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Introduction 

Why this book? 

For many years now, having been in search of a simple treatment, of high level 
and easily accessible regarding harmony, its musical-, physiological- and social 
roots and the way it works, we have bewailed the lack of one. We have found either 
highly simplistic books, or treatises on harmony that only a post-doctoral student 
could begin to understand. With the exception of a few books cited in the biblio-
graphy, the field is a huge desert! Not satisfied by this intellectual state of affairs, we 
screwed our courage to the sticking-place to research and write this book: Musical 
Techniques: Frequencies and Harmony, as a sort of “passport to/for harmony”, in the 
hope that it will go some way towards filling that void.  

How this book is constructed, and how it should be approached 

The construction of this book is extremely simple! Musical Techniques: 
Frequencies and Harmony is intended to be a pleasant and instructive springboard 
for readers to be able, one day, to cope with true “treatises on harmony”. With this 
goal in mind, it is divided into three main sections: 

– in Part 1, in order to offer a proper understanding of how harmony works and 
the rules at play, we felt it was hugely important to fully explain the origin of the 
physical and physiological aspects of frequencies, resonance, etc., – i.e. the origins 
which intrinsically characterize the “notes”, the creation of “scales”, their 
peculiarities, and the particular timbres of different instruments, as well as the 
“harmonic“ physical and physiological relations linking them together, so as to 
uncover the organization of musical “harmony”. In short, Part 1 is a long pathway and a 
very detailed view of things which are (almost) well known to some people, but entirely 
new to many others; 
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– Part 2, in turn, dips a toe in harmony. We look at the structure, the content, the 
wherefore and the qualities of a group of notes played simultaneously, forming a 
chord: in summary, everything which has anything to do with a chord is taken, for 
the time being, in isolation and in an untimely manner; 

– Parts 3 and 4 of this book consist of resolutely getting a foot in the door: a 
small foot, but a foot nonetheless, in everything to do with how to understand, 
construct and perform successive series of harmonic progressions of groups of notes, 
played in a chord, so we can see how to harmonize, reharmonize, create partitions, 
improvise, etc., and succeed in getting a foot in the stirrup so as to be able to go 
further with books on harmony at the higher end of the scale – the major scale, of 
course! 

For whom this book is written 

This book is intended for curious people, for music lovers (graded musicians or 
complete beginners, or simple amateurs) wishing to understand the human, 
physiological and physical roots and underpinnings of musical harmony, and how to 
achieve it fairly quickly. 

The level of technicality 

There is no specific entry level for readers of this book. All are welcome, but – 
and there is indeed a but – throughout the book, we attempt to sate readers’ curiosity 
and increase the level of the text reasonably quickly.  

The teaching  

The language and tone of this book are intended to be resolutely current and 
pleasant, but very precise. There is also a constant aim to be instructional throughout 
this book because, to our minds, there is no rhyme or reason to writing a book just for 
oneself. In addition, for the curious and/or bold, we have included a great many 
summary tables and little secrets in the text and appendices. Quite simply, this book 
is for you, for the pleasure of understanding, learning and enjoying music. 



PART 1 

Laying the Foundations 
 



 

Introduction to Part 1 

This first part examines the fundamental and classic concepts of music theory, 
which, in many places, are supplemented by physical-, physiological-, societal- and 
technical aspects, so we can begin to look at the idea of harmony within a clearly-
defined context (notably western structures). 

This part is divided into five chapters, always related directly or indirectly to 
harmony: 

– the first gives a concrete recap of the characteristics and performances of the 
human auditory system; 

– the second describes the types of modes of creation and generation which gave 
rise to notes, and are at the heart of numerous problems; 

– the third is a mini-recreation in relation to the notions of timbres, and also 
attempts to resolve certain confusions; 

– the fourth makes a long and detailed point about the vast extent underlying the 
terms of intervals;  

– the fifth and final chapter in this first part looks at fine quantification of the 
intervals to be defined for the concepts of consonance, dissonance and harshness. 
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Sounds, Creation and  
Generation of Notes 

To begin this book, which has the ambitious aim of serving as a passport to 
harmony in the musical domain, it is perfectly normal to offer a recap of a few 
elementary aspects, which are absolutely necessary for the workings of our auditory 
apparatus (ear + brain + education + civilization + etc.) which will, ultimately, be the 
adjudicator of all this work. Thus… 1; 2; 1, 2, 3, 4! 

1.1. Physical and physiological notions of a sound  

1.1.1. Auditory apparatus 

In acoustic science, sound is a vibration propagating through gases, liquids and 
solids. For humans, generally, it is the vibration of a mass of air, driven by a tiny 
variation in air pressure, with varying rapidity, which, via the outer ear, vibrates the 
membrane of the hearer’s eardrums and stimulates nerve endings situated in the 
inner ear (see Figure 1.1). 

1.1.1.1. Outer ear 

The auditory canal in the “outer” ear is in the shame of an acoustic horn, 
decreasing in diameter as we approach the bottom – i.e. the eardrum.  

1.1.1.2. Middle ear 

The middle ear contains the eardrum and three tiny bones, respectively called the 
hammer, anvil and the stirrup, which, together, make up the “ossicular chain”. The 
hammer and the anvil form a fairly inflexible joint called the “incudomalleolar 
joint”. The vibrations of masses of air in the auditory canal cause the eardrum to 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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vibrate. These mechanical vibrations are then transmitted along the ossicular chain 
mentioned above, and then into the inner ear through the oval window. 

 

Figure 1.1. Diagram of the human auditory apparatus (source:  
Wikipedia). For a color version of this figure, please see 

www.iste.co.uk/paret/musical.zip 

The mode of simplified propagation of vibrations in the inner ear is essentially as 
follows: the lines of the concentric zones of iso-amplitude of certain frequencies are 
parallel to the “handle” (shaft) of the hammer, with, for the membrane of the 
eardrum, zones of vibration with greater amplitude than the handle. 

As the middle ear forms a cavity, overly high external pressure may perforate the 
eardrum. In order to ensure and re-establish a pressure balance on both sides of the 
eardrum (inner/outer), the middle ear is connected to the outside world (the nasal cavities) 
via the Eustachian tubes. 

1.1.1.3. Inner ear 

The inner ear contains not only the organ of hearing, but also the vestibule and 
the semicircular ducts, the organ of balance (not shown in the figure), responsible 
for perception of the head’s angular position and its acceleration. Microscopic 
motions of the stirrup are transmitted to the “cochlea” via the oval window and the 
vestibule. 

The cochlea is a hollow organ filled with a fluid called endolymph. It is lined 
with sensory hair cells (having microscopic hairs – cilia – which serve as sensors),  
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which cannot regenerate once lost. They have tuft-like protruding structures: 
stereocilia. These cells are arranged all along a membrane (the basilar membrane), 
which divides the cochlea into two chambers. Together, the hair cells and the 
membranes to which they connect make up the “organ of Corti”. 

The basilar membrane and the hair cells are set in motion by the vibrations 
transmitted through the middle ear. Along the cochlea, each cell has a preferential 
frequency to which it responds, so that on receiving the information, the brain can 
differentiate the frequencies (the pitches) making up the different sounds. The hair cells 
nearest the base of the cochlea (oval window, nearest to the middle ear) tend to respond 
to high-pitched sounds, and those situated at its apex (final coil of the cochlea), on the 
other hand, respond to low-frequency sounds. 

It is the hair cells which carry out mechanical- (i.e. pressure-based) electrical 
transduction of the original signal: they transform the motions of their cilia into 
nerve signals, sent via the auditory nerve. It is this signal which is interpreted by the 
brain as a sound whose tone height (pitch) corresponds to the group of cells 
stimulated. 

Thus, we have briefly recapped the set (mechano-electric + brain) of our likes and 
dislikes, which it is important to please, and therefore stroke the hairs as much as 
possible in the direction of the grain! 

Following this brief interlude, let us now return to simple physics. 

1.1.2. Physical concepts of a sound  

A sound is represented by a physical signal – a variation in pressure in the ear – 
whose characteristics are primarily represented by three parameters: 

– the set of instantaneous frequencies making up the acoustic signal – in physical 
terms, the spectrum or spectral content (the frequency values are expressed in Hertz, 
representing a certain number of wave variations per second); 

– the acoustic level, expressed in the form of pressure (Pascal), power (acoustic 
Watts or else transposed into decibels – dB) or in acoustic intensity (W/m²); 

– the respective evolutions of the amplitudes and spectra of the sound as a function 
of the time (temporal evolution) between the sound’s appearance and its complete 
cessation (the conventional English terms are attack, decay, sustain and release time) – 
see Figure 1.2. 
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1.1.3.2. Power (acoustic) 

If an acoustic source emits a sound with energy E (in Joules) over a time period Δt 
(in seconds), the acoustic power Pow of that source is the amount of energy emitted 
over that time period, and is defined as: 

Power = E/Δt 

The (acoustic) power is measured in Watts (W). 

Examples of acoustic powers of a number of sources 
Normal voice 0.01 mW     = 0.00001 W = 1.10−5 W 
Loud voice 0.1 mW     = 0.0001 W  = 1.10−4 W 
Shout  1 mW     = 0.001 W  = 1.10−3 W 
Loudspeaker 1 W 
Airplane  1 kW     = 1000 W                =  1.103 W 

Table 1.1. Acoustic power of several sources 

1.1.3.3. Pressure (acoustic) 

The pressure Pres results from a force F (in Newton or kg per m/s²), applied to a 
surface S (in square meters, m²). Its value, therefore, is defined as: 

Pres = F/S 

The pressure is measured in Pascal (Pa) or Newton/meter² (N/m²). 

In acoustics, we distinguish between two particular types of pressure values: 

– atmospheric pressure “P0” (also known as static pressure), which is the 
pressure exerted by the atmosphere (all molecules of air) on the Earth, on all humans 
and, of course, on their eardrums. Its value varies somewhat with changing weather 
conditions, but we can state that, on average, it is: 

P0 = 1.013×105 Pa ≃ 105 Pa 

– acoustic pressure “p” (also known as dynamic acoustic pressure). As a sound 
wave propagates, the air molecules which are set in motion cause slight local variations 
in the atmospheric pressure. This dynamic variation of pressure is what we called 
acoustic pressure “p”. 
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This acoustic pressure p exerts a new force on the eardrum. This causes it to 
vibrate, so it transmits the waves to the brain via the mechanisms of the middle- and 
inner ear, as described above. 

Thus, at a given point in space, the total pressure is: 

Ptot = P0 + p 

NOTE.– The atmospheric pressure P0 is an ambient pressure, known as the “absolute” 
pressure, and therefore always positive, whilst the acoustic pressure p is a 
fluctuation around atmospheric pressure, and hence can either be positive 
(overpressure) or negative (pressure deficit). 

1.1.3.4. Intensity (acoustic) 

Acoustic intensity, or sound intensity, corresponds to a quantity of acoustic 
energy E (in Joules) which, over a period Δt (in seconds), traverses a surface area 
(be it real or virtual) S (in m2). Thus, it is defined as: 

I = (E / Δt) / S) = Pow / S 

Thus, the acoustic intensity is measured in W/m². 

If we suppose that the sound source radiates uniformly in all directions in space 
(i.e. it is a source said to be isotropic, or homogeneous), it will emit waves with 
spherical wavefronts. If the radius of the sphere is r, its surface area will be equal to 
S = 4πr² and the acoustic intensity received over the spherical whole of a wavefront 
would be equal to: 

I = Pow / 4πr²  

with Pow being the acoustic power of the source. 

Thus, in the case of an isotropic source with power Pow, the acoustic (sound) 
intensity decreases in inverse proportion to the square of the distance r from the 
source. In addition, the sound reception of the human ear to the amplitude of a sound is 
not directly proportional to its amplitude, but is proportional to its logarithm. Thus: 

– doubling the power of the sound source is equivalent to increasing the sound 
level by 3 dB; 

– quadrupling that power increases the level by 6 dB; 

– multiplying the power by 10 increases the level by 10 dB; 

– multiplying it by 100 adds 20 dB to the initial level. 



Sounds, Creation and Generation of Notes     11 

1.1.3.5. Acoustic propagation, pressure, velocity and impedance 

Without wishing to inundate the reader with complex mathematical formulae, for 
general culture, note that the equation of the displacement “a” of the molecules 
which constitute the medium in which the sound wave is circulating is in the form of 
a second-order partial differential equation with respect to the distance (∂2a/∂x2) and 
the time (∂2a/∂t2), known as d’Alembert’s formula. It is written: 

∂2a/∂x2 – (1/c2) (∂2a/∂t2) = 0  

“c” represents the celerity (velocity) of the wave and depends on the nature of 
the medium. 

This equation can easily be solved in a number of simple cases – particularly in 
relation to steady-state waves along an infinitely long tube. A solution is a function of 
the two aforecited variables a, t of the type: 

a(x,t) = a0 sin (ωt – kx)…  

which is a classic equation to describe a propagation phenomenon. 

Furthermore, it is also possible to apply this equation of motion a(x,t) to the 
propagation, to the acoustic pressure p(x,t) or to the rate of vibration v(x,t) of the 
molecules in the medium. 

In the case of a plane soundwave (as can be observed in a pipe or in the canal of 
an ear whose diameter is less than half the wavelength of the sound vibration) and 
for low amplitudes, the acoustic pressure p(x,t) and the acoustic vibration rate v(x,t) of 
the associated particle of the medium vary together, are in phase and are linearly 
linked by the relation: 

p(x,t) = (ρc) v(x,t) 

p = (ρc) v 

where: 

p: pressure in Pa; 

v: velocity of vibration in m/s; 

ρ: density of the medium in kg/m³; 

c: velocity of the sound wave in the medium in m/s. 
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1.1.3.5.1. Acoustic impedance 

Stemming directly from the above equation, for an acoustic wave, we define the 
acoustic impedance Zac of a medium as being the ratio between the acoustic pressure 
and the velocity of the associated particle of the medium: 

Zac = p/v 
The acoustic impedance is measured in Pa·s/m. 

The acoustic impedance is expressed in Pa·s/m, (also called the “rayl” in honor 
of John William Strutt, 3rd Baron Rayleigh), and for a progressive acoustic plane 
wave, it is therefore equal to (see previous section): 

Zac = +/– ρ c 

The sign depends on the direction of propagation and on the choice of orientation 
of the axis of propagation of the sound wave. As a characteristic property of the 
medium, the product (ρc) representing the impedance often has greater acoustic 
importance than ρ or c taken in isolation. For this reason, the product (ρc) is also 
known as the medium’s specific characteristic acoustic impedance. 

1.1.3.6. Relation between intensity (W/m²) and acoustic pressure (Pa) 

As stated above, a propagating wave gradually transports energy.  

The (total) energy e of a mass m oscillating on either side of a position of 
equilibrium is, at each time, the sum of its kinetic energy and its potential energy. In 
the absence of friction, the energy e is time-independent: 

– when the velocity v is zero, the kinetic energy, ½ mv2, is zero and the 
maximum potential energy; 

– conversely, when the velocity passes through its maximum, “v0”, the kinetic 
energy is maximal and the potential energy is zero. 

At every moment, therefore, the total energy of the particle is: 

e = ½ (mv0
2) 

with e in J, m in kg, and v0 in m/s. 

The volumetric energy density E (the energy contained in a unit volume) will 
therefore be: 

E = ½ (ρv0
2) 
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where ρ is the mass per unit volume = density of the medium in kg/m³. 

However, the energy contained in the wave propagates with a celerity c. As 
shown by Figure 1.4, we can deduce that the “total energy” E which, over the “unit 
time” Δt, crosses the “unit surface” S (called the surface power or acoustic intensity, 
I) is the energy contained in a volume whose base has a unit surface and whose 
height is equal to c.  

 

Figure 1.4. Graphical representation of the acoustic  
intensity. For a color version of this figure, please  

see www.iste.co.uk/paret/musical.zip 

From this, by definition, it follows that: 

I = (E /Δt) / S) = Pow / S, acoustic intensity in W/m² 

I = cE = ½ (ρcv0
2)  

I = (ρcv0
2) / 2  

Taking account of the following (see above): 

p = (ρc) v0  

“I” can be expressed in the following better-known form: 

I = p0²/2ρc  

The total amount of sound energy J delivered to the tissues by a sonic irradiation 
over a time-period Δt is therefore: 

J = I Δt 
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The pressure is a force per unit surface which is exerted on a mass: that of the 
neighboring element, and endows it with an acceleration – i.e. a variation in velocity.  

In the conditions set out in the above paragraphs, we can show that at a certain 
point in space, the acoustic intensity I is linked to the acoustic pressure by the 
relation: 

I = p² / ρ0c  

in W/m², where: 

– p: acoustic pressure in Pa; 

– ρ0: density of the medium (in air, ρ0 ≃ 1.2 kg/m3 in normal conditions of 
temperature, humidity and atmospheric pressure); 

– c: celerity (velocity) of sound and c = 340 m/s in the same conditions; 

Thus: 

I ≈ p² / 400  

in W/m², with p in Pa. 

NOTE.– In free space, the waves are not flat-fronted, but spherical, and the pressure 
and velocity do not vary exactly with one another. However, the more the radius of 
the sphere grows, the more the wave resembles a plane wave. The calculations with 
sine waves show that when the distance to the source is greater than or equal to the 
wavelength, we can assimilate the spherical wave to a plane wave.  

NOTE.– This relation is valid only for direct sound coming from an acoustic source; 
not for sound reflected or echoed in a room. 

1.1.3.6.1. Hearing- and pain thresholds 

Whilst this may seem a little out of our field of study, let us say a few words 
about these two thresholds; in a few paragraphs, their relevance will become apparent, 
with the phenomena of masking as they also relate to concepts in harmony. 
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Hearing threshold 

The hearing threshold corresponds to the weakest sound (in terms of intensity) 
than an “average” ear is capable of perceiving. It corresponds to a mechanical 
vibration of the eardrum of around 0.3×10−10 m, which is minuscule. 

At 1000 Hz, which is the frequency value commonly accepted for that referential 
hearing threshold, the corresponding acoustic pressure is: 

p_ref = 2×10−5 Pa = 20µ Pa 

In the knowledge that I = p²/ρ0c (in W/m2), the hearing threshold corresponds to 
a sound intensity of: 

I_ref = 1×10−12 W/m2 = 1 pW/m², i.e. 0dB(A) 

Pain threshold 

The value of the pain threshold corresponds to the acoustic pressure with 
maximum intensity that the “average” ear can withstand without being damaged. 
The commonly accepted value is: 

p_pain = 20 Pa 

Knowing that I = p²/ρ0c in W/m2, the pain threshold corresponds to a sound 
intensity of: 

I_pain = 1 W/m2, which is 120 dB(A) 

Thus, the ear has a dynamic (operational range) of around 120 dB (corresponding 
to acoustic intensities from 1 pW/m² to 1 W/m²). 

1.1.3.7. Fletcher–Munson curve 

Now that all these units are clearly defined, we can go beyond the physics and 
the beautiful mathematics and examine the hearing of a sustained sound. In this 
case, the human ear has specific characteristics that are summarized by the Fletcher–
Munson curve / diagram (see Figure 1.5), which constitutes the auditory apparatus’ 
response to the stimulus of frequency as a function of the power emitted.  
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1.1.4.1. Acoustic frequency resolution 

Indeed, before going further, it is necessary and important to quantify – 
physically and physiologically (measure/define) – what might be the frequency 
resolution of an “average” ear; in other words, its auditory separation ability – i.e. 
which is the smallest frequency gap with which it is capable is distinguishing 
between two nearby frequencies. 

We can show that the acoustic resolution of the human auditory apparatus 
depends on numerous factors. Among the main ones, we can cite: 

– the absolute and relative acoustic levels at which the two frequencies involved 
are perceived; 

– the presence or absence of neighboring frequencies of large amplitudes (see 
below): 

- either simultaneous (frequency masking effect); 

- or slightly shifted in time (temporal masking effect); 

– the type of modeling of the psycho-acoustic apparatus; 

– phenomena and definitions of consonance and dissonance, and of harshness, 
which we shall discuss in detail in Chapter 5; 

– etc. 

In conclusion, let us simply state that there comes a time when the ear is no 
longer able to distinguish between two close frequencies.  

To clarify, let us also state that an average ear is able to quite easily distinguish 
between over thirty frequencies with the range of an octave (from f1 to 2×f1 – see 
below). Therefore, should we choose to use it, this minimum gap could represent the 
smallest frequency gap between two successive notes. 

NOTE.– Physicists/acoustics experts, for their part, have long been able to divide the 
octave into 301 values, each one representing a “savart” (see Chapters 4 and 5). 
Thus, human frequency resolution corresponds to around 10 savarts, or slightly less. 
Certain animals perform far better than we do in this area. 

Let us go into a little more detail about all this. 

As previously noted, it has long been known that the ear has maximum 
sensitivity in the frequency range between around 1 and 5 kHz. In addition, the  
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sensitivity curves in the Fletcher–Munson diagrams represent the audibility 
threshold of a signal “A” as a function of its frequency in the absence of an 
“interference” signal if that interference is audible because it is above the perception 
threshold (see Figure 1.5, again). The question which then arises is: what happens 
when two signals are separated by a brief time lag, or are present simultaneously. 

1.1.4.1.1. Static (in sustained sounds, of constant amplitudes but separated 
by a time lag) 

In this case, the auditory apparatus (including the memory) must determine 
whether, at a given amplitude, one frequency is different or equal to another by 
successively switching between the two and listening to them one after the other. 
This gives an initial idea of the concepts of consonance and dissonance and of static 
frequency resolution of the auditory apparatus. 

1.1.4.1.2. Dynamic: masking (in simultaneous sustained sounds of constant 
amplitudes) 

Here, we enter into the zone of masking. 

The concept of sound masking is closely linked to: the perception of a sound’s 
acoustic intensity; that of its frequencies (pitches), which we looked at in the sector 
on the physiology of the cochlea (notably with the outer hair cells); and to an auditory 
“channel” (i.e. a fiber in the auditory nerve) which responds only to a stimulus situated 
in a precise frequency range. This is what is known as the ear’s frequency selectivity.  

“Frequency masking” or “simultaneous masking” 

The phenomenon of frequency masking occurs when a “tested” signal and the 
“mask” signal are presented at exactly the same time. The louder sound masks 
(prevents us from hearing) another, quieter one – particularly if the values of their 
frequencies are close together. In this case, in the presence of multiple signals, the 
audibility threshold curve represented in this diagram is affected locally. For 
example, in the simple case of the simultaneous presence of two signals of 
neighboring frequencies, the presence of the louder signal raises the level of the 
audibility threshold in its vicinity, making the ear less sensitive to very nearby 
frequencies – hence the term “frequency masking”. 

Figure 1.6 illustrates this scenario, where signal A, which was previously 
audible, is now masked by the similar signal B, which is more powerful than A. 
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Figure 1.6. Auditory impact of a loud signal B on a quiet similar signal A  

This frequency selectivity is measured using objective tests and gives the neural 
tuning curves. These tuning curves show the detail of these masking phenomena. 

“Temporal masking” or “sequential masking”  

There is also another type of masking, known as “temporal masking”. This 
occurs when a high-amplitude sound masks weaker sounds that come immediately 
before or after it. Such masking takes place, in certain conditions, between two 
sounds which are not simultaneous, but instead are separated by a brief interval (e.g. 
the sound of a triangle immediately following the sound of a kettledrum). We then 
speak of temporal- or sequential masking, as opposed to the common case of 
frequency- or simultaneous masking discussed above. 

Sequential masking manifests in short-term temporal interactions (spanning a 
few tens of a millisecond) between two stimuli/excitations. It is said to be: 

– proactive, when the mask is presented before the test, meaning that the “mask” 
signal precedes the tested sound, which is also masked. This is the most significant 
case. It demonstrates mechanisms of inhibiting the excitability of the cochlea by way 
of an excitation immediately prior; 

– retroactive, when the mask is presented after the test, meaning that the mask 
signal follows the tested sound, which is also masked. This masking, which could be 
described as “anti-causal” in signal processing, can only be explained as the 
interference of the temporal integration of these two competing signals. 

Masking- and excitation patterns 

To return to the subject that concerns us, in the Fletcher–Munson diagram, the 
zone/area of the “frequency/amplitude” plane in which another sound will no longer 
be perceived in the presence of the “mask” is known as the masking curve or 
“masking pattern” for that type of mask. The masking pattern of a pure sound or a 
narrowband sound exhibits a steep slope on the deeper-pitched side, and a gentler 
slope on the higher-pitched side. In this zone, therefore, masking is greater,  
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consists of dividing the audio bandwidth (roughly 20-20,000 Hz) into 32 subbands 
of identical widths using an array of so-called “polyphase filters”. This is the principle 
of “perceptual audio coding”, which was chosen for compression into MP3 format to 
reduce the digital flowrate of information. 

Following these highly scientific documentary points, we still need to make a 
number of additional comments before we can get back, in earnest, to what 
musicians expect from this book. 

The audible band from 20 to 20,000 Hz, on principle, represents ten octaves, 
known as octave “0” to “9” (20  40  80  160  320  640  1280  2560  5120  10240  
20480), which is often much too broad for a human being with a “typical” sense of 
hearing. In reality, humans typically only hear the eight main octaves indicated in 
italics here. 

Additionally, in practice, the keyboard of an acoustic piano is usually made up of 
(81) 85 black and white keys (ranging from la0 (or A0) to la7), and that of digital 
pianos has 88 keys (from la0 to do8), which is slightly less than 8 octaves (see the 
example of the keyboard of a piano (Figure 1.8) and that of a conventional organ 
spans from fa2 = 87 Hz… la4 = 440 Hz… to do9 = 8372 Hz). 

NOTE.– As we shall see later on, the white keys correspond to the seven notes in the 
diatonic scale of do major) (C) and the black keys to the five remaining notes 
needed to make up a chromatic scale – 12 notes per octave in total. 

If we maximize, considering a keyboard with 8 octaves of 12 notes per octave, 
this makes a total of 96 notes. We then take an array of 32 filters: this gives us a 
group of 3 notes per filter, so a filter bandwidth of one-and-a-half tones = 3 
semitones. Thus, it is on the basis of a 3-semitone interval that frequency masking is 
used in signal analysis. 

NOTE.– In MPEG 3, the analog signal (the sound) output by a subband filter is then 
sampled. By processing that signal, we are able to eliminate the subband signals 
below the threshold (not perceived by the hearer) in the psycho-acoustic model, and 
defines the precision of quantification needed for each of the subbands, so that the 
quantification noise remains below the audibility threshold in that subband. In 
addition, the zones where the ear is most sensitive can therefore be quantified with 
greater precision than the others. 
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1.1.5. Why have we told this whole story, then? 

That is a good question! The answer is simple: why both adding in harmonic 
elements or ornaments into a piece of music when no-one will hear them because of 
consonance, frequency- and/or temporal masking, etc. Thus, it is important to 
always pay attention to these latent phenomena. 

We have finished, for the time being, with the physiological aspect, so let us now 
look at how notes are generated. 

 

Figure 1.8. Usual range of frequencies on a piano keyboard 



2 

Generation of Notes 

The aim of this chapter is to explain the long history through the ages (and 
therefore through the civilizations) which has led to the generation of musical notes 
and the definition of their frequencies (pitches/heights). Here again, there is a very 
close relationship between physics and music. Let us begin with the concept of an 
octave.  

2.1. Concept of octave 

During the creation of a particular series of frequencies (which have, in the past, 
and are, for the time being for simplicity of writing, called “notes”), it is possible 
that two of them will be linked by the fact that the frequency of one is double the 
value of the other. In this case, we say that they are spaced an octave apart. 

octave = range of frequencies between “f” and “2f” 

NOTE.– The word “octave” is, in principle, unfounded and completely inapt, and 
comes from the fact that, as we shall show in a number of chapters, for numerous 
reasons, double frequency corresponds to the “8th degree” of the well-known scale 
today; hence the name, octave. 

This octave relation can, if we want, be repeated multiple times along an organized 
generation of series of frequencies. 

If we call the first frequency (note) generated/encountered X0, also known as the 
fundamental or root, we look for the note with double the value of that frequency (i.e. an 
octave above), X1; then the frequency doubles again above X1 (i.e. two octaves above 
X0, so the frequency is four times that of X0), X2, etc. (see Table 2.1). 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Frequency value …  F0  2 × F0  4 × F0  8 × F0 … 

Name of the note   X0  X1  X2  X3  

Number of 
octave “n”  0  1  2  3   

Note 1 The “n” in “2n F0” represents what is usually called the rank of the 
octave. 

For the 
mathematically 
minded 

  20 F0  21 F0  22 F0  23 F0  

Note 2 The row for the “mathematically minded” here is only included to draw 
readers’ attention to a somewhat “logarithmic” aspect in the generation 
of the successive octaves, because this generation of octaves is based on 
an entity: “2 to the power of the octave number”. We shall come back to 
this later on. 

Table 2.1. Relations between frequencies, octaves and octave ranks 

The choice of whether or not there is an octave and multiple repetitions of 2 (or 
not) in a successive generation of frequencies (notes) is, in principle, purely arbitrary… 
However, we shall show later on that the mechanical-acoustic sensation thus created 
by the presence of these octaves is pleasant (a sort of unison) and that the human ear 
(i.e. the whole auditory system) is satisfied by that value. There are practically 
always frequencies spaced one or more octaves apart in a succession of “notes”.  

2.1.1. Choice of inner division of an octave 

Now supposing that we have, indeed, decided to include that idea of an octave in 
the progression of notes, we can then choose to define how the other notes between 
those two frequencies will (or could) be distributed. 

Here, again, we have complete freedom. There are no rules of principle! To each 
musician his (or her) own… 

This distribution may either be organized or be completely whimsical. 
Furthermore, again, in principle, there is no need to work with the same rules of 
distribution from one octave to the next. Let us be perfectly clear: the result obtained 
will reflect your own creativity… or your own cultures and civilizations! 
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Here, again, for numerous physiological reasons, our auditory apparatus, made up of 
the ear, its mechanical system, the associated operation of the brain (and thus sooner or 
later, our culture, our civilization) expresses sensations which often lead to a slightly 
greater organization. 

This being the case, creating frequencies, dividing an octave into several pieces, 
distributing the frequencies is all very well, but how many pieces to use... That is the 
(major) question. 

2.2. Modes of generation/creation/construction of notes 

We have (for now!) concluded our little overview, in terms of the notions 
pertaining to frequencies, and have come to the crucial moment of the creation of a 
series of notes – i.e. the choice of frequencies to include in the interval that 
constitutes an octave from F to 2F. 

All solutions can be envisaged: 

– just for fun and to make readers smile, take (around) 30 audible values out of those 
discussed above, put them into a hat, draw them out at random and then attribute them 
a name. It is a very primitive exercise, but why not? Everyone can use their own 
method.  

For centuries, every individual, every people, every civilization, every era has 
made its own small contribution to the work of creating and organizing the creation 
of the different frequencies that can be inserted within that famous “reference” 
octave. Hundreds of books have described this better than we could, but again, let us 
simply state that a number of thought-out “physical” and “physiological” manners 
can be envisaged for this. 

Let us examine this new problem, in the knowledge that the outer and middle parts of 
our ear (look again at Figure 1.1) are wonderful mechanisms which are highly sensitive 
to variations in pressure, and like any mechanism, are sensitive to the well-known 
physical phenomena of “resonances” (a resonance consists of having significant 
reactions/variations in relation to a stimulus at varying frequencies but at a constant 
amplitude of excitation) – i.e. phenomena such as those which lead us now to  
discuss the contents and “harmonic” relations between the different frequencies 
presented to it. 
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2.3. Physical/natural generation of notes 

2.3.1. Harmonics 

For non-physicists (there is no shame in that; no-one is perfect!), know that the 
frequencies known as “harmonics“ are frequencies whose values are integer 
multiples (2F, 3F, 4F, 5F, etc.) of an original frequency F (preferably a pure sine 
wave), with that original being named the “fundamental frequency” (or, indeed, for 
some, first harmonics… when there are harmonics!) and simply written as 
“fundamental” (see the example in Figure 2.1). 

 

Figure 2.1. Example of signals (top to bottom) at F, 2F and 3F 

2.3.2. Fractional harmonics 

Also note that somewhat bizarrely, we also use the terms “sub-harmonics” or 
“fractional harmonics” for the sub-multiples of harmonic frequencies – for example: 
F/2, F/3, 2F/3, 3F/4, 3F/5, 249F/521, etc. and also non-integer “overharmonics” 
3F/2, 5F/2, 5F/3, etc. N.B. music is made up of precisely that (see Figure 2.2). 

 

Figure 2.2. Example of signals (top to bottom) at F and F/3  
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    16 16F 16F/8 2 

4 16 32  17 17F 16 17F/16 1.0625 

    18 18F 18F/16 1.125 

    19 - - - 

    20 20F 20F/16 1.25 

…    etc. etc. etc. etc. 

Table 2.2. Frequencies expressed in subharmonics 

To be perfectly clear, let us take an example (completely at random!), with: 

f0                 440 Hz, fundamental 

2 × f0           880 Hz, 2nd harmonic or rank-1 harmonic 

3 × f0       1320 Hz, 3rd harmonic or rank-2 harmonic 

so: 

3/2 × f0     660 Hz 

This last frequency obtained (3/2 × f0 = 1.5F0) belongs to the interval [f0 – 2f0]. 

We have just shown how we obtained the “second” harmonic (3f0) of F0 (situated 
in the 2nd-rank octave). We propose to continue in the same way in relation to the 
other physical harmonics, by presenting them in the order of their apparition in the 
different octaves where they are situated (see Table 2.3). 

 

Table 2.3. Table showing the successive orders of apparition of the 
integer harmonics in the different octaves. For a color version of  

this table, please see www.iste.co.uk/paret/musical.zip 
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In this table, each row/range corresponds to an octave: 

– octave from 1 to 2, known as the 0-order (or rank) octave; 

– octave from 2 to 4, known as the 1st-order octave – i.e. (21) = 2; 

– octave from 4 to 8, known as the 2nd-order octave – i.e. (22) = 4; 

– octave from 8 to 16, known as the 3rd-order octave – i.e. (23) = 8; 

– octave from 16 to 32, etc.; 

– octave from 32 to 64, etc. 

2.3.3. Initial conclusions 

The last octave in the previous figure (multiples from 32 to 64) includes the 
presence of (too) numerous frequencies (or notes: 32 of them), which an average ear 
is often unable to completely discern (in this case, the ear’s frequency separating 
capacity may be surpassed, and hearing goes to the stage of “consonance”, “unison”, 
or “confusion” between certain frequencies, which we shall see in Chapter 5). As an 
initial approach and initial conclusion, we can say that in view of the “harmonic” process 
presented above, the maximum division of an octave could be that which stops at the 
end of the 5th octave, which exhibits only 16 frequencies to which it is therefore 
possible to assign specific names (see bibliography) – for example, see the set in 
Table 2.4: 

 

Table 2.4. Table of succession of appearance of integer harmonics  
in the octaves. For a color version of this table, please see 

www.iste.co.uk/paret/musical.zip 

2.3.4. Order of appearance and initial naming of the notes 

As Table 2.5 indicates, according to this process, the ascending order of 
appearance of the first 16 notes is as follows: 
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 F0                

Rank of 
the 
harmonic 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

                 

Name 
attributed 
to the 
note 

do1 do2 so2 do3 mi3 so3 pé3 do4 ré4 mi4 na4 so4 oc4 pé4 ti4 do5 

Value in 
relation 
to [1, 2]  

1/1 2/1 
2 

3/2 4/2 
2 

5/4 6/4
3/2

7/4 8/4 
2 

9/8 10/8 
5/4

11/8 12/8
3/2

13/8 14/8 
7/4 

15/8 16/8 
2 

Table 2.5. Ascending order of appearance of the first 16 notes. For a color  
version of this table, please see www.iste.co.uk/paret/musical.zip 

Once we have extracted, from this table, the values do2, do3, so3, do4, mi4, so4, 
pé4, do5, etc., which are exact multiples of the frequencies encountered above, out 
of the first eight values remaining, which we reclassify in ascending order of 
apparition in the interval [1, 2], we obtain eight values: 

f0   ×  1 do 1 1/1 =   8/8 
9 ré 4    9/8 

 5 mi 3 5/4 = 10/8 
11 na 4  11/8 = then situated in the fa# zone 
3 so 2 3/2 = 12/8  
13 oc 4  13/8 = then situated near to la 
7 pé 3 7/4 = 14/8 = note situated between la3 and si3,  

   so almost a si3 flat 
15 ti 4  15/8 = ti 

This demonstrates that there are and will be direct, unavoidable physical 
harmonic relations, which our auditory apparatus can discern by pure relations of 
multiples and harmonic resonances, between the future notes do, so, mi, pé-ti flat, 
which are, in fact, the first harmonic frequencies encountered and which, with 
notations of particular ranges, would later become “thirds”, “fifths”, “sevenths”, etc. As 
if by a marvelous accident, they pay an important – predominant, even – role in 
“harmony”. Then come the harmonic frequencies whose ranks are immediately above, 
with slightly lesser influences in harmony, but which, later on, under the appellations 
of “9th, 11th and 13th”, would make their respective and relative contributions to the 
“color” of a chord.  
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Strange, is it not…? 

Looking again at the last row in Table 2.4, we must work back to harmonic 32 
(which is enormous!) to begin to see the appearance of the essence of the notes in a 
modern-day chromatic scale. 

How bizarre, again… 

 F0                

Rank of the 
harmonic 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

                 

Name 
attributed  
to the note 

do#5 ré5 re# mi5 fa na - 
 

so5 so# oc la pé - ti - do6 

      Identical to 
fa# 

  Identical to 
la 

Identical to 
ti b 

Identical to 
ti 

 

Value in 
relation  
to [1, 2]  

17/16 18/16 
9/8 

19/16 20/16 
5/4 

21/16 22/16
11/8

23/16 24/16 
3/2 

25/16 26/16 
13/8

27/16 28/16
7/4 

29/16 30/16 
15/8 

31/16 32/16 
2 

Table 2.6. Ascending order of apparition of the first chromatic notes. For  
a color version of this table, please see www.iste.co.uk/paret/musical.zip 

Also note in both the last two figures: 

– that the so appears first in this sequence (later on, it will act as a “fifth” in a  
conventional diatonic scale of seven notes), and that later, the name of “dominant“ 
note given to it may not be entirely without reason; 

– that the mi appears next (it will later act as a “third” in a conventional 7-note 
diatonic scale), and this note will also have a very important role; 

– finally, that the ti flat (written as ♭– bemolle) is not the first, but is not badly 
placed in the order of its appearance and that, as we shall see later on, the so-called 
“seventh” position (in actual fact, a minor seventh, in a conventional 12-note chromatic 
scale) is not bad at all. 

Because octaves are obtained by doubling a frequency, we can, if we wish, 
express each of the notes corresponding to these harmonics as “sub-harmonics” (or 
“fractional harmonics”), within the first octave, to fit them into the primary octave 
(from 1F to 2F).  
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For example, this gives us: 

– for the harmonic f3 in the 1st-order octave, a value = f3/(21) in the 0-rank 
octave; 

– for the harmonic f9 in the 3rd-order octave, a value = f9/(23) in the 0-rank 
octave; 

– etc. 

 

Table 2.7. Comparisons and relative gaps between notes 

Table 2.7 shows the result of the calculations relating to all these ratios and the 
relative gaps between these notes. 

We have now completed what was a very hard task, which is already worth the 
effort, and in writing it, we have described the first type of note creation, with 16 
notes per octave! What luxury! 

2.3.5. A few important additional remarks 

Purely out of sympathy for the reader, and so as not to go on for too long without 
concrete application, we have italicized these notes (giving their common names) 
that are closest to those which will ultimately be used often.  
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Also, in the right-hand column of this table, readers will find the relative gaps 
existing between two successive notes. Note that, along the length of the octave: 

– the relative gap from note to note is not absolutely constant; 

– the values of the gaps exhibit a certain amount of consistency; 

– these values decrease regularly from the beginning of the octave towards the 
end; 

– auditory perspective is undeniably “physical” in its construction, but perhaps 
not so easy (at a given date, in a given educational context and civilization, etc.) to 
learn, because the intervals are not entirely constant throughout the increase or 
decrease. 

In fact, our ear does not work in terms of relative distance in linear mode, but in 
proportional mode, which means that it does not like linear additions, preferring 
products and divisions, or indeed it prefers additions and subtractions but only 
logarithms! 

In brief, this “natural/physical” table will be extremely useful and will serve as 
the basis for comparison with all the other modes of generating a “note progression”, 
which we shall now construct differently. 

Of the hundreds of possibilities for generating notes available to us, let us now 
look at new methods of constructing a succession of frequencies known as “pure 
perfect fifths”. 

2.4. Generation of perfect fifth notes 

The generation of so-called “perfect fifth” notes or the “Pythagorean” scale can be 
constructed in two possible ways: with the “ascending fifth” or the “descending fifth”. 

2.4.1. Generation with ascending fifths 

This sequence with “ascending fifth” is obtained by starting with an initial note 
of any frequency f0 (and sometimes, it is there that the trouble lies) and by 
multiplying that frequency by three (×3) and so on, little by little, going up in 
successive multiplication by “3” of the frequencies of the notes thus obtained. Here, 
some lucky readers may recall their school math classes on geometric progressions! 

Why the word “fifth”, then, if we are speaking of three times the frequency 
(which, in reality, has no direct relation with the number “5”), and the term “fifth” or 
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ascending from “fifth to fifth”)? We shall see this later on: it is a good – even an 
excellent – question! 

At the present point in this work, there is no explanation (because we do not yet 
officially know what the rest of this book holds), but – and there is always a but – we 
shall see a little later on that the frequency of the note (f0 × 3) expressed in the first 
octave corresponds to the fifth degree of the so-called major scale which everybody 
uses… Hence the name “fifth”! In fact, for the peace of mind of the purists among 
you, let us note that specifically, it is the fifth doubled into the higher octave. 

Starting at f0, we successively obtain (3 f0), (9 f0), (27 f0), (81 f0), (243 f0), etc.: 
in brief, a series 3n, 1 < n < ∞ (see the red bold text in Table 2.8). 

This, expressed in terms of values of sub-harmonics (by dividing by the appropriate 
values 2, 4, 8, 16…) in the reference first octave, gives us the following ratios – 
additionally reclassified in order… the luxury! (See Table 2.9). 

The values in bold are those which are strictly identical to those obtained by the 
previous method of generation of notes by harmonic multiples (do, ré, so, la) whose 
fractional values are simple, and therefore consonant (and/or harmonics), but the others 
are not at all the same as those in the first generation. Certainly, they are close but they 
are different.  

 

Table 2.8. Succession of occurrences of ascending fifths (3 f0), (9 f0),  
(27 f0), (81 f0), (243 f0), etc. For a color version of this table,  

please see www.iste.co.uk/paret/musical.zip 
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 Ratios                 Values            Relative gaps ascending from note to note 
 
ut 1 1 
ut# 2187/2048              1.0678711        1.0678711/1     =      1.0678711 
ré 9/8 1.125 1.125/1.0678711    =      1.0534979 
ré# 19683/16384           1.201355           1.201355/1.125    =      1.0678711 
mi 81/64 1.265625           1.265625/1.201355    =      1.0534979 
fa 177147/131072      1.3515244         1.3515244/1.265625      =      1.0678711 
fa# 729/512 1.4238281        1.4238281/1.3515244    =      1.0678711 
so 3/2 1.5 1.5/1.4238281    =      1.0534979 
so# 6561/4096              1.6018066         1.6018066/1.5    =      1.0678711 
la 27/16 1.6875 1.6875/1.6018066    =      1.0534979 
la # 59049/32768           1.8020325        1.8020325/1.6875    =      1.0678711 
ti 243/128 1.8984375         1.8984375/1.8020325     =      1.0534979 
ut 531441/262144       2.0272865 instead of 2.000 – i.e. with a 1.36% error 

Table 2.9. Sub-harmonics classified in order in the reference octave. For  
a color version of this table, please see www.iste.co.uk/paret/musical.zip 

REMARKS.– The repetitive, periodic alternation of the values of the relative gaps on 
two consecutive notes: 

The height of the “mi” now obtained by the ascending fifth generation method is 
81/64, as opposed to 5/4 = 80/64 previously, with the natural generation method, which 
is a gap 1/64 larger than before, which some people call a “syntonic comma” (see 
Chapter 4). This value of frequency is very close to that found previously, but is not 
exactly the same. 

The two methods of note generation (physical and perfect fifth) described above 
show that we are beginning to define not a value of “mi”, but instead a “zone” of 
“mi”. 

2.4.1.1. Order of occurrence of fifths  

For those tenacious readers who have stuck with us up to this point, we can 
return to the same table as before by supplementing it with the order of successive 
apparition of the ascending “fifths”. 
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         1 
    2 

                    3 
   4 
         5 
           6 
       7 
                    8  
    9 
        10 
            11 

Table 2.10. Order of occurrence of ascending fifths 

NOTE.–  

a) The successive order of appearance of notes constructed to the perfect fifth is: 

 do0 → so1 ré2 la3 mi4 ti5… 

As we shall see later on, in fact, this corresponds to the tone taking a sharp each 
time. 

Tone of the major scale:  so ré la mi ti  ... 

Number of sharps per key: 1 2 3 4 5 

b) By the very principle of multiplication by 3, it is impossible to find an integer 
multiple of 2 of the original frequency! Thus, by ascending fifths generation, we 
shall never be able to find an even-numbered integer multiple (n × 2) of the 
fundamental frequency (the octave). This is demonstrated by the table, where we can 
see that the closest multiple of 3 to the first “do” (in relation to the origin) has the 
value: 

 312 = 531441 instead of 219 = 524288 

 which represents a ratio of 531441/524288 = 1.0136433  

 which represents a gap of 1.36433%, as previously stated. 

Thus, rather than a “do”, we have more of a “D’Oh!” 
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2.4.2. Generation with descending fifths 

Here is a new problem, which is corollary to the previous one. 

We can also start with an initial frequency by doing likewise and dividing its value 
by 3, and so on, descending. It is the same pattern, backwards – hence the appellation 
“descending fifth”. 

In summary, the value of the frequency of any given note is always the triple or a 
third of that of another note! 

In short, there is/are (a) generation(s) to the ascending fifth and to the descending 
fifth and without any major problems we can therefore make a fifth out of anything! 

The frequency f0 which we have chosen as a starting point is, itself, somewhere, 
the “double fifth”, the third-order multiple, of another frequency. Thus, we can 
construct the same table for descending fifths by successively dividing all the new 
frequencies obtained by three. 

We obtain the “descending fifth” situated two octaves below F0 (see Table 2.11). 

f0/16  f0/8  f0/4  f0/2  f0 
        
      f0/3 
  f0/9 
 

Table 2.11. Order of succession of descending fifths. For a color  
version of this table, please see www.iste.co.uk/paret/musical.zip 

Thus, expressed in relation to the reference octave, see Table 2.12. 

   f0                       2 × f0 
 
     (4 × f0)/3 (16 × f0)/9 
 

Table 2.12. Fifths expressed in the reference octave 

In the same way as above, if readers give us their trust, Table 2.13 shows the 
order of appearance of the successive descending “fifths” when they are expressed in 
the reference octave.  
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1  do     = 1 
1/3  fa  4/3   =  1.3333333 
1/9  ti♭  16/9   = 1.7777777 
1/27  mi♭  32/27   = 1.1851851 
1/81  la♭  128/81   =  1.5802469 
1/243  ré♭  256/243   = 1.0534979 
1/729  so♭  1024/729   = 1.4046639 
1/2187  do♭ (ti)  4096/2187  = 1.8728852 
1/6561  fa♭ (mi)  8192/6561  = 1.2485901 
1/19683  ti♭♭ (la) 32768/19683  = 1.6647868 
1/59049  mi♭♭ (ré) 65536/59049  = 1.1098579 
1/177147 la♭♭ (so) 262144/177147  = 1.4798105 
1/531441 ré♭b (do) 
 

Table 2.13. Order of occurrence of descending  
fifths expressed in the reference octave 

Then, reclassified in increasing order in the reference octave: see Table 2.14. 

 
1  ut  1/1   = 1 
1/243  ré♭  256/243   = 1.0534979 
1/59049  (ré)  65536/59049  = 1.1098579 
1/27  mi♭  32/27   = 1.1851851 
1/6561  fa♭ (mi)  8192/6561  = 1.2485901 
1/3  fa  4/3   =  1.3333333 
1/729  so♭  1024/729   = 1.4046639 
1/177147 (so)  262144/177147  = 1.4798105 
1/81  la♭  128/81   =  1.5802469 
1/19683  (la)  32768/19683  = 1.6647868 
1/9  ti♭  16/9   = 1.7777777 
1/2187  ut♭ (ti)   4096/2187  = 1.8728852 
1/531441 (do)  1048576/531441  = 1.9730807   
       instead of 2.000000! 
 

Table 2.14. Descending fifths reclassified in  
increasing order in the reference octave 
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NOTE.–  

a) The order of successive occurrence of the notes constructed to the fifth is: 

 do0 → fa ti♭ mi♭ la♭ ré♭ ... 

As we shall see later on, this in fact corresponds to the tone with a flat each time: 

Tone of the major scale : fa ti♭ mi♭ la♭ ré♭ ... 

Number of flats in the key: 1 2 3 4 5 

b) By the very principle of division by 3, it is impossible to find an integer 
multiple of 2 of the original frequency! Thus, by descending fifths generation, we 
shall never be able to find an even-numbered integer multiple (n × 2) of the 
fundamental frequency, which is demonstrated by the table, where we can see that 
the closest multiple of 3 to the first “do” per octave has the value: 

 1048576/531441 = 1.9730807 

 312 = 531441 instead of 219 = 524288  

 which is a gap of 531441/524288 = 1.0136433  

This would no longer be a “do”, then, but a “re-D’oh!” 

2.4.3. Conclusions on fifth-based constructions of notes 

As shown by the two constructions of notes above “to the fifth”, the values 
obtained and expressed (“sub-” and “over-” harmonics, or indeed “fractional” 
harmonics) in the reference octave are not strictly identical. 

Once again, many frequencies are close, but are not absolutely identical. Thus, 
there are generations to the fifth and to the fifth (ascending and descending fifths)! 
In addition, supposing we take, as the initial value, the “lock” do (the do in the 
central mechanical position on a piano keyboard) as the basis for the construction of 
ascending and descending fifths, with the fact that we shall never again find an exact 
do as we work our way up (3, 9, 27, 81… but never an even-numbered value), and 
that in this case the do must be the fifth of a lower note situated at 1/3, 1/9, 1/27… 
its frequency), and therefore that the ascending and descending fifths will, by their 
very principle, never yield the same notes expressed in a central octave. Therefore, 
when we speak of construction to the fifth: 

– first, we must state the frequency (the note) at which we began; 

– secondly, we must say whether the construction is performed with ascending or 
descending fifths. 
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2.5. Important remarks on “physical”/“fifths” generation 

Whether it is “physical” note generation or “ascending and descending fifths” 
constructions, we obtain “zones” of “notes” in which the frequencies are close, which 
tends to give names (of “notes”) to these particular zones. 

With these groups of three values, we can construct a comparative table, which 
shows that:  

– there are zones of preferential frequencies due to these constructions; 

– the number of different main zones thus constructed is 12; 

– we may decide to name each of the particular zones of frequencies; 

– the gaps from zone to zone are not necessarily equal (the gap is not constant), 
but seem to be fairly regular; 

– for each zone, we can choose a single particular value if we wish, and assign it 
the name of the zone which contains it. 

All other considerations aside, with all of these frequencies: 

– we may also name the smallest interval thus created which separates two 
consecutive notes – for instance, calling it a “semitone” (which means that someone 
has already defined a “tone”!); 

– we may decide (later) to make that relative gap (the semitone) constant (regular) 
by “tempering” it along an octave (as we shall see a little later on, in the next few 
sections on “twelfth root of two” – see generation of tempered notes).  

Then, it is possible to construct, within an octave, in accordance with our own 
wishes, a string of notes (5, 6, 7, 8, 10, etc.) serving as a basis/reference – which we 
shall later call a “scale” – based on a specific choice of any given increasing dis-
tribution based on these twelve main frequencies. 

The best-known and most usual example is that which comes from a particular 
choice: the choice of the diatonic “major scale” of seven notes – “do ré mi fa so la  
ti do” – with assorted frequency gaps, which we shall see in the next chapter. 

Thus, having chosen these notes, it becomes easy to quantify the gaps (intervals) 
between them. 

2.6. Generation of tempered notes 

It is possible to tune a piano simultaneously to the ascending fifth and the 
descending fifth, from a specific note, or else play two pianos: one tuned to ascending 
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fifths and the other to descending fifths… but there is a risk of nasty surprises in 
disparity of the sounding of notes (see previous paragraphs). Thus, in a few 
paragraphs, to remedy this problem, we mention the creation of tempered notes 
which, though totally artificial (“chemically pure”), is a correct solution, and 
contains notes whose frequencies are situated very close to the generations of notes by 
“natural” frequencies and by “fifths”. 

2.6.1. Notion of the ear’s logarithmic sensitivity 

Before discussing the way to generate notes in a tempered fashion, let us take a 
moment to look at the ear’s logarithmic sensitivity to frequency. Is this true or false? 

– what is true is that (the mechanics of) the ear (like all mechanics) likes integer 
multiples or “harmonics” and physical fractionals of a base frequency (see the 
previous chapters). Therefore, when we speak of multiples, sooner or later we come 
back to the geometric progression of notions confining to logarithms. 

– what is not true is that the previous paragraph is based on centuries of western 
education/civilization, where somewhere in our subconscious, we have been 
educated with (if not sometimes steeped in!) that organization of notes structured to 
the octave, to the fifth, etc. Once again, if we had lived for thousands of years in the 
Far East, out in the brush, etc., it is highly likely that our ear would have 
unconsciously picked up other harmonic references, and that the octave and fifth 
would not be what they are for us westerners. Perhaps, on the Cartesian side, the 
European Renaissance era and many other phenomena have occurred for a reason? 

This being the case, to return to the generation of tempered notes, the question 
does not arise. So let’s draw a line under it, assume everybody is the same, and 
move on. Thus, by definition, we decide to impose the requirement that we generate 
twelve notes in an octave and a growth exponent “n” which is identical from note to 
note, as we move in both directions! More simply put, all intervals, hereafter 
referred to as “tones” and “semitones”, will respectively be equal in value, in both 
an upward and a downward direction! 

What is the value “n” of the growth ratio? By definition, with an octave being 
defined by a frequency ratio whose value is equal to 2, we merely need to decide on 
the number of steps “n” we wish to have in the octave. 

We shall show, over the course of the next few chapters, that the ear is satisfied 
with 10 to around 25 steps per octave, and the above paragraphs have shown that 12 
zones of notes was a reasonable number, so why not go with 12? 
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If we decide to evenly distribute twelve steps (notes) logarithmically spaced 
throughout the octave, this gives us: 

– either: 

F0 × n × n × n × ... 12 times over = (n12) × F0 = 2 × F0 

– or: 

n12 = 2              

– or indeed: 

n = 12th root of 2 = 1.0546307... 

What a wonder (and also somewhat deliberate too!) – this value is very close to 
the note gap obtained by the fifths methods, so close to the notes created by many 
existing instruments. With that, music and electronic circuitry move forward! 

NOTE.– Our (western) ear is now satisfied, the hairs of the auditory apparatus having 
been stroked in the direction of growth. However, true “harmonic” harmony – in the 
sense of organ pipes (which resonate physically and mechanically), of horns, bugles, 
etc. which vibrate (where there is little or no possibility of changing the heights of 
the notes!), guitar strings which vibrate (the height/frequency of the sound is largely 
mechanically predetermined by the position of the fret), but not violins, cellos, 
trombones, etc. which, for their part, allow the player to “create the height of the 
sounds” as s/he wishes, by positioning the fingers or hands wherever s/he chooses.  

This being the case, we shall also show, during the next few chapters, that this 
singular distribution presents a significant advantage: the ability to transpose music 
in either direction! 

ut     = 1 
ut#                  =  ut#/ut = 1.05946307 =  1.05946307 
ré   ré/ut# = 1.05946307  =  1.1224618 
ré#   etc. = 1.05946307 = 1.1892068 
mi    = 1.05946307 = 1.2599206 
fa    = 1.05946307 = 1.3348393 
fa#    = 1.05946307 = 1.4142128 
so    = 1.05946307 = 1.4983061 
so #    = 1.05946307 = 1.5873999 
la    = 1.05946307 = 1.6817915 
la#    = 1.05946307 = 1.7817958 
ti    = 1.05946307 = 1.8877468 
do    = 1.05946307 = 2.0000000 

Table 2.15. Distribution of frequencies of a generation of tempered notes 
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NOTE.– On western tastes (Europe, USA, etc.) as opposed to oriental tastes. Unlike 
in eastern cultures, it is normal that the values attributed to the harmonics, other than 
those of even-numbered orders (the successive octaves) should be incorrect, because 
western music is mainly structured around so-called tempered dodecaphony, which (as 
we shall see later) means that the ratio between the frequencies of two successive 
notes (a semitone) is constant and equal to the 12th root of 2. Thus, the harmonic  
3, in a tempered scale, has the value of 219/12 = 2.9966 (instead of 3); the harmonic  
5 = 228/12 = 5.039684 (instead of 5); and so on. 

NOTE.– How can we tune a piano like that without a reference and a “pitch-perfect” 
ear to within 1/10 of a Hertz (i.e. a genuine frequency meter)? This is a good 
question! To the octave or to the fifth was somewhat easier, was it not? 

2.6.2. Examples of electronic generation of tempered notes  

In order to simplify electronic circuitry and to decrease the cost and maintenance 
requirements of the device (the instrument) – notably in terms of its tuning  (or 
retuning), most electronic instrument manufacturers build in a master oscillator 
working at a very high frequency (several megahertz) so as to be able to divide the 
value of its frequency by appropriate factors capable of generating the successions of 
notes of the highest tempered octave the instrument is able to produce with the greatest 
possible precision. This technique poses the problem of defining the values of the 
division factors which we have after the master oscillator, and hence the “trueness” 
and accuracy of the notes thus created. 

How are we to choose these values? The answer is simple, and is based on two 
contradictory criteria: 

– the successive values of all the quotients must be as close as possible to the 
12th root of 2; 

– for basically technological and economic reasons, the value of the frequency of 
the master oscillator must be as low as possible, and thus the values of the dividers 
must be integers and as small as possible. 

2.6.3. Relative gaps between tempered and electronic notes 

By way of example, let us give the division factors which were (and indeed still are) 
commonly employed by the integrated circuit manufacturers National  
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Semiconductors NS, AMI, Yamaha, etc., to cite only a few of the oldest and best-
known names (see Table 2.16). 

 
Values of division factors of the master oscillator 

 
   f0 : 478         i.e.:    = 1 
 451   478/451  = 1.0598669 
 426   478/426  = 1.1220657 
 402   478/402  = 1.1890547 
 379   478/379  = 1.2612137 
 358   478/358  = 1.3351955 
 338   478/338  = 1.4142011 
 319   478/319  = 1.4984326 
 301   478/301  = 1.5880398 
 284   478/284  = 1.6830985 
 268   478/268  = 1.783582 
 253   478/253  = 1.889328 
 239   478/239  = 2 
 

Table 2.16. Typical values of division factors used by the master oscillator 

In this table, the most critical ratio for finding the height of the note is the very 
first one: 478/451. Obviously, the higher the numerator, the greater the chance of 
finding an integer quotient which is close to the 12th root of 2. On the other hand, the 
higher the value of the numerator, the higher the frequency of the master oscillator 
will need to be.  

EXAMPLE.– If we suppose that the frequency of the highest note we want to create is 
a do 10, which is around 16,000 Hz, then the master oscillator must oscillate at least 
at: 478 × 16,000 Hz, which is around 8 MHz.  

For the other ratios, it is always easy to find the most appropriate value within the 
chain of dividers.  

Figure 2.4 is a photocopy of the old conventional diagram of a top-of-the-range 
electronic organ (but not a Hammond organ, in which the notes are generated electro-
mechanically by phonic wheels). Highlighted in the diagram is the master oscillator 
and all the dividers serving to generate the notes. 
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Figure 2.4. Diagram of a master oscillator and frequency dividers associated  
with a top-of-the-range electronic organ (document from Lowrey). For a  
color version of this figure, please see www.iste.co.uk/paret/musical.zip 

We shall leave the description of different methods of generating “notes” here, but 
readers must have realized that there may be dozens of other methods, and now 
understand the difficulty, sometimes, of playing horns, guitars, pipe organs, 
electronic organs and ancient instruments all together. Good luck, and enjoy the 
music! 
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2.7. In summary and in conclusion on generation of notes 

Table 2.17, below, essentially summarizes the state of progress of note 
generations – as multiples of frequencies, ascending and descending fifths, tempered 
notes and electronic notes – having made a deliberate choice to establish them by taking 
the frequency (note) of 440 Hz (a “la”, or A) as a reference. 

 Note-to-note gap, ascending  f in Hertz 

Notes created as a multiple of the frequency 

ut = 1 = 1 = 260.7407407 

ut# = 17/16 = 1.0625 1.0625 = 277.037037 

ré =  9/8 = 1.125 1.058823529 = 293.3333333 

ré# = 19/16 = 1.1875 1.055555556 = 309.6296296 

mi =   5/4 = 1.25 1.052631579 = 325.9259259 

fa = 21/16 = 1.3125 1.05 = 342.2222222 

na =  11/8 = 1.375 1.047619048 = 358.5185185 

--- = 23/16 = 1.4375 1.045454545 = 374.8148148 

so =  3/2 = 1.5 1.043478261 = 391.1111111 

so# = 25/16 = 1.5625 1.041666667 = 407.4074074 

oc =  13/8 = 1.625 1.04 = 423.7037037 

la = 27/16 = 1.6875 1.038461538 = 440 

pé =  7/4 = 1.75 1.037037037 = 456.2962963 

--- = 29/16 = 1.8125 1.035714286 = 472.5925926 

ti =  15/8 = 1.875 1.034482759 = 488.8888889 

-- = 31/16 = 1.9375 1.033333333 = 505.1851852 

ut = 2 = 2 1.032258065 = 521.4814815 
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Notes created as ascending fifths 

ut =  1 = 1 260.7407407 

ut# =  2187/2048 = 1.0678711 = 1.0678711 = 278.4375016 

ré =   9/8 = 1.125 = 1.053497936 = 293.3333333 

ré# =  19683/16384 = 1.201355 = 1.067871111 = 313.2421926 

mi =  81/64 = 1.265625 = 1.053497925 = 330 

fa =  177147/131072 = 1.3515244 = 1.067871131 = 352.3974732 

fa# =  729/512 = 1.4238281 = 1.053497887 = 371.2499935 

so =   3/2 = 1.5 = 1.053497961 = 391.1111111 

so# =  6561/4096 = 1.6018066 = 1.067871067 = 417.6562394 

la =  27/16 = 1.6875 = 1.053497969 = 440 

la # =  59049/32768 = 1.8020325 = 1.067871111 = 469.8632889 

ti =  243/128 = 1.8984375 = 1.053497925 = 495 

ut =  531441/262144 = 2.0272865 1.067871078 = 528.5961837 
instead of  
2.000000 

Notes created as descending fifth 

ut =  1/1 = 1 264.2981071 

ré♭ = 256/243 = 1.0534979 1.0534979 278.4375008 

      (ré) = 65536/59049 = 1.1098579 1.053497971 293.3333421 

mi♭ = 32/27 = 1.1851851 1.067871031 313.2421785 

fa♭ (mi) = 8192/6561 = 1.2485901 1.053497973 330 

fa =  4/3 = 1.3333333 1.067871113 352.3974674 

so♭ = 1024/729 = 1.4046639 1.053497951 371.2500099 

      (so) = 262144/177147 = 1.4798105 1.053497922 391.111114 

la♭ = 128/81 = 1.5802469 1.067871123 417.6562645 

       (la) = 32768/19683 = 1.6647868 1.053497906 440 

ti♭ =  16/9 = 1.7777777 1.067871093 469.863281 

ut♭  (ti)  = 4096/2187 = 1.8728852 1.053497971 495.0000132 

       (ut) = 1048576/531441 = 1.9730807 1.05349794 521.4814942 
instead of 2.000000 !
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Tempered notes 

ut 1 = 261.6257723 
ut# = ut #/ut = 1.05946307 = 1.05946307 277.1828439 
ré = ré/ut# = 1.1224618 = 1.05946307 = 293.6649353 
ré# = = 1.1892068 = 1.05946307 = 311.1271474 
mi = = 1.2599206 = 1.05946307 = 329.6277 
fa = = 1.3348393 = 1.05946307 = 349.2283627 
fa# = = 1.4142128 = 1.05946307 = 369.994516 
so = = 1.4983061 = 1.05946307 = 391.9954905 
so # = = 1.5873999 = 1.05946307 = 415.3047248 
la = = 1.6817915 = 1.05946307 = 440 
la# = = 1.7817958 = 1.05946307 = 466.1637022 
ti = = 1.8877468 = 1.05946307 = 493.8832144 
do = = 2 = 1.05946307 = 523.2515446 

“Electronic” notes  

Values of division factors  
ut 478/478 = 1 = = 261.4226084 
ut# 478/451 = 1.0598669 = 1.0598669 = 277.0731695 
ré 478/426 = 1.1220657 = 1.058685482 = 293.333342 
ré# 478/402 = 1.1890547 = 1.059701495 = 310.8457812 
mi 478/379 = 1.2612137 = 1.060686022 = 329.7097752 
fa 478/358 = 1.3351955 = 1.058659211 = 349.0502903 
fa# 478/338 = 1.4142011 = 1.05917156 = 369.7041403 
so 478/319 = 1.4984326 = 1.05956119 = 391.7241587 
so # 478/301 = 1.5880398 = 1.059800621 = 415.1495067 
la 478/284 = 1.6830985 = 1.059859142 = 440 
la# 478/268 = 1.783582 = 1.059701497 = 466.2686587 
ti 478/253 = 1.889328 = 1.059288555 = 493.9130538 
do 478/239 = 2 = 1.058577441 = 522.8452167 

Table 2.17. Summary of generations of frequencies/notes –  
by multiples of frequencies, ascending and descending  

fifths, tempered notes and in electronics 
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2.8. Comparison of gaps between all the notes thus created 

From the above tables, we can see that the relative gap which our hearing is able 
to appreciate and easily recognize between two successive frequencies/notes is always 
of the order of 1.04, 1.05, 1.06 – on average, 5%. Thus, we find regions of “ré”, of “ré 
sharp”, of “mi”, etc. Depending on the way in which the notes have been 
constructed, we position their names in the frequency domain. 

The comparative overview (Figure 2.18) shows the relative positions, note by note, 
of each of the notes depending on the mode of their generation. 

Comparison  multiple of f 

ascending fifth 

descending fifth  

tempered 

ut  = 1 = 1         

ut = 1 = 1   

ut  = 1 = 1 = 1 1 

ut = 1 = 1         

ré♭ = 256/243 = 1.0534979         

ut# = ut #/ut = 1.05946307 = 1.05946307 1.05946307 

ut# = 17/16 = 1.0625 1.0625/1 = 1.0625 

ut# = 2187/2048 = 1.0678711 = 1.0678711/1 = 1.0678711 

(ré) = 65536/59049 = 1.1098579         

ré = ré/ut# = 1.1224618 = 1.05946307 = 1.1224618 

ré =  9/8 = 1.125 1.125/1.0625 = 1.0588235 

ré =  9/8 = 1.125 = 1.125/1.0678711 = 1.0534979 

mi♭ = 32/27 = 1.1851851         

ré# = 19/16 = 1.1875 1.1875/1.125 = 1.0555556 

ré# = = 1.1892068 = 1.05946307 = 1.1892068 

ré# = 19683/16384 = 1.201355 = 1.201355/1.125 = 1.0678711 
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fa♭ (mi) = 8192/6561 = 1.2485901         
mi =  5/4 = 1.25 1.25/1.1875 = 1.0526316 
mi = = 1.2599206 = 1.05946307 = 1.2599206 
mi = 81/64 = 1.265625 = 1.265625/1.201355 = 1.0534979 

fa = 21/16 = 1.3125   1.3125/1.25 = 1.05 
fa =  4/3 = 1.3333333   
fa = = 1.3348393 = 1.05946307 = 1.3348393 
fa = 177147/131072 = 1.3515244 = 1.3515244/1.265625 = 1.0678711 

na =  11/8 = 1.375 1.375/1.3125 = 1.047619 
 
 

so♭ = 1024/729 = 1.4046639         
fa# = = 1.4142128 = 1.05946307 = 1.4142128 
fa# = 729/512 = 1.4238281 = 1.4238281/1.3515244 =   

--- = 23/16 = 1.4375 1.4375/1.375 = 1.0454545 

(so) = 262144/177147 = 1.4798105         
so = = 1.4983061 = 1.05946307 = 1.4983061 
so =  3/2 = 1.5 1.5/1.4375 = 1.0434783 
so =  3/2 = 1.5 =   =   

so# = 25/16 = 1.5625   1.5625/1.5 = 1.0416667 

la♭ = 128/81 = 1.5802469   
so # = = 1.5873999 = 1.05946307 = 1.5873999 
so# = 6561/4096 = 1.6018066 =   =   

oc =  13/8 = 1.625 1.625/1.5625 = 1.04 

(la) = 32768/19683 = 1.6647868         
la = = 1.6817915 = 1.05946307 = 1.6817915 
la = 27/16 = 1.6875 1.6875/1.625 = 1.0384615 
la = 27/16 = 1.6875 =   =   

pé =  7/4 = 1.75 1.75/1.6875 = 1.037037 
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ti♭ =  16/9 = 1.7777777         

la# = = 1.7817958 = 1.05946307 = 1.7817958 

la # = 59049/32768 = 1.8020325 = =   

--- = 29/16 = 1.8125   1.8125/1.75 = 1.0357143 

ut♭  (ti)  = 4096/2187 = 1.8728852         

ti =  15/8 = 1.875 1.875/1.8125 = 1.0344828 

ti = = 1.8877468 = 1.05946307 = 1.8877468 

ti = 243/128 = 1.8984375 =   =   

-- = 31/16 = 1.9375 1.9375/1.875 = 1.0333333 

         
(ut) = 1048576/531441 = 1.9730807   instead of 2.000000!     

ut = 2 = 2 2/1.9375 = 1.0322581 

do = = 2 = 1.05946307 = 2 

ut  = 531441/262144 = 2.0272865   instead of 2. 000000 =   

Table 2.18. Comparison of note-to-note gaps between all the notes created 

We see from this table that the notes obtained by the tempered generation 
method are not so bad in relation to those obtained by multiples of frequencies and 
those obtained by generations to the fifth. 

To gain a clear view of what all these figures actually mean, the “bar” chart in 
Figure 2.5 shows the position of each of the frequencies obtained using the various 
methods. Thus, we find preferential zones of frequencies for the positioning of the 
notes, and some cases where certain frequencies, deemed too close to a group, have 
been eliminated. Such is the case of “na”, “oc” and “pé” from a revolutionary 
period. 

Now, out of the groups of frequencies shown in Figure 2.5, which exact frequency 
are we to attribute to the name of a note?  

We are now at a critical point in the story, where we need to adopt a position – 
for good or for bad – and stick to it from this point on! 
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2.8.1. Note on pitch-perfect hearing… or is it? 

How many times have we heard about someone who has a “pitch-perfect ear”? 
Being curious rather than credulous, we suggest running a little experiment. 

2.8.1.1. Little experiment 

– Take a “perfect ear” (and the biped who comes with it, of course). 

– Play a mi3 on the keyboard of a piano. 

– Wait for the verdict. 

It is a mi3! Bravo! This is not easy to determine for mere mortals, but for 
numerous musicians, the test is fairly easy up to this point! 

Getting more difficult now, ask the person which mi3 it is: 

– is it a mi3 on a piano obtained when the instrument is tuned to the ascending 
fifth?  

– is it a mi3 of a piano tuned to the descending fifth?  

– from which base note are the fifths defined? 

– is it a mi3 obtained on a piano tuned to the tempered scale? 

For your pleasure, to define these notes to the exact hertz frequency, look again 
at Tables 2.17 and 2.18. 

If the “ear” is still able to withstand the test: 

– simultaneously play, on two synthesizers which are very slightly out of tune 
with one another, two mi3 notes a few savarts apart (3 to 5, for example – see the next 
chapters), so that, for any human being, the notes are practically consonant; 

– then, in the confusion, cease playing one of the two mi3s whilst continuing to 
hold the other, and slyly, ask the person to identify the note continuing to sound. We 
recommend that you repeat the experiment several times, because probability theory, 
random chance and bluff mean the person has a one-in-two chance of indicating the 
correct result completely at random, totally undermining this whole construction! 

If the result is always perfectly correct, the “pitch-perfect” person in question 
must, at birth, have assimilated a laboratory measuring device known as a 
“frequency meter” (see Figure 2.6), and must immediately be encased in glass at the 
Natural History Museum, because as yet, there have been no recorded examples, and 
you have the only one in existence, which will make you a fortune.   
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We, for our part, are still poor… 

 

Figure 2.6. Example of a true “pitch-perfect ear” – a professional lab  
frequency meter (document from Keysight Agilent). For a color version  

of this figure, please see www.iste.co.uk/paret/musical.zip 

We have now completed our detour into the generation of notes and the physical 
and mathematical ratios existing between them, and can take a little rest. 



3 

Recreation: Frequencies,  
Sounds and Timbres 

3.1. Differences between a pure frequency and the timbre of an 
instrument 

From the very start of this book, in an incorrect use of language and in the spirit 
of deliberate simplification, we have made a certain amalgamation between the 
terms frequency, sound, note and timbre. It is now time to correct these mistakes, 
because there are subtle nuances between all of these terms. Indeed, up until now, we 
have supposed that the notes generated were perfect sine waves, as could be made 
by a classic “low-frequency generator” in a laboratory. In actual fact, musical 
instruments, for a given note, emit a sound composed of the fundamental frequency 
and many other frequencies – overtones. Without going into immense detail about 
the physics of the phenomenon, note that: 

– a sound is a set of variations of acoustic pressures received by our ear as a 
function of the time (with the well-known attack, decay, sustain, release, etc.); 

– at all times when it is present, it is possible to analyze the “harmonic spectral” 
makeup which we attribute to that sound using mathematical tools such as 
mathematical signal processing methods (analyses, decompositions into a Fourier 
series, convolutions of signals and their products, Fourier transforms, whether they are 
“FT”, sampled  (“Discrete DFT”) or rapid (“Fast FFT”), window functions (Hamming, 
Bartlett, etc.), discrete cosine transformations (“DCT”, etc.) which we can use to break 
it down into simple elements (more or less pure frequencies – sine waves) whose 
values in terms of amplitudes and relative phases may evolve over time.  

This is often represented by a three-dimensional curve: amplitude/frequency/ 
time (see Figures 3.1(a) to 3.1(c)). These simple elements are used to assign that 
sound, at a given time, what we call its “frequency spectrum” or “spectral content”. 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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fundamental frequency/note which it produces and thus, with the term “timbre”, 
actually “invents” new, unexpected notes (thirds, fifths, etc.) within the initial division! 

At identical heights, so fundamental base frequencies, the sounds emitted by two 
different instruments (for instance, a violin and a recorder) do not resonate/sound in 
the same way. Each one is characterized by its timbre, by which it can be identified. 
This expresses the fact that a natural sound is not really simple: it results from the 
combination of a primary – or fundamental – sound, which fixes the frequency 
perceived by the ear and a large number of its harmonics, where the relative weights 
of amplitudes and phases determine its timbre, specifically. 

In summary, at the same height of the fundamental frequency, the timbre of a 
sound emitted by an instrument depends on the richness of its harmonic spectrum, 
i.e. of its spectral–frequency content, evolving over time, with each harmonic having a 
relative intensity in comparison to the others. 

NOTE.– The production of a sound by a wind instrument contains numerous natural 
harmonics, whilst certain instruments – in the percussion section, for example –
generate inharmonic frequencies (2.576 ƒ0, 5.404 ƒ0…). Such is the case, for 
instance, when we strike a triangle with a sharp tap, such as a “Dirac pulse 
(function)”: this produces an infinite spectrum. 

Because of the “mechanics” of the way in which it is made, for the same “note” 
(i.e. the same fundamental frequency played), every instrument will produce a 
different spectrum, and therefore a different spectral coloration, so a different 
timbre. Let us look at a few examples: 

– wind instruments: 

- with mouthpieces; 

- with reeds; 

– stringed instruments: 

- bowed (such as violins) and sustained bowed; 

- struck; 

- plucked. 

The harmonic richness and contents of the spectra of these instruments are 
profoundly different. Some of these spectra (for example, that of the clarinet, 
because of the mechanical principle of a fixed reed, vibrating mechanically on a support: 
the mouthpiece) are often richer in odd-numbered harmonics (3, 5, 7, etc.) so we 
note the “natural” presence of the values of the type “3 × F0” – so we have a 
naturally “fifth-sounding” instrument (see details later on in the chapter). 
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3.2. Timbre of an instrument, harmonics and harmony 

Let us take the simple example of characterizing the differences in timbres 
between a recorder and a clarinet. 

The recorder and the clarinet are both wind instruments. The principle of 
production/creation of a sound by vibration of the air contained in the instrument’s 
barrel is thus the same for both instruments; the exciter is the air in the column 
inside the barrel, and the body of the instrument is the resonator. Up to this point, 
everything seems identical. However, the mechanism by which the air is made to 
vibrate differs: 

– to begin with, a recorder is open at both ends, and the acoustic vibration is 
created by the flow of air at the bevel, which takes place alternately out of and into 
the barrel of the recorder; 

– as for a clarinet, it is closed on the side of the mouthpiece and open at the side 
of the bell, and the air is set in motion by the vibrations of the reed. The vibrations 
of the air are passed on to the body of the instrument, which in turn passes them to the 
surrounding air, thus creating a sound.  

 

Figure 3.2. Representation of the first three eigenmodes of vibrating  
the air inside a recorder and a clarinet (document from Son1 FE2). For  

a color version of this figure, please see www.iste.co.uk/paret/musical.zip 
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Consequently, when writing (complex) equations to express sound propagation, 
the boundary conditions are not the same for the two instruments, which implies 
different modes of vibration for the recorder and the clarinet. 

 

 An open end corresponds to a zero variation in pressure, known as a pressure node.  
A closed end corresponds to an anti-node. 
 
n, mode of vibration (n is an integer > 1, n = 1, 2, 3, 4, 5, etc.) 
k, rank of the harmonic (n = 1 being the fundamental) 
v (in m/s), velocity of propagation of the air = 340 m/s  
f_n (in hertz), eigenfrequencies of vibration of the air column  
L (in meters), length of the barrel 
λ_n (in meter), wavelength corresponding to f_n 
two successive nodes are separated by λ_n/2 

 

 Recorder Clarinet  
N = 1, 2, 3, 4, 5, 6, etc.  = 1, 2, 3, 4, 5, 6, etc.  Mode of vibration 

f_n = n (v / 2L) 
 

= (2n – 1)/2 v / 2L 
= (2n – 1) v / 4L 

Owing to the different boundary 
conditions in these equations, the 
frequencies f_n of the eigenmodes 
of vibration are: 

K = n  
= 1, 2, 3, 4, 5, 6, etc.  
 
All the odd- and 
even-numbered 
harmonics may be 
present in the barrel 
of the recorder. 

= (2n – 1) 
= 1, 3, 5, 7, 9, etc.  
 
Only the odd-
numbered harmonics 
may exist in the 
barrel of the clarinet. 
The even-numbered 
harmonics are 
therefore absent from 
the spectrum of the 
sound emitted.  

Rank of the harmonic 
(n = 1 being the fundamental) 
 
This gives the timbre of an 
instrument, which is the way in 
which the coefficients of these 
multiples interact with one another. 
The distributions of the harmonics 
and their respective levels contribute 
to the difference in timbre between 
instruments. For example, the 
recorder produces few harmonics, 
whilst the clarinet has many more. 

λ_n  = v / f_n = v / f_n Wavelength corresponding to f_n 
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NOTE.– By playing sufficiently loudly, thus entering into a nonlinear mode of 
vibration, a clarinet player can reverse the hierarchy presented above and make the 
higher harmonic sound more clearly than the fundamental. As the first higher 
harmonic is the mode n = 3, the height difference between the fundamental and that 
harmonic being 3/2, we hear the fifth of the note more clearly than the note itself. 
We then say that the clarinet goes to the fifth. 

In addition, the attack transitories play a crucial role in the identification of the 
timbre, because, often, the harmonics do not appear at the same time. 

3.2.1.1. Harmonic spectra 

As an addition, Figure 3.4 (set up in terms of frequencies) reflects the extent of the 
registers of the main instruments, using the reference of the extent of that of the 
keyboard on a piano and the frequencies of the corresponding notes. 

 

Figure 3.4. Frequency range of registers of main instruments 
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Each of these instruments makes sounds that can be organized into different 
classes depending on their harmonic spectral contents (see Table 3.2).  

Characteristics 
of the sound 

With Corresponding timbre 

Complex sound harmonics of decreasing 
importance 

round, warm, full  
(concert type-flute, deep 
register) 

upper harmonics relatively 
intense 

resounding, shrill, harsh  
(similar to oriental bowed 
stringed instruments) 

odd-numbered harmonics 
predominant 

similar to the clarinet  
(clarinet, type medium 
register) 

even-numbered harmonics 
predominant 

clear  
(violin type )  

Deep complex sound few harmonics velvety, smooth  
(such as bourdon organ pipes) 

low-intensity harmonics poor, meager (sensation 
similar to the simple sound),  
of the type of bowed oriental 
stringed instruments: long 
string and small resonance 
box 

Over-sharp complex 
sound 

very few audible harmonics strident, piercing 

Complex sound 
without a fundamental  

weak lower harmonics nasal  
(similar to the clarinet or 
bassoon, deep register) 

Table 3.2. Classes of sounds according to their harmonic spectral contents 

As indicated in this figure, certain carefully-chosen examples, certain signals 
emitted – for a given note – by certain instruments contain numerous harmonics of 
all ranks: 

– sometimes essentially odd-numbered (reed instruments, clarinets); 

– odd- and even-numbered, as in recorders – see Table 3.1; 

– or indeed both odd- and even-numbered (Hammond organ with bottom 
drawbars of 16, 8, 5⅓…). 
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Thus, these notes have a different timbre, due to the harmonic richness 
engendered by the instrument when the note is created. Certain timbres of 
instruments rich in “third” harmonics will already “naturally” be to the fifth and 
easily recognizable. 

The instantaneous content and its evolution over time in the harmonic spectrum 
enables our auditory apparatus to recognize the instrument which produced the 
sound/note.  

3.3. Recomposition of a signal from sine waves 

In the early 19th Century, the mathematician and physicist Joseph Fourier 
showed that it was possible to break down any given signal into a sum of sine 
frequencies. Conversely, it is not too difficult to recreate these sounds (in fact, these 
signals and their spectral contents) using multiple sine-frequency generators. For 
decades now, technology has been such that numerous “instruments” known as 
“synthesizers” have tried (and sometimes succeeded) to reconstruct these signals, but 
primarily have, from all these pieces, created new sounds, thus given rise to new, 
entirely unknown timbres, which would have been utterly inconceivable with 
conventional instruments. 

To briefly give a few examples of timbre recomposition, there have been two 
technical and technological ages: the age of subtractive synthesis followed by that of 
additive synthesis.  

3.3.1. Subtractive synthesis 

We generate a signal that is rich in even- and/or odd-numbered harmonics, or 
with a quasi-infinite spectrum depending on the types of simple waveforms that the 
signal generator can create, such as square waves, sawtooth waves, single and/or 
double ramp waves, white noise, pink noise, etc. Then, we try as best we can to filter the 
signal, using multiple electronic filters: high-pass, low-pass, pass-band, etc., to obtain 
the desired harmonic content by subtracting the initial spectrum. 

3.3.2. Additive synthesis  

We generate the desired even- and odd-numbered harmonic- and subharmonic 
frequencies one by one, and then add them together, weighting their respective 
amplitudes in order to obtain the desired harmonic content (see Figure 3.5 and a 
characteristic example of the harmonic drawbars of a Hammond organ in the 
following). 
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each drawbar, the sound obtained, with and thanks to these harmonics, is close/ 
resembling another instrument – hence the names of certain specific sets of organs 
see figure 3.8. 

EXAMPLE.– In the “reed” family of sounds, let us take the second proposed setting: 
the clarinet, listed as “00 60 70 540” – see Table 3.3.  

In the decoded version, to give the sound of “Clarinet 8'”, we take no 16' (of 
course, this is too deep), nor its natural fifth (triple its frequency), 5⅓'. However, 
there is quite a lot of 8' (understandable, as we are emulating a Clarinet 8'), no 4' or 
1' (too high – again, we are aiming for a Clarinet 8'!), a little fifth 2⅔' to create the 
characteristic “to the fifth” sound of the clarinet, and finally the little “smidge” of the 
third  13/5' and fifth 1⅓' for the final coloration on request. Thus, in an auditive and 
additive fashion, you have recreated the content of a Fourier spectral decomposition 
which is close to a certain clarinet. 

Drawbars 16' 5⅓' 8' 4' 2⅔' 2' 13/5' 11/3' 1' 

Volume 0 0 6 0 7 0 5 4 0 

Table 3.3. Example of Hammond registration of “Clarinet 8'” 
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Intervals 

The stage is set. We have chosen to employ a series (or arsenal) of notes 
(frequencies) which are clearly defined and carefully distributed (in our case, twelve 
different notes) which we have named in increasing order (for now) along the length 
of the reference octave: 

 1         2          3          4          5          6          7          8        9           10          11         12 
do       do#       ré        ré#       mi         fa         fa #     so        so#         la          la#         ti         and    do 

We shall now take an in-depth look at the gaps/distances in frequency separating 
the notes from one another. 

4.1. Gap/space/distance/interval between two notes 

In musical language, the term “intervals” is used to speak of the gaps between 
two given notes (frequencies). 

Let us go back, for a moment, to the example of the method of physical 
generation of notes in the form of multiples of frequencies, as it truly is “mindlessly” 
physical. The start of the scale of frequencies (notes) thus defined can be described as 
a succession of harmonic frequencies (“true” harmonics –multiples) as follows: 

N being the value of the integer multiple in question. 
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Rank of the octave    0            1                        2                       3 
               do0       do1       so1     do2       mi2      so2     ti♭2      do3       ré3      mi3 ... 
f0 × N ; N   =          × 1        × 2         × 3      × 4         × 5        × 6       × 7         × 8         × 9      × 10    ... 
 

Whatever the method for generating notes, depending on the value separating 
one note from another, we can name the intervals (see Table 4.1 for an example). 

Value of the number Example Name of the interval 
two do to ré interval called second 

three do to mi  third 

four do to fa  fourth 

five do to so  fifth 

six do to la  sixth 

seven do to ti  seventh 

eight do to do+  octave 

nine do to ré+  ninth 

... ...  ... 

Table 4.1. Naming of the intervals 

4.2. Measuring the intervals 

Obviously, to quantify intervals, however random they may be, we need to be 
able to measure them reliably. There are two commonly employed methods, using two 
different types of units: the Savart and the Cent. 

4.2.1. The savart 

In view of the fact that the correspondence between the notes and their respective 
frequencies is logarithmic, acoustic physicists can accurately quantify the interval 
between two notes of any given frequencies f1 and f2, using a particular unit of 
measurement: the “savart”. Its definition is as follows: 

Interval of f2 from f1 = 1000 × [log10 of (f2/f1)] in savarts  
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As the octave is, by definition, an exact ratio of frequencies (f2/f1) = 2, the 
relation linking savarts and octaves is as follows: 

  1 octave  = 1000 × [log10 of 2] savarts 
 so:  
  1 octave    = 1000 × 0.30103 =         301 savarts 

 so, with an approximation of around 3/1000: 

   1 octave  ~  300 savarts  

Table 4.2. The savart 

To recap, in different methods of note generation, we have easily distinguished a 
dozen different notes in that space, distributed differently depending on the methods 
used. If, as a reference, we take the so-called “tempered” generation method, with a 
frequency distribution such that the 12 ratios between the frequencies of two 
successive notes are, by construction, strictly equal, we can write that the distance 
between two successive notes is (301 savarts/12) ≈ 25 savarts. This value will 
represent what, in the next chapter, we call the value of the “tempered semitone“. 

4.2.2. The cent 

A different unit to the savart is also frequently employed in musical literature to 
quantify the intervals: the “cent”, which is defined as being one hundredth of a 
tempered semitone. As the octave in a tempered chromatic scale is made up of 12 
identical semitones, it is equal to 1200 cents, which also, in view of the fact that the 
correspondence between the notes and their frequency is logarithmic, is tantamount 
to giving its expression in the forms:  

Interval of f2 from f1 = 1200 × [log2 of (f2/f1)] in cents 

Interval of f2 from f1 = 1200 / log10 2 × [log10 of (f2/f1)] in cents 

or indeed, an interval of 1/100 of a tempered semitone = 1 cent = 1200th root of 2 = 
1.00057779. 

Now consider that a conventional octave for generating 12 tempered notes  
(made up of 5 tones + 2 semitones = 6 tones = 12 semitones) also has a value of  
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300 savarts = so 1200 cents – meaning that “1 savart is equal to 4 cents”. Thus, for a 
semitone, we have 25 savarts or 100 cents, and for a tone, 50 savarts or 200 cents.  

Based on this observation, it is an easy step to say that a quarter tone in a 
tempered note generation (case of the octave divided into 24 regularly-spaced notes 
as the 24th root of 2) has a value of 12.5 savarts = 50 cents. Note that this difference 
is discernible to the human ear (look again at the first generations described in 
Chapters 2 and 3, containing 32 notes). 

Table 4.3 shows the equivalences for the intervals of the tempered scale. 

  Gaps 
Tempered 
intervals Frequency ratio in semitones in cents in savarts 

unison 1.000 0 0 0 

minor second ~1.059 1 100 ~25 

major second ~1.122 2 200 ~50 

major third ~1.260 4 400 ~100 

fourth ~ 1.335 5 500 ~125 

fifth ~ 1.498 7 700 ~176 

sixth ~ 1.682 9 900 ~226 

octave 2.000 12 1200 ~301 

Table 4.3. Equivalences between cents and savarts  
for the intervals of the tempered scale 

REMARKS.– 

– A violinist must, in principle, construct the notes on his/her instrument. It is 
this which enables him/her to play musical pieces which include notes separated by 
quarter tones (intervals of 12.5 savarts, because the ear is able to differentiate such 
sounds). On the other hand, obtaining a 1/16th tone is somewhat illusory, because as 
we shall show in the next chapter, we often reach the human confusion limit. In 
addition, it is often impossible to obtain the ¼ tone because of a slight vibrato, whether 
deliberate or otherwise, on the part of the player. 

– Note that, we shall show later on that the loss of consonance between two 
frequencies takes place with intervals greater than 10 savarts. 
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– Given that a semitone in tempered note generation is equal to 25 savarts, and 
represents a frequency ratio equal to 1.059, which is around a 6% frequency gap; a 
gap of 1 savart represents 1.059/25, so around 6%/25 = 0.24% frequency gap.  

This is all very well, but how can we put it to use? It is perfectly simple: we now 
have a tool to quantify the note-to-note gaps from one method of note generation to 
another. To put this more simply, we can quantify the “quality” (consonance, 
dissonance, harshness, etc.) of the gap existing between a note created by an 
instrument “with mechanical harmony” – e.g. a hunting horn – and the note of the 
same name created on a piano, finely tuned using the tempered method. “Well, it is 
practically the same thing”, one might say. So what? 

4.3. Intervals between notes 

In the particular case of note generation by the frequency-multiple method to 
which our western ears are accustomed (through education, culture, etc.) and which 
we have adopted, once this is done, we can numerically express the distances (or 
ratios) between certain notes, so: 

                       do1     do2     so2     do3     mi3     so3     ti♭3     do4     ré4     mi4 
  N =   ×1       ×2       ×3       ×4     ×5       ×6        ×7        ×8      ×9      ×10 
 
Name of interval  Value of the frequency ratio of the interval 
 
Octave from do2 to do1     2/1  
Fifth from so2 to do2                3/2 
Fourth from do3 to so2            4/3  
Major third from mi3 to do3     5/4 
Minor third from so3 to mi3                6/5 
               7/6 
                           8/7 
“Major” tone – e.g. from ré4 to do4                                     9/8 
“Minor” tone e.g. from mi4 to ré4                                               10/9 
……………….. 

Table 4.4. Distances/ratios between two notes 
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Similarly, we have the intervals presented in Table 4.5. 

The value of the gap corresponding to two consecutive tones – from mi to do in the same 
octave, for example – is: 
 mi4 / do4 = 5/4  so   =     (mi4/ré4) × (ré4/do4)  
      =     (10/9) × (9/8)     
       =      10/8  = 5/4   
 
The fifth corresponds to the stack of   =     mi3 to do3      +     so3 to mi3  
     =     major third +   minor third 
or indeed:  
stacking (or “addition”) of the intervals   =     product of the frequency ratios 
     =     5/4 × 6/5 
     =     6/4 = 3/2  

Table 4.5. Examples of additions of intervals 

This whole wonderful world would resonate harmonically very well together 
(using simple fractions of integers) and would have a strong tendency to be 
consonant. In addition, often, our ear would prefer the addition of the “daddy” of the 
music family: do1 (or its twin, do2), to make the sound rich, attractive and complete 
(in hertz, of course!), and, for good measure, we could even add, as required, the 
do4, which, within the overall consonance, would hardly be perceived at all. 

The values contained in the table initially highlight the following intervals: 
fifth 3/2, major third 5/4, minor third 6/5, minor seventh, ninth, etc., which are, in 
fact, the building blocks of the notes which will (in Chapter 9) make up major 
chords, minor chords, M7, m7 and 9 chords, etc. The earliest notions of harmony, 
the first harmonic chords and the first basslines would be born! 

4.3.1. Second interval: major tone and minor tone 

In this mode of physical note generation, we also see the appearance of the 
notion of a “major tone” interval and a “minor tone” one. Indeed, the second interval 
from do4 to ré4 (9/8) is slightly greater (hence the name “major”) than the second 
from ré4 to mi4 10/9 (hence the name “minor”). Can you believe it? You are right 
to. Indeed, if we crudely reduce them to the same denominator, we obtain: 

9/8 = 81/72, which is greater than 10/9 = 80/72 

which is a gap between the two “major and minor” tones of 1/72 – i.e. a 1.38% gap. 
This gap between the major tone and the minor tone is known as the syntonic 
comma (see later on in the chapter).  
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4.3.2. Major third and minor third interval 

The thirds from do4 to mi4 (equal to that from do3 to mi3) and mi3 to so3 do not 
have the same value. What a scandal! The first has a value of 5/4, ((mi4/ré4) × 
(ré4/do4) = (10/9) × (9/8) = 10/8 = 5/4), and the second from so3 to mi3 has a value of 
6/5, i.e. of the order of 25/20 and 24/20. The third from do to mi is therefore “majorly” 
greater than 25/24 - greater by 4.166% than the “minor” third from mi to so. 

Obviously, if we had used a “tempered” mode of note generation, none of this 
would ever have happened! 

4.4. Overview of the main intervals encountered 

Table 4.6 gives the conventional names applied to the intervals that may be 
found with a series of 12 notes (tempered or otherwise) per octave. 

    #  #   #  #  #   #    

   C  D  E F   G   A  B C  D  E 

    b  b   b  b  b   b    

Name of interval Notation Constitution                   

min. second m2 ½ tone x x               d 

Maj. second M2 1 tone x  x              d 

min third. m3 1 tone ½  x    x                c 

third  M3 2 tones x     x            c 

augmented third  3+ 2 tones ½  x      x            

perfect fourth  P4 2 tones ½  x     x            d 

augmented fourth 4+ 3 tones x      x           

diminished fifth  5° 3 tones  x      x            

perfect fifth P5 3 tones ½   x       x          

augmented fifth 5+ 4 tones x        x         

min.sixth. m6 4 tones x        x          

Maj. sixth M6 ; 7° 4 tones ½  x         x        

min. seventh  m7 5 tones x          x       

Maj. seventh M7 5 tones ½  x           x      

octave P8 6 tones x            x     

Table 4.6. Conventional names of the intervals with a series of  
12 notes per octave. The terms in italics are redundant terms  

to speak of certain intervals 



76     Musical Techniques 

REMARKS ABOUT TABLE 4.6.– 

– The augmented fourth or diminished fifth containing an interval equal to three 
tones is called a “triton”. 

– In the table, the letters “c” and “d” indicate the consonance or dissonance of 
the intervals when the two notes are played simultaneously (see Chapter 5). 

4.5. Quality of an interval 

The quality of an interval depends not only on the “frequency distance” between 
the two notes making it up, but also on numerous other parameters. Let us cite the 
following examples. 

4.5.1. Instrumentation 

Every instrument (including the human voice) has its own specific characteristics 
of harmonic richness of its timbre, and therefore (numerous) underlying intervals 
between harmonics, which may also be considered notes. 

4.5.2. Tempo 

The tempo is the length of time for which the interval is maintained, depending 
on the melody of the piece being played. Having mentioned the temporal concepts of 
dynamics and statics earlier on, we have linked the ideas of consonance dissonance to 
a temporal aspect, so they are linked to the tempo of the melody. 

4.5.3. Dynamics of amplitudes 

The relative amplitudes of two sounds in the interval emitted at a given time can 
change the content of the consonance or dissonance of the interval. 

4.5.4. Register 

Notes of the same name do not have the same degree of importance in terms of 
the quality of the interval, depending on whether they are located in the same octave 
or in a nearby one. Thus, a dissonant interval from do3 to ré3 will sound almost 
consonant from do3 to ré4, representing a greater absolute gap between the two 
frequencies.  
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4.6. Reversal of an interval 

The reversal of an interval remains an interval – a new one, certainly different, 
but an interval nevertheless! 

EXAMPLE.– The permutation of the two notes – do3, so3 – in the form of a reversal – 
to so3, do4 – changes the nature, the quality, and hence, the nature of the interval 
has changed! The fifth interval from do3 to so3 becomes a fourth from so3 to do4, 
and it does not sound the same! The same is true of the intervals cited above. 

Let us now switch to the long story of commas! 

4.7. Commas…ss  

Before going into a detailed view of commas…ss, which will later help to 
understand the lengthy pages on harmony, let us state generally that comma(s) are 
extremely small intervals (see the numerous paragraphs below), generally between 
roughly a tenth (5 savarts or 20 cents) and a fifth (10 savarts or 40 cents) of a tone.  

NOTE.–  

– Caution: these values are not the smallest frequency difference between two 
sounds perceptible to an untrained human ear. Indeed, our brains are capable of 
discerning differences of around 1/100 of a tone in frequential/harmonic sync 
(sounds heard simultaneously) and sometimes even more! 

– In actual fact, there is no precise definition of “a comma”. Each of the commas 
described below refer to and are usually measured in cents, so they can be quantified 
and classified. 

– In the absence of further clarification, musicians generally consider that a tone 
(whose value is 200 cents) is, by definition, equal to 9 commas, so a comma is 
declared, without another form of process, has a value of 200/9 = 22.22 cents  
(in fact, it is a poorly defined side/approximation between the values of the 
Pythagorean- and syntonic commas which we shall describe below)! 

– Knowing that in a generation of tempered notes, the ratio between the frequencies 
of two successive notes separated by a semitone is 1.05946, and the frequency gap 
between a la at 440 Hz and a la# = 440 × 1.05946 = 466.16 Hz is therefore 26 Hz = 100 
cents, which makes the comma 22.22 cents equivalent to 5.7 Hz.  

This latter interval corresponds approximately to the gap in frequency between a 
la at 440 Hz and another la at 446 Hz, so a 6 Hertz gap, which represents a musical 
accuracy of the ear of a seasoned musician of 6/440 = ~1.4%.  



78     Mus

Thes
intervals
simultane
of “beati

– The
and a mi
octave o
“tempera

The t
describe 

Let u

4.7.1. P

The P
and con
It corresp
seven co
perfect f

7 nat

(2

12 fif

(3

As il
fifths on
than) tha

sical Techniques

e comma di
s, because a 
eously general
ing” (see the e

e comma enab
i♭). It therefo
or to the fifth)
aments”. 

tuning of inst
in the next fe

us now move o

Pythagorean

Pythagorean c
nsecutive to 
ponds to the 

onsecutive per
fifths, also con

tural octaves m

2/1)7 = 128/1 =

fths multiply t

3/2)12 = 531 4

llustrated in F
nto fa to obta
at of fa produc

Figur

s 

ifferences can
very small 

ly produces ei
end of Chapte

bles us to diff
ore plays a role
) and consequ

truments prim
ew paragraphs

on to a detaile

n comma 

comma (or th
the genera

frequency dif
rfect octaves (
nsecutive (gen

multiply the in

= 128, which 

the initial freq

41/4 096 = 12

Figure 4.1, the
ain mi# (3/2)12

ced by the stac

re 4.1. The ge

nnot easily b
interval betw

ither pure diss
r 5).  

ferentiate/sepa
e in the princip
uently, serves 

marily uses thr
s: Pythagorean

ed examination

he ditonic or d
ation of note
fference whic
(“physical” ge

neration “to th

nitial frequenc

is 8400 cents

quency of a fa

29.476 so 842

e frequency cr
2 is not strict
cking of 7 per

enesis of the P

be detected i
ween two suc
sonances, or a

arate two enha
ples of tuning
as the basis f

ee types of co
n, syntonic and

n of commas.

diatonic comm
es by the 
h occurs betw
eneration), an

he fifth”). 

cy of a factor: 

actor: 

3.5 cents 

reated by the 
tly equal to (i
rfect octaves (

Pythagorean c

in the usual 
ccessive notes
a physical phe

armonic notes 
of instrumen

for the constr

ommas which
d enharmonic

ma) is charact
Pythagorean 

ween the gene
nd the generat

 

stacking of 1
in fact slightl
27).  

omma 

melodic 
s emitted 

enomenon 

(e.g. a ré# 
nts (to the 
ruction of 

h we shall 
. 

teristic of 
method. 

eration of 
tion of 12 

12 perfect 
ly greater 



Intervals     79 

By comparing these two quantities, we can see an appreciable auditory difference 
(around 1/16th of a tone) and the relative ratio of the frequencies has the value of the 
Pythagorean comma, so: 

Δfo / fo = ((3/2)12 – (2/1)7) / fo 
              = (312– 219) / 219 
              = (531441– 524288) /524288 
              = 1.0136432  
              = around 23.46 cents 

4.7.2. Syntonic comma 

The syntonic comma, which is characteristic of the way in which Aristoxenus 
saw (or rather heard!), corresponds to the interval existing between four consecutive 
perfect fifths and two octaves augmented by a pure major third. It is also the interval 
between a minor tone and a major tone. 

The stacking of four perfect fifths produces a Pythagorean third (starting from 
do → do, so, ré, la, mi) different to the natural third of a syntonic comma. 

4 perfect fifths correspond to a multiplication of the frequency by (3/2)4 = 81/16.  

To bring that ratio within an octave, we need to divide it by 4 → 81/64 = 
1.265625.  

The third do - mi obtained by the octave-based generation method is equal to 5/4 
so 80/64 = 1.25. 

The value of the syntonic comma is therefore:  

= (81/64) / (80/64)  
= 1.0125  
= around 21.50 cents 

It is therefore slightly less than the Pythagorean comma (see above). 

The Pythagorean third is higher than the natural third of 21.5 cents (the 
approximate value of the syntonic comma) and higher than the equally tempered 
third of 7.8 cents. 

Thus, the natural third is less than the tempered third, by 13.7 cents. 
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4.7.3. A few remarks about commas 

There are numerous other commas: maxime comma, magna comma, but the 
Pythagorean comma (~23.5 cents) and syntonic comma (21.5 cents) are the most 
important. 

4.7.4. Enharmonic comma 

In an instructive detour, let us cite the following points as a reminder. 

4.7.4.1. (Small) sharp 

The enharmonic comma, also known as a (small) sharp, is the value of the interval 
existing between three major thirds and an octave. It is also the interval between the 
chromatic semitone and the diatonic semitone of the natural scale with pure thirds. 
By the same calculation methods, we would have obtained a value of: 

= 128/125  
= 1.024 are around 41.05 cents 

4.7.4.2. Large sharp 

The large sharp is the value of the interval existing between four minor thirds 
and an octave. Its value is: 

= 648/625  
= 1.0368, so around 62.56 cents 

4.7.5. Other theoretical commas and a few additional elements 

4.7.5.1. Holdrian comma 

Given that an octave has a total of 6 tones, i.e. 1200 cents, and that musicians 
have decided unilaterally that a tone was made up of nine commas (the diatonic,  
semitone, four; the chromatic semitone, five), the value of Holder’s comma divides 
the octave into 53 = ((6 × 9) – 1) and its value, very close to the Pythagorean  
comma is: 

= 1200/53 (a 53rd of an octave of 1200 cents) 
= around 22.64 cents  
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4.7.5.2. Sauveur comma 

The Sauveur comma is approximately one 43rd of an octave, and its value is: 

= 1200/43 
= around 27.90 cents 

4.7.5.3. Schisma 

We have noted that two trains of thought led to the Pythagorean (1.0136432) and 
syntonic commas (1.0125), whose values are similar but slightly different. A third way 
is to search for a definition of a comma – the Schisma – as having a value as close as 
possible to 1! This was made with the difference in frequencies which takes place 
between the generation of 5 consecutive perfect octaves (so “physical” generation, 25) 
and the generation of 8 perfect fifths, also consecutive (so generation “to the fifth“, 
(3/2)8) augmented by a third (5/4), so numerically expressed, it is (5/22) × (3/2)8 / 25 = 
(5 × 38)/215. 

Its value is (5 × 38)/215 so: 

= 32,805/32,768  
= 1.001129 so 1.95 cents, which is approximately 2 cents 
= 2,657,205/2,654,208 = 1.001129 

Hence, this is almost the value equal to the difference between the Pythagorean 
and syntonic commas: 

= 531,441/524,288 – 81/80 
= 1.0136432 – 1.0125  
= 1.001143 

To define this comma, the best approximate value of the type (n + 1)/n, where n 
is an integer sometimes used, is 886/885 = 1.0011299.  

Approximately speaking, the syntonic comma has a value of 11 schismas, and 
the Pythagorean comma 12. 

4.7.5.4. Diaschisma 

The comma or interval diaschisma is obtained by composing (descending) two 
perfect thirds (the factor 52) and four perfect fifths (the factor 34).  

Its value is 211/(52 × 34), which is 2048/2025 = 1.011358, so around 19.55 cents. 
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These commas and the schisma are theoretical, “paper” values, and are not 
musical values. 

Let us now move on from commas and give a few other useful comments. 

4.7.5.5. The (big) tone 

The Pythagorean tone is also called the large tone. In the Pythagorean scale, 
there is only one tone, and its ratio is 9/8. It is therefore 3.9 cents larger than the 
tempered tone, and its value is 203.9 cents.  

4.7.5.6. The Limma 

The Limma, sometimes called the Diaton-Limma, is the diatonic  semitone of the 
Pythagorean scale (e.g. from do to ré♭). This interval is expressed by the ratio 256/ 
243 = 1.05349, which makes 90.2 cents.  

It is 9.8 cents smaller than the tempered semitone, which is equal to 100 cents. 

4.7.5.7. The apotome 

The apotome, sometimes called the Chromate-Apotome, is the chromatic  
semitone of the Pythagorean scale (e.g. from ré♭ to ré). Its value is naturally one 
tone less a Limma, which makes: ((9/8) – (256/243)), so 2187/2048 = 1.067877, which 
is 113.7 cents. 

It is 13.7 cents greater than the tempered semitone, which is equal to 100 cents, 
and if we compare it to the Limma, the difference between the two is a Pythagorean 
comma, so (2187/2048) – (256/243) = 531,441/524,288 = 1.0136432. 

4.7.6. Final remarks  

In the Baroque period (from the 16th to the 18th Century), the thirds then in use in 
the Pythagorean scale, by principle, sounded a little wrong and thus when one chose, 
for example, to redistribute the Pythagorean comma over four fifths (do-so-ré-la-mi) 
then the third  interval do-mi lost a Pythagorean comma. Cut short by a syntonic 
comma, this do-mi third becomes perfect (ratio 5/4) but given the quasi-equivalence 
between the Pythagorean and syntonic commas, this serves the purpose in calculating 
the “temperaments”, which, being devoted to redistributing the Pythagorean comma, in 
reality primarily aimed to reduce the falseness of the thirds linked to the syntonic 
comma. 
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Differences in commas, although they are typically not very audible, or even 
inaudible in certain intervals, are, in others, sources of dissonance which is sometimes 
extremely pronounced (see “wolf fifth”). Thus, commas have caused problems for 
music theorists who have sought to distribute the comma in different ways.  

Final point: take care not to confuse “temperament” with “equal temperament”. 

4.7.7. In summary, commas and C° 

Appellations  Values of the ratios Δf / f = Values in 
cents 

Values in 
savarts 

Octave  2 2 1200 301 
tempered 
semitone 

 21/12 1.05946 100 25 

tempered tone   21/6 1.1224554 200 50 
Pythagorean 
tone 

 9/8 1.125 203.9 50.975 

Commas 
tempered   1   
schisma  2657205/2654208 1.001129 1.95  

diaschisma  2048/2025 1.011358 19.55  
Syntonic  81/80 1.0125 21.50 5.375 

“musician’s” 
comma 

200 cents 
value of 
9 commas 

200/9  22.22 5.5 

 Holdrian 
comma 

1200/53   22.64  

Pythagorean 
comma 

 531441/524288 1.0136432 23.46 5.865 

Sauveur comma    27.90  
enharmonic 

sharp 
 128/125 1.024 41.05  

large sharp   648/625 1.0368 62.56  
Other values 

Limma  256/243 1.05349 90.2  
Apotome  2187/2048 1.067877 113.7  

      

Table 4.7. Overview and summary of commas and C° 
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NOTE.– All the ratios named above always refer to the quotient of the highest value 
of a frequency to that of a lower frequency, with the latter being the nearest harmonic 
following that of the lowest. Readers may feel this is pointless, but in actual fact it is 
very important in acoustic terms! 



5 

Harshness, Consonance and Dissonance 

Up until now, we have presented the existing intervals which characterize two 
notes taken completely separately in time, without the concept of temporal evolution 
and focusing only on their “static” aspect. 

In this short chapter, we shall examine what comes of the interpretation of two 
notes played “simultaneously”. What physiological impressions are given by the 
interpretations of the intervals? Is it harmonious? Is it dreadful? 

With this in mind, we need to define new concepts. 

5.1. Consonance and dissonance 

Consonance and dissonance are relative concepts which subjectively define the 
ratio between two sounds emitted simultaneously. The goal of this chapter is to 
elucidate all the “technical” details regarding these notions, but for now, let us 
simply state that these ideas of consonance and dissonance also depend on a 
psychological aspect owing to our western educations, traditions, esthetic values, 
customs and sociocultural conditions. 

5.1.1. Consonant interval 

We say that an interval is consonant when it produces a pleasant sensation: 
relaxing, calming, of wellbeing, and of resolution. 

Intervals with these peculiarities typically have common harmonic frequencies in 
simple ratios of values (2/1, 3/2, 4/5, etc.) which strengthen one another. 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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5.1.2. Dissonant interval 

We say that an interval is dissonant when it causes the ear an unpleasant 
sensation – a tension, which needs to be resolved. 

Short of a voluntary act, our education tends to want to resolve this tension by 
bringing it to rest. That said, this lends dissonance a temporal notion of duration, 
passage and dynamics, entirely different to consonance which, for its part, underlies a 
temporal, static notion of rest. It is only a short step from here to the observation that the 
final tuning of a piece will (tend to) be 99.9% consonant. 

5.2. Harshness of intervals 

Here again is a new aspect. The difference, however small it may be, between 
two notes, gives a more or less marked impression of the “harshness” of the interval. 
Interesting, is it not? Indeed, “harshness”, “dissonance”, “consonance” and 
“harmonic relation” are “cousins-german”, as J.S. “Bac” would say! 

Table 5.1 shows the values of the relative and cumulative gaps (in savarts) for the 
different notes, depending on the methods of their creation (physical, fifths or 
tempered), and the note-to-note gaps taken from one mode of generation in relation to 
another indicate the harshness of those modes. 

 

Name of  
interval 

Physical generation Generation to the fifth* Tempered generation 

Frequency 
ratios 

Cumulative 
gaps 

Frequency 
ratios 

Gaps Gaps 

note to  
note cumulative note to 

note cumulative 

 name values savart  savart savart savart Savart 
Do   1 0 1 - 0 - 0 
Ré second 9/8 51 9/8 (m) 51 51 50 50 
Mi major third 5/4 97 81/64 (m) 51 102 50 100 
Fa  fourth 4/3 125 4/3 (d) 23 125 25 125 
So fifth 3/2 176 3/2 (m) 51 176 50 175 
La sixth 5/3 222 27/16 (m) 51 227 50 225 
Ti♭  7/4   23 250 25 250 
Ti seventh   243/128 (m) 51 301 25 275 
Do octave 2 300 ~ 2 23 324 25 300 

*(m) obtained by ascending fifths; (d) obtained by descending fifths 

Table 5.1. Relative and cumulative gaps (in savarts) between notes  
depending on the methods of their creation (physical, fifths or tempered) 
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NOTE.– From generation to generation and from note to note, the gaps are only 
slight (2 to 3 savarts), but as indicated by the highlighted areas in Table 5.2, in 
certain cases, they become much greater (third and sixth, for example – 3 to 5 
savarts). 

We have all this down on paper. Now all readers need to do is to listen and test 
for themselves the harshness of the interval to realize the physical effects produced 
by these differences. 

5.3. Consonance and dissonance, tension and resolution of an interval 

5.3.1. Consonance of an interval 

5.3.1.1. Law number 1 

A sound is more consonant when the value, expressed in the form of the ratio 
between the harmonic and fundamental frequencies involved is written simply. 
Consonance gives the ear an impression, a sensation, of calm, of restfulness, of 
wellbeing, and of closure. 

Name of 
interval Values of F ratios  Mode of generation 

octave 2    

minor third 6/5 1.2000 ~ ré# ascending-fifth generation  

third 5/4 1.250 mi physical generation 

fourth 4/3 1.3333 fa descending-fifth generation  

fifth 3/2 1.5 so physical and ascending-fifth 
generation 

minor sixth 8/5 1.6000 ~ so# ascending-fifth generation fifth 

sixth 5/3 1.6666 ~ la descending-fifth generation 

 7/4  ti♭  

Table 5.2. Examples of consonant intervals 

5.3.1.2. Law number 2 

Consonance persists if the value of that ratio between the harmonic and 
fundamental frequencies is, not equal, but very close, to a ratio which is simple to 
express. The ear is able to appreciate this gap, and this new, different, subjective 
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impression is known as “harshness” (see above). It is here that our old friend the 
savart comes back into play, depending on the value of the gap. 

Value of gap Subjective impression 
- less than 2 savarts imperceptible to the ear (or else effect of consonance)  

- between 2 and 8 savarts always an effect of consonance, but with an increasing 
degree of harshness with the number of savarts 

- greater than 8 and at 
most 10 

loss of consonance (or the presence of dissonance) 

Table 5.3. Consonance and harshness 

Take, for example, a value of 5 savarts (which is, in fact, one tenth of a tone, as a 
tempered tone is equal to 50 savarts) – a value for which we always obtain an 
impression of consonance, but also the sensation of harshness of the interval. This 
means that the individual is able to detect that two or more frequencies are present 
simultaneously, but unable to say which two frequencies they are, as they are consonant. 
To say that the notes are separate and therefore dissonant, we need to increase the 
distance to around 8-10 savarts (i.e. around a sixth of a tone), which also means that the 
maximum number of notes we are able to hear in an octave would be 300/(8 to 10) = 
approximately 35, which harps back to the considerations of the first chapter! 

Knowing that a savart is equal to (300th root of 2), so 1.00231316, meaning that a 
frequency ratio of 0.23% between two savarts: 

Imperceptible     0.46% 

Increasing harshness    0.46 to 1.84% 

Loss of consonance     1.84 to 2.3%   

Our 5 savarts give a coefficient of: 

1.00231316 to the power of 5 = 1.01161944 

10 savarts give us: 

1.00231316 to the power of 10 = 1.02337389 

Thus, when we play a la3 = 440 Hz (an “A” note), harshness occurs at: 

440 × 1.01161944 = 445.112 Hz 



Harshness, Consonance and Dissonance     89 

and dissonance occurs from around: 

440 × 1.02337389 = 450.284 Hz 

and 25 savarts (which is a semitone): 

1.00231316 to the power of 25 = 1.05946307 = 466.113 Hz  

To clarify, this is indeed a la3#. Wow! 

In the coming chapters, it should be interesting to look at how to quantify the 
structure of a major chord, such as do, mi, so, and examine the comparative 
harshness values of the intervals depending on whether these chords are constructed 
using notes from generations to fifth notes or tempered generation. 

EXAMPLE.–  

– the interval do, mi obtained to the ascending fifth has the value of 1.25 exactly; 

– the interval do, mi obtained by the tempered method has the value of 1.259922, 
which we can say is almost equal to 1.26. 

Thus, we have a difference between the two methods of 1.26/1.25 = 1.008, so 
0.8%. 

This value of 0.8% (within the range 0.46 and 1.84%) will give a feeling of 
harshness to that interval if, for example: 

– two people play these two intervals simultaneously on two instruments – one 
tuned to fifths and the other tuned by the tempered method; 

– or indeed, if someone is used to the do, mi interval of 1.25 s/he will find that 
(in comparison to his/her own auditory memory) the second interval is a little harsh. 

In the chapter on chords, we shall look again at these ideas on whether or not the 
sound is pleasing, and harmony. 

5.3.2. Dissonance of an interval 

5.3.2.1. Law number 3 

Anything that is not consonant is, in principle, dissonant, giving an 
impression/sensation of waiting, of lack of definition, unease and tension.  
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The classic examples giving sensations of dissonance are the following intervals. 

Name of interval Values of F ratios  Mode of generation 
semitone     

second 9/8 1.125 ré physical, ascending-fifth 
generation 

minor seventh   ti♭  

major seventh 15/8 1.875 ti physical generation 

Table 5.4. Examples of intervals giving sensations of dissonance  

As, by our very nature, we do not overly like this sensation, our brains tend, 
want, desire… to resolve the problem into consonant sounds. 

As we shall see later on (see Parts 3 and 4 of this book), the creation of harmony is 
a cat-and-mouse game between the creation of voluntary tensions to indicate a 
particular mood with which we want to imbue the piece, and then coming back 
(resolving) to calmer, more stable, more complete sensations. 

5.3.3. Savarts, ΔF, consonance, pleasing values or beating of frequencies  

We saw earlier that the distance in frequency between two successive semitones 
created with a tempered scale is equal to 25 savarts, and that this also represents a 
ratio between the two successive frequencies considered to be 1.05946… = 12th root 
of 2.  

In physics, when we create a “beat” with two simultaneous acoustic sine waves 
(A cos p) and (B cos q) with respective frequencies Fp and Fq, we obtain a resulting 
signal of the type:  

[ cos p + cos q ] = 2 [ cos (p + q)/2 ] × [ cos (p – q)/2 ] 

This produces multiple sound effects. 

EXAMPLE.– Consider an instrument (say, an organ) giving a tempered scale sound, 
capable of indefinitely sustaining the sound and simultaneously playing two notes 
one semitone apart –e.g. a la3 (440 Hz) and a la3# (~466 Hz). We then obtain: 

from cos ((1 + 1.05946) F / 2) = cos (1.0295 F) 

and from cos ((1.05946 – 1) F / 2) = cos (0.0295 F) 
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PART 2  

Scales and Modes 
 



 

Introduction to Part 2 

The aim of this second part is to give greater detail about certain notions 
pertaining to scales and modes which we shall use, in Parts 3 and 4, to look at how 
to construct harmonic chords and, in particular, ultimately construct harmonious 
sequences. Do not complain at having to take this necessary step; rather, make the 
most of it to solidify the basis of your knowledge, by looking at how a great many 
scales came to be; their qualities; their shortcomings; what they make easier; their 
flexibility; and the whole bevy of awkward names we attach to them! 

Without wishing to close the stable door after the horse has bolted, let us state that, 
in Part 1, we began by sawing little bits of wood of unequal lengths to build rungs 
(notes), and then classified those notes by increasing length (i.e. by their frequencies). 
Here, in Part 2, using these little rungs, we shall begin to construct ladders (scales), all 
identical in length (an octave), with unequal, irregular steps between the rungs (the 
intervals), and learn to climb up those ladders by stepping on not necessarily the first 
or second rung, or by skipping steps (modes)! This is a rough analogy, but one 
which quite accurately represents the discussion to be found in this part. 

Now… to work! 
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Scales 

6.1. Introduction to the construction of scales 

Having, in the previous chapters, detailed, at length, the different methods of 
creation and scales of notes (generally we choose to work with a dozen notes, the 
values of their eigenfrequencies, etc.), followed by the concepts of intervals between 
the notes with the notions of semitones and tones, let us now look at the creation and 
organization of scales of notes, which will also be a long story! 

As a short preamble to this long chapter, to clarify, summarize and simplify a 
complex issue that often arises with regard to two frequently-employed terms, let us 
state that: 

– the noun “scale” (in whatever context) is the generic term defining the way in 
which an octave (i.e. from fo to 2 × fo), whatever the value of fo, (from ré#3 to ré#4, 
for example), is divided into a succession of notes (5, 6, 7, 9, 12, 24, etc.), and the 
distribution of those notes within that octave; 

– musical “modes”, which we shall see in the next chapter, are, for their part, 
possible variations/paradigms from a given scale. 

To define these scales, we shall speak of the gaps (tone or semitone) separating 
the different notes (or degrees – also see the next chapter) which make up the scales. 

A scale is constructed in the way we want to link notes spaced an octave apart. We 
may choose two steps, six steps or fourteen steps, distributed in any which way, and 
we will have defined a scale. Obviously, these scales will sound different, will often 
be incompatible and will not be at all pleasing to the ear! Once again, there is 
something for everyone. 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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It is said that the Greeks (Pythagoras, Archimedes, etc.) were amongst the first to 
note the similarities in perception that existed between certain intervals, primarily the 
ratio of 2 between the heights (the octave), and then sought to divide that main and 
essential interval into smaller intervals to form what would later become known as 
scales.  

On this point, sticking with considerations that are only valid in the context of 
“western” music, numerous approaches are possible (three in particular: principal, 
physical or natural, Pythagorean and tempered), depending on whether our approach 
draws more on physics or simply on hearing or mathematics. 

6.2. Natural or physical scale 

The so-called “natural” scale is based on pure multiples of frequencies known as 
first “harmonics” and generally includes 7 notes, though it may extend up to 12. It 
draws inspiration from the physical generation of notes presented in the previous 
chapters. By its principle, it is harmonically just, as all the notes are strictly harmonics of 
the same fundamental frequency – a property which lends the scale great consonance, 
but which, melodically, turns out to sound somewhat wrong, as the fifth-to-fifth 
intervals of the notes created in the “natural” scale are slightly off. 

Thus, the major scale based on a do contains: 

– the fifth (3/2) of do, which is so; 

– the major third (5/4) of do, which is mi; 

– etc. 

On the subject of harmonics, let us briefly look again at the general physics of 
the phenomenon, and at acoustic physics in particular.  

6.2.1. Harmonics  

In acoustics, a harmonic is a component of a wave (sound, for our purposes) 
whose frequency is a multiple of the fundamental. In music, a harmonic is also called 
a particular partial, and is an independent component of a musical sound. 

For instance, if ƒ0 is the fundamental frequency, the harmonics will have 
frequencies equal to: 2ƒ0, 3ƒ0, 4ƒ0, 5ƒ0, etc. (see Figure 6.1 for an example). 
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Figure 6.1. Harmonics of a vibrating string. For a color version  
of this figure, please see www.iste.co.uk/paret/musical.zip 

If, as a fundamental note, we take “la3” (440 Hz), then harmonics are all notes 
whose frequency is a multiple of 440. The harmonics of a note, therefore, are 
necessarily higher than that note, and are known as upper harmonics. 

Example Values in Hertz Hz Frequency Harmonic of rank 

ƒ0 440 fundamental 1 

2 × ƒ0 880        (440 × 2) first multiple 2 

3 × ƒ0 1320      (440 × 3) second multiple 3 

4 × ƒ0 1760      (440 × 4) third multiple 4 

Table 6.1. Examples of harmonics of 440 Hz 

When we speak of fundamental frequency, we speak of the frequency of the first 
harmonic content of the sound in question, which is labeled “harmonic 1” or 
fundamental (harmonic). Normally, the note we hear corresponds to the frequency  
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value of that first harmonic, even if the frequency itself is absent from the sound 
spectrum, because sometimes, certain sounds can mislead the ear – a harmonic of a 
higher rank can sometimes be heard more clearly than the fundamental, and mask it 
(see Chapter 3 on timbres). 

6.3. Pythagorean or physiological diatonic. scale 

At the root of the diatonic scale, there is the legend whereby Pythagoras, in a 
blacksmith’s forge, first discovered and established the four fundamental 
consonances in the musical scale: unison (ratio 1/1), octave (2/1), fifth (3/2) and 
fourth (4/3), and the non-consonant second major (8/9), hearing the anvil ring when 
hit by hammers of different weights… At least, this is how the story goes. Let us 
now look at how these different ratios we combined with one another to obtain a 
complete scale of seven notes as we know it today (do, ré, mi, fa, so, la, ti). In 
reality, it seems that this scale has been extrapolated from Pythagoras’ work. To 
verify this, of course, we would need to unearth the stone-scribed messages and  
e-mails of the time! 

The principle behind the creation of the frequencies of notes in Pythagorean 
scales is based on a different principle to that of the natural scale which, starting with 
the first harmonic (fundamental), generates notes little by little by a succession of fifth 
intervals [3/2]k. As partly detailed in the previous chapter, then, this is a case of the 
stacking of natural fifths. They sound “correct” melodically, but are not, in fact, 
harmonically perfect (more specifically, the harmonic frequencies of these notes do 
not correspond to the multiples of the fundamental frequency, and therefore chords 
sound a little wrong).  

6.3.1. Principle 

Let us take a detailed look at the subtle aspects of this generation of notes and 
scales, taking up the thread of the story: 

– we arbitrarily choose a starting degree – the fundamental – which we take as a 
unit and a reference frequency; 

– we multiply the value of this frequency by 3 (in fact to exactly obtain  
the harmonic 3) and we obtain the value of its first natural fifth (doubled). 
Obviously, the fact of multiplying by 3 takes the note out of our interval [1;2] of an  
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octave. We then “normalize” the frequency of the note thus obtained by dividing it 
by 2 to bring it back into the interval [1;2], which gives the ratio 3/2 = 1.5, known as 
a “fifth”; 

– having noticed that the initial note and its fifth “sounded” good together, we 
once again look for the value of the frequency of the fifth of the last note found by 
multiplying it, in its turn, by 3/2. Its frequency is 3/2*3/2 = (3/2)2 = 9/4 which, 
expressed in the interval [1;2], gives us 9/8 = 1.125. For example, consider an initial 
la3 = 440 Hz. The natural fifth mi is equal to 440 × (3/2) = 660 Hz, and the fifth of that 
fifth, the ti (the ninth), is equal to 440 × (3/2) × (3/2) = 440 × (3/2)2 = 990 Hz; 

– and so on. We apply that fifth interval, little by little, to our reference note 
whose frequency is 1: we then “normalize” the note obtained by dividing it by 2 as 
many times as is necessary to bring it back into our octave [1;2]. 

IMPORTANT REMARK.– At the 5th note thus obtained, fairly regularly spaced, we 
could stop. Some theorists have indeed stopped there, and we would have obtained 
the 5-note major pentatonic scale which is used in jazz in its tempered form – 
particularly in “blues” music (see later on in this chapter). 

The fifth next frequency is (3/2)5 = 243/32, which gives us 243/128. We now 
have the possibility for a 6-note (hexatonic) scale. 

6.3.2. The why and wherefore of the 7-note scale 

We go up one more notch, and that is where the trouble starts! 

Horror of horrors, the frequency value of that 7th note expressed in the interval [1;2] 
is 1.0679, rather than 1, as is much to be hoped to bring it back to the octave (see 
Table 6.2)! It was known from the start that with this method of generating notes in a 
geometric progression of [3/2]k, we could never reach an integer multiple of 2, the 
octave. 

On principle, this series ([3/2]k geometric progression) gives an infinite creation 
of notes, the first 25 of which are given as an example in Table 6.2. 

The right-hand column shows the normalized values of these notes expressed in 
the reference octave, and all these notes “sound good together”, because they respect 
the gap of the natural fifth. However, there are an infinite number of notes, which is far 
too many! Therefore, we need to restrict ourselves. 
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k (3/2)k n 2n (3/2)k/2n 
0 1.0000 0 1 1.0000 
1 1.5000 0 1 1.5000 = 3/2 
2 2.2500 1 2 1.1250 = 9/8 
3 3.3750 1 2 1.6875 = 27/16 
4 5.0625 2 4 1.2656 = 81/64 
5 7.5937 2 4 1.8984 = 

243/128 
6 11.391 3 8 1.4238 
7 17.086 4 16 1.0679 
8 25.629 4 16 1.6018 
9 38.443 5 32 1.2014 
10 57.665 5 32 1.8020 
11 86.498 6 64 1.3515 
12 129.75 7 128 1.0136 
13 194.62 7 128 1.5205 
14 291.93 8 256 1.1403 
15 437.89 8 256 1.7105 
16 656.84 9 512 1.2829 
17 985.26 9 512 1.9243 
18 1477.9 10 1024 1.4433 
19 2216.8 11 2048 1.0824 
20 3325.3 11 2048 1.6237 
21 4987.9 12 4096 1.2177 
22 7481.8 12 4096 1.8266 
23 11,223 13 8192 1.3700 
24 16,834 14 16,384 1.0275 
25 25,251 14 16,384 1.5412 
etc.     

Table 6.2. Generation of notes in [3/2]k geometric progression. For a  
color version of this table, please see www.iste.co.uk/paret/musical.zip 

Considering that the reported value of the 7th fraction obtained (highlighted in 
red) is already very close to 1 (= 1.0679), it seemed at that stage that we had found 
the first integer multiple – i.e. 2× – of the fundamental; simply put, that the error 
was correct! Thinking that we had almost closed the loop – and remaining conscious 
of what is not completely true – we stopped at 7 notes to form the diatonic 
Pythagorean scale! 



Scales     103 

Thus, curiously, to define and close the loop of the Pythagorean scale, the 7th 
note chosen is not that which would be defined and calculated by the next fifth, but the 
value rounded to exactly 2, based on the fact that 2 (the octave) is in harmony with the 
fifth, but it is also in harmony with note whose fifth it is, and whose frequency is 2/3, 
because 1 = 3/2*2/3, which gives us 4/3 in the interval [1;2] (see Figure 6.2). 

The Pythagorean scale is, in fact, a fine “juggling act” between generation of notes 
to the fifth (and therefore melodic) and recovery to the octave by physical generation 
of notes (thus harmonic)!  

In addition, Figure 6.2 shows the successive order of occurrence of the notes as a 
function of the values of the harmonics involved from 1 to 27, and the boxed area 
illustrates the previous section. 

Natural                 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 
Pythagorean                        1    3               9                                     27 
Pythagorean + octave          1 2 3 4           8 9                            16                   27 
Pythagorean + octaves        1 2 3 4     6    8 9    12                      16       18      24        27 
…. 

Figure 6.2. Order of appearance of the notes as a function of the  
values of the harmonics involved from 1 to 27. For a color version  

of this figure, please see www.iste.co.uk/paret/musical.zip 

A few further remarks: 

– reading Table 6.2, we ought to have gone up to the 12th value (area highlighted in 
blue), which represents a diatonic scale with 12 notes, to come a little closer to the 
octave, (1.36% gap), instead of 6.7% with 7 notes… We would also have needed six 
fingers per hand (a fair few, then!) to play and cover all the holes in a 12-hole flute; 

– the fourth note in the scale may fly in the face of what we are used to (we may 
consider that it needs to be lower). This stems from the fact that it has not been 
preserved exactly (the theoretical value was 729/512), but replaced with 3/4, which 
has a very close value.  

Note that this frequency of 3/4 is none other than the fourth which we saw 
earlier. It would have been a shame not to include it in this scale. If we, in turn, find 
the fifth of that fourth, we of course obtain the higher octave (3/4 × 3/2 = 2). This is 
logical, as we saw earlier that the fourth was the complementary interval of the fifth. 
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6.3.3. Names of the notes in the Pythagorean scale 

We have now defined (found) the 7 notes in the Pythagorean major scale, but how 
are we to name them? It is well known that it was around the 11th Century that they 
were named and linked to the degrees which we know today: that was when the 
monk Guido of Arezzo had the idea of using the first syllables of the Gregorian 
chant Hymn to Saint John the Baptist, written in Latin verse by the poet Paul Diacre:  

Ut queant laxis 

Resonare fibris 

Mira gestorum 

Famuli tuorum 

Solve polluti 

Labii reatum 

Sancte Iohannes 

In the 18th Century, the syllable Ut was replaced by the “do” for Domine. In the 
author’s native France and Latin countries, this naming system has been widely 
adopted, as opposed to the alphabetic notation C, D, E, F, G, A, B which is always 
used in Germanic or English-speaking countries. Also, in the 19th Century, Sarah 
Glover changed the “Si” to “Ti” (“a drink with jam and bread”, in the popular 
memory aid), so that each musical syllable would begin with a different letter: D, R, 
M, F, S, L, T… D. 

Figure 6.3, below, recaps the notes of the well-known (almost Pythagorean) 
scale, with the exact values of the frequencies in the form of fractions, generation to 
the fifth, their little arrangements and the names of the notes as we know them, and a 
higher do exactly at double the frequency of the lower do… By principle, this situation 
cannot exist in a fifth-based model of note generation! 

 

Figure 6.3. Final notes of the famous scale (almost Pythagorean) 
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placed! This interval (which thus sounds rather wrong) has been dubbed the wolf fifth, 
because it seems to “howl” (like a wolf) when we use it… For precisely this reason, 
though, it does not tend to be used! 

4) All instruments tuned to the fifth or the fourth are predisposed to this usage. 
Numerous examples have been presented, showing that it is impossible (or at least 
extremely difficult) for a violinist to play in a system other than the Pythagorean, 
due to the simple fact that the instrument is, by its constitution, tuned to perfect 
fifths. Typically, of the very numerous ways to tune a violin, its four open strings are 
tuned to so, ré, la and mi, and violas, cellos and double basses are respectively tuned to 
descending fifths below this pattern. 

5) Polyphony (as the name suggests: the act of playing several notes at once) is 
constructed by progressively sounding degrees further and further away from the 
fundamental, from the most consonant to the most dissonant. Thus, to begin with, we 
have the octave; then the fifth (or the fourth, which is a consequence of the fifth); the 
third; the seventh; the ninth, etc. In the Pythagorean scale, the fifths are perfect. 
Nonetheless, these so-called perfect fifths are ill suited for playing chords of three 
simultaneous 3, as the Pythagorean major third is very high, at 81/64 = 1.2656, and 
sounds bad in relation to the value of the physical perfect third, which is at 5/4 = 
1.125, which produces a difference of 81/80 (i.e. 21.5 cents – see previous chapter) 
which seems unacceptable to the ear. The tendency to voice the “perfect chord“ 
including both the third and the fifth has led to the evolution of the passage, moving 
away from a scale with very strained harmonies (with its dissonant thirds) toward a 
much softer harmony, with natural thirds. 

6.3.6. Uses of the Pythagorean scale, and cases where it cannot be 
used 

Although it is archaic, dating from over 3000 years ago, the Pythagorean scale is 
still in use today, including in the western world, and has a marked impact on our 
perceptions and on harmony. 

Just a few remarks. 

6.3.6.1. In Greece 

The musical system employed by the Ancient Greeks is extremely complex. The 
Pythagorean scale is purely theoretical, and as no man is a prophet in his own land, 
the Greeks did not use that scale wholesale in their own musical practices. In fact, 
the scales used are extrapolated from Aristoxenus’ scale. 
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6.3.6.2. In China 

In China, the idea of a scale had already existed for several centuries before 
Pythagoras, and was viewed as symbolic and magical in origin. The ordering of the 
scale is identical to the Pythagorean scale, and it too is constructed by calculation. 
This scale is organized in relation to the origin degree and the reference to the tonic is 
significant. The first four steps in this scale sound like an anhemitonic pentatonic system 
(that is to say, one which contains no semitones – for instance, starting at do, the scale 
would go do ré mi so la). Additionally, these are the only degrees actually used by the 
Chinese; the pentatonic scale is generated from any one of the five degrees. In China, 
this model is theoretical and practical, and it is still in use for traditional music. 

These remarks and this recurrence represents a veritable archetype in music, 
omnipresent in almost all musical traditions the world over, and shows that the vast 
majority of scales are generated in the same way. 

6.4. Major diatonic scale 

The so-called “major” scale use a particular set of seven notes out of the 12 
created earlier (in fact, a particular distribution of frequencies in the reference 
octave).  

For example, if we take, as a base note – or reference note, or indeed “tonic” 
note – the note known as “do”, and select the seven notes already mentioned 
frequently – “do, ré, mi, fa, so, la and ti”, in the octave, we define what it is helpful 
to call the major scale “ of do” or indeed the “do major scale”:  

–reference octave: 

…la  ti      do  ré  mi  fa  so  la  ti       do ré…  

– or the English version: 

  A  B       C   D  E    F   G   A   B        C  D 

The do, called the “tonic”, represents the tone in which the piece is played, so we 
have the “C major“ or “C maj” scale.  

6.4.1. Intervals present in a major scale 

Let us now examine the different intervals present in this particular range of the 
octave from do to do, and which constitute the organization/architecture of any so-
called  “major” scale – see Table 6.4.  
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  Total scale = 6 tones        

Do 1 }  1 tone  }  tetrachord = 2½ tones  

Ré 2 }  1 tone 

Mi 3 }  ½ tone 

Fa 4 }  1 tone separation of tetrachords interval from 4 to  
7 = tritone (3 tones)  So 5 }  1 tone }  tetrachord = 2½ tones 

La 6 }  1tone 

Ti 7 }  ½ tone 

Do 8    

Table 6.4. Positioning of tetrachords in a major scale 

6.5. The other major scales 

Using the same architecture of tones and semitones, we can construct any major 
scale in any key. 

A classic construction is to work with close tonalities, which are, as it happens, 
harmonics (3rd-order), forcing those which are a fifth above or a fifth below.  

The specific quality of this well-known construct, called the “circle of fifths”, 
progressively displays, in turn: 

– either all the sharps in ascending-fifth generation; 

– or all the flats in descending-fifth generation. 

6.6. Scales and chromatic scales 

In structural terms, the 7-note diatonic scale has a slight limitation: it is 
impossible to transpose! Indeed, if we simply transpose this scale by, say, increasing 
each note by a semitone, those notes would not all fall (even approximately) onto 
existing notes in the original scale. The mi would be transposed to the fa, and the ti to 
the do, but the rest would fall “between two notes”. The solution to this problem is to 
add a note into each whole-tone  interval (there are five of them), to divide/split it into 
two semitones. This then enables us to combine, mix and alternate natural tones and 
semitones, and this new scale then uses steps of a semitone (or, if we so desire, a 
quarter tone, etc.) and gives different colors to the soundscape – hence the name 
“chromatic”. This is the proposal of the chromatic scale which we shall envisage, and 
is made up of 7 + 5 = 12 notes. 
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6.6.2.1. Ascending chromatic scale 

To construct the ascending chromatic scale, we continue with our mathematical 
series of the Pythagorean scale, and we can see that the next time we “almost close 
the loop” (i.e. almost get back to a frequency whose value is 1), when the exponent 
k = 12. The frequency of the note, then, is 1.0136 (see Table 6.2). 

The five additional notes obtained will be notes altered to the #, and the set of the 
12 notes gives a chromatic scale, called ascending because it is based on ascending fifths. 
It should be noted that the fraction 729/512 eliminated a little earlier in the diatonic 
scale reappears, becoming the fa#. 

6.6.2.2. Descending chromatic scale  

In just the same way as we calculated our ascending scale on the basis of ascen-
ding fifths, we could apply the same principles with descending fifths, i.e. by 
looking for the preceding fifths, little by little, instead of taking the next fifths. 

To do this, we need to divide (instead of multiplying) by 3/2, which is equivalent 
to multiplying by 2/3. The series will be as follows: 2/3; 4/9; 8/27; 16/81, up to 
4096/531,441 on the 12th iteration. This series must then be normalized to bring all 
the values back in to the interval [1;2]. 

Thus, we obtain a different chromatic scale known as descending, because it is 
based on descending fifths. The notes thus formed correspond to the flats. 

6.6.2.3. 25-note chromatic scale 

Figure 6.8 gives a view of the conclusions of the previous sections with 
ascending and descending chromatic scales. 

 
In the case of an octave from do to do, the rules placed underneath the clef indicate the 
distribution of the semitones in the ascending and descending chromatic scales 

Figure 6.8. Ascending and descending chromatic scales 
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The combination and juxtaposition of these two ascending and descending 
chromatic scales as described above gives a scale with a total of 25 notes distributed 
as follows. 

 

Figure 6.9. Result: a 25-note scale! 

25 notes per octave, though, is far too many – if only because a fixed-note 
instrument such as the piano or flute would be too complicated to manufacture and 
play! Thus, noting that, when we take them two by two, they have fairly similar 
values, we can then decide to choose between them and thus reduce the scale to 
12 notes. 

6.6.2.4. 12-note chromatic scale 

The 12-note chromatic scale said to have “equal temperament” is a conventional 
simplification of the (western) musical scale consisting – in the case of very close but 
different notes (theoretically separated by a comma, as discussed above) – of 
keeping only one out of every two notes for reasons of ease.  

6.6.2.4.1. Equal temperament 

Equal temperament consists of dividing the octave into 12 exactly equal 
semitone (also see the tempered scale, discussed a little later on). Thus, in this system, 
the value of the semitone is 4.416 commas – instead of 4 for the diatonic semitone, 
and 5 for the chromatic semitone – and the tone is 8.833 commas – instead of 9. Thus, 
by principle, all the notes are false except one – the starting point for the chord, 
generally la – but the ear, which is culturally used to that type of chord, tolerates the equal 
temperament scale as though it were a perfect scale! In summary, equal temperament 
is a compromise between, firstly, the auditory/physical/physiological/ educational/ 
cerebral requirements, and secondly, the practical and mechanical needs of certain 
instruments. 

Why, then, is this last true? In the original mode of generation of the chromatic 
scale, between do and ré were two intermediary notes: a ré♭, and, a comma higher, a 
do# or indeed another example, a fa and (a comma higher) a mi#. On an instrument 
which is built to respect a tempered system (see next section), in that interval from 
do to ré, we find only one intermediary note (ré♭, do# or indeed another height, 
which become enharmonic notes, or indeed, synonymous notes). This saving (one  
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note out of two) allows the development of instrumental technique and virtuosity, 
particularly in regard to instruments with a keyboard or keys – saxophones, 
clarinets, etc. The advantage of equal temperament is that, not content with saving 
one out of every two notes on the instrument in question, it also enables us to play 
all the possible alterations – as far as double sharps and double flats – without having 
to modify the instrument’s tuning. With this system, it becomes possible to modulate 
or transpose a melody into any of the twelve tonalities in the chromatic scale. 

The usual choice of alterations of the 12-note Pythagorean scale, also called the 
natural scale, and used from Antiquity to the 16th Century, is as follows: 

do; do#; ré; mi♭; mi; fa; fa#; so; so#; la; ti♭; ti 

Unfortunately, though, as indicated earlier (see Figure 6.10), in this chromatic 
scale with 12 notes, we can see that there are two semitone values: the first 256/243 
= 1.05349 and the second 2187/2048 = 1.06787! 

 

Figure 6.10. Pythagorean scale with  
12 notes and corresponding gaps 

A few small additions 

1) The musical instruments affected by temperament are: 

– fixed-sound instruments, also known as tempered instruments: 

- examples: keyboard instruments (piano, organ, harpsichord, harmonium, accordion, 
celesta, etc.); certain stringed instruments (guitar, mandolin, lute, harp, viol, etc.); wind 
instruments with keys or pistons (trumpet, tuba, clarinet, oboe, etc.); 

– the other instruments are called natural instruments: 

- examples: voice, certain fretless stringed instruments played with a bow (violin, 
viola, cello, etc.), certain wind instruments (Breton bagpipes, bombard, slide trombone, 
etc.). 

2) When tempered instruments play with natural instruments, it is very often the 
temperament system which wins the day: by instinct, the violinist will tune his/her 
instrument to the piano, and therefore will play in tempered mode. However, from 
the standpoint of the notation of sheet music, we continue to respect the  
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representation of a note, and take care not to confuse the nomenclature of the 
enharmonic notes. For example, do# and ré♭ may well have the same height on a 
fixed-sound instrument, but it is important to carefully differentiate them, because 
they do not have the same function. 

3) From the theoretical point of view, as we saw in the previous chapter, it is the 
Pythagorean system of note generation, divided into 53 Holdrian commas, which 
must be used as the “reference scale”, because it at once justifies both the theory of 
alterations and the creation of tonalities. 

To do this, we remove the altered notes near to the natural notes, and keep only 
one alteration in each tone interval 

4) Wolf fifth. In the 12-note Pythagorean-based chromatic scale, it is the fifth 
so#/mi♭ which proved false, due to the relatively arbitrary simplifications when going 
from 25 to 12 notes. Other choices could have rendered that fifth just, but this would 
simply have shifted the problem, because then another fifth would have been wrong. 

6.7. Tempered scale 

Dating from the 17th Century, the so-called tempered scale strikes a delicate 
balance between the above two systems of scale generation, with all the remarks 
made above, and enables us to treat the sharps and flats equally, obtained in the two 
ways mentioned above.  

6.7.1. Principle of the tempered scale 

In the tempered scale, the 12 intervals (like the first two) between the notes 
obtained and used become regular and equal to 21/12 (via their logarithms) and can be 
used to easily play in any tonality/key (transposition). 

6.7.1.1. Intervals in the tempered scale 

In relation to the tonic of do, the intervals thus become: 

 do #/♭ ré #/♭ mi fa #/♭ so #/♭ la #/♭ ti do  

Scale              Appellation 

Tempered 1 21/12 22/12 23/12 24/12 25/12 26/12 27/12 28/12 29/12 210//12 211/12 2 Tempered 

Table 6.5. Intervals in relation to the tonic 
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6.7.2. Comparisons between physical, Pythagorean and tempered scales 

6.7.2.1. In heights  

The table of frequencies of notes (Table 6.6) indicates a correspondence between 
the harmonic frequencies of a note and the notes which accord “harmoniously” or 
indeed “harmonically” with the fundamental. We know, for example, that for the 
note do, the notes constituting natural intervals with it are mi (the third), so (the 
fifth), ti♭ (the seventh), do (the octave) and ré (the ninth), etc. 

Hence, in this figure, for do at 32.7 Hz, written as do-1, the natural harmonics are 
given by the frequencies that are multiples of the fundamental.  

The last values calculated in Table 6.6 are imaged on a range for the harmonic 
notes with do1 (see Figure 6.11). The small arrows (increasing or decreasing) and the 
numbers (in cents) indicated the height gap between each of the first 16 harmonics and 
the closest note in the tempered scale. Considering that the semitone (of equal 
temperament) measures 100 cents, the 49-cent deviation from the harmonic 11 is almost 
halfway between two existing notes, meaning a quarter tone. 

Rank of  the 
harmonic 1 2 3 4 5 6 7 8 9 10 11 12 

Frequency (Hz) 32.7 65.4 98.1 130.8 163.5 196.2 228.9 261.6 294.3 327 359.7 392.4 

Nearest note in the 
scale do-1 do1 so1 do2 mi2 so2 tib2 do3 ré3 mi3 fa#3 so3 

Interval with the 
fundamental (in 
cents) 

0 1200 1902 2400 2786 3102 3369 3600 3804 3986 4151 4302 

Gap between the 
physical note and 
the note of the 
same name in the  
tempered scale (in 
cents) 

0 0 +2 0 – 14 +2 – 31 0 +4 -14 – 49 +2 

Note: The 7th and 11th harmonics came into use later on in the history of western music. 

Table 6.6. Gaps in cents between physical notes  
and tempered notes of the same name 
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Figure 6.11. Image of the values in Table 6.6 across a range 

The gaps of the harmonics with the notes in the tempered scaleare specific to the 
rank of the harmonic and are found no matter what the fundamental note. 

6.7.2.2. In intervals 

Table 6.7 indicates the intervals (ratio between two heights, two degrees) in 
relation to the tonic do in the case of the three main scales: physical, Pythagorean and 
tempered. 

 do ré mi fa so la ti do  

Scale         Appellation 
Natural 1 9/8 5/4 21/16 3/2 13/8 15/8 2 Harmonic 

Pythagorean 1 9/8 81/64 4/3 3/2 27/16 243/128 2 Melodic 

Tempered 1 2 2/12 2 4/12 2 5/12 2 7/12 2 9/12 2 11/12 2 Tempered 

Table 6.7. Intervals in relation to the tonic in the three  
main scales: physical, Pythagorean and tempered 

NOTE.– Note that in principle, a piano tuned to the tempered scale and a wind 
instrument (on which certain high notes are physically/mechanically produced only as 
harmonics of lower notes) can never be totally tuned. In fact, the possibility of 
modifying the height of the notes on those two instruments – playing firstly on the 
fingering or the airflow for the wind instrument, and secondly on the duration and 
intensity of the sound for the piano – and the ear’s tolerance mean that this 
harmonic/melodic disagreement remains more theoretical than a practical reality. 

In addition, unlike generally accepted ideas, very often, a modern piano is not 
strictly tuned to the tempered scale. Its tuning is generally achieved by striking a 
delicate compromise between the different scales mentioned above. In addition, in the 
extremes of the register, the octaves are “stretched” in relation to the “physically just” 
octaves of ratio 2, to compensate for the bias of our auditory apparatus. 
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6.8. Other scales 

There are many other scales, because we can construct an infinite number of other 
types of scales, as there are so many possible combinations. For example, we could 
cite: 

– “western” scales made up of 12 semitones, spaced more or less logarithmically 
– those of Aristoxenus, Zarlin, Mercator-Holder or Delezenne, etc.;  

– pentatonic scales (containing 5 notes), which are the bases for Far Eastern 
music (Chinese as well with 7 equal intervals), but which are also found in Celtic 
music or the music of Native Americans; 

– scales based on linear, non-logarithmic scales (but this is fairly exceptional) in 
the music of Peruvian Indians; 

– Arab and Indian music is built with intervals of around ¼ of a tone but which 
are not completely equal; 

– modern jazz, scales where more exotic scales (blues, bebop, fourth chords) are 
constantly used; however, the diversity of the types of chords available, if only with the 
major (or minor) scale explains why harmonic rules are limited to these scales; scales 
having a natural origin (the series of fifths), therefore, are relatively well suited to 
carry harmony. 

Let us begin the long litany of other scales! 

6.9. Pentatonic scale 

The word “pentatonic” comes from the Greek penta, meaning five, and tonic, 
which means note. Thus, the pentatonic scale is a scale when contains five 
notes/sounds spaced either a tone or 1½ tones apart.  

NOTE.– The name “pentatonic scale”  is often considered a misuse of language due 
to a poor translation from German, der Ton, which means both tone and sound. 
Penta-ton therefore means five tones or five sounds. The exact translation would be 
pentaphonic, corresponding to a scale of five sounds, rather than pentatonic, which 
implies a scale of five tones. 

6.9.1. A little history, which will prove important later on 

Many ancient civilizations divided the octave into five equal intervals (here we 
are again: first-fifth intervals – see Figure 6.12), giving five degrees, or else divided 
the octave into six intervals, giving six degrees, only five of which would have been 
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used. Hence, the “pentatonic” scale could not precisely be superimposed on a scale 
taking five sounds in our western scale, whether using the unequal temperament of 
the “ancients” or the equal temperament used nowadays. Certain notes are almost a 
quarter tone away from the corresponding ones in the sister scale. 

 

Figure 6.12. Example of a pentatonic scale 

Under the influence of the Spaniards, South American instrument manufacturers 
had adopted a sort of “ill-fitting system”, which enabled them to play their 
traditional music “a little wrongly” and, at the same time, to play melodies written in 
the western scale. 

6.9.2. Theory 

A pentatonic system is a musical scale made up of five different heights of 
sound. Generally, the word is used in a more restricted sense, to speak of a certain 
type of scale, known as the anhemitonic pentatonic, which contains no semitonic 
intervals  (from the Greek (an-), meaning none, and (hemi-), half, to denote the 
semitone) – for example, a scale formed of the notes produced only by the black keys 
on the piano – see Figure 6.13, the framework for which is given in Table 6.8. 

 

Figure 6.13. Another example of a pentatonic scale 

  #  #  #   #  #   #  

mi fa  so  la  ti do  ré  mi fa  so 
  1 1 1.5 1 1.5   

Table 6.8. Arrangement of tones and semitones 
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A great many musical styles the world over have used or do use this type of 
pentatonic scale:  

– blues and its derivatives (such as rock n’ roll); 

– certain forms of Berber and Hungarian music; 

– oriental music, including Chinese, Vietnamese and Japanese; 

– Ethiopian, Javanese, Nubian, Tibetan and Mongolian music. 

6.9.2.1. Pycnons (quarter-steps) 

Let us take the example of a pentatonic scale starting at so (so - la - ti - ré - mi – 
see Figure 6.14). 

 

Figure 6.14. Example of pycnons 

The so-la-ti part of the scale is of particular importance: 

– it is separated from the rest, on both sides, by the largest interval in the scale 
(mi-so = ti-ré = 1½ tones); 

– it is the only series of intervals which appears only once (whereas ré-mi-so = 
la-ti-ré; mi-so-la = ti-ré-mi, etc.). Thus, for a listener, it is the main point of 
reference within that scale. 

A Romanian ethno-musicologist, Constantin Brăiloiu, proposed calling this so-la-ti 
section of the scale a pycnon (from the Greek, pucnos, meaning tight; strong). 

Thus, it is with the pycnon that we begin the numbering of the degrees of this 
scale, as indicated in the figure. This means that we can describe a melody by says 
that it is in mode 1, 2, etc., which essentially means that its lowest note is 1, 2, etc. 

6.9.2.2. Pyens 

Similarly, in that same pentatonic scale, the intervals separating the pycnon from 
the rest (mi-so and ti-ré) sometimes include “secondary and fluctuating” sounds, 
which are nevertheless inherent to the system. Brăiloiu calls these sounds pyens 
(etymology drawn from Chinese musical theory – we travel the world and the seven 
seas in the quest for musical knowledge!). 
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Figure 6.16. Major pentatonic scale of do 

Thus, this scale includes the following intervals, counted from the tonic note: 
second - major third - fifth - major sixth. By way of example (see Table 6.9), here is 
a representation of the intervals that make up the “major pentatonic” scale of do. 

do penta 
major 

 #  #   #  #  #   # 

do  ré  mi fa  so  la  ti do  
1 1 1.5 1 1.5   

Table 6.9. Intervals in the major pentatonic scale of do 

We call this the “major pentatonic” scale because: 

– pentatonic because the fa and the ti are lacking from our example, to obtain the 
pentatonic scale of do; 

– major because the first third that the scale contains is major (in our example, the 
mi, the third note in the scale), meaning there is an interval of 2 tones between the tonic 
(do) and the third (mi).  

Thus, the two scales – the conventional major and the major pentatonic – are 
extremely closely linked. If you are improvising over a piece in a major key, you 
can be sure that it is the major pentatonic scale that you hear in the background. 

6.9.3.1.2. Example 2: major pentatonic scale of la 

For reference, below are the intervals which make up the major pentatonic scale 
of la (the scale widely used by rock guitarists par excellence). “Rock” much more 
frequently uses this scale than the major pentatonic scale of do. We shall see later on 
that simply by adding a single note to it, we are able to create bluesy sounds. 

la 
penta 
major 

 #  #   #  #   #  #  # 

so  la  ti do  ré  mi fa  so  la  
  1 1 1.5 1 1.5   

Table 6.10. Intervals in the major pentatonic scale of la 
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6.9.3.2. Minor pentatonic scale  

The minor pentatonic scale is also composed of 5 notes, and runs tonic - minor third 
- fourth - fifth - minor seventh. 

6.9.3.2.1. Example 1: minor pentatonic scale of do 

The minor pentatonic scale of do is composed of 5 notes, and it is constructed as 
follows:  

C minor = do, ré, mi♭, fa, so, la, ti♭ 

We take the notes 1, 3♭, 4, 5, 7♭ from the C minor,  scale, which gives: 

– minor pentatonic scale–  = do, mi♭, fa, so, ti♭: 

- fundamental - minor third  = 1½ tones  (do-mi♭) 

- minor third- - fourth   = 1 tone    (mi♭-fa) 

- fourth - fifth    = 1 tone    (fa-so) 

- fifth - minor seventh  = 1 tone and demi  (so-ti♭) 

- minor seventh - octave   = 1 tone    (ti♭-do) 

This is a minor scale because the first third that it contains is a minor third 
(minor third = 3 semitones = 1½ tones). It is, indeed, constructed differently: it does 
not use the same intervals.  

As an example, see below for the minor pentatonic scale of do. 

do 
min. 
penta. 

 #/♭  #/♭   #/♭  #/♭  #/♭   #/♭ 

do  ré  mi fa  so  la  ti do  
1.5 1 1 1.5 1   

Table 6.11. Intervals in the minor pentatonic scale of do 

6.9.3.2.2. Example 2: minor pentatonic scale of la 

There are numerous variants of the major and minor pentatonic scales. However, 
the pure minor pentatonic is more widely used than the rest. It is very frequently 
employed in most music – particularly in rock and blues. Guitarists often speak simply 
of “the pentatonic scale”, meaning the minor pentatonic. 
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It is worth noting that the minor pentatonic scales of Mi (E) and La (A) are 
particularly easy to play on a guitar, as many of the notes they contain can be played 
on the open strings (i.e. with no fingers pressing down), tuned to mi (E), la (A), ré (D), 
so (G), ti (B) and mi (e). The movable shapes/patterns which guitarists employ when 
playing a melody line or forming so-called “barre” chords are based on these two 
scales. 

The la minor pentatonic scale includes the following notes and intervals. 

La 
penta 
min 

 #/♭  #/♭   #/♭  #/♭   #/♭  #/♭  #/♭  
so  la  ti do  ré  mi fa  so  la  ti 
  1.5 1   1 1.5 1    

Table 6.12. Intervals in the minor pentatonic scale of la 

6.9.4. Relations between major and minor pentatonic scales 

Let us briefly run a comparison and examine the ways in which the major 
pentatonic scale of do and the minor pentatonic of la correspond. 

1) The major pentatonic scale of do is made up of 5 notes: do, ré, mi, so, la. 

The minor pentatonic scale of la is also composed of 5 notes: la, do, ré, mi, so. 

Thus, we see that the notes la, do, ré, mi, so in the pentatonic major of do are 
exactly the same as those in the minor pentatonic scale of la.  

2) In addition, if we compare the scale of intervals in the major pentatonic with that 
of the minor pentatonic (Table 6.13), we see that the intervals in the minor pentatonic 
scale are the same as those in the major pentatonic scale, but with a small shift. 

la 
penta 
minor 

 #/♭   #/♭  #/♭   #/♭  #/♭  #/♭   
la  ti do  ré  mi fa  so  la  ti do 

1.5 1 1 1.5 1     
 
do 
penta 
major 

 #/♭   #/♭  #/♭   #/♭  #/♭  #/♭   
la  ti do  ré  mi fa  so  la  ti do 
   1 1 1.5 1 1.5  

Table 6.13. Comparison of the intervals in the  
minor la and major do pentatonic scales 

Conclusion: the major pentatonic scale = the minor pentatonic scale, situated 1½ 
tones higher! 
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In the second case, do and fa are considered to be secondary (pyens), and 
therefore do not belong to the actual structure of the melody. Thus, there are 
melodies which use more than five sounds, but are nonetheless “pentatonic”. On the 
other hand, certain scales using five sounds, but which do not adhere to the principle 
of functional indifference, do not fit in to the “pentatonic system”. 

These principles apply in many different cultures. This system is found notably in 
China, Africa and Eastern Europe. However, it has not been proven that these similarities 
in the organization and use of the heights do indeed stem from the same mental or 
cultural “system”. In other words, whilst, from a descriptive point of view, Brăiloiu’s 
theory is applicable to a great many types of music, it is not certain that the pentatonic 
system is meaningful beyond a theoretical sense. 

6.10. “Blues” scale 

Note also that the minor pentatonic scale is a scale which can be enriched, to 
give the blues scale or the mixo-blues scale. We merely need to add a single note – 
the famous blue note – which forms an augmented fourth with the tonic (so♭ for the 
key of do) to obtain the “blues scale”. 

A blues scale, therefore, is a derivative of the minor pentatonic scale, but therefore 
includes six sounds. In fact, it is a minor pentatonic scale, enriched with a blue note. 

EXAMPLE.– do, mi♭, fa, fa# (blue note), so, ti♭, (do) 

do  
“blues” 
scale 

 #/♭  #/♭   #/♭  #/♭  #/♭   #/♭ 

do  ré  mi fa  so  la  ti do  
1.5 1 0.5 0.5 1.5 1   

– fundamental - minor third = 1½ tones (do-mi♭) 
– third minor - fourth  = 1 tone (mi♭-fa) 
– fourth - augmented fourth = 1 semitone (fa-fa#) 
– augmented fourth - fifth = 1 semitone (fa#-so) 
– fifth - minor seventh = 1½ tones (so-ti♭) 
– minor seventh - octave = 1 tone (ti♭-do) 

Table 6.14. Intervals in the blues scale 

The minor third in the blues scale (mi♭ in the previous example) is also 
considered to be a blue note. Indeed, often, it creates dissonance with the major third 
in the seventh chords which make up the blues grid. This dissonance is one of the 
characteristics of blues style. 
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6.11. Altered scale and jazz scale 

In its most widely accepted sense, the term “altered scale” denotes  a scale in 
which certain notes have been subjected to alterations, which is the case for the “jazz 
scale” – a scale including alterations whose role is to accentuate (by certain 
dissonances) the phenomenon of “tension” which is the diatonic function of the 
fifth-degree,  chord known as the “dominant fifth”. 

Let us look at an example. The notes in the “natural” minor scale in C (do) are: 
C D E♭ F G A B♭. However, jazz more usually uses the “ascending melodic minor scale” 
(or jazz minor scale), also in C: C D E♭ F G A B, which is closer to the major scale. 
Thus, this scale too includes seven notes (it is a heptatonic scale). We shall show in the 
next chapter that the altered scale is built on the seventh mode of the ascending melodic 
minor scale. In reference to the relevant mode of the 7th degree of the major scale, 
called the “Locrian” mode, the altered scale is sometimes denoted by the expression 
“super Locrian” mode, and in jazz, it is commonly called the “melodic minor” scale.  

EXAMPLE.– The ascending melodic minor scale of do = do, ré, mi♭, fa, so, la, ti. 

The 7th mode of the ascending melodic minor scale of do therefore is the altered 
scale of ti: 

– thus, we have the altered scale of ti = ti, do, ré, mi♭, fa, so, la; 

– or else, transposed into do, we have do, ré♭, ré#, mi, fa#, so#, ti♭; 

where the altered notes (which do not belong to the referential key) are: ré♭, ré#, mi, 
fa# and ti♭.  

These (altered notes or) alterations are respectively denoted by the interval which 
separates each of them from the fundamental of the dominant chord:  

– tonic; 

– minor ninth (b9); 

– augmented ninth (#9); 

– major third; 

– augmented fourth (#4); 

– augmented fifth (#5 or 5+) or minor thirteenth (b13), the double of ti; 

– minor seventh. 
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do  
altered 
jazz 

 #/♭  #/♭   #/♭  #/♭  #/♭   #/♭ 

do  ré  mi fa  so  la  ti do  
0.5 1 0.5 1 1 1 1   

Table 6.15. Intervals of the altered or jazz scale 

NOTE.– The scales most commonly used by jazz musicians are major scales, 
ascending melodic minors, harmonic minors, the  “blues” scale, diminished scales, 
pentatonic scales, and whole-tone scales or even more exotic scales (bebop and 
fourth chords). However, as we shall show in the coming chapters, the diversity of 
types of chords available, only with the major scale or the minor, explains why the 
harmonic rules are limited to those scales which, having a natural origin (the series 
of fifths), are therefore relatively legitimate to carry harmony. 

6.12 “Tone-tone” (whole-tone) scale 

Having defined 12 semitones, it is easy to create a tone-by-tone scale, also 
known as a whole-tone,  scale. That scale, therefore, contains six notes, and is what 
is known as a “hexatonic” scale, in which the six degrees are all spaced a whole tone 
apart. 

As all the degrees in this scale are spaced an equal distance apart, it does not 
have an identifiable tonic (it contains no fifths or perfect fourths), and of course, as 
these scales are absolutely symmetrical, it is possible to start them at whichever note 
we wish. 

Look at the following two scales as an example. 

EXAMPLE.– Whole-tone scale starting at do: do, ré, mi, fa#, so#, la#, (do). 

 

Figure 6.19. Whole-tone scale of do 

A whole-tone scale can run, amongst other things, from ré to ré, from fa# to fa# 
or from ti to ti. 
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EXAMPLE.– Whole-tone scale starting at ti: ti, ré♭, mi♭, fa, so, la, (ti). 

 

Figure 6.20. Whole-tone scale of ti 

6.13. Diminished scale or “semitone/tone” scale 

The diminished scale is made up of a succession of semitones and tones, which 
meaning that it total, it is composed of 8 notes, and by its principle, it is totally 
symmetrical. 

In this scenario, there can only be three different diminished scales. Indeed, 
continuing the progression of the first three examples below, we shall see that example 4 
is an exact replica (shifted by a minor third) of example 1. 

– Example 1:  do, ré♭, mi♭, mi, fa#, so, la, ti♭, (do) 

– Example 2:  do#, ré, mi, fa, so, la♭, ti♭, ti, (do#) 

– Example 3:  ré, mi♭, fa, fa#, so#, la, ti, do, (ré) 

– Example 4:  mi♭, mi, fa#, so, la, ti♭, do, ré♭, (mi♭) = Example 1 

6.14. In summary 

It is interesting and highly advisable to train oneself, at length, to play these different 
types of scales, to embed the melody lines of the scales in question into one’s ear 
(one’s memory, one’s brain of course). 

We have taken the time to detail all these things during this chapter, because the 
fundaments of harmony presented in Parts 3 and 4 are based on the concepts of major, 
minor, tension, rest, third, fifth, seventh, etc. 

Below is a table recapping the different scales mentioned and presented in this 
chapter, which gives a visually striking view of the different structures of the scales 
and the positions of the intervals (tone/semitones) relative to each of them. It is these 
differences which create the different “humors” expressed by harmony. 
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6.15. Technical problems of scales 

There are scales and then there are scales! Consequently, choosing the right one 
presents a problem. 

 1 tone 1 tone ½
tone

1 tone 1 tone 1 tone ½  
tone 

 

 #/♭  #/♭   #/♭  #/♭  #/♭   
do  ré  mi fa  so  la  ti do 

Name of  
scale 

Number 
of  notes 

             

 
major 7              

 
ascending 
melodic 
minor 

7              

 
harmonic 

minor 
7              

 
diminished 

or 
“semitone, 

tone” 

8              

 
whole-tone 6              
 

major 
pentatonic 

5              

 
minor 

pentatonic 
5              

 
“blues” 6              

 
altered 
“jazz” 

7              

 
etc.               

Each horizontal space = ½ tone 

Table 6.16. Summary and comparison of the intervals for the various scales 
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6.15.1. Scale and transposition 

Depending on the type of method chosen for generating the notes (natural or 
Pythagorean), then, with the same names of notes, there will be scales which are slightly 
different because the distributions of the frequencies of the notes in the octave will 
be different. This means that depending on the scales obtained, the gaps between 
tones and semitones will be different (see Table 6.17).  

Below are the values of the frequency ratios in relation to the fundamental 
frequency of the do in the main scales we have mentioned. 

Scale do ré mi fa so la ti do 

Natural 1 9/8 5/4 21/16 3/2 13/8 15/8 2 

Pythagorean 1 9/8 81/64 4/3 3/2 27/16 243/128 ~2 or = 2 

Tempered 1 2 2/12 2 4/12 2 5/12 2 7/12 2 9/12 2 11/12 2 

Table 6.17. Gaps between tones and  
semitones depending on the scales 

This poses an important problem: the problem of “transposition”! “What is 
that?” we hear you cry. 

A series of musical sounds, constituting a melody, gives the ear the impression of an 
“air”. 

However, it is possible, by modifying the frequencies of the initial notes in the 
melody, to create a new series of frequencies given the ear the impression of hearing 
the same melody, the same air. If this is done, then we say we have successfully 
transposed the melody (the tone). 

This practice of transposition is very useful in terms of, say, accompaniments 
and “modulation” techniques which we shall see later on. 

To return to the concrete, the necessary and sufficient condition to correctly 
transpose a melody is to replace the initial series of notes making up that melody  
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with another series of notes whose frequencies are apparently “translated” 
frequentially (logarithmically), meaning that the new frequencies are proportional to the 
initial frequencies. 

 
Basic melody: note   1 2 3 4 5 6 ...
  
Frequencies of notes F1 F2 F3 F4 F5 F6 ...   
 
Transposed melody: note 1 2 3 4 5 6 ... 
 
Frequencies of notes nF1 nF2 nF3 nF4 nF5 nF6 .... 
 
whatever the value of the factor “n”. 
 

Figure 6.21. Principle of transposition 

Taking a random value for the factor “n” is a little simplistic. The ultimate goal 
is to choose a value of “n” such that one of the new values “nFx” is equal to one of 
the frequency values belonging to the original scale. Unfortunately, it is here that 
things can go wrong, depending on the mode of generation used for the initial scale.  

Indeed, let us look again, for a moment, at certain scales which we have already 
discussed. 

The important problem which arises is that of the “melodic content of the melody”  
when transposing into other tones, depending on the modes of creation of the scales. 
In order for the melody to be preserved after translation, all the intervals too must be 
maintained after “translation”, throughout the melody, but this would only be 
possible if the intervals are regularly distributed within the original scale (and 
therefore also in the new scale), and consequently, it would be difficult or impossible 
with certain scales and certain instruments which generate their scales in a particular 
way, so the easiest way to transpose is with a scale and tempered intervals! 

In conclusion, not all types of scales can be correctly transposed, and only the 
tempered scale allows the transposition of a melody with no problem, by the very 
principle of its generation.  
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Notes in the 
scale 

do ré mi fa so la ti do 

 
Tempered scale 
Interval in 
relation to the 
tonic 

1 22/12  

= 1.059 
…   …  211/12 2 

Successive 
intervals in 
savarts 

 50 50 25 50 50 50 25 

Tone = 50 savarts constant semitone = 25 savarts 

 
Ascending-fifth scale 

Interval in 
relation to the 
tonic 

1 9/8 81/64 4/3 3/2 27/16 243/128 2 

Successive 
intervals in 
savarts 

 51 51 23 51 51 51 23 

Tone = 51 
savarts 

Inconstant semitone  sometimes 51/2 = 25.5 savarts or sometimes = 23 
savarts  

 
(Physiological) or physical scale 

Interval in relation 
to the tonic 

1 9/8 5/4 4/3 3/2 5/3 15/8 2 

Successive 
intervals in savarts 

 51 46 28 51 46 51 28 

Major tone = 
51 savarts 

minor  tone = 46 savarts  
semitone = 28 savarts 

Table 6.18. Comparison between scales 

6.15.2. Alterations 

Here is one more technical point that must be made! Alterations – the sharp, the 
double sharp, the flat, the double flat, and the natural – are symbols which modify 
the pitch of the notes to which they are assigned.  
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Number of alterations 
on the clef 

Major key 
 

Natural minor key 

   

 descending fifth to fifth  

0 flats C A 

1 flat F D 

2 flats B♭ G 

3 flats E♭ C 

4 flats A♭ F 

5 flats E♭ B♭ 

6 flats G♭ E♭ 

7 flats C♭ A♭ 

   

 ascending fifth to fifth  

0 sharps C A 

1 sharp G E 

2 sharps D B 

3 sharps A F# 

4 sharps E C# 

5 sharps B G# 

6 sharps F# D# 

7 sharps C# A# 

Table 6.19. Summary of the keys as a  
function of the alterations present on the clef 

These alterations are of different types depending on the way in which the scales 
are created, by generations to the ascending fifth (sharps) or the descending fifth 
(flats). 

Table 6.19 is a classic overview of the keys in which we find ourselves 
depending on the number of alterations indicated on the clef. 
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Scales, Degrees and Modes 

7.1. Scales and degrees 

Once again, let us begin this chapter by presenting some vocabulary. 

Within an octave, in creating and naming notes (look again at the previous 
chapters), without explicitly setting out to do so, we have created what are known as 
“scales” of notes whose “degrees” (bars) are distributed at intervals – regular or 
otherwise. Of course, in principle, these scales are repeated from one octave to another. 
It is for this reason that generally, a scale is represented not in linear form, but in the form 
of a circle, to show that it has neither a beginning nor an end, and that every point on the 
scale, called a degree, is a potential starting point. 

For example, by a specific choice, when the octave is divided into 12 equal parts, 
then the circle can contain either. 

Having a number of degrees Name of scales Number of different possible scales 
2 Ditonics 6 
3 Tritonics 19 
4 Tetratonics 43 
5 Pentatonics 66 
6 Hexatonics 80 
7 Heptatonics 66 
8 Octatonics 43 
9 Nonatonics 19 
10 Decatonics 6 
11 Undecatonic 1 
12 chromatic 1 

Table 7.1. Names of the scales 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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7.2. Degree of a note in the scale 

Frequently, in order to facilitate scale-to-scale comparisons of the construction 
and to easily be able to conduct finer-grained harmonic analyses, we attribute each 
note an Arabic numeral representing its situation, and a Roman numeral to its 
“degree” in the scale in relation to the reference note in the reference scale.  

It is necessary to know the degrees of a scale to understand why certain chords 
are labeled as “2nd”, “5th” or “1st degree” chords. 

For example, in the case of heptatonic scales (containing 7 notes), the degrees in 
the scales of do, ti♭ and ré major are respectively indicated in Table 7.2. 

 Examples: scales of 

Degrees 
Notations 
of degrees 

Function/role Abbreviation 
do 

major 
ti♭ 

major
ré 

major 

1st degree I tonic T do ti♭ ré 

2th degree II   ré do mi 

3th degree III   mi ré fa# 

4th degree IV sub-dominant SD fa mi♭ so 

5th degree V dominant D so fa la 

6th degree VI   la so ti 

7th degree VII sensible S ti la do# 

Table 7.2. Degree of a note in a scale 

7.3. Interesting functions/roles of a few degrees of the scale 

In this scale (heptatonic, known as the “major” scale of “do”), with a special 
construction, each degree plays a role, a particular sonic function which depends on 
its place in relation to the first, and has a very specific name. The intuitive musical 
appellations of these four functions underlie the existing interdependence between 
those degrees, more specifically between the first (tonic), the fourth (sub-dominant) 
and the fifth (dominant). Indeed, between these three degrees (“functions”), there are 
direct physical relations (look again at the earlier chapters) because in the case that 
we are now dealing with (“major” heptatonic):  

– the fifth degree (dominant) represents an interval of the “upper fifth” of the first 
degree (tonic), so an initial frequency relation of the ratio (3) × (1/2) = 3/2; 
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– the fourth degree (sub-dominant) represents an interval of an octave of the 
“lower fifth” of the first degree (tonic), so an initial frequency function of the ratio 
2 × (1/3) = 2/3. 

In other words, once again, whilst tending to resolve on its lower fifth, all of these 
wonderful tonics, dominants and sub-dominants tend to resolve one another 
mutually: 

upper so  →  do   dominant  → tonic 

do   →  lower fa  tonic     → sub-dominant 

Moral: the tonic is torn between its dominant and its sub-dominant, and 
therefore, the key of do major is not totally affirmed by this duality of resolution to 
the fifths. As we shall see later on:  

– as so tends to resolve to do...   are we operating in do major? 

– as do tends to resolve to fa...  are we operating in fa major? 

Up to this point, nothing could be less certain. It is here that the idea of what is 
perceptible to the human ear comes into play to differentiate the ex æquo and set the 
tone. 

7.4. Modes 

As stated at the very start of the previous chapter, the musical “modes” presented in 
this chapter are possible variations or paradigms of a given scale. As we saw, there are 
many different kinds of scales (majors, minors, pentatonics, tone-tone, etc.), and there 
will be just as many different modes! 

Unlike scales, which were represented in the form of circle, modes are 
represented on a straight line, because there is a clearly defined starting point on the 
scale, and thus, the scale engenders its own modes by the choice of a principal degree as 
the starting point. 

NOTE.– The scale can also be represented directly in note form without choosing a 
mode, but in that case, there will be no hierarchy between its notes.  

A mode has multiple peculiarities: 

– in relation to a primary degree, the mode can be defined a particular series of 
intervals (e.g. a tone and ½ a tone, or for instance, a tone and ¾ of a tone). For 
example, with a 12-degree chromatic scale, with each degree corresponding to a 
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semitone, so a total of 6 tones per octave, we could have either a mode which 
everyone knows well: T, T, ½T, T, T, T, ½T = 6T, or a different mode T, T, ¾T, 
¾T, T, ¾T, ¾T = 6T; 

– it is also possible to conceive of a series of numbered degrees; 

– it gives rise to specific scales by the concrete expression of its degrees as notes, 
because once it is defined, created and equipped with its series of intervals, to hear a 
mode, we must concretely render it material with notes (= frequencies measured in 
Hertz). For example, the scale of do major is one of the 12 possible scales in the 
chromatic scale generated by the Ionian mode. 

7.4.1. The numerous modes of a major scale 

Let us continue to use the conventional example of the “major scale of do”. Let us 
once again remind readers that this diatonic scale is constructed using seven distinct 
notes – do, ré, mi, fa, so, la and ti – repeated in that order, from one octave to the next.  

EXAMPLE.– 

do, ré, mi, fa, so, la, ti / do, ré, mi, fa, so, la, ti / do, ré, mi, fa, so, la, ti / do, 
ré, mi, fa, etc. 

With an illustration such as this, we have made quite a bit of progress! 

Indeed we have. In all this jumble, why should we consistently decide to start at 
a do and finish with another do in constructing a scale? Because that is the way in 
which scales are created? This is certainly a good reason, but in the wake of the creation 
of these same seven notes, we could, a priori, very easily decide to take ré, instead of 
the previous do, as the starting point – the tonic. We would still have used the same 
notes, in the same successive order, but starting at ré: ré, mi, fa, so, la, ti, do, ré! 
Were we to do that, the series of notes no longer has the same architecture at all in 
terms of the new distribution of the successions of the tone- and semitone intervals 
along the whole length of the new scale obtained, so this scale sounds totally 
different to that of do major (see Table 7.4, later on). 

Consequently, the new intervals linking each of the notes to the new tonic are 
different. 

This new architecture constitutes one of the “variations”, one of the new “modes” 
stemming from the major scale of do. When we play the succession of all the notes in a 
scale starting at any degree other than the first, this is called a “mode”. Starting at the 
do, as we have done conventionally for years on end, while you may not have 
known it, you were playing in the so-called “Ionian” do mode. Suddenly, this makes 
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easy work, does it not? We could do likewise, taking any note in the major scale of 
do as a starting point. 

As with this diatonic, scale, there are seven notes in the heptatonic scale, so we 
would have seven possible modes with the initial architecture of the existing intervals 
between notes in the do major scale, whose official names are detailed in Table 7.3. 

Starting at  Name of mode 

do we obtain a do  or C  Ionian  

ré  ré  or D  Dorian  

mi  mi  or E  Phrygian  

fa  fa  or F  Lydian  

so  so  or G  Mixolydian 

la  la  or A Aeolian  

ti  ti  or B  Locrian  

Table 7.3. The seven modes of the major scale of do 

Indeed, we can play different modes of the scale of do major, for example: 

– from ré to ré: ré, mi, fa, so, la, ti, do, ré (with no alteration), this new mode 
then takes the name “Dorian mode”; 

– from mi to mi: mi, fa, so, la, ti, do, ré, mi (with no alteration), and this becomes 
the “Phrygian mode”. Obviously, in view of the new distribution of tones and 
semitones, this scale from mi to mi corresponding to the Phrygian mode of the do 
major scale sounds very different to the scale of mi major! 

Thus, there are not the same alternances (tones and semitones) between the 
different degrees (the notes) in a major scale and one of the modes of that scale. 

Let us look at an example with a “major scale” of do” and a “Phrygian 
do” mode: 

– major scale: 1 tone - 1 tone – ½ tone - 1 tone - 1 tone - 1 tone - ½ tone; 

– Phrygian mode: ½ tone - 1 tone - 1 tone - 1 tone - ½ tone - 1 tone - 1 tone. 
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Regardless of the first note of the mode (a do, a ré, a mi or any other note), it is 
the successive gaps between the notes of the mode which determine the mode and 
set it apart from a major or minor scale. It is precisely this which creates the 
specificity of the mode. 

To understand this, we merely need to play a do major scale:  

do, ré, mi, fa, so, la, ti, do  

and then the Phrygian mode of the do major scale, transposed to do: 

do, ré♭, mi♭, fa, so, la♭, ti♭, do  

7.4.1.1. Practical work 

If this all sounds like Greek to you, take a moment with a piano to ascend and descend 
“Phrygian”-type scales by playing an ascending series of notes: mi, fa, so, la, ti, do, 
ré, mi, and the descending series – mi, ré, do ti, ...., mi. You will certainly be 
surprised by the experience, and your ears will work differently to the way in which 
they are used to working. 

If you dare, try to “soundly” comprehend the melodic aspects of these new 
scales/modes and sing one of them in the shower one morning, as you used to sing 
the classic scale do, ré, mi, fa, so, la, ti, do. You will soon realize how, for years, your 
brain has been shaped and molded in a particular environment. Succinctly put, this is no 
easy task, but a few mysteries of harmony are to be found behind some of these 
modes, notably in jazz music. 

Knowing the “classic” distribution of the intervals of the major scale of do, for 
each of the modes derived from that scale, it is easy to write new distributions of 
intervals depending on the types of modes. To do so, we merely need to shift by a peg 
(slide to the right) the succession of intervals – tone, tone, ½ tone, tone, tone, tone, 
½ tone (see Table 7.4).  

Obviously, all of this (which is undeniably true) is not very revealing, and if your 
heart so desires, in order to establish a comparison with a writing system that is 
closer to the one you are used to, you could transpose (to make it sound exactly the 
same!) the distribution of intervals present, for example, in the “Phrygian mi” mode, 
starting at “do” to obtain a “Phrygian do”. Of course, in order to respect the series of 
intervals present in the “Phrygian do” mode, we need to add a number of sharps or 
flats where necessary. In the present case, it is necessary to flatten two notes: the 3rd 
and 7th degrees. 
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Names of 
modes of 
the major 
scale of do 

Distributions of the intervals present in the  
different modes of the major scaleofdo 

do 
ré 

ré 
 mi 

mi 
fa 

fa 
so 

so 
la 

la 
ti 

ti 
do

do
ré 

ré 
mi 

mi 
fa 

fa 
so 

so 
la 

la 
ti 

ti 
do 

 1T 1T ½ T 1T 1T 1T ½ T 1T 1T ½ T 1T 1T 1T  

Ionian               
Dorian               
Phrygian                
Lydian               

Mixolydian               
Aeolian               
Locrian                

Table 7.4. Switching from one mode to another 

For the bold, Table 7.4 gives an overview of all possible transpositions of the 
different modes of the major scale of do, and Table 7.5 compares the transpositions 
between those modes. 

Comparison of the main modes of C (do) 

  1 2 3 4 5 6 7  

 name of 
mode 

 1T 1T ½ T 1T 1T 1T ½ T  

Reference Ionian C do ré mi fa so la ti major 

Structure 
of mode 
transposed 
to do 

Dorian C   b3    b7 minor 

Phrygian C  b2 b3   b6 b7 minor 

Lydian C    #4   b7 major 

Mixolydian C   b3   b6 b7 major 

Aeolien C  b2 b3  b5 b6 b7 minor 

Locrian C        altered 

Table 7.5. Comparison of the transpositions  
between the modes of the do major scale 
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We have come to a crucial point in this chapter. By melodic analysis of the 
modes thus constructed, we are able to see that in some of them, unlike what 
happens with Ionian major scale of “do” (C), the first third encountered becomes 
“minor” (one-and-a-half tones). Here is something new indeed: the appearance of 
so-called minor modes stemming from a major scale (represented in light grey)! 

7.4.2. The original minor modes and their derivatives 

We have now entered a completely new world. As Table 7.5 above shows, of the 
seven modes derived from the do major scale, four are minors: the Dorian, Phrygian, 
Aeolien and Locrian modes (in light grey in Table 7.5). 

Besides these four minor modes, and specifically the Aeolien mode, also known 
as the “natural minor” mode (commonly written as “- Nat”), other variants of minor 
modes have emerged. Indeed, this ancient mode has undergone a number of 
adaptations over time (appearance of an audible note, etc.) to become either: 

– the “Harmonic minor” mode, written as (-Harm.); 

– the “Melodic minor” mode, written as (-Mel.). 

Comparison of the main minor modes of C 

  do ré mi fa so la ti  

 
name of the 

mode 
 1T 1T ½ T 1T 1T 1T ½ T  

Reference Ionian C        major 

Structure 
of the 
mode 
transposed 
to do 

Aeolien C   b3   b6 b7 minor 

Nat min C   b3    b7 minor 

Harm min 
C 

  b3   b6  minor 

Mel min C   b3     minor 

Table 7.6. Comparison of the transpositions between the modes  
of the minor scale of do 

Today, as regards jazz pieces and variety, the harmonic minor mode of the do 
major scale is often used. 
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7.4.3. A few normal modes 

From the beginning, most of the modes used in jazz are derived primarily from 
two scales: the major scale and the melodic minor scale. These modes are, in a 
manner of speaking, “variations” of the major and melodic minor scales.  

7.4.3.1. Modes stemming from the major scale 

Examples given on the basis of the do major scale: 

– from do to do: Ionian mode (do major; scale) 

– from ré to ré: Dorian mode; 

– from mi to mi: Phrygian mode; 

– from fa to fa: Lydian mode; 

– from so to so: Mixolydian mode; 

– from la to la: Aeolian mode; 

– from ti to ti: Locrian mode. 

7.4.3.2. Modes stemming from the melodic minor scale 

Examples given on the basis of the melodic minor scale of do: 

– from do to do: minor-major mode (do melodic minor scale); 

– from ré to ré: Dorian mode b2; 

– from mi♭to mi♭: augmented Lydian mode; 

– from fa to fa: dominant Lydian mode (or b7); 

– from so to so: Mixolydian mode b6; 

– from la to la: Locrian mode #2; 

– from ti to ti: Altered mode. 

Each of these new scales (frequency distribution) – minors – of sounds can, 
themselves, be divided on the basis of their eigenmodes, notes after notes, as done 
just above. Readers can refer to all the highly specialized works whose results go 
beyond the scope of this book. 

 



PART 3  

Introduction to the  
Concept of Harmony: Chords



 

Introduction to Part 3 

Let us offer a few brief words of introduction to this third part of the book. 

We have already devoured parts 1 and 2. The aim in those parts was to recap and 
instill an understanding, in readers, of the origin of the generation of notes, intervals, 
the different scales and their properties and harmonic peculiarities in the physical, 
acoustic and physiological senses, and all the problems that go along with them. All 
these fundaments are necessary for the analysis or creation of a harmonic tapestry to 
accompany your favorite melodies. 

Now, dear reader, you are almost ready to examine and understand the first bases 
of harmony and the basics of how to construct an accompaniment to your favorite 
variety and jazz (“Real Book”, etc.) pieces, and to understand and construct 
harmonic series for yourself. 

As previously stated, the intention here is not to offer a masters-level course or 
treatise on harmony (the authors’ own knowledge falls short of the level required!), 
but instead to imbue you, the reader, with the taste for understanding, analyzing 
what is written to get to the very core of it! 

To forge the link between scales/modes and harmony, this short third part is 
fundamentally based on the detailed construction of chords. 

Harmony... Here we are at last! 
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Harmony 

When, in the previous chapters, we looked at the intervals between two notes, we 
saw that these intervals had certain peculiarities and created specific auditory 
sensations for our westernized ears, such as: 

– consonance; 

– dissonance; 

– resolution; 

– static and time-independent harmony; 

– harmony as a function of time and therefore as a function of the development 
of the melody line. 

We now return to these points in a little more detail in this very short linking 
chapter. 

8.1. Relations between frequencies 

The physiological sensations due to the auditory relations between frequencies 
played at the same time (two notes, three, four, five, six, and maybe more…!) are 
generally expressed by the terms: consonance, wellbeing, calm or harsh, 
unpleasantness, dissonance, etc. Harmony lies in satisfying this wellbeing, this joy 
of the auditory apparatus, including the brain! 

As is so often the case, this often boils down to finding a match between values 
of exact (pseudo) frequencies, so that they are: 

– whole-number harmonic frequencies 2, 3, 4, 5, or fractional ones: 3/2, 3/4, etc., 
favoring the mathematical harmonic relation (thanks to physics); 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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– in progressive multiplicative ratios (by fifths), so melodic, and so that the 
relations between frequencies are “pleasant” (thanks to Pythagoras).  

In short, these two matching criteria are similar but slightly different, and on 
paper, are antinomic, but often rendered compatible in practice and in use. 

8.2. How are we to define the concept of harmony? 

In addition, as we shall see later on, it is necessary for the harmony in its 
broadest sense to take account of the basic management of the three main 
parameters: extended frequencies, amplitudes of the sounds emitted and their 
evolutions over time where they are present, along with all the interdependencies 
between them. 

To summarize somewhat simplistically, but actually not too far from reality, we 
can break down the problem of harmony in line with the two axes of work which are 
present in a musical range. 

We find a vertical axis, with a high frequential tendency, pertaining to: 

– the pure content of the ensemble of frequencies heard at a given time (absolute 
and relative heights of the notes); 

– the spectral content (frequency spectrum, timbre) of the sound heard at any 
given time; 

– the harmonic content of the verticality of the chord (its frequency content of 
the third, fourth, fifth, seventh, etc.); 

– the position and relation of a chord in relation to the melody at a given 
moment, etc. 

We also find a horizontal axis, with a high temporal tendency, pertaining to: 

– the evolution of the melody line before and after the moment in question; 

– the temporal positions of the past-, present- and future chords; 

– the evolution/modulation of the volume/of sound spectrum and the temporal 
evolutions of the amplitudes of those frequencies – past, present and future. 

Finally, there is another axis including a large dose of fantasy, to break with all 
structure, avoid monotony, avoid stifling creativity, etc. Indeed, in spite of the 
“mathematical” and physical aspect emphasized since the very beginning of this 
book, at any and all times, a musician has the right to entertain the wildest of 
fantasies! 
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Chords 

In order to examine harmony, readers do not necessarily need to look at the 
chapter on chords! For instance, two different melody lines played simultaneously 
(or identical but with a time shift – a “canon”, for example) can sometimes be highly 
“harmonic”. It is clear that at a time “t”, two or three notes are played 
simultaneously and form a chord, whether they want to or not! At least three notes 
played simultaneously (at a given time) constitute a “chord” and a primary notion of 
“harmony”.  

In short, the frequency and time relations between the notes need to be studied.   

9.1. The different notations  

Before going any further, let us take a look at the mind-bending fundamental 
aspects: the different notations. It would have been too simple for everyone on the 
planet to employ the same notations to mean the same things! One can always 
dream… 

9.1.1. Convention of notations for notes 

As previously mentioned, the classic conventions of notations for notes in the 
scale, which we shall use in the following chapters are (often) based and written in 
English notation, which is more succinct and very widely used. 
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Table 9.1 summarizes the relations and equivalences between different terms. 

   Appellations of notes 

Names Names Written French English 

the first the fundamental Bottom Do C 

the second the second* 9        (7 + 2) Ré D 

the third the third 3 Mi E 

the fourth the fourth* 11      (7 + 4) Fa F 

the fifth the fifth 5 So G 

the sixth the sixth* 13      (7 + 6) La A 

the seventh the seventh 7 Ti B 

* The seconds, fourths and sixths are typically considered “indirect” in the constitution of major chords, 
which explains why their numbering is shifted by 7. 

Table 9.1. Example of the major scale ofdo/C 

9.2. Chords 

To form a chord, there are no strict rules. Chords are vertical, simultaneous 
agglomerations of notes which are traditionally derived from a subgroup of notes 
called a “scale” with or without alterations: 

– we can stack as many notes as we want to, one on top of the other; 

– we can separate the different notes in the chord by whatever intervals we want. 

Obviously, therefore, each chord thus constructed has:  

– a different architecture/nature/structure, etc.; 

– a particular sound sensation whose structure depends on: 

- the number of notes contained in the chord; 

- the absolute heights; 

- the relative heights of the notes, so the intervals between each note making 
up the chord; 

– consequently, a different sound quality, a different “color”. 

In regard to these formations (of notes) known as “chords”, we have given no 
subjective value for their sonorous harmonic qualities. Obviously, to our western 
ears, which have been steeped, for years, in a certain musical culture, some of these 
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chords “sound” good, others appear to be horrible aggregations of sounds (you may 
perfectly well lie your entire body across the keyboard of a piano to form a chord, but 
personally, I doubt the result will be “harmonic”, in any which way!). 

For western ears, certain chord structures are recognizable. Once we have 
recognized them, we can catalog them, classify them, codify them, etc. With no 
pretense at being exhaustive, which is not the point of this book, it is this which we 
shall now recap in a few words. 

Let us begin with the easiest of chords: firstly those which are made up of the 
simultaneous playing of three or four notes, and secondly those which are diatonics in 
the major scale. 

RECAP.– Diatonic notes are notes which belong (solely) to the scale in question. 

9.3. Diatonic chords 

Again, let us take the simplest of examples to make our point. 

For example, the diatonic chords in the major scale of do therefore are made up only 
of notes out of the seven notes of which the diatonic scale is intrinsically made up –
i.e. do, ré, mi, fa, so, la and ti (to do so, suppose for a moment that someone has stolen all 
of the black keys off your piano). Remember that each note corresponds to a degree, 
so we have seven degrees.  

Now that all these cumbersome black keys have (temporarily) been removed, 
running through the succession of notes in the above scale major degree by degree, and 
stacking up, by degrees, one note out of two, either in groups of three or in groups of 
four notes, we obtain series known as “diatonic chords”. 

For instance, on the keyboard of a piano, maintaining the same position, the 
same spacing of the fingers on the hand and shifting the hand to the right or the left, we 
obtain: 

– either chords formed of three notes which we call triads (see Table 9.2); 

– or chords formed of four notes que we call seventh chords (also see Table 9.2). 

In the same way as we number degrees and the position of the notes in a scale 
using “arabic numerals”, it was decided to number the different chords obtained 
above with “roman numerals” corresponding to the degree of the note to which the 
chord pertains. 
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Across the whole range of the C (do) major diatonic,  scale, Table 9.2 shows the 
correspondence between the chord and its melodic content. 

  Example in the scale of do – C  

N° of  
degree 

N° of chord content of the 3-note chord content of the 4-note 
chord 

1 I C E G  C E G B 

2 II D F A  D F A C 

3 III E G B  E G B D 

4 IV F A C  F A C E 

5 V G B D  G B D F 

6 VI A C E  A C E G 

7 VII B D F  B D F A 

Because there are only seven notes in the diatonic scale,and therefore seven degrees, 
there are initially only seven types of chords possible. 

Table 9.2. Correspondence between the name of  
the chord and its melodic content in the scale of do 

Now, let us examine the content of these chords in a little more detail.  

9.3.1. Diatonic chords with 3 notes: “triads”  

A three-note chord or triad is a chord formed of: 

– a fundamental; 

– a third, either minor (three semitones) or major (four semitones); 

– a fifth. 

In principle, these three notes also form a stack of thirds.  

NOTE.– Generally, a chord containing three notes – a “triad” – is considered to be a 
simplified derivative of a four-note chord known as a “seventh”  chord (see next 
section). 

Table 9.3 shows an example of the types of triads contained in three-note chords 
in the scale of do major. 
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Triads contained in the chord (three-note chord) 

degree 
n° 

mode 
n° 

degrees of 
the scale 
contained 

in the 
chord 

successive 
intervals 

contained in the 
two triads 

making up the 
chord 

type of first 
triad contained 

in the chord 

type of chord 
obtained 

1 I 1,  3,  5 M3 + m3 maj. triad maj. perfect chord 

2 II 2,  4,  6 m3 + M3 triad min. min. perfect chord 

3 III 3,  5,  7 m3 + M3 triad min. min. perfect chord 

4 IV 4,  6,  1 M3 + m3 maj. triad maj. perfect chord 

5 V 5,  7,  2 M3 + m3 maj. triad maj. perfect chord 

6 VI 6,  1,  3 m3 + M3 triad min. min. perfect chord 

7 VII 7,  2,  4 m3 + m3 triad dim. diminished chord 

Table 9.3. Example of triads contained in the chords  
with three notes in the scale of do major 

 

Figure 9.1. Representation in do major of the degrees on a scale 

9.3.2. 4-note diatonic chords known as “seventh” chords” 

A four-note chord or seventh chord is formed by superimposing a third on a 
three-note chord. The fourth note in that chord forms a seventh with the chord’s root 
note. 

When the seventh of a four-note chord forms a dissonance with its fundamental, 
the chord is part of “dissonant harmony” (see examples later on: I M7 and IV M7). 
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Example of the types of triads contained in four-note chords known as seventh 
chords in the scale of do major are given below. 

Triads contained in the 4-note so-called seventh chord 
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1 I 1,  3,  5   7 M3 + m3 + M3 maj. triad maj. seventh 

2 II 2,  4,  6   1 m3 + M3 + m3 triad min. min. seventh 

3 III 3,  5,  7   2 m3 + M3 + m3 triad min. min. seventh 

4 IV 4,  6,  1   3 M3 + m3 + M3 maj. triad maj. seventh 

5 V 5,  7,  2   4 M3 + m3 + m3 maj. triad dominant seventh 

6 VI 6,  1,  3   5 m3 + M3 + m3 triad min. min. seventh 

7 VII 7,  2,  4   6 m3 + m3 + M3 triad dim. diminished semi 

Table 9.4. Triads contained in the four-note chord known as a seventh  

 

Figure 9.2. Representation in do major of the degrees on a range 

REMARKS PERTAINING TO THE LAST TWO TABLES.– Typically, we count the intervals 
which are present in triads or four-note chords, not from note to note, but in relation 
to the fundamental. Also in view of the fact that the sum of the intervals (M3 + m3) 
or (m3 + M3) is equal to a “perfect fifth – P5”, we could write that the maj. triad is 
formed of a M3 and a P5. 

We have now listed the first “diatonic” chords formed, for example, simply by 
moving the same position of the hand on a piano keyboard. 
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9.4. “Fourth-based” chords 

We showed earlier that the basic notes that characterize a chord formed with 
triads and then “enhanced with the seventh” are, harmonically, to begin with the 
fundamental and its fifth, followed by the third, and finally, the seventh, which gives 
the chord its “color”. However, many musicians value a different harmonic approach 
to that of third chords (triads), which are too predictable, and prefer chords (created) by 
(intervals of) fourths. 

EXAMPLE.– A chord C F B instead of C E G B or C E♭ G B. 

Note that in this chord [C F B], which includes a fourth, F, the major or minor 
color has disappeared (there is no longer a major third, with E, or a minor third, with 
E♭), and that the natural fifth of the fundamental (G) is no longer played. 

The difficulty with these chords lies in the use of F in an Ionian major chord, 
although this note is that which sounds least good in the chord (because of the 
proximity of the B (ti) to the natural fifth of F (fa), which is the fundamental C (do)), 
which, in combination with the disappearance of the minor or major color, gives 
these chords a fuzzy, unstable nature. However, these chords are simply considered to 
be altered chords known as “suspended chords”, which are similar to normal triads 
(except for the fact that the third is replaced either by the major second “sus2”, or here 
by the fourth “sus4M”), and thus fit naturally into the logical harmonic of the 
descending chromaticism at the root of the sequences described in the next part of 
the book. 

As regards purely diatonic chords containing four notes, there are many, many 
others which can be constructed around stacks containing second, fourth, 
augmented, diminished intervals, etc. 

In short, it is up to you, the player, to decide on the combinations you wish to 
use. 

9.4.1. Convention of notations of the chords 

In general – but just in general! – the notations of chords are coded as follows. 

For instance, a “C minor seventh minor and diminished sixth” would be written 
as Cm7 13b: 

1) name of the fundamental; 

2) “m” if the first third of the chord is minor;  
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3) “M7” if the seventh is natural, and “7” if the seventh is minor; 

4) then, as needed, the name(s) of the altered degree(s) in order (often modulo 7). 

The degrees are noted as follows, for instance in the scale of C major: 

do ré mi fa so la Ti 
C D E F G A B 

1 2 3 4 5 6 7 
8 9 10 11 12 13 14 

However, for chords in which the fifth is replaced by the sixth, the term 6 is 
used. For example, in a C6 chord, the G of the fifth is replaced by the A of the sixth. 

ATTENTION.– Begging the pardon of purist, strict musicians (as we ourselves are… 
we can already hear their cries of protest!), for simple reasons of ease of writing and 
typography, all the chords presented in the rest of this book having alterations such as 
specific sharps or flats, depending on the scales in which they appear will be presented 
only as flats. For instance, an F# would be written as G♭.  

It is certainly true that we are supposed to use a flat or a sharp on the altered 
note. A G♭ shows that the G is altered, whilst an F# refers to an altered F. Yet, for 
the purpose of simplifying the typing, programming and editing of computer files, 
we have preferred to use only flats. We could have an F# with an F in a scale. This 
changes nothing in terms of the type of chord used.  

We thank readers for their understanding and indulgence!  

9.5. Chord notations  

NOTE.– For a color version of section 9.5, please see www.iste.co.uk/paret/ 
musical.zip. 

Table 9.5 shows chords with very special forms. Indeed, they are all made up of 
4 notes: their fundamental, their third, their fifth, possibly altered (augmented or 
diminished) in terms of minor thirds, seconds or fourths, and the seventh of the 
fundamental. 

With the same fundamental, depending on the specific alterations of the thirds, 
fifths and sevenths, we note the four-note chords thus obtained in the form 
[fundamental, third, fifth, seventh], which generally gives us 6 main families of 
chords. 
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With the fundamental C: 

Notation Chord known  
as 

Example

in C 
Chords are  
based on a Examples in C 

     linked to the scale 
of 

M major seventh/ 
natural CM major scale [C E G B] C D E F G A B 

7 minor seventh C7 seventh scale [C E G 
B♭] C D E F G A B♭ 

m7 minor seventh 
minor Cm7 natural minor scale

[C E♭ G 
B♭] C D E♭ F G A B♭ 

sus4M fourth Csus4M major scale  [C F G B] C D E F G A B 

9 13 second C9 13 major scale [C G D A] C D E F G A B 

Ø semi-diminished C Ø diminished scale 
[C E♭ G♭ 

B♭] C D E♭ F G♭ A B♭ 

Table 9.5. Chords of specific forms 

9.5.1. In the major scale 

In major scales, the chords are traditionally made up, by default, of two thirds 
(triads) or normally of four notes (sevenths). For example, the chord which is carried 
by the first note in the major scale of C is made up of the notes C, E, G and B – 
i.e. the four successive thirds in the scale. This chord, known as the “C major chord“ 
is also written as CM, CI or C1. It is associated with the first mode called mode 1 or 
Ionian mode (look again at the previous chapters). 

Still on the basis of the notes in the major scale of C (C, D, E, F, G, A, B), let us 
now turn to the construction of the chord on the basis of D. In the same manner, we 
obtain D F A C – i.e. a “D (ré) minor seventh“ chord, written as II because it is 
associated with mode 2 or Dorian mode. If we continue in this manner, from one 
degree to the next, always on the basis of the major scale, we obtain the link 
between the degrees of a major scale and the type of chord associated. 
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major scale example in C: C D E F G A B 
N° of Name of the content of the chord name of 

the chord 
degree mode mode chord in italics, the content and name of  

the chord expressed in relation to C  
1 I Ionian C1 C E G B D F A CM 
      1 3 5 7 9 11 13   
                      

2 II Dorian D2 D F A C E G B   
    C2 C E♭ G B♭ D F A Cm7 
                      

3 III Phrygian E3 E G B D F A C   
    C3 C E♭ G B♭ D♭ G A♭ Cm7 

9♭ 13♭ 
                      

4 IV Lydian F4 F A C E G B D   
    C4 C E G B D F# A CM 11#  
                      

5 V Mixolydian G5 G B D F A C E   
    C5 C E G B♭ D F A C7 
                      

6 VI Aeolien A6 A C E G B D F   
    C6 C E♭ G B♭ D F G♭ Cm7 13♭ 
                      

7 VII Locrian B7 B D F A C E G   
  semi 

diminished 
C7 C E♭ G♭ B♭ D♭ F A♭ CØ 

ultimately, for the major scale, 7 degrees which correspond to the 7 possible chords 

Table 9.6. Chords depending on the modes in the scale of do major 

tone  final 
chord 

C  D  E F  G  A  B C 
     

CM C1 CM              
D2 Dm7              
E3 Em7              
F4 FM7              
G5 G7              
A6 Am7              
B7 B Ø              

To obtain the chord in question in a single octave, the notes shown in light grey lead to inversions of chord.  

Table 9.7. Position of the fingers on a keyboard 
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The advantage to looking at the modes is that the chords always bear the same 
number (I to VII) or name whichever the fundamental used for the scale.  

EXAMPLE.– The chord of E in the (diatonic) scale of D is a Dorian chord, and thus 
written in Em7.  

Does this sound strange? Here is the explanation: 

– the scale of D is formed of the notes D, E, F, G, A, B and C; 

– its mode is Dorian; 

– the first third in this scale of D is at F; 

– that third is minor, so this scale is minor; 

– in this scale of D, the chord formed by starting at E (second degree) will 
therefore be E, G, B, D, in which the first third, from E to G, is minor, the fifth from 
E to B is normal, and the distance from E to D represents a seventh; 

– hence, this chord is written as an Em7. 

Quite simple, is it not? 

It is possible to use the same approach with all the chords in all the other scales. 
However, the tradition is to restrict harmonic rules to major and minor scales. Note 
that this choice is a little restrictive, particularly in the context of modern jazz, where 
more exotic scales (blues, bebop, etc.) are constantly used; however, the variety of 
types of chords available with the major or minor scale explains why the harmonic 
rules are limited to these scales, which (having a natural origin: the series of fifths) are 
therefore relatively well suited to carry harmony. 

9.5.2. In minor scales 

Let us immediately draw the distinction between four minor scales that are 
frequently used – e.g. in C (do): 

– the “harmonic” minor scale, whose notes are C D E♭ F G A♭ B; 

– the “natural” minor scale, whose notes are C D E♭ F G A B♭; 

– the ascending “melodic” minor scale, whose notes are C D E♭ F G A B (this 
minor scale is most commonly used by jazz lovers, because it is closest to the major 
scale); 

– the minor blues scale, whose notes are C D E♭ F F# G B♭. 
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9.5.2.1. In the “minor harmonic scale of C” (C D E♭ F G A♭ B)  

harmonic minor scale example in C: C D E♭F GA♭ B 

N° of Name of the content of the chord name of the 
chord 

degree mode mode chord in italics, the content and name of the chord expressed 
in relation to C  

    C E G B D F A  

    1 3 5 7 9 11 13  

            

1 I Ionian C1 C E♭ G B D F A♭ CmM 13♭ 

               

                      

2 II  D2 D F A♭ C E♭ G B  

  Locrian  C2 C D♭ G♭ B♭ D♭ F A Cm7 5♭ 9 ♭ 

                      

3 III  E3 E♭ G B D F A♭ C   

   Ionian  
#5 

C3 C E G# B D F A C 5# 

                      

4 IV  F4 F A♭ C E♭ G B D   

   Dorian 
#11 

C4 C E♭ G B♭ D G♭ A Cm7 11# 

                      

5 V  G5 G B D F A♭ C E♭   

  Mixolydian 
9♭ 13♭  

C5 C E G B♭ D♭ F A♭ C7 9♭ 13♭ 

                      

6 VI  A6 A♭ C E♭ G B D F   

  Lydian 9# 
11#  

C6 C E G B D# F# A C 9# 11# 

                      

7 VII  B7 B D F A♭ C E♭ G   

  diminished C7 C E♭ G♭ A D♭ E A♭ CØ 

ultimately, for the major scale, 7 degrees which correspond to the 7 possible chords 

Table 9.8. Chords depending on the modes in the harmonic minor scale of do 
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9.5.2.2. In the “natural minor scale of C” (C D E♭ F G A B♭)  

The distribution of the intervals between notes is, in fact, none other than that 
which we find in the Dorian mode of a major scale of C (D E F G A B C). 

natural minor scale example in C: C D E♭F G A B♭ 

N° of Name of the content of the chord name of the 
chord 

degree mode mode chord in italics, the content and name of the chord expressed 
in relation to C 

    1 3 5 7 9 11 13  

            

1 I Dorian C1 C E♭ G B♭ D F A Cm7 

               

                      

2 II Phrygian D2 D F A C E♭ G B♭   

    C2 C E♭ G B♭ D♭ F A♭ Cm7 9♭ 13♭ 

                      

3 III Lydian E3 E♭ G B♭ D F A C   

    C3 C E G B D F# A CM 11#  

                      

4 IV Mixolydian F4 F A C E♭ G B♭ D   

    C4 C E G B♭ D F A C7 

                      

5 V Aeolien G5 G B♭ D F A C E♭   

   C5 C E♭ G B♭ D F G♭ Cm7 13♭ 

                      

6 VI Locrian A6 A C E♭ G B♭ D F   

  demi 
diminished 

C6 C E♭ G♭ B♭ D♭ F A♭ CØ 

                      

7 VII Ionian B7 B♭ D F A C E♭ G   

   C7 C E G B D F A CM 
ultimately, for the major scale, 7 degrees which correspond to the 7 possible chords 

Table 9.9. Chords depending on the  
modes in the natural minor scale of do 
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9.5.2.3. In the “melodic minor scale of C” (C D E♭ F G A B) 

In the same way as in the major mode, we obtain 7 modes of chords. Overall, the 
melodic minor scale is a major scale with an alteration of the third. 

melodic minor scale example in C: C D E♭F G A B 

N° of the Name of the content of the chord name of 
the chord 

degree mode mode chord in italics, the content and name of  
the chord expressed in relation to C 

    1 3 5 7 9 11 13  

            

1 I minor  Ionian  C1 C E♭ G B D F A CmM 

               

                      

2 II  D2 D F A C E♭ G B   

  Dorian 9♭  C2 C E♭ G B♭ D♭ F A Cm7 9♭ 

                      

3 III  E3 E♭ G B D F A C   

  Lydian 5#  C3 C E G# B D F# A C 5# 11# 

                      

4 IV  F4 F A C E♭ G B D   

  Lydian 7  C4 C E G B♭ D F# A C7 11# 

                      

5 V  G5 G B D F A C E♭   

  Mixolydian 13♭ C5 C E G B♭ D F A♭ C7 13♭ 

                      

6 VI  A6 A C E♭ G B D F   

  Locrian 9 13 C6 C E♭ G♭ B♭ D F A C-7 5♭ 

                      

7 VII  B7 B D F A C E♭ G   

  Altered C7 C E♭ G♭ B♭ D♭ E A♭ altered C 

ultimately, for the scale major, 7 degrees which correspond to the 7 possible chords 

Table 9.10. Chords depending on the modes in the melodic minor scale of do 
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9.5.2.4. In the “minor blues scale of C” (C D E♭ F G♭ G B♭)  

To conclude on the minor blues scale (the names of the blues modes are very 
variable from one piece of literature, so we shall content ourselves with indicating 
the name of the notes which make up the chord depending on the number of the 
mode). Note that F# is written as G♭ here. 

minor blues scale example in C: C D E♭F G♭ G B♭ 
N° of Name of content of the chord name of the 

chord 
degree mode mode chord in italics, the content and name of the chord 

expressed in relation to C  
    1 3 5 7 9 11 13  
            

1 I No 
particular 

name 
  
  
  

C1 C E♭ G♭ B♭ D F G C-7 5♭ 
    1 3 5 7 9 11 13   
                    

2 II D2 D F G C E♭ G♭ B♭   
  C2 C E♭ F A♭ D♭ E A♭ C-7 5 9♭ 
                    

3 III E3 E♭ G♭ B♭ D F G C   
  C3 C E♭ G B D E A CmM 
                    

4 IV F4 F G C E♭ G♭ B♭ D   
  C4 C D G B♭ D♭ F A C7 3b♭ 9 ♭ 
            

5 V G5 G♭ B♭ D F G C E♭   
  C5 C E G# B C# F# A C 5# 9# 11# 
            

6 VI A6 G C E♭ G♭ B♭ D F   
  C6 C F G# B D# G A# CM 5# 9# 

13# 
            

7 VII B7 B♭ D F G C E♭ G♭   
  C7 C E G A D F G# CM 13# 
ultimately, for the scale major, 7 degrees which correspond to the 7 possible chords 

Table 9.11. Chords depending on the modes in the minor blues scale of do 
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9.5.3. Scales and chords 

9.5.3.1. Major scale 

 is linked 
to   then the chord is it is a chord of the 

type 

C1 CM C D E F G A B C E G B D F A Δ 

C2 BbM B♭ C D E♭ F G A C E♭ G B♭ D F A – 7 

C3 AbM A♭ B♭ C D♭ E♭ F G C E♭ G B♭ D♭ F A♭ – 7 9♭ 13 ♭ 

C4 GM G A B C D E G♭ C E G B D G♭ A Δ #4 

C5 FM F G A B♭ C D E C E G B♭ D F A 7 

C6 EbM E♭ F G A♭ B♭ C D C E♭ G B♭ D F A♭ – 7 13♭ 

C7 DbM D♭ E♭ F G♭ A♭ B♭ C C E♭ G♭ B♭ D♭ F 
A♭ 

Ø or o: diminished 
semi 

Table 9.12. Relations between scale and chords in the major scale 

9.5.3.2. Minor harmonic scale 

 is 
linked 

to 
 then the chord is 

it is a chord of the 
type 

C1 Cm C D E♭ F G A♭ B C E♭ G B D F A♭ – M7 13♭ 

C2 Bbm B♭ C D♭ E♭ F G♭ A C E♭ G♭ B♭ D♭ F A – 7 5♭ 9 ♭ 

C3 Am A B C D E F A♭ C E A♭ B D F A Δ #5 

C4 Gm G A B♭ C D E♭ G♭ C E♭ G B♭ D G♭ A – 7 #4 

C5 Fm F G A♭ B♭ C D♭ E C E G B♭ D♭ F A♭ 7 9♭ 13 ♭ 

C6 Em E G♭ G A B C E♭ C E G B E♭ G♭ A Δ #9 #11 

C7 Dbm D♭ E♭ E G♭ A♭ A C C E♭ G♭ A D♭ E A♭ diminished 

Table 9.13. Relations between the scale  
and chords in the minor harmonic scale 
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9.5.3.3. Major blues scale 

 is linked 
to 

 then the chord is 
it is a chord 
of the type 

C1 CBM C D E F G♭ G B♭ C E♭ G♭ B♭ D F G – 7 5♭ 

C2 BbBM B♭ C D E♭ E F A♭ C E♭ F B♭ D E A♭ – 7 5b♭ 13 ♭ 

C3 AbBM A♭ B♭ C D♭ D E♭ G♭ C D G♭ B♭ D♭ E♭ A♭ 7 9 5♭ 13 ♭ 

C4 GBM G A B C D♭ D F C D G B D♭ F A 9 ♭ 

C5 GbBM G♭ A♭ B♭ B C D♭ E C E A♭ B D♭ G♭ 5# 9 ♭ 13♭ 

C6 FBM F G A B♭ B C E♭ C F A B E♭ G B♭ m7 

C7 DBM D E G♭ G A♭ A C C E G A D G♭ A♭ Δ 

Table 9.14. Relations between the scale and chords in the major blues scale 

9.5.3.4. Scale blues minor 

 
is linked to  then the chord is 

it is a chord of the 
type 

C1 CB C D E♭ F G♭ G B♭ C E♭ G♭ B♭ D F G – 7 5♭ 

C2 BbB B♭ C D♭ E♭ E F A♭ C E♭ F B♭ D♭ E A♭ – 7 5b♭ 9 ♭ 13♭ 

C3 AB A B C D E♭ E G C E♭ G B D E A – Δ 

C4 GB G A B♭ C D♭ D F C D G B♭ D♭ F A 7 3b♭ 9 ♭ 

C5 GbB G♭ A♭ A B C D♭ E C E A♭ B D♭ G♭ A #5 9♭ 11 ♭ 

C6 FB F G A♭ B♭ B C E♭ C F A♭ B E♭ G B♭ #3 #5 #9 #13 

C7 DB D E F G A♭ A C C E G A D F A♭ 13 

Table 9.15. Relations between scales and chords in the minor blues scale 

To supplement the tables above, Table 9.16 below looks at the four types of 
scales – major, minor, blues and whole-tone – and in degrees I, II, III, IV, V, VI and 
VII where they are located in their specific scales, listing the content of the chords 
whose fundamental frequency is a C.  
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Major scales on the basis of the scale of we obtain 
CM   CD E F G A B C I C1  [ C E G B ] 
BbM B♭C D E♭ F G A C II C2  [ C E♭ G B♭ ] 
AbM A♭ B♭C D♭ E♭ F G CIII C3  [ C E♭ G B♭ ] 
GM   G A B C D E G♭ C IV C4  [ C E G B ] 
FM   F G A B♭C D E C V C5  [ C E G B♭ ] 
EbM E♭ F G A♭ B♭C D C VI C6  [ C E♭ G B♭ ] 
DbM D♭ E♭ F G♭ A♭ B♭C C VII C7  [ C E♭ G♭ B♭ ] 

 
Minor scales on the basis of the scale de we obtain 

Cm   CD E♭ F G A♭ B C I C1  [ C E♭ G B ] 
Bbm B♭C D♭ E♭ F G♭ A C II C2  [ C E♭ G♭ B♭ ] 
Am  A B CD E F A♭ CIII C3  [ C E A♭ B ] 
Gm  G A B♭CD E♭ G♭ C IV C4  [ C E♭ G B♭ ] 
Fm F G A♭ B♭CD♭ E C V C5  [ C E G B♭ ] 
Em E G♭ G A B C E♭ C VI C6  [ C E G B ] 
Dbm D♭ E♭ E G♭ A♭ A C C VII C7  [ C E♭ G♭ A ] 

 
Blues scales on the basis of the scale of we obtain 

CB   CD E♭ F G♭ G B♭ C I C1  [ C E♭ G♭ B♭ ] 
BbB B♭C D♭ E♭ E F A♭ C II C2  [ C E♭ F E♭ B♭ ] 
AB   A B C D E♭ E G CIII C3  [ C E♭ G B ] 
GB   G A B♭C D♭ D F C IV C4  [ C D G B♭ ] 
GbB G♭ A♭ A B C D♭ E C V C5  [ C E A♭ B ] 
FB  F G A♭ B♭ B C E♭ C VI C6  [ C F A♭ B ] 
DB  D E F G A♭ A C C VII C7  [ C E G A ] 

 
Whole-tone 
scales 

on the basis of the scale of we obtain 
CTT   C D E G♭ A♭ B♭ C I C1  [ C E A♭ B♭ ] 
BbTT B♭C D E G♭ A♭ C II C2  [ C E A♭ B♭ ] 
AbTT A♭ B♭C D E G♭ CIII C3  [ C E G♭ B♭ ] 
GbTT G♭ A♭ B♭C D E C IV C4  [ C E G♭ B♭ ] 
ETT   E G♭ A♭ B♭C D C V C5  [ C D G♭ B♭ ] 
DTT   D E G♭ A♭ B♭C C VI C6  [ C D G♭ B♭ ] 

Table 9.16. Content of chords whose fundamental  
frequency is a C in accordance to the types of scales 
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9.5.4. List of common chords 

Chords are written in the form [fundamental, fifth, third, seventh]. 

C 
CM    = [C G E B] 
C7    = [C G E B♭] 
Cm7   = [C G E♭ B♭] 
Csus4M   = [C G F B] 
C913   = [C G D A] 
Co    = [C G♭ E♭ B♭] 

D♭ 
DbM   = [D♭ A♭ F C] 
Db7    = [D♭ A♭ F B] 
Dbm7   = [D♭ A♭ E B] 
Dbsus4M   = [D♭ A♭ G♭ C] 
Db913   = [D♭ A♭ E♭ B♭] 
Dbo    = [D♭ G E B] 

D 
DM    = [D A G♭ D♭] 
D7    = [D A G♭ C] 
Dm7   = [D A F C] 
Dsus4M   = [D A G D♭] 
D913   = [D A E B] 
Do    = [D A♭ F C] 

E♭ 
EbM   = [E♭ B♭ G D] 
Eb7    = [E♭ B♭ G D♭] 
Ebm7   = [E♭ B♭ G♭ D♭] 
Ebsus4M   = [E♭ B♭ A♭ D] 
Eb913   = [E♭ B♭ F C] 
Ebo    = [E♭ A G♭ D♭] 

E 
EM    = [E B A♭ E♭] 
E7    = [E B A♭ D] 
Em7    = [E B G D] 
Esus4M   = [E B A E♭] 
E913   = [E B G♭ D♭] 
Eo    = [E B♭ G D] 
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F 
FM    = [F C A E] 
F7    = [F C A E♭] 
Fm7    = [F C A♭ E♭] 
Fsus4M   = [F C B♭ E] 
F913   = [F C G D] 
Fo    = [F B A♭ E♭] 
 
G♭ 
GbM   = [G♭ D♭ B♭ F] 
Gb7    = [G♭ D♭ B♭ E] 
Gbm7   = [G♭ D♭ A E] 
Gbsus4M  = [G♭ D♭ B F] 
Gb913   = [G♭ D♭ A♭ E♭] 
Gbo    = [G♭ C A E] 
 
G 
GM    = [G D B G♭] 
G7    = [G D B F] 
Gm7   = [G D B♭ F] 
Gsus4M   = [G D C G♭] 
G913   = [G D A E] 
Go    = [G D♭ B♭ F] 
 
A♭ 
AbM   = [A♭ E♭ C G] 
Ab7    = [A♭ E♭ C G♭] 
Abm7   = [A♭ E♭ B G♭] 
Absus4M   = [A♭ E♭ D♭ G] 
Ab913   = [A♭ E♭ B♭ F] 
Abo    = [A♭ D B G♭] 
 
A 
AM    = [A E D♭ A♭] 
A7    = [A E D♭ G] 
Am7   = [A E C G] 
Asus4M   = [A E D A♭] 
A913   = [A E B G♭] 
Ao    = [A E♭ C G] 
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B♭ 
BbM   = [B♭ F D A] 
Bb7    = [B♭ F D A♭] 
Bbm7   = [B♭ F D♭ A♭] 
Bbsus4M   = [B♭ F E♭ A] 
Bb913   = [B♭ F C G] 
Bbo    = [B♭ E D♭ A♭] 
 
B 
BM    = [B G♭ E♭ B♭] 
B7    = [B G♭ E♭ A] 
Bm7   = [B G♭ D A] 
Bsus4M   = [B G♭ E B♭] 
B913   = [B G♭ D♭ A♭] 
Bo    = [B F D A] 

9.5.5. Table of frequently used chords 

Table 9.17 shows the interval present in the most common chords. 

                          

     #  #   #  #  #   #         

    C  D  E F  G  A  B C  D  E F  G  A 

     ♭  ♭   ♭  ♭  ♭   ♭         

                          

 number of degree  1  2  3 4  5  6  7 8  9  10 11  12  13 

       b3   b5  #5  b7            

                          

notation USA USA France                      

                          

chords 
written in 
do 

                         

    D    T   Q   7 7   9   11     

       d  a d  a  m M           

                          

       m3 M3 b5 P5 5+ M6 m7 M7          

                        

 examples of formulations in
American notation 
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maj. triad I  C C X    X   X               

min. triad I -  C- Cmin X   X    X               

dim. triad I ° C0  Cdim X   X   X                

aug. triad I + C+ C5+ X    X    X              

                          

fourth C4 C sus C sus X     X                 

fourthsus C7 sus  C sus7 X    x) X  X   X       X     

                          

maj. 6 I 6 C6 C6 X    X   x  X             

min. 6 I -6 C-6 Cm6 X   X    x  X             

                          

dom. 7 I 7 C dom C7 X    X   X   X            

min. 7 I -7 C min 7 Cm7 X   X    X   X            

7 min 5 dim I -7(b5) C 07 Cm7/ 5- X   X   X    X            

7 dom 5aug I +7 C7/#5 C7/ 5+ X    X    X  X            

7 dom 5 dim I 7(b5) C7/b5 C7/ 5- 5 ♭ X    X  X    X            

7 dim I °7  Cdim7 X   X   X   X             

7 min  
7 maj 

I -M7 Cm maj7 Cm M7 X   X    X    X           

7 maj I M7 C maj7 CM7 X    X   X    X           

7 majaug I M7(#5)  CM7(#5) X    X    X   X           

                          

ninth C9 C9 C9 x    X   x)   X    X        

ninthaug C+9 C #9 C9+ X x   X   X   X     X       

ninth flat Cb9 C b9 C9 - X    X   X   X   X         

ninth min Cm9 Cm 9 Cm9 X   X    X   X    X        

                          

eleventh C11  C11 X    x)   X   X    X   X     

eleventh aug C+11  C11+ X    x)   X   X    X    X    

                          

thirteenth C13  C13 X    X   X   X    X   X    X 

thirteenth 
flat 

C-13 Cb13 C13 -  X    X   X   X    X   X   X  

Key:     X    obligatory note in the chord 
                  x    optional note in the chord 

Table 9.17. Standard nomenclature of chords (in do, C) 

Almost all works in simple harmony include this type of table. So as not to omit 
this “monument of the profession”, here it is in Table 9.17.   
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Thus, everyone can construct their own “grids” because the content of the table 
shows how the chord is formed (in terms of intervals) in relation to the fundamental of 
the chord.  

For the sake of ease, we have indicated the notations for a fundamental in “do – 
C”, but it is easy to “transpose” that table into other keys, without giving tons of chord 
grids for all the possible, imaginable tones, as is generally the case in many other 
books, merely for the pleasure of filling page space! 

REMARK ON THE NOTATIONS USED IN THE TABLE.–  The world of music is madly 
“artistic”, and there are a whole crowd of notations used to mean the same things (in 
actual fact, to speak of chords!). Therefore, do not be too critical in relation to the 
most common notations (both systems) which we have employed in this table, 
because there are many others which exist. 

In a chord, taking the same notes contained in the chord in a different order, it is 
called a reversal. 

9.6. What do these chords sound like? 

To begin to determine how these chords “sound”, we first need to examine how they 
appear in terms of time, statically or dynamically – i.e. how the temporal relations 
between them are constructed. The next few paragraphs will go into detail about 
these two concepts. 

9.6.1. In statics 

A static chord is that which is played (“held down”) constantly on an instrument that 
is capable, by its construction, of maintaining the sound of each individual note in 
the chord (an organ, for instance).  

In this case, we have the time to become aware of an individual chord, to imbibe it 
and note its intrinsic sonic color. This helps to train the ear in order to later easily 
recognize major chords, minor chords, seventh, seventh major chords, etc. Obviously, 
apart from this, what use can it truly have? Not much…! 

9.6.2. In dynamics 

Play a series of chords – a progression – and then it becomes a different story.  



174     Mu

Obvi
fact that 
make no 
of sound
However
seek to 
between 
temporal
will have
aspect of

The n

9.7. Tem

In dy
and diffi

The m
begin wi

Figur

Our 
(frequenc

usical Technique

iously, if, betw
they succeed
effort (or at m

d to one anothe
r, if you are a
stick the piec
them (the pas

l and successi
e an impact on
f the successio

next few parag

mporal relat

ynamics, time
icult to explain

Figur
amplit

of this fig

musical sensa
ith the main on

re 9.3 gives a 

brains’ inst
cy, amplitude,

es 

ween two chor
d one another 
most a very mi
er and land yo
a little quicker
ces together, 
st and the pres
ive aspect (ind
n the auditory 
on of chords. 

graphs will gi

tions betwee

e elapses and 
n in simple ter

re 9.3. 3D repr
tude as a func
gure, please s

ation which w
nes: frequency

simplified ex

tantaneous in
, time) of these

rds, you wait 
in time, your

inimal one) to 
ou back, practi
r in the succe
and try to fi

sent), or even 
dependently o
impression rec

ive further det

en chords 

multiple phe
rms. 

resentation of 
ction of melody
see www.iste.c

we perceive is 
y, time and am

ample using a

ntegration of
e parameters g

for a quarter 
r auditory mem
form the link 

ically/almost, 
ession of the c
ind or constru
to predict and

of the pace of 
ceived. We the

tail on these tw

enomena occu

f frequency, tim
y. For a color v
co.uk/paret/mu

linked to seve
mplitude. 

a 3D represent

f this three-
gives us that w

of an hour, d
mory (your b
between the tw
in the previou
chords, your b
uct harmonic 
d invent the fu
f the successio
en enter into a

wo concepts. 

ur. All this is 

me and  
version  
usical.zip 

eral parameter

tation. 

-dimensional 
well-known sen

espite the 
brain) will 
wo pieces 

us section. 
brain will 

relations 
uture! The 
on or not) 
a dynamic 

complex 

rs. Let us 

response 
nsation of 



Chords     175 

musical wellbeing or unease. It is true that at any given time, we can examine the 
frequency content and, as a function of the time, we can examine the evolution of that 
frequency. This, though, is not enough. Our brains have an auditory memory, and 
sooner or later, acquires a musical education (whether wanted or not), which enables 
them, based on what has just happened, to predict, to invent what the next musical step 
could be. Distinguished mathematicians may note, in passing, that the way in which 
that musical peculiarity of the brain works, as a “function and convolution product” 
including the “delay theorem”, like any respectable phenomenon of convolution.    

Thus, in dynamics, time elapses and various phenomena occur. 

9.8. Melody line 

A succession of (individual) notes played gives the ear the sensation of a 
melody, an air. It is the form of that melody which conveys an impression, a 
sensation of being in a particular tone, a particular mode. In addition to the main 
melody line, it is possible to add, in parallel, a bassline to complement and/or 
strengthen the main melody line. 

9.9. Peculiarities and characteristics of the content of the chord 

One of the main purposes of chords is to accompany and reinforce the melody. 
Furthermore, they serve to prepare the ground, to introduce and herald the next part 
of the melody. Therefore, the chord (usually) contains the notes which follow in the 
melody, but it may also be constructed so as to deliberately clash with the melody. 

Thus, there is a direct and strong relation between the content of the melody line 
and the chords which are played along with it. 

9.10. Relations between melodies and chords  

Here too is one of the cornerstones of the premises of harmony. 

Indeed, for something to be deemed harmonious, it must include very subtle 
nuances which the whole of our auditory apparatus (our ears, our brains, our 
education, etc.) is able to link together. We showed earlier that if the harmony is 
static – e.g. a chord played on its own and held – then in this case, the set of notes 
making it up must be harmonic, but also there must be relations between the 
harmonics which make up the chord and the ones which come before and after it. 
All of this will be discussed in detail in Part 4 of this book.  
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With regard to the dynamic aspect, there are time-dependent relations between 
the melodic content and the accompaniment line, for which there are various 
possibilities, as follows: 

– the melody is accompanied instantaneously by notes that generally belong to the 
same tone or serve as a gateway chord, or which pave the way for a modulation, or a 
change of tone; 

– the melodic content is preceded by accompanying notes which herald the next 
piece of the melody line (in fact, the notes in the melody played by the right hand 
will form part of the accompanying chords played very slightly before by the left 
hand); 

– or the melody (mainly played by the right hand) invites certain notes and leads us, 
a little later on, to ensure the coherence of the harmonic ensemble perceived, and 
support it. 

Hence the enigmatic quote: “everything which is in the right hand is, has been or 
will be in the left hand… and vice versa!” – a remark intended, obviously, for the 
players of keyboard instruments!  

This subtle set of exchanges between the melody line and the accompaniment is 
permanent and, from a macroscopic point of view around a given moment in time, is 
regulated to around 2–3 measures before or after the corresponding melody.  

9.11. The product of the extremes is equal to the product of the means 

Here again is a very specialized field of study. 

Indeed, following numerous physiological acoustic assessments, it has been 
found that our ears like to simultaneously hear either notes whose frequencies are 
fairly similar (e.g. in two neighboring octaves), or notes whose frequencies are at the 
high end and the low end of the spectrum. To express this idea numerically, i.e. in 
the audible frequency band from 20 to 20,000 Hz, we human beings prefer to 
simultaneously hear two average frequencies which are fairly close to one another 
(e.g. 300 and 600 Hz), or else two frequencies that are very far apart (e.g. 40 and 
5000 Hz), rather than one medium note and one very low one (such as 500 and  
40 Hz), or one medium and one very high (e.g. 500 and 8000 Hz). This leads us to 
conclude that there is an empirical law which, in the acoustic profession, is known as the 
“10-20,000 law”, or indeed the “20-10,000 law”, or even more simply, “product of 
extremes = product of means = 200,000”. 

 



Chords     177 

You will see that often, many chords are not written and played directly, but with 
clever reversals (see P. Galas’ referential works) so that, firstly your fingers are 
arranged in the best possible way (i.e. requiring the minimum possible displacement), 
and secondly, above all, so that the overall harmony of the chord played and its color are 
more pleasant harmonically, the above two reasons are, in fact, the search for the 
optimal “product of the means”. It really is as simple as that! 

EXAMPLES.– la3 and la3  440 Hz × 440 Hz      = 193,600 – just for fun! 

  la2 and la4  220 Hz × 880 Hz       = 193,600 

       la0 and la6 55 Hz × 3520 Hz       = 193,600 

       la-1 and la7 27.5 Hz × 7040 Hz    = 193,600 

Having offered these brief explanations let us now move on to Part 4. 



PART 4 

Harmonic Progressions 
 



 

Introduction to Part 4 

The objective in this fourth and final part is to provide readers with tools to help 
design harmonization grids for compositions and/or arrangements and for 
reharmonization of pieces of music, which can be used to create thousands of harmonic 
progressions! It is merely an aid – certainly a significant one – but there is no method 
which can substitute for a musician’s trained ear. However, the complexity of certain 
harmonic progressions (for example, in John Coltrane’s Giant Steps) shows how 
useful a little help can be, and that with a harmonic universe that is extremely rich, there 
is an infinity and an eternity of discoveries to be made.1 

This part, initially based on a principle of 8 simple syntactic rules inspired by the 
theories of F. Pachet and M.J. Steedman (see bibliography) which, when taken 
together, give us the classic substitution progressions (II V I) and many more besides, 
has been reviewed and greatly enhanced by the principle of “descending 
chromatism”.  

This part is concluded by applied examples of reharmonization of three well-
known pieces of music: Blue Moon, Summertime and Sweet Georgia Brown, and the 
harmonization of a specific composition. 

It must be remembered, though, that all of this is nothing without music, and that 
above all, “it must sound good”!  

                                 
1 We would like to warmly thank all the teachers at the EDIM in Cachan, and in particular a 
few experts in harmony: Mônica Passos, Eric Shultz, Andrew Crocker and Daniel Beaussier. 
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Some Harmonic Rules 

10.1. Definition of a chord and the idea of the color of a chord 

As described at length in the previous chapters, a chord is defined by its 
fundamental, the fifth of the fundamental, the major or minor third, and the fifth of 
the third (the seventh), either major or minor. The constitutive notes in the chords 
form the primary color, whilst the other additional notes in those chords, whilst they 
are important in defining the chord, are ornamentations, and form a secondary/ 
additional color to the basic chord.  

10.1.1. Notations used 

All of the harmonic progressions presented in this and subsequent chapters are 
based on the types of chords introduced in the previous chapter, and therefore 
formed on the primary notes of the chords. For ease of notation and for reasons of 
simplification: 

– chords are written in the order of a quartet [Fundamental, Third, Fifth, 
Seventh], and we add further alterations afterwards, but the harmonic rules pertain only 
to the basic quartet of the chord. For example, a G7 9b is primarily a G7 whose 
second is diminished; 

– for the names of the chords, the English-speaking tradition is used from hereon 
in for the names of the notes in that quartet. For example, we have A for la, up to G 
for so; 

– we use flat alterations instead of sharp alterations: for instance, a Gb instead of 
an F#. These simplifications are necessary so that we can more easily design a 
software tool to help study harmonic progressions and avoid repetitions (one section 
for F# and one for Gb). 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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In the next chapter, Harmonic progressions, we shall work mainly on the degrees 
of a given scale. The types of chords, therefore, will be directly defined by the degrees 
of the chord in the scale in question. However, for the application of the descending 
chromatism, we work on the basis of the quartet [Fundamental, Third, Fifth, 
Seventh]. The main reason for this choice lies in the fact that the fifth, the third and 
the fifth of the third are close harmonics of the fundamental, and therefore sound 
natural alongside it. In other words, the primary notes in the chord are the most 
powerful harmonics in terms of amplitude, which are, for most musical instruments, 
the basic quartet. 

10.1.2. Equivalent or harmonious chords 

Two chords can be considered equivalent (and therefore harmonious) if their 
constitutive quartets are equal or very similar, barring certain permutations. 

For example: 

– G7 is harmonious with CΔ because G7 is defined by [G, B, D, F], whilst CΔ is 
defined by [C E G B]. 

If we rearrange G7, we obtain [B D G B], which is the structure of CΔ with 
slight translations of the fundamental and the third of C. The greater these 
translations (or shifts), the less harmonious the two chords will be.  

Two harmonious chords can be substituted for one another, or be played one 
after the other. We shall see later on that in fact, only descending translations of one 
or two notes within a chord can be used to switch from one chord to another. We 
therefore speak of descending chromatism, as defined in Chapter 11. 

10.2. A few harmonic rules  

Following an analysis of the sheet music in the “Real books” and other “Fake 
books”, we can formulate eight harmonic rules, which can be used for harmonic 
analysis of the different grids. Analyses of this type are presented in Chapter 11 of this 
book. 

Far from being groundbreaking in the wonderful land of harmony, these rules are 
“known” to composers and rearrangers, but it is a good idea to recap them here: 
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10.2.1. The eight fundamental syntactic rules  

The eight fundamental syntactic rules used here are: 

1) copying: any chord can be duplicated: 

the chord sequence X Y → becomes X X Y 

EXAMPLE.– Dm G7 CΔ → Dm Dm G7 CΔ 

2) substitution to the tritone: for a maj 7 chord, if it is at the end of the 
progression or is followed by the fourth: 

the chord X7 → can be substituted by Vb7 

EXAMPLE.– Dm G7 CM → Dm Db7 CM 

3) Dorian preparation: for a major 7 chord (considered a V Mixolydian chord), it is 
possible to add, before it, the II Dorian of that chord: 

to the chord V7 → we can add IIm7 V7 to its left 

EXAMPLE.– C7 G7 → C7 Dm7 G7 

4) Mixolydian preparation: for a major chord M (considered a I Ionian chord), it 
is possible on the left to add the existing chord of a V Mixolydian of the chord: 

to the chord I → we can add V7 I to its left 

EXAMPLE.– Dm7 CM → Dm7 G7 CM 

5) Lydian preparation: for a minor 7 chord  (considered a II Dorian chord), it is 
possible to add the IV Lydian of the chord to the left: 

IIm7 → IV7 IIm7 

EXAMPLE.– Dm7 G7 → F7 Dm7 G7 

6) destruction to the left: it is always possible to omit a chord in a progression; it 
becomes implicit: 

X Y → Y 

EXAMPLE.– Dm7 G7 CM → Dm7 CM 

7) addition to the right of a fourth of the same type: any chord can be followed by 
its fourth with the same alteration: 

X → X IV X 

EXAMPLE.– C7 → C7 F7… 

or            Dm7 → Dm7 Gm7 
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8) addition, to the right, of a fifth of the same type: any chord can be followed by its 
fifth with the same alteration: 

X Y → X V Y 

EXAMPLE.– C7 Am7 → C7 G7 Am7 

These last two rules are known as atonal, because they always force a change of 
key (tone), which the first six rules do not. 

As western tradition is to respect the key (within the tritone), we shall pay more 
specific attention to the last two rules, which need to be taken within an overall 
progression which returns to the initial scale. 

10.2.2. Rules of assembly 

There are none! The eight rules set out above are, by definition, compatible, meaning 
that it is possible to apply these rules together and multiple times (on condition that 
we respect the types of chords specified in the rules (a “7” for the substitution to the 
tritone, for example). However, these rules are based on a fundamental progression to 
preserve a given color or mode.  

Let us look at two examples: 

1) the first illustrates a classic progression, starting at CΔ (CM) to return to CΔ 
(CM) (example: CΔ A7 Dm7 G7 CΔ) with the basic progression:  

CΔ → CΔ 

use of rule 4 (Mixolydian preparation) on the second CΔ: 

CΔ G7 CΔ 

use of rule 4 (Mixolydian preparation) on the G7: 

CΔ D7 G7 CΔ 

use of rule 4 (Mixolydian preparation) on the D7: 

CΔ A7 D7 G7 CΔ 

use of rule 6 (destruction) on the D7: 

CΔ A7 G7 CΔ 
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use of rule 3 (Dorian preparation) on the G7: 

CΔ A7 Dm7 G7 CΔ 

2) the second illustrates a turnaround 

2 used by Bill Evans (CΔ Eb7 Ab7 Db7 
CΔ) in CΔ starting from CΔ: 

CΔ → CΔ 

use of rule 4 (Mixolydian preparation) on the second CΔ: 

CΔ G7 CΔ 

use of rule 4 (Mixolydian preparation) on the G7: 

CΔ D7 G7 CΔ 

use of rule 4 (Mixolydian preparation) on the D7: 

CΔ A7 D7 G7 CΔ 

use of rule 2 (substitution to the Tritone) of the A7 (which resolves to D7): 

CΔ Eb7 D7 G7 CΔ 

use of rule 2 (substitution to the Tritone) of the D7 (which resolves to G7): 

CΔ Eb7 Ab7 G7 CΔ 

use of rule 2 (substitution to the Tritone) of the G7 (which resolves to C7): 

CΔ Eb7 Ab7 Db7 CΔ 

10.2.3. Next steps 

In addition to, and in contrast to, solutions based on these eight rules, the chord 
progressions which we shall now present are complete, meaning that overall, they 
are coherent from the first to the last chord, and are based on the “descending 
chromatism” rule, which is only applied to the notes of the scale at hand – a subject 
which we shall examine in detail below. Indeed, for example, the rule of Mixolydian 
preparation of a major chord previously did not take account of the type of chord 

                                 
2 Conventionally, in a harmonic progression, the term “Turnaround” refers to a series of 
chords (found in the same diatonic scale) placed at the end of a harmonic section. Its function 
is to create a form of tension (harmonic and/or melodic), which is resolved at the start of the 
next harmonic section (generally on the tonic chord in question). 
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situated before the major chord, and could, in some cases, lead to the addition of a 7th 
chord which is incompatible with that first chord.  

10.2.4. Descending chromatism rule 

The study of the great jazz pianists (Keith Jarrett, Bill Evans, Brad Mehldau, 
etc.) and detailed analysis of the sheet music in the editions of the Real Book, 
Aebersold Play-A-Long books, etc., which are known to all professionals and 
amateurs in jazz, shows that they all have the same approach to harmony which, 
moving around the scale of the key we are playing in, consists of the smallest 
possible shifts of the left hand, which typically forms the harmony – changing by a 
tone or a semitone at a time, which gives us the word “chromatism”. 

This can be summarized simply as follows: two chords are considered to be 
“harmonically linked” if it is possible to move from the first defining quartet 
[fundamental, third, fifth, seventh] to the next one by descending chromatisms. 

10.2.4.1. The why and wherefore of descending chromatisms 

In our western physiological culture, the harmonic principle is to create/play 
(physical) sounds which are as natural as possible and avoid “friction” (or harshness or 
dissonance), which may be more or less marked, occurring when we play a note 
close to the natural harmonic (sub)-frequencies, but shifted by one degree in the 
scale (by a tone or a semitone). The presence of harmonics will sound natural, but 
when we play a similar note – but one whose value is not exactly equal to the 
harmonic – it will sound “wrong” or “harsh”.  

Of course, there is an exception to every rule, including the rule on chromatism! 
The exception here is quite a significant one; it would be too easy otherwise! The 
exception in question is that of the “seventh”. 

To explain this, let us take an example and explain the relations between the 
notes.  

In the C major scale, play the chord CΔ, whose constitutive quartet is [C E G B]:  

– C is the fundamental of the chord, with the frequency fo; 

– E is major third of C, whose frequency is 5/4 × fo; 

– G is the fifth of C, with frequency 3/2 × fo, and it is also the minor third of E; 

– B is the fifth of E, with frequency 3/2 × (5/4 × fo), and at the same time the 
third of G, whose frequency is 5/4 × (3/2 × fo), is situated just below the 
fundamental.  
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Although B is situated one degree (the value of a semitone) below C, meaning 
that the two notes are slightly dissonant, the harmonic effects – mainly of the fifth  
of E (the factor 3/2 of the fifth) and the third of G – emerge, and are stronger than 
the effect of the slight dissonance… and the chord sounds right!  

On the other hand, the tritone of C, which is F#, always sounds horrendous, 
because it conflicts with the fifth of the fundamental, which is too close (namely G). 
The same is true for the minor second of C (C#), which sounds wrong, because it has no 
harmonic link other than with the fundamental. Thus, it appears that, even if ascending 
chromatisms are harmonically valid, they are less powerful than descending 
chromatisms. It is true that an ascending chromatism involves the octave and the 
minor second of the octave, and that this second is justified, because the fifth of the 
third of the minor second is the fundamental. 

EXAMPLE.– The third of Db is F, whose fifth is C, so Db is linked to C, because the 
fifth of the third of Db is C!  

However, in most cases, we play the chord of C (e.g. C E G B) and seek to carry 
out chromatisms on that basis. In such a case, it is very hard to justify the presence 
of a Db, because the chord Db is not constructed; only the note is played. Thus, we 
have a harmonic weakness, which can be used, but is weaker than the descending 
chromatism.  

In summary, then, whilst it is harmonious to move from a note to its seventh 
(say, from C to B in the major scale, because the seventh is the fifth of the natural 
third of the note, as indicated above), it is disharmonious to move from a note to its 
minor second (C to Db), because Db is not linked to a harmonic of the note.  

This simple observation justifies all eight rules of progression deriving from the 
simple rule of descending chromatism, but there are still exceptions to this rule. Indeed, 
if you go through a series of chords linked harmonically by descending chromatism, 
in principle, it is possible to use the same series of chords in the opposite direction, 
from the last to the first, through a mirror effect. The chromatism used is then 
opposite to the original one, and becomes an ascending chromatism. Hence, in 
principle, it should be possible to use ascending chromatisms, but only in symmetry 
with descending chromatisms. This alters nothing in terms of the harmonic quality 
of the chord changes, but this is justified by reference to the first series of chords 
linked by descending chromatism.  

10.2.4.2. In conclusion 

The descending chromatism rule applies only to the notes in the quartet of the 
initial chord [fundamental third fifth seventh]. Yet key changes in the current scale 
are free. However, the tradition in western music is to limit these key changes 
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The two chords are considered to be harmonically equivalent, so substitution is 
possible, which allows for or implies possibilities in terms of progressions.  

There is only an inversion between the third and the seventh of the chord when 
switching to the tritone – hence the complicity between a chord and its tritone. 
However, the interval note/tritone is very disharmonious, because the fifth of the 
fundamental is very close to the tritone (Gb in the case of C), and therefore it is tricky 
to use a tritone (or even prohibited: it is known as “the Devil’s interval”). Often, we 
continue the movement to G or F in order to come back to a more “acceptable” 
chord. 

In conclusion, the substitution above is possible when we start with a major 
chord:  

CΔ: [ C, E, G, B ]  

Gb7: [ Gb, Bb, Db, E ]  

B drops to Bb, following a harmonic descending chromatism.  

The same is not true, though, with a minor chord:  

Cm7: [ C, Eb, G, Bb ]  

Gb7: [ Gb, Bb, Db, E ]  

Eb is not one of the notes characteristic of the Gb with the same alteration. 
Therefore, the chord does not work, and the progression is not possible.  

10.2.5.3. Dorian preparation  

The principles of third/seventh equivalence and of slight translations justify this 
rule:  

Dm7: [ D, F, A, C ]  

G7: [ G, B, D, F ]  

The seventh of G7 is the third of Dm7: F. 

The third of G7 is the descending seventh of Dm7: C goes to B. 

Hence, the progression Dm7 G7 is harmonically possible.  
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10.2.5.4. Mixolydian preparation  

The same principles are used to justify this rule:  

G7: [ G, B, D, F ]  

CΔ: [ C, E, G, B ]  

The seventh of CΔ is the third of G7: B. 

The third of the CΔ is the descending seventh of G7: F goes to E. 

Thus, the progression G7 CΔ is harmonically possible.  

10.2.5.5. Lydian preparation  

The same principles are used to justify this rule:  

F7: [ F, A, C, Eb ]  

Dm7: [ D, F, A, C ]  

The F A C belongs to both chords. 

The Eb drops to the D. 

Thus, the progression F7 Dm7 is harmonically possible.  

Note that, in this case, the movement takes place through a simple descending 
semitone, which is also acceptable.  

10.2.5.6. Destruction to the left 

This rule is based on a hearer’s intuition, because the chord left out (at most one 
out of two) is, at best, reconstructed by the ear, and at worst, forgotten. This rule 
helps to lighten progressions which are too predictable.  

10.2.5.7. Addition, to the right, of a fourth of the same type  

A chord and its fourth are harmonically linked, as the chord is simply the fifth of 
the fourth. Indeed, the two chords share the same quartet (fundamental, third, fifth, 
seventh), after translations descending along the scale:  

C7: Fundamental: C, Third: E, Fifth: G, Seventh: Bb  

F7: Fundamental: F, Third: A, Fifth: C, Seventh: Eb 
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Thus, the two chords are linked only by their common harmonic: the fifth of the 
fourth is the fundamental of the initial chord, and the seventh of the fourth is the 
third of the initial chord. This relation must therefore be respected by the couple 
third/seventh, which implies that the two chords must be of the same type (a Cm7 
would be followed by an Fm7). 

10.2.5.8. Addition, on the right, of a fifth of the same type 

Same reasoning as for rule 7, but taking the fifth of the fundamental instead of 
the fifth of the fourth. Example: 

C7: Fundamental: C, Fifth: G, Third: E, Seventh: Bb  

G7: Fundamental: F, Fifth: C, Third: A, Seventh: F 

10.3. Conclusions on harmonic rules 

To conclude this short chapter, in order to continue a melody line or introduce a 
musical progression, so that two chords run together harmonically, the next chord 
simply needs to be made up of the notes of the first chord, with the exception of one 
or two simultaneous descending chromatisms, which is therefore necessary and 
sufficient to find the 8 harmonic rules, and this principle alone will suffice to 
construct all the progressions. 

By way of progression, let us now move on to… harmonic progressions! 
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Examples of Harmonic Progressions 

In the wake of the last chapter, where we set out the main rules that we intend to 
use, here now is a chapter on the detailed application of harmonic progressions by 
descending chromatism. 

11.1. Harmonic progressions by descending chromatism  

In order to fully comprehend the reasons why descending chromatism works and the 
harmonic progressions that can be created with this strategy, let us take as a 
reference example that which is conventionally based on the C major scale made up 
of the notes (C, D, E, F, G, A, B). 

11.1.1. Example 1 

In the scale of C: (C, D, E, F, G, A, B), in the Mixolydian mode, the notes in the 
quartet of a G5 chord, written as GV, or indeed G7, depending on the different types 
of notations used, are [ G, B, D, F ]. 

If, for example, we move two notes (D and F) in that chord by one degree of a 
descending chromatic movement – i.e. by moving D to C and F to E – we obtain a 
new chord [ G, B, C, E ]. 

This latter chord is, in fact, simply one of the possible inversions of the chord  
CΔ = [ C, E, G, B ] and it is harmonic because the new chord contains a major third, 
a fifth and the fifth of the third. 

Thus, harmonically speaking, the chord GV = G7 can be followed by the CI 
chord (CΔ) with no friction and all with only a minimal movement of the fingers. 
This is what is known as Mixolydian preparation. 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Table 11.1 gives the details, step by step, of the content of this maneuver from 
G7 to CΔ. 

Degrees    1 2 3 4 5 6 7  
Notes G A B C D E F G A B C 

            
initial chord 
G7M or GV X  x  x  

 x     

harmonic 
content of 
the initial 
chord 

tonic  

third 
major 
of the 
tonic 

2 tones

 

fifth 
of the 
tonic 

3 tones 
1/2 

 
fifth 

of the 
third 

    

frequency of 
the harmonic fo = fundamental  × 5  × 3  × 7     

in frequency fo = fundamental  fo × 5/4  fo × 3/2  fo × 7/4     
Descending 
chromatism X  x x 

D to C  x 
F to E      

final 
reorganized 
chord CΔ or 
CI 

   x  x  x  x  

harmonic 
content of 
the chord 
    tonic  

third 
major 
of the 
tonic 

2 
tones

 

fifth 
3 

tones 
1/2 

 

fifth of 
the third 
3 tones 

1/2 

 

in frequency    fo' = fundamental  fo'×5/4 
= fo"  fo' × 3  fo" × 3  

Table 11.1. Example: the path from G7 to CΔ. For a color  
version of this table, please see www.iste.co.uk/paret/musical.zip 

Using this simple principle, we can work with all the major rules of harmony, 
e.g. passage in the Mixolydian, the Dorian, perfect cadence, etc. 

11.1.2. Example 2 

In the scale of C: (C, D, E, F, G, A, B), in the Dorian mode, the notes of a chord 
D2 = Dm7, depending on the different types of notations, are [ D, F, A, C ].  

Carrying out a descending chromatism, A is linked to G, and C to B. 
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Thus, we obtain [ D, F, G, B ], which is the G7 chord out of order 
[ G, D, B, F ]. 

Dm7 can be followed by G7 which is Dorian preparation. 

11.1.3. Example 3  

In the scale of C: (C, D, E, F, G, A, B), the chord CΔ is [ C, G, E, B ].  

Carrying out a descending chromatism, B is linked to A, so we obtain [ C, G, E, 
A ], which is the Am7 chord in the wrong order [ A, E, C, G ]. 

CΔ can be followed by Am7. 

Once again, Table 11.2 shows the details of the path of the progression. 

Degrees    1 2 3 4 5 6 7  
Notes G A B C D E F G A B C 

            

initial chord 
CΔ    x  x  x  x  

harmonic 
content    tonic  

third 
major 
of the 
tonic 

2 tones

 
fifth 

3 tones 
1/2 

 
fifth of 

the 
third 

 

frequency    fo = fundamental  fo × 5/4  fo × 3/2  fo × 7/4  

descending 
chromatism    x  x  X x   

reorganized  x  x  x  X    

final chord 
Am7 

 tonic  

third 
minor 

of the tonic 
1 tone 1/2 

 
fifth 

3 tones 
1/2 

 
fifth of 

the 
third 

   

frequency  fo' = fundamental  = fo"  fo' × 3  fo" × 3    

Table 11.2. Example: the path from CΔ to Am. For a color version  
of this table, please see www.iste.co.uk/paret/musical.zip 
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The ensemble and compilation of three detailed examples of preparations of 
series of chord using descending chromatism, which we have chosen to present 
above, ultimately gives the chord progression CΔ, Am7, Dm7, G7, CΔ, which, as it 
starts at a CΔ and returns to a CΔ, forms the classic progression known as “perfect 
cadence”, conventionally called “anatole”, or the progression written as (1) 6, 2, 5, 1 
or VI II V I explained here with the simple principle of descending chromatism.  

Table 11.3 gives an overview of the way of working. 

N°  Example: for the C major scale 

of  
degree 

of 
mode 

name of mode Type of 
chord 

content of 
the chord 

name of 
the chord 

reordered 
content 

1 I Ionian M or maj 
or Δ 

(C G E B) C1 CΔ C E G B 

6 VI Aeolian m7 13b or 
min7 13b 

(A C E G) A6 Am7 C E G A 

2 II Dorian m7 (D F A C) D2 Dm7 C D F A 

5 V Mixolydian 7 (G B D F) G5 G7 B D F G 

1 I Ionian M or maj 
or Δ 

(C G E B) C1 CΔ B C E G 

Table 11.3. Classic progression known as “perfect cadence” 

With each change/succession of a chord whose content has been reordered, only 
one or two fingers (indicated in bold) change position in relation to the previous chord 
to play the next one. On the keyboard of a piano, therefore, maintaining the harmony 
in the chord progression, the movement of the left hand playing the accompaniment is 
very slight.  

11.2. Codes employed for writing progressions 

NOTE.– For a color version of section 11.2, please see www.iste.co.uk/paret/ 
musical.zip. 

Before going any further in this chapter, here are the codes which we shall use to 
codify (and decrypt) all of the tables and progression grids presented below. 
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In addition, these progression grids are sorted and classified depending on the 
number of chords making up the progressions and the name of the initial key of the 
chords.  

The number shown in the first column is a note of assessment of the harmonious 
aspect of the progression. That number corresponds to the probability of finding that 
progression using the descending chromatism rule: the higher the note is (out of 100), 
the better the progression sounds. On the other hand, the more complex the progression, 
the less chance we have of finding it, and therefore its assessment note is lower. 

The second number (second column) is the number of possible chords making up the 
progression (to avoid producing too weighty a tome, the maximum number of chords 
present in a progression has deliberately been limited to 14-15 chords for the most 
complex progressions, and can be reduced to 6 or 7 for the more conventional ones). 

The purpose of the T in the third column is to indicate, at the start of the 
progression, the key or tone in which we start, or during the progression that a key 
change is going to take place. 

Where we find a column showing the T, the next column indicates the (new) key 
of the scale to be used and its type (M major, m minor, B blues, TT whole tone) – a key 
which would then become that of the current scale. 

Note that, for simplification purposes of the design of the composition-support 
software, the I degree of the scale, which is traditionally written as Δ, is also indicated by 
an M (for Major). A C major, often written as CΔ, is therefore represented as CM 
here. 

Finally, the next column(s) give(s) a concrete list of the chords to be played.  

N.B. The couples “notes – numbers” to be played, displayed after the key of the 
scale, correspond to their degrees in the scale at hand (see the detailed example later 
on). 

For ease of writing, these numbers are given in Arabic numerals, whereas they 
should normally be presented in Roman numerals. For instance, where you see E3, 
read E III in the key of the scale in which we are playing (see example later on in 
this chapter). 

11.2.1. Key changes in a progression  

Here are a few important remarks on the subject of key changes. 
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Here and there, in numerous progressions, we see the appearance of a letter “T” 
which, as indicated above, corresponds to a key change during the progression. 
Indeed, a minor seventh “m7” chord may be a Dorian, a Lydian, a Phrygian, or even 
an Aeolian. Thus, several scales are available for the same chord, so there are possible 
(or necessary) key changes during the same series of chords (progression) in order to 
adapt to the melody. In this case, as indicated above, in the writing of the progression 
of the series of chords, the key change is indicated by the presence of the letter T, 
immediately followed by the new key to be applied to the new scale.  

NOTE.– This point is important, because descending chromatism is carried out and 
must only be performed on the notes in the scale (major, minor, blues, whole-tone, 
etc.) at hand. 

EXAMPLES.– As a function of the name of the chord following the letter T, the scales 
used thereafter in the progression are as follows: 

T CM  C D E F G A B 
T Cm  C D Eb F G Ab B 
T CB  C D Eb F Gb G Bb 
T CTT  C D E Gb Ab Bb  

 
T DbM  Db Eb F Gb Ab Bb C 
T Dbm  Db Eb E Gb Ab A C 
T DbB  Db Eb E Gb G Ab B 
T DbTT  Db Eb F G A B  

 
T DM  D E Gb G A B Db 
T Dm  D E F G A Bb Db 
T DB  D E F G Ab A C 
T DTT  D E Gb Ab Bb C  

 
T EbM  Eb F G Ab Bb C D 
T Ebm  Eb F Gb Ab Bb B D 
T EbB  Eb F Gb Ab A Bb Db 
T EbTT  Eb F G A B Db  

 
T EM  E Gb Ab A B Db Eb 
T Em  E Gb G A B C Eb 
T EB  E Gb G A Bb B D 
T ETT  E Gb Ab Bb C D  
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T FM  F G A Bb C D E 
T Fm  F G Ab Bb C Db E 
T FB  F G Ab Bb B C Eb 
T FTT  F G A B Db Eb  

 
T GbM  Gb Ab Bb B Db Eb F 
T Gbm  Gb Ab A B Db D F 
T GbB  Gb Ab A B C Db E 
T GbTT  Gb Ab Bb C D E  

 
T GM  G A B C D E Gb 
T Gm  G A Bb C D Eb Gb 
T GB  G A Bb C Db D F 
T GTT  G A B Db Eb F  

 
T AbM  Ab Bb C Db Eb F G 
T Abm  Ab Bb B Db Eb E G 
T AbB  Ab Bb B Db D Eb Gb 
T AbTT  Ab Bb C D E Gb  

 
T AM  A B Db D E Gb Ab 
T Am  A B C D E F Ab 
T AB  A B C D Eb E G 
T ATT  A B Db Eb F G  

 
T BbM  Bb C D Eb F G A 
T Bbm  Bb C Db Eb F Gb A 
T BbB  Bb C Db Eb E F Ab 
T BbTT  Bb C D E Gb Ab  

 
T BM  B Db Eb E Gb Ab Bb 
T Bm  B Db D E Gb G Bb 
T BB  B Db D E F Gb A 
T BTT  B Db Eb F G A  

Table 11.4. Scales in the progression as  
a function of the chord following the letter T  
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11.2.2. Detailed example of decoding of progressions 

For instance, let us consider the case of the progression: 

34 9 T CM C1 A6 F4 T BbM F5 T CM D2 B7 G5 E3 C1  

Here is how to read it and decode it step by step: 

34 is the note of assessment, out of 100, of the harmonious aspect of the 
progression presented. 

9 means that it is a chord progression which has 9 chords. 

T CM: we are starting in C major, CM. 

C1 : 1st chord C1 or C I, so in CM, made up of the notes C, E, G, B, which form 
a CM. 

A6: 2nd chord A6 or A VI, still in CM, made up of the notes A, C, E, G, which 
form an Am7. 

F4 : 3rd chord F4 or F IV, still in CM, made up of the notes F, A, C, E, which 
form an FM9b. 

T BbM: note that we are changing key to Bb major! 

F5: 4th chord F5 or FV in the scale of BbM: it is made up of the notes F A C Eb, 
which form an F7. 

T CM: N.B.: we are shifting back to the key of C major CM! 

D2: 5th chord D2 or D II, so in CM, made up of the notes D, F, A, C, which form 
a Dm7. 

B7: 6th chord B7 or B VII, so in CM, made up of the notes B, D, F, A, which 
form a Bm7. 

G5: 7th chord G5 or G V, so in CM, made up of the notes G, B, D, F, which form 
a G7. 

E3: 8th chord E3 or E III, so in CM, made up of the notes E, G, B, D, which form 
an Em7. 

C1: 9th chord C1 or C I, so in CM, made up of the notes C, E, G, B, which form 
a CM. 
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Throughout this chapter, we shall present these progressions in table form, as 
follows: 

 key i.e. on a 
scale of 

through a 
chord 

indication of the 
degree of the 

chord in the scale 
in question 

formed of 
triads 
(with 4 
notes!) 

name of 
the 

chord 
played 

We start with 
a key of 

CM C D E F G 
A B 

C1 C D E F G A B C E G B CM 
A6 C D E F G A B A C E G Am7 
F4 C D EF G A B F A C E FM9b 

Key  change 
to 

BbM Bb C D Eb 
F G A  

F5 Bb C D EbF G A F A C Eb F7 

New key 
change to 

CM C D E F G 
A B 

D2 C D E F G A B D F A C Dm7 
B7 C D E F G A B B D F A Bm7 
G5 C D E F G A B G B D F G7 
E3 C D E F G A B E G B D Em7 
C1 C D E F G A B C E G B CM 

Table 11.5. Detailed example of how to decode progressions 

Table 11.6 shows the example (in light grey) of the position of the fingers on the 
keys of a keyboard to play that progression and demonstrates how little the fingers and 
hand move because of the phenomenon of descending chromatism (shown in dark 
grey) in the step-by-step progression of the chords. 

key  final 
chord 

 

C  D  E F  G  A  B C 

CM C1 CM              
A6 Am7              
F7 FM              

BbM F5 Fa7              
CM D2 Dm7              

B7 Bm7              
G5 G7              
E3 Em7              
C1 CM              

Table 11.6. Position of the fingers on a keyboard to play this progression  
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11.3. Hundreds, thousands of substitution progressions… 

In this chapter, you will find numerous lists of harmonic progressions, but for 
reasons of limitation of the number of pages and ease of use, the lists presented are 
only partial. However, PDFs are available showing complete progressions and in all 
keys. Note also that a software tool to help read these progressions will soon be 
available on IOS and MacOS. It is a good idea to check whether it is available yet 
from the App Store. Further information can also be obtained by e-mail: 
handbook@sibony.net. 

The series of progressions presented later on in this book are complete and 
coherent, meaning that the harmonic rule of descending chromatism is applied by taking 
into account the whole chords, unlike progressions which could be based solely on a 
restricted part of chords. Of course, it is always possible to leave out one or more 
chords from this series of progressions to obtain the maximum number of chords 
desired knowing that: 

– conventionally, by habit, atonal chords, preceded by a T and a new key, are 
often the first to be omitted; 

– it is customary to leave out as many chords from a progression as we wish; the 
harmonic rule of descending chromatism is no longer applied exactly, and the ear is 
left as the sole judge of the harmonic quality of the progression. 

11.3.1. Major scale, the best of 

The seven tables making up Table 11.7 illustrate a practical approach to the 
analysis of harmonic progressions. This means we can obtain progressions in successive 
steps. However, working with transposed, complete lists of progressions is still an 
infinitely more practical approach.  

In order to describe this approach, each grid lists the chords and the degree 
harmonically close of the base chord in C, for each of the seven possible degrees of 
the scale. In addition, they are accompanied by a playability value, which represents 
the ease of finding a harmonic progression with the next chord. The maximum value 
100 corresponds to direct relations via descending chromatisms, and after that we 
list the couples of chords which harmonize best with one another. 
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Playability from To  Playability From to 
100 C1 F4 95 C2 F5 
87 C1 D2 83 C2 D3 
81 C1 B7 76 C2 Bb1 
77 C1 A6 73 C2 A7 
67 C1 G5 64 C2 G6 
57 C1 E3 54 C2 Eb4 
48 C1 C1 45 C2 C2 

 
Playability from To  Playability From to 

83 C3 F6 92 C4 Gb1 
69 C3 Db4 82 C4 D5 
67 C3 Bb2 79 C4 B3 
63 C3 Ab1 75 C4 A2 
56 C3 G7 64 C4 G1 
48 C3 Eb5 55 C4 E6 
41 C3 C3 48 C4 C4 

 
Playability from To  Playability From to 

94 C5 F1 97 C6 F2 
80 C5 D6 84 C6 D7 
73 C5 Bb4 80 C6 Bb6 
73 C5 A3 74 C6 Ab4 
61 C5 G2 66 C6 G3 
52 C5 E7 56 C6 Eb1 
44 C5 C5 47 C6 C6 

 
Playability from To 

87 C7 F3 
75 C7 Db1 
70 C7 Bb6 
65 C7 Ab5 
57 C7 Gb4 
50 C7 Eb2 
41 C7 C7 

Table 11.7. Practical approach to the analysis of harmonic progressions.  
For a color version of this table, please see www.iste.co.uk/paret/musical.zip 
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11.3.1.1. How to use these seven tables 

Example of an application to Table 11.7: 

– start with CM, which is a C1 on the C major scale; 

– in the first premier table (light grey), take a couple of chords which sounds 
good: C1 to A6, with a score of 77 (no problem, because a playability value greater 
than 50 is good harmonically; it sounds good); 

– we then look for what to put with the A6. We transpose by three semitones to 
C6, and look at the sixth table (dark grey); 

– C6 sounds good with F2 with a score of 97. We come back to A6 by 
retransposing by a tone and a half. F2 becomes D2; 

– we look for what to put with the D2. We transpose by a tone to C2 and take the 
second table (light grey); 

– C2 sounds good with F5, with a score of 95. We come back to D2 by 
retransposing by a tone. F5 becomes a G5; 

– we look for what to put with the G5. We transpose by a fifth to C5, and look at 
the fifth table (dark grey); 

– C5 sounds good with F1, with a score of 94. We retranspose by a fifth and 
obtain a C1. 

Using these seven tables, we find the anatole: C1 A6 D2 G5 C1, which translates 
to CM Am7 Dm7 G7 CM. 

With these tables, we can also estimate the playability of the progression by 
weighting the playability of each couple by the score that the whole progression would 
have with playability values of 100. Here, we obtain: 

77 97 95 94 100 67
100 100 100 100

=× × × ×
× × ×  

That same approach can be applied to any progression. 

Obviously, as pointed out at the start of this section, it is infinitely more practical to 
work with transposed, complete lists of progressions! 

11.3.2. List of harmonious progressions 

To begin with, based on the C Major scale, here are two simple examples of 
construction by descending chromatic progressions starting at a C1 in CM, and 
always returning in CM to a C1. 
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11.3.2.1. First example, known as “perfect cadence or rhythm changes” 

in the scale of CM C1 C E G B 

we descend B  C E G A 

 we obtain A6, which, in the scale  of CM, is 
written A C E G 

then we descend E and G  A C D F 

 we obtain D2, which, in the scale  of CM, is 
written D F A C 

then we descend A and C  D F G B 

 we obtain G5, which, in the scaleof  CM, is 
written G B D F 

then we descend D and F  G B C E 

 we obtain C1, which, in the scale of CM, is 
written C E G B 

Table 11.8. Harmonious descending-chromatism progressions 

Thus, ultimately, in the key of CM, starting and ending at C1, we have a progression 
of five successive chords C1 A6 D2 G5 C1 (this is the progression numbered 82 in 
the list below).  

 key i.e. on a scale 
of 

through a 
chord 

indication of the 
degree of the 

chord in the scale 
in question 

formed of 
triads 
(with 4 
notes) 

name of 
the 

chord 
played 

We find 
ourselves 
in a key 
of 

CM C D E F G A B C1 C D E F G A B C E G B CM 

A6 C D E F G A B A C E G  Am7 

D2 C D E F G A B D F A C Dm7 

G5 C D E F GA B G B D F G7 

C1 CD E F G A B C E G B CM 

Table 11.9. Summary. For a color version of this  
table, please see www.iste.co.uk/paret/musical.zip 
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11.3.2.2. Second example, known as “passage to the tritone” 

We start in the scale of CM C1 C E G B 
We move to the scale of GM: T GM   

We descend the G and B The descent from G to Gb gives the 
tritone interval from  C to Gb C E GbA 

 we obtain Gb7 (GM) Gb A C E 

We return to the scale of CM: T CM   

Then we descend the Gb  F A C E 
 we obtain F4(CM) F A C E 

Then we descend the C and E  F A BD 
 we obtain B7 (CM) B D F A 

Then we descend the A  B D F G 
 we obtainG5(CM) G B D F 

Then we descend the D and F  G B CE 
 we obtain C1 (CM) C E G B 

Table 11.10. An alternative to the first example. For a color version  
of this table, please see www.iste.co.uk/paret/musical.zip 

Thus, ultimately, starting in the key of CM, after passing through GM and 
returning to CM, we have an overall progression of 6 chords T CM C1 T GM Gb7 T 
CM F4 B7 G5 C1 and two key changes (this is the progression numbered 53 in the 
list below).  

 key i.e. on a scale 
of 

through 
a chord 

indication of the 
degree of the 
chord in the 

scale in question

formed 
of triads  
(with 4 
notes) 

name of 
the 

chord 
played 

We find 
ourselves in 
a key of 

CM C D E F G A B  C1 C D E F G A B C E G B CM 

Keychangeto GM G A B C D E 
Gb  
 

Gb7 G A B C D E Gb 
 

Gb A C E 
 

Gbo 

New key 
change to 

CM C D E F G A B F4 C D EFG A B F A C E F7 
B7 C D E F G A B B D F A Bo 
G5 C D E F GA B G B D F G7 
C1 C D E F G A B C E G B CM 

Table 11.11. Summary. For a color version of this  
table, please see www.iste.co.uk/paret/musical.zip 
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11.3.2.3. Examples of harmonious progressions 

The approach suggested at the presentation of the seven tables above is 
functional, but is not able to directly give progressions, going from a given chord to 
another. For this, we need to move step by step, and continually transpose/retranspose, 
which renders the technique somewhat complex – hence the usefulness of drawing up 
systematic lists of progression in which we merely need to look up the couple of 
chords – “start, end” – to be studied. We then obtain a list (see ebooks) that is much 
more practical to use: one for each type of scale (major, minor, blues, whole-tone). 

Following the two (simple) examples discussed above, let us put them into 
practice!  

Using the same type of structure, e.g. on the scale C Major (CM) scale, from CM to 
CM and starting at C1 and returning to C1, here is the complete reproduction of the 
numerous tables and grids of progressions which sound good.  

EXAMPLE OF A LIST.–   

on the basis of the scale    CM : C D E F G A B  

search for chromatisms starting from     C : [ C G E B ], which is a C1 

to 

on the basis of the scale    CM: C D E F G A B  

                                           C: [ C G E B ], which is a C1 

Table 11.12 deliberately sheds light on the chord changes throughout the 
proposed harmonic progressions, and the playability scores indicated in these lists, 
which are different to those composed with the above seven tables, because in these 
lists the standard of measurement  is different and corresponds to the probability of 
obtaining the progression in its entirety with only the descending chromatism rule. 

 Table of chord progressions 

100 5 T CM C1 F4 B7 G5 C1           

82 C1 A6 D2 G5 C1           

79 C1 F4 B7 E3 C1           

74 C1 F4 D2 G5 C1           

58 6 
 

C1 A6 F4 B7 G5 C1          

53 C1 T GM Gb7 T CM F4 B7 G5 C1      

51 C1 A6 D2 B7 G5 C1          

51 C1 F4 B7 G5 E3 C1          
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51 C1 F4 D2 B7 G5 C1          

49 C1 T FM C5 T CM F4 B7 G5 C1      

41 C1 T FM C5 T CM F4 D2 G5 C1      

40 C1 A6 F4 B7 E3 C1          

40 C1 A6 F4 D2 G5 C1          

39 C1 F4 D2 B7 E3 C1          

39 C1 F4 D2 G5 E3 C1          

39 C1 T GM Gb7 T CM F4 D2 G5 C1      

38 C1 A6 T GM D5 T CM D2 G5 C1      

38 C1 T FM C5 T CM F4 B7 E3 C1      

37 C1 A6 D2 B7 E3 C1          

37 C1 T GM Gb7 T CM F4 B7 E3 C1      

36 C1 A6 D2 G5 E3 C1          

36 C1 A6 T BbM F5 T CM D2 G5 C1      

35 C1 F4 B7 G5 T DM Db7 T CM C1      

31 C1 F4 T BbM F5 T CM B7 G5 C1      

28 C1 F4 T BbM F5 T CM D2 G5 C1      

26 C1 F4 B7 T AM E5 T CM E3 C1      

26 C1 F4 T BbM F5 T CM B7 E3 C1      

26 C1 T FM C5 T CM A6 D2 G5 C1      

25 C1 A6 D2 G5 T DM Db7 T CM C1      

25 C1 A6 D2 T EbM D7 T CM G5 C1      

25 C1 F4 D2 G5 T DM Db7 T CM C1      

25 7 C1 A6 T GM D5 T CM D2 B7 G5 C1     

24 6 
 

C1 F4 B7 E3 T DM Db7 T CM C1      

24 C1 F4 D2 T EbM D7 T CM G5 C1      

24 7 C1 A6 F4 D2 B7 G5 C1         

24 C1 F4 D2 B7 G5 E3 C1         

24 C1 T GM Gb7 T CM F4 B7 G5 E3 C1     

24 C1 T GM Gb7 T CM F4 D2 B7 G5 C1     

23 C1 A6 D2 B7 G5 E3 C1         

23 C1 T FM C5 T CM F4 B7 G5 E3 C1     

23 C1 T FM C5 T CM F4 D2 B7 G5 C1     

22 C1 A6 F4 B7 G5 E3 C1         

22 C1 A6 T BbM F5 T CM D2 B7 G5 C1     

20 C1 A6 T BbM F5 T CM D2 B7 E3 C1     

19 C1 A6 F4 D2 B7 E3 C1         

C1 T FM C5 T CM F4 D2 G5 E3 C1     

C1 T GM Gb7 T CM F4 D2 B7 E3 C1     

C1 T GM Gb7 T CM F4 D2 G5 E3 C1     

18 C1 A6 F4 D2 G5 E3 C1         
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C1 A6 T BbM F5 T CM D2 G5 E3 C1     

C1 A6 T GM D5 T CM D2 B7 E3 C1     

C1 A6 T GM D5 T CM D2 G5 E3 C1     

17 C1 A6 F4 T BbM F5 T CM B7 G5 C1     

C1 A6 T GM Gb7 T CM F4 B7 G5 C1     

C1 T FM C5 T CM A6 F4 B7 G5 C1     

C1 T FM C5 T CM F4 B7 G5 T DM Db7 T CM C1 

C1 T FM C5 T CM F4 D2 B7 E3 C1     

C1 T FM C5 T CM F4 T BbM F5 T CM B7 G5 C1 

C1 T GM Gb7 T CM F4 T BbM F5 T CM B7 G5 C1 

16 C1 A6 D2 B7 G5 T DM Db7 T CM C1     

C1 A6 F4 B7 G5 T DM Db7 T CM C1     

C1 F4 B7 G5 E3 T DM Db7 T CM C1     

C1 F4 T BbM F5 T CM D2 B7 G5 C1     

15 C1 A6 T GM Gb7 T CM F4 D2 G5 C1     

C1 F4 D2 B7 G5 T DM Db7 T CM C1     

C1 F4 T BbM F5 T CM B7 G5 E3 C1     

C1 T FM C5 T CM A6 D2 B7 G5 C1     

C1 T GM Gb7 T CM F4 B7 G5 T DM Db7 T CM C1 

14 C1 A6 T GM Gb7 T CM F4 B7 E3 C1     

13 C1 A6 D2 T EbM D7 T CM G5 E3 C1     

C1 A6 F4 B7 E3 T DM Db7 T CM C1     

C1 A6 F4 D2 G5 T DM Db7 T CM C1     

C1 A6 F4 D2 T EbM D7 T CM G5 C1     

C1 A6 F4 T BbM F5 T CM B7 E3 C1     

C1 A6 F4 T BbM F5 T CM D2 G5 C1     

C1 A6 T BbM F5 T CM D2 G5 T DM Db7 T CM C1 

C1 A6 T GM D5 T CM D2 G5 T DM Db7 T CM C1 

C1 F4 D2 B7 E3 T DM Db7 T CM C1     

C1 T FM C5 T CM A6 F4 B7 E3 C1     

C1 T FM C5 T CM A6 F4 D2 G5 C1     

C1 T FM C5 T CM A6 T BbM F5 T CM D2 G5 C1 

C1 T FM C5 T CM F4 B7 E3 T DM Db7 T CM C1 

C1 T GM Gb7 T CM F4 B7 T AM E5 T CM E3 C1 

C1 T GM Gb7 T CM F4 D2 G5 T DM Db7 T CM C1 

C1 T GM Gb7 T CM F4 T BbM F5 T CM D2 G5 C1 

12 
 

C1 A6 D2 B7 T AM E5 T CM E3 C1     

C1 A6 D2 G5 E3 T DM Db7 T CM C1     

C1 A6 F4 B7 T AM E5 T CM E3 C1     

C1 A6 T BbM F5 T CM D2 T EbM D7 T CM G5 C1 

C1 F4 T BbM F5 T CM D2 G5 E3 C1     
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C1 T FM C5 T CM A6 D2 G5 E3 C1     

C1 T FM C5 T CM A6 T GM D5 T CM D2 G5 C1 

C1 T FM C5 T CM F4 B7 T AM E5 T CM E3 C1 

C1 T FM C5 T CM F4 D2 G5 T DM Db7 T CM C1 

C1 T FM C5 T CM F4 T BbM F5 T CM B7 E3 C1 

C1 T FM C5 T CM F4 T BbM F5 T CM D2 G5 C1 

C1 T GM Gb7 T CM F4 T BbM F5 T CM B7 E3 C1 

8 C1 A6 F4 D2 B7 G5 E3 C1        

11 
 

7 C1 A6 D2 B7 E3 T DM Db7 T CM C1     

C1 A6 T GM D5 T CM D2 T EbM D7 T CM G5 C1 

C1 F4 D2 B7 T AM E5 T CM E3 C1     

C1 F4 D2 G5 E3 T DM Db7 T CM C1     

C1 F4 D2 T EbM D7 T CM G5 E3 C1     

C1 F4 T BbM F5 T CM B7 G5 T DM Db7 T CM C1 

C1 F4 T BbM F5 T CM D2 B7 E3 C1     

C1 T FM C5 T CM F4 D2 T EbM D7 T CM G5 C1 

C1 T GM Gb7 T CM F4 B7 E3 T DM Db7 T CM C1 

C1 T GM Gb7 T CM F4 D2 T EbM D7 T CM G5 C1 

10 C1 T FM C5 T CM A6 D2 B7 E3 C1     

 8   C1 A6 T BbM F5 T CM D2 B7 G5 E3 C1    

   C1 T FM C5 T CM F4 D2 B7 G5 E3 C1    

  C1 T GM Gb7 T CM F4 D2 B7 G5 E3 C1    

Table 11.12. Table of chord progressions. For a color version  
of this table, please see www.iste.co.uk/paret/musical.zip 

Table 11.2 shows the great many progressions possible just on the C Major (CM) 
scale, from CM to CM, and starting at C1 before returning to C1. It must be kept in 
mind that the same is true for all other keys and types of scales and it is simply 
beyond the scope of this book to publish them all here. 

11.3.2.4. Irreducible progressions 

As indicated earlier, in all the tables presented here, deeming that it was sufficient 
in terms of the calculation, we have arbitrarily set ourselves a maximum value (a 
limitation) of 14 chords per progression. In this context, it should be noted that for 
certain couples of chords (such as moving from C3 to Db7 for instance), it is 
impossible to find a harmonious series of progressions. To resolve this type of 
change, therefore, we need to use an additional intermediary chord in order to find a 
suitable progression.  
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EXAMPLE OF THE MOVE FROM C3 TO DB7.–  Let us take the example of the passage 
from C3 to Db7. In this case, we can go through the intermediary chord F5, for 
example, as follows:  

– we make a first step from C3 to F5; 

– then, we take a second step from F5 to Db7. 

We then obtain and choose, for example, for C3 to F5: 

 100 2 T AbM C3 T BbM F5  

Then, we search through the (lengthy) lists for the link between F5 and Db7: 

 100 5 T BbM F5 T CM D2 B7 T DM E2 Db7  
  78 5 T BbM F5 T CM D2 G5 T DM E2 Db7  
  44 4 T BbM F5 T CM D2 G5 T DM Db7  
  44 6 T BbM F5 T CM D2 B7 G5 T DM E2 Db7  
  33 5 T BbM F5 T CM D2 B7 E3 T DM Db7  
  33 6 T BbM F5 T CM D2 T EbM D7 T CM G5 T DM E2 Db7  
  22 6 T BbM F5 T CM D2 B7 T AM E5 T DM E2 Db7 

We choose to use the first solution in this list:  

100 5 T BbM F5 T CM D2 B7 T DM E2 Db7 

Thus, we can deduce the final progression: 

 6 T AbM C3 T BbM F5 T CM D2 B7 T DM E2 Db7  

The principle, then, is to arbitrarily place an intermediary chord to link the two 
parts of the sequence, before and after it. 

Fortunately, such cases are very rare and we can almost always find a result by 
looking for progressions.  

11.4. Chromatism in “standards” 

Let us return now to the case of chromatisms. When we closely examine the 
progressions typically used in jazz standards (e.g. those presented in the Real Book), 
we see that the king of the progressions is the descending chromatism. By extension, 
we find symmetrical progressions (retracing the harmonic path in the opposite 
direction) which by its principle gives rise to ascending chromatisms but each time 
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we use a progression by ascending chromatism it is associated with an equivalent 
path in descending chromatism.  

Let us give some examples: 

From CM to CM 

3 CM B7 CM    Descending and then ascending 
4 CM FM GM CM   Descending and then ascending 
5 CM Am7 Dm7 G7 CM    Anatole so descending 
6 CM Eb7 AbM Dm7 G7 CM Anatole prepared by the E, so 

descending 
7 CM Dm7 Em7 FM Em7 Dm7 CM Ascending and then descending 
8 CM Bo E7 Am7 D7 Dm7 G7 CM  Anatole a little atonal so descending 
9 CM A7 Dm7 G7 Em7 A7 Dm7 G7 CM Double anatole so descending 

From CM to C7 

3 CM Gm7 C7    Ascending and then descending 
4 CM FM Gm7 C7   Descending and then ascending 
5 CM FM G7 CM C7      
6 CM Gb7 Cm7 F7 Gm7 C7     
7 CM Ebm7 Ab7 Dm7 G7 Gm7 C7    
8 CM Eb7 AbM B7 EM G7 Gm7 C7   
9 CM Gm7 C7 FM Fm7 Bb7 CM Gm7 C7  

From CM to Cm7 

3 CM Gb7 Cm7 
4 CM Em7 Am7 Cm7 
5 CM Gm7 C7 FM Cm7 
6 CM D7 Bb7 C7 Gb7 Cm7 
7 CM Dm7 Em7 F7 Cm7 F7 Cm7 
8 CM Dbm7 Gb7 Ebm7 Ab7 Dbm7 Gb7 Cm7 
9 CM Dm7 Em7 A7 Ebm7 Ab7 Dm7 G7 Cm7 

11.5. Families of descending chromatisms 

After a lengthy auditory verification of all these progressions, the next few 
paragraphs present a minimal/reduced portion of the results of the work done on 
descending harmonics, depending on the different keys of CM (scale major), Cm 
(minor scale), CB (blues scale), CTT (whole-tone scale) and give results classified by 
the number of descending chromatisms used to move from one chord to the next. 
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NOTES.– To validate or invalidate a type of progression, we are particularly 
interested in the anatole’s being present and correctly placed. 

The anatole is a harmonic series.  

The anatole on two measures is the following succession of chords: | I VI | II V |  

For example, in the key of CM7: | C Am7 | Dm7 G7 |  

The anatole can also be divided into 32 measures.  

The turnaround is a group of two measures situated at the end of a phrase of 
eight measures, leading in to the repetition of that phrase. It is true that we 
commonly play a variant of anatole at that point, but the term turnaround more 
specifically indicates a place within the piece of music. 

IMPORTANT NOTE.– In order to avoid uselessly overfilling this book, we have 
deliberately truncated the presentation of lists of progressions to around ten lines 
each, showing the most meaningful ones at the top of the lists, and the less 
significant ones at the bottom, just to give you an idea. As an addition, to obtain 
complete lists for each type of scale, you can send a request to 
handbook@sibony.net. 

11.5.1. Family: “1 chromatism at a time” 

Let us begin by examining the family of progressions where we make a single 
descending chromatism at a time to move from one chord to the next. 

11.5.1.1. In the major scale  

No chromatism of the fundamental: 

100 8 T CM C1 A6 F4 D2 B7 G5 E3 C1  
34  9 T CM C1 A6 F4 T BbM F5 T CM D2 B7 G5 E3 C1  
33  9 T CM C1 A6 F4 D2 B7 G5 E3 T DM Db7 T CM C1  
33  9 T CM C1 A6 T GM Gb7 T CM F4 D2 B7 G5 E3 C1  
33  9 T CM C1 T FM C5 T CM A6 F4 D2 B7 G5 E3 C1  
11 10 T CM C1 A6 F4 T BbM F5 T CM D2 B7 G5 E3 T DM Db7 T CM C1 
11 10 T CM C1 A6 T GM Gb7 T CM F4 D2 B7 G5 E3 T DM Db7 T CM C1 
11 10 T CM C1 A6 T GM Gb7 T CM F4 T BbM F5 T CM D2 B7 G5 E3 C1 
11 10 T CM C1 T FM C5 T CM A6 F4 D2 B7 G5 E3 T DM Db7 T CM C1  
11 10 T CM C1 T FM C5 T CM A6 F4 T BbM F5 T CM D2 B7 G5 E3 C1  
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In the first line, anatole is indeed present but is lost in other transitionary chords: 
C1 A6 F4 D2 B7 G5 E3 C1.  

Chromatism possible for the fundamental: 

100 8 T CM C1 A6 F4 D2 B7 G5 E3 C1  
34  9 T CM C1 A6 F4 D2 B7 G5 E3 T DM Db7 T CM C1  
34  9 T CM C1 A6 T GM Gb7 T CM F4 D2 B7 G5 E3 C1  
33  9 T CM C1 A6 F4 T BbM F5 T CM D2 B7 G5 E3 C1  
33  9 T CM C1 T FM C5 T CM A6 F4 D2 B7 G5 E3 C1  
12 10 T CM C1 A6 F4 T BbM F5 T CM D2 B7 G5 E3 T DM Db7 T CM C1  
11 10 T CM C1 A6 T GM Gb7 T CM F4 D2 B7 G5 E3 T DM Db7 T CM C1  
11 10 T CM C1 A6 T GM Gb7 T CM F4 T BbM F5 T CM D2 B7 G5 E3 C1  
11 10 T CM C1 T FM C5 T CM A6 F4 D2 B7 G5 E3 T DM Db7 T CM C1  
11 10 T CM C1 T FM C5 T CM A6 F4 T BbM F5 T CM D2 B7 G5 E3 C1  

No particular gain in relation to the version without chromatism of the 
fundamental. 

11.5.1.2. In the minor scale 

No chromatism of the fundamental: 

100 8 T Cm C1 Ab6 F4 D2 B7 G5 Eb3 C1  
 33  9 T Cm C1 Ab6 F4 D2 B7 G5 T Bm7 E4 T Cm Eb3 C1  
 33  9 T Cm C1 Ab6 T Dbm7 Ab5 T Cm F4 D2 B7 G5 Eb3 C1  
 1110 T Cm C1 Ab6 T Dbm7 Ab5 T Cm F4 D2 B7 G5 T Bm7 E4 T Cm Eb3 C1  

Still the same problem with the anatole. 

Chromatism possible for the fundamental: 

100 8 T Cm C1 Ab6 F4 D2 B7 G5 Eb3 C1  
 33  9 T Cm C1 Ab6 F4 D2 B7 G5 T Bm7 E4 T Cm Eb3 C1  
 33  9 T Cm C1 Ab6 T Dbm7 Ab5 T Cm F4 D2 B7 G5 Eb3 C1  
 1110 T Cm C1 Ab6 T Dbm7 Ab5 T Cm F4 D2 B7 G5 T Bm7 E4 T Cm Eb3 C1  

Still no particular gain. 

11.5.1.3. Blues scale 

No chromatism of the fundamental: 

100 8 T CB C1 G6 F4 D2 Bb7 Gb5 Eb3 C1  
33  9 T CB C1 G6 F4 D2 Bb7 Gb5 Eb3 T AbB Gb7 T CB C1  
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There is no anatole in the blues scale, but there is a progression inspired by it: C1 
G6 F4 D2 Bb7 Gb5 Eb3 C1. 

Possible chromatism of the fundamental: 

100 8 T CB C1 G6 F4 D2 Bb7 Gb5 Eb3 C1  
 33  9 T CB C1 G6 F4 D2 Bb7 Gb5 Eb3 T AbB Gb7 T CB C1  

No particular gain. 

11.5.2. Family: “up to two descending chromatisms at once” 

Let us now look at the family of progressions containing up to two descending 
chromatisms. To be precise about the terminology, when we move from one chord to 
the next, there can be at most two notes which simultaneously descend either by a 
semitone or by a tone depending on the scale in which we are working. 

11.5.2.1. In the major scale 

No chromatism of the fundamental: 

100 5 T CM C1 F4 B7 G5 C1  
 82  5 T CM C1 F4 B7 E3 C1  
 80  5 T CM C1 A6 D2 G5 C1  
 78  5 T CM C1 F4 D2 G5 C1  
 52  6 T CM C1 T GM Gb7 T CM F4 B7 G5 C1  
…………………. 
 36  6 T CM C1 T FM C5 T CM F4 B7 E3 C1  
 36  6 T CM C1 T GM Gb7 T CM F4 B7 E3 C1  
 
…………………………. 
 11  7 T CM C1 T FM C5 T CM F4 B7 T AM E5 T CM E3 C1  
 11  7 T CM C1 T GM Gb7 T CM F4 B7 T AM E5 T CM E3 C1  
 10  7 T CM C1 A6 D2 B7 E3 T DM Db7 T CM C1  

In this case, the progressions are much richer and we often find the following: 

– perfect cadence at the head of the progression (at 80):   80  5 T CM C1 A6 
D2 G5 C1  

– the tritone (at 36):     36  6 T CM C1 T GM Gb7 T CM F4 B7 E3 C1  

This point has been detailed earlier on in this chapter. 
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Possible chromatism of the fundamental: 

100 5 T CM C1 F4 B7 G5 C1  
 78  5 T CM C1 F4 D2 G5 C1  
 75  5 T CM C1 A6 D2 G5 C1  
 73  5 T CM C1 F4 B7 E3 C1  
 54  6 T CM C1 A6 F4 B7 G5 C1  
 51  6 T CM C1 T FM C5 T CM F4 B7 G5 C1  
 51  6 T CM C1 T GM Gb7 T CM F4 B7 G5 C1  
 49  6 T CM C1 A6 D2 B7 G5 C1  
 48  6 T CM C1 F4 B7 G5 E3 C1  
…………………………………………. 
 11  7 T CM C1 A6 T BbM F5 T CM D2 G5 T DM Db7 T CM C1  
 10  7 T CM C1 T FM C5 T CM F4 T BbM F5 T CM D2 G5 C1  
 10  8 T CM C1 T FM C5 T CM F4 D2 B7 G5 E3 C1  

This has little impact on the progressions. 

However, we also see the appearance of the tritone (at 51): 51  6 T CM C1 T GM 
Gb7 T CM F4 B7 G5 C1. 

11.5.2.2. In the minor harmonic scale (CM: C D Eb F G Ab B) 

No chromatism of the fundamental: 

100 5 T CM C1 F4 B7 Eb3 C1  
 98  5 T CM C1 F4 B7 G5 C1  
 97  5 T CM C1 Ab6 D2 G5 C1  
 97  5 T CM C1 F4 D2 G5 C1  
 47  6 T Cm C1 Ab6 D2 B7 Eb3 C1  
 47  6 T Cm C1 Ab6 D2 G5 Eb3 C1  
 47  6 T Cm C1 F4 D2 B7 Eb3 C1  
 47  6 T Cm C1 F4 D2 B7 G5 C1  
 47  6 T Cm C1 F4 D2 G5 Eb3 C1  
 46  6 T Cm C1 Ab6 F4 D2 G5 C1  
 46  6 T Cm C1 F4 B7 G5 Eb3 C1  
…………………………….. 
 11  7 T Cm C1 T Dbm Ab5 T Cm F4 D2 G5 T Em C6 T Cm C1  
 10  7 T Cm C1 T Dbm Ab5 T Cm F4 B7 G5 T Em C6 T Cm C1  
 10  8 T Cm C1 Ab6 F4 D2 B7 G5 Eb3 C1  

Still perfect cadence of the minor  mode (at 46): C1 Ab6 D2 G5 C1. 
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Possible chromatism at the fundamental: 

100 5 T Cm C1 F4 D2 G5 C1  
 98  5 T Cm C1 Ab6 D2 G5 C1  
 98  5 T Cm C1 F4 B7 G5 C1  
 96  5 T Cm C1 F4 B7 Eb3 C1  
 48  6 T Cm C1 Ab6 D2 G5 Eb3 C1  
 48  6 T Cm C1 F4 D2 G5 Eb3 C1  
………….... 
 14  7 T Cm C1 Ab6 T Am E5 T Cm F4 B7 Eb3 C1  
 14  7 T Cm C1 F4 D2 B7 G5 T Em C6 T Cm C1  
 14  7 T Cm C1 F4 D2 B7 T Bm E4 T Cm Eb3 C1  
 11  7 T Cm C1 T Dbm Ab5 T Cm F4 D2 G5 T Em C6 T Cm C1  
 10  8 T Cm C1 Ab6 F4 D2 B7 G5 Eb3 C1  

Still perfect cadence in the minor mode, but no particular gain. 

11.5.2.3. In the blues scale 

No chromatism of the fundamental: 

100 5 T CB C1 F4 Bb7 Gb5 C1  
76  5 T CB C1 G6 D2 Gb5 C1  
75  5 T CB C1 F4 D2 Gb5 C1  
73  5 T CB C1 F4 Bb7 Eb3 C1  
48  6 T CB C1 G6 D2 Bb7 Gb5 C1  
47  6 T CB C1 F4 Bb7 Gb5 Eb3 C1  
47  6 T CB C1 F4 D2 Bb7 Gb5 C1  
47  6 T CB C1 G6 F4 Bb7 Gb5 C1  
………………………………. 
11  7 T CB C1 G6 D2 T BB Gb6 T CB Gb5 Eb3 C1  
11  7 T CB C1 G6 F4 Bb7 T EB E1 T CB Eb3 C1  
11  8 T CB C1 G6 F4 D2 Bb7 Gb5 Eb3 C1  

A rather tortured cadence: G6 D2 Gb5 C1.  

Possible chromatism of the fundamental: 

100 5 T CB C1 F4 Bb7 Gb5 C1  
 75  5 T CB C1 F4 D2 Gb5 C1  
 75  5 T CB C1 G6 D2 Gb5 C1  
 73  5 T CB C1 F4 Bb7 Eb3 C1  
 48  6 T CB C1 G6 D2 Bb7 Gb5 C1  
 48  6 T CB C1 G6 F4 Bb7 Gb5 C1  
 45  6 T CB C1 F4 Bb7 Gb5 Eb3 C1  
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 44  6 T CB C1 F4 D2 Bb7 Gb5 C1  
………………………………….. 
 11  7 T CB C1 F4 D2 T BB Gb6 T CB Gb5 Eb3 C1  
 11  7 T CB C1 G6 D2 Bb7 Eb3 T AbB Gb7 T CB C1  
 10  8 T CB C1 G6 F4 D2 Bb7 Gb5 Eb3 C1  

Still the same type of cadence. 

11.5.3. Family: “up to 3 descending chromatisms at once” 

Let us now examine the family of progressions containing up to three descending 
chromatisms at once. 

11.5.3.1. In the major scale 

No chromatism of the fundamental: 

100  4 T CM C1 F4 B7 C1  
100  4 T CM C1 F4 G5 C1  
 96   4 T CM C1 A6 B7 C1  
 68  4 T CM C1 D2 B7 C1  
 64  5 T CM C1 T FM C5 T CM D2 B7 C1  
 64  5 T CM C1 T GM D5 T CM D2 B7 C1  
 63  5 T CM C1 T BbM F5 T CM D2 B7 C1  
 52  5 T CM C1 T GM Gb7 T CM F4 B7 C1  
…………………………….  
 10  6 T CM C1 T FM C5 T CM A6 D2 B7 C1  
 10  6 T CM C1 T FM C5 T CM F4 D2 G5 C1  
 10  6 T CM C1 T GM Gb7 T CM F4 D2 G5 C1  

We lose the perfect cadence; the shift by three chromatisms is too quick to allow 
a harmonious progression. 

11.5.4. Family: “up to 4 ascending and descending chromatisms at 
once” 

Curiouser and curiouser! Let us now examine the family containing up to four 
ascending and descending chromatisms at once. 
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11.5.4.1. In the major scale  

All chromatisms (both ascending and descending) are possible: 

100 3 T CM C1 B7 C1  
 76  3 T CM C1 D2 C1  
 30  3 T CM C1 A6 C1  
 30  3 T CM C1 E3 C1  
 29  3 T CM C1 G5 C1  
 21  3 T CM C1 F4 C1  
 16  4 T CM C1 T FM C5 T CM D2 C1  
 15  4 T CM C1 T FM C5 T CM B7 C1  
…………..  
10  4 T CM C1 D2 B7 C1  
10  4 T CM C1 E3 T DM Db7 T CM C1  

This being the case, we no longer find perfect cadence, but instead progressions 
with no clear harmonic logic. 

11.5.4.2. In the minor harmonic scale 

All ascending and descending chromatisms are possible, including the 
fundamental: 

100 3 T Cm C1 D2 C1  
 89  3 T Cm C1 B7 C1  
 36  3 T Cm C1 Ab6 C1  
 35  3 T Cm C1 Eb3 C1  
 27  3 T Cm C1 F4 C1  
 26  3 T Cm C1 G5 C1  
 26  4 T Cm C1 B7 Ab6 C1  
…………………………… 
12  4 T Cm C1 T Gbm Ab2 T Cm B7 C1  
11  4 T Cm C1 D2 B7 C1  
11  4 T Cm C1 Eb3 D2 C1  
10  4 T Cm C1 B7 D2 C1  

The lack of harmonic  markers makes it very difficult to find harmonious 
progressions. 

Up to two descending chromatisms the fundamental can shift: 

Take the example of the following two progressions: 

48  6 T Cm C1 Ab6 D2 G5 Eb3 C1  
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and: 

33  6 T Cm C1 T Dbm Ab5 T Cm F4 B7 Eb3 C1  

The first progression: 

48  6 T Cm C1 Ab6 D2 G5 Eb3 C1  

 

key i.e. on a scale of through 
a chord

indication of the 
degree of the chord 

in the scale  in 
question 

formed of triads 
(with 4 notes) 

We find 
ourselves in 
a key of 

Cm C D Eb F G Ab 
B  

C1 C D Eb F G Ab B C Eb G B 
Ab6 C D Eb F G Ab B Ab C Eb G 
D2 C DEb F G Ab B D F Ab C 
G5 C D Eb F GAb B G B D F 
Eb3 C D EbF G Ab B Eb G B D 
C1 C D Eb F G Ab B C Eb G B 

Table 11.13. Summary. For a color version of this  
table, please see www.iste.co.uk/paret/musical.zip 

The second progression: 33  6 T Cm C1 T Dbm7 Ab5 T Cm F4 B7 Eb3 C1.  

This is in Cm7, with two key changes (a switch up to Dbm and then a return to 
CM). 

 

key i.e. on a scale of through a 
chord 

indication of the 
degree of the 

chord in the scale
in question 

formed of 
triads 
(with 4 
notes) 

We find ourselves 
in a key of 

Cm C D Eb F G Ab B  C1 C D Eb F G Ab B C Eb G B 

Key change to Dbm Db Eb E Gb Ab A C Ab5 Db Eb E Gb Ab A 
C  

Ab C Eb Gb 

New key change to Cm C D Eb F G Ab B  F4 C D EbFG Ab B F Ab C Eb 
B7 C D Eb F G Ab B B D F Ab 
Eb3 C D Eb F G Ab B Eb G B D 
C1 C D Eb F G Ab B C Eb G B 

Table 11.14. A different way of working. For a color version  
of this table, please see www.iste.co.uk/paret/musical.zip 
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11.5.4.3. In a whole-tone scale 

Up to two descending chromatisms, with the fundamental itself being able to 
move: 

For pleasure, the progressions of a whole-tone: scale: 

100 3 T CTT C1 Bb6 C1  
 78  5 T CTT C1 Gb4 D2 Ab5 C1  
 27  5 T CTT C1 Bb6 D2 Ab5 C1  
 24  6 T CTT C1 Bb6 Gb4 D2 Ab5 C1  
 24  6 T CTT C1 Gb4 D2 Ab5 Bb6 C1  
 24  6 T CTT C1 Gb4 D2 Ab5 E3 C1  

11.5.4.4. In the same key  

Case where the chords are different at the start and end of the progression: 

Starting at a C1 in CM and coming to an F4 in CM: 

100 2 T CM C1 F4  
 65  3 T CM C1 A6 F4  
 48  3 T CM C1 T FM C5 T CM F4  
 47  3 T CM C1 T GM Gb7 T CM F4  
 21  4 T CM C1 A6 T GM Gb7 T CM F4  
 21  4 T CM C1 T FM C5 T CM A6 F4  

EXAMPLE.– chromatisms on 21  4 T CM C1 A6 T GM Gb7 T CM F4.  

 

Key i.e. on a 
scale de 

through a 
chord 

indication of the 
degree of the 

chord in the scale 
in question 

formed of 
triads 
(with 4 
notes) 

name of 
the 

chord 
played 

We find 
ourselves in 
a key of 

CM C D E F G 
A B   

C1 C D E F G A B  C E G B CM 
A6 C D E F G A B  A C E G Am7 

Key change 
to 

GM G A B C D 
E Gb  

Gb7 G A B C D EGb Gb A C E Gbo 

New key 
change to 

CM C D E F G 
A B  

F4 C D E F G A B  F A C E FM 
 

Table 11.15. Summary. For a color version of this  
table, please see www.iste.co.uk/paret/musical.zip 
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and starting at an F1 on FM to come to a B on CM: 

100  2 T FM F1 T CM B7  
 91  3 T FM F1 T CM D2 B7  
 31  3 T FM F1 D6 T CM B7  
 28  4 T FM F1 T BbM F5 T CM D2 B7  

EXAMPLE.– on the chromatisms  28  4 T FM F1 T BbM F5 T CM D2 B7.  

 key i.e. on a scale 
of 

through a 
chord 

indication of the 
degree of the 

chord in the scale 
in question 

formed of 
triads  
(with 4 
notes) 

name of 
the 

chord 
played 

We find 
ourselves in a 
key of 

FM F G A Bb C D 
E 

F1 F G A Bb C D E F A C E FM 

Key change 
to 

BbM Bb C D Eb F G 
A  

F5 Bb C D EbF G A  F A C Eb F7 

New key 
change to 

CM C D E F G A B D2 C D E F G A B  D F A C Dm7 
B7 C D E F G A B B D F A Bo 

 

Table 11.16. Summary. For a color version of this  
table, please see www.iste.co.uk/paret/musical.zip 

We start at a C1 and come to a CM C#1 on C#. 

How can we resolve the ascending chromatism? 

100 11 T CM C1 T GM Gb7 T FM F1 D6 T EbM Bb5 G3 T FM C5 T EbM 
C6 T DbM Ab5 F3 Db1  
100  9 T CM C1 F4 T BbM D3 G6 T AbM Eb5 T EbM C6 T DbM F3 T 
EbM D7 T DbM Db1  

It is not easy, then! 

We start at a C1 and come to a CM C#3 on A: 

100 11 T CM C1 T FM C5 T CM F4 D2 G5 T DM E2 A5 T AM Gb6 D4 
Ab7 Db3  
100 15 T CM C1 F4 B7 T DM E2 T FM E7 T DM A5 D1 G4 Db7 A5 T EM 
Eb7 T AM D4 B2 E5 Db3  
100 18 T CM C1 T GM Gb7 T CM F4 D2 B7 T GM E6 T FM C5 T GM A2 
Gb7 D5 B3 T CM G5 T GM E6 C4 Gb7 T AM B2 E5 Db3  
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100 19 T CM C1 T GM A2 T BbM A7 T GM D5 B3 T CM G5 T DM E2 
Db7 Gb3 T GM D5 T DM B6 G4 E2 A5 D1 T AM B2 Ab7 E5 Db3  
100  6 T CM C1 T GM A2 D5 T AM B2 E5 Db3  
100  6 T CM C1 T GM A2 Gb7 T AM B2 E5 Db3  
100  7 T CM C1 T FM C5 T GM A2 Gb7 T AM B2 Ab7 Db3  
100  7 T CM C1 T FM C5 T GM A2 Gb7 T AM B2 E5 Db3  
100  7 T CM C1 T GM A2 Gb7 T AM B2 Ab7 T GbM Db5 T AM Db3 

Already, this is richer. 

Let us look at the chromatisms in the example: 100  6 T CM C1 T GM A2 D5 T 
AM B2 E5 Db3.  

 

key i.e. on a scale 
of 

through 
a chord

indication of the 
degree of the 

chord in the scale 
in question 

formed of triads 
(with 4 notes) 

We find 
ourselves in 
a key of 

CM C D E F G A 
B  

C1 C D E F G A B C E G B 

Keychangeto GM G A B C D E 
F Gb  

A2 GA B C D E F Gb A C E Gb 
D5 G A B C DE F Gb D Gb A C 

New 
keychangeto 

AM A B Db D E 
Gb Ab  

B2 A B Db D E Gb Ab B D Gb A 
E5 A B Db D E Gb Ab E Ab B D 

Db3 A B DbD E Gb Ab Db E Ab B 

Table 11.17. Summary. For a color version of this  
table, please see www.iste.co.uk/paret/musical.zip 

11.5.5. Conclusions 

In terms of a harmonious sensation, therefore, it is preferable to work with 
descending chromatism, limiting ourselves to two chromatisms at once on two 
different notes in the quartet of the chord, with the fundamental also being able to 
move. 

We have now come to the end of the presentation of these “few” examples of 
progressions.  

If readers wish to know more about this, we recommend they consult Serge 
Sibony’s e-books on the subject. 
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Examples of Harmonizations  
and Compositions 

For those brave souls who have followed us thus far, here the ordeal comes to an 
end! This final chapter will serve as the first stamp in the passport to harmony and to 
the understanding of the physical frequencies (harmonics 3, 5, 7, 9, 11, etc.) and 
harmonious sounds and musical chords!  

This chapter looks at a few examples of the application of the descending 
chromatism rule and lists of progressions. The purpose is to present the approach of 
step-by-step harmonization in as instructive a manner as possible. These are merely 
a few examples of harmonization, because like with any musical œuvre, each piece 
should actually be played in whichever way best suits the desired style. Now, if 
readers so desire, they can begin reading true treatises on musical harmony: the 
essential foundations will be in place. 

12.1. General points 

It is quite common to wish to reharmonize known pieces of music to give them a 
new atmosphere, a different mood, or harmonize new pieces. Obviously so as not to 
speak in abstract terms only, we need to take a few concrete examples. We have 
selected four, each of which has very specific individual qualities: 

– firstly, we have chosen to use three well-known pieces of Evergreen music, for 
which sheet music is easily available from the Real Book (http://www.swiss-
jazz.ch/Real-Book/Volume-2-Bb.pdf). The pieces are: Blue Moon by Lorenz Hart and 
Richard Rodgers, Summertime by George Gershwin and Sweet Georgia Brown (in E) 
by Maceo Pinkard and Ken Casey; 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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– secondly, we present an example of harmonization from zero. The principle 
used in the latter example (Madagascar by Serge Sibony) sets out: 

- the construction of a highly simplified tapestry of chords; 

- the construction of progressions between those chords; 

- the possibility of open-ended improvisation on the basis of that grid (because 
the creation of numerous melody lines not presented here will speak for itself). 

12.2. Questions of keys 

In the previous chapter, we looked at the idea of key change, represented by a T, 
followed by the key (for example, “T CM” indicates that from the next chord after the 
notation “T CM”, we move into the major scale (M) of do (C)), but nothing yet is 
specified in terms of the chord, and thus the harmonic and melodic set, and we need 
to refer to the chords which follow that key change. However, it is always possible 
and advisable to sound the key in the chords which follow, either by the appearance 
of a bass from the key of the scale, or by using a melody anchored in the new key. 
There are numerous solutions, but only those which sound good to the ear are retained.  

Certain key changes sound bad, and “grate” badly, even when the appreciation 
score is high. This is simply due to the fact that our ear is more used to certain types of 
progressions than it is to others. For example, jazz allows the use of a GV (G7) 
without resolving to CI (CΔ) – something which would have been inconceivable and 
impossible to appreciate a few years before it was used by jazzmen. In the same 
spirit, the passage to the tritone has long been, and remains, disharmonious to many 
ears, and should therefore be used with caution. 

The progressions presented in the processes of harmonization and 
reharmonization are neutral, because they take no account of what we are used to – 
traditions which are firmly anchored within us – hence the need to play the different 
progressions to pick out those which you feel are best for your composition. 

12.3. Example of reharmonization 

We shall describe these harmonization techniques step by step, as instructively 
as possible. Beware: it is long, exhaustive, complex and sometimes rather difficult, 
but at the end, you will know all there is to know! Let us now look at the first 
example. 
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12.3.1. Blue Moon (by Lorenz Hart and Richard Rodgers) 

The sheet music for this “classic” piece of jazz (see Figure 12.1) indicates the 
presence of three flats in the key, and thus shows that we are either: 

– in Eb, in the major scale;  

– or in C-, in the minor scale. 

 

Figure 12.1. Original sheet music and harmonization 

Note, finally, that part C is equivalent to part A. 

To begin with, let us construct the chord grid. Note that this grid is more complex than 
that of the original arrangement. In fact, this is the arrangement classically used in 
jazz, and its transcription stems from grids created using the software tool irealb pro, 
which specializes in the creation and display of chord grids on Mac and iPhone (there 
are also possibilities for a PC, using an Android emulator). Thus, we start on the basis 
of the following grid (Figure 12.2). 
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Figure 12.2. Original/initial chord grid 

12.3.1.1. Analysis of the initial grid 

First of all, let us look for the hidden modes in this grid, and simply work on the 
basis of a major scale in Eb (the first chord usually determines the type of scale and key 
used). 

12.3.1.1.1. Part A 

The first four measures form a very well-known anatole, which is repeated twice: 

| T EbM Eb1 C6 | F2 Bb5 | Eb1 C6 | F2 Bb5 | 

Then we have descending chromatisms between Db C5 B5 and Bb, with as many 
chromatisms of key: 

| T GbM Db5 T FM C5 | T EM B5 T EbM Bb5 | 

This is followed by the anatole to return to the start of part A: 

| T EbM Eb1 C6 | F2 Bb5 | 

To get to B, the grid undergoes a key change to Ab, still in the major scale: 

| T EbM Eb1 Ab4 | T AbM G7 C3 | 

We note the descending chromatism between Ab4 and G7, which justifies the 
key change. Remember that the key change is free on condition that we can move 
with a descending chromatism between the previous chord and the next chord after 
the key change. 
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12.3.1.1.2. Part B 

Part B returns to the scale major of Eb and repeats the anatole, taking the 6th 
degree away from it, and prepares the ground for a key change to Gb, in the major 
scale, moving through an A7 11#, which is a Lydian (4th degree) of the major scale 
of E: 

| T EbM F2 Bb5 | Eb1 C6 | F2 Bb5 | Eb1 T EM A4 | 

We can see that the key change (we have moved from AbM to EbM) is not made 
with a descending chromatism. In fact, the C3 at the end of part A is identical to the 
6th degree of the scale in Eb, and thus we obtain (C6) F2 Bb5 Eb1, which is the 
anatole. 

We then play an anatole series truncated on a major scale of Gb: 

| T GbM Ab2 Db5 | Gb1 | 

Again, the key change is justified by the descending chromatism from A4 on a 
major scale of EM to an Ab2 on a major scale of Gb. 

The last two measures of part B lay the foundations for the return to the major 
scale of A: EbM, by a descending chromatism: 

| T FM Bb4 F1 | T EbM F2 Bb5 | 

The chromatism involves the chord F which, when we change key, switches 
from a major chord toa minor chord (descending chromatism of the third))This 
progression works, above all, because the progression of the last measure is again an 
anatole on Eb. 

We then repeat part A, which we saw earlier. 

12.3.1.2. Reharmonization of the initial grid 

Now that we have broken the grid down into anatoles and various key changes, 
we can try to reharmonize the arrangement using different progressions, but which 
respect the points of transition of the grid. 

The key points of the grid are the chords between the anatoles or the key changes 
to move from part A to B and then from B to A. 
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12.3.1.2.1. Part A  

| T EbM Eb1 % | % % | Eb1 % | % % | 

| T GbM Db5 % | % % | 

| T EbM Eb1| ...| 

12.3.1.2.2. Switch to B 

| T EbM Eb1 % | T AbM G7 % | 

12.3.1.2.3. Part B  

Part B is a variant of the fundamental anatole, using another key. Let us keep that 
variant for our transition chords: 

– followed by the chord Eb1: 

| T EbM Eb1 % | % %  | Eb1 T EM A4 | 

– followed by:  

| T GbM Gb1 % | % %  |T FM F1 % | T EbM F2  % | 

– and we come back to A: 

| T EbM Eb1 % | % % | % % | % % | 

Finally, we obtain the following simplified grid: 

 

Figure 12.3. Intermediary chord grid 
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12.3.1.3. Filling of the final grid 

This is the final part of the work of harmonization.  

Note that this task is long and painstaking, but it is helpful to explain it here, step 
by step. 

Based on progressions created by descending chromatisms, we can fill the simplified 
grid found with chords. 

12.3.1.3.1. Part A  

| T EbM Eb1 % | % % | Eb1 % | % % | 

| Db7 % | …. 

Let us keep the two series of chords: four chords for the first two measures, and 
four more for the next two. In the original grid, these two series are identical, but 
there is nothing to stop us changing series if it sounds good. 

1) Start by looking through the long list of progressions (extract below) to find 
which possibilities might exist, in a scale of EbM (notes: Eb F G Ab Bb C D), which 
begin with a chord Eb1 [ Eb Bb G D ] and also finish with an Eb1 chord [ Eb Bb G 
D ]: 

100  5 T EbM Eb1 Ab4 D7 Bb5 Eb1  
 82  5 T EbM Eb1 Ab4 D7 G3 Eb1  
 80  5 T EbM Eb1 C6 F2 Bb5 Eb1  
 78  5 T EbM Eb1 Ab4 F2 Bb5 Eb1  
 52  6 T EbM Eb1 T BbM A7 T EbM Ab4 D7 Bb5 Eb1  
 51  6 T EbM Eb1 C6 Ab4 D7 Bb5 Eb1  
…. 

In this list, in the third position, we find the anatole, which was predictable, but 
there are also other candidates for a harmony – particularly the first progression  
Eb1 Ab4 D7 Bb5 Eb1 or the second Eb1 Ab4 D7 G3 Eb1. The use of D7  
(a semi-diminished) gives the series a particular hallmark. 

2) For the next two measures of part A, we move from an Eb1 chord in the scale 
of EbM to a Db5 chord in the scale of GbM. 

Here we go again: we again look in the lists on the basis of the scale in the key of 
EbM (notes Eb F G Ab Bb C D), for progressions whose chromatisms from a chord 
Eb1 [ Eb Bb G D ] can lead to a Db5 chord: [ Db Ab F B ] in a scale of the key of 
GbM (notes: Gb Ab Bb B Db Eb F). 
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100  4 T EbM Eb1 C6 T DbM F3 T GbM Db5  
60  5 T EbM Eb1 C6 T DbM F3 Db1 T GbM Db5  
40  5 T EbM Eb1 T BbM A7 T EbM Ab4 T DbM F3 T GbM Db5  
20 10 T EbM Eb1 T AbM Ab1 Db4 Bb2 G7 Eb5 C3 F6 Db4 T GbM Db5  
20 16 T EbM Eb1 T AbM Eb5 T EbM Ab4 D7 G3 Eb1 T BbM A7 T EbM 
Ab4 T DbM F3 T GbM Bb3 Gb1 T BM Gb5 T GbM Eb6 T DbM Ab5 T 
GbM Ab2 Db5  
…………………………………….. 
 20  6 T EbM Eb1 T AbM Eb5 C3 F6 Db4 T GbM Db5  
 20  7 T EbM Eb1 T AbM Eb5 T EbM C6 T DbM Ab5 F3 Db1 T GbM Db5  
20  9 T EbM Eb1 Ab4 T AbM F6 T GbM Bb3 T AbM Eb5 T GbM Eb6 Ab2 
F7 Db5  
… 

This time, the progressions are more complex because of the key change, but 
overall we can take the first one which was put forward: a T EbM Eb1 C6 T DbM 
F3 T GbM Db5. In fact, this choice to move to Db5 using four chords renders the 
series too complex and cumbersome.  

3) It is therefore preferable to make the transition in two steps: 

a) to return to an Eb1 in EbM and thus use the progressions from 1); 

b) to then vary the next series Eb1 in EbM to Db5 in DbM. 

We strictly return to the list from 1): 

100  5 T EbM Eb1 Ab4 D7 Bb5 Eb1  
 82  5 T EbM Eb1 Ab4 D7 G3 Eb1  
 80  5 T EbM Eb1 C6 F2 Bb5 Eb1  
 78  5 T EbM Eb1 Ab4 F2 Bb5 Eb1  
….. 

Let us take the first line Eb1 Ab4 D7 Bb5 and now look for a passage between 
Bb5 [ Bb F D Ab ] in a key of EbM (scale: Eb F G Ab Bb C D) and Db5 [ Db Ab F 
B ] in a key of GbM (scale: Gb Ab Bb B Db Eb F). 

Yet again, here we go! And again, we look at the possible progressions from 
EbM to Db5:  

100  5 T EbM Bb5 Eb1 Ab4 T DbM F3 T GbM Db5  
 50 10 T EbM Bb5 G3 Eb1 Ab4 D7 Bb5 G3 C6 T AbM F6 T GbM Db5  
 50 11 T EbM Bb5 G3 T AbM Eb5 T EbM C6 T AbM Ab1 Db4 T GbM Bb3 
T BM Gb5 T GbM Eb6 Ab2 Db5  
 50 17 T EbM Bb5 G3 T FM C5 T EbM C6 T DbM F3 T EbM D7 T DbM 
Db1 Gb4 Eb2 Ab5 F3 T GbM Bb3 Eb6 B4 T EM B5 T GbM F7 Db5  
……. 
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Let us take the first series and remove the “useless” chords, because they fall 
outside of a direct descending chromatism: 

100  5 T EbM Bb5 Ab4 T GbM Db5  

Thus, we add an Ab4 chord before the move to Db5, which will delay it by a half 
measure. 

Now we need to find a series between Db5 [ Db Ab F B ] in the key of GbM 
(scale: Gb Ab Bb B Db Eb F) and Eb1 [ Eb Bb G D ] in the key of EbM (scale: Eb F 
G Ab Bb C D) in only four chords (counting both the beginning and end chords). 
For this, we re-re-re-read the list of progressions: 

100  6 T GbM Db5 T DbM Gb4 C7 T EbM F2 Bb5 Eb1  
 50 10 T GbM Db5 Bb3 T AbM Eb5 T DbM Eb2 Ab5 T EbM F2 T GbM F7 
T EbM Bb5 G3 Eb1  
 50 13 T GbM Db5 T AbM Bb2 Eb5 T BbM A7 T AbM Ab1 Db4 G7 T EbM 
C6 F2 T GbM F7 T EbM Bb5 G3 Eb1  
 50 14 T GbM Db5 Gb1 Eb6 T DbM Ab5 T GbM Ab2 F7 T DbM Bb6 Eb2 
C7 T EbM F2 T GbM F7 T EbM Bb5 G3 Eb1  
………..  

Take the first series and remove the “useless” chords. It is always useful to play 
the series in order to extract the chords which are ultimately useful: 

100  6 T GbM Db5 T DbM Gb4 C7 T EbM F2 Bb5 Eb1 

We retain Db5 C7 Bb5 Eb1, which is a chromatism similar to the original one. 

We now seek the passage between Eb1 and F2: 

on the basis of the scale    EbM: Eb F G Ab Bb C D  
we look for chromatisms from Eb: [ Eb Bb G D ]  which is an 

Eb1 
to 
on the basis of the scale    EbM: Eb F G Ab Bb C D  

F: [ F C Ab Eb ]   which is an 
F2 
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Nth consultation of the progression file: 

100 3 T EbM Eb1 Ab4 F2  
 97  3 T EbM Eb1 C6 F2  
 52  4 T EbM Eb1 C6 Ab4 F2  
 49  4 T EbM Eb1 C6 T BbM F5 T EbM F2  
 48  4 T EbM Eb1 T AbM Eb5 T EbM Ab4 F2  
 48  4 T EbM Eb1 T BbM A7 T EbM Ab4 F2  
 47  4 T EbM Eb1 C6 T DbM Ab5 T EbM F2  
 32  4 T EbM Eb1 Ab4 T DbM Ab5 T EbM F2  
 …………………………………………. 
 16  5 T EbM Eb1 T AbM Eb5 T EbM C6 T BbM F5 T EbM F2  
 16  5 T EbM Eb1 T AbM Eb5 T EbM Ab4 T DbM Ab5 T EbM F2  
 15  5 T EbM Eb1 T BbM A7 T EbM Ab4 T DbM Ab5 T EbM F2  

A simple passage to Ab4 will suffice for the transition or a more heavily colored 
C6. 

12.3.1.3.2. Part B 

Let us look for something to replace four F2 chords with, ending with an F2. 

on the basis of the scale    EbM: Eb F G Ab Bb C D  
we look for chromatisms from     F: [ F C Ab Eb ]   which is an 

F2 
to 
on the basis of the scale    EbM: Eb F G Ab Bb C D  

F: [ F C Ab Eb ] which is an 
F2 

Reading of the progressions: 

100  5 T EbM F2 Bb5 Eb1 Ab4 F2  
 97  5 T EbM F2 Bb5 Eb1 C6 F2  
 88  5 T EbM F2 Bb5 G3 C6 F2  
 83  5 T EbM F2 D7 G3 C6 F2  
 63  6 T EbM F2 D7 Bb5 Eb1 C6 F2  
 62  6 T EbM F2 D7 Bb5 Eb1 Ab4 F2  
 54  6 T EbM F2 D7 Bb5 G3 C6 F2  
……………… 
 46  6 T EbM F2 Bb5 G3 Eb1 C6 F2  
…. 
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The classic (though truncated) anatole comes in first position, which is perfectly 
normal but also very predictable harmonically: we can do better! Let us take the second 
series, enriched with a C6: 

F2 Bb5 Eb1 C6 F2 

This is followed by four F2 chords which lead to the second part of B and to an 
Ab2 chord  and a key change to GbM. 

Let us look for how to move from F2 in EbM to Abm7 in GbM: 

on the basis of the scale    EbM: Eb F G Ab Bb C D  
we look for chromatisms from     F: [ F C Ab Eb ]   which is an 

F2 
to   
on the basis of the scale    GbM: Gb Ab Bb B Db Eb F  

Ab: [ Ab Eb B Gb ]   which is 
an Ab2 

Reading of the progressions: 

100  9 T EbM F2 D7 G3 T AbM C3 T BbM F5 T AbM F6 T GbM Bb3 Eb6 
Ab2  

This time, it is more complicated! The key change is difficult, and we only need 
three chords to fill the grid: thus, let us only take certain chords.  

The method to choose which chords will be kept is simple: one chord out of 
every two, because the ear is capable of constructing the intermediary chord by the 
descending chromatisms proposed: 

F2 G3 F5 Bb3 Ab2 

This sounds a little strange, because F2 becomes F5 in the space of a single 
measure. Let us instead take a progression from F2 to F2, and therefore copy the 
series used for the previous two measures: 

F2 Bb5 Eb1 C6 F2 

We follow this with a somewhat brusque chromatism to Ab2 through an Eb6, which 
is the chord just before Ab2 in the complete series chosen earlier to make the move 
from F2 in EbM to Abm7 in GbM. 
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We now need to find a progression between the Ab2 [ Ab Eb B Gb ] in the key 
of GbM (scale Gb Ab Bb B Db Eb F) and the Bb4 in the scale of F major. 

on the basis of the scale   GbM: Gb Ab Bb B Db Eb F  
we look for chromatisms from   Ab: [ Ab Eb B Gb ]: which is 

an Ab2 
to 
on the basis of the scale    FM: F G A Bb C D E 

Bb: [ Bb F D A ]   which is an 
Bb4 

Reading of the progressions: 

100  8 T GbM Ab2 F7 T AbM Bb2 Eb5 T BbM C2 T DbM C7 T BbM F5 T 
FM Bb4  

The series is long (eight chords, although we expect to find only five in total 
(counting the first chord Ab-7 and the last chord Bb/F). In this case, we simply take 
one out of every two chords and omit the penultimate chord: 

Ab2 Bb2 C2 Bb4 

We can then play C2 Bb4. 

Next, we move back to A, which we saw earlier. Finally, we obtain a completely 
new grid for Blue Moon. 

 

Figure 12.4. Final reharmonized grid 
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12.3.2. Summertime (by G. Gershwin) 

Let us try out the same approach on another jazz masterpiece: George 
Gershwin’s Summertime. 

 

Figure 12.5. Original/initial arrangement of Summertime 

 

Figure 12.6. Initial grid associated with this arrangement 



240     Musical Techniques 

12.3.2.1. Analysis of the initial grid 

We have one flat in the key, so we are in F major or D minor natural. The first 
chord often gives the key of the piece of music, and here we are in D-, for the basic 
key. Note that this is the natural minor scale which corresponds to the Aeolian mode 
of F. We can work on the basis either of the scale of F major, or of its equivalent in D-7. 
This point is important, because the minor harmonic scale contains no diminished 
seventh, unlike with the Aeolian mode. 

Let us quickly analyze this very well-known grid and see what we can do with it 
(whilst remaining very respectful of this composition; we merely want to find 
different progressions to give a touch of “youth” to this grid, whilst retaining the 
central chords at the start of each cycle): 

– the first chord D-7 is that of the key, which is a D6 of the F major scale; 

– the next chord after 4 measures with constant harmony is a G-7, which corresponds 
to a Dorian of an F major scale or D minor scale;  

– the next chord is a Bb7, which, in the scale of F, is a very classic Bb4, 
followed by an A7, which is an A3 on F (up to this point, the key is constant!); 

– we return to D-7, which is the marker of the key, and then go to an FM (F1 in 
the major scale). 

Overall, therefore, we have an arrangement with constant harmony – i.e. based on 
the same key of the scale throughout the whole of the grid. In fact, all told, it is a 
fairly simple grid! 

12.3.2.2. Harmonization  

Let us now move on to the new grid, based on the existing structure so as to preserve 
the general shape of the arrangement. 

D6 to G2 in the major scale of F or D minor: 

on the basis of the scale    FM: F G A Bb C D E  
we look for chromatisms from     D: [ D A F C ]   which is a D6 
to   
on the basis of the scale    FM: F G A Bb C D E  

G: [ G D Bb F ]   which is a 
G2 
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Reading of the progressions: 

100 2 T FM D6 G2  
 66  3 T FM D6 Bb4 G2  
 48  3 T FM D6 T CM G5 T FM G2  
 48  3 T FM D6 T EbM Bb5 T FM G2  
 22  4 T FM D6 Bb4 T EbM Bb5 T FM G2  
 21  4 T FM D6 T CM B7 T FM Bb4 G2  

There are multiple choices, and we look for three chords to replace the four D- 
chords thereafter. 

We already know that we can go directly from D6 to G2, because there is a 
descending chromatism between those two chords. On the other hand, it would be 
good to enrich the grid somewhat. Let us add a chord at measure 3, and the second 
series gives us a Bb4 as an intermediary chord. 

Thus, we have: 

| D6 % | Bb4 % | G2 

The G2 is followed by two chords which we keep as they are (we respect what is 
already in place). We then have a harmonic “hole” (repeating chords) between A3 
and D6. 

Let us look for a progression between these two chords: 

on the basis of the scale    FM: F G A Bb C D E  
we look for chromatisms from     A: [ A E C G ] which is an A3 
to     FM: F G A Bb C D E  
on the basis of the scale    D: [ D A F C ]   which is a D6 

 

Reading of the progressions: 

100  2 T FM A3 D6  
 65  3 T FM A3 F1 D6  
 48  3 T FM A3 T GM D5 T FM D6  
 47  3 T FM A3 T BbM F5 T FM D6  
 22  4 T FM A3 F1 T BbM F5 T FM D6  
 21  4 T FM A3 T GM Gb7 T FM F1 D6  
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The passage through an intermediary F (second series here) therefore works 
here. 

Thus, we have: | A3 | F1 | D6 |. However, the grid sounds better if we repeat the 
A3 rather than add an F1. 

The second part of the grid, D-7 (D6) to FM (F1), also needs enrichment: 

on the basis of the scale    FM: F G A Bb C D E  
we look for chromatisms from    D: [ D A F C ]  which is a D6 
to     FM: F G A Bb C D E 
on the basis of the scale    F: [ F C A E ]   which is an F1 

Reading of the progressions: 

100  4 T FM D6 G2 C5 F1  
 69  5 T FM D6 Bb4 E7 C5 F1  
 63  5 T FM D6 G2 E7 C5 F1  
 52  5 T FM D6 Bb4 E7 A3 F1  
 51  5 T FM D6 Bb4 G2 C5 F1  
 51  5 T FM D6 T EbM Bb5 T FM G2 C5 F1  
……………  
 32  6 T FM D6 Bb4 G2 E7 C5 F1  
 31  5 T FM D6 G2 C5 T GM Gb7 T FM F1  
 …. 

Here, we are spoilt for choice. In first place, we have the anatole D6 G2 C5 F1, 
which is an easy solution. 

However, as the F1 is placed at the fourth measure after the D6, we shift that of 
the next measure (the FM), which is replaced by the next chord (D6). 

12.3.2.3. Final grid 

We obtain a grid that is slightly reharmonized: we have retained the general 
structure of the initial grid, but it is always possible to start with an even sparser grid 
(by removing certain interim chords), at the risk of moving substantially away from the 
original grid. 
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Figure 12.7. Final reharmonized grid 

12.3.3. Sweet Georgia Brown (by Bernie, Pinkard and Casey) 

Let us now conclude the presentation of our examples of harmonization with a 
typical blues arrangement. 

 

Figure 12.8. Original/initial arrangement 
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From this arrangement, we extract the following grid. 

 

Figure 12.9. Original/initial grid of chords 

12.3.3.1. Analysis of the initial grid 

This grid poses a problem because the arrangement having only a single flat in 
the key is either in F major or in D minor. However, the grid of the arrangement 
begins in D major! Thus, we are in contradiction with the usual key of an 
arrangement: 

– in this initial grid, we can see that the chords D, G and C are 7th chords, 
whereas in a conventional scale, only the degrees 3, 4 and 5 are de 7th chords; 

– a second “inconsistency” in this grid. The only point which is consistent with the 
classic major scales is the FΔ at measure 13, which refers to the official key of the 
arrangement (an F major linked to the only flat in the key). 

The only way of analyzing this very strange grid, which begins with a harmonic 
inconsistency (D7 instead of Dm7), is to use a scale other than the natural major or 
minor. 

Here, we are dealing with a blues scale of the type: C D Eb F Gb G Bb. 

This is a fuller scale than the traditional scale, owing to the presence of the D which 
is usually omitted. It allows for the construction of chords using the same approach as for 
a major scale. 

Let us quickly recap the structure of the chords on the different degrees of a blues 
scale. 
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Degrees of the 
mode 

Structure of the 
chord 

Structure of the chord
expressed in C 

 

1 C Eb Gb Bb [ C Eb Gb Bb ] Cm7 5- 

2 D F G C [ C Eb F Bb ] Cm… 

3 Eb Gb Bb D [ C Eb G B ] Cm M7 

4 F G C Eb [ C D G Bb ]  C7 sus2 
5 Gb Bb D F [ C E Ab B ]  CM7 #5 

6 G C Eb Gb [ C F Ab B ] CM7 sus4 #5 

7 Bb D F G [ C E G A ]  C6 

Table 12.1. Reminder of the structure of the chords in a blues scale 

Thus, there are two degrees with a major chord and a seventh: 4 and 7. 

A D7 is therefore that which forms a D4 (the 4th degree in D) on the scale of the 
key of A, which forms a D7 (the 7th degree in D) on the scale of the key of E. 

After the G7, we change key to D now (and the G becomes a G4), followed by a 
C7. 

Finally, we come to the key of F (the official key of the piece), more conventional at 
measures 1, 3 following by a truncated anatole (2 5 1) and a classic progression also a 
6 3 (E7 A3). 

12.3.3.2. Reharmonization  

We shall leave part 2 as it is, and work on the first 12 measures. 

Let us look for a progression on the blues scale from D4 in AB to G7 in AB: 

on the basis of the scale blues  AB: A B C D Eb E G  
we look for chromatisms from    D: [ D A E C ] which is a D4 
to 
on the basis of the scale blues  AB: A B C D Eb E G  
                                           G: [ G D B E ] which is a G7 

Reading of the progressions: 

100  2 T AB D4 G7  
 58  3 T AB D4 B2 G7  

 



246     Musical Techniques 

There are few solutions, except to add a B2 (B-7) at measure 3. 

Now, we need to move from G7 in AB to C7 in DB: 

on the basis of the blues scale  AB: A B C D Eb E G  
we look for chromatisms from     G: [ G D B E ] which is a G7 

to     DB: D E F G Ab A C 
on the basis of the scale blues                            C: [ C G E A ] which is a C7 

Reading of the progressions: 

100  3 T AB G7 T DB E2 C7  
 33  4 T AB G7 T EB E1 T DB E2 C7  

Once again, we can add an E2 from the first series. 

We move from the blues scale in D to the major scale in F, and seek the 
progression between C5 and F1: 

on the basis of the scale    FM: F G A Bb C D E  
we look for chromatisms from     C: [ C G E Bb ]  which is a C5 

to     FM: F G A Bb C D E 
on the basis of the scale    F: [ F C A E ]   which is an F1 

Reading of the progressions: 

100  2 T FM C5 F1  
 58  3 T FM C5 A3 F1  
 32  3 T FM C5 T GM Gb7 T FM F1  
 18  4 T FM C5 A3 T GM Gb7 T FM F1  

The addition of an A3 (second series) is to be expected for measure 11 before the 
classic passage of the grid. 

Note that here, it was possible to preserve classic major scales by using the same 
key changes, but the example was chosen to highlight the blues scale and its 
particular qualities. 
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12.3.3.3. Final grid 

Ultimately, we obtain: 

 

Figure 12.10. Final reharmonized grid 

12.4. Example of harmonization 

12.4.1. Madagascar (by Serge Sibony) 

This is a harmonic tapestry of composition on the basis of a simple grid for a 
bossa-nova rhythm. No – this is no mistake: we have presented no arrangement to 
this example, because the harmonic content described below invites readers to 
create/improvise various melodies. Welcome to the world of improvisation!  

Let us start with a minimalist grid, which merely outlines the composition: 

 

Figure 12.11. Initial minimalist grid 

This minimalist bossa-nova in C major (or A minor) runs through a long series 
of identical chords at F4. This is nothing inspiring, so we need to enrich this grid. 
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We move from a D2 in C to an F4 in C: 

on the basis of the scale    CM: C D E F G A B  
we look for chromatisms from     D: [ D A F C ]   which is a D2 
to 
on the basis of the scale    CM: C D E F G A B  
                                           F: [ F C A E ]   which is an F4 

Reading of the progressions: 

100 4 T CM D2 G5 C1 F4  
 60  5 T CM D2 B7 G5 C1 F4  
 51  5 T CM D2 G5 C1 T FM C5 T CM F4  
 49  5 T CM D2 G5 C1 A6 F4  
 46  5 T CM D2 B7 E3 C1 F4  
 46  5 T CM D2 B7 E3 A6 F4  
 46  5 T CM D2 G5 C1 T GM Gb7 T CM F4  
 45  5 T CM D2 G5 E3 C1 F4  

  …. 
As we need to add three chords between D2 and F4, we more specifically seek 

out series of five chords (three new ones plus those already present). Let us take one 
(the fourth) which sounds good: 

D2 G5 C1 A6 F4  

This naturally leads us to F7 (#4) 

and then between F4 and D2: 

on the basis of the scale    CM: C D E F G A B  
search for chromatisms from      F: [ F C A E ]  which is an F4 
to 
on the basis of the scale    CM: C D E F G A B  
                                           D: [ D A F C ] which is a D2 

Reading of the progressions (opening of 19,639 progressions in the file 
runmaj.txt): 

100  2 T CM F4 D2  
 32  3 T CM F4 T BbM F5 T CM D2  
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The choice is more limited, and involves a key change. Let us break this series 
down into two parts: 

– the first between F4 and F4 (four measures); 

– the second between F4 and D2 (four measures). 

In CM from F4 to F4: 

on the basis of the scale    CM: C D E F G A B  
we look for chromatisms from     F: [ F C A E ]   which is an F4 
to 
on the basis of the scale    CM: C D E F G A B  
                                           F: [ F C A E ]   which is an F4 

Reading of the progressions: 

100  5 T CM F4 B7 G5 C1 F4  
 79  5 T CM F4 D2 G5 C1 F4  
 79  5 T CM F4 B7 E3 C1 F4  
 75  5 T CM F4 B7 E3 A6 F4  
 57  6 T CM F4 B7 G5 C1 A6 F4  
 51  6 T CM F4 B7 G5 E3 C1 F4  
 50  6 T CM F4 D2 B7 G5 C1 F4  
 49  6 T CM F4 B7 G5 E3 A6 F4  
 49  6 T CM F4 B7 G5 C1 T GM Gb7 T CM F4  
 47  6 T CM F4 B7 G5 C1 T FM C5 T CM F4  
 41  6 T CM F4 D2 G5 C1 A6 F4  
…. 

We have a multitude of choices available. Let us take a series with a high 
harmony score (the fourth, for example): 

F4 B7 E3 A6 F4  

The move from F4 to D2 is trickier, because in order to harmonious, the rule of 
descending chromatism must also be applicable in this progression. Unfortunately, 
as pointed out in the previous chapter, because we have deliberately limited our 
calculations of progressions to series of 14 chords at most, in the whole range of 
possible lists, we find no available progression! Thus, we are witnessing the case of an 
“irreducible” progression, as discussed in the previous chapter! Therefore, it is 
necessary to decompose the passage from F4 to D2 via a transitional chord. With 
this goal in mind, we choose an E-7 which perfectly serves this purpose, because it 
appears in the previous progression. 
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In CM from F4 to E3: 

on the basis of the scale    CM: C D E F G A B  
we look for chromatisms from    F: [ F C A E ]  which is an F4 
to 
on the basis of the scale    CM: C D E F G A B  

E: [ E B G D ]   which is an 
E3 

Reading of the progressions: 

100 3 T CM F4 B7 E3  
 61  4 T CM F4 B7 G5 E3  
 49  4 T CM F4 D2 G5 E3  
 49  4 T CM F4 D2 B7 E3  
 33  4 T CM F4 B7 T AM E5 T CM E3  
 32  4 T CM F4 T BbM F5 T CM B7 E3  
 30  5 T CM F4 D2 B7 G5 E3  
 20  5 T CM F4 T BbM F5 T CM B7 G5 E3  
 17  5 T CM F4 D2 B7 T AM E5 T CM E3  
 ….  

A transition through B7 is indicated here (first series). 

Followed by D2: 

on the basis of the scale    CM: C D E F G A B  
we look for chromatisms from     E: [ E B G D ]   which is an 

E3 
to 
on the basis of the scale    CM: C D E F G A B  
                                           D: [ D A F C ]   which is a D2 

Reading of the progressions: 

100  3 T CM E3 A6 D2  
 53  4 T CM E3 C1 F4 D2  
 52  4 T CM E3 C1 A6 D2  
 52  4 T CM E3 A6 F4 D2  
 49  4 T CM E3 A6 T BbM F5 T CM D2  
 49  4 T CM E3 T DM A5 T CM A6 D2  
…………… 
 17  5 T CM E3 A6 T GM Gb7 T CM F4 D2  
 17  5 T CM E3 T DM Db7 T CM C1 A6 D2  
 16  5 T CM E3 C1 F4 T BbM F5 T CM D2  
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An A6 fits in well with the progression (first series). 

We again find the progression from the four previous measures. 

Then we have a D2 to a D2 at the start of the grid: 

In CM from D2 to D2: 

on the basis of the scale  CM: C D E F G A B  
we look for chromatisms from    Dm7: [ D A F C ]   which is a D2 
to 
on the basis of the scale  CM: C D E F G A B  
                                         Dm7: [ D A F C ]   which is a D2 

Reading of the progressions: 

100  5 T CM D2 G5 C1 F4 D2  
 97  5 T CM D2 G5 C1 A6 D2  
 88  5 T CM D2 G5 E3 A6 D2  
 83  5 T CM D2 B7 E3 A6 D2  
 63  6 T CM D2 B7 G5 C1 A6 D2  
 62  6 T CM D2 B7 G5 C1 F4 D2  
 ………….. 
 
 47  6 T CM D2 B7 E3 C1 A6 D2  
 47  6 T CM D2 G5 E3 A6 F4 D2  
… 

Once again, we are spoilt for choice. 

The second series repeats the progressions already constructed: D2 G5 C1 A6 D2. 

12.4.1.1. Final grid 

Finally, we obtain: 

 

Figure 12.12. Final harmonized grid 
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However, it is also possible to carry out more complex progressions with key 
changes (why not?), and obtain: 

 

Figure 12.13. Another solution! 

It is true, though, that we are pushing the boat out a little too far with this 
(re)harmonization. 

12.5. Conclusion 

We have now come to the end of this final chapter, where we set out to explain 
in concrete terms, in detail, how to use the harmonic principles set out in theprevious 
chapters (10, 11, 12) based on the ordering of the thirds, fifths, sevenths, ninths, etc., 
which are in fact merely clever musical names that are given to the physical 
harmonic frequencies f, 3f, 5f, 7f, 9f, etc., of course not forgetting the octaves 2f, 4f, 
etc. (Chapters 4 and 5), and whose mechanical resonances give pleasure to our 
whole auditory apparatus (Chapter 1). 



 

Conclusion 

We have now come to the end of this book, the purpose of which was to give 
you a sort of “passport” so you can take up and understand specialized works on 
harmony which are much fuller and of a much higher level than this one. Our main 
aim was to bring your knowledge up to a level where you are permanently aware of 
the correspondences between human physiology (the way in which the ear works, etc.), 
physics (acoustics, spectral analysis, etc.), the mathematical aspects (gentle little 
reminders), history, civilizations, personal education and technologies (instruments, 
effects, etc.)… and of course, the majority of musical theories. 

If you have any questions, comments, remarks (constructive ones, of course!), 
you can contact the authors at the addresses shown below. You will always be more than 
welcome to do so: this kind of contact can only enrich everybody’s knowledge! 

DOMINIQUE PARET: dp-consulting@orange.fr 

SERGE SIBONY:  handbook@sibony.net 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 



Appendix 

Acoustic (Harmonious) Effects 

Although they are not pure harmony, per se, acoustic effects have a significant 
influence on whether or not the overall sound is pleasant, whether it is harmonious or 
not, and so they do contribute to what we know as harmony. We believe that this 
little aside is, in fact, within the bounds of the subject, and present this appendix on 
the numerous classic effects which are frequently employed so that music sounds 
even better! 

Acoustic effects are merely physical effects of various types of modulations of 
the basic functions mentioned above, the intrinsic frequencies of the notes, their 
amplitudes, their relative phases, the instantaneous or longer-lasting modification of the 
contents of their harmonic spectra, also help to fill out the volume of the piece. 

A.1. Stereophonic effect 

Let us skip over the trivial monophonic effect, and briefly examine the 
phenomenon that occurs in the presence of two or more sound sources physically 
present in the same spatial volume.  

The average distance between an individual’s two auditory systems is around 8-
12.5 cm. Those of you who think you have a large head and who may think this 
sounds too little, do not be tempted to try and measure this distance. It is the distance 
between the two eardrums. Now you have been reassured, let us look at a few 
simple calculations. 

We know that sound propagates in air at around 340 meters per second, and that 
therefore, a sinusoidal sound wave (e.g. somebody whistling) coming from a source 
which is at an unequal distance from the two eardrums will not reach both eardrums 
at exactly the same time (in reality, there will be a certain phase shift). For this 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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reason, we have the feeling of left and right sounds, and thus the effect of a 
stereophonic, 3D soundscape. 

We can calculate the value of the frequency “F” for which that the phase shift 
due to a time lag between the arrival at the two eardrums is maximal – i.e. the 
frequency at which the stereophonic effect is most marked. The maximum effect, of 
course, corresponds to the time at which the two signals reaching the eardrums have 
the greatest phase difference – i.e. when they are in phase opposition. 

If the wavelength of the frequency F in question is λ (lambda), the 
aforementioned maximum will take place at the time when λ/2 is equal to the 
distance between the eardrums. However, there is a direct relation between λ and the 
celerity of sound propagation “v”, and the period T = 1/F of the signal: 

λ = v × T = v × (1/F)  

If the distance between the eardrums = λ/2 = 0.125 m, i.e. λ = 0.25 m: 

then F = 340/0.25  

           = 340 × 4 = 1360 Hz  

           = around 440 Hz × 3  

           = which is around one octave and a (perfect) fifth above la3, which is mi5  

Let us state, then, that in the band around 1-2000 Hz, the phase difference 
between the two ears, through the whole of our auditory system, will produce an 
effect, an impression of volume and/or position which is more pronounced than with a 
monophonic sound source. 

A.2. Effect of vibrato 

Vibrato (taken from the Italian substantive, derived from the adjective vibrato, 
meaning “vibrated”) is a periodic modulation of the sound of a musical note. The 
nature of that modulation (whether or not is purely a modulation of pitch) depends 
on the nature of the instrument and on the technique the musician is used. 

In principle, this effect consists only of modulating the frequency F of a note 
around its central value without modulating its amplitude. By how much? That is a 
good question. How quickly? Again, a good question. 
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Consider the example of the violin. We place a finger on the string and do not 
move it, and we obtain a normal note – cold-sounding and lifeless. If we want to give 
it some body, some soul, we very slightly shift the finger (or alter the pressure of the 
finger) to either side of the initial position, which modifies the frequency emitted… in 
other words, the height of the note. 

On the violin and on bowed strings, this modulation, which is produced by a 
motion of the finger on the string, relates to the height of the sound, but the intensity, 
controlled by the bow, is kept constant. 

A.2.1. By how much? 

The aim here is to modulate (both positively and negatively) the length of the 
vibrating string, and thus “slightly modulate the frequency” emitted by +/- ΔF, and 
consequently the pitch of the note.  

What amplitude of modulation should be used? How much? This is up to your 
instinct as a player: a little… or a lot.  

A few harmless little savarts (4, 5, etc.), or a quarter tone (12.5 savarts). It is up 
to you to draw your own inspiration, but be warned: once you modulate the note by 
as much as a semitone, you are beginning to play a different melody… with a 
different harmony! 

A.2.2. How quickly? 

As fast as your finger, wrist or forearm can move! Watch violinists or cellists 
during a concert! In other words, modulate at a human speed! As an order of 
magnitude, 2-8 times per second tends to sound pleasant – i.e. generally around 6Hz 
or slower. 

EXAMPLE.– Let us look at the example of the vibrato on the electric guitar 
(incorrectly referred to by many guitarists as tremolo – see the distinction below) – 
in this case, a mechanical device (the small vibrato bar or arm on the legendary 
Fender Stratocaster guitar – see Figure A.1) allows the player to add or release 
tension, very slightly, simultaneously on all the strings of the instrument. 
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Figure A.1. The legendary vibrato/tremolo system on the Fender Stratocaster.  
For a color version of this figure, please see www.iste.co.uk/paret/musical.zip  

NOTE.– The piano and harpsichord are incapable of vibrato, but the clavichord can 
deliver a vibrato in terms of height, with no intensity modulation, by modulating the 
pressure of the finger on the key. Finger vibrato, with pitch modulation but no intensity 
modulation, is used on lutes, guitars and other plucked string instruments. Vibrato, 
on amplified instruments (e.g. the Hammond organ, the electric guitar, etc.) can also 
be produced electromechanically (though this must not be confused with the effect 
of the Leslie cabinet – see below). 

Like all nuancing effects, vibrato lends particular expressiveness depending on 
how it is produced: quickly or slowly, fluidly or spasmodically… etc.  

Vibrato was the first effect to be replicated electronically. A device takes the 
electrical signal produced by the instrument and rapidly varies its frequency. In 
other words, it varies the height of the sound around its original tone. 
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Electronic vibratos perform the same type of modulation as electric guitars. 
Generally, the modulation takes place on the master oscillator (Figure 2.4) so that all the 
notes vary by exactly the same percentage (degree of modulation) and at the same 
rate of modulation.  

A.3. “Tremolo” effect 

It is important to distinguish “tremolo” from “vibrato”. Tremolo, consists of 
varying (mainly) the intensity of the note around a mean value whilst largely 
preserving the initial pitch (see section A.3.1).  

In wind instruments, the periodic modulation of amplitude created by the 
player’s diaphragm pertains more to the intensity of the sound than to its frequential 
height. In an organ, a mechanical device on the wind pipe, known as the “tremulant”, 
produces a similar effect (modulation of intensity, mainly). 

A.3.1. Example: Leslie cabinet 

Very widely used with jazz organs (Hammond organs, for example), the original 
models of the most typical (old-school) Leslie speakers are made up of a 40-watt 
(tube) amplifier and two loudspeakers. The sound issuing from the instrument 
(original acoustic output signal) is separated/dispatched with two second-order 
frequency filters at 12 dB/octave – a “high-pass” filter and a “low-pass” filter, whose 
cutoff frequencies are identical (in the original cabinet made by Leslie/Hammond, 
that value is around 800 Hz, and it is generally from ~600 to 1200 Hz), to send low-
pitched sounds to the mid/bass speaker (a woofer) and high-pitched sounds to the 
treble speaker (known as a tweeter). The membrane of the mid/bass speaker is 
directed toward the ground, and the sound it produces passes through a light rotating 
drum, made of polyester, having a specific hollowed-out shape on one part of its 
circumference. The high-pitch speaker is orientated toward the top of the cabinet, 
and the sound from the tweeter travels through a rotating double trumpet (horn). 

Figures A.2 to A.5 illustrate the mechanics that produce this sound modulation:  

– for trebles, the horn rotates at a very fast speed; 

– for mids and bass sounds, the speed of rotation of the drum is medium/fast or 
slow. 
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The double rotations mentioned above cause variations: 

– the rotation of the hollowed-out area of the polyester drum varies the amplitude 
of the sound (the sound seems to move closer and further away), which produces a 
panoramic effect, filling the volume of the room in which we are playing (because in 
addition, due to the rotation of the inside of the drum, the sound moves from left to 
right as a function of the rotation); 

– consequently, this produces a mechanical modulation of the frequency and the 
phase of the sound wave, creating a Doppler effect.  

REMARK.– With wear and tear, the drive belts of the drums and horns – see 
Figure A.4 – begin to make a little noise (it is possible to adjust the tensions on these 
belts, but few people are sufficiently puritanical to do it!)  

As it rotates, the lower drum creates a bit of a breeze, which, in summer, is 
refreshing for the feet if one is playing barefoot! 

These last two properties, of course, are rendered obsolete by the creation of 
purely electronic Leslie effects, but obviously, this is less fun!  

A.4. Doppler effect 

In 1842, Christian Doppler put forward a description of the effect which, today, 
bears his name. He confirmed that the pitch of the perceived sound was higher than 
the emitted frequency as the source approaches the observer, and lower than the 
emitted frequency as the source moves away.  

Briefly, in classic physics, we can show that when the speed of movement of the 
source and of the receiver are slower than the celerity of the soundwaves in the 
medium, the relation observed between the frequency f and the emitted frequency f0 
is given by: 

0
⎛ ⎞

= ⎜ ⎟
⎝ + ⎠

+ r

s
f fυ υ

υ υ  

In this equation: 

– υ  velocity of the waves in the medium; 

– rυ  velocity of the receiver in relation to the medium – positive if the receiver 
approaches the source; 
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– sυ  velocity of the source in relation to the medium – positive if the source 
moves away from the receiver. 

The above formula applies to the soundwave if and only if the velocities of the 
source and the receiver are slower than the celerity of the sound emitted, and also 
requires the source of the sound to come closer or move away on the axis in relation to 
the observer. If the source approaches the observer at a given angle (but still at a 
constant velocity), the frequency heard is higher than that which is emitted by the 
object. Thereafter, there is a monotonous increase in the observed frequency as the 
sound source approaches the observer, until equal pitch when the object is as close to 
the observer as it can be, followed by a continuing monotonous decrease as the source 
moves away from the observer. When the observer is very close to the object’s path, 
the move from high to low frequency is very abrupt, and when s/he is far from the 
object’s trajectory, s/he experiences more of a gradual shift from high to low 
frequency. 

Within the range where the velocity of the propagated wave is much greater than 
the relative velocity of the source and observer, the relation between the observed 
frequency f and the emitted frequency f0 is given by: 

Observed frequency  Variation in frequency 

,
01

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

s rf f
c

υ
 ,

0
0

,Δ = − =
λ

−s r s rf f
c

υ υ
 

where: 

– , ,= −s r s rυ υ υ velocity of the source in relation to the receiver, positive when 
the source and receiver are moving away from one another; 

– c , celerity of the wave (e.g. 340 m/s for sound); 

– 0λ , wavelength of the wave diffused. 

These two equations are accurate only to a first-order approximation. However, 
they hold true when the velocity between the source and the receiver is relatively 
low in relation to the celerity of the waves involved, and the distance between the 
source and receiver is relatively greater than the wavelength.  

If either one of these two approximations is not satisfied, the formulae are no 
longer accurate. 
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A.5. Effect of complete or partial detuning: example: a tack piano 

In a piano, by introducing a slight gap (detuning), constant but random, of the 
order of 2-5 Hz – you can count the number of savarts you want for the right amount 
of harshness and dissonance – in the heights of the frequencies of the 2 or 3 strings in 
each group for each note, we obtain the “tack piano” sound that is quintessentially 
1925, characteristic of the Charleston years, of the accompaniment to silent films in 
the cinema, of the musical ambiance of the spaces of yesteryear; the atmosphere 
evoking the saloons of the American Wild West and the honky-tonk of the South, or 
indeed, applied to ragtime or country airs. 

More simply, on a polyphonic synthesizer, take two different channels, each with 
two identical sounds of pianos whose tuning frequencies are strictly identical. Now, 
slightly detune each of them (e.g. using the detuning function on a Yamaha 
synthesizer) to either side of that central frequency. Of course, you lose the exact 
consonance, and depending on that value of the detuning, determining the harshness of 
the interval, you obtain a magnificent tack-piano effect. With these experiments 
completed, just for your own general knowledge, note the values of the tuning 
frequencies for the two pianos! 

NOTE.– Some readers must surely have allowed a smile to creep across their faces as 
they read the previous paragraph, seeing it as reinventing the wheel, saying that 
everybody knows this and has done for a long time (pianos existed long before 
synthesizers did!): how to detune a piano to make it a tack piano, by playing on the 
relative detuning of each of the strings present (2 or 3) per note, or indeed by 
stuffing it with newspaper! Of course, they are absolutely right! Nevertheless, to do so 
takes a great deal of time and patience, and when you have had enough of that clunky, 
tack sound, you simply need to retune everything to normal, which will take a 
certain amount of time… On a synthesizer, though, it is much easier: it takes all of two 
seconds, in both directions. A done deal! 

A.6. Chorus effect (often used with strings – violins, etc.) 

A good example of the chorus effect is that which is created by an ensemble of 
strings (violins, etc.) not all playing strictly at the same time (see phasing) and not 
all precisely tuned to the same frequencies in the range of harshness (thus not 
dissonant), and whose frequencies and/or phases vary slightly over time.  
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A.7. Phasing effect 

Phasing is an effect of slow, variable sound rearrangement (phasing), or more 
quickly (the “tremolo” of the Leslie present in Hammond organs), with modulation 
of amplitude, phase, frequency, modulation of the place in space where the sound 
source appears to be.  

 

Figure A.6. Spectrogram of an 8-step phaser modulated by a very  
low-frequency sine oscillator applied to white noise. For a color  

version of this figure, please see www.iste.co.uk/paret/musical.zip 

The electronic phasing effect is created by dividing an initial audio signal into 
two paths: 

– a direct (dry) path, with no modification; 

– a path on which the signal is treated with an “all-pass filter” (wet), preserving 
its original amplitude and modifying only the phase of the signal. The quantity of 
phase variations depends on the frequency. 

When the signals issuing from these two channels (processed signal and original, 
untreated signal) are mixed, the signals of particular frequencies whose phases are in 
phase opposition with the initial signal cancel one another out, thus creating, in the 
response curve, amplitude and frequencies of the rejections or notches characteristic of 
the phaser (see Figure A.7, showing a “comb filter”). By altering the ratio of the mix 
between the two channels, we can change the depth of the teeth and notches of the comb. 
The deepest notches occur, obviously, when the mixing ratio is 50%. Despite the fact 
that human ears are not very sensitive to phase differences, this creates pleasing sound 
interference, giving the effect of space and sonic volume. 
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Figure A.7. Response (on a horizontal logarithmic scale) of a comb filter 

NOTE.– The definition of a phaser generally excludes devices where the all-pass 
section is a delay line; a device such as this is called a flanger (see below).  

As opposed to “low-pass” or “high-pass” frequency filtering circuits, traditional 
electronic phasers use a series of “all-pass” networks with varying phase shifts 
which modify the phases of the different frequency components of the incident signal. 
These networks thus allow all frequencies to pass through at an equal level, merely 
introducing phase changes to the signal.  

A simplified structural diagram for a mono phaser is indicated below: 

 

Figure A.8. Example of the simplified structure of a mono phaser 

The number of all-pass filters (usually called stages) varies with different 
models. Certain analog phasers offer 4, 6, 8 or 12 stages. A digital phaser may offer 
up to 32 or even more. This value determines the number of notches in the response 
curve, which affects the general character of the sound. A phaser with n stages 
generally has n/2 notches in the spectrum. In addition, the output can be fed back to 
the input (“feedback”) to create a more intense resonance effect by emphasizing 
frequencies between notches, as shown in Figures A.10 and A.11. 



Appendix     267 

 

Figure A.9. Example of a phaser with feedback 

The frequency response of an 8-stage phaser with or without feedback. 

 

Figure A.10. Frequency response of an 8-stage  
phaser without feedback, dry/wet ratio: 50/50% 

 

Figure A.11. Frequency response of an 8-stage  
phaser with 50% feedback, dry/wet ratio: 50/50% 

NOTE.– Note that the peaks between notches are sharper when there is feedback, 
which produces a very distinct sound. A stereo phaser is generally built with two 
identical phasers whose right and left channels are modulated by a quadrature signal 
(phase-shifted by 90°). Modern phasers have DSPs (digital signal processors) which 
often aim to imitate analog ones. They generally come in the form of plugins for 
sound-editing software, as part of a monolithic sound-effect unit, in a “19-inch 
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rack”, or indeed in guitar “effects pedals”, and are often used for effects on drums 
and electric guitars.  

A.8. Flanging effect 

History tells us that in the spring of 1966, tired of the lengthy process of re-
recording to create two vocal tracks, John Lennon of the Beatles asked Ken 
Townsend, the EMI engineer at Abbey Road Studios, if there was any electronic 
means of obtaining the sound of the doubled voice without actually doing all the 
work twice. After analyzing the problem and the tape echo chambers used at the 
time, the process developed is generally known as Artificial Double Tracking, or 
ADT, and it was John Lennon who is thought to have given the name flanging to 
that process.  

A.8.1. Flanging original 

Flanging is a specific type of phasing.  

The effect known as flanging is a complex sound effect which occurs when we 
mix two identical signals, one of which is delayed (either mechanically or using a 
delay line) by a very short period of time, generally less than 20 milliseconds, and 
changing little by little.  

In fact, the name flanger comes from the original method of creating the effect 
and designing a device specifically for the purpose of creating that sound effect. 

A.8.1.1. Principle 

Originally, the same signal was recorded simultaneously on two tape recorders. The 
output signals from the play heads of those two recorders were then mixed together on 
a third machine. Hence, the slightest differences in the recording/playback speeds of 
the motors for each tape recorder gave rise to a “phasing” effect when the signals were 
combined. The origin of the effect of flange stems from the fact that in order to 
amplify this effect of slight, variable phasing, a sound engineer would literally hold 
his/her finger to the edge of one of the two reels (the flange) so its speed was slowed, 
to a greater or lesser degree. When the sound engineer removed his finger, the tape 
would speed up. This effect of slowing and acceleration produced phase shifts desyn-
chronized by a few minuscule degrees, and on listening, created variations in sums 
and differences in harmonics. 



Appendix     269 

In 1969, Warren Kendrick designed a method to more closely control the 
flanging effect by having two Ampex stereo tape recorders side by side, running at 
15 IPS (15 inches per second – i.e. 38 cm/s).  

 

Figure A.12. Historical setup for the principle of flanging. For a  
color version of this figure, please see www.iste.co.uk/paret/musical.zip 

As indicated by Figure A.13, the receiving reel of recorder A and the feed reel of 
recorder B were inactive (no load), as were recording channel 2 on recorder A and 
recording channel 1 on recorder B, as well as the erase head on recorder B.  

The tape running between the two recorders is fed from left to right, and an 
identical signal has been recorded on each channel (1 and 2) of the tape, but shifted 
by around 18 inches (45 cm) along the length of the tape (which equates to around 1.2s 
in terms of time). During the recording, skillfully, using a screwdriver (not a magnetic 
one, of course) inserted between the two recorders, it was possible to force the tape to do 
a little additional mechanical “rise” and “fall”. The same setup was used for 
playback/mixing onto a third recorder. The screwdriver, when moved from front to 
back, causes the two signals to diverge and then converge. This latter technique creates 
zero-flanging points – i.e. points where the delayed signal crosses the attack signal 
and the signals change places. 

In the same way as phasers, this technique creates an unlimited series of peaks 
and notches, evenly spaced. The notches thus created by mixing the signal with a 
delayed portion of itself tend to produce a sound which seems more natural than a 
phaser does. In addition, it is possible to cascade a delay line with another type of all-
pass filter. Thus, it combines the flanger’s unlimited number of notches with the 
phaser’s irregular spacing, and this produces a comb filter effect that varies over 
time as a function of the delay times (we call this a swept comb filter effect… which 
sounds more worthy of a hair salon than a music studio!). 
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A portion of the output signal from the flanger is generally fed back into the 
input (a “recirculation in the delay line”), creating a resonance effect which further 
enhances the intensity of the peaks and troughs. The phase of the feedback signal is 
sometimes reversed, causing another variation on the flanging sound. In short, when 
it comes to fantasies and electronic sound engineering, anything goes! 

A.8.1.2. Barber-pole flanging 

The barber pole is a well-known sight (Figure A.14). It is the red, white and blue 
spiral emblem used by barbers (or hairdressers), rotating endlessly, with its lines 
seeming to go on into infinity. 

Barber-pole flanging is also known as “infinite flanging”. The sonic illusion of 
such flanging is such that the frequency sweeping of the sound seems to move 
infinitely in one direction, either upwards or downwards, instead of move backwards 
and forwards on both sides of an initial phase. To create this effect, barber-pole 
flanging uses a cascade of multiple delay lines. This effect is available on many 
hardware- and software effects systems.  

 

Figure A.13. The conventional red, white blue spiral emblem for  
barbers (or hairdressers), known as a barber pole. For a color  

version of this figure, please see www.iste.co.uk/paret/musical.zip 

A.8.2. Artificial flanging  

Nowadays, the flanger effect is created using integrated circuit technology, either 
in analog or primarily in digital, using DSP technology. Flanging can also be done by 
software. 
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A.8.3. Comparison of the phaser and flanger 

In phasing, the signal is transmitted through one or more all-pass filters whose 
phase response is nonlinear, and then is added to the original signal. This causes 
both constructive and destructive interference which varies with the frequency, 
giving a series of peaks and troughs in the system’s frequency response. In general, 
the position of these peaks and troughs does not occur in a harmonic series. Phasing 
gives a comb filter with irregularly spaced teeth. 

 

Figure A.14. Spectrograms of phasing effects 

In flanging, we add to the signal a partial copy of itself, delayed over time, 
resulting in an output signal with peaks and troughs which are in a harmonic series. 
The flanger acts as a comb filter whose teeth are regularly spaced. 

 

Figure A.15. Spectrograms of flanging effects 

For both phasing and flanging, the characteristics (respectively the phase 
responses and the delay effects) vary over time, leading to the effect of sweeping of 

Phasing effect 

Flanging effect 



272     Musical Techniques 

the audible spectrum. To the ear, flanging and phasing seem similar, but can be told 
apart because of their distinct colorations (different spectral contents).  

So that the comb filter effect will be perceptible, it is preferable that the spectral 
content of the sound source be sufficiently complete within the frequency range of 
the comb filter, variable to reveal the effect of the filter. The richer the harmonic 
content is in terms of white-noise signals, similarly broad-spectrum noise signals 
(e.g. Dirac pulse, i.e. percussion, i.e. drums), the better the effect that will be 
produced! 



 

Glossary 

For beginner musicians, here is a brief glossary of the main terms employed in 
this book (further details given in the various chapters). 

Air: a song or melody. 

Alteration: the raising or lowering of a note by means of a sharp or flat. 

Altered chord: a chord in which a note(s) has been raised or lowered chromatically. 

Atonal: music that is written and performed without regard to any specific key. 
Music that lacks a tonal or key center. 

Attack: the beginning of a sound. 

Augmented sixth chord: a kind of chord in which the interval of an augmented 
sixth resolves outward to an octave. Contains an augmented sixth above the bass, in 
addition to various other tones. 

Authentic cadence: a cadence with a progression from the dominant (V) chord to the 
tonic (I) chord. 

Bemolle (or flat): a symbol indicating that the note is to be diminished by one 
semitone. The symbol that means to lower the pitch one half step (b). Accidentals 
that lower a given pitch by one half-step. 

Cadence: a sequence of chords that brings an end to a phrase, either in the middle or 
the end of a composition. 

Canon: the strictest form of musical imitation, where one part begins, and the other 
part begins later the exact same line (see ROUND). 

Circle of fifths: order in which the successive fifths are arranged. 

 

Musical Techniques: Frequencies and Harmony, First Edition. Dominique Paret and Serge Sibony. 
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc. 



274     Musical Techniques 

Choir: a group that sings in unison.  

Chord: two or three or more notes played simultaneously in harmony. 

Chord progression: a string of chords played in succession. 

Chromatic: moving in half-steps.  

Chromatic scale: includes all twelve notes of an octave.  

Clef: a symbol at the beginning of the staff defining the pitch of the notes found in 
that particular staff. 

Consonance: groups of tones that are harmonious when sounded together as in a 
chord. 

Degree: a note of a scale, identified by number. 

Diatonic: moving within a key without changes. The notes indigenous to a key in a 
major or minor scale.  

Diesis (or more usually, sharp [plural: dieses]): a symbol indicating the note is to 
be raised by one semitone. the symbol that indicates moving one half step higher (#).  
An accidental that raises a given pitch by one half-step. 

Diminished: lowered, or reduced. 

Diminished seventh chord: a chord made up of a root, a minor third, a diminished 
fifth, and a diminished seventh. 

Diminished triad: a triad which contains a root, a minor third, and a diminished 
fifth. 

Dissonance: harsh, discordant, and lack of harmony. Also a chord that sounds 
incomplete until it resolves itself on a harmonious chord. Notes that conflict, or 
sound outside of a chord in which they occur. Such notes usually fall outside of the 
overtones which are being generated by the note or chord that is sounding. A 
combination of two or more tones that create tension and must be “resolved” with 
standard chords (ones that are expected, or pleasant to the ear). 

Dominant: the fifth degree of the diatonic major or minor scale. 

Double flat: an accidental that lowers the note it precedes by one whole step. 

Double sharp: an accidental that raises the note it precedes by one whole step. 

Equal temperament: tuning of an instrument whereby the octave is divided into 
equal intervals. 
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Fourth: the interval of four diatonic degrees. The interval between two notes. Two 
whole tones and one semitone. make up the distance between the two notes. 

Fifth: the interval between two notes. Three whole tones and one semitone make up 
the distance between the two notes. The interval of five diatonic degrees. 

Fundamental (or root): the lowest note in a harmonic series. 

Harmonics: series of multiple or fractional sounds existing within a tone produced 
by the vibration of the parts of the instrument/larynx. 

Honky tonk: a country music style known for its powerful, emotional songs.  

Interval: the distance between two notes. The distance in pitch between two notes. 

Intonation: the manner in which tones are produced with regard to pitch. 

Jazz: a genre in which artists improvise within a rhythmic and harmonic framework. 

Key of Fa (F): also called the “F” clef); the sign on the staff that indicates pitches. 
Where the 4th line (up) represents the F below Middle C.  

The F clef falling on the fourth line of the staff. 

Key of So (G): a clef that indicates which line represents G on a staff, as opposed to 
a C clef, or an F clef.  

Key signature: the flats and sharps at the beginning of each staff line indicating the 
key of music the piece is to be played. 

Major: one of the two modes of the tonal system. 

Major chord: a triad composed of a root, a major third, and a fifth. 

Major key: based on a scale of w/w/h/w/w/w/h steps. 

Major scale: a diatonic scale in which the half steps fall between the third and 
fourth, and the seventh and eighth degrees. 

Measure: the unit of measure where the beats on the lines of the staff are divided up 
into two, three, four beats to a measure. 

Melody: pitches in sequence that form a pattern. 

Music element that is a combination of pitches arranged in orders that are usually 
pleasing to hear. Pitches move up, down, or repeat to make a melody. a tune, or the 
notes of a song 

Minor: one of the two modes of the tonal system. The minor mode  can be 
identified by the dark, melancholic mood. 
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Minor key: based on a scale of w/h/w/w/h/w/w steps. 

Mode: a type of scale with a specific arrangement of intervals. The modes are either 
major or minor. 

Modulation: to shift to another key. 

Natural: a symbol that returns a note to its original pitch after it has been augmented 
or diminished. The symbol that means to return a pitch to it’s “natural” status. 

Ninth: the interval of nine diatonic degrees (an octave and a second). 

Octave: the pitch that is exactly 1/2 the number of vibrations or exactly twice the 
number of vibrations of a starting pitch: Also a series of eight diatonic full tones 
above the key note where the scale begins and ends.  

Pentatonic scale: a musical scale having five notes. For example: the five black keys 
of a keyboard make up a pentatonic scale. 

Pitch of a note (occasionally height): the frequency of a note determining how high 
or low it sounds. 

Reed: the piece of cane in wind instruments. The players cause vibrations by 
blowing through it in order to produce sound. 

Register: a portion of the range of the instrument or voice. 

Relative major/minor: the major and minor keys that share the same notes in that 
key. For example: A minor shares the same note as C major. 

Relative pitch: ability to determine the pitch of a note as it relates to the notes that 
precede and follow it. 

Release: how a sound is ended. 

Resolution: the progression of chords or notes from the dissonant to the consonant or 
point of rest. 

Resonance: when several strings are tuned to harmonically related pitches, all strings 
vibrate when only one of the strings is struck. 

Rythm: the element of music pertaining to time, played as a grouping of notes into 
accented and unaccented beats. Combinations of, or patterns of long and short 
sounds, including a regular phrase. 

Scale: successive notes of a key or mode either ascending or descending. 

Semitone: the smallest interval. There are 12 half-steps in an octave. 
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Seventh: the interval between the first and seventh degrees of the diatonic scale. 

Sixth: the interval of six diatonic degrees. 

Slide: a glissando or portamento. Also refers to the moving part of a trombone. 

Standard: a song that is often recorded and performed. 

Temperament: refers to the tuning of an instrument. 

Tempo: indicating speed. Speed of the pulse (beat), with terms for fast or slow. The 
speed at which a regular pulse is repeated. 

Tessitura: the range of an instrumental or a vocal part. 

Texture: the “thickness” of harmony--how many interwoven parts? 

Third: the interval of three diatonic scale degrees. 

Timbre/tone color: the relative brightness or darkness of a sound. 

Tonality: the tonal characteristics determined by the relationship of the notes to the 
tone. 

Tone: the intonation, pitch, and modulation of a composition expressing the 
meaning, feeling, or attitude of the music. 

Tremolo: quick repetition of the same note or the rapid alternation between two 
notes. 

Triad: three note chords consisting of a root, third, and fifth. 

Triton: a chord comprised of three whole tones resulting in an augmented fourth or 
diminished fifth. 

Tuning: the raising and lowering a pitch of an instrument to produce the correct 
tone of a note. 

Unison: two or more voices or instruments playing the same note simultaneously. 
Everyone on the same pitch. 

Vibrato: creating variation pitch in a note by quickly alternating between notes. 

Voice: one of two or more parts in polyphonic music. Voice refers to instrumental 
parts as well as the singing voice. 

Whole-tone scale: a scale consisting of only whole-tone notes. Such a scale consists 
of only 6 notes. 
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