribution would then be described as
anti-modal.

4.7 Standard Deviation

Standard deviation can be considered a measure of precision. Indeed, some texts define pre-
cision as the reciprocal of the variance (often using the term τ). Others define it as the reciprocal
of the standard deviation (using the term τ ). Control engineers, of course, use τ to represent
process lag. To avoid confusion, we avoid using precision as a statistical parameter. It does
however have meaning. For example, the standard deviation of a variable that we wish to con-
trol is a measure of how precisely that variable is controlled. Indeed, reducing the standard devi-
ation is often the basis of benefit calculations for process control improvements. If control were
perfect the standard deviation would be zero. We similarly assess the performance of an infer-
ential property from the standard deviation of the prediction error. However precision is not the
same as accuracy. For example, if an inferential property consistently misestimates the prop-
erty by the same amount, the standard deviation would be zero but the inferential would still be
inaccurate. We have to distinguish between bias error and random error. Standard deviation is a
measure only of random error.

We need to distinguish between population and sample. The population includes every
value. For example, in the process industry, the population of daily production rates
includes every measured rate since the process was commissioned until it is decommis-
sioned. We clearly have no values for production rates between now and decommission-
ing. Records may not be available as far back as commissioning and, even if they are, the
volume of data may be too large to retrieve practically. In practice, we normally work with
a subset of the population, i.e. a sample. We need, of course, to ensure that the sample is
representative by ensuring it includes values that are typical and that the sample is suffi-
ciently large.

The standard deviation (σp) of the whole population of N values, if the population mean is μ,
is given by

σ2p =

N

i= 1

xi−μ
2

N
(4.31)

When executing process control benefits studies we select a sample – a period for analysis com-
prising n data points. Those performing such analysis will likely have noticed that, to account
for this, μ in Equation (4.31) is replaced by the sample mean and the denominator is replaced by
n − 1. The following explains why.

From the data points collected in the period we estimate the sample mean.

x =

n

i= 1

xi

n
(4.32)

Applying Equation (4.31) to a sample of the population will underestimate the true standard
deviation. This is because the sum of the squared deviations of a set of values from their sample
mean (x) will always be less than the sum of the squared deviations from a different value, such
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as the population mean (μ). To understand this consider the trivial example where we have a
sample of two data points with values 1 and 5. The sample mean is 3 and the sum of the devia-
tions from the mean is 8 (22 + 22). If, instead of using the sample mean, we choose to use a
higher value of 4, the sum of the deviations will then be 10 (32 + 12). We would get the same
result if we had chosen a lower value of 2 for the mean. The nonlinearity, caused by squaring,
results in the increase in squared deviation in one direction being greater than the decrease in
the other.
We do not know the mean of the whole population (μ). Applying Equation (4.32) to different

samples selected from the population will give a number of possible estimates of the true mean.
These estimates will have a mean of μ. Similarly we do not know the standard deviation of the
whole population. Imagine the sample mean being determined by, before summing all the data
points, dividing each by n. The standard deviation of the resulting values will therefore be n
times smaller, i.e. σp/n, giving a variance of (σp/n)

2. We have seen that variances are additive.
The sum of the n values, which will now be the sample mean, will therefore have a variance n
times larger, i.e. σp

2/n. The square root of this value is sometimes described as the stand-
ard error.
The variance of the sample (σ2) is

σ2 =

n

i= 1

xi−x
2

n
(4.33)

The variance of the population will be the variance of the sample plus the variance of the sam-
ple mean.

σ2p = σ
2 +

σ2p
n

or σ2p =
n

n−1
σ2 (4.34)

Substituting for σ2 from Equation (4.33) gives

σ2p =

n

i= 1

xi−x
2

n−1
(4.35)

We use Equation (4.35) to generate a sample-adjusted or unbiased variance. This technique is
known as Bessel’s correction. The denominator is often described as the number of degrees of
freedom. We will see it is used in number of distributions. By definition it is the number of
values in the dataset that can be freely adjusted while retaining the value of any quantified sta-
tistical parameters. In this case we have quantified only one parameter – the mean. We can
freely adjust n − 1 of the values, provided we adjust the nth value to keep the total, and hence
the mean, constant.
In practice, if the number of data points is sufficiently large, the error introduced is small. For

example, with a value of 50 for n, the effect on σ2 will be to change it by about 2%, with a
change in σ of less than 1%.
To remove the need to first calculate the sample mean, Equation (4.35) can be rewritten as

σ2p =

n

i= 1

xi
2−2x

n

i= 1

xi + nx2

n−1
=

n
n

i= 1

xi
2−

n

i= 1

xi

2

n n−1
(4.36)
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4.8 Skewness and Kurtosis

Like variance, skewness (γ) and kurtosis (κ) are used to describe the shape of the distribution.
To mathematically represent the distribution of the data we first have to choose the form of the
distribution. That chosen is known as the prior distribution. It will contain parameters (such as
mean and variance) that are then adjusted to fit the real distribution as close as possible. The
main use of skewness and kurtosis is to assess whether the actual distribution of the data is then
accurately represented. They are examples of moments. The kth raw moment (m) is defined as

mk =

N

i= 1

xki

N
(4.37)

Although of little use, the zeroth raw moment (k = 0) has a value of 1. The first raw moment
(k = 1) is the population mean (μ). Central moments (m ) are calculated about the popula-
tion mean

mk =

N

i= 1

xi−μ
k

N
(4.38)

The first central moment will evaluate to zero.

m1 =

N

i= 1

xi−μ

N
=

N

i= 1

xi−Nμ

N
= μ−μ= 0 (4.39)

The second central moment is the population variance; replacing k in Equation (4.38) with 2
gives Equation (4.31). Higher moments are generally normalised or standardised, by dividing
by the appropriate power of standard deviation of the population, so that the result is
dimensionless.

mk =

N

i= 1

xi−μ
k

N σkp
k > 2 (4.40)

Skewness (γ) is the third central moment. If the number of data points in the sample is large
then we can calculate it from Equation (4.40). Strictly, if calculated from a sample of the pop-
ulation, the formula becomes

γ =
n

n−1 n−2

n

i= 1

xi−x
3

σ3p
n > 2 (4.41)

If the skewness is greater than zero, it might indicate there are more values higher than the mean
than there are below it. Or it might indicate that the values higher than the mean are further from
it than the values below it. The value of skewness does not indicate the cause. It does not tell us
whether the mean is less than or greater than the median.

As a simple example, consider a dataset containing the values 98, 99, 100, 101 and 107. The
majority of the values are less than the mean of 101, indicating that the skew might be negative.
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However, the one value greater than the mean is far more distant from it than the others –
possibly indicating a positive skew. This is confirmed by Equation (4.41), which gives the
skewness as 1.7.
Figure 4.3 shows (as the coloured line) the normal distribution with a mean of 0 and standard

deviation of 1. A source of confusion is that a positive skewness indicates a skew to the right.
The black lines show increasing skewness while keeping the mean and standard deviation con-
stant. The mode has moved to the left but, as skewness increases, values below the mean have
approached the mean while some of values above the mean now form a more extended tail.
A normal distribution is symmetrical about the mean. Some texts therefore suggest that

skewness lying between −0.5 and +0.5 is one of the indications that we can treat the distribution
as normal. However, while a symmetrical distribution has a skewness of zero, the converse is
not necessarily true. For example, a large number of values a little less than the mean might be
balanced by a small number much higher than the mean. Skewness will be zero, but the dis-
tribution is clearly not symmetrical.
In any symmetrical distribution, the mean, median and mode will all have the same value.
Kurtosis (κ) is the fourth central moment given, for a sample of the population, by

κ =
n n+ 1

n−1 n−2 n−3

n

i= 1

xi−x
4

σ4p
−

3 3n−5
n−2 n−3

n > 3 (4.42)

The kurtosis of a normal distribution is 3; for this reason many texts use the parameter γ1 as
skewness and γ2 as excess kurtosis.

γ1 = γ γ2 = κ−3 (4.43)

Kurtosis is a measure of how flat or peaked is the distribution. It is a measure of how much of
the variance is due to infrequent extreme deviations from the mean, rather than more frequent
small deviations. This is apparent from examining Equation (4.42). If the deviation from the
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Figure 4.3 Skewness
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mean is less than the standard deviation then xi−x σP will be less than 1. Raising this to the
fourth power will make it considerably smaller and so it will contribute little to the summation.
If the deviations are predominantly larger than the standard deviation (i.e. the distribution has
long tails) then kurtosis will be large. Specifically, if excess kurtosis is positive (κ > 3) then the
distribution is leptokurtic, i.e. it has a higher peak with long tails. If negative (κ < 3) then it is
platykurtic, i.e. more flat with short tails. If excess kurtosis is zero (κ = 3) the distribution is
described as mesokurtic. Indeed, if excess kurtosis is outside the range −0.5 to +0.5, we should
not treat the distribution as normal. Many commonly used distributions, as we will see later, are
leptokurtic and can be described as super-Gaussian. Platykurtic distributions can be described
as sub-Gaussian.

Most spreadsheet packages and much statistical analysis software use excess kurtosis. To
avoid confusion, and to keep the formulae simpler, this book uses kurtosis (κ) throughout.

Kurtosis is quite difficult to detect simply by looking at the distribution curve. Figure 4.4
shows (as the coloured line) the normal distribution – with a mean of 0 and a variance of 1.
The black line has the same mean and variance but with kurtosis increased (to around 20).
Figure 4.5 also shows the same normal distribution but this time the kurtosis is kept at zero
and the variance reduced (to around 0.115). The dashed line looks almost identical to the solid
line – although close inspection of the tails of the distribution shows the difference. Figure 4.6
shows the same distributions plotted on a cumulative basis and shows much the same difficulty.
If, instead of plotting the function, the distribution were plotted from the data, it is even less
likely that kurtosis could be seen. To detect it reliably (and to quantify it) kurtosis should at least
be calculated as above, but preferably estimated from curve fitting.

Higher order moments can be defined but their interpretation is difficult and are rarely used.
The fifth moment is hyperskewness and the sixth hyperflatness.

In addition to calculating the skewness and kurtosis from the data, we also need to determine
them for the chosen distribution function. As we will see later, many distributions are docu-
mented with simple formulae but for some the calculations are extremely complex. Under these
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circumstances it is common to instead give a formula for the raw moments. We will see in the
next chapter that a distribution can usually be described by a probability density function
(PDF), f(x). Central moments are then defined as

mn =
+ ∞

−∞
x−μ nf x dx (4.44)
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Figure 4.5 Decreasing variance

0.0

0.2

0.4

0.6

0.8

1.0

–4 –2 0 2 4

F
(x

)

x

 increased kurtosis

 reduced variance

Figure 4.6 Comparison between kurtosis and variance
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Raw moments defined as

mn =
+ ∞

−∞
xnf x dx (4.45)

The term ‘moment’ is used in other areas of engineering. In general it is a physical quantity
multiplied by distance. For example, in mechanical engineering, where it is also known as tor-
que, it is force multiplied by the perpendicular distance to where the force is applied.
Equation (4.44) explains why the term is applicable to statistics. If n is 1, it is the probability
density multiplied by the distance from the mean. The mechanical engineer might use the first
moment to determine the centre of gravity; the statistician uses it to determine the mean.

Provided Equation (4.45) can be integrated then we can develop formulae for the raw
moments (m) and use these to derive the required parameters. The mean (μ) is

μ =m1 (4.46)

Variance, by definition, is

σ2P =

N

i= 1

xi−μ
2

N
(4.47)

Expanding gives

σ2P =

N

i= 1

xi
2

N
−

2μ
N

i= 1

xi

N
+ μ2 =m2−μ

2 (4.48)

So, given the formulae for m1 and m2, we can calculate the standard deviation

σ2P =m2−m
2
1 (4.49)

A similar approach can be developed for skewness; by definition it is

γ =

N

i= 1

xi−μ
3

Nσ3P
(4.50)

Expanding gives

γ =
1

Nσ3P

N

i= 1

xi
3−3μ

N

i= 1

xi
2 + 3μ2

N

i= 1

xi−μ
3 (4.51)

∴ γ =
m3−3m1m2 + 2m3

1

m2− m2
1

3 2
(4.52)

The formulae for some distributions is documented in terms of γ2, suggesting that γ might be
positive or negative. While a negative skewness is quite possible, it does not arise from choos-
ing the negative square root. Mathematically Equation (4.47) might suggest that σp can be
negative, but we always take the positive root of variance to give standard deviation. The
denominator of Equation (4.50) is therefore positive. Skewness will only be negative if the
numerator is negative.
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For kurtosis

κ =

N

i= 1

xi−μ
4

Nσ4P
(4.53)

Because its definition includes only even powers, kurtosis cannot be less than zero. Excess kur-
tosis however, if kurtosis is less than 3, will be negative.
Expanding Equation (4.53) gives

κ =
1

Nσ4P

N

i = 1

xi
4−4μ

N

i= 1

xi
3 + 6μ2

N

i= 1

xi
2−4μ3

N

i= 1

xi + μ
4 (4.54)

∴ κ =
m4−4m1m3 + 6m2

1m2−3m4
1

m2− m2
1

2 (4.55)

Instead of a formula for the moments, the moment generating function may be documented.
This is normally written asM(t). Moments are determined by successively differentiatingM(t)
and setting t to zero.
We will see later that the formulae for skewness and kurtosis for the normal distribution are

trivial; skewness is 0 and kurtosis is 3. However, as an example, we will derive them from the
published moment generating function that, for the normal distribution, is

M t = exp μt +
σ2

2
t2 (4.56)

Differentiating

dM t

dt
= μt + σ2t exp μt +

σ2

2
t2 (4.57)

Setting t to zero gives

m1 = μ (4.58)

Differentiating again

d2M t

dt2
= μt + σ2t

2
+ σ2 exp μt +

σ2

2
t2 (4.59)

Setting t to zero gives

m2 = μ
2 + σ2 (4.60)

From Equations (4.49) and (4.58)

σ2p = σ
2 (4.61)

Differentiating again

d3M t

dt3
= μt + σ2t

3
+ 3σ2 μt + σ2t exp μt +

σ2

2
t2 (4.62)

Setting t to zero gives

m3 = μ
3 + 3μσ2 (4.63)
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From Equation (4.51)

γ =
μ3 + 3μσ2−3μ μ2 + σ2 + 2μ3

σ3
= 0 (4.64)

Differentiating again

d4M t

dt4
= μt + σ2t

4
+ 6σ2 μt + σ2t

2
+ 3σ4 exp μt +

σ2

2
t2 (4.65)

Setting t to zero gives

m4 = μ
4 + 6μ2σ2 + 3σ4 (4.66)

From Equation (4.54)

κ =
μ4 + 6μ2σ2 + 3σ4−4μ μ3 + 3μσ2 + 6μ2 μ2 + σ2 −3μ4

σ4
= 3 (4.67)

If Equation (4.45) cannot readily be integrated, it is possible to calculate the raw moments
using the trapezium rule.

mn =
1
2

∞

i= −∞
xni f xi + xni−1f xi−1 xi−xi−1 (4.68)

We can again use the normal distribution to demonstrate this method. Figure 4.7 plots f(x)
against x for the normal distribution that has a mean of 0 and a variance of 1. We will show in
the next chapter how f(x) is determined.

Table 4.4 shows how Equation (4.68) is applied. The range of imust be large enough so that
f(x) is very close to zero at the extremes. Because of the multiplying effect of the xn term, this is
particularly important for the higher moments. In this example, we achieve this by ranging x
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Figure 4.7 Normal distribution
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Table 4.4 Applying trapezium rule to determine moments

x f(x) xf(x) m1 x2f(x) m2 x3f(x) m3 x4f(x) m4 μ σ γ κ

−6.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−5.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −34211 1170468119
−5.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −20442 417928670
−5.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −13954 194749909
−5.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 −10011 100267085
−5.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 −7365 54268904
. . . . . . . . . . . . . .

−0.5 0.352 −0.176 −0.352 0.088 0.484 −0.044 −0.792 0.022 1.498 −0.352 0.600 −1.699 5.361
−0.4 0.368 −0.147 −0.368 0.059 0.492 −0.024 −0.795 0.009 1.499 −0.368 0.597 −1.657 5.303
−0.3 0.381 −0.114 −0.381 0.034 0.496 −0.010 −0.797 0.003 1.500 −0.381 0.593 −1.636 5.306
−0.2 0.391 −0.078 −0.391 0.016 0.499 −0.003 −0.798 0.001 1.500 −0.391 0.588 −1.632 5.343
−0.1 0.397 −0.040 −0.397 0.004 0.500 0.000 −0.798 0.000 1.500 −0.397 0.585 −1.636 5.385
0.0 0.399 0.000 −0.399 0.000 0.500 0.000 −0.798 0.000 1.500 −0.399 0.584 −1.640 5.404
0.1 0.397 0.040 −0.397 0.004 0.500 0.000 −0.798 0.000 1.500 −0.397 0.586 −1.631 5.376
0.2 0.391 0.078 −0.391 0.016 0.501 0.003 −0.798 0.001 1.500 −0.391 0.590 −1.602 5.290
0.3 0.381 0.114 −0.381 0.034 0.504 0.010 −0.797 0.003 1.500 −0.381 0.599 −1.546 5.144
0.4 0.368 0.147 −0.368 0.059 0.508 0.024 −0.795 0.009 1.501 −0.368 0.611 −1.466 4.949
0.5 0.352 0.176 −0.352 0.088 0.516 0.044 −0.792 0.022 1.502 −0.352 0.626 −1.364 4.720
. . . . . . . . . . . . . .
5.5 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 3.000 0.000 1.000 0.000 3.000
5.6 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 3.000 0.000 1.000 0.000 3.000
5.7 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 3.000 0.000 1.000 0.000 3.000
5.8 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 3.000 0.000 1.000 0.000 3.000
5.9 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 3.000 0.000 1.000 0.000 3.000
6.0 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 3.000 0.000 1.000 0.000 3.000



from −6 to +6 (i.e. 6 standard deviations) where the value of f(x) is less than 10−8. As usual, with
the trapezium rule, accuracy is improved by making (xi − xi−1) as small as practical. In our
example, an interval of 0.1 is used. Due to space restrictions, only selected rows are included
in the table. Each of the raw moments (m1,m2,m3 andm4) is calculated from Equation (4.68) as
cumulative sums. Equations (4.46), (4.49), (4.52) and (4.55) are then used to calculate μ, σ, γ
and κ. Figure 4.8 plots these values against x. It shows that the graphs for all four parameters
converge quickly to the values we expect.

Not all distributions have moments that converge; the areas of trapezia can increase as i
increments, so giving an infinite value for the total area. In other words, the result of
Equation (4.45) can be infinite.

There are other measures of skewness. One is the Pearson first skewness coefficientwhich is
based on the mode (xmode) and is defined as

γP =
μ−xmode

σ
(4.69)

The Pearson second skewness coefficient is defined as three times the first coefficient. There is
the non-parametric skew that replaces the mode in Equation (4.69) with the median. Others
include Bowley’s measure of skewness, also known as Galton’s measure of skewness, which
uses the first, second and third quartiles.

γB =
Q3−Q2 − Q2−Q1

Q3−Q1
(4.70)

There is also Kelly’s measure of skewness that uses the first, fifth and ninth deciles.

γK =
D9−D5 − D5−D1

D9−D1
(4.71)
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While such measures are indicative, there is no guarantee that they relate to the skewness, as
defined byEquations (4.41) and (4.52). For example, it is possible for them tohave a different sign.
There are similar alternative measures of kurtosis – again which have limited use.

4.9 Correlation

The calculation of covariance (σxy) is a useful first step in determining whether there is any
correlation between two variables (x and y). It is an example of a mixed moment. For a sample,
it is defined as

σxy =

n

i = 1

xi−x yi−y

n−1
(4.72)

If there is no correlation between x and y then the covariance will be close to zero. However if y
tends to be above its mean when x is above its, then it will have a positive value. Similarly if one
variable tends to be below its mean when the other is above, then it will have a negative value.
This can be a useful step in dynamic model identification. Determining the covariance between
PV and MV will tell us whether the process gain is positive or negative.
The variance of a value derived from two or more measurements, for example the rate of

change of inventory determined by subtracting the flow out from the flow in to a process, is
normally determined by summing the variances of the two measurements. This is correct if
the error in one measurement is not influenced by the other, i.e. they are truly independent vari-
ables. Measurement errors might be correlated if, for example, they have a common cause. For
example, a change in fluid properties might affect both flowmeasurements similarly. If they are
correlated then calculation of the combined variance must take account of the covariance(s).

σ2x−y = σ2x −σxy + σ2y −σyx = σ2x + σ
2
y −2σxy (4.73)

We can see from Equation (4.72) that σyx is the same as σxy. By convention we write it in this
way because we subtract, from the variance of y, its covariance with respect to x. Note that,
depending on the value of σxy, the variance of the difference in flows can be smaller than
the variance of either flow. If x and y are perfectly correlated, for example governed by y =
x + c, then the variance of the flow difference will be zero.
The variance of the sum of correlated measurements is determined by modifying

Equation (4.73) so that the covariances are added rather than subtracted. For example, estimat-
ing the feed to a process by adding correlated measurements of its three product flows would
have a variance calculated from

σ2x + y+ z = σ2x + σxy + σxz + σ2y + σyx + σyz + σ2z + σzx + σzy

= σ2x + σ
2
y + σ

2
z + 2 σxy + σxz + σyz

(4.74)

Note that, while it is true that independent variables have a covariance of zero, the converse is
not true. Covariance measures only linear correlations. For example, if y = sin(x), then x and y
are clearly correlated but, provided x varies over a range greater than 2π, the covariance would
be close to zero.
A limitation of covariance is that it is difficult to determine the significance of its value since

it depends on the magnitude of the variables. When x and y are identical the covariance will

46 Statistics for Process Control Engineers



reach its maximum possible value. This will be the variance of x (which is also the product of
the standard deviations of x and y). Dividing the covariance by the standard deviations of x and
y gives the dimensionless Pearson coefficient (R).

R=
σxy
σxσy

=

n

i= 1

xi−x yi−y

n

i= 1

xi−x
2

n

i= 1

yi−y
2

(4.75)

To avoid having to first calculate x and y, this can be rewritten as

R=

n
n

i= 1

xiyi−
n

i= 1

xi
n

i= 1

yi

n
n

i= 1

xi
2−

n

i= 1

xi

2

n
n

i= 1

yi
2−

n

i= 1

yi

2
(4.76)

Rwill be in the range −1 to +1. If there is an exact correlation (such that yi =mxi + c) then Rwill
be +1 ifm is positive and −1 ifm is negative. Often R2 is used to remove the sign. A value for R
of zero means that there is no relationship between x and y. It is important to appreciate that a
nonzero value of R does not indicate that the values of x are necessarily close to the correspond-
ing values of y. It only tells us they are correlated. It is therefore of limited value, for example, in
assessing whether an inferential property closely matches the corresponding laboratory result.
It is a measure of precision, not accuracy.

4.10 Data Conditioning

Data conditioning is a mathematical method that may be required to modify the data in some
way to make it more suitable for use. Process control engineers will be familiar with techniques,
such as linearisation and filtering, to condition a process measurement to improve control. Here
we use techniques to enable a distribution to be well fitted.

In selecting which distribution to fit it is important to consider the range of the data. Process
data is generally bounded. If subject to either a minimum or maximum limit, but not both, it is
single-bounded. If subject to both it is described as double-bounded. The same terms apply to
distributions. Engineers most commonly choose to fit the normal distribution. This is
unbounded. It assumes that there is a finite (albeit small) probability that the process measure-
ment can have any value.

Some process measurements are very clearly bounded. For example, the level in a product
storage tank must lie between zero and its maximum capacity. Further it is reasonable to expect
the level to be anywhere in this range. Some double-bounded distributions assume that the var-
iable x is ranged from 0 to 1. We would therefore scale the tank level (L) accordingly.

xi =
Li−Lmin

Lmax−Lmin
(4.77)

If we wish to fit a double-bounded distribution to such data, the choice of Lmin and Lmax

would be clear. However, as another example, the C4 content of propane must lie between
0 and 100 vol% but in practice we would never see laboratory results anywhere near 100%.
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The same would apply, more so, to concentrations measured in ppm (parts per million). We
would not have chosen such units if the concentration could approach 106 ppm. Clearly the
range must be chosen to cover all possible results but making it too large can reduce the accu-
racy of the fitted distribution.
Conditioning the data in this way will change the value of some of the location and disper-

sion parameters determined by curve-fitting. The mean will now be a fraction of the range and
must be converted back to engineering units.

L= Lmax−Lmin x+ Lmin (4.78)

Standard deviation and variance will be similarly affected and need conversion.

σL = Lmax−Lmin σx (4.79)

σ2L = Lmax−Lmin
2σ2x (4.80)

Parameters such as skewness and kurtosis are dimensionless and so not affected by scaling.
Since an unbounded distribution covers an infinite range of possible values, a single-

bounded distribution can also be described as semi-infinite. They are usually lower-bounded
in that they assume aminimum value for x, usually zero, but no upper limit. They will, however,
usually include a location parameter to move the lower bound. Its value can be either chosen by
the engineer or adjusted as part of curve-fitting. Such a distribution might be better suited to our
example of the C4 content of propane. We are sure that a result cannot be below zero but we are
not entirely sure of the upper limit.
There are, of course, many examples where we would prefer to use an upper-bounded dis-

tribution. If, instead of C4 content, the laboratory reported purity (i.e. the C3 content), then the
maximum is clearly 100% and we might be unsure about the minimum. However there are far
fewer upper-bounded distribution functions and so, to widen the choice, we might convert the
purity (P) results to impurities (x).

xi = 100−Pi (4.81)

This form of conditioning only affects the resulting mean; it does not affect the standard
deviation.
It is common to use basic controller outputs in constraint controllers as an indication that a

hydraulic constraint has been reached. Usually the requirement is to run at the maximum out-
put. In assessing how well this is being achieved would therefore require an upper-bounded
distribution. To avoid this we can convert the output (OP) to a deviation from target (SP),
remembering that we must then choose a distribution that can include negative measurements.

xi = SP−OPi (4.82)

Such an approach is also helpful if the target changes. For example, it is common for some
operators to be more comfortable than others in running the process closer to its limits, and so
increase SP. In principle we could partition the data by SP and fit a distribution for each
operator. By converting each result to a deviation from SP we can fit a single distribution
to all the results.
Data conditioning might also be considered if the variation in the dataset is small

compared to the mean. This can reduce the accuracy of the fitted distribution. As a rule
of thumb, the coefficient of variation (as described in Section 4.5) should be at least
0.02. If this is not the case then the data should be conditioned by subtracting a fixed bias
from every value. The bias can be any sensible value, close to that defined by
Equation (4.83).

48 Statistics for Process Control Engineers



bias > x−50σ (4.83)

Such a problem can arise when applying Equation (4.81). While Pmay show sufficient var-
iation with respect to its mean, xmay not. Applying the bias effectively subtracts P from a value
less than 100.

Once the distribution has been fitted, the bias must be added back to the mean, quartiles and
to any bounds. Parameters derived from moments, such as standard deviation, require no
correction.
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5
Probability Density Function

The probability density function (PDF) is a mathematical function that represents the distribu-
tion of a dataset. For example, if we were to throw a pair of unbiased six-sided dice 36 times, we
would expect (on average) the distribution of the total score to be that shown by Figure 5.1. This
shows the frequency distribution. To convert it to a probability distribution we divide each
frequency by the total number of throws. For example, a total score of 5 would be expected
to occur four times in 36 throws and so has a probability of 4/36 (about 0.111 or 11.1%).
Figure 5.2 shows the resulting probability distribution.

Throwing dice generates a discrete distribution; in this case the result is restricted to integer
values. Probability should not be plotted as continuous line. The probability of a non-integer
result is zero. But we can develop an equation for the line. In this case, if x is the total scored, the
probability of scoring x is

p x =
6− x−7

36
1 ≤ x ≤ 13 (5.1)

Because x is discrete this function is known as the probability mass function (PMF). If the
distribution were continuous we can convert the probability distribution to a probability density
function (PDF) by dividing the probability by the range over which it applies.

A condition of both functions is that the area they contain must be unity (or 100%) – in other
words we are certain to be inside the area. So, in general

∞

x = −∞

p x dx= 1 (5.2)

Provided this condition is met then any function can be described as a PDF (or PMF). We will
show later that there are many functions that have a practical application. Unfortunately there
are a larger number that appear to have been invented as a mathematical exercise and are yet to
be shown that they describe any real probability behaviour.
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While the PMF allows us to estimate the probability of x having a certain value, the PDF does
not. It only tells us the probability of x falling within a specified range. The probability of x
being between a and b is

P a ≤ x ≤ b =

b

a

p x dx (5.3)
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Figure 5.1 Expected frequency of total score from two dice
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In fact, if x is a continuous parameter, the probability of it having a particular value is zero. To
understand this, let us assume we have calculated the probability of it lying, for example,
between 99 and 100 as 0.1. The probability of it lying between 99.9 and 100 will be approx-
imately 0.01; between 99.99 and 100 it will be about 0.001, etc. To approach 100 the interval
(b − a) must be zero, as will the probability. Indeed, setting a equal to b in Equation (5.3), would
give the same result.

The integral of the PDF (or PMF) is known as the cumulative distribution function (CDF). It
is obtained, as the name suggests, by cumulatively summing the distribution. For example,
Figure 5.3 is derived by summing the probabilities in Figure 5.2.

Figure 5.4 plots the PDF of each of two continuous distributions that we will cover later. The
black curve is that of a uniform distribution and the coloured curve (often described at the bell
curve) that of a normal distribution. The area under both is unity.

So far, we have used p(x) as the notation for the PMF and P(x) for the discrete CDF. It is
common for f(x) to be used for the PDF and F(x) for the continuous CDF. In Figure 5.4 the
normal distribution, f(x), exceeds 1 for a range of values for x. This can be confusing; it does
not mean that the probability at this point is greater than 1. To illustrate this, a point on the curve
is highlighted at x = 2.1. Figure 5.5 shows the corresponding CDF for each distribution. It
shows that the probability of x being less than or equal to 2.1 (i.e. x being between −∞ and
2.1) is about 0.63.

F(x) must range from 0 to 1 as x varies from its minimum possible value (xmin) to its
maximum (xmax). If it did not, then the underlying f(x) could not be described as a PDF.
Provided F(x) passes through the points (xmin,0) and (xmax,1) and is monotonic (i.e. increases
over the range without ever decreasing), then the CDF can be virtually any shape. That for the
normal distribution is described as an ogive.

If the CDF is the integral of the PDF, it follows that the PDF can be derived by differentiating
the CDF. Similarly the PDF can be derived as the slope of the CDF at the value x.

f x =
F xi −F xi−1

xi−xi−1
(5.4)
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The PDF is therefore measured as distribution per unit of x – explaining why it is described
as a ‘density’ function.
The CDF permits us to determine the probability of being within part of the feasible range.

While we may be able to integrate a PDF, integrating a PMF will give the wrong result. To
illustrate this, we can integrate Equation (5.1) over the range 11 to 12, expecting the result
to be 3/36.
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12

11

6− x−7
36

dx=

12

11

13−x
36

dx=
1
36

13x−
x2

2

12

11

=
1 5
36

(5.5)

Because Equation (5.1) is a PMF it must be integrated as a summation.

P a ≤ x ≤ b =
1
36

b

x = a

6− x−7 (5.6)

Figure 5.3 plots this function; as required it varies from 0 (at x = 1) to 1 (at x = 12). While
essential to convert a PMF to a CDF, similar numerical methods are also applied to convert any
PDF that is mathematically too complex to be integrated.

Functions that do not integrate to unity over the feasible range require a standardisation (or
normalisation) constant to force them to do so. Indeed, in this example, the factor 1/36 in
Equation (5.6) could be thought of as this constant.

Another term occasionally used is the survival function, usually written as S(x). The name
comes from the application of statistics to demographic studies; S(x) would be the probability of
an individual surviving beyond a certain age. It can also be described as the reliability function,
the reverse distribution, or the complementary CDF. It is used, for example, in situations where
we may wish to estimate the probability that equipment will continue to operate beyond a spe-
cified time. F(x) will tell us the probability of survival being less than the specified time so it
follows that

S x = 1−F x (5.7)

5.1 Uniform Distribution

The uniform distribution is also known as the rectangular distribution. While process data is
unlikely to be uniformly distributed, it has an important role in generating statistical data for
studies – most commonly in Monte Carlo simulation.

An example of a physical system that shows a uniform distribution is the throwing of an
unbiased six-sided dice. Each of the six possible outcomes is equally likely. If we throw the
dice a sufficient number of times then the distribution of outcomes will be uniform. This is
described by the discrete form of the uniform distribution. Including the minimum integer value
(xmin) and the maximum (xmax), there are n possible values of x, where

n= xmax−xmin + 1 (5.8)

The PMF is the probability of any of these values occurring and, since the distribution is
uniform, is

p x =
1
n

(5.9)

The CDF is the probability of being less than or equal to x. The number of values included is
x − xmin + 1. As usual, the CDF is obtained by summing p(x) from xmin to x.

P x =
x−xmin + 1

i= 1

1
n

(5.10)
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This can be written in the form

P x =
x −xmin + 1

n
(5.11)

The reader may be unfamiliar with the open-topped brackets x . They represent the floor of x,
i.e. the largest integer that is less than or equal to x. Their purpose is to allow the distribution to
be plotted as a continuous staircase-shaped line, rather than as a series of discrete points. In
effect, x is treated as a continuous variable. For simplicity we will omit the brackets in later
examples of discrete distributions. The reader may be interested to know that there is a converse
symbol x which is the ceiling of x or the smallest integer that is greater than or equal to k.
Further, placing x between a floor bracket and a ceiling bracket means that x should be rounded
to the nearest integer.
Key parameters of the discrete uniform distribution are

μ=
xmin + xmax

2
(5.12)

σ2 =
n2−1
12

(5.13)

γ = 0 (5.14)

κ =
3 7n2−3
5 n2−1

(5.15)

Most spreadsheet packages include a random number function. Typically it would generate a
number in the range 0 to 1. This distribution is described as U(0,1). In the absence of this func-
tion, pseudo-random numbers can be generated using a modified multiplicative congruential
method. One example is

xn = α βxn−1 + n modβ + xn−2 mod1 (5.16)

For readers unfamiliar with modulus, ‘a mod b’ is the remainder when a is divided by b. The
special case of ‘amod 1’ is also known as themantissa of a. The generator is seededwith values
(between 0 and 1) for xn–2 and xn–1 and started by setting n to 1. It will then generate the next
value in the range 0 to 1. Theoretically at least β values can be generated before any cycling
occurs. The terms α and β are prime numbers (e.g. 30341 and 628051), large enough so that the
cycle length is sufficiently large. Choosing different seed values produces different sequences
of random numbers. If this is required, the seeds can be derived as some function of the
system clock.
The result is described by the continuous form of the distribution. The plot of the PDF for U

(0,1) is a rectangle of unity width. Since the area it contains must be unity, the PDF must be

f x = 1 (5.17)

More generally, if x is ranged from xmin to xmax, the PDF of U(xmin, xmax) is

f x =
1

xmax−xmin
(5.18)

To obtain the CDF we integrate the PDF between xmin and x

F x =

x

xmin

dx

xmax−xmin
=

x

xmax−xmin

x

xmin

=
x−xmin

xmax−xmin
(5.19)
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This is plotted as the black line in Figure 5.5.
We describe, later in this chapter, the role of the quantile function (QF). Generally, it is

obtained by inverting the CDF. From it, given the probability (F) that a measurement lies
between −∞ and x, we can determine x. In this case it would be

x F = xmin +F xmax−xmin 0 ≤F ≤ 1 (5.20)

Key parameters of the continuous uniform distribution are

μ =
xmin + xmax

2
(5.21)

σ2 =
xmax−xmin

2

12
(5.22)

The distribution is symmetrical and so
γ = 0 (5.23)

Not surprisingly, with no peak or long tails in the distribution, it is platykurtic (κ < 3).

κ = 1 8 (5.24)

5.2 Triangular Distribution

While one might think that the triangular distribution is too simplistic to be applicable to proc-
ess data, it can often fit extremely well. Further, the simplicity of the mathematics involved
helps with the general understanding of the PDF, the CDF and the relationship between them.

Figure 5.6 shows a continuous triangular distribution. To be a PDF the area it encloses must
be unity.

xmax−xmin h

2
= 1 ∴ h=

2
xmax−xmin

(5.25)

f(
x)

xmin xmaxxmode

h

x

A1 A2

Figure 5.6 Development of the triangular distribution
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The PDF can therefore be developed. Firstly

f x = 0 for x< xmin and x ≥ xmax (5.26)

Secondly, from the similarity of triangles

f x =
x−xmin

xmode−xmin
×

2
xmax−xmin

for xmin ≤ x < xmode (5.27)

f x =
xmax−x

xmax−xmode
×

2
xmax−xmin

for xmode ≤ x< xmax (5.28)

The CDF is, by definition, the area under the PDF between −∞ and x.

F x = 0 for −∞ < x ≤ xmin (5.29)

F x = 1 for xmax ≤ x < ∞ (5.30)

For values of x greater than the minimum and less than the mode, F(x) is the area labelled
A1, i.e.

F x =
x−xmin f x

2
=

x−xmin
2

xmode−xmin xmax−xmin
for xmin ≤ x< xmode (5.31)

For values of x greater than the mode and less than the maximum F(x) is (1 − A2), i.e.

F x = 1−
xmax−x

2

xmax−xmode xmax−xmin
for xmode ≤ x< xmax (5.32)

Note that differentiating the equations for F(x) gives the corresponding equations for f(x).
As an example of a triangular distribution we can plot f(x) and F(x) for the total score from

throwing two unbiased six-sided dice. The minimum score (xmin) is 2, the maximum (xmax) is
12 and the most frequent (xmode) is 7. Figure 5.7 plots Equations (5.26) to (5.28). Figure 5.8
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Figure 5.7 PDF of continuous triangular distribution
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plots Equations (5.29) to (5.32). Note that the plots assume that x is a continuous variable that,
in the case of dice, it is clearly not. We cannot use Figure 5.8 to determine the probability of the
total score being within a specified range.

Historically the triangular distribution has been used where very little data are available.
Indeed, it has been called the lack of knowledge distribution – requiring only a minimum, a
maximum and a ‘best guess’ mode. We will cover later its use (now discredited) in the PERT
distribution.

The mean of the triangular distribution is

μ=
xmin + xmode + xmax

3
(5.33)

The variance is

σ2 =
x2min + x2mode + x2max−xminxmode−xminxmax−xmodexmax

18
(5.34)

Skewness is restricted to the range −0.566 (when xmode = xmin) to 0.566 (when xmode = xmax).
Its formula is too large to present here. In the absence of long tails, the distribution is platykur-
tic. Kurtosis is fixed at 2.4.

5.3 Normal Distribution

The normal distribution is by far the most commonly used. Also known as the Gaussian dis-
tribution, it has a mean of μ and a standard deviation of σ. The PDF is

f x =
1

σ 2π
exp

− x−μ 2

2σ2
(5.35)
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This is described (as it will be in this book) as N(μ,σ2). Confusingly, N(μ,σ) will appear in other
texts. Figure 5.9 shows the effect of changing μ and σ.
This equation is converted to the standard normal function by setting the mean to 0 and the

variance to 1. Described as N(0,1), it will have the formula

ϕ z =
1

2π
exp

−z2

2
(5.36)

Figure 5.9 shows this as the coloured curve. The term z is known as the z score, defined by

z=
x−μ

σ
(5.37)

Although rarely used in this book, the term ϕ[f(z)] is used commonly in other texts as an
abbreviation, i.e.

ϕ f z =
1

2π
exp −

f z 2

2
(5.38)

To obtain the CDF we would normally integrate Equation (5.36)

F z =
1

2π

x

−∞

exp
−z2

2
dz (5.39)

However the function does not integrate simply. Instead we define the error function (erf ). This
has nothing to do with errors. It is the probability that a random variable, chosen from N(0,0.5),
falls between −x and x.

erf z =
1
π

x

−x

exp −z2 dz=
2
π

x

0

exp −z2 dz (5.40)

0.0

0.1

0.2

0.3

0.4

0.5

–10 –5 0 5 10

f(
x)

x

μ = 0
σ = 1

μ = –3
σ = 2

μ = 3
σ = 1.5

Figure 5.9 Effect of varying μ and σ on PDF of normal distribution

60 Statistics for Process Control Engineers



A useful property of the error function is

erf −x = −erf x (5.41)

Using the trapezium rule, Figure 5.10 plots Equation (5.40), applying Equation (5.41) for
negative values of x. Using a numerical approximation, the erf function is provided in most
spreadsheet packages.

The CDF of the standard normal distribution is then

Φ z =F z =
1
2

1 + erf
z

2
(5.42)

Like the term for the PDF, ϕ[f(z)], Φ[f(z)] is commonly used as an abbreviation for the CDF.
Including μ and σ gives the CDF for the normal distribution

F x =Φ
x−μ

σ
=
1
2

1 + erf
x−μ

σ 2
(5.43)

Figure 5.11 shows how this distribution is affected by the values of μ and σ.
The complementary error function (erfc) is defined as

erfc x = 1−erf x or 1 + erf −x (5.44)

Not to be confused with the function, there is the erf distribution, described by

f x =
α

π
exp −α2x2 (5.45)

Comparison with Equation (5.35) shows that it is a form of the normal distribution with

μ = 0 and σ =
1

α 2
(5.46)

Using it offers no advantage over the normal distribution.
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5.4 Bivariate Normal Distribution

All the distributions included in this book are described in their univariate form, i.e. they
describe the distribution of a single variable. The mathematics of multivariate distributions
are quiet complex and better handled with a software product. However, we can use a bivariate
example to demonstrate the key features. In the same way that there are multiple forms of
distribution for a single variable, there are a large number for multiple variables. As an example
of a joint distribution we will use the bivariate normal distribution.
The PDF for two variables, x and y, is

f x,y =
1

2πσxσy 1−R2
exp −

z

2 1−R2
σx,σy > 0 (5.47)

where

z=
x−x 2

σ2x
+

y−y 2

σ2y
−
2R x−x y−y

σxσy
(5.48)

R is the Pearson coefficient, as defined by Equation (4.75).
Using the analyses of a site’s fuel gas, shown Table A1.5, we could develop a full multivar-

iate distribution for all 11 components. However, as a bivariate example, we will choose x as
mol% hydrogen (H2) and y as mol% methane (CH4).
By calculation from the data

x= 57 36 y = 12 69 (5.49)

σx = 6 63 σy = 1 87 σxy = −10 35 (5.50)

R= −0 835 (5.51)

Remembering that R is ranged from −1 to 1, the result shows that there is strong reverse cor-
relation between x and y. Not surprisingly, if the concentration of the major component
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Figure 5.11 Effect of varying μ and σ on CDF of normal distribution
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increases, the concentration of the next largest component will likely decrease. In effect, the
sum of the two components is approximately constant.

Figure 5.12 plots Equation (5.47) against x and y. The diagonal orientation confirms the
correlation – high H2 content corresponds to low CH4 content and vice versa. Figure 5.13
is a two-dimensional representation of the same distribution. It comprises four vertical slices
along the CH4 axis, showing how the distribution of H2 content varies as the CH4 content var-
ies. Figure 5.14 comprises five slices along the H2 axis showing the distribution of CH4 content
as H2 content varies. Figure 5.15 plots the cumulative distribution. In the absence of a CDF this
is derived by applying the trapezium rule twice – for both x and y.
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Figure 5.12 Plot of bivariate PDF

0.000

0.005

0.010

0.015

0.020

0.025

35 40 45 50 55 60 65 70 75 80

pr
ob

ab
il

it
y 

de
ns

it
y

H2 mol%

13

15

11 mol% CH4

9

Figure 5.13 Effect of CH4 content on distribution of H2 content
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While useful for displaypurposes, bivariate distributions probablyhave little application to the
role of process control engineers. Further, our example violates a key aspect of this book. We
should fit the distribution’s shape parameters to the data not, aswehavedonehere, calculate them
from the data.While it would be possible to fit the five parameters, listed in Equations (5.49) and
(5.50), it would likely offer little advantage over the use of a univariate distribution.
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5.5 Central Limit Theorem

Proof of the Central Limit Theorem involves mathematics beyond the scope of this book.
Nevertheless its conclusion is of great importance – particularly in supporting the assumption
that the variation in key process performance parameters follows a normal distribution. Funda-
mentally the theorem states that summing a large number of independent values, selected
randomly, will result in a total that is normally distributed – no matter what the shape of the dis-
tribution of the values selected. In effect a dependent process parameter, such as weekly butane
production, is determined by the sum of a large number of independent flow measurements
recorded every minute. Each of these independent measurements does not have to be normally
distributed but the dependent variable will be.

As a simple example consider the results of throwing a single unbiased six-sided dice. There
is an equal probability (of 1/6) of throwing any number from 1 to 6. Throwing the dice enough
times would result in a uniform distribution of the score (x) with a mean (μ) and variance (σ2).

μ=

6

i= 1

xi

6
= 3 5 (5.52)

σ2 =

6

i= 1

xi−μ
2

6
=
35
12

= 2 9 (5.53)

Figure 5.16 shows the normal distribution, with the same mean and variance, superimposed
on the true distribution. Clearly the distributions are very different. However if we sum two
values each selected from the uniform distribution, the equivalent of throwing two dice
36 times, we expect the distribution shown in Figure 5.17. The mean and variance of this dis-
tribution are obtained by summing the means and variances of the source distributions, giving
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Figure 5.16 Frequency distribution of the score from a single dice
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values of 7 and 5.8 respectively. Figure 5.17 shows that the now triangular distribution is closer
to the normal distribution. Closer still is the distribution for throwing five dice 7,776 times, as
shown in Figure 5.18. It will have a mean of 17.5 and a variance of 14.6.
We have demonstrated how summing values selected randomly from a uniform distribution

will generate a normal distribution, but the Central Limit Theorem goes further than this.
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Consider a six-sided dice with the sides having values of 1, 1, 2, 5, 6 and 6. Throwing such a
dice will generate the distribution, shown in Figure 5.19, which is far from uniform. Throwing a
large enough number of such dice will generate a normal distribution. For example, as shown in
Figure 5.20, throwing seven such dice 279,936 times approaches it.
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The Central Limit Theorem applies only to the addition (or subtraction) of random variables.
For example, instead of summing the scores from three six-sided dice, we multiply them. The
expected distribution of the result is shown in Figure 5.21. Highly skewed, it is far from a nor-
mal distribution. However, multiplication is equivalent to summing logarithms. The Central
Limit Theorem would therefore suggest that the logarithm of the combined score would be
normally distributed. Indeed, as Figure 5.22 shows, this would appear to be the case. Rather
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Figure 5.21 Probability distribution of the product of three dice throws
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than fit the normal distribution to the logarithm of a measurement, we will see later that the
lognormal distribution fits to the measurements directly.

Process measurements are the result of far more complex mathematical functions that
describe process behaviour. These include those describing reaction kinetics, heat and mass
balancing, heat transfer, vaporisation, equipment behaviour, etc. It is not practical to design
a distribution function based on an understanding of the mathematics involved. Instead we take
the far more pragmatic approach of selecting a distribution largely on the basis that it fits the
data well.

5.6 Generating a Normal Distribution

With dice, since only integer scores are possible, the mean and standard deviation must be cal-
culated from discrete values. For continuous functions a slightly different approach is required.
Consider a number randomly generated from a uniform distribution in the range 0 to 1.
Frequency, on the vertical axis, is replaced with probability. Since we are certain to generate
a value in this range, the area under the distribution curvemust be unity– as shown inFigure 5.23.

The mean of the distribution is 0.5. Since f(x) = 1, from Equations (4.45) and (4.48), the var-
iance is

σ2 =

1

0

x2 dx−μ2 =
x3

3

1

0

−
1
2

2

=
1
12

(5.54)

As we saw from the Central Limit Theorem, if we add together 12 values (x1 to x12) randomly
selected from the same uniform distribution, we would obtain a value chosen from a distribu-
tion very close to normal. The total would have a mean of 6, a variance of 1 and thus a standard
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Figure 5.23 Uniform probability distribution
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deviation of 1. This gives us a method of generating a value (x) from a normal distribution
required to have a mean of μ and a standard deviation of σ.

x = μ+ σ
12

i= 1

xi−6 (5.55)

5.7 Quantile Function

We previously defined quartiles – the three points that divide the ranked data into four equal
groups. Similarly deciles divide the data into 10 groups; centiles divide the data into 100
groups. Quantiles divide the data into n equal groups, where n is the number of data points
and so each group will contain one data point. We will make use of these later in quantile plots.
The quantile function (QF) is related to these. Also known as the per cent point function, it is
the inverse of the CDF. For example, the CDF of the standard normal distribution is given by
Equation (5.43). Inverting it gives

x F = μ+ σ 2erf −1 2F−1 0 ≤F ≤ 1 (5.56)

This allows us, given the probability (F), to determine x. While the erf−1 may not be included
as a function in a spreadsheet package, the inverse of the normal distribution is likely to be.
Should it not be, then the CDF of the normal distribution can be closely approximated by

F x ≈
1
2

1 +
x−μ

x−μ
1−exp −

2 x−μ 2

πσ2

1
2

(5.57)

The advantage of this approximation is that it can be inverted to give a QF that is a close
approximation to Equation (5.56).

x F ≈μ+ σ −
π

2
ln 1− 2F−1 2 0 ≤F ≤ 1 (5.58)

Figure 5.24 shows a plot of Equation (5.56) for the case where μ is 0 and σ is 1. It is the
inverse of the standard normal function developed from rearranging Equation (5.42), i.e.

z F = 2erf −1 2F−1 0 ≤F ≤ 1 (5.59)

As Figure 5.24 shows, by selecting 0.25 as the value for F, we obtain the first quartile as −0.674.
We could have obtained the median (F = 0.5) and the third quartile (F = 0.75). The QF can also
be used to obtain the confidence interval that we will cover this in more detail in Section 8.2. As
shown the single tailed 95% confidence value is 1.64.
Another important use of the QF is the generation of data that follow the specified PDF, e.g.

for use in Monte Carlo simulation. We first determine F by sampling from the uniform distri-
bution U(0,1) and use the QF to generate the corresponding x.
Some CDF are readily invertible. For others the function may exist in a spreadsheet package.

Failing this, then an iterative approach can be used – adjusting x in the CDF until the required
value for F is reached. Alternatively F can be plotted against x. The ease with which x can be
obtained from F might be a criterion in selecting the best distribution.
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Although relatively unusual, there are distributions that can only be expressed as a QF. As we
will see later, this does not prevent them being used; we simply have to take a slightly different
approach to fitting them to data.

5.8 Location and Scale

We have seen, for the normal distribution, that μ defines the central value (or location) of the
data and σ the dispersion (or scale). Most other distributions require these parameters but, for
simplicity, they are often documented without them. The distribution is then in standard form.
Including the location parameter (e.g. μ) in any standard distribution changes it to a shifted
distribution. Including the scaling parameter (e.g. σ) changes it to a scaled distribution. There
are other less used definitions of a standard distribution. For example, Gauss defined his as
having a variance of 0.5. The word ‘standard’ is also used by authors to describe a distribution
that is written as the developer first specified it. Perhaps worse is the use of ‘normal’ for the
same purpose. To avoid ambiguity, in this book we instead use the word ‘classic’.

Only in a few distributions are the location and scale parameters the same as the mean and the
standard deviation. Further there is no standardisation on what symbols are used. Throughout
this book the terms μ and σ have been reserved specifically for mean and standard deviation.
Wherever possible we have used α as a more general measure of location and β as a more gen-
eral measure of scale. Where available, formulae are given so that μ and σ can be calculated
from α and β. If there is no simple formula for σ, in most distributions it is proportional to β. We
can exploit this, for example, when determining the improvement achievable by improved con-
trol. We typically base this on halving the standard deviation. We can instead halve β. Provided
we can then determine what impact this can have on the average operation, we do not need to
quantify σ. We will illustrate this with examples later.

In some distributions, where it makes better sense to do so, β is replaced with 1/λ. For exam-
ple, βmight represent the mean time between events occurring. Its reciprocal (λ) would then be
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Figure 5.24 Quantile function for normal distribution N(0,1)
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the frequency of events and might be described as the rate parameter. We have used δwhen an
additional shape parameter is included. If used to change skewness it might be described as the
asymmetry parameter. If to change kurtosis it might be the tail index or tail heaviness param-
eter. We have used δ1, δ2, etc. if there is more than one. Symbols, such as θ and τ, which have
other meanings specific to process control, have been replaced.
Some distributions include in their names words, such as ‘beta’, ‘gamma’, ‘kappa’ and

‘lambda’, indicating the use of these characters in the originally published PDF. Standardising
results in these symbols being largely replaced. However, as will become clear, naming of dis-
tributions is already very ambiguous and not a reliable way of distinguishing one from another.
While we have used the names under which distributions are published, the reader need not be
concerned too much about their origin – using instead the PDF or CDF to identify a distribution
unambiguously.
Care must be taken if a scale parameter is added to a PDF expressed in standard form. In

standard form it might be expressed as f(z) and we wish to convert it to f(x), where

z=
x−α

β
(5.60)

Firstly, we have to compensate the normalisation constant to ensure the PDF still integrates
to 1 over the range −∞ to –∞. Remembering that the PDF is the derivative of the CDF, so

f x =
dF x

dx
(5.61)

f z =
dF z

dz
(5.62)

dF x

dx
=
dF z

dz

dz

dx
(5.63)

Differentiating Equation (5.60)

dz

dx
=
1
β

(5.64)

So

f z =
1
β
f x (5.65)

For example, comparing Equations (5.35) and (5.43) for the normal distribution shows the
inclusion of 1/σ outside of the exponential term.
Equation (5.65) explains why β is described as the scale parameter in some distributions.

Changing it changes the vertical scale of the plot of the PDF.
Secondly, from rearranging Equation (5.60)

x = α+ βz (5.66)

Therefore

μx = α+ βμz (5.67)

Thus any calculation of the meanmust be modified to include α and β. Similarly any calculation
of the standard deviation must be multiplied by β or, more commonly, the calculation of
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variance must be multiplied by β2. Skewness and kurtosis, since they are dimensionless, are
unaffected by the inclusion of α and β.

Many distributions require z to be positive. For example, they might include functions such
as zk, where k is not an integer. Similarly, some distributions include ln(z) or 1/z and so z cannot
be 0. These are one reason why a distribution may be lower-bounded at zero. Adding the loca-
tion parameter moves the lower bound to α. If fitting a distribution that includes values of x that
are less than α then, for these values, f(x) and F(x) are set to zero. Indeed, in some distributions,
α is replaced with xmin – the minimum permitted value of x.

5.9 Mixture Distribution

There are several ways in which distributions can be combined. A distribution can even be com-
bined with another version of itself. But we need to be careful with terminology. There are
several words that are synonymous with ‘mixture’ but describe quite different distributions.
For example, the compound distribution we cover later is quite different from the mixture dis-
tribution we describe here. Similarly, joint distribution is another name for a multivariate dis-
tribution. As covered in Section 5.4, it describes the distribution of more than one variable.
A combined distribution is again something different, as explained in the next section.

A mixture distribution is the weighted sum of several distributions. The weights are known
asmixture weights and the distributions asmixture components. As a relatively simple example
we might produce multiple grades of the same product. For example, many polymers are man-
ufactured to meet a specification on MFI (melt flow index) but the target value for the index
varies by product grade. Most plants will produce several grades, not simultaneously but by
switching from one to another as product demand requires. If we were to attempt to fit a dis-
tribution toMFI, we need to separate the variation caused by poor control from that caused by
changing target. One way of doing this is to determine the distribution for each grade and then
‘mix’ the distributions to produce a PDF known as the mixture density.

For example, two grades of polymer might have meanMFI of 55 and 65. We might find the
standard deviation of the first grade is 2 and that of the second is 3. Productionmight be split 30/
70 per cent. If each is normally distributed then, from Equation (5.35), the PDF is therefore

f MFI =
0 3

2 2π
exp

− MFI−55 2

2 × 22
+

0 7

3 2π
exp

− MFI−65 2

2 × 32
(5.68)

Figure 5.25 plots this function. We could further refine it by choosing different distributions for
each grade. For example, the data for one might be highly skewed and therefore cannot be accu-
rately represented by the normal distribution.

While a mixture distribution might be an effective way of presenting control performance, it
is inadvisable to combine the data in this way for the purpose of quantifying control improve-
ment. Ideally this should be calculated by grade and the weighting factors applied to sum the
benefits.

5.10 Combined Distribution

While a mixture distribution is a combined distribution, this term is more usually reserved for
one that has shape parameters derived from the parameters of two or more distributions of the
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same type. For example, we can two combine normal distributions by taking a weighted aver-
age of their means and variances to produce another normal distribution.
We might calculate product loss by subtracting what has been delivered from what has been

produced. The result will have a distribution that reflects the confidence we have in the measure
of loss. Its mean is the difference between the two measurements. We can assign variances to
both measurements that reflect their accuracy. The variance of the loss is then the sum of the
two variances. We have developed a combined normal distribution.
Such an approach is used in data reconciliation. This is covered in detail in Chapter 18. Most

process measurements have multiple measurements of the same property, none of which are
completely reliable. For example, a composition might be measured by an on-stream analyser
and by the laboratory. Or the flow of feed to a process might be measured and also derived by
totalling the measured product flows.
To take the simplest example of two measurements of the same property, we might assume

the measurements (μ1 and μ2) are means of two normal distributions. From instrument speci-
fications we can estimate the reliability of each measurement and convert these to standard
deviations (σ1 and σ2). We show in Chapter 18 that the best estimate (μ) is the weighted average
of the two ‘opinions’, where the weights are

w1 =
σ21

σ21 + σ22
w2 =

σ22
σ21 + σ22

(5.69)

μ=w1μ1 +w2μ2 (5.70)

The resulting variance will be the weighted sum of the variances.

σ2 =w1σ
2
1 +w2σ

2
2 ∴ σ =

σ1σ2

σ21 + σ22
(5.71)
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Figure 5.25 Probability density of MFI results
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Other combined distributions arise from combining variables randomly selected from other
distributions. For example, if we select x1 from N(0,1) and x2 from U(0,1), the ratio x1/x2 will
follow the slash distribution. Included in this book are many distributions derived in this way.
While they probably originated as mathematical curiosities and bear no relation to the mech-
anism by which process conditions arise, this does not mean they should be discounted as
impractical. If the end result proves consistent with process behaviour, they should at least
be considered as a choice for prior distribution. Indeed, we will show that the slash distribution
will often represent well the distribution of process disturbances.

5.11 Compound Distribution

We will cover, with worked examples in Part 2, a large number of compound distributions.
These are developed by assuming that a shape parameter in one distribution is not a constant,
but varies according to some other distribution. For example, if we assume the mean of the
normal distribution itself follows the exponential distribution, we obtain the exponentially
modified Gaussian (EMG) distribution. If we assume the standard deviation follows the inverse
gamma distribution, we obtain the Student t distribution.

The mathematics involved in developing compound distribution can be very complex. It is
not important we know exactly how any distribution is derived. Indeed, we do not need to know
even what ‘parent’ distributions are used. As with any distribution, we test its worth by explor-
ing how well it fits the data.

5.12 Generalised Distribution

It is common practice to generalise a distribution by including additional shape parameters. The
CDF of a distribution, F(x), by definition ranges from 0 to 1 as x ranges from −∞ to +∞. It will
remain a CDF if it raised to any power (δ). Doing so produces a generalised distribution. By
setting δ to 1, it still includes the original distribution but adjusting it means it also includes
many other distributions.

However, this is not the only method by which a distribution can be generalised. Many distribu-
tions shift and scale the variable x to produce the variable zwhich is ranged 0 to 1. Raising z to the
powerδdoesnotaffect its rangeand thereforeoffers anotherwayadistributionmightbegeneralised.

zδ =
x−α

β

δ

(5.72)

Other approaches include making a shape parameter a variable, dependent on x. For exam-
ple, the scale parameter (β) might be replaced with a simple function

z=
x−α

β−δ x−α
(5.73)

Since this changes the range of z, some compensating change will also be made to the nor-
malisation constant so that the CDF still ranges from 0 to 1. Using the method described in
Section 5.8, the CDF must be multiplied by A, where

A=
dz

dx
=

β

β−δ x−α 2 (5.74)
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The problem is that many of the common distributions have had several of these methods
applied. For example, there are at least three distributions sharing the name generalised Gaus-
sian distribution but that are entirely different from each other.

5.13 Inverse Distribution

There is considerable confusion about the use of the term ‘inverse’. As we saw in Section 5.7,
the inverse of a CDF is known as the QF. It is simply the CDF rearranged to make the variable
(x) the subject of the equation. But there are also distributions that can be described as ‘inverse’.
One common definition of an inverse distribution is the distribution of the reciprocals of the
values in the dataset.
As an example we can use the exponential distribution that we cover later in Section 12.7. In

its simplest form, its CDF is

F x = 1−e−z where z=
x−α

β
(5.75)

∴F x = 1−exp −
x−α

β
(5.76)

As usual, we obtain its PDF by differentiating its CDF.

f x =
1
β
exp −

x−α

β
(5.77)

The CDF of the reciprocal of z is therefore

F
1
z

= 1−exp −
β

x−α
(5.78)

Differentiating

f x =
β

x−α 2 exp −
β

x−α
(5.79)

This is quite logically named the inverse exponential distribution and we will cover it in detail
in Part 2. However it might well have been named the ‘reciprocal exponential distribution’.
Indeed there are distributions that have adopted this convention. There are also distributions
described as ‘inverse’ that appear to have no connection with any reciprocal. There are even
‘reciprocal inverse’ distributions.

5.14 Transformed Distribution

In addition to zδ and 1/z, many other transformations can be applied. Most commonly, these
include ln(z) and exp(z). These can be useful if the data contains very large or very small values.
Other transformations include |z| which, like z2, can be useful if we have no need to distinguish
between positive and negative values. While distributions are often named to reflect the trans-
formation, there is no agreed convention. Differentiating a CDF using the transformed z can
produce a very complex PDF; often its origin may not therefore be immediately obvious.
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5.15 Truncated Distribution

Truncation is a method of converting an unbounded distribution into one that is bounded.
When fitting it to data, values less than xmin or greater than xmax are effectively removed. This
will reduce the area under the PDF curve. To keep it at unity, we adjust the normalisation of f(x)
to produce ft(x) – the PDF for the truncated distribution.

ft x =
f x

F xmax −F xmin
(5.80)

We have to do the same to the CDF.

Ft x =
F x

F xmax −F xmin
(5.81)

Figures 5.26 and 5.27 show an example of the normal distribution N(5,1) being truncated so
that it is bounded between 3 and 6.

To determine the mean and standard deviation, we first convert x to standard form (z).

zmin =
xmin−μ

σ
(5.82)

zmax =
xmax−μ

σ
(5.83)

We then use the distribution in its standard form. For the normal distribution this is described
by Equations (5.36) and (5.42). The mean and variance are then

μt = μ +
ϕ zmin −ϕ zmax

Φ zmax −Φ zmin
σ (5.84)
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σ2t = 1 +
zminϕ zmin −zmaxϕ zmax

Φ zmax −Φ zmin
−

ϕ zmin −ϕ zmax

Φ zmax −Φ zmin

2

σ2 (5.85)

For the example above, the mean (μt) of the truncated distribution is therefore 4.77 and the
standard deviation (σt) 0.72.

5.16 Rectified Distribution

Rectification sets, to zero, all negative values in a dataset. Figure 5.28 shows the result of doing
so to N(1,1). The spike at x = 0 includes all the values set to zero. Theoretically it has width of
zero so, to contribute to the area under the PDF, it must be infinitely tall. This is known as the
Dirac delta function or δ function. It is defined as

1
σ π

exp
x2

σ2
δσ x as σ 0 (5.86)

Perhaps fortunately, rectification of process data is unlikely ever to be required.

5.17 Noncentral Distribution

Although this may not be immediately obvious from the form of the PDF, many of the distri-
butions covered in this book are transformations of the normal distribution. These include
the beta, chi, F and Student t distributions. We omit the complex mathematics of such trans-
formations on the basis that omission does not inhibit successful application. The resulting
PDFs are presented in their central form. This simply means that they were derived from
the standard normal distribution N(0,1). If developed from the more general normal
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distribution, with an arbitrary mean and variance, they become noncentral versions. While this
makes them a little more versatile, the level of mathematics involved in their application is com-
plex and often only feasible with custom software. We will, in Part 2, apply some of them. The
remainder are included only in sufficient detail to demonstrate their impracticality.

5.18 Odds

Those familiar with gambling will be aware of probability being expressed as odds. For exam-
ple, if the probability of a horse winning a race is 0.25, out of four races we would expect it to
lose three and win one. In the UK and Ireland, odds would then be quoted as ‘3-to-1 against’
(a win). These are known as fractional odds. In general it is the probability of failure expressed
as a ratio to the probability of success. If p is the probability and the odds against are pa, con-
version is performed by

pa =
1−p
p

∴ p =
1

pa + 1
p < 0 5 (5.87)

Should the probability of success be greater than that of failure, then the ratio is quoted as ‘odds
on’ (po) rather than ‘odds against’. For example, if the probability was 0.8, then the odds would
be quoted ‘4-to-1 on’, not ‘1-to-4 against’.

po =
p

1−p
∴ p =

po
po + 1

p > 0 5 (5.88)

The ratio would always be expressed using integers and not necessarily is the simplest form.
For example, by tradition, 100-to-8 is preferred to 25-to-2. Both convert to a probability close to
0.074. If p is 0.5, then the odds are quoted as ‘evens’.
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In most other parts of the world decimal odds are used. These are simply the reciprocal of the
probability. So ‘3-to-1 against’ would translate to 4; ‘4-to-1 on’ would be 1.25; ‘100-to-8
against’ would be 13.5 and ‘evens’ would be 2.
In practice, odds quoted by bookmakers do not equate to real probabilities. They are shor-

tened, i.e. the probability increased, so that the bookmaker makes a profit. So, if the odds of
all the horses in a race were converted to probabilities and summed, the total would be greater
than 1. For example, in a race of three equally matched horses, we would expect each horse
to have odds of 2-to-1. The bookmaker might offer odds of 3-to-2. If £100 was then bet on
each horse, those who bet on the winner would collect £250 and the bookmaker has made a
profit of £50.
While odds are not commonly used in statistics, there are a small number of distributions that

use Equation (5.87) as a transformation to convert a double-bounded distribution (0 < p < 1) to
a lower-bounded one (0 < pa <∞). For example, we will cover later the minimax distribution.
With this conversion it becomes the minimax odds distribution.
Another commonly used transformation removes both bounds (−∞ < p <∞).

p =
2p−1

2p 1−p
0 < p < 1 (5.89)

5.19 Entropy

Entropy is a term with which the control engineer may already be familiar, usually from its use
in thermodynamics –where it is loosely defined as the ‘randomness’ of a process. As an exam-
ple, consider a heater burning a hydrocarbon fuel. If we were interested in a particular hydrogen
atom we can be sure that, before combustion, it is somewhere within the fuel system. After
combustion, now part of water molecule, it could literally be anywhere on the planet. There
has been a massive increase in the unpredictability of its location.
Entropy has a very similar meaning in statistics, where it is also a measure of unpredictabil-

ity. However, it is primarily a theoretical concept with no immediately obvious application to
the process industry. It is included here primarily for those readers who have come across it
elsewhere and are curious about its meaning.
As an example, consider a single toss of an unbiased coin. Because it is equally likely to land

heads or tails, there is no predictability. Consider now a double-headed coin. The outcome of
the toss is now completely predictable.
In general, for a discrete variable, entropy (H) is defined as

H=
n

i = 1

pilog2
1
pi

(5.90)

The number of possible outcomes (n) in tossing an unbiased coin is 2. One outcome is land-
ing heads with a probability (p1) of 0.5. The other is landing tails with a probability (p2) of 0.5.
Entropy is therefore

H= 0 5log2
1
0 5

+ 0 5log2
1
0 5

= 1 (5.91)

By convention, logarithm to the base 2 is used, in which case the units of entropy will be bits or
sometimes Shannon. But any base can be used; base 3 gives the result in trits, while base
10 gives Hartley. Using the natural logarithm gives nats.
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For the double-headed coin, entropy is

H= log2 1 = 0 (5.92)

Figure 5.29 shows the relationship between entropy and the probability of the coin landing
heads. As expected, there is zero unpredictability if p is 0 or 1 and maximum unpredictability
if p is 0.5.

The entropy for a continuous variable is defined as

H=

∞

−∞

f x log2
1
f x

dx (5.93)

For example, from the PDF of the uniform distribution, described by Equation (5.18)

H =

xmax

xmin

1
xmax−xmin

log2 xmax−xmin dx

=
log2 xmax−xmin

xmax−xmin

xmax

xmin

dx

= log2 xmax−xmin

(5.94)

Since x is equally likely to be anywhere in its range, Equation (5.94) gives the maximum uncer-
tainty for any double-bounded variable.

We can apply the same methodology to the normal distribution, giving

H =
1 + log2 2πσ2

2
(5.95)
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Figure 5.29 Variation of predictability of coin toss
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This can be shown to be the maximum uncertainty for an unbounded variable of known
variance (σ2).
From the exponential distribution we get

H = 1 + log2 μ (5.96)

This can be shown to be the maximum uncertainty for a lower-bounded variable of known
mean (μ).
Theoretically, when fitting a distribution to data, we should choose the one that has the

maximum entropy. This minimises the amount of prior information built into the distribution.
This is more a philosophical argument; in practice we simply choose the distribution that fits
the best.
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6
Presenting the Data

Many of the ways that data are analysed for presentation do nothing to help the engineer design
and support control schemes.A pie chart, for example, cannot readily be used to estimate the ben-
efits captured by improved control or to assess the accuracy of an inferential property. But one of
the key responsibilities of a process control engineer is to present data to others that have little
understanding of the technology. Thismight be to seniormanagement in order to obtain approval
ofmajor expenditure on an advanced control project. Itmight be to themaintenance department to
highlight how poor performing instrumentation is restricting the benefits being captured by
improved control. It might be to the laboratory drawing attention to unexplained differences
between their results and an inferential property or an on-stream analyser. With a little imagina-
tion, even a simple pie chart can be used to great effect to illustrate a key issue to others.

This chapter covers techniques that might be used for such presentation, along with those that
can also be used for engineering.

6.1 Box and Whisker Diagram

Figure 6.1 is box and whisker diagram drawn for the 100 results for C2 in propane cargoes,
shown as Table A1.2. The width of the box is the interquartile range – in this case 0.925.
The division is the median – in this case 3.5. In this form of the diagram, the ends of whiskers
represent the range of data – 1.9 to 5.0. There are other forms in which the whiskers are used to
represent different aspects of the distribution. One is to set their length so that points outside
their range become outliers; it is common then to also show the outliers as points.

The diagram can also of course be drawn vertically. It is also possible to havemultiple diagrams
drawn on the same axis to permit comparison between datasets. There are various formulae for
determining the width of the notch cut into each box at themedian. If a notch in one diagram over-
laps that in another, some conclusion might be drawn concerning similarity of the distributions.

While perhaps a useful visual aid, the box and whisker diagram offers little scope for further
analysis of the data.

Statistics for Process Control Engineers: A Practical Approach, First Edition. Myke King.
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6.2 Histogram

Of the many ways of presenting data in chart form, the most commonly used by control engi-
neers is likely to be the histogram. Strictly it shows the probability density at which values
occur in the dataset. But it can also be drawn to show observed probability or, in its simplest
form, frequency.
The histogram is a special form of a bar graph. A bar graph can be used to display any type of

data. If used to display cardinal data, it becomes a histogram. Further the bars in a bar graph are
usually spaced, while those in a histogram touch. Bar graphs can be drawn vertically or hor-
izontally, whereas histograms are generally vertical.
To plot the results in Table A1.2 as a histogram, we first split the range of the data into bins.

Figure 6.2 shows the result of choosing a bin width of 2. It shows one result is in the interval 0 to
2, 74 between 2 and 4 and the remaining 25 are between 4 and 6. Note that the horizontal axis
labels show the upper limit of each bin. The chosen bin is clearly too large to help us understand
the distribution. Figure 6.3 shows the result of choosing too small a bin, in this case 0.1.
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Figure 6.1 Box and whisker diagram
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Figure 6.2 Bins too wide
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There are several published methods for choosing the optimum number of bins (nbins) based
on the number of data points (n). From this we can determine the bin width (wbin) based on the
range of the data, although it is likely that we would need to round wbin to some sensible value.

wbin =
xmax−xmin

nbins
(6.1)

The simplest technique for estimating nbins is

nbins = n (6.2)

In our example this would suggest 10 bins.We clearly have to cover the full range of the data, in
this case 1.9 to 5.0; this would give an interval of 0.31. Rounding this off to a more sensible 0.3
gives Figure 6.4.

Other techniques for choosing the number of bins include Sturge’s formula.

nbins = log2 n + 1≈3 32log10 n + 1 (6.3)

This is applicable if the distribution is close to normal and n is at least 30. The rule states that the
result of applying Equation (6.3) should always be rounded up to the nearest integer. For our
example it would suggest 8 bins with a (rounded) width of 0.4. This is shown in Figure 6.5,
which is considerably better at showing the distribution than Figure 6.4. However, in addition
to choosing the width of the bin, we also have to choose where the first one starts. In Figure 6.5
the first bin is ranged from 1.4 to 1.8. In Figure 6.6 it has been moved to be ranged from 1.5 to
1.9. The distribution is now significantly less clear.

To be reliable any method needs to take account of the dispersion of the data. Those that
suggest the number of bands do so indirectly since the width of the band is calculated from
the range of the data using Equation (6.1). There are methods that suggest the width of the
bin directly. Scott’s normal reference rule uses the standard deviation (σ) of the data.
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Figure 6.3 Bins too narrow
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wbin =
3 49σ

n3
(6.4)

In our example σ is 0.74, suggesting that the width of the bins should be 0.56. Rounding to 0.6
gives Figure 6.7, which is also probably an acceptable view of the distribution.
Similar to Scott’s technique is the Freedman–Diaconis rule, which relies on the interquartile

range (IQR), rather than the standard deviation, in order to reduce the sensitivity to outliers.
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Figure 6.5 Use of Surge’s formula to select number of bins
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wbin =
2 × IQR

n3
(6.5)

In our example IQR is 2.9, suggesting that wbin should be 1.25. In this case, this is well above
any value we might choose.

The calculated bin width may be smaller than the smallest difference between ranked values
in the dataset. This is undesirable because some bins will be then empty and the distribution
poorly represented by the histogram.
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Figure 6.6 Poor choice of starting value for first bin
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What is clear from the techniques described above is that they should only be considered as a
starting point for adjustment by trial and error to determine both bin width and the start point.
For example, Figure 6.8 provides probably the best view. It is based on a bin of 0.5 – not sug-
gested by any of the methods described above.
It is common to use the same bin width for the whole histogram – in which case the frequency

is represented by the height of the bar. But probability is proportional to the area of the bar. This
becomes important if we vary the bin width. This is useful if the distribution has a long tail. The
few data points in the tail can be scattered intermittently and the variation in bar heights will
disguise the true distribution. Making the bins wider in this region helps resolve this.
Histograms can be plotted based on frequency, as we have done so far, or based on a

dimensionless distribution. We do this by dividing the number of data points in each bin
by the total number of points. The height of each bar then represents the observed probability
and the sum of all the bar heights will then be unity. However, this does mean the area of the
histogram is unity. To achieve this we have to divide the height of each bar by its width to
give the probability density. This technique is known as normalisation and the result is shown
as Figure 6.9. This, and the mid-points of each bin, are necessary if we want to fit a PDF and
then superimpose the result onto the histogram. Alternatively, we can convert the probability
density f(x), calculated from the PDF, to probability – by multiplying by the bin width. We
could then multiply this by the number of results in the sample to give the expected
frequency.
We can convert the data used to plot a histogram into a cumulative distribution chart. The

solid black line in Figure 6.10 shows the actual probability plot based on individual results
rather than intervals. It happens, because the laboratory reports to the nearest 0.1 vol%, that
most of the intervals are 0.1. Figure 6.10 is effectively the cumulative version of
Figure 6.3. If the results were from an on-stream analyser reporting more decimal places, then
intervals would vary. The coloured points and the line joining them are determined from the
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Figure 6.8 Optimised bin width
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data used to prepare Figure 6.5. Using the method that we will cover in Chapter 9, the dashed
line is the best fit normal distribution with a mean of 3.58 and a standard deviation of 0.74. The
close match between this and the coloured line confirms that the chosen interval of 0.4
works well.
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Figure 6.10 Cumulative probability plot
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Figure 6.9 Conversion to probability density
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6.3 Kernel Density Estimation

Kernel density estimation is a technique for building a non-parametric PDF. For example, the
PDF of the normal distribution given by Equation (5.35), is parametric in that it includes the
location and shape parameters μ and σ. To fit a parametric distribution we first have to choose
the prior distribution and then adjust the parameters to give the best fit. The advantage of a non-
parametric PDF is that it makes no assumption about the form of the distribution.
A histogram is a form of non-parametric PDF. Kernel density estimation is effectively a his-

togram in which the right-angled corners have been smoothed out. Its advantage is that there is
no need to identify, by trial and error, the width of the bins or their starting point.
The kernel of a parametric PDF is only those parts that are a function of the variable (x).

It omits therefore any normalisation constant, even if it includes any of the distribution
shape parameters. For example, the kernel of the normal distribution is derived from
Equation (5.35) by omitting any part of f(x) which is not a function of x. This gives

K x = exp
− x−μ 2

2σ2
(6.6)

In general the kernel, K(x), of a non-parametric PDF is any mathematical function that satisfies
two conditions. The first is that integrates to unity over the range to which is applies. If its range
is unrestricted then

∞

−∞

K x dx= 1 (6.7)

The second condition is that it must be symmetrical about zero, i.e.

K x =K −x (6.8)

A convenient choice for K(x) is the PDF of the normal distribution, known as the Gaussian
kernel, derived from Equation (5.35).

K x =
1

h 2π
exp −

x−xi
h

2
(6.9)

The inclusion of h, which is known as either the smoothing factor or the bandwidth, makesK(x)
a scaled kernel. In this example h is set at 0.5. Equation (6.9) is applied to every data point (xi) in
the sample. For example, from Table A1.2, x1 is 3.6 and so the kernel is plotted with xi set to 3.6.
This is shown as the solid black line in Figure 6.11. We include kernels for all xi; for example,
the next three are at 3.4, 4.8 and 2.7. Their kernels are plotted as dashed lines. The coloured line
is the kernel density estimate calculated as the average of the four kernels. When completed for
all 100 results, it will approximate to the overall PDF of the data.
The two conditions placed on K(x) ensure that firstly, since the area under each kernel is

unity, the area under the overall PDF will be unity – as required of any PDF. Secondly the
symmetry of each kernel about zero ensures that the mean of the overall PDF will be the same
as the mean of the data.
Figure 6.12 illustrates the effect of the smoothing factor (h). Too small and the resulting dis-

tribution will appear noisy –more closely resembling a histogram. Too large a choice will flat-
ten the distribution. There are several techniques published for choosing the optimum value.
For example, the normal distribution approximation (sometimes known as Silverman’s rule
of thumb) suggests
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h =
4
3n

1
5

σ (6.10)

The standard deviation (σ) of the C2 results is 0.74, leading to a value for h of 0.31. Figure 6.13
plots, as the coloured line, the resulting distribution. The dashed line shows the classic normal
distribution.
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Figure 6.11 Construction of kernel density plot
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Figure 6.12 Effect of smoothing factor
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In addition to the Gaussian kernel, there are many others that satisfy the two conditions. The-
oretically the most accurate is the Epanechnikov kernel.

K x =
3
4h

1−
x−xi
h

2
x−xi < h (6.11)

K x = 0 x−xi ≥ h (6.12)

However, the choice of kernel is very much secondary to the choice of smoothing factor. As
the coloured line in Figure 6.14 shows, adopting the Epanechnikov kernel with h chosen as 0.64
results in a distribution almost identical to that developed from the Gaussian kernel (shown as
the dashed line).
While a non-parametric distribution is useful pictorially, the absence of simple parameters

makes impractical any mathematical analysis. Its main application in the field of process con-
trol is to assess whether the distribution of the data closely matches the prior distribution. For
example, Figure 6.13 would indicate that the data closely follows the normal distribution.
Figure 6.15 is a P–P plot. The black line plots the probability density of the normal distribution
against that of the Epanechnikov kernel distribution – as they increase from zero to their peak at
0.5 and then back to zero. Closely following the coloured line shows that that the two distribu-
tions are virtually identical. In other words, our choice of prior distribution is excellent.
Table A1.1 shows a year of daily laboratory results for C4 content of the same propane prod-

uct – except that these are from the product rundown leaving the LPG splitter, not the cargoes.
Figure 6.16 shows the distribution. The results for the propane leaving the site as cargoes are
likely to be normally distributed, no matter what the distribution of the rundown results, as
suggested by the Central Limit Theorem. However the distribution of rundown results is likely
to be non-symmetrical. Process disturbances cannot reduce the C4 content below zero but the
occasional large disturbance can take it well over the average content. In our example the mean
is around 4.5 but the largest value is around 16.
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Figure 6.13 Result of applying Silverman’s rule of thumb

92 Statistics for Process Control Engineers



Plotting the mid-range of the bins in Figure 6.16, Figure 6.17 shows the comparison between
the kernel density estimate (coloured line) and a fitted normal distribution (black line). It shows
clearly that the real distribution is highly skewed. The frequency–frequency plot in Figure 6.18
is effectively a P–P plot but based on days/year rather than probability density. It confirms that
the distribution is far from normal.
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Figure 6.15 P–P plot demonstrating accuracy of fit
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Figure 6.14 Result of selecting Epanechnikov kernel
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From Equation (4.41) the skewness of the C4 content is calculated as 1.27; this is signifi-
cantly higher than the limit of 0.5 for treating the distribution as normal. Its standard deviation
is 2.42. If treated as normal, from Equation (5.43) we would estimate that there is a probability
of 0.022 that the C4 content would be negative. We clearly do not expect eight such results
per year.
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Figure 6.16 Distribution of C4 content of propane rundown
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Figure 6.17 Comparison between kernel density and fitted normal distribution
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6.4 Circular Plots

There are a variety of ways of devising circular plots. In a histogram the columns are arranged
vertically. They can also be arranged radially – effectively like the spokes of a wheel. This
approach might be used if there is no reason for columns to be ranked. For example, while
the months of the year follow a sequence, they are not ranked. There may be no reason for
starting with any particular month. If we wanted to display the distribution of days by month
we would arrange 12 spokes, at 30 intervals, with their lengths proportional to the number of
days in the month. It would make no difference if we wanted to show a calendar year, from
January to December, or the UK tax year, from April to March. Joining the ends of the spokes
with straight lines results in a radar plot. For example, taking the data from Table A1.1,
Figure 6.19 shows the number of days, by month, that the C4 content of propane was off-grade.
Because of its resemblance to a spider’s web, the radar plot is occasionally described as a spider
chart. However this term is more commonly used for a method of organising ideas that results
in a chart that resembles a spider’s legs. An extended form of this chart is used for mind
mapping.

A radar plot can also be used to present the behaviour of a multivariable controller, as illus-
trated by Figure 6.20. Each spoke would be a selected MV or CV. On each spoke, three points
would be located corresponding to the LO limit, the HI limit and the current value. Joining the
LO points and joining the HI points would display the area in which the process must operate.
Joining the current values will generate an irregular polygon. Process operators quickly learn to
recognise changes in the shape of the polygon and can use this to explore why the controller has
made unexpected moves.

We will see later that there are distribution functions that are specifically designed for cir-
cular plots. They produce something similar to a radar plot, except that the points are joined by a
continuous function, rather than by straight lines. It can be thought of a plot based on polar,
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Figure 6.18 Frequency–frequency plot demonstrating very poor fit
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Figure 6.19 Use of radar plot to show days of off-grade production
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rather than Cartesian, coordinates except that the angle is measured in a clockwise direction.
For example, Figure 6.21 shows the plot of the standard normal distribution.

r =
1

2π
exp

−θ2

2
−π ≤ θ ≤ π (6.13)

The point marked illustrates how the curve is produced. Such an approach might be applicable
if we wished to show, for example, the distribution of wind speeds by direction.

6.5 Parallel Coordinates

Taking a radar plot and returning the spokes to align vertically results in a parallel coordinates
plot. These too can be very useful in assessing the behaviour of MPC or, indeed, any aspect of
process operation. The plot is a two-dimensional graphical method for representing multidi-
mensional space. In the example shown in Figure 6.22, a point in seven-dimensional space
is represented by the coordinates (x1, x2, x3, x4, x5, x6, x7). Since we cannot visualise space
of more than three dimensions, the value of each coordinate is plotted on vertical parallel axes.
The points are then joined by straight lines.

The technique iswell suited topredicting thebehaviour of amultivariable controller, evenbefore
step-testing has been started. Plant history databases comprise a number of instrument tag names
withmeasurements collected at regular intervals. Ifwe imagine the data arranged in amatrix so that
each column corresponds to either aMVor aCV in the proposed controller and each row is a time-
stamped snapshot of the value of each parameter. To this we add a column in which we place the
valueof theproposedMPCobjective function (C) derived from thevalues in the samerow(whereP
are the objective coefficients for the m CVs and Q the objective coefficients for the nMVs), i.e.

C =
m

i= 1

PiCVi +
n

j= 1

QjMVj (6.14)

θ

r

Figure 6.21 Circular plot based on polar coordinates

Presenting the Data 97



Each row in the database is then plotted as a line on the parallel coordinates chart. The result
will initially appear very confused with a large number of lines superimposed. The next step is
to add the HI/LO constraints on each vertical axis. If a line violates any constraint on any axis
then the whole line is deleted. The lines remaining will each represent an occasion in the past
when all the process conditions satisfied all the constraints. The final step is to choose the line
for which the value on the cost axis is the lowest. Since this axis is the MPC cost function, the
line with the lowest value will represent the operation that MPC would select. Provided that the
process has at some stage operated close to the optimum (as defined by MPC) then the chosen
dataset will give some idea of the operating strategy that MPC will implement. If different from
the established operating strategy, this approach gives an early opportunity to explore why.
Any difference should be seen as an opportunity to adopt a more profitable way of operating
the process rather than an error that should be corrected by adjusting the individual objective
coefficients.

6.6 Pie Chart

Instead of making the length of the spokes in a radar plot proportional to the values, we make
the angles between the spokes proportional to them. This results in a pie chart, usually applied
if data is sorted into non-sequential categories and we want to display the proportion of the data
that falls into each category. Figure 6.23 illustrates how the C4 in propane data might be dis-
played. The product is off-grade if the C4 content is greater than 10%. It is considered ‘on spec’
if it is between 8 and 10%. Results in giveaway are split into two groups, depending on the
severity. While not lending itself to any statistical analysis, it does make clear just how poorly
the composition control is performing.

6.7 Quantile Plot

A quantile plot (orQ–Q plot) is similar to a P–P plot and also used to compare the distributions
of two sets of values. It requires each set of values to be ranked in increasing order. While chan-
ging the sequence of the values has no effect on mean or standard deviation, there is no

x1 x2 x3 x4 x5 x6 x7

Figure 6.22 Parallel coordinates
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guarantee that values in one set are sorted into the same time order as the other. For this reason
the technique cannot be used to determine whether the two variables are correlated. For exam-
ple, it cannot be used to validate an inferential property against its corresponding laboratory
result.

The use that the control engineer might make of it is to confirm that data collected for sta-
tistical analysis are distributed according to an assumed distribution. Commonly this would be
applied to data assumed to be normally distributed, but any assumed distribution can be tested.
The QF is used to determine the values expected, if the data follow the assumed distribution.
These are then plotted against the corresponding observed values.

The data points are first ranked, where k is the ranking of each point. The kth smallest value is
knownas the kthorder statistic. The quantile (q) for eachpoint is thenmost simply determined from

q =
k

n
(6.15)

We will use this definition throughout this book when fitting distributions to data. It will appear
when we cover, in Chapter 9, fitting a CDF to data and in many of the worked examples fol-
lowing this. There are however many other formulae, mainly of the form

q =
k−a

n + 1−2a
(6.16)

The term a is chosen (usually in the range 0.0 to 0.5) although, if n is large, the choice has
negligible impact on the conclusion. Depending on its choice, each quantile is therefore cal-
culated from

a= 0 0 q =
k

n + 1
(6.17)

a = 0 5 q=
k−0 5
n

(6.18)

The expected value (x) corresponding to each quantile is calculated using the mean (μ) and
standard deviation (σ) of the observed data. If we are checking whether the distribution is
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Figure 6.23 Use of pie chart to highlight quality control problem
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normal, we use the CDF derived by integrating the PDF as described by Equation (5.35) and
solve for x.

1

σ 2π

x

−∞

e
− x−μ 2

2σ2 dx= q (6.19)

This is the QF and, in this case, would have to be solved by iteration. Fortunately most spread-
sheet packages include the inverse normal function. Equation (6.19) is the same as (5.56).
In fact, we can choose any value for the mean and standard deviation. For example, we might

choose μ as 0 and σ as 1 – effectively applying Equation (5.59). Under these circumstances the
expected values can be described as rankits. If the data are normally distributed then the plot of
actual values against those expected will be a straight line. For the line to pass through the origin
and have a slope of 1, we must use the mean and standard deviation derived from the data. To
highlight any deviation from normal distribution we can add a reference line – commonly
drawn through the first and third quartiles.
Figure 6.24 shows the normal distribution fitted to the gasoil 95% data from Table A1.3. If

we consider the value at 323 C, it would appear to lie very close to the fitted distribution. How-
ever, it is the horizontal separation that is important. There is a mismatch of about 19 C
between the true value and what the distribution curve predicts
Figure 6.25 is the P–P plot but, unlike previous examples, based on cumulative probability

rather than probability density. While it may appear that the fit is reasonable, it is a plot of the
vertical separation between actual and predicted values shown in Figure 6.24.
The Q–Q plot, shown as Figure 6.26, plots the horizontal separation. As can be seen from the

mismatch at 323 C, it now emphasises the poor fit to the tails. Since the intent of improved
control would be to reduce these tails, it is important that they be properly represented by
the chosen distribution. Examination of skewness, calculated from Equation (4.41) as
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−1.13, and kurtosis, calculated from Equation (4.42) as 5.09, confirms that these are well out-
side the criteria for the distribution to be normal.

Rather than comparing a set of values to an expected distribution, we may wish to compare
two sets of values to determine whether they have the same distribution. For example, we might
want to compare two contending inferentials. The datasets are the prediction errors for each.
Both datasets need to contain the same number of values. The C3 in butane inferential has 1,152
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inferred results with the same number of corresponding analyser measurements. To compare
these we would conventionally simply plot each inferred result against its corresponding ana-
lyser measurement. These are shown as the ‘paired’ points in Figure 6.27. For a Q–Q plot we
rank each dataset and then plot the lowest value in one set against the lowest in the other, the
second lowest against the second, etc. The result of doing so is shown as the ‘ranked’ points.
Perhaps surprisingly the correlation appears to be better. However, we have lost the timestamp
correspondence. The resulting, almost straight, line tells us only that the two datasets have very
similar distributions. It tells us nothing about the accuracy of the inferential. However, if the
resulting line were more curved, we might conclude that there was a problem with the infer-
ential. But we cannot quantify the problem in terms of, for example, prediction error.
If the two datasets do not contain the same number of values then the quantiles in one set,

which are missing from the other, need to be added by interpolation – and vice versa. To do so,
we first identify the ranking (k and k + 1) of the two values to be used for interpolation. If we
have used Equation (6.17) to determine q, then

k = int qmissing n + 1 (6.20)

We then determine the weighting factor (w) that should be applied.

w= qmissing n + 1 −k (6.21)

The interpolated value (x) is then

x= 1−w xk +wxk + 1 (6.22)

To illustrate simply how this approach works we can take two very small datasets that have
been ranked. The first (series 1) comprises the four values 2, 4, 7 and 8; the second (series
2) comprises the three values 3, 7 and 9. If we apply Equation (6.17), from the first set we have
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Figure 6.27 Ranked versus paired points comparing inferential to on-stream analyser
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the quantiles 0.2, 0.4, 0.6 and 0.8. From the second we have 0.25, 0.5 and 0.75. We follow the
procedure:

1. We need to add, to the first set, the missing quantile 0.25. Applying Equation (6.20), with n
as 4, gives k as 1. Equation (6.21) then gives w as 0.25. From Equation (6.22), x is therefore
2.5 (0.75 × 2 + 0.25 × 4).

2. We similarly need to add the quantile 0.5. From Equation (6.20), k is now 2. From
Equation (6.19), w is 0.5 and so, from Equation (6.22), x is 5.5 (0.5 × 4 + 0.5 × 7).

3. Following the same procedure to add the quantile 0.75 gives x as 7.75. The first dataset now
comprises the values 2, 2.5, 4, 5.5, 7, 7.75 and 8.

4. We also have to add the missing quantiles to the second dataset. The first of these is 0.2.
From Equation (6.21), with n now 3, we find that k is 0. There is no x0 and so we have
to ignore the 0.2 quantile.

5. We can add the 0.4 quantile. From Equation (6.20) we obtain k as 1. From Equation (6.21)
we find that w is 0.6 and, from Equation (6.22), x is 5.4 (0.4 × 3 + 0.6 × 7).

6. Adding the 0.6 quantile gives x as 7.8.
7. We cannot add the 0.8 quantile because there is no x4. We therefore ignore this. The first set

therefore now includes 2.5, 4, 5.5, 7 and 7.75; the second is 3, 5.4, 7, 7.8 and 9.

Figure 6.28 shows, perhaps more clearly, what the procedure above has achieved. The orig-
inal sets are shown as the solid points. The missing quantiles are added by linearly interpolating
between the two adjacent points. Plotting gives the Q–Q plot shown as Figure 6.29. Although
there are far too few points to reach a firm conclusion, the distance of the points from the
straight line would indicate that the two datasets have dissimilar distributions.

As we saw with the gasoil 95% example, the Q–Q plot was best at drawing attention to the
differences between two distributions. If the number of values is not the same in each dataset,

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

pr
ob

ab
il

it
y

value

series 1
series 2

Figure 6.28 Procedure for adding missing quantiles

Presenting the Data 103



the Q–Q plot is more complex to prepare than the P–P plot, and perhaps not as intuitively under-
stood. Nevertheless, the effort is likely to be justified – particularly so if the calculation above is
computerised.
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7
Sample Size

7.1 Mean

To have confidence in the conclusion of any statistical analysis, we must ensure that the number
of samples (n) is sufficiently large. As an example, consider the batch blending quality data in
Table A1.7. By calculation, the 78 results have a mean of 97.9 and a standard deviation of 9.1.
To have confidence in our estimate of benefits from improved control, we need the confidence
interval of the estimate of the mean. We showed in Section 4.7 that estimates of the sample
mean, calculated using different selection of n results from the population, will have a variance
of σ2p n. Choosing a confidence interval from Table A1.8, for example 95%, gives a value of
1.96 for z. The margin of error (ε) is therefore

ε=
zσp
n
=
1 96 × 9 1

78
= 2 0 (7.1)

In other words we are 95% confident that the population mean lies between 95.9 and 99.9. If we
wanted to improve on this we can determine the required sample size by rearranging
Equation (7.1).

n=
zσp
ε

2
(7.2)

So, for example, if we wanted to improve the accuracy of the estimate of mean to ±1.0, we
would need 318 results.

It becomes more complex if we want to check the confidence that the mean has changed, for
example, as a result of implementing control improvements. The confidence we have in the
estimate of mean before the improvement is

μ1 = x1 ±
z σp 1

n
(7.3)
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Assuming we use the same number of results in the calculation, after implementation, it is

μ2 = x2 ±
z σp 2

n
(7.4)

We showed in Section 4.6 that the variance of the difference between two values is the sum of
the variances. Assuming the intent of the control improvement is to increase the mean, then the
improvement is

μ2−μ1 = x2−x1 ± z
σp 1 + σp 2

n
(7.5)

So, if we want to be 95% sure that the mean has increased, then

x2−x1 > 1 96
σp 1 + σp 2

n
(7.6)

The weakness of this method of course is that it assumes we know the standard deviations of the
population – both before and after the improvement. In practice these will also be estimated
from the same n values. This reduces the confidence we have in σp and so widens the confi-
dence interval of the increase in mean. In reality the control engineer will use judgement in
collecting sufficient results to represent typical before and after operations. Any doubt that this
may not have been achieved can be alleviated by repeating the exercise with a different set of
results and checking the estimate of improvement changes little. This is a simple example of
bootstrapping that we cover later in this section.

7.2 Standard Deviation

To determine, for example, the 95% confidence interval we first calculate p and 1 − p.

p =
1
2

1−
95
100

= 0 025 ∴1−p = 0 975 (7.7)

The confidence interval for the estimate of the standard deviation of the population is then

n−1
χ2p,n−1

≤
σ2p
σ2

≤
n−1

χ21−p,n−1
(7.8)

We will cover the chi-squared (χ2) distribution in Section 12.9. It has no simple CDF and
hence no QF, but this is available in most spreadsheet packages. It gives the value correspond-
ing to a chosen probability (e.g. p) for a defined number of degrees of freedom. In our batch
blending example this is 77 (n − 1). So

77
103 2

≤
σp
σ
≤

77
54 6

(7.9)

The standard deviation of the sample (σ) is 9.1 and so we can be 95% certain that the standard
deviation of the population (σp) lies between 7.9 and 10.8.
If we perform the same calculation after the implementation of the control improvement, we

would have expected the standard deviation to halve to 4.6. Assuming we use another 78 results
then Equation (7.9) tells us the 95% confidence interval on this estimate is from 3.9 to 5.4.
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Using the highest and lowest likely values of standard deviations then, from Equation (7.6),
the 95% confidence interval on the measured increase is given by

1 96
10 8 + 5 4

78
−1 96

7 9 + 3 9

78
= 1 0 (7.10)

According to Equation (2.1), if the specification is 100, the mean should have increased from
97.9 to 99.0, i.e. an increase of 1.1.With the number of samples taken, we can be 95% confident
that the increase is somewhere between 0.6 and 1.6.

7.3 Skewness and Kurtosis

Sample size also affects the confidence we have in the estimates of other parameters. For exam-
ple, if the data follow the normal distribution, the variance of the estimates of skewness (γ) and
kurtosis (κ) are

σ2γ =
6n n−1

n−2 n + 1 n+ 3
n> 2 (7.11)

σ2κ =
24n n−1 2

n−3 n−2 n+ 3 n + 5
n > 3 (7.12)

From Table A1.8 the 95% confidence interval (ε) is 1.96σ. This is plotted against n in
Figure 7.1. Skewness and kurtosis are key to deciding whether a chosen distribution fits well
to the data.

For example, if n is 100, we can be 95% sure that the estimate of skewness is accurate within
±0.47.We typically reject the proposition that a distribution is normal if skewness is outside the
range −0.5 to +0.5. So, with 100 results, the skewness must be in the range −0.03 to +0.03 for us
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Figure 7.1 Impact of sample size on accuracy of skewness and kurtosis
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not to reject the proposition. By increasing the number of results to 500, ε falls to 0.21 and so
the distribution would not be rejected as normal provided skewness is between −0.29
and +0.29.
Figure 7.1 shows that the estimate of kurtosis is far less reliable. We reject a distribution as

normal if kurtosis is outside the range 2.5 to 3.5. Even if calculated exactly at 3, we therefore
need ε to be less than 0.5. This requires n to be at least 365.

7.4 Dichotomous Data

A different approach to selecting sample size is required if the data is dichotomous. For exam-
ple, we might wish to assess the probability that a blend is produced on-grade. Of the 78 results
44 are on-grade. We could therefore estimate the probability (p) as 0.564 or 56.4%. But, again,
we need to know how much confidence we have that this represents the likelihood of success
over a much longer period.
To determine this we again choose a margin of error, here expressed as fraction. For exam-

ple, if we wish to determine the probability of an on-grade blend to within an accuracy of ±5%
then ε would be 0.05. If the total number of blends over a long period is N then the minimum
sample size is

n=
z2p 1−p

ε2 +
z2p 1−p

N

(7.13)

Since we do not yet have a value for p we take the worst case. The value of p(1 − p) is largest
when p is 0.5. If, for example, we want to check howmuch confidence we have that the estimate
of pwould be applicable to a year’s operation thenN is 365. Figure 7.2 plots Equation (7.13) for
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a range of confidence intervals. In our example it shows we would need to calculate p based on
at least 187 results.

Rearranging Equation (7.13) gives

ε = z p 1−p
1
n
−
1
N

(7.14)

Restricting the sample size to 78 means that we are 95% confident that our estimate of the prob-
ability of success over a year is correct within ± 9.8%.

Examination of Equation (7.13) shows that as N ∞

n
z2p 1−p

ε2
(7.15)

Figure 7.3 plots Equation (7.15); if we wanted to be 95% confident that our probability is
accurate to ±5% for all blends then we would have to calculate p based on at least 384 results.
Rearranging Equation (7.15) with p set to 0.5 gives

ε = z
0 25
n

(7.16)

The probability derived from 78 results means that we are 95% confident that our estimate of
the probability of success for all blends is 56.4 ± 11.1%.

Equation (7.16) is known as theWald method. It is one of several published. For example, the
Agresti–Coull method includes the term n1 – the number of successful outcomes in the sample
of size n.

ε = z
p 1−p
n+ z2

where p =
n1 + 0 5z2

n + z2
(7.17)
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Applying Equation (7.17) to our example of 44 successes in 78 blends indicates that we can
be 95% sure that the probability of success for all blends is 56.4 ± 10.8%. This is very close to
the accuracy derived using the Wald method. Rearranging Equation (7.17) gives

n = z2
p 1−p

ε2
−1 (7.18)

If we were to assume the worst case value for p (of 0.5) we need 380 results to be 95% sure that
the accuracy of the estimate of p is within ±5%. This conclusion is also very close to that
derived using the Wald method. Further, as Figure 7.4 shows, plotting Equation (7.18) gives
results very similar to Figure 7.3. However, because it takes no account of the size of the pop-
ulation (N), the Agresti–Coull method cannot be applied to small populations. Equation (7.18)
tells us that n must be at least 380 – even if the population is less than this number.

7.5 Bootstrapping

Bootstrapping is another technique for determining the confidence we have in estimating, from
a sample, the statistical parameters of the population. The principle is to first make a random
selection of measurements from the process data. The number of randomly selected measure-
ments is the same as the sample size but they are selected with replacement. The selected meas-
urement remains in the dataset and can be selected again. Indeed, the same measurement may
appear many times within any sample. We then use the selected measurements to determine the
parameter we require. We then repeat this many times to generate multiple estimates of the
parameter. Fitting a distribution to the estimates then permits us to determine the best estimate
of the parameter and its confidence interval.
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As an example, instead of using all 5,000 measurements of the LPG splitter reflux flow, we
assume we have only the first 1,000. From these, we select 1,000 measurements randomly,
remembering that many are likely to be selected more than once. We then determine the mean
of this sample. Repeating this 30 times gives 30 estimates of the population mean.

Fitting a normal distribution to the 30 estimates of the population mean, as shown by
Figure 7.5, gives a mean of 52.1 and standard deviation of 0.31. We can therefore be 95% con-
fident that the population mean is within ±0.6 (1.96 × 0.31) of the estimate. If we consider the
original 5,000 measurements as the population, the population mean is actually 52.1, well
within the confidence interval.

The technique is not restricted to estimating the mean. Using the same data, the standard
deviation is estimated as 8.83 ± 0.43 versus 8.73 for the population. Skewness is 0.17 ±
0.32 versus 0.23 for the population. Kurtosis is 3.34 ± 1.45 versus 2.98 for the population.
Remembering we would reject the distribution as normal if skewness is outside 0 ± 0.5 or kur-
tosis outside 3 ± 0.5, skewness is just within the limits but kurtosis is not. This may be because
the 1,000 recorded measurements do not comprise a sufficiently large sample. Indeed, repeat-
ing the exercise with all 5,000 values estimates kurtosis as 3.10 ± 0.36 – just meeting the cri-
terion to not reject the hypothesis that the data are normally distributed.

Due to the randomisation of the data selection, bootstrapping can give different results, sim-
ply by repeating the same test. For this reason, the reader will not be able to exactly reproduce
this result. But, more importantly, we should validate any conclusions by increasing the number
of trials. Indeed, some judgement is required in interpreting whether the results justify collec-
tion of additional data.

Bootstrapping can be extended to any form of curve fitting. For example, it is common when
developing an inferential property to split the data into two sets – one for developing the infer-
ential and the other for testing. This is a trivial form of the technique. We could instead develop
the inferential from randomly selected data points randomly and repeat this process many
times. We would obtain multiple estimates for each coefficient in the inferential and could
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use these to determine how much confidence we have in their values. From these, we can then
determine how much confidence we have in the resulting inferential.
Assume the inferential takes the form

y= a0 + a1x1 + a2x2 (7.19)

If σ0 is the standard deviation of the estimate for a0, σ1 is that for a1, etc., then the standard
deviation for the estimate of y is given by

σy = σ20 + x1σ
2
1 + x2σ

2
2 (7.20)

As usual, if we required the 95% confidence interval, this would be 1.96σy.
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8
Significance Testing

One of the key reasons we might want to fit a statistical distribution to process data is to explore
whether an observed result is expected from normal process variations or whether it is excep-
tional. Significance testing enables us to establish whether our expectation of process variations
is correct. Related to this, the confidence interval gives the range over which we might expect a
process condition to vary.

8.1 Null Hypothesis

The probability (p) of an unbiased coin landing heads when tossed is 0.5. If we toss it 100 times
we would expect it to land heads 50 times. We will show later how the binomial distribution is
used to calculate the probability of this outcome but we should be quite surprised if it occurred
since, as Figure 8.1 shows, the probability is only 8%. If it landed heads 49 times we would
accept that this is just chance and would not doubt that the coin is unbiased. Clearly, if it landed
heads 99 times, we would. The question is how many times must it land heads before we con-
clude that the coin is biased? For example, the probability of 60 heads is small at 0.011. Is this
sufficiently low for us to conclude that p is actually closer to 0.6?

The approach is to first make the null hypothesis, sometimes given the symbol H0. In this
example this might be that the coin is unbiased. Less commonly, we make the alternative
hypothesis (Ha). In this example it would be that the coin is biased. Choosing the null hypoth-
esis, we calculate the P-value – the probability that the observed, or more extreme, result occurs
if the null hypothesis is true. It can also be described as the probability of making a Type I error,
i.e. wrongly rejecting a true hypothesis – a false positive. A Type II error (a false negative)
occurs if we were to accept that a hypothesis is correct, when it is not.

If the P-value is below a chosen significance levelwe reject the null hypothesis and conclude
that the coin is biased. The key is choosing the significance level. Commonly 0.05 (5%) is used.
Figure 8.2 shows the cumulative probability; from this we can calculate that the probability of
there being 58 or fewer heads is 0.956. The probability of 59 or more heads is therefore below
0.05 at 0.044; so if there were 60 heads, we would reject the null hypothesis.
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It is important to remember that this approach only allows us to reject the null hypothesis. It
would be wrong to accept that the null hypothesis is true if the P-value is greater than the sig-
nificance level. In this example, if the number of heads was less than 60, this does not prove that
the coin is unbiased. For example, if we wanted to be more certain that our decision to reject the
hypothesis is correct, we would choose a lower significance level of, say, 0.01. Again from
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Figure 8.1 Probability density of the number of heads from 100 tosses
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Figure 8.2, the probability of there being 61 or fewer heads is 0.990. If there were 60 heads we
would not reject the null hypothesis. This does not mean we are sure the null hypothesis is
correct; it merely means we have found no evidence to reject it.

The test above is one-tailed in that we have only considered the case when the coin lands as
heads more times than we might expect. We would of course be equally suspicious about a coin
that landed excessively as tails or, in other words, if it landed too few times as heads. The dis-
tribution is symmetrical; so if we were concerned that there are 60 heads, we should be equally
concerned if there were 40. This would then entail applying the two-tailed test. If we wanted to
be 95% certain that a coin is unbiased then we need to determine what outcomes lie between the
cumulative probabilities of 0.025 and 0.975. These limits are shown in Figure 8.2; to not reject
the null hypothesis, the number of heads must be between 40 and 59.

Although the tossing of a coin follows the binomial distribution, the curves in Figure 8.1 are
very close to the normal distribution with a mean and standard deviation of

μ = np σ =
p 1−p

n
(8.1)

We will show later that this is because p is close to 0.5 and n is large. It means that we can use
the normal distribution to plot the curves shown in Figure 8.3. From Equation (5.43), for the
one-tailed case, the probability of throwing 60 or more heads is

P= 1−
1
2

1 + erf
60−μ

σ 2
(8.2)

For the two-tailed case, the probability of throwing fewer than 40 or more than 60 heads is

P= 1−
1
2

1 + erf
60−μ

σ 2
−
1
2

1 + erf
40−μ

σ 2
(8.3)
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In effect we have replaced the P-value with the z-test. We will describe later the use of the t-test,
which arises from using the Student t distribution. This is more applicable when n is small.
The black curve in Figure 8.3 is the one-tailed case. It plots the probability (P), if the coin

lands heads for 60 or times out of 100 tosses, that it is unbiased (p = 0.5). We can see that, if p is
0.6, the probability that the coin is unbiased is 0.5. In other words, it is equally probable that it
is biased. We would have no reason to change our opinion. However, if we hypothesise that p is
0.5, the probability that the coin is unbiased drops to 0.018. This is well below the 5% signif-
icance level at which we would accept that 60 heads could be due to chance and so we would
reject the hypothesis.
The coloured curve is the two-tailed case. It shows the probability (P) that the coin is unbi-

ased if it lands heads fewer than 40 times or more than 60 times. The probability that p is 0.5 is
now 0.046 – only just below the 5% significance level.
Whether we apply the one-tailed or two-tailed test depends on the application. For example,

if we were checking the prediction error of an inferential property, it is equally likely that it
overestimates or underestimates the true value and we would want to detect either problem.
We would therefore apply the two-tailed test. However, if we were analysing the impact that
a control scheme had on reducing the number of plant trips caused by exceeding, for example, a
high pressure limit, we would be unlikely to be concerned about low pressure and so would
apply the one-tailed test.

8.2 Confidence Interval

The confidence interval is used to indicate the reliability of an estimate. It is an example of a
two-tailed test. For example, a 95% confidence interval means that there is a probability of 0.95
that the true value is in the quoted range. If we assume that the estimate is normally distributed
then we can derive the interval by integrating Equation (5.35) between the limits of the range.
We often define the confidence interval in terms of a multiple (n) of the standard deviation.

Figure 8.4 illustrates the case when n is 1. The probability of lying within one standard devi-
ation of the mean is the shaded area under the probability density function. Figure 8.5 is the plot
of cumulative probability, given by Equation (5.43). The shaded area is thus determined as
0.683 and confidence interval in this example is therefore 68.3%. In general the probability
(P) of the value (x) being between μ − nσ and μ + nσ is

P=

μ+ nσ

μ−nσ

y dx (8.4)

To perform the integration we first make, into Equation (5.35), the substitution

x = μ+ σ 2z (8.5)

Therefore

P=
1
π

−n
2

n
2

exp −z2 dz (8.6)

∴ P= erf
n

2
(8.7)
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This function is plotted as curve A in Figure 8.6. So, for example, the 95% confidence interval
is often quoted as 2σ (strictly 1.96σ). Table A1.8 shows some commonly used values. It should
be remembered that these have been derived from the function for the normal distribution.
There are other methods of determining confidence interval in situations where the distribution
is not normal.
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• For any unimodal distribution the Vysochanskij–Petunin inequality states that the probability
of a result lying more than nσ from the mean will be less than 4(3n)−2. This is plotted as curve
B in Figure 8.6 – showing the 95% confidence interval increases to 3σ, whereas 2σ now cor-
responds to a confidence interval of 89%.

• If not unimodal then Chebyshev’s inequality, which applies to any distribution, states that the
probability will be less than n−2. This is plotted as curve C in Figure 8.6 – showing a further
increase to 4.5σ, whereas 2σ now corresponds to a confidence interval of 75%.

As we shall, there are other distributions that will generate different results. In certain circum-
stances these may be more applicable.
For the one-tailed significance level, n is determined from

P= 1−
1
2

1−erf
n

2
(8.8)

n = 2erf −1 1−2 1−P (8.9)

Figure 8.7 plots both the one- and two-tailed curves. For example, as described above, the 95%
significance level for the two-tailed case is 1.96σ. For the one-tailed case it is 1.64σ. Other
commonly used values are included in Tables A1.8 and A1.9.

8.3 Six-Sigma

Six-sigma is a much publicised method used in quality control. However rather than, as it name
suggests, it being based on six standard deviations, it is actually based on 4.5. A 1.5σ shift is
included to reflect long-term changes thought to occur in the variation. The choice of this value
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is entirely empirical and often criticised by statisticians. However it now forms part of the def-
inition of the procedure.

Six-sigma only considers off-grade results and so uses the probability of values exceeding
μ + 4.5σ or falling below μ − 4.5σ, but not both. We therefore use the single-tailed confidence
interval. From Table A1.9 we can see that this is 0.9999966. There is a probability 0.0000034
that the result is off-grade, i.e. we expect fewer than 3.4 defects per million.

8.4 Outliers

Deciding which data points to exclude from statistical analysis is very subjective. If the scatter
is poor then the position of a single outlier, for example on a XY plot, will have a significant
impact on the slope of the line of best fit. Basing any conclusion on the effect of a single point
might be unwise and the point better treated as an outlier. However, if there is evidence that the
point is representative, then excluding it would also result in a suspect conclusion.

The most frequently published method of defining outliers is to treat as mild any value that
falls outside 1.5 times the interquartile range and as extreme any value outside 3 times the range.
By definition there is a 50% probability of a value lying in the interquartile range. From
Table A1.8 we can see that this corresponds to a range of ±0.6745σ. Multiplying this by
1.5 gives a value close to σ and by 3 a value close to 2σ. We could therefore adopt a policy
of excluding all values more than 2σ from the mean and reviewing those that lie between σ
and 2σ away from the mean. We are effectively choosing to exclude any value that we are
95% certain is an outlier.

Excluding outliers will change the mean and reduce the standard deviation of the values
retained. Thus data points that were mild outliers may now fail the 2σ criterion. Excluding
these, and any others that arise from the next recalculation of μ and σ, could severely undermine
the confidence we have in any regression analysis.
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A similar approach is based on directly on the quartiles. If the first quartile isQ1 and thirdQ3,
we exclude any value that is less than 2.5Q1–1.5Q3 or greater than 2.5Q3–1.5Q1. Again, if the
quartiles are recalculated following removal of the outliers, it is likely that additional data points
would become outliers.
An approach, similar to that used to identify outliers, can be taken in identifying suspect

results from an inferential once in operation. The development of the inferential will have quan-
tified the expected σerror. If, for example, the error between the inferential and the laboratory
result exceeds three times this value then, from Table A1.8, we can determine that the prob-
ability that the inferential is incorrect is 99.73%. The probability that it is correct is therefore
very low at 0.27%. This would prompt an investigation of the reliability of the inferential and a
possible update. This is the principle behind the Shewhart statistical process control (SPC)
chart. This includes a centre line, drawn at the mean (where the mean would be zero if the chart
is being used to assess the error in an inferential) and the lower and upper control limits, usually
drawn at ±3σerror. The inferential error is then plotted against sample number.
This simple approach is unlikely however to detect small shifts in the accuracy. A more

sophisticated approach is based on the Westinghouse Electric Company (WECO) rules that
were originally developed to improve the reliability of Shewhart charts. If any of these four
rules are violated then the inferential would be considered suspect.

1. The error exceeds the 3σerror limit – as described above.
2. Two out of three consecutive errors exceed the 2σerror limit but are within the 3σerror limit.

The errors exceeding the limit must do so on the same side of the mean. When the inferential
was developed the mean error would have been zero and so we need either consecutive pos-
itive errors or consecutive negative errors. From Table A1.8, the probability of being within
the lower limit is 95.4%. One of the three errors must be in this region. The probability for
being between the limits on the same side of the mean is (99.73–95.4)/2 or 2.17%. Two of
the errors must be in this region. There are three combinations of results that meet the criteria
and each can occur on either side of the mean. The probability of violating this rule is there-
fore 0.954 × 0.02172 × 3 × 2 or 0.27%.

3. Four out of five consecutive errors (with same sign) exceed the σerror limit but are within the
2σerror limit. Taking the same approach, the probability of violating this rule is 0.683 ×
0.13554 × 5 × 2 or 0.23%.

4. Eight consecutive points fall on the same side of the mean. The probability of violation of
this rule is 0.58 or 0.39%.

Applying only the first rule would result in a false indication of a problem once in every 371
instances. While increasing the reliability of detecting a problem, applying all four rules will
increase the false indication rate to once in every 92 instances.
These rules all assume that the prediction error is normally distributed; so it would be wise to

confirm this before applying them. For example, it is possible to define asymmetric rules for
skewed distributions.

8.5 Repeatability

Repeatability is a measure of precision. It has little to do with accuracy. A measurement can be
inaccurate and precise. For example, a measurement that is consistently wrong by the same
amount is precise. The error is caused by a fixed bias. Repeatability is a measure of random
error. The smaller the random error, the better the repeatability.
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Repeatability of a laboratory result, as defined by the ASTM, is determined from test results
that are obtained by applying the same test method in the same laboratory by the same operator
with the same equipment in the shortest practicable period of time using test specimens taken at
random from a single quantity of homogeneous material. It can be defined as the maximum
difference between two measurements that can be expected 95% of the time.

Imagine that the laboratory tests the same material twice, under these conditions, and obtains
results x1 and x2. Both these results are taken from a normal distribution of mean μ and standard
deviation σ. The average of the two results is

x =
x1
2
+
x2
2

(8.10)

Since we halve x1 and x2, we also halve their standard deviation. The variance of the mean will
be the sum of variances.

σ2mean =
σ

2

2
+

σ

2

2
or σmean =

σ

2
(8.11)

The 95% confidence interval is 1.96σmean. So, if the repeatability (r) is given, the standard devi-
ation of the test result can be derived. The approximation is that made by the ASTM.

σ =
r

1 96 2
≈

r

2 8
(8.12)

8.6 Reproducibility

Reproducibility is another measure of precision. Like repeatability, it says nothing about accu-
racy. The ASTM defines reproducibility as the expected degree of agreement between results
obtained by two different laboratories employing the same procedures but different equipment
when analysing splits of the same gross sample. It is determined from an interlaboratory study
involving between 8 and 12 laboratories. It will always be greater than repeatability since it
includes the variation within individual laboratories as well as the variation between them.
It will typically be double the repeatability and, as with repeatability, it is determined from 2.8σ.

Normally the control engineer is more concerned with repeatability. However reproducibil-
ity becomes important, for example, if a study involves laboratory results provided by a cus-
tomer testing product that is also routinely tested by the manufacturer.

For tests that measure concentration, Horwitz[4,5] identified that the accuracy of a laboratory
result was related to the concentration being measured. In particular, accuracy becomes very
poor at very low concentrations. He studied the results of over 10,000 interlaboratory studies
and developed Horwitz’s curve as shown as Figure 8.8. The relative standard deviation (RSD)
is defined as percentage of the measurement (C), where C is the concentration expressed as a
weight fraction.

RSD= 2 1−0 5 log C (8.13)

From this equation

log RSD = log 2 1−0 5 log C or log
RSD

2
= log C−0 5 log 2 (8.14)
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This gives rise to the alternative definition

RSD= 2C−0 15 (8.15)

If we want the standard deviation (σH) expressed in the same units as C then the equation is
further modified.

RSD= 100
σH
C

and so σH =
RSD C

100
= 0 02C0 85 (8.16)

Laboratory testing methods are generally accepted if their reproducibility is less than half σH.
Although there are those that will accept a method if it performs better than 0.67σH and there are
others who believe that the Horwitz method is unreliable.

8.7 Accuracy

A measurement can be accurate without being precise. If the average of multiple estimates of
the same property is equal to the true measurement, then the estimates are deemed accurate. If
the variation between the estimates is large, then they would be considered imprecise. From a
statistical point of view, high accuracy requires the mean of the estimates to be close to the true
value. High precision requires that the standard deviation of the error is small. Accuracy
requires a small bias error, while precision requires a small random error. Another term, true-
ness, defined in ISO 5725 is synonymous with our use of the word ‘accuracy’.
For field instrumentation, precision is usually quoted as ±ε, where ε is the maximum error. In

some cases, the overestimate (εhigh) may not be the same as the underestimate (εlow). The stand-
ard deviation of the measurement error can be determined from

σ =
ε2high−εhighεlow + ε2low

3
(8.17)
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8.8 Instrumentation Error

Control engineers are generally more concerned that process instrumentation gives a precise
rather than an accurate measurement. For example, the SP of a reactor temperature controller
might be set by the operator to meet the required product quality. Any inaccuracy in the tem-
perature measurement would result in the quality being different from what might be expected
but this would be dealt by making a once-off change in the temperature SP. However, a lack of
precision will cause the controller to take unnecessary corrective action, responding to the ran-
dom variation in the temperature measurement, and hence disturb quality. If the operator were
to respond to this variation, the SP changes would cause further disturbances.

Precision is also of importance when estimating the potential benefit of improving the con-
trol of product quality. This would commonly involve assessing the standard deviation of the
deviation of the quality from its target. It is generally assumed that improved control will halve
the standard deviation. However, if the variation is due entirely to the lack of precision of the
temperature measurement and the resulting operator action, then improved control would have
no impact. Instead, what is required is an upgrade of the instrumentation to something more
precise.

Where accuracy becomes important is in the comparison of two (or more) measurements of
the same property. This occurs, for example, when the engineer wants to confirm that an on-
stream analyser agrees with the laboratory result. Knowing the precision of both measurements
we can decide whether the difference between the two is within what might be expected or not.

The repeatability of an on-stream analyser is determined by keeping the composition con-
stant and observing howmuch the measurement varies. Reproducibility is determined by chan-
ging the composition and is a measure of the ability of the instrument to reproduce the
measurement when a predefined set of conditions is recreated. If we were selecting an analyser
for installation we would be interested in both. When checking its measurement against the
laboratory we should use repeatability.

For example, the ASTM quoted repeatability for the laboratory measurement of the flash
point of kerosene is 4.1 C. From Equation (8.12), this is equivalent to the measurement error
having a standard deviation of 1.5 C. Analyser manufacturers usually quote a repeatability that
is better than the laboratory test method. Let us assume that the standard deviation for the ana-
lyser measurement error is 1 C.

We saw in Section 4.5 that the variance of the difference between the laboratory and the
analyser is the sum of the variances of the two measurements.

σerror = 1 52 + 12 = 1 8 C (8.18)

From Table A1.8, we can be 95% sure that there is no problem with either measurement,
provided that the difference between them is less than 1.96σ, or 3.5 C. With the flash point
of kerosene typically around 40 C, such a discrepancy is substantial. The product could be seri-
ously off-grade or there could a substantial loss of product yield. In practice, it would not be
ignored. It suggests that the repeatabilities are much better than quoted.

Another common example is validating an inferential property against the laboratory meas-
urement. In Chapter 16 we will, using regression analysis, develop an inferential for the C4

content of propane.

C4 = −20 54−0 2092T1 + 0 6544T2 (8.19)

T1 and T2 are tray temperatures. Typically measured with K-type thermocouples, the quoted
accuracy is ±2.2 C or 0.75% of range, whichever is the greater. The temperatures are around
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60 C and so would typically have a range of 0 to 100 C. Applying Equation (8.17) gives a
standard deviation of the measurement error as 1.3 C. The standard deviation of the error this
causes in the inferential is therefore

σinfer = 0 2092 × 1 32 + 0 6544 × 1 32 = 1 2 vol (8.20)

We also require the standard deviation of the laboratory error. The C4 content is typically 5 vol%.
This is close to a weight fraction of 0.05. From Equation (8.16) we obtain σH as 0.0016 – close to
0.16 vol%. This has negligible impact on the standard deviation of the difference between the
laboratory and the inferential.

σerror = 1 22 + 0 162 = 1 2 vol (8.21)

We can be 95% certain that the inferential agrees with the laboratory, provided that the differ-
ence between them is less than 1.96σ, or 2.4 vol%. In other words, if the inferential is control-
ling the composition at 5, we should not be concerned with any discrepancy provided the
laboratory result is in the range 2.6 to 7.4. As with the kerosene example, this range covers
a significant loss of product revenue through to the product being seriously off-grade. Such
imprecision in an inferential (or analyser) would not be tolerated.
We will study the behaviour of a similar inferential later in Section 16.1. For this, σerror is far

less than predicted at 0.28. This number was obtained, during the development of the inferen-
tial, by calculating the standard deviation of the difference between it and the laboratory. The
overestimation is a result of the temperature indicators being far more reliable than quoted. This
probably arises from the manufacturer including both random and bias error in the quoted accu-
racy. When developing the inferential, regression takes account of any bias error (whether it is
in the temperature measurements or in the laboratory result). To give a consistent result, in this
case, we would have to assume a thermocouple precision of about ±0.3 C.
Of course, measurements errors can be worse than expected. They arise not only from the

instrument but also from the way it is installed and the operating conditions. For example, con-
tact resistance on a poorly connected signal cable can severely undermine the accuracy of a
resistance type temperature device (RTD). Not compensating for changes in pressure and den-
sity can generate far greater errors in the gas flow reported by an orifice type flowmeter. Poor
design of sampling conditioning for an on-stream analyser can cause large measurement errors.
Poor estimates of precision can arise when assessing the economic incentive to improve con-

trol. For example, the ‘true’ variation in product quality should theoretically be derived from
the variation reported by the laboratory and, from Equation (8.12), the repeatability (r) of the
test method.

σtrue = σ2reported −
r

2 8

2
(8.22)

As with field instrumentation, the laboratory repeatability is often better than that quoted.
Indeed, applying Equation (8.22) can show that there is no variation in the ‘true’ result and
so remove the incentive to improve control. But, as with field instrumentation, the error in
the laboratory result can also be much worse than expected. This can arise from poor time-
stamping, poor sampling procedures or simple transcription mistakes.
While control engineers must be aware of the sources of error, for the reasons outlined above,

it would be unusual for them to use vendor-provided accuracy and precision information. For
field instrumentation this is far more in the realm of the instrument engineer, firstly during the
selection of new instruments and secondly in resolving any apparent measurement problem.
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While many confuse the roles of the control engineer and the instrument engineer, this is one of
the skills that distinguishes one from the other.

Often, instrument selection is a compromise between instrument range, accuracy, maintain-
ability and cost. To complete this properly, considerable skill is required in understanding the
performance claimed by the instrument vendors. Accuracy can be quoted on an absolute basis,
as a percentage of range (span) or as a percentage of full scale. In addition to the performance
measures covered so far, there are several others. Drift, as the name suggests, is a measure of
how the measurement of a fixed property might change over time. Resolution is the smallest
detectable change in property. Some instrumentation is routinely calibrated. For example,
many on-stream analysers are routinely checked with a known sample and custody transfer
flow meters checked with provers. The quoted accuracy can be meaningless since it will also
depend on the calibration method.

Significance Testing 125



9
Fitting a Distribution

The process control engineer is likely to be familiar with the uniform and normal distributions,
and perhaps one or two others, but these form only part of a bewildering array of over 250 pub-
lished. Very few documented PDF have a solid engineering basis. Primarily they were devel-
oped empirically and justified on the basis that they fit published datasets better than their
predecessors. Indeed the approach we take in this book is to select the most appropriate distri-
bution for each dataset – irrespective of the purpose for which the distribution might originally
have been developed. Indeed, the control engineer has little choice in adopting this approach.
Development of distributions has been largely focussed on pharmaceutical, meteorological and
demographic studies. More recently, new techniques have been developed for analysis of finan-
cial investments. But there are none that are specifically designed for the process industry.

We will see that each PDF (or PMF), CDF and QF includes at least one parameter that affects
its shape. For example, we have seen that the shape of a normal distribution is defined by its
mean (μ) and standard deviation (σ). Presented with a dataset we choose a CDF (or PDF or QF)
that should describe its distribution and then estimate the shape parameters based on the
observed distribution. This is known as the Bayesian approach and, as defined earlier, the cho-
sen function is known as the prior distribution.

The approach an engineer takes to statistical analysis needs to be somewhat different to that
taken by a theoretician. As the reader progresses through this book it will become apparent that
there will almost always be a more accurate way of mathematically representing process beha-
viour. However the skill of the engineer is in deciding whether the fitted distribution is ‘good
enough’. The warning, usually associated with financial investments, that ‘past performance is
no guarantee of future performance’ applies to all statistics. Simply because a process has fol-
lowed some statistical behaviour in the past does not imply it will, if no changes are made,
follow the same behaviour in the future. Control engineers seeking management approval to
invest in control improvements are concerned with future behaviour. Their argument is gener-
ally that, without improvement, the average operation will be the same and that, with improved
control, it will be better. However, how much better is a matter of judgement. The outcome is
unlikely to exactly match the prediction. The error in predicting the improvement could be con-
siderably larger than that caused by not choosing the best fitting distribution. There is little
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point in choosing a very precise distribution, mathematically very complex to apply, if its pre-
cision is undermined by other assumptions.
So what should the engineer look for is selecting the prior distribution?

• Data can be discrete or continuous. We need therefore to first choose a distribution suitable
for the type of data. This decision is not always quite as simple as it might first appear. Time,
for example, would normally be considered a continuous variable but when data is historised
it becomes discontinuous – particularly if the data collection interval is large. We might sim-
ilarly consider that product quality is a continuous measurement but there are many labora-
tory tests that give a simple pass/fail result or report the result as an integer.

• We also need to decide whether the process has memory or not and choose an appropriate
distribution. This too is not always straightforward. For example, a product composition
measured now will be highly correlated to the value recorded one second ago but probably
has no relation to one recorded on the previous day. Would the process exhibit memory if the
interval was one minute? What if it was one hour?

• There are distributions designed for specific situations. For example, a distribution might
have been developed to deal with very small datasets or maybe to compare datasets. Clearly,
if one of these situations arises, the appropriate distribution should be used.

• We need to accurately represent current process behaviour. We need to know what this is on
average, by determining the mean (μ). And we need to understand the variability of the data
by determining the standard deviation (σ) or an equivalent parameter. While this may seem
obvious, the reader will discover that there are many distributions that fit the data extremely
well but that do not permit these parameters to be calculated easily. They can, of course, be
calculated from the data but we will show later that this is often unreliable.

• We should also look at whether the distribution has simple calculations for skewness (γ) and
kurtosis (κ).While we are not normally interested in their actual values, we can calculate what
combinations of the two can be represented. Indeed, many of the distributions described in
this book have charts showing what is feasible. By first calculating γ and κ from the data we
can shortlist those distributions that are capable of matching these parameters.

• Care needs to be taken if the distribution is bounded. It is often the case that fitting such a distri-
bution results in the more extreme data points being excluded. Or it might include all the current
data but exclude the possibility ofmore extreme, but quite feasible, values occurring in the future.

• Related to the previous point, we must be careful about what statistical behaviour we want to
represent. For example, we might want to estimate the probability of an unusual and highly
undesirable event. We should then be primarily concerned that our distribution properly
represents extreme behaviour. Fitting even an unbounded distribution can give little priority
to accurately representing operating regions where very little data exist.

• Another consideration is the ability to invert the CDF to a give the QF. Firstly this requires
that the CDF exists; not all distributions have one that is easily defined. Secondly it has to be
in a form that can be inverted; often this is not the case. A QF, or something equivalent, is
essential if the engineer plans on usingMonte Carlo simulation, as described in Section 5.7. It
is also useful should the engineer wish to explore the value of x corresponding to a proba-
bility. Indeed, it can be informative to check whether the 1st and 99th centiles of the fitted
distribution match the data – particularly so if we are primarily interested in modelling
extreme behaviour. We have also seen that a Q–Q plot is by far the most sensitive in high-
lighting any mismatch. While quantiles can be determined from a plot of the CDF or by
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iteration, it is far simpler to use the QF. The converse can also apply. Albeit rare, there are
distributions that can only be expressed as a QF. The absence of a CDF and a PDF can be at
least an inconvenience.

When selecting the prior distribution, many can be ruled out as inapplicable but there will
remain many that are. Selection is then based on which fits the data best, tempered by ease of
application and the robustness of the end result. One of the purposes of this book is to document
candidate distributions, identify under what circumstances each might be considered and pres-
ent worked examples of their application. Distributions that have no obvious application to the
process industry have largely been excluded. However, some are included simply on the basis
that they are well known and therefore require at least an explanation as to why they should not
be used. Those that include complex mathematics and offer no advantage over simpler versions
have also largely been omitted – although some of those better known are used to demonstrate
the trade-off between accuracy and complexity. The main criterion for inclusion is ease of use
within a spreadsheet environment.

There are a wide range of commercially available software products, some of which include
virtually all published distributions. While these can cover most of what is covered in this book,
they do so at a (sometimes substantial) cost. Often targeted at other applications, none are spe-
cifically designed to support process control design andmaintenance. Further, they do not excuse
the engineer from properly understanding the techniques they employ. Indeed the wise engineer
will first evaluate the techniques in the spreadsheet environment and use this experience to decide
whether the cost of the product is justified and, if so, which would be the best choice.

While every attempt has beenmade to properly title eachdistribution, it is almost impossible to
be unambiguous.Many distributions havemultiple names, perhaps because theywere published
by developers unaware that they already existed.Wewill see later that there are several examples
of the same distribution being known under five different names. One distribution can be a spe-
cial case of another and so also share its name.Many are strongly linked and can be derived from
each other.Many are numbered (e.g. as Type I, Type II) but the numberingmay have been chan-
ged by the developer as the range expanded or misused by others not adhering to the original
publication. Many are documented by authors that have not checked the original source, assum-
ing that the source they are using has accurately reproduced the distribution. Further that source
may have done the same. It would be very time-consuming to prove, but it is highly likely that
manydistributions havepassed along a long chain of authors– eachmakingaminormodification
or introducing an error. The end result can bear little resemblance to the original.

As we saw in Chapter 5, there is no consistency in including in a distribution’s title, words
such as ‘generalised’ and ‘standard’. Similarly there is little consistency in the symbols used by
developers. In this book we have standardised on μ for the mean, σ for the standard deviation
and γ for skewness. We use κ for kurtosis, largely avoiding the use of excess kurtosis for which
we use γ2. We have generally used α as the location parameter, β as the scale parameter and δ as
an additional shape parameter that typically affects skewness and/or kurtosis. Complete stan-
dardisation is impractical and so symbols are largely defined as they are used and can have
different meanings in different formulae. Those documenting the same distribution can make
other changes. For example, β will appear in one version, replaced by the reciprocal 1/λ in
another. And there are many changes that have a less trivial impact on the look of a PDF or
CDF. For example, replacing β with ln(λ) will change eβx to λx and generate what might first
appear to be a very different distribution. Parameters can also be omitted completely, perhaps to
simplify the look of the equations. The developer may assume that the reader is an experienced
statistician who knows that, for example, variable z should more fully be written as (x − μ)/σ.
Further, as we will see in Chapter 11, some of the mathematical functions used in documenting
distributions can be written in several forms.
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In general, the more parameters that can be adjusted in the distribution, the more closely it will
fit the data. However this has to be balanced against the disadvantages this brings. Firstly, it can
make fitting the distribution difficult. Some of the parameters may influence the shape of the dis-
tribution in very similar ways. As a result the engineer may find that multiple sets of parameters
give an almost identical fit. The concern would then be about the robustness of the result. Would
we be confident that it truly represents the behaviour of the process – particularly if it moves into
the region where there are few historically collected data points? Secondly, calculation of key
parameters, such as mean and standard deviation, can be extremely complex if there are more
parameters – often to the point where they can only be performed by computer code. Finally,
process data follows an underlying distribution but with random ‘noise’ superimposed. Such
noise can arise from errors in measurement and from poor timestamping. The more parameters
in a distribution, the more likely it is to model the noise in addition to the true distribution.
A distribution that fits recently collected data may not therefore reliably predict future behaviour.
Distributions are often developed to handle published datasets. The developer will usually

specify ranges for any parameter used in the PDF. While generally these limits should be
adhered there are examples where fitting them to an unrelated dataset violates these limits.
While the engineer should be cautious if this occurs, in itself it is not a reason for enforcing
the limits or choosing another distribution. However, in some cases, the calculation of μ, σ,
γ and κ is possible only over a range of values for a shape parameter. A fitted parameter falling
outside this range might be a reason for choosing an alternative distribution.
Finally, publications contain a significant number of errors. When typing a complex equa-

tion, using an equation editor, it is very easy to omit or mistype a term. From personal expe-
rience the author of this book can confirm that proofreading, even by someone not involved in
writing the text, can easily miss such errors. The result is that a PDF or CDF might appear to be
a version of the distribution not previously published. A simple check is to plot the PDF (or
PMF) and check that the area under the curve is unity and is always so as shape parameters
are changed. Often visually approximating the area as a triangle and calculating its area is
enough to highlight any error. A CDF can be checked by ensuring it generates zero when
the variable is at its minimum and unity when it is at its maximum.

9.1 Accuracy of Mean and Standard Deviation

A common approach in the process industry is to use Equations (4.2) and (4.35) to calculate the
mean and standard deviation, assume that data are normally distributed and then analyse the
results – effectively using Equations (5.35) and (5.43). The calculation of the mean can have
a true engineering meaning. For example, the (weighted) mean of the C4 content of cargoes of
propane truly represents the quantity of C4 sold at propane prices. But averaging the laboratory
results of the same product as it leaves the LPG splitter, even if weighted for variation in flow,
gives only an approximation of the C4 sold as propane. We have effectively assumed that the
composition (and flow) remained unchanged between laboratory samples. This is clearly not
the case and the less frequently we sample the stream, the less confidence can we have that
mean composition truly represents what was sold.
Accurate estimation of mean is important from two aspects. Firstly we need to know reliably

what is being achieved by the process currently so that we can accurately quantify any improve-
ment. The process control engineer, however, is primarily interested in the variation and relies
heavily on standard deviation as a measure of this. As Equation (4.35) shows, to calculate
standard deviation, we first need the sample mean. Any error in estimating the mean will always
cause the standard deviation to be overestimated. To understand this, consider the trivial exam-
ple where we have two measurements of 90 and 110. The mean is clearly 100 and so the

130 Statistics for Process Control Engineers



variance is (102 + 102)/2, or 100, giving a standard deviation of 10. If the mean is overestimated
as 105 the variance will be calculated as (152 + 52)/2, or 125, giving a standard deviation of
11.2. Exactly the same would result from underestimating the mean at 95. A 5% error in
the mean has caused a 12% error in the standard deviation. If being used as part of calculating
the benefit of improved control, the benefit would then be overstated. Fortunately, for large
samples, the error introduced is less, as illustrated by Figure 9.1. Drawn for data following
a uniform distribution, it shows what error is introduced by misestimating the mean. For data
that are approximately normally distributed, an error in the mean has much less of an effect.
However, it is always a wise precaution to ensure the mean is estimated as accurately as prac-
tically possible.

The standard deviation forms the basis of many other techniques used by the control engi-
neer. Identifying whether correlations exist, for example in the development of inferential prop-
erties, relies on the estimate of standard deviation of the prediction error. Something similar is
required for monitoring the performance of MPC and inferentials. There are two concerns with
simply applying Equation (4.35). Firstly, as we showed in Section 4.5, standard deviation is
very sensitive to outliers. A single point can give an entirely incorrect conclusion about the
degree of dispersion. We showed in Section 8.4 that excluding outliers is not an exact science.
Instead we here describe the better approach of fitting the chosen distribution to all the data.
Secondly, although it is likely that the distribution of the data will be close to normal, this is not
guaranteed. Closer examination of process data can reveal that this assumption can cause large
errors in the resulting conclusions.

9.2 Fitting a CDF

Column 1 of Table 9.1 shows 30 process measurements (x). We will later describe methods
for checking whether a normal distribution can be used and, if not, what should replace it.
But, for this example, we will assume that the data are normally distributed. As the first step
in the curve fitting procedure the data has been ranked – smallest to largest. Column 2 is the
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Table 9.1 Fitting the CDF and quantile function of a normal distribution

x ranking (k) observed EDF

calculated fitted CDF fitted quantile function

F(x)

RSS

F(x)

RSS

x

RSS

μ = 47.2 μ = 46.0 μ = 46.5
σ = 8.46 σ = 8.63 σ = 8.72

34.4 1 0.0333 0.0645 0.0010 0.0895 0.0032 30.5 15.48
36.9 2 0.0667 0.1108 0.0019 0.1459 0.0063 33.4 12.47
37.1 3 0.1000 0.1153 0.0002 0.1512 0.0026 35.3 3.30
37.3 4 0.1333 0.1200 0.0002 0.1567 0.0005 36.8 0.28
38.1 5 0.1667 0.1399 0.0007 0.1800 0.0002 38.0 0.01
38.4 6 0.2000 0.1480 0.0027 0.1893 0.0001 39.1 0.52
40.2 7 0.2333 0.2026 0.0009 0.2508 0.0003 40.1 0.01
40.5 8 0.2667 0.2127 0.0029 0.2620 0.0000 41.0 0.28
40.7 9 0.3000 0.2197 0.0065 0.2696 0.0009 41.9 1.42
42.2 10 0.3333 0.2756 0.0033 0.3298 0.0000 42.7 0.26
43.1 11 0.3667 0.3122 0.0030 0.3684 0.0000 43.5 0.15
43.5 12 0.4000 0.3291 0.0050 0.3860 0.0002 44.3 0.57
44.5 13 0.4333 0.3729 0.0037 0.4309 0.0000 45.0 0.25
44.6 14 0.4667 0.3774 0.0080 0.4355 0.0010 45.7 1.29
44.9 15 0.5000 0.3909 0.0119 0.4492 0.0026 46.5 2.45
47.0 16 0.5333 0.4885 0.0020 0.5460 0.0002 47.2 0.04
47.7 17 0.5667 0.5215 0.0020 0.5780 0.0001 47.9 0.05
48.4 18 0.6000 0.5544 0.0021 0.6094 0.0001 48.7 0.08
48.5 19 0.6333 0.5590 0.0055 0.6138 0.0004 49.4 0.88
48.5 20 0.6667 0.5590 0.0116 0.6138 0.0028 50.2 2.96
50.6 21 0.7000 0.6542 0.0021 0.7028 0.0000 51.0 0.19
51.0 22 0.7333 0.6715 0.0038 0.7187 0.0002 51.9 0.81
52.4 23 0.7667 0.7289 0.0014 0.7707 0.0000 52.8 0.17
53.6 24 0.8000 0.7738 0.0007 0.8106 0.0001 53.8 0.04
57.5 25 0.8333 0.8873 0.0029 0.9085 0.0057 54.9 6.74
57.7 26 0.8667 0.8917 0.0006 0.9123 0.0021 56.2 2.39
57.7 27 0.9000 0.8917 0.0001 0.9123 0.0002 57.6 0.00
60.0 28 0.9333 0.9342 0.0000 0.9475 0.0002 59.6 0.19
64.4 29 0.9667 0.9787 0.0001 0.9835 0.0003 62.5 3.75
65.9 30 1.0000 0.9863 0.0002 0.9894 0.0001

total 0.0871 0.0271 41.53



ranking itself (k). Column 3 is the ranking divided by the number of measurements (n). This
now represents the cumulative distribution we wish to represent. The result can be repre-
sented by what is sometimes described as the ogive distribution. If each process measure-
ment is xk, with k ranging from 1 to n, then the observed distribution is

fn x =
1

n xk −xk−1
k > 1 (9.1)

Fn xk =
k

n
(9.2)

Figure 9.2 shows the result of applying Equation (9.2) to the data collected. This is known as the
empirical distribution function (EDF). It is a discontinuous function. It is the cumulative ver-
sion of a histogram that has a bin for each value that occurs in the dataset. Conventionally we
add the suffix n to make clear that fn and Fn are discontinuous.

As starting values for the fit we calculate the mean (μ), using Equation (4.2), as 47.2 and the
standard deviation (σ), using Equation (4.35), as 8.46. These are known as the maximum like-
lihood estimates. We will see later, if fitting another form of distribution, calculating these can
more be complex. Indeed for many distributions it can be much easier to make an edu-
cated guess.

There are two basic approaches to fitting the prior distribution. It is not always possible to
define a continuous equation, F(x), for the CDF. Our first method assumes that it is. Column 4
of Table 9.1 is the result of applying Equation (5.43). If our assumption that the distribution is
normal is correct, as is choice of μ and σ, then columns 3 and 4 would be identical. Most spread-
sheet packages include a solver that can be set up to obtain the best fit, adjusting μ and σ to
minimise the residual sum of the squares (RSS) of the prediction error. This is calculated in
each row of column 5 as (predicted − actual)2 and summed, in this example, to 0.0871. By
adjusting μ to 46.0 and σ to 8.63, RSS is reduced to the minimum of 0.0271. Figure 9.3 plots
both the initial estimate (as the dashed line) and the best fit (as the solid line).
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Those trying to reproduce this example as a learning exercise may find they obtain slightly
different results. This can be caused by the precision of the software being used. Small round-
off errors can accumulate to produce a value for RSS noticeably different and so affect the fitted
values. The higher the moment, the more noticeable the change. Standard deviation will show it
more than the mean. We will see later that skewness shows it more than standard deviation and
kurtosis more than skewness.
While the difference between the calculated and fitted values of μ and σ might appear, in this

case, to be relatively small, we can demonstrate that the fitted approach gives a much more
robust result. If, for example, the first process measurement is reduced by 10 to 24.4 and
the last increased by 10 to 75.9, the mean is unchanged but the calculated standard deviation
increases to 9.84. The fitted value however remains virtually unchanged at 8.65. There is now
no need to decide whether the first and last measurements are outliers.
Figure 9.4 is a P–P plot of the calculated and fitted distributions (columns 4 and 6 of

Table 9.1) versus the observed distribution (column 3). It provides visual demonstration that
the fitted distribution is noticeably more accurate than that using the calculated values of μ
and σ.

9.3 Fitting a QF

Fitting a QF requires a slightly modified approach. Since we cannot determine F from x, to fit it
to data, we use the function to predict x from each of the values of F in the EDF. In our example,
the QF for the normal distribution cannot be expressed as a simple equation but most spread-
sheet packages include the function. Column 8 in Table 9.1 is the result of using this.
We then adjust the coefficients to minimise the sum of the squares of the differences between

the predicted x and the actual x (column 9).
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Many distributions can be expressed as both a CDF and a QF, offering the engineer the
choice of which to use. It is important to recognise that fitting themwill not give the same result.
For example, as Table 9.1 shows, both the mean and standard deviation from fitting the QF are
slightly different from those obtained by fitting the CDF. In this example, the difference is
small. In other, less robust functions, the effect can be much larger. Fitting a QF will generally
result in a better fit to the tails of a distribution, sacrificing a little accuracy elsewhere. This
would be noticeable in a Q-Q plot and would be the preferred approach if we are primarily
interested in the more extreme process behaviour.

When comparing different distributions, the value ofRSS is used to help select the one thatmost
accurately represents the data. It is not possible todo this if onedistributionhasbeen fitted as aCDF
and the other as aQF.RSSwill have the units of probability in the first case and the units of the data
in the second.Numerically, even if the two fits are identical, theirRSSwillbeverydifferent.Scaling
the data so that it has the range 0 to 1will bring the values closer but not entirely solve the problem.
This issue is common to regression analysis and is addressed in detail in Chapter 16.

When comparing the accuracy of fits of contending CDF, the units of RSSwill be the same –
even if x has been scaled to fit within the bounds of the distribution. RSS will be in the units of
F(x), not x. However, when comparing the fit of different QFs, RSS will be in the units of x. If x
has been scaled in one of the distributions, but not the other, it is important to transform the
predicted values of x back to their original units before calculating RSS.

9.4 Fitting a PDF

Let us imagine that, for the normal distribution, F(x) does not exist as a continuous function.
Instead we have to use the equation of the PDF, f(x), and apply the trapezium rule

F xi =F xi−1 +
f xi + f xi−1

2
xi−xi−1 (9.3)
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Table 9.2 contains the same data as Table 9.1 but column 4 is now the result of applying
Equation (5.35). Equation (9.3) is known as the ascending cumulative distribution. To apply
it we have to choose a value for F(x1). If we are sure that future measurements will not include a
value less than x1 then we can assume F(x1) is 0. Alternatively, if we are sure that future mea-
surements will not include a value greater than xn then we can assume F(xn) is 1 and rearrange
Equation (9.3) to give the descending cumulative distribution.

F xi−1 =F xi −
f xi + f xi−1

2
xi−xi−1 (9.4)

But we can choose any point at which to start. For example, we can assume that the median will
not be changed by the addition of future measurements and assume that F(xn/2) is 0.5. We
would then apply Equation (9.3) to obtain values of i above n/2 and Equation (9.4) when
below n/2.
Figure 9.5 shows the result of curve fitting from making each of these three assumptions. In

each case the curve passes through the chosen point shown as shaded. The resulting estimates
of μ and σ vary significantly. The problem, in this case, is that we want to fit an unbounded
distribution, i.e. x can be anywhere between −∞ and ∞. While the probability of additional
measurements falling well away from the median is very small, the possibility does exist.
A better approach is to make the chosen F(x1) one of the parameters that is adjusted to achieve
the best fit to the data. Whichever approach is adopted, the limits below should be included so
that fitting does not take F(x) outside its feasible range.

F xmin ≥ 0 and F xmax ≤ 1 (9.5)

i e F x1 ≥ 0 and F xn ≤ 1 (9.6)

Column 5 has been calculated assuming that F(x1) is 0. Column 6 is the calculation of RSS.
Fitting gives μ as 43.7 and σ as 7.27, with RSS as 0.0415. Columns 7 to 9 show the impact
of minimising RSS to 0.0201 by adjusting F(x1) to 0.0562, μ to 44.7 and σ to 8.27. The resulting
curve is shown in Figure 9.6. The P–P plot is shown in Figure 9.7.
In this example, fitting the PDF gives a result marginally better than fitting the CDF. When

fitting the CDF we were able to adjust two parameters – the mean, which varies the horizontal
position of the curve, and the standard deviation, which varies the shape. When fitting the PDF
we can additionally adjust F(x1), which varies the vertical position of the curve. This extra
degree of freedom permits a closer fit.
For example, fitting the CDF of the normal distribution to the C4 in propane data gives μ as

4.47 and σ as 2.09. F(x1) is fixed by the CDF at 0.0776. The resulting RSS is 0.6138. Alter-
natively, fitting the PDF gives μ as 3.94, σ as 1.96 and F(x1) as 0.0221. The resulting RSS
is reduced substantially to 0.2303.
However, inaccuracy can arise because the area under the PDF curve does not comprise

exactly trapezia. This can be illustrated by fitting the CDF and PDF of the normal distribution
to the NHV disturbance data. The CDF gives μ as −0.0206, σ as 1.19 and RSS as 0.1437. Fitting
the PDF gives μ as −0.0107, σ as 1.19 and F(x1) at its minimum of 0. The resulting RSS is
slightly higher at 0.1479.
If the process data is continuous then the accuracy of fitting the PDF would be improved by

increasing the number of values analysed. This reduces the width of each trapezium. The num-
ber of straight-line segments that are used to approximate the distribution curve are increased in
number and therefore shortened in length – more closely matching the curve.
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Table 9.2 Fitting the PDF of a normal distribution

x ranking observed (EDF)

RSS minimised with F(x1) = 0 RSS minimised with F(x1) fitted

f(x)

F(x) by trapezium rule RSS

f(x)

F(x) by trapezium rule RSS

μ = 43.7 μ = 44.7
σ = 7.27 σ = 8.27

34.4 1 0.0333 0.0243 0.0000 0.0011 0.0222 0.0562 0.0005
36.9 2 0.0667 0.0356 0.0749 0.0001 0.0309 0.1227 0.0031
37.1 3 0.1000 0.0365 0.0821 0.0003 0.0316 0.1290 0.0008
37.3 4 0.1333 0.0374 0.0895 0.0019 0.0323 0.1354 0.0000
38.1 5 0.1667 0.0409 0.1208 0.0021 0.0351 0.1624 0.0000
38.4 6 0.2000 0.0422 0.1332 0.0045 0.0361 0.1730 0.0007
40.2 7 0.2333 0.0490 0.2153 0.0003 0.0416 0.2430 0.0001
40.5 8 0.2667 0.0499 0.2301 0.0013 0.0424 0.2556 0.0001
40.7 9 0.3000 0.0505 0.2401 0.0036 0.0429 0.2641 0.0013
42.2 10 0.3333 0.0538 0.3183 0.0002 0.0461 0.3309 0.0000
43.1 11 0.3667 0.0547 0.3671 0.0000 0.0474 0.3730 0.0000
43.5 12 0.4000 0.0549 0.3890 0.0001 0.0477 0.3920 0.0001
44.5 13 0.4333 0.0545 0.4437 0.0001 0.0482 0.4400 0.0000
44.6 14 0.4667 0.0544 0.4491 0.0003 0.0482 0.4448 0.0005
44.9 15 0.5000 0.0541 0.4654 0.0012 0.0482 0.4593 0.0017
47.0 16 0.5333 0.0494 0.5741 0.0017 0.0464 0.5586 0.0006
47.7 17 0.5667 0.0471 0.6079 0.0017 0.0452 0.5906 0.0006
48.4 18 0.6000 0.0444 0.6399 0.0016 0.0436 0.6217 0.0005
48.5 19 0.6333 0.0440 0.6443 0.0001 0.0434 0.6261 0.0001
48.5 20 0.6667 0.0440 0.6443 0.0005 0.0434 0.6261 0.0016
50.6 21 0.7000 0.0348 0.7271 0.0007 0.0374 0.7109 0.0001
51.0 22 0.7333 0.0330 0.7407 0.0001 0.0361 0.7256 0.0001
52.4 23 0.7667 0.0267 0.7825 0.0002 0.0312 0.7727 0.0000
53.6 24 0.8000 0.0216 0.8114 0.0001 0.0270 0.8076 0.0001
57.5 25 0.8333 0.0090 0.8711 0.0014 0.0145 0.8887 0.0031
57.7 26 0.8667 0.0085 0.8728 0.0000 0.0140 0.8915 0.0006
57.7 27 0.9000 0.0085 0.8728 0.0007 0.0140 0.8915 0.0001
60.0 28 0.9333 0.0044 0.8877 0.0021 0.0087 0.9176 0.0002
64.4 29 0.9667 0.0009 0.8995 0.0045 0.0028 0.9430 0.0006
65.9 30 1.0000 0.0005 0.9006 0.0099 0.0018 0.9464 0.0029

total 0.0415 0.0201



9.5 Fitting to a Histogram

Figure 9.8 shows the same data presented as histogram. It is possible to fit a distribution from
the information presented in the drawing. Table 9.3 demonstrates this. Column 2 is the mid-
point of the ranges plotted in the histogram. Column 3 is the frequency. We can calculate the
maximum likelihood estimate of the mean by applying Equation (4.3). The weighting (w) is the
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number of measurements falling within the range. Multiplying column 2 by column 3, dividing
by the total number of measurements and summing gives the weighted mean of 47.0. We can
similarly calculate the maximum likelihood estimate for the variance using the equation

σ2 =

n

i= 1

wi xi−x
2

n

i= 1

wi

(9.7)
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Table 9.3 Fitting a normal distribution to a histogram

ranges mid-range frequency mean variance probability EDF

CDF

RSS

PDF

RSS
CDF derived
from PDF

μ = 46.1 μ = 44.1
σ = 8.60 σ = 7.69

25 22.5 0 0.0000 0.0000 0.0071 0.0000 0.0000
30 27.5 0 0.0000 0.0000 0.0306 0.0000 0.0256 0.0000 0.0128
35 32.5 1 1.05 6.80 0.0323 0.0323 0.0984 0.0044 0.0839 0.0027 0.0675
40 37.5 5 6.05 14.61 0.1613 0.1935 0.2391 0.0104 0.1804 0.0018 0.1997
45 42.5 9 12.34 5.92 0.2903 0.4839 0.4493 0.0108 0.2541 0.0118 0.4169
50 47.5 6 9.19 0.05 0.1935 0.6774 0.6751 0.0000 0.2346 0.0101 0.6613
55 52.5 4 6.77 3.88 0.1290 0.8065 0.8498 0.0075 0.1419 0.0007 0.8495
60 57.5 4 7.42 14.18 0.1290 0.9355 0.9471 0.0005 0.0563 0.0212 0.9486
65 62.5 1 2.02 7.73 0.0323 0.9677 0.9861 0.0003 0.0146 0.0003 0.9841
70 67.5 1 2.18 13.54 0.0323 1.0000 0.9973 0.0000 0.0025 0.0009 0.9926
75 72.5 0 0.0000 1.0000 0.9996 0.0000 0.0003 0.0000 0.9940

total 31 47.0 66.70 1.0000 0.0340 0.0494



Column 5 gives a value for the standard deviation of 8.17. Column 3 is converted to the
probability distribution, in column 6, by dividing by the total number of measurements.
Column 7 shows the cumulative distribution derived from summing the values in column
6. Column 8 is determined using Equation (5.43). The values in column 9 are now the
square of the prediction error, between columns 7 and 8, multiplied by the number of mea-
surements (column 3) falling in the band. Without this weighting a very large number of
measurements in one band would only influence the curve fitting by the same amount as a
single measurement in another. This would make the accuracy of fitting very vulnerable to
outliers.

Although the starting value of RSS is not included in the table, by adjusting μ to 46.1 and σ to
8.60, it has been minimised from 0.0724 to 0.0340. This result is similar to that obtained pre-
viously, when fitting the CDF to the EDF. It is however an approximation since it is based on
the assumption that measurements within each band are uniformly distributed. We know that
this is not the case. Reducing the size of the bands will give a poorly presented histogram but
will reduce the impact of this assumption. There is no requirement that the bands be of equal
size. The most accurate fit is achieved by reducing the size of each band (theoretically to zero)
so that each contains only elements of the dataset that have exactly the same value. This is
exactly the procedure described by Table 9.1.

If a CDF cannot be fitted directly then, as in the previous section, we can fit a PDF. The
result of doing so is also presented in Table 9.3. Column 10 is derived by applying
Equation (5.35), remembering that this gives probability density. To convert to probability
we must multiply by the width of the interval. In this example all the intervals are 5. Column
11 is the weighted square of the difference between column 6 and 10. Although the starting
value of RSS is not included in the table, by adjusting μ to 47.0 and σ to 8.17, it has been
minimised from 0.1009 to 0.0494. Figure 9.9 shows how well the derived distribution
matches the histogram. By its nature, comparing the curve of a continuous distribution to
a histogram will appear not to show a good match – even if only the midpoints of each column
are considered. However, we can derive the CDF in column 12 from the cumulative sum of
the fitted PDF in column 10. Figure 9.10 plots this against the observed EDF, showing that
the fit is good.

While minimising RSS tells us that we have the best fit that the method can deliver, we should
be cautious using it to compare methods. As we might expect, fitting to a histogram results in
a higher RSS than fitting to every point. However RSS depends not only on the deviation
between fitted and observed distributions but also on the number of points used in its calcu-
lation. We might therefore consider normalising RSS by dividing by n. This leads us on to
the next topic.

9.6 Choice of Penalty Function

So far, in identifying the best fit (of a CDF), we have chosen to minimise RSS where

RSS=
n

i= 1

F xi −Fn xi
2 (9.8)

This least squares approach is common to all forms of curve fitting. It is used, for example, in
developing an inferential property from historical data using regression analysis to identify the
coefficients in the chosen function. We are not normally concerned with actual value of RSS;
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we only require that it has been minimised. The value can however be used more systematically
when fitting a statistical distribution function. It can help us decide whether the fit is good
enough. Specifically the Cramér–von Mises test involves the use of published tables to deter-
mine whether RSS is below the value we would expect at a chosen confidence level and the
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number (n) of data points used. If RSS is greater than this value then wewould reject the hypoth-
esis that the data follow the prior distribution.

There are many other similar tests. For example, the Anderson–Darling test is based on a
weighted RSS.

RSSw =
n

i= 1

w F xi −Fn xi
2 (9.9)

The weight (w) is defined as

w=
1

F x 1−F x
(9.10)

Figure 9.11 shows howw varies. Its principle is to place a higher weighting on values in the tails
of the distribution to compensate for the fact that there are far fewer of them. There are tables
published to cover the most commonly considered distributions that give the maximum
expected value for RSSw.

Another commonly used test is that described as Kolmogorov–Smirnov. This was originally
designed to enable two continuous functions to be compared to determine whether any differ-
ence might be accounted for by chance. Quite simply it defines the parameter Dn as the largest
mismatch between the two curves. A modification to the test was later developed to permit
comparison between a continuous function and a discontinuous one.

As an example, Table 9.4 shows the method involved. The first column contains the data,
ranked in increasing value. The second is simply a counter. Column 3 is calculated according to

Fn xk−1 =
k−1
n

(9.11)
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Column 4 is calculated from the prior distribution. In this example the distribution is assumed to
be normal, using Equation (5.43) with a mean (μ) of 48 and a standard deviation (σ) of 10.
Column 5 is the EDF calculated from Equation (9.2). Column 6 is the absolute value of the
difference between columns 3 and 4. Column 7 is the absolute value of the difference between
columns 4 and 5. We choose the largest value that appears in columns 6 and 7, in this case
0.1801. This is the maximum distance between the prior distribution (coloured line) and the
EDF (black line) shown by Figure 9.12. Again there is a published table that is used to deter-
mine whether Dn is below the maximum expected.
Strictly the Kolmogorov–Smirnov test should not be used to identify whether a distribution

that has been fitted to data has been selected correctly. The assumption behind the test is that the
distributions being compared are independent. More properly it should be used, for example, if
the engineer wishes to check that data collected more recently fits a distribution that was

Table 9.4 Kolmogorov–Smirnov test

xk k Fn(xk−1) F(x) Fn(xk) |Fn(xk−1) − F(x)| |F(x) − Fn(xk)|

34.4 1 0.0 0.0869 0.1 0.0869 0.0131
37.3 2 0.1 0.1423 0.2 0.0423 0.0577
40.2 3 0.2 0.2177 0.3 0.0177 0.0823
42.2 4 0.3 0.2810 0.4 0.0190 0.1190
44.5 5 0.4 0.3632 0.5 0.0368 0.1368
47.0 6 0.5 0.4602 0.6 0.0398 0.1398
48.5 7 0.6 0.5199 0.7 0.0801 0.1801
57.7 8 0.7 0.8340 0.8 0.1340 0.0340
57.7 9 0.8 0.8340 0.9 0.0340 0.0660
65.9 10 0.9 0.9633 1.0 0.0633 0.0367
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developed from older data. Similarly it would permit comparison between two distributions
developed from different datasets to determine if they are significantly different.

While these techniques might be applicable to other sciences, in practice control engineers
typically rely on more visual techniques, such as Q–Q plots, to identify whether a distribution
has been well chosen. However there is another use for the penalty functions like RSSw andDn.
We are free to use these parameters, instead of RSS, as part of curve fitting. Using the same data
as in the previous section, Figure 9.13 shows how the fitted normal distribution changes
depending on the choice of penalty function. For example, the estimate of the mean is 46.0
when RSS is used. Using RSSw gives 46.3 and using Dn gives 46.9. Similarly the estimates
of standard deviation are 8.53, 8.88 and 8.57 respectively. Again there is no absolute measure
of which is the best choice; as ever selection is based on engineering judgement. For example, if
extreme values are not well modelled by the chosen distribution, the use of RSSw might help
improve the fit. Similarly, if the largest mismatch is in the region of the distribution being used
for further study, the use of Dn may resolve this.
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10
Distribution of Dependent Variables

Many distributions result frommanipulating data that follow another distribution. For example,
if we collect data from a normal distribution, square each value and sum together a defined
number of the squares, the results will follow a chi-squared distribution. The control engineer
might rightly be unconcerned by such a result. It is unlikely that process data would be manipu-
lated in such a way. However, it highlights an important principle. While the raw data collected
from a process might be normally distributed, any property derived from the data is likely not
to be so.

For example, an inferential property is derived from independent variables. The form of cal-
culation can influence the form of distribution. But most of the process variables we analyse are
derived from others. A product composition, for example, depends on a number of independ-
ently set process parameters such as flows, temperatures and pressures. A process simulation
would contain a complex calculation that derives composition from basic measurements. We
can think of the process as this calculation.

In fact, by definition, a variable we wish to control must be dependent on others. So, while
the independent variables might reasonably be expected to be normally distributed, the nonlin-
earity inherent to the process can significantly alter the form of distribution of the dependent
variable.

10.1 Addition and Subtraction

We have seen that the Central Limit Theorem tells us that deriving a value by summing two
others will result in a distribution closer to normal, no matter what the distribution of the base
variables. For example, total daily production might be determined by adding a large number of
flow measurements recorded during the day. It would be reasonable to assume that variation in
production would follow a normal distribution.

The same would apply to values derived by subtraction. For example, we might calculate
losses by subtracting total product from total feed. Again we would reasonably expect the
variation in losses to follow a normal distribution.

Statistics for Process Control Engineers: A Practical Approach, First Edition. Myke King.
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10.2 Division and Multiplication

The product of two variables can be determined by first summing their logarithms. The Central
Limit Theorem would therefore tell us that the logarithms of the products will more closely
follow the normal distribution. For example, we might derive the duty of a heat exchanger
by multiplying the flow through it by the change in temperature. The same will apply to
division, since this can be achieved by subtracting logarithms. We might determine the reflux
ratio on a distillation column by dividing reflux flow by the flow of distillate. Such derived
measurements are commonly analysed to support benefit estimation or design of inferential
properties. In order to fit a normal distribution to the results, it is likely that the fit would
be improved by taking the logarithm of each result. However, as we will see later, there is a
modified form of the normal distribution, known as the lognormal distribution, which effec-
tively does the same.
Figure 10.1 shows the distribution of a variable derived by dividing values (x1 and x2) both

selected from a uniform distribution between 0 and 1. The distribution is clearly far from nor-
mal. However, real process data are unlikely to be uniformly distributed. For example,
Figure 10.2 shows the distribution of reflux and distillate flows on the LPG splitter that operates
with a reflux ratio close to 1. Figure 10.3 shows a trend over time of the calculated reflux ratio. It
displays some of the behaviour expected in that the distribution is clearly not symmetrical. Pos-
itive deviations from the mean are significantly greater than negative deviations. Indeed, it
shows a skewness of 0.67 – greater than the limit of 0.5 normally applied in assuming a dis-
tribution is normal. Its kurtosis of 3.95 is similarly outside the limit of 3.5. Figure 10.4 shows
the distribution of the reflux ratio. The solid line is the result of fitting a normal distribution
giving a mean of 1.09 and standard deviation of 0.21. The dashed line is the result of fitting
a lognormal distribution giving a mean of 1.10 and standard deviation of 0.22. While visually
the lognormal is a much better fit, its choice in this case has relatively little impact on the
statistics.
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Figure 10.5 shows the distribution of reflux and distillate flows on the debutaniser – this time
operating with a reflux ratio of around 0.3. Figure 10.6 shows the distribution of the reflux ratio.
Its skewness is 0.20 and kurtosis 3.02 – both well within the limits of the assumption that the
distribution is normal. Visually the fit is almost perfect. Although the lognormal distribution
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would be a marginally better choice, there would be no reason to choose another type of dis-
tribution. In general, as we have seen here, the worst case is when the twomeasurements used to
calculate a ratio are numerically virtually equal. But, even under these circumstances, the
assumption that the distribution of the ratio is normal would introduce relatively little error
in the statistics.
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Figure 10.7 shows the distribution resulting from multiplying x1 by x2 – again both selected
from a uniform distribution between 0 and 1. Figures 10.8 and 10.9 show the distribution of the
two process measurements used to calculate heat exchanger duty – the flow and the temperature
difference between inlet and outlet. Figure 10.10 shows the distribution of the product of these
two measurements. It has a skewness of 0.42 and a kurtosis of 3.13. It should therefore be
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reasonable to fit a normal distribution, as shown by the solid line, giving a mean of 2476 and a
standard deviation of 608. Fitting a lognormal distribution (the dashed line) gives the mean as
2513 and the standard deviation as 627. As with division, in this case, multiplication of nor-
mally distributed variables gives a result that closely follows a normal distribution but which is
noticeably better represented by a lognormal distribution.

0.00

0.05

0.10

0.15

0.20

0.25

0 50 100 150 200

di
st

ri
bu

ti
on

flow (m3/hr)

Figure 10.8 Normal distribution fitted to heat exchanger flow

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50

di
st

ri
bu

ti
on

temperature difference (oC)

Figure 10.9 Normal distribution fitted to heat exchanger temperature difference

152 Statistics for Process Control Engineers



10.3 Reciprocal

While it may not be immediately obvious, control engineers will often fit a distribution to the
reciprocal of a measurement. For example, the time taken to produce a batch of gasoline thor-
ough a recipe blender is inversely proportional to the total flow rate of the components. If we
were to study the statistics of batch duration, we are effectively fitting a distribution to the recip-
rocal of the flow. If, for example, records show that the flow is normally distributed then the
batch duration will not be. Chemical engineers are concerned with residence time in a reactor,
since this can affect conversion. Residence time is the reciprocal of the reactor feed rate, multi-
plied by reactor volume. The same applies to events. Events can be quantified either as the
number that occur in a defined time or as the time between events. One is the reciprocal of
the other.

The propane from the LPG splitter is routed to a sphere. The time taken to fill the sphere will
be inversely proportional to the product flow rate. Figure 10.11 shows the distribution of the
reciprocal of this flow. We know that the flow is normally distributed, but its reciprocal is
clearly not. Skewness for the distillate flow is 0.22; for its reciprocal it is 0.89. Similarly kur-
tosis changes from 3.0 to 4.7. A reciprocal can be determined by subtracting the logarithm of
the measurement from zero (the logarithm of 1). So, again, the lognormal distribution would
provide a considerably improved fit to the data.

10.4 Logarithmic and Exponential Functions

More complex calculations may or may not significantly distort the distribution away from nor-
mal. Figure 10.12 shows the distribution of each of the temperatures around an exchanger that
uses hot oil to heat up a product. Key to exchanger design and monitoring is the log mean tem-
perature difference.
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LMTD =
ΔTin−ΔTout
ln ΔTin

ΔTout

(10.1)

Figure 10.13 shows the distribution of LMTD. In this case assuming the distribution is
normal (solid line) gives a mean of 26.29 and a standard deviation of 3.58. The lognormal
(dashed line), with a mean of 26.41 and a standard deviation of 3.30, is a slightly poorer fit.
This is because the slight negative skewness of the LMTD results cannot be represented
by the lognormal distribution. It is almost certain that a better choice of distribution could
be found.

As another example, Figure 10.14 shows the variation in pressure in the LPG splitter.
Distillation is governed by the Antoine Equation which relates absolute vapour pressure
(P bara) to temperature (T C).

ln P =A−
B

T +C
(10.2)

Among other applications it can be used to determine the boiling point of a liquid at a given
pressure (P barg) and hence the tray temperature (T C) required to meet the product purity tar-
get. Rearranging Equation (10.2) and using the coefficients for butane.

T =
2154 897

9 05800− ln P+ 1 01325
−238 730 (10.3)

Figure 10.15 shows the distribution of the calculated temperature. The solid line is the fitted
normal distribution – showing an almost perfect match. This is explained by Figure 10.16
which shows that, despite the reciprocal logarithmic function in Equation (10.3), the relation-
ship between temperature and pressure is close to linear over the operating range. In fact this
is the key to the linear PCT (pressure-compensated temperature) often used in composition
control schemes.
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However, distillation is a highly non-linear process and can distort the distribution of dis-
turbances. Figure 10.17 shows the relationship, developed from a simulation of the LPG split-
ter, between the C4 content of the overhead propane product (HKd) and that of the feed (HKf).
Figure 10.18 shows that this relationship is close to logarithmic. The dashed line is the plot of

log HKd = 0 0475HKf + 1 69 (10.4)
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If the feed is routed directly from an upstream process then we might find that HKf follows a
normal distribution. Figure 10.19 shows the distribution of HKd resulting from a Monte Carlo
simulation of a large number of measurements ofHKf that have a mean of 50 vol% and standard
deviation of 5 vol%. The result is far from normal with a skewness of 1.9 and a kurtosis of 9.9.
In fact, by definition, the results will follow a lognormal distribution. If this product were
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routed directly to another column, for example a propene/propane splitter, then the distribution
of the finished propane product composition will be even further skewed, possibly to the point
where a lognormal distribution can no longer describe the behaviour.

Blending components to meet a viscosity target is a highly nonlinear process. The
Refutas Equation is used to convert viscosity in cSt (v) to a linear blending number (VBN).

VBN = 14 534ln ln ν + 0 8 + 10 975 (10.5)

Its inverse is

ν= exp exp
VBN−10 975

14 534
−0 8 (10.6)

The result is then used determine the relative amounts of each component required to meet the
target viscosity. Figure 10.20 shows the variation in VBN for a fuel oil blend. From applying
Equation (10.6), Figure 10.21 shows the resulting variation in viscosity.

Again, despite the apparently highly non-linear function, there appears only a little
advantage in selecting the lognormal distribution. The data has a skewness of 0.2 and a
kurtosis of 2.9, both well within the limits. The normal distribution estimates the mean
as 369.0 cSt and the standard deviation as 27.0. The lognormal gives values within 1%
of these, at 369.4 and 27.3. Figure 10.22 illustrates that, over the operating range, the non-
linearity is considerably less than that might be anticipated from the double logarithm in the
Refutas Equation.

Reactor conversion is governed by the residence time (t) and the rate of reaction (k) which
varies with absolute temperature (T) according to the Arrhenius Equation.

conversion = 100 1−e−kt where k =Aexp
−Ea

RT
(10.7)
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In this example the frequency factor (A) has a value of 45,000 hr–1 and the activation energy
(Ea) is 49.5 kJ/mol. The Universal Gas Constant (R) is 8.314 J/mol/K. Figure 10.23 shows
the variation in reactor temperature closely follows the normal distribution. Applying
Equation (10.7), assuming a residence time of 20 minutes, gives the variation in conversion
shown in Figure 10.24.
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Fitting the normal and lognormal distributions give very similar results – although both
appear not to closely match the actual distribution. The reason for this is that the skewness
is negative (at −0.5). Under these circumstances the lognormal will be no better a fit than
the normal distribution. Indeed, as we will see later, many of the non-symmetrical distributions
cannot represent data that is negatively skewed.
Rather than attempt to identify a distribution that is skewed to the left, a better solution

may be to apply some transformation to the data. In this case we can change from % converted
to % unconverted – simply by subtracting each measurement from 100%. Figure 10.25 shows
the result of fitting the normal and lognormal distributions to the transformed data. Being sym-
metrical, the normal distribution is no different. Its mean has changed simply from 86.56%
converted to 13.44% unconverted. The standard deviation of 3.59% is also unchanged.
The lognormal distribution, however, now fits the data very well – with a mean of 13.68%

and a standard deviation of 3.74%. Figure 10.26 shows that the nonlinearity is significant – in
this case justifying the use of a non-symmetrical distribution.

10.5 Root Mean Square

Figure 10.27 shows the distribution of a variable (x) derived as the root mean square of
two variables (x1 and x2) both selected from a normal distribution with a mean of 0 and a
variance of 1.

x1 =N 0,1 x2 =N 0,1 x = x21 + x
2
2 (10.8)

We will describe later the Rayleigh distribution. Theoretically it is followed by the root mean
square of two variables with zero mean and the same standard deviation. While in the process
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industry there are situations where the root mean square of two variables might be used, it is
highly unlikely that the mean of both variables will be zero. Figure 10.28 shows the distribution
of the root mean square of the two flows shown in Figure 10.2. Despite the flows having almost
the same mean and standard deviation, the root mean square closely follows the normal
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distribution (solid line). But, because the data are slightly skewed to the right (γ = 0.21), the
lognormal distribution (dashed line) fits a little better.

10.6 Trigonometric Functions

Data derived by applying, for example, trigonometric functions is highly unlikely to fit either
the normal or lognormal distributions. Such situations are rare in the process industry but, if
required, there are distributions that can be adapted to fit such data.
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11
Commonly Used Functions

There is a wide range of mathematical functions used in statistics. The reader may not be famil-
iar with many of them. The symbols used and the language involved can be daunting. Their
value is that they allow us to simply document a complex combination of basic mathematical
operations. They are analogous to using n! to replace 1 × 2 × 3 ×… × n. This chapter includes
those most commonly used. With a little practice, the reader will quickly become comfortable
using them. Indeed, they are becoming commonplace in spreadsheet packages.

11.1 Euler’s Number

The reader is likely to be familiar with a number of mathematical constants used frequently in
statistical formulae. For example, we know π is the ratio of the circumference of a circle to its
diameter. Another is Euler’s number (e) but less well-known is its definition, which is

1 +
1
n

n

e as n ∞ 11 1

It is important because similar functions can appear in the derivation of a PDF or CDF and so
lead to the inclusion of an exponential function. For example,

as n ∞ 1 +
λ

n

n

eλ and 1−
λ

n

n

e−λ (11.2)

This convergence is illustrated in Figure 11.1.
Equation (11.2) is often the basis for the limit of other functions. For example, if we replace λ

with x and n with 1/δ, we get

1 + δx 1 δ ex and 1−δx 1 δ e−x as δ 0 (11.3)
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And so, for example, we will see terms in distributions of the form

1−δ
x−α

β

1 δ

exp −
x−α

β
as δ 0 (11.4)

11.2 Euler–Mascheroni Constant

Sometimes confusingly described as Euler’s constant, it is not the same as Euler’s number. By
convention it is given the symbol γ, which has nothing in common with its use to represent
skewness. It is defined by

n

i= 1

1
i

− ln n γ as n ∞ (11.5)

Figure 11.2 plots Equation (11.5) showing that γ has a value of about 0.5772. The constant
appears in a number of situations. Those of interest to the control engineer include its use
in the gamma function described later in this chapter. Its only other use in this book, we shall
see later, is in determining the mean of the Gumbel distributions.

11.3 Logit Function

The logit function gives its name to the logit-normal distribution. It is defined by

logit x = ln
x

1−x
= ln x − ln 1−x for 0 < x< 1 (11.6)

Figure 11.3 plots the function.

–2

0

2

4

6

8

1 10 100 1000 10000 100000

(1
 +

 λ
/n

)n

n

λ = 2

λ = 1

λ = –2

e2 = 7.389

e1 = 2.718

e–2 = 0.135

Figure 11.1 Convergence to powers of Euler’s number

166 Statistics for Process Control Engineers



11.4 Logistic Function

The logistic function gives its name to the logistic distribution. It is the inverse of the logit
function.

logit−1 x = logistic x =
1

1 + e−x
=

ex

1 + ex
(11.7)

Unlike the logit function, there is no restriction on the value of x.
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x −∞ logistic x 0 (11.8)

x ∞ logistic x 1 (11.9)

Figure 11.4 plots the function. We will come across it again in Section 16.4; when used in an
artificial neural network, it is more commonly known as the sigmoid function.

11.5 Gamma Function

The gamma function (Γ) was introduced by Euler as a way of more simply presenting lengthy
multiplication of a series of values that arise in defining probability distributions. It is defined as

Γ x =

∞

0

tx−1e− tdt (11.10)

So

Γ 1 =

∞

0

e− tdt = −e− t ∞
0 = 1 (11.11)

Remembering the general formula for integration by parts,

u dv= u v− v du (11.12)

Let

u = tx−1 and dv= e− tdt (11.13)
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Therefore

du= x−1 tx−2 and v= −e− t (11.14)

Substituting into Equation (11.12)

Γ x = − tx−1e− t
∞
0 +

∞

0

x−1 tx−2e− tdt = x−1

∞

0

tx−2e− tdt (11.15)

which gives the reduction formula

Γ x = x−1 Γ x−1 (11.16)

Therefore

Γ x = x−1 Γ x−1 = x−1 x−2 Γ x−2 = (11.17)

The series terminates when the last term (x − r) is less than or equal to 1. So, if x is an integer, the
last term in the multiplication will be Γ(1) – which we have shown is 1. So, for example,

Γ 4 = 4−1 3−1 2−1 Γ 1 = 6 (11.18)

Extending Equation (11.16) gives a formula used frequently to simplify PDF and CDF.

Γ x + 1 = xΓ x (11.19)

For integers, Γ(x) is simply (x − 1)! – shown as the round points on the curve in Figure 11.5.
So, for example, Equation (11.19) can be written as

x = x x−1 = x x−1 x−2 = (11.20)
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But x need not be an integer; for example if x is an odd multiple of 0.5, then the last term in
Equation (11.17) will be Γ(0.5). We can quantify this by using Euler’s reflection formula

Γ x Γ 1−x =
π

sin πx
(11.21)

By setting x to 0.5 we obtain

Γ 0 5 = π (11.22)

For example,

Γ 3 5 = 3 5−1 2 5−1 1 5−1 Γ 0 5 = 1 875 π (11.23)

In general

Γ x+ 0 5 =
2x−1
2x

π (11.24)

The !! symbol is the double factorial, defined as

n = n n−2 n−4 n−6 … n−r (11.25)

The last term in Equation (11.25) is either 1 or 2 – depending on whether n is odd or even. The
square points in Figure 11.5 are plotted from Equation (11.24).
Most spreadsheet packages include the gamma function and so can provide a result for any

value of x. Since the function increases rapidly with x, it is common to plot its logarithm.
Figure 11.6 does this – taking advantage of this to extend the x axis well beyond that in
Figure 11.5. It is used in distributions, where x can be large, to avoid computational overflow
problems.

0

100

200

300

0 50 100 150

lo
g 1

0[
(xΓ

)]

x

Figure 11.6 Log-gamma function

170 Statistics for Process Control Engineers



A common appearance of the gamma function is in distributions that involve calculating the
number of combinations possible when r items are selected from a total of n. This is known as
the binomial index and is commonly denoted by nCr where

nCr =
n

r
=

n

r n−r
=

Γ n + 1
Γ r + 1 Γ n−r + 1

=
n

r n−r

Γ n

Γ r Γ n−r
(11.26)

Many distributions that include the gamma function can be written in several different ways
that, at first glance, make them appear different. We have seen how Equations (11.16) and
(11.19) might be used. Other alternatives are not so immediately obvious. For example,
Equation (11.21) might be used to replace a gamma function with a trigonometric one.

The gamma function of a negative number requires a different approach to its calculation.
Rearranging Equation (11.19) gives

Γ x =
Γ x + 1

x
(11.27)

So

Γ −1 =
Γ 0
−1

=
∞
−1

= −∞ (11.28)

Γ −2 =
Γ −1
−2

=
−∞
−2

= ∞ (11.29)

We can see that the gamma function for odd negative integers is −∞, while that for even neg-
ative integers is ∞. An example of a non-integer value for x is

Γ −0 5 =
Γ 0 5
−0 5

= −2 π (11.30)

And so

Γ −1 5 =
Γ −0 5
−1 5

=
4
3

π (11.31)

In general

Γ 0 5−x =
−2 x

2x−1
π (11.32)

Figure 11.7 plots the gamma function for negative numbers. The square points are those cal-
culated from Equation (11.32).

There are methods of obtaining the gamma function for other non-integer values but there is
no analytical method that can use Equation (11.10) to determine it for any value. Instead a
numerical approximation is used, the most common of which is the Lanczos approximation.
Too complex to merit inclusion here, it is almost certainly the method used by spreadsheet
packages and other proprietary software.

There are occasions when we need the derivative of the gamma function, Γ (x). Differentiat-
ing Equation (11.19)

Γ x+ 1 = xΓ x +Γ x (11.33)

Dividing by xΓ(x)

Γ x + 1
xΓ x

=
Γ x

Γ x
+
1
x

(11.34)
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Replacing xΓ(x) from Equation (11.19)

Γ x+ 1
Γ x + 1

=
Γ x

Γ x
+
1
x

(11.35)

Thus

Γ x + 2
Γ x + 2

=
Γ x+ 1
Γ x+ 1

+
1

x+ 1
=
Γ x

Γ x
+
1
x
+

1
x + 1

(11.36)

In general

Γ x + n−1
Γ x + n−1

=
Γ x

Γ x
+
1
x
+

1
x+ 1

+ +
1

x+ n−2
(11.37)

So, if x = 1

Γ n

Γ n
=
Γ 1
Γ 1

+
1
1
+
1
2
+ +

1
n−1

(11.38)

An alternative definition of the Euler–Mascheroni constant (γ), defined in Section 11.2, is

γ = −
Γ 1
Γ 1

(11.39)

So (replacing n with x), generally

Γ x =Γ x
x−1

i= 1

1
i
−γ (11.40)
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Like the gamma function itself, we can readily calculate its derivative if x is an integer. There
are software-based techniques, beyond the scope of this book, for which this restriction does
not apply. Figure 11.8 plots the result.

Some CDF involve the use of the incomplete gamma function. This is the gamma function
described by Equation (11.10), but integrated over only part of the range. The lower incomplete
gamma function is defined as

γ δ,x =

x

0

tδ−1e− tdt (11.41)

The upper incomplete gamma function is defined as

Γ δ,x =

∞

x

tδ−1e− tdt (11.42)

Adding Equations (11.41) and (11.42) and then comparing with Equation (11.10) gives

γ δ,x +Γ δ,x =Γ δ (11.43)

The regularised lower and upper incomplete gamma functions are obtained by dividing by the
gamma function. These sum to unity.

γ δ,x
Γ δ

+
Γ δ,x
Γ δ

= 1 (11.44)

The CDF of the gamma and chi-squared distributions involve these functions.
Not included in this book, because of their complexity, are any of the published numerical

techniques that give very close approximation to the incomplete functions. But they are used in
spreadsheet packages and other proprietary software that support these distributions.
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Similarly excluded are distributions that include the gamma function of a complex number –
the result of which may be real, but still not offer a worthwhile improvement over distributions
that are easier to apply.

11.6 Beta Function

The definition of the beta function is

B α,β =

1

0

tα−1 1− t β−1dt (11.45)

In practice it is calculated from the gamma function.

B α,β =
Γ α Γ β

Γ α+ β
(11.46)

It is often used to provide the normalisation constant in a PDF, as we will see later in the
distribution that takes its name. As with the gamma function, distributions using the beta func-
tion can be documented in different ways. For example,

B α+ 1,β =
α

α+ β
B α,β (11.47)

B α−1,β =
α+ β−1
α−1

B α,β (11.48)

B 1,β =
Γ 1 Γ β

Γ β + 1
=

β−1
β

=
1
β

(11.49)

In the same way that there is an incomplete gamma function, there is an incomplete beta func-
tion. It is used, for example, in the CDF of the beta-I and Fisher distributions. There is no ana-
lytical method of directly integrating Equation (11.45). Numerical methods include those based
on a converging infinite series known as a continued fraction. Almost certainly, this method is
used in spreadsheet functions and other statistical software.

11.7 Pochhammer Symbol

There are actually two Pochhammer symbols. They are each abbreviations of another form of
factorial. The first can be described as a rising or ascending factorial. Strictly, because it does
not start at 1, it is not a factorial. In fact, it is the ratio of two factorials. More properly it is a
sequential product. It is defined as

x n = x x + 1 x + 2 … x + n−1 =
Γ x+ n
Γ x

=
x+ n−1
x−1

(11.50)

Figure 11.9 shows the effect of changing n.
The falling or descending version is defined as

x n = x x−1 x−2 … x−n + 1 =
Γ x+ 1

Γ x−n + 1
=

x

x−n
(11.51)

It is shown in Figure 11.10.
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Pochhammer originally used the symbol for the binomial index, as described by
Equation (11.26). There are also other forms of the symbols. Care must therefore be taken
by checking the definition used in each case. For this reason, in this book, the notation is
avoided by instead including the full calculation in any function that includes Pochhammer.
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11.8 Bessel Function

The Bessel function (J), of order (k), is defined as

Jk x =
∞

i= 0

−1 i

i Γ k + i + 1
x

2

2i+ k
(11.52)

Of more interest is themodified Bessel function (I), which is used by the von Mises, Rician and
Skellam distributions. It can be derived from Jk but this involves the use of −1.

Ik x = −1
−k
Jk x −1 (11.53)

It can, however, also be determined directly from

Ik x =
∞

i= 0

1
i Γ k + i+ 1

x

2

2i+ k
(11.54)

Figure 11.11 shows this function plotted for a number of different values of k.
A summation of a series to infinity may not appear a practical function but in fact it con-

verges quite quickly, especially for small values of x. Figure 11.12 shows how the function
converges as the number of terms in the series is increased. It is drawn with k set to 0. This
is the worst case; higher values of k require fewer terms to achieve the same accuracy.
Figure 11.13 shows how many terms are necessary for the error to fall below 0.01%. More
conveniently, the function is included in some spreadsheet packages. However, many spread-
sheet packages permit only integer values of k. Of those that appear to accept non-integers,
some in fact round off to the nearest integer. Figure 11.14 plots the same values as
Figure 11.11. The points correspond to integer values of k but, as shown, the function can
be treated as continuous.
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More fully, Equations (11.52) and (11.54) describe Bessel functions of the first kind. The
Bessel function of the second kind is

Yk x =
Jk cos kx −J−k x

sin kπ
(11.55)

The modified Bessel function of the second kind is used by the generalised inverse Gaussian
distribution. Its definition is

Kk x =
π

2
I−k x − Ik x

sin kπ
(11.56)

The formulae involve Bessel functions with a negative order, which is usually not supported by
spreadsheet packages. However, by using different mathematics, they do support the functions
of the second kind. Figure 11.15 shows the function plotted against x. Again, most spreadsheet
packages treat the function as discrete although, as Figure 11.16 shows, it can be considered
continuous.

11.9 Marcum Q-Function

TheMarcum Q-function is used in the CDF of the noncentral chi-squared and Rician distribu-
tions. It is defined as

Qk a,b = exp −
a2 + b2

2

∞

i= 1−k

a

b

i

Ii ab (11.57)

It is not commonly supported by spreadsheet packages. While the calculation could be built, it
relies on the modified Bessel function of the first kind (Ii) which is only supported for integer
values of i. We will therefore not rely on it; instead we apply the trapezium rule to the PDF.
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11.10 Riemann Zeta Function

Named after the Greek letter zeta (ζ), not to be confused with the damping factor used in control
theory, the Riemann zeta function is defined as

ζ x =
∞

i= 1

i−x (11.58)

It gives its name to the zeta distribution. It converges only if x is greater than 1. ζ(1) is infinite.
For values of x only slightly greater than 1 it converges very slowly. Fortunately, for higher
values, convergence is much quicker. Figure 11.17 illustrates this.
In the Gumbel distribution ζ(3) is required to calculate the skewness. This has a value of

about 1.2025, which is accurate to within 0.01% once i exceeds 64. As Figures 11.17 and
11.18 show, for large values of x, ζ(x) is approximately 1.
The Hurwitz zeta function includes an additional term (α).

ζ x,α =
∞

i= 1

i− x + α (11.59)

11.11 Harmonic Number

Related to the Riemann function is the harmonic number (Hn)

Hn = 1+
1
2
+
1
3
…+

1
n
=

n

i= 1

1
i

(11.60)

A more general harmonic number appears in the Zipf distribution.
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Hn,λ = 1 +
1

2λ
+

1

3λ
…+

1
nλ

=
n

i= 1

1
iλ

(11.61)

Figure 11.19 shows that, for high values of λ, harmonic numbers tend towards a constant
value. Indeed, as n ∞, the harmonic number approaches the zeta function. Neither function
is commonly available in spreadsheet packages.
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Harmonic numbers are used in the Zipf–Mandelbrot distribution as Hn,α,λ, where

Hn,α,λ =
1

1 + α λ +
1

2 + α λ +
1

3 + α λ…+
1

n + α λ =
n

i= 1

i+ α −λ (11.62)

11.12 Stirling Approximation

The Stirling approximation provides a reasonably accurate estimate of the factorial of a num-
ber (n).

n ≈ 2πn
n

e

n
(11.63)

As Figure 11.20 shows, as n exceeds 83, the error in the approximation falls to less than
0.1%. Also shown are the less well-known, higher order, versions of the approximation in
which the error is many orders of magnitude smaller.

n ≈ 2πn 1 +
1
12n

n

e

n
(11.64)

n ≈ 2πn 1 +
1

12n
+

1
288n2

n

e

n
(11.65)

While once a convenient method, particularly for non-integer values of n, most spreadsheet
packages now include the factorial function for integers and, for non-integers, the gamma func-
tion Γ(n + 1).
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11.13 Derivatives

There are a wide range of mathematical functions used in CDF that need to be differentiated to
generate the corresponding PDF. Many of the derivatives will be familiar to the reader. For
those that may not be able to immediately recall them, they are summarised in Table 11.1.

Table 11.1 Common derivatives

F(x) dF x
dx F(x) dF x

dx

xn nxn−1 ax ln(a)ax

ex ex ln(x) 1
x

sin(x) cos(x) sin−1 x
a

1

a2−x2

cos(x) −sin x cos−1
x
a

−1

a2−x2

tan(x) sec2(x) tan−1 x
a

a
x2 + a2

cosec(x) −cosec x cot x cosec−1 x
a

−a

x x2−a2
sec(x) sec(x)tan(x) sec−1 x

a
a

x x2−a2

cot(x) −cosec2 x cot−1
x
a

−a
x2 + a2

sinh(x) cosh(x) sinh−1 x
a

1

x2 + a2

cosh(x) sinh(x) cosh−1 x
a

1

x2−a2

tanh(x) 1− tanh2 x tanh1
x
a

a
a2−x2

cosech(x) −cosech x coth x cosech−1 x
a

−a

x x2 + a2

sech(x) −sech x tanh x sech−1 x
a

−a

x a2−x2

coth(x) 1−coth2 x coth−1 x
a

a
x2−a2
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12
Selected Distributions

We have seen that it is a common error to assume that data are normally distributed. This can
even be done unknowingly. The control engineer may not appreciate that a statistical formula
being applied was derived from the PDF or CDF of the normal distribution. This can result in
seriously erroneous conclusions, of which there are many examples. They include proceeding
with an improved control project that appears to be economically attractive when, in fact, it is
not. Another is deducing an inferential property is reliable when, in fact, including it in a control
scheme actually worsens control of the property.

There are many reasons why process data may not be normally distributed. One of the aims
of this book is to highlight this issue and present a wide range of alternative choices for the prior
distribution. This chapter focusses on those that are more commonly presented in textbooks.
They represent a small fraction of many hundred published. In some cases their popularity
is justified; they work well for the purpose for which they were developed. However, popularity
is rarely a reliable measure of effectiveness. Take, as an example, the Ziegler–Nichols control-
ler tuning method. It is almost universally included in university courses on process control,
despite it now being virtually useless as a tuning method. Of the dozens of other published
methods, perhaps one or two are effective and these are among the least well known. The same
is true of statistical distributions. Indeed, the best choice for any dataset may not be among
those included in this chapter. For this reason, a summary of the many alternatives is included
as Appendix 2.

To provide a benchmark against which to assess alternatives we can fit a normal distribution
to some of our example datasets:

• We showed in Chapter 9 that Equation (5.35) can be fitted to the C4 in propane data more
accurately than Equation (5.43). The better choice gives a mean (μ) of 3.94, a standard devi-
ation (σ) of 1.96 and RSS as 0.2303. Skewness, calculated from Equation (4.41), is 1.27 and
kurtosis, from Equation (4.42), is 4.79 – both well outside the acceptable range.

• The NHV disturbance data has relatively little skewness (γ = 0.61) but a very high kurtosis
(κ = 8.87). In Chapter 9 we showed that Equation (5.43) gives the better fit, with μ
as −0.0206, σ as 1.19 and RSS as 0.1437.
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At the end of this chapter it will become apparent which of the distributions described best fit
these two datasets. This, of course, does not imply that they will always be the best choice. With
experience, the engineer will be able to reject some distributions as being unsuitable but will,
for every dataset, need to test each of the remaining contenders. Indeed, as will become appar-
ent in Part 2, there might be several dozen contenders.

12.1 Lognormal

The lognormal distribution is one of many derived from the normal distribution; others are
included in Part 2. It is the probability distribution of a variable whose logarithm is normally
distributed. Its advantage is its ability to represent the distribution of positively skewed data.
We saw in Section 10.2 how the Central Limit Theorem shows that values, derived by multi-

plying or dividing data, tend to follow a lognormal distribution. Many of the parameters that
affect process behaviour are the result of such calculations. It is not therefore surprising that the
lognormal distribution often fits process data well.
Equation (5.35) describes the normal distribution; the PDF of the lognormal distribution is

derived from it.

f x =
1

βx 2π
exp

− ln x −α 2

2β2
x> 0; β > 0 (12.1)

The mean (α) and standard deviation (β) are those for ln(x). Raw moments for x are given by

mn = exp nα+
n2β2

2
(12.2)

Hence

μ= exp α+
β2

2
(12.3)

σ2 = exp β2 −1 exp 2α+ β2 (12.4)

Rearranging

α= ln μ − ln 1 +
σ2

μ2
(12.5)

β = ln 1 +
σ2

μ2
(12.6)

Figure 12.1 shows the effect of changing σ, with μ fixed at 5. As σ gets smaller the distri-
bution becomes increasingly symmetrical.
The CDF cannot be obtained by integrating Equation (12.1). So, like the normal distribution,

it uses the error function.

F x =
1
2
+
1
2
erf

ln x −α

β 2
(12.7)

186 Statistics for Process Control Engineers



From the C4 in propane data we can calculate μ as 4.87 and σ as 2.43. We can, from
Equation (12.5), calculate the maximum likelihood estimate for α as 1.47 and, from
Equation (12.6), that for β as 0.47. Adjusting these values to 1.46 and 0.49 respectively mini-
mises RSS to 0.0477. The fit is considerably better than that achieved by the normal distribu-
tion, as illustrated by Figures 12.2 and 12.3. Figure 12.4 further shows a close fit of the PDF to
the observed distribution plotted as a histogram.
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Figure 12.1 Lognormal: Effect of σ on shape
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Figure 12.2 Lognormal: Improved fit to the C4 in propane data
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From Equation (12.3), we obtain the mean as 4.85 and, from Equation (12.4), the standard
deviation as 2.53.
Skewness and kurtosis are

γ = exp β2 + 2 exp β2 −1 (12.8a)
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Figure 12.3 Lognormal: P–P plot showing improved fit
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Figure 12.4 Lognormal: PDF fitted to histogram of C4 in propane data
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κ = exp 4β2 + 2exp 3β2 + 3exp 2β2 −3 (12.8b)

Figure 12.5 shows the feasible combinations of skewness and kurtosis. The values calculated
from the data are close to this line – further indicating a good fit. But, as we saw in some of the
examples in Chapter 10, the lognormal distribution cannot represent negative skewness. For
example, the distribution of the C3 content of propane (approximating to 100 – C4) would
not be well represented.

12.2 Burr

More fully entitled the Burr-XII distribution is also known as the Pareto-IV distribution or the
Singh–Maddala distribution. Its PDF is

f x =

δ1δ2
β

x−α

β

δ2 −1

1 +
x−α

β

δ2
δ1 + 1

x ≥ α; β,δ1,δ2 > 0 (12.9)

Its CDF is

F x = 1− 1 +
x−α

β

δ2
−δ1

(12.10)

We will see later, if δ2 is set to 1, the distribution becomes the Pareto-II distribution.
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Figure 12.5 Lognormal: Feasible combinations of γ and κ
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Fitting Equation (12.10) to the C4 in propane data gives α as 1.50, β as 6.20, δ1 as 3.01 and δ2
as 1.68. Figure 12.6 shows, as the coloured line, this distribution and also the impact of
changing these values. They minimise RSS to 0.0350. We shall see that this is one of the best
fits among those distributions that permit simple calculation of mean and standard deviation.
The QF can be obtained by inverting the CDF.

x F = α+ β 1−F −1 δ1 −1
1 δ2

0 ≤F ≤ 1 (12.11)

Raw moments are given by

mn = δ1B
δ1δ2−n

δ2
,
δ2 + n
δ2

βn =
n

δ2Γ δ1
Γ

n

δ2
Γ δ1−

n

δ2
βn δ1δ2 > n (12.12)

Setting n to 1 in Equation (12.12) gives the mean (μ) as 4.94. Setting n to 2 and putting the
results into Equation (4.48) gives the standard deviation (σ) as 2.77. The third moment and
Equation (4.52) give the skewness (γ) as 2.68. The fourth moment and Equation (4.55) give
the kurtosis (κ) as an unrealistic 25.7. Figure 12.7 shows the feasible combinations of skewness
and kurtosis derived from varying δ1 and δ2. Also shown are the fitted and calculated values.
While RSSmight indicate a good fit, the large discrepancy in kurtosis places some doubt on the
applicability of this distribution.
Fitting Equation (12.10) to the NHV disturbance data gives −8.42 for α, 2.20 for β, 0.837 for

δ1 and 12.7 for δ2 – resulting in a value of 0.0942 for RSS. Figure 12.8 compares the CDF
against the EDF. We will see later that this is substantially bettered by other distributions. This
means, unfortunately, that the Burr-XII distribution does not outperform others as a general-
purpose choice. In fact, for many datasets, fitting will result in extremely large values of δ1
and δ2. Indeed, if no restriction is placed on the number of iterations, the values can approach
infinity and cause overflow problems. These may occur during fitting or, afterwards, when
calculating the moments.
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Figure 12.6 Burr-XII: Fitted to the C4 in propane data

190 Statistics for Process Control Engineers



12.3 Beta

There are several versions of the beta distribution. The beta-I distribution is also known as the
Feller–Pareto distribution. It is non-symmetrical, taking its usual name from the use of the beta
function.
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Figure 12.7 Burr-XII: Feasible combinations of γ and κ
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Figure 12.8 Burr-XII: Fitted to the NHV disturbance data
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Its PDF is

f x =
xδ1 −1 1−x δ2 −1

B δ1,δ2
0 ≤ x ≤ 1; δ1,δ2 > 0 (12.13)

The reciprocal of the beta function, B(δ1,δ2), is the normalisation constant, chosen so that the
area under the probability distribution curve is 1.
The coefficients δ1 and δ2 are shape parameters. Figure 12.9 shows the effect of varying

these. If set equal to each other, we obtain the symmetric beta distribution – as shown by
Figure 12.10. If δ1 and δ2 are both 1, we obtain the uniform distribution U(0,1). While math-
ematically δ1 and δ2 can both approach zero, if both are less than 1, the resulting anti-modal
distribution has little application to process data.
The CDF is the regularised incomplete beta function, as described in Section 11.6, and is

supported by most spreadsheet packages. Alternatively, as we saw in Chapter 9, the trapezium
rule can be applied to the PDF.
The key statistical parameters are

μ=
δ1

δ1 + δ2
(12.14)

σ2 =
δ1δ2

δ1 + δ2
2 δ1 + δ2 + 1

(12.15)

γ =
2 δ2−δ1
δ1 + δ2 + 2

δ1 + δ2 + 1
δ1δ2

(12.16)

κ =
6 δ1−δ2

2 + 3δ1δ2 δ1 + δ2 + 2 δ1 + δ2 + 1

δ1δ2 δ1 + δ2 + 2 δ1 + δ2 + 3
(12.17)
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Figure 12.9 Beta-I: Effect of δ1 and δ2 on shape

192 Statistics for Process Control Engineers



Figures 12.11 and 12.12 show the effect of δ1 and δ2 on skewness and kurtosis, demonstrating
the wide range of shapes that can be represented by the distribution. One of the advantages of
the distribution is that skewness can be introduced without affecting kurtosis and vice versa. As
Figure 12.11 shows, if δ1 is set less than δ2, the distribution is skewed to the right (γ is positive).
If δ1 is set greater than δ2 then γ is negative. Examination of Equation (12.16) shows that if
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Figure 12.10 Beta-I: Symmetric-beta (δ1 = δ2)
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δ1 and δ2 are equal then skewness will be zero – as already shown by Figure 12.10. As
Figure 12.12 shows, there are multiple combinations of δ1 and δ2 that give the same kurtosis.
From Equation (12.17), the condition for no kurtosis (κ = 3) is

δ31− 2δ2−1 δ21−2δ2 δ2 + 2 δ1 + δ
2
2 δ2 + 1 = 0 (12.18)

As a cubic this equation has three solutions. One is trivial in that δ1 and δ2 are both zero. The
other two are given by Figure 12.13. If the distribution is skewed to the right then δ1 can be
derived from δ2 (or vice versa) using the upper line. If the distribution is skewed to the left,
the relationship is given by the lower line. While the lines appear straight, they are not exactly
so. The equations given are approximations valid only over the range plotted.
These relationships can of course be used to fit a distribution to data that, by calculation, has

either zero skewness or zero kurtosis but this is not the intent. It merely demonstrates the ver-
satility of the beta-I distribution. The approach, as usual, should be to adjust δ1 and δ2 to give the
best fit.
Rearranging Equations (12.14) and (12.15) gives

δ1 =
μ μ−μ2−σ2

σ2
(12.19)

δ2 =
1−μ μ−μ2−σ2

σ2
(12.20)

Using the C4 in propane data as an example, because xmust be between 0 and 1, we first choose
a range for the data – in this case from 1 to 16 vol%. Each result is then converted to a fraction of
this range. A preliminary estimate of the mean, calculated from Equation (4.2), is 0.258. From
Equation (4.35) we obtain an estimate of 0.162 for the standard deviation. Applying
Equations (12.19) and (12.20) gives preliminary estimates for δ1 and δ2 of 1.63 and 4.69 respec-
tively. Curve fitting gives better values as 2.01 and 6.53 respectively.
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Figure 12.12 Beta-I: Effect of δ1 and δ2 on kurtosis
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Equations (12.14) and (12.15) give the mean and standard deviation as 0.235 and 0.137.
Remembering that these are for x, the scaling must be used to convert them to measures of
product composition.

μ = 0 235 16−1 + 1 = 4 52 (12.21)

σ = 0 137 16−1 = 2 06 (12.22)

Although we fit the distribution to scaled variables, RSS can still be used to compare the
accuracy of fit to an alternative distribution. RSS is based on the accuracy with which we predict
f(x) – not x. In this example it is 0.0841. While the beta-I distribution fits the data less well than
many of distributions we cover, it has the advantage that it can model skewness in either direc-
tion. For example, if the composition data was presented as purity (i.e. vol% C3) rather than as
impurity, then the skew would have been reversed. As we have seen, we could have handled
this by obtaining the distribution of (100 – C3) vol% but we would then have to assume that the
content of other components, such as C2, does not vary.

The accuracy of fit is also influenced by the choice of range. Figure 12.14 shows the distri-
bution developed above, using the range of 1 to 16%, compared to that based on a range deter-
mined by fitting. Of note is the large change in δ2 and the significant reduction in RSS. The
mean, standard deviation, skewness and kurtosis match more closely the values calculated from
the data. The slight concern is that the range excludes the three occasions where the C4 content
fell to 1.5 vol% – effectively saying that this is impossible.

12.4 Hosking

More fully entitled the Hosking four-parameter kappa distribution,[6] it perhaps will not be as
well known to the reader as others in this chapter. It is included because it will fit a broad range
of datasets. It also includes, as special cases, many other distributions that therefore need not
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Figure 12.13 Beta-I: Conditions for zero kurtosis
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be considered separately. In particular some are used in extreme value analysis that we will
cover in Chapter 13. In the absence of any formulae for moments, it also gives an opportunity
to demonstrate how they can be calculated using the trapezium rule.
The distribution is described by the PDF

f x =
1
β

1−
δ1 x−α

β

1
δ1
−1

1−δ2 1−
δ1 x−α

β

1
δ1

1
δ2
−1

β > 0 (12.23)

To ensure a negative number is not raised to a non-integer power, the bounds described by
Table 12.1 are placed on x; outside of these f(x) is zero.
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xmin 1 1.6
xmax 16 100
RSS 0.0841 0.0374
δ1 2.01 1.73
δ2 6.53 50.7
F(x1)  0.0000 0.0010
μ 4.52 4.85 4.87
σ 2.06 2.41 2.42
γ 0.73 1.40 1.27
κ 3.22 5.79 4.79

Figure 12.14 Beta-I: Impact of choice of range

Table 12.1 Bounds for the Hosking distribution

δ1 δ2 minimum maximum

>0 >0 α+
β 1−δ2−δ1

δ1
α+

β

δ1

0 >0 α+ β ln δ2 ∞

<0 >0 α+
β 1−δ2−δ1

δ1
∞

>0 ≤0 −∞ α+
β

δ1
0 ≤0 −∞ ∞

<0 ≤0 α+
β

δ1
∞
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The CDF is

F x = 1−δ2 1−
δ1 x−α

β

1
δ1

1
δ2

(12.24)

It is possible to invert the CDF to give

x F = α+
β

δ1
1−

1−Fδ2

δ2

δ1

0 ≤F ≤ 1 (12.25)

Fitting the distribution to the C4 in propane data gives 3.26 for α, 2.04 for β, −0.0604 for δ1 and
0.365 for δ2. At 0.0319 RSS is one of the lowest of the distributions considered.

There are no published formulae for mean, standard deviation, skewness or kurtosis. Instead
we can apply the trapezium rule, described by Equation (4.68), to determine the moments.
From Table 12.1, the distribution is lower-bounded at 1.26. So, although i is ranged from zero,
only values of x greater than this are actually used. Choosing 200 as the maximum value of x
ensures that f(x) is, not surprisingly, very close to zero. This value is around 80 standard devia-
tions from the mean. Choosing the interval as 0.1 gives the upper limit of i as 2000. Table 12.2
includes selected rows of the calculations. For the first and last groups of six, f(x) is effectively
zero. As accumulating sums, the rawmoments increase by row until they reach their asymptotic
values of

m1 = 4 91 m2 = 31 0 m3 = 254 m4 = 2707 (12.26)

From Equations (4.46), (4.49), (4.52) and (4.55) the properties of the distribution are
therefore asymptotic to

μ= 4 91 σ = 2 62 γ = 1 90 κ = 9 65 (12.27)

Calculated from the data, the corresponding properties are

μ= 4 87 σ = 2 43 γ = 1 27 κ = 4 79 (12.28)

This illustrates how higher moments are more prone to error. For example, the calculation of
kurtosis involves the fourth raw moment and hence shows the largest discrepancy. In contrast,
the mean is the first raw moment and is closest to the estimate. This result is typical of even a
well-fitting distribution.

If we were using this distribution to assess the improvement arising from improved control
we might, as described in Chapter 2, apply the same percentage rule. If, before implementation,
it is acceptable to violate the specification 5% of the time then we should accept the same after-
wards. From Equation (12.25) we currently expect the C4 content, for 95% of the time, to be
9.95 or less. If improved control halves the standard deviation, this is equivalent to halving β
to 1.02. Rearranging Equation (12.25)

α= x−
β

δ1
1−

1−Fδ2

δ2

δ1

= 9 95−
1 02

−0 0604
1−

1−0 950 365

0 365

−0 0604

= 6 59 (12.29)

Improved control would therefore enable the average C4 content to be increased by
3.33 (6.59 − 3.26) as shown by Figure 12.15.

Fitting the distribution to the NHV disturbance data gives −0.0143 for α, 0.689 for β, −0.0906
for δ1 and 1.10 for δ2. RSS is 0.0959 – showing one of the poorest fits. As Figure 12.16
shows the fit is poor in the region of downward disturbances in the range 1 to 5.
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Table 12.2 Calculation of μ, σ, γ and κ for Hosking distribution

x f(x) xf(x) m1 x2f(x) m2 x3f(x) m3 x4f(x) m4 μ σ γ κ

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ∞ ∞
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
. . . . . . . . . . . .
. . . . . . . . . . . .

2.0 0.13 0.26 0.08 0.52 0.14 1.03 0.25 2.06 0.45 0.08 0.36 4.57 22.03
2.1 0.15 0.31 0.10 0.64 0.20 1.35 0.37 2.83 0.70 0.10 0.43 3.90 16.36
2.2 0.16 0.35 0.14 0.78 0.27 1.71 0.52 3.76 1.03 0.14 0.50 3.38 12.58
2.3 0.17 0.40 0.18 0.92 0.35 2.12 0.71 4.87 1.46 0.18 0.57 2.97 9.95
2.4 0.19 0.44 0.22 1.07 0.45 2.56 0.95 6.15 2.01 0.22 0.64 2.63 8.04
2.5 0.20 0.49 0.26 1.22 0.57 3.05 1.23 7.62 2.70 0.26 0.70 2.34 6.62
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .

199.5 0.00 0.00 4.91 0.00 31.0 0.00 254 0.00 2707 4.91 2.62 1.90 9.65
199.6 0.00 0.00 4.91 0.00 31.0 0.00 254 0.00 2707 4.91 2.62 1.90 9.65
199.7 0.00 0.00 4.91 0.00 31.0 0.00 254 0.00 2707 4.91 2.62 1.90 9.65
199.8 0.00 0.00 4.91 0.00 31.0 0.00 254 0.00 2707 4.91 2.62 1.90 9.65
199.9 0.00 0.00 4.91 0.00 31.0 0.00 254 0.00 2707 4.91 2.62 1.90 9.65
200.0 0.00 0.00 4.91 0.00 31.0 0.00 254 0.00 2707 4.91 2.62 1.90 9.65



Figure 12.17 presents the same data, but based on absolute changes in NHV. The fit gives
0.416 for α, 0.591 for β, −0.558 for δ1 and 0.265 for δ2. With RSS at 0.0272, it is the
best of the distributions considered but, more importantly, demonstrates the flexibility of
Equation (12.24) in representing very different distributions.
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Figure 12.15 Hosking: Impact of improved control of C4 content of propane
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Figure 12.16 Hosking: Fitted to the NHV disturbance data
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Several of the distributions we cover later are special cases of the Hosking distribution.
These are illustrated by Figures 12.18 to 12.21. In all cases α is fixed at 0 and β at 1.
In the case of the Gumbel distribution, because both δ1 and δ2 are set to 0, we apply

Equation (11.4) to generate the PDF

f x =
1
β
exp −

x−α

β
exp −exp −

x−α

β
=
1
β
exp −

x−α

β
−exp −

x−α

β
β > 0

(12.30)
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Figure 12.18 Hosking: Exponential distributions as special case
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Figure 12.17 Hosking: Fitted to absolute changes in NHV
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Figure 12.20 Hosking: Generalised extreme value distribution as special case
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It can also be described as the extreme value-I distribution, reflecting its use in extreme value
analysis that we will cover in Chapter 13.
Figure 12.22 shows the effect of varying α and β.
Its CDF and QF are

F x = exp −exp −
x−α

β
(12.31)
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Figure 12.21 Hosking: Other special cases
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x F = α−β ln − lnF 0 ≤F ≤ 1 (12.32)

The calculation of the mean uses the Euler–Mascheroni constant as defined in Section 11.2.

μ≈α+ 0 5772β (12.33)

σ2 =
π2

6
β2≈1 64β2 (12.34)

The calculation of skewness uses the Riemann zeta function described in Section 11.7, where
ζ(3) is approximately 1.2025.

γ =
12 6ζ 3

π3
≈1 14 (12.35)

κ = 5 4 (12.36)

Noting the convention to change the sign of δ, the PDF of the generalised extreme value
(GEV) distribution is

f x =
1
β

1 +
δ x−α

β

−1
δ−1

exp − 1 +
δ x−α

β

−1
δ

δx ≥ δα−β; β > 0; δ 0 (12.37)

Note that, because δ can be negative, the lower bound on x cannot generally be expressed as
α − β/δ. Indeed, if δ is negative, this is the upper bound.

This distribution also has a specific application to extreme value analysis. Its CDF and
QF are

F x = exp − 1 +
δ x−α

β

−1
δ

(12.38)

x F = α+
β

δ
− ln F −δ−1 (12.39)

Mean and variance are

μ = α +
Γ 1−δ −1

δ
β δ< 1 (12.40)

σ2 =
Γ 1−2δ −Γ2 1−δ

δ2
β2 δ<

1
2

(12.41)

Skewness and kurtosis are

γ =
Γ 1−3δ −3Γ 1−δ Γ 1−2δ + 2Γ2 1−δ

Γ 1−2δ −Γ2 1−δ
3
2

δ

δ
δ<

1
3

(12.42)

κ =
Γ 1−4δ −4Γ 1−δ Γ 1−3δ + 6Γ 1−2δ Γ2 1−δ −3Γ4 1−δ

Γ 1−2δ −Γ2 1−δ
2 δ <

1
4

(12.43)

While most of the special cases are named, no name has been given to the distribution if δ1 is
set to 0 and δ2 to δ. The PDF becomes

f x =
1
β
exp −

x−α

β
1−δexp −

x−α

β

1
δ−1

(12.44)
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Figure 12.23 shows the effect of varying δ. The CDF and its inverse are

F x = 1−δ 1−
x−α

β

1
δ

(12.45)

x F = α−β ln
1−Fδ

δ
(12.46)

Similarly no name has been given to the distribution if δ1 is set to 1 and δ2 to δ. However, other
than the special cases already covered (δ2 = 0 and δ2 = 1), it is unlikely that the distribution
would have any application in the process industry.
Figure 12.24 maps the range of values for δ1 and δ2, summarising the range of distributions

that the Hosking distribution can represent. Also shown are the values fitted to the C4 in pro-
pane and NHV disturbance data.

12.5 Student t

The standard Student t distribution was actually proposed by William Sealy Gosset using the
pseudonym Student. It is a special case of the Pearson-VII distribution described later in
Section 27.7. It was developed specifically for use when themean of the population is estimated
from a very small number of results. The method gives the reliability of the estimate. This is
useful, for example, in determining whether a few unusual results are representative of the
expected behaviour of the process or whether they indicate a problem.
As we showed previously in defining the calculation of standard deviation (Section 4.7), if σp

is the standard deviation of the population containing a sample of n values then estimate of
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Figure 12.23 Hosking: Unnamed distribution as special case
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the mean (x) of the sample will have a standard deviation of σp n. If μ is the mean of the
population then Student’s t is defined by

t =
x−μ

σp n
(12.47)

The PDF is

f t =
Γ

f + 1
2

Γ
f

2
πf

1 +
t2

f

− f + 1
2

f > 0 (12.48)

To apply this function we first need to determine the number of degrees of freedom (f). We
defined this in Section 4.7. As usual, since we have used n values to calculate the mean,
the number degrees of freedom is n − 1. The shape of the distribution depends on f and hence
on the sample size.

Figure 12.25 shows how the distribution for f = 1 compares to the normal distribution with a
variance of 1. This is also the standard Cauchy distribution, described in Section 27.4 as a spe-
cial case of the Pearson-IV distribution. As f increases, the t distribution becomes closer to the
normal distribution. The two distributions are identical for an infinite number of degrees of
freedom. For values of f greater than 15, the t distribution will be close enough to the normal
distribution to make this approximation.

For example, imagine we are making a product that has an inferential property that, over the
last 24 hours, shows that the property has been well controlled at 100 and so μ is 100. In the
same period three 8-hourly laboratory tests gave the results 98, 100 and 96. The mean of these
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Figure 12.24 Hosking: Summary of distributions represented
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results (x) is 98 and the standard deviation (σ), from Equation (4.35), is 2. From
Equation (12.47), t is

t =
98−100

2 3
= −1 732 (12.49)

We have calculated one mean and so two degrees of freedom remain. Figure 12.26 shows the
cumulative t distribution, drawn by applying the trapezium rule to Equation (12.48), for dif-
ferent values of f. For comparison the normal distribution is included as the coloured line.
Figure 12.27 zooms in at the lower end of the plot range. For f = 2 (3 samples) it shows that,
if the inferential is accurate, there is a probability of 0.113 that the true mean could be less than
98. One could thus conclude that this is within the 95% confidence that the inferential is correct.
Figure 12.27 shows that, had there been only two samples (f = 1) with the same mean and stand-
ard deviation then, again using Equation (12.48), the probability that the mean could be less
than 98 rises to 0.196. Similarly had there been five samples (f = 4), using Equation (12.48)
shows it would fall to less than 0.05 – the level of probability that would typically prompt a
redesign of the inferential. The t distribution therefore reflects our natural inclination to place
more trust in a conclusion that is based on more results.
Another application of the t distribution is comparing the means of two small datasets to

determine whether they are significantly different. One set has n1 measurements, a mean of
x1 and a standard deviation of σ1. The other has n2 measurements, a mean of x2 and a standard
deviation of σ2. The variance of the difference between the two means (σd) is

σ2d = σ
2
x1
+ σ2x2 =

σ21
n1

+
σ22
n2

(12.50)

And so t can be derived using Equation (12.47).

t =
x1−x2
σd

(12.51)
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Figure 12.25 Student: Probability density compared to normal distribution
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Figure 12.26 Student: Effect of f on cumulative distribution
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On the basis that we have derived two values (the two means) the number of degrees of
freedom (f) is

f = n1 + n2−2 (12.52)

This might be used to determine, from a small number of samples, whether an inferential
has developed a significant bias error. One dataset will be laboratory results and the other
the corresponding estimates made by the inferential.
The mean (μ) and the skewness (γ) of the distribution are both zero. Other key parameters,

although unlikely ever to be required, can be determined from

σ2 =
f

f −2
for f > 2 (12.53)

κ =
3 f −2
f −4

for f > 4 (12.54)

12.6 Fisher

Named in honour of Ronald Fisher, this F distribution is also known as the Fisher–Snedecor
distribution or the Snedecor F distribution. It is a special case of the Pearson-VI distribution
that we will cover in Section 27.6. It is the distribution of the ratio of the estimates of the
variance of a normal distribution. While at first this might seem a purely theoretical function
it has, as we shall see later, a range of applications in the analysis of variance (ANOVA) and
forms the basis of the F test. In particular we can use it to determine whether a measured change
in variance is significant.
The mathematical function that describes its shape is quite complex, involving two values for

the number of degrees of freedom – f1 and f2. Fortunately, it has been converted by others into
tables and spreadsheet functions.

f F =

f1
f2

f1
2

F
f1
2 −1

B
f1
2
,
f2
2

1 +
f1
f2
F

f1 + f2
2

f1, f2 > 0 (12.55)

To show the function graphically is also more complex since it depends on the values of two
parameters (f1 and f2). Figures 12.28 to 12.30 give some indication of how the shape of the
curve varies. The distribution’s main application is in the area of regression analysis, as we
will demonstrate in Chapter 16.
The CDF is a regularised incomplete beta function, as described in Section 11.6, and is com-

monly available as a spreadsheet function and in proprietary software. Alternatively the trape-
zium rule can be applied to the PDF.
If the distribution were considered for fitting to process data, F in Equation (12.55) would be

replaced with (x − α)/β. Remembering, when doing so, as explained by Equations (5.60) to
(5.65), the resulting PDF must then have β included in the denominator. The parameters f1
and f2 are assumed, by most proprietary software, to be integers. This makes fitting more com-
plex. It is also common that the best fit is achieved by impractically large values for f2. Nev-
ertheless, there are occasions where it provides an accuracy of fit better than many of the
contending distributions.
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Moments are given by

mn =
f2
f1

nΓ
f1
2
+ n

Γ
f1
2

Γ
f2
2
−n

Γ
f2
2

βn f2 > 2n (12.56)

Hence

μ = α+
f2

f2−2
β f2 > 2 (12.57)

σ2 =
2 f 22 f1 + f2−2

f1 f2−2
2 f2−4

β2 f2 > 4 (12.58)

γ =
2 2f1 + f2−2

f2−6
2 f2−4

f1 f1 + f2−2
f2 > 6 (12.59)

κ =
6 f2−4

f2−6 f2−8
2 f2−2

2

f1 f1 + f2−2
+
f2
2
+ 5 f2 > 8 (12.60)

Figure 12.31 shows feasible combinations of skewness and kurtosis.

12.7 Exponential

The exponential distribution is a special case of several other distributions. For example, if in
the Hosking distribution, described by Equation (12.23), we set δ1 to 0 and δ2 to 1 we obtain
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Figure 12.30 Fisher: Effect of f1 on shape (f2 = 100)
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f x =
1
β
exp −

x−α

β
x ≥ α; β > 0 (12.61)

F x = 1−exp −
x−α

β
(12.62)

This is sometimes described as the shifted exponential distribution, because the x axis is shifted
by α. Setting α to 0 and replacing β with 1/λ gives what is normally accepted as the standard
exponential distribution, although ‘standard’ would usually suggest that β is 1.

f x = λe−λx x ≥ 0; λ> 0 (12.63)

F x = 1−e−λx (12.64)

It is used to estimate the probability of the interval between events (x) based on the expected
rate of events (λ). It is applicable when events occur independently at a constant average rate.
The probability of an event must not be affected by previous occurrences. The distribution
is therefore one of the few that are memoryless. It should not therefore be applied to processes
that have memory.

Inverting the CDF gives the QF

x F = α−β ln 1−F = −
ln 1−F

λ
0 ≤F ≤ 1 (12.65)

Key parameters are

μ = α+ β =
1
λ

(12.66)

σ2 = β2 =
1

λ2
(12.67)
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Figure 12.31 Fisher: Feasible combinations of γ and κ
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γ = 2 (12.68)

κ = 9 (12.69)

Taking theWECO rules example from Section 8.4, the expected number of false indications (λ)
is 1/92 per day. Equation (12.64) is plotted using this value as Figure 12.32. If F is 0.95, then,
from Equation (12.65), x is very close to 3/λ. In other words we are 95% sure that the interval
between false indications will not exceed 3/λ or 276 days. Should it do so then we should con-
clude that the value of σerror (used in assessing the inferential) has changed.
Similarly, for the stock level example, the expected number of low stock events (λ) is 3/220

per day. As Figure 12.32 shows, we can therefore be 95% certain that there will be problem
with component availability within 220 days of the previous occasion. However, some caution
should be used in interpreting this result. Stock level is a process with memory. We will cover
later more reliable methods of assessing the likelihood of such events.
Other applications include assessing process availability based on the MTBF (mean time

between failures) of critical process equipment. For example, the feed pump may be known
to have a recurring problem with a MTBF of 100 days (λ = 0.01 failures per day). We could
instigate a preventative maintenance program under which the pump was serviced at the time
when the chance of failure exceeded, for example, 50%. From Equation (12.65) such work
would need to take place every 69 days.
We described, in Section 3.3, the distribution of times between events of the LPG splitter

reflux exceeding 65 m3/hr. Over the 5,000 hours of data, there were 393 such events. The first
occurred after 10 hours, and the last after 4,968 hours. By calculation the mean time between
events is therefore 12.6 hours. Rather than calculate λ from the data we can fit the exponential
distribution to the event distribution. Fitting Equation (12.62) gives α as 0.429 and β as 12.1.
Figure 12.33 shows the fit; RSS is 0.1190. From Equation (12.66), the mean time between
events is 12.5 hours. Applying Equation (12.65), with F chosen as 0.01, we can be 99% con-
fident that a high reflux event will occur within 56 hours.
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Figure 12.32 Exponential: Application to WECO rules and stock level example
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12.8 Weibull

TheWeibull distribution is used, like the exponential distribution, to estimate the probability of
the time between events, but for processes that have memory.

It is described by the PDF

f x = δxδ−1 exp −xδ x > 0; δ> 0 (12.70)

This is plotted for a range of values of the shape parameter (δ) as Figure 12.34. It is strictly
the Weibull-I distribution. More commonly a scale parameter (β) is included to produce the
Weibull-II distribution – also known as the Rosin–Rammler distribution. Its PDF is

f x =
δxδ−1

βδ exp −
x

β

δ

x > 0; δ,β > 0 (12.71)

This is plotted, for different values of δ and β, as Figure 12.35. Its CDF is

F x = 1−exp −
x

β

δ

(12.72)

The CDF can be inverted to give the QF.

x F = β ln
1

1−F

1
δ

0 ≤F ≤ 1 (12.73)

The Weibull-III distribution also includes a location parameter (α).
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Figure 12.33 Exponential: Fitted to interval between high reflux flow events
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f x =
δ x−α δ−1

βδ exp −
x−α

β

δ

x > α; δ,β > 0 (12.74)

F x = 1−exp −
x−α

β

δ

(12.75)

x F = α+ β ln
1

1−F

1
δ

0 ≤F ≤ 1 (12.76)

Fitting Equation (12.72), to the absolute value of the changes in the C4 content of the propane
rundown, gives values for δ and β of 0.974 and 2.51 respectively. But the Weibull-II distribu-
tion lends itself to another approach. Rearranging Equation (12.73) gives

ln − ln 1−F x = δ ln x −δ ln β (12.77)

F(x) is now the actual distribution, determined as if we were to fit a prior distribution. We then
plot ln{−ln[1 − F(x)]} against ln(x). This is only possible if all values of x are greater than zero.
Since we have defined changes in C4 content as absolute values, this is the case for most of the
results. Changes that are zero are included in the total for the purpose of calculating the actual
F(x) but are excluded from the plot.

If the distribution followsWeibull then we would expect the plot to be a straight line of slope
δ and intercept −δln(β). Figure 12.36 shows the result. The slope (δ) is 0.999 – compared to
0.974 derived by curve fitting. When δ is 1 the Weibull-II distribution becomes the exponential
distribution. In this example the process has been shown to be memoryless; the timing of a
disturbance is not influenced by the timing of the last. We would therefore expect the behaviour
to follow the exponential distribution. The intercept is −0.898, which is −0.999ln(β), so β is
2.46 – a value close to that derived from curve fitting.
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Figure 12.36 Weibull-II: Alternative method of fitting to changes in C4 content of propane
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Using Equation (12.73), with the values derived for δ and β, we can be 95% certain that xwill
not exceed 7.4. Alternatively we might expect disturbances to be larger than this on 18 days in a
year. This might be enough of a concern to justify some improvement to the control scheme.
The raw moments are given by

mn =Γ 1 +
n

δ
βn =

n

δ
Γ

n

δ
βn (12.78)

Hence the mean and variance are

μ= α+ βΓ 1 +
1
δ

= α+
β

δ
Γ

1
δ

(12.79)

σ2 = Γ 1 +
2
δ

−Γ2 1 +
1
δ

β2 =
2
δ
Γ

2
δ

−
1

δ2
Γ2 1

δ
β2 (12.80)

Because δ is 1, the mean and standard deviation have the same value (β) of 2.46. Simply cal-
culating these parameters from the data gives μ as 2.43 and σ as 2.25. The true variation in the
size of disturbances is thus about 9% larger than simple calculation suggests.
There are a variety of ways in which the formulae for skewness and kurtosis can be pre-

sented; deriving them from the raw moments gives

γ =
3δ2Γ

3
δ

−6δΓ
2
δ

Γ
1
δ

+ 2Γ3 1
δ

2δΓ
2
δ

−Γ2 1
δ

3
2

(12.81)

κ =
4δ3Γ

4
δ

−12δ2Γ
3
δ

Γ
1
δ

+ 12δΓ2 1
δ

Γ
2
δ

−3Γ4 1
δ

2δΓ
2
δ

−Γ2 1
δ

2 (12.82)

Feasible combinations of skewness and kurtosis are shown as Figure 12.37.
Figure 12.38 is the result of applying the same technique, as described by Equation (12.77),

to the stock level example. While the result is not exactly a straight line, it gives an estimate for
δ of 2.51 –much higher than the value of 1 which would result from amemoryless process. This
behaviour might have been expected, since today’s inventory will be determined substantially
by the quantity the tank contained yesterday.
Curve fitting, as shown in Figure 12.39, gives a higher value of 3.00 for δ and 1489 for β.

While perhaps not a good fit it underlines the principle of fitting a distribution that could, for
example, be used to estimate the probability of the inventory falling below the minimum
required for downstream processing or of exceeding the maximum storage capacity.

12.9 Chi-Squared

The chi-squared (χ2) distribution is defined by the PDF

f x =

x−α

β

f
2−1

exp −
x−α

2β

2
f
2βΓ

f

2

β, f > 0 (12.83)
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It is useful when we wish to compare a set of observed results with those predicted and to
determine the probability that our method of predicting the results is correct. Under these
circumstances α is set to 0 and β to 1 to give the standard chi-squared distribution. The
PDF then becomes
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Figure 12.38 Weibull-II: Method of fitting to stock level data
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f x =
x
f
2−1 exp −

x

2

2
f
2Γ

f

2

(12.84)

Figures 12.40 and 12.41 show this function for a range of values of f. The CDF uses the
regularised incomplete gamma distribution, described in Section 11.5, and is supported by
most spreadsheet packages.
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Figure 12.39 Weibull-II: Result of fitting to stock level data
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To use the distribution we first calculate χ2 from the predicted values (ŷ) and the observed
values (y).

χ2 =
n

i= 1

yi−yi
2

yi
(12.85)

Figure 12.42 shows the cumulative probability curves, plotted by applying the trapezium
rule to Equation (12.84), for a range of values of f. From the appropriate curve we identify
the probability corresponding to the value when x is χ2.
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As an example we will use a correlation developed using regression analysis later in
Chapter 16. The control engineer might think of this as an inferential property calculation.

y = 25 76 + 1 468x1 (12.86)

Table 12.3 shows daily measurements of the true property (y) versus those predicted by the
inferential. The same information is portrayed in Figure 12.43. We can see that every meas-
urement is greater than that predicted and so we wish to determine whether the inferential
calculation should be updated. If we consider all 10 data points then f is 9 and χ2 is 3.24.
We can see from Figure 12.42 that the probability that our inferential property calculation
is correct is 0.046. This means we are 95.4% sure that the inferential has been incorrect and
so we would work to resolve the problem. Had we performed the analysis a day sooner, when

Table 12.3 Measured and predicted values for y

x1 y y
y−y 2

y
y−y 2

y
f P

11 45 42 0.23 0.23 0
13 49 45 0.39 0.61 1 0.566
17 56 51 0.55 1.16 2 0.441
27 71 65 0.48 1.64 3 0.351
35 80 77 0.11 1.75 4 0.218
49 105 98 0.55 2.30 5 0.193
19 56 54 0.10 2.40 6 0.120
52 109 102 0.47 2.87 7 0.103
65 127 121 0.28 3.15 8 0.075
66 126 123 0.09 3.24 9 0.046
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Figure 12.43 Chi-squared: Assessing reliability of predicted values
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f was 8 and χ2 was 3.15, the probability that the inferential was incorrect was 92.5% – just
below the point where we would investigate.

Following the fourth Westinghouse rule, described in Section 8.4, we would have taken
action two days sooner – once 8 consecutive errors had the same sign. But this criterion takes
no account of the size of the error and so is perhaps too crude.

Although not generally used for this purpose, Equation (12.83) can be fitted to process data.
While it will fit some datasets well, for others f must be restricted to avoid overflow errors.

The moment generating function is

M t = 1−2t − f
2 (12.87)

leading to

μ= α+ f β (12.88)

σ2 = 2f β2 (12.89)

γ2 =
8
f

(12.90)

κ =
12
f
+ 3 (12.91)

12.10 Gamma

The gamma distribution is a continuous distribution but is strongly connected to the discrete
Poisson distribution that we cover later. Indeed, we will show later that the PDF can be derived
from that of the discrete Poisson distribution. It is also a special case of the Pearson-III distri-
bution that we will cover in Section 27.3.

The PDF is

f x =
λkxk−1e−λx

k−1
=
λkxk−1e−λx

Γ k
x ≥ 0; k,λ> 0 (12.92)

Replacing k with f/2 and x with x/2 shows that the chi-squared distribution, described by
Equation (12.84), is a special case of the gamma distribution.

It is common for texts to replace λ (the expected frequency of events or rate parameter) with
β (the mean time between events 1/λ); hence

f x =
xk−1

βkΓ k
exp −

x

β
x ≥ 0; k,β > 0 (12.93)

If k is restricted to integers then the distribution can also be called the Erlang distribution and
can be used to estimate the probability of the waiting time (x) until a specified number (k)
events occur.

Figure 12.44 shows the effect of k and β. If k is 1 (coloured curve), we obtain the exponential
distribution. As k is increased the distribution becomes increasingly symmetrical and
approaches the normal distribution.

The CDF uses the regularised incomplete gamma function, described in Section 11.5. It is
commonly available as a spreadsheet function.
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The raw moments are given by

mn =
Γ k + n
Γ k λn

=
Γ k + n
Γ k

βn (12.94)

leading to

μ =
k

λ
= kβ (12.95)

σ2 =
k

λ2
= kβ2 (12.96)

γ =
2

k
(12.97)

κ =
6
k
+ 3 (12.98)

Figure 12.45 shows the feasible values for γ and κ.
Using the batch blending example, we apply Equation (12.92) in which kwill be 1 and λwill

be 44/78 or 0.564. The probability of x being greater than a day is thus

P x > 1 = 1−e−0 564 0 5640

0
= 0 431 (12.99)

The probability of completing a batch within a day is therefore 0.569 (1 − 0.431). We can
now explore the impact of making blends of half the size. Assuming this then permits two
blends per day and that the probability of being on-grade remains at 0.564, then k will be 2
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and the expected frequency of success (λ) will be doubled to 1.128. The probability of x now
being more than a day is

P x > 1 = 1−e−1 128 1 1280

0
+
1 1281

1
= 0 311 (12.100)

The probability of completing a batch within a day has increased to 0.689. This is equivalent
to increasing the number of batches in a year from 208 to 252 – effectively increasing capacity
by 21%. The cumulative distribution curves are included as Figure 12.46 and illustrate how
further reductions in blend size will reduce the probability of the batch taking longer than a
day to complete. There will of course be a practical limit on the number of blends that can
be completed in a day.

The gamma distribution can also be used to study whether a site has sufficient product stor-
age capacity. Each completed batch of product is 100 m3 so, for 208 batches per year, produc-
tion is an average 57 m3/day. Assuming this is withdrawn as a continuous flow (say, to another
process), if a batch is completed within a day, we have to store the surplus 43 m3. If a batch
takes four days then we need to have previously stored 128 m3 (57 × 4 − 100) to keep the down-
stream unit running at 57 m3/day.

From Equation (12.92) we can determine the probability of the number of days required for a
batch. These are plotted (in black) in Figure 12.47. We might choose to size intermediate stor-
age on the basis that it is sufficient 99% of the time. We therefore need to allow for a batch
taking seven days to complete. This would require 299 m3 of previously stored product.
Figure 12.48 plots probability against storage requirements. If we now consider the proposal
of performing two blends per day, to achieve the 99% target, we now need to allow for a batch
taking six days. We can exploit this in one of two ways. We could maintain the same down-
stream processing rate and reduce the inventory required by 57 to 242 m3. Alternatively, since
we can produce 252 batches per year, we can operate at a higher rate of 69 m3/day. This case is
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Figure 12.45 Gamma: Feasible combinations of γ and κ
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shown as the coloured points in Figures 12.47 and 12.48. The required inventory would
increase to 314 m3

– although keeping it at 299 m3 would reduce the availability very slightly
below 99%. In other words, there would probably be no need to invest in additional storage to
handle the increased production.
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12.11 Binomial

The binomial distribution is perhaps the most well known of the discrete distributions. It can be
used to estimate the probability, p(x), of a given number of successes (x) occurring in a number
(n) of success/failure trials. This is based on the probability (p) of success in a single trial. The
PMF is

p x =
n

x n−x
px 1−p n−x 0 ≤ x ≤ n; 0 ≤ p ≤ 1 (12.101)

For large values of n, a problem can arise from calculating n! For example, the maximum num-
ber supported by a pocket calculator might be 10100 and so cause a problem if n is greater
than 69. Similarly a spreadsheet package, with a limit of 21024, restricts n to 170. Spreadsheets,
which include the binomial function, avoid this by first computing each fraction before
multiplying.

n

x n−x
=
n

x
×
n−1
x−1

…×
n−x + 1

1
=

x−1

i= 0

n− i

x− i
(12.102)

This problem will then only arise if n is much larger than x.
The binomial distribution is a special case of themultinomial distribution in which n possible

outcomes are possible. If the probability of outcome 1 is p1, the probability of outcome 2 is p2
and so on, then

n

i= 1

pi = 1 (12.103)
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The probability that there will be x1 of outcome 1, x2 of outcome 2 and so on is given by
the PMF

Pk1k2…kn =
n

x1 x2 …xn
px11 p

x2
2 … pxnn where

n

i= 1

xi = n (12.104)

If the probability of all the events is the same (p1 = p2 =… = pn), we obtain the Poisson
binomial distribution.
The Bernoulli distribution is a special form of the binomial distribution in which n is 1

and so x can be either 0 or 1. Its PMF is

p x = px 1−p 1−x (12.105)

If x is 0 then p(0) will be 1 − p. If x is 1, p(1) will be p. As an example consider throwing once
(n = 1) an unbiased six-sided dice. Success is defined as throwing a six (x = 1), for which p is 1/6.
The probability of not throwing a six (x = 0) is 5/6. Figure 12.49 shows the probable outcome if
the dice is thrown 12 times (n = 12). The black points are plotted from Equation (12.101) and
show, as one might expect, that the most likely outcome is 2 successes – but with a probability
of only 0.296.
The moment generating function of the binomial distribution is

M t = 1−p + pet n (12.106)

This leads to

μ = np (12.107)

σ2 = np 1−p (12.108)
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Figure 12.49 Binomial: Fitting a normal distribution to the number of sixes from 12 throws
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γ2 =
n2 1−2p 2

p 1−p
(12.109)

κ =
n 1−3p 1−p

p 1−p
(12.110)

In order to apply many of the techniques covered, we need to be able to assume that the
distribution of possible outcomes is normal. The solid coloured curve in Figure 12.49 shows
a normal distribution, plotted from Equation (5.35) using the parameters derived from
Equations (12.107) and (12.108). Part of the difference arises because x is an integer. The bino-
mial distribution is a histogram with bins defined as x ± 0.5. The closest continuous function
would then pass through x at the top of each column. It might therefore be considered more
accurate to base the normal distribution not on x but on x + 0.5. This is known as the Yates
adjustment and the result is included as the dashed coloured curve. However, as it has in this
case, the adjustment is known to overcompensate.

How close the distribution is to normal depends on n and p. Indeed we will show it is vir-
tually identical when p is 0.5. As p moves away from this value, the approximation requires
larger values of n. Provided that n is greater than 5,[7] then the minimum value of n can be
determined from

n > 11
1−p
p

−
p

1−p

2

(12.111)

This function is plotted as Figure 12.50. In our example, with p = 1/6 (shown by the dashed line),
the distribution can be assumed to be normal provided n is greater than 36. Figure 12.51 illustrates
this for n set at 36.
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Figure 12.50 Binomial: Minimum number of trials for normal distribution to be applicable
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Because x is discrete we cannot integrate Equation (12.101) to obtain the CDF. Instead it
must be determined using the discrete function

P x =
x

i= 0

n

i n− i
pi 1−p n− i (12.112)

We might make a daily check on an inferential to ensure its deviation from the laboratory is
acceptable. If, when the inferential was first developed, the standard deviation of the prediction
error was σerror, then, from Table A1.8, we are 95% sure that the inferential is reliable if the
error is less than 1.96σerror. Figure 12.52 is a plot of Equation (12.112) with n = 365 and p =
0.95. The dashed lines show that we are 95% sure that the inferential will be deemed accurate
on no less than 338 days per year and on no more than 354. If the actual number falls outside
this range then we are 95% sure that σerror has changed. So, if it fails on more than 27 days, the
inferential performance has degraded sufficiently to prompt further investigation. If it fails on
fewer than 11 days then the check on accuracy should be made more demanding by reducing
the value used for σerror.
A very similar result would be obtained by assuming the distribution is normal. By consid-

ering a year of daily results, the number of trials is greater than the minimum of 188 specified by
Equation (12.111) when p is 0.95. Equation (12.107) gives μ as 346.8 and Equation (12.108)
gives σ as 4.2. The 95% confidence interval (μ ± 1.96σ) would therefore be from 338 to 355.
If we were to validate the performance monitoring over a much smaller period, say 30 days,

then such an approximation would be unwise. Use of Equation (12.112) would give a 95%
confidence interval of 26 to 29 days while assuming a normal distribution would give 26 to
31 days. Clearly we cannot expect 31 successes out of 30 trials. The problem arises because
the binomial distribution, unlike the normal distribution, is only symmetrical about the mean
if p is 0.5. In general, use of the normal distribution will suggest the inferential is more
reliable than it is.

0.00

0.05

0.10

0.15

0.20

0 6 12 18 24 30 36

p(
x)

number of successes (x)

  binomial

  normal

Figure 12.51 Binomial: Demonstration that normal distribution can be used for n = 36
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Process control benefit calculations are typically based on halving the standard deviation of
key variables, such as finished product properties. If p is the current probability that a batch
of product will be off-grade and pnew the probability after implementation of the control
improvement then, from Equation (12.108)

npnew 1−pnew = 0 5 np 1−p or pnew =
1− 1−p 1−p

2
(12.113)

μnew =
1− 1−p 1−p

2p
μ (12.114)

In improved control studies, it is common to exploit the reduction in standard deviation by
operating, on average, closer to the product specification – keeping the number of violations
of the specification the same. This approach is acceptable if the off-grade product is blended
with some that is in giveaway so that what is supplied to the customer is within specification.
This is usually the situation in the oil and bulk petrochemical industries. In others however, no
amount of off-grade product is permitted. For example, in the paper and metal industries, the
problem cannot be resolved by blending. Off-grade material has to be downgraded or repro-
cessed. Under these circumstances we would capture benefits by reducing the number of occa-
sions when this is necessary.

Using the diesel quality example, of the 111 daily laboratory results there are five occasions
when the product is deemed off-grade. From this we estimate p as 0.0450. Choosing n as 365
then, using Equation (12.101), we can plot the black curve in Figure 12.53. Equation (12.107)
tells us that, on average, the current operation results in 16 off-grade results per year. From
Equation (12.114) we determine that pnewwill be 0.0108. This is used to plot the coloured curve
in Figure 12.53 and shows that improved control will reduce the number of off-grade batches to
an average of four per year. Knowing the cost of dealing with an off-grade batch would allow us
to estimate the benefit of producing 12 fewer per year. Further, if correcting an off-grade batch
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Selected Distributions 229



uses the same process equipment as that used to produce the batch in the first place, the eco-
nomic benefit can be far greater. Reprocessing might be using valuable capacity that would be
better used to increase total production by about 3%.
The reduction in standard deviation also gives us greater confidence in the operation.

Figure 12.54 shows the corresponding cumulative probabilities. Currently we can be 95%
sure that there will be no more than 23 off-grade batches per year. With improved control this
number reduces to six.
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Figure 12.53 Binomial: Reducing the average number of off-grade results for diesel
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12.12 Poisson

The Poisson distribution is used to estimate the probability, p(x), of a number of events (x)
occurring in a fixed interval of time. It can be derived from several distributions; here we derive
it from the binomial distribution.

The expected number of successes (λ) in a given interval is given by the number of
trials (n) multiplied by the probability of success of a single trial (p), i.e. np. Replacing p,
in Equation (12.101), with λ/n gives

p x =
n

x n−x

λ

n

x

1−
λ

n

n−x

(12.115)

Cancelling by (n − x)!

p x =
n n−1 n−2 … n−x + 1

x

λ

n

x

1−
λ

n

n−x

(12.116)

Rearranging

p x =
n n−1 n−2 … n−x + 1

nx
λx

x
1−

λ

n

−x

1−
λ

n

n

(12.117)

The Poisson distribution is given by n ∞, so

n n−1 n−2 … n−x

nk
1 (12.118)

1−
λ

n

−x

1 (12.119)

Remembering, from Section 11.1, the definition of Euler’s number

1−
λ

n

n

e−λ (12.120)

Equation (12.117) therefore becomes the PMF of the Poisson distribution.

p x =
λx

x
e−λ x ≥ 0; λ ≥ 0 (12.121)

The effect of λ is shown in Figure 12.55. Mean and variance are

μ= λ (12.122)

σ = λ (12.123)

The CDF is

P x = e−λ
x

i= 0

λi

i
(12.124)

The distribution is only applicable if the events are independently timed; one occurrence should
not influence the timing of another, i.e. the process is memoryless. For example, as part of proc-
ess operator manning level study, it might be used to estimate the probability of a large number
of process alarms occurring in a short time. However, since the circumstances causing one
alarm are likely to cause others, one might argue that the alarms will not be independently
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timed. While one alarm may not directly cause another, the analysis might be better performed
by including only first-up alarms.
We showed, in Section 8.4, that using the WECO rules to detect a suspect inferential meas-

urement would be expected to result in a false indication once in every 92 instances. If the
inferential is checked against a daily laboratory result, we would therefore expect four
false indications per year. Equation (12.124) is plotted, for a range of values of λ, as
Figure 12.56. The coloured lines show that, for λ = 4, we might expect the number of false
indications in a year to be between one and seven. So, if there were zero or more than eight
occurrences, we would be 95% sure that the value of σerror (used in assessing the inferential)
has changed.
Using the stock level example, on three of the 220 days, the inventory was too small to permit

a blend to be started. Based on this past performance, we might therefore expect this problem
five times per year. From Figure 12.56, for λ = 5, we can therefore be 95% sure that the number
of future occasions will be no more than nine per year.
The Poisson distribution leads directly to the gamma distribution, covered in Section 12.10,

which is used to estimate the probability of the waiting time (x) until a specified number (k)
events occur. The number of events expected in the time period x is λx. The frequency (λ) used
in Equation (12.121) can be defined for any period and so

f x =
λx k

k
e−λx (12.125)

The waiting time will be greater than x if there are fewer than k events in the interval.

F x = e−λx
k−1

i= 0

λx i

i
(12.126)

Hence we can determine the probability of there being more than k events.
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P x > k = 1−F x = 1−e−λx
k−1

i= 0

λx i

i
(12.127)

To obtain the PDF we differentiate the CDF described by Equation (12.127).

f x =
dF x

dx
= λe−λx

k−1

i= 0

λx i

i
−e−λx

k−1

i= 0

iλ λx i−1

i

= λe−λx
k−1

i= 0

λx i

i
−
i λx i−1

i

(12.128)

= λe−λx 1−0 + λx−1 +
λx 2

2
−λx +

λx 3

6
−

λx 2

2
…+

λx k−1

k−1
−

λx k−2

k−2

(12.129)

Examination of Equation (12.129) reveals that all but one of the terms cancel out to leave the
PDF for the gamma distribution.

f x = λe−λx
λx k−1

k−1
=
λkxk−1e−λx

k−1
(12.130)

As with the binomial distribution, the factorial can cause an overflow error if k is large. This can
be avoided by changing the calculation to a product of fractions.

xk−1

k−1
=

x

k−1
×

x

k−2
…×

x

1
=

k−1

i= 1

x

k− i
(12.131)
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This then restricts k to integer values and hence the distribution becomes the Erlang dis-
tribution. To further reduce the risk of overflow, taking the logarithm of Equation (12.131)
and substituting into Equation (12.130) gives

f x = exp
k−1

i= 1

ln
x

k− i
+ k ln λ −λx (12.132)
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13
Extreme Value Analysis

When fitting a distribution to process data, by definition, there are relatively few values that
lie in the tail(s). As a result there is less confidence that the fitted distribution truly represents
behaviour in these regions. The overall fit may appear good but, if we wish to determine the
probability of the process operating at the extreme(s), a more reliable approach should be
adopted. This technique is known as extreme value analysis (EVA) which was developed from
extreme value theory (EVT). It allows assessment of the probability of events being more
extreme than previously observed. It is used when events have a low frequency but high
severity.

Wewill use as an example the variation in the LPG splitter reflux flow. On any column reflux
is a key manipulated variable, often automatically adjusted to maintain product composition or,
in some cases, reflux drum level. Its value will vary in response to any type of disturbance to the
column. The data comprise 5,000 measurements collected hourly. We saw in Section 10.2 that
they appear to be normally distributed. We want to assess the probability of a very high reflux
flow – perhaps because it is known to cause column flooding.

There are two methods of identifying which of the values should be classed as extreme. The
first is to choose the highest value in a defined time period. Known as the period maxima
(or sometimes the block maxima), in this example, we have chosen the highest value that occurs
in each 24 hour period. Our set of extreme data now therefore comprises 208 values.
Figure 13.1 shows how they are distributed. As usual we choose a prior distribution to fit to
these data. Many texts suggest the use of the generalised extreme value (GEV) distribution that
we covered in Section 12.4. Repeating Equation (12.38), its CDF is

F x = exp − 1 +
δ x−α

β

−1
δ

δx ≥ δα−β; β > 0 (13.1)

In this case, as shown by Figure 13.2, it fits reasonably well with δ set to −0.0332, α to 67.7 and
β to 4.19. If we were concerned that the reflux might exceed, for example, 85 m3/hr then this
distribution would indicate the probability of this occurring is 0.0118. Remembering that, since
this is the probability of it occurring in a 24 hour period, this is equivalent to expecting it
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to occur once in 85 days. Figure 13.1 shows that of the 5,000 measurements, one exceeds
85 m3/hr. This is equivalent to one event every 208 days – significantly less frequent than
indicated by the fitted distribution.
To explore the sensitivity of the result, we can repeat the above with the period chosen at

48 hours. This reduces the number of maxima to 104, with their frequency distribution shown
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Figure 13.1 Frequency distribution of extreme reflux flow (24-hour maxima)
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Figure 13.2 Fit of GEV distribution to 24-hour maxima
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as Figure 13.3. Fitting the GEV distribution (Figure 13.4) sets δ to −0.0169, α to 70.4 and
β to 4.10. RSS is 0.0379. The probability of the reflux exceeding 85 m3/hr is now 0.0248,
equivalent to one event every 40.4 periods. Remembering the period is now 2 days, we
expect an event every 81 days. This is close to that determined using the 24 hour maxima,
confirming that we might anticipate a high reflux event to occur 2.5 times more frequently than
the collected data suggests.
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Figure 13.3 Frequency distribution of reflux flow (48-hour maxima)

0.0

0.2

0.4

0.6

0.8

1.0

60 65 70 75 80 85 90

cu
m

ul
at

iv
e 

di
st

ri
bu

ti
on

reflux flow (m3/hr)

  observed
  GEV
  extreme value

Figure 13.4 Fit of GEV and extreme value distributions to 48-hour maxima
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There are alternatives to the GEV distribution. These include the Gumbel, Fréchet and
reverse Weibull distributions. In Section 12.4 we showed that, like the GEV distribution,
the Gumbel distribution is a special case of the Hosking distribution. It can be obtained by
setting δ to 0 to give

F x = exp −exp −
x−α

β
(13.2)

This is also known as the extreme value max distribution, intended for use when the
extreme values are maxima. When they are minima the distribution it is modified to the
extreme value min distribution.

F x = exp −exp
x+ α
β

(13.3)

However, when fitting the distribution, permitting both α and β to be either negative or positive
avoids the need to select either the max or min version.
The Fréchet distribution, covered later in Section 33.6, is also a special case the GEV

distribution.

F x = exp −
x−αf
βf

−δf

(13.4)

δf =
1
δ

αf = α−
β

δ
βf =

β

δ
(13.5)

The reverse Weibull distribution is another special case.

F x = exp −
x−αw
βw

δw

(13.6)

δw = −
1
δ

αw = α−
β

δ
βw =

β

δ
(13.7)

So, if fitting the GEV distribution, there is no need to consider as alternatives the Gumbel,
Fréchet or reverse Weibull distributions.
A distribution bearing a similar name, the extreme value distribution, is described by

f x =
δ

β
exp δ x−α −

exp δ x−α

β
(13.8)

F x = 1−exp −
exp δ x−α

β
(13.9)

x F = α+
ln −β ln 1−F

δ
(13.10)

Fitting this to the same 48 hour maxima gives δ to 0.233, α to 75.7 and β to 0.67. The fit is poor
with RSS much larger at 0.2630. The dashed line in Figure 13.4 further illustrates this.
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The period maxima approach has now been generally superseded by the threshold exceed-
ance method. Values are classed as extreme if they exceed a chosen threshold (u). Before
fitting a distribution the values are converted to exceedances (y), where

yi = xi−u xi ≥ u (13.11)

There is no mathematical technique for choosing u. Clearly it must be large enough to exclude
values we would consider as not extreme but small enough to ensure that there are sufficient
extreme values so that we can reliably fit a distribution. In this example wewill first determine u
as the 95% centile, i.e. reflux flows in the top 5% are considered as extreme. From Table A1.8,
for a normal distribution, this is at μ + 1.645σ. The mean of the 5,000 reflux flows is 52.1
and the standard deviation (calculated using Equation (4.35)) is 8.73. These values give
u as 66.5 m3/hr. Of the 5,000 values, 284 exceed this value. The frequency distribution of these
exceedances is shown in Figure 13.5. Had the distribution been exactly normal, we would have
expected 250 (i.e. 5% of 5,000) exceedances. Substantially exceeding this number suggests that
the distribution is not normal for the upper tail and adds justification for the use of EVA.

Again we should choose the distribution that best fits the data but the convention is to use the
generalised Pareto distribution (second version) that we will cover in Section 23.8. Its PDF is

f y =
1
β

1 +
δ y−α

β

−1
δ−1

y> α−
β

δ
; β,δ > 0 (13.12)

The CDF is an example of a conditional excess distribution function. In the case of the gen-
eralised Pareto distribution it is

F y = 1− 1 +
δ y−α

β

−1
δ

δ> 0 (13.13)
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F y = 1−exp −
y−α

β
δ = 0 (13.14)

The term δ can be described as the tail index. As Figure 13.6 shows, in this case, the distribution
fits well with δ set to 0, α set to 0 and β set to 3.81. If, as before, we are concerned about the
reflux exceeding 85 m3/hr (an exceedance of 18.5 m3/hr) then this distribution tells us that the
probability is 0.00776. Remembering that there are 284 exceedances out of 5,000 data points,
the observed probability of any exceedance is 0.0568. The probability of an exceedance violat-
ing the maximum flow limit is therefore the product of these two probabilities, i.e. 0.000441.
This is equivalent to expecting the event once in 2,270 hours, or 95 days.
Choosing a higher threshold excludes less extreme values and should give greater confi-

dence that the distribution is a better fit to the truly extreme values. As an alternative approach,
we can set the threshold so that there are a chosen number of exceedances. For example, if we
choose 30, we should set u at 75.8 m3/hr. The frequency distribution is shown as Figure 13.7.
Figure 13.8 shows the result of fitting the same distribution function with δ still set to 0, but with
α now set to 0.131 and β to 3.02. The probability of an exceedance being greater than 9.2 m3/hr
(i.e. a reflux of 85 m3/hr) now increases to 0.0498. The probability of any exceedance falls to
0.006 (30/5000) and so the overall probability is 0.000299. This is equivalent to expecting the
event once in 3,346 hours, or 139 days.
The same approach can be applied to determining the probability of very low values. There

were two occasions when the reflux fell below 27 m3/hr, so the expected interval between such
events is 104 days.
The frequency distribution of the 72 hour period minima is shown in Figure 13.9.

Figure 13.10 shows the GEV distribution with δ set to −0.405, α to 32.390 and β to
2.60. The probability of the reflux falling below 27 m3/hr is 0.0109, equivalent to one
event every 91 days.
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To apply the threshold approach, we modify the calculation of exceedances to

yi = u−xi xi ≤ u (13.15)

Using the 2% centile, the threshold is given by μ – 2.054σ or 34.2 m3/hr. The reflux was
below this on 65 occasions, with their frequency distribution shown as Figure 13.11. We
would have expected 100 occasions if the distribution were truly normal. Figure 13.12
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shows the result of fitting the generalised Pareto distribution with δ set to 0, α to 0 and β
to 2.17. The probability of an exceedance being greater than 7.2 m3/hr (i.e. a reflux of
less than 27 m3/hr) is 0.0367. The probability of any exceedance is 0.0130 (65/5000)
and so the overall probability is 0.000576. This is equivalent to expecting the event once
in 2,098 hours, or 87 days.
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14
Hazard Function

The hazard function, sometimes described as the conditional failure density function or, more
commonly, the failure rate is defined as

h x =
f x

1−F x
14 1

The reciprocal of the hazard function is known as the conditional failure density function.
Applying Equation (14.1) to the exponential distribution, described by Equations (12.61)

and (12.62), gives

h x = λ (14.2)

This tells us that the failure rate is constant at λ; it does not vary with time. The process has no
memory.

Commonly the EL (exponential-logarithmic) distribution is used. We will cover this in detail
in Section 28.9. From Equations (28.33) and (28.34)

h x = −
λ 1−δ e−λx

1− 1−δ e−λx ln 1− 1−δ e−λx
(14.3)

This function is plotted as Figure 14.1, with λ adjusted so that h(x) is 1 when x is zero. As δ 1,
Equation (14.3) becomes Equation (14.2). As δ is reduced below 1, the failure rate reduces over
time. This might apply to the number of occasions a control scheme is disabled because of tech-
nical issues that are resolved over time. Or it may be because the operators initially did not
properly understand its operation and this resolved by ongoing training.

The cumulative function, as usual, is derived by integrating h(x) from −∞ to x and so, from
Equation (14.1), is

H x = − ln 1−F x (14.4)

This is plotted for the EL distribution as Figure 14.2.
Taking the LPG splitter reflux flow as an example, we might be interested in whether com-

missioning improved control has affected the frequency at which the flow exceeded the prob-
lematic value of 70 m3/hr. This occurred 129 times in the 5,000 hourly measurements, i.e. an
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average rate of 0.0258 hr–1 or 33.8 hours between events. Figure 14.3 shows the frequency dis-
tribution of the interval between events.
Fitting the EL distribution, Equation (28.34) gives a value for λ of 0.0266 hr–1 and a value for

δ of 0.815. Figure 14.4 shows that the distribution fits the data well. Using these parameters,
Equation (14.3) is plotted as the black line in Figure 14.5. It shows that, at the beginning, the
frequency of events is 0.0295 hr–1, reducing to 0.0266 hr–1 over the 10 days since the improved
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control was commissioned. This is equivalent to the period between events, plotted as the
coloured line, increasing from 33.9 to 37.6 hours.

One of the benefits of improved process control can be an increase in the mean time between
failure (MTBF) of critical process equipment, where

MTBF =
1
λ

(14.5)
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There are examples of the reduction in process disturbances resulting in a threefold increase in
the MTBF of pumps and compressors that operate in a difficult service. While such a benefit is
unlikely to be quantifiable before implementing improved control, later proving its existence
does much to foster a positive attitude to the technology. The relatively modest 11% increase in
the mean time between high reflux events is because δ is close to 1. To achieve a threefold
increase would require the fitted value of δ to be around 0.15.
Because δ cannot exceed 1, the EL distribution cannot represent a process where failure rate

increases over time. Among those distributions, which can cover a decrease or an increase, is
the gamma distribution. From Equation (12.92)

f x =
λkxk−1e−λx

k−1
(14.6)

Figure 14.6 was developed by determining F(x) from f(x), using the trapezium rule, and then
applying Equation (14.1). It shows the impact of changing k, with λ adjusted so that h(x) is 1
when x is 0. Like the EL distribution, values less than 1 give a declining failure rate. Values
greater than 1 might represent the failure rate of process equipment that becomes less reliable
with age. But it might also be helpful in identifying if problems detected in a MPC application
are becoming more frequent and whether the controller should be re-engineered. It can simi-
larly apply to key instrumentation, such as on-stream analysers, where a proven reduction in
reliability can justify replacement.
Other distributions that can be fitted to failure rate data include the Weibull-II distribution.

From Equations (12.71) and (12.72)

h x =
δxδ−1

βδ (14.7)
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If δ is 1 then the failure rate remains constant. Figure 14.7 shows the effect that adjusting δ has
on failure rate over time. Again, β has been adjusted so that h(x) is 1 when x is 0.

Fitting Equation (12.72) to the high reflux event data gives values for δ and β as 0.991 and
35.2 respectively. As the black line in Figure 14.8 shows, improved control reduced the fre-
quency from 0.0291 to 0.0270 hr–1, increasing the interval (coloured line) from 34.4 to
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37.0 hours. This is 30% less improvement than that estimated by fitting the EL distribution and
over a much longer period of 200 days. If due to a control improvement, this would appear
excessive. Figure 14.9 shows that the Weibull distribution is only a marginally worse fit to
the data. Indeed, RSS is 0.0412 compared to 0.0393 for the EL distribution.
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Many aspects of process operation can follow bathtub failure curves. For example, a new
advanced control scheme might initially prove unreliable until all the teething troubles are
resolved. In the longer term, lack of technical support might make it fall back slowly into dis-
use. This is illustrated by Figure 14.10 which shows the variation in downtime – the percentage
of time that the scheme was out of service.
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Such curves can be generated by the Hjorth distribution, described by

f x =
1 + δ1x δ2x + β

1 + δ1x
β δ1 + 1

exp −
δ2x2

2
x > 0; β,δ1,δ2 > 0 (14.8)

F x = 1−
1

1 + δ1x
β δ1

exp −
δ2x2

2
(14.9)

∴ h x =
β

1 + δ1x
+ δ2x (14.10)

Figure 14.11 shows the effect of δ1 and δ2, with β fixed at 1. If δ1 is set to zero, the failure rate
increases. If δ2 is set to zero, it decreases. If both are greater than 0, we obtain the bathtub curve.
The initial letters of these three behaviours give the distribution its alternative name of the IDB
distribution. Figure 14.10 was produced by setting β to 1, δ1 to 0.2 and δ2 to 0.0008. Time (x),
although plotted in months, was defined in days in Equation (14.10).
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15
CUSUM

CUSUM, or cumulative sum, is a simple mathematical technique that separates any underlying
trend in data from random behaviour. For the process control engineer its applications include
the detection of bias error in a measurement and determining whether a process has memory.

Measurements are subject to two forms of error – random and bias. A common requirement
is to determine into which category falls an error that has been detected in an inferential prop-
erty (or on-stream analyser) when it is compared to a laboratory sample. A random error may
result from instrument repeatability, poor time-stamping and mistakes. A bias error may result
from change in feed composition or degradation of catalyst activity. In practice, a recorded error
is likely to comprise both. Applying a correction term to the inferential in response to a random
error will reduce the accuracy of the inferential. Overlooking a bias error will result in off-grade
production.

CUSUM, in this case, is calculated as the cumulative sum of disagreements between two
measurements of the same property. Using the example of C3 in butane, we have 1,152 sequen-
tial measurements from an on-stream analyser collected every 30 minutes. We also have the
corresponding measurements from the inferential. We define the error as the inferential meas-
urement minus that of the analyser. Figure 15.1 plots this error over time. Visually it would
appear to be randomly distributed either side of zero. However, Figure 15.2 plots the cumula-
tive sum of the errors and shows distinct downward and upward trends. If the error was indeed
entirely random, we would expect the trend to be horizontal – albeit noisy. In fact, for the first
400 samples, CUSUM reduced steadily by about 20. Its slope is therefore −0.05. This is the bias
error in the inferential. For the initial period of 200 hours, it consistently under-read by 0.05. By
monitoring CUSUM, this error could have been detected within a few hours and dealt with by a
simple change to the bias term in the inferential.

We showed earlier that most distributions, such as the Weibull distribution, assume that pro-
cesses have memory, whereas a few, like the exponential distribution, do not. A bias error is a
symptom of the process having memory. There are several ways of detecting this. For example,
if we define an event as the inferential error exceeding 0.5, we can plot the distribution of times
between events. This is shown as Figure 15.3; the solid line is the result of fitting theWeibull-II
distribution. It shows that around one third of the events have an interval of 30 minutes. Since
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this is also the data collection interval it shows that once an event occurs, it is likely to be imme-
diately followed by another. Errors do not occur as a purely random event but tend to persist for
a longer period.
We can also fit the Weibull-II distribution, using the method described in Section 12.8, as

shown by Figure 15.4. The slope of the line (k) is 1.13. If the process had no memory, we would
expect k to be 1 – equivalent to the exponential distribution.
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Of course, if we have a reliable on-stream analyser installed, then we can use this to contin-
uously update the bias term in the inferential. A different approach is required if we have only
laboratory results. These will be far less frequent. If a result is incorrect and used to update the
inferential, it could be many hours before this is undone by the next result. Like any measure-
ment, the laboratory is subject to random error. We need to distinguish between this and a
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Figure 15.3 Fit of Weibull-II distribution to interval between errors exceeding 0.5 vol%
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genuine deviation from the inferential. We can use the slope of the CUSUM to determine what
correction is necessary. We need only to decide on the number (n) of previous measurements
used in determining the slope.
We define the most recent error (En) as the inferred measurement minus the laboratory result,

En−1 as the previous error, etc. Without delving into the mathematics involved, correction based
on the CUSUM slope reduces to a simple formula. In general, the bias correction is deter-
mined by

biasn + 1 = biasn−
6

n n+ 1 n+ 2

n

i= 1

i n− i+ 1 En− i+ 1 (15.1)

So, as a trivial example, choosing n as 1 gives

biasn+ 1 = biasn−En (15.2)

This effectively assumes that the laboratory is correct and the inferential is immediately
adjusted to agree with it. Choosing n as 2 gives

biasn + 1 = biasn−
En +En−1

2
(15.3)

This applies the average of the last two discrepancies as the correction. Higher values of n apply
a weighted average of recent discrepancies. For example, increasing n to 3 gives

biasn + 1 = biasn−
3En + 4En−1 + 3En−2

10
(15.4)

The alternative, more traditional, approach is to apply a partial correction determined by a filter
parameter (K) – typically set to around 0.3.

biasn+ 1 = biasn−KEn (15.5)

Figure 15.5 compares the two techniques. The CUSUM technique implements the correction
fully, although not until after three samples. The more commonly used filtering method takes
six results to eliminate 90% of the error. As it is the size of error multiplied by duration, the
shaded area is representative of the total product giveaway this approach causes. It can be
shown that this is determined from −1/ln(1 −K). So ifK is 0.3, the area is 280%. The equivalent
area, if the CUSUM method is applied, is comparable at 300%. So, while the CUSUMmethod
implements the bias update more quickly, it does not necessarily have much impact on overall
production.
Large values of n will cause the updating to become unstable. The best solution is a com-

bination of the two methods, but with K set to a value slightly less than 1. For example, if n is 4

biasn + 1 = biasn−K
2En + 3En−1 + 3En−2 + 2En−4

10
(15.6)

The choice of n and K are best made by including them among the coefficients that are regressed
when developing the inferential. Note that the correction is applied nomore frequently than every
n results. Indeed it is better to make the correction only if it is larger than some set limit. This limit
might be based on the standard deviation of the error (σerror) determined when the inferential was
developed. For example, setting the limit to 1.96σerrorwouldmean that the bias would be updated
only when we are more than 95% certain that the error is genuine.
CUSUM can be used to identify whether a dataset has memory. To do so, we cumulatively

sum the deviations from mean.
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CUSUM =
n

i= 1

xi−x (15.7)

For example, using the inventory data from Table A1.6, we can determine the mean as 1292.
The first value in the table (x1) is 422 and the deviation frommean is therefore −870. So, when n
is 1,CUSUM is −870. The second value in the table (x2) is 520, the deviation frommean is −772
and, when n is 2, CUSUM is −1642. The coloured line in Figure 15.6 is the continuation of this
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calculation up to 220 for n. It shows sustained periods when the inventory is above or below the
average. In other words, if the inventory were above (or below) the mean yesterday it is highly
likely that it will be again today. The process has memory.
We also confirmed this by fitting the Weibull-III distribution, as shown in Figure 12.38.

Without memory, we would expect the CUSUM trend to resemble the black line. This was
produced by randomly shuffling the data in Table A1.6 before plotting CUSUM. The data
clearly have the same mean and standard deviation but are no longer related to time.
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16
Regression Analysis

To perform regression we first need to decide which is the independent variable (x) and which is
the dependent variable (y). Used by control engineers mainly to develop inferential properties,
the result is intended to predict the dependent property (e.g. product composition) from inde-
pendent variables such as flow, temperature and pressure.

To illustrate the principle of regression analysis we will fit a straight line to three points with
(x,y) coordinates (2,3), (3,9) and (7,12). To do so, we first calculate the mean values of x and y.
These are respectively 4 and 8. We then calculate the total shaded area shown in Figure 16.1.
This is known as the total sum of squares. As is usual, the side of each square is the vertical
distance between the point and in the line, i.e. in the y direction.

3

i= 1

yi−y
2 = 3−8 2 + 9−8 2 + 12−8 2 = 42 (16.1)

Regression analysis rotates the coloured line around the point (x,y) to minimise the shaded
area. In effect this minimises the difference between the predicted and actual values of the
dependent variable. We will show later how to derive the equation of the line of best fit.
For this example we would predict y from x as

y = 1 5x + 2 (16.2)

And so

y1 = 5 y2 = 6 5 y3 = 12 5 (16.3)

The minimised shaded area is known as the residual sum of squares (RSS).

3

i= 1

yi−yi
2 = 3−5 2 + 9−6 5 2 + 12−12 5 2 = 10 5 (16.4)

We can also calculate the explained sum of squares (ESS).

3

i= 1

yi−y
2 = 5−8 2 + 6 5−8 2 + 12 5−8 2 = 31 5 (16.5)

Statistics for Process Control Engineers: A Practical Approach, First Edition. Myke King.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



Equation (16.1) gives the variance of ymultiplied by (n − 1). Similarly Equation (16.5) gives
the variance of ŷ, also multiplied by (n − 1). The ratio of these results is the coefficient of deter-
mination (R2) – the proportion of the variance of y that is explained by the variance of x.

R2 =

3

i= 1

yi−y
2

3

i= 1

yi−y
2

=
31 5
42

= 0 75 (16.6)

We know that variances are additive; the explained variance and the residual variance will
sum to the total variance. R2 can therefore also be calculated from the residual sum of squares.

R2 = 1−

3

i= 1

yi−yi
2

3

i= 1

yi−y
2

= 1−
10 5
42

= 0 75 (16.7)

This is not to be confused with the Pearson R2. If we square Equation (4.75) and replace x
with ŷ, we obtain

R2 =

n

i= 1

yi−y yi−y

2

n

i= 1

yi−y
2

n

i= 1

yi−y
2

(16.8)

This will also have a value of 0.75 but behaves differently if the sequence of the y values is
shuffled while retaining the sequence of the ŷ values. The value determined by Equation
(16.6) would remain unchanged while that from Equation (16.8) will vary. If we want to assess
whether a product quality correlates well with measurements of flow, temperature and pressure
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Figure 16.1 Minimisation of the total sum of the squares in y direction
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we would clearly expect that correlation to be poor if the sequence of one of the measurements
is randomly changed. Pearson R2 would reflect this. The alternative coefficient of determina-
tion has very limited practical application.

Figure 16.2 shows a more typical example with a larger number (n) of data points (x,y).
Again we wish to identify the equation of the (straight) line of best fit, as shown, where a0
is the intercept on the y axis and a1 is the slope of the line, i.e.

y = a0 + a1x (16.9)

We have seen that the equation of the line is developed to minimise the residual sum of the
squares (RSS) between the predicted value of y and the actual value, i.e.

n

i= 1

yi−yi
2 =

n

i= 1

a0 + a1xi−yi
2 (16.10)

Partially differentiating with respect to each of a1 and a0 and setting the derivative to 0 will
identify the best choice of these values. Firstly with respect to a0

∂
n

i= 1

yi−yi
2

∂a0
=

n

i= 1

2 a0 + a1xi−yi = 0 (16.11)

∴ na0 + a1
n

i = 1

xi−
n

i= 1

yi = 0 or a0 + a1x−y = 0 (16.12)

As we expect from the principles of the method, calculating the mean of the predicted values
from Equation (16.9) and comparing the result with Equation (16.12) shows that it is identical
to the mean of the actual values.
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Figure 16.2 Linear regression analysis
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Partially differentiating with respect to a1

∂
n

i= 1

yi−yi
2

∂a1
=

n

i= 1

2xi a0 + a1xi−yi = 0 (16.13)

∴ a0
n

i= 1

xi + a1
n

i= 1

x2i −
n

i= 1

xiyi = 0 or na0x+ a1
n

i= 1

x2i −
n

i= 1

xiyi = 0 (16.14)

Solving Equations (16.12) and (16.14) gives

a0 =

y
n

i= 1

x2i −x
n

i= 1

xiyi

n

i= 1

x2i −nx
2

and a1 =

n

i= 1

xiyi−nx y

n

i= 1

x2i −nx
2

(16.15)

This line of best fit is plotted in Figure 16.2. The minimised RSS is

n

i= 1

yi−yi
2 =

n

i= 1

yi−y
2−a21

n

i= 1

xi−x
2 (16.16)

The last term in Equation (16.16) is the variability of y that is due to the variability of x. Sub-
tracting this from the variability of y gives the variability of the prediction error. We will show
later how this variability can be converted to standard deviation.
This same approach is theoretically possible for more than one independent variable but

manually solving the resulting equations would be impractical. Rewriting Equations (16.12)
and (16.14) for the case of a single independent variable x1

a0n+ a1 x1 = y (16.17)

a0 x1 + a1 x21 = x1y (16.18)

Applying the same approach we can derive similar equations for two independent variables, x1
and x2.

a0n+ a1 x1 + a2 x2 = y (16.19)

a0 x1 + a1 x21 + a2 x1x2 = x1y (16.20)

a0 x2 + a1 x1x2 + a2 x22 = x2y (16.21)

And for three independent variables, x1, x2 and x3

a0n+ a1 x1 + a2 x2 + a3 x3 = y (16.22)

a0 x1 + a1 x21 + a2 x1x2 + a3 x1x3 = x1y (16.23)

a0 x2 + a1 x1x2 + a2 x22 + a3 x2x3 = x2y (16.24)

a0 x3 + a1 x1x3 + a2 x2x3 + a3 x23 = x3y (16.25)
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We can also arrange these last four equations into matrix form.

n x1 x2 x3

x1 x21 x1x2 x1x3

x2 x1x2 x22 x2x3

x3 x1x3 x2x3 x23

a0

a1

a2

a3

=

y

x1y

x2y

x3y

(16.26)

The reader should now see the pattern by which higher numbers of independent variables
would be incorporated. The coefficients (a) would then be determined by solving these
equations.

The partial differentiation performed in developing the formulae above assumes that the
variables are truly independent. If this is not the case then the resulting correlation may be
suspect. Indeed, if there is a perfect correlation between two variables, the formulae will fail. Con-
sider the casewhere there is a linear relationshipbetween x2 and x1 (knownascollinearity) such that

x2 = p + qx1 (16.27)

Then, by substituting for x2 in Equation (16.24), we obtain

a0 px1 + q + a1 x1 px1 + q + a2 px1 + q x2 + a3 px1 + q x3

= px1 + q y
(16.28)

This can be rewritten as

p a0 x1 + a1 x21 + a2 x1x2 + a3 x1x3

+ q a0n + a1 x1 + a2 x2 + a3 x3

= p x1y + q y

(16.29)

But this could also have been derived by multiplying Equation (16.23) by p, multiplying
Equation (16.22) by q and adding the results together. In other words we no longer have four
independent equations with four unknown coefficients. In order to solve the equations we have
to set either a1 or a2 to zero – effectively removing either x1 or x2 from the analysis. One of these
variables is redundant; the inclusion of both would result in one row of the Σ matrix in
Equation (16.26) being derivable from others. The matrix would be singular.

The same problem will arise if there is multi-collinearity, where an independent variable
may not show a strong correlation with another but does correlate perfectly with a linear
combination of others. As an example, consider the development of an inferential property
on a binary distillation column. Inputs that might be considered include the flows of feed,
distillate and bottoms. While there will be some correlation between any chosen two of
these, it would be unwise to exclude either one. Indeed variation in the distillate-to-feed (or bot-
toms-to-feed) ratio is likely to be a key input. However, because the process must mass balance,
there will be a strong correlation involving all three inputs. They will fit the general equation

x1 = b0 + b2x2 + b3x3 +… (16.30)

To detect multi-collinearity Equation (16.30), along with those for x1, x3 etc., is derived by
regression. The coefficient of determination (R2) is then calculated for each predicted independ-
ent variable.
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R2
j =

n

i= 1

xji−xj
2

n

i

xji−xj
2

(16.31)

Consideration would then be given to excluding the jth independent variable if R2
j is greater than

0.9. Of course, if a strong correlation is identified such that, for example, x1 can be predicted
from x2 and x3, then it follows that x2 can be predicted from x1 and x3; similarly x3 can be pre-
dicted from x1 and x2. We would therefore have to decide which of the three variables should be
excluded. Pragmatically this would probably be the one wemight feel is least reliably measured
or might exhibit dynamic behaviour quite different from the others.
In practice most cases of collinearity will be detected by including only one input in

Equation (16.30). Indeed there is no need to perform the regression; R2 can be determined
directly from Equation (4.75). There are however situations that would justify including more
than one input. Including all n flows into and out of a process would require correlations with up
to n− 1 inputs to be regressed. While this would be reasonable on a binary distillation column,
including a large number of inputs all in Equation (16.30) can generate results that can be vir-
tually impossible to interpret properly. As always, judgement is required in including only
those measurements that make engineering sense.
Occasionally referred to is the variance inflation factor (VIF). It is defined as

VIFj =
1

1− R2
j

(16.32)

This is the factor by which the variance of the estimate of the coefficient aj is increased due to
collinearity. For example, if R2

j was 0.9 then VIFj would be 10. The standard deviation is thus

multiplied by 10. We saw in Section 8.2 that confidence interval is expressed as a multiple of
the standard deviation, so (for example) the 95% confidence interval in our estimate of aj is 3.16
times larger than it would be if there were no collinearity. The reciprocal of VIF is known as the
tolerance.
Process data, used to develop inferential properties, will usually show some level of cross-

correlation. However because of random errors in the measurements, even if the correlation is
perfect, the matrix used to derive Equation (16.30) will not be exactly singular. While the level
of cross-correlation in well-chosen process data is usually not sufficient to undermine the value
of the resulting inferential, it is wise to check for any strong collinearity and remove any offend-
ing variable(s). Otherwise the coefficients (a) will be unreliable and would likely show large
variation if derived from different subsets of the data.
But great care should be taken before rejecting any measurements. For example, many reac-

tors have a large number of measurements of bed temperature. Many of the intermediate tem-
peratures are likely to be predictable from others around it. It is common in reactors for product
composition to correlate strongly with the rise (or fall) in temperature across the bed. Two tem-
peratures may show a strong correlation but the difference between them varies sufficiently to
account for the variation in product composition. Rejecting either temperature would compro-
mise the accuracy of the inferential. The same issue can arise with distillation tray temperatures.
These are usually highly correlated but the difference between two temperatures is an effective
measure of separation and a valuable input to the inferential.
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We can define a confidence interval for the resulting correlation. The standard deviation of
the prediction error (σerror) is

σerror =

n

i= 1

y−y 2

n−2
(16.33)

The denominator is n − 2 rather than n − 1 because we use two degrees of freedom to calculate
intermediate values (a0 and a1). In the more conventional definition of standard deviation we
calculate only one – the mean.

Without presenting the complex derivation, the confidence interval for the line of regres-
sion is

σ2y = t σ
2
error

1
n
+

x−x 2

n

i= 1

xi−x
2

(16.34)

Strictly t is from the Student t distribution, determined by the number of degrees of freedom
and the required confidence interval. In our example we have 51 data points, giving
50 degrees of freedom. The 95% confidence interval would require a value of 2.0086 for
t. The value approaches that from the normal distribution of 1.9600 shown in Table A1.8.
Since regression analysis usually involves a large number of values, little accuracy would
be lost by using this estimate. The confidence interval has been included in Figure 16.2 as
the dashed lines. We might expect 95% of the points to lie within the dashed lines but only
about 40% do so. This is because the lines are the boundaries of all possible straight lines, not
the confidence interval of the predicted value. (To illustrate the difference, the 95% confi-
dence interval for the predicted value is shown as the shaded band.) Rapidly diverging bound-
aries are an indication that there is poor scatter and that points should be collected over a
wider range.

These confidence boundaries for the line of regression can only be drawn based on a single
independent variable. A correlation can of course be based on several independents. We can
plot the boundaries for each independent by compensating its values to remove the effect of the
other independents. Imagine that we have developed a correlation based on three independent
variables.

y = a0 + a1x1 + a2x2 + a3x3 (16.35)

From Equation (16.12) we can see that the same correlation will apply to the means.

y = a0 + a1x1 + a2x2 + a3x3 (16.36)

Subtracting gives

y−y= a1 x1−x1 + a2 x2−x2 + a3 x3−x3 (16.37)

Suppose we want to determine the confidence boundaries for the line of regression defined
by a2. Rearranging we get

y = a2 x2 +
a1
a2

x1−x1 +
a3
a2

x3−x3 + y−a2x2 (16.38)
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We can therefore rewrite the correlation using the compensated independent variable x2 .

x2 = x2 +
a1
a2

x1−x1 +
a3
a2

x3−x3 (16.39)

We have adjusted each value of x2 to reflect what they would need to be for the correlation to
give the same prediction if the other independent values were fixed at their means. In fact we
can choose any other reference value. This technique is applied to define a linear PCT (pressure
compensated temperature) used in the control of distillation columns. Removing the effect of
pressure means that product composition will more closely correlate with the temperature. In
other words, controlling PCT will more closely control product quality. The technique is sim-
ilarly applied to derive the weighting coefficients in theWABT (weighted average bed temper-
ature) of reactors so that it correlates well with conversion.
We can now write a correlation based on a single input and use this to determine the con-

fidence interval for the line of regression.

y = a0 + a2x2 where a0 = y−a2x2 (16.40)

Further, if the plot of ŷ against x2 shows a nonlinear relationship, this can be used to help
select a suitable nonlinear function that might be applied to x2. Figure 16.3 shows an example
where y is the concentration of heavy key component in the overhead product from a distillation
column and x2 the temperature measured on a tray close to the top. The black points show that
there appears to be no correlation. This is because of variations in x1 – the column pressure.
Applying Equation (16.39) removes the effect of this variation. The coloured points now show
a clear correlation that suggests the PCT would be better included as a quadratic, rather than
linear, function.
It should be noted that regression does not tell us which is the independent variable and

which is the dependent. It merely enables us to show that they are correlated. Indeed both could
be dependent variables changing in response to changes in an unmeasured independent. The
formulae above were developed assuming that we would wish to minimise, in the y direction,
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Figure 16.3 Compensation of one independent variable for variation in others

266 Statistics for Process Control Engineers



the sum of the squares of the distances from each point to the regressed line. If ε is the unac-
counted error then each value of y is

yi = a0 + a1xi + εi (16.41)

This assumes that the error arises in y, for example because there are unmeasured variables
affecting its value. However the error may be present in x, for example because it is inaccurately
measured. In this case we should develop a correlation of the form

yi = a0 + a1 xi + εi (16.42)

In other words, we would wish to minimise

n

i= 1

xi−xi
2 =

1
a21

n

i= 1

yi−yi
2 (16.43)

Using the simple example from the beginning of this chapter, this is illustrated as Figure 16.4.
Alternatively x can be regressed against y to give the relationship

x = b0 + b1y (16.44)

Inverting this equation gives

y = a0 + a1x where a0 = −
b0
b1

and a1 =
1
b1

(16.45)

We should adopt this approach if the error in x is large compared to the range of values of x.
However in practice there are likely to be measurement errors in both x and y. It is possible to

x

y

x = 4

y = 8

(2,3)

(3,9)

(7,12)

2
– )ˆ(

n

i=1
ii xx minimised

Figure 16.4 Minimisation of the total sum of the squares in x direction
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give equal weighting to both by instead using the perpendicular distance from each point to the
regressed line. This is illustrated as Figure 16.5. The function we would then minimise is

n

i= 1

xi−xi
2 +

n

i= 1

yi−yi
2 =

1

a21
+ 1

n

i= 1

yi−yi
2 (16.46)

It can be shown that the value of a1 derived using this penalty is the geometric mean of the
values derived using the penalties described by Equations (16.10) and (16.43).
An alternative method of giving equal weight to potential errors in both x and y is, for each

point, to multiply the distances from the line in both the horizontal and vertical directions. This
is the area of the rectangle with one vertex at the actual value and the adjacent vertices on the
line, as illustrated in Figure 16.6. The penalty function is then the total area of all the rectangles
and becomes

n

i= 1

xi−xi yi−yi =
1
a1

n

i= 1

yi−yi
2 (16.47)

Using the data included in Table 16.1, the impact on the resulting correlation between %C4 and
tray 17 temperature of using each of the penalty functions is given in Table 16.2. Because there
is only one independent, each method gives the same result for Pearson R2

– no matter what
coefficients are chosen. This is one reason why R2 has only limited value in assessing the accu-
racy of inferentials. The preferred performance index (ϕ), explained at the end of this chapter,
measures the accuracy of predicting y. So, not surprisingly, it is worse for the correlation
derived to accurately predict x. Similarly the two methods giving equal weight to errors in both
x and y, as might be expected, give intermediate values for ϕ. In this case, all the methods give
similar coefficients; the difference in their accuracy is unlikely to be noticeable in view of other
potential sources of error. The high value of Pearson R2 reflects that there appears to be little
error in the measurement of both x and y.
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Figure 16.5 Minimisation of the total sum of the squares of the perpendicular distance
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Table 16.1 LPG splitter data for development of inferential

tray 15 (x1) tray 17 (x2) %C4 (y)

66.5 60.8 5.34
64.9 58.0 3.79
66.4 59.4 4.28
67.4 62.5 6.46
66.2 57.6 3.41
66.3 60.5 5.26
67.2 61.9 5.91
67.2 62.1 5.86
66.8 61.1 5.43
65.1 58.2 3.90
65.6 59.0 4.41
65.4 58.7 4.13
66.2 60.1 4.80
64.3 57.0 3.48
66.4 60.4 5.08
67.7 62.8 6.61
66.9 61.5 5.70
66.4 60.5 5.08
65.9 59.5 4.37
64.6 57.5 3.67
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y = 8
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minimised
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n
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Figure 16.6 Minimisation of the total sum of the rectangles in x and y direction
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Applying the same techniques to less accurate data would result in significantly different
estimates for a1. For example, Figure 16.7 shows the correlations developed using data with
a Pearson R2 of 0.722. The value of a1 varies substantially. For the conventional penalty func-
tion, the slope of the coloured line is −0.564. For that based on Equation (16.43), the slope
of the black line is −0.781. Remembering this is likely to be a process gain, the variation of
around ±16% is substantial. As expected, the functions described by Equations (16.46) and
(16.47), shown as dashed lines, generate intermediate values.
The formulae presented above can each be expanded to develop inferentials involving more

than one independent variable. Additionally, weighting factors can be included that reflect the
relative accuracy of each variable. For example, we apply the weighting w0 to the dependent
variable, w1 to the independent variable x1, w2 to x2, etc. The penalty function then becomes

Table 16.2 Impact of choice of penalty function

penalty function a0 a1 R2 ϕ

n

i =1

a0 + a1xi−yi
2

−28.09 0.5494 0.978 0.978

1
a21

n

i =1

a0 + a1xi−yi
2

−28.65 0.5587 0.978 0.977

1
a21

+ 1
n

i =1

a0 + a1xi−yi
2

−28.46 0.5555 0.978 0.960

1
a1

n

i =1

a0 + a1xi−yi
2

−28.83 0.5617 0.978 0.939
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Figure 16.7 Impact of choice of penalty function
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n

i= 1

w0 yi−yi
2 +w1 x1i−xii

2 +w2 x2i−x2i
2 +…

= w0 +
w1

a21
+
w2

a22
+…

n

i= 1

yi−yi
2

(16.48)

The penalty functions described by Equations (16.16), (16.43) and (16.46) can all be developed
from this equation by choosing appropriate weighting factors. It should be noted that selection
of the best weighting factors cannot be achieved by choosing those that give the highest value
of Pearson R2 or ϕ. Both R2 and ϕ are based on only the prediction error in y and so will always
be maximised by setting w0 to 1 and all the other weighting factors to 0. Weighting coefficients
can only be selected using judgement as to which measurements the engineer believes are more
reliable. Avoiding having to make this judgement provides additional motivation to ensure all
the data used are as reliable as possible. The more complex penalty functions would then offer
no advantage over using the simplest conventional approach.

Equations could be identified for regressing nonlinear functions, for example

y= a0 + a1x+ a2x
2 (16.49)

However a simpler approach is to treat x and x2 as independent variables; x1 is defined as x and
x2 as x

2. While x1 and x2 will now be correlated, the relationship between them is nonlinear
and will not therefore cause problems in solving the equations. It is generally not advisable
to exclude the linear term when adding the quadratic term. By differentiating Equation
(16.49) we can determine at what value of x the minimum (or maximum) occurs for the pre-
dicted value.

dy

dx
= a1 + 2a2x= 0 hence x= −

a1
2a2

(16.50)

By excluding the linear term we force the minimum (or maximum) to occur at x = 0. This is
similar, when fitting a linear correlation, to omitting the constant term (a0) and so force the
predicted value to be 0 when x = 0.

An alternative is to apply some transformation to the predicted value, for example

y = a0 + a1x (16.51)

This is effectively the same as Equation (16.49) – although the values of a0 and a1 will be dif-
ferent. Other transformations such as the logarithm of the predicted value, or its square, might
also be considered. Indeed, predicting the logarithm or the square root of a property guarantees
that the property cannot be negative. This is quite useful for properties such as compositions.

It may be beneficial to include compound inputs – those derived from a calculation involving
several inputs. For example, the coefficients in an inferential may need to be adjusted if the type
of feed being processed is changed. So, for Type 1 feed, the correlation might be

y= a0 + a1x1 (16.52)

For Type 2 it might be

y= b0 + b1x1 (16.53)

Toensure the same inferential canbeusedall the timewecan incorporate the feed typebyaddinga
second input (x2) that is set to 1 when the feed is Type 1 and set to 0 when it is Type 2. So

y = x2 a0 + a1x1 + 1−x2 b0 + b1x1 (16.54)
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Rewriting

y = c0 + c1x1 + c2x2 + c3x1x2 (16.55)

where

c0 = b0 c1 = b1 c2 = a0−b0 c3 = a1−b1 (16.56)

Now imagine that the unit has never processed 100% of either feed type. We therefore do not
have any data to regress to determine coefficients in Equations (16.52) and (16.53). But, pro-
vided we know x2 (the proportion of Type 1 in the total feed), we can regress to determine
directly the coefficients in Equation (16.55). However for this to be successful, if a1 is signif-
icantly different from b1, we must include the compound input x1x2. The coefficient of x1 is now
effectively (c1 + c3x2), or we can think of the coefficient of x2 being effectively (c2 + c3x1). Such
functions, in which the coefficient of one input changes as another input varies, are known as
heterogenic. Those in which this is not the case are homogenic.
The regression technique so far described is known as OLS (ordinary least squares). OLS

assumes that the data is homoscedastic, i.e. each data point is equally reliable. A refinement is
WLS (weighted least squares) where weights are assigned to individual data points. For exam-
ple, a lower weighting might be applied to an input when its value falls within a range over
which its accuracy is known to be suspect. An indication of this might be a correlation between
the variance of the prediction error and one of the inputs. For example, using that data presented
in Table 16.3, applying OLS gives the inferential for %C4 in distillate based on PCT.

y= −12 09 + 0 3031x (16.57)

For convenience the table has been sorted by increasing PCT. By separately calculating var-
iance of the prediction error for each of the 5 C intervals we can see that the reliability of the
prediction varies greatly depending on the value of the PCT. We thus choose a weight (w) for
each interval that, in this case, is the reciprocal of the variance of the error. We then modify
Equation (16.10) to convert it to a weighted penalty function

n

i= 1

wi yi−yi
2 =

n

i= 1

wi a0 + a1xi−yi
2 (16.58)

Minimising this results in a modified inferential.

y= −11 58 + 0 2930x (16.59)

The weighted error variances for each 5 C interval will now be approximately the same.
Whether the resulting inferential is any more reliable is debatable. In practice choosing the
weights, without a strong engineering basis for their inclusion, will add nothing to the accuracy
of the resulting correlation.
Abetter approachwould be to explorewhat is causing the variation in accuracy. For example, in

this case, it might be that the PCT calculation is not reliable over the whole range. If so, then cor-
recting this would be a far better solution. It does however demonstrate that checking how the pre-
diction error varies can highlight an opportunity to improve an inferential that may not be obvious
otherwise. Figure 16.8, for example, shows the same correlation as Figure 16.3 but with prediction
error plotted against the actual dependentvalue.Theprediction is basedon a linear functionof pres-
sure and temperature. The curve crossing the zero error line in more than one place would suggest
that the relationship is nonlinear. Indeed Figure 16.3 reveals that a nonlinear PCT should be used.
Other plots of prediction error can be helpful. For example, plotting it against an independent not
included in the correlation would, if a trend appears, suggest the independent should be included.
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The PLS (partial least squares) method is applied in situations where the number of inputs
exceeds the number of datasets. If the number of inputs is equal to the number of datasets then,
in general, an exact fit to the data will be possible. Increasing the number of inputs beyond this
will cause the technique covered in this section to fail. This is unlikely to arise for inferentials
that the control engineer is likely to develop. But it does arise, for example, with NIR (near

Table 16.3 Use of weighted least squares regression

PCT (xi) measured
%C4 (yi)

predicted
%C4 (yi)

yi−yi
2 yi−yi

2

n

w weighted %C4
prediction

40.3 0.39 0.05 0.1140

0.4346 2.301

0.23
42.3 1.89 0.65 1.5252 0.82
43.9 1.42 1.14 0.0800 1.29
44.3 1.12 1.26 0.0189 1.41

45.9 1.27 1.74 0.2206

1.1766 0.850

1.87
46.3 3.32 1.86 2.1310 1.99
47.0 1.84 2.07 0.0534 2.20
47.9 1.73 2.34 0.3749 2.46
48.0 1.73 2.37 0.4127 2.49
48.3 2.74 2.46 0.0768 2.58
49.9 1.53 2.94 2.0019 3.05
50.0 0.94 2.98 4.1412 3.08

50.3 3.57 3.07 0.2546

1.4968 0.668

3.16
51.9 2.59 3.55 0.9167 3.63
52.0 3.02 3.58 0.3109 3.66
52.3 5.27 3.67 2.5664 3.75
53.9 3.28 4.15 0.7570 4.22
54.0 3.22 4.18 0.9220 4.25
54.3 6.45 4.27 4.7498 4.34

55.9 4.64 4.75 0.0127

3.5368 0.283

4.80
56.0 4.09 4.78 0.4800 4.83
56.3 6.92 4.87 4.1894 4.92
57.9 5.42 5.36 0.0042 5.39
58.0 4.78 5.39 0.3665 5.42
58.1 2.23 5.42 10.1476 5.45
58.3 8.37 5.48 8.3765 5.51
59.3 9.11 5.78 11.1083 5.80
59.9 6.33 5.96 0.1385 5.98
60.0 5.25 5.99 0.5446 6.01

60.1 3.87 6.02 4.6145

5.0110 0.200

6.04
61.9 9.83 6.56 10.6898 6.56
62.0 6.04 6.59 0.3032 6.59
62.1 4.13 6.62 6.2037 6.62
64.0 7.43 7.19 0.0561 7.18
64.1 4.36 7.22 8.1987 7.21

66.0 9.98 7.80 4.7707

1.9080 0.524

7.76
66.1 6.52 7.83 1.7055 7.79
68.1 8.70 8.43 0.0737 8.38
69.1 9.77 8.73 1.0820 8.67
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infra-red) analysers. For each sample, these generate a frequency spectrum that will contain the
amplitudes of around 1,000 frequencies. Only a few properties are predicted from this result. It
would be impractical to collect the many thousands of samples that would be needed to apply
OLS. Instead, PLS is used to first search for latent vectors that explain as much as possible of
the relationship between the dependent properties and the independent amplitudes. These vec-
tors are then used in developing the correlation. The mathematics are quite complex, well
beyond the scope of this book, and in any case would be built into a software tool.
Like any statistical technique, regression analysis is open to abuse if applied without an

understanding of the process. With modern spreadsheets and statistical packages it is relatively
easy to extract large quantities of data from the process information database and search for all
possible correlations. By including a large number of process variables and a wide range of
arithmetical transformations (such as powers, logarithms, ratios, cross-products, etc.) it will
certainly be possible to apparently improve the accuracy of the inferential. However, this is
likely to be only a mathematical coincidence. Consider the example where we attempt to pre-
dict a value (y) from one input (x1) such that

y = a0 + a1x1 (16.60)

If we have three datasets (or records) from which to derive this correlation then a0 and a1 would
be chosen to give the best fit to the available data. Imagine that this does not give the required
accuracy, and so we introduce a second input (x2). Since we have only three records, the coeffi-
cients (a0, a1 and a2) could be determined by solving the following equations simultaneously.

y 1 = a0 + a1 x1 1 + a2 x2 1 (16.61)

y 2 = a0 + a1 x1 2 + a2 x2 2 (16.62)

y 3 = a0 + a1 x1 3 + a2 x2 3 (16.63)

This would then give us a perfect fit. However this ‘perfection’ would be achieved even if x2
was a random number completely unrelated to y. Of course, we generally have far more datasets
than independent variables but this illustrates the point that the inclusion of any additional input
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will appear to improve the correlation. The relationship between the degree of correlation and
the number of inputs is approximately linear. So, for example, if the number of inputs is half the
number of records we would achieve 50% of perfection even if the inputs are random numbers.

There are several techniques, described in the next few sections, which can help us decide
whether the addition of an input to an inferential property is truly beneficial.

16.1 F Test

Themain application of the Fisher distribution, described in Section 12.6, is in support of multi-
variable regression analysis. Using the measurements shown in Table 16.1 for the LPG splitter,
the aim is to build an inferential for the C4 content of the overhead propane product (y). In this
example we have measurements (x1 and x2) of the temperature of two trays close to the top of
the 20-tray column – on trays 15 and 17. As a measure of the accuracy of the predicted value (ŷ)
we will use the variance of the error (σ2error), defined as

σ2error =

n

i= 1

yi−yi
2

n−p
(16.64)

The denominator in Equation (16.64) takes account of the p degrees of freedom used in esti-
mating the p coefficients in the inferential.

Depending on which temperature is used, we obtain two possible inferentials.

y = −56 38 + 0 9253x1 (16.65)

y = −28 09 + 0 5494x2 (16.66)

The first of these has a σ2error of 0.1972; the second, 0.0220. Of these we would therefore
clearly choose the second. The performance of both is shown in Figure 16.9. As expected the
temperature of the tray nearer the top of the column gives the better prediction. However we
could use both temperatures in the inferential.

y = −20 54−0 2092x1 + 0 6544x2 (16.67)

This has a σ2error of 0.0177. As expected it is better than either of the single-input possibi-
lities. Its performance is shown in Figure 16.10. However we would expect x1 to be highly
correlated with x2 and so add little value. Indeed, as Figure 16.11 shows, this is the case for
most of the measurements with the exception of two –which might be considered outliers. This
explains the relatively small improvement in σ2error. We need to check whether including the
second temperature gives a significantly better prediction. To do so, we first calculate the var-
iance ratio (F) of the improvement in error variance to the variance beforehand. This is

F =

σ21− σ22
f1
σ22
f2

(16.68)

In our example σ21 is that for the better of the two single-input inferentials and σ
2
2 is that for the

two-input version. σ21 will always be greater than σ22. The degrees of freedom are derived from
the number of coefficients (p) used in the inferential. In this example p1 is 2 and p2 is 3. The total
number of measurements (n) in our example is 20.
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f1 = p2−p1 = 1 (16.69)

f2 = n−p2 = 17 (16.70)

∴ F =

0 0220−0 0177
3−2

0 0177
20−3

= 4 19 (16.71)

To perform the F test, we make the null hypothesis that the two-input correlation is not signif-
icantly different from the single-input alternative. The curve in Figure 16.12 is the cumulative
probability determined by applying the trapezium rule to Equation (12.55). It is plotted to give
the probability that the null hypothesis is false. In our example they show a probability of
around 94% that this is the case – only marginally below the value of 95% at which we should
adopt the two-input inferential.

The alert engineer might at first be suspicious of the end result. We would expect %C4 to
increase as the tray temperatures increase and so would consider suspect the negative coeffi-
cient for x1 in Equation (16.67). But we can rewrite this equation.

y = −20 54 + 0 4452x2−0 2092 x1−x2 (16.72)

This is consistent with Equation (16.66) which shows that the tray 17 temperature (x2) is the
better choice. Since x1 is a temperature lower down the column it will be greater than x2 and so
(x1 − x2) will always be positive. This difference is a measure of the separation taking place in
this section of the column. Increasing separation will reduce %C4 and so the negative coeffi-
cient for this parameter is correct.

64

65

66

67

68

56 57 58 59 60 61 62 63 64

tr
ay

 1
5 

te
m

pe
ra

tu
re

 (
x 1

)

tray 17 temperature (x2)

Figure 16.11 Correlation between inputs

Regression Analysis 277



16.2 Adjusted R2

Squaring Equation (4.75) gives

R2 =

n

i= 1

xi−x yi−y

2

n

i= 1

xi−x
2

n

i

yi−y
2

(16.73)

Since the addition of an input will always improve a correlation, R2 cannot be used to determine
whether the addition is truly beneficial. Instead we should use the adjusted R2

– usually written

as R2. The principle behind the adjusted version is to include a penalty as additional inputs are
used, where n is the number of data points and p the number of inputs.

R2 = 1− 1−R2 n−1
n−p−1

(16.74)

If n is 2 we have two data points (x1,y1) and (x2,y2) and so

x =
x1 + x2

2
and y =

y1 + y2
2

(16.75)

Equation (16.73) will then give a result of 1 for R2. If there is only one input (p = 1) then R2 will
be indeterminate–althoughusually thenassumed tobezero. Ingeneralnmustbegreater thanp + 1.

Unlike R2, R2 can be less than zero. For example, if we retain only the one input, but this time

with 3 data points, and if R2 is at its lowest value of zero, then from Equation (16.74), R2 will be
at its lowest possible value of −1. In general, if R2 is zero and n is at is at its lowest possible

value of p + 2 then R2 will be −p.
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If we increase the number of inputs from p to p + 1, then for the correlation to have genuinely
improved

1− 1−R2
p+ 1

n−1
n− p + 1 −1

> 1− 1−R2
p

n−1
n−p−1

(16.76)

or

R2
p+ 1 >

1 + n−p−2 R2
p

n−p−1
(16.77)

Using the inferential developed as Equation (16.66), the left hand side evaluates to 0.991, while
the right, from Equation (16.67), is 0.979, showing that the improvement justifies the use of an
additional input.

Adjusted R2 can also be applied to dynamic model identification. Model order is determined
by the number of historical values of PV and MV included. Increasing the order will always
increase the accuracy of the model. Determining the adjusted R2 as the order is incremented will
ensure that the order is not increased to the level where only noise is being modelled and hence
results in the best choice of order for the dynamic model.

The adjusted R2 can similarly be used to determine whether using a larger number of data
points to develop the correlation has produced a significantly more reliable version. If the orig-
inal was developed from n points and the revised version developed fromm points then, for it to
be significantly better

R2
m >

m−p−1 n−1 R2
n−p m−n

n−p−1 m−1
(16.78)

16.3 Akaike Information Criterion

The Akaike information criterion (AIC) offers another method of deciding whether the inclu-
sion of additional parameters in a correlation gives a statistically significant improvement in its
accuracy. There are several published definitions but if the correlation is developed using the
conventional least squares regression and the prediction error is normally distributed then

AIC = n ln σ2error + 2p (16.79)

As usual n is the number of data points; p is the number of independent variables used in the
correlation. If n is small compared to p it is advisable to use the second order AIC to avoid over-
fitting.

AIC = n ln σ2error +
2pn

n−p−1
(16.80)

The correlation described by Equation (16.66) has an AIC given by

AIC1 = 20 ln 0 0220 +
20 × 2 × 1
20−1−1

= −74 08 (16.81)

That described by Equation (16.67) has an AIC given by

AIC2 = 20 ln 0 0177 +
20 × 2 × 2
20−2−1

= −76 01 (16.82)
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The better correlation is the one with the lower AIC. Whether the difference is significant
is determined from ΔAIC. A value less than 2 for ΔAIC indicates that increasing the
number of independent variables is probably not justified by the improvement in accuracy.
In this case

ΔAIC =AIC1−AIC2 = 1 93 (16.83)

This agrees with the conclusion of the F test in Section 16.1. The two-input inferential does not
quite meet the criterion for selection over the one-input version. Very large values of ΔAIC,
those greater than 10, indicate that there are variables that are better excluded from the original
correlation.
An alternative comparison is to determine the relative probability.

exp
−ΔAIC

2
= 0 38 (16.84)

This indicates that there is a probability of 38% that the inclusion of the additional parameter
will minimise the loss of information. Alternatively we are only 62% certain that the
inferential is not improved by the addition of the second variable. On this basis we might elect
to include it.
If n is significantly larger than p then we can apply Equation (16.79) to determine the con-

dition necessary to justify the inclusion of one additional parameter. We require

AICp−AICp+ 1 > 2 (16.85)

Therefore

n ln σ2p + 2p − n ln σ2p + 1 + 2 p + 1 > 2 (16.86)

Rearranging

ln
σ2p
σ2p+ 1

−
2
n
> 0 or ln

σp
σp+ 1

−
1
n
> 0 (16.87)

In our example the left hand side of the second inequality evaluates to 0.060, marginally con-
firming that including the additional parameter is justified. If required, a similar but more com-
plex inequality can be derived from Equation (16.80).
While normally the number of inputs to an inferential would be increased incrementally with

the AIC test applied at each stage, this may not always be possible. For example, we might wish
to compare an inferential that uses three inputs with one that uses only one (which is not one of
the three). Equation (16.87) can be extended to handle this. For an inferential using p1 inputs to
be preferable to one using p2 inputs

ln
σp1
σp2

−
p2−p1

n
> 0 (16.88)

Like adjusted R2, AIC can also be applied to dynamic model identification. It can similarly be
used to determine whether a correlation has becomemore reliable by developing it from a larger
number of data points. If the original was developed from n points and the revised version
developed from m points, then, for it to be significantly better,

ln
σn
σm

−
m

2n
> 0 (16.89)
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16.4 Artificial Neural Networks

Artificial neural networks are developed using regression. Figure 16.13 shows the network as
usually drawn. It comprises the input layer of neurons, each of which scales each of the n inputs
using weighting coefficients (w) and a bias (b).

xj = b +
n

i= 1

wijxi (16.90)

The next hidden layer comprises the j neurons, in which each scaled input passes through a
transfer function (also known as the activation function). This is chosen to be highly nonlinear
with the output bounded within a narrow range. Most commonly used is the sigmoid (S-shaped)
function, an example of which (shown as the coloured curve in Figure 16.14) is

yj =
1

1 + exp − xj
(16.91)

where

−∞ < xj < ∞ and 0 < yj < 1 (16.92)

There are other examples (shown as the black curves in Figure 16.14) where

−∞ < xj < ∞ and −1 < yj < 1 (16.93)

such as

yj =
1−exp −xj

1 + exp −xj
(16.94)
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Figure 16.13 Structure of artificial neural network
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yj = tanh xj =
exp xj −exp − xj

exp xj + exp − xj
(16.95)

yj =
xj

1 + xj
2

(16.96)

Others include the radial basis function (RBF); one example of which uses a Gaussian acti-
vation function based on the mean (μ) and standard deviation (σ) of x j.

yj = exp −
xj−μj

2

σ2j
(16.97)

There is also a triangular basis function (TBF).

yj = 1− xj if −1 < xj < 1 ; yj = 0 otherwise (16.98)

In the output layer of neurons the outputs from each transfer function are combined on a
linear basis as a weighted sum

y = a0 +
n

j= 1

ajyj (16.99)

Since neurons in one layer only pass information to all the neurons in the next layer, the network
is of the feedforward type. In a recurrent network neurons also pass information to the previous
layer. The coefficients (b, w and a) are chosen, as with linear regression, to minimise the residual
sum of squares (RSS). With neural networks this process is iterative and is known as training.
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Table 16.4 shows process data collected from the same distillation column as that which
generated the data in Table 16.1, except that it covers a wider range of operating conditions.
Revising, by linear regression, the coefficients in Equation (16.67) will make if fit the process
data reasonably well with RSS of 8.0.

y = −10 68−0 3619x1 + 0 6668x2 (16.100)

It is possible to develop a neural network with a single neuron in the hidden layer. The for-
mula for this can be derived by combining Equations (16.90), (16.91) and (16.99).

y= a0 +
a1

1−exp −b1−w11x1−w21x2
(16.101)

Training results in

b1 = −8 8896578 w11 = −0 0409135 w21 = 0 1101842 (16.102)

Table 16.4 LPG splitter data collected over wide operating range

tray 15 (x1) tray 17 (x2) %C4 (y)

63.7 52.2 1.58
57.3 48.9 1.36
62.2 54.1 2.57
66.8 61.1 5.38
67.2 61.9 5.84
65.8 54.4 1.99
59.6 51.1 1.82
64.6 57.5 3.68
68.9 58.4 2.89
68.5 64.3 7.63
45.2 40.9 0.20
67.4 56.4 2.40
60.6 52.2 2.08
48.6 42.6 0.40
51.3 44.2 0.61
66.4 60.5 5.11
52.9 45.3 0.76
66.4 60.4 4.99
60.1 49.0 1.10
54.8 46.7 0.99
69.0 65.3 8.50
66.2 57.6 3.21
40.8 39.2 0.04
66.4 59.4 4.24
69.2 65.8 9.05
65.1 58.2 3.96
69.6 66.5 9.87
67.4 62.5 6.36
62.8 55.0 2.84
61.5 53.2 2.33
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a0 = −1 3965854 a1 = 919 7932 (16.103)

This gives RSS a value of 0.8, considerably better than that from the linear regression.
Figure 16.15 confirms that the predicted values now match the measured values very closely.
While it would be possible to include nonlinear functions in conventional regression it is
unlikely that the use of simple transformations, such as logarithms and powers, will match
the RSS achieved by the neural network.
As usual, it is important that the inferential makes good engineering sense.With simple func-

tions the meaning of unusual terms (for example x1x2) can be checked and the signs of their
coefficients can be validated. With a neural network this is impractical. Indeed, if using a pro-
prietary package, the values of the coefficients are not always made available to the engineer.
However we can explore how the inferential behaves by varying each of its inputs. Figure 16.16
shows the result of this exercise; the dashed lines compare the performance to the linear infer-
ential. While analysis does not show that the inferential is accurate it demonstrates that it
behaves as expected. The %C4 increases both as the tray 17 temperature increases and
as the temperature difference between the trays falls. While this gives a strong indication that
the inferential is reliable we would need to be cautious in applying it if any input falls outside
the range over which training was performed.
It would be possible, in this example, to increase the number of neurons. While this would

reduce the RSS it would do so by modelling more of the noise in the measurements. This over-
fitting would likely result in a reduction in accuracy when the inferential is put into use. One
check is to look at the relative values of the weighting coefficients. If some are very much smal-
ler than others then this may indicate that a neuron is adding little to the accuracy.
A great deal is published about the development and use of neural networks. Much of this is

applicable to any form of regression. For example, it is good discipline to randomly split the
data into two groups – one for training and one for testing. However, failing the test will result
in the engineer reconfiguring the inferential. In effect the test data is also used for training.
Under these circumstances a third independent dataset should then be used for testing. This
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is particularly important with neural networks because they can extrapolate poorly outside the
region in which they have been trained. Indeed it should be common practice to check whether
the current inputs fall within the training envelope before using the output. It would be wise to
temporarily disable any control action under these circumstances until its result has been vali-
dated and the inferential retrained as necessary.

There is a tendency to ‘throw data’ at neural networks. Data should be pre-processed, for
example to remove outliers and to identify any cross-correlations. Consideration should be
given to including derived measurements, such as ratios and cross-products. Including suffi-
cient neurons will permit any data to be fitted, in much the same way that including additional
terms in conventional regression does. However the lack of transparency in a neural network
will hide any nonsensical relationship.

It is possible to design a neural network to generate more than one output. In our example we
could include additional measurements taken around the bottom of the column and also infer
the %C3 in bottoms butane product. This might seem advantageous if we were including mea-
surements that affect both product compositions – such as column pressure. However mainte-
nance is likely to be more difficult than supporting two separate networks.

The neural network that we have described is known as the back propagation (BP) type. Its
name comes from the method used to train it and is the one most commonly used for inferen-
tials. There are others and it is often worth trying each of them and comparing the results.

So far we have presented neural networks as a steady-state technique. Indeed their most
common application in the process industry is inferential properties. These are usually
developed on the assumption that the input data were collected at steady state. However
neural networks can also be applied to dynamic problems. They can be set up as a
dynamic model of a process, where historical values are used to predict future values. They
can also be used as controllers, where historical values are used to determine future con-
trol moves.
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Figure 16.16 Validation of inferential based on artificial neural network
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16.5 Performance Index

Once developed, an inferential property calculation has to be assessed as to whether it is suf-
ficiently accurate to capture the expected benefits. Many engineers will use the Pearson R2

coefficient, setting some minimum value to decide whether sufficient accuracy has been
achieved. This is described in more detail in Section 4.9. If there are n datasets, where x is
the measured property and x the prediction, this is defined as

R2 =

n

i= 1

xi−x xi−x

2

n

i= 1

xi−x
2

n

i

xi−x
2

(16.104)

A perfect correlation would have a value of 1 for R2. However a value close to 1 does not nec-
essarily indicate that an inferential is useful. As an illustration, consider the graph shown in
Figure 16.17 for the stock price of a process control vendor. Figure 16.18 shows the perfor-
mance of an inferential developed by the author. With R2 of 0.99 one would question why
the developer is not a multibillionaire. The reason is that it failed to predict the large falls in
the value of the stock. The three occasions circled undermine completely the usefulness
of the prediction. The same is true of an inferential property. If there is no change in the property
then, no matter how accurate, the inferential has no value. If it then fails to respond to any sig-
nificant change, it may as well be abandoned.
A further limitation of the use of R2 is that, if there is a perfect relationship between infer-

ential (PVinferential) and laboratory result (PVlaboratory), the value of R2 will also be 1 for any
linear function, i.e.

PVinferential = a1PVlaboratory + a0 (16.105)
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So, for example, if a1 had a value of 3 and a0 a value of 0, then the inferential would be treble the
laboratory result but, according to the statistical test, be working perfectly. The same would
apply if a1 were negative – even though this reverses the sign of the process gain. We have
to distinguish between correlation and accuracy. A high value for R2 tells us that two variables
correlate. It does not tell us they are equal. At best, R2 might be used to compare inferentials, for
example, to select the best of several possible. It does not provide an absolute measure of
usefulness.

A better approach is to compare the standard deviation of the prediction error (σerror) against
the variation in the actual property (σactual). Benefit calculations are usually based on the
assumption that the standard deviation of the actual property is halved. If we assume that
our control scheme is perfect and the only disturbance comes from the random error in the pre-
diction then, to capture the benefits

σerror ≤ 0 5σactual (16.106)

This can be written in the form of a performance parameter (ϕ)

ϕ = 1−
σ2error
σ2actual

≥ 0 75 (16.107)

This parameter clearly has a value of 1 when the inferential is perfect. To understand how it
works over its full range, consider the inferentialQ = a0 where a0 is the mean of all the property
measurements used to build the inferential. The inferential will have a bias error of zero. But,
since the inferential always generates the same value, the standard deviation of the prediction
error will be the same as the standard deviation of the actual property. The inferential clearly has
no value and the value of ϕ will be zero.

Next consider the case when the true property does not change. Any error in the prediction
will cause the controller to wrongly take corrective action. In general, if the standard deviation
of the prediction error is greater than that of the true property, ϕ will be negative – indicating
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that the inferential is so bad that process performance would be improved by switching off the
controller. Figure 16.19 trends this parameter for the stock price example. It confirms what we
know, that the prediction will lose us money on several occasions.
The parameter (ϕ) can be used both in the development of an inferential and (with modifi-

cation) its monitoring. At the development stage we clearly need its value to be greater than
0.75 but, given that this assumes perfect control, in reality it needs to be higher if we are to
capture the benefits claimed. A more realistic target is 0.9.
It is common to attempt to improve the accuracy of an existing inferential by collecting more

recent process data. However, if the existing inferential has been at least partially successful in
improving control, this will have caused a reduction in σactual and result in a lower value of ϕ. If
the history is available, σactualwould be better calculated from data collected before the original
inferential was commissioned. This would also permit ϕ to be determined for the existing infer-
ential and therefore any improvement quantified. It would also permit the economic impact of
the new inferential to be assessed. If ϕ1 and ϕ2 are the before and after values then the potential
percentage increase in benefits captured (Δ) is

Δ= 100 1−
1−ϕ2

1−ϕ1
(16.108)

This formula might also be used to justify enhancing (or replacing) a poorly performing infer-
ential with an on-stream analyser. It might also be used to justify simplifying an inferential to
make it more robust, accepting that the inferential might capture fewer benefits per hour, but
more than make up for this by remaining in service for longer.
As a monitoring tool ϕ can be very valuable in the early detection of degradation in the accu-

racy of an inferential and disabling it before its poor performance does any real harm. However
it needs to be used with care.
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• If our controller is successful, it will reduce σactual. Our performance parameter will then fall,
misleadingly indicating that the performance of the inferential has degraded. For example if,
at the design stage, σerror was half of σactual then ϕ would have a value of 0.75. If the con-
troller successfully halves σactual, then ϕwill drop to zero – suggesting the inferential is of no
value. To avoid this we choose a constant value for σactual, equal to the variation before the
controller was commissioned.

• The observant reader may have noticed that the sudden drops in ϕ in Figure 16.19 do not
occur at the same time as the unforeseen drops in stock price. So while the technique
may be effectively used to assess accuracy at the design stage, it has little value in this form
as a monitoring tool. The problem arises because, on the day that the stock price drops, there
is a large increase not only in the variance of the error but also in the variance of the actual
value. Their ratio therefore changes little. This too would be resolved by using a constant
value for σactual. The large error is not therefore associated with a large change in the actual
value and the value of ϕ will show a spike at the same time as the error occurs.

• We have to use a number of historical values to calculate σactual – usually 30. Thus, even if a
problem with the inferential is resolved, the performance index will indicate a problem until
30 more laboratory results are taken. While we can reduce the number of historical values
used, a better approach would be to treat as outliers the occasion(s) where the inferential
is now known to have failed and remove them from the calculation of the index.

• If ϕ is calculated at a high frequency, e.g. by the use of on-stream analyser measurements,
then care must be taken to ensure that the process is at steady state. Because the dynamics of
the analyser will be longer than those of the inferential, any change in the inferential will be
reflected some time later in the analyser measurement. There will therefore appear to be a
transient error, even if both the inferential and analyser are accurate. Alternatively, dynamic
compensation can be applied.

• Finally we should recognise that a failure may not be due to a problem with the inferential but
a problem with the on-stream analyser or laboratory result.

The use of the performance index is not restricted to inferential properties. It can be used in
any situation where there are two methods of determining a measurement. For example, MPC
includes a prediction of every CV, based on changes in MV or DV. Any discrepancy in the
prediction is automatically corrected by adjusting a bias term in the prediction. But we can com-
pare the unbiased CV against that measured, monitoring the performance index to ensure that
the level of correction remains within an acceptable limit.

We cover data reconciliation in Chapter 18 as a means of resolving conflicting process mea-
surements. The performance index provides a method of detecting whether any discrepancy is
getting worse. For example, we might have difficulty closing a mass balance around a unit
because of measurement errors. The standard deviation of the actual flow (σactual) might be
determined from the feed flow meter, while σerror would be the standard deviation of the mass
imbalance.
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17
Autocorrelation

Autocorrelation is a correlation of a set of values with itself, sometimes also called serial cor-
relation. External inputs are not considered. We apply Equation (4.75) to check for a correla-
tion between a value measured now and the same measurement taken earlier, where k is the
number of collection intervals between the two.

Rk =

n

i= k + 1

xi−x xi−k −x

n−k

i= 1

xi−x
2

n

i= k + 1

xi−k −x
2

(17.1)

One use is to identify if there is a repetitive pattern. For example, Figure 17.1 shows a noisy
measurement taken every second for 10 minutes. At first glance it might appear that the under-
lying measurement is constant. However, by determining the Pearson correlation coefficient
(R) at different values of k, we can see from the correlogram (shown as Figure 17.2) that
the correlation varies cyclically. The strongest positive correlation occurs at regular intervals
of about 180 seconds, as does the strongest negative correlation. This tells us that the apparently
constant measurement has an underlying oscillation with a period of about three minutes. This
might highlight a previously undetected problem with controller tuning or an issue with the
control valve. Indeed this technique forms the basis of some controller oscillation detection
techniques. The correlogram has the same frequency of oscillation as the raw measurement
but with a much improved signal-to-noise ratio – making automatic detection of oscillation
more reliable.

While not strictly autocorrelation (because it involves another measure of the same param-
eter), it can be used to explore whether a correlation between twomeasurements requires timing
to be taken into account. For example, the engineer may wish to validate an inferential property
by comparison with an on-stream analyser. The inferential property is likely to respond more
quickly to process changes than the analyser. This is not an issue if comparison data are only
collected when the process is at steady state. If this is not the case then the two measurements
will not agree, potentially wrongly leading to the conclusion that one is suspect. Again, plotting
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Rk against kwill identify what delay to apply to the inferential measurement before comparing it
to the analyser. Data collected under changing conditions can then be combined with data col-
lected at steady state. This is illustrated by Figure 17.3. In response to a series of step-tests the
inferential (coloured line) shows a deadtime of 0.5 minutes and a lag of 2 minutes. The analyser
(black line) has a deadtime of 10 minutes and a lag of 0.5 minute. We could identify these
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models and apply full dynamic compensation to the inferential. But for simpler comparison,
Figure 17.4 shows the optimum delay to apply would be 8.3 minutes. The dashed line in
Figure 17.3 shows this applied to the inferential. Without compensation for the delay, the cor-
relation coefficient (R) between analyser and inferential would be around 0.78 but, with it, it
approaches a value of 1.
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The same approach can be applied to the development of inferentials, checking whether a
delay should be applied to any of the independent variables being considered as inputs to
the inferential calculation. Similarly it can be applied to dynamic model identification to deter-
mine a good starting estimate for process deadtime that is then improved by iteration. It can also
be used to validate the dynamic models in MPC.
Also used is autocovariance, derived from Equation (4.72).

gk =

n

i= k + 1

xi−x xi−k −x

n−k−1
(17.2)

While similarly effective, like covariance, its magnitude depends not only on whether there
is a correlation but also on the magnitude of the values x. While a nonzero value would indicate
a correlation, it is not immediately obvious how strong it is.
An important use is in modelling process behaviour. Consider the inventory of liquid in a

product storage tank. The inventory is clearly a function of the product flow into the tank
but is also a function of liquid being pumped from the tank to another process or intermittently
in batches for delivery to a customer. While not necessarily of obvious value to the control
engineer, modelling stock levels can be an important part of feasibility studies. For example,
gasoline is a blend of naphtha type components and small amounts of butane. It is usually eco-
nomic to maximise the butane content up to the RVP specification of the product. In industry
there are many examples where the economic advantage of doing so has been overestimated
because of periods when insufficient butane was available in storage. Being able to predict such
occasions would be an important part of estimating the benefits before embarking on a blend
optimisation project.
We are likely to have stock level data collected regularly, usually at the end of each day.

Analysing these data is likely to show that the level follows a normal distribution with mean
and standard deviation that we can readily determine. However we cannot use this distribution
to generate stock levels for our simulation. If a tank is almost full one day, it is very unlikely to
be nearly empty the next. Today’s level is a function of yesterday’s – as we saw in Section 12.8,
the process has memory. As an example, Table A1.6 and Figure 3.15 show the stock level
recorded daily over 220 days.
Our data is a time series and needs to be modelled as such. If x is the inventory, a possible

approach would be to develop a model such as

xi = xi−1 + zi (17.3)

In this case z is a normally distributed random variable with a mean and standard deviation that
we have identified by analysing the difference between xi−1 and xi. Thus z is the change in
inventory each day; this however, if selected from a normal distribution, could result in the
predicted inventory being negative or greater than the tank capacity (in this case 2258). Further,
the changes in inventory may also be a time series. As we saw previously in Figure 15.6, show-
ing the cumulative sum of deviations from the mean inventory, if changes in inventory were
truly random then we would expect the trend to be very noisy around zero, not show long trends
upward or downward. We might also expect cyclic patterns, for example product withdrawal
may be different at weekends and we would then expect xi to be correlated with xi−7.
Figure 17.5 shows how the autocorrelation coefficient (R2) varies with the age of the previ-

ous inventory measurement. As expected, there is a strong correlation with yesterday’s level;
the correlation then declines rapidly for older values. But, as we anticipated, there are peaks at
one and two weeks. The peak at six weeks might be due to some other cyclic behaviour.
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It coincides with the changes in direction of the CUSUM trend and might result from a regular
change in operating mode. Otherwise it would indicate quite an unlikely correlation. It should
be included with care.

The general approach is to develop a model using the last p deviations from the mean to
predict the next deviation.

xi = x−
p

j= 1

bj xi− j−x + zi (17.4)

The coefficients (b) are chosen to give the best fit. The difference between the actual devi-
ation and that predicted will be a random number (zi) with a mean of zero and a known standard
deviation. This variable is sometimes described as white noise.

To determine the coefficients (b) we choose an initial value for the number of days (p) used in
the model. Using Equation (17.2) we then calculate p autocovariances (g0 to gp). Note that g0 is
the variance of x (σ2). Using the method developed by Anderson,[8] we can find the coefficients
by solving the following simultaneous equations.

g0 g1 g2 gp−1

g1 g0 g1 gp−2

g2 g1 g0

g2

gp−2 g0 g1

gp−1 gp−2 g2 g1 g0

b1

b2

b3

bp−1

bp

=

−g1

−g2

−g3

−gp−1

−gp

(17.5)

The solution is given by multiplying this equation by the inverse of the autocovariance
matrix. This is a relatively simple technique in most spreadsheet packages.
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b1
b2
b3

bp−1
bp

=

g0 g1 g2 gp−1
g1 g0 g1 gp−2
g2 g1 g0

g2
gp−2 g0 g1
gp−1 gp−2 g2 g1 g0

−1
−g1
−g2
−g3

−gp−1
−gp

(17.6)

The mean of the random variable (z) will be zero; its variance is

σ2z =
1

n−p

n

i = p+ 1

xi−x +
p

j= 1

bj xi−1−x

2

(17.7)

To avoid over-fitting the model we check whether each coefficient is significantly different
from zero. So we make the null hypothesis that bi = 0. Using aii, the appropriate diagonal ele-
ment from the inverted autocovariance matrix, we determine εi.

εi =
bi
σz

n−p

aii
(17.8)

The value εiwill be normally distributed with a mean of 0 and a standard deviation of 1. From
Table A1.9, if the absolute value of εi is greater than 1.64, then we are 95% sure that bi should
not be zero. If this test shows that bp should be nonzero then it is likely that p should be
increased before proceeding further. Once we are satisfied that we have included sufficient his-
torical values, other coefficients failing this test should be set to zero. For the model to be stable

−1 <
p

i= 1

bi < 0 (17.9)

The calculated values of biwill always obey this; however setting to zero any coefficients found
to be insignificant can cause the total of the remainder to lie outside this range. In any case,
because they are not independent, the remaining coefficients should be recalculated. This is
done by removing the corresponding rows and columns from the autocovariance matrix and
repeating the calculations above. There is no guarantee that this will result in the remaining
coefficients being significantly different from zero; so the process may need repeating.
The first estimate of the coefficients gave the results in Table 17.1. The analysis was initially

performed by including the last 30 values in the model but the coefficients applied to values
more than 14 days old were shown to be insignificant (ε < 1.64). The remainder were recalcu-
lated with p set at 14. The table shows that the coefficients b3 to b6 and b9 to b12 should all be set
to zero. Table 17.2 shows the impact of doing so and reveals that b8 should also be zero.
Table 17.3 shows the impact of removing this coefficient. All the remaining coefficients are
significantly different from zero.
The mean of the inventories is 1292 and the variance 218712. From Equation (17.7) we find

that the variance of the prediction error (σz) is 45085. Our model therefore accounts for 173627
of the variance, or about 79% of the variation in inventory.
To generate the remaining behaviour we randomly select, for each predicted value, v1 to v12

from the range 0 to 1 and use these to generate zi.

zi = 45085
12

j= 1

vj−6
i

(17.10)
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xi = 1292 + 1 177xi−1−0 402xi−2 + 0 066xi−7 + 0 147xi−13−0 115xi−14 + zi (17.11)

Unlike process dynamic models, this model will not closely reproduce previous behaviour. In
this example the daily inventory is only partially predictable; a significant component is noise
caused by the semi-random nature of the process. Figure 17.6 shows its performance. While
this might appear a poor model it does generate a time series with the same statistics as the
actual data and is therefore quite suitable for simulation studies.

Table 17.1 Initial estimate of coefficients

b ε

1 −1.231 18.10
2 0.508 4.73
3 −0.030 0.27
4 −0.049 0.44
5 −0.071 0.64
6 0.096 0.87
7 −0.197 1.79
8 0.198 1.79
9 −0.174 1.57

10 0.172 1.54
11 −0.146 1.30
12 0.132 1.17
13 −0.218 2.03
14 0.127 1.87

total −0.833

Table 17.2 Intermediate estimate of coefficients

b ε

1 −1.178 18.88
2 0.397 6.40
7 −0.147 2.35
8 0.099 1.59

13 −0.149 2.40
14 0.111 1.78

total −0.866

Table 17.3 Final estimate of coefficients

b ε

1 −1.177 18.82
2 0.402 6.46
7 −0.066 1.84

13 −0.147 2.37
14 0.115 1.84

total −0.873
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18
Data Reconciliation

No process measurement can be considered perfect. The instrumentation itself is subject to
error and data collection is subject to inaccuracies in time-stamping. It is for this reason that
we never expect heat and mass balances to close perfectly. However performing such a balance
is effectively a comparison between two ‘opinions’ of the true value – one measured directly
and the other derived from the other measurements involved in the balance. Data reconciliation
is a technique that uses these multiple estimates to produce an estimate that is more reliable than
any of them.

Consider, as a simple example, that we have two measurements of the same property – both
subject to error. The first has a standard deviation of σ1, the second σ2. The values of each of
these measurements can be considered to have come from two distributions with different
means, i.e. μ1 and μ2. Our aim is to choose the most likely estimate. This will be a weighted
average of the two measurements, where a and (1 − a) are the weighting coefficients. This esti-
mate will therefore have the mean

μ= a μ1 + 1−a μ2 18 1

Provided the errors in the two measurements are not correlated then the standard deviation is

σ = a σ1
2 + 1−a σ2

2 = σ21 + σ
2
2 a2−2σ22a + σ

2
2 (18.2)

The best estimate will have the smallest standard deviation. This will occur when

dσ

da
= 0 or

σ21 + σ22 a− σ22

σ21 + σ22 a2−2 σ22a + σ22

= 0 (18.3)

Thus the best choice of a is

a =
σ22

σ21 + σ22
(18.4)
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Substituting this value into Equation (18.1) gives the best estimate as

μ =
σ22μ1 + σ21μ2

σ21 + σ22
(18.5)

And this estimate will have a standard deviation given by substituting Equation (18.4) into
Equation (18.2)

σ =
σ1σ2

σ21 + σ22
(18.6)

Rearranging Equation (18.6) shows that σ must be less than both σ1 and σ2.

σ =
σ1

1 +
σ2
σ1

2
=

σ2

1 +
σ1
σ2

2
(18.7)

As an example, consider a distillation column that has been operating at a feed rate of 100 for
the last 24 hours, as determined by a flow controller on the feed. This is the value for μ1. The
flow meter has a quoted reproducibility (1.96σ) of 4% of the instrument range that, in this case,
is set at 125. Assuming no other sources of error we can assume σ1 has a value of 2.5.
The feed rate is also estimated from the change in level in the feed tank. Let us assume that

this gives an estimate of 103. This is the value for μ2. Tank gauging typically has a reproduc-
ibility of 2 mm. Since the calculation uses the difference between two measurements, the esti-
mate of the change in level will have a variance of 2σ2 and so the standard deviation will be
1.41 mm. The effect this has on the estimate of flow depends on the magnitude of the change in
tank level which, in turn, depends on the interval over which it is measured and the tank’s cross-
sectional area. To simplify the arithmetic let us assume that the tank level changed by 100 mm.
The value of σ2 is 103 × 1.41/100 or around 1.5.
Applying Equations (18.5) and (18.6) gives a best estimate of 102.2 with a standard devi-

ation of 1.3. As expected, this standard deviation is less than that of either measurement. Not
only have we reconciled the difference between the two measurements but we have greater
confidence in the resulting estimate than in either of the measurements. In other words, taking
into account other measurements, even if inaccurate, can improve the accuracy of the estimate.
This is illustrated as Figure 18.1.
We can add a third measurement by first replacing, in Equation (18.5), μ2 with μ3 and σ2 with

σ3. We then replace μ1 with the expression used to determine μ from the same equation and
replace σ1 with the expression used to determine σ, i.e. Equation (18.6). This gives

μ =
σ22 σ

2
3μ1 + σ21 σ

2
3μ2 + σ21 σ

2
2μ3

σ22 σ
2
3 + σ21 σ

2
3 + σ21 σ

2
2

(18.8)

Making similar substitutions in Equation (18.6) we get

σ =
σ1σ2σ3

σ22 σ
2
3 + σ21 σ

2
3 + σ21 σ

2
2

(18.9)

In practice we often have many more than two estimates of flows. In addition to those above we
can derive another from the overall unit mass balance – from summing all the product flows.
And we can assign a standard deviation to this measurement by considering the contribution
made by the reproducibility of each instrument used in the calculation. For example, our col-
umn might simply produce two products – distillate and bottoms. Let us assume that these two
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flows, measured over the same period, are respectively averaged at 42 and 53. Giving a total of
95, this gives us another measurement of feed rate. Like the feed meter, both product meters
have a reproducibility of 4% of range. The range of the distillate meter is 90 and so the standard
deviation of its measurement is 1.8. The range of the bottoms meter is 110, giving a standard
deviation of 2.2. The standard deviation of the derived feed flowmeasurement is the square root
of the sum of the squares of these two values, i.e. 2.8.

Figure 18.2 shows the effect of including this measurement. From Equation (18.8) we now
find that the best estimate is 101.0. Equation (18.9) shows that the standard deviation has
improved to 1.2.

The difference between this best estimate and the measurement derived by mass balance is
6.0. This is more than double the standard deviation and therefore outside the quoted reproduc-
ibility, suggesting that this measurement is suspect. Whether this is caused by a problem with
the distillate meter or bottoms meter would require reconciliation of those flows using other
measurements. For example, we may also be able to include changes in product tank inven-
tories or a mass balance around a downstream process. If we have analysis of the composition
of the streams we can perform component balances, each of which generates another estimate.
And, with sufficient temperature measurements, we might also be able to derive another value
by energy balance.

Formulae using four measurements can be developed by extending Equations (18.8) and
(18.9) and so on. However, for complex problems, proprietary DRS (data reconciliation sys-
tem) software would be used. These products typically minimise the penalty function (C),
where μ is the reconciled value derived from the n measurements of μ1 to μn.

C =
n

i= 1

μ−μi
σi

2

(18.10)

Figure 18.3 shows the effect of applying this technique to our example process. Again it
demonstrates that the best estimate is 101.
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DRS software permits the user to define complex process flowsheets and so, for example,
reconcile all the measurements across a whole manufacturing site. Such information is valuable
both for accounting purposes but also for process modelling. Indeed a similar approach must be
taken with the data provided to CLRTO (closed-loop real-time optimisation) – particularly if
based on rigorous process simulation.
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Figure 18.3 Minimisation of data reconciliation penalty function
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The software also allows the user to identify suspect measurements by considering how dif-
ferent the best estimate is from each measurement. In our example the best estimate is 2.2
higher than that measured by the flow meter, i.e. within the quoted reproducibility. Had it
not been then this would indicate that the meter was in need of attention. Similarly it is 0.8
lower than that calculated from tank levels – again within the expected range. Indeed it is this
systematic method of identifying, and so rectifying, measurement problems that is perhaps of
the greatest benefit since it improves the quality of the raw process measurements used by all.
Indeed applying DRS, without rectifying such problems, risks generating yet another set of
process measurements with no confidence that they are any more reliable than the raw data.

Many DRS packages also support ‘what if?’ analysis. The inclusion of additional measure-
ments and improving the accuracy of existing measurements can be assessed in terms of the
impact they would have on overall accuracy. There are many examples where the accuracy
of the estimate (derived by mass balance) of an unmeasured flow may not be significantly
improved by the installation of a direct measurement. It might however be improved by repla-
cing poor instrumentation elsewhere in the process. What-if analysis permits definition of the
scope of the most cost effective measurement upgrade project.

The technique is not limited to the measurement of flows. It can be applied wherever there
are multiple measurements of the same parameter. For example, by comparing inferential (or
on-stream analyser) against the laboratory result, we can decide whether the difference between
the two measurements is significant enough to merit attention.
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19
Fourier Transform

Strictly, the Fourier transform is not a statistical technique. It is basically a solution of a large
number of simultaneous equations. However, its application is strongly linked to both regres-
sion analysis and autocorrelation that we covered in previous chapters. As we will show, it
offers the engineer another valuable diagnostic tool.

Most texts covering the Fourier transform do so in a highly mathematical way, making it
difficult for the control engineer to identify where its application might be beneficial. Here
we restrict its use to identifying cyclic disturbances to process measurements. Often such dis-
turbances are not immediately obvious, presenting themselves as random noise. This is com-
mon problem with averaging level control. Applying this technique has identified many
controllers that appear to be working well, using the available surge capacity, but the variation
in level is in fact a very slow oscillation (disguised by process disturbances) caused by exces-
sive integral action. The technique can also help diagnose control valve problems, such as
stiction and hysteresis.

Since control engineers deal largely with process data collected at a fixed time interval we
will focus on the discrete Fourier transform (DFT). Strictly it is the real DFTwhere the input is
restricted to real data. There is also an imaginary DFT but this has no application here.

Fourier showed that any signal can be decomposed into a number of sinusoidal signals. Each
of these signals will have a different frequency and amplitude; further they will not necessarily
be in phase. We need to be careful with the definitions and units of measurement of these terms.
If we consider the continuous function for the kth frequency

xk = a sin 2πfkt +ϕ 19 1

The term a is known as the peak amplitude. Many engineers will use the term ‘amplitude’ to
describe the peak-to-peak distance 2a. Amplitude can also be referred to as energy or power. If
time (t) is measured in seconds then the frequency (fk) will be in Hz (sec–1). The factor 2π is
required to convert fk from cycles per unit time to radians per unit time. Similarly the phase shift
(ϕ) is expressed in radians.

With discrete Fourier transforms the frequency (k) is expressed as the number of cycles that
occur within the period over which the input data are collected. The term fkt is replaced by ki/N.
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The sine wave at this frequency has a peak amplitude of ak and now comprises a series of dis-
crete values of xk. N is the total number of values collected in the period and i is the index (ran-
ging from 0 to N− 1) of each value of xk.

xk i = ak sin
2πki
N

+ϕk (19.2)

This equation can be rewritten as

xk i = ak sin ϕk cos
2πki
N

+ cos ϕk sin
2πki
N

(19.3)

The result of the Fourier transform is, for each frequency, a combination of in-phase sine and
cosine waves of peak amplitude pk and qk respectively. For example, at frequency k, the series
of xk values is

xk i = pk cos
2πki
N

+ qk sin
2πki
N

(19.4)

Comparing this with Equation (19.3) gives

pk = ak sin ϕk (19.5)

qk = ak cos ϕk (19.6)

Squaring and adding Equations (19.5) and (19.6) gives the peak amplitude.

ak = p2k + q
2
k (19.7)

One might reasonably deduce that dividing Equation (19.5) by Equation (19.6) gives the
phase angle.

ϕk = tan
−1 pk

qk
(19.8)

However, this will only generate a value for ϕk in the range −π/2 to π/2. Further it is indeter-
minate when qk is zero. To obtain values from the full range of −π to π requires the use of the
arctangent2 (atan2) function. This is shown in Figure 19.1 and is defined as

atan2
pk
qk

= tan−1 pk
qk

when qk > 0 (19.9)

atan2
pk
qk

= tan−1 pk
qk

+ π when pk ≥ 0 and qk < 0 (19.10)

atan2
pk
qk

= tan−1 pk
qk

−π when pk < 0 and qk < 0 (19.11)

atan2
pk
qk

=
π

2
when pk ≥ 0 and qk = 0 (19.12)

atan2
pk
qk

= −
π

2
when pk < 0 and qk = 0 (19.13)

We need to consider the conditions under which the transformation can be applied. Firstly,
the data must be a repeating waveform. If an insufficient number of values are analysed then the
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resulting distortion is known as leakage. Secondly, if an analog signal contains no frequency
higher than or equal to fmax then it can be reconstructed from the digital signal provided the
sampling exceeds 2fmax samples per second. This is known as the Nyquist–Shannon sampling
theorem. For example, many process historians collect data at one minute intervals, in which
case the maximum frequency detectable will be 30 hr–1, i.e. 0.5 min–1 or 1/120 Hz. Collecting
data at too low a frequency causes distortion known as aliasing.

The maximum value of k is therefore N/2; k has a minimum value of zero. Thus the Fourier
transform will comprise N/2 + 1 sine waves and N/2 + 1 cosine waves. It should be noted there-
fore that N should be an even number and that only discrete frequencies that are an exact mul-
tiple of the data collection interval are included. Some texts suggest that N should be a power of
2 (e.g. 512, 1024…). This permits the use of the fast Fourier transform technique, substantially
reducing the calculations required and hence the execution time of any analysis tool. However
this only becomes an issue when analysing very high frequencies and is of less advantage for
process data.

The coefficients (p) for each frequency (k) are determined from the actual sampled data (x)
using the formulae

pk =
2
N

N−1

i= 0

xi cos
2πki
N

(19.14)

except

p0 =
1
N

N−1

i= 0

xi and pN 2 =
1
N

N−1

i= 0

xi cos 2πi (19.15)

The reason that the calculations for p0 and pN/2 are slightly different has to do with bandwidth.
Bandwidth is the difference between the highest and lowest frequencies in the band. The total
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bandwidth is split into N/2 bands, but there areN/2 + 1 frequencies. The width of each band, for
the frequencies from k = 1 to k =N/2 − 1, is 2/N. However the frequencies at each end, i.e. k = 0
and k =N/2, have a bandwidth of half this value, or 1/N.
The coefficient p0 is applied to the cosine of zero, which is unity. It is therefore the mean of

all the values collected and represents the offset of the signal from zero.
The coefficients (q) for each frequency (k) are also determined from the actual sampled

data (x) but using the formulae

qk =
2
N

N−1

i= 0

xi sin
2πki
N

(19.16)

Since q0 is derived from the sine of zero, it will also be zero. Similarly qN/2 will be zero since it is
derived from the sine of integer multiples of π, each of which will be zero.
The analog signal can be reconstructed from the inverse discrete Fourier transform (IDFT).

xi =
N 2

k = 0

pk cos
2πki
N

+
N 2

k = 0

qk sin
2πki
N

(19.17)

Figure 19.2 shows 60 values collected at one minute intervals for an hour – typically what
might be readily available from a process historian. The coefficients p0 to p30 were calculated
using Equations (19.14) and (19.15); q0 to q30 using Equation (19.16). These were then used in
Equation (19.17) to reconstruct the analog signal shown as the coloured line. This simply con-
firms that the method works and is a useful check that the calculations have been performed
correctly. It should be noted that for digital signals the reconstructed analog signal will pass
through all the discrete values; it is not a curve of best fit but an exact solution. Neglecting
q0 and qN/2, which are both zero, we have calculated N coefficients to fit a curve through N
points.
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The value of the technique is that, by applying Equation (19.7), we can determine the peak
amplitude of every frequency and present this as the power spectrum shown as Figure 19.3. We
have converted a signal that is in the time domain to one in the frequency domain. In our exam-
ple the average signal is approximately zero and so a0 is small. If this is not the case then the
zero frequency should be omitted from the chart so that it does not dwarf the others. Alterna-
tively the mean (μ) can be subtracted from each value of x before calculating the amplitudes.
This affects only p0, reducing it (and hence a0) to zero.

Figure 19.3 is, of course, also a histogram.We can therefore applymany of the techniques we
covered in earlier chapters. For example, we can plot a kernel density estimate. If it were uni-
modal, we could fit a distribution and so determine statistical parameters such as mean and
variance. These might be useful in determining whether the spectrum changes over time.

Figure 19.4 shows the same power spectrum but based on the period (wavelength) of oscil-
lation and converted to a kernel density estimate.

The power spectrum shows that the apparently random noise in the process measurement is
dominated by a waveform that completes 12 cycles within the period covered by the data, i.e. it
has a period of 5 minutes. This might give some clue to the source of the oscillation – partic-
ularly if the technique is also applied to values collected over the same period from potential
sources. The peak amplitude at this frequency (a12) is about 1.7, giving a peak-to-peak ampli-
tude of 3.4.

If required, we can also obtain the phase spectrum by applying the appropriate choice from
Equations (19.9) to (19.13). This is shown in Figure 19.5 and gives a value for ϕ12 of 1.63
radians.

Using the values a12 and ϕ12 in Equation (19.1) we can superimpose the waveform on the
original signal, as shown in Figure 19.6. There is a strong correlation between the two curves
with a value for Pearson R of 0.64. While not accounting for all the noise, it does explain a large
part of the variation. Very similar values for a12 and ϕ12 would be obtained by regressing the
coefficients to give a wave of best fit.
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A limitation of this discrete method is that the frequency spectrum can only contain frequen-
cies equivalent to integer values of k. So, for example, if we increase the number of values
collected from 60 to 62 the wavelength corresponding to k having a value of 12 will increase
to 5.17 minutes (62/12). If there is truly dominant waveform, with a wavelength of 5 minutes,
its dominance will be masked by adjacent frequencies. Figure 19.7 shows how the spectrum
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will now appear. Superimposing the dominant waveform on the original signal will show a
poorer match; indeed in this case Pearson R reduces to 0.48. As might be expected, synthesising
a signal by also including the two frequencies either side of the dominant one increases R to
0.67 – close to that derived from the original dataset. It is therefore good practice to analyse
different datasets, making small changes to the number of values included in each set.
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While DFT will highlight a problem with a controller, it does not necessarily mean that it is
caused by the controller. The problem may persist even if the controller is switched to manual –
so demonstrating that the cause may be elsewhere in the process. To illustrate this, Figure 19.8
shows data collected from another controller (PV2) superimposed on the trend for the controller
analysed previously (PV1). It would be difficult to conclude from these trends whether changes
in PV2 are causing the variation in PV1. Indeed the scatter plot show as Figure 19.9 shows no
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obvious relationship. However, we can apply DFT to generate the power spectrum for PV2 and
plot the amplitude of each frequency against the corresponding amplitude from the PV1 power
spectrum. Figure 19.10 shows not only are both process values dominated by the frequency of
12 cycles/minute (highlighted) but that they contain many other frequencies in common. The
very strong correlation (Pearson R2 of 0.92) suggests that oscillation in PV2 may be the cause of
that in PV1 – or vice versa. This technique is used by several controller diagnostics products.
Indeed these will often analyse all the process values and generate a power spectrum correla-
tion map – a grid using colour to show where correlations are strong. While valuable, this
method does not distinguish cause from effect. To confirm the cause, it is still necessary to
switch to manual any controller thought to be the source of the problem.
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Part 2
Catalogue of Distributions



20
Normal Distribution

In Chapter 5 we covered the classic normal distribution along with its bivariate version.
Chapter 12 addressed the lognormal distribution – one of the common variations. Here we
cover the wide range of other variations, many of which better fit our examples.

20.1 Skew-Normal

As its name suggests the skew-normal distribution is a modified form of the normal distribution
that can take account of skewness. It is described by the PDF

f x =
1

β 2π
exp

− x−α 2

2β2
1 + erf

δ x−α

β 2 1−δ2
β > 0; −1 ≤ δ ≤ 1 (20.1)

The parameter δ determines skewness. Figure 20.1 shows its effect, with α set to 0 and β to 1. If
δ is less than zero the distribution is skewed to the left, if greater than zero it is skewed to the
right. If set to −1 or +1 we obtain the half-normal distribution that we will describe later.

The mean, variance, skewness and kurtosis are

μ= α+ βδ
2
π

(20.2)

σ2 = β2 1−
2δ2

π
(20.3)

γ =
4−π
2

δ3
2

π−2δ2

3
2

(20.4)

κ = 3 +
8δ4 π−3

π−2δ2
2 (20.5)

Statistics for Process Control Engineers: A Practical Approach, First Edition. Myke King.
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Figure 20.2 plots Equations (20.4) and (20.5) as δ varies. It shows two limitations of the dis-
tribution. The first is that skewness is limited to the range −1 to 1 and kurtosis limited to the
range 3 to 3.87. Secondly, skewness and kurtosis are highly correlated; adjusting δ affects both.
Fitting the distribution to data will usually be a compromise between matching skewness and
matching kurtosis.
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Nevertheless the skew-normal distribution fits the C4 in propane data better than the normal
distribution. Figure 20.3 shows the impact that including δ has on RSS. It passes through min-
imum of 0.0488 – considerably better than 0.2303 given by the normal distribution. Fitting
Equation (20.1) gives δ as 0.982, α as 1.88 and β as 3.39. Equation (20.2) then gives the mean
as 4.54 and Equation (20.3) the standard deviation as 2.11.

The fitted skewness and kurtosis must lie on the line plotted in Figure 20.4. As shown, the
calculated values are far from the line; indeed skewness exceeds the maximum of 1 and kurtosis
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exceeds the maximum of 3.66. As we have seen with mean and standard deviation, simply cal-
culating their value gives a less accurate result than curve fitting. The same is true of skewness
and kurtosis. In this case, from Equations (20.4) and (20.5), the fitted skewness is 0.86 and
kurtosis is 3.57.
An alternative approach described in some texts is to determine the skewness by calculation

and use the result to solve Equation (20.4) to determine the maximum likelihood value for δ.
This would fail here because the calculated skewness is larger than that supported by the dis-
tribution; the value for δwould exceed 1. In any case such an approach does not ensure that best
fit is achieved.

20.2 Gibrat

The standard lognormal distribution is described by Equation (12.1), with α is set to 0 and β
to 1. This is also known as the Gibrat distribution. The key parameters are then reduced to
constants. This distribution clearly has no practical value to the control engineer.

μ = e≈1 649 (20.6)

σ = e e−1 ≈4 671 (20.7)

γ = e+ 2 e−1≈6 185 (20.8)

κ = e4 + 2e3 + 3e2−3≈113 9 (20.9)

20.3 Power Lognormal

Also known as the Marshall–Olkin distribution, as the name suggests, the power lognormal
distribution is derived from the lognormal distribution. Its PDF is

f x =
p

βx 2π
exp −

ln x −α 2

2β2
1
2
−
1
2
erf

ln x −α

β 2

p−1

x > 0; p,β > 0 (20.10)

If the power parameter (p) is set to 1, the distribution reverts to the classic lognormal distri-
bution described by Equation (12.1). The effect of changing p, with α fixed at 0 and β at 1,
is shown in Figure 20.5.
The CDF is

F x = 1−
1
2
−
1
2
erf

ln x −α

β 2

p

(20.11)

Fitting to the C4 in propane data gives a value of 0.267 for p, 1.001 for α and 0.312 for β. As
might be expected, the additional parameter (p) results in a fit better than that achieved with the
lognormal distribution – reducing RSS from 0.0477 to 0.0322. However there are no simple
formulae for calculation of mean, variance, skewness or kurtosis – so undermining its advan-
tage in terms of accuracy.
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20.4 Logit-Normal

The logit-normal distribution uses the logit function, as described in Section 11.3. Its PDF and
CDF are very similar to the lognormal distribution.

f x =
1

βx 1−x 2π
exp

− logit x −α 2

2β2
0 < x < 1; β > 0 (20.12)

F x =
1
2
+
1
2
erf

logit x −α

β 2
(20.13)

Figure 20.6 shows the effect of varying β with α fixed at zero. Values of β greater than 2
result in a bimodal distribution and so are unlikely to be applicable to process data. Figure 20.7
shows the effect of varying α with β fixed at 1. The distribution can be fitted to highly skewed
data; positive values of α give negative skewness.

Because the logit function requires x to be in the range 0 to 1 the data need to be scaled
accordingly before fitting. Scaling the C4 in propane data, over the range 1 to 16 vol%, and
fitting gives α as −1.26 and β as 0.852. RSS is 0.0607 –much better than the normal distribution
but not quite as good as the lognormal distribution.

Theparametersα andβ are themean and standarddeviation of logit(x).Unfortunately there are
no formulae to convert them to μ and σ for x. Nor are there formulae for skewness or kurtosis.

20.5 Folded Normal

If data follow the normal distribution then so will their deviation from any fixed value, e.g.
(x − α). The absolute value of the deviation will then follow the folded normal distribution.
Its PDF is
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f x =
1

β 2π
exp −

x−α 2

2β2
+ exp −

x + α 2

2β2
β > 0 (20.14)

Figure 20.8 shows the effect of varying α with β fixed at 1. If α exceeds β, the distribution is
bimodal and therefore unlikely to be applicable to process data. The formulae for mean and
standard deviation are too complex to justify inclusion here. However, if α is zero, the
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distribution becomes the half-normal distribution, which does have applications in the process
industry.

In general, the CDF of a half-distribution can be derived from that of the full distribution by

Fhalf x = 2Ffull x −1 (20.15)

So, from Equation (5.43), for the half-normal distribution

F x = 2Φ
x−μ

σ
−1 = erf

x−μ

σ 2
(20.16)

This is also a special case of the chi distribution that we will cover, with a worked example, in
Section 30.1.

20.6 Lévy

The Lévy distribution can also be described as the reciprocal Gaussian distribution. Its PDF is

f x =
β

2π x−α 3 exp −
β

2 x−α
x > α; β > 0 (20.17)

Figure 20.9 shows the effect of varying β with α fixed at zero. Its CDF is

F x = 1−erf
β

2 x−α
(20.18)
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Fitting to the NHV disturbance data gives α as 0.160, β as 0.211 with RSS as a very poor 0.9225.
This is confirmed by Figure 20.10 showing that the Lévy distribution is very highly skewed
with a tail inherently much larger than that of the data.
The mean is

μ= α−β (20.19)

There are no formulae for standard deviation, skewness or kurtosis.
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20.7 Inverse Gaussian

The inverse Gaussian distribution is commonly described using the mean (μ) and a measure of
dispersion (β).

f x =
β

2πx3
exp

−β x−μ 2

2μ2x
x > 0; β > 0 (20.20)

The variance is

σ2 =
μ3

β
∴ β =

μ3

σ2
(20.21)

Substituting into Equation (20.20) avoids the use of β and instead uses σ directly.

f x =
μ3

2πσ2x3
exp

−μ x−μ 2

2σ2x
x > 0; μ > 0 (20.22)

Skewness and kurtosis are

γ =
3σ
μ

(20.23)

κ =
15σ2

μ2
+ 3 (20.24)

If, in Equation (20.20) μ is set to 1, then it becomes the PDF of the Wald distribution.
Figure 20.11 shows the effect of changing σ, keeping μ constant at 5. Figures 20.12 and

20.13 show the effect that μ and σ have on skewness and kurtosis. Equations (20.23) and
(20.24) show that, as σ approaches 0, the distribution approaches the normal distribution.
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The CDF is

F x =
1
2

1 + erf
μ

2σ2x
x−μ +

1
2
exp

2μ2

σ2
1−erf

μ

2σ2x
x + μ (20.25)

Using the C4 in propane data, minimising RSS to 0.0402 is achieved by adjusting μ to 4.85 and
σ to 2.48. While not as good a fit as the (less practical) power lognormal it is marginally better
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than that achieved with the lognormal distribution. Figure 20.14 shows, as the solid line, the
feasible combinations of skewness and kurtosis. The calculated values lie close to the line and
so fitting works well. Shown for comparison, as the dashed line, is the relationship for the log-
normal distribution. The line is further from the calculated skewness and kurtosis – explaining
why the inverse Gaussian distribution, in this case, would be the better choice.

The standard deviation is over 25% larger than that estimated using the normal distribution.
If this was being used as the basis of a calculation to determine the benefits of an improved
control strategy, the conventional approach would have substantially underestimated the ben-
efits. This does not imply that the use of the normal distribution always gives a conservative
estimate. If the data had been skewed in the opposite direction the assumption that the data are
normally distributed would have overstated the benefits.

As we will see, of the distributions described in this chapter, the inverse Gaussian distribu-
tion provides the best fit to the C4 in propane data. This is illustrated by Figure 20.15 which
compares it (the solid line) to that of the normal distribution (dashed line) and by the P–P plot in
Figure 20.16.

Figure 20.17 shows the derived PDF. To show the actual distribution, the original data has
been split into 32 bands each 0.5% wide. The scatter around the derived PDF is not a reflection
on its accuracy but is mainly caused by splitting the data into bands. It can only be reduced by
increasing the number of measurements in each band – either by having fewer wider bands or
by increasing the total number of measurements. Nevertheless it shows clearly that the skew-
ness has been well represented.

It can be a requirement, for example for use in Monte Carlo simulation, to generate data that
has an asymmetric distribution. A feature of the inverse Gaussian distribution is that this is
straightforward. If the number to be generated is y we first require a number (x) selected at
random from a normal distribution that has a mean of 0 and a standard deviation of 1. We
described, in Chapter 5, how this can be done.
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y = μ+
σ2

2μ
x2−

4μ2x2

σ2
+ x4 (20.26)

However, before using this value, we next choose another number between 0 and 1, selected
at random from a uniform distribution. If this number is greater than μ/(μ + y) then we replace y
with μ2/y.
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The inclusion of a location parameter (α) in Equation (20.22) gives the three-parameter
inverse Gaussian distribution.

f x =
μ3

2πσ2 x−α 3 exp
−μ x−α−μ 2

2σ2 x−α
x > α; μ,σ > 0 (20.27)

Fitting to the C4 in propane data gives α as 0.468 and μ as 4.44; adding these gives the mean
(μ + α) slightly increased at 4.90. Standard deviation (σ) is slightly increased to 2.59. As might
be expected, the inclusion of another fitting parameter reduces RSS – to 0.0305.

20.8 Generalised Inverse Gaussian

The generalised inverse Gaussian (GIG) distribution[9] is also known as the Sichel distribution.
Its PDF is

f x =
α

β

δ
2 xδ−1

2Kδ αβ
exp −

αx2 + β
2x

x > 0; α,β > 0 (20.28)

Kδ is the modified Bessel function of the second kind, as described in Section 11.8.
Figure 20.18 shows the effect of varying β and δ, with α fixed at 2. Raw moments are

given by

mn =
β

α

n
2 Kδ+ n αβ

Kδ αβ
(20.29)
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Hence

μ=
β

α

Kδ+ 1 αβ

Kδ αβ
(20.30)

σ2 =
β

α

Kδ + 2 αβ

Kδ αβ
−

Kδ+ 1 αβ

Kδ αβ

2

(20.31)

Most spreadsheet packages do not support non-integer values of δ in Bessel functions. This
distribution therefore can only be properly fitted using custom software.

20.9 Normal Inverse Gaussian

The normal inverse Gaussian distribution has the PDF

f x =
λβK1 λ β2 + x−α 2

π β2 + x−α 2
exp β λ2−δ2 + δ x−α −1 ≤ δ ≤ 1; β,λ > 0 (20.32)

K1 is the first order modified Bessel function of the second kind, as described in Section 11.8.
The effect of the asymmetry parameter (δ) is shown in Figure 20.19. Negative values give neg-
ative skewness; positive values give positive skewness. The effect of the tail heaviness param-
eter (λ) is shown in Figure 20.20. Increasing λ increases kurtosis. The effect of the dispersion
parameter (β) is shown in Figure 20.21. As usual, variation in dispersion is difficult to distin-
guish from variation in kurtosis. This can cause problems when fitting the distribution to data;
there may be many combinations of λ and β that give a very similar fit.
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Fitting to the C4 in propane data gives α as 2.27, β as 1.88, λ as 1.22, δ as 1.00 and F(x1) as
0.0223.With δ at its upper limit, the skewness of the data cannot be fully represented.With RSS
at 0.0442 the fit is much closer than that of the normal distribution but bettered by other dis-
tributions in this chapter.
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Figure 20.19 Normal inverse Gaussian: Effect of δ on shape
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Mean and variance are

μ = α+
δβ

λ2−δ2
(20.33)

σ2 =
λ2β

λ2−δ2
3 2

(20.34)

These give μ as 4.94 and σ as 2.83.
The formulae for skewness and kurtosis are unusual in that they include the dispersion

parameter (β).

γ =
3δ

λ β λ2−δ2
1 4

(20.35)

κ =
12δ2 + 3λ2 β λ2−δ2 + 1

βλ2 λ2−δ2
(20.36)

These give γ as 2.13 and κ as 9.24. Both values are considerably larger than those calculated
from the data and from those determined from other well-fitting distributions. This, and the
unusual formulation, place some suspicion on the reliability of this distribution.

20.10 Reciprocal Inverse Gaussian

The reciprocal inverse Gaussian distribution has the PDF

f x =
λ

2πx
exp

−λ 1−αx 2

2α2x
x > 0; α,λ > 0 (20.37)
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Figure 20.22 shows the effect of varying α and λ. Fitting the distribution to the C4 in propane
data gives α as 0.269 and λ as 1.03. RSS is 0.0387. As illustrated by Figure 20.23, while the fit is
numerically better than that achieved with the inverse Gaussian distribution, the upper tail is not
so well matched. This would be important if we were primarily interested in assessing the prob-
ability of such extreme behaviour.
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Figure 20.22 Reciprocal inverse Gaussian: Effect of α and λ on shape
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Figure 20.23 Reciprocal inverse Gaussian: Fitted to the C4 in propane data
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The mean and variance are

μ =
λ+ α
λα

(20.38)

σ2 =
λ+ 2α

λ2α
(20.39)

These give μ as 4.69 and σ as 2.35 – close to the values calculated from the data and generated
by other well-fitting distributions.
Skewness and kurtosis are

γ =

3α
λ

+ 8

α

λ
+ 2

3
2

(20.40)

κ =
3

α2

λ2
+ 9

α

λ
+ 12

α

λ
+ 2

2 (20.41)

20.11 Q-Gaussian

The q-Gaussian distribution is a member of the family of Tsallis distributions.[10] Like the nor-
mal distribution it is symmetrical about the mean and hence its skewness is zero. It can, how-
ever, represent highly leptokurtic data. Its PDF depends on the choice of the parameter q.
For q < 1

f x =
1−q
2π

Γ
5−3q
2 1−q

βΓ
2−q
1−q

1 + q−1
x−μ 2

2β2

1
1−q

β > 0 (20.42)

The distribution is then bounded by

μ−β
2

1−q
≤ x ≤ μ+ β

2
1−q

(20.43)

As q 1 the q-Gaussian distribution approaches the normal distribution

f x
1

β 2π
exp −

x−μ 2

2β2
(20.44)

For 1 < q < 3 the distribution is unbounded. The PDF becomes

f x =
q−1
2π

Γ
1

q−1

βΓ
3−q

2 q−1

1 + q−1
x−μ 2

2β2

1
1−q

β > 0 (20.45)
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Figure 20.24 shows the effect of changing q, with the mean (μ) is fixed at 0 and β fixed at 1. It
would appear that increasing q above 1 makes the curve flatter and therefore reduces kurtosis.
However this is not the case because q also changes the variance. This is given by

σ2 =
2β2

5−3q
q <

5
3

(20.46)

The coloured curve in Figure 20.25 is the normal distribution (q = 1) with β set to 1.
Equation (20.46) confirms that σ is 1. Increasing q to 1.5 requires that β be reduced to 0.5
to maintain σ at 1. The black curve in Figure 20.25 shows the resulting increase in kurtosis.
Kurtosis is

κ =
15−9q
7−5q

q<
7
5

(20.47)

As Figure 20.26 shows, values of q just less than 1.4 give a highly leptokurtic distribution.
Values greater than 1.4 appear to give a highly platykurtic distribution – although, strictly,
Equation (20.47) should not be used in this region.

Fitting the PDF to the C4 in propane data gives values for q, μ, β and F(x1) of 1.14, 3.95, 1.82
and 0.0264 respectively. This gives a value of RSS of 0.2269, representing only a marginal
improvement over the classic normal distribution. The q-Gaussian distribution has a skewness
of zero and cannot therefore match well the highly skewed C4 data.

Fitting the PDF to the NHV disturbance data (with q restricted to the maximum of 1.4) sets β
to 0.198 – reducing RSS to 0.0898. Relaxing the restriction gives a value for 1.81 for q and
0.641 for β – reducing RSS to 0.0364. Figure 20.27 shows the fit is considerably better than
the normal distribution. Similarly the P–P plot in Figure 20.28 shows that virtually every point
on the q-Gaussian distribution is closer to the ideal line than those points on the normal dis-
tribution. Since q exceeds 1.67, we cannot determine σ (or κ). However, we could sacrifice
the ability to calculate σ in order to achieve the significantly more accurate fit. We can treat
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Figure 20.24 Q-Gaussian: Effect of q on shape
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β as if it is the standard deviation to explore, for example, the impact of halving the variation
in NHV.
Rearranging Equation (20.47)

q=
7κ−15
5κ−9

(20.48)
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Figure 20.26 Q-Gaussian: Effect of q on kurtosis
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Rearranging Equation (20.46) and substituting Equation (20.48) gives

β = σ
5−3q
2

= σ
2κ

5κ−9
(20.49)

This would suggest, since κ is calculated from the data as 8.87 and σ as 1.19, that q should be
1.33 and β should be 0.843. These maximum likelihood estimates can be used as initial values
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Figure 20.28 Q-Gaussian: P–P plot showing improved fit to NHV data
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Figure 20.27 Q-Gaussian: Fitted to the NHV disturbance data
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for improvement by fitting. As Figure 20.26 shows a small adjustment in q, when close to 1.4,
can result in very large changes in kurtosis. This can give problems with the fitting algorithm.

20.12 Generalised Normal

The title generalised normal distribution or generalised Gaussian distribution is applied to at
least three forms of the distribution. While each is developed from the normal distribution, by
the addition of shape parameters, the way in which this is done is quite different.
The first version can also be entitled the exponential power distribution although, as we will

see later, is also the name of a very different distribution. It is better known as the generalised
error distribution (GED). Its PDF is

f x =
δ

2βΓ
1
δ

exp −
x−μ

β

δ

δ,β > 0 (20.50)

The term μ is the mean and β is directly proportional to the standard deviation (σ).

β = σ
Γ

1
δ

Γ
3
δ

or σ2 =
Γ

3
δ

Γ
1
δ

β2 (20.51)

The term δ determines the type of distribution. For example, if δ is set to 2, then Equation (20.50)
reduces to Equation (5.35) and so becomes the normal distribution. If δ is set to 1, then
Equation (20.50) becomes the Laplace distribution that we will cover in Section 32.7. However
δ does not have to be an integer and so can be fitted alongwith μ and σ. As δ ∞, the distribution
becomesU(μ–β,μ + β).Figure20.29 shows theeffect of changingδ–keepingμ fixedat 0andσ at 1.
The skewness of the GED is zero. Kurtosis is

κ =
Γ

5
δ

Γ
1
δ

Γ2 3
δ

(20.52)

While a very large kurtosis can be represented, as Figure 20.30 shows, the smallest possible is
1.8. This value is approached as δ approaches ∞.
The dashed line in Figure 20.31 is the result of fixing δ at 2, i.e. the normal distribution, with

the resulting standard deviation of 1.19.The solid line is the result of fitting Equation (20.50) to
the NHV disturbance data, resulting with a value for δ of 0.83, a mean of −0.03 and a standard
deviation of 1.76. As Figure 20.32 shows, the fit is slightly better than that achieved with the
Laplace distribution. The minimum RSS is 0.0553. Changing the prior distribution from normal
to GED, in this case, reduces RSS by over 60%. Figure 20.33 shows the impact on the estimate
of standard deviation; the more reliable estimate is about 50% higher.
The second version includes a parameter that adds skewness to the distribution. Its PDF is

f x =

1

2π
exp

−z2

2
β−δ x−m

x <m +
β

δ
(20.53)
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z= −
1
δ
log 1−

δ x−m

β
for δ 0 (20.54)

z =
x−m

β
for δ= 0 (20.55)

This PDF is unusual in that it uses the median (m) rather than the mean to locate the distribution.
The scale factor (β) has the same effect as changing the standard deviation. The additional
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shape factor (δ) determines skewness. Figure 20.34 shows the effect of changing β from 1
(coloured curve) with m and k both fixed at 0. Figure 20.35 shows the effect of changing δ.
The CDF is

F x =
1
2

1 + erf
z

2
(20.56)
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Figure 20.31 Generalised error: Fitted to the NHV disturbance data
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Key parameters are

μ =m−
β

δ
exp

δ2

2
−1 (20.57)

σ2 =
β

δ

2

exp δ2 exp δ2 −1 (20.58)

γ =
3exp δ2 −exp 3δ2 −2

exp δ2 −1
1 5 ×

δ

δ
(20.59)

κ = exp 4δ2 + 2exp 3δ2 + 3exp 2δ2 −3 (20.60)

Fitting Equation (20.56) to the NHV disturbance data gives values of −0.04 for m, 0.51 for β
and −0.063 for δ. Equation (20.57) then gives μ as −0.02 and Equation (20.58) gives σ as 0.51.
RSS is minimised to 0.1309 – not significantly better than that achieved by the benchmark nor-
mal distribution.
Figure 20.36 plots Equations (20.59) and (20.60). While changing δ varies skewness as

expected, it also changes kurtosis. Fitting the distribution is likely therefore to be a compromise
in matching both these to the actual distribution. This is shown more clearly by Figure 20.37
which shows what combinations of skewness and kurtosis are supported by the distribution. As
expected from the poor fit, the calculated values lie well away from the line.
The PDF of the third version includes two additional shape parameters.

f x =
δ1xδ1δ2 −1

βδ1δ2Γ δ2
exp −

x−α

β

δ1

x ≥ α; δ1,δ2,β > 0 (20.61)

Figure 20.38 shows the effect of varying δ1 and δ2 with α fixed at 0 and β at 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

–10 –5 0 5 10

f(
x)

x

Figure 20.35 Generalised normal (2): Effect of δ on shape

342 Statistics for Process Control Engineers



Fitting to the absolute value of the NHV disturbance data gives α as −0.0113, β as 0.00284,
δ1 as 0.348, δ2 as 7.13 and F(x1) as 0.0282. With RSS at 0.0328, it is one of the better fits.

Raw moments are given by

mn =
Γ

n

δ1
+ δ2

Γ δ2
βn (20.62)
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This gives the mean as 1.12 and the standard deviation as 1.35, both close to the values cal-
culated from the data.
Feasible combinations of skewness and kurtosis are shown in Figure 20.39. Also shown are

the values calculated from the data and those from fitting the distribution.
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20.13 Exponentially Modified Gaussian

Instead of the mean of the normal distribution being a fixed value, it is assumed to follow the
exponential distribution (which we covered in Section 12.7). The result is the exponentially
modified Gaussian (EMG) distribution. It is an example of a compound distribution. Its
PDF is

f x =
λ

2
exp

λ

2
λβ2 + 2α−2x 1−erf

λβ2 + α−x

2β
β,λ > 0 (20.63)

Figure 20.40 shows the effect of varying the rate parameter (λ), with α fixed at 0 and β at 1.
As λ is increased, its effect reduces and the distribution approaches the normal distribution. Its
CDF is

F x =
1
2

1−exp
λ

2
λβ2 + 2α−2x 1−erf

λβ2 + α−x

2β
+ erf

x−α

2β
(20.64)

Fitting to the C4 in propane data sets α as 2.35, β as 0.736 and λ as 0.388. With RSS at 0.0329,
the fit is reasonably good.

The mean and variance are

μ = α+
1
λ

(20.65)

σ2 = β2 +
1

λ2
(20.66)
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These give μ as 4.93 and σ as 2.68 – both quite close to the values calculated from the data.
Skewness and kurtosis are

γ =
2

λ2β2 + 1
3 2

(20.67)

κ =
3 λ4β4 + 2λ2β2 + 3

λ2β2 + 1
2 (20.68)

While both γ and κ clearly depend on both λ and β, the feasible combinations of skewness and
kurtosis do not. This is because the parameters always appear as λβ. This is illustrated by
Figure 20.41. The line is plotted by choosing a value for β and then calculating γ and κ for
a range of values for λ. No matter what value is chosen for β, the resulting curve remains
the same. From Equation (20.66), we see that λ must have units that are the reciprocal of those
of β and so λβ (and hence γ and κ) are dimensionless.
Figure 20.41 shows the limitation on skewness, which can only be positive. Equation (20.67)

gives it as 1.78 – a little larger than that calculated from the data. Similarly the distribution can
only represent leptokurtic data. Equation (20.68) gives kurtosis as 8.13, which is considerably
larger than that calculated. Nevertheless, the distribution would be a reasonably practical
choice.
We can similarly develop, from the normal distribution, a compound distribution in which

the mean is constant but the standard deviation follows a distribution. For example, if we
assume it follows the inverse gamma distribution, we obtain the Student t distribution that
we covered this in Section 12.5.
Compounding distributions can be taken to extremes. For example, there is the normal expo-

nential gamma (NEG) distribution. Starting as the normal distribution, the variance is assumed
to follow the exponential distribution. Then the rate parameter of the exponential distribution is
assumed to follow the gamma distribution. Such complexity is rarely justified.
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20.14 Moyal

The Moyal distribution is described by

f x =
1

β 2π
exp −

x−α

2β
−
1
2
exp −

x−α

β
β > 0 (20.69)

This PDF is also an approximation to the Landau distribution. Figure 20.42 shows the effect of
changing β, keeping α at zero. The CDF is

F x = 1−erf
1

2
exp −

x−α

2β
(20.70)

Fitting to the C4 in propane data gives α as 3.41 and β as 1.12. RSS is 0.0481. The equations
below give the mean as 4.84 and the standard deviation as 2.49.

μ≈α+ 1 2704β (20.71)

σ2 =
π2β2

2
(20.72)

The beta-Moyal distribution involves the use of incomplete gamma functions and so puts its
complexity beyond the scope of this book.
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21
Burr Distribution

There are 12 Burr distributions.[11] Inmany cases there are no published formulae for mean, var-
iance, skewness or kurtosis. Although thesemight be developed, themajority of the distributions
would offer a poor fit to process data that would almost certainly be bettered by other distribu-
tions for which the formulae exist. Indeed, they are largely neglected in the literature. The excep-
tion is Type XII, which we will show gives one of the best fits to the C4 in propane data.

21.1 Type I

The Burr-I distribution is more commonly known as the uniform distribution, as described in
Section 5.1.

21.2 Type II

The Burr-II distribution is also known as the generalised logistic distribution, as described in
the next chapter.

21.3 Type III

The Burr-III distribution is described by the PDF

f x =
δ1δ2
β

x−α

β

−δ1 −1

1 +
x−α

β

−δ1
−δ2 −1

x ≥ α, δ1,δ2,β > 0 (21.1)

Figure 21.1 shows the effect of varying δ1 and δ2 with α fixed at 0 and β at 1. The CDF is

F x = 1+
x−α

β

−δ1
−δ2

(21.2)
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Fitting to the C4 in propane data gives α as −4.35, β as 3.84, δ1 as 4.86 and δ2 as 35.3. RSS
is 0.0399.
The CDF can be inverted to give the QF.

x F = α+ β F−1 δ2 −1
−1 δ1

0 ≤F ≤ 1 (21.3)

21.4 Type IV

The Burr-IV distribution is described by the PDF

f x =
δ2β

x−α 2

δ1β−x + α
x−α

1
δ1
−1

1 +
δ1β−x + α

x−α

1
δ1

−δ2 −1

−α< x< α+ βδ1; δ1,δ2,β > 0

(21.4)

As Figure 21.2 shows, with α set to 0 and β set to 1, the width of the distribution is determined
by δ1. With this set to 10, the effect of varying δ2 is shown. Due to its shape, the distribution is
unlikely to be applicable to process data.
The CDF is

F x = 1 +
δ1β−x + α

x−α

1
δ1

−δ2

(21.5)

The QF is

x F = α+
δ1β

1 + F−1 δ2 −1 δ1
0 ≤F ≤ 1 (21.6)
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21.5 Type V

The Burr-V distribution is described by the PDF

f x = δ1δ2sec
2 x−α

β
exp − tan

x−α

β
1 + δ1 exp − tan

x−α

β

−δ2 −1

(21.7)

α−
π

2
≤ x ≤ α+

π

2
; δ1,δ2,β > 0

Figure 21.3 shows the effect of varying δ1 and δ2 with α fixed at 0 and β at 1. The distribution is
bimodal unless δ1 is significantly different from δ2. This and the inconvenient bounds on x
make the distribution unsuitable for process data.

The CDF is

F x = 1 + δ1 exp − tan
x−α

β

−δ2

(21.8)

The QF is

x F = α+ β tan−1 − ln
F−1 δ2 −1

δ1
0 ≤F ≤ 1 (21.9)

21.6 Type VI

The Burr-VI distribution is described by the PDF

f x =
δ1δ2
β

cosh
x−α

β
exp −δ1 sinh

x−α

β
1 + exp −δ1 sinh

x−α

β

−δ2 −1

δ1,δ2,β > 0

(21.10)

0.001

0.01

0.1

1

10

0 2 4 6 8 10

f(
x)

x

δ1 = 10, δ2 = 1

δ δ

Figure 21.2 Burr-IV: Effect of δ1 and δ2 on shape

Burr Distribution 351



Figure 21.4 shows the effect of varying δ1 and δ2 with α fixed at 0 and β at 1. The distribution is
bimodal unless δ1 is significantly different from δ2.
The CDF is

F x = 1 + exp −δ1 sinh
x−α

β

−δ2

(21.11)
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Fitting to the C4 in propane data gives α as −6.09, β as 52.0, δ1 as 28.6 and δ2 as 224. RSS is, not
surprisingly, poor at 0.1424.

The QF is

x F = α+ βsinh−1 −
ln F−1 δ2 −1

δ1
0 ≤F ≤ 1 (21.12)

21.7 Type VII

The Burr-VII distribution is described by the PDF

f x =
δ

2δβ
1− tanh2

x−α

β
1 + tanh

x−α

β

δ−1

δ,β > 0 (21.13)

Figure 21.5 shows the effect of varying δ with α fixed at 0 and β at 1.
The CDF is

F x =
1
2

1 + tanh
x−α

β

δ

(21.14)

Fitting to the C4 in propane data gives α as −2.27, β as 3.56 and δ as 28.8. With just three shape
parameters, RSS is poor at 0.1463.

The QF is

x F = α+ βtanh−1 2F 1 δ−1 0 ≤F ≤ 1 (21.15)
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21.8 Type VIII

The Burr-VIII distribution is described by the PDF

f x =
2δ
πβ

exp x−α
β

1 + exp x−α
β

2

2
π
tan−1 exp

x−α

β

δ−1

δ,β > 0 (21.16)

Figure 21.6 shows the effect of varying δ with α fixed at 0 and β at 1.
The CDF is

F x =
2
π
tan−1 exp

x−α

β

δ

(21.17)

Because the distribution is skewed in the wrong direction, fitting it to the C4 in propane data will
give a poor result. However, fitting it to (100 − C4) gives α as 97.3, β as 0.631 and δ as 0.239.
With RSS at 0.0362, the fit is one of the best.
The QF is

x F = α+ β ln tan
πF1 δ

2
0 ≤F ≤ 1 (21.18)

21.9 Type IX

The Burr-IX distribution is described by the PDF

f x =
2δ1δ2
β

exp x−α
β 1 + exp x−α

β

δ2 −1

2 + δ1 1 + exp x−α
β

δ2
−1

2 δ1,δ2,β > 0 (21.19)
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Figure 21.7 shows the effect of varying δ1 and δ2 with α fixed at 0 and β at 1.
The CDF is

F x = 1−
2

2 + δ1 1 + exp x−α
β

δ2
−1

(21.20)

Fitting to the C4 in propane data gives α as 0.188, β as 5.00, δ1 as 0.0787 and δ2 as 0.139. RSS is
very poor at 0.4716.

The QF is

x F = α+ β ln 1 +
F

δ1 1−F

1
δ2

0 ≤F ≤ 1 (21.21)

21.10 Type X

The Burr-X distribution is described by the PDF

f x = 2δ
x−α

β
exp −

x−α

β

2

1−exp −
x−α

β

2 δ−1

x ≥ 0;δ,β > 0 (21.22)

Figure 21.8 shows the effect of varying δ with α fixed at 0 and β at 1.
The CDF is

F x = 1−exp −
x−α

β

2 δ

(21.23)
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Fitting to the C4 in propane data gives α as −35.5, β as 12.0 and δ as 45100. With the rather
suspect result for δ, it is not surprising that RSS is poor at 0.1811.
The QF is

x F = α+ β − ln 1−F1 δ 0 ≤F ≤ 1 (21.24)

21.11 Type XI

The Burr-XI distribution is described by the PDF

f x =
δ

β
1−cos

2π x−α

β

x−α

β
−

1
2π

sin
2π x−α

β

δ−1

α ≤ x ≤ α+ β;δ,β > 0 (21.25)

Figure 21.9 shows the effect of varying δ with α fixed at 0 and β at 1.
The CDF is

F x =
x−α

β
−

1
2π

sin
2π x−α

β

δ

(21.26)

Fitting to the C4 in propane data gives α as 1.97, β as 9.47 and δ as 0.290. RSS is poor at 0.1552.
The CDF cannot be inverted.

21.12 Type XII

The Burr-XII distribution was covered in Section 12.2.
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21.13 Inverse

The inverse Burr distribution is the inverse of the Burr-XII distribution. It is also known as the
Dagum-I distribution.[12] Its PDF is

f x =
δ1δ2
β

x−α
β

δ1 + 1
1 + x−α

β

−δ1
δ2 + 1

=

δ1δ2
β

x−α
β

δ1δ2 −1

1 + x−α
β

δ1
δ2 + 1

x ≥ α; β,δ1 > 1; δ2 > 0 (21.27)

The effect that δ1 and δ2 have on the shape of the distribution is shown in Figures 21.10 and
21.11. Setting δ1 to δ2 gives the inverse paralogistic distribution that we cover in the next
chapter.

The CDF is commonly presented in one of two different ways.

F x = 1+
x−α

β

−δ1
−δ2

=
x−α δ1δ2

βδ1 + x−α δ1
δ2

(21.28)

The CDF can be inverted to

x F = α+ β F−1 δ2 −1
−1 δ1

0 ≤F ≤ 1 (21.29)

The raw moments are given by

mn =
Γ 1− n

δ1
Γ δ2 + n

δ1

Γ δ2
βn δ1 > n (21.30)

From this we can derive formulae for the mean and standard deviation.
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μ = α+
Γ 1− 1

δ1
Γ δ2 + 1

δ1

Γ δ2
β δ1 > 1 (21.31)

σ2 = −
β2

Γ2 δ2
2δ1Γ 1−

2
δ1

Γ δ2 +
2
δ1

Γ δ2 +Γ2 1−
1
δ1

Γ2 δ2 +
1
δ1

δ1 > 2 (21.32)
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While formulae for skewness and kurtosis can similarly be derived, the result is too complex
to present here. They are better determined by first calculating the moments and applying
Equations (4.52) and (4.55). By varying δ1, for each of a range of values for δ2,
Figure 21.12 shows what combinations are possible.

Fitting Equation (21.28) to the C4 in propane data gives 3.23 for δ1, 2.07 for δ2, −0.573 for α
and 3.63 for β –minimising RSS to 0.0510. This gives a skewness of 17.2 compared to the 1.27
calculated from the data. To calculate kurtosis, δ1 must be greater than 4 and so is not possible in
this case. The poor match in skewness and the inability to check kurtosis might lead to this
distribution being deemed unsuitable in this case. Also, in terms of RSS, the fit is poorer than
many of the distributions considered so far.

The Dagum-II distribution is described by

f x = δ3 + 1−δ3
δ1δ2
β

x−α
β

δ1δ2 −1

1 + x−α
β

δ1
δ2 + 1

x > α; β,δ1 > 1; δ2 > 0; 0 ≤ δ3 ≤ 1 (21.33)

F x = δ3 + 1−δ3 1 +
x−α

β

−δ1
−δ2

(21.34)

The Dagum-III distribution has the same PDF and CDF but with different bounds on δ3 and x.

δ3 < 0, x> α+ β 1−
1
δ1

1
δ2

−1

− 1
δ1

(21.35)

Fitting to the C4 data gives 3.25 for δ1, 1.83 for δ2, −0.0168 for δ3, −0.606 for α and 3.80 for
β – minimising RSS to 0.0473. As usual, the introduction of an additional shape parameter
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Figure 21.12 Dagum-I: Feasible combinations of γ and κ
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has improved the fit. The parameter δ3 and all values of x are within the bounds of the
Dagum-III distribution.
The QF is

x F = α+ β
F−δ3
1−δ3

− 1
δ2

−1

− 1
δ1

0 ≤F ≤ 1 (21.36)
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22
Logistic Distribution

22.1 Logistic

A generalised form of the logistic distribution is described by

f x =
1+

δ x−α

β

−1
δ−1

β 1 + 1 +
δ x−α

β

−1
δ

2 β > 0 (22.1)

Depending on the sign of δ, the distribution is either lower-bounded or upper-bounded.

δ< 0 then x ≤ α−
β

δ
(22.2)

δ> 0 then x ≥ α−
β

δ
(22.3)

The CDF is

F x =
1

1 + 1 +
δ x−α

β

−1
δ

(22.4)

The CDF can be inverted

x F = α+
β

δ

F

1−F

δ

−1 (22.5)

Figure 22.1 shows the effect of changing δ with α fixed at 0 and β at 1. Note that all the curves
pass through the point (α, 0.25β). Fitting Equation (22.4) to the C4 in propane data gives α as
2.30, β as 1.27 and δ as 0.360. RSS is 0.0529, m\aking the distribution a relative poor choice.
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The mean and variance are

μ= α+
πβ

sin πδ
−
β

δ
(22.6)

σ2 =
2πβ2

δsin 2πδ
−

πβ

sin πδ

2

(22.7)

As δ 0, from Equation (11.4), we obtain the density functions

f x =
exp −

x−μ

β

β 1 + exp −
x−μ

β

2 β > 0 (22.8)

F x =
1

1 + exp −
x−μ

β

(22.9)

Equation (22.8) is represented by the coloured line in Figure 22.1. This form is what many
might consider the classic logistic distribution. It is similar to the normal distribution with σ
set to about 1.63β. Its skewness is zero but it is slightly leptokurtic with kurtosis fixed at 4.2.
Equation (22.9) can be written using the logistic function, described in Section 11.4, giving

the distribution its name.

F x = logistic
x−μ

β
(22.10)

Perhaps less usefully, it is occasionally presented using the hyperbolic secant (sech) and
hyperbolic tangent (tanh) functions.
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f x =
1
4β

sech2
x−μ

2β
(22.11)

F x =
1
2

1 + tanh
x−μ

2β
(22.12)

The mean is μ as usual. The variance is

σ2 =
π2

3
β2 (22.13)

The CDF can be inverted to

x F = μ+ β ln
F

1−F
(22.14)

Figure 22.2 shows, as the coloured line, the normal distribution N(5,1). Theoretically, from
Equation (22.13), setting β set to 0.551 would give the equivalent logistic distribution – shown
as the solid line. In practice, setting β to 0.615σ gives a match that is closer visually, as shown
by the dashed line.

Fitting Equation (22.9) to the C4 in propane data gives μ as 4.49, β as 1.26 and hence σ as
2.29. Not surprisingly forcing δ to be 0 increases RSS. At 0.6051, it is much higher than that of
the normal distribution.

Fitting to the NHV disturbance data gives μ as −0.02, β as 0.715 and hence σ as 1.30. RSS is
then 0.1061. Calculating the kurtosis from the process data gives a value of 8.87. The logistic
distribution, which has a kurtosis of 4.2, will (for this example) fit better than the normal dis-
tribution that has a kurtosis of 3. Of course, this may not be the case for other datasets. For this
reason, a number of modifications to the distribution have been published to address its limita-
tions. This chapter describes those of interest.
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22.2 Half-Logistic

The half-logistic distribution can be applied to data where it is realistic to use the absolute value
of each measurement. For example, process disturbances and inferential errors can be in either
direction but we are often concerned only with their size.
Its PDF is almost identical to that of the classic logistic distribution, given by

Equation (22.8), replacing μ with α. It is also common to replace β with 1/λ. We need to
add the factor 2 to ensure the area under the PDF curve is unity.

f x =
2λexp −λ x−α

1 + exp −λ x−α 2 x ≥ α; λ > 0 (22.15)

The CDF is

F x =
1−exp −λ x−α

1 + exp −λ x−α
(22.16)

Figure 22.3 shows the effect of changing λ.
The mean and variance are

μ= α+
ln 4
λ

(22.17)

σ2 =
1

λ2
π2

3
− ln2 4 (22.18)

Fitting to the absolute values of the NHV disturbance data gives α as −0.06 and λ as 1.30. Hence
μ is 1.33 and σ is 1.52 – both close to the values calculated from the data. But, with RSS at
0.2206, there are several other distributions that fit better.
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22.3 Skew-Logistic

The skew-logistic distribution, as its name suggests, permits skewness to be added to the logis-
tic distribution. There are at least three distributions published with this title. Two are described
in this section. The third is also known as the generalised logistic distribution and is described
in Section 22.7.

Its PDF of the first is

f x =

2
β
exp −

x−α

β

1 + exp −
x−α

β

2

1 + exp −
δ x−α

β

β > 0 (22.19)

Figure 22.4 shows the effect of varying the skewness parameter (δ); if it is set to zero, the dis-
tribution becomes the classic logistic distribution (as shown by the coloured curve).

Fitting to the C4 in propane data, with α set to 2.04, β to 2.11 and δ far from zero at 10.63,
results in RSS falling to 0.0419 – comparable to that achieved by the inverse Gaussian distri-
bution. However, while α is representative of the mean and β of the standard deviation, there are
no formulae published that convert one to the other. Similarly there are none for skewness or
kurtosis.

Fitting to the NHV disturbance data sets α to −0.291, β to 0.727 and δmuch closer to zero at
0.281. RSS is 0.1031 which is very close to that of the classic logistic distribution. Clearly,
because the data is only slightly skewed, there is little advantage in choosing a distribution that
can represent skewness.

The second form of the skew-logistic distribution[13] is defined in two parts.
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For x < α

f x =
δ

1 + δ2

2
β
exp −

x−α

δβ

1 + exp −
x−α

δβ

2 β > 0, δ> 0 (22.20)

F x =

2δ

1 + δ2

1 + exp −
x−α

δβ

(22.21)

For x ≥ α

f x =
δ

1 + δ2

2
β
exp −

δ x−α

β

1 + exp −
δ x−α

β

2 β > 0; δ > 0 (22.22)

F x =
δ2

1 + δ2
1 +

2

δ2

1−exp −
δ x−α

β

1 + exp −
δ x−α

β

(22.23)

As Figure 22.5 shows, the discontinuity at x = α is unlikely to closely fit process data. Fitting to
the C4 in propane data gives values of 4.18 for α, 1.21 for β and 1.05 for δ. RSS then becomes
0.3461 – considerably larger than that for the normal distribution. Again there are no formulae
published to enable calculation of any of the key statistical parameters.
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22.4 Log-Logistic

The log-logistic distribution is related to the logistic distribution in the same way that the log-
normal distribution is related to the normal distribution. It similarly allows it to represent skew-
ness. It is also known as the Fisk distribution. Its PDF is

f x =

δ

β

x−α

β

δ−1

1 +
x−α

β

δ 2 x ≥ α; β,δ > 0 (22.24)

Its CDF is

F x =

x−α

β

δ

1 +
x−α

β

δ =
x−α δ

βδ + x−α δ (22.25)

Its QF is

x F = α+ β
F

1−F

1 δ

0 ≤F ≤ 1 (22.26)

If δ is set to 1, it becomes the standard log-logistic distribution. (According to our definition,
this is a misuse of the word ‘standard’which is more generally used for the case when α is 0 and
β is 1.) Generally, δ need not be an integer and so the distribution must be lower-bounded at α.

Fitting this distribution to the C4 in propane data gives α as 0.743, β as 3.52 and δ as 2.78.
Figure 22.6 shows this as the coloured line and also the impact of changing these values. RSS is
0.0529 which, although considerably better than that using the normal distribution, is slightly
bettered by the inverse Gaussian distribution.

The moments are given by

mn =
nπ

δsin
nπ

δ

βn =Γ 1 +
n

δ
Γ 1−

n

δ
βn δ> n (22.27)

This leads to

μ = α+
πβ

δsin
π

δ

=Γ 1 +
n

δ
Γ 1−

n

δ
β δ> 1 (22.28)

σ2 = π
β

δ

2 2δ

sin
2π
δ

−
π

sin2
π

δ

= Γ 1 +
2
δ

Γ 1−
2
δ

− Γ 1 +
n

δ
Γ 1−

n

δ

2
β2 δ> 2

(22.29)

These give μ as 5.14 and σ as 4.13. Figure 22.7 shows the extended tail of the fitted distribution,
explaining why the standard deviation is so much larger than other estimates.

It is possible, although complicated, to derive formulae for skewness and kurtosis.
Skewness approaches zero and kurtosis approaches 4.2 as δ ∞. Reducing δ increases
both skewness and kurtosis, as shown by Figure 22.8. Skewness can only be defined if
δ is greater than 3 and kurtosis only if it is greater than 4. Indeed this is the problem
encountered in this case.
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Figure 22.7 Log-logistic: Fitted to the C4 in propane data
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Fitting to the NHV disturbance data gives α as −8.98, β as 8.94 and δ as 22.6.
Equation (22.28) gives μ as 0.05. Equation (22.29) gives σ as 1.31. RSS is 0.0961, again better
than that of the normal distribution.

22.5 Paralogistic

The PDF of the paralogistic distribution is

f x =

δ2

β

x−α

β

δ−1

1 +
x−α

β

δ δ+ 1 x ≥ α; β,δ > 0 (22.30)

Figure 22.9 shows the effect of varying δwith α fixed at 0 and β at 1. Fitting to the C4 in propane
data sets α to 1.56, β to 4.22 and δ to 1.78 – resulting in RSS of 0.0327. The fit is comparable to
the best of the distributions.

The CDF is

F x = 1− 1 +
x−α

β

δ −δ

(22.31)

The QF is

x F = α+ β 1−F −1 δ−1
1 δ

0 ≤F ≤ 1 (22.32)

Moments are given by

mn =
Γ 1 +

n

δ
Γ δ−

n

δ
Γ δ

βn δ> n (22.33)
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Thus the mean and variance are

μ= α+
β

Γ δ
Γ 1 +

1
δ

Γ δ−
1
δ

(22.34)

σ2 =
1

Γ δ
Γ 1 +

2
δ

Γ δ−
2
δ

−
1

Γ δ
Γ 1 +

1
δ

Γ δ−
1
δ

2

β2 (22.35)

This gives μ as 5.29 and σ as 3.75.
Figure 22.10 shows the feasible combinations of skew and kurtosis. In this example δ is

below the limit for kurtosis to be calculated.

22.6 Inverse Paralogistic

The inverse paralogistic distribution is described by the PDF

f x =

δ2

β

x−α

β

δ2 −1

1 +
x−α

β

δ δ+ 1 x ≥ α; β,δ> 0 (22.36)

Fitting this to the C4 in propane data gives values for α, β and δ as 2.70, 2.48 and 0.942 respec-
tively. At 1.171,RSS is far worse than that of the normal distribution. As Figure 22.11 confirms,
this is a poor fit.
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22.7 Generalised Logistic

The generalised logistic distribution has four types. All three include the additional shape
parameter (δ). Although used in different ways, if set to 1, the generalised version will revert
to the classic logistic distribution.
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Figure 22.11 Paralogistic: Fitted to the C4 in propane data
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The PDF of Type I is

f x =

δ

β
exp −

x−α

β

1 + exp −
x−α

β

δ+ 1 x ≥ α; β,δ> 0 (22.37)

Figure 22.12 shows the impact of changing δ. Skewness is zero when δ is 1 and increases as δ
is increased. The CDF is

F x =
1

1 + exp −
x−α

β

δ (22.38)

The CDF can be inverted

x F = α−β ln
F1 δ

F1 δ−1
0 ≤F ≤ 1 (22.39)

The PDF of Type II is

f x =

δ

β
exp −

δ x−α

β

1 + exp −
x−α

β

δ+ 1 β,δ > 0 (22.40)

Figure 22.13 shows the impact of changing δ. Again, skewness is zero when δ is 1 but now
decreases as δ is increased. Figure 22.13 is the mirror image of Figure 22.12. The CDF is
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Figure 22.12 Generalised logistic-I: Effect of δ on shape
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F x = 1−
exp −

δ x−α

β

1 + exp −
x−α

β

δ (22.41)

The CDF can be inverted

x F = α−β ln
1− 1−F 1 α

1−F 1 α
0 ≤F ≤ 1 (22.42)

The PDF of Type III is

f x =

1
β
exp −

δ x−α

β

B δ,δ 1 + exp −
x−α

β

2δ x ≥ α; β,δ > 0 (22.43)

Figure 22.14 shows the impact of changing δ. Skewness stays at zero; δ now changes kurtosis.
Type IV also known as the exponential generalised beta-II distribution. Its PDF is

f x =

1
β
exp −

δ2 x−α

β

B δ1,δ2 1 + exp −
x−α

β

δ1 + δ2
x ≥ α; β,δ1,δ2 > 0 (22.44)

The CDF for both Types III and IV include a mathematical function that is beyond the scope
of this book. They are more easily derived from the trapezium rule.
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Figure 22.15 shows the impact of changing δ1 with δ2 fixed at 1. The curves are the same as
those for Type I. If δ1 is set to 1, Type IV becomes Type II – as shown by Figure 22.16, which
shows the impact of changing δ2. If δ2 is kept equal to δ1, Type IV becomes Type III. We there-
fore need explore fitting only Type IV.
Fitting Equation (22.44) to the C4 in propane data gives values of 0.0443 for α, 0.0122 for β,

0.0129 for δ1 and 0.01 for δ2 – giving a value of 0.0288 for RSS. Not surprisingly the inclusion
of a fourth parameter results in one of the best fits.
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Fitting to the NHV disturbance data gives values of −0.212 for α, 0.7174 for β, 23.2 for δ1
and 0.282 for δ2. Also adjusting F(x1) to 0.0122 gives a value of 0.0374 for RSS. Again this is
the one of the best fits.

This is one of very few distributions that give the best fit to both datasets. However, none of
the fitted parameters have any obvious relationship to mean or standard deviation. In principle
they can be derived, using the techniques described in Section 4.7, from the moment generating
function

M t =
Γ δ2− t Γ δ1 + t

Γ δ1 Γ δ2
(22.45)

However, differentiating Equation (22.45) requires us to differentiate the gamma function.
Equation (11.40) allows us to do this but only for the gamma function of integers. Since δ1
and δ2 are almost certainly not integers, we would have to adopt a far more complex approach.
This illustrates well the compromise we often have to make in selecting the prior distribution
between the accuracy of fit achievable, versatility and practicality.

22.8 Generalised Log-Logistic

The generalised log-logistic distribution is described by the PDF

f x =
1

B δ1,δ2

1
β

x−α

β

δ1 −1

1 +
x−α

β

δ1 + δ2
x ≥ α; β,δ1,δ2 > 0 (22.46)

The effect of δ1 and δ2 is shown in Figure 22.17. Fitting to the C4 in propane data, with α set
to 0, gives 1.15 for β, 19.8 for δ1, 5.59 for δ2 and 0.0354 for RSS. There are no published
formulae for mean, standard deviation, skewness and kurtosis.
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22.9 Exponentiated Kumaraswamy–Dagum

The exponentiated Kumaraswamy–Dagum (EKD) distribution[14] is an extension of those
described above. It was developed to accommodate a long tail of high values. Its CDF is

F x = 1− 1− 1 + λ x−α −δ1
−δ2

δ3
δ4

x ≥ 0; λ,δ1,δ2,δ3,δ4 > 0 (22.47)

Its PDF can be obtained by differentiating Equation (22.47) but the result is too complex to
merit inclusion here. The QF can be obtained by inversion.

x F = α+
1
λ

1− 1−F1 δ4
1 δ3

−1 δ2

−1

−1 δ1

0 ≤F ≤ 1 (22.48)

By selectively setting coefficients to 1, Equation (22.47) can in principle describe many of the
distributions covered previously. This would remove the need to explore each distribution sep-
arately. However some of these distributions have additional parameters not present in the
equation. Considering only the EKD distribution would not therefore fully explore the potential
of the related distributions.
Fitting to the C4 in propane data gives one solution as α as 0.00, λ as 14.9, δ1 as 0.761, δ2 as

0.852, δ3 as 15.4 and δ4 as 30.8 – resulting in a value of 0.0350 for RSS. However there are
multiple sets of parameters that give very similar values. This suggests that some of the para-
meters influence the shape of the distribution in very similar ways and perhaps could be
omitted.
No simple formula can be developed to determine the moments and hence there is no easy

way of determining the mean or standard deviation. While it might well give the best fit, this
problem and the lack of robustness mean the EKD distribution is unlikely to be of practical use
in the process industry.
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23
Pareto Distribution

There are four types of Pareto distribution. Originally developed for exploring the distribution
of wealth, they lead to Pareto analysis and to the Pareto principle, or ‘80/20 rule’, familiar to
many engineers.

23.1 Pareto Type I

The Pareto-I distribution is described by the PDF

f x =
δ

x

β

x

δ

x ≥ β; β,δ > 0 23 1

The shape parameter δ is sometimes described as the tail index; β is the minimum nonzero value
that x can have. Figure 23.1 shows the effect of changing these parameters.

The CDF is

F x = 1−
β

x

δ

(23.2)

The QF is

x F = β 1−F −1 δ 0 ≤F ≤ 1 (23.3)

The moments are given by

mn =
δ

δ−n
βn δ> n (23.4)

From this can be derived

μ =
δ

δ−1
β δ> 1 (23.5)
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σ2 =
δ

δ−1 2 δ−2
β2 δ> 2 (23.6)

γ =
2 δ+ 1
δ−3

δ−2
δ

δ> 3 (23.7)

κ =
3 δ−2 3δ2 + δ+ 2

δ δ−3 δ−4
δ > 4 (23.8)

One application is to assess the probability of the size of process disturbances.We can explore
this using the NHV disturbance data. However, as Figure 23.1 shows, the Pareto distribution is
non-symmetrical. Generally, we are not interested whether the disturbance is an increase or a
decrease so we can use its absolute value. Figure 23.2 shows the resulting observed distribution.
As might be expected, there are a large number of very small changes with the very occasional
large change. However, the likelihood of a change being exactly zero is remote. Rather than
attempt to count these, we effectively treat as zero any change that is less than β.
Fitting gives β as 0.22 and δ as 0.67. At 0.6831 RSS is much larger than that for the

distributions tested so far. In this case, δ is less than 1 and so Equations (23.5) to (23.8) cannot
be applied.

23.2 Bounded Pareto Type I

The bounded Pareto-I distribution is described by

f x = δ
xδmin x

δ
max

xδmax− xδmin xδ+ 1
δ > 0 (23.9)
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F x =
xδ− xδmin

xδmax− xδmin

(23.10)

x F = F xδmax−x
δ
min + xδmin

1 δ
0 ≤F ≤ 1 (23.11)

mn =
δ

δ−n

xnmin x
δ
max− xδmin x

n
max

xδmax− xδmin

δ> n (23.12)

Hence

μ=
δ

δ−1
xmin xδmax− xδminxmax

xδmax− xδmin

δ> 1 (23.13)

σ2 =
δ

δ−2
x2min x

δ
max− xδmin x

2
max

xδmax− xδmin

δ > 2 (23.14)

Fitting to the NHV disturbance data sets xmin to 0.09, xmax to 3.23 and δ to 0.20. Again,
although RSS is improved at 0.2343, the fit is still poor. Also of concern are the 20 values that
exceed xmax and so have been excluded from the fit. Again the value of δ prevents the calcu-
lation of any of the raw moments.

23.3 Pareto Type II

The Pareto-II distribution is a special case of the Burr-XII distribution. It is described by
the PDF

f x =
δ

β
1 +

x−α

β

− δ + 1

x ≥ α; β > 0 (23.15)
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Figure 23.3 shows the distribution plotted for a range of values of δ and β with α fixed at 0. It
is notable that the shape is mainly governed by the δ/β ratio rather than the individual values.
For example, the two solid curves are almost identical despite the change, by a factor of 10, in
the shape parameters. Curve fitting can therefore generate vary large values for δ and β with
negligible improvement in accuracy.
The CDF is

F x = 1− 1 +
x−α

β

−δ

(23.16)

Raw moments are given by

mn =
Γ δ−n Γ n + 1

Γ δ
βn δ> n (23.17)

Hence

μ= α+
β

δ−1
δ> 1 (23.18)

σ2 =
δβ2

δ−1 2 δ−2
δ> 2 (23.19)

Fitting Equation (23.16) to the NHV disturbance data gives values of 0.0385 for α, 3.96 for δ,
3.64 for β and 0.0501 for RSS. This is the best fit so far with μ now determined as 1.27 and σ
as 1.75.
Inverting Equation (23.16) gives the QF

x F = α+ β 1−F −1 δ−1 0 ≤F ≤ 1 (23.20)

So for example, if F is 0.95, x is 4.15. This means that 95% of the disturbances can be expected
to be below 4.15. In other words, there is 5% probability of a disturbance being greater than this.

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

f(
x)

x

δ = 1,   β = 1

δ = 3,   β = 1

δ = 30, β = 10

Figure 23.3 Pareto-II: Effect of β and δ on shape

380 Statistics for Process Control Engineers



23.4 Lomax

The Lomax distribution is a special form of the Pareto-II distribution in which α is set to zero. In
the case of process disturbances and inferential errors, we would expect the mean value to be
zero.We saw this confirmed by fitting the Pareto-II distribution that set α very close to zero. For
this example, the Lomax distribution might be expected to give an almost identical fit.

It is described by

f x =
δ

β
1 +

x

β

− δ+ 1

x ≥ 0; β > 0 (23.21)

F x = 1− 1 +
x

β

−δ

(23.22)

x F = β 1−F −1 δ−1 0 ≤F ≤ 1 (23.23)

The raw moments are the same as those for the Pareto-II distribution. Only the mean is
affected, i.e.

μ=
β

δ−1
δ> 1 (23.24)

To fit the distribution, we would normally calculate μ and σ from the process data and, by
rearranging Equations (23.24) and (23.19), obtain maximum likelihood estimates for δ and β.

δ =
2μ2 + σ2 + σ σ2−4μ2

2μ
σ ≥ 2μ (23.25)

β =
2μ2 + σ2−2μ+ σ σ2−4μ2

2
σ ≥ 2μ (23.26)

Calculated from the NHV disturbance data, μ is 1.30 and σ is 1.60. However, in this example,
these values violate the criterion for applying Equations (23.25) and (23.26). Instead, we must
guess a starting point; fitting then gives values of 6.93 for δ and 7.12 for β. RSS is 0.0721. From
Equations (23.24) and (23.19), μ is now determined as 1.20 and σ as 1.42. Forcing α to zero has
a surprisingly large impact, particularly on the estimate of σ.

23.5 Inverse Pareto

The inverse Pareto distribution is described by

f x =

δ

β

x−α

β

δ−1

1 +
x−α

β

δ+ 1 x ≥ α; β > 0 (23.27)

Figure 23.4 shows the effect of changing δ, with α fixed at 0 and β at 1.
The CDF is

F x =
x−α

x−α+ β

δ

=

x−α

β

1 +
x−α

β

δ

(23.28)
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Fitting to the C4 in propane data gives α as 2.18, β as 0.0333 and δ as 38.4. With RSS at 1.1500,
the fit is very poor.
The QF is

x F = α+
β

1−F1 δ
0 ≤F ≤ 1 (23.29)

23.6 Pareto Type III

The Pareto-III distribution is described by the PDF

f x =

δ

β

x−α

β

δ−1

1 +
x−α

β

δ 2 x ≥ α; β,δ> 0 (23.30)

Figure 23.5 shows the effect of changing δ, with α fixed at 0 and β at 1. The CDF is

F x = 1− 1 +
x−α

β

δ −1

(23.31)

The QF is

x F = α+ β
F

1−F

1
δ

0 ≤F ≤ 1 (23.32)

Raw moments are given by

mn =Γ 1−
n

δ
Γ 1 +

n

δ
βn δ> n (23.33)
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Hence

μ= α+Γ 1−
1
δ

Γ 1 +
1
δ

β δ> 1 (23.34)

σ2 = Γ 1−
2
δ

Γ 1 +
2
δ

−Γ2 1−
1
δ

Γ2 1 +
1
δ

β2 δ > 2 (23.35)

23.7 Pareto Type IV

The Pareto-IV distribution is the same as the Burr-XII distribution – as described in
Section 12.2.

23.8 Generalised Pareto

The generalised Pareto distribution is the title of three different distributions. The most
straightforward is developed by adding a power term to the Pareto-I distribution. It is also
known as the Stoppa distribution as covered in the next chapter.

The second version is described by

f x =
1
β

1 +
δ x−α

β

−1
δ−1

x ≥ α; β,δ > 0 (23.36)

F x = 1− 1 +
δ x−α

β

−1
δ

(23.37)
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x F = α+
β

δ
1−F −δ−1 (23.38)

μ= α+
β

1−δ
δ< 1 (23.39)

σ2 =
β2

1−δ 2 1−2δ
δ<

1
2

(23.40)

γ =
2 1 + δ 1−2δ

1−3δ
δ<

1
3

(23.41)

κ =
3 1−2δ 2δ2 + δ+ 3

1−3δ 1−4δ
δ<

1
4

(23.42)

The effect of changing δ, with α fixed at 0 and β at 1, is shown in Figure 23.6. Figure 23.7 shows
the feasible combinations of skewness and kurtosis. Fitting to the NHV disturbance data gives α
as 0.0385, β as 0.919, δ as 0.252 and RSS as 0.0501. The fit is as good as the Pareto-II distri-
bution but, because δ is greater than 0.25, κ can be determined.
The third form of the generalised Pareto distribution is described by

f x = α+
δ

x + β
1 +

x

β

−δ

exp −αx α,β,δ> 0 (23.43)

F x = 1− 1 +
x

β

−δ

exp −αx (23.44)

Fitting the CDF to the NHV disturbance data results in α being set to its minimum of 0. This
reduces the distribution to the Lomax distribution described previously. Removing the limit
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gives α as −3.67, δ as 172 and β as 37.1. The latter two parameters are suspiciously large and
result in a small improvement to RSS of 0.0677. This, and the lack of any formulae to calculate
mean or variance, makes this version of the distribution impractical.

23.9 Pareto Principle

The Pareto principle is also known colloquially as the 80/20 rule. It is often quoted by con-
trol engineers, for example, ‘capture 80% of the benefits for 20% of the cost’. The values
20% and 80% will only be approximate; nor are they likely to sum to 100%. The principle is
that the best technical solution may not be the best economically. For example, equation-
based CLRTO is costly to install and difficult to maintain. While, in theory, it should capture
all the available benefits, in practice it will likely fall into disuse and capture none. A much
less complex solution may not capture all the benefits but will continue to perform well in
the future. The same principle is enshrined in the KIS (keep it simple) doctrine of control
design.

The principle was first used in describing the distribution of wealth in Italy as ‘20% of the
population owns 80% the land’. It also goes further, for example, it would state that ‘of the
remaining 80% of the population, 20% own 80% of the remaining 20% of the land’. In the
world of process control this effectively states that, if a less complex solution has been success-
fully implemented and we wish to consider capturing the remaining benefits, the 80/20 rule can
be applied repetitively to these.

The principle is illustrated by the Lorenz curve which is normally plotted using real eco-
nomic data but can be represented by

f x = 1− 1−x 1−1 α (23.45)
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For our purposes we can consider x as the fraction of benefits captured and f(x) as the fraction
of the maximum cost. Solving Equation (23.45) for x = 0.8 and f(x) = 0.2 gives α as 1.161. This
is shown in Figure 23.8. The Gini coefficient or Gini index (G) is the area (shown shaded)
between the curve and the equidistribution line (α ∞) expressed as a fraction of the total
area under the equidistribution line. Since the total area is 0.5, the Gini coefficient is double
the shaded area. It can be calculated from

G=
1

2α−1
α> 1 (23.46)

As α varies from 1 to∞,G varies from 1 to 0. In the 80/20 caseG is 0.756. It can be viewed as a
measure of how economic it is to capture the remaining benefits from improved control. For
example, if 90% of the remaining benefits can be captured for 10% of the cost, G is 0.912.
The Pietra ratio (P) provides a similar measure but instead is based on the area of the largest

triangle that can be fitted in the shaded area. This is shown by the dashed line in Figure 23.8. In
the 80/20 case it has the value 0.627, determined from

P=
α−1
α

α−1

−
α−1
α

α

(23.47)

The Pareto principle forms the basis of Pareto analysis – a technique for prioritising actions, as
illustrated in Figure 23.9. In this example the number of hours that a MPC application has been
out of service has been broken down by cause. The causes are plotted as bars in decreasing
order of the number of hours lost. Also plotted as the solid line is the cumulative percentage
of total hours lost. To the left of the dashed line are the causes that must be addressed to achieve
an 80% reduction in lost hours. In this example instrument maintenance and operator training
are the clear priorities. A competent control engineer will already be aware of such problems
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and the technique would do little other than to confirm what is already known. It does however
offer a way of presenting the problem to others, for example as part of reporting MPC perfor-
mance to senior management.
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24
Stoppa Distribution

What is generally described as the Stoppa distribution[15] is the second of five types. Three of
the five were also published by others, are better known under different titles and so described
elsewhere in this book.

24.1 Type I

The Stoppa-I distribution is commonly known as the power distribution, described later in
Section 33.20.

24.2 Type II

The Stoppa-II distribution is one of three generalisations of the Pareto-I distribution, defined by
adding the shape parameter (δ2). Its PDF is

f x =
δ1δ2
x

β

x

δ1

1−
β

x

δ1
δ2 −1

x ≥ β; β,δ1,δ2 > 0 (24.1)

Setting δ2 to 1 (and δ1 to δ) gives the classic Pareto distribution described by Equation (23.1).
Figure 24.1 shows this, as the coloured line, and the effect of increasing it above this value.

The CDF is

F x = 1−
β

x

δ1
δ2

(24.2)

Fitting to the NHV disturbance data gives values for β, δ1 and δ2 are respectively 0, 1.01 and
379. With RSS at 0.2108 the fit is an improvement on the standard Pareto distribution but is still
poor – as shown by Figure 24.2.
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Inverting gives the QF

x F = β 1−F1 δ2
−1 δ1

0 ≤F ≤ 1 (24.3)

The moments are given by

mn = δ2B 1−
n

δ1
,δ2 βn δ1 > n (24.4)
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However, in this case, the value of δ2 does not permit calculation of the beta function (B). This
requires the factorial of (δ2 − 1), which is too large for most software. This result is common to
most datasets. In theory, the best fit is often obtained as δ2 approaches infinity. However, the
resulting improvement in RSS is usually negligible. Constraining δ2 to some sensible upper
limit usually has an indistinguishable impact on the accuracy of fit.

Fitting the Stoppa distribution to the C4 in propane data gives a similarly poor result, with β,
δ1 and δ2 respectively set to 1.03, 2.30 and 16.6. While it is possible now to calculate the
moments, the long tail inherent to the distribution makes the estimates of mean and variance
unrealistically high.

24.3 Type III

The Stoppa-III distribution is better known as the generalised exponential distribution,
described later in Section 28.1.

24.4 Type IV

The Stoppa-IV distribution is described by the PDF

f x =
1

x−α 2

β

x−α
−1

1
βδ−1

1−
β

x−α
−1

1
βδ

δ−1

α+
β

2
≤ x ≤ α+ β; β > 0; δ ≥ 1 (24.5)

Figure 24.3 shows the effect of varying δ, with α set to 0 and β to 1. It is unlikely that the
distribution would fit any source of process data. The CDF is

F x = 1−
β

x−α
−1

1
βδ

δ

(24.6)
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This can be inverted to give the QF

x F = α+
β

1 + 1−F1 δ βδ 0 ≤F ≤ 1 (24.7)

24.5 Type V

The Stoppa-V distribution is also known as the Burr-V distribution, described in Section 21.5.
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25
Beta Distribution

As one of the more commonly used distributions, the classic beta distribution was described in
Section 12.3. Here we cover special cases and enhancements.

25.1 Arcsine

Setting, in Equation (12.13), both δ1 and δ2 to 0.5 gives the special case known as the arcsine
distribution

f x =
1

π x 1−x
0 < x < 1 (25.1)

It is the CDF that gives the distribution its name

F x =
2sin−1 x

π
(25.2)

Inverting give the QF

x F = sin2
F

2
π 0 ≤F ≤ 1 (25.3)

Statistical parameters are

μ =
1
2

(25.4)

σ2 =
1
8

(25.5)

γ = 0 (25.6)

κ = −
3
2

(25.7)
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There is also the second kind of the arc-sine distribution; its PDF is

f x =
1

π 1−x2
−1 < x < 1 (25.8)

Figure 25.1 shows both kinds. Without a shape factor they cannot be fitted to data but, in any
case, it is difficult to see what application either of the anti-modal distributions might have in
the process industry.

25.2 Wigner Semicircle

Setting, in Equation (12.13), both δ1 and δ2 to 1.5 and replacing x with (x + r)/r gives another
special case of the beta distribution, known as the Wigner semicircle distribution. It is
described by

f x =
2 r2−x2

πr2
−r < x < r (25.9)

F x =
1
π

x r2−x2

2r2
+ sin−1 x

r
(25.10)

μ = 0 (25.11)

σ2 =
r2

4
(25.12)

γ = 0 (25.13)

κ = 2 (25.14)
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Figure 25.2 shows the effect of r. More strictly it shows semi-ellipses. It is difficult to see that
it has any application to the process industry.

25.3 Balding–Nichols

The Balding–Nichols distribution is the beta-I distribution with

δ1 =
1−p
p

μ (25.15)

δ2 =
1−p
p

1−μ (25.16)

Rearranging

μ=
δ1

δ1 + δ2
0 < μ < 1 (25.17)

p =
1

δ1 + δ2 + 1
0 < p < 1 (25.18)

Using the values of δ1 and δ2 obtained from fitting the beta-I distribution, p is 0.105 and μ is
0.235. These values could also have been obtained from directly fitting the Balding–Nichols
distribution.

The variance is

σ2 = pμ 1−μ (25.19)

To calculate skewness and kurtosis, we can use Equations (12.16) and (12.17) with δ1 and δ2 as
calculated above.
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25.4 Generalised Beta

The PDF of the generalised beta distribution is

f x =
δ3

B δ1,δ2 x

x

β

δ3
δ1

1−
x

β

δ3
δ2 −1

0 ≤ x ≤ β; δ1,δ2,δ3,β > 0 (25.20)

If β and δ3 are both set to 1, the distribution reverts to the beta-I distribution. While the addition
of these coefficients theoretically will improve the fit, their identification can prove problem-
atic. Using the example of the NHV data, the optimum values for δ1 and δ2 are probably infinite.
As they are permitted to increase the changes have a diminishing effect on RSS. For example
limiting β to 2 and δ3 to 0.6, results in δ1 increasing to 58 and δ2 to 61. RSS is then reduced to
0.0808. Relaxing the limits soon results in the calculation of the beta function failing because of
numerical overflow. It is unlikely that the distribution is robust enough for use with proc-
ess data.
Raw moments are given by

mn =
Γ δ1 + δ2 Γ δ1 +

n

δ3

Γ δ1 Γ δ1 + δ2 +
n

δ3

βn (25.21)

25.5 Beta Type II

The beta-II distribution is also known as the beta prime distribution or the inverted beta dis-
tribution. Its PDF is

f x =
xδ1 −1

B δ1,δ2 1 + x δ1 + δ2
x > 0; δ1,δ2 > 0 (25.22)

The main difference between it and beta-I is that there is no upper limit on x. Fitting to the
(scaled) C4 in propane data gives values for δ1 and δ2 of 3.16 and 13.5 respectively.
Figure 25.3 shows the effect of changing from beta-I to beta-II. The curve no longer terminates
when x is 1.
The mean and variance are

μ=
δ1

δ2−1
δ2 > 1 (25.23)

σ2 =
δ1 δ1 + δ2−1

δ2−1
2 δ2−2

δ2 > 2 (25.24)

The skewness and kurtosis are

γ =
2 2δ1 + δ2−1

δ2−3
δ2−2

δ1 δ1 + δ2−1
δ2 > 3 (25.25)

κ =
3δ1 δ1 + δ2−1 δ2 + 5 δ2−2 + 6 δ2−1

2 δ2−2
δ1 δ1 + δ2−1 δ2−3 δ2−4

δ2 > 4 (25.26)
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From Equation (25.23) we get an estimate of the mean as 0.254 (4.81 vol%) and, from
Equation (25.24), a standard deviation of 0.177 (2.65 vol%). RSS is 0.0355 which compares
closely to the Burr distribution – one of the best of the more practical distributions.

Unlike beta-I, the distribution cannot model skewness in both directions. Figures 25.4 and
25.5 show the effect that δ1 and δ2 have on both this and kurtosis. It can be seen that large
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changes in δ1 are required to have significant influence on either. Should the ratio of skewness
to kurtosis be very different from that calculated from the C4 in propane data then fitting a
beta-II distribution would give a poor result.
To demonstrate this we can fit Equation (25.22) to the NHV disturbance data. This gives

values for δ1 and δ2 of 63.5 and 105, with RSS being minimised to 0.0650. While a reasonable
fit, it is outperformed by the several other distributions. Figure 25.6 shows the range of
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Figure 25.5 Beta-II: Effect of δ1 and δ2 on kurtosis
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skewness and kurtosis of the distribution, constructed by plotting a number of combinations of
δ1 and δ2. The calculated combination of skewness and kurtosis for the C4 data lie close to this
region, while that for the NHV data are well outside.

25.6 Generalised Beta Prime

The generalised beta prime distribution is also known as the transformed beta distribution. It
adds a location parameter (α), a scale parameter (β) and an additional shape parameter (δ3). If α
is set to 0 and the other two parameters to 1, it reverts to the beta prime distribution described in
the previous section. It is actually a compound distribution derived from two gamma distribu-
tions. We covered the gamma distribution in Section 12.10, but the mathematics of combining
two of them do not merit inclusion in this book. The resulting PDF is

f x =
δ3

x−α

β

δ1δ3 −1

βB δ1,δ2 1 +
x−α

β

δ3
δ1 + δ2

x ≥ α; β,δ1,δ2,δ3 > 0 (25.27)

Figure 25.7 shows the effect of varying δ1, δ2 and δ3 – with α fixed at 0 and β at 1. Other dis-
tributions that are also covered include:

Burr-XII δ1 = 1
Dagum-I δ2 = 1
Pearson-VI δ3 = 1
inverse Pareto δ1 = 1 and δ2 = 1
inverse paralogistic δ1 = 1 and δ2 = δ3
log-logistic δ1 = 1 and δ3 = 1
paralogistic δ1 = δ2 and δ3 = 1
Pareto-II δ2 = 1 and δ3 = 1

If none of these conditions are met, the CDF and QF do not exist.
Fitting to the C4 in propane data gives α as 1.52, β as 3.58, δ1 as 1.31, δ2 as 1.89, δ3 as 0.970

and F(x1) as 0.0119. With RSS at 0.0305, not surprisingly the fit is better than any of the
distributions that can be represented. However, with δ3 very close to 1 and neither δ1 nor δ2
meeting any of the conditions above, the fitted distribution is effectively the Pearson-VI
distribution.

Raw moments are given by

mn =
Γ δ1 +

n

δ3
Γ δ2−

n

δ3
Γ δ1 Γ δ2

βn −δ1δ3 < n < δ2δ3 (25.28)

For this example, the bounds on n are therefore −1.27 to 1.84. Only the first moment can
therefore be determined. This gives μ as 6.99 – much higher than expected. Fitting six para-
meters might appear to give a good fit but the result is inconsistent with our understanding
of the process. This is explained further in Section 27.6, where we cover the Pearson-VI
distribution.

Another version includes an additional parameter (δ4). Its PDF is
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f x =

δ3
x

β

δ1δ3 −1

1− 1−δ4
x

β

δ3
δ2 −1

βB δ1,δ2 1 + δ4
x

β

δ3
δ1 + δ2

0 < x < 1; β,δ1,δ2,δ3 > 0; 0 ≤ δ4 ≤ 1 (25.29)

The purpose of δ4 is to mix the classic beta distribution with the beta prime distribution. To help
understand this we first set β and δ3 to 1. If δ4 is then set to 0, Equation (25.29) reverts to
Equation (12.13). If set to 1, it becomes Equation (25.22).
The added complexity of these distributions brings little benefit to their application to the

process industry. While they will theoretically fit more closely to the data they are unlikely
to be robust.

25.7 Beta Type IV

The beta-IV distribution or beta subjective distribution is identical to the beta-I distribution
except that it incorporates the range of x in the PDF.

f x =
x−xmin

δ1 −1 xmax−x
δ2 −1

B δ1,δ2 xmax−xmin
δ1 + δ2 −1

xmin < x < xmax (25.30)

There is no need therefore to scale x over the range 0 to 1. The formulae for mean and variance
also include the range of x. Since skewness and kurtosis are dimensionless, their formulae
remain unchanged.

μ= xmin +
δ1

δ1 + δ2
xmax−xmin (25.31)
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σ2 =
δ1δ2

δ1 + δ2
2 δ1 + δ2 + 1

xmax−xmin
2 (25.32)

In addition to adjusting δ1 and δ2 to obtain the best fit, Equation (25.30) permits the range to
be optimised. Doing so results in the range being selected as 1.6 to 85. The corresponding
values for δ1 and δ2 are then 1.72 and 42.6, minimising RSS to 0.0377 – close to that achieved
by the beta-II distribution. Equations (25.31) and (25.32) give the mean and standard deviation
as 4.84 and 2.45.

A similar approach is to apply the transformation to the raw data (x).

z=
x−α

β
(25.33)

Initially, α is chosen as the lowest value of x and β as the highest value less α. The trans-
formed variable (z) will then range from 0 to 1.

Remembering, from Equations (5.61) to (5.63)

f x = f z
dz

dx
=
f z

β
(25.34)

The PDF, f(z) is the beta-I distribution described by Equation (12.13).

f z =
zδ1 −1 1−z δ2 −1

B δ1,δ2
(25.35)

Combining Equations (25.33), (25.34) and (25.35)

f x =
1

B δ1,δ2

1
β

x−α

β

δ1 −1

1−
x−α

β

δ2 −1

=
x−α δ1 −1 α+ β−x δ2 −1

B δ1,δ2 βδ1 + δ2 −1
(25.36)

What, at first glance, might appear to be a very different distribution, with additional shape
parameters, remains the beta-I distribution. It simply provides an alternative method by which
the range parameters can be included in those fitted. Comparison with Equation (25.30) shows
that α is xmin and α + β is xmax.

From Equations (12.14) and (12.15), the mean and variance are now

μ = α+
δ1

δ1 + δ2
β (25.37)

σ2 =
δ1δ2

δ1 + δ2
2 δ1 + δ2 + 1

β2 (25.38)

Skewness and kurtosis remain as described by Equations (12.16) and (12.17).

25.8 PERT

The beta-IV can also be known as the PERT distribution, arising from its use with PERT project
planning charts. The distribution relies on the three point estimation technique. In this case it
requires three estimates of the time taken to complete each task – the ‘best’ (xmin), the ‘worst’
(xmax) and the ‘most likely’ (xmode). The triangular distribution, described in Section 5.2, is
replaced with a beta-I distribution passing through the three points. The resulting PDF for each
task are then combined to produce a PDF for the whole project schedule.
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To apply Equation (12.13), the mean (μ) is first defined as the weighted average of these
three values.

μ=
xmin + λxmode + xmax

λ+ 2
(25.39)

The shape factor (λ) affects the height of the peak of the PDF. Typically a value of 4 is
chosen.
From this we can derive δ1 and δ2.

δ1 = 1 + λ
xmode−xmin

xmax−xmin
=

2xmode−xmin−xmax

xmode−μ xmax−xmin
μ−xmin (25.40)

δ2 = 1 + λ
xmax−xmode

xmax−xmin
=

2xmode−xmin−xmax

xmode−μ xmax−xmin
xmax−μ (25.41)

The coloured lines in Figure 25.8 show how the triangular distribution is converted to the
beta-I distribution with the same range and mode. The black lines show the effect of the choice
of λ.
However, after some spectacularly underestimated project schedules, this three-point esti-

mation technique is now largely discredited. It is only as good as the assumed best, worst
and most likely estimates. Further, selecting the form of distribution based only on three points
is unlikely to be reliable.
Fitting to the C4 in propane data gives xmin as 1.60, xmode as 3.03, xmax as 98.1, λ as 49.5 and

F(x1) as 0.0010. From Equations (25.40) and (25.41), this is equivalent to setting δ1 at 1.73 and
δ2 at 49.7. Although these values are slightly different from the result obtained in Section 12.3,
at 0.0374, RSS is the same. In other words, we could achieve the same result by directly fitting
the beta-I distribution.
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One might argue that fitting the PERT distribution also gives us the mode. Indeed, from
Figure 3.6, we can see that the true mode is 3.5 – close to the fitted mode. However, the same
result can be derived directly from the fitted beta-I distribution.

xmode =
δ1−1

δ1 + δ2−2
xmax−xmin + xmin (25.42)

Fitting the PERT distribution therefore offers no advantage over fitting the beta-I
distribution.

25.9 Beta Rectangular

The beta rectangular distribution is a mixture of the beta-I and uniform distributions. Its PDF is

f x =
δxδ1 −1 1−x δ2 −1

B δ1,δ2
+ 1−δ δ,δ1,δ2 > 0 (25.43)

The term δ determines the relative contribution. If set to 0, Equation (25.43) gives the uniform
distribution U(0,1). If set to 1, it becomes the beta-I distribution. As written, x must be scaled
over the range 0 to 1. The true range can be included as

f x =
δ x−xmin

δ1 −1 xmax−x
δ2 −1

B δ1,δ2 xmax−xmin
δ1 + δ2 −1

+
1−δ

xmax−xmin
(25.44)

As Figure 25.9 shows, since f(x) steps down to zero at the extreme values of x, it is unlikely to fit
process data. Formulae for mean and variance exist but do not merit inclusion here.
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Figure 25.9 Beta rectangular: Effect of δ on shape

Beta Distribution 403



While the distribution is unlikely to be applicable, it does demonstrate the principle of com-
bining distributions. In the event that a well-fitting distribution cannot be identified, the prob-
lemmight be resolved by a combination. However it is likely that determining parameters, such
as mean and variance, would then be very complex.

25.10 Kumaraswamy

Related to the beta-I distribution is the Kumaraswamy distribution. It is also known as the
minimax distribution.[16] It is described by the PDF

f x = δ1δ2x
δ1 −1 1−xδ1

δ2 −1 0 ≤ x ≤ 1; δ1,δ2 > 0 (25.45)

Like the beta-I distribution, some choices of the shape parameters δ1 and δ2 can produce anti-
modal distributions that are unlikely to be found in the process industry. More useful values are
used as examples in Figures 25.10 and 25.11.
Its CDF is

F x = 1− 1−xδ1
δ2 (25.46)

Applying Equation (11.4) we can see that, as δ2 is increased, 1/δ2 0 and this distribution
approaches

F x = 1−exp xδ1 (25.47)

This is the Weibull-I distribution that we covered in Section 12.8.
Again using the C4 in propane data, as with the beta-I distribution, we need to select a range.

Unlike the beta-I distribution, for which the range should be optimised, in order to achieve the
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Figure 25.10 Kumaraswamy: Effect of δ1 on shape
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best fit the range for the Kumaraswamy distribution should be as small as possible. The
narrowest it can be, without losing data, is 1.5 to 15.8. Fitting gives values of 1.38 and 6.04
for δ1 and δ2 –minimising RSS to 0.1118. While better than the normal distribution, compared
to most other distributions, the fit is poor.

However it has two advantages over the beta-I distribution. The first is that the calcula-
tions of skewness and kurtosis is more straightforward, although the formulae are
too complex to present sensibly here. Instead, they are derived from the raw moments,
given by

mn =
δ2Γ 1 +

n

δ1
Γ δ2

Γ 1 + δ2 +
n

δ1

(25.48)

Calculating the moments gives

m1 = 0 225 m2 = 0 0723 m3 = 0 0285 m4 = 0 0129 (25.49)

From Equations (4.46), (4.49), (4.52) and (4.55) the key parameters can be calculated as

μ = 0 225 σ = 0 148 γ = 0 775 κ = 3 19 (25.50)

Remembering that x is ranged 0 to 1, converting to engineering units (in the same way as we did
for the beta-I distribution) gives the mean as 4.71 and the standard deviation as 2.11.

Figure 25.12 shows feasible values for skewness and kurtosis. Like beta-I, the Kumaras-
wamy distribution is one of the few that can exhibit both positive and negative skewness.
The skewness calculated from the data is 1.27 and the kurtosis 4.79. This combination cannot
quite be covered by the distribution.
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The second advantage is that, unlike the beta-I distribution, not only is there a simple formula
for F(x) but it can also be inverted. Rearranging Equation (25.46)

x F = 1− 1−F
1
δ2

1
δ1 0 ≤F ≤ 1 (25.51)

For example, choosing F as 0.95 gives x as 0.506 which, when converted to engineering units,
is 8.73. In other words we expect 5% of the results to exceed this value.
An extension of the minimax distribution is the minimax odds distribution. Applying

Equation (5.87) to convert odds to probability, Equation (25.45) becomes

f x =
δ1δ2

x + 1 δ1δ2 + 1
x+ 1 δ1 −1

δ2 −1
x ≥ 0 (25.52)

Figure 25.13 shows the effect of varying δ1 and δ2. In comparison with the minimax, it exhibits
a much fatter tail.
The CDF is

F x = 1−
1

x + 1 δ1

δ2

(25.53)

Fitting to C4 in propane data gives δ1 as 2.91 and δ2 as 83.9. RSS, although slightly improved, is
still poor at 0.0919. This is primarily because the fatter tail is not an advantage in this case.
Formulae for the moments can be developed by applying the inverse transformation, given
by Equation (5.87), but the added complexity is not justified by the improvement in accuracy
of fit.
The QF is

x F = 1−F1 δ2
1− δ1

−1 (25.54)
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25.11 Noncentral Beta

The noncentral beta distribution is described by the PDF

f x =
∞

j= 0

δ

2

j xα + j−1 1−x β−1

j B α+ j,β
exp −

δ

2
0 ≤ x ≤ 1; α,β,δ > 0 (25.55)

The parameters α and β, as usual, define to location and scale of the distribution. The term δ
determines the non-centrality. The CDF is

F x =
∞

j= 0

δ

2

j Ix α+ j,β
j

exp −
δ

2
(25.56)

Generally, spreadsheet packages require x to be integer in Bessel functions – including the
modified version of the first kind (Ix). If this is not the case then the trapezium rule can be used
to fit the PDF to data. While possible in the spreadsheet environment, the summation to infinity
in the PDF adds complexity that probably is not justified by better accuracy of fit. Further the
calculation of mean and variance involve the use of mathematics far beyond the scope of
this book.
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26
Johnson Distribution

There are four types of Johnson distribution.[17] The most commonly referred to is the version
known as SU – probably because it is unbounded. Not included here, for any of the distribu-
tions, are the very complex formulae for the calculation of skewness and kurtosis. If required,
the calculations can realistically only be performed by a software product.

26.1 SN

The first, known as Johnson SN, is the normal distribution but with additional shape parameters
α and β. It is described by

f x =
β

σJ 2π
exp −

1
2

α+
β x−μJ

σJ

2

β,σJ > 0 (26.1)

F x =
1
2
+
1
2
erf

1

2
α+

β x−μJ
σJ

(26.2)

μ = μJ−
α

β
σJ (26.3)

σ2 =
σJ
β

2

(26.4)

It has no advantage over the classic normal distribution. As Figure 26.1 illustrates, as usual, α
determines the location and β the dispersion. The modification that α and βmake to the shape of
the distribution can be exactly replicated by adjusting μ and σ in the classic normal distribution.
Indeed, fitting all four parameters in Equation (26.1) will be problematic because there is not a
unique set of values that minimises RSS.
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26.2 SU

The second, known as Johnson SU, is described by the PDF

f x =
β

2π x−μJ
2 + σ2J

exp −
1
2

α+ βsinh−1 x−μJ
σJ

2

β,σJ > 0 (26.5)

Alternatively

f x =
β

2π x−μJ
2 + σ2J

exp −
1
2

α+ β ln
x−μJ + x−μJ

2 + σ2J
σJ

2

(26.6)

With α set to 0 and β set to 1, Figure 26.2 shows that, compared to the normal (SN) distribution,
the SU distribution remains symmetrical but leptokurtic. Keeping μJ at 5 and σJ at 1, Figure 26.3
shows that increasing β increases the kurtosis and adjusting α permits either a positive or neg-
ative skewness to be introduced.
Its CDF is

F x =
1
2
+
1
2
erf

1

2
α+ βsinh−1 x−μJ

σJ
(26.7)

Alternatively

F x =
1
2
+
1
2
erf

1

2
α+ β ln

x−μJ + x−μJ
2 + σ2J

σJ
(26.8)
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Mean and variance are

μ= μJ−σJ sinh
α

β
exp

1

2β2
(26.9)

σ2 =
σJ
2

2
exp −

2α
β

exp
1

β2
−1 exp

1

β2
+ 2exp

2α
β

+ exp
4αβ + 1

β2
(26.10)
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26.3 SL

The third, known as Johnson SL, is described by the PDF

f x =
β

2π x−μJ
exp −

1
2

α+ β ln
x−μJ
σJ

2

x > μJ; β,σJ > 0 (26.11)

Keeping μJ at 5 and σJ at 1, Figure 26.4 shows the effect of α and β.
Its CDF is

F x =
1
2
+
1
2
erf

1

2
α+ β ln

x−μJ
σJ

(26.12)

Mean and variance are

μ= μJ + σJ exp
1−2αβ

2β2
(26.13)

σ2 = σ2J exp
1−2αβ

β2
exp

1

β2
−1 (26.14)

26.4 SB

The fourth, known as Johnson SB, has the PDF

f x =
αβ

2π x−μJ σJ−x + μJ
exp −

1
2

α+ β ln
x−μJ

σJ−x+ μJ

2

μJ ≤ x ≤ μJ + σJ; α,β > 0

(26.15)
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Keeping μJ at 5 and σJ at 1, Figure 26.5 shows the effect of α and β.
Its CDF is

F x =
1
2
+
1
2
erf

1

2
α+ β ln

x−μJ
σJ−x + μJ

(26.16)

26.5 Summary

Table 26.1 shows the results of fitting each of the Johnson distributions to the C4 in propane
data. As seen previously, the highly skewed data cannot be represented well by the normal dis-
tribution (SN). The three others are all a substantial improvement with, in this case, the SB dis-
tribution providing the best fit. However, for this distribution, the calculation of mean and
variance are extremely complicated. So, unless implemented in a software product, this limits
its use. Further, with the best fit, the results are bounded between 1.08 (μJ) and 27.7 (μJ + σJ).
The range over the year was 1.5 to 15.8 so, while it is unlikely that the lower or upper boundwill
be violated in the future, the lower bound has already been approached closely. This might also
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Figure 26.5 Johnson SB: Effect of α and β on shape

Table 26.1 Results of fitting Johnson distributions to C4 data

distribution μJ σJ α β RSS μ σ

SN 4.47 2.09 0.00 1.00 0.6138 4.47 2.09
SU 0.896 0.841 −3.47 1.655 0.0328 4.94 2.76
SL 0.634 3.66 0.010 1.724 0.0322 4.94 2.72
SB 1.08 26.6 2.60 1.31 0.0308
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be of concern, especially if there is interest in exploring the statistics of the higher purity
product.
The next best fit is provided by the SL distribution in which the lower bound is less likely to

be approached and there is no upper bound. The calculations of mean and standard deviation
are also considerably easier.
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27
Pearson Distribution

Karl Pearson, perhaps most known for the R2 coefficient used to assess correlations, devel-
oped a family of 12 distributions.[18–21] His work predates the publication of almost all
others, bar the normal distribution. Indeed, some well-used distributions such as the
F distribution, gamma distribution and Student t distribution are special cases of Pearson’s
work. Pearson’s objective was that a distribution be fitted not only to the mean and variance
of the data, but also to the skewness and kurtosis. Indeed, it was Pearson who originally
defined skewness and kurtosis as additional measures of the character of a distribution.
In principle, maximum likelihood estimates for each of the shape parameters can be then
determined from the distribution’s moments. In practice this is mathematically complex.
Instead, as we have done throughout this book, we apply the numerical curve fitting
approach described in Chapter 9.

All the distributions are described only in PDF form. In most cases the CDF exists but is too
complex to be used other than by specialist software products. Calculation of skewness and
kurtosis is, for some of the distributions, similarly complex, in which case they have been
omitted.

Figure 27.1 shows the range of skewness and kurtosis that can be represented by each of
the distribution types. Skewness is plotted as γ2 only so that the plots are linear or approx-
imately so. This does not imply that, by taking the negative root, the distribution can repre-
sent data that are negatively skewed. Types II, III, V and VII are restricted to lines. Types I,
IV and VI cover regions. Types IV and VI overlap, with Type V forming the boundary of the
overlap. Type III forms the boundary between Types I and VI. Initial indications are that
Type I would be a good choice for the C4 data and either Type IV or Type VI for the
NHV disturbance data.

Types VIII, IX and XII appear to be documented more as completion of a mathematical exer-
cise and none have attracted a practical application. Type X we now know as the exponential
distribution and Type XI as the Pareto-I distribution.

Statistics for Process Control Engineers: A Practical Approach, First Edition. Myke King.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



27.1 Type I

The Pearson-I distribution can also be described as the beta-I distribution. We covered the
classic version in Section 12.3, where we showed it fitted the C4 data well. Including location
and scaling parameters, its PDF is

f x =
1

B δ1,δ2

x−α

β

δ1 −1

1−
x−α

β

δ2 −1

α ≤ x ≤ α+ β; β,δ1,δ2 > 0 (27.1)

Although δ1 and δ2 can be less than 1, the resulting distribution is unlikely to fit process data.
The PDF is occasionally written in a less useful form that changes the bounds on x and shifts

the value of δ1 and δ2 by −1.

f x =
1

2δ1 + δ2B δ1 + 1,δ2 + 1
1 +

x−α

β

δ1

1−
x−α

β

δ2

α−β ≤ x ≤ α+ β; β,δ1,δ2 > 1

(27.2)

27.2 Type II

The Pearson-II distribution is also known as the symmetric-beta distribution. It is obtained by
setting both δ1 and δ2, in the Type I distribution, equal to the same value (δ). It is therefore
described by the PDF

f x =
Γ 2δ

Γ2 δ

x−α

β

δ−1

1−
x−α

β

δ−1

α ≤ x ≤ α+ β; β,δ > 0 (27.3)

Key parameters are

μ = 0 5 (27.4)
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σ2 =
1

4 2δ+ 1
(27.5)

γ = 0 (27.6)

κ =
3 2δ+ 1
2δ+ 3

(27.7)

As δ ∞ the distribution approaches the normal distribution. The feasible range of kurtosis is
from 1 to 3. This very restrictive range is shown as the coloured line in Figure 27.1.

27.3 Type III

The Pearson-III distribution is described by the PDF

f x =
1

Γ δ β

x−α

β

δ−1

exp −
x−α

β
β,δ> 0 (27.8)

Figure 27.2 shows the effect of changing δ. As δ ∞ the distribution approaches the normal
distribution.

Fitting to the C4 in propane data gives values of 1.60 for α, 1.84 for β, 1.79 for δ and 0.0001
for F(x1). With RSS at 0.0358, the fit is one of the best evaluated.

The mean and variance are

μ= α+ δβ (27.9)

σ2 = δβ2 (27.10)

These give μ as 4.89 and σ as 2.46.
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Skewness and kurtosis are

γ2 =
4
δ

(27.11)

κ =
6
δ
+ 3 (27.12)

The feasible combinations of skewness and kurtosis are shown as a line in Figure 27.1. The
equations above give γ as 1.50 and κ as 6.36. Showing the same line, Figure 27.3 also shows
that these fitted values are close to those calculated from the data. This confirms that, in this
case, the Pearson-III distribution would be a good choice.
A special case of the Type III distribution is obtained by setting

α= 0 β =
1
λ

δ= k (27.13)

This gives the gamma distribution that we covered in Section 12.10.

27.4 Type IV

The Pearson-IV distribution is described by the PDF

f x =K 1 +
x−α

β

2 −δ1

exp −δ2tan
−1 x−α

β
β,δ1,δ2 > 0 (27.14)

K is the normalisation constant.

K =
Γ2 δ1 +

δ2 −1
2

Γ δ1 Γ δ1−
1
2

β π
(27.15)
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Theproblemwith this definition is that it includes −1.While the gamma function of a complex
number can be a real number, its calculation is beyond the scope of this book and generally
not included in spreadsheet packages. Without specialist software, the alternative, when
fitting the distribution, is to adjust K to make F(x∞) equal to 1. This is achieved by extending
Table 9.2 – adding some large values for x in column 1 and adjusting K until the last element in
column 8 is 1. If the distribution were upper-bounded (which this one is not) then K is adjusted
to make F(xmax) equal to 1.

With α set to 0, β to 1 and δ1 to 1, Figure 27.4 shows that varying δ2 changes skewness –
positive values giving positive skewness.

The mean and variance are based on δ.

δ = 2 δ1−1 (27.16)

μ= α−
δ2
δ
β δ1 > 1 (27.17)

σ2 =
δ2 + δ22
δ2 δ−1

β2 δ1 >
3
2

(27.18)

Raw moments are given by the recurrence formula

m0 = 1 (27.19)

m1 = 0 (27.20)

mn =
n−1

δ2 δ−n + 1
β δ2 + δ22 mn−2−2δδ2mn−1 β n ≥ 2 (27.21)

From these we can derive

γ =
4δ2
δ−2

δ−1

δ2 + δ22
δ1 > 2 (27.22)
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κ =
3 δ−1 δ + 6 δ2 + δ22 −8δ2

δ−2 δ−3 δ2 + δ22
δ1 >

5
2

(27.23)

Fitting to the C4 in propane data gives values of 0.000103 for K, 0.03 for α, 1.68 for β, 2.88 for
δ1 and −11.1 for δ2. With RSS at 0.0326, it is one of the best fits. From Equation (27.17) the
mean is then 5.01; from Equation (27.18) the standard deviation is 3.17.
From Equation (27.22) skewness is 3.59. From Equation (27.23), kurtosis is 56.1 – substan-

tially higher than that calculated from the data as 4.79. This places some suspicion on whether
the distribution would be a good choice. The result is plotted in Figure 27.5, along with the
feasible combinations of skewness and kurtosis.
Fitting to the NHV disturbance data gives values of 0.382 for K, 0.00 for α, 1.76 for β, 2.40

for δ1 and 0.104 for δ2. With RSS at 0.0513, the fit is close to the best achieved by others. The
mean is −0.07 and the standard deviation 1.31. Skewness is −0.248. Because δ1 is less than 2.5,
kurtosis cannot be calculated.
By setting δ2 to 0, the distribution becomes symmetrical and is then known as the Pearson-

VII distribution. Because this removes the complex term, K can then be calculated.
By also setting δ1 to 1 we obtain the Cauchy distribution. This is also known as theMcCul-

lagh distribution, the Breit–Wigner distribution, the Lorenz distribution or the Cauchy–Lorenz
distribution. While kurtosis cannot be determined, the distribution can represent data for which
this is very large. It is described by the PDF

f x =
1
πβ

1 +
x−α

β

2 −1

β > 0 (27.24)

Figure 27.6 shows the effect of changing α and β.

0

20

40

60

–4 –2 0 2 4

κ

γ

fitted

calculated

Figure 27.5 Pearson-IV: Feasible combinations of γ and κ

420 Statistics for Process Control Engineers



The CDF is

F x =
1
π
tan−1 x−α

β
+
1
2

(27.25)

If α is set to 0 and β to 1, as usual, the distribution becomes the standard Cauchy distribution.
Fitting Equation (27.25) to the NHV disturbance data gives values of −0.04 for α, 0.71 for β

and 0.0605 for RSS. Kurtosis, calculated from the data, is 5.87 – considerably higher than that
of a normal distribution. In this case, Cauchy would therefore be the better choice.

By inverting Equation (27.25), the QF is

x F = α+ β tan π F−
1
2

0 ≤F ≤ 1 (27.26)

Figure 27.7 plots Equation (27.25) against the process data. The fit to the tails is poor but it can
be used elsewhere. So, if we choose values for F as 0.1 and 0.9, x is −2.24 and 2.15 respectively.
In other words we can be 80% sure that a disturbance will be within ±2.2 (or 20% sure that the
disturbance will exceed this). This detail is shown in colour in Figure 27.7.

While β is not the standard deviation, it can be used in much the same way. For example, we
might expect improved control to halve it. Halving it in Equation (27.25), and using the ±1.1
values of x, gives values for F of 0.051 and 0.949. In other words, with improved control, the
probability of a disturbance being larger than ±2.2 falls to 10.2%. As might be expected, if we
halve the size of disturbances, we will violate any limit half as often.

The PDF of the log Cauchy distribution is derived from Equation (27.24).

f x =
1
πβx

1 +
ln x −α

β

2 −1

x> 0; β > 0 (27.27)

Figure 27.8 shows the effect of varying α, with β fixed at 2. Normally only affecting position,
here α also affects shape. Figure 27.9 shows the effect of varying β with α fixed at 0. Normally
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only affecting scale (or dispersion), at values less than 1, it introduces an inflexion into the
curve. Process data are unlikely to follow such a distribution.
The CDF is

F x =
1
π
tan−1 ln x −α

β
+
1
2

(27.28)

0.0

0.2

0.4

0.6

0.8

1.0

–10 –5 0 5 10

cu
m

ul
at

iv
e 

di
st

ri
bu

ti
on

% change in NHV

80%

±2.2%

Figure 27.7 Cauchy: Fitted to NHV disturbances

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

f(
x)

x

–1

Figure 27.8 Log-Cauchy: Effect of α on shape

422 Statistics for Process Control Engineers



Since x must be greater than zero, we will evaluate the distribution by fitting it to the absolute
value of theNHVdisturbances. This givesα as−0.34 andβ as 0.69.RSS is 0.1713,which is better
than that achieved by several other distributions. Figure 27.10 is a P–Pplot confirming that the fit
appears reasonable, although perhaps of concern that it does not pass through (0,0) and (1,1).
However, this hides a more significant problem that can only be seen by plotting the PDF.
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As Figure 27.11 shows, mathematically the fit might be reasonable but, as engineers, we should
be highly suspicious that it does not realistically represent the behaviour of the process.
The CDF can be inverted to produce the QF

x F = exp α+ β tan π F−
1
2

0 ≤F ≤ 1 (27.29)

There are no formulae for mean, variance, skewness or kurtosis. Given the problem illus-
trated above, the log-Cauchy distribution has little practical value to the process industry.

27.5 Type V

When first published, the Pearson-V distribution was the normal distribution. Pearson subse-
quently replaced it with this version and referred to the normal distribution as the Pearson-0
distribution. The replacement Pearson-V distribution, also now known as the inverse gamma
distribution, is described by the PDF

f x =
1

βΓ δ

β

x−α

δ+ 1

exp −
β

x−α
β,δ> 0 (27.30)

The effect of δ is shown in Figure 27.12.
Moments are given by

mn =
Γ δ

Γ δ−n
βn δ> n (27.31)
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Hence

μ = α+
β

δ−1
δ> 1 (27.32)

σ2 =
β2

δ−1 2 δ−2
δ > 2 (27.33)

γ =
4 δ−2
δ−3

δ> 3 (27.34)

κ =
3 δ+ 5 δ−2
δ−3 δ−4

δ> 4 (27.35)

From Equation (27.35), as δ ∞, κ 3 and so Equation (27.30) cannot be fitted accurately to
platykurtic data.

Fitting to the C4 in propane data gives values of 0.01 for α, 17.6 for β, 4.38 for δ and 0.0204
for F(x1). The resulting RSS is 0.0336. Mean (μ) is therefore 5.20 and standard deviation (σ)
3.36. Skewness is 4.46 and kurtosis an unbelievable 126. So while the fit appears to be good,
some suspicion must be placed on the result.

27.6 Type VI

The Pearson-VI distribution is described by

f x =

x−α

β

δ1 −1

B δ1,δ2 β 1 +
x−α

β

δ1 + δ2
β,δ1,δ2 > 0 (27.36)
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Figure 27.13 shows the effect of δ1 and δ2.
Key parameters are

μ= α+
βδ1
δ2−1

δ2 > 1 (27.37)

σ2 =
β2δ1 δ1 + δ2−1

δ2−1
2 δ2−2

δ2 > 2 (27.38)

γ = 2
2δ1 + δ2−1

δ2−3
δ2−2

δ1 δ1 + δ2−1
δ2 > 3 (27.39)

κ =
3 δ2−2

δ2−3 δ2−4
2 δ2−1

2

δ1 δ1 + δ2−1
+ δ2 + 5 δ2 > 4 (27.40)

Fitting to the C4 in propane data gives values of 1.46 for α, 8.00 for β, 2.66 for δ1, 6.78 for δ2
and 0.0172 for F(x1). The resulting RSS, at 0.0298, appears to be good. However, while the
mean (μ) of 5.14 seems reasonable, the standard deviation (σ) is a suspiciously large 10.4. This
is explained by Figure 27.14. This was drawn by fixing β at different values in the range 1 to
40 and then fitting the remaining shape parameters. Plotting RSS against σ shows that the curve
is extremely flat. While mathematically RSS is minimised when σ is 10.4, large changes in σ
would have little effect on RSS.
Skewness is 2.71 and kurtosis 20.16. These values, along with feasible range of γ and κ, are

included in Figure 27.15. However, plotting RSS against these parameters would show a similar
insensitivity and so undermines the confidence we have in the result.
Although Figure 27.1 would indicate that this distribution would be a possible choice for the

NHVdisturbance data, the calculated values of skewness and kurtosis are very close to the limit.
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Fitting requires impractically high values gives values for δ1 and δ2. Type IV would be a much
better choice.

A special case of the Type VI distribution is obtained by setting

δ1 =
f1
2

δ2 =
f2
2

α= 0 β =
f2
f1

F = x (27.41)

This gives the F distribution described in Section 12.6.
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The log-F distribution, an extension of the F distribution, is also known as Fisher’s z dis-
tribution. It can also be derived from the Type IV generalised logistic distribution and has
the PDF

f x =
2 f

f1
2
1 f

f2
2
2 exp

f1 x−α

β

B
f1
2
,
f2
2

β f2 + f1 exp
2 x−α

β

f1 + f2
2

β, f1, f2 > 0 (27.42)

Figure 27.16, drawn with α set to 0 and β set to 1, shows the effect of changing f1 and f2. The
formulae for mean and variance employ mathematics beyond the scope of this book but can be
approximated by

μ≈α+
f1− f2
2f1f2

β (27.43)

σ2≈
f1 + f2
2f1f2

β2 (27.44)

Fitting to the C4 in propane data gives values of 3.18 for α, 1.00 for β, 5.57 for f1, 0.371 for f2
and 0.0231 for F(x1). The resulting value of 0.0287 for RSS is the lowest of all the distributions.
From Equations (27.43) and (27.44), the mean is approximately 4.44 and the standard deviation
approximately 1.20. There are no simple formulae for skewness or kurtosis.
Fitting to the NHV disturbance data gives values of −0.209 for α, 0.0274 for β, 0.0289 for f1,

0.0224 for f2 and 0.0001 for F(x1). The resulting value of 0.0374 for RSS is one of the lowest.
A better fit could be obtained by reducing β but, at lower values e2(x−α)/β exceeds 21024 – the
maximum value permitted by many software products. The mean, at −0.07, is close to 0 as
expected but the standard deviation suspiciously low at 0.17.

0.0

0.1

0.2

0.3

0.4

0.5

–6 –4 –2 0 2 4 6

f(
x)

x

Figure 27.16 Log-F: Effect of f1 and f2 on shape

428 Statistics for Process Control Engineers



The PDF of the noncentral F distribution is

f x =
∞

i= 0

f1
f2

f1
2 + i δ

2

i

exp −
δ

2
x
f1
2 + i−1

B
f1
2
+ i,

f2
2

i 1 +
f1
f2
x

f1 + f2
2 + i

f1, f2, δ> 0 (27.45)

Fitting to the C4 in propane data gives f1 as 19.0, f2 as 10.9 and δ as 58.3 with RSS as 0.0355.
Strictly, f1 and f2 are degrees of freedom and so should theoretically be integers. Already very
close, fixing them at 19 and 11 and refitting gives δ as 58.4 with RSS as 0.0356.

While the sum to infinity may appear impractical, it converges fairly quickly. The smaller the
number of degrees of freedom, the more quickly is the convergence. In this example summing
up to i = 100 was more than adequate. This is well within the capabilities of any spreadsheet
package.

The mean and variance are

μ =
f2 f1 + δ
f1 f2−2

f2 > 2 (27.46)

σ2 = 2
f2
f1

2 f1 + δ
2 + f1 + 2δ f2−2

f2−2
2 f2−4

f2 > 4 (27.47)

These give μ as 4.98 and σ as 2.92. These are reasonably close to the values calculated from the
data. The higher estimate for the standard deviation reflects the fact that the upper tail of the
distribution is a little too long.

There are no formulae for skewness or kurtosis.
As might be predicted, the doubly noncentral F distribution is too complex to be included

here. It includes an additional shape parameter and so likely to better fit the data. However, it
has no formulae for mean, variance, skewness and kurtosis. It is of little practical value in the
process industry.

27.7 Type VII

The Pearson-VII distribution is a special (symmetrical) case of the Type IV distribution. It is
described by the PDF

f x =

1 +
x−α

β

2 −δ

βB δ−
1
2
,
1
2

β,δ> 0 (27.48)

By definition

B δ−
1
2
,
1
2

=
Γ δ−

1
2

Γ
1
2

Γ δ
=
Γ δ−

1
2

π

Γ δ
(27.49)
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So the PDF can alternatively be written as

f x =

Γ δ 1 +
x−α

β

2 −δ

β πΓ δ−
1
2

(27.50)

The mean and variance are

μ= α (27.51)

σ2 =
β2

2δ−3
δ>

3
2

(27.52)

Skewness and kurtosis are

γ = 0 (27.53)

κ =
3 2δ−3
2δ−5

δ>
5
2

(27.54)

Fitting to the C4 in propane data gives values of 3.95 for α, 6.76 for β, 6.92 for δ and 0.0264
for F(x1). But, at 0.2269, RSS shows that the fit is very poor. Not surprisingly, because the
distribution is symmetrical, it cannot properly represent the highly skewed data.
Fitting to the almost unskewed NHV disturbance data gives values of 0 for α, 1.05 for β, 1.26

for δ and 0.0146 for F(x1). At 0.0485, RSS shows that the fit is reasonable – although improved
upon by other distributions. Because δ is less than 1.5, it is not possible to determine the variance.
Examination of Equation (27.54) shows that κ reaches a minimum of 3 as δ ∞, so the

distribution cannot be fitted accurately to platykurtic data.
Figure 27.17 shows the effect of varying δ. In each case α is 0 and β calculated from

Equation (27.52) to fix σ at 1. There are two special cases. Firstly, as δ approaches infinity,
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Figure 27.17 Pearson-VII: Effect of δ on shape
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the distribution approaches the normal distribution – as shown by the coloured line. Secondly,
setting δ to 1 gives the Cauchy distribution. Equation (27.52) does not permit the calculation of
β to fix σ at 1. Instead the distribution is shown, as the dashed line, in its standard formwith β set
to 1. This is also a special case of the standard Student t distribution, which we covered in
Section 12.5, obtained by setting

δ=
f + 1
2

β = f α = 0 x = t (27.55)

The PDF of the log Student t distribution is

f x =
Γ

f + 1
2

xβΓ
f

2
πf

1 +
1
f

lnx−α
β

2 − f + 1
2

x > 0; β, f > 0 (27.56)

In much the same way as the lognormal distribution is derived from the normal distribution,
the log-Student t distribution is derived from the Student t distribution by defining t as

t =
lnx−α

β
(27.57)

Figure 27.18 shows the effect of varying f, with α fixed at 0 and β at 1. The bimodal shape is
unlikely to be applicable to process data. In the same way that the t distribution approaches the
normal distribution as f in increased, the log Student t distribution approaches the lognormal
distribution – shown as the coloured curve.
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The PDF of the noncentral Student t distribution is

f t =
f

f
2 exp −

δ2

2

Γ
f

2
π t2 + f

f + 1
2

∞

j= 0

1
j
Γ

f + 1 + j
2

δ 2t

f + t2

j

f > 0 (27.58)

The effect of δ, with f fixed at 5, is shown in Figure 27.19.
Fitting to the C4 in propane data gives f as 3.59 and δ as 3.87. With RSS at 0.0471, the fit is

reasonable but bettered by other distributions that are easier to apply. Further, as Figure 27.20
shows, the distribution’s upper tail is excessive.
The mean is

μ = δ
Γ2 f −1

2

Γ2 f

2

f

2
(27.59)

This gives μ as 4.84, close to that calculated from the data.
The variance is

σ2 =
f 1 + δ2

f −2
−δ2

Γ2 f −1
2

Γ2 f

2

f

2
(27.60)

This gives σ as 3.32. This is substantially larger than the calculated value, illustrating the prob-
lem caused by the excessive tail.
While the doubly noncentral t distribution is likely to better fit the data, its complexity under-

mines its practical value.
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27.8 Type VIII

The PDF of the Pearson-VIII distribution is

f x =
K

β
1 +

x−α

β

−δ

α−β < x ≤ α; β,δ> 0 (27.61)

It has little application to process data.

27.9 Type IX

The PDF of the Pearson-IX distribution is

f x =
K

β
1 +

x−α

β

δ

α−β < x ≤ α; β,δ> −1 (27.62)

It too has little application to process data.

27.10 Type X

The Pearson-X distribution is now more commonly known as the exponential distribution that
we covered in Section 12.7.
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27.11 Type XI

The Pearson-XI distribution is more commonly known as the Pareto-I distribution and was
covered in Section 23.1.

27.12 Type XII

The PDF of the Pearson-XII distribution is

f x =K 1 +
x−α

β1

δ

1−
x−α

β2

−δ

−β1 < x < β2; β1,β2 > 0; −1 < δ < 1 (27.63)

It has little application to process data.
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28
Exponential Distribution

We covered the classic exponential distribution in Section 12.7. Here we describe a range of
extensions.

28.1 Generalised Exponential

The generalised exponential distribution, confusingly, can be referred to by using the same
GED acronym as the generalised error distribution that we covered in Section 20.12. Less
ambiguously known as the exponentiated exponential distribution, it extends the exponential
distribution by adding a shape parameter (δ). It is described by

f x =
δe−λx

β
1−exp −

x−α

β

δ−1

x ≥ α; λ,δ > 0 (28.1)

F x = 1−exp −
x−α

β

δ

(28.2)

x F = α−β ln 1−F1 δ 0 ≤F ≤ 1 (28.3)

Fitting to the intervals between events of the LPG splitter reflux exceeding 65 m3/hr gives α as
0.0626, β as 12.5 and δ as 0.950.With δ so close to 1, in this case RSS is only slightly improved,
from 0.0058 for the classic exponential distribution, to 0.0053.

28.2 Gompertz–Verhulst

The Gompertz–Verhulst distribution[22] includes another shape parameter. It is described by

f x =
δ1δ2
β

exp −
x−α

β
1−δ1 exp −

x−α

β

δ2 −1

x ≥ α−β lnδ1; δ1,δ2 > 0 (28.4)
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F x = 1−δ1 exp −
x−α

β

δ2

(28.5)

If δ1 is set to 1, the distribution reverts to the generalised exponential distribution. However
its inclusion does not offer a better fit. This can be seen by examination of the QF

x F = α+ β lnδ1− ln 1−F1 δ2 0 ≤F ≤ 1 (28.6)

The effect of δ1 is to translate x by βlnδ1. The same could be achieved simply by adjusting α.

28.3 Hyperexponential

The hyperexponential distribution can be applied when the rate of events varies, depending on
operating mode. It is described by

f x =
n

i= 1

piλie
−λix x ≥ 0; p,λ > 0 (28.7)

F x =
n

i= 1

pi 1−e
−λix (28.8)

μ=
n

i= 1

pi
λi

(28.9)

σ2 =
n

i= 1

2pi− p2i
λ2i

(28.10)

γ =
n

i= 1

2 3pi−2p2i + p3i
pi 2−pi

3 2
(28.11)

κ =
n

i= 1

3 8pi−8p2i + 4p
3
i − p4i

p2i 2−pi
2 (28.12)

The probability that the current mode is mode 1 is p1, that it is mode 2 is p2, etc. The probabil-
ities must clearly sum to 1.
As an example, imagine a process has three operating modes (n = 3). In mode 1 the event in

questions occurs, on average, every 50 days (λ1 = 0.02). It operates in this mode for 20% of the
time (p1 = 0.2). The process operates in mode 2 for 30% of the time, during which the average
interval is 100 days. In mode 3 it is 125 days. Using Equation (28.7), these values were used to
develop Figure 28.1.
From Equation (28.9), μ is 103 days and, from Equation (28.10), σ is 133 days. The

standard deviation being larger than the mean might be somewhat surprising – particularly
as the number of days cannot be negative. This is an inherent property of the distribution. If
n is 1 (and hence p1 is 1), the distribution becomes the classic exponential distribution.
Examination of Equations (28.9) and (28.10) shows that the coefficient of variation (σ/μ) will
then be unity.
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28.4 Hypoexponential

The hypoexponential distribution is also known as the generalised Erlang distribution. It is a
series of exponential distributions – each with a different value for λ. Its coefficient of variation
(σ/μ) will always be less than 1. The mathematics of the full distribution are too complex to
merit inclusion here but are considerably simpler if the series comprises just two exponential
distributions. The PDF is then

f x =
λ1λ2
λ1−λ2

exp −λ2x −exp −λ1x x ≥ 0; λ1,λ2 > 0 (28.13)

The parameters λ1 and λ2 are interchangeable; their effect is shown in Figure 28.2. The
CDF is

F x = 1−
λ2

λ2−λ1
exp −λ1x +

λ1
λ2−λ1

exp −λ2x (28.14)

While not designed for the purpose, it is possible to fit it to the C4 in propane data – to give λ1 as
0.323 and λ2 as 0.735. At 0.2682 RSS, not surprisingly, shows the fit is poor.

The mean and variance are

μ=
1
λ1

+
1
λ2

(28.15)

σ2 =
1

λ21
+

1

λ22
(28.16)
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These give values of 4.46 for μ and 3.38 for σ. There is no formula for kurtosis; skewness is
1.67, calculated from

γ =

2
1

λ31
+

1

λ32
1

λ21
+

1

λ22

3 2
(28.17)

28.5 Double Exponential

The double exponential distribution allows x to be less than α by using the absolute value of
their difference. It is described by

f x =
1
2β

exp
− x−α

β
β > 0 (28.18)

F x =
1
2
+

x−α

2 x−α
1−exp

− x−α

β
(28.19)

μ= α (28.20)

σ2 = 2β2 (28.21)

Also known as the Laplace distribution, we will cover it in detail in Section 32.7.
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28.6 Inverse Exponential

The inverse exponential distribution is described by

f x =
β

x−α 2 exp −
β

x−α
x ≥ α,β > 0 (28.22)

F x = exp −
β

x−α
(28.23)

x F = α−
β

ln F
0 ≤F ≤ 1 (28.24)

Figure 28.3 compares both this and the double exponential distribution to the standard expo-
nential distribution (shown as the dashed line).

The raw moments of the distribution are all infinite. Thus the mean, variance, etc. are also
infinite.

28.7 Maxwell–Jüttner

The Maxwell–Jüttner distribution is an extension of the Maxwell–Boltzmann distribution we
will cover in Section 30.4. It is included here because of its similarity to the exponential dis-
tribution. It was developed to describe the distribution of speeds of gas molecules and atoms. Its
PDF contains several constants that are defined theoretically and would not be applicable to
process data. Here they have been combined into shape parameters that would be determined
empirically.

f x =
λ3 x−α 2

2
exp −λ x−α x > 0; λ> 0 (28.25)
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Figure 28.4 shows the effect of λ with α fixed at zero. The PDF can be integrated to give
the CDF

F x = 1−
λ2 x−α 2

2
+ λ x−α + 1 exp −λ x−α (28.26)

Fitting to the C4 in propane data gives α as 0.818 and λ as 0.761. RSS is 0.0807, which is con-
siderably better than many of the more commonly used distributions. But there are no formulae
published for mean, variance, etc.

28.8 Stretched Exponential

The stretched exponential distribution is described by

f x = δλδxδ−1 exp − λx δ x> 0; δ,λ> 0 (28.27)

F x = 1−exp − λx δ (28.28)

x F =
− ln 1−F 1 δ

λ
0 ≤F ≤ 1 (28.29)

If δ is set to 1, it becomes the exponential distribution, as shown by the coloured line in
Figure 28.5. Increasing δ reduces the tails.
Moments are given by

mn =
n

λδ
Γ

n

δ
(28.30)
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Hence

μ=
1
λδ

Γ
1
δ

(28.31)

σ2 =
1

λ2δ2
2λδΓ

2
δ

−Γ2 1
δ

(28.32)

28.9 Exponential Logarithmic

The exponential-logarithmic (EL) distribution includes an additional shape parameter (δ). It is
described by

f x = −
1
lnδ

λ 1−δ e−λx

1− 1−δ e−λx
x > 0; λ > 0; 0 ≤ δ ≤ 1 (28.33)

F x = 1−
ln 1− 1−δ e−λx

lnδ
(28.34)

x F = −
1
λ
ln

1−exp 1−F lnδ
1−δ

0 ≤F ≤ 1 (28.35)

As δ approaches 1, the distribution becomes the classic exponential distribution – as shown as
the coloured curve in Figure 28.6.

The calculation of the mean and variance of this distribution involves the use of
polylogarithms – a topic beyond the scope of this book and a complexity probably not justified
by any better fit that the distribution might offer.
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28.10 Logistic Exponential

The logistic exponential is described by the PDF

f x =
λδ exp λx −1 δ−1 exp λx

1 + exp λx −1 δ
2 x > 0; λ,δ> 0 (28.36)

Figure 28.7 shows the effect of changing λ and δ. The CDF is

F x =
exp λx −1 δ

1 + exp λx −1 δ (28.37)

Fitting to the C4 in propane data gives λ as 0.516 and δ as 6.12. RSS is a mediocre 0.0802, which
with no formulae for mean or variance, means the distribution would not be the first choice.
The CDF can be inverted to give the QF.

x F =
1
λ
ln

F

1−F

1
δ

+ 1 0 ≤F ≤ 1 (28.38)

28.11 Q-Exponential

Employing a method similar to that used to develop the q-Gaussian distribution from the nor-
mal distribution, the q-exponential distribution is developed from the exponential distribution.
It is another in the family of Tsallis distributions. Its PDF is

f x = 2−q λ 1 + q−1 λx
1

1−q x> 0; λ,0 < q < 2 (28.39)
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If q < 1 then the distribution becomes double-bounded.

0 < x<
1

λ 1−q
(28.40)

If q is set to 1, the q-exponential becomes the exponential distribution. Figure 28.8 shows the
effect of varying q. For the curves to all start at the same point, λ has been set accordingly. The
CDF is

F x = 1− 1 + q−1 λx
2−q
1−q (28.41)

The CDF can be inverted to give the QF

x F =
1−F

1−q
2−q−1

λ q−1
0 ≤F ≤ 1 (28.42)

The mean and variance are

μ =
1

λ 3−2q
q<

3
2

(28.43)

σ2 =
q−2

λ2 2q−3 2 3q−4
q <

4
3

(28.44)

The skewness and kurtosis are

γ =
2

5−4q
3q−4
q−2

q<
5
4

(28.45)

κ =
3 6q3−55q2 + 88q−48
q−2 4q−5 5q−6

q<
6
5

(28.46)

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

f(
x)

x

Figure 28.7 Logistic exponential: Effect of λ and δ on shape
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Figure 28.9 shows the best fit to the NHV disturbances, with q set to 1.13 and λ set to 1.11
resulting in RSS of 0.0721. The fit is noticeably better than the classic exponential with λ fitted
at 0.912 with RSS at 0.0935. For example, from Equation (28.42), the probability of a distur-
bance being no more than 5 is 0.975 and so there is a 2.5% chance that it will be exceeded. The
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Figure 28.9 Q-exponential: Improved fit to absolute changes in NHV

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

f(
x)

x

Figure 28.8 Q-exponential: Effect of q and λ on shape

444 Statistics for Process Control Engineers



NHV data was collected on a daily basis, so this is equivalent to expecting nine problems per
year. Equation (12.60) puts the chance at 1.0%, badly underestimating the number of problems
per year as four.

28.12 Benktander

The Benktander distribution is related to the exponential distribution. There are two types;
Type I is described by the PDF

f x = 1+
2δ ln x+ 1

λ
1 + λ+ 2δ ln x+ 1 −

2δ
λ

x + 1 − 2 + λ + δ ln x+ 1 (28.47)

x> 0, λ,δ> 0

Figure 28.10 shows the effect of λ and δ. The CDF is

F x = 1− 1 +
2δ ln x+ 1

λ
x + 1 − 1 + λ + δ ln x + 1 (28.48)

Type II is described by

f x = λ x + 1 δ−δ+ 1 x + 1 δ−2 exp
λ 1− x + 1 δ

δ
x > 0; λ > 0; 0 < δ ≤ 1 (28.49)

F x = 1− x + 1 δ−1 exp
λ 1− x + 1 δ

δ
(28.50)
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Figure 28.11 shows the effect of λ and δ. Setting δ to 1 gives the exponential distribution. Fitting
Equation (28.50) to the LPG splitter reflux 65 m3/hr event data gives λ as 0.0822 and δ as
0.991 – very close to the exponential distribution. RSS, as might be expected, is very slightly
improved at 0.0053.
While the mean for both types is 1/λ, as it is for the exponential distribution, the formula for

variance is too complex to be included here.
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29
Weibull Distribution

We covered a number of the Weibull distributions in Section 12.8. Here we describe two
enhanced versions.

29.1 Nukiyama–Tanasawa

The Nukiyama–Tanasawa distribution is an extension of the Weibull-II distribution.

f x =

δ2xδ1 exp −
x

β

δ2

βδ1 + 1Γ
δ1 + 1
δ2

x > 0; β,δ1,δ2 > 0 (29.1)

If δ1 is set to δ2 − 1, Equation (29.1) reverts to the Weibull-II distribution, as shown by the
coloured line in Figure 29.1. Varying δ1 has an effect similar to that of δ2. However, together
they make the distribution a little more flexible.

Fitting to the C4 in propane data, in this case, requires that F(xn) is forced to 1; otherwise the
fit in this area is very poor. Doing so sets β, δ1 and δ2 to 1.01, 2.954 and 0.948 respectively.
With RSS at 0.0779 the fit is poor compared to several alternative distributions.

29.2 Q-Weibull

Employing a method similar to that used to develop the q-Gaussian distribution from the
normal distribution, the q-Weibull distribution is developed from the Weibull distribution.
It is another in the family of Tsallis distributions.
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For q ≥ 1 the PDF is

f x = 2−q
δxδ−1

βδ 1 + q−1
x

β

δ
1

1−q

x > 0; β,δ> 0; q < 2 (29.2)

If q < 1 Equation (29.2) applies only if

0 < x < β 1−q −1
δ (29.3)

If q is set to 1, the distribution reverts to theWeibull-II distribution. Figures 29.2 and 29.3 show
the effect of adjusting q.
The CDF is

F x = 1− 1 + q−1
x

β

δ
2−q
1−q

(29.4)

The CDF can be inverted to

x = β
1−F x 1−q 2−q −1

q−1

1
δ

(29.5)
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Using the stock level example, Figure 29.4 shows that q-Weibull fits the data much better than
Weibull. The parameter q is fitted as −2.75, with δ as 2.10 and β as 3802. As an example, the
Weibull distribution predicts the probability of the stock level falling below 300 tonnes is 0.8%,
equivalent to three occasions per year. The q-Weibull puts it much higher at 2.3%, or eight
occasions per year. It actually occurred three times in 220 days – equivalent to five occasions
per year. Close inspection of Figure 29.4, at the stock level of 300 tonnes, shows the actual
number of occurrences is between the two predictions.
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30
Chi Distribution

The chi-distribution is described by the PDF

f x =

2 x−α f −1 exp
− x−α 2

2β2

β f 2
f
2Γ

f

2

β, f ≥ 1 30 1

The parameter f is often referred to as the degrees of freedom, in which case it should be
restricted to integers. Figure 30.1 shows the effect of changing f with α fixed at 0 and β at 1.

30.1 Half-Normal

With f set to 1, Equation (30.1) becomes almost the same as Equation (5.35), describing the
normal distribution.

f x =
2
π

1
β
exp

− x−α 2

2β2
β > 0 (30.2)

The only difference is a factor of 2 – required because it only applies to half the values of x,
i.e. those greater than the mean. It is therefore known as the half-normal distribution. Process
disturbances and inferential errors, which are likely to have a mean close to zero, might follow a
normal distribution. Their absolute value will then follow the half-normal distribution.

Fitting to the absolute values of the NHV disturbances gives α as −0.08 and β as 1.31. As
expected, because of the high kurtosis of the data, the fit is poor with RSS at 0.3248.

Mean and variance are

μ = α+ β
2
π

(30.3)
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σ2 = β2 1−
2
π

(30.4)

These give μ as 0.96 and σ as 0.52 – somewhat away from the values calculated from the data.
Unfortunately, skewness and kurtosis are fixed and so application is therefore restricted to

situations where these are close to the values calculated from the data.

γ =
2 4−π

π−2 1 5 ≈0 995 (30.5)

κ =
8 π−3

π−2 2 ≈0 869 (30.6)

30.2 Rayleigh

Setting f to 2 gives the Rayleigh distribution. It is also a special case of the Weibull-III distri-
bution that arises from setting, in Equation (12.74), δ to 2 and multiplying β by 2.
It is described by the PDF

f x =
x−α

β2
exp

− x−α 2

2β2
β > 0 (30.7)

In theory a variable (x) will follow this distribution if it is the geometric mean of two values
(x1 and x2), both sampled from the same normal distribution that has a mean of zero.
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x = x21 + x
2
2 (30.8)

While one might conceive, for example, an inferential property in which two variables are com-
bined in this way, they are unlikely to meet the condition that their means are both zero. In
practice the resulting distribution is likely to be close to normal. However, as usual, we do
not let the theory restrict us in considering the Rayleigh distribution as a contender for the prior
distribution.

Keeping α fixed at zero, Figure 30.2 plots Equation (30.7) for a range of values of β.
The CDF and its inverse are

F x = 1−exp
− x−α 2

2β2
(30.9)

x F = α+ −2β2 ln 1−F 0 ≤F ≤ 1 (30.10)

The mean and variance are

μ = α+ β
π

2
(30.11)

σ2 = β2 2−
π

2
(30.12)

Again skewness and kurtosis are fixed.

γ =
2 π π−3

4−π 1 5 ≈0 631 (30.13)
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κ = −
6π2−24π + 16

4−π 2 ≈0 245 (30.14)

30.3 Inverse Rayleigh

The inverse Rayleigh distribution is described by the PDF

f x =
2
β

β

x−α

3

exp −
β

x−α

2

β > 0 (30.15)

Figure 30.3 shows the effect of varying β.
Raw moments are given by

mn =Γ 1−
n

2
βn (30.16)

Therefore

μ = α+ πβ (30.17)

The second moment (m2) includes Γ(0), which is infinite. Variance, skewness and kurtosis can-
not therefore be defined.

30.4 Maxwell

Setting f to 3 gives the Maxwell distribution or, more fully, the Maxwell–Boltzmann distribu-
tion. This was developed for the very specific purpose of estimating the probability of the speed
of atoms (or molecules) in an ideal gas. With some similarity to the Rayleigh distribution, it
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describes the distribution resulting from the square root of the sum of the squares of three
values. It is described by the PDF

f x =
2
π

x−α 2

β3
exp

− x−α 2

2β2
β > 0 (30.18)

When used for its original purpose, the dispersion parameter (β) has a theoretical value based on
particle size and temperature. The PDF is plotted for a range of values of β as Figure 30.4.

The CDF is

F x = erf
x−α

β 2
−

2
π

x

β
exp

− x−α 2

2β2
(30.19)

Mean and variance are

μ = α+ 2β
2
π

(30.20)

σ2 = β2 3−
8
π

(30.21)

Again skewness and kurtosis are fixed.

γ =
2 2 16−5π

3π−8 1 5 ≈0 486 (30.22)

κ = −
4 3π2−40π + 96

3π−8 2 ≈0 108 (30.23)

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

f(
x)

x

Figure 30.4 Maxwell: Effect of β on shape

Chi Distribution 455



In general, for the chi distribution, the mean and standard deviation can be calculated from

μ= α+ β 2
Γ

f + 1
2

Γ
f

2

(30.24)

σ2 = f −
2Γ2 f + 1

2

Γ2 f

2

β2 (30.25)

And the skewness and kurtosis from

γ =

μ−α

β
1−2

σ2

β2

σ2

β2

3
2

(30.26)

κ =

1
2
− 2f −1 1−2

σ2

β2
−
3
2

1−2
σ2

β2

2

σ2

β2

2 (30.27)

While it would appear that γ and κ are affected by the choice of α and β, some simple manip-
ulation of the equations shows that this is not the case. Rearranging Equation (30.24)

μ−α

β
=
Γ

f + 1
2

2

Γ
f

2

(30.28)

Rearranging Equation (30.25)

σ2

β2
= f −

2Γ2 f + 1
2

Γ2 f

2

(30.29)

Substituting Equations (30.28) and (30.29) into Equation (30.26) eliminates α and β; so γ is
independent of both. Similarly we can substitute Equation (30.29) into Equation (30.27) to
show the same for κ. The skewness and kurtosis depend only on the choice of f. The numerical
values for skewness and kurtosis for the half-normal, Rayleigh and Maxwell distributions were
derived from these equations.
Because a negative number cannot be raised to a fractional power then, if any value of x

is less than α, f in the chi distribution must be an integer. As special cases of the chi
distribution, the half-normal, Rayleigh and Maxwell distributions need not be considered
separately. They exist, however, because a CDF can only be defined for values of f of
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1, 2 or 3. While a non-integer value of f has no engineering meaning, provided all values of
x are greater than α, there is no reason why f should not be adjusted, along with α and β, to
fit real data.

Fitting to the absolute value of the changes in the C4 content of the propane rundown gives
0.066 for α, 3.65 for β and 0.691 for f. Equation (30.24) gives the mean as 2.30 and
Equation (30.25) gives the standard deviation as 2.05.

Equations (30.26) and (30.27) give the skewness as 1.26 and kurtosis as 1.57. These are very
close to the values of 1.37 and 1.96, calculated from the original data. Figure 30.5 shows the
possible combinations of these parameters, with the calculated values happening to fall on
the line.

Figure 30.6 shows (as the black curve) the resulting cumulative distribution. Since we
have no CDF, we cannot invert it to obtain the QF. However, we can use the distribution as
plotted. For example, if the maximum tolerable change is 10, then we can be 97.8%
sure that this will not be exceeded. In other words we could expect to have disturbances
larger than this eight times per year. However, in 357 days only two disturbances actually
exceed 10. Close examination of the fit shows that it does not match well as F(x)
approaches unity.

One approach is, in the calculation of RSS, to more highly weight mismatching in the region
of interest. By applying the technique described by Equations (9.9) and (9.10), revised values
are 0.059 for α, 3.67 for β and 0.710 for f. The result, shown as the coloured curve in
Figure 30.6, more closely approaches the extreme values with an imperceptible change else-
where. Indeed, key parameters such as μ, σ, γ and κ are very little changed. But, importantly, the
probability of a disturbance being less than 10 increases to 98.6%. We would now expect five
disturbances per year to exceed this value. Still large compared to historical performance, a
better choice of prior distribution might be an option. Alternatively, as described in
Chapter 13, extreme value analysis would be applicable.
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30.5 Inverse Chi

The inverse chi distribution is described by the PDF

f x =
2β2

f
2

x−α f + 1Γ
f

2

exp −
2β2

x−α 2 β, f > 0 (30.30)

Figure 30.7 shows the effect of changing f, with α fixed at 0 and β at 1.
Fitting to the C4 in propane data gives α as 1.67, β as 1.11, f as 1.13 and F(x1) as 0.0939. F(x1)

being so far from zero indicates that the fit is poor. This confirmed by the RSS of 0.2725.
The fit to the NHV disturbance data is similarly poor with α at 11.79, β at 1.05, f at 1.83 and

F(x1) at 0.0978.
Raw moments are given by

mn =
Γ

f −n

2

Γ
f

2

2
n
2βn (30.31)

So, the mean and variance are

μ= α+
Γ

f −1
2

Γ
f

2

2β (30.32)
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σ2 = 2
Γ

f

2
Γ

f −2
2

−Γ2 f −1
2

Γ2 f

2

β2 (30.33)

30.6 Inverse Chi-Squared

The chi-squared distribution was covered in Section 12.9. The inverse chi-squared distribution
is defined by the PDF

f x =

β

2

f
2
exp −

β

2 x−α

Γ
f

2
x−α

f
2 + 1

β, f > 0 (30.34)

Figure 30.8 shows the effect of varying f, with α fixed at 0 and β at 1. As f ∞, the distribution
becomes the normal distribution.

Fitting to the C4 in propane example gives α as 0, β as 35.4, f as 8.81 and F(x1) as 0.0202. RSS
is 0.0336, which is comparable to that achieved by the best fitting distributions.

The mean and variance are

μ = α+
β

f −2
for f > 2 (30.35)

σ2 =
2β

2

f −2 2 f −4
for f > 4 (30.36)
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These give μ as 5.20 and σ as 3.35, both of which are somewhat different from those calculated
from the data.
Skewness and kurtosis are

λ =
4 2 f −4

f −4
for f > 6 (30.37)

κ =
3 f + 10 f −4
f −6 f −8

for f > 8 (30.38)

These give γ as 4.41 and κ as an unbelievable 119. Feasible combinations are shown in
Figure 30.9.

30.7 Noncentral Chi-Squared

The noncentral chi-squared distribution is defined by the PDF

f x =
1
2

x−α

β

δ−2
4
Iδ−2

2
β x−α exp −

x−α+ β
2

β > 0 (30.39)

The effect of varying δ and β, with α set to zero, is shown in Figure 30.10. The CDF is

F x = 1−Qδ 2 β, x (30.40)

The CDF uses the Marcum Q-function, as described in Section 11.9. For the reasons given,
fitting is simpler if instead we apply the trapezium rule to the PDF. This still involves the
use of the modified Bessel function of the first kind (I). Most spreadsheet packages that support
this only do so for integer values of (δ − 2)/2. This restricts δ to even integers. Fixing δ as 2,
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fitting to the C4 in propane data gives α as 1.70 and β as 1.65, with RSS as 0.6580. This is the
worst that has been achieved by any distribution evaluated. Fixing δ as 4 gives only a margin-
ally better fit with RSS at 0.6276. Fixing it at 6 gives a much poorer result. It is likely therefore
that the best choice of δ is somewhere between 2 and 4, but it would require specialist software
to determine this.

0

10

20

30

40

0 1 2 3 4

κ

γ

Figure 30.9 Inverse chi-squared: Feasible combinations of γ and κ

0.0

0.1

0.2

0.3

0 2 4 6 8 10

f(
x)

x

Figure 30.10 Noncentral chi-squared: Effect of δ and β on shape

Chi Distribution 461



Key parameters are

μ = α+ δ+ β (30.41)

σ2 = 2 δ + β (30.42)

γ =
2

δ+ 2β

3
2
δ+ 3β (30.43)

κ =
12 δ + 4β

δ+ 2β 2 + 3 (30.44)

Given the complexity involved, and the likelihood of a very poor fit, the distribution is unlikely
to be of value to the control engineer.
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31
Gamma Distribution

As a commonly used distribution, we covered the gamma distribution in detail in Section 12.10.
This chapter describes the range of possible modifications.

31.1 Inverse Gamma

The inverse gamma distribution is also known as the Pearson-V distribution and was covered
in Section 27.5.

31.2 Log-Gamma

There are at least five distributions that are described as the log-gamma distribution. In no par-
ticular order, the PDF of the first is

f x =
x + 1−α −

δ2 + 1
δ2

δδ12 Γ δ1
ln x + 1−α δ1 −1 x> α−1; δ1,δ2 > 0 (31.1)

Raw moments are given by

mn =
1

1−nδ2
δ1

(31.2)

This leads to

μ= α−1 +
1

1−δ2
δ1

(31.3)

σ2 =
1

1−2δ2
δ1
−

1

1−δ2
2δ1

(31.4)
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By replacing δ2 with 1/δ2, we obtain the same distribution that might, at first glance, appear
different

f x =
δδ12

Γ δ1 x + 1−α δ2 + 1
ln x + 1−α δ1 −1 x > α−1; δ1,δ2 > 0 (31.5)

Figure 31.1 plots Equation (31.5) and shows, with α fixed at zero, the effect of varying δ1
and δ2.
Raw moments are given by

mn =
δ2

δ2−n

δ1

(31.6)

This leads to

μ = α−1 +
δ2

δ2−1

δ1

(31.7)

σ2 =
δ2

δ2−2

δ1

−
δ2

δ2−1

2δ1
(31.8)

Fitting to the C4 in propane data, with α set to zero, gives δ1 as 17.9, δ2 as 10.5 and F(x1) as
0.0100. RSS is a respectable 0.0355. The mean is 4.92 and the standard deviation 2.76.
The second form of the log-gamma distribution is very similar but x is restricted to the range

0 to 1. Its PDF is

f x =
δδ12

Γ δ1 x1−δ2
− ln x δ1 −1 0 < x< 1; δ1,δ2 > 0 (31.9)

Figure 31.2 shows the effect of varying δ1 and δ2.

0.0

0.2

0.4

0.6

0 1 2 3 4

f(
x)

x

Figure 31.1 Log-gamma (1): Effect of δ1 and δ2 on shape

464 Statistics for Process Control Engineers



Raw moments are given by

mn =
δ2

δ2 + n

δ1

(31.10)

Therefore

μ=
δ2

δ2 + 1

δ1

(31.11)

σ2 =
δ2

δ2 + 2

δ1

−
δ2

δ2 + 1

2δ1
(31.12)

Before fitting, the C4 in propane data is scaled over their range, i.e. 1.5 to 15.8 vol%, so that x
covers the range 0 to 1. Fitting then gives δ1 as 4.50 and δ2 as 2.56. RSS is not as good at 0.0634.
The mean is 0.227, or 4.75 vol%. The standard deviation is 0.152, or a rather low 2.17 vol%.

The third version is described by the PDF

f x =
ln x+ 1−α δ1 −1

δδ12 Γ δ1 x + 1−α
exp −

1
δ2
ln x + 1−α x> α−1; δ1,δ2 > 0 (31.13)

Figure 31.3 shows the effect, with α set to zero, of varying δ1 and δ2.
Fitting to the C4 in propane data gives α as 1.31, δ1 as 11.6, δ2 as 0.137 and F(x1) as 0.0200.

RSS is a respectable 0.0321.
The PDF of the fourth version is substantially different.

f x =
1

δδ12 Γ δ2
exp δ1 x−α exp −

1
δ2
exp x−α δ1,δ2 > 0 (31.14)
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Figure 31.4 shows the effect of varying δ1 and δ2, with α fixed at zero. Of note is, that unlike
those described previously, it is unbounded.
Fitting to the C4 in propane data gives α as 0.967, δ1 as 0.441, δ2 as 97.6 and F(x1) as 0.0601.

As Figure 31.4 shows, the distribution is skewed in the opposite direction to the data and so, not
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surprisingly, RSS is very poor at 0.7886. However, fitting to (100 − C4) gives α as 92.9, δ1 as
0.436, δ2 as 97.1 and F(x1) as 0.0140. The resulting RSS is a respectable 0.0351.

The PDF of the fifth version is

f x =
δδ

δΓ δ
exp δ

x−α

β
−δexp

x−α

β
δ,β > 0 (31.15)

Figure 31.5 shows the effect of varying δ, with α fixed at 0 and β at 1. Again the skew is in the
wrong direction to fit the C4 in propane data. Fitting to (100 −C4) gives α as 96.8, β as 0.711, δ
as 0.276 and F(x1) as 0. RSS is an excellent 0.0283.

31.3 Generalised Gamma

The generalised gamma distribution is also known, the transformed gamma distribution[23]

and the Stacy–Mihram distribution. It is the un-shifted version of the Amoroso distribution that
we will cover in Chapter 34. Its PDF is

f x =
δ2

βΓ δ1

x

β

δ1δ2 −1

exp −
x

β

δ2

(31.16)

It includes the gamma, Weibull-II and exponential distributions as special cases, but these are
also covered by the Amoroso distribution.

Fitting to the C4 in propane data is problematic. Figure 31.6 shows the result of fixing β and
fitting δ1 and δ2. RSS does not pass through a minimum, suggesting that β should be 0.
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We will show in Chapter 34 that the mean is

μ =
Γ δ1 +

1
δ2

Γ δ1
β (31.17)

Also shown in Figure 31.6, as the coloured curve, is the resulting estimate of μ. By calculation
from the data, this is 4.87 – suggesting that β should be close to 1.

31.4 Q-Gamma

The q-gamma distribution is another in the family of Tsallis distributions. Depending on the
value of q, the PDF is

f x =
1−q δxδ−1 1 + q−1 x − λ

q−1

B δ,
λ

1−q
+ 1

x> 0; λ,δ> 0; 0 < q < 1 (31.18)

f x =
q−1 δxδ−1 1 + q−1 x − λ

q−1

B δ,
λ

q−1
−δ

x > 0; λ,δ> 0; 1 < q<
λ

δ
+ 1 (31.19)

If q is set to 1, the distribution reverts to the classic gamma distribution described by
Equation (12.92). Figure 31.7 shows this as the coloured line and the effect of varying q.
Fitting to the C4 in propane data, with q fixed at 1, gives values of 4.38 for δ and 0.988 for λ,

with RSS as 0.0660. Fully fitting gives q as 1.40, δ as 11.5 and λ as 7.41. RSS reduces
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significantly to 0.0418. Not surprisingly, the addition of a shape parameter will usually mean
that the q-gamma distribution will be a better fit than the gamma distribution.

Raw moments are given by

mn =
Γ δ+ n Γ

λ

1−q
+ δ+ 1

Γ δ Γ
λ

1−q
+ δ + n + 1 1−q n

0 < q < 1 (31.20)

mn =
Γ δ + n
Γ δ λn

q= 1 (31.21)

mn =
Γ δ+ n Γ

λ

q−1
−δ−n

Γ δ Γ
λ

q−1
−δ 1−q n

1 < q<
λ

δ+ n
+ 1 (31.22)

These give μ as 4.79 and σ as 2.63, close to the values calculated from the data. Somewhat
different are γ at 2.27 and κ at 15.2.
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32
Symmetrical Distributions

There remain a large number of distributions that are not extensions to those covered so far in
this book. Further they bear little relationship to each other. This chapter includes those that are
symmetrical, i.e. their skewness is zero. Asymmetric distributions follow in the next chapter.

The simplest example of a symmetrical distribution is the uniform distribution that we cov-
ered in Section 5.1. The most used is the normal distribution (Section 5.3). We have also cov-
ered others such as the Student t distribution (Section 12.5), logistic distribution (Section 22.1)
and the Cauchy distribution (Section 27.4). This chapter groups together others that fall into this
category. In the absence of any mathematical argument for arranging them in a particular
sequence, they are presented largely alphabetically.

There are several situations where we might reasonably expect the skewness of process data
to be zero. For example, when we check an inferential property against a laboratory result, it is
equally probable that error will be positive or negative. The distribution of errors will have a
skewness close to zero. Perhaps the most common application is in the analysis of process dis-
turbances. Disturbances in one direction are likely to be equally probable as those in the oppo-
site direction. Indeed, we will use the NHV data as the example to evaluate each of the
distributions. Of the symmetrical distributions considered so far, the best choice is logistic dis-
tribution – giving a value of 0.1061 for RSS. This provides the benchmark against which the
distributions in this chapter can be assessed.

32.1 Anglit

The anglit distribution is described by the PDF

f x =
1
β
sin

2 x−μ

β
+
π

2
=
1
β
cos

2 x−μ

β
μ−

πβ

4
< x < μ +

πβ

4
, β > 0 (32.1)

Figure 32.1 shows the effect of varying μ and β. The CDF is

F x = sin2
x−μ

β
+
π

4
(32.2)
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The QF is

x F = sin−1 F −
π

4
β + μ 0 ≤F ≤ 1 (32.3)

The mean is μ. The variance is

σ2 =
π2−8
16

β2≈0 117β2 (32.4)

Fitting to the NHV disturbance data gives μ as −0.02 and β as 3.16, from which the standard
deviation is derived as 1.08. At 0.2165 RSS is considerably worse than that from fitting the
normal distribution and much worse than that from the benchmark logistic distribution.
Kurtosis is fixed.

κ = 3−
2 π4−96

π2−8 2 ≈2 194 (32.5)

32.2 Bates

The Bates distribution is that of the mean of n values taken from the uniform distribution U
(0,1). It is described by the PDF

f x =
n

2 n−1

n

i= 0

−1 in nx− i n−1

i n− i

nx− i

nx− i
0 ≤ x ≤ 1; n > 1 (32.6)

Because of its definition, values (x) must first be scaled from 0 to 1 by applying the formula

xscaled =
x−xmin

xmax−xmin
(32.7)
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Key statistical parameters are

μ =
xmin + xmax

2
(32.8)

σ2 =
xmax−xmin

2

12n
(32.9)

κ = 3−
6
5n

(32.10)

Figure 32.2 shows the effect of changing n. As n ∞, the distribution approaches the normal
distribution. In fact the approach occurs at very low values of n. Shown as the coloured line is
the plot of the normal distribution based the mean and standard deviation calculated from
Equations (32.8) and (32.9) for n = 5. Examination of Equation (32.10) confirms this beha-
viour; kurtosis approaches 3 as n is increased. As n reaches 3, kurtosis is already well within
the range 3 ± 0.5, over which we might treat the distribution as normal. Since the distribution is
triangular when n = 2 and n must be an integer, it is unlikely that the distribution offers any
improvement on the fit achievable with the normal distribution. It is also considerably more
complex to use, for example, in a spreadsheet.

32.3 Irwin–Hall

The Irwin–Hall distribution is closely related to the Bates distribution. But, rather the distri-
bution of the mean of n values taken from the uniform distribution U(0,1), it is the distribution
of their sum. It can also therefore be known as the uniform sum distribution. It is described by
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f x =
1

2 n−1

n

i= 0

−1 in x− i n−1

i n− i

x− i

x− i
x > 0; n> 1 (32.11)

Because the distribution is symmetrical, remembering (from Section 5.1) that x is the floor
of x, i.e. the largest integer that is less than or equal to x, the PDF can also be written as

f x =
1

n−1

x

i= 0

−1 in x− i n−1

i n− i
(32.12)

Key parameters are

μ=
n

2
(32.13)

σ2 =
n

12
(32.14)

κ = 3−
6
5n

(32.15)

Figure 32.3 shows the effect of varying n. As n is increased the distribution approaches the
normal distribution. Indeed, using n = 12 is the basis of the technique, described in
Section 5.6, for generating a normal distribution.
For the same reasons as those for the Bates distribution, fitting the Irwin–Hall distribution to

process data offers no advantage over choosing the normal distribution.
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32.4 Hyperbolic Secant

The hyperbolic secant distribution is also known as the sech distribution. Its PDF is

f x =
1
2σ

sech
π x−μ

2σ
σ > 0 (32.16)

Remembering that

sech x =
2

ex + e−x
(32.17)

An alternative formulation of the PDF is therefore

f x =
1
σ

exp
π x−μ

2σ
+ exp −

π x−μ

2σ

−1

(32.18)

Figure 32.4 shows the effect of varying μ and σ.
The CDF can similarly be expressed in two ways.

F x =
1
2
+
1
π
tan−1 sinh

π x−μ

2σ
(32.19)

F x =
2
π
tan−1 exp

π x−μ

2σ
(32.20)

Fitting to the NHV disturbance data gives μ as −0.03, σ as 1.38 and RSS as 0.0837. Kurtosis,
calculated from the data, is 5.87 which happens to be close to the distribution’s fixed value of 5.
So, for example, it fits much better than the normal distribution with its kurtosis of 3.
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The QF can similarly be expressed in several ways.

x F = μ +
2σ
π
sinh−1 tan πF−

π

2

= μ−
2σ
π
sinh−1 cot πF

= μ +
2σ
π
ln tan

πF

2
0 ≤F ≤ 1

(32.21)

32.5 Arctangent

The PDF of the arctangent distribution is

f x =
β

tan−1 δβ +
π

2
1 + β2 x−α−δ 2

x ≥ α; β > 0 (32.22)

Figure 32.5 shows the effect of varying δ and β, with α fixed at 0. Strictly, because the distri-
bution has a lower bound and no upper bound, it is not completely symmetrical.
The CDF is

F x =
tan−1 δβ − tan−1 β α+ δ−x

tan−1 δβ +
π

2

(32.23)

Fitting to the NHV disturbance data gives α as −8.20, δ as 8.11 and β as 1.34. RSS is 0.0445.
There are no formulae for mean or variance, but (α + δ) is a measure of location and β of
dispersion. There are similarly no formulae for skewness or kurtosis.
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The QF is

x F = α+ δ+
1
β
tan F tan−1 αβ +

π

2
− tan−1 αβ 0 ≤F ≤ 1 (32.24)

As Figure 32.6 shows, the best fit has an extremely long upper tail that is entirely unsuitable for
this application. To illustrate this, consider an event that occurs, on average, once per year. F in
Equation (32.24) would be 364/365 and so x would be 89.5 – ten times larger than the largest
disturbance recorded.

32.6 Kappa

We previously covered the Hosking four parameter kappa distribution. This kappa distribution
is, however, very different. Its PDF is

f x =
K

πδβ2
3
2

Γ δ+ 1

Γ δ−
1
2

1 +
x−α 2

δβ2

− δ+ 1

δ> 0 5 (32.25)

When applied in the area of physics for which the distribution was developed, K is assigned a
numerical value. When fitting to process data K is adjusted to ensure F(x∞), or at least F(xn),
is unity.

Figure 32.7 shows, with α set to zero and β to 1, the effect of changing δ. Fitting to the NHV
disturbance data gives α as 0, β as 1.81, δ as 0.502, K as 2235 and F(x1) as 0.0142. RSS, at
0.0526, shows the fit is reasonable. There are however no simple formulae to calculate mean,
variance or kurtosis.
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While of limited practical application to the process industry, features of the kappa distribu-
tion are incorporated into several other distributions – some of which are described in this book.

32.7 Laplace

Devised by Pierre-Simon Laplace, the same mathematician that developed the transforms
found daunting by many control engineers, the Laplace distribution might be considered as
an alternative to the Cauchy distribution. It is special case of the generalised normal distribution
described in Section 20.12. Although its kurtosis is fixed at 6, by adjusting σ it can be fitted to
represent a wide range of leptokurtic distributions. It is effectively back-to-back exponential
distributions, reflected in the line x = μ, and also therefore known as the double exponential
distribution (as mentioned in Section 28.5). Its PDF is

f x =
1

σ 2
exp

− x−μ 2
σ

σ > 0 (32.26)

Figure 32.8 shows the effect of varying its parameters. Its CDF is

F x =
1
2
+

x−μ

2 x−μ
1−exp

− x−μ 2
σ

(32.27)

The QF is slightly complicated by the inclusion of the absolute value. We can split
Equation (32.27) into its two cases and then invert these. We then determine x(F) using both
Equations (32.29) and (32.31) and pick the solution that is within its bound.

F x =
1
2
exp

x−μ 2
σ

x> μ (32.28)

0.00

0.02

0.04

0.06

0.08

–4 –2 0 2 4

f(
x)

x

Figure 32.7 Kappa: Effect of δ on shape

478 Statistics for Process Control Engineers



x F = μ +
σ ln 2F

2
0 ≤F ≤ 1 (32.29)

F x = 1−
1
2
exp −

x−μ 2
σ

x ≤ μ (32.30)

x F = μ−
σ ln 2−2F

2
0 ≤F ≤ 1 (32.31)

Fitting to the NHV disturbance data gives μ as −0.04, σ as 1.56 and RSS as 0.0556. So, while a
slightly better fit than the Cauchy distribution, the QF make it slightly more cumbersome
to apply.

32.8 Raised Cosine

The cosine distribution is defined by the PDF, CDF and QF

f x =
1
2β

cos
x−μ

2β
μ−

πβ

2
< x< μ+

πβ

2
; β > 0 (32.32)

F x =
1
2

1 + sin
x−μ

β
(32.33)

x F = α+ βsin−1 2F−1 0 ≤F ≤ 1 (32.34)

Its mean is μ; its variance is

σ2 = β2 π2−8 (32.35)
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Figure 32.9 shows the effect of varying μ and β. It is unlikely to fit any form of process data.
However, the raised cosine distribution may be of more use. Its PDF is

f x =
1
2β

1 + cos
x−μ

β
π μ−β < x < μ + β (32.36)

Figure 32.10 shows the effect of varying μ and β. Its CDF is

F x =
1
2

1 +
x−μ

β
+
1
π
sin

x−μ

β
π (32.37)

Its mean is μ; its variance is

σ2 = β2
1
3
−
2
π2

(32.38)

Fitting Equation (32.37) to the NHV disturbance data gives values of 0.00 for α and 3.09 for β.
With RSS at 0.1887, the fit is poor. Furthermore, 20 of the 180 measurements fall outside the
limits of Equation (32.36) and are therefore ignored. Since we are likely to be most interested in
the probability of such extreme behaviour, this distribution would be a most unsuitable choice.
The kurtosis calculated from the data is 5.87. The kurtosis for the distribution is fixed, as

below, giving another reason for rejecting the distribution.

κ =
9 π4−20π2 + 120

5 π2−6 2 ≈2 41 (32.39)
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32.9 Cardioid

Related to the raised cosine distribution is the cardioid distribution, defined by the PDF

f x =
1
2π

1−2βcos x−μ 0 ≤ x < 2π, 0 < β < 0 5 (32.40)

It is an exampleof a circular distribution, in that x canbe an angle representing a direction– such
as a compass bearing. The PDF might then be the distribution of wind strength. Plotting f(x) as a
radar plot conventionallyplaces theorigin at thebottom.Addingπ to thewinddirection (in radians)
rotates the plot to put North at the top. Figure 32.11 shows the cardioid shape that gives the distri-
bution its name. It shows that themeanwind direction is south-east (a bearing of 135 ), defined by

μ= 135 ×
2π
360

+ π (32.41)

Figure 32.12 is a more conventional plot, showing the effect of β (with μ fixed at 0). If β is 0, we
obtain the uniform distribution U(0,2π). If β is 0.5 we obtain the raised cosine distribution. Note
that all curves pass through the points (μ + π/2, 1/2π) and (μ + 3π/2, 1/2π).

The CDF is

F x =
x

2π
−
β

π
sin x−μ (32.42)

32.10 Slash

While there is no definition of kurtosis for the slash distribution, it can represent the distribution
of data for which this is very large. Theoretically it is the distribution of the ratio of two numbers
with the numerator selected from N(0,1) and the denominator from U(0,1). This need not
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concern us; as usual we choose simply it on the basis that it provides the best fit to the data. It is
described by the PDF

f x =
σ

2π x−μ 2 1−exp −
1
2

x−μ

σ

2
x μ; σ > 0 (32.43)

f x =
1

2σ 2π
x= μ; σ > 0 (32.44)
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Figure 32.11 Cardioid: Circular plot showing effect of β on shape
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Figure 32.13 shows the effect of varying μ and σ. The distribution gives the fattest tails and
so is suitable if a highly platykurtic distribution is required. Its CDF is

F x =
1
2

1 + erf
x−μ

σ 2
−

σ

x−μ 2π
1−exp −

1
2

x−μ

σ

2
(32.45)

Fitting to the NHV disturbance data gives μ as −0.04, σ as 0.49 and RSS as 0.0440. This pro-
vides the best fit of all the distributions considered so far. By more properly identifying what is
kurtosis, it also gives the lowest estimate for the standard deviation.

32.11 Tukey Lambda

The Tukey lambda distribution is unusual in that, generally, it can only be described as a QF.

x F =
1
λ

Fλ− 1−F λ 0 ≤F ≤ 1; λ 0 (32.46)

x F = ln
F

1−F
0 ≤F ≤ 1; λ= 0 (32.47)

Figure 32.14 shows the effect of changing λ. Values of 1 or greater produce a uniform dis-
tribution. Values between 0.5 and 1 produce a bounded inverted U-shaped distribution. A value
of 0.135 gives approximately the normal distribution with a standard deviation of about 1.46.
A value of −1 gives approximately the Cauchy distribution. If λ is 0, the distribution becomes
the standard logistic distribution. It can then be expressed as a PDF and CDF.

f x =
exp −x

1 + exp −x 2 (32.48)
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F x =
1

1 + exp −x
(32.49)

The variance is

σ2 =
2 Γ 2λ + 1 −Γ2 λ+ 1

λ2Γ 2λ+ 2
λ> −

1
2

(32.50)

σ2 =
π2

3
λ = 0 (32.51)

Fitting Equation (32.46) to the NHV disturbance data, assuming a mean of 0, gives a value of
−0.0961 for λ. From Equation (32.50) we obtain a value for σ of 2.17. RSS is 41.0 but, since it is
based on predicting x rather than F, cannot be compared to the values achieved by other dis-
tributions. However we can make the comparison provided the alternative distribution can be
expressed as a QF. For example, the best fit so far was achieved with the slash distribution but
its CDF cannot readily be inverted. Next best was the Cauchy distribution. Its QF is given by
Equation (27.26). Fitting this to the NHV data, with α fixed at 0, gives a value for β as 0.219.
RSS is 167, showing the Cauchy distribution is substantially outperformed by the Tukey
distribution.
The kurtosis is

κ =
2λ+ 1 2Γ2 2λ+ 1 3Γ2 2λ+ 1 −4Γ λ + 1 Γ 3λ+ 1 +Γ 4λ+ 1

2 4λ + 1 Γ 4λ + 1 Γ2 λ+ 1 −Γ 2λ+ 1
2 (32.52)

This is plotted as Figure 32.15, showing that the distribution can represent both platykurtic and
leptokurtic data. It confirms that the normal distribution (κ = 3) is approximated by setting λ to
0.135. For the NHV data κ is 6.61, as shown. This is close to the value calculated from the data
as 5.87, giving further evidence that the Tukey distribution would be a good choice.
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32.12 Von Mises

The von Mises distribution, also known as the Tikhonov distribution, is described by
the PDF

f x =
exp βcos x−μ

2π I0 β
μ−π ≤ x ≤ μ+ π; β > 0 (32.53)

I0 is the zero order modified Bessel function, as described in Section 11.8. Figure 32.16 shows
the effect of adjusting β, with α fixed at 0.
The inclusion of the trigonometric function would make the function cyclic if it were not for

the bounds on x. For smaller values of β, f(x) does not approach zero at the bounds and so is
unlikely to match process behaviour. Indeed, as β approaches 0, the distribution approaches the
uniform distribution.
Fitting to the NHV disturbance data gives μ as −0.01 and β as 1.08. The lower and upper

bounds are therefore set at −3.15 and 3.13 respectively. Of the 180 data points, 20 fall outside
this range and are therefore ignored in fitting the data. Since the whole point of the study is to
explore the probability of large disturbances, the vonMises distribution would, in this example,
be an entirely unsuitable choice. This is confirmed by the value of 0.1149 for RSS – making it
one of the worse distributions to select for this dataset.
While there is no formula to calculate standard deviation, at higher values of β the distribu-

tion closely approaches the normal distribution. Its standard deviation (σ) can be obtained from
Figure 32.17. Applying this to the NHV data, as shown, gives σ as 1.17 – comparable to that
obtained by choosing the ill-fitting normal distribution.
There are no formulae for skewness and kurtosis.
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33
Asymmetrical Distributions

There are a wide range of continuous distributions that accommodate nonzero skewness. This
chapter includes those that are not obvious members of the groups covered in the previous
chapters. For the lack of any better way of sorting them they are largely in alphabetical order.

33.1 Benini

The three-parameter Benini distribution is described by

f x =
α

x
+
2β
x
ln

x

xmin
exp −α ln

x

xmin
−β ln

x

xmin

2

x > xmin; xmin,α,β > 0

33 1

F x = 1−exp −α ln
x

xmin
−β ln

x

xmin

2

= 1−
x

xmin

−α−β lnx− lnxmin

(33.2)

The two-parameter Benini distribution is obtained by setting α to 0.
Figure 33.1 shows the effect of varying α and βwith xmin fixed at 0.1. Fitting Equation (33.2)

to the NHV disturbance data gives xmin as 0.088, α very close to 0 and β as 0.164. With RSS at
0.1678 the fit is poor and the three-parameter version offers no advantage over the two-
parameter one.

Fitting to the C4 in propane data gives 1.75 for xmin, 0 for α and 0.900 for β. RSS is 0.0865,
making it one of the poorer choices.

For both versions, the calculations for mean and variance require mathematics beyond the
scope of this book.
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33.2 Birnbaum–Saunders

The Birnbaum–Saunders distribution is also known as the fatigue life distribution, indicating
the purpose for which it was originally developed. Its PDF is

f x =

x−α

β
+

β

x−α
exp

1

2δ2
x−α

β
−

β

x−α

2

2δ x−α 2π
x> α; β,δ> 0 (33.3)

Figure 33.2 shows the effect of varying δ (with α fixed at 0 and β at 1). The CDF is

F x =
1
2
+
1
2
erf

1

δ 2

x−α

β
−

β

x−α
(33.4)

Fitting to the C4 in propane data gives values for α, β and k as 0.603, 3.67 and 0.58 respectively.
RSS is 0.0304 – a very close fit. The equations below give the mean as 4.89 and the standard
deviation as 2.55.

μ = α+ β 1 +
δ2

2
(33.5)

σ2 = δ2β2 1 +
5δ2

4
(33.6)

Applying the Equations (33.7) and (33.8), Figure 33.3 shows the distribution can only represent
positive skewness and leptokurtosis (with κ > 6).
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γ =
16δ2 11δ2 + 6

5δ2 + 4
3 (33.7)

κ =
6 118δ4 + 81δ2 + 16

5δ2 + 4
2 (33.8)

33.3 Bradford

The PDF of the Bradford distribution is

f x =

λ

xmax−xmin

λ
x−xmin

xmax−xmin
+ 1 ln λ+ 1

xmin ≤ x ≤ xmax; λ> −1 (33.9)

With xmin set to 0 and xmax to 1, Figure 33.4 shows the effect of changing λ. Setting it to zero
gives the uniform distribution. The CDF is

F x =
ln

λ x−xmin

xmax−xmin
+ 1

ln λ + 1
(33.10)

Choosing xmin as 0 and xmax as 10, fitting to the NHV disturbance data gives a value of 131 for λ.
With RSS at 1.55, the Bradford distribution cannot be adjusted to fit the data well.
The mean and variance are

μ=
λ xmax−xmin + ln λ + 1 xmin λ+ 1 −xmax

λ ln λ + 1
(33.11)
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σ2 =
xmax−xmin

2 λ + 2 ln λ+ 1 −2λ

2λln2 λ + 1
(33.12)

There are formulae published for skewness and kurtosis, but which are far too large to
include here.

33.4 Champernowne

The Champernowne distribution describes two different distributions. The PDF of the first is

f x =
δ1δ2

δ1xδ1 −1

xδ1 + δ2δ1
2 x > 0; δ1,δ2 > 0 (33.13)

Figure 33.5 shows the effect of varying δ1 and δ2.
The CDF is

F x =
xδ1

xδ1 + δ2δ1
(33.14)

Fitting to the C4 in propane data gives δ1 as 3.39 and δ2 as 4.30. RSS is poor at 0.0731. There are
no formulae published for mean, variance, skewness or kurtosis.

The PDF of the second form of the distribution is

f x =
δ1 sin δ2

π x−α
x−α

β

−δ1

+
x−α

β

δ1

+ 2cos δ2

x > 0; β,δ1 > 0; 0 < δ2 < π (33.15)

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

f(
x)

x

Figure 33.5 Champernowne (1): Effect of δ1 and δ2 on shape

Asymmetrical Distributions 491



Figure 33.6 shows the effect of varying δ1 and δ2 with α fixed at 0 and with β at 1.
Fitting to the C4 in propane data gives α as 1.41, β as 3.00, δ1 as 2.239, δ2 as small as possible

(set to 0.001) and F(x1) as 0.0303. RSS is mediocre at 0.0441.
Raw moments are given by

mn =
π sin n

δ2
δ1

δ2 sin n
π

δ1

βn δ1 > n (33.16)

This gives the mean as 5.69 and the standard deviation as 7.80 – both much larger than the
values calculated from the data. Because δ1 is less than 3 neither skewness nor kurtosis can
be calculated.
Figure 33.7 shows the feasible combinations of skewness and kurtosis.

33.5 Davis

The Davis distribution is described by the PDF

f x =
βδ

Γ δ ζ δ x−α δ+ 1 exp
β

x−α
−1

−1

β,δ > 0 (33.17)

It includes the Riemann zeta function (ζ) as described in Section 11.10. This involves a sum to
infinity that only converges if δ is greater than 1. Figure 33.8 shows the effect of varying δ, with
α fixed at 0 and β at 1.
Fitting the distribution to the C4 in propane data gives values of 6.80 for δ, −0.930 for α and

32.9 for β. At 0.0445, RSS is bettered by several other, easier to apply, distributions.
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The mean and variance are

μ= α+
ζ δ−1
δ−1 ζ δ

β δ> 2 (33.18)

σ2 =
δ−1 ζ δ−2 ζ δ − δ−2 ζ2 δ−1

δ−2 δ−1 2ζ2 δ
β2 δ> 3 (33.19)

These give μ as 4.81 and σ as 2.71.
A special case of the Davis distribution is Planck’s Law. This predicts the frequency spec-

trum of thermal radiation from a body at a given temperature. While expressed in terms of the
energy emitted at each frequency, rather than probability, such a spectrum is analogous to
a PDF.

33.6 Fréchet

The Fréchet distribution is also known as the inverse Weibull distribution, the log-Gompertz
distribution or the Gumbel-II distribution. It is described by the PDF

f x =
δ

β

β

x−α

δ+ 1

exp −
β

x−α

δ

β,δ > 0 (33.20)

Figure 33.9 shows the effect of varying δ, keeping α at 0 and β at 1.
The CDF is

F x = exp −
β

x−α

δ

(33.21)
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Fitting the distribution to the C4 in propane data gives values of 5.09 for δ, −4.87 for α and 8.50
for β. At 0.0391, RSS is comparable with many of the well-fitting distributions.

The CDF can be inverted to

x F = α+ β − ln F −1 δ (33.22)

Raw moments are given by

mn =Γ 1−
n

δ
βn δ > n (33.23)

And so

μ = α+ βΓ 1−
1
δ

δ> 1 (33.24)

σ2 = β2 Γ 1−
2
δ

−Γ2 1−
1
δ

δ > 2 (33.25)

From these equations μ is estimated as 4.99 and σ as 3.03. As Figure 33.10 shows, the fitted
skewness and kurtosis are much greater than the calculated values. As Figure 33.11 shows, this
arises because the fitted distribution has a longer tail than the data. This would also suggest the
fitted standard deviation is an overestimate.

Its long tail is applicable to extreme value analysis that we covered in Chapter 13. It is there-
fore also known as the extreme value-II distribution.

This distribution is not to be confused with the reverse Weibull distribution. This is the sur-
vival function from Equation (12.72) and is also used in extreme value analysis.

S x = 1−F x = exp −
x−α

β

δ

(33.26)
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33.7 Gompertz

The Gompertz distribution is described by the PDF

f x = αexp βx exp −
α

β
exp βx −1 x ≥ 0; α> 0 (33.27)

The effect of α and β is shown in Figure 33.12.
Its CDF is

F x = 1−exp −
α

β
exp βx −1 (33.28)

Inversion gives the QF

x F =
1
β
ln 1−

β

α
ln 1−F 0 ≤F ≤ 1 (33.29)

Fitting the distribution to the C4 data gives values for α and β of 0.0482 and 0.436 respectively.
With RSS at 0.9764, the fit is poor.
Fitting to the absolute values of the NHV disturbances gives α as 32.3 and β as 0.0383, with

RSS at 0.1074.
The Gompertz distribution is also published in the form

f x = αδx exp −
α δx−1
ln δ

x ≥ 0; δ> 0 (33.30)

F x = 1−exp −
α δx−1
ln δ

(33.31)
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Figure 33.11 Fréchet: Fitted to C4 in propane data

496 Statistics for Process Control Engineers



At first glance this might appear to be a quite different distribution. Understandably the engi-
neer might include them both in the possible prior distributions fitted to the data. Both will give
exactly the same RSS, giving a very strong indication that they are identical. Indeed, this can
often be the easiest way of checking whether distributions sharing the same name are in fact the
same. Identical RSS would then prompt the engineer to look more closely at the parameters of
each CDF to see if those in one can be mapped into those of the other. In this case, β in
Equations (33.27) and (33.28) is replaced with ln(δ).

ln exp βx = βx = x ln δ = ln δx ∴ exp βx = δx (33.32)

The same substitution in Equation (33.29) gives the QF

x F =
1

ln δ
ln 1−

ln δ

α
ln 1−F 0 ≤F ≤ 1 (33.33)

33.8 Shifted Gompertz

The shifted Gompertz distribution is not ‘shifted’ in the true sense of the word. If it were, then it
should be possible, by setting a parameter (such as α), to have it revert to the classic Gompertz
distribution.

It is defined by

f x = βexp −βx−αexp −βx 1 + α 1−exp −βx x ≥ 0; α,β > 0 (33.34)

F x = exp −αexp −βx 1−exp −βx (33.35)

Figure 33.13 shows the effect of changing α, with β fixed at 1. Fitting Equation (33.35) to the C4

in propane data gives α as 6.50 and β as 0.550, with RSS at 0.1240.
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Fitting to the absolute values of the NHV disturbances gives α as −0.862 and β as 0.412, with
RSS at 0.0718.

33.9 Gompertz–Makeham

The Gompertz–Makeham distribution, or sometimes simply the Makeham distribution,
includes an additional parameter (λ).

f x = αeβx + λ exp −
α

β
exp βx −1 −λx x ≥ 0; λ> 0 (33.36)

F x = 1−exp −
α

β
exp βx −1 −λx (33.37)

Figure 33.14 illustrates some of what distributions can be represented. Fitting to the C4 in
propane data gives values for α, β and λ of −0.758, −0.227 and 0.643 respectively, with RSS
at 0.0867.
Fitting to the absolute values of the NHV disturbances gives α as 1.65, β as −0.0798 and λ as

−0.677. With RSS at 0.0682 this distribution is the best of the Gompertz group.
As with the Gompertz distribution, replacing β with ln(δ) gives a different looking version of

the same distribution.

f x = αδx + λ exp −
α

ln δ
δx−1 −λx (33.38)

F x = 1−exp −
α

ln δ
δx−1 −λx (33.39)
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33.10 Gamma-Gompertz

The gamma-Gompertz distribution is defined by

f x =
βδαδ exp βx

α−1 + exp βx δ+ 1 x ≥ 0; α,β,δ > 0 (33.40)

F x = 1−
αδ

α−1 + exp βx δ (33.41)

Figure 33.15 illustrates some of what distributions can be represented. Of the four versions
evaluated for the C4 data, this distribution fits best. RSS is 0.0328 with α set to 229, β to
2.20 and δ to 0.177.

Fitting to the absolute values of the NHV disturbances gives α as 0.228, β as 0.0468 and λ at
4.77, with RSS at 0.0732.

For the C4 in propane data, comparison of the four distributions is shown in Figure 33.16. For
all of them, the calculation of mean, variance, skewness and kurtosis involve very complex
formulae. Since several, easier to apply, distributions outperform the Gompertz distributions,
it is unlikely that their use could be justified in the process industry.

33.11 Hyperbolic

In principle the hyperbolic distribution takes the shape of a hyperbola, although this is not obvi-
ous from its PDF. This includes the modified Bessel function of the second kind (K), as
described in Section 11.8.
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f x =
λ2−β2

2λβK1 β λ2−β2
exp δ x−α −λ β2 + x−α 2 (33.42)

Figure 33.17 shows how the symmetry parameter (δ) affects skewness. Figure 33.18 shows
how λ affects kurtosis.

Fitting to the C4 in propane data gives α as 2.25, β as 0.744, λ as 1.74, δ as 1.33 and F(x1) as
0.0182. RSS is 0.0279 – the best achieved by any distribution.

The mean and variance are

μ= α+
βδK2 β λ2−δ2

λ2−δ2K1 β λ2−δ2
(33.43)

σ2 =
βK2 β λ2−δ2

λ2−δ2K1 β λ2−δ2
+

δ2β2

λ2−δ2

K3 β λ2−δ2

K1 β λ2−δ2
−
K2

2 β λ2−δ2

K2
1 β λ2−δ2

(33.44)

These give μ as 4.97 and σ as 2.65 – close to the values determined by calculation from the data.
Fitting to the NHV disturbance data gives α as −0.28, β as 0.0001, λ as 0.970, δ as 0.207 and

F(x1) as 0.0184. Although RSS is low at 0.0320, such a low value for β places doubt on the
reliability of the fit. Variation in dispersion (quantified by β) can be difficult to distinguish from
variation in kurtosis (quantified by λ). The NHV disturbance data is extremely leptokurtic –

perhaps aggravating the problem. The estimates of μ as 0.18 and σ as 1.56 are somewhat dif-
ferent from the values calculated from the data – placing further suspicion on the result. This
again frustrates the aim of identifying a distribution that works well for all datasets.

The formulae for skewness and kurtosis are too long to be included here but can be derived
from the moment generating function.
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M t =
λ2−δ2K1 β λ2− δ + t 2

λ2− δ + t 2K1 β λ2−δ2 exp αt

(33.45)

The generalised hyperbolic distribution also includes the Bessel function but of an order that
need not be an integer. This is not supported by most spreadsheet packages.

33.12 Asymmetric Laplace

The asymmetric Laplace distribution is derived from the Laplace distribution described in
Section 32.7. It is defined by the PDF

f x =
δ

β δ2 + 1
exp

x−α

βδ
x < α; β,δ> 0 (33.46)

f x =
δ

β δ2 + 1
exp −

δ x−α

β
x ≥ α; β,δ> 0 (33.47)

Figure 33.19 shows the effect, with α and β constant, of varying δ. Values of δ between 0 and 1
give a positive skewness; values greater than 1 give a negative skewness.
The CDF is

F x =
δ2

δ2 + 1
exp

x−α

βδ
x < α (33.48)
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F x = 1−
1

δ2 + 1
exp −

δ x−α

β
x ≥ α (33.49)

Fitting to NHV disturbance data gives α as −0.203, β as 1.08 and δ as 0.891. RSS is 0.0380,
showing that the fit is one of the best.

The mean and variance are

μ= α+
1−δ2

δ
β (33.50)

σ2 =
δ4 + 1

δ2
β2 (33.51)

These give values of 0.05 for μ and 1.54 for σ.
Skewness and kurtosis are

γ =
2 1−δ6

δ4 + 1
3 2

(33.52)

κ =
3 3δ8 + 2δ4 + 3

δ4 + 1
2 (33.53)

This gives γ as 0.48 and κ as 6.15, both close to the values calculated from the data as 0.62 and
5.87. As Figure 33.20 shows the distribution is restricted to relatively mild skewness and
leptokurtosis.

A different presentation of the distribution results from defining β1 as βδ and β2 as β/δ. The
equations above then become

f x =
1

β1 + β2
exp

x−α

β1
x < α (33.54)
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f x =
1

β1 + β2
exp −

x−α

β2
x ≥ α (33.55)

F x =
β1

β1 + β2
exp

x−α

β1
x < α (33.56)

F x = 1−
β2

β1 + β2
exp

x−α

β2
x ≥ α (33.57)

μ= α+ β2−β1 (33.58)

σ2 = β21 + β
2
2 (33.59)

γ =
2 β31− β32

β21 + β22
3 2

(33.60)

κ =
3 3 β41 + 2 β

2
1 β

2
2 + 3 β

4
2

β21 + β22
2 (33.61)

33.13 Log-Laplace

As with many other distributions, we can replace x with ln(x) to produce the first of two dis-
tributions entitled the log-Laplace distribution. While the distribution is symmetrical in ln(x), it
is not so in x, and so might be considered for skewed data. Its PDF is

f x =
1
2βx

exp
− ln x −α

β
x ≥ 0; β > 0 (33.62)
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Its CDF is

F x =
1
2

1 +
ln x −α

ln x −α
1−exp

− ln x −α

β
(33.63)

Figure 33.21 shows the effect of varying α and β. As a lower-bounded distribution it cannot be
applied to process disturbances. Because of the discontinuity at x = eα, the distribution is
unlikely to represent any other set of process data.

Including the same skewness parameter (δ) as used in the asymmetric Laplace distribution
gives the asymmetric log-Laplace distribution, which is similarly unlikely to be applicable to
the process industry.

Another distribution also bears the log-Laplace title and is also known as the log-double
exponential distribution. Its PDF is

f x =
δ

2β
x−α

β

δ−1

0 < x < α; β,δ> 0 (33.64)

f x =
δ

2β
x−α

β

−δ−1

x ≥ α; β,δ> 0 (33.65)

If δ is 1, the part of the distribution where x is less than α becomes the uniform distribution. If set
to 2 it becomes the triangular distribution. Figure 33.22 shows the effect of increasing δ above
this value, with α fixed at 0 and β at 1. The distribution becomes increasingly symmetrical as δ
is increased further.

Its CDF is

F x =
1
2

x−α

β

δ

for 0 < x< α (33.66)
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F x = 1−
1
2

x−α

β

−δ

for x ≥ α (33.67)

This version, too, probably has little application in the process industry.

33.14 Lindley

The Lindley distribution[24] has a number of enhanced versions. The basic PDF is

f x =
λ2

λ+ 1
x + 1 e−λx x ≥ 0, λ > 0 (33.68)

Figure 33.23 shows the effect of adjusting λ.
Its CDF is

F x = 1−
λx

λ+ 1
+ 1 e−λx (33.69)

Fitting this to the C4 in propane data gives λ as 0.326 and RSS as 3.78. Clearly the fit is very
poor – primarily because there is only one parameter to adjust.
Raw moments are given by

mn =
n λ + n + 1
λn λ + 1

(33.70)

The mean and variance are therefore

μ =
λ+ 2

λ λ + 1
(33.71)
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Figure 33.22 Log-Laplace (2): Effect of δ on shape
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σ2 =
λ2 + 6λ + 2

λ2 λ+ 1 2 (33.72)

Figure 33.24 shows the feasible combinations of skewness and kurtosis.

33.15 Lindley-Geometric

One published modification to the Lindley distribution is the addition of another parameter (δ)
to give the Lindley-geometric distribution.[25] Its PDF is

f x =
1−δ

λ2

λ+ 1
x+ 1 e−λx

1−δ
λx

λ + 1
+ 1 e−λx

2 x ≥ 0; λ > 0 (33.73)

The effect of varying δ, with λ fixed at 1, is shown in Figure 33.25. If δ is set to 0 the PDF reverts
to the classic Lindley distribution.

Its CDF is

F x =
1−

λx

λ + 1
+ 1 e−λx

1−δ
λx

λ+ 1
+ 1 e−λx

(33.74)

Fitting to the C4 in propane data gives 0.861 for λ and −13.1 for δ. The fit, although RSS
improves to 0.5022, is still poor. There are published formulae for the mean and variance
but these are extremely complex.
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33.16 Generalised Lindley

The PDF of the generalised Lindley distribution[26] is

f x =
λδ1 + 1xδ1 −1

δ1Γ δ1 λ+ δ2
δ2x + δ1 e−λx x ≥ 0; λ,δ1,δ2 > 0 (33.75)

This is a compound of the classic Lindley and gamma distributions. Indeed if δ2 is set to 0 it
becomes the classic gamma distribution and if both δ1 and δ2 are set to 1 it becomes the classic
Lindley distribution. The principle is that, rather than assume λ is a constant, it varies randomly
following the gamma distribution.

The effect of varying δ1 and δ2, with λ fixed at 1, is shown in Figure 33.26.
There is no published CDF. Fitting the PDF gives values for λ, δ1 and δ2 as 0.988, 4.38 and

−0.0003. With δ2 so close to zero, the contribution by the Lindley distribution is negligible. We
have effectively selected the gamma distribution. RSS is 0.0660, which is a further improve-
ment but still does not approach the accuracy achieved by other distributions. Further there are
no published methods of determining the mean, variance, skewness or kurtosis.

Figure 33.27 compares the fits of each of the Lindley distributions.

33.17 Mielke

More fully described as the Mielke beta-kappa distribution, its PDF is

f x =

δ1
β

x−α

β

δ1 −1

1 +
x−α

β

δ2
δ1
δ2
+ 1

x ≥ α; β,δ1,δ2 > 0 (33.76)
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Figure 33.28 shows the effect of adjusting δ1 and δ2, keeping α at 0 and β at 1.
The CDF is

F x =

x−α

β

δ2

1 +
x−α

β

δ2

δ1
δ2

(33.77)

Fitting the distribution to the C4 in propane data gives α as 1.84, β as 0.0458, δ2 as 0.999 and δ1
as 39.2. With RSS at 0.4448, this type of distribution would clearly be a poor choice in this case.
Further there are no simple formulae to determine mean, variance, skewness or kurtosis.

33.18 Muth

The PDF of the Muth distribution is

f x =
1
β

exp
δ x−α

β
−δ exp

δ x−α

β
−
1
δ

exp
δ x−α

β
−1 x ≥ α; β,δ> 0

(33.78)

Figure 33.29 shows the effect of varying δ with α fixed at 0 and β at 1. The CDF is

F x = 1−exp
δ x−α

β
−
1
δ

exp
δ x−α

β
−1 (33.79)
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Figure 33.27 Lindley: Comparison of fits to C4 in propane data
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Fitting to the C4 data gives α as 1.96, β as 2.83 and δ as 0.293. With RSS at 0.0850 the fit
is considerably better than the normal distribution but many other types of distribution fit
the data better. Further there are no published calculations for mean, variance, skewness or
kurtosis.
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Figure 33.28 Mielke: Effect of δ1 and δ2 on shape
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33.19 Nakagami

The PDF of the Nakagami distribution is

f x =
2 x−α δ−1

βδΓ
δ

2

exp −
x−α

β

2

x ≥ α; β,δ> 0 (33.80)

Figure 33.30 shows the effect of changing δ, with α fixed at 0 and β at 1. At higher values, δ has
very little effect on shape – mainly affecting location.
Fitting to the C4 in propane data gives values of 0.720 for δ, 2.35 for α and 5.55 for β. RSS is

0.2074 – barely better than the normal distribution.
The equations below then give the mean as 4.83 and the standard deviation as 2.63.

μ = α+
Γ

δ + 1
2

Γ
δ

2

β (33.81)

σ2 = β
2
δ
−

2
δ

2Γ2 δ+ 1
2

Γ2 δ

2

(33.82)

As the solid line in Figure 33.31 shows, of concern are the 36 values of x that are less than α
and are therefore excluded during fitting. Fixing α at 1.50 (the smallest x) includes all the points
and gives values for δ and β of 0.736 and 7.61 respectively. But, as shown by the dashed line,
the fit becomes far less accurate with RSS at 1.337.
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33.20 Power

The power distribution is defined by the PDF

f x =
δ x−α δ−1

βδ for 0 < x< β (33.83)

Figure 33.32 shows the effect of adjusting δ (with β fixed at 3). Normally βwould be set slightly
above the highest value in the data. More likely to be applicable to process data are values of δ
less than 1. Setting δ to 1 gives the uniform distribution U(0,1/β).

The CDF is

F x =
x−α

β

δ

(33.84)

The CDF can be inverted to give the QF.

x F = α+ βF1 δ 0 ≤F ≤ 1 (33.85)

Fitting to the NHV disturbance data gives β as 9.5 and δ as 0.294. With RSS at 3.182, the dis-
tribution would be a very poor choice.

Fitting to the intervals between the 129 events, of LPG splitter reflux exceeding 70 m3/hr,
gives β as 238 and δ as 0.326. Again the fit is very poor.

The mean and variance are

μ= α+
βδ

δ + 1
(33.86)

σ2 =
δβ2

δ + 2 δ+ 1 2 (33.87)
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Figure 33.31 Nakagami: Data ignored when fitted to C4 in propane data
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Not meriting documenting, the fitted means and standard deviations are well away from those
calculated from the data.
Skewness and kurtosis are

γ =
2 δ−1 δ+ 2

δ+ 3 δ
(33.88)

κ =
3 3δ2−δ+ 2 δ+ 2

δ δ+ 3 δ + 4
(33.89)

Figure 33.33 shows the feasible combinations of skew and kurtosis. The fitted values are well
away from all those calculated – showing again the poor choice of prior distribution.

33.21 Two-Sided Power

The two-sided power (TSP) distribution is described by the PDF

f x =
δ

xmax−xmin

x−xmin

xmode−xmin

δ−1

xmin ≤ x < xmode; δ> 0 (33.90)

f x =
δ

xmax−xmin

xmax−x

xmax−xmode

δ−1

xmode ≤ x ≤ xmax; δ> 0 (33.91)

Figure 33.34 shows the effect of varying δ, with xmin set to 1, xmode set to 3 and xmax set to 8.
Setting δ to 1 gives the uniform distribution U(1,8); setting it to 2 gives the triangular
distribution.
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The CDF is

F x =
xmode−xmin

xmax−xmin

x−xmin

xmode−xmin

δ

xmin ≤ x < xmode (33.92)

F x = 1−
xmax−xmode

xmax−xmin

xmax−x

xmax−xmode

δ

xmode ≤ x ≤ xmax (33.93)

Fitting to the NHV disturbance data, with xmin set to the lowest measurement of −8.42 and xmax

set to the highest of 9.51, gives xmode as −0.15 and δ as 7.75. RSS is 0.0567.
The mean and variance are

μ =
xmin + δ−1 xmode + xmax

δ+ 1
(33.94)

σ2 =
δ x2min + x2max −2xmode δ−1 xmin + xmax−xmode −2xminxmax

δ + 1 2 δ+ 2
(33.95)

These give μ as 0.01 and σ as 1.38. The result is reasonably insensitive to the choice of xmin and
xmax. For example, setting them to −5 and +5 and refitting gives μ as −0.03 and σ as 1.27. Set-
ting them to −15 and +15 gives μ as −0.03 and σ as 1.40. However, the standard deviation is
somewhat lower than that calculated from the data. This, and the relatively high RSS indicates
that the TSP distribution might be a poor choice in this case.

33.22 Exponential Power

The title exponential power distribution is given to two quite different distributions. One is less
ambiguously known as the generalised normal distribution, as covered in Section 20.12. The
PDF of the other is

f x =
δλ

β

x−α

β

δ−1

exp λ
x−α

β

δ

exp 1−λ
x−α

β

δ

x ≥ α; β,δ,λ> 0 (33.96)

Figure 33.35 shows the effect of changing λ and δ, with α fixed at 0 and β at 1.
The CDF is

F x = 1−exp 1−exp λ
x−α

β

δ

(33.97)

This can be inverted to give the QF.

x F = α+ β
ln 1− ln 1−F

λ

1
δ

0 ≤F ≤ 1 (33.98)

Fitting to the C4 in propane data gives α as 1.97, β as 3.88, λ as 0.826 and δ as 0.905. RSS is
0.1102 – a mediocre fit compared to what is achieved by other distributions.
Fitting to the NHV disturbance data gives α as −2.13, β as 3.19, λ as 0.985 and δ as 1.51. RSS

is 0.2029 – also a mediocre fit.
There are no formulae for mean, variance, skewness or kurtosis.
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33.23 Rician

The Rician (or Rice) distribution was originally developed to model the fading of a radio signal
caused by multi-path interference. It is described by the PDF

f x =
x

β2
exp −

x2 + α2

2β2
I0

αx

β2
x ≥ 0; α,β > 0 (33.99)

I0 is the zero order modified Bessel function, as described in Section 11.8. Figure 33.36 shows
the effect of changing α with β fixed at 1. Values below 2 affect shape; higher values change
only location.

The CDF includes the Marcum Q-function (Q1) described in Section 11.9.

F x = 1−Q1
α

β
,
x

β
(33.100)

For the reasons given, fitting to the C4 in propane data instead uses the trapezium rule. It
gives values of 3.18 for α and 2.28 for β – resulting in 0.1617 for RSS. While a better fit than
the normal distribution, it is outperformed by many others. The calculations of key parameters
such as mean, variance, skewness and kurtosis are complex. In the process industry, the Rician
distribution probably has little advantage over other distributions.

33.24 Topp–Leone

The PDF of the Topp–Leone distribution is

f x = δ 2−2x 2x−x2
δ−1

0 ≤ x ≤ 1; δ> 0 (33.101)

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

f(
x)

x

Figure 33.35 Exponential power: Effect of λ and δ on shape
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Figure 33.37 shows the effect of adjusting δ. The CDF is

F x = 2x−x2
δ

(33.102)

The CDF can be inverted and solved as a quadratic equation to give the QF.

x F = 1− 1−F1 δ 0 ≤F ≤ 1 (33.103)
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Including the range of x, so that it can remain in engineering units gives the PDF

f x =
δ

xmax−xmin
2−2

x−xmin

xmax−xmin
2

x−xmin

xmax−xmin
−

x−xmin

xmax−xmin

2 δ−1

xmin ≤ x ≤ xmax; δ> 0

(33.104)

and the CDF

F x = 2
x−xmin

xmax−xmin
−

x−xmin

xmax−xmin

2 δ

(33.105)

The QF then becomes

x F = xmin + xmax−xmin 1− 1−F1 δ 0 ≤F ≤ 1 (33.106)

Fitting Equation (33.105) to the C4 in propane data gives values for xmin, xmax and δ of 1.97,
10.4 and 0.947 respectively. At 0.1520 RSS is better than that for the normal distribution, but
poor compared to many others. Of greater concern is that range is best fitted by excluding 28 of
the more extreme measurements. There are no simple methods for determining mean and var-
iance, let alone skewness and kurtosis.

33.25 Generalised Tukey Lambda

The generalised Tukey lambda distribution[27] is described as a QF that cannot be inverted to
give a CDF.

x F = λ1 +
1
λ2

Fλ3 − 1−F λ4 λ2 0 (33.107)

If λ1 is set to 0 and the other parameters set to λ, this reverts to the symmetrical Tukey dis-
tribution we covered in Section 32.11. Examination of Equation (33.107) shows that λ1 is the
location parameter and λ2 the scale parameter. Shape is determined by λ3 and λ4. For example,
the distribution can be skewed in either direction depending on which of these is larger. This is
illustrated in Figure 33.38.

Fitting Equation (33.107) to the NHV disturbance data gives values for λ1, λ2, λ3 and λ4 of
−0.0604, −0.688, −0.370 and −0.381 respectively. RSS is reduced to 8.73 – substantially
improving upon the basic Tukey distribution. But, because RSS has the units of F not x, we
cannot directly compare the value with what is achieved by fitting a CDF. The best of these
is the slash distribution but, because it does not have a QF, we cannot show mathematically
which gives the better fit. However, Figure 33.39 shows graphically that the generalised Tukey
distribution significantly outperforms the slash distribution (shown as the dashed line). In par-
ticular it fits the tails very well.

If F is 0.025, from Equation (33.107) we obtain x as −4.29. If F is 0.975 then x is 4.40. The
mean is not exactly at 0 but, within the accuracy of the exercise, this shows that 95% of the
disturbances are within ±4.3. In other words, there is a probability of 5% that a disturbance
will be larger than this. This is detailed in colour on Figure 33.39.

Fitting Equation (33.107) to the C4 in propane data gives values for λ1, λ2, λ3 and λ4 of 3.16,
−0.00272, −0.00114 and −0.00570 respectively. RSS is 15.8. Figure 33.40 plots this
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distribution against the best-of-the-rest, i.e. the generalised logistic Type IV distribution. The fit
is virtually identical. It would appear that we have identified a distribution that might be uni-
versally adopted for all datasets. Unfortunately there are no simple formulae for calculating
mean, variance, skewness or kurtosis.
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Figure 33.38 Generalised Tukey: Effect of λ3 and λ4 on shape
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Figure 33.39 Generalised Tukey: One of the best fits to NHV disturbance data
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33.26 Wakeby

TheWakeby distribution is another that it is described by a QF that cannot be inverted to a CDF.

x F = α+
δ1
δ2

1− 1−F δ2 −
δ3
δ4

1− 1−F −δ4 0 ≤F ≤ 1 (33.108)

More unusual is its PDF which is written in terms of its CDF (F).

f x =
1−F δ4 + 1

α 1−F δ2 + δ4 + δ3
(33.109)

As usual, the coefficient α is the location parameter and, as Figure 33.41 shows, so largely is
δ1. The other shape coefficients can have very similar effects. Figures 33.42, 33.43 and 33.44
show the effect of adjusting δ2, δ3 and δ4. As is common with other distributions that have a
large number of coefficients, finding the best combination can be a challenge. Quite different
combinations can give almost identically accurate fits.

Fitting to the C4 in propane data gives values of 2.05 for α, 3.33 for δ1, 0.188 for δ2, −0.002
for δ3 and 0.466 for δ4. At 7.74, RSS is significantly less than that from fitting the QF for the
generalised Tukey distribution. The resulting fit is shown as the coloured line in Figure 33.45.
Of the distributions that can be expressed as a QF, the Hosking distribution gave one of the best
fits. Fitting Equation (12.25) gives α as 2.08, β as 3.44, δ1 as 0.223 and δ2 as 0.959. Shown as
the black line, only RSS (at 9.78) shows it is slightly outperformed by Wakeby distribution.
This might be expected from a distribution that has five shape parameters compared to the four
of the Hosking distribution.

Also of note are the quite different shape parameters for the Hosking distribution obtained by
fitting x(F) compared to fitting F(x). Minimising RSSmeasured in terms of F does not give the
same result as minimising it in terms of x. We covered this effect in detail in Chapter 16.
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Figure 33.40 Generalised Tukey: One of the best fits to the C4 in propane data
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Figure 33.42 Wakeby: Effect of δ2 on shape
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Figure 33.43 Wakeby: Effect of δ3 on shape
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The mean and variance are

μ= α+
δ1

1 + δ2
+

δ3
1−δ4

(33.110)

σ2 =
δ21

1 + δ2
2 1 + 2δ2

−
2δ1δ3

1 + δ2 1 + δ2−δ4 δ4−1
−

δ23
δ4−1

2 2δ4−1
(33.111)

These give values of 4.85 for the mean and 2.39 for the standard deviation.
Examination of Equation (33.108) shows, if either δ1 or δ3 is 0, it can be inverted to a CDF.

F x = 1− 1 +
δ4 x−α

δ3

− 1
δ4

δ1 = 0 (33.112)

F x = 1− 1−
δ2 x−α

δ1

1
δ2

δ3 = 0 (33.113)

In our example, δ3 is very close to 0. Fitting Equation (33.113), to the same C4 in propane data,
gives 1.50 for α, 4.41 for δ1 and 0.309 for δ2.WithRSS at 0.8174, the fit is very poor. The dashed
line in Figure 33.45 shows the result, illustrating the benefit of using the full distribution – even
if key coefficients are close to 0.
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Figure 33.45 Wakeby: Improving the fit to the C4 in propane data
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34
Amoroso Distribution

The Amoroso distribution[28] is defined by the PDF

f x =
δ2

βΓ δ1

x−α

β

δ1δ2 −1

exp −
x−α

β

δ2

x ≥ α; β,δ1,δ2 > 0 (34.1)

Figure 34.1 shows, with α set to 0 and β to 1, the effect of varying δ1 and δ2.
As mentioned in Section 31.3, the generalised gamma distribution is a special case of the

Amoroso distribution in which α is set to zero. This, however, is just a trivial example of what
other distributions can be represented. Table 34.1 lists such distributions that are covered
elsewhere in this book, showing how each PDF is derived from Equation (34.1).

In principle, fitting the Amoroso distribution effectively considers every one of these as the
prior distribution. However, it is not quite as straightforward. The term δ2 in Equation (34.1)
need not be an integer and so, to avoid a negative number being raised to a non-integer power,
x cannot be smaller than α. If the best fit is achieved with a value of α which is larger than
some of the lower values of x, for these values f(x) would be set to 0. But, for almost all of the
derivable distributions, both δ2 and the product δ1δ2 are integers and so the restriction on
x does not apply. In effect, many of the special cases of the lower-bounded Amoroso distri-
bution are unbounded.

We can illustrate this with an example. Fitting the Amoroso distribution to the C4 in propane
data gives α as 1.22, β as 0.0128, δ1 as 11.1, δ2 as 0.43 and F(x1) as 0.0073. RSS is 0.0302. The
Pearson-III distribution can theoretically be fitted by forcing δ2 to 1. Doing so gives α as 1.60, β
as 1.84, δ1 as 1.78 and F(x1) as 0.0027. As might be anticipated, with one less shape parameter,
RSS increases to 0.0358. This result is very similar to that obtained in Section 27.3, but not
identical. Fitting the Pearson-III distribution directly includes the three values of x that are
less than a. Fitting the Amoroso equivalent sets f(x) to 0 for these values. As Figure 34.2 shows,
on this occasion, the Amoroso distribution is a good fit indistinguishable from that of the
Pearson-III. This is because the inclusion, or not, of three very marginal points makes little
difference. But, in another example, the effect might be much greater.
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Table 34.1 Distributions represented by the Amoroso distribution

distribution α β δ1 δ2

shifted exponential α β 1 1

standard exponential 0
1
λ

1 1

Weibull-III α β 1 k

chi-squared 0 2
f
2 1

gamma 0 β k 1

Lévy α
β

2
1
2

−1

inverse gamma α β δ −1

Pearson Type III α β δ 1

inverse exponential α β 1 −1

stretched exponential 0 1
λ

1 k

chi α β
f
2 2

inverse Rayleigh α β 1 −2

Maxwell α β 2
3
2

2

half-normal α β 2
1
2

2

inverse chi α β 2
f
2

−2

inverse chi-squared α
β

2
f
2

−1

Rayleigh α β 1 2

generalised gamma 0 β δ1 δ2

Fréchet α β 1 −δ

Nakagami α β
δ

2 2
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The approach should be to compare the shape parameters derived by fitting the Amoroso
distribution against those in Table 34.1. If there is a close match to one of the derivable dis-
tributions then this should be fitted to the data and the resulting RSS compared to that of
the Amoroso distribution.
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Figure 34.2 Amoroso: Fitted to the C4 in propane data
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Moments are given by

mn =
Γ δ1 +

n

δ2
Γ δ1

βn (34.2)

From the moments we can derive

μ= α+
Γ δ1 +

1
δ2

Γ δ1
β (34.3)

σ2 =
1

Γ2 δ1
Γ δ1 Γ δ1 +

2
δ2

−Γ2 δ1 +
1
δ2

β2 (34.4)

These equations give the mean as 5.06 and the standard deviation at 2.77.
Figure 34.3 shows the feasible combinations of skewness and kurtosis covered by the dis-

tribution. Platykurtosis and leptokurtosis are covered, as well as skewness in either direction.
The fitted values are reasonably close to those calculated from the data.
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35
Binomial Distribution

Perhaps the most well known of the discrete distributions, the binomial distribution, we covered
in Section 12.11. Equally well known, the Poisson distribution derives from the binomial dis-
tribution and was covered in Section 12.12. Here we describe the range of extensions to both.

35.1 Negative-Binomial

The binomial distribution gives the probability of a number of successes; the negative binomial
distribution gives the probability of a number of failures. Also known as the Pascal distribu-
tion, it is also a special case of the Pόlya distribution. It is a compound distribution, starting as
the Poisson distribution. But, instead of the expected number of successes (λ) being a constant,
it is assumed to follow the gamma distribution.

There are several ways of presenting the PMF. In the first, if p is the probability of success of
a single trial, the PMF gives the probability of there being x failures before there are s successes.
This means that there must first be (s − 1) successes and x failures, followed by a success.
Therefore

p x =
s + x−1
x s−1

ps−1 1−p x × p =
s + x−1
x s−1

ps 1−p x x ≥ 0; 0 ≤ p ≤ 1 (35.1)

The PMF can also be written in the form that gives the probability of there being x failures in n
trials, where n will therefore be the sum of x and s.

p x =
n−1

x n−x−1
pn−x 1−p x 0 ≤ x ≤ n; 0 ≤ p ≤ 1 (35.2)

In the batch blending example we require only one success. If the batch is on grade we make
no further corrections; so n will be x + 1. Equation (35.2) therefore reduces to

p x = p 1−p x x ≥ 0; 0 ≤ p ≤ 1 (35.3)
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This is one form of the geometric distribution that we will cover later in more detail. In the batch
blending example, of 44 completed batches, 33 required no correction. We could therefore
assume p is 0.750 and use this value in Equation (35.3) to determine the probability of the need
to correct batches in the future.
Alternatively we can fit the distribution to the data. In addition to the 33 batches that needed

no correction, 4 required one correction, 3 required two and 3 required three. There is also what
appears to be one exceptional case which took 14 corrections. Converting these to observed
probabilities gives 0.7500, 0.9909, 0.0682, 0.0682 and 0.0227. Fitting Equation (35.3) to these
results gives p as 0.780 – close to that calculated. RSS is 0.0124.
Although wemight have some confidence in the value of p (because it is based on 44 results),

as Figure 35.1 shows, the distribution does not fit the data well. This is because the data
includes only 11 cases of batch correction divided between four different values of k. This
is far from enough to have confidence that the distribution would predict how many occasions
a batch would require two, three, four or more corrections.
The mean can be defined in several different ways. Commonly it is the mean number of trials

required to produce s successes, in which case it is

μ=
s

p
(35.4)

It can also be defined as the mean number of successes (μS) before there are x failures.

μS =
kp

1−p
(35.5)

Or it can be the mean number of failures (μK) before there are s successes.

μK =
s 1−p

p
(35.6)

The standard deviation, skewness and kurtosis are the same for all the versions.

σ2 =
s 1−p

p2
(35.7)
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Figure 35.1 Negative binomial: Fit to batch blending performance
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γ =
2−p

s 1−p
(35.8)

κ =
p2 + 3 1−p s + 2

s 1−p
(35.9)

35.2 Pόlya

The PMF of the Pόlya distribution is normally written in the form

p x =
Γ α+ x βx

Γ x + 1 Γ α β + 1 α+ x x ≥ 0; α,β > 0 (35.10)

Fitting this to the batch blending example gives values of 0.169 for α and 4.55 for β. The result
is included in Figure 35.1. RSS is 0.0032.

The mean is
μ = αβ (35.11)

This gives μ as 0.77. This represents the average number of corrective blends required per
batch. In other words, on average, a batch requires 1.77 blends. This result is consistent with
a total of 78 blends producing 44 batches. The variance is

σ2 = αβ β + 1 (35.12)

This gives σ as 2.06, versus the value of 2.21 calculated from the data. As with other distribu-
tions, by rearranging Equations (35.11) and (35.12), we can use the calculated values of μ and σ
to give initial estimates for α and β.

α=
μ2

σ2−μ
(35.13)

β =
σ2−μ

μ
(35.14)

Equation (35.10) can be rewritten as

p x =
α+ x−1
x α−1

βx β + 1 − α + x (35.15)

This becomes the negative binomial distribution, described by Equation (35.1), if we set

α= s β =
1−p
p

(35.16)

There is also the extended negative binomial distribution but which is too complex to be of
practical use in the process industry.

35.3 Geometric

As we saw in Section 35.1, the geometric distribution is a special case of the negative-binomial
distribution. It is one of the few memoryless discrete distributions. It can be used to estimate
the probability that there are x failures before the first success. Its PMF is then

p x = p 1−p x x ≥ 0; 0 ≤ p ≤ 1 (35.17)
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The CDF gives us the probability that there are x or fewer failures.

P x = 1− 1−p x + 1 (35.18)

This can be inverted to give the QF

x P =
ln 1−P
ln 1−p

−1 0 ≤P ≤ 1 (35.19)

Remembering that x is an integer, we would have to round the result either up or down. In the
example of ‘We can be 95% certain that there will be no more than x events’, we would round
it up.
The mean is

μ=
1−p
p

(35.20)

More commonly we want to estimate the probability that the xth trial is the first success. This
version is known as the shifted geometric distribution because the minimum value of x is
shifted from 0 to 1.

p x = p 1−p x−1 (35.21)

The CDF is

P x = 1− 1−p x (35.22)

The QF is

x P =
ln 1−P
ln 1−p

0 ≤P ≤ 1 (35.23)

The mean is

μ=
1
p

(35.24)

The variance, skewness and kurtosis are the same for both versions.

σ2 =
1−p
p2

(35.25)

γ =
2−p

1−p
(35.26)

κ =
p2

1−p
+ 9 (35.27)

The conventional approach to estimating the change achieved by improved control is to
apply the Same Percentage Rule as described by Equation (2.1). This assumes that the standard
deviation (σ) will be halved and so permit the mean to be moved by half the mean deviation
from target. Using the same batch blending data (Table A1.7) we calculate the simple mean as
97.91 and the standard deviation of 9.12. The normal distribution curve is plotted as the
‘before’ case in Figure 35.2. The ‘after’ case is therefore based on a mean of 98.96 and a stand-
ard deviation of 4.56.
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The results are a measure of the quality of 78 blends. Figure 35.3 shows the change in cumu-
lative probability achieved by improved control. There are two problems. Firstly, it would sug-
gest that the probability that a blend is off-grade is 59%, i.e. 46 out of the 78 blends. However,
Figure 3.17 shows that, of the 78 results, 34 were off-grade – about 44%. The discrepancy arises
because it is not sufficiently accurate to assume that the distribution is normal. Secondly, as its
name suggests, applying the Same Percentage Rule results in the same proportion of off-grade
results. We need a different approach.
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Figure 35.2 Use of same percentage rule to quantify control improvement
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Figure 35.3 Cumulative frequency showing intersection at same percentage
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If p is the current probability that a batch of product will be on-grade and pnew the probability
after implementation of the control improvement then, from Equation (35.25)

1−pnew
pnew

= 0 5
1−p
p

or pnew =
2p p2−p + 1−p

1−p
(35.28)

Of the 78 blends, 44 were on grade. We can therefore assume that the current probability of
success (p) is 0.564. From Equation (35.28) we determine that, with improved control, this will
increase to 0.788. Out of 78 blends, we would therefore expect the number of off-grade results
to fall to 17.
From Equation (35.25), improved control reduces the mean from 1.77 to 1.27 days. In a year,

therefore, the number of batches can increase from 206 to 288.
In a year we expect 365p finished batches. Equation (35.21) gives the probability that a batch

will take x days to complete. Multiplying this by 365p gives the expected number of batches per
year that take x days. This gives the ‘before’ frequency distribution shown in Figure 35.4. The
‘after’ case is plotted by replacing p with pnew.
Multiplying each frequency by x and summing the results gives the total number of days per

year used in producing the batches. Because each result is rounded off to an integer, the total is
363, not 365. Multiplying each result by 100/363 gives the percentage of the year used.
Figure 35.5 plots this as the cumulative allocation of time to batches. This shows that, after
the control improvement, we can be 95% certain that the number of blends required for a single
batch will not exceed two. Before we were only as certain that it would not exceed five.
While there will be a benefit in reducing the number of trim blends performed, the main ben-

efit would arise if the process is a bottleneck on production. Improved control would then per-
mit a 40% increase in the number of batches produced. A further benefit will be a reduction in
quality giveaway. The average quality of the completed batches is 103.8. From Equation (2.1),
this will be reduced to 101.9 – so reducing the proportion of the more expensive component
used in blending.
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Figure 35.4 Geometric: Impact of improved control on distribution of days required per batch
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35.4 Beta-Geometric

The beta-geometric distribution is the geometric distribution in which the probability of suc-
cess, instead of being a constant, varies randomly following the beta distribution. It is another
example of a compound distribution. If x is the number of trials to achieve a success, then its
PMF is

p x =
αΓ α+ β Γ β + x−1
Γ β Γ α+ β + x

x ≥ 1; α,β > 0 (35.29)

Figure 35.6 shows the effect of changing α and β.
Redefining x as the number of failures before a success gives the shifted beta-geometric

distribution.

p x =
B α+ 1,β + x

B α,β
=

αΓ α+ β Γ β + x
Γ β Γ α+ β + x+ 1

x ≥ 0; α,β > 0 (35.30)

By then setting β to 1 we obtain the special case of theWaring–Yule distribution, sometimes
called simply the Waring distribution.

p x =
B α+ 1,x + 1

B α,1
= αB α+ 1,x + 1 =

αΓ α+ 1 Γ x+ 1
Γ α+ x + 2

x ≥ 0; α> 0 (35.31)

The mean and variance are

μ =
β

α−1
α> 1 (35.32)

σ2 =
αβ α+ β−1

α−1 2 α−2
α> 2 (35.33)
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We will use, as an example, the number of days between events – where the event is the LPG
splitter reflux exceeding 70 m3/hr. We can calculate, from the data, the mean (μ) number of
days as 1.56. Similarly, from the data, σ is 1.85. Fitting Equation (35.29) to the data gives
α as 5.12 and β as 4.75. Equation (35.32) gives the mean as 1.16 and the standard deviation
as 2.03 – both reasonably close to the calculated values.
Figure 35.7 confirms that the fit is good. Figure 35.8 plots the same data as a cumulative plot.

It shows, for example, that we can be 95% sure that a high reflux event will occur within 5 days
of the last event.

35.5 Yule–Simon

By setting β to 1, in Equation (35.29), we obtain a special case of the beta-geometric distribu-
tion, known as the Yule distribution or Yule–Simon distribution. The PMF can be written in
several ways.

p x = αB x,α+ 1 =
αΓ x Γ α+ 1
Γ x + α+ 1

=
αα x−1
x+ α

x ≥ 1; α> 0 (35.34)

The CDF is

P x = 1−xB x,α+ 1 (35.35)

Unlike many other discrete distributions, where x can be 0, in the Yule–Simon distribution it
cannot be less than 1. This simply means we have to reformulate the problem. For example, in
the batch blending example, we define x as the number of blends required per batch, not the
number of trim blends. Fitting it to this example gives α as 3.11.With RSS as 0.0066 it is a better
fit than the geometric distribution but not as good as the Pόlya distribution.
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Figure 35.6 Beta-geometric: Effect of α and β on shape
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The mean and variance are

μ =
1

α−1
α> 1 (35.36)

σ2 =
α2

α−1 2 α−2
α> 2 (35.37)

These give μ as 0.47 and σ as 1.40 – both well away from the values calculated from the data
and those estimated by the Pόlya distribution.
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Figure 35.7 Beta-geometric: Fit to interval between high reflux events
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The skewness and kurtosis are

γ =
α+ 1 2 α−2
α α−3

α> 3 (35.38)

κ =
α4 + 10α3−30α2 + 23α−22

α α−4 α−3
α> 4 (35.39)

35.6 Beta-Binomial

The beta-binomial distribution is an enhanced form of the binomial distribution. The probabil-
ity of an event is assumed to be random following the beta distribution. Its PMF is

p x =
n

x n−x

B x + α,n−x+ β
B α,β

x ≥ 0; α,β > 0 (35.40)

Using the same example of the LPG splitter reflux flow, we want to assess the frequency with
which the flow exceeds 70 m3/hr. The 5,000 hourly measurements cover 208 days. Of these
there were 117 where the flow never exceeded the limit, 60 where it exceeded it once, 24 where
it exceeded it twice and 7 where it exceeded it three times. Converting this values to observed
probabilities gives 0.5625, 0.2885, 0.1154 and 0.0337 respectively.
Since we are examining the probability of a number of hourly events occurring in 24 hours, n

is 24. Fitting Equation (35.40) to the four data points gives a value of 2.12 for α and 75.8 for β.
The result is shown as Figure 35.9, which also shows how the distribution can be adapted by
adjusting α and β. Figure 35.10 shows that the fitted distribution closely matches the data –

including the zero occasions that there were four or more violations of the limit.
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Figure 35.11 shows the same data converted to days per year. For example, during 208 days,
there were 117 in which there was one event. This is equivalent to 205 events per year. Fitting
the distribution to the four data points permits it to be extrapolated to explore the probability of
more than three violations of the limit occurring in a day. For example, the probability of four
violations in a day can be determined from Equation (35.40) as 0.0093. We would therefore
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Figure 35.11 Beta-binomial: Improvement on accuracy of fit of binomial distribution
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expect this to occur three times per year. Similarly we would expect five violations in day to
occur once per year.
From the basic data, we can calculate the mean number of occasions per day that the reflux

violated the limit.

μ =
117 × 0 + 60 × 1 + 24 × 2 + 7 × 3

208
= 0 62 (35.41)

Similarly the standard deviation is

σ =
117 0−0 62 2 + 60 1−0 62 2 + 24 2−0 62 2 + 7 3−0 62 2

208−1
= 0 82 (35.42)

These parameters can also be calculated from the fitted distribution.

μ=
nα

α+ β
(35.43)

σ2 =
nαβ α+ β + n

α + β 2 α+ β + 1
(35.44)

These equations put μ at 0.65 and σ at 0.91 – reasonably close to the calculated values.
We can compare this distribution against the classic binomial. If the total number of viola-

tions of the maximum flow is 129, out of 5,000 measurements this represents an observed prob-
ability of 0.0258. Fitting the classic binomial distribution gives a value of p close to this at
0.0234. The dashed line in Figure 35.11 shows how unreliable the extrapolation would be
if the probability of the event is assumed to be constant.
Skewness is

γ =
α+ β + 2n β−α

α+ β + 2
α+ β + 1

nαβ α+ β + n
(35.45)

There is no formula for kurtosis.

35.7 Beta-Negative Binomial

In the same way that we modify the binomial distribution to form the negative binomial dis-
tribution, the beta-negative binomial distribution is a modification to the negative-binomial
distribution. It is also known as the generalised Waring distribution and the inverse Mar-
kov–Pólya distribution. Like the negative binomial distribution, it gives the probability of a
number of failures (x) before there are n successes, but with this assumed to follow the beta
distribution. The PMF is

p x =
n+ x−1
x n−1

B α + n,β + x
B α,β

x ≥ 0; α,β > 0 (35.46)

Figure 35.12 shows the effect of varying α and β with n fixed at 10.
The mean and variance are

μ=
βn

α−1
α> 1 (35.47)
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σ2 =
βn α+ β−1 α+ n−1

α−2 α−1 2 α > 2 (35.48)

The formulae for skewness and kurtosis are too complex for inclusion here.
The beta-geometric distribution, described in Section 35.4, is a special case of the beta-

negative binomial distribution, in which we require only one success after x failures. Therefore
n is 1. Making this substitution into Equation (35.46).

p x =
B α+ 1,β + x

B α,β
=
Γ α+ 1 Γ β + x
Γ α+ β + x + 1

Γ α+ β
Γ α Γ β

=
αΓ α+ β Γ β + x
Γ β Γ α+ β + x + 1

(35.49)

Remembering that x in Equation (35.29) is the number of trials including the success,
Equation (35.49) is the same distribution.

The negative binomial is another special case, approached as α and β approach infinity.

35.8 Beta-Pascal

The beta-Pascal distribution is a shifted version of the beta-negative binomial distribution. Its
PMF is

p x =
n−1 + x
x n−1

B n + α,β + x
B α,β

x ≥ 0; α,β > 0 (35.50)

Figure 35.13 shows the effect of varying α and β, with n set to 10. The distribution does not fit
well the LPG splitter reflux example – requiring impractically large values for α and β.

There are no formulae for mean, variance, skewness or kurtosis.
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35.9 Gamma-Poisson

Rather than assume the expected number of successes that occur in a chosen time interval (λ) is
constant, in the gamma-Poisson distribution it is assumed to vary randomly following the
gamma distribution. Its PMF is

p x =
β + x−1
x β−1

1
α+ 1

β α

α+ 1

x
x ≥ 0; α,β > 0 (35.51)

This becomes the negative-binomial distribution if

α=
1−p
p

and β = s (35.52)

An alternative definition is

p x =
Γ β + x αx

Γ β α+ 1 β + xx
(35.53)

Figure 35.14 shows the effect of adjusting α and β. The moment generating function is

M t = 1−α−αet −β (35.54)

leading to

μ= αβ (35.55)

σ2 = αβ + α2β (35.56)

γ2 =
1 + 2α 2

αβ 1 + α
(35.57)
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κ =
3α2β + 6α2 + 3αβ + 6α+ 1

αβ 1 + α
(35.58)

Fitting Equation (35.53) to the LPG splitter high reflux events gives α as 0.271 and β as 2.42.
From Equation (35.55) the best fit value for μ is therefore 0.66 and, from Equation (35.56), for σ
it is 0.91.

Comparing again to the classic binomial distribution, we can use the fitted value of 0.0234
for p in Equation (12.95) to plot the dashed line in Figure 35.15. The better fit by the gamma-
Poisson confirms that the probability of a high reflux event is not constant. Figure 35.16 shows
that the gamma-Poisson distribution accurately models the number of days, per year, that have k
events.

35.10 Conway–Maxwell–Poisson

The Conway–Maxwell–Poisson distribution is defined by the PMF

p x =K
λx

x δ x ≥ 0; λ> 0 (35.59)

The normalisation constant (K) is determined from

K =
1

∞

i= 0

λi

i δ

(35.60)

While a sum to infinity might seem impractical, it converges very quickly. Even for very small
values of δ, fewer than 50 terms are required.
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If δ is set to 0, the distribution becomes the geometric distribution with p equal to (1 − λ). If δ
is set to 1, it becomes the Poisson distribution. As δ ∞, it becomes the Bernoulli distribution
with p equal to 1/(1 + λ). Figure 35.17 shows the effect of changing δ with λ fixed at 0.8.
Fitting Equation (35.59) to the same reflux example gives λ as 0.516, δ as 0.474 and hence K

as 0.560. Compared to the gamma-Poisson distribution RSS is reduced from 0.00021 to
0.00016. Visually the fits would be indistinguishable.
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Figure 35.16 Gamma-Poisson: Accurate representation of number of events per day
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The mean and variance are

μ=K
∞

i= o

iλi

i δ (35.61)

σ2 =K
∞

i= o

i2λi

i δ−μ
2 (35.62)

These give the mean as 0.65 and the standard deviation as 0.90. These slightly more complex
formulae, in this case, put the Conway–Maxwell–Poisson distribution at a slight disadvantage
compared to the simpler gamma-Poisson distribution.

The Conway–Maxwell–Poisson does, however, lend itself to a more elegant method of curve
fitting. From Equation (35.59)

p x−1
p x

=
xδ

λ
(35.63)

∴ log
p x−1
p x

= δ log x − log λ (35.64)

Figure 35.18 plots Equation (35.64) based on the observed probabilities. The slope of 0.497
is the best estimate for δ. The best estimate of λ is derived from the intercept as 10−0.279 or
0.526. These values are close to those obtained by conventional least squares curve fitting.
However, with only three points, we cannot be certain that the line is approximately straight.
With more points the technique can be valuable in assessing whether the distribution is well
chosen.
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35.11 Skellam

The Skellam distribution gives the probability of the difference between two values selected
from two Poisson distributions. To understand this, consider two soccer teams for which we
know the average rate of goal scoring per 90 minute game. The Skellam distribution would
allow us to determine the probability of a specified difference between their scores when they
play each other. Indeed it can be used, albeit naïvely, by gamblers in spread betting on sports
and stock markets.
The distribution involves the use of the modified Bessel function (Ix), described in

Section 11.8. If the expected number of events, in a fixed time, in two Poisson distributions
are λ1 and λ2 then the PMF of the Skellam distribution is

p x = exp −λ1−λ2
λi
λ2

x
2

Ix 2 λ1λ2 λ1,λ2 > 0 (35.65)

We can again use the stock level example with its five (λ1) low-stock events per year. We
might explore investment in product storage that is anticipated to reduce this to three (λ2) per
year. These values were used to plot the points Figure 35.19. They lie very close to the normal
distribution, shown as the coloured line, with

μ= λ1−λ2 (35.66)

σ2 = λ1 + λ2 (35.67)

Not surprisingly it shows the most likely reduction in the number of events per year is
two. However the probability of achieving this is only 0.14. To determine the benefit of the
investment we might better examine the probability of any improvement. For this we need
the complementary CDF derived from summing the PMF

log[p(x – 1)/p(x)] = 0.497log(x) + 0.279
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Figure 35.18 Conway–Maxwell–Poisson: Alternative method of fitting to data
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P x = 1−
x

i= −∞
exp −λ1−λ2

λi
λ2

i
2

Ii 2 λ1λ2 (35.68)

In this example x can be negative; there is a possibility that there could be an increase in the
number of events. The CDF has to be derived therefore by integrating the PMF from −∞.
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Figure 35.19 Skellam: Approximation to normal distribution
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Clearly this is not practical; instead we integrate from a value for which the PMF is close
enough to zero. For example, if k is −6, Equation (35.68) puts the probability at 0.002. Exclud-
ing lower values of k therefore has very little effect on the CDF.
Figure 35.20 plots (as the black line) the complementary CDF and shows the probability of

the reduction in the number of events exceeding zero is 0.70. In other words we can be 70%
certain that the investment will be beneficial. If this were considered too low then a more costly
solution might reduce the average number of events to one per year. The resulting CDF is plot-
ted as the coloured line, showing that the probability of improvement then increases to 93%.
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36
Other Discrete Distributions

There are a number of discrete distributions that have no obvious connection to the binomial
distribution or its derivatives. They are included here in alphabetical order. The reader might
reasonably question the relevance of some to the process industry. Many have been included
because they are well known and some explanation is merited as to why they have little appli-
cation in the process industry. Others included are here simply because some might consider
them interesting and identify a use previously not considered.

36.1 Benford

Benford’s Law, also known as the First Digit Law, concerns the frequency at which leading
digits occur in datasets. For certain datasets, the probability that a member of the set begins
with the digits (x) is

Px = log10 1 +
1
x

x ≥ 1 36 1

Provided x is an integer the law is applicable to any string of leading digits. More commonly
though it is applied to the single leading digit. Figure 36.1 shows the expected Benford distri-
bution. It generally requires that the dataset covers several orders of magnitude.

One application is the detection of fraud in company accounts. Data fabricated by fraudsters
might be expected to be uniformly distributed. To help understand why the Benford distribution
applies to company accounts, consider all the possible additions of three single-digit numbers.
There are 729 (93) possible results, of which 525 (72%) will have 1 as the leading digit. 120
(16%) will have 2 as the leading digit. We would need to consider a much wider range of pos-
sible summations to come close to the Benford distribution, but this example demonstrates the
principle. Single entries in company accounts are themselves the results of addition. Incoming
and outgoing invoices will each be an addition of several separately priced items plus taxes.

Figure 36.1 also shows the observed distribution of the leading digit in some 2,000 transac-
tions passing through the accounts of the author’s consulting company. While generally
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following the expected distribution, most notable is the digit 5. While this could be the work of
a very unimaginative fraudster, it is in fact accounted for by a large number of frequent regular
transactions of two amounts – both having 5 as their first digit. Figure 36.2 is a P–P plot show-
ing that otherwise the distribution is close to that expected
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Figure 36.1 Benford: Expected and actual distribution of leading digit in accounts
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Figure 36.2 Benford: P–P plot showing exception from expected distribution
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In practice, such investigations would also explore the distribution of the second and
perhaps subsequent digits. For example, Figure 36.3 plots Equation (36.1) for all two-digit
values of x. It is also possible to examine the occurrence of digits in other positions.
For example, the probability of the second digit being a 5 is given by the sum of the
probabilities of the first two digits being 15, 25, … or 95. From Equation (36.1) we can
calculate this as

Px = 5 = log10 1 +
1
15

+ log10 1 +
1
25

…+ log10 1 +
1
95

= 0 0967 (36.2)

In general the probability of the second digit being x is

Px =
9

i= 1

log10 1 +
1

10i + x
(36.3)

Figure 36.4 shows the expected distribution of the second digit.
The Benford distribution might at first appear to be an unlikely choice for process data. How-

ever, atomic weights are the result of summing the number of protons and neutrons in the
nucleus. Figure 36.5 includes all 108 known elements and shows that they have some tendency
to follow the Benford distribution displayed by the solid line. Further, molecular weights are the
sum of atomic weights and there are many properties, such as gas density and volumetric NHV,
that are directly proportional to molecular weight. In principle these might then follow the dis-
tribution although, in practice, it is unlikely that the data include sufficient variation in order of
magnitude for it to be observable.
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Figure 36.3 Benford: Expected distribution of two leading digits

Other Discrete Distributions 551



36.2 Borel–Tanner

The Borel–Tanner distribution is defined by the PMF

p x =
ne−λx λx x−n

x x−n
x ≥ n; 0 < λ< 1 (36.4)

Its main application is to queuing, where n is the number in the queue at the start and k is the
number of items dealt with before the queue is empty. The intensity (λ) is the average number of
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Figure 36.4 Benford: Expected distribution of second digit
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items arriving – expressed as a fraction of the number that can be dealt with. Clearly λ must be
less than 1 for the queue to be emptied. The distribution assumes that arrivals follow the Poisson
distribution and that the time to deal with each item is constant.

Figure 36.6 shows the effect of changing λ with n set to 5. Figure 36.7 shows the effect of
changing n with λ set to 0.5.
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As an example, consider a process in which a number of batch reactors are operated simul-
taneously. On completion, a batch is pumped to its own intermediate storage tank. The material
in the tank is later tested and, if on grade, routed to the main shipping tank. Production runs
24 hours a day, every day, and typically produces 20 batches per week. The laboratory staff
work 09:00 to 17:00, Monday to Friday. Typically they can test and empty 35 intermediate
tanks per week. It is important that, at the end of the laboratory’s working day on Friday, there
are no outstanding tests. OnMonday morning, 64 hours later, the laboratory would expect 8 (n)
batches awaiting testing.
The intensity (λ) is 20/35, or 0.571. Figure 36.8 plots the cumulative distribution derived

from Equation (36.4). The black curve shows that currently in about 4% of the weeks the num-
ber of batches that must be tested exceeds the capacity of 35 and so production has to be
reduced.
There is a plan to increase production to 24 batches per week. The intensity will therefore

increase to 24/35, or 0.686. There are now likely to be 10 batches waiting for testing onMonday
morning. The coloured curve in Figure 36.8 shows that production would have to be reduced in
about 31% of the weeks.
To maintain the current availability the capacity of the laboratory must be increased to 42 per

week – as shown by the black curve in Figure 36.9. Of course, it is not surprising that a 20%
increase in production requires a 20% increase in laboratory capacity. While it is reassuring that
the technique confirms this, its value lies in allowing us to explore other options. For example,
if the cost of increasing the laboratory capacity beyond 40 was prohibitive then the intensity
would reduce to 0.600. The coloured line in Figure 36.9 shows that we would now expect to
exceed the capacity in about 7% of the weeks.
The mean and variance are

μ=
n

1−λ
(36.5)
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Figure 36.8 Borel–Tanner: Impact of increased production on likelihood of completion
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σ2 =
nλ

1−λ 3 (36.6)

The Borel distribution is obtained by setting n to 1.

p x =
e−λx λx x−1

x
(36.7)

The Borel distribution can be shifted by α, in which case it becomes the Lagrange–Poisson
distribution or the Poisson–Consul distribution.

p x =
αe− λx + α λx + α x−1

x
(36.8)

μ =
α

1−λ
(36.9)

σ2 =
α

1−λ 3 (36.10)

36.3 Consul

The Consul distribution is described by the PMF

p x =
αx βx−1 1−β αx−x+ 1

x αx−x + 1
x ≥ 1; 0 ≤ β < 1; 1 ≤ α ≤

1
β

(36.11)

Figure 36.10 shows the effect of α and β. If α is set to 1, and β replaced with (1 − p), the dis-
tribution becomes the form of geometric distribution described by Equation (35.21).
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Figure 36.9 Borel–Tanner: Impact of restricted increase in laboratory capacity
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The mean and variance are

μ=
1

1−αβ
(36.12)

σ2 =
αβ 1−β

1−αβ 2 (36.13)

Rearranging Equation (36.12)

β =
μ−1
αμ

(36.14)

Substituting in Equation (36.11) gives an alternative definition of the PMF, based on μ.

p x =
αx

x αx−x + 1
μ−1
αμ

x−1

1−
μ−1
αμ

αx−x + 1

(36.15)

36.4 Delaporte

The Delaporte distribution is somewhat unusual in that the PMF is defined as a summation.

p x =
x

i= 0

Γ α + i β iλx− ie−λ

Γ α i β + 1 a + i x− i
x ≥ 0; λ ≥ 0; α,β > 0 (36.16)

Figure 36.11 shows the effect of varying λ. If λ is zero, the distribution becomes the negative
binomial. Figure 36.12 shows the effect of varying α and β. If both are zero, the distribution
becomes the Poisson distribution. The fact that the PMF covers other distributions might
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suggest, for example, that we need not consider the Poisson as the prior distribution. However if
α is close to zero, then adjusting β has very little effect and vice versa. So, if the distribution is
close to Poisson, there will be a very wide range of values of α and β that give apparently the
same fit. Similarly, if both are large, then adjusting λ can have little effect. A search algorithm, if
it moves into these regions, can easily become ‘lost’ and manual intervention will be required to
locate the best fit. It is therefore better to try fitting the simpler distributions first and, given the
complexity of its PMF, only consider the Delaporte distribution if one of these fails to provide
the required fit.
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Figure 36.11 Delaporte: Effect of λ on shape
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To illustrate this we can use the LPG reflux flow example but, this time, define an event
as the flow exceeding 65 m3/hr. Figure 36.13 shows the distribution of the number of events
that occurred in a 24 hour period, along with the fitted distribution with λ set to 1.92, α
and β to 0. The same accuracy of fit can be achieved with a very different values for either
α or β.
Fortunately, if the resulting fit does set either α or β to zero, the value of the other parameter

has no impact on the mean or variance that are

μ = λ + αβ (36.17)

σ2 = λ + αβ 1 + β (36.18)

36.5 Flory–Schulz

The Flory–Schulz distribution was originally developed to describe the relative ratios of mol-
ecule lengths after a polymerisation reaction. Its PMF is

p x = p2x 1−p x−1 x ≥ 1; 0 ≤ p ≤ 1 (36.19)

Figure 36.14 shows the effect of varying p. As expected the probability of a molecule having
zero length is zero. This makes the distribution applicable to data where we expect P0 to
be zero.
The example of the time between events of the LPG splitter reflux exceeding 65 m3/hr

strictly requires a continuous distribution function. However, because the reflux flow was
recorded at hourly intervals, the time between events is an integer number of hours. The data
can also therefore be treated as discontinuous. Further there cannot be an interval of zero.
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Fitting Equation (36.19) gives p as 0.155. With RSS at 0.1458, the fit is quite poor compared to
that achieved, for example, by the exponential distribution.

The mean is

μ=
2−p
p

(36.20)

This gives μ as 11.9 hours – close to that estimated using the exponential distribution. The
other key parameters are

σ2 =
2 1−p

p2
(36.21)

γ =
2−p

2 1−p
(36.22)

κ =
p2−12p + 12

2 1−p
(36.23)

36.6 Hypergeometric

Included here because it is commonly referred to in text books and spreadsheet packages, the
hypergeometric distribution has limited application to the process industry. The example nor-
mally used is the urn problem. This might be a container holding a mixture of two coloured
balls, say, black and white. The total number of balls in the container is N which includes
K black balls, and hence (N − K) white balls. A number (n) balls are then withdrawn, without
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returning any to the container. The probability that x black balls, and hence (n − x) white balls,
will be withdrawn is

p x =

K

x

N−K

n−x

N

n

0 ≤ x ≤ n; 0 ≤ n ≤N (36.24)

WithN fixed at 100 and n at 10, Figure 36.15 shows the effect of varyingK. The distribution has
been applied in situations where a small number (n) of batches of product are randomly
selected, for testing, from a much larger number (N). The test would be of the pass/fail type;
x would be the number of batches failing the test. Knowing p(x), perhaps from historical data,
would allow the total number (K) of off-grade batches to be estimated. If excessive, then this
might instigate selection of more batches for testing.
The mean and variance are

μ =
nK

N
(36.25)

σ2 =
nK N−K N−n

N2 N−1
(36.26)

There are formulae for skewness and kurtosis but which are too complex to merit inclu-
sion here.
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36.7 Negative Hypergeometric

The PMF of the negative hypergeometric distribution is

p x =

n1 + x−1

x

n2 + n3− n1 + x + 1

n2−x

n2 + n3−1

n2

0 ≤ x ≤ n2; n1,n2,n3 > 0 (36.27)

Figure 36.16 shows the effect of varying n1, with n2 fixed at 20 and n3 at 10.
Theoretically the PMF could be fitted to process data although, since n1, n2 and n3 are inte-

gers, specialist software would be required.
The mean and variance are

μ =
n1n2
n3

(36.28)

σ2 =
n1n2 n2 + n3 n3−n1

n23 n3 + 1
(36.29)

36.8 Logarithmic

The title of logarithmic distribution is also used for another unrelated distribution and so this
one is better described as the log-series distribution. It PMF is

p x =
−px

x ln 1−p
x ≥ 1; 0 ≤ p ≤ 1 (36.30)
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Figure 36.17 shows the effect of changing p. The mean and variance are

μ =
−p

1−p ln 1−p
(36.31)

σ2 =
−p p + ln 1−p

1−p 2ln2 1−p
(36.32)

Using our batch blending example in Table A1.7, it took 78 blends to make 44 batches; 33 met
the specification first time, 4 required two blends, 3 required three and 3 required four. There is
also what appears to be one exceptional case that took 15 blends. Converting these to observed
probabilities gives 0.7500, 0.9909, 0.0682, 0.0682 and 0.0227. Fitting Equation (36.30) to
these results gives p as 0.428. This is the probability that the event will occur, i.e. the probability
that a blend will be off-grade. The fitted value is close to that calculated from the data, i.e. 0.436
(1 − 44/78). The fit is shown as Figure 36.18.
The mean number of blends per batch can be calculated as 1.77 (78/44). From

Equation (36.31) the estimate is somewhat different at 1.34. Using this result, if a blend takes
a day to complete, we would complete 273 batches in 365 days. From Equation (36.32) the
standard deviation is 0.74. If improved control halved this variability then iteratively solving
Equation (36.32) shows that p would reduce to 0.192. Putting this result into Equation (36.31)
shows that the mean reduces to 1.11. This increases, to 328, the number of batches that can be
completed in 365 days, i.e. a 20% increase in production.
While this example illustrates the calculation method the volume of data used is too small to

have confidence in the result. Apart from the large difference between the calculated and fitted
results for the mean, Equation (36.30) would predict a probability of 3.5 × 10−7 that a batch
would take 15 blends. In fact the observed probability is 1 in 44 batches. As Figure 36.18 shows
there is also a mismatch when x is 2 and 4. Selecting a different distribution is unlikely to ade-
quately improve the fit.
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36.9 Discrete Weibull

The discrete Weibull distribution is described by the PMF

p x = 1−p xβ − 1−p x + 1 β

x ≥ 0; 0 ≤ p ≤ 1; β > 0 (36.33)

The definition of p is different from other distributions we have covered; rather it being the
average probability of the event occurring, it is the probability that none will occur in the
defined period.

Figure 36.19 shows the effect of varying β, with p fixed at 0.2.
There are alternative ways of formulating the PMF. One is to define q as 1 − p.

p x = qx
β

−q x+ 1 β

(36.34)

Another is to then replace q.

q = exp −α−β (36.35)

This results in

p x = exp −
x

α

β
−exp −

x + 1
α

β

(36.36)

Fitting to the LPG splitter high reflux flow events, gives p as 0.560 and β as 1.20. The accuracy
of fit is very similar to that of the gamma-Poisson distribution.

The corresponding CDF are

P x = 1− 1−p x + 1 β

(36.37)
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P x = 1−exp −
x + 1
α

β

(36.38)

The corresponding QF are

x P =
ln 1−P
ln 1−p

1
β

−1 0 ≤P ≤ 1 (36.39)

x P = α − ln 1−P 1 β−1 0 ≤P ≤ 1 (36.40)

The mean can be determined from

μ=
∞

x = 0

1−p xβ − 1−p x + 1 β

x (36.41)

While the summation is theoretically to infinity, in practice we need only calculate to the max-
imum possible value of x. The maximum value in the data is 3. Summing to x = 20 gives μ as
0.656 – identical to that derived from fitting the gamma-Poisson distribution.
There are no formulae for variance, skewness or kurtosis.

36.10 Zeta

The zeta distribution takes its name from its use of the Riemann zeta function, described in
Section 11.10. Its PMF is

p x =
x−λ

ζ λ
x ≥ 1; λ> 0 (36.42)
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Fitting to batch blending example gives λ as 2.53. RSS is 0.0049 and so is bettered by the
Pόlya distribution. The mean and variance are

μ =
ζ λ−1
ζ λ

for λ > 2 (36.43)

σ2 =
ζ λ ζ λ−2 −ζ λ−1 2

ζ λ 2 for λ > 3 (36.44)

The mean can be calculated as 1.86, close to that calculated from the data. Because λ is less
than 3, the standard deviation cannot be determined.

The skewness and kurtosis can be calculated from the moments.

mn =
ζ λ−n

ζ λ
for λ> n + 1 (36.45)

36.11 Zipf

The Zipf distribution was derived from the study of language. This showed that the frequency
of any word in a large quantity of text is inversely proportional to its ranking (x) in the fre-
quency table.

p x
1
x

x ≥ 1 (36.46)

Of over 100,000 words in this book, the most frequently used ‘the’ appears 8.39% of the
time. Its observed probability (P1) is therefore 0.0839. Second most frequent is ‘of’ (P2 =
0.0334) and third is ‘is’ (P3 = 0.0306). These points are plotted, along with those for the remain-
ing of the top 30 words, as Figure 36.20.
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Figure 36.20 Zipf: Actual distribution against that expected from ranking
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More generally studies show that

p x =
x−λ

ln K N
(36.47)

The terms λ and K are shape parameters, while N is the total number of words in the text. Fitted
to the frequency of the top 100 words in this book, K is 2.05 and λ is 0.865. These parameters
can be used to validate the authorship of large texts by comparison with texts whose authorship
is certain. As Figure 36.21 shows the author of this book seems to use the word ‘of’ less than
might be expected.
However, if we exclude the words ‘the’ and ‘of’ from the fit, K becomes 0.19 and λ, at 0.936,

is much closer to the predicted value of 1. The resulting P–P plot is shown as Figure 36.22. As
might be expected, the excluded words lie well away from the line. This is an example the king
effect, in which the one or two elements ranked highest in a dataset do not conform to the dis-
tribution followed by all the other elements.
The reason that the Zipf distribution fits to language has never been fully explained. The

evidence is largely empirical. It also has been used to describe the distribution of hits over
a selection of web sites. So, while it was developed for a very specific application, there is
no reason why it should not be considered for any dataset.
The commonly used form of the PMF is similar to that of the zeta distribution.

p x =
x−λ

HN,λ
(36.48)

The CDF is

P x =
Hx,λ

HN,λ
(36.49)
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HN,λ is the harmonic number, as described in Section 11.11, and N is the number of elements.
Applying it to the batch blending example, we choose N as 44 – the total number of batches.
Fitting gives λ as 2.53. This is virtually identical to the zeta distribution because, for large
values of N, HN,λ approaches ζ(λ). The mean will also be the same as that for the zeta
distribution.

μ =
HN,λ−1

HN,λ
(36.50)

The Zipf–Mandelbrot distribution includes an additional parameter (α), where α is an inte-
ger. It is defined by

p x =
x + α −λ

HN,α,λ
(36.51)

P x =
Hx,α,λ

HN,α,λ
(36.52)

μ =
HN,α,λ−1

HN,α,λ
−α (36.53)

36.12 Parabolic Fractal

The parabolic fractal distribution is the relationship between the logarithm of the probability
and a quadratic function of the logarithm of the ranking.

ln p x = a+ b ln x + cln2 x x > 0 (36.54)
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In general, when fitting the PMF to event data, some of the actual frequencies may be zero
and so ln[p(x)] would present a problem. This resolved by rearranging Equation (36.54).

p x = eaxb exp cln2 x x > 0 (36.55)

This also allows us to compare the fit with that of other distributions since RSS will have the
units of p(x) rather than ln[p(x)].
Fitting this to the frequency of the top 100 words in this book gives a as −2.53, b as −0.777

and c as −0.0278. RSS is 0.000286, compared to 0.000304 for the Zipf distribution, and so the
fit is slightly less accurate.
An alternative choice is the stretched exponential distribution, described by Equation (28.27).

Fitting gives δ as 0.336 and λ as 0.0364. At 0.000272, RSS is slightly improved.
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Appendix 1
Data Used in Examples

Table A1.1 Results for vol% C4 in propane rundown

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

5.3 4.9 4.2 2.4 2.4 2.1 2.8 2.4 4.6 12.5 2.8 5.2
4.3 4.8 2.2 2.6 2.5 2.2 5.0 6.7 4.9 6.4 3.2 10.9
2.5 5.3 2.8 7.0 5.2 9.4 5.3 4.5 5.9 3.8 2.5 5.0
3.9 5.9 4.3 10.2 6.0 3.1 3.1 4.1 11.1 6.2 9.5 3.1
3.6 5.3 10.6 3.5 7.3 3.5 3.8 4.5 1.7 5.3 8.6 2.8
3.8 4.1 7.0 7.4 5.9 3.5 6.5 6.0 4.3 10.1 3.5 3.2
3.8 6.7 2.1 3.1 7.1 3.9 3.0 5.6 2.8 4.2 5.2 4.6
4.9 2.9 5.6 12.2 8.5 6.8 2.4 6.2 4.5 2.0 3.0 3.2
5.3 2.6 1.9 3.5 4.0 5.2 7.0 6.3 5.0 2.4 2.9 5.6
3.2 3.1 6.9 10.7 1.6 6.7 5.6 8.5 8.0 4.3 7.0 8.4
3.6 13.1 9.6 3.6 2.0 6.1 3.6 3.8 5.9 2.7 1.7 2.9
4.0 3.0 3.8 3.7 5.1 4.9 2.8 13.6 3.9 2.0 7.4 2.2
3.9 3.0 10.6 4.3 2.2 5.0 3.2 10.5 3.9 4.7 1.9 5.7
2.8 4.6 6.7 4.7 3.2 3.2 15.8 5.3 6.4 4.1 4.4 5.1
4.1 2.2 6.9 1.9 2.7 4.0 6.6 3.4 3.7 2.2 7.8 5.3
4.0 8.4 3.9 4.7 6.0 3.9 8.7 1.9 3.2 12.0 8.3 1.6
4.4 5.3 3.5 4.4 2.1 3.2 5.1 2.1 4.8 6.1 4.3 2.9
6.9 4.4 8.2 6.9 3.3 1.5 3.7 3.5 9.9 2.5 3.0 3.4
6.2 7.8 2.5 5.9 7.9 4.9 4.7 1.5 3.3 5.1 5.5 2.9

11.6 3.0 6.1 9.8 2.2 3.5 3.7 6.9 4.2 3.5 3.1 7.1
5.7 5.6 3.5 9.5 2.3 3.0 7.3 6.7 7.6 2.9 2.9 7.1

10.4 6.4 6.6 6.3 3.5 6.0 2.0 7.1 2.1 2.1 3.7 7.8
9.9 2.1 2.8 5.4 3.7 2.5 3.8 6.8 3.0 2.0 4.2 3.5
1.5 3.4 5.3 4.0 5.5 4.2 3.6 5.3 4.7 4.5 5.6 3.5
4.4 2.3 3.3 3.2 2.6 5.3 6.2 2.8 2.5 4.3 2.8 4.7
7.1 3.8 2.7 1.8 3.6 5.9 2.8 7.8 3.1 3.5 7.4 6.5
4.4 5.5 2.3 3.8 3.0 8.6 8.4 4.0 4.6 3.0 4.0 5.2
8.0 4.3 4.5 4.0 3.0 5.4 5.9 3.7 11.2 3.6 1.9 6.5
2.4 4.1 5.6 10.4 8.5 2.6 6.0 3.9 8.3 5.3 3.7
2.8 3.3 7.5 5.4 2.7 3.2 4.7 3.2 10.2 4.6 3.5
3.6 7.8 4.9 3.3 3.8 3.2 1.9

Statistics for Process Control Engineers: A Practical Approach, First Edition. Myke King.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



Table A1.2 Results for vol% C2 in 100 propane cargoes

3.6 3.7 3.4 4.7 2.5
3.4 2.1 3.8 4.0 4.6
4.8 4.5 2.9 3.0 3.8
2.7 4.1 2.9 3.7 3.5
4.1 4.3 4.0 3.2 3.2
4.8 3.3 3.3 3.5 4.8
4.3 3.1 2.2 3.2 3.2
2.7 2.8 3.6 4.4 5.0
3.2 4.0 3.2 1.9 4.6
3.4 2.1 3.4 4.8 4.7
4.2 3.1 2.9 2.6 2.7
3.4 3.9 3.4 2.1 2.4
2.9 2.8 3.4 3.7 3.8
3.3 4.0 3.2 2.4 3.0
4.3 4.9 4.1 4.1 3.7
3.6 3.1 3.8 2.2 4.4
3.6 4.0 3.7 3.5 3.9
4.2 3.7 3.5 3.0 2.3
3.4 3.1 3.1 4.9 4.8
3.2 3.4 2.6 4.3 4.0

Table A1.3 Gasoil 95% distillation points ( C)

Jan Feb Mar Apr

347 338 359 355
364 377 360 356
364 366 355 355
362 363 323 352
359 369 337 357
366 366 341 355
360 355 353 352
359 341 345 358
358 344 350 350
358 362 355 350
356 353 359 352
354 359 359 363
360 359 366 358
338 338 362 362
347 345 358 363
361 365 361 365
365 353 365 365
362 356 362 363
362 355 364 367
366 366 365 365
360 354 363 360
361 351 368
355 355 361
357 357 355
355 351 361
362 353 359
354 345 357
365 356 353
367 354
336 354
337 356



Table A1.4 Results for fuel gas NHV (MJ/sm3)

Jan Feb Mar Apr May Jun

37.79 37.77 38.78 38.87 39.87 37.57
37.72 34.59 38.50 38.73 39.93 38.26
37.53 33.15 38.54 39.11 39.74 41.90
37.46 34.84 39.11 38.75 39.60 40.21
37.43 37.45 40.08 37.33 37.50 38.72
37.88 36.85 39.93 35.82 37.79 38.13
38.18 37.28 40.14 36.70 39.09 37.99
38.22 37.02 40.31 38.51 39.06 37.55
38.18 36.86 40.99 38.31 39.37 37.78
38.12 36.97 41.09 38.22 39.46 37.66
38.13 37.23 39.30 38.77 39.44 37.45
37.82 37.40 38.19 38.72 39.23 36.91
38.27 37.52 37.53 38.13 38.93 38.32
38.06 37.31 37.73 38.14 39.13 39.37
38.69 40.55 38.35 38.06 39.38 39.08
38.44 39.98 38.24 38.20 37.40 38.77
38.28 39.97 37.83 37.43 38.87 38.68
38.33 38.30 38.60 37.86 37.26 38.65
38.74 38.24 38.85 38.03 37.56 39.16
38.75 38.22 38.48 37.93 37.63 38.69
38.55 37.83 38.29 38.24 38.14 39.45
38.43 38.84 38.95 38.01 37.73 39.01
38.48 39.49 38.68 38.10 36.88 39.32
38.34 39.53 38.79 38.32 37.96 39.24
38.62 39.52 38.98 38.81 38.35 38.61
38.40 39.03 38.81 39.00 38.51 39.00
38.20 39.53 38.36 40.37 38.38 37.94
38.15 39.85 38.25 40.17 38.40 38.68
38.17 37.97 40.31 38.13 38.41
37.49 37.78 39.71 38.35 38.22
37.34 38.19 37.52
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Table A1.5 Fuel gas analyses (mol %)

sample H2 CH4 C2 C3 C4 C5 C6+ N2 CO CO2 H2S

1 55.85 15.65 14.02 9.13 3.69 0.54 0.11 0.11 0.65 0.22 0.03
2 54.60 13.06 13.06 9.36 6.89 1.13 0.21 0.87 0.41 0.31 0.11
3 52.54 13.16 12.24 12.44 6.68 1.03 0.21 0.87 0.62 0.21 0.01
4 52.52 13.10 13.00 12.37 5.45 1.36 0.31 1.15 0.52 0.21 0.00
5 52.29 12.48 12.79 10.95 7.16 1.43 0.41 1.76 0.51 0.20 0.01
6 63.19 10.65 10.45 7.33 5.73 0.40 0.40 1.73 0.00 0.10 0.01
7 62.89 10.15 10.85 7.74 5.63 0.40 0.60 1.73 0.00 0.00 0.02
8 64.72 11.56 10.84 6.40 4.75 0.72 0.10 0.38 0.41 0.10 0.01
9 54.25 12.45 13.16 8.91 6.88 1.52 0.51 1.59 0.51 0.20 0.03
10 60.77 12.50 11.78 7.69 5.02 0.82 0.20 0.63 0.31 0.10 0.17
11 65.60 10.88 10.07 6.81 4.68 0.92 0.20 0.40 0.31 0.10 0.03
12 59.71 14.02 12.67 8.00 4.26 0.83 0.10 0.00 0.31 0.10 0.00
13 59.95 12.46 11.75 9.70 4.60 1.12 0.20 0.00 0.20 0.00 0.01
14 60.99 10.42 11.04 8.46 5.99 1.24 0.62 0.89 0.21 0.10 0.04
15 70.49 8.66 7.33 6.01 5.20 0.92 0.20 0.30 0.41 0.31 0.17
16 74.08 8.46 7.52 6.48 2.40 0.31 0.10 0.00 0.52 0.10 0.00
17 57.34 11.63 11.73 9.78 7.82 0.93 0.21 0.15 0.31 0.10 0.01
18 54.28 13.59 13.70 8.38 5.72 1.64 0.51 1.55 0.41 0.20 0.01
19 56.31 14.57 13.43 8.47 4.44 1.03 0.21 0.79 0.41 0.31 0.01
20 52.95 12.76 13.67 9.21 6.68 1.62 0.51 1.89 0.51 0.20 0.01
21 53.05 13.57 13.57 10.02 5.97 1.32 0.61 1.19 0.51 0.20 0.00
22 52.20 14.62 14.00 9.57 6.49 1.24 0.31 0.76 0.51 0.21 0.09
23 52.34 13.66 13.16 9.85 8.34 1.31 0.30 0.34 0.50 0.20 0.00
24 53.93 13.74 12.71 9.53 6.25 1.33 0.41 1.25 0.51 0.21 0.12
25 53.73 14.25 13.64 9.46 5.29 1.32 0.41 1.19 0.51 0.20 0.00
26 53.86 13.90 13.55 9.07 5.17 1.26 0.34 2.00 0.57 0.23 0.03
27 53.35 13.01 13.62 9.76 6.50 1.42 0.41 1.21 0.51 0.20 0.01
28 64.99 9.13 9.24 8.15 5.43 0.98 0.11 1.09 0.54 0.33 0.01
29 48.20 13.62 14.14 10.16 9.22 1.57 0.52 1.72 0.52 0.31 0.01
30 42.37 15.59 13.95 11.08 11.49 1.54 0.31 2.40 0.82 0.41 0.04
31 61.55 12.50 9.91 7.13 6.30 1.03 0.52 0.38 0.41 0.10 0.17
32 58.51 11.96 9.53 10.85 5.88 1.12 0.51 1.09 0.41 0.10 0.05
33 59.37 14.09 10.12 10.23 4.59 0.63 0.10 0.12 0.52 0.21 0.02
34 51.90 14.08 12.33 9.76 7.09 1.44 0.51 1.79 0.72 0.31 0.06
35 56.20 14.62 11.82 11.20 3.94 0.62 0.10 0.61 0.62 0.21 0.06
36 63.42 10.69 9.56 7.30 5.04 1.23 0.62 1.38 0.51 0.21 0.05
37 59.92 12.32 10.56 10.56 4.24 0.72 0.10 0.79 0.21 0.52 0.06
38 68.29 10.98 9.15 5.89 3.76 1.02 0.30 0.00 0.30 0.20 0.10
39 44.61 16.47 16.57 12.38 7.16 1.43 0.31 0.53 0.31 0.20 0.02
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Table A1.6 Stock levels

422 1118 620 1250 1485 435 1589 1785 560
520 1380 260 1510 1485 625 1470 1920 820
620 1740 420 1510 1485 940 1450 1510 1085
855 2075 620 1395 1485 1000 1680 1155 1365
970 1780 800 1295 1485 1025 2000 1480 1640

1210 1785 1050 1135 1485 960 1705 1780 1900
1475 1940 710 910 1175 1340 1255 2080 1470
1490 1930 1060 850 840 1780 1450 1680 1100
1560 1660 560 845 620 2000 1770 1570 1045
1718 1740 950 740 485 1910 2095 1790 1080
1837 1895 1220 745 445 1575 2090 2025 1410
1820 1785 1105 980 470 1205 1920 1795 1750
1860 1450 1105 1180 560 945 1600 1665 1640
1845 990 750 960 620 885 1630 1540 1320
1560 1260 435 925 680 1180 1950 1100 1365
1465 1490 75 960 700 1400 1860 940 1340
1520 1720 360 1060 455 1760 1685 1225 1360
1595 1880 560 1245 780 1770 1690 1560 1420
1500 1600 720 1480 1185 1140 2000 1820 1645
1400 1685 960 1480 1140 470 1485 1995 1850
1450 1495 950 1480 1070 505 1680 1605
1740 1625 902 1480 700 845 2000 1310
2040 1450 900 1480 300 1180 1590 960
1900 1450 970 1480 280 1525 1440 690
1500 1065 1095 1490 340 1865 1470 580
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Table A1.7 Results for batch blending (including trim blends)

batch property batch property

1 107.0 76.7
2 104.7 81.4
3 100.0 83.7
4 102.3 83.7
5 111.6 86.0

90.7 84.9
88.4 77.9
90.7 77.9

6 104.7 84.9
7 107.0 91.9
8 102.3 93.0
9 100.0 95.3

96.5 96.5
96.5 97.7

10 118.6 29 110.5
11 102.3 30 107.0
12 100.0 31 102.3
13 100.0 97.7
14 107.0 32 103.5
15 104.7 33 102.3
16 103.5 97.7

88.4 96.5
17 102.3 34 104.7
16 102.3 97.7
19 104.7 97.7
20 109.3 95.3
21 107.0 35 104.7
22 102.3 36 104.7

97.7 37 101.2
23 100.0 38 102.3
24 100.0 39 107.0
25 102.3 40 102.3

97.7 95.3
26 102.3 97.7
27 100.0 98.8

70.9 41 104.7
69.8 42 100.0

28 100.0 43 100.0
44 100.0

98.8
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Table A1.8 Two-tailed confidence intervals

n confidence (%) confidence (%) n

0.0 0.0 50 0.6745
0.5 38.3 60 0.8416
1.0 68.3 70 1.0364
1.5 86.6 80 1.2816
2.0 95.4 85 1.4395
2.5 98.76 90 1.6449
3.0 99.73 95 1.9600
3.5 99.953 98 2.3263
4.0 99.9937 99 2.5758
4.5 99.99932 99.5 2.8070
5.0 99.999943 99.9 3.2905
5.5 99.9999962 99.99 3.8906
6.0 99.99999980 99.999 4.4172
6.5 99.999999992 99.9999 4.8916
7.0 99.9999999997 99.99999 5.3267

Table A1.9 One-tailed confidence intervals

n confidence (%) confidence (%) n

0.0 0.0 50 0.0000
0.5 69.1 60 0.2533
1.0 84.1 70 0.5244
1.5 93.3 80 0.8416
2.0 97.7 85 1.0364
2.5 99.38 90 1.2816
3.0 99.87 95 1.6449
3.5 99.977 98 2.0538
4.0 99.9968 99 2.3263
4.5 99.99966 99.5 2.5758
5.0 99.999971 99.9 3.0893
5.5 99.9999981 99.99 3.7005
6.0 99.99999990 99.999 4.1860
6.5 99.999999996 99.9999 4.7534
7.0 99.9999999999 99.99999 5.1993
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Appendix 2
Summary of Distributions

Included here are two tables, Table A2.1 for continuous distributions and Table A2.2 for dis-
crete distributions. They list, in alphabetical order, all the distributions described in this book.
Their purpose is to assist the reader in shortlisting the distributions that might be considered for
a given dataset.

Where distributions share the same name, different versions are numbered as (1), (2), etc. This
should not be confused with distributions that are numbered as part of their title, e.g. Pearson-I,
Pearson-II, etc.

A blank row in the table indicates that the details will be found under the distribution’s alter-
native name.

A ✓ for the lower or upper bound means that it exists only under certain circumstances or is
determined from a formula too complex to show in the table. Full details will be found in the
detailed description of the distribution.

For the PDF (or PMF), CDF and QF a ✓ shows that the function is included in the book.
A blank generally implies that it is mathematically too complex to be included. A CDF, if not
presented as a function, can always be developed by applying the trapezium rule to the PDF
(or PMF). And the lack of a QF is usually only a minor inconvenience that, if needed, can be
overcome by iterative or graphical methods. However, if required for Monte Carlo simulation,
its existence becomesmore important. A few distributions have only aQF. This requires a slightly
different method of fitting and should not, in itself, be a reason for rejecting a distribution.

Distributions with no shape parameters are highly unlikely to be of practical use. Similarly
distributions with a large number of parameters may provide a better fit but are less likely to be
robust. They are also unlikely to have simple formulae for mean, variance, etc.

For mean (μ), standard deviation (σ), skewness (γ) and kurtosis (κ) a✓ shows that a formula
is included in this book. In some cases it may be presented as a general formula for the raw
moments. A ✗ means that the parameter cannot be defined. A blank means either that it is
too complex for inclusion or has not been published. Most distributions include shape para-
meters that give location and dispersion. Depending on the application, these might be used
instead of mean and standard deviation. Further, moments can usually be derived using the
trapezium rule.

Statistics for Process Control Engineers: A Practical Approach, First Edition. Myke King.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



Excel supports many of the commonly used distributions. Where relevant, they are shown in
the tables. In Excel 2013 their names take the form ‘.DIST’. This provides both the PDF and
CDF. For each there is ‘.INV’ which is the QF. For the majority of the distributions, which are
not specifically included, the PDF, CDF and QF can be defined as a calculation. Many distri-
butions use the ERF function. Used by several distributions, all four kinds of Bessel function (I,
J, K and Y) are supported, although only for integer orders. Not shown in the table, Excel also
supports the GAMMA, Γ(x), and FACT, x!, functions. Also not shown are the common math-
ematical functions such as EXP, ex; LN, ln(x); etc. There is also, of course, the full range of
trigonometric functions, such as SIN, sin(x); ASIN, sin−1(x); SINH, sinh(x); etc. Common sta-
tistical functions such as AVERAGE, STDEV, SKEW, VAR, COVAR.S and PEARSON are
based on the formulae given in this book. However, note that KURT gives excess kurtosis and
so must have 3 added to give kurtosis.
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Table A2.1 Summary of continuous distributions

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

Amoroso α ∞ ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓

anglit μ − πβ/4 μ + πβ/4 ✓ ✓ ✓ μ, β μ ✓ 0 ✓

arcsine (first kind) 0 1 ✓ ✓ ✓ 0.5 0.125 0 −1.5

arcsine (second kind) −1 1 ✓ 0

arctangent α ∞ ✓ ✓ ✓ α, β, δ 0

asymmetric Laplace −∞ ∞ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓

Balding–Nichols 0 1 ✓ μ, p μ ✓ ✓ ✓

Bates 0 1 ✓ n ✓ ✓ 0 ✓

Benini xmin ∞ ✓ ✓ xmin, α, β

Benktander-I 0 ∞ ✓ ✓ λ, δ ✓

Benktander-II 0 ∞ ✓ ✓ λ, δ ✓

beta rectangular −∞ ∞ ✓ δ1, δ2, δ3

beta-I 0 1 ✓ δ1, δ2 ✓ ✓ ✓ ✓ Feller–Pareto BETA.DIST

beta-II 0 β ✓ β, δ1, δ2, δ3 ✓ ✓ ✓ ✓ beta prime
inverted beta

beta-IV xmin xmax ✓ xmin, xmax, δ1, δ2 ✓ ✓ ✓ ✓ beta subjective BETA.DIST
PERT

Birnbaum–Saunders α ✓ ✓ α, β, δ ✓ ✓ ✓ ✓ fatigue life

bounded Pareto-I xmin xmax ✓ ✓ ✓ xmin, xmax, δ ✓ ✓

Bradford xmin xmax ✓ ✓ xmin, xmax, λ ✓ ✓

Burr-I −∞ ∞ uniform

Burr-II generalised logistic

Burr-III α ∞ ✓ ✓ ✓ α, β, δ1, δ2
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Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

Burr-IV −α α + βδ1 ✓ ✓ ✓ α, β, δ1, δ2

Burr-V α − π/2 α + π/2 ✓ ✓ ✓ α, β, δ1, δ2
Burr-VI −∞ ∞ ✓ ✓ ✓ α, β, δ1, δ2

Burr-VII −∞ ∞ ✓ ✓ ✓ α, β, δ

Burr-VIII −∞ ∞ ✓ ✓ ✓ α, β, δ

Burr-IX −∞ ∞ ✓ ✓ ✓ α, β, δ1, δ2
Burr-X −∞ ∞ ✓ ✓ ✓ α, β, δ

Burr-XI −∞ ∞ ✓ ✓ ✓ α, β, δ

Burr-XII α ∞ ✓ ✓ ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓ Pareto-IV
Singh–Maddala

cardioid 0 2π ✓ ✓ μ, β μ

Cauchy −∞ ∞ ✓ ✓ ✓ α, β ✗ ✗ ✗ ✗ McCullagh
Breit–Wigner
Lorenz
Cauchy–Lorenz

Champernowne(1) 0 ∞ ✓ ✓ δ1, δ2
Champernowne(2) 0 ∞ ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓

chi −∞ ∞ ✓ α, β, f ✓ ✓ ✓ ✓

chi-squared (standard) −∞ ∞ ✓ f ✓ ✓ ✓ ✓ CHISQ.DIST

chi-squared (shifted and
scaled)

−∞ ∞ ✓ α, β, f ✓ ✓ ✓ ✓

cosine μ − πβ/2 μ + πβ/2 ✓ ✓ ✓ μ, β μ ✓ 0

Dagum-II α ∞ ✓ ✓ ✓ α, β, δ1, δ2, δ3



Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

Dagum-III ✓ ∞ ✓ ✓ ✓ α, β, δ1, δ2, δ3

Davis −∞ ∞ ✓ α, β, δ ✓ ✓

double exponential −∞ ∞ ✓ α, β ✓ ✓ Laplace

erf −∞ ∞ ✓ ✓ α 0 ✓ 0 3

exponential (standard) 0 ∞ ✓ ✓ ✓ λ ✓ ✓ 2 9 EXPON.
DIST

exponential (shifted) α ∞ ✓ ✓ ✓ α, β ✓ ✓ 2 9 Pearson-X

exponentiated
Kumaraswamy–Dagum

0 ∞ ✓ ✓ ✓ λ, δ1, δ2, δ3, δ4 EKD

exponential logarithmic 0 ∞ ✓ ✓ ✓ λ, δ

exponential power α ∞ ✓ ✓ ✓ α, β, δ

exponentially modified
Gaussian

−∞ ∞ ✓ ✓ α, β, λ ✓ ✓ ✓ ✓ EMG ERF

extreme value-I −∞ ∞ ✓ ✓ ✓ α, β, δ

Fisher −∞ ∞ ✓ f1, f2 ✓ ✓ ✓ ✓ Fisher–Snedecor F.DIST
Snedecor-F

folded normal −∞ ∞ ✓ ✓ α, β ERF

Fréchet −∞ ∞ ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓ Gumbel-II
log-Gompertz
inverse Weibull

gamma 0 ∞ ✓ β or λ, k ✓ ✓ ✓ ✓ GAMMA.
DIST

gamma-Gompertz 0 ∞ ✓ ✓ α, β, δ

generalised beta 0 β ✓ β, δ1, δ2, δ3 ✓ ✓ ✓ ✓

generalised beta prime(1) α ∞ ✓ α, β, δ1, δ2, δ3 ✓ ✓ ✓ ✓ transformed beta
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Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

generalised beta prime(2) 0 1 ✓ β, δ1, δ2, δ3, δ4

generalised exponential α ∞ ✓ ✓ ✓ α, β, λ, δ

generalised extreme value α ∞ ✓ α, β, δ GEV

generalised gamma −∞ ∞ ✓ β, δ1, δ2 ✓ ✓ ✓ ✓ transformed gamma
Stacy–Mihram

generalised inverse
Gaussian

0 ∞ ✓ α, β, δ ✓ ✓ ✓ ✓ GIG
Sichel

BESSELK

generalised Lindley 0 ∞ ✓ λ, δ1, δ2

generalised logistic α − β/δ (δ
< 0)

α − β/δ (δ
> 0)

✓ ✓ ✓ α, β, δ ✓ ✓ Burr-II

generalised logistic-I α ∞ ✓ ✓ ✓ α, β, δ

generalised logistic-II −∞ ∞ ✓ ✓ ✓ α, β, δ

generalised logistic-III α ∞ ✓ α, β, δ

generalised logistic-IV α ∞ ✓ α, β, δ1, δ2 exponential general
beta-II

generalised log-logistic α ∞ ✓ α, β, δ1, δ2

generalised normal(1) −∞ ∞ ✓ μ, β, λ μ ✓ 0 ✓ generalised Gaussian
exponential power
generalised error

generalised normal(2) −∞ m+ β/δ ✓ ✓ m, β, δ ✓ ✓ ✓ ✓ generalised Gaussian

generalised normal(3) α ∞ ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓ generalised Gaussian

generalised Pareto(1) Stoppa

generalised Pareto(2) α ∞ ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓



Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

generalised Pareto(3) α ∞ ✓ ✓ α, β, δ

generalised Tukey lambda −∞ ∞ ✓ λ1, λ2, λ3, λ4

Gibrat −∞ ∞ ✓ ~1.65 ~4.67 ~6.19 ~114

Gompertz 0 ∞ ✓ ✓ ✓ α, β

Gompertz–Makeham 0 ∞ ✓ ✓ α, β

Gompertz–Verhulst ✓ ∞ ✓ ✓ ✓ α, β, δ1, δ2

Gumbel-I −∞ ∞ ✓ ✓ extreme value max
extreme value min

Gumbel-II Fréchet

half-logistic α ∞ ✓ ✓ α, λ ✓ ✓

half-normal −∞ ∞ ✓ α, β ✓ ✓ ~1.00 ~0.87

Hjorth 0 ∞ ✓ ✓ β, δ1, δ2 IDB

Hosking −∞ ∞ ✓ ✓ ✓ α, β, δ1, δ2

hyperbolic −∞ ∞ ✓ α, β, λ ✓ ✓ ✓ ✓ BESSELK

hyperbolic secant −∞ ∞ ✓ ✓ ✓ μ, σ μ σ 0 5 sech

hyperexponential 0 ∞ ✓ ✓ p1, p2 …, λ1, λ2 … ✓ ✓ ✓ ✓

hypoexponential 0 ∞ ✓ λ1, λ2 .. ✓ ✓ ✓ generalised Erlang

inverse Burr α ∞ ✓ ✓ ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓ Dagum-I

inverse chi −∞ ∞ ✓ α, β, f ✓ ✓ ✓ ✓

inverse chi-squared −∞ ∞ ✓ α, β, f ✓ ✓ ✓ ✓

inverse exponential α ∞ ✓ ✓ ✓ α, β ✗ ✗ ✗ ✗

inverse gamma Pearson-V

inverse Gaussian (two
parameter)

0 ∞ ✓ ✓ μ, β μ ✓ ✓ ✓

inverse Gaussian (three
parameter)

α ∞ ✓ α, μ, σ μ σ
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Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

inverse paralogistic α ∞ ✓ α, β, δ

inverse Pareto α ∞ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓

inverse Rayleigh −∞ ∞ ✓ α, β ✓ ✗ ✗ ✗

Irwin–Hall 0 ∞ ✓ n ✓ ✓ 1 ✓

Johnson SB −∞ ∞ ✓ ✓ α, β, μJ, σJ ERF

Johnson SL μJ ∞ ✓ ✓ α, β, μJ, σJ ✓ ✓

Johnson SN −∞ ∞ ✓ ✓ α, β, μJ, σJ ✓ ✓ 0 3

Johnson SU −∞ ∞ ✓ ✓ α, β, μJ, σJ ✓ ✓

kappa −∞ ∞ ✓ K, α, β, δ 0

Kumaraswamy 0 1 ✓ ✓ ✓ δ1, δ2 ✓ ✓ ✓ ✓ minimax

Laplace −∞ ∞ ✓ ✓ ✓ μ, σ μ σ 0

Lévy α ∞ ✓ ✓ α, β ✓ reciprocal Gaussian ERF

Lindley 0 ∞ ✓ ✓ λ ✓ ✓ ✓ ✓

Lindley-geometric 0 ∞ ✓ ✓ λ, δ

log-Cauchy 0 ∞ ✓ ✓ ✓ α, β

log F −∞ ∞ ✓ α, β, f1, f2 ✓ ✓ Fisher z

log-gamma(1) α − 1 ∞ ✓ α, δ1, δ2 ✓ ✓ ✓ ✓

log-gamma(2) 0 1 ✓ δ1, δ2
log-gamma(3) α − 1 ∞ ✓ α, δ1, δ2

log-gamma(4) −∞ ∞ ✓ α, δ1, δ2
log-gamma(5) −∞ ∞ ✓ α, β, δ

logistic −∞ ∞ ✓ ✓ ✓ μ, β μ ✓ 0 4.2



Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

logistic exponential 0 ∞ ✓ ✓ ✓ λ, δ

logit-normal 0 1 ✓ ✓ α, β ERF

log-Laplace(1) 0 ∞ ✓ ✓ α, β

log-Laplace(2) 0 α ✓ ✓ α, β log-double
exponential

log-logistic α ∞ ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓ Fisk

lognormal 0 ∞ ✓ ✓ α, β ✓ ✓ ✓ ✓ LOGNORM.
DIST
ERF

log-Student t 0 ∞ ✓ α, β, f

Lomax 0 ∞ ✓ ✓ ✓ β, δ ✓ ✓ ✓ ✓

Maxwell −∞ ∞ ✓ ✓ α, β ✓ ✓ ~0.49 ~0.11 Maxwell-Boltzman

Maxwell–Jüttner 0 ∞ ✓ ✓ λ, α

Mielke α ∞ ✓ ✓ α, β, δ1, δ2

minimax odds 0 ∞ ✓ ✓ ✓ δ1, δ2

Moyal −∞ ∞ ✓ ✓ α, β ✓ ✓ Landau (approx.) ERF

Muth α ∞ ✓ ✓ α, β, δ

Nakagami α ∞ ✓ α, β, δ

noncentral beta 0 1 ✓ ✓ α, β, δ BESSELI

noncentral chi-squared −∞ ∞ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓ BESSELI

noncentral F −∞ ∞ ✓ δ, f1, f2 ✓ ✓

noncentral Student t −∞ ∞ ✓ δ, f ✓ ✓

normal −∞ ∞ ✓ ✓ μ, σ μ σ 0 3 Gaussian
Pearson-0

NORM.DIST
ERF

normal inverse Gaussian −∞ ∞ ✓ α, β, δ, λ ✓ ✓ ✓ ✓ NIG BESSELK
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Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

Nukiyama–Tanasawa 0 ∞ ✓ β, δ1, δ2

paralogistic α ∞ ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓

Pareto-I β ∞ ✓ ✓ ✓ β, δ ✓ ✓ ✓ ✓ Pearson-XI

Pareto-II α ∞ ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓

Pareto-III α ∞ ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓

Pearson-I α α + β ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓ beta-I BETA.DIST

Pearson-II α α + β ✓ α, β, δ 0.5 ✓ 0 ✓ symmetric-beta BETA.DIST

Pearson-III −∞ ∞ ✓ α, β, δ ✓ ✓ ✓ ✓

Pearson-IV −∞ ∞ ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓

Pearson-V −∞ ∞ ✓ α, β, δ ✓ ✓ ✓ ✓

Pearson-VI −∞ ∞ ✓ α, β, δ1, δ2 ✓ ✓ ✓ ✓

Pearson-VII −∞ ∞ ✓ α, β, δ ✓ ✓ 0 ✓

Pearson-VIII −∞ ∞ ✓ K, α, β

Pearson-IX −∞ ∞ ✓ K, α, β

Pearson-X exponential

Pearson-XI Pareto-I

Pearson-XII −∞ ∞ ✓ K, α, β1, β1
PERT xmin xmax ✓ xmin, xmax, xmode, λ ✓ ✓ ✓ ✓ beta-IV

power 0 β ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓

power lognormal 0 ∞ ✓ ✓ α, β, p Marshall-Olkin

q-exponential 0 ∞ ✓ ✓ ✓ λ, q ✓ ✓ ✓ ✓

q-gamma 0 ∞ ✓ λ, δ, q ✓ ✓ ✓ ✓

q-Gaussian ✓ ✓ ✓ μ, β, q ✓ ✓ 0 ✓

q-Weibull 0 ∞ ✓ ✓ ✓ α, β, δ, q



Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

raised cosine μ − β μ + β ✓ ✓ μ, β μ ✓ 0 ~2.41

Rayleigh −∞ ∞ ✓ ✓ ✓ α, β ✓ ✓ ~0.63 ~0.25

reciprocal inverse 0 ∞ ✓ α, λ ✓ ✓ ✓ ✓
Gaussian

reverse exponential −∞ ∞

reverse Weibull −∞ ∞ ✓ ✓ ✓ α, β, δ

Rician 0 ∞ ✓ ✓ α, β Rice BESSELI

shifted Gompertz 0 ∞ ✓ ✓ α, β

skew-logistic(1) −∞ ∞ ✓ ✓ α, β, δ

skew-logistic(2) −∞ ∞ ✓ ✓ α, β, δ

skew-normal −∞ ∞ ✓ α, β, δ ✓ ✓ ✓ ✓

slash −∞ ∞ ✓ ✓ μ, σ μ σ 0 ✗ ERF

Stoppa-I power

Stoppa-II β ∞ ✓ ✓ ✓ β, δ1, δ2 ✓ ✓ ✓ ✓ generalised Pareto(1)

Stoppa-III generalised
exponential

Stoppa-IV α + β/2 α + β ✓ ✓ ✓ α, β, δ

Stoppa-V Burr-V

stretched exponential 0 ∞ ✓ ✓ ✓ λ, δ ✓ ✓ ✓ ✓

Student t −∞ ∞ ✓ f 0 ✓ 0 ✓ T.DIST

Topp–Leone 0 1 ✓ ✓ ✓

triangular xmin xmax ✓ ✓ xmin, xmax, xmode ✓ ✓ 2.4 lack of knowledge

Tukey lambda −∞ ∞ ✓ λ 0 ✓ 0

two-sided power xmin xmax ✓ ✓ xmin, xmax, δ ✓ ✓ TSP

(continued overleaf )



Table A2.1 (continued)

distribution lower
bound

upper
bound

PDF CDF QF shape parameters μ σ γ κ alternative names Excel
function

uniform xmin xmax ✓ ✓ ✓ xmin, xmax ✓ ✓ 0 1.8 rectangular RAND
Burr-I

von Mises μ − π μ + π ✓ μ, β μ Tikhonov BESSELI

Wakeby −∞ ∞ ✓ δ1, δ2, δ3, δ4 ✓ ✓

Wald 0 ∞ ✓ ✓ β 1 ✓ ✓ ✓ ERF

Weibull-I 0 ∞ ✓ ✓ ✓ δ ✓ ✓ ✓ ✓

Weibull-II 0 ∞ ✓ ✓ ✓ β, δ ✓ ✓ ✓ ✓ Rosin-Rammler WEIBULL.
DIST

Weibull-III α ∞ ✓ ✓ ✓ α, β, δ ✓ ✓ ✓ ✓

Wigner semicircle −r r ✓ ✓ r 0 ✓ 0 2



Table A2.2 Summary of discrete distributions

distribution lower bound upper bound PMF CDF QF shape parameters μ σ γ κ alternative names Excel function

Benford 1 ∞ ✓ first digit

Bernoulli 0 1 ✓ p ✓ ✓ ✓ ✓

beta-binomial 0 ∞ ✓ α, β ✓ ✓ ✓ ✗

beta-geometric 1 ∞ ✓ α, β ✓ ✓

beta-negative binomial 0 ∞ ✓ α, β, n ✓ ✓ generalised Waring
inverse Markov-Pόlya

beta-Pascal 0 ∞ ✓ α, β, n

binomial 0 n ✓ n, p ✓ ✓ ✓ ✓ BINOM.DIST

Borel 1 ∞ ✓ λ ✓ ✓

Borel–Tanner n ∞ ✓ n, λ ✓ ✓

Consul 1 ∞ ✓ α, β ✓ ✓

Conway–Maxwell–Poisson 0 ∞ ✓ λ ✓ ✓

Delaporte 0 ∞ ✓ α, β, λ ✓ ✓

Erlang 0 ∞ ✓ β or λ, k ✓ ✓ ✓ ✓

Flory–Schulz 1 ∞ ✓ p ✓ ✓ ✓ ✓

gamma-Poisson 0 ∞ ✓ α, β ✓ ✓ ✓ ✓

geometric 0 ∞ ✓ ✓ ✓ p ✓ ✓ ✓ ✓ NEGBINOM.DIST

hypergeometric 0 n ✓ N, K, n ✓ HYPGEOM.DIST

Lagrange–Poisson n ∞ ✓ n, α, λ ✓ ✓ Poisson–Consul

logarithmic 1 ∞ ✓ p ✓ ✓ log-series

multinomial 0 n ✓ n, p1, p2 …

negative binomial 0 ∞ ✓ n, p ✓ ✓ ✓ ✓ Pascal NEGBINOM.DIST

negative
hypergeometric

0 n2 ✓ n1, n2, n3 ✓ ✓

(continued overleaf )



Table A2.2 (continued)

distribution lower bound upper bound PMF CDF QF shape parameters μ σ γ κ alternative names Excel function

parabolic fractal 0 ∞ ✓ a, b, c

Poisson 0 ∞ ✓ λ ✓ ✓ POISSON.DIST

Poisson binomial 0 n ✓ n, p

Pόlya 0 ∞ ✓ α, β ✓ ✓

Skellam −∞ ∞ ✓ λ1, λ2 ✓ ✓ BESSELI

uniform xmin xmax ✓ ✓ xmin, xmax ✓ ✓ 0 ✓ rectangular

Weibull (discrete) 0 ∞ ✓ ✓ ✓ p, β ✓

Yule–Simon 1 ∞ ✓ ✓ α ✓ ✓ ✓ ✓ Yule

zeta 1 ∞ ✓ λ ✓ ✓ ✓ ✓

Zipf 1 ∞ ✓ ✓ λ, K ✓

Zipf–Mandelbrot 1 ∞ ✓ ✓ λ, K, α ✓
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alarm, 8, 12, 24, 231–232, 591
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Amoroso distribution, 467, 525–528, 579, 592
Anderson–Darling test, 143–145
anglit distribution, 471–472, 579
ANN (artificial neural network), 168, 281–285
ANOVA (analysis of variance), 208
anti-modal distribution, 35, 192, 394
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Antoine Equation, 155
arcsine distribution, 393–394, 579
arctangent distribution, 476–477, 579
arctangent2, 306–307
arithmetic mean, 25, 26, 29, 30, 32
Arrhenius’s Law, 159
ARX (autoregressive with exogenous input), 9
ascending cumulative distribution, 136
ascending factorial, 174–175
ASTM (American Society for Testing and

Materials), 23, 121, 123
asymmetric Laplace distribution, 502–504,

505, 579
asymmetric log-Laplace distribution, 505
asymmetry parameter, 72, 330
autocorrelation, 291–297, 305
autocovariance, 294–296
autoregression, 9

back propagation (neural network), 285
background alarm, 8

Balding–Nichols distribution, 395, 579
bandwidth, 90, 307–308
bar graph, 84
Bates distribution, 472–474, 579
bathtub curve, 251–252
Bayesian (approach to statistics), 127
bell curve, 53
benefit estimation, xv, 5–7, 148
Benford distribution, 549–552, 589
Benford’s Law, 549
Benini distribution, 487–488, 579
Benktander-I distribution, 445, 579
Benktander-II distribution, 446, 579
Bernoulli distribution, 226, 544, 589
Bessel function, 176–179, 329, 330, 407, 460, 486,

499, 502, 517, 564, 578
Bessel’s correction, 36
beta function, 174, 191, 192, 208, 391, 396
beta prime distribution, 396, 399–400, 579,

581, 582
beta rectangular distribution, 403, 579
beta subjective distribution, 400, 579
beta-binomial distribution, 538–539, 589
beta-geometric distribution, 535–537, 541, 589
beta-I distribution, 174, 191–196, 395, 396–397,

400, 401–406, 416, 579, 586
beta-II distribution, 373, 396–398, 401, 579, 582
beta-IV distribution, 400–401, 579, 586
beta-Moyal distribution, 347
beta-negative binomial distribution, 540–541, 589
beta-Pascal distribution, 541–542, 589
bias error, 34, 35, 122, 124, 208, 253, 257, 287
bimodal distribution, 34, 321, 322, 351, 352, 431
bin, xiv, 84–88, 133
binomial distribution, 113, 115, 225–228, 231,

233, 529–547, 589, 590
binomial index, 171, 175
Birnbaum–Saunders distribution, 488–489, 579
bit, 80
bivariate distribution, 62–64, 317
block maxima/minima, 235
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bootstrapping, 106, 110–111
Borel distribution, 555, 589
Borel–Tanner distribution, 552–555, 589
bounded distribution, 47–48, 73, 77, 80–82, 128,
136, 197, 334, 361, 367, 378, 409, 413, 419,
443, 466, 483, 505, 525, 579

bounded Pareto-I distribution, 378, 579
Bowley’s measure of skewness, 45
box and whisker diagram, 83–84
Bradford distribution, 490, 579
Breit–Wigner distribution, 420, 580
Burr-I distribution, 349, 579, 588
Burr-II distribution, 349, 579, 582
Burr-III distribution, 349–350, 579
Burr-IV distribution, 350–351, 580
Burr-V distribution, 351–352, 392, 580, 587
Burr-VI distribution, 351–352, 580
Burr-VII distribution, 353, 580
Burr-VIII distribution, 354, 580
Burr-IX distribution, 354–355, 580
Burr-X distribution, 355–356, 580
Burr-XI distribution, 356–357, 580
Burr-XII distribution, 189–191, 356, 357, 379,
383, 399, 580

Canning, George, xiii
cardinal data, 23, 84
cardioid distribution, 481–482, 580
Cauchy distribution, 205, 420–422, 430, 431, 471,
478, 479, 483, 484, 580

Cauchy–Lorenz distribution, 420, 580
CDF (cumulative distribution function), 24, 53–64,
70, 72, 75–78, 99, 100, 106, 117, 127–136,
140–141, 165, 169, 173, 174, 178, 183

ceiling (of a non-integer), 56
centile, 70, 128, 239, 243
central limit theorem, 65–69, 92, 147, 148, 186
central moment, 37–38, 40
central tendency, 25
central value, 25, 31, 32, 71
centre of mass, 29
centroid, 29–31
Champernowne distribution, 491–493, 580
Chebyshev’s inequality, 118
chi distribution, 323, 451–461, 580
chi-squared distribution, 106, 147, 173, 178,
216–221, 459–461, 526, 580

circular plots, 95–97, 482
CLRTO (closed loop real-time optimisation),
302, 385

coefficient of determination, 260–263
coefficient of range, 33
coefficient of variation, 33, 48, 436, 437

collinearity, 263–264
combined distribution, 73–75
complementary distribution, 55, 546, 548
complementary error function, 61
compound distribution, 73, 75, 345, 346, 399,

529, 535
conditional excess distribution function, 239
conditional failure density function, 245
confidence boundaries, 265
confidence interval, 70, 105–111, 113, 116–121,

228, 264–266, 575
Consul distribution, 555–556, 589
continued fraction, 174
continuous data, 23, 33, 59, 81, 128, 136
control limit, 120
Conway–Maxwell–Poisson distribution,

543–546, 589
correlation, xvi, 9, 24, 46–47, 62, 63, 102, 131,

220, 261–279, 285–287, 291–296,
309–313, 415

correlogram, 291
cosine distribution, 479–480, 580, 587
covariance, 33, 46–47, 294
Cramer–von Mises test, 142
cross-correlation, 264, 285
CUSUM (cumulative sum), 253–258, 295

Dagum-I distribution, 357–359, 399, 583
Dagum-II distribution, 359, 580
Dagum-III distribution, 359–360, 581
data conditioning, 47–48
data reconciliation, xvi, 74, 289, 299–303
Davis distribution, 492–494, 581
deadtime (of process), 9, 292–294
decile, 32, 45, 70
decimal odds, 80
degrees of freedom, 36, 106, 205–208, 265, 275,

429, 451
Delaporte distribution, 556–558, 589
delta function, 78
descending cumulative distribution, 136
descending factorial, 174–175
dichotomous data, 23, 108
Dirac delta function, 78
discrete data, 23, 51, 69, 128, 228, 306, 308
dispersion, 32–34, 48, 71, 85, 131, 325, 330, 332,

409, 422, 455, 476, 501, 577
distillation point, 5, 7, 17–18, 570
double exponential distribution, 438–439,

478, 581
double factorial, 170
double-bounded distribution, 47, 80, 81, 443
doubly noncentral F distribution, 429
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doubly noncentral t distribution, 432
drift, 125
DRS (data reconciliation system), 301–303

EDF (empirical distribution function), 133–134,
137, 140, 141, 144, 190

entropy, 80–82
Epanechnikov kernel, 92–93
equidistribution line, 386
erf distribution, 61, 581
Erlang distribution, 221, 234, 437, 583, 589
error function, 60–61, 186
Esar, Evan, xiii
ESS (explained sum of squares), 259
Euler–Mascheroni constant, 166–167, 172, 203
Euler’s number, 165–166, 231
Euler’s reflection formula, 170
EVA (extreme value analysis), 235, 239
EVT (extreme value theory), 235
exceedance, 239–244
excess kurtosis, 38–39, 42, 129, 578
exclusive (calculation of quartiles), 31
exponential distribution, 76, 82, 200, 212–217,

221, 245, 253–254, 345–346, 391, 415, 433,
435–446, 467, 478, 505, 559, 568, 581, 582,
585, 586, 587, 591

exponential generalised beta-II distribution, 373
exponential logarithmic distribution, 245,

441–442, 581
exponential power distribution, 338, 516–517,

581, 582
exponentially modified Gaussian distribution, 75,

345–346, 581
exponentiated exponential distribution, 435
exponentiated Kumaraswamy–Dagum (EKD)

distribution, 376, 581
extreme (outlier), 119
extreme value max distribution, 238, 583
extreme value min distribution, 238, 583
extreme value-I distribution, 202, 581
extreme value-II distribution, 495

F distribution, 208, 415, 427–429, 581
failure rate, 229, 245–252
falling factorial, 174
false negative, 113
false positive, 113
fast Fourier transform, 307
fatigue life distribution, 488, 579
feedforward (neural network), 382
Feller–Pareto distribution, 191, 579
first central moment, 37
first digit law, 549

first order (process dynamics), 9
first raw moment, 37, 197
first-up alarm, 232
Fisher distribution, 208, 415, 427–429, 581
Fisher, Ronald, 208
Fisher’s z distribution, 428, 584
Fisher–Snedecor distribution, 208, 581
Fisk distribution, 367, 585
floor (of a non-integer), 56, 474
Flory–Schulz distribution, 558–559, 589
folded normal distribution, 321–323, 581
Fourier transform, xvii, 305–313
fractional odds, 79
Fréchet distribution, 238, 494–496, 526, 581, 583
Freedman–Diaconis rule, 86
frequency distribution, 51, 65–67, 236–246, 534
frequency domain, 309
frequency factor, 160
frequency–frequency plot, 93, 95
F-test, 208, 275–277, 280

Galton’s measure of skewness, 45
gamma distribution, 221–223, 232–233, 248, 346,

399, 415, 418, 463–469, 509, 525, 529, 542,
581, 592

gamma function, 166, 168–174, 182, 221, 347,
375, 419

gamma-Gompertz distribution, 499–500, 581
gamma-Poisson distribution, 542–545,

563–564, 589
Gaussian distribution, xv, 3, 59, 585
Gaussian kernel, 90, 92
generalised beta distribution, 396, 581
generalised beta prime distribution, 399–400,

581, 582
generalised distribution, 75
generalised Erlang distribution, 437, 583
generalised error distribution (GED), 338–341,

435, 582
generalised exponential distribution, 391, 435,

436, 582, 587
generalised extreme value (GEV) distribution,

201–205, 235, 582
generalised gamma distribution, 467–468,

525–526, 582
generalised Gaussian distribution, 76, 338, 582
generalised inverse Gaussian distribution, 178,

329–330, 582
generalised Lindley distribution, 509–510, 582
generalised logistic distribution, 205, 349, 365,

371–375, 579, 582
generalised logistic-I distribution, 372, 582
generalised logistic-II distribution, 373, 582
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generalised logistic-III distribution, 374, 582
generalised logistic-IV distribution, 374–375, 428,
520, 521, 582

generalised log-logistic distribution, 375–376, 582
generalised normal distribution, 338–344, 478,
516, 582

generalised Pareto distribution, 201, 205, 239–244,
383–385, 582, 583, 587

generalised Tukey lambda distribution,
519–521, 583

generalised Waring distribution, 540, 589
geometric distribution, 530, 531–532, 535, 536,
544, 555, 589

geometric mean, 27–28, 31, 268, 452
geometric median, 31
Gibrat distribution, 320, 583
Gini coefficient (or index), 386
Gompertz distribution, 496–498, 500, 583, 587
Gompertz–Makeham distribution, 498–500, 583
Gompertz–Verhulst distribution, 435–436, 583
Gosset, William Sealy, 204
Gumbel-I distribution, 166, 180, 200, 202, 205,
238, 583

Gumbel-II distribution, 494, 581, 583

half-logistic distribution, 364, 583
half-normal distribution, 317, 323, 451, 456–457,
526, 583

harmonic mean, 26–28
harmonic number, 180–182, 567
Hartley, 80
hazard function, xvi, 245–251
heterogenic, 272
hidden layer (in neural network), 281, 283
histogram, xiv, xv, 84–88, 90, 95, 133, 138–142,
187–188, 227, 309, 329

Hjorth distribution, 251–252, 583
homogenic, 272
Horwitz’s curve, 121–122
Hosking (four parameter kappa) distribution,
195–205, 210, 238, 477, 521, 524, 583, 591

Hurwitz zeta function, 180
hyperbolic distribution, 499–502, 583
hyperbolic secant distribution, 362, 475, 583
hyperexponential distribution, 436–437, 583
hyperflatness, 39
hypergeometric distribution, 559–560, 589
hyperskewness, 39
hypoexponential distribution, 437–438, 583

IDFT (inverse discrete Fourier transform), 308
inclusive (calculation of quartiles), 31
incomplete beta function, 174, 192, 208

incomplete gamma function, 173, 174, 218,
221, 347

inferential performance index, 288
input layer (in neural network), 281
instrument range, 125, 300
intensity (of queuing), 552, 554
interlaboratory study, 121
interquartile range, 32–33, 83, 119
inverse Burr distribution, 357, 583
inverse chi distribution, 458–459, 526, 583
inverse chi-squared distribution, 459–461,

526, 583
inverse distribution, 76
inverse exponential distribution, 76, 439, 526, 583
inverse gamma distribution, 75, 346, 424, 463,

526, 583
inverse Gaussian distribution, 325–329, 333, 365,

367, 583
inverse Markov–Pólya distribution, 540, 589
inverse paralogistic distribution, 367, 370–371,

399, 584
inverse Pareto distribution, 381–382, 399, 584
inverse Rayleigh distribution, 454, 526, 584
inverse Weibull distribution, 494, 581
inverted beta distribution, 396, 579
Irwin–Hall distribution, 473–474, 584

Johnson SB distribution, 412–413, 413, 584
Johnson SL distribution, 412, 413, 584
Johnson SN distribution, 409–410, 413, 584
Johnson SU distribution, 410–411, 413, 584
joint distribution, 62, 73

kappa distribution, 477–478, 584
Kelly’s measure of skewness, 45
kernel density, xiv, 90–94, 309
KIS (keep it simple), 385
Kolmogorov–Smirnov test, 143–145
Kumaraswamy distribution, 404–406, 584
kurtosis, 37–39, 41–42, 46, 48, 59, 72, 73,

107–108, 111, 128, 129, 134, 148, 149, 151,
153, 158, 159

lack of knowledge distribution, 59, 587
lag (of process), 9, 35, 292
Lagrange–Poisson distribution, 555, 589
Lanczos approximation, 171
Landau distribution, 347, 585
Laplace distribution, 338–341, 438, 478–479,

581, 584
Laplace, Pierre–Simon, 478
latent vectors, 274
leakage (in Fourier transform), 307
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leptokurtic, 39
Lévy distribution, 323–324, 526, 584
Lindley distribution, 506–510, 584
Lindley-geometric distribution, 507–508, 510, 584
LMTD (log mean temperature difference), 28, 155
location parameter, 48, 71, 73, 129
log F distribution, 428, 584
logarithmic distribution, 561–563, 589
logarithmic mean, 28
log-Cauchy distribution, 422–424, 584
log-double exponential distribution, 505, 585
log-gamma distribution, 463–467, 584
log-Gompertz distribution, 494, 581
logistic function, 167–168
logistic distribution, 167, 349, 361–375, 428, 471,

472, 483, 584, 591
logistic exponential distribution, 442–443, 585
logit function, 166–167, 321
logit-normal distribution, 166, 321–322, 585
log-Laplace distribution, 504–506, 585
log-logistic distribution, 367–369, 399, 585
lognormal distribution, 69, 148–164, 186–189,

317, 320, 321, 327, 367, 431, 585
log-series distribution, 561, 589
log-Student t distribution, 431, 585
Lomax distribution, 381, 384, 585
long-standing alarm, 8
Lorenz curve, 385–386
Lorenz distribution, 420, 580
lower-bounded distribution, 48, 73, 80, 82, 197,

361, 367, 505, 525

Makeham distribution, 498
mantissa, 56
Marcum Q-function, 178, 460, 517
Marshall–Olkin distribution, 320, 586
maximum likelihood estimate, 133, 138, 139, 187,

320, 337, 381, 415
Maxwell distribution, 454–457, 526, 585
Maxwell–Boltzman distribution, 439, 454, 585
Maxwell–Jüttner distribution, 439–440, 585
McCullagh distribution, 420, 580
mean absolute deviation, 32
median, 30–32, 37, 38, 45, 70, 83, 136, 339
medoid, 31
memory, xvi, 24, 128, 211–213, 245,

253–258, 294
memoryless, 211, 215–216, 231, 531
mesokurtic, 39
MFI (melt flow index), 73–74
midhinge, 31
midrange, 31
Mielke (beta-kappa) distribution, 509–511, 585

mild (outlier), 119
minimax distribution, 80, 404–407, 584
minimax odds distribution, 80, 406–407, 585
mixed moment, 46
mixture distribution, 73
mixture weight, 73
mode, 33–35, 45, 58–59, 402–403
model identification, xvi, 9, 46, 279–280, 294
modified Bessel function, 176–179, 329, 330, 460,

486, 499, 517, 546
modulus, 56
moment, 37–49, 134
moment generating function, 42, 221, 226, 375,

501, 542
monotonic (curve), 53
Monte Carlo simulation, 24, 55, 70, 128, 158,

327, 577
Moyal distribution, 347, 585
MTBF (mean time between failures), 212,

247–248
multi-collinearity, 263
multimodal distribution, 34
multinomial distribution, 225, 589
multiplicative congruential method, 56
multivariate distribution, 19, 62, 73
Muth distribution, 510–511, 585

Nakagami distribution, 512–513, 526, 585
nat, 80
negative binomial distribution, 529–531, 540–542,

556, 589
negative hypergeometric distribution, 561, 589
neural network, 168, 281–285
neuron (in neural network), 281–285
NHV (net heating value), 18–20, 136
NIR (near infra-red), 273
nominal data, 23
noncentral beta distribution, 407, 585
noncentral chi-squared distribution, 178,

460–461, 585
noncentral distribution, 78
noncentral F distribution, 429, 585
noncentral Student t distribution, 432–433, 585
non-parametric PDF, 90–92
non-parametric skew, 45
normal distribution, xv, 3–20, 38–43, 47, 53,

59–62, 65–71, 72–75, 77–78, 81, 85, 89, 90–95,
97, 100–101, 107–108, 111, 113, 115, 117, 121,
127, 131–137, 140, 145, 147–164, 185,
186–188, 205–206, 208, 221–223, 226–228,
239, 243, 265, 294, 317–347

normal exponential gamma (NEG)
distribution, 346
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normal inverse Gaussian distribution,
330–332, 585

normalisation, 37, 55, 72, 75, 77, 88, 90, 141, 174,
192, 418, 543

nuisance alarm, 8
Nukiyama–Tanasawa distribution, 447–448, 586
null hypothesis, 113–115, 277–278, 296
Nyquist–Shannon sampling theorem, 307

observed distribution, 12–13, 127, 133–135,
139–142, 187, 337, 378–379, 549–550,
566–567

odds, 79–80, 406
offset (in Fourier transform), 308
ogive, 53, 133
OLS (ordinary least squares), 272, 274
one-tailed test, 115–118, 575
outliers, xv, 30–33, 83, 86, 119–120, 131, 134,
141, 275, 285, 289

output layer (in neural network), 281–282
over-fitting, 276, 284, 296

parabolic fractal distribution, 567, 590
parallel coordinates, 97–98
paralogistic distribution, 369–371, 399, 586
parametric (form), 9, 90
Pareto analysis, 386–387
Pareto principle (80/20 rule), 377, 385–386
Pareto-I distribution, 190, 377–378, 383, 389, 390,
415, 434, 579, 586

Pareto-II distribution, 189, 379–381, 384,
399, 586

Pareto-III distribution, 382–383, 586
Pareto-IV distribution, 189, 383, 580, 586
Pascal distribution, 529, 589
PCT (pressure compensated temperature), 155,
266, 272–273

PDF (probability density function), 24, 40, 51–63,
70, 72, 73, 76–79, 81, 88, 90, 100, 117, 127,
129, 130, 135–141, 165, 166, 174, 178, 183

peak amplitude, 305–311
Pearson coefficient (R), xvi, 47, 62, 260, 261, 268,
270, 271, 286, 291, 292, 295, 309, 311, 313

Pearson skewness coefficient, 45
Pearson, Karl, 415, 591
Pearson-0 distribution, 424, 585
Pearson-I distribution, 415, 416, 577, 586
Pearson-II distribution, 415, 416, 577, 586
Pearson-III distribution, 221, 415, 417–418, 525,
526, 586

Pearson-IV distribution, 205, 415, 419–420, 586
Pearson-V distribution, 415, 424–425, 463,
583, 586

Pearson-VI distribution, 208, 399, 415,
425–427, 586

Pearson-VII distribution, 204, 415, 420,
429–430, 586

Pearson-VIII distribution, 415, 433, 586
Pearson-IX distribution, 415, 433, 586
Pearson-X distribution, 415, 433, 581, 586
Pearson-XI distribution, 415, 434, 586
Pearson-XII distribution, 415, 434, 586
penalty function, 31, 141–145, 268–272, 301–302
per cent point function, 70
performance index, 268, 286–289
period maxima, 235, 239
period minima, 240
PERT (project execution and review

technique), 401
PERT distribution, 59, 401–403, 579, 586
phase spectrum, 309–310
pie chart, 83, 98–99
Pietra ratio, 386
platykurtic, 39, 57, 59, 335, 425, 430, 483,

484, 528
PLS (partial least squares), 273–274
PMF (probability mass function), 51–55, 127, 130
Pochhammer symbol, 174–175
Poincaré, Henri, 3
Poisson binomial distribution, 226, 590
Poisson distribution, 221, 231–233, 529, 544, 546,

553, 556–557, 590
Poisson–Consul, 555, 589
polar coordinates, 95
polylogarithm, 441
population mean, 25, 35–37, 105, 111, 204–205
power distribution, 389, 513–515, 586, 587
power lognormal distribution, 320–321, 326, 586
power parameter, 75, 320, 383
power spectrum, 309–313
power spectrum correlation map, 313
P–P plot, 92–93, 98–104, 134–136, 139, 142, 188,

327, 328, 335, 337, 423, 550, 566
precision, xiv, 35, 47, 120–124, 128, 134
prior distribution, 37, 75, 90, 92, 127–129, 133,

143–144, 185, 215, 235, 337–338, 375, 453,
457, 497, 514, 525, 557, 567

probability distribution, 51, 68, 69, 114, 141–142,
168, 186, 192, 224–225, 232–233

P-value, 113–116
Pόlya distribution, 529–531, 536–567, 590

q-exponential distribution, 442–444, 586
QF (quantile function), 57, 70–71, 76, 99–100,

106, 127–129, 134–135
q-gamma distribution, 468–469, 586
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q-Gaussian distribution, 334–337, 442, 447, 586
Q-Q (quantile) plot, xv, 98–104, 128, 135, 145
quantile, 70
quartile, 31–33, 45, 49, 70
quartile coefficient, 33
q-Weibull distribution, 447–450, 586

radar plot, 95–98, 481
raised cosine distribution, 479–481, 587
random error, 35, 120, 122, 253, 255, 264, 287
rankit, 100
rate parameter, 72, 221, 345, 346
raw moment, 37, 40–45
Rayleigh distribution, 162, 452–454, 456–457,

526, 587
RBF (radial basis function), 282
reciprocal Gaussian distribution, 323, 584
reciprocal inverse distribution, 76
reciprocal inverse Gaussian distribution,

332–333, 587
rectangular distribution, 55, 588, 590
rectified distribution, 78–79
recurrent (neural network), 282
reduction formula, 169
redundant (equation), 263
reflux ratio, 11, 12, 148–151
regression analysis, xvi, 7, 9, 119, 123, 124, 135,

141, 208, 220, 259–289, 305
regularised incomplete beta function, 173,

192, 208
regularised incomplete gamma function, 173,

218, 221
reliability function, 55
repeatability, xv, 120–121, 123–124, 253
reproducibility, xv, 121–122, 123, 300–303
resolution, 23, 125
reverse distribution, 55
reverse exponential distribution, 200, 205, 587
reverse Weibull distribution, 238, 495, 587
Rician (or Rice) distribution, 176, 178,

517–518, 587
Riemann zeta function, 180, 203, 492, 564
rising factorial, 174
rolling average, 26–27
root mean square, 162–164
Rosin–Rammler distribution, 213, 588
RSD (relative standard deviation), 121–122
RSS (residual sum of squares), 29, 132–145
Rutherford, Ernest, xiii

same percentage rule, 5–6, 197, 532–533
sample adjusted (variance), 36
sample mean, 35–36, 111, 130

sample size, xv, 30, 105–111
scale (and scale parameter), 47–48, 71–72, 75, 129,

135, 195
scaled kernel, 90
scatter (of data), 88, 119, 265, 327
scatter plot (or chart or diagram), 16, 312
Scott’s normal reference rule, 85–87
sech distribution, 475, 583
seed (random number generation), 56
semi-infinite distribution, 48
sequential product, 174
serial correlation, 291
Shannon, 80
Shewhart chart, 120
shift, 71, 75, 118, 120, 467, 541, 555, 580
shifted beta-geometric distribution, 535
shifted exponential distribution, 211, 526, 581
shifted geometric distribution, 532
shifted Gompertz distribution, 497–498, 587
shortened odds, 80
Sichel distribution, 329, 582
sigmoid function, 168, 281–282
significance level, 113–119
significance testing, xv, 113–125
Silverman’s rule of thumb, 90–92
Singh–Maddala distribution, 189, 580
singular (matrix), 263–264
six-sigma, 118–119
Skellam distribution, 176, 546–547, 590
skew-logistic distribution, 365–366, 587
skewness, 37–48, 59, 72, 73, 94, 100, 107–108,

111, 128, 129, 134, 148, 149, 151, 153, 155,
158, 159, 162, 166, 180

skew-normal distribution, 317–319, 587
slash distribution, 75, 481–483, 484, 519–520, 587
smoothing factor, 90–92
Snedecor F distribution, 208, 581
span (of instrument), 125
spread, 32
spread betting, 546
Stacy–Mihram distribution, 467, 582
standard Cauchy distribution, 205, 421
standard chi-squared distribution, 217
standard deviation, xv, 5–7, 9, 32–39, 41, 45,

47–49, 69–70, 71–78, 85–94, 99–100, 105–107,
111–112, 115–124, 127–145, 148, 152–163

standard error, 36
standard exponential distribution, 211, 439,

526, 581
standard form, 71–72, 77, 431
standard log-logistic distribution, 367
standard normal function, 60–61, 70, 78, 97
standardisation, 55
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standing alarm, 8
Stirling approximation, 182
Stoppa-I distribution, 389, 587-
Stoppa-II distribution, 383, 389–391, 582, 587
Stoppa-III distribution, 391, 587
Stoppa-IV distribution, 391, 587
Stoppa-V distribution, 392, 587
stretched exponential distribution, 440–441, 526,
568, 587

Student t distribution, 75, 78, 116, 204–206, 265,
346, 415, 431, 471, 587

Sturge’s formula, 85
sub-Gaussian, 39
super-Gaussian, 36
survival function, 55, 495
symmetric-beta distribution, 193, 416, 586

tail heaviness parameter, 72, 330
tail index, 72, 240, 377
TBF (triangular basic function), 282
three point estimation technique, 401–402
threshold exceedance method, 239
Tikhonov distribution, 486, 588
time series, xvi, 9, 21, 294, 297, 591
tolerance, 264
Topp–Leone distribution, 517–518, 587
torque, 41
total sum of squares, 259
training (neural network), 282–285
transfer function, 281–282
transformed beta distribution, 399, 581, 592
transformed distribution, 76
transformed gamma distribution, 467, 582, 592
trapezium rule, 43–45, 61, 63, 135–137, 178, 192,
196–197, 206, 208, 219, 248, 277, 373, 407,
460, 517, 577

triangular distribution, 57–59, 66, 401–402, 473,
505, 514, 587

trimean, 31
trimmed mean, 30
trit, 80
trueness, 122
truncated distribution, 77–78
truncated mean, 30
Tsallis distribution, 334, 442, 447, 468, 591
Tukey lambda distribution, 483–484, 519, 587
Twain, Mark, xiii
two-sided power distribution, 514–515, 587
two-tailed test, 115–118, 575
Type I error, 113
Type II error, 113

unbiased (variance), 36
uniform distribution, 3, 53–57, 65–70, 81, 127,

131, 141, 148, 151, 192, 202, 205, 328, 339,
349, 403, 471, 472, 473, 481, 483, 486, 490,
505, 513, 514, 549, 579, 588, 590

unimodal distribution, 34, 118, 309
universal gas constant, 160
update (of inferential property), 7, 120, 220,

255–256
upper-bounded distribution, 48, 361, 419
urn problem, 559

variability, xvi, 5, 32, 128, 262, 562
variance, 32–33, 35–48, 59, 60, 65, 66, 69, 71, 73,

74, 75, 77, 79, 82, 105–107, 121, 123, 131, 139,
140, 162

variance ratio, 275
VBN (viscosity blending number), 159–160
VIF (variance inflation factor), 264
viscosity, 27–28, 159–160
von Mises distribution, 176, 485–486, 588
Vysochanskij–Petunin inequality, 118

WABT (weighted average bed temperature), 266
Wakeby distribution, 521–524, 588
Wald distribution, 325, 588
Wald method, 109–110
WECO rules, 120, 212, 232
Weibull (discrete) distribution, 563–564, 590
Weibull-I distribution, 213–214, 404, 588
Weibull-II distribution, 213–215, 218, 248,

249–250, 253–255, 447–448, 450, 467, 588
Weibull-III distribution, 213, 258, 452, 526, 588
weighted mean, 25, 27, 130, 139
weighting, 25, 29, 73, 102, 138, 141, 143, 266,

268, 270–272, 281, 284, 299
white noise, 295
Wigner semicircle distribution, 394–395, 588
Winsorisation, 30, 32
WLS (weighted least squares), 272

Yates adjustment, 227
Yule distribution, 536, 590
Yule–Simon distribution, 536, 590

zeroth raw moment, 37
zeta distribution, 180, 564, 566, 567, 590
zeta function, 180, 203, 492, 564
Zipf distribution, 180, 565–568, 590
Zipf–Mandelbrot distribution, 182, 567, 590
z score (z-test), 60, 116
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