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Preface 

Today, we can consider electronics to be a subject derived from both the 
theoretical advances achieved during the 20th Century in areas comprising 
the modeling and conception of components, circuits, signals and systems, 
together with the tremendous development attained in integrated circuit 
technology. However, such development led to something of a knowledge 
diaspora that this work will attempt to contravene by collecting both the 
general principles at the center of all electronic systems and components, 
together with the synthesis and analysis methods required to describe and 
understand these components and subcomponents. The work is divided into 
three volumes. Each volume follows one guiding principle from which 
various concepts flow. Accordingly, Volume 1 addresses the physics of 
semiconductor components and the consequences thereof, that is, the 
relations between component properties and electrical models. Volume 2 
addresses continuous time systems, initially adopting a general approach in 
Chapter 1, followed by a review of the highly involved subject of 
quadripoles in Chapter 2. Volume 3 is devoted to discrete-time and/or 
quantized level systems. The former, also known as sampled systems, which 
can either be analog or digital, are studied in Chapter 1, while the latter, 
conversion systems, we address in Chapter 2. The chapter headings are 
indicated in the following general outline. 

 Each chapter is paired with exercises and detailed corrections, with two 
objectives. First, these exercises help illustrate the general principles 
addressed in the course, proposing new application layouts and showing how 
theory can be implemented to assess their properties. Second, the exercises 
act as extensions of the course, illustrating circuits that may have been 
described briefly, but whose properties have not been studied in detail. The 
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first volume should be accessible to students with a scientific literacy 
corresponding to the first 2 years of university education, allowing them to 
acquire the level of understanding required for the third year of their 
electronics degree. The level of comprehension required for the following 
two volumes is that of students on a master’s degree program or enrolled in 
engineering school.   

In summary, electronics, as presented in this book, is an engineering 
science that concerns the modeling of components and systems from their 
physical properties to their established function, allowing for the 
transformation of electrical signals and information processing. Here, the 
various items are summarized along with their properties to help readers 
follow the broader direction of their organization and thereby avoid 
fragmentation and overlap. The representation of signals is treated in a 
balanced manner, which means that the spectral aspect is given its proper 
place; to do otherwise would have been outmoded and against the grain of 
modern electronics, since now a wide range of problems are initially 
addressed according to criteria concerning frequency response, bandwidth 
and signal spectrum modification. This should by no means overshadow the 
application of electrokinetic laws, which remains a necessary first step since 
electronics remains fundamentally concerned with electric circuits. Concepts 
related to radio-frequency circuits are not given special treatment here, but 
can be found in several chapters. Since the summary of logical circuits 
involves digital electronics and industrial computing, the part treated here is 
limited to logical functions that may be useful in binary numbers computing 
and elementary sequencing. The author hopes that this work contributes to a 
broad foundation for the analysis, modeling and synthesis of most active and 
passive circuits in electronics, giving readers a good start to begin the 
development and simulation of integrated circuits. 

Outline 

1) Volume 1: Electronic Components and Elementary Functions [MUR 
17]. 

i) Diodes and Applications 

ii) Bipolar Transistors and Applications 

iii) Field Effect Transistor and Applications 

iv) Amplifiers, Comparators and Other Analog Circuits  
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2) Volume 2: Continuous-time Signals and Systems. 

i) Continuous-time Stationary Systems: General Properties, Feedback, 
Stability, Oscillators  

ii) Continuous-time Linear and Stationary Systems: Two-port 
Networks, Filtering and Analog Filter Synthesis  

3) Volume 3: Discrete-time Signals and Systems and Conversion 
Systems [MUR 18]. 

i) Discrete-time Signals: Sampling, Filtering and Phase Control, 
Frequency control circuits  

ii) Quantized Level Systems: Digital-to-analog and Analog-to-digital 
Conversions 

Pierre MURET 
November 2017 



 

Introduction 

This volume is dedicated to the study of linear and stationary systems in 
which time is considered as a continuous variable, as well as certain 
extensions in the case of nonlinear systems. It is mainly centered on single-
input and single-output systems but a method capable of generalizing studies 
to linear or nonlinear multi-input and multi-output systems is also addressed. 
Generally, in order to highlight the properties of these systems, one must 
necessarily rely on the analysis of electrical signals that either characterize 
their response to an excitation signal or their natural (or proper) response. 
The former output signal is dependent on the input signal and is called 
forced response, whereas their natural response is independent of the 
excitation signal placed on their input. Therefore, it is essential to begin with 
the representations of signals by forming a close correlation between the 
time domain and the frequency domain, which are connected by the Fourier 
transform or decomposition into Fourier series. It is then natural to 
customize the study to the case of stationary systems, for which the forced 
response is invariant under time translation of the signal applied on input, 
and which, in addition, follow the principle of causality. The unilateral 
Laplace transform then proves to be useful and it leads us to the notion of 
transfer function or transmittance, together with the Fourier transform in the 
case of finite energy signals. The properties of these two types of transforms 
and their application to the case of electronic systems are covered in the first 
part of Chapter 1 while the consequences of causality are addressed in 
Chapter 2.  

The second part of Chapter 1 is dedicated to the study of feedback and its 
applications, and then to the different methods for studying the stability of 
the systems, or to means able to control their instability, as is the case for 
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oscillators. A system is stable if, after a finite life span excitation, it finally 
returns to its previous idle state, namely without any variation of electrical 
quantities, and it is unstable otherwise. In the early stages of electronics, 
feedback was paramount and it led to much progress and the development of 
a multitude of applications, which are reviewed here. The mathematical tools 
constituted by the time–frequency transforms mentioned earlier or 
representations in the complex plane are then used to address problems of 
system stability, including the case of those that incorporate a feedback loop, 
known as looped systems. The extension to state variables and state 
representation, which is based on the decomposition of the response of a 
system into a set of first-order differential equations, is then addressed. The 
previous concepts finally make it possible to detail the different ways for 
analyzing oscillators’ operation, which initially can be considered as linear 
systems at the limit of stability, but which in practice are always subject to a 
limitation of the amplitude that requires nonlinearity to be taken into 
account. The transition from predictable operation to a chaotic regime is 
presented in the case of a model system. 

In Chapter 2, the properties of stable electronic systems are particularized 
to the case of networks and specially quadripoles. The different 
representations of networks in the form of quadripoles are discussed, as well 
as all notions of impedance or admittance deriving therefrom. Some are 
measurable, thus experimentally feasible, while others are fictional, such as 
image impedances, but open a highly fruitful scope of application, which is 
the subject of the last section of this chapter. The concepts of matching, 
whether power or impedance matching, are detailed, as well as their 
consequences and rules to apply in practice in order to optimize the 
operation of electronic assemblies and to best take advantage of the 
components that are included. 

The last part of Chapter 2 is devoted to stable systems that can be 
analyzed as analog filters, namely satisfying the principle of causality, of 
which the general consequences are presented. There are either circuits 
incorporating one or more active devices such as operational amplifiers or 
passive circuits, limited here to non-dissipative cases. The synthesis of these 
analog filters is thorough, and can be used to determine the value of all the 
components of a filter based on imposed criteria, most often a template in 
the frequency domain. Two topics are presented; on the one hand for active 
filters and on the other hand for non-dissipative passive filters. In the second 
case, the method using effective parameters is an exact method, but not 
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covering all the applications, while the method of image parameters is 
suitable to most requirements, with a deviation from the template that can be 
minimized. The ways to make adjustments and all circuits necessary for the 
practical implementation of the filters are detailed. Examples are given for 
each important case, based on the transfer functions calculated by means of 
software programs (here, MATLAB). The different possible choices for the 
computational functions are presented in relation to the criteria to be 
verified. In the case of the synthesis based on image parameters, formulas 
allowing the calculation of all elements are demonstrated. Although the case 
of systems with distributed (or scattered) elements, essential when the 
wavelength becomes comparable to the dimensions of the circuit, is not 
explicitly addressed, the description of the quadripoles using s-parameters, 
as detailed in Chapter 2, easily adapts. 



1 

Continuous-time Systems: General 
Properties, Feedback, Stability, Oscillators  

The linear and stationary systems that concern us here deliver output 
signal y(t) when input signal x(t) is applied to them, solution to a real and 
linear ordinary differential equation, where t represents the time variable: 

1 1− −

− −− − 
n n m m

n n 1 1 0 m n 1 1 0n n 1 m m 1

d y d y dy d x d x dxa +a + +a +a y = b +b + +b +b x
dt dtdt dt dt dt

 

which can also be seen as a linear application:  

 
x(t) y(t) System 

 

Function exp(α t), with real or complex α, is of special importance since 
it is the specific function of the system’s differential equation, which means 
that if x(t) = exp(α t), the output signal is also proportional to exp(α t). It is 
this fundamental property that warrants the approaches discussed in the 
following sections 1.1 and 1.2. Another method, based on the state-space 
form, also applicable to nonlinear systems, is presented in sections 1.4.5 and 
1.5. 

Fundamentals of Electronics 2: Continuous-time Signals and Systems, 
First Edition. Pierre Muret. 
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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1.1. Representation of continuous time signals 

These signals are real electrical quantities and thus measurable functions 
of time variable t, which itself is a continuous variable. They are also 
referred to as analog signals. An additional representation is formed by the 
frequency spectrum. 

1.1.1. Sinusoidal signals 

In general, any real sinusoidal signal of angular frequency ω1 and 
constant frequency f1 (ω1 = 2π f1) is written as y(t) = A cos(ω1t + ϕ1), once a 
time and phase origin has been selected. But in complex numbers, this can 
also be written as: 

 

Both exponential terms with imaginary exponent appear with the same A 
coefficient and are always complex conjugates, two conditions that are 
required if y(t) is real. The two vectors corresponding to images on the 
complex plane rotate in opposite directions; thus, frequency −f1 is 
consistently found at the same time as frequency f1.  

 

ϕ

(A/2) exp[j(ω1t + ϕ1)]   at t = 0 

(A/2) exp[−j(ω1t + ϕ1)]   at t = 0 

 

Figure 1.1. Representation of a sinusoidal signal on the complex plane 
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The spectral or frequency representation is thus formed simply by two 
lines of amplitude A/2 at frequencies f1 and −f1, and phase lines ϕ1 and −ϕ1 at 
these same frequencies.  

A/2

 0 f1 −f1

 −ϕ1

 ϕ1

 f

 
Figure 1.2. Spectrum of a sinusoidal signal (amplitude solid line, phase dotted) 

Indeed, sinusoidal signals of the same frequency form a two-dimensional 
vector space for which a basis is provided by exp[jω1t] and exp[−jω1t] 
(cos[ω1t] and sin[ω1t] form another basis). Thus, we can write:  

[ ] [ ]1 1 1 1( ) exp 2 exp 2− −y t = c j πf t +c j πf t  

with 

1 1exp( )  
2
Ac = jϕ  

and 

1 1exp( )
2− −Ac = jϕ  

where c1 and c−1 are complex conjugates. 

However, here only the first of these terms will be considered, with the 
second provided by complex conjugates. This leads to rotating vector or 
Fresnel representation: concerning the instantaneous values, only 

A exp[j(ω1t + ϕ1)] is used in the complex plane (or rather 
2

A exp[j(ω1t + ϕ1)] 

if these values are considered to be root mean square (rms) quantities for 
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power calculations). Again, y(t) is found in the first case by projection on the 
real axis, that is, by taking the real part of symbolic representation to within 
a coefficient of 2.   

1.1.2. Periodic signals 

From sinusoidal signals, the case of periodic signals yT(t) with period T 
equal to 1/f1 can be generalized by performing the development as a Fourier 
series. Periodic signals of period T also constitute a vector space but of 
dimension 2N if signal reconstitution requires N sinusoidal signals of 
harmonic frequencies f1, 2f1, 3f1, 4f1, … Nf1. The series’ convergence to yT(t) 
is made certain if N approaches infinity:  

2( ) lim exp
=−→∞

 =   
N

T nn NN

nty t c j
T
π  

where the coefficients are calculated by Fourier series decomposition: 

0

0

1 2( )exp
+  = −  

t T

n Tt

ntc y t j dt
T T

π  

Since yT(t) is real, cn and c−n are complex conjugates (same module and 
opposite phase). Hence, the even and odd symmetries respectively for 
module spectrum |cn| and for that of argument Arg{cn}.   

 

 0 f1 2 f1 3 f1 4 f1 5 f1  −5f1 −4f1 −3f1  −2f1     −f1 

 f 

 c-5  c-4  c-3  c-2   c-1     c0     c1      c2       c3        c4          c5 

 
Figure 1.3. Spectrum of a periodic signal of repetition frequency f1  

(modules in bold and arguments in dotted lines) 
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By merging the conjugated terms, the real series can be written as:  

{ }0
1

2( ) lim 2 cos  where  Arg
→∞ =

 = + + =  


N

T n n n nN n

nty t c c c
T
π φ φ

 

1.1.2.1. Power of a periodic signal 

Power (average energy over time) is calculated by Parseval’s rule, which 
shows that this energy is independent of time or frequency representation (to 
within the factor R or 1/R) and is obtained by a scalar product of the signal 
by itself: 

S  [ ]
0

0

2
21 ( )

+ ∞

=−∞

= = 
t T

T n
nt

y t dt c
T

 

No cn cn' term with n ≠ n' appears since the basis of the vector space is 
orthogonal (scalar products of all basis vectors are zero unless n = n'). It 
should be noted that |cn|2 = n nc c  and in the frequent event where power is 

calculated from a complex voltage U or a current I, using 
∞

−∞
 n n

n=
U U  or 

alternatively 
∞

−∞
 n n

n=
I I  if Un and In represent, respectively, the u(t) and i(t) 

complex Fourier series decomposition coefficients. 

1.1.3. Non-periodic real signals and Fourier transforms 

If the signals are non-periodic, it can be assumed that the period T of the 
signals approach infinity on condition that lim

→∞
n

T
Tc  is convergent (the signals 

have to approach zero for t →±∞), replacing discrete variable n/T by 
continuous variable f (frequency) and thus defining the Fourier transform of 
y(t) by :  [ ]lim ( )exp 2

−→∞
= −

T

n TT
Tc y t j ft dtπ thus:  

FT[y(t)] =  

[ ] [ ] [ ]( ) ( ) exp 2 ( ) cos 2 ( )sin 2
∞ ∞ ∞

−∞ −∞ −∞
= − = −  Y f y t j ft dt y t j ft dt j y t j ft dtπ π π
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The symmetry properties are the same as for cn since y(t)  is assumed to 
be a real function:  

( ) ( )− =Y f Y f  

By changing variable t to –t, only the sine term changes sign thus 
providing: 

FT[y(–t)] =  ( )Y f  

Obtaining y(t) by means of the reverse FT calculated from the Fourier 

series by approaching the limit 2 1( ) lim exp
∞

→∞ =−∞

 =   
 nT n

nty t Tc j
T T
π  by replacing 

lim
→∞ nT

Tc  by Y(f) , n/T by f , 1/T by df and the total by an integral: 

FT−1[Y(f)] = [ ]( ) ( )exp 2
∞

−∞
= y t Y f j ft dfπ  

Other properties of the FT are as follows:  

– The FT and the reverse transform are linear applications: 

If y(t) = ay1(t) + by2(t)     FT[y(t)] = aF[y1(t)] + b FT[y2(t)] 

If Y(f) = αY1(f) + βY2(f)   FT[Y(f)] = αF[Y1(f)] + β FT[Y2(f)] 

– Derivation and integration of y(t):  

If Y(f) = FT[y(t)], FT ( ) 2 ( )  = =  

dy j Y f j fY f
dt

ω π  and FT ( ) 
  y t dt

( ) ( )
2

= =Y f Y f
j j fω π  

(integration by parts of the definition where y(t) is replaced 

by dy/dt).  

– Delay theorem:  

If Y(f) = FT[y(t)], FT[y(t − t0)] = 0exp( 2 ) ( )− j ft Y fπ  

The phase alone is modified (phase delay if t0 > 0 is a time delay) and not 
the transform modulus. 
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Figure 1.4. Triangular signals (left) and their spectrum (FT) (right). For a color  
version of this figure, see www.iste.co.uk/muret/electronics2.zip 

– Similarity and dilatation/contraction of time/frequency scales: 

If Y(f) = FT[y(t)],  FT [y(αt)] = 







αα
fY1

 (obtained by changing 

variable t' = αt in the definition, α real), as illustrated in Figure 1.4. 

– Ordinary product of two functions and convolution product  

If Y(f) = FT[y(t)] and X(f) = FT[x(t)], Z(f)= FT[y(t) x(t)] = 

( ) ( ) ( ) ( )
∞ ∞

−∞ −∞

− = − Y f X d Y X f dν ν ν ν ν ν  

and FT−1[Y(f) X(f)] = ( ) ( ) ( ) ( )
∞ ∞

−∞ −∞

− = − y t x d y x t dτ τ τ τ τ τ  or alternatively  

FT ( ) ( ) FT ( ) ( ) ( ) ( )
∞ ∞

−∞ −∞

   
− = − =   

   
 y t x d y x t d Y f X fτ τ τ τ τ τ  

– Wiener–Kinchine and Parseval theorems: 

2-1 -1FT ( ) FT ( ) ( )   = =  Y f Y f Y f ( ) ( ) ( ) ( )
∞ ∞

−∞ −∞

− + = − y y t d y t y t dtτ τ τ τ , the 

autocorrelation function of y(t) (after reversing the names of variables t and 

τ) or rather 2FT ( ) ( ) ( )
∞

−∞

 
− = 

 
 y t y t dt Y fτ . 
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The autocorrelation function Cyy(τ) ( ) ( )
∞

−∞

= − y t y t dtτ  measures the degree 

of resemblance between the function and delayed function. Unlike the 
convolution product, the integration variable operates with the same sign in 
both factors under the integral symbol. 

2FT ( ) ( ) ( )
∞

−∞

 
− = 

 
 y t y t dt Y fτ  is the Wiener–Kinchine theorem stating that 

the FT of the autocorrelation function of y(t) is equal to the squared modulus 
of the FT of y(t). This autocorrelation function may be calculated not only 
for known (or determined) signals but also for random signals such as noise 
defined only by a density of probability. 

2 2-1FT ( ) ( ) exp( 2 ) ( ) ( )
∞ ∞

∞ ∞

  = = −   
- -

Y f Y f j f df y t y t dtπ τ τ  is rewritten 

simply for τ = 0:  

[ ]22( ) ( )
∞ ∞

∞ ∞

= 
- -

Y f df y t dt  

This is the Parseval theorem that allows us to perform the energy 
calculation (clearly visible in the second member to within R or 1/R 
coefficient if y is, respectively, a current or a voltage) both in the time 
domain from y(t) and in the frequency domain from Y(f). Thus, we can 

proceed to 2( )
∞

∞

-

Y f df , which is an energy with 2( )Y f  a spectral energy 

density in J/Hz; ( )Y f  a spectral density of current or voltage within R or 
1/R factor in A/Hz1/2 or in V/Hz1/2. 

1.2. Representations of linear and stationary systems and 
circuits built with localized elements 

1.2.1. Representation using ordinary differential equation  

Electric or electronic circuits built with localized elements are those 
featuring elements in which instantaneous currents (and voltages) are the 
same irrespective of the location considered in a conductor. Accordingly, it 
can be assumed that the wavelength of these currents, voltages and 
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associated fields is very large relative to the dimensions of these circuits 
(approximation applicable up to approximately 1 GHz, corresponding to a 
vacuum wavelength of 30 cm). Furthermore, the only operational elements 
here are the sources of current and voltage, together with the linear passive 
elements: resistance, capacitance, self-inductance and mutual inductance. In 
electronics, this generally results from an approximation of linearization, 
which is applicable over a voltage or current range that must be defined. 

The result of these two hypotheses is that these systems are also 
stationary, which is to say that their response is unchanging irrespective of 
the instant chosen as the time origin, and that they can be described 
mathematically by one or several linear ordinary differential equations. 

The laws for linear electrical circuits (although this also applies in 
mechanical engineering for forces or torques, velocities and movements) are 

those of electrokinetics, valid for resistances (u = Ri), capacitances ( = dui C
dt

) 

and inductances ( = diu L
dt

) (where coefficients R, C and L are assumed to be 

constant if the system is linear), loop law and node law (system of linear 
equation) (see the Appendix in Volume 1 [MUR 17]). Any system in which 
value y(t) depends on circuit elements and on an excitation x(t) can thus be 
described by one (or several) ordinary differential equations of the form:  

1 1

1 1 0 1 1 01 1

− −

− −− −+ + + + = + + + + 
n n m m

n n m nn n m m

d y d y dy d x d x dxa a a a y b b b b x
dt dtdt dt dt dt

  

All of these linear equations can also be constructed by means of the 
superposition theorem. Solutions are always given by the total of the 
equation’s general solution without the second member and a special 
solution to the whole equation, the first corresponding to the system’s free 
regime and the second to the regime forced by x(t).  

If the system is stable, the equation’s solution without the second 
member corresponds to a transient response that ceases after a certain 
duration. This does not persist while the forced regime will continue. One 
may assume that the forced regime has begun at t → −∞ since the system is 
stationary so its responses are independent of the time origin. Under 
permanent conditions, if x(t) = exp(α t), y(t) is also proportional to exp(α t). 
As shown previously, real signals that can be expressed as linear 
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combinations of complex exponentials (as is the case for sinusoidal signals) 
also verify this fundamental property. This allows for a transformation from 
the time domain to the frequency domain, or alternatively, from real signals 
to the complex plane, while simultaneously defining transmittance, which 
draws out the proportionality relation between the complex representation of 
input and output signals. These complex representations will be indicated in 
the following with capital letters in the frequency domain or in the complex 
plane.  

 
X Y System 

 

The systems’ responses for various signals are studied in section 1.2.2. 

1.2.2. Periodic permanent conditions and harmonic conditions 

In permanent sinusoidal conditions at frequency ω1 = 2π f1,  x(t) =  
X0 cos(2π f1t)  if  x(t) is chosen as the phase origin, and y(t) = Y0 cos(2π f1t + 

ϕ1).  These signals can be rewritten as [ ] [ ]1 1
0

exp 2 exp 2 )
( )

2
+ −

=
j f t j f t

x t X
π π

 

and , which duplicate each term of 

the differential equation, on the one hand, into a term factor of exp(j2πf1t), 
with frequency f1, and, on the other hand, into a term factor of exp(−j2πf1t), 
the complex conjugate, with frequency −f1.  Since this equation has to be 
verified irrespective of instant t, the only solution is that the two equations, 
one written with exp(j2πf1t) as a common factor, and the other with 
exp(−j2πf1t) as a common factor, be verified separately. As a consequence, 
the member to member total will also be the same. 

We can manage the first set of terms by writing Y(f1) = Y0 exp(jϕ1)  and  
X(f1) = X0, and by simplifying both members by  exp(j2πf1t)  after the 
derivations have been performed. The result reads:  

[an (j2πf1)n + an-1 (j2πf1)n-1 + … + a1 (j2πf1) + a0] Y(f1)   

= [bm (j2πf1)m + bm-1 (j2πf1)m-1 + … + b1 (j2πf1) + b0] X(f1) 

 [ ] [ ]
2

)2(exp)2(exp)( 1111
0

ϕπϕπ +−++= tfjtfjYty
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We also obtain a similar equation in which f1 has been replaced by −f1. 
Variable t has disappeared. 

Signals Y(f1) = Y0 exp(jϕ1)   and  X(f1) = X0  are typically complex 
numbers expressed from a modulus and an argument. These are 
representations of only half of the amplitude spectrum of real sinusoidal 
signals; they are known as “symbolic signals” or cissoidal representations, or 
complex exponentials.  

It should be noted that the equation above is verified at each frequency f1 
with coefficients of Y(f1) in the first member and X(f1) in the second member, 
which differs at each frequency since they are polynomials of variable f1. 

1.2.2.1. Symbolic (complex) notation of signals, impedances and 
admittances and power calculation in sinusoidal conditions 

In sinusoidal conditions, the use of values Y(f1) and  X(f1) whose modulus 
is equal to the rms value of y(t) and x(t) is preferred, that is  0 2Y  and 

0 2X , respectively.  The ratios of current I = Y(f1) and voltage V = X(f1)  
are then complex impedances or admittances. 

The active power   is then obtained by: 

( ) ( ) ( )1Re Re
2

= = = +P I V I V I V I V  

If the conditions are periodic but non-sinusoidal, a Fourier series 
decomposition of the signals lets us process this equation as many times as 
there are useful harmonics in the signals, at frequencies f1, f2 = 2 f1 , f3 = 3 f1, 
…  to deduce Y(f1), Y(f2), Y(f3), … as a function of X(f1), X(f2), X(f3), … . We 
can then recompose the total signal y(t) accounting for the signal’s 
decomposition coefficients x(t).  

If the signal is not periodic but has an FT, the transform of the differential 
equation must be verified for each frequency f belonging to the infinite set of 
real numbers. 

 

 
1

00 cos
22

)()(1 0

0

ϕ
XY

dttxty
T

P
Tt

t
== 

+
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In all cases (periodic sinusoidal conditions or with calculable FT), that 
can be grouped under the term harmonic conditions, this equation establishes 
the equality of  the coordinates of the two vectors representing signals in the 
time domain after projection on a basis of exponential functions exp(j2πf t) 
in the first member and in the second member. 

Indeed, by taking the FT of both members of the whole differential 
equation, where X(f)  = TF[x(t)]  and  Y(f)  = TF[y(t)], we obtain: 

[an (j2πf)n + an-1 (j2πf)n-1 + … + a1 (j2πf) + a0] Y(f)   

= [bm (j2πf)m + bm-1 (j2πf)m-1 + … + b1 (j2πf) + b0] X(f) 

Thus, by writing H(f) = Y(f)/ X(f), the ratio of FTs of both quantities 
present in the system (or with ω  = 2πf ):  

( ) ( ) ( )
( ) ( ) ( )

1
1 1 0

1
1 1 0

2 2 2( )( )
( ) 2 2 2

−
−

−
−

+ + + +
= =

+ + + +





m m
m m

n n
n n

b j f b j f b j f bY fH f
X f a j f a j f a j f a

π π π

π π π
 

NOTE.– H(f) or H(jf) or H(jω), the transmittance of the system in harmonic 
conditions,  is a rational fraction of variable jf  or jω of m degrees for the 
numerator and n for the denominator.   

1.2.3. Unilateral Laplace transform of causal systems and study 
of the various regimes 

1.2.3.1. Transform properties 

In the broadest cases applicable to all operating conditions, such as used 
when studying system stability and transient regime, if x(t) does not 
approach zero when t →+∞, the unilateral Laplace transform should be used. 
It can be deduced from the FT by multiplying the integrand by the unity step 
U(t) (zero when t < 0, one for t > 0), which allows for the introduction of 
causality, and by an exponential factor exp(−σ t), (with σ > 0, giving a real 

negative exponent), thus [ ]( ) ( )exp ( 2 )
∞

−∞

− − y t t j f t dtσ πU . These modifications  
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will ensure convergence by inducing a faster decrease for t → +∞. By 
writing complex variable s = σ  + j2π f, we obtain:  

LT[y(t)] = 
0

( ) ( )exp( )
∞

= −LY s y t st dt  

The properties are the same as those indicated for the FT except for the 
derivation, and we must add (if XL(s) = LT[x(t)]):  

– Symmetry in the complex plane:  if  y(t) is real  ( ) ( )=L LY s Y s     
(symmetry relative to the real axis). 

– Exponential damping:  if y(t) = x(t)exp(λt) (real λ), YL(s) = XL(s−λ)  
(transposition parallel to the real axis of the LT). 

– If a x(t) signal has limited support [0,T] (i.e. zero outside of the 

interval), the LT of the periodic repetition  y(t) = 
0

( )
∞

=
−

n
x t nT  appears to be 

( )( )
1 exp( )

=
− −

L
L

X sY s
sT

. 

– Time derivation and integration: if  
dt
dxty =)(  then ( ) ( ) (0 )+= −L LY s sX s x . 

More generally, if further derivations are possible:  

if ( ) =
n

n

d xy t
dt

, then 
1

1

0

(0 )( ) ( )
+−

− −

=

= −
kn

n n k
L L k

k

d xY s s X s s
dt

. 

And if 
0

( ) ( )= 
t

y t x dτ τ , then ( )( ) = L
L

X sY s
s

. 

– Theorems of initial and final values: of the previous properties and of 
integration by parts, we can deduce:  

lim ( ) (0 )+

→ +∞
=Ls

sY s y
  

and  

0
lim ( ) lim ( )

→ →+∞
=Ls t

sY s y t
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These latter properties are deduced by integration by parts in which the 
derivative of function y(t) applies. If y(t) is initially discontinuous (but not 
singular), which is often the case, the LT must be calculated in the open 
interval ]0  +∞[  rather than in the half-closed interval [0  +∞[ . This 
restriction allows the use of the derivative of y(t) in the latter properties 
while  simultaneously needing the assessment of y(t)  at  t = 0+  rather than at 
0 or 0−. Any other approach would be non-rigorous, leading to serious 
inconsistencies, particularly when singular functions at the time origin are 
concerned. Non-continuous functions can only be derived and transformed 
by the LT in the context of distributions formalism (see Appendix). 
However, the LT of ordinary functions can be retained for transforming 
functions with finite discontinuities on condition that they can be obtained 
by a time translation of one discontinuous function at t = 0 and by 
application of the delay theorem. 

1.2.3.2. Application of the Laplace transform to the system’s 
differential equation 

By taking the transform of both members of the system’s characteristic 

differential equation 
0 0

( ) ( )
= =

= 
r pn m

r pr p
r p

d y t d x ta b
dt dt

 and accounting for the 

derivation property, we obtain:  

1
1

0
1 0

1
1

0
1 0

(0 )( ) ( )

(0 )( ) ( )

+−
− −

= =

+−
− −

= =

 
+ − 

 
 

= + − 
 

 

 

kn r
r r k

L r L k
r k

lpm
p p l

L p L l
p l

d ya Y s a s Y s s
dt

d xb X s b s X s s
dt

 

By transferring all of the independent terms of YL(s) to the second 
member, we discover that the response YL(s) can be shared into two parts: 
one depending on the initial conditions at t = 0+ that corresponds to the 
system’s proper (or free) regime YP(s), and one that does not depend on this 
and that thus corresponds to the forced or steady-state regime YF(s), with 
YL(s) = YP(s) + YF(s). YP(s) also corresponds to the LT of the solution of the 
differential equation without the second member: 
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11
1 1

1 0 1 0

0

(0 ) (0 )

( )

−+ +−
− − − −

= = = =

=

  
−   

   =
   



pk ln r m
r k p l

r pk l
r k p l

P n
r

r
r

d y d xa s b s
dt dt

Y p
a s

 

while YF(s) is given by the result of the product of the transmittance H(s) by 
XL(s): 

0

0

( ) ( ) ( ) ( )=

=

= =




m
p

p
p

F L Ln
r

r
r

b s
Y s X s H s X s

a s
 

However, it should be noted that the denominator is the same for both 
signals, which would suggest characteristics of the same nature, as addressed 
below in this section.    

The properties of the convolution and ordinary products are also applied 
to the LT; one can deduced that, since the LT and FT of y(t) are given by an 
ordinary product, y(t) is given by a convolution product of x(t) with a 
characteristic function of the system. 

Furthermore, the expression of H(s) is strictly identical to that deduced in 
harmonic conditions obtained by replacing jω by the complex variables.  

CONCLUSIONS.– Transmittance H(s) is a rational fraction whose 
polynomials have only real coefficients bp, in numerator and ar in 
denominator, which are, respectively, the pth and rth order derivative 
coefficients of the input and output signals in the system’s differential 
equation. The roots are thus necessarily real or complex conjugates.  

Moreover, there is complete identity for the expressions of H(s) and 
H(jω) obtained, respectively, by the ratio of the Laplace transforms for 
steady-state input and output signals and the ratio of FTs for input and 
output signals. 

The roots of the numerator are called zeros, noted as zi and those of the 
denominator poles, noted as sk: 
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1 2 3
0

0 1 2 3

( )( )( )( )
( )( )( )

  − − −
=   − − − 




q
s z s z s zsH s H
s s s s s sω

, 

which can also be written by grouping the terms whose roots are complex 
conjugates (with H0 or H0’ real constants) and by factoring all of the roots:  

2 2

21 222 2
11 12 21 2221 22'

0 2 2
0

41 422 2
31 32 41 4241 42

1 1 1 2 1 2
( )

1 1 1 2 1 2

    
+ + + + + +           =  

       + + + + + +     
    

 

 

q
s s s s s s

sH s H
s s s s s s

ζ ζ
ω ω ω ωω ω

ω
ζ ζ

ω ω ω ωω ω

 

This expression is written in reference to cases in which the roots have a 
real negative part, a property of stable systems as seen further. Here, the 
three characteristic factors of elementary transmittance may be found:  
1) sq corresponding to a pole at infinity if  q ≥ 1 and at origin if  q ≤ −1,  
single if  q = ±1,  multiple if |q| > 1; 2) the first degree polynomials give 
first-order transmittances, with a real and negative root, so that  −ω11,  −ω12, 
−ω31,  −ω32…; 3) second-degree polynomials give second-order 
transmittances, with two complex conjugate roots  ( )2

21 21 211− ± −jω ζ ζ , 

( )2
22 22 221− ± −jω ζ ζ , ( )2

41 41 411− ± −jω ζ ζ , ( )2
42 42 421− ± −jω ζ ζ , where the 

ζij are the damping coefficients…. 

1.2.3.3. Properties of elementary transmittances in harmonic regime  

In the harmonic regime, s is replaced by j2πf = jω  and again we find the 
three types of elementary transmittances, corresponding to: 1) monomials; 
(2) first-degree polynomials and 3) second-degree polynomials in which 2ζ 
(where ζ is the damping coefficient) can be replaced by 1/Q, the reverse of 
the quality coefficient. Each is characterized by a break frequency   fc = ωc/2π .  

The study is performed in the Bode plane, that is in logarithmic 

coordinates or in decibels (=dB) for |H(jω)| or |H(j2πf)| and in 
semilogarithmic coordinates for Arg{H(jω)} or Arg{H(j2πf)}. The 
logarithm of the whole transmittance is then easily obtained by means of the 
total of elementary transmittance logarithms and the argument of the whole 
transmittance by the totals and differences of individual arguments according 
to the position of the numerator or denominator of each elementary 
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transmittance. If K is the modulus of the logarithmic scale, K log|H(j2πf)| is 
plotted according to K log(f )  or alternatively, for elementary transmittances, 
we can work with the reduced frequency u = f / fij, and do plots as a function 
of U = K log(f/fij). K can be equal to 20 dB (decibel) and in this case, the 
vertical scale becomes linear with a dB graduation of 20 dB for a decade. 

For a first approximation, the study is performed by means of asymptotic 
diagrams in which only the predominant term is considered, which amounts 

to studying only K log|H(j2πf)| in relation to K log( f ), so  K log|H(u)| = 

log log( )
 

= =  
 ij

fK K u U
f

μ

μ μ  line of slope μ in the valid region of the 

asymptotic approximation, so for  u < 1 or alternatively  u > 1 , that is  f < fij 
or f > fij. 

Another graphical representation is performed when plotting the complex 
number H(jω) in the complex plane.  This is the Nyquist diagram, in which 
frequency plays the role of a variable parameter, taking values from 0 to 
infinity. This graph has the advantage of clearly showing the position of the 
image of the complex number representing transmittance in the complex 
plane and thus facilitating the visualization of its modulus in linear 
coordinates and moreover its argument. However, we should add 
graduations indicating frequency or u on the curve if we also require 
information concerning frequency. 

The elementary first- and second-order transmittances are presented in 
detail in the following: 

– In this case (2), writing 1 1H (u)= + ju ; and for  the inverse, corresponding 

to the low-pass filter [ ] 1
1

1
1

−H (u) =
+ ju

,  the plots are obtained as shown in 

Figure 1.5. 



18     Fundamentals of Electronics 2 

 

Figure 1.5. Bode and Nyquist diagrams of a first-order low-pass filter [H1(u)]–1  
in full lines and H1(u) as a dotted line in the complex plane. For a color version of this 

figure, see www.iste.co.uk/muret/electronics2.zip  

For u  = 1 where  f = fc  (cut-off frequency),   we obtain:  |H1|-1 = 1 2    

where 20 log|H1|–1 = −3 dB  and Arg{H1
–1} = −45°, while the signs are 

reversed for H1. 

– In this case (3), we write: 2
2 ( ) 1 2= − +H u u j uζ  where  fn = ωn / 2π (natural 

frequency) and u = f/fn. We then have: [ ] 1
2 2

1( )
1 2

− =
− +

H u
u j uζ

, the second-

order low-pass filter transmittance. Bode and Nyquist  diagrams of [H2]−1 are 
shown in Figure 1.6. 
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Figure 1.6. Bode and Nyquist diagrams of a second-order low-pass filter with 
transmittance [H2(u)]–1 (from the highest to the lowest curve, the ζ values, displayed 
as z inside the figure, are 0.05, 0.5, 0.707, 5 in the Bode diagrams at left and from 
the lowest to the highest 0.2, 0.5, 5 in the Nyquist diagram at right). H2(u) is plotted in 
the case ζ = 0.5  as a dotted line in the complex plane. For a color version of this 
figure, see www.iste.co.uk/ muret/electronics2.zip 

If  ζ > 1 (or Q < 1/2),  H2(u) is decomposed into a product of two 
elementary first-order transmittances: 

[ ][ ])1(1.)1(1 22 −−+−++ ζζζζ juju   

or alternatively
2 2

1 . 1
( 1) ( 1)

   
   + +
   − − + −   

ju ju
ζ ζ ζ ζ

 

[H2(u)]−1 
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thus returning to the previous case of the first-degree polynomials. 

In any case, when u = 1, |H2| = 2ζ = 1 / Q and Arg{H2(u)} = 90°. 

Furthermore, atan 2

2
1
 
 − 

u
u

ζ  = 45° or 135° when  2

2 1
1

= ±
−

u
u

ζ   that is for 

u1,2 = 2 1+ ±ζ ζ . 

Distance |u2 − u1| between these last two values is equal to 2 ζ = 1/Q and 
allows for ζ to be determined knowing fn according to the previous property: 
Arg{T2(u)} = 90°  for u = 1, that is f = fn. 

The smaller the damping coefficient ζ, the less the deviation |u2 − u1| 
(phase variation faster as damping is smaller and also as resonance is greater 
when Q is higher). 

If  (or Q > 1
2

), the minimum value of |H2| occurs for  

ur = 21 2− ζ  and in this case |H2|min = 22 1−ζ ζ  (resonance). In 
electronics, the expression of H2(u) is often rewritten in a more 

symmetrical form as: H2(u) = 11
  + −  

  

ju jQ u
Q u

. 

Other elementary transmittances are as follows: 

– Band-pass filter:     3
2

( )
11 1

= =
 − + + −  

ju QH u ju u jQ uQ u

 

 
2

1<ζ
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Figure 1.7. Bode and Nyquist diagrams of a second-order band-pass filter (from the 
highest to the lowest curves, the ζ values are 0.06, 0.6, 0.707, 6 in the Bode diagram 

at left and 0.2, 0.6, 6 in the Nyquist diagram at right). For a color version of this 
figure, see www.iste.co.uk/muret/electronics2.zip 

 

Figure 1.8. Bode and Nyquist diagrams of a second-order high-pass circuit (from the 
highest to the lowest curves, the ζ values are 0.06, 0.6, 0.707, 6 in the Bode diagram 

at left and 0.2, 0.6, 6 in the Nyquist diagram at right). For a color version of this 
figure, see www.iste.co.uk/muret/electronics2.zip 

Transmittance   H3(u)  is  Q  (real)  for   u = 1  (resonance). A symmetry 
of |H3(u)| relative to the vertical axis at u = 1 occurs in the Bode plot while a 
symmetry of H3(u)  relative to the real axis exists in the Nyquist plot. Phase 
is deduced from that of the low-pass by adding +90° (or π/2 rad) to the 
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argument of the numerator, inducing a symmetry of Arg{H3(u)} relative to 
the origin located at Arg{H3(1)} = 0. 

– High-pass filter:     
2

4
2

( )
11 1

−= =
 − + + −  

u jQuH u
ju u jQ u

Q u

 

The maximum value of |H4(u)|   here occurs for    u'r = 
2

1
1 2− ζ

  in cases 

where 1
2

ζ <  and is '
4 2

1( )
2 1

rH u
ζ ζ

=
−

. Phase is deduced from that of the 

low-pass by adding 180° (or π rad) to the numerator’s argument. 

1.2.3.4. Transient responses to a causal-type excitation (x(t) = 0 for  
t < 0) 

Transform YL(s) is calculated from the general expression given in section 
1.2.3.1, and then searching for the original exponential responses in y(t) after 
partial fraction decomposition over the reals into fractions with linear and 
quadratic denominators and the use of a dictionary of Laplace transforms 
(see below).  

It should be noted that the denominator D(s) is the same for both terms 
YP(s) (proper regime) and YF(s) (forced regime) and that, as a consequence, 
the transmittance poles are the same and of fundamental significance. They 
determine the aspect of the transient response by means of coefficient λ of 
exponent λt appearing in the exponential functions contained in y(t). 

We can rewrite the denominator D(s) from section 1.2.3.2 in the form of 
a s polynomial factorized in the first-degree polynomials, and in second 
degree only for those with complex poles (i.e. if ζ < 1  or Q > ½):

( )( ) ( )( )2 2 2 2
31 32 41 41 41 42 42 42( ) 2 2= + + + + + + D s s s s s s sω ω ζ ω ω ζ ω ω  

The map of poles, that is the roots of D(s), in the complex plane is those 
composed of negative real values (or exceptionally positive, however the 
system is unstable in this case) −ω31 , −ω32 , …  and complex conjugated 
roots, that are symmetrical relative to the real axis  −ω41 ( )41 411± −jζ ζ , 

−ω42 ( )42 421± −jζ ζ ,… with  ωij > 0. 
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Type H(s) Step response at t > 0 

1st order low-pass 
1

1

1 s
ω

+

 
 

1 − exp(−ω1t) 
 

 
 

1st order high-pass 1

1

1

s

s
ω

ω
+

 

 
exp(−ω1t) 

 

 
 

2nd order low-pass 
(ζ < 1) 

1

1 2
n n

s sζ
ω ω

2
 

+ +  
 

  

]−−1[
−1

)−− 2

2 0cosexp(1 ϕζω
ζ

ζω tt
n

n  

with   sin(ϕ0) = ζ 

2nd order passband 
(ζ < 1) 

1 2

n

n n

s

s s

ω

ζ
ω ω

2
 

+ +  
 

 

]−1[
−1

)− 2

2
tt

n
n ζω

ζ
ζω sinexp(

 

2nd order high-pass 
(ζ < 1) 

2

1 2

n

n n

s

s s

ω

ζ
ω ω

2

 
 
 

 
+ +  

 

  

]+−1[
−1

)− 2

2 0cosexp( ϕζω
ζ

ζω tt
n

n  

NOTE.– The step response for the products of the transmittances above is 
obtained by the convolution of the individual time responses if the numerator 
and denominator are under the form of first- and second-degree polynomial 
products. If the rational fraction has been completely decomposed into a sum 
of fractions with first- and second-degree denominators (total of elementary 
transmittances), we must simply add the corresponding step responses. 
When one wants to explicitly introduce the unit step U(t),  the rules of the 
distribution for LT  (see Appendix) must be applied, which makes the Dirac 
impulse appear after derivation in the time domain, in the case of high-pass 
transmittances (see Chapter 2).  
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Let us return to the system equation replaced by a block diagram in which 
transmittance H(s) = N(s) / D(s) is set, which allows for Y(s) = H(s) X(s) to 
be obtained if the initial conditions (y(0+) and its derivatives) are zero and in 
harmonic state by replacing s by  jω  or  j2πf : 

 
X(s) Y(s) H(s) 

 
In the case where x(t) is a unit step U(t)  (zero for t < 0, =1 for t > 0), the 

step response is obtained after searching in H(s)/s the original exponential 
elementary functions of the transmittances presented in the previous table. 

1.2.3.5. Pole map in the complex plane and interpretation  

The transmittance poles are the roots of the denominator 
( )( ) ( )( )2 2 2 2

31 32 41 41 41 42 42 42( ) 2 2= + + + + + + D s s s s s s sω ω ζ ω ω ζ ω ω , that are  

−ω31, −ω32, … in first-degree polynomials and −ω41 ( )2
41 411± −jζ ζ , 

−ω42 ( )2
42 421± −jζ ζ ,… in the second-degree polynomials. As seen in the 

previous section, only the poles have an influence on the transient response 
since the roots of the numerator (the zeros) no longer appear as special 
values after partial fraction expansion of the rational fraction H(s). The 
presence of simple real poles suggests non-oscillating and exponentially 
damped responses, while complex conjugate poles leads to exponentially 
damped oscillating responses. For a complex pole −ω41 ( )2

41 411± −jζ ζ , 

with natural angular frequency ω41, the modulus is constant and equal to ω41 
irrespective of ζ41 (Figure 1.9). The argument is equal to π ± Acosζ41, 
corresponding to a vector whose extremity is located in the left half-plane 
since the real part is negative. When ζ41 goes from 0 to 1, both conjugate 
poles then  describe a quarter circle of radius ω41 in the complex plane. If the 
damping coefficient increases above 1, the poles will become real and move 
away on both sides from value −ω41 located on the real axis, with values 
 ω31, ω32 = ω41 ( )2

41 41 1± −ζ ζ  (Figure 1.9). 
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 Im 

Re 

Radius  ω41 

ω41 
2
411 ζ−  

−ω41 
2
411 ζ−  

−ζ41 ω41           0 

Real poles  ω31, ω32 

(ζ41 > 1) 

Complex conjugate poles 

(ζ41 < 1) 

 

Figure 1.9. Map of transmittance poles 

1.3. Negative feedback 

Many analog electronic systems are made by means of negative feedback 
that allows for certain properties to be improved and for the development of 
new systems. Considering only forced conditions, a one-input-one-output 
system with negative feedback can be represented by the following 
functional diagram (or block diagram) in which all the quantities are 
dependent on the complex variable s. 

 
A 

B 

E S 
ε 

K 

 

Figure 1.10. Block diagram of a negative feedback system 

Signal ε =KE – BS is multiplied by A to give S = A(KE – BS) = KAE – 
ABS,   then:  

1
=

+
KAS E

AB
 or alternatively 

1
= =

+
S KAH
E AB
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where A is the open loop gain, AB is the loop gain and H is the closed loop 
gain. 

1.3.1. Inversion of a transfer function 

It should suffice that  AB >> 1 so that ≈ KS E
B

, which is reduced to 

1≈S E
B

  if K = 1. 

The transfer function is   = =S KH
E B

  and since KE ≈ BS, we have   ε  ≈ 

BS – BS = 0. 

This is the basis of operational amplifier systems, which have high A gain 
in open loop, but prone to variation, which can be escaped by means of 
negative feedback. For example, a voltage amplifier can be obtained in 

closed loop by reversing the voltage divider function    1

1 2

=
+
RB

R R
.  

 

R1 

Vs 

R2 

Ve 

R1 

Vs 

R2 

Ve 

ε ε 

 

Figure 1.11. Inverting amplifier (left) and non-inverter (right) circuit 

Neglecting input currents: 1 for the inverter ands
s e

Vε= BV +( B)V =
A

− − −

   for the non-inverters
e s

Vε=V - BV =
A

; hence the deduction in the general 

case, and since  AB >> 1: 

2

1

( 1) 11
1

−= → − = −
+

s

e

V RA B
V AB B R  
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for the inverter and 2

1

1 1
1

= → = +
+

s

e

V RA
V AB B R

 for the non-inverter. These 

results can be obtained directly by initially assuming ε = 0. 

This operation can be applied to nonlinear functions to obtain the 
reciprocal function. For example, multiplication or raising to square placed 
in the return loop provides an analog division or a square root function 
(assuming ε = 0 initially):  

VX

R

R
VE

VZ = 
0V
VV SX

VS = −
X

E
V

VV 0

   

VE

VZ = ( )
0

2

V
VS

VS = 0VVE

 

Figure 1.12. Divider (left) and square root function (right), 
with V0 as a constant voltage 

CONCLUSION.– Negative feedback leads to implementation of the reverse 
function or of the reciprocal function to that present in the return loop if the 
modulus of the loop gain is much greater than 1.  

1.3.2. Linearization of a nonlinear system  

The relation between closed-loop transfer function variations and their 
open loop counterparts is deduced from the logarithmic derivation of H:  

( )
1 1

= = − =
+ +

dA
dH dA BdA Ad LogH
H A AB AB

. 

The relative variation of A is divided by 1 + AB  >> 1  and the 
nonlinearity can then be reduced in the same proportion. In terms of 
applications use, we can point to feedback in B or AB class amplifiers  
working to reduce distortion at the zero crossing of the output current, the 
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suppression of diode threshold in rectification (see Figure 1.13) and 
improvement of operational amplifier linearity. 

 

R 
Vs2R 

Ve 
ε 

R 

Vs1Vs0

Vs3 

R' R' 

R'  
R' 

 
Figure 1.13. “No threshold” rectification 

1.3.3. Gain-bandwidth product for first-order low-pass systems 

If 0

1

( )
1

=
+

A
A jf jf

f

 where A0 is real, the open loop gain is ABF = A0 at f << f1 

and the high-frequency asymptote is 0 1=HF A f
A

jf
. This is produced for 

operational amplifiers with unity gain compensation that results in a −20 
dB/decade slope until the frequency A0f1. 

If the feedback coefficient is real, being B = B0:  

0
0 0

0
0 0

1 0 0 1

1 1  if   1 
1 1 1

= = ≈ >>
+ + + +

AAH A Bf fAB Bj A B j
f A B f

 

which shows that HLF = 1/B0 at low frequency (LF) and that the high 

frequency (HF) asymptote is still  0 1HF A f
H =

jf
. 
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 20 log|A| or |H| 

20 log|A0| 

20 log|1/B0| 

HF asymptote:  
20 log|A0f1/ f| 

dB 

0 f1   A0B0 f1 

A 

 

Figure 1.14. Asymptotic Bode diagram of operational amplifier circuit gains  

The high-frequency asymptote remains the same in closed loop as in open 
loop or, in other words, the gain-bandwidth product (= LF gain × upper 
cutoff frequency), equal to A0 f1 is likewise unchanged. 

In some cases, this rule is not accurately set, particularly when the 
number of parameters is greater than 3 (here the parameters are only A0, f1 
and B0); nonetheless, negative feedback always increases bandwidth. 

1.3.4. Simultaneous negative and positive feedback 

This situation can be found in operational amplifier impedance converters 
fitted with two return loops, one on the inverter input and the other on the 
non-inverter input. Input impedance can be calculated from the evaluation of 

Ie and the elimination of Vs and ε using relations ,b
s e

a b

Z
V V

Z Z
ε= +

+
  

Vs = A ε  and 2 = −e e sZ I V V . 

After calculation this gives: ( )
( )

2

1 /
1

1 /

e

a be

a b

V Z=
A + Z ZI

A + Z Z
−

−  
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Figure 1.15. Impedance converter circuit 

It is evident that this positive feedback has entailed a difference in the 
denominator. Inside the bandwidth, A >> |1+Za/Zb| and consequently: 

2≈ −e a

e b

V Z Z
I Z

 

In the simple case where Za=Zb=R, input impedance is Z2 with changed 
sign. This circuit can work to create negative resistance, providing energy to 
the external circuit when it is crossed by a current and is used in oscillator 
circuits. Feedback coefficient B depends on the circuit into which the 
converter is inserted. In particular, if an impedance Z1 is positioned in series 

with the negative input, for Ve = 0: 1

2 1

= − =
+ +

b

s b a

Z Z B
V Z Z Z Z
ε .  The path of 

the complex number AB in the complex plane will be the system’s stability 
or instability determinant, as addressed in the following. 

1.4. Study of system stability 

Systems are strictly stable if the output y(t) tends to zero asymptotic 
value after the return to zero of a transient excitation x(t) on the input. 

In contrast, systems are unstable if, under the same input conditions, 
output diverges or alternatively leads to a limited signal that does not 
however approach zero. 

Za 

Vs 

Z2

Ie 

ε 

Zb 

Ve 
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1.4.1. Time response: pole mapping 

As discussed in section 1.2.3.1, the LT of y(t)  is composed of the proper 
response YP(s) and forced response YF(s) = H(s) XL(s), which is proportional 
to input LT[ x(t)]:  

11
1 1

1 0 1 0 0

0 0

(0 ) (0 )

( ) ( )

−+ +−
− − − −

= = = = =

= =

  
−   

   = +
    

 

pk ln r m m
r k p l p

r s pk l
r k p l p

L Ln n
r r

r r
r r

d y d xa s b s b s
dt dt

Y s X s
a s a s

 

The initial conditions are only non-zero in the first fraction if the system 
has enough energy stored in capacitances or inductances to dissipate. Thus, 
nothing prevents a study of the possibility of an output divergence from zero 
initial conditions, which is more severe. Moreover, it is evident that the 
denominator, whose roots (the poles) determine the time response, is the 
same for both terms. Accordingly, only the following is studied: 

0

0

( ) ( ) ( ) ( )=

=

= =




m
p

p
p

F L Ln
r

r
r

b s
Y s X s H s X s

a s
 

Following the same reasoning, the case of excitation with a Dirac 
impulse, whose LT is 1, may be considered, yielding a more straightforward 

conclusion. Hence, it should suffice to study 0

0

( ) =

=

=




m
p

p
p

n
r

r
r

b s
H s

a s
  whose inverse 

Laplace transform LT−1 is the impulse response. According to the 
convergence or non-convergence of the output signal LT−1[H(s)]  toward 
zero, the system will be stable or unstable.   

Once the poles have been determined, we can then deduce the integer part 
after division of both polynomials if m ≥ n, and the following rational  
fractions by partial fraction expansion into fractions with first- and second-
degree denominators:  
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( )

'
' 2

0
2 2

0 1 ' 1

0

( )( )
( )

−
−

=

= = = +

=

 
+ = = = + + − − +  


  



m
p n n

p m n n
is m k kr

n
r i r k nn r k k

r
r

b s
b B s CAN sH s s

D s a s s s sa s ω
    

where poles sr  are real, possibly multiples of total number n';  sk  and ωk   are, 
respectively, the real part and the imaginary part of the complex conjugate 
poles. The natural frequency is then the pole modulus, that is 2 2+k ksω . 
When sr and sk have negative values, we obtain positive signs if the 
denominators are expressed with positive numerical coefficients. 

The table below presents the original or LT−1 of each term, with sr as a 
real pole, sk the real part of a complex pole ,U(t) the step function and δ(t) 
the Dirac distribution if needed:   

F(s) f(t) = TL−1{F(s)} 
1      with 0n n
s

>  
)!1(

1

−
−

n
t n

U(t)  

2
1  
s

 tU(t) 

1  
s

 
U(t) 

1 δ(t)  * 

sn δ (n)(t) * 

1
rs s−

 exp(sr t)U(t) 

2
1

( )rs s−

 t exp(sr t) U(t) 

1    with 0 
( )n

r

n
s s

>
−

 
1 exp( )
( 1)!

n
rt s t

n

−

−
U(t) 

 
)( 22

kk

k

ss ω
ω

+−
 

exp(sk t)sin(ωk t)U(t) 

2 2( )k k

s
s s ω− +

 
exp(sk t)cos(ωk t)U(t) 

                   *In terms of distributions (see Appendix). 
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The LT−1 of the integer part (if m ≥ n) corresponds to the Dirac impulse 
and their derivatives, which contribute nothing when t > 0+.  Accordingly, 
only rational fractions need to be examined here. 

Among the LT−1 of  
'

1 ( )= −
n

m r

rn r

b A
a s s

, some are systematically divergent 

(in cases of a multiple pole at origin, that is when sr = 0); and others only if 
sr or sk is positive due to factor exp(sr t) or exp(sk t) present in the time 
response. And conversely: 

THEOREM 1.1. – A system is stable if all the poles of its transfer function are 
located on the left half plane (strictly negative real part) of the complex 
plane. 

The polynomial of the denominator is in this case known as a Hurwitz 
polynomial.  

1.4.2. Nyquist criterion in general case  

If the roots of numerator N(s) of degree m and denominator D(s) of 

degree n in the rational fraction  0

0

( )( )
( )

=

=

= =




m
p

p
p

n
r

r
r

b s
N sH s
D sa s

  are not known, 

nonetheless their number is known, m and n.   Then, the Nyquist criterion is 
based on the Cauchy theorem.  

THEOREM 1.2.–  

H(s) is supposed to be a function of the complex variable s, holomorphic 
inside a closed contour C (i.e. single-valued and derivable), except in a 
certain number of poles (singular points). If image P of s  describes C in one 
direction, image H of H(s) describes closed contour Γ in the same direction 
with a variation of the argument of H(s)  equal to 2π(m1 − n1), where m1 and 
 n1 are, respectively, the number of zeros and poles of H(s) included in 
contour C. 
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jω 

σ 

radius R 

0 

C jR 

−jR 

ϕ 

clockwise 
direction 

P 

 
Figure 1.16. Nyquist diagrams of the complex variable s= σ + jω   

and of the transfer function H(s) 

CONVENTION.– The direction of rotation giving positive angles measured 
relative to the real positive axis is that indicated in the upper parts of  
Figure 1.16, which is called counter-clockwise direction, whereas the 
opposite rotation direction is called clockwise or direct.  

If P follows closed contour C that encircles the right half-plane of the 
complex plane (Nyquist contour) when radius R approaches infinity, in the 
clockwise direction (as shown here) and if the number of zeros m of H(s) is 
known in this right half-plane, the number of turns k done by H on Γ in the  
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zero  
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m1 = 2 ; 

n1 = 1 ; 

 

m1 − n1 

= +1 
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same direction is equal to m − n > 0, where n is the number of poles in the 
right half-plane. Accordingly, if k > 0, the number of poles in this same right 
half-plane may be deduced as equal to m − k (if, however, H follows Γ in the 
counter-clockwise direction k times around the origin,  this is an indication 
that n > m). However, since the system is only stable if n = 0, the Nyquist 
rule may be deduced. 

THEOREM 1.3. – A system is stable if the Nyquist diagram of its transfer 
function H(s) encircles the origin in the clockwise direction as many times as 
H(s) has zeros with real positive part. Where there are none, the system is 
stable if the Nyquist diagram does not surround the origin. 

Note that when P is on the imaginary axis, s = ±jω , so H(s) = H(±jω), 
which can be studied with the Bode diagram by making ω go from 0 to ∞. 
When P is on the circle of constant radius R, s = R exp(jϕ).  But if R → ∞, 

simple elements 
1 ( )= −

n
m i

in i

b A
a s s

 approach zero if |s| → ∞, whether it is pure or 

complex imaginary and as a consequence, no new information is supplied. 
Thus, it should suffice to study the contour followed by H(jω), from H(−j∞) 
to H(+j∞). This is the reason for which the clockwise direction was chosen, 
since the path of radius R is then made in this way. However, it is often 
difficult to verify if H encircles the origin or not when H(jω) → 0 for ω → ∞ , 
which is always the case for physical systems that never have infinite 
bandwidth (the integer part of H(s) is zero). Furthermore, systems are very 
regularly built by feedback from subsystems themselves stable. Accordingly, 
it would be more useful to study this case.  

1.4.3. Stability of looped systems assumed stable in open loop: 
Nyquist and Bode criteria  

Here, ( ) ( )( )
( ) 1 ( ) ( )

= =
+

N s A sH s
D s A s B s

 and the poles of H(s) are the roots of 

D(s), that is the zeros of 1 + A(s)B(s), which only has poles with negative 
real part if it is assumed that the system is stable in open loop. Thus, it is 
sufficient that the denominator 1 + A(s)B(s) also has no root with real 
positive part. When applying the Nyquist criterion to 1 + A(s)B(s) in order 
for the system to be stable, the Nyquist diagram of 1 + A(jω)B(jω)  must not 
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encircle the origin in the clockwise direction when ω goes from 0 to infinity 
or in more usual words. 

THEOREM 1.4. – For system stable in open loop to be stable in closed loop,  
the Nyquist diagram of the loop transmittance A(jω)B(jω) must not surround 
point  –1  (located on the real axis) in the clockwise direction when ω  goes 
from 0 to infinity.  

If the Nyquist diagram of A(jω)B(jω) crosses point –1, the stability limit 
has been reached and the denominator D(jω) = 1 + A(jω)B(jω)  crosses 
through 0 for the special frequency ω0, which is the oscillator frequency in 
steady-state regime. Condition   A(jω0)B(jω0) = −1 is written alternatively:  

Arg{A(jω0)B(jω0)} = (2k+1)π  (k integer) and |A(jω0)B(jω0)| = 1 

If modulus  |A(jω0)B(jω0)|  > 1,  the image of A(jω)B(jω) goes beyond 
point –1 on the left side of the negative real numbers and the system is thus 
unstable. So, the Bode criterion can be deduced.  

THEOREM 1.5. – A system including a feedback loop whose loop gain is 
A(jω)B(jω) is stable if and only if, when Arg{A(jω)B(jω)} = (2k+1)π,  we 

have   1A(jω) <
B(jω)

. 

It should suffice then to study the Bode diagrams for A(jω) and 1/B(jω) 
together. 

Furthermore, an unstable system can be stabilized by adding a suitable 
corrector to reduce |A(jω)| or increase |B(jω)| in the neighborhood of ω0 to 
make a gain margin appear, or alternatively that modifies Arg{A(jω)B(jω)} 
in order for the phase stability condition to be met within some phase margin 
(see Figure 1.17). 
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Figure 1.17. Bode diagrams of the gain modulus and the reverse of the feedback 
coefficient, and loop gain argument, for a closed-loop system stable in open loop (full 
line, system stable in closed loop since |1/B| > |A| for f = f2; dotted line, system 
unstable in closed loop since |1/B| < |A| for f = f1;  the frequencies corresponding to 
Arg{AB}=π in each case) 

1.4.4. Stability of linear and nonlinear networks of any order, 
analyzed from state variables 

In networks comprising passive elements and both independent and 
current or voltage-dependent sources, formed of b branches and n nodes, we 
can write b − n + 1 independent equations (see Appendix of Volume 1  
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[MUR 17]), which in general are first-order differential equations in the time 
domain. Each equation links a voltage or current derivative in a reactance 
(capacitance or inductance) with the other voltages or currents that are the 
network state variables. Number k = b − n  + 1 is the system order, and can 
be written in matrix form , where F is the column vector of state 

variables fi, A the matrix of coefficients that can be dependent on the F 
coefficients when nonlinear elements are present (however stationary, that is, 
with a response independent of the time origin) and B' a column vector 
containing the parameters of external and internal sources, as well as certain 
nonlinear element parameters. In the case of linear ordinary differential 
equations, this system can be transformed into the differential equation given 
in the introduction to this chapter or in section 1.2.1, the order of which will 
then be k  and which will act only on one state variable and one external 
variable. Application of the Laplace transform to this equation together with 
partial fraction expansion has already shown that the transmittance poles 
located in the real positive part half plane of the complex plane lead to 
existence in the time domain of signal variations or maximum variations like 
exp(+t/τ) (where τ is a positive time constant). Such an exponential growth 
is a clear indication of the system’s instability. The presence of one or 
several of these factors in the time response of the system can be determined 
from the previous matrix equation. In the case of a nonlinear system, since it 
is sufficient to treat small variations around one or several operating points 
in order to find factors like exp(+t/τ), the first-order development of 
nonlinear function  occurring in A and B' allows for the conservation of the 
same differential system though with A and B' containing only real 
constants. 

In this approximation, the solution of the differential system is 
determined through diagonalization of matrix A. We then find the 
eigenvalues λi and the eigenvectors Vi so that the characteristic equation 
det(A − λ I) = 0  is verified (with I = unit matrix) for the various eigenvalues 
λ = λi, each assumed distinct. Base change is performed by means of left and 
right multiplication by square and invertible matrices V−1 and V, the latter 
comprising the components of each eigenvector Vi in each of its columns, in 
the same order as the corresponding eigenvalues. The initial matrix equation 
is rewritten introducing I = VV−1:  then multiplying on the 
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left side by V−1, which allows for the production of diagonal matrix 
Λ = V−1 A V, containing λi:  

This matrix equation can be rewritten in the form of a system of 
independent first-order differential equations, each containing a single new 
state variable wi, elements of matrix column W = V−1 F and element di  of 
V−1 B', yielding k ordinary differential equations like:  

= +i
i i i

d w w d
dt

λ  or alternatively 
/

=
+

i
i

i i i

dw
dt

w d
λ

λ
. 

Each of these equations has a solution ( )( ) exp /= −i i i i iw t c t dλ λ  where ci 
is an integration constant and where λi are the system poles because of the 
form like exp(λit) of the solutions. The problem becomes here to merely 
determine whether any of the eigenvalues contain a real positive part, which 
would be sufficient to provoke system instability from the operating point 
subject to calculation. Since F = VW, the original state variables may be 
readily found through the linear combination resulting from the matrix 

product VW, where 
1

1

−


b n+

i ij j
j=

f (t)= v w (t)  if vij represents V elements. However, 

since a single diverging term included in this sum is sufficient to make the 
operating point in question become unstable, we need only to search for the 
real part of the eigenvalues. If there are several possible static operating 
points, some can be stable and others unstable, in which case the system can 
converge to one of the stable points. If, on the other hand, all of the 
operating points are unstable, the whole system is unstable. 

This is broader and more flexible than previous methods, since it adapts 
to nonlinear networks and can receive assistance from the eigenvalues 
evaluation supplied by numerical or symbolic calculation software, in  
symbolic value up to the fourth order. In addition, it forms the basis of the 
calculations performed in simulators to determine the time responses, since it 
is easy to determine how the state variables evolve step by step over a long 
duration by considering the new operating point reached through the first 
calculation that ceases to be valid as initial vector for the next calculation 
and again thereafter (see section 1.5 for more details). 
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1.5. State space form 

In the stability study performed in the previous section using the first-
order differential equations system (state equations, numbering k, also the 
system order) describing the system, the notion of input and output variables 
is not completely clear. In order to apply this representation to dynamic 
systems, electronic or otherwise, controlled by one or several input variables 
and delivering one or several output variables, the equation above must be 
modified and another must be added. Column vector B' results from the 
application of input signals or system inputs, numbering m. As a result, B' is 
replaced by BX, where B is the control matrix, of format k×m and X the 
column vector of the input variables, with m lines. The second matrix 
equation allows for the definition of the output(s), numbering p, whose 
column vector is Y, depending linearly on state variables F and input 
variables X, by means of observation matrix C, of format p×k, and at the 
direct action matrix D, of format p×m. This results in a system of two 
matricial equations, which are entirely defined by state matrix A, of format 
k×k, whose eigenvalues are the system poles, and matrices B, C and D:   

 

For linear and stationary systems, all the elements of matrices A, B, C 
and D are constant quantities, independent of time. Of course, it is indeed 
possible to take the LT of these equations, which corresponds to the system 
block diagram in Figure 1.18. 
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Figure 1.18. Block diagram of a system in state representation   
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It is obvious that this representation accounts for the internal operation of 
the system. This can unveil some poles that are referred to as “hidden” if 
they do not appear in the system’s expression of the transmittance, which is 
then of an order less than k. Generally speaking, A, B, C and D are the 
application matrix acting on vectors X, Y and F, belonging to the vector 
spaces of respective dimensions m, s and k. Subject to the bases selected, 
there can be an infinity of system representations with their corresponding 
matrix. However, as  discussed in section 1.4.5, a single base allows for a 
diagonal representation A0 of the application acting on F, which can be 
determined by calculating the eigenvalues and eigenvectors of A. Since the 
eigenvalues are independent of the selected base and are the system poles, 
the system is stable if no eigenvalue has positive or zero real part. 
Integration of the first equation requires the use of matrix exponentials, 
which are more readily calculated if A is diagonal. In this respect, it is still 
possible to assess the time evolution of F(t) at instant tf due to a command 
X(t) if the state F(ti) at the initial instant ti and all the matrix elements are 
known by means of a calculation software: 

 

This expression can be used for nonlinear systems in which A and B have 
elements function of F and X, and even for non-stationary systems and 
sampled systems in particular. This representation allows for the 
introduction and determination of new properties not present in the 
representation by transfer function, in addition to stability, which are 
controllability and observability, subject, respectively, to matrix B and C and 
to their product with A. Since this area is more a concern of automation and 
robotics, it will not be discussed in detail here. In the case of multiinput 
and/or multioutput systems, the state-space representation is crucial. 
Furthermore, matrix calculation programs (MATLAB, SciLab, etc.) include 
modules adapted to managing signals and systems in both automation and 
electronics (filtering in particular), which make significant use of the state-
space form since it is more general and powerful than representation by 
transfer function, relying entirely on matrix calculation. More specifically, 
these programs include the functions necessary to assess the Kalman criteria 
that allow for controllability and observability to be checked, which occurs if 
certain square matrices comprising submatrix BAr and CAr (0 < r < k) have 
eigenvalues with no positive or zero real part. In electronics, as soon as the 
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electrical circuit of the application in question is known, reaching the state-
space form is easy by writing, on the one hand, the network equations in 
number k = b − n + 1 as indicated in section 1.4.5 to determine A and B, and, 
on the other hand, the equations providing the expression of the outputs (or 
output) to determine C and D. 

1.6. Oscillators and unstable systems 

1.6.1. Sinusoidal oscillators 

The creation of a sinusoidal oscillator requires only the presence of two 
purely imaginary and complex conjugated poles in the transmittance H(s), 
that is on the imaginary axis. All of the system responses then provide a 
sinusoidal signal function of time without damping since the real part sk or ζ 
that determines the decrease in factors exp(sk t)  or  exp(−ζωn t) due to the 
first or second degree polynomials of the denominator D(s) of the 
transmittance will be zero. 

Since here this is a looped system, it may also be defined in this case as a 
system at its stability limit according to the Bode criterion, that is a system 
whose loop gain location A(jω)B(jω) crosses the critical point −1 in the 
complex plane. Denominator D(jω0) = 1 + A(jω0)B(jω0)  then goes through 0 
for ω = ω0, the oscillator angular frequency.  

Angular frequency ω0 such that   A(jω0)B(jω0) = −1  defines the condition 
of oscillation that can be presented either in Cartesian form or in polar form:    

either Re[A(jω0)B(jω0)] = −1 and Im[A(jω0)B(jω0)] = 0; 

or |A(jω0)B(jω0)| =  1 and Arg{A(jω0)B(jω0)} = (2k + 1)π 

In practice, either the amplifier is of the inverter type and the minus sign 
in the block diagram is verified automatically: 

A

B

E S
E'
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or the return loop generates sign reversal. Nonetheless, oscillators can be 
made without dephasing because in the above circuit total dephasing is  
(2k + 1)π  (due to Arg{A(jω0)B(jω0)}) to which may be added  ±π (due to the 
minus sign) equal to 2k π  in total, which can be an indication of zero 
dephasing.  

This is the case of the Wien bridge oscillator for example. 

VsR2

R

R'C'

C

R1

E'

 

Figure 1.19. Sinusoidal Wien bridge oscillator 

Input signal E becomes redundant since oscillation begins when a 
disturbance such as noise occurs, which is always present. So, it may be 
considered that E = 0. Conversely, the amplitude of output signal S  is not 
known since  writing S = A E'  and   E' = − B S  results in   (1 + A B) S  =  0,   
which indicates that  S  ≠ 0   when A B = −1 ,  however any value of S  ≠ 0  is 
suitable. 

In practice, amplitude is limited by the system’s nonlinearity. Or 
alternatively, if perfectly constant amplitude is required, an amplitude 
regulator should be added capable of measuring and correcting it by acting 
on gain A in order to permanently maintain the oscillating state in a precise 
manner (see below).  
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– Other circuits with negative gain:  

 

Vs 

Z1 
Z2 

Dephaser 

Network 

 

Figure 1.20. Sinusoidal oscillator using an inverter  
circuit based on an operational amplifier  

In the following oscillators, gain is provided by a field effect transistor 
and the admittance modulus of Lchoke can be considered weak enough for the 
load to be comprised exclusively of elements C1, L1, C2. Cl represents a 
binding capacitance, Cd a decoupling one, with negligible impedances at the 
oscillation frequency. 

Cl 

+Vcc 

C1 

L1

C2 

Lchoke

Cd 
 

Figure 1.21. Colpitts oscillator 

In the Colpitts oscillator, inductance L1 can be replaced by a quartz 
resonator, allowing for a highly precise oscillator frequency to be obtained.  
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Figure 1.22. Symbol and equivalent circuit of quartz resonator  

The quartz equivalent circuit is effectively a dipole with serial resonance 
frequency (minimum impedance) and very close antiresonance frequency (or 
parallel resonance with maximum impedance, or alternatively notch effect). 
In between these two frequencies, the dipole is inductive, whereas outside 
this interval, it is capacitive (see section 1.7). 

– Other oscillator circuits with transistor amplifier (or inverter logic 
gate):  
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L1 L2 
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Figure 1.23. Hartley oscillator 



46     Fundamentals of Electronics 2 

Cd 

+Vcc 

C0 

L0 

Lchoke
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Figure 1.24. Clapp oscillator 

In Clapp oscillators, feedback happens at the FET source, with the 
variable C0  capacitance allowing for the control of oscillator frequency. 

 

Figure 1.25. Quartz oscillator operating with an inverting logic gate 

In quartz oscillators with a CMOS inverting gate as amplifier (Figure 
1.25), the Q – C1 network (input capacitance of the gate) constitutes the main 
part of the return loop. Furthermore, circuit R2 – C2 supplies the additional 
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dephasing required to surpass π in the return loop.  R1 allows for the static 
operating point to be stabilized around the middle of the static characteristic 
of the inverting gate. 

This type of oscillator is used systematically in circuits in which a stable 
and precise clock frequency, provided by the quartz, is required, with the 
signal’s waveform being of lesser importance. Indeed, the oscillation status 
is reached at a unique frequency situated in a highly restricted range in 
which the quartz has an inductive impedance (see section 1.7). 

– Regulation of oscillator amplitude:  

When the circuit gain is supplied by a transistor, amplitude regulation can 
be performed by simply dissociating the resistance in series with the source 
(or with the emitter) into two parts, with one always being decoupled by a 
filtering capacitor, and the other non-decoupled and connected in parallel 
with a junction field effect transistor between the drain and the source. The 
JFET operates as a variable resistance controlled by the rectified output 
voltage of the oscillator.   

 

Cd C'd or C2 
Rs1 
 
Rs2 

Transistor 
amplifier T1 

N-JFET variable resistance 
field effect transistor T2 

C"d 

Oscillator output 
voltage 

Vg2 

 
Figure 1.26. Amplitude oscillator stabilization mechanism  
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Capacitances Cd, C'd, C"d act as decoupling ones, presenting negligible 
impedance at  oscillator frequency. When the alternative voltage supplied by 
the oscillator increases in amplitude, with the rectified voltage Vg2 being 
negative, transistor T2 becomes less conductive and the non-decoupled part 
of the resistance in series with the source of T1 increases and accordingly 
decreases T1 gain. Accordingly, there is a negative feedback effect together 
with amplitude oscillator stabilization. Other circuits can act on the T1 gate 
(or base) or use more efficient rectification in order to reduce the filter time 
constant, thereby accelerating stabilization.  

– Voltage controlled oscillator:  

In some circuits like phase-locked loops (see Chapter 1 in Volume 3 
[MUR 18]), it is indispensable to control the oscillator frequency using 
voltage (or current). A frequency-voltage converter can fulfill this role; 
however, if a sinusoidal signal is required, the sinusoidal oscillator 
frequency must be modified in the same manner as described previously. In 
such cases, a “Varicap” diode can be used (see Chapter 1 in Volume 1  
[MUR 17]) under reverse polarization given by the control voltage. Then, its 
capacitance, in parallel with one of the capacitors acting in the resonant 
circuit where oscillation occurs, can be adjusted, thus involving the control 
of the oscillator frequency. In theory, the relation frequency-bias voltage is 

not linear largely due to the square root that appears in 1=oscil LC
ω , but we 

can approach linearity on condition that the capacitance excursion, and 
consequently frequency, is limited. Oscillators made in this way are referred 
to as voltage controlled oscillators. An amplitude stabilization loop can be 
added, and in cases where the linearity of the voltage-frequency conversion 
is indispensable, another feedback loop can also be added on frequency 
detection according to the principle of reduction of the nonlinearities 
described in section 1.3.2. 

– Stability of oscillator frequency:  

The active component generates noise (see Chapter 4 in Volume 1 [MUR 
17]) and as all of these oscillators include at least one resistor in the return 
loop, which is also a source of noise, the loop transmittance is subject to 
slight fluctuations, in both modulus and phase. These are essentially phase ϕ 
fluctuations that determine the stability of oscillator frequency f0, that is 
better as df0/dϕ is smaller and consequently as dϕ /df0 is greater. In the case 
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of second-order circuits and in accordance with the study of elementary 
transmittances in harmonic conditions, the argument is ϕ = Atan[Q(u − 1/u)] 
where u = f/fn, fn being the natural frequency, which is indeed very close to 

f0. Deriving  
2

2 2

(1 1/ )
1 ( 1/ )

+=
+ −

d Q u
du Q u u
φ , which is 2Q for u = 1, in general a 

condition close to the oscillation frequency. Frequency stability is thus 
greater as the quality (or overvoltage) coefficient Q is higher. The Wien 
bridge oscillator for which Q does not exceed 1/2 is consequently much less 
stable than resonant circuit oscillators. However, it is the quartz oscillator 
that ensures the greatest stability since the difference between the two 
frequencies limiting the range in which quartz is inductive and in which the 
oscillator frequency is found is extremely narrow (in the order of 1% of 
oscillator frequency or much less). The calculation of dϕ/du provides a result 
depending on the resistance representing dissipation losses in the quartz and 
the R2C2 dephasing network in Figure 1.25 must be adjusted in order to 
optimize the effective value of the oscillation frequency and its stability. 

1.6.2. Relaxation oscillators using a nonlinear dipole and other 
resonant circuit oscillators   

When approximating the linear operation of the active component, this 
can be modeled by means of negative conductance –Ga in the dynamic 
circuit of sinusoidal oscillators (with Ga > 0). If the conductance of losses Gp 
is exactly compensated by Ga, the total of both is zero and there is 
consequently no damping of the oscillating circuit, which, following initial 
excitation, is the origin of a permanent and non-damped sinusoidal signal. 
This approximation amounts to the assumption of a linearized current–
voltage characteristic with an average negative slope within an amplitude 
range limited by two thresholds beyond which the dynamic conductance 
again becomes positive. 

 L1 

C1 Gp –Ga 
L2 

C2 Gp –Ga

 

Figure 1.27. Dynamic circuit with negative conductance –Ga and circuit with series 
(at left) or parallel (at right) resonant network, damped by positive conductance Gp 
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The effective operation approaches this model when a dipole with 
negative resistance or conductance is used, such as a tunnel diode, diac, etc. 
These dipoles are sorted according to two types: with S and N current–
voltage characteristic Id(Vd) (Figure 1.28). 

Id 
 

Ipeak 
 
 
 
 

Ivalley Vd 

Id 

Vd 0 0     Vpeak        Vvalley 

Slope  1/Rd (negative)

load line 
(slope  –1/R1) 

Slope  Gd 
(negative)

Load line 

 

Figure 1.28. Nonlinear dipole N characteristics to the left and  
S to the right, with negative dynamic resistances and conductance 

(1/Rd or Gd = - Ga), and load lines suited to relaxation oscillator operation 

Operation analysis becomes particularly difficult in harmonic conditions 
and must instead be conducted according to changes in the position of the 
operating point under the influence of a disturbance. In the case of relaxation 
oscillators, it is sufficient to add a single reactive element (inductance or 
capacitance) to a nonlinear dipole for the instability of the operating point to 
entail cyclical operation around the zone of negative resistance (and 
conductance), as shown below. Incidentally, it is worth noting that this type 
of nonlinear dipole cannot contain a semiconductor device but rather a 
saturable magnetic circuit associated with an inductance or mutual 
inductance decreasing significantly when the magnetic circuit saturates. 
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Figure 1.29. Relaxation oscillator circuits with N dipole to the left and S to the right  

The circuit to the left in Figure 1.29 under static conditions verifies 
0 1 ( )= +d d dE R I V I ; then, under the influence of disturbance dE: 

0 1 1( ) ( )+ = + + + +d
d d d d d d

dIE dE R I dI L V I R dI
dt

, where Rd is the dynamic 

resistance of the N dipole, dependent on Id. Subtracting static conditions, it 
remains:    

1 1= + +d
d d d

dIdE R dI L R dI
dt

. 

If the dynamic resistance Rd is sufficiently negative relative to R1, that is 
Rd + R1 < 0, the sign of dId should be opposite to that of dE in order for 
equality to be respected, whether inductance is present or not. This implies a 
decrease in current when dE > 0. When inductance is present, the latter term 
is also negative in this case, which has the effect of extending the decrease in 
current down to the operating point at which Rd  becomes positive enough  
again to change the sign of the second member. The evolution will be then 
reversed, giving rise to a cyclical variation. The operating point becomes 
therefore unstable since even after the reestablishment of dE = 0, the second 
member can cancel itself without dId being zero, due to the inductive term 
and on condition that (R1 + Rd) and dId  are negative in order for the product 

to be positive and compensated by 1 0<ddIL
dt

. This condition thus requires a 

static operating point with a single intersection of the load line with the 
characteristic Id (Vd) in the range where Rd is sufficiently negative for 
condition (R1 + Rd) <0 to be realized. Otherwise, in the presence of other 
intersections with stable operating points, the system stops on one of them 
and oscillation ceases. The half-period may be calculated by integrating the 
complete equation with dE = 0, either analytically by linearizing the 
characteristic, or more precisely by a numeric integration, between the two 
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currents limiting the negative resistance zone. In the first case, linearization 

is equivalent to take Rd between 
−

−
−

valley peak

valley peak

V V
I I

 in Figure 1.28 and the reverse 

of the maximum slope, that is a value 0 0− <dR . There is then 
proportionality between Id  and its derivative Id' according to the variational 
equation, which implies a solution of the exponential type  Id = Ipeak exp(t/τ)  
where  ( )1 0 1= −dL R Rτ .  

The oscillation period is then very approximately given by the double of 

the time taken for current to go from Ipeak  to Ivalley ,  that is  2 ln
 

=   
 

peak

valley

I
T

I
τ . 

Precision can be improved by piecewise integration of the whole equation. 
For the other circuit, operation can analyze symmetrically by searching for 
the development of voltage under the influence of a current perturbation 
emanating from the source.  

It is clear that these circuits can by no means provide stable and precise 
frequency oscillation, since it is too dependent on the current–voltage 
characteristic of the nonlinear dipole, susceptible to dispersion, to being 
dependent on temperature, etc., and thus can only operate in case of 
alternative signal generation without any severe demands on the signal’s 
shape or frequency. These relaxation oscillators, whose only advantage is 
their simplicity, have as a consequence almost disappeared, with the 
exception of components liable to operate at extremely high frequencies, 
unattainable for transistors, beyond several tens of gigahertz and up to 
terahertz. To obtain a more precise oscillator frequency, the principle applied 
in the circuits of Figure 1.27, comprising a resonance circuit, can be usefully 
applied again here. 

1.6.3. General case of systems comprising a nonlinear dipole 
and study of oscillation in phase space  

Regardless of the oscillator circuit in question, there is always 
nonlinearity due to the active components. Studying over one or several 
periods of time can prove insufficient in characterizing long-term operation 
and in addition does not account for the initial conditions. Since there is 
always at least one reactance in the oscillator circuit, as shown in the circuits 
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in Figure 1.27 for instance, it is worthwhile to investigate current and 
voltage at the terminals of at least one of them, since one of these values is 
proportional to the derivative of the other. The study in the time domain of 
one of these quantities can then be replaced by the study of this quantity q 
and its derivative relative to time q  (according to the usual mechanical and 
thermodynamic notation) in the phase plane, with time becoming a 
parametric variable. This allows for initial oscillation to be studied along 
with the operating point at which the established oscillation converges.  The 
trajectory of the operating point defined by ( , q q ) in the phase plane then 
becomes the preferred mean for this type of study that had its beginnings in 
the mechanical sciences, mathematics and thermodynamics in the 19th 
Century and has continued until today. For systems comprising a number k 
of independent variables, the phase plane is replaced by the phase space, 
which consequently has a dimension equal to 2k, which is also the number of 
degrees of freedom of the system. 

1.6.3.1. First- and second-degree systems  

If q represents the charge on an armature of capacitance C accepting 
instantaneous voltage v, it is equal to Cv (where v = q/C) and the 
instantaneous current crossing the capacitor is q = dq/dt. We can study the 
trajectory of the point ( , q q ) in the phase plane, either from the solution of 
the differential equation that defines the relation between q  and q, obtained 
by algebraic calculation or, as is typically the case, by numeric resolution 
needed by the nonlinearity of the system, and the initial conditions, or 
alternatively from the measurement effected on the experimental device if 
available. If the solution converges to a sinusoidal oscillation, then q is 
proportional to sin(ω0t) for example, and as a result, q  is proportional to 
cos(ω0t). The parametric variable t can be eliminated by writing 

sin2(ω0t) + cos2(ω0t) = 
2 2

   +   
   

q q
a b

= 1, which is the equation of an ellipse in 

the phase plane, with a and b as constants (Figure 1.30). A distortion of the 
ideal ellipse appears if the signal is not purely sinusoidal, which in practice 
is systematically the case due to the amplitude being limited by the intrinsic 
nonlinearity of the active component, even if it can be minimal and difficult 
to detect. At the other extreme, in the generator of rectangular signals and 
squares based on a loop containing an integrator and a hysteresis comparator 
(see Chapter 4 exercises in Volume 1 [MUR 17]), the capacitance is crossed 
by a constant current for one half-period and the reverse current for the other 
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half-period, corresponding to linearly increasing and decreasing voltages at 
the terminals with two opposite slopes. The resulting cycle for the coordinate 
points ( , q q ) is thus rectangular. Consequently, relevant information 
concerning the permanent conditions of the oscillator can be obtained from 
these observations. 

However, the trajectory in the phase plane also advantageously provides 
information about transient conditions, in particular the beginning of the 
oscillation, as well as for more complex cycles that can be found in other 
oscillators such as those addressed below.    

 
Figure 1.30. Start cycle and limiting cycle of a quasi-sinusoidal 

 oscillator obtained from simulation results  

In the case where the circuit shown on the right in Figure 1.27 is taken as 
example, the law of nodes and the presence of voltage q/C2 at the terminals 

of all elements lead to ( )
2

2 2

 −
− − = 
  

s aq G Gd qL q
dt C C

, or alternatively

2
0

2

0−+ + = s aG Gq q q
C

ω  with 2
0

2 2

1=
L C

ω  (adopting the notation used in 

mechanics for the derivations relative to time).  
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If  Ga − Gp = 0, the equation becomes that of the harmonic oscillator with 
a purely sinusoidal solution, with the characteristic equation not having a 
first-degree term. But in order for the oscillation to start, it must be assumed 
that the coefficient of q  is initially negative since in this case 

( )
2

exp
 −
+ 
  

a sG G t
C

 acts as a factor inducing a progressive increase in 

amplitude, exponentially up to the cancellation of Ga − Gp, from the smallest 
spontaneous fluctuation due to noise in the resistive elements (see Chapter 4 
of [MUR 17]) or in practice, from circuit power up, required to polarize the 
active element. This evolution is expressed in the phase plane by a trajectory 
from the coordinate point ( , q q ) that encircles the origin, converging then to 
an ellipse (Figure 1.30), which comprises the limiting cycle in the case of 
quasi-sinusoidal oscillation. The limiting cycle can be of different shapes in 
the case of more complex non-sinusoidal oscillators such as those studied 
below, and likewise for its center of gravity, known as the attractor, which is 
not necessarily the origin or can even be plural. 

1.6.3.2. Nonlinear systems of order higher than two  

The previous method of study is extended here in two steps:  

– determination of the static operating point or points from the equation 
of the load line and the characteristic parameters of the nonlinear elements; 

– for small variations around each operating point, the writing of the 
electrical state equations under given conditions as a function of time and 

transformed into matrix form  as in section 1.4.5. Then, the 

eigenvalues are calculated for the state matrix A. The stability (or instability) 
of the operating points can then be deduced from the existence or absence of 
poles with positive or zero real part, the poles being the eigenvalues of A. 

A third step can be performed successfully by means of a simulator 
capable of solving the previous system while accounting for changes in the 
dynamic parameters of nonlinear elements, consisting of the determination 
of system changes after a perturbation, and the convergence of state 
variables to certain types of behavior. Since the solution of a differential 
system can be highly dependent on the initial conditions, which are renewed 
each time the simulator has to change parameters, it can evolve either to a 
phase space trajectory around a single attractor (in the case of a  

 
'BAFF +=

dt
d
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quasi-sinusoidal oscillator), or around several attractors, if the system is 
unstable. In this second case, it is possible that the evolution will lead to a 
deterministic chaos, as Poincaré showed initially, when the phase space 
trajectory becomes highly complex with a very high number of cycles before 
returning to the same point. In this case, the signal resembles quasi-random 
noise more closely than a periodic signal. For  example, these various 
operating conditions can be studied with the Chua oscillator, third-order 
circuit proposed by Leon Chua in 1983 then revived and simplified in 1984 
by T. Matsumoto, and then studied by a great many authors since, including 
the inventor himself (see the bibliography and history in http://www. 
scholarpedia.org/article/Chua_circuit). This indicates that these chaotic 
behaviors can appear from the third order on condition that the circuit 
comprises a nonlinear conductance, which in the most simple case is that of 
a dipole presenting a current–voltage characteristic of  odd symmetry, with 
two negative slopes, as shown in Figure 1.32. Another oscillator that can 
present such behavior is that of Van der Pol, invented in 1927. 

The Chua oscillator comprises three reactances, one or two resistances 
and one D dipole with negative, nonlinear type N conductance (Figure 1.31). 

 

C2 

 
D 

R0 

C1 
L 

R i3 

i2 

i1 

i

u u2 

 

Figure 1.31. Chua oscillator 

This can be described as a system comprising a relaxation oscillator 
composed of D and C1, coupled by resistance R to a notch resonant circuit L, 
R0, C2. Resistance R0 is not indispensable but does allow for real losses in 
inductances to be accounted for, and offers the possibility that an additional 
parameter may be introduced. Characteristic i=g(u) of dipole D is shown in 
Figure 1.32 and comprises a negative conductance −Ga around the origin  
(Ga > 0), then for  |u| > uc  the conductance becomes −Gb (Gb > 0) with 
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Gb < Ga  and finally the conductance (this is also the slope) becomes positive 
outside of an interval wider than [−uc, uc] in order to simulate a real 
component that can provide only finite energy.  

 i

u 0 uc 

(i) 
(ii)

(iii) 

−uc

slope 
−Gb 

slope 
−Ga 

i=g(u)

P-1 

P+1 

 

Figure 1.32. Characteristic i = g(u) of dipole D used in the Chua oscillator  
and load lines corresponding to R equal to (i) R1, (ii) R2 and (iii) R3  

In static conditions, the load line is written as u = −(R+R0) i or 
alternatively i = −G u, with G = 1/(R + R0). According to the value of G, 
three cases may occur:  (1) the absolute value of slope G is the greatest, that 
is G > Ga, in which case there is only one static operating point at the origin; 
(2)  Gb < G < Ga, and there are three static operating points (P–1, 0 and P+1), 
all in regions with negative conductance of D; (3) G < Gb, and also three 
static operating points, one at origin and the other in regions with positive 
conductance of D. However, in this last case, the operation is inclined 
toward a relaxation oscillator that is more insulated as R is greater. This will 
not be addressed here since the perturbation method of current i around one 
of its operating points allows for its stability to be determined as mentioned 
in section 1.6.2 (both of the end points are stable and the origin is not).  
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The second step consists of writing the network equations in transient 
conditions. As there are five branches and three nodes, the number of 
independent variables is 5 − 3 + 1 = 3. Selecting values that are derivatives 
in the reactances, that is u, u2 and i3, leads directly to a differential system 
such as the one indicated previously:  

( )

2

1

2 2
3

2

3
2 0 3

1 ( )

1

1

 − = −  
 

 −  = −  
 


= −



u ud u g u
dt C R
d u u u i
dt C R

d i
u R i

dt L

 

Around the origin, there is simply  i = g(u) = −Ga u for the load line (i); 
and around the intersection points of the load line (ii),  i = g(u) = −Gb u + 
(Gb − Ga) uc sgn(u)  where function sgn(u) = ±1 according to the sign of u.  

In order to reach a system with only state variables and dimensionless 
parameters, we must make the changes:  

2

= t
RC

θ ;
 

=
c

ux
u

;
 

2=
c

uy
u

;
 

3=
c

Ri
z

u   

for variables;  

and 2

1

=
C
C

α ; = aa RG ;   

= = b
b

a

G
b RG a

G
;
 

2
2=

R C
L

β ;
  

0 2= RR C
L

γ  for parameters. 
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Hence the dimensionless system:   

( )
  

= − −  
  
 = − −

 = −


c

d x Ry x g u
d u
d y x y z
d
d z y z
d

α
θ

θ

β γ
θ

 

For load line (i), there is   ( )( ) = − = −a
c c

R Rg u G u ax
u u

  around the origin, 

and this is also true for load line (ii). For operating points P–1 and P+1 located 
in the part of the characteristic where conductance is −Gb, at the intersection 

with load line (ii), this can be written as: ( ) =
c

R g u
u

 

( ) sgn( ) ( )sgn( ) − + − = − + − b b a c
c

R G u G G u u bx b a x
u

; respectively, deducing 

matrices 
(1 ) 0
1 1 1
0

− − 
 = − − 
 − 

Ai

aα α

β γ
  and  

(1 ) 0
1 1 1
0

− − 
 = − − 
 − 

Aii

bα α

β γ
; and if 

required, matrices Bi' (vector column zero) and '

( ) sgn( )
0
0

− 
 =  
  

Bii

a b xα
. It 

should be noted that in case (i), Ga < G leads to 
0

1= < = <
+a
Ra RG RG

R R
; 

and thus (1− a) is always positive in case (i) around the origin.  And in case 

(ii),  = < <b ab RG RG RG   and also 
0

1< <
+
Rb

R R
 for intersection points P–1 

and P+1   but around the origin, 
0

>
+
Ra

R R
. Since R0 is clearly always smaller 

than R, this condition typically leads to a >1 and thus to a positive sign for 
the element in the first line and the first column of the matrix Ai. 
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This step should end with the calculation of eigenvalues for matrices Ai 
and Aii. This could be done with symbolic values since the characteristic 
equation is of the third degree; however, it leads to long expressions that are 
difficult to use due to the four parameters involved. It is preferable to set 
some of these to numeric values using the following considerations. 

Since resistance R determines coupling between the two parts of the 
circuit, any value of C1 greater than C2 would significantly alter the 
resonance frequency of circuit LC2 in the case of strong coupling, that is 
when R is weak. So, as to avoid multiplying these changes, it is instead 

preferable to take C1 << C2 and leave ratio 2

1

=
C
C

α  constant, which will be  

set to 15.6.  According to their expressions, parameters β and γ  relate to the 
squared damping coefficients of circuit LC (or the inverse of the squared 
quality coefficients) and thus have a significant impact on oscillating 
conditions. The evolution of the eigenvalues may be studied according to β , 
which is modified by means of L, leaving the other components unaltered 
and γ  initially at zero.  

Setting ratio 5
8

= = =b

a

G b
G a

χ  , and considering the two cases of the load 

line’s intersection with (i) 8
9

=a , and (ii) 8
7

=a , 5
7

=b ; the three eigenvalues 

of A are denoted as λ, μ and ν, followed by “i” or “ii” to distinguish the two 
cases and by 0 or 1 in case (ii) depending whether it concerns the operating 
point at the origin or at P±1. 

In case (i), for the only possible static operating point around the origin, 
for which a <1, the zone for which β is taken between 0 and around 38 
comprises one or several eigenvalues with positive real part (Figure 1.33). It 
follows that the system is unstable. 

In case (ii), for the static operating point around the origin, for which 
a >1, all the eigenvalues have negative real part (Figure 1.34). It follows that 
this operating point is stable. Conversely, for the static operating points P±1 
for which b <1, all of the eigenvalues have their positive real part for β from 
0 to around 57 (Figure 1.35), which implies that these points are unstable. 
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Figure 1.33. Eigenvalues of A in case (i) for the operating point at the origin. For a 

color version of this figure, see www.iste.co.uk/muret/electronics2.zip 

 

Figure 1.34. Eigenvalues of A in case (ii) for operating point “0” around the origin. 
For a color version of this figure, see www.iste.co.uk/muret/electronics2.zip 
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Consequently, it is verified that the unstable operating points can be 
obtained only when the load line cuts the characteristic of the nonlinear 
dipole with a conductance −G (or slope) whose absolute value is greater than 
the absolute value of the dipole conductance (Ga or Gb depending on the 
operating point), which the qualitative analysis in section 1.6.2 has shown 
already.  

 

Figure 1.35. Eigenvalues of A in case (ii) for operating points P±1. For a color version 
of this figure, see www.iste.co.uk/muret/electronics2.zip 

It should be noted that this system is one of the first dynamic systems that 
can present a chaotic regime from experimental studies, although the last 
step of this study is here performed only in simulation. Since the system is of 
the third order, the phase space has six dimensions. However, it should 
suffice to plot a state variable relative to one of the capacitors (here u2) as a 
function of a state variable relative to the other capacitor (u) or the 
inductance (i3) to acquire a sufficiently detailed overview of the oscillator’s 
behavior. 
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In case (i), where a <1, a quasi-sinusoidal oscillator is obtained together 
with trajectory u2=f(i3) as that represented in Figure 1.30, with a cycle 
limited by an ellipse.   

In case (ii), where b <1, the cycles visible in Figure 1.36 are obtained. 

 

Figure 1.36. Cycles completed by the operating point u2(i3) in various conditions 

In case β =21, γ =0, a limiting cycle representing a quasi-sinusoidal 
oscillation is reached after one start-up in which the trajectory alternates 
between both attractors (Figure 1.36). The spectrum includes the odd 
harmonics of the fundamental frequency around 42 kHz and an erratic 
spectrum in the lower frequencies corresponding to oscillator start-up 
(Figure 1.37). 

 Case β =24, γ =0, is unique since the limiting cycle is no longer evident 
(Figure 1.36); however, the trajectory retains a certain regularity with a 
period that is multiple of the fundamental one. Observation of the signal or 
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of its spectrum shows here that the period has been tripled, leading to the 
appearance of a subharmonic frequency, one near 12 kHz, equal to one-third 
of the fundamental frequency that is close to 36 kHz, and at fractional 
harmonics that are 5/3 and 7/3 of the fundamental frequency (Figure 1.38). 
This condition is referred to as a subharmonic cascade.   

 

Figure 1.37. FFT of the Chua oscillator signal for β =21, γ =0. For a  
color version of this figure, see www.iste.co.uk/muret/electronics2.zip 

 

Figure 1.38. FFT of the Chua oscillator signal for β =24, γ =0. For a color  
version of this figure, see www.iste.co.uk/muret/electronics2.zip 
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In case β =24, γ =0.24 and β =30, γ =0, the phase space trajectory 
includes a very high number of different trajectories (several hundred) 
before returning to the same point alternating around the two attractors that 
are the two unstable operating points P–1 and P+1 (Figure 1.36). This is 
known as a deterministic chaos, since the signal approaches a random signal 
as its period becomes extremely high relative to the fundamental period. 
This is illustrated by the signal’s spectrum that itself becomes highly chaotic 
(Figure 1.39), the peak fundamental frequency barely exceeds the 
continuous, erratic background, or can even disappear completely when 
parameter γ  is no longer zero. 

 

Figure 1.39. FFT of Chua oscillator signals in  
deterministic chaotic conditions obtained with β =30, γ =0 in red  

(higher spectrum) and with β =24, γ =0.24 in blue (lower spectrum). For 
 a color version of this figure, see www.iste.co.uk/muret/electronics2.zip 

Numerous applications of this deterministic chaos have emerged since the 
1990s in a variety of areas, both in science and art (music, design, etc.). 
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1.7. Exercises 

1.7.1. Response and stability of an operational amplifier not 
compensated until unity gain and loaded by a capacitor 

An operational amplifier included in a non-inverter circuit has an open 
loop gain A(s) for which the approximate expression used is

0

1 2

( )
1

=
 

+ 
 

A
A s

s s
ω ω

  applicable to circular frequencies exceeding ω1.  

The feedback coefficient is B; real number belonging to the interval 
[1/A0, 1] and the circuit diagram is as follows:  

A

B

E S
ε

 
Circular frequency ω0 is defined by ω0 = A0 ω1   so that:  

0 2

1( )
1

=
 

+ 
 

A s
s s

ω ω

 

1) a) Determine the expression of the transfer function in closed loop 
( )( )
( )

= S sH s
E s

 and place it under form 1 1( )
( )

=H s
B D s

 where  

2

2
0

1( ) 1= + +
n n

s sD s
Q ω ω

  

b) Determine the expressions of the natural circular frequency ωn  and of 
the quality coefficient Q0 of D(s) depending on ω0, ω2 and B. For what value 
of B ∈[1/A0, 1] is quality coefficient Q0 maximum when ω2 = ω0/2 and what 
is its numerical value? With this value of B and ω2 = ω0/2, what is then the 
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maximum value of 20 log|1/D(jω)| equal to 20 log|1/D(jωr)| for the 
resonance angular frequency ωr? 

2) A capacitive load C is added between output S and the ground, 
forming a low-pass circuit with the amplifier’s output resistance R.  The 

open loop gain then becomes: 

0 2 3

1'( )
1 1

=
  

+ +  
  

A s
s s s

ω ω ω

 where 3
1=

RC
ω . 

a) Determine the expression of the argument of A'(jω). For what value 
of circular frequency ωi expressed as a function of ω2 and ω3 is this argument 
equal to −π?  

NOTE.–  ( ) ( )
1

+ + =  − 

a ba b
ab

Atan Atan Atan  can be useful here. 

b) Determine the condition that must verify the loop gain  A'(jωi)B  in 
order for the circuit to remain stable and the resulting inequality between B, 

ω0, ω2 and ω3.  In the case where 2

0

1
2

=
ω
ω

, B = 1,  R = 50 Ω and ω0 = 2π 107 rd/s, 

determine the condition on C in numeric value for the circuit to remain stable. 

Answer: 

1) 

a) 2

0 0 2

( ) 1 1 1 1( ) 1( ) 1 1 1

S s AH s
E s AB B B s s

AB B Bω ω ω

= = = =
+ + + +

 

b) Hence  0 2=n Bω ω ω  and  maximum when B = 1 and  

0
0 22   when 

2
= =Q

ωω . 

 

 

ζω
ω

2
1

2

0
0 == BQ
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Resonance occurs at  

providing the value of  (see section 1.2.3.3), where 20 
log |1/D(jωr)| = 3.6 dB. 

2) 

a) This is 

0 2 3

1'( )
1 1

=
  

+ +  
  

A p
s s s

ω ω ω
 

hence: '( )A jω

0 2 3

1

1 1
=

  
+ +  

   

j jω ω ω
ω ω ω

 in harmonic conditions for which the argument is  

{ } 2 3
2

2 3

2 3

'( )
2 2 1

 
+     = − − − = − −        − 

 

jArg A j

ω ω
ω ωπ ω ω πω

ω ω ω
ω ω

Atan Atan Atan . 

To obtain a total of −π, the second term must also give  −π/2; therefore, 
the tangent must approach infinity, where  2 3=iω ω ω . 

b) To ensure stability, it is necessary that |A'(jωi)B| < 1 since  
Arg{A'(jωi)B}= −π.  

Hence, by replacing ω by 2 3=iω ω ω   in A'(jωi), this provides:  

0

2 32 3 3 2

0 2 3

1 1
=

+
+ +

BB ω
ω ωω ω ω ω

ω ω ω

 < 1 

Hence, it may be deduced that C < 
0

2 640=
Rω

pF. 
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1.7.2. Active filters built with operational amplifiers 

1) Butterworth, Bessel or Tchebyschev type active filters 

Assuming perfect operational amplifiers, determine Vs3 according to Vs1 
and the law at the minus input node of the first operational amplifier in the 
following circuit:  

 

R1

Vs1

C

Ve

R3

Vs3

R4

Vs2

R2 C'R'

R5

 
Now deduce from this the transfer function giving Vs3 / Ve when R4 = R5; 

R3 = R'; C = C'  and determine the natural circular frequency and damping 
coefficient. In addition, determine transfer function Vs1 / Ve and its type. 

Indicate which elements are required to set the gain and then the damping 
factor independently of the natural circular frequency. 

Same process for the next filter with Vs1 as main output; in addition, 
indicate the type of filter obtained at outputs Vs2 and Vs3. 

R6

Vs1

C

Ve

R'

Vs3

R4

Vs2

R2 C'
R

R1

R0

 

The equalities R C = R' C'; R1 = R2 can be set here, maintaining however 
the necessary settings with other independent elements. 
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Accordingly, which elements are required to set the gain and then the 
damping factor independently of the natural circular frequency? 

One solution that improves the ease of these settings consists of replacing 
the voltage divider R4, R0 with an inverting amplifier whose gain would be  
−R5/R4  and connecting its output through a resistance R3  to the minus input 
node of the first amplifier whose plus input is then grounded. 

2) Elliptic-type filters  

In order to obtain a numerator of the same degree as the denominator 
with zero damping coefficient at the numerator (or equivalently zero 
transmission at the natural frequency), the solution preserving the settings’ 
independence consists of making the sum of low-pass and high-pass 
transmittances. 

Adding the function indicated above to the previous circuit, deduce the 
circuit that would provide an elliptic-type second-degree transfer function 
with independent settings of the natural circular frequency for the 
denominator and numerator. Give the expression of the transfer function. 

Answer: 

– Butterworth, Bessel or Tchebyschev type filters 

Assuming the operational amplifiers to be perfect, we see: 

4 4
3 2 1

3 3

1
' '

 = − = − − 
 

s s s
R RV V V
R R R C s

     and    ( )3 1
2

1 5 2

1 0+ + + =e s sV V V
R Cs

R R R
 

Eliminating Vs1 and Vs2 provides a second-order low-pass inverter on 
output 3:  

3 5

23 5 3 51

2 4 4

1

1 ' ' ' '
= − ×

+ +

s

e

V R
R R R RV R R C s R C C s
R R R

 

Accordingly, gain is set by R1 and R5 while the other elements set the 
natural circular frequency ωn and R2 independently determines the damping 
factor ζ. 
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There is also a band-pass on output 1:  

1 3 5

23 5 3 54 1

2 4 4

' '

1 ' ' ' '
= − ×

+ +

s

e

V R R R C s
R R R RV R R R C s R C C s
R R R

 

with R4 = R5; R3 = R'; C = C':   
3

1=n R C
ω    and   3

2

1
2

=
R
R

ζ . 

On output Vs1 of the second circuit:  

2
1 1

6 20 61 1

0 4 6 2 2

' '( )
1 1 1 ' ' ' '

= = − ×
  

+ + + +  +    

s

e

V R RCR C sH s
V R R RR RR C s R C RC s

R R R R R

 

Taking   RC = R'C'   and  R1 = R2: 

( )

( )

2

1 1

26 0 1

0 4 6

( )
1 2

= = − ×
 

+ + + +  

s

e

RC sV RH s
V R R R RCs RC s

R R R

 

while the numerator becomes 1 instead of (RCs)2  if the output is given in 
Vs3. 

– Making the sum of Vs3  and  Vs1 on the second filter provides an elliptic-
type transmittance by means of a summing and inverting circuit, with Vs1 
being applied on resistance R7, Vs3 on resistance R8, and R9 being the 
feedback resistance. This provides transmittance:  

( )

( )

28 7

4 9 91

26 0 1

0 4 6

'( )
1 2

+
= = ×

 
+ + + +  

s

e

R R RC s
V R RRH s
V R R R RCs RC s

R R R

 

The natural circular frequencies of both numerator and denominator are 
then independent and the numerator’s damping coefficient is zero (which 
entails a zero of transmittance situated on the imaginary axis, also known as 
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an attenuation pole, inducing the cancellation of the transmittance at the 
corresponding circular frequency in sinusoidal conditions). 

1.7.3. Study of a looped system and its stability: sample and 
hold circuit 

  

VSVe

 CH

−

+

+

−

R
ε1

V1

S

H ε2

A1
A2

 
It is assumed that the operational amplifiers are compensated until unity 

gain, that is they have an open loop gain of type: 0

1

( )
1

=
+

A
A jf

fj
f

; their input 

current and output resistance are neglected. 

1) Show that the loop gain of an integrator (such as A2, R, CH) always 
has an argument between +π/2  and −π/2  and as a consequence the 
integrator is unconditionally stable, since its image on the complex plane can 
never surround point –1. Next, make the approximation that A2 is a perfect 
operational amplified with a loop gain much greater than 1 in modulus 
(inducing ε2 ≈ 0). Determine the domain of validity of this approximation 
according to the  plot of the Bode diagrams for |A(f)|  and  1/|B(f)|  assuming  

A0 = 105;  f1 = 500 Hz;  1
2 HRCπ

 = 5×105 Hz; use the new next 

parameters:  f0 = A0 f1   and   fH = 
HCRπ2

1
. 

2) Draw the general block diagram of the system and return it to the 
standard case by changing all the signs. Now determine the expression of the 
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loop gain and then of the closed loop gain when the switch is closed. By 
studying the Bode diagram of the loop gain and by calculating quality 
coefficient Q (or damping coefficient ζ) and natural frequency fn of the 
closed loop, show that the system does not oscillate but is very poorly 
dampened and consequently useless in practice.  

3) The real system can be improved by using an operational amplifier for 
A1 with the same gain bandwidth product but with much lower DC open 
loop gain, where, for example, A0 = 102 and f1 = 5×105 Hz and taking 
fH = 2.104 Hz. Recalculate Q, ζ and fn. Determine the final value of the 
output voltage when the input signal is a unit step of 1 V and when the 
capacitance CH is initially discharged (no free regime). Determine the step 
response and time taken after step application for output voltage to return 
within the range of ±10−4 times the final value calculated previously. 

Show that another solution is to introduce a phase lead corrector with 
transmittance B' in the return loop like below:  

 

Recalculate the loop gain A'(f)B'(f) where A'(f) is now written as:  

0 0

2

1 11

'1'( )
1 11

= =
+ ++

A A
A f

f R fj j
f fR

; and with 2
2 2

1
2

=f
R Cπ

; 
2

1
2

2 2

1
'

2

+
=

R
Rf

R Cπ
. Plot 

its argument qualitatively assuming that 2 2 'f f  is made to correspond with 
frequency fn' where |A'(fn')B'(fn')| = 1. Show that this allows for the loop gain 
image to be removed farther from point −1 in the complex plane.  

R1

C2

R2
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Determine f2 and f2' to have an additional phase margin of π/4 when 
keeping the values of question 2, giving the transmittance argument of the 
corrector a value of + π/4  for  f = fn'. 

Answer: 

 
 
1)  The integrator’s return loop transmittance is determined by high-pass 

voltage divider CH-R, that is: 
1+

H

H

R C s
RC s

. Loop gain in harmonic condition is 

thus  0

1

1 1+ +

H

H

fj
Af

f fj j
f f

, with asymptotic arguments of +π/2 in low frequency 

and of −π/2 in high frequency. Loop gain cannot surround point –1 in the 
complex plane since its image remains in the right half-plane (positive real 
part). The integrator is thus always stable. 

Between the two intersections of 20 log|A| with 20 log|1/B|, the loop gain 
is far greater than 1, validating the use of perfect operational amplifier 
approximation (ε2 ≈ 0). In the parallelogram visible in the graph, the 

20 log|A| 

20 log|1/B| 

0  f1     fH  f0=  A0 f1 

f 

20 log|AB| >0 



Continuous-time Systems: General Properties, Feedback, Stability, Oscillators     75 

intersection frequencies are f0 = A0 f1 = 5 × 107 Hz for the higher one, 100 
times higher than fH , and so f1/100 = 5 Hz for the lower frequency. 

2) Returning the minus sign of the transmittance of the inverting 

integrator considered as perfect, with transmittance 1−
HRC s

, onto the 

subtractor, provides the following block diagram in forced conditions:  

 

A(f) Ve Vs 
ε1 

−1 
1

HRC s  

 
Thus, the loop gain is 0

1

1

1
2

+ H

A
s RC s

fπ

, yielding 0

1

1+

HA f
f j fj
f

 in harmonic 

condition and in closed loop ( )( )
1 ( )

=
+
K A sH s

A s B
 with B = 1 since the feedback 

loop is unitary:  

0

20

0 01

1

1 1( )
111 22 1

2

− −= =
  + +++     + 

 

H H
H

H

A
H s A RC RCs s sRC s A fsf RC s

f
ππ

π

 

Its natural frequency is 0 Hf f and its damping coefficient is 0

0

1
2 H

f
A f

= 5 × 10−5, an extremely low value. Closed loop transmission is stable 

nonetheless since the poles have a negative real part 
02

− HRC
A

; however, the 

absolute value is too low due to the value of A0 being too high. 

3) The new values provide   f0 = A0 f1 = 5×107 Hz unchanged, a natural 

frequency  Hz and a damping coefficient 0

0

1
2

=
H

f
A f

ζ

= 0.25. 

6
0 10== Hn fff
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The final value of the output voltage can be determined by applying the 
theorem of the final value on the output voltage whose LT may be calculated 
by the product of H(s) by 1/s, the LT of the 1 V step: 

0 0

( )lim ( ) lim lim ( )
→+∞ → →

= = =st s s

H sV t s H s
s

−1 V 

coherent with the sign reversal due to the minus sign present on the input 
block. 

The step response of the second-order low-pass filter representative of 

H(s) fulfills the expression 0
exp(1 cos 2

2

− )
− [ 1− − ]

1−
n

n
t

t
ζω ω ζ φ
ζ  

multiplied by  

−1 V. Accordingly, voltage fits into the range of  ±10−4 times the final value 

when exp(
2

− )

1−
ntζω

ζ
 becomes lower than 10−4, thus for  

4

2

1 10ln
1

 
 >
 − n

t
ζ ω ζ

= 5.9 µs. 

4) Feedback loop transmittance is equal to  1 2

1 2

2

1
2'( )

1
2 '

+
=

+ +

s
R fB s

sR R
f

π

π

 

The loop gain is thus: 2

1

1

1 1

0 H

2

f+ j
A' f fA'(f)B'(f)=

f fjf+ j + j
f f'

 in harmonic 

condition. 
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For f1 = 500 Hz, fH = 5 × 105 Hz while accounting for f 'n = 2 2 'f f , |A'B'| 

= 1 and with f 'n >> f1 , the argument of 2

2

1

1
'

+

+

fj
f
fj

f

 must be of +π/4 in order 

to obtain a total −3π/4.  

So:   
2 2

2 22 2
2

2 2

2 2

'' '
'' ' '

4 ' 2'1
'

  
− − 

      = − = =           +       

n n

n n

n

f ff f
f ff f f f

f f f
f f

π Atan Atan Atan Atan  

The tangent must thus be equal to 1. So    1 2− =x
x

 writing 2

2

'
=

fx
f

> 1. 

The positive root of x2 – 2x – 1 = 0 is 1 2+  = 2.414, involving 
2 2

2 1

' 1 5.83= + =
f R
f R

. 

−1     0 

f  increasing 

Argument close 
to –3 π/4 for 
|A'B'| = 1 

Argument close to −π for 
|A'B'| = 1 

Images of AB  
and A'B' in the 
complex plane 

AB   

A'B'   
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There remains only to determine frequency f 'n for which |A'B'| = 1 while 
making the approximation  f 'n >> f1 , which will be verified below; since  

2

20 1 0 1 0 12
2 2 2

2

2 2

'' 11
' ' ' 1 5.831 '' ' ' 11 11' 5.83'

++
+= = =

+ ++

n

H H H

nn n n

ff jj
fA f f A f f A f ff

ff f ffj jf f

 

Furthermore, since 
5

0
0

2

1

10'
5.831

= =
+

A
A

R
R

 then finally   

 fn' = 3.2 × 106 Hz >> 500 Hz, f2 = 1.3 × 106 Hz   and f2' = 7.7 × 106 Hz. 

1.7.4. Study of a Colpitts oscillator built with a JFET 

Let us take the sinusoidal oscillator represented below. The impedances 
of capacitors Cg and Cs are considered as zero at oscillation frequency and 
that of inductance Lchoke as infinite. The conductance of Rg and the 
transistor’s input admittance between G and S are negligible relative to the 
admittance of C2. The transistor is equivalent to a current source gm vGS 
between D and S from a dynamic point of view (gm is the transconductance). 

 

 

Cg 

+Vcc 

C1 

L1 

C2 

Lchoke

No contact between the two 

Rs 
Rg 

Cs 

G D 

S 
RD 
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1) In order to obtain an operating point at IDSS / 2 (IDSS being the saturation 
current at VGS = 0), there must be a static voltage VGS = −2 V. If IDSS = 2 mA, 
calculate Rs, with the static gate current being zero. If Vcc = +5 V, calculate 
static VDS. 

2) Determine the equivalent dynamic circuit while accounting for the 
hypotheses above.  

3) Using the calculation of admittance seen to the right of point D and the 
AC voltage division performed by L1 and C2, determine the oscillation 
condition (on the imaginary part and on the real part) and deduce the circular 
frequency ω0 for oscillation according to L1, C2  and C1, together with the 
relation between RD, gm, C1 and C2. Comment about amplitude stabilization. 

Answer:  

1) In static condition, there is VGS = − RS ID = − 2 V, then for  ID  = IDSS/2  
= 1 mA,  RS = 2 kΩ. And since VDS = VCC  − RS ID;  VDS = 5  − 2 = 3 V. 

2) Accounting for the conditions provided in the presentation, the 
dynamic operational circuit is made up as follows:  

 

C1 

L1 

C2
RD 

vGS vD 
gmvGS 

i 

 

Writing gD = 1/ RD and calling Y(s) the admittance of the circuit crossed 
by current i: 

2
1 2

1 2

( )
1

= + +
+D

C sY s g C s
L C s

  and 2
1 2

1( ) ( )
1

=
+GS DV s V s

L C s  
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Furthermore, the LT of i reads ( ) ( ) ( ) ( )= = −D m GSI s Y s V s g V s .  Replacing s 
by jω0:  

2
0 1 0 02 2

1 2 0 1 2 0

( ) ( ) 0
1 1

  
+ + + =  − −   

m
D D D

gCg j C V j V j
L C L C

ω ω ω
ω ω

 

The oscillation condition allows for 0( ) 0≠DV jω  only if: 

2
0 1 2 2

1 2 0 1 2 0

0
1 1

 
+ + + = − − 

m
D

gCg j C
L C L C

ω
ω ω

 

Accordingly, the real part must be zero, and the same for the imaginary 
part:  

2
1 2 0

0
1

+ =
−

m
D

g
g

L C ω
 and 2

1 2
1 2 0

0
1

+ =
−

CC
L C ω

 

Hence, it may be deduced:  

0
1 1 2

1 1 1 
= + 

 L C C
ω  and 2

1

1= =D
D m

CR
g C g

 

Stabilization of the amplitude would need a detection circuit controlling 
the conductance of a second JFET whose drain and source terminals are in 
parallel on Rs in order to modulate the transconductance of the initial JFET, 
as described in the lecture of this chapter. 

1.7.5. Study of a system in state-space form  

The system below, based on two coupled resonant circuits, will now be 
studied in the aim of determining its poles and its stability. D is a dipole 
capable of presenting a positive, negative or zero conductance G around the 
origin, and is nonlinear beyond a certain voltage threshold, as in the Chua 
oscillator. The independent source of current i0 can represent the collector or 
the drain of a transistor. 



Continuous-time Systems: General Properties, Feedback, Stability, Oscillators     81 

 

C1 
L1 

C2 

 i=G u2 

 u1 

 i0 

R1 

C0

 i1 

L2 
u2

R2

 i2

D 

 

– Determine the number of nodes and branches in which it is possible to 
write a relation between voltage and current. From this, deduce the system’s 
number of independent equations (state equations). 

– Write the system’s state equations, taking the various derivations of the 
state variables as first members in the order visible in the circuit from left to 

right. Taking C1 = C2 = C  and writing  0

0

=
+
C

C C
γ  (coupling coefficient), 

resolve the subsystem of equations where the derivations of u1 and u2 appear 
in order to obtain a subsystem in which only one of the two derivations 
exists in each equation. In addition, since there are still too many settings, it 
may also be taken that L1 = L2 = L and  R1 = R2 = R0. 

– Normalize the system of equations by making the following variable 

changes:  = t
LC

θ ; 0 [0 1]= ∈CR
L

ζ  (damping coefficient to within a 

factor of 2); 0= =
GRLG

C
α

ζ
; 0 1=

m

R i
w

u
; 1=

m

ux
u

; 2=
m

uy
u

; 0 2=
m

R i
z

u
, um being 

a constant voltage reference. From this, deduce the dimensionless elements 
(with the exception of the second term of the second member) in which the 
column vector of the first member only includes derivatives relative to θ of 
normalized state variables , , ,   w x y z . 

– In case α = 0, representative of a circuit with no D dipole, determine 
eigenvalues λi of the state matrix A. It is indicated that the development of 
the determinant det(A −λI), where I is the unit matrix, leads to equality 
between two squared expressions for which the square root assigned to the 
plus or minus sign may readily be taken. Now deduce the expressions of the 
poles. From the symbolic value of their real part, deduce whether the system 
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is stable or not. Determine the system’s two natural circular frequencies. 
What is the effect of an increase in the coupling coefficient γ ? 

– In the case where α < 0, it is possible to obtain a system whose 
behavior is different; however, the poles can be only be calculated by a 
numerical method, available in mathematical softwares. For example, for 
ζ = 0.02 and γ = 0.25; the eigenvalues of A follow the following laws with a 
precision better than one thousandth  

2

1,2 1
2 4 4

jζ α ζλ ≈ − − ± − and
2

3,4
3 1

2 20 1 4
−≈ − − ± −
+

jζ α γ ζλ
γ

for 0.1 0− ≤ ≤α . 

Deduce the value of α allowing the system to oscillate and the oscillation 
frequency reasoning from the cancellation of the real part of one pole. 

Answer:  

1) The circuit comprises three nodes and six branches in which it is 
possible to write a relation between voltage and current, unlike in the case of 
the ideal source. There are 6 − 3 + 1 = 4 independent equations. 

2) The four state equations are written as:  

















−=

−−−=

+−−=

−=

222
2

2

2
21

0
2

2

01
12

0
1

1

111
1

1

iRu
dt
diL

ii
dt

uudC
dt

duC

ii
dt

uudC
dt
duC

iRu
dt
diL

)(

)(

 

The subsystem comprised by the second and third equations is resolved 

after introducing C1 = C2 = C  and  0

0

=
+
C

C C
γ .
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( ) ( )

( ) ( )
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1 1 1 1

1
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2
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2
2 2 2 2
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
 + = − + − +

 + = − − + −
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
 = −


diL u R i
dt

duC i i i i
dt
duC i i i i
dt

diL u R i
dt

γ γ

γ γ
  

3) Making the changes as indicated gives:  

[ ]
0

0
0

00 0
1 0

(1 )(1 ) (1 ) (1 )
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(1 ) (1 ) (1 ) (1 )
0 0 0

 − 
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




m

m

w w R
ux x

i
y y R

uz z

ζ ζ
α γ γ

ζ γζ γ γ ζ γ
γ α γ

ζ γ γ ζ γ ζ γ
ζ ζ

  

that can be condensed into F  = A F + B U, where A is the state matrix. The 
eigenvalues are the roots of the characteristic equation det (A −λI) = 0.  

4) In the case of α = 0, developing det(A −λI) relative to the first line 

gives: ( ) ( )
2

2
2

1 ( )det( ) 0
(1 ) (1 )(1 )

   − +− = − − − + − − − =  + ++   
A I λ γ λ ζ λλ ζ λ λ ζ λ ζ

γ ζ γζ γ  

Factoring: ( ) ( )
2

2

2 1 0
(1 ) (1 )

  −+ + + + = + + 

γλ ζ λ λ ζ λ
γ γ

  

Developing: ( ) ( )
22

2 2

2 1
(1 ) (1 ) (1 )

 + + + + =  + + +
γλ ζ λ λ ζ λ

γ γ γ
, equality of two 

squared expressions, whose square root gives: ( ) 1
(1 ) (1 )

+ + = ±
+ +

γλ ζ λ
γ γ

. 

The 4 root solutions can be deduced from 

( ) ( ) 11 and  
1

−+ = − + = −
+

γλ ζ λ λ ζ λ
γ

 : 

2

1.2 1  and
2 4

jζ ζλ = − ± −
2

3.4
1 .

2 1 4
jζ γ ζλ

γ
−= − ± −
+
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These are the system poles, for which all the real parts are equal to 
2

− ζ , 

negative, and as a result, the system is stable. Its free regime is of the form 

( )exp exp
 

=  
 

 i i i i
i i

tv v
LC

λθ λ  with identical eigenvectors vi for the 

complex conjugate poles.  

So, the natural circular frequencies are 
21 1

4
−

LC
ζ  and 

21 1
1 4

− −
+LC

γ ζ
γ

. 

5) Starting from α = 0 and moving toward α < 0, the first pole whose real 
part reaches zero is λ1,2 for α = −0.04. For this value of α, there will 

consequently be oscillation at circular frequency 
21 0.9991

4
− =

LC LC
ζ  since 

the sum 
1,2

exp
 
 
 

 i i
tv
LC

λ  yields a sinusoidal function of time while the 

other oscillation dampens due to pole λ3,4  still with negative real part. This 
operation requires negative conductance G around the origin for dipole D, 

which is calculable from the value of 0 0.04= = = −
GRLG

C
α

ζ
. 



2 

Continuous-time Linear Systems: 
Quadripoles, Filtering and Filter Synthesis 

2.1. Quadripoles or two-port networks 

Quadripoles are networks described by a system of two linear equations 
linking four electric quantities, two currents and two voltages, which can be 
written in the matrix form, the matrix Q or T of the quadripole having to be 
chosen among six possible combinations of the four electric quantities. By 
convention, the electric quantities will be written in capital letters because 
they represent either complex symbolic quantities (with sinusoidal behavior) 
or Laplace or Fourier transforms of time functions with variable behavior. 
When the convention about the current directions at the terminal where the 
potential is highest (tip of the arrow) corresponds to incoming currents, this 
is a receptor convention (Figure 2.1).  

 
Figure 2.1. Input and output receptor conventions 

in a quadripole or two-port network 

In the case of a current leaving the terminal presenting the highest 
potential, this represents a generator convention, which will be adopted in 
certain cases. It is assumed that terminals A–B, on the one hand (the left 
port), and C–D, on the other hand (the right port), are connected to external 

  A        I1 I2     C 

V1 V2 Q 

DB 
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dipoles and thus crossed by currents of same name. A–B and C–D pairs are 
called “ports”. 

The interest of quadripoles lies in showing both voltages and currents, 
which will allow us to perform power calculations. Since filtering can be 
regarded as an operation that makes the transferred power dependent on the 
frequency, this issue will be naturally addressed based on the concepts 
introduced for quadripoles, even when filters make use of circuits that can be 
represented by block diagrams as in Chapter 1, such as operational 
amplifier-based circuits. 

2.1.1. Quadripoles deduced from dynamic circuits 

The four types of quadripoles presented below are simply deduced from 
the association of two dipoles composed of either a voltage source in series 
with an impedance, or a current source in parallel with an admittance. The 
corresponding electrical equations are expressed from the sums of the two 
voltages in the first case or of the two currents in the second case, giving a 
relationship for each of the two ports. Each makes it possible to express the 
characteristic quantity of the dipole according to the other two, one relative 
to the same terminal and the other relative to the opposite terminal, which 
offers the possibility of generating electrical couplings between the two ports 
(direct transfer and inverse transfer). Types II or IV are generally used to 
describe transistors, type I for standard operational amplifiers, type III for 
transformers and types I or IV for passive circuits. 

type I: with 
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

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+=

2221212

2121111

IZIZV
IZIZV I1 I2

V1 V2
Z12 I2 Z21 I1

Z22Z11

 

type II: with hybrid  
parameters (voltage-

current) 



+=
+=

2221212

2121111

VhIhI
VhIhV

 
I1 I2

V1 V2
h12 V2 h21 I1

h22
h11

 

type III: with hybrid  
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IhVhV
IhVhI

 
I1

V1 h'12 I2
h'11

I2

V2h'21 V1

h'22

 

type IV: with 
admittance  
parameters 




+=
+=

2221212

2121111

VYVYI
VYVYI

 
I2

V2
Y21 V1

Y22
Y11

Y12 V2
V1

I1
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The two-equation systems can be written in the matrix form, Z for type I 
and Y for type IV. 

In associations of quadripoles, type I will be adopted for associations in 
series (addition of voltages V1+V1'; V2+V2' ), that is to say, if currents I1 and 
I2 are common to the homologous ports of both quadripoles, and type IV for 
the association in parallel (addition of currents I1+I1'; I2+I2' ), namely if 
voltages V1 and V2 are common to the homologous ports (Figure 2.2). 
Different associations for both ports will require mixed types II or III. 

I1 I2

V1 V2
Z12 I2 Z21 I1

Z22Z11

I1 I2
V1' V2'

Z12' I2 Z21' I1

Z22'
Z11'

I2

V2
Y21 I1

Y22
Y11

Y12 I2

V1
I1

I2'

V2
Y21' I1

Y22'Y11'

Y12' I2

V1

I1'

 

Figure 2.2. Association of quadripoles in series (on the left)  
and in parallel (on the right), using the appropriate models 

Generally speaking, any quadripole can be described by 





+=
+=

2221122

2121111

XQWQW
XQWQX

, where X1, X2, W1 and W2 represent the four electric 

quantities (two currents and two voltages) and Q11, Q12, Q21 and Q22 the four 
parameters (Q12 the inverse transfer parameter, Q21 the direct transfer 
parameter). It should be noted that matrices Z and Y are inverses of one 
another and that the same happens for the two types of matrices with hybrid 
parameters. 

2.1.2. Quadripoles and transfer matrices  

For a cascading configuration, that is, quadripoles assembled one after 
the other, quantities V2 and I2 (“output port”) must be expressed according to 
V1 and I1 (“input port”), and it should be more convenient to take I2 outgoing, 
namely following an output generator convention (Figure 2.3).  
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Figure 2.3. Quadripole with receptor convention at left (input)  

and generator convention at right (output) 

It should be denoted by 2 11 1 12 1

2 21 1 22 1

V T V T I
I T V T I

= +
 = +

 or in matrix form: 

2 11 12 1

2 21 22 1

V T T V
I T T I
     

=     
     

. 

A linear combination of the two characteristic equations of one of the 
quadripoles deduced from the dynamic circuits (or substitutions) allows for 
this structure to be obtained, on the condition that the determinant of the 
initial matrix or some coefficients are non-zero. Therefore, it is not always 
possible to obtain these two types of quadripoles from one of those in the 
previous section. Where possible, we can also calculate V1 and I1 according 
to V2 and I2 by means of the inverse matrix of matrix T.  

For example, from the admittances (type IV):  

11
2 1 1

12 12

22
2 1 1

12 12

1Y
V V I

Y Y
YYI V I

Y Y

 = − +

 Δ = −

 

where ΔY = det Y = Y11 Y22 − Y12 Y21. 

When the calculation is possible, it is then easy to “chain” (or “cascade”) 
several quadripoles of this type and to execute the calculation of the matrices 
product by a computer. 

  I1 I2 

V1 V2 T 
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2.1.3. Modification of the parameters of the quadripoles using 
negative feedback  

Let the system be 1 11 1 12 2

2 21 1 22 2

X Q W Q X
W Q W Q X

= +
 = +

 where X1 = V1 and W1 = I1 or vice 

versa and X2 = V2 and W2 = I2 or vice versa. 

By applying negative feedback from W2 onto W1, W1 will be replaced by 
W1 − B W2 in both equations. In the second equation, W2 = Q21(W1 − B W2) + 
Q22 X2. 

Therefore:  

11 11 22
1 1 12 2

21 21

21 22
2 1 2

21 21

1 1

1 1

Q BQ Q
X W Q X

BQ BQ
Q Q

W W X
BQ BQ

  
= + −  + +  

 = + + +

 

It can be observed that the output impedance Q22 can be decreased (if X2 
is a current) by a factor (1 + BQ21) when the output generator is a voltage 
generator or the output admittance Q22 (if X2 is a voltage) when the output 
generator is a current generator; in other words, in both cases it results in a 
better approximation of an ideal output source. 

On input, Q11 is also divided by (1 + BQ21). This is an impedance if W1 is 
a current and an admittance if W1 is a voltage. It should be noted that this is 
done at the expense of the direct transfer coefficient Q21, also divided by  
(1 + BQ21). 

Replacing X1 by X1 − B'X2 is of less interest because only the inverse 
transfer coefficient is changed into Q12 + B' and that of W1 by W1 − B''X2 
changes Q12 into Q12 − B' and Q22 into Q22 − B', which can lead to the 
instability of the quadripole. 

According to the parameter types, the feedback of W2 onto W1 is carried 
out with current or voltage quantities from the output toward the input, with 
Q11, Q21 and Q22 divided by (1 + BQ21). The type of feedback assumes one of 
the designations shown in the following table, the first term indicating the 
output quantity used to develop B and the second term indicating the input 
quantity onto which the feedback loop acts: 



90     Fundamentals of Electronics 2 

W1 = I1 V1 

W2 = I2 Current–current Current–voltage 

W2 = V2 Voltage–current Voltage–voltage 

Examples of negative feedback applied onto quadripoles (the quadripoles 
are usually transistors or associations of transistors or operational 
amplifiers): 

 

V1 V2 

Q 

I1 I2

R 

V1 V2 Q 

I1 I2 

R 

 

Figure 2.4. Current–voltage feedback on the left and 
voltage–current feedback on the right 

V1 V2 

Q 

I1 I2

R2 

V1 V2 Q I1

I2 

R2 
R1 

R1 

 

Figure 2.5. Current–current feedback on the left and 
voltage–voltage feedback on the right 

It is essential to write the circuit equations of the aforementioned circuits 
to obtain exact expressions of the new parameters because the resistances 
introduced in some cases modify more than one quantity I1, V1, I2 or V2 
(except eventually if Q is an ideal operational amplifier), contrary to the 
assumption made at the beginning of the section. The resistors can also be 
replaced by impedances, transformers or active components, which offers 
many possibilities to change the initial properties of a quadripole.  



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis     91 

2.1.4. Passive quadripoles 

A quadripole is said to be passive if it is possible to find an internal 
circuit comprising no source. 

For example, for type I, the system of equations 1 11 1 12 2

2 21 1 22 2

V Z I Z I
V Z I Z I

= +
 = +

 can be 

transformed into 1 11 12 1 12 2 1

2 22 12 2 12 2 1 21 12 1

( ) ( )
( ) ( ) ( )

V Z Z I Z I I
V Z Z I Z I I Z Z I

= − + +
 = − + + + −

 which can be 

represented by Figure 2.6. 

I1

I2

V1
V2Z12 (Z21− Z12)I1

Z11− Z12 Z22− Z12

 

Figure 2.6. Representation of a type I quadripole with a single linked source 

Only a single source remains. The only way to make it disappear is to 
impose Z21 = Z12. 

Then, there are only three independent parameters left for a passive 
quadripole instead of four for a quadripole in the more general case.  

The reciprocal passive quadripole is defined, regardless of its type, 

represented by 1 11 1 12 2

2 21 1 22 2

X Q W Q X
W Q W Q X

= +
 = +

, by the equality of non-diagonal 

coefficients: Q12 = Q21.  

For a reciprocal passive quadripole having a transfer defined by 
2 11 1 12 1

2 21 1 22 1

V T V T I
I T V T I

= +
 = +

 with the receptor convention on input and generator on 

output, the determinant Δ is equal to 1 (verify by setting Y12 = Y21 in the 
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system in section 2.1.2) and Δ = −1 with the receptor convention on input 
and output. In addition, if the passive quadripole is symmetric, in other 
words if both ports can be swapped without this having consequences on 
electrical properties, then Q11 = Q22 for the quadripoles deduced from the 
dynamic circuits with the receptor convention on input and output. For 
symmetric transfer quadripoles, T11 = T22 with the receptor convention on 
input and generator on output (or T11 = −T22 with the receptor convention on 
input and output). 

2.1.5. Dipole impedances and admittances; iterative impedance 

2.1.5.1. Impedances or admittances seen at one port, the other being 
connected to a termination impedance 

The input and output impedances, or dipolar impedances (or even 
“terminated impedances”), are defined for each port, respectively, by  
Ze = V1/I 1 and Zs = V2/I2 (or admittances by their reciprocals), and by a 
condition on the parameter related to the opposite port of the quadripole in 
the equation under consideration, which is obtained by means of the current 
flow in a termination impedance or admittance. It is therefore possible to 
admit that the quadripole can be reduced to the dipole whose impedance or 
admittance is being calculated, the opposite port seeing a condition definitely 
imposed by the termination impedance or admittance.  

In the two extreme cases either corresponding to an open circuit or to a 
short circuit at the opposite port, we shall add the index o or sc, respectively. 
The simplest dipole impedances or admittances are those which are already 
present in the circuit of the quadripole and that are obtained by canceling the 
dependent term of the opposite port in each equation: 

for type I: Zeo = Z11; Zso = Z22; for type II: Zesc = h11; Yso = h22;  

for type III: Yeo = h11'; Zssc = h22'; for type IV: Yesc = Y11; Yssc = Y22. 

The others are inferred by canceling the first member of the other 
equation. Generally speaking, when any quadripole is represented by 

1 11 1 12 2

2 21 1 22 2

X Q W Q X
W Q W Q X

= +
 = +

, we find: 
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1

1 222

det

0
=

=

X Q
W QW

 and 2

2 11
1

det

0
=

=X

W Q
X Q

 

where det Q = Q11 Q22 − Q12 Q21, 

whereas we would have found Q11 and Q22 for the other two impedances or 
admittances, the opposite port in open circuit in the case of a voltage dipole 
or short circuit in the case of a current dipole. There is thus a relation of 
proportionality between these four parameters, since they depend only on the 
three quantities Q11, Q22 and det Q. Clearly, it can be seen that the Q11/Q22 
ratio is equal to that of the other two terminated impedances or admittances 
calculated above. 

More generally, the input impedance or admittance is defined with the 
termination (or load) impedance Zu connected to the output; and the output 
impedance or admittance with the termination impedance (or internal 
impedance of the external generator) Zg connected to the input. For example, 
for the previous transfer quadripole, calculations are carried out by imposing 
the condition corresponding to this impedance connected to the opposite 
port:  

22 121

1 11 212 2

−
= =

−=

u
eu

u

Z T TVZ
I T Z TV Z Iu

 and 12 112

2 21 22
1 1

−
= =

− −=−

g
sg

g

T Z TVZ
I Z T TV Z Ig

. 

Then, it can easily be found that:  

1 22

1 21

= = −
∞

eo
V TZ
I TZu

;      1 12

1 110
= = −

=
esc

V TZ
I TZu

;  

2 11

2 21

= = −
− ∞

so
V TZ
I TZg

;      2 12

2 220
= = −

− =
ssc

V TZ
I TZg

, 

which verifies the relation: =eo so

esc ssc

Z Z
Z Z

, the general relation for all 

quadripoles, which could be proven independently of their type, as noted in 
the previous section.  
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By generalizing to 1 11 1 12 2

2 21 1 22 2

X Q W Q X
W Q W Q X

= +
 = +

, it is possible to determine the 

admittance or the impedance as seen from the input (port no. 1) depending 

on the termination 2

2
u

W
Q

X
= −  at port no. 2, by extracting X2 from the second 

equation with respect to W1 and by deferring it into the first one: 

111

1 22
2 2

u

u

Q Q QX
W Q QW Q Xu

+ Δ
=

+=−  

where  = det Δ QQ . 

In the same way, we determine (port no. 2) the admittance or impedance 

as viewed from the output according to the termination 1

1
g

X
Q

W
= −  at port  

no. 1, by extracting X2 from the first equation with respect to W1 and by 
deferring into the second: 

222

2 11
1 1

g

g

Q Q QW
X Q QX Q Wg

+ Δ
=

+=−
 

For example, for a quadripole of type I: 11

2 222

detu
e

u
V Z Iu

Z ZZ
Z Z=−

+=
+

Z

 and 22

1 111

detg
s

g
V Z Ig

Z Z
Z

Z Z=−
+

=
+

Z
 

2.1.5.2. Iterative impedance or characteristic impedance 
It is the impedance Zc that, connected to the output, can also be found as 

input impedance. In other words, this corresponds to the special case where 
the dipole impedance is the same as the termination impedance connected to 

the opposite port. Thereby, we have 1 2

1 2

V V
Zc I IZ Zu c

= =
−=

 for a quadripole 

following receptor convention on output and 1 2

1 2

V V
Zc I IZ Zu c

= =
=

 for a 

quadripole with generator convention on output. 
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In this particular case, the two equations that define the quadripole are no 
longer independent. In the case of impedance or admittance quadripoles with 
generator convention on output (types I and IV modified by inverting the 
direction of I2), Yc= 1/Zc directly represents the eigenvalue with a real 
positive part of the impedance or admittance matrix.  

It is possible to find a general characteristic equation for Zc using 
impedances Zeo, Zesc, Zso and Zssc that can be defined for any quadripole. For 

example, for the transfer quadripole, we get by setting Zu = 22 12

11 21

c
c

c

Z T T
Z

T Z T
−

=
−

, 

and by replacing the parameters T11, T12, T21 and T22 by their expressions 
according to Zeo, Zesc, Zso and Zssc previously defined: 

2 ( ) 0c so eo c ssc eoZ Z Z Z Z Z+ − − =  or 2 ( ) 0c so eo c esc soZ Z Z Z Z Z+ − − =   

In the general case, Zc is thus a solution of a second-degree equation and 
comprises an irrational term because of the square root. This term is 
therefore not necessarily an impedance achievable with passive elements R, 
L or C. In the particular case of a symmetric passive quadripole, Zso = Zeo and 
Zssc = Zesc, resulting in: 

= =c esc so scc eoZ Z Z Z Z  

2.1.5.3. Non-dissipative passive quadripoles: synthesis of diagonal 
impedances and admittances 

This type of quadripole does not comprise resistance and therefore only 
uses inductances and capacitances. The functions that it allows to be realized 
involve matching the impedances and filtering. The properties of such 
passive quadripoles consisting only of inductances and capacitances are 
primarily based on those of dipoles existing between the ports when only 
one term subsists in every system equation describing the quadripole, the 
other quantity being canceled out, corresponding to the diagonal elements 
Zii(s) or Yii(s) of the matrices: 

– impedances Zii(s) and admittances Yii(s) are odd functions of the 
variable s. This directly follows from the fact that the active power 
consumption is zero and thus Re[Zii(s)] |I|2 = 0 for example, in other words 
Re[Zii(s)] = 0. In sinusoidal regime, if the real part is zero, it remains Zii(jω) 
= j Xii(ω) where Xii(ω) is the reactance (real number). Thus, 
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Zii(−jω) = −j Xii(ω) = − Zii(jω); however, since this relation is an algebraic 
relation independent of the nature of the variable, purely imaginary or 
complex, we also get Zii(−s) = − Zii(s).   Zii(−s) is called the Hurwitzian 
conjugate of Zii(s);  

– since these are rational fractions, they are formed by the ratio of two 
polynomials, one only comprising odd-degree terms and the other only even-

degree terms: Zii(s) or Yii(s) =
)(
)(

2

2

sW
ssV . This comes from the fact that they 

are obtained by sums or ratios of terms either proportional to s or to s−1. 
However, the degrees of the numerator and the denominator differ only by a 
single unit because the polynomial part of the fraction can only be of degree 
1 or −1, corresponding to an impedance Ls, an admittance Cs or their 
reciprocals; the zero degree is forbidden due to the lack of resistance and the 
other degrees do not match any feasible passive elements admittance or 
impedance;  

– poles and zeros are alternated on the imaginary axis, and a pole may 
exist at the origin and/or one at infinity. In fact, according to the foregoing, 
by means of partial fraction expansion, we get: 

0 1 2
2 2 2 2

1 2

( )   or  ( ) ii ii

A A s A s
Z s Y s A s

s s sω ω ∞= + + + +
+ +

 , where the coefficients can 

only be positive (because they are proportional to products or quotients of 
positive capacitances or inductances and squared angular frequencies, as 
seen here below) or equal to zero, particularly the first or the last. In 
harmonic regime, this corresponds to a reactance or a susceptance (the 
imaginary part of the admittance): 

0 1 2
2 2 2 2

1 2

( )   or  ( ) ii ii

A A A
X B A

ω ω
ω ω ω

ω ω ω ω ω ∞= − − − − +
− −

  

whose derivative 
( ) ( )

2 2 2 2
0 1 2

1 22 2 22 2 2 2
1 2

( ) ( )
 or ∞

+ +
= + + + +

− −
ii iidX dB A

A A A
d d

ω ω ω ω ω ω
ω ω ω ω ω ω ω  

is always positive. However, when ω = ω1, Xii(ω) brutally shifts from +∞ to 
−∞ to again reach a value that tends to +∞ at the next pole that will be called 
ω2. Therefore, since reactance is always increasing, it necessarily crosses 
zero between both poles and so on.  
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These properties can be used to synthesize a dipole impedance Zii(s) or 
admittance Yii(s) from their expression using two different methods. Foster's 
synthesis is simply obtained by decomposing the rational fraction over the 
reals into fractions with linear and quadratic denominators, whereas Cauer's 
synthesis is obtained by decomposing the rational fraction into a continuous 
fraction through successive Euclidean divisions. 

– series Foster’s synthesis for 0 1 2
2 2 2 2

1 2

( ) ii

A A p A s
Z s Ls

s s sω ω
= + + + +

+ +
 ; 

 

1/A0

A1/ω1
2

L 

1/A1 1/A2

A2/ω2
2

 
Figure 2.7. Series Foster’s synthesis 

– parallel Foster's synthesis for 0 1 2
2 2 2 2

1 2

( ) ii

B B s B s
Y s Cs

s s sω ω
= + + + +

+ +
 ; 

 

B1/ω1
2

C 
1/B1

1/B0

1/B2

B2/ω2
2

 

Figure 2.8. Parallel Foster’s synthesis 

– Cauer’s synthesis: If in the expression 0 1
2 2

1

( ) = + +
+ii

A A s
Z s

s s ω

2
12 2

2

+ +
+


A s

L s
s ω

, L1 ≠ 0, then 1 2( ) ( )iiZ s L s Z s= +  can be rewritten, which 

amounts to placing inductance L1 in series with a dipole of impedance Z2(s). 
Consequently, after transformation into a single fraction, the degree of the 
numerator of Z2(s) is a unit less than that of its denominator.  
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By inverting, it is thus possible to extract a polynomial part 
corresponding to the admittance of a capacitance in parallel with the 
admittance Y2(s) = 1/Z2(s) = C2s + Y3(s), by means of Euclidean division of 
polynomials and so forth. A “ladder” circuit is then obtained, whose 
elements are alternatively a branch in series and then a branch connected to 
the reference potential. These elements are the following, by limiting 
associations to two elements at most (L and C): 

Element(s) Impedance Admittance 

Inductance L Ls 1 / Ls 

Capacitance C 1 / Cs Cs 

L and C in parallel 21
Ls
LCs+

 
21 LCs

Ls
+  

L and C in series 
21 LCs

Cs
+  

21
Cs
LCs+

 

Example: by simplifying to the same denominator 0( ) = +ii
AZ s
s

1 2
12 2 2 2

1 2

+ +
+ +
A s A s L s

s sω ω
 would give the quotient of a sixth-degree polynomial 

in the numerator and a fifth-degree polynomial in the denominator.  

We can write 0 1 2
1 1 22 2 2 2

1 2

( ) ( )ii

A A s A s
Z s L s L s Z s

s s sω ω
= + + + = +

+ +
, where 

0 1 2
2 2 2 2 2

1 2

( ) = + +
+ +

A A s A s
Z s

s s sω ω

 
corresponding to 2

2

1( ) 
( )

= =Y s
Z s

 

( )
( ) ( ) ( )

5 2 2 3 2 2
1 2 1 2

4 2 2 2 2 2
0 1 2 0 2 2 0 1 1 0 1 2

+ + +

 + + + + + + + 

s s s

A A A s A A A A s A

ω ω ω ω

ω ω ω ω
which is rewritten 

as: 
( )5 2 2 3 2 2

1 2 1 2
2 2

2 4 2 2 23
1 2

2 3 0

1( ) 
( ) 1 1

s s s
Y s

Z s
s s

C C C

ω ω ω ω

ω
ω ω

+ + +
= =

+ +
 to simplify the notation. 
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The Euclidean division gives a polynomial part equal to C2s and Y2(s) = 
C2s + Y3(s) where: 

( )2 2 2 3 2 22 2
1 2 3 1 2

3 0
3 2

3 4 2 2 23
1 2

2 3 0

1
1( ) 
( ) 1 1

C C
s s

C C
Y s

Z s
s s

C C C

ω ω ω ω ω

ω
ω ω

   
+ − + −  

   = =
+ +

 

The Euclidean division of Z3(s) gives a polynomial part equal to 

( )2 2 22
2 1 2 3

3

s
C

C
C

ω ω ω
 

+ − 
 

 and it is deduced that Z3(s) = L3s + Z4(s) where 

( )
3

2 2 22
2 1 2 3

3

1L
C

C
C

ω ω ω
=

 
+ − 

 

 and where 4
4

1( ) 
( )

Y s
Z s

=  is an admittance of the 

form 
3 2

4 4 4
2 2

5

C s C s
s

ω
ω

+
+

 that yields by way of Euclidean division a polynomial 

part C4s added to the quotient of the remainder by the divisor 
( )2 2

4 4 5

2 2
5

−

+

C p

s

ω ω

ω
, 

which following the previous table can be associated with the admittance of 

a capacitance 
2
4

6 4 2
5

1C C
ω
ω
 

= −  
 

 in series with an inductance 

( )5 2 2
4 4 5

1
L

C ω ω
=

−
.  

The corresponding circuit is therefore obtained by combining the 
following elements, where the order of the last two is arbitrary (C6 and L5). 

 

C2

L1

C4

L3 C6

L5Zii 

 

Figure 2.9. Ladder network obtained through Cauer’s synthesis,  
the order of the last two elements L5 and C6 being arbitrary 
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It corresponds to the impedance that is written in the form of a continued 
fraction: 

1

2

3

4

5
6

1( )
1

1
1

1

iiZ s L s
C s

L s
C s

L s
C s

= +
+

+
+

+

 

There are thus many possible circuits corresponding to a same expression 
of Zii(s) according to the type of synthesis that is adopted. It should be noted 
that Foster's syntheses lead to associations in series or in parallel in which 
the order of the elements is free, which does not indicate the actual 
connection for the opposite port in the case of a quadripole, unlike Cauer’s 
synthesis that imposes the order of the elements except for the last two.  

Several types of synthesis can also be combined in a decomposition 
because it may prove necessary to impose a fixed succession of elements 
according to a ladder structure, in particular for the implementation of band-
pass or band-stop filters in which the alternation of capacitances and 
inductances cannot always be repeated following the same order anywhere 
in the circuit. In this case, a solution is to perform a Cauer synthesis of Zii(s) 
to extract the first part of the elements, and then for the second part of the 
elements to shift to a Foster synthesis, in series or in parallel, but in which 
only the extraction of the single term is addressed, having a pole at 
the origin, after that of the term having a pole at infinity (in other words, the 
polynomial part). This is possible by factoring the first-degree term in the 
denominator of the fraction being considered assuming that its degree is odd. 
Recalling the previous example but by stopping the Cauer synthesis at the 
element L3, we can rewrite: 

1

2
3 4

1( ) 1
( )

= +
+

+

iiZ s L s
C s

L s Z s

, where 
( )

2
5 6

4 3
4 6 5 4 6

1( ) +
=

+ +
L C s

Z s
C C s L C C s

 

By factorizing the first term of the denominator and by decomposing it 
into simple fractions, we get: 
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( ) ( )
2

5 6 8
4 2

24 64 6 4 6 8 9
5

4 6

11 1( ) 
11

+
= = +

+ + ++
+

L C s L s
Z s C CC C s C C s L C sL s

C C

,  

where 
( )

2
6

8 5 2
4 6

=
+
C

L L
C C

, and ( )4 6 4
9

6

+
=

C C C
C

C
.  

In addition, establishing 7 4 6= +C C C  yields to an overall impedance: 

1

2

3
7

9
8

1( )
1

1 1
1

= +
+

+ +
+

iiZ s L s
C s

L s
C s C s

L s

, 

which is represented by the following circuit, where the alternation of the 
last three elements is reversed with regard to the first three, which can be 
useful when synthesizing a band-pass filter. 

 

C2

L1 C9 L3 C7

L8Zii 

 

Figure 2.10. Ladder network obtained through Cauer synthesis up to L3,  
then Foster synthesis in series for the element C7 and finally using  

Cauer synthesis for the last two  

This method can be considered a mixed synthesis because it makes use of 
both the continued fraction expansion (Cauer’s synthesis) and extraction of 
elements by partial fraction decomposition (Foster's synthesis) restricted to 
the term exhibiting a pole at the origin. 
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2.1.6. Scattering matrix (or s-matrix) and transfer matrix 

2.1.6.1. General case: incident and reflected waves 

This type of representation of quadripoles is useful when it is desirable to 
study power transfers operated by the quadripole and filtering is one such 
case. Nonetheless, ideal quadripoles comprise elements such as ideal short 
circuit, open circuit, perfect transformer (V2 = nV1; I1 = −nI2) or gyrator (V1 = 
RI2; V2 = −RI1). Then, some matrices of quadripoles of type I, II, III or IV or 
transfer matrices cannot be written because shifting from one representation 
to another always involves a ratio with the determinant or a parameter in the 
denominator. If one of them is zero, the matrix inversion is impossible. 

It is also still possible to write AV = BI where A and B are 2 × 2 matrix, 

with  and . 

For instance, if we have the impedance matrix (type I), matrix A is 
simply the unit matrix and matrix B is the impedance matrix: 

1 11 12 1

2 21 22 2

1 0
0 1

V Z Z I
V Z Z I
      

=      
       

. With the admittance matrix (type IV), we 

have: 11 12 1 1

21 22 2 2

1 0
0 1

Y Y V I
Y Y V I
      

=      
      

. And any other matrix equality obtained 

by multiplying on the left the two members of one of the above expressions 
also satisfies the general relation AV = BI. 

However, it can happen that A−1 or B−1 may not be computable (as an 
exercise, write these matrices for the ideal gyrator and the ideal transformer, 
and show in which case it is possible to calculate or not V = A−1BI and I = 
B−1AV). 

This type of problem can be overcome by using s-parameters, which will 
establish links between new quantities, called incident and reflected waves, 
themselves in direct relation with the power transfers performed by the 
quadripole. Consider the case of a termination impedance (load resistance or 
internal resistance of a generator) equal to R, assumed to be a normalization 
factor only, and define v = V R−1/2; i = I R1/2; a = A R1/2; b = B R−1/2 where v 
and i have the dimension of the square root of a power while a and b are  
 

 









=

2

1

V
V

V
 









=

2

1

I
I

I



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis     103 

dimensionless, which gives place to av = bi. Define the incident α = v + i and 

reflected waves β = v − i, where 1

2

α
α
 

=  
 

α  and 1

2

 
=  
 

β
β

β
.  In that case: 

2v = α + β and 2i = α − β; from which: 2 a v = a (α + β) = 2 b i = b (α − β). 

We deduce: (a + b)β = (b − a)α.  

It is shown that the inverse matrix (a + b)−1 exists in all cases (unlike a−1 
or b−1 as seen in previous examples), which allows us to write:  

β = sα where s = (b + a)−1 (b − a) 

Incident and reflected powers are then, respectively, computed based on 
the square moduli of α1, α2, on the one hand, and of β1, β2, on the other hand; 
s12, s21 are the transmission coefficients and s11, s22 the reflection coefficients. 

s 
α1 α2 

β1 β2 

Q 

I1 I2 

V1 V2 

 

Figure 2.11. Representations of a quadripole, including currents, voltages  
and complex parameters on the left and using incident and reflected  

waves, and s-parameters on the right 

However in reality, what represents these incident and reflected powers? 

To help clarify this issue, consider, for example, the case of the input of 
the quadripole assumed to be connected to a generator with internal 
resistance R. The active power P1 absorbed by port no. 1 can be calculated 

based on 1 1Re[ ]v i  or better with 1 1 1 1
1 ( )
2

v i i v+ , where we have set 

v1 = V1 R-1/2 and i1 = I1 R1/2. On the other hand, the calculation of the square 
moduli of α1 = v1 + i1 and of β1 = v1 − i1 gives: 

2 2 2
1 1 1 1 1 1 1 1( )( ) 2v i v i v P iα = + + = + +  

2 2 2
1 1 1 1 1 1 1 1( )( ) 2v i v i v P iβ = − − = − +  
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In the particular case where the input impedance of the quadripole V1/I1 is 
resistive and equal to R, that is also |v1 / i1|=1, the generator provides the sum 
of the same two powers P10 both on input of the quadripole and in its internal 
resistance. As it will be seen in the following section, this case corresponds 
to the ideal power match, that is to the maximum power transferred from the 
generator to the load, which here is the input port of the quadripole. It is 
obvious that 2 2

10 1 1P v i= = , from which it is finally deduced that: 

2
1 10 1

1
2

= +P Pα  and 2
1 10 1

1
2

= −P Pβ  

These so-called “incident” and “reflected” half-powers are thus fictional 
powers, which do not directly correspond to a power dissipated in one of the 
elements, generators or ports of the quadripole. It is more advantageous to 
compute the active power actually absorbed by port no.1 of the quadripole in 
the general case by the difference of the two previous equations: 

( )2 2
1 1 1

1
4

P α β= − .  

Similarly, the power absorbed by port no. 2 would be obtained: 

( )2 2
2 2 2

1
4

P α β= − . 

These directional powers absorbed by the two ports of the quadripole 
exactly reflect the diagram showing the incident and the reflected waves 
(Figure 2.11 on the right).  

This description using s-parameters therefore makes it possible to address 
power transmission and matching problems, and also problems of filtering 
since filtering is nothing but power transmission depending on the 

frequency. Matrix1  11 12

21 22

s s
s s
 

=  
 

s   is either originating from documentation 

(case of high-frequency active components) or computable from the 
elements of impedance or admittance matrix (see section 2.1.7.2.) and again 
we obtain s12 = s21 for reciprocal passive quadripoles. In addition, this 
description proves to be very well suited to scattered element systems in 
which concepts of propagation and termination impedance essentially 
govern them. This description does not restrict in any way the study to the 
                            
1  The s matrix, written in bold font, and the four elements of the matrix comprising two 
figure subscripts, must not be confused with the complex variable s 
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case of termination resistances equal to R, because by applying the same 
transformation to equations V1 = Eg − Zg I1 and V2 = −Zu I2, representative of 
the relations appropriate to a generator with an open-circuit voltage Eg and 
with an internal impedance Zg connected on the quadripole input, and to a 
load Zu on output, we obtain: ( ) ( )1 11 1 2g g gz z eβ α− = + −  and 

( ) ( )2 21 1u uz zβ α− = + , where we have established 

;  ;   .= = =g g u
g g u

E Z Z
e z z

R RR
 

2.1.6.2. Case where the termination impedance equals the 
normalization resistance R and impedance matching for maximum 
power transfer 

In the case where Zg = R, we have eg = α1 and the evaluation of  

powers can be achieved from 1 1 1
1 ( )
2

i α β= − , by calculating the power 

delivered by the generator: ( )2
1 1 1 1 1 1 1

1 1( ) 2
2 4

= + = − − =g g gP e i i e α α β α β

( )2
1 1 1

1 Re
2

 −  α α β . 

Moreover, the power dissipated in the resistance R of the generator is 

simply ( )2 2 2
1 1 1 1 1

1 2 Re
4

i α β α β = + −   . Therefore, we finally obtain once 

more the equality 2
1 1gP i P= +  = ( )2 2 2 2

1 1 1 1 1 1
1 2 Re
4

 − + + − = α α β β α β

( )2
1 1 1

1 Re
2

 −  α α β . 

Since eg = α1 is fixed, the maximal power P1 transferred in the quadripole 
is obtained when β1 = 0 because the only way to maximize it is to cancel out 

the second term in the expression ( )2 2
1 1 1

1
4

P α β= − .  

If the input impedance is equal to Z1, we have: 1 1
1

1

Z v
z

R i
= = . Therefore, 

we obtain: 

1
1 1 1 1 1 1 1

1( ) ( )
2 2
z

z i vα β α β= − = = +  
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We can thus look for the expression of the reflected wave according to 
the incident wave:  

1
1 1

1

1
1

z
z

β α
−

=
+

 

Therefore, it can be concluded that matching is obtained when Z1 = R 
yielding z1 = 1 and β1 = 0, which is a reflected wave equal to zero. 

On the output side, if Zu = R, then zu = 1 and ( ) ( )2 21 1u uz zβ α− = +  is 
simplified into α2 = 0. The power reflected by the load is then zero, which 
indicates that the load dissipates all the power it receives.  

2.1.6.3. Cascading quadripoles and chain matrix 

When several quadripoles have to be connected in cascade or in chain, it 
is advantageous to define a system of parameters that enables incident 
and reflected waves to be obtained at both endpoints of the chain with a 
matrix product. The system is reorganized, starting from 

1 11 12 1

2 21 22 2

s s
s s

β α
β α
    

=    
    

   to obtain 1 11 12 2

1 21 22 2

c c
c c

β α
α β
    

=    
    

  , where cij are the 

elements of the transfer matrix c. The quantities related to a single port are 
grouped in the same matrix column as for a transfer matrix but with the 
difference that incident and reflected waves do not occupy the same row. 
This makes it possible to effectively obtain the identity of the waves at the 
ports of the two quadripoles connected in cascade and to perform the 
calculation of the matrix equivalent to the whole by a matrix product as 
sketched in Figure 2.12. 

c' 

α'1 

α'2  = β''1 β'1 

β'2 = α''1 

c'' 
α''2 

β''2 
 

Figure 2.12. Chain of two quadripoles described by their chain  
parameters, deduced from s-parameters 



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis     107 

Since α'2 = β''1 and β'2 = α''1, we infer that 
1 11 12 11 12 2

1 21 22 21 22 2

' ' ' " " "
' ' ' " " "

c c c c
c c c c

β α
α β
      

=      
      

  . By combining the two equations of a 

system based on the matrix s to obtain the two waves related to the same port 
according to the waves related to the other port, we obtain the coefficients cij 
according to the sij. The chain matrix is then defined by: 

1 11 2

1 22 221

det1
1

s s
ss

β α
α β

−    
=    −    
   and conversely: 2 11 1

2 22 112

11
det
s

s ss
α β
β α

−    
=    −    
  .   

It is in this way possible to chain quadripoles whose elements are known, 
or, on the contrary, to decompose a quadripole into a simpler array of 
elements or extract an element from a quadripole having multiple elements. 
It should be noted that the determinant of the transfer matrix is equal to s12 
and the c22 element is equal to (s21)–1. 

It will be possible to show as an exercise that in the special case of a 
quadripole comprising only one impedance in series between the high 
terminals of each port, with a normalized value z, or still of that including 
only one admittance in parallel with normalized value y connected 
between the conductors directly linking the homologous terminals of each 

port, the chain matrices can be, respectively, written as: 1 / 2 / 2
/ 2 1 / 2

z z
z z

− 
 − + 

   

and 1 / 2 / 2
/ 2 1 / 2

y y
y y

− 
 − + 

   by splitting into two equal parts the voltage drops or 

currents flowing on the side of each port, which are matrices whose 
determinants are equal to 1. 

2.1.7. Powers in quadripoles and matching 

2.1.7.1. Matching source and load: efficiency 

We calculate the power delivered to a load (eventually the input 
admittance of another quadripole) by a generator (eventually the output 
circuit of a type II or type IV quadripole).  
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Ig

Yg Yu Vu

Iu

 

Figure 2.13. Generator with current source and internal 
admittance Yg loaded by an admittance Yu  

We then have the equations:        and    g u
u u g

g u g u

I Y
V I I

Y Y Y Y
= =

+ +  
from 

which the power in Yu is deduced: [ ]2

2

Re u
u g

g u

Y
P I

Y Y
=

+
 

The maximum of Pu is obtained when 
2

g uI P  is minimum:  

[ ]( ) [ ]( )
[ ]

[ ]( ) [ ]( )
[ ]

2 22

2 2

Re Re Im Im

Re

Re Re Im Im
4 Re

Re

g u g ug

u u

g u g u

g
u

Y Y Y YI

P Y

Y Y Y Y
Y

Y

   + + +   =

   − + +    = +  

 

namely when the second term is zero (because it can only be positive or 
zero), which implies that:  

Re[Yu] = Re[Yg] and Im[Yu] = −Im[Yg] 

These are the power matching conditions. Therefore, we conclude as 
follows: 

Impedance matching or in other words the maximum transfer of power from 
the generator or the quadripole to the load or termination is obtained when 
dipolar and termination impedances or admittances are complex conjugates 
of one another. 
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It should be noted that in this case:  
2

max
1
24 Re

g
u g

g

I
P P

Y
= =

  
 since both 

conductances are equal and subject to the same voltage. They thus dissipate 
the same power, that is an efficiency of 50%, a situation that does not 

correspond to the maximum performance. As 2 1Re
 

= = 
+  

g g
g u

P I
Y Y

2

2

Re  + 

+

g u
g

g u

Y Y
I

Y Y
, the efficiency 

[ ]
[ ]

Re

Re Re
uu

g g u

YP
P Y Y

η = =
  + 

 tends to 1 only if 

Re[Yg] tends toward zero (which avoids dissipating power in the generator 
conductance). This result can be extended to what follows: 

Generally, maximum efficiency is obtained when the generator (voltage or 
current) supplying the load becomes an ideal source. 

CONCLUSION.– Matching by compensating the imaginary parts of 
admittances (or impedances) is beneficial for power transfer. We will either 
choose to make the real parts equal to maximize power transfer when the 
generator is imposed, or to find an ideal source to maximize efficiency.  

In the case of a quadripole, a full match requires matching both input and 
output, which can be illustrated in Figure 2.14.  

 

 eg YY =  

  eg ZZ =  

Q  us YY =   

us ZZ =  

 

Figure 2.14. Quadripole matched to the input generator and the output load 

2.1.7.2. Insertion of an active or passive quadripole: normalized 
impedances and significance of the parameter s21  

A gain of power is obtained by inserting an active quadripole between the 
generator and the load, with the Y parameters as an example. 
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I2 

V2 
Y21 V1 

Y22 Y11 

Y12 V2 
V1 

I1 Ig 

Yg 
Yu 

 
Figure 2.15. Active quadripole described by its parameters  

Y, inserted between a generator and a load 

The useful power on input P1 = Re [ 1 1I V ] is now dissipated in the input 
admittance Ye, which can be calculated according to the parameters after 
having determined the voltage gain. 

The power gain is then the ratio of active powers dissipated in the load 
Yu, that is P2 = Re[ 2 2( )−I V ] and in Ye that gives:  

[ ]

[ ]

2
21

212 21
11 22

22

Re

Re Re

u
p

u
u

Y Y
G

Y Y
Y Y Y

Y Y

=
  

− +   +  

 

According to the expression of the denominator, it can be seen that it is 
advantageous to cancel the imaginary part of Y22 + Yu (matching the output) 
to maximize this power gain, which moreover is proportional to |Y21|2. To 
obtain the overall power gain, namely the ratio of P2 and Pg, the power 
supplied by the ideal source Ig, it can be shown as an exercise that it suffices 
to replace Y11 by Y11 + Yg in the previous expression. 

On the one hand, the insertion gain Gi is the ratio of powers dissipated in 
the load when the active quadripole is inserted, and, on the other hand, when 
it is directly connected to the output of the generator:  

( ) ( )

22
21

2

22 11 12 21

g ch
i

ch g

Y Y Y
G

Y Y Y Y Y Y

+
=

+ + −
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In order to minimize the denominator it can be seen that the input has to 
be matched: Re[Yg] = Re[Y11]; Im[Yg] = −Im[Y11] in addition to matching the 
output, and also the unilateralization (or neutrodynation), that is Y12 = 0 or 
even the lack of feedback from the output onto the input, which is also a 
condition useful for the stability as will be seen further on. 

For reference, two stability criteria can be given, one intrinsic to the 
quadripole, the other taking into account the load and the source, because 
they are used in certain documents giving the characteristics of transistors 
operating at high frequency:  

Linvill criterion: for [ ] [ ] [ ]
12 21

11 22 12 212 Re Re Re
Y Y

Y Y Y Y−
 < 1 the quadripole is 

stable. 

Stern criterion: for 
[ ]

[ ]
11 22

12 21 12 21

2Re Re

Re
g uY Y Y Y

Y Y Y Y

 + + 
+

 > 1 the quadripole is stable. 

The issue of stability will be addressed in greater depth with s-parameters 
in the following. 

Power and power gains measures use as units: decibels (dB) defined by 
10 logGp, 10 logGi for gains and dBW or dBm, respectively, defined by  
10 logP/1W or 10 logP/1mW for absolute powers. 

Obviously, the s-parameters can be used of course to address in a more 
general manner these matching issues for maximum power transfer in a 
quadripole inserted between a source having an internal impedance and a 
load. To this end, normalized parameters can be defined (dimensionless) 
initially assuming that this internal impedance and this load are purely 
resistive, but different: for example, a type I quadripole (Z parameters) 
inserted between a voltage generator Eg and with an internal resistance R1 
and a load R2 will be studied (see Figure 2.16). 

Second, it will be possible to modify R1 and R2 terminations by replacing 
them with any impedance Z1 and Z2 as it will be seen in the following 
section, the resistors R1 and R2 then being used only for the normalization of 
all the elements including Z1 and Z2. 
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R2 V1 

I1 

V2 

I2 

 
Figure 2.16. Quadripole inserted between a generator and  

a load for the description by the s-parameters 

Starting from 1 11 1 12 2

2 21 1 22 2

V Z I Z I
V Z I Z I

= +
 = +

, by multiplying the first equation by 

1

1
R

 and the second equation by 
2

1
R

, we obtain:   

1 11 12
1 1 2 2

11 1 2

2 21 22
1 1 2 2

22 1 2

 = +


 = +



V Z ZI R I R
RR R R

V Z ZI R I R
RR R R

. 

     Reduced (or normalized) parameters are defined by establishing: 
11 12 21 22

11 12 21 22
1 21 2 1 2

1 2
1 1 1 1 2 2 2 2

1 2 1

   ;      ;       ;     

   ;      ;      ;     ;  

= = = =

= = = = = g
g

Z Z Z Zz z z z
R RR R R R

EV Vv i I R v i I R e
R R R

 

The zij parameters (lowercase, but always depending on the complex 
variable s) are dimensionless. 
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We can then write: 1 11 12 1

2 21 22 2

1 0
0 1

v z z i
v z z i
      

=      
       

or still denoting by I2 

(bold character) the unit 2 × 2 matrix and z the matrix of parameters zij:  
I2 v = z i. 

As previously for the s-parameters: α = v + i and β = v − i, that is  
α = z i + I2 i = (z + I2) i and β = z i − I2 i = (z − I2) i . We are looking for the 
matrix s such that β = sα: 

(z − I2) i = s (z + I2) i  

and finally:  

s = (z − I2) (z + I2)−1 

NOTE.– Using the same method, it could be demonstrated that  
s = (I2 − y) (I2 + y)−1 with the reduced admittance parameters and conversely 
that z = (I2 + s) (I2 − s)−1 and y = (I2 − s) (I2 + s)−1 . 

Thereby, we can determine the consequences of the insertion of the 
quadripole between the generator and the load with the matrix equation:  

1 1 11 12 1 1

2 2 21 22 2 2

v i s s v i
v i s s v i

− +     
= = =     − +     

β αs  

if V2 = −R2 I2 , v2 = − i2 and accordingly α2 = v2 + i2 = 0, which indicates that 
there is no power reflected by the load, and β2 = v2 − i2 = 2 v2 .  

On the generator side, V1 = Eg −R1 I1 that is  1 1 1
1

g
g

E
v i e

R
α = + = =   and 

1 1 1 1 1 12 2 ( ) 2g g g gv i e i e e v v eβ = − = − = − − = − ; thus:  

1 11 12

2 21 22

2
2 0

g gv e s s e
v s s
−     

=     
    
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Hence, we deduce that 2 v2 = s21 eg and subsequently that  
4 |v2|2 = |s21|2 |eg|2, that is: 

22
22

21
2 14

gEV
s

R R
=  

|s21|2 is thus the ratio of the active power dissipated in the resistive load 
R2 to the maximum power likely to be provided by the generator. 

This power is actually supplied by the generator only if the input is 
matched, expressed in equality between R1 and the real part of the input 
impedance of the quadripole. Nonetheless in any situation, it appears that s21 
is a fundamental parameter of the active or passive quadripole, because it 
determines the power transfer and can therefore be used to size the 
transmittance of a filter.  

2.1.7.3. Gains, dipole impedances and stability of a quadripole 
inserted between a generator and any load from the s-parameters  

In order to determine the properties of the quadripole in the general case, 
the equations relating to the arbitrary terminations Zg and Zu are taken as 
defined in section 2.1.2 but by normalizing them by R1 and R2 as in the 
previous section: 

 V1 = Eg − Zg I1, V2 = −Zu I2, with 
1 21

 ;     ;    g g u
g g u

E Z Z
e z z

R RR
= = = . 

It follows that 1 1( 1) ( 1) 2β α− = + −g g gz z e  and 2 2( 1) ( 1)β α− = +u uz z . 
By analogy with the definitions given in section 2.1.2 for s-parameters, 
reflection coefficients rg and ru are then, respectively, defined onto the 
generator and the load:  

1
1

−
=

+
g

g
g

z
r

z
 and 1

1
u

u
u

z
r

z
−

=
+

 

These coefficients are equal to zero when matching is achieved, namely 
for Zg = R1 and Zu = R2, and cannot exceed the unit modulus when zg and zu 
are located in the right half-plane of the complex plane, which is the case for 



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis     115 

dissipative impedances,  because |zg –1| < |zg +1| and |zu –1| < |zu +1|, provided 
that R1 and R2 be indeed real and positive resistances. 

The previous equations then become: 1 1

2
1

g
g

g

e
r

z
α β= +

+
 and 2 2urα β=  

Waves incident on both terminations are β1 and β2 while α1 and α2 act as 
waves reflected by these same terminations, as can be seen in Figure 2.17.  

 

α1 α2 

β1 β2 

 
 
s Eg Zu V1 

I1 

V2 

I2 Zg 

 

Figure 2.17. Quadripole described by its 
s-parameters with terminations of any kind 

There is therefore a four-equation system that completely defines the four 

quantities α1, α2, β1 and β2 and is written by establishing 
1

2
'

+
=

g

g
g z

e
e : 

'
1 1

11 1 12 2 1

21 1 22 2 2

2 2

(1)
0 (2)
0 (3)
0 (4)

g g

u

r e
s s
s s

r

α β
α α β
α α β

α β

 − =


+ − =


+ − =
 − =

 

The resolution of this system allows us to write the four waves that all 
have the same denominator 11 22 12 21(1 )( 1)= − − +s g u g uD r s s r r r s s :  

' '22 11 22 12 21 11
1 1

' '21 21
2 2

1 ( )
;

;

u u
g g

s s

u
g g

s s

r s r s s s s s
e e

D D
r s s

e e
D D

α β

α β

− − −
= =


 − − = =
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Starting from α1 = v1 + i1 , β1 = v1 − i1 , α2 = v2 + i2 , β2 = v2 − i2, the v1, i1, 
v2, i2 can easily be deduced with a half-sum or half-difference of α1, α2, β1 
and β2:  

'22 11 12 21
1

'22 11 12 21
1

'21
2

'21
2

( 1)( 1)
2

(1 )( 1)
2

(1 )
2

(1 )
2

− + − =

 − − +

=

 − + =



− =

u u
g

s

u u
g

s

u
g

s

u
g

s

r s s r s s
v e

D
r s s r s s

i e
D

s r
v e

D
s r

i e
D

 

In addition, voltage, current gains and dipole impedance at port no. 1 can 
finally be obtained:  

2 2

11 22 12 211 1
1 1

1 1 11 11 12 21

( 1)( 1)
( 1)(1 )

=−

+ − −
= = =

− − +
u

u u
e

u uV Z I

s r s r s sV v
Z R R

I i s r s r s s
. 

To obtain the dipole impedance at port no. 2, the generator must be 
placed on the same side and Eg has to be replaced by a short circuit, which 
amounts to canceling e'g in equation (1) and defining a second member equal 
to e'u in equation (4). After solving the system, we can then compute: 

1 1

22 11 12 212 2
2 2

2 2 22 11 12 21

( 1)( 1)
( 1)(1 )

=−

+ − −
= = =

− − +
g

g g
s

g gV Z I

s r s r s sV v
Z R R

I i s r s r s s
. 

A further approach consists of defining the new reflexion coefficients that 
are modified by the terminations on the opposite port when matching occurs 

on the port connected to the generator, that is: 12 211
1 11

220
' 1

=

= = +
−

g

u

g ur

s s r
s

e s r
βρ  

and 12 212
2 22

110
' 1

=

= = +
−

u

g

u gr

s s r
s

e s r
βρ . 
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The power gain is obtained from powers P1 and P2 previously defined, 
that is: 

( )2 22 2
212 22

2 2 2 2
1 1 1 22 11 22 12 21 11

1

1 ( )

u

p

u u

s rP
G

P s r r s s s s s

β α

α β

−−−
= = =

− − − − −
 

or even 
( )2 2

21

2 2
22 12 21

11
22

1 1
1

1
1

u

p

u u

u

s r
G

s r r s s
s

s r

−
=

−
− −

−

 independent of rg. 

When it is desirable to determine the overall power gain Gg, taking into 
account the total power supplied by the generator, the ratio of (−P2) with 

1 1( ) / 2g g gP e i e i= + , that is, ' '
1 1[ (1 ) (1 ) ] / 4g g g g gP e z i e z i= + + +  has to be 

calculated. Hence, the gain Gg, depending on rg: 

( )
( ){ }

2 2
21

2

22 11 12 21 11 22 12 21

1

Re 1 (1 )( 1) (1 )( 1)

−−= =
 + − − + − − +   

u

g
g g u u g u g u

s rPG
P z r s s r s s r s s r r r s s

. 

If e'g is zero, all electric quantities α1, β1, α2, β2, v1, i1, v2, i2 are equal to 
zero, unless the denominator Ds itself is zero, which corresponds to the 
oscillation condition that is then written as 11 22 12 21(1 )( 1) 0g u g ur s s r r r s s− − + = . 

This condition, which makes instability possible, can be obtained in 
several ways. The coefficient s12 that corresponds to the inverse transfer 
parameter determines the feedback of the output onto the input, as in all 
quadripoles. If it is equal to zero, 0 11 22(1 )( 1)s g uD r s s r= − −  and the 
denominator Ds can in any case be rewritten as:  

12 21
0

11 22

1
(1 )( 1)

g u
s s

g u

r r s s
D D

r s s r
 

= + 
− −  

.   

It is also possible to obtain Ds0 when rg or ru is zero. If none of these 
parameters are equal to zero, the denominator Ds then takes the same form as 
that of the closed-loop transmittance of a single-input and single-output 
system, such as studied in Chapter 1, where 1 + AB appears, with A being 
the direct transmittance and B the feedback coefficient. To ensure stability, it 
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is necessary to avoid the Nyquist diagram of AB surrounding the point –1 in 
the complex plane. Therefore, the same rule will be applied here, that is to 

say that the path of 12 21

11 22(1 )( 1)
g u

g u

r r s s
r s s r− −

 in the Nyquist diagram should not 

surround the point –1 in the complex plane. 

It is remarkable that when there is matching on input and output, rg and ru 
are equal to zero as well as the previous quantity equivalent to AB, which 
yields Ds = Ds0 = −1, independently of any other parameter and the 
frequency, if matching does not depend on it. It can thus be concluded that 
matching the input and the output ensures the unconditional stability of the 
quadripole. Nonetheless, since most often this matching is only rigorously 
performed at a single frequency, a comprehensive study should not be 
ignored. 

Another stability criterion is based on the sign of P1 or Pg, calculable 

from the previous expressions and from ( )2 2
1 1

1
4

α β−  for the first one, or 

from 1 1( ) / 2g ge i e i+  for the second. As a matter of fact, if one of these 
powers is negative, there is excess power reflected by the quadripole input 
with respect to the incident power provided by the generator, which indicates 
that the quadripole is capable of delivering more power than it absorbs and 
hence becomes unstable. 

Finally, from the previous discussion, one can deduce that the four 
conditions |rg| < 1; |ru| < 1; |ρ1| < 1; |ρ2| < 1 ensure the unconditional stability 
of the quadripole if they are simultaneously fulfilled at all frequencies. These 
conditions can be assessed with the help of plots of the quantities rg, ru, ρ1, 
ρ2 (Smith charts, in polar coordinates), which have to be compared to the 
circle with unity radius. Notice that ρ1 and ρ2 depend on s-parameters.  

2.1.8. Image-impedances and image-matching 

Quadripoles often need to be assembled in cascade or in chain, by 
necessity as the passive filters, or to reflect the real situation of a system. 
Except in cases where internal sources are ideal and internal dipolar 
impedances are infinite or zero, the connections of a quadripole with 
external circuits generally cause alterations in the input and output 
impedances of the overall quadripole, as can be seen in the expressions of Ze 



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis     119 

and Zs at the end of section 2.1.5.1, most often with a dependency with 
regard to the frequency. In other words, there is no decoupling or 
independence of the transfer functions of each quadripole and, as a result, a 
global transfer function cannot just be obtained from individual transfer 
functions. In order to overcome this drawback, we can try to satisfy the 
image-matching conditions at every port, by way of the equality of the 
dipolar impedances of the quadripole and terminations, as illustrated in 
Figure 2.18.  

Zi1    =    Ze Q Zs   =   Zi2 

 
Figure 2.18. Quadripole in a situation of image-matching, where Ze and Zs are also, 

respectively, the input and output impedance of the quadripole 

In fact, when symmetrical quadripoles are placed in cascade, the 
condition for effective matching cannot be satisfied, that is Zi1 = eZ  and Zi2 =

sZ  with Ze = Zs unless we also have Ze = sZ , therefore only if the 
impedances are real. This is another reason to choose these image-matching 
conditions as they just have been defined, namely by imposing the two 
equalities illustrated in Figure 2.18. 

A condition is met as soon as the other is also met, which is expressed by 

two simultaneous equalities for Ze and Zs: 11 2
1

2 22

deti
i

i

Z Z Z
Z

Z Z
+

=
+

 and 

22 1
2

1 11

deti
i

i

Z Z Z
Z

Z Z
+

=
+

 . 

This system of two equations (nonlinear) defines the image impedances 
Zi1 and Zi2 and can be rewritten by expanding:  

1 2 1 22 11 2

2 1 2 11 22 1

det
det

i i i i

i i i i

Z Z Z Z Z Z Z
Z Z Z Z Z Z Z

+ = +
 + = +

. 
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By carrying out half the sum and half the difference of the two equations, 
we simply get:  

1 2

2 11 1 22

deti i

i i

Z Z Z
Z Z Z Z

=
 =

 

We can evaluate Zi1 and Zi2 separately by eliminating either one in these 
two equations and it is preferable to replace (det Z)/Z22 and (det Z)/Z11, 
respectively, by Y11 and Y22, which are the admittance parameters of the 
quadripole (or type IV, see section 2.1.5.1) because Zi1 and Zi2 are then 
expressed only according to the diagonal impedances and admittances Z11 = 
Ze0 , Z22 = Zs0, Y11 = 1/Zesc , Y22 = 1/Zssc of the quadripole. The following 
expressions can be deduced, which define the image impedances of the 
quadripole: 

11
1 0

11
i e esc

Z
Z Z Z

Y
= =  and 22

2 0
22

i s ssc
Z

Z Z Z
Y

= =  

With these expressions already satisfied for the iterative impedance of 
symmetric passive quadripoles, this notion is thus generalized to any kind of 
quadripole distinguishing an image impedance specific to each port. These 
impedances are not rational and therefore not achievable with passive 
elements, which however do not prevent them from existing as input or 
output impedances in a quadripole and thus the possibility that they be used 
as references. We have chosen here the positive determination for radicals 
but previous systems of equations can also be satisfied with the negative 
determination, which can prove useful in some cases as it will be seen with 
band-pass filters. 

Image-matching conditions superimpose onto those of effective matching 
every time that Zi1 and Zi2 are real, since in this case the complex conjugation 
operation no longer has any effect, with nonetheless a dependency from Zi1 
and Zi2 with respect to frequency. 

Following the same method as in section 2.1.7.2, we can define the 
impedance parameters normalized by quadripole image impedances and then 
calculate the s-parameters:  
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11 12 21 22
11 12 21 22

1 21 2 1 2

1 2
1 1 1 1 2 2 2 2

1 2 1

   ;      ;       ;     

   ;      ;      ;     ;  

i ii i i i

g
i i g

i i i

Z Z Z Z
z z z z

Z ZZ Z Z Z
EV V

v i I Z v i I Z e
Z Z Z

= = = =

= = = = =
 

We then have 11 22
2 2

detdet 1 and  = = =
i i

Zz z z
Z Z

 according to the previous 

definition relations of image impedances and the general relation eo so

esc ssc

Z Z
Z Z

=  

demonstrated in section 2.1.5.1 and valid regardless of the quadripole, 
passive or not, symmetrical or not. 

Based on the matrix expression s = (z − I2) (z + I2)−1, we obtain: 

s =

12

1111 12

21 22 21

11

0
1

0
1

z
zs s

s s z
z

 
 +   =      + 

 

The diagonal elements s11 and s22, which are the reflection coefficients, 
are therefore zero. We thus have image-matching in the sense where incident 
waves α1 and α2 no longer give place to reflected waves β1 and β2, and there 
are transmitted waves only because of s12 and s21 are non-zero.  

In such conditions, it proves helpful to determine the elements of the 

transfer matrix, according to relations c 11

2221

det1
1

s s
ss

− 
=  − 

  from section 2.1.6 

and 12 21det s s s= − . We obtain c 
12

21

0
10

s

s

 
 =  
  

, a diagonal matrix. It is therefore 

possible to easily chain quadripoles if image-matching is carried out and to 
calculate the overall transmittance that directly results from the products of 
coefficients s12 and s21 of each quadripole. We thus recover the 
straightforwardness provided by the transmittances of systems with a single 
input quantity and single output quantity, which is the main interest of 
image-matching. 
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NOTE.– If image-matching is not performed, only s12 and s21 will have to be 
recalculated by taking effective terminations into account, s11 and s22 
remaining equal to zero, provided that the normalization of impedance 
parameters and s-parameters has been achieved with the image impedances. 

In the case of reciprocal passive quadripoles, z12 and z21 are equal and 
therefore s12 and s21 too. Then, we outline the image transmittance 

21

11

exp( )
1i

z
s

z
= = −Γ

+
 and we have 2det is s= − . Hence the transfer matrix:  

ci 
0

exp( ) 0
10 0 exp( )

i

i

s

s

 
−Γ  = =    Γ   

, 

where Γ is defined as the image attenuation complex logarithmic factor and 
we outline Γ = γ + jδ, with γ = image attenuation (in Neper, with 1 Np = 8.68 
dB) and δ = image dephasing. This formalism and the image-matching 
assumption enable us to address matching and filtering problems, directly  
from the cascading of quadripoles, with deviations from effective 
transmittances that generally remain reasonable, and especially with 
mechanisms close to objectives, such as obtaining a filter template based on 
fixed criteria.  

In that case:  s =
0 0

0 0
i

i

s e
s e

−Γ

−Γ

  
=   

   
 and according to  

z = (I2 + s) (I2 − s)−1 (section 2.1.7.2) we have 

 z coth 1/ sinh
1/ sinh coth

Γ Γ 
=  Γ Γ 

 and  

Z 1 1 2

1 2 2

coth sinh

sinh coth
i i i

i i i

Z Z Z

Z Z Z

 Γ Γ
 =

Γ Γ  
. 

Image transmittance can be advantageously estimated from the diagonal 
impedances or admittances Z11 and Y11 or Z22 and Y22, for passive 
quadripoles. In the foregoing, it can be seen that it is helpful to calculate 
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coth(Γ), then exp(Γ), from 
( )
1 1221

11 1 2 1 11

exp( )
1

= = −Γ = =
+ +

i
i

i i i

Z Zzs
z Z Z Z Z

1 12 12

2 1 11 11 22det
=

+ +
i

i i

Z Z Z
Z Z Z Z Z Z

 then 
( ) ( )
( ) ( )

exp exp
coth( )

exp exp
Γ + −Γ

Γ = =
Γ − −Γ

11 22 12

12 11 22

11 22 12

12 11 22

det
det

det
det

+
+

+

+
−

+

Z Z Z Z
Z Z Z Z

Z Z Z Z
Z Z Z Z

, which is simplified after a few 

manipulations into ( ) 11 11coth Γ = =Z Y 22 22Z Y  . 

We obtain:  

( ) ( )
( )

11 11 22 22

11 11 22 22

coth 1 1 1
exp 2 exp(2 ) exp(2 )

coth 1 1 1
Z Y Z Y

j
Z Y Z Y

γ δ
Γ + + +

Γ = = = =
Γ − − −

 

NOTE.– In AC regime, depending on whether Γ is purely imaginary or not, 
image attenuation γ is, respectively, zero or non-zero, the first case 
corresponding to an angular frequency ω in the bandwidth of the system, 
since there is no attenuation. Conversely, when coth(Γ) is real and positive 
(and therefore greater than 1), Γ is also in agreement with what is expected 
of a passive filter for attenuation. If on the other hand, coth(Γ) appear as 
being real and negative, especially when ω tends to 0 or infinity, which 
would imply amplification rather than attenuation, it is negative 
determination that should be used for radicals in order to restore real 
attenuation, only physically feasible for passive filters. 

For non-dissipative passive (or lossless) filters, thus comprising inductors 
and capacitors only, each parameter Z is such that Z = j X where X is a 
reactance, and each parameter Y is such that Y = j B where B is a 
susceptance. If X and B have the same sign, image impedances are thus real 
according to the expressions previously established, and coth(Γ) is imaginary 
and equal to j u (u real) . It can be deduced that j u + 1 and j u – 1 having the 
same modulus, exp(2Γ) has a modulus equal to 1, which implies that the 
image attenuation γ is zero, which is a characteristic of the bandwidth. If X 
and B have opposite signs, image impedances are instead imaginary and 
cothΓ is real with a positive determination as stated above; exp(2Γ) is then 
also real and greater than 1, yielding an image attenuation larger than 1, 
which is a characteristic feature of a stopband. 
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CONCLUSION.– Important:  when the frequency lies in the bandwidth of a 
non-dissipative passive filter, the image impedance is real and the image 
attenuation modulus is zero, whereas when the frequency lies in a stopband, 
the image impedance is imaginary and the image attenuation modulus is 
greater than 1. 

2.1.9. Representation of quadripoles by block diagrams 

Another way of representing equations linking electrical quantities is 
based on block diagrams. This representation will make it possible to show 
transfer functions that are useful for the study of stability, for instance. To 
represent the equation V = ZI, we use the operator capable of switching from 
a current to a voltage, in other words, an impedance  

I V Z  
or an admittance  

I V Y . 

Example: Hybrid quadripole (type II) 

 
I1 I2 

V1 V2 
h12 V2 h21 I1 h22 

h11 
Eg 

Rg 
Ru 

 

Figure 2.19. Quadripole with hybrid parameters (type II)  
between a generator and a load 

1 11 1 12 2

2 21 1 22 2

V h I h V
I h I h V

= +
 = +

; 1
1

g

g

E V
I

R
−

=  and V2 = −Ru I2 can be represented by 

Figure 2.20.  
 

I1 

V1 
Eg 1 / Rg h11

h21

−Ru

h12

h22

V2 

I2 

 

Figure 2.20. Block diagram representing the  
quadripole and termination elements 
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It should be recalled that:  

 
A 

B 

is simplified into  AB
A

+1

 

NOTE.– If the comparator is an adder namely with two + signs, the transfer 

function becomes 
1

A
AB−

.  

By way of graphic transformations (or elimination of variables in the 
equations), it is possible to derive the transfer function that can yield V2, for 
example. 

)1( 22

21

ug

u

RhR
Rh

+
−

)1( 22

211211

ug

u

g RhR
Rhh

R
h

+
−

Eg V2

 
Figure 2.21. Block diagram giving V2 from Eg for the  

quadripole and termination elements 

The stability of the system is then analyzed with the methods set out in 
Chapter 1. 

Another case where a synthesis between quadripole and block diagram is 
very useful is that of the “leapfrog” structure, which accounts for ladder 
networks of passive elements. 
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Y1 
R1 

Z2 R2 

Y5 Y3 Y7 

Z4 Z6 Z8 
I1 

I3

I2

I5

I4

I7

I6

I9

I8

V1 V3 V5 V7 V9 

 
Figure 2.22. Ladder admittance and impedance network 

We thus have recurrence equations I2n−1 = (V2n−1 − V2n+1) Y2n-1 and  
(I2n−1 − I2n+1) Z2n = V2n+1 that can be translated into the following block 
diagram with a leapfrog structure.  

 
I2n+1 

V2n−1     Y2n−1       I2n−1         Z2n V2n+1        Y2n+1    I2n+1 

V2n+1  V2n+3  

 

Figure 2.23. Block diagram of an unspecified portion  
of the ladder network of Figure 2.22  

2.2. Analog filters  

2.2.1. Definition and impulse response  

A filter is a linear and stationary system (or invariant under time 
translation), stable, of transmittance H(jω) or H(s), whose forced response 
Y(jω) or Y(s) at an input X(jω) or X(s) is being studied, since the natural 
response is supposed to be extinct. Provided that we have ordinary products 
Y(jω) = H(jω) X(jω) and Y(s) = H(s) X(s), we have, according to the 
properties of the Fourier and Laplace transforms, a convolution product in 
the time domain, giving the output signal y as function of the input x:  

( ) ( ) ( ) ( ) ( )y t h t x d h x t dτ τ τ τ τ τ
∞ ∞

−∞ −∞

= − = −  .  
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The question is to understand what represents h(t). In order to determine 
it, it can be assumed that X(jω) or X(s) = 1. It then follows that 
Y(jω) = YI(jω) = H(jω) and in this case, x(t) = xI(t) is given by the TF−1 of 1, 
or [ ]( ) 1.exp 2Ix t j f t dfπ

∞

−∞
=  , which we can guess by taking the limit of:  

[ ]0

00 0

0
0

0

sin(2 )
( ) lim exp 2 lim 2

2
f

I ff f

f t
x t j f t df f

f t
π

π
π−→∞ →∞

 
= =  

 
 . 

The function sinc(u) = sin( )u
u

 (sinc function, with here u = 2πf0t) is an 

impulse, which is maximal and equal to 1 at t = 0, an even function, having 
many secondary extrema decreasing in absolute value on each side of the 
origin with zeros for t = k/f0 (k integer > 0 or < 0). Therefore, xI(t) is a pulse 
centered at the origin whose width tends toward zero and amplitude tends to 
infinity due to the prefactor 2f0 when f0→∞. It is considered as being 
analogous to a “Dirac pulse” δ(t) that has to be addressed using distributions 
(see Appendix). It can however already be concluded that h(t) represents the 
impulse response of the system. 

 
Figure 2.24. Sinc function 
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NOTE.– The output signal y(t) of a filter is given by the convolution of its 
impulse (or impact) response h(t) by the input signal x(t). 

Conversely, the transmittance or transfer function, obtained by taking the 
FT or LT of the convolution product defining y(t), is the simple product of 
the transforms Y(jω) X(jω) or Y(s) X(s). In the presence of a Dirac pulse on 
input whose LT or FT is equal to 1, Y(jω) = H(jω) or Y(s) = H(s).  

NOTE.– The transmittance or transfer function H(jω) or H(s) is the FT or LT 
of the impulse response h(t).  

There are many cases (passive high-pass and band-stop filters; some low-
pass or band-pass filters) in which the transmittance H(jω) does not cancel 
out when ω tends to infinity. This is the case, for example, for all rational 
transmittance that share the same degree in the numerator and denominator, 
as for high-pass filters.   

This leads to a difficulty in the computation of the impulse response h(t) 
by the FT−1 [ ]1( ) ( ). exp

2
h t H j j t dω ω ω

π
∞

−∞
=   because the convergence is not 

guaranteed at infinite frequencies. The computation can then be divided into 
two terms:  

[ ] [ ] [ ]1( ) ( ) ( ) . exp ( ) exp 2
2

h t H j H j t d H j f t dfω ω ω π
π

∞ ∞

−∞ −∞
= − ∞ + ∞  . 

The possibility of convergence of the first term derives from the 
cancellation of the integrand for ω tending to infinity, whereas similarly to 
the beginning of the section, the integral contained in the second term can be 
regarded as the Dirac impulse δ(t) at the origin. The impulse response h(t) is 
therefore not always an ordinary, continuous and differentiable function, but 
often a generalized function comprising a Dirac distribution. If necessary, 
the first term can be subsequently isolated, which for its part is an ordinary, 
continuous and differentiable function by establishing:  

[ ] [ ]1( ) ( ) ( ) . exp
2sDh t H j H j t dω ω ω
π

∞

−∞
= − ∞ . 

Nonetheless, another difficulty arises if the integrand has no obvious 
antiderivative (or primitive) analytic expression. Another approach is then 
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based on the treatment of the time responses in the interval ]−∞ +∞[ for the 
variable t, either based on those already known in the interval ]0 +∞[ or 
based on the differential equation of the system. This requires that 
distribution properties be applied (see Appendix), which can be summarized 
in four points: (1) the derivative of the unit step function U(t) is the Dirac 
pulse δ(t) within the meaning of distributions and successive derived 
distributions are denoted by δ(1)(t), δ(2)(t), ... δ(n)(t); (2) the derivation of a 
function g(t) exhibiting a finite discontinuity Δg at abscissa t0 is obtained by 
g'(t) = g'sd(t) + Δg δ(t − t0) where g'sd(t) represents the derivative of the 
function without discontinuity; (3) an equation including ordinary functions 
(continuous and differentiable) and distributions must verify two equalities, 
one for each type of expression; (4) the product of the variable s by the LT 
of a function that can have discontinuities and defined in the interval ]−∞ 
+∞[ corresponds to the LT of the derivative of this function within the 
meaning of distributions. This type of approach is applied here to obtain the 
impulse response of first- and second-order elementary low-pass filters and 
then to deduce that of band-pass and high-pass filters. 

Type H(s) Impulse response h(t) 

First-order low-pass 1

1s
ω

ω+
 ω1 U(t) exp(−ω1t) 

First-order high-pass 
1

s
s ω+

 δ(t) − ω1 U(t) exp(−ω1t) 

Second-order low-pass 
(ζ < 1) 

2

2 22
n

n ns s
ω

ζω ω+ +
U(t)

exp(
sinn n

n

t
t

ω ζω
ω ζ

ζ
2

2

− )  1−  1−
 

Second-order band-
pass (ζ < 1) 2 22

n

n n

s
s s

ω
ζω ω+ +

U(t) 0
exp( cosω ζω ω ζ ϕ

ζ
2

2

− )  1− +  1−
n n

n
t t  

with sin( 0ϕ )=ζ 

Second-order high-
pass (ζ < 1) 

2

2 22 n n

s
s sζω ω+ +

( ) −tδ U(t) 

0
exp( sin 2ω ζω ω ζ ϕ

ζ
2

2

− )  1− +  1−
n n

n
t t   
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In the above table, the impulse response of the low-pass filter 

transmittance 1

1s
ω

ω+
 is deduced from the solution of the differential 

equation 
1

( )1 ( ) ( )dh t h t t
dt

δ
ω

+ = , according to Chapter 1 and in the case of a 

Dirac impulse at the system input. By applying the previous rules, the 
solution can be written as h1(t) = ω1 U(t) exp(−ω1t). The verification that 
involves transcribing this solution into the differential equation shows that in 
the first member δ(t) exp(−ω1t) can be replaced by δ(t) since exp(−ω1t) is 
equal to 1 for t = 0, which becomes balanced with the impulse δ(t) present in 
the second member. The impulse response of the high-pass filter can be 

inferred from the derivation of the previous one since its transmittance is 
1

s
ω

 

times that of the low-pass. Furthermore, it can be verified that the 
differential equation in which only its second member differs from the 
previous one where the input signal δ(t) is replaced by its derivative divided 
by ω1 or δ(1)(t)/ω1 is satisfied because δ(t) exp(−ω1t) can be replaced by δ(t) 
once the derivation is performed. Concerning the second-order filters, we 
can similarly look for solutions of the differential equation whose first 

member is 
2

2 2

( ) ( )21 ( )
nn

d h t dh t h t
dtdt

ζ
ωω

+ +  and whose second member is ( )tδ , 

(1)1 ( )
n

tδ
ω

 or (2)
2

1 ( )
n

tδ
ω

, respectively, for the low-pass, band-pass, or high-

pass filter. It is however faster to notice that if a solution h(t) has been 
already determined for an input x(t), the derivation of the two members of 
the differential equation leads to the conclusion that ( )dh t

dt
 is a solution 

when the second member is equal to ( )dx t
dt

. We can then proceed to these 

operations based on the step response of the low-pass filter (see Chapter 1) 
modified by the factor U(t) in order for us to work with a function defined in 
the interval ]−∞ +∞[. The first derivation gives the impulse response of the 
low-pass filter and those of the high-pass and band-pass filters, also taking 
into account the presence of the factor nω  or 2

nω  in the numerator of the 
corresponding transmittances. It is possible to verify the validity of these 
solutions by means of rather tedious calculations. It can be noted that the 
Dirac impulse is present in the impulse response of high-pass filters whose 
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transmittance modulus tends to a constant beyond the cutoff frequency and 
up to infinitely large frequencies, which makes it possible to transmit the 
infinitely rapid variations of this impulse. Note also that its dimension is that 
of a circular frequency to ensure homogeneity. 

2.2.2. Properties of real, causal and stable filters  

2.2.2.1. Hermitian and Hurwitzian symmetries of transmittances 

The impulse response h(t) being real, ( ) ( )H s H s= , even if s = jω, 
therefore: [ ] [ ]( ) ( ) Re ( ) Im ( )H j H j H j j H jω ω ω ω− = = −  or also: 

[ ] [ ]Re ( ) Re ( )  H j H j= −ω ω and [ ] [ ]Im ( ) Im ( )H j H j= − −ω ω . 

In the frequency domain, the real part of the transmittance is even while 
its imaginary part is odd. The modulus of the transmittance is itself also 
even: [ ] [ ]2 2( ) Re ( )  Im ( ) ( )H j H j H j H jω ω ω ω= + = − , while its argument 
(or phase shift) is odd. These properties are consequences of the Hermitian 
symmetry. 

In addition, if a stable system described by a differential equation with 
real and constant coefficients has, as transmittance, a rational fraction H(s) 
of polynomials having only real or complex conjugated roots, H(−s), called 
the Hurwitzian conjugate, also denoted by H∗ , the poles and zeros of H(−s) 
are the real or complex numbers opposite to the poles and zeros of H(s) 
(symmetrical with respect to the origin in the complex plane). In fact, if 
changing s → −s in a polynomial 0 1 2 3( )( )( )qA s s s s s s s− − −  , we get 

0 1 2 3( )( )( )qA s s s s s s s± + + +  . 

2.2.2.2. Causality and Bayard–Bode relations  

If the filter is causal, h(t − τ) is zero for t − τ < 0 that is for τ > t; the 
infinite upper bound can therefore be replaced by t in the first expression of 
the convolution product, or alternatively in the second expression of the 
convolution product, the lower bound can be replaced by 0 since h(τ) is zero 
for τ < 0: 

0

( ) ( ) ( ) ( ) ( )
t

y t h t x d h x t dτ τ τ τ τ τ
∞

−∞

= − = −  . 
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Another very important consequence of causality is that there is identity 
between h(t) and h(t).sgn(t), where sgn(t) represents the “sign” function 
equal to – 1 for t < 0, zero for t = 0, and +1 for t > 0, since h(t) must be zero 
for t < 0: h(t) = h(t).sgn(t). 

Hence, a convolution relation between the Fourier transforms (in Cauchy 
principal value, see Appendix) is inferred. However, in the case where h(t) is 
a distribution comprising a Dirac impulse at the time origin, the product 
h(t).sgn(t) is indeterminate at t = 0. It is then preferable to apply this property 
to the impulse response from which has been removed a possible Dirac 
impulse at the origin, and previously named hsD(t). By taking the real 
(subscript R) and imaginary (subscript I) parts of 
TF{hsD(t)} = TF{hsD(t).sgn(t)}, we obtain: 

H(jω) − H(∞) = HR(ω) + jHI(ω) − H(∞)   

=   1( )
( )π ω

=
−

H ju du
j u

   1( )
( )π ω

−
−IH u du j

u
  1( )

( )π ω −RH u du
u

 

calculated from the convolution product of TF{hsD(t)} and TF{sgn(t)} (see 
Appendix), yielding the relations between real and imaginary parts: 

 
( )( ) ( )

( )
( )( )

( )

ω
π ω

ω
π ω

 − ∞ = −

 = −
 −

I
R

R
I

H uH H du
u

H uH du
u

 

because, on the one hand, H(∞) being the asymptotic constant value of 
H(jω), we will verify later that the asymptotic argument and the imaginary 
part are zero for ω→∞, and, on the other hand, the integrals above are zero 
when the numerator of the integrand is a constant K: 

lim ln 0
u

K udu K
u u

ω
ω ω→∞

 −= = − + 
. 

These expressions, called Bayard–Bode relations, show that the real and 
imaginary parts of a causal transfer function are dependent on each other.  

The real and imaginary parts are Hilbert transforms of one another.  

 
 

 

  

 

  

 



 

 


 

 



 

 


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Figure 2.25. Integration contour for the application of the Cauchy theorem to the 
function H(jω) − H(∞) divided by s−jω1 

Nonetheless, these relations can be demonstrated from other assumptions, 
by using the Cauchy theorem and by integrating the transfer function 
H(jω) − H(∞) divided by s−jω1 around the contour of the Figure 2.25 in the 
complex plane. 

If the system is stable (no poles having positive real parts) and does not 
have zeros with positive real parts either (minimal phase-shifting system), 
the result of the integration in the complex plane is zero and we obtain 
exactly the same Bayard–Bode relations by replacing ω1 with the common 
variable ω. It can even be accepted that the transfer function is at the limit of 
stability (oscillator), in other words it has a pair of poles on the imaginary 
axis that can be avoided in the same way as the pole jω1 in the Figure 2.25. 

Bayard–Bode relations are therefore also valid for a transfer function with 
neither poles nor zeros in the right half-plane of the complex plane. 

In addition, taking into account the property that h(t) has to be real, which 
implies that HR(ω) is even and HI(ω) is odd, we obtain Kramers–Kronig 
relations, also valid for any representative function R(jω) of the response of 
a physical system, linear and stationary, in the frequency domain (dielectric, 
magnetic susceptibilities, etc.):  
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2 2
0

2 2
0

( )2( ) ( )

( )2( )

I
R

R
I

uH u
H H du

u
H u

H du
u

ω
π ω

ωω
π ω

∞

∞


− ∞ = −


 = − −




 or even 

2 2
0

2 2
0

( )2( ) ( )

( )2( )

I
R

R
I

u u
du

u
u

du
u

ω
π ω

ωω
π ω

∞

∞


− ∞ = −


 = − −





RR R

RR
. 

However, these relations are not the most helpful for electronics experts 
who are primarily interested in the modulus and the argument of the 
transmittance. It is therefore preferable to deduce the link between the 
modulus of H(jω) and its argument ϕ (ω) that appears as the imaginary part 
of ln[H(jω)] = ln[|H(jω)| exp(jϕ)] = ln|H(jω)| + jϕ (ω). If H(jω) has neither 
poles no zeros in the right half-plane of the complex plane, ln[H(jω)] has no 
poles in the right half-plane, except potentially at infinity. As a result, the 
previous relations can be applied and we obtain by defining 
R(jω) = ln[H(jω)]:  

2 2
0

2 2
0

2 ( )ln ( ) ln ( )

ln ( )2( )

ϕω
π ω

ωϕ ω
π ω

∞

∞


− ∞ = −


 = − −





u uH H du
u

H u
du

u

. 

The modulus and the argument of a minimal phase-shift transmittance, 
namely that there are no zeros in the right half-plane of the complex plane, 
are thus dependent on one another. In particular, the second expression 
makes it possible to calculate the argument from the modulus. Therefore, 
this type of transmittance also corresponds to that of a causal system (as is 
the case for a rational transmittance obtained by the LT of the differential 
equation of the system), whereas conversely, it cannot be said that the 
transmittance of any causal system verifies the last two expressions.  

2.2.2.3. Stable rational transfer functions 

Stable rational transfer functions only have poles with negative real parts 
(or comprising Hurwitzian polynomials only) and are of the type:    
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assuming the angular frequency and damping coefficient parameters are
all positive. 

The degree of the denominator defines the n order of the filter and the 
degree of the numerator is at most equal to n. As mentioned in the previous 
section, two cases ought to be distinguished: 

– minimal phase-shift transmittances Hm(jω), which only have zeros with 
negative real parts. Only + signs appear in the numerator when the 
parameters are expressed from strictly positive quantities. In this case, the 

asymptotic values of the argument Arg{Hm(jω)} are simply 
2

k π  if k is the 

exponent of s = jω in the asymptotic expression of Hm(jω); 

– non-minimal phase-shift transmittances, comprising zeros with positive 
real part. It is then possible to split the overall transmittance H(jω) into a 
minimal phase-shift transmittance Hm(jω) and another transmittance Hap(jω) 
in which all factors P(s) having zeros with positive real parts are grouped 
together, called an all-pass filter, because it only introduces an additional 
phase shift without attenuation (or amplification); then  

H(s) = Hm(s) Hap(s) = Hm(s) ( )
( )

P s
P s−

  

where P(s) is a Hurwitz polynomial, that is to say having roots with negative 
real parts only. This is especially the case in which the numerator of H(s) 
shows minus signs when the parameters are expressed from strictly positive 
quantities, which is a sufficient but not necessary condition (there may be 
roots with positive real parts even with polynomial coefficients all positive). 
For non-minimal phase shift transmittances, Bayard–Bode relations do not 
apply.  

All-pass filters can prove useful when it is desirable to correct the phase 
shift and the group propagation delay (see section 2.2.2.4) of a minimal 
phase shifting filter. As a matter of fact, in this case, the transmittance 
modulus is not modified and it is therefore possible to work on modifying 
the phase shift only, while knowing that the latter will be necessarily 
increased. 
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2.2.2.4. Group delay  

We define group delay by 
{ }( ) ( )( )

ω ϕ ωω
ω ω

  = − = −g

d Arg H j dt
d d

 if we 

establish that ϕ (ω) = Arg{H(jω)}.  

It gives the variation of the phase shift with respect to the circular 
frequency. If it is constant and equal to tg0, the phase shift varies linearly 
with the circular frequency: ϕ (ω) = −ω tg0, and with the frequency: 
ϕ (f) = −2π f tg0. 

This last property is useful if it is not desired that a signal with a part of 
its spectrum inside the bandwidth of the filter be distorted, although the filter 
induces a frequency-dependent phase shift. 

For example, a periodic signal 0
1

2( ) lim 2 cos
N

T n nN n

nt
x t c c

T
π

→∞ =

 = + + 
 

  will 

undergo additional phase shift for each of its frequency harmonics 2
n

n
f

T
π

= , 

which will give on the filter output a complex amplitude 2
n

n
c H j

T
π 

 
 

 whose 

argument will be 0
2

n g
n

t
T
π

− . The time delay between harmonics kth and nth 

will then be: 0 02 2 2 2n g k g n k
T T T Tt t

n k n kπ π π π
   − − − = −      

, which is the 

same as for the input signal. It can be concluded that the distortion of the 
signal will be minimal because the relative delay between each harmonic 
composing the signal will be preserved in the bandwidth of the filter in the 
case where the group delay is constant. 

For an input signal whose spectrum is X(j2πf), the spectrum of the output 
signal will be |H(j2πf)| exp[jϕ (f)] X(j2πf) = |H(j2πf)| exp[−j 2π f tg0] X(j2πf) 
if tg is constant in the frequency band under consideration, which 
corresponds to a constant delay and equal to tg0 for the output signal 
compared to the input signal. When this frequency band is the bandwidth of 
the filter, the same conclusion is attained. 

A constant group delay can thereby constitute a fundamental criterion in 
the selection of a filter when it is desirable to limit the distortion of the signal 

ϕ

ϕ

ϕ ϕ ϕ ϕ
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by delaying in a uniform manner all signal components that are not 
attenuated, namely whose frequencies are located within the bandwidth of 
the filter. If the filter does not have a constant group delay, one can try to  
approach this property by adding an all-pass filter, with a non-minimal phase 
shift, intended to correct the phase shift without modifying the overall 
transmittances module.  

2.2.2.5. Types of minimal phase shift filters and templates 

Minimal phase-shift transmittances can be categorized into: 

– low-pass filter if 20log|Hm(jω)| has an negative slope asymptote for  
ω > ωc the cut-off angular frequency;  

– band-pass filter if 20log|Hm(jω)| has a positive slope asymptote for 
ω < ωc1 and a negative slope asymptote for ω > ωc2 with ωc2 > ωc1;  

– high-pass filter if 20log|Hm(jω)| has an positive slope asymptote for  
ω < ωc;  

– band-stop or band-rejection filter if 20log|Hm(jω)| has a minimum for 
ω = ω1 and horizontal asymptotes for ω → 0 and ω → ∞. 

Filter synthesis is then performed based on a template of the Bode 
diagram of the reciprocal of the transmittance [H(j2πf)]−1 of the low-pass 
filter, whose modulus is called attenuation. If the numerator of H(j2πf) is 
equal to a constant H0 (frequent case of low-pass filters), [H(j2πf)]−1 is 
simply equal to the denominator D(j2πf) divided by the constant H0. Other 

types of filters can be deduced by changing variables: 
'
c

c

s
s

ω
ω

→  to shift to 

the high-pass filter with a new cutoff frequency ωc′; 0 0

0c

s s
s

ω ω
ω ω ω

 
→ +  Δ 

 to 

shift to the band-pass filter with a new central frequency ω0 and bandwidth 

Δω; 
0 0

0

1
c

s
s

s

ω
ω ω ω

ω

Δ→
 

+ 
 

 to switch to the band-stop filter with a new central 

frequency ω0 and bandwidth Δω. The order of the filter is doubled in the last 
two cases.  
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Figure 2.26. Transmittance and attenuation template of a low-pass filter 

The filters whose transmittance differs only by the cutoff frequency or 
center frequency all have the same Bode diagrams which can be deduced by 
a translation along the logarithmic frequency axis. The study thus only 
considers a single transmittance called normalized transmittance, for which 
ωc = ωc′ = ω0 = 1 rd/s, the circular frequency ω can then be regarded as a 
normalized (dimensionless) one. The transmittance having a different 
frequency ωc or ω0 can be inferred by the denormalization (or back-
normalization) operation as it will be seen further in the text. 
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The characteristics of the low-pass filter are as follows: 

– Amax = maximal ripple in the bandwidth; 

– f1 = cutoff frequency (cutoff circular frequency ω1); 

– Amin = minimal attenuation in the stopband; 

– f2 = minimal frequency of the stopband (circular frequency ω2).  

The ratio f2/f1 measures the attenuation stiffness and the filter requires a 
degree n of the polynomial D(j2πf) that is increasingly higher as this ratio 
becomes closer to 1, which defines the order of the filter. The slope 
d[−20log|H(j2πf)|]/df is measured in dB/decade. The frequency range [f1, f2] 
is called transition band. Its width is quantified as a relative value by the 
ratio f2/f1 = ω2/ω1. With normalized circular frequency, ω1 = 1 rd/s and this 
ratio then becomes equal to ω2. 

An example of the response of a low-pass filter and the template used to 
infer the attenuation is shown in Figure 2.26. 

This allows us to visualize all of the characteristics defined at the 
beginning of this section (Amax = maximal ripple in the bandwidth, f1 = cutoff 
frequency, Amin = minimal attenuation in the bandwidth, f2 = minimal 
frequency of the stopband), [f1, f2] = transition band). The areas which the 
attenuation curve must be excluded from are shown with a hatched line, 
which graphically defines the template of the filter.   

2.2.2.6. Approximation criteria of the transmittance of a low-pass filter  

To approximate the template, it is necessary to find a polynomial D(j2πf) 
(or a rational fraction [H(j2πf)]−1 if the numerator N(j2πf) is not equal to a 
constant) that allows |D(j2πf)| (or |H(j2πf)|−1) to stay in the proximity of 1 for 
f < f1 and to quickly increase for f1 < f < f2. 

Every time 20 log|H(j2πf)| crosses 0 dB in the bandwidth for a specific 
frequency, it is referred to as an attenuation zero; whenever 20 log|H(j2πf)| 
shifts to infinity in the stopband for a particular frequency, it is referred to as 
an attenuation pole.  

The square modulus |D(jω)|2 of the polynomial is then of the form 
|D(jω)|2 = 1 + Rn(ω2) where Rn(ω2) is a 2n-degree polynomial in which even 
powers of ω only appear in order to ensure the even symmetry of the 
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modulus |D(jω)|. Since the imaginary variable jω or j2πf is a special case of 
the complex variable s, we will give preference to working with the latter. 

There are numerous criteria enabling an approximation of the ideal 
transmittance to be obtained and one must be chosen as a priority, which 
implies that the other criteria will not be perfectly satisfied. The four most 
common cases are detailed below, with the corresponding polynomials, and 
some extensions are commented thereafter.  

– Butterworth polynomials:  |D(jω)|2 = 1 + (−1)nω2n has the 2nth roots of 
1 or −1. For |D(s)|2, only roots with negative real parts are kept:  

 D(s) = 
1
( )

n

k
k

s s
=

−∏  with 1 2exp
2k

ks j
n

π + =     
, 2k assuming integer values 

such as 1 3 1
2 2

n nk− −≤ ≤ . This type of transmittance is obtained when the 

criterion giving the flattest possible response in the bandwidth is preferred 
(this is a filter also known as “flat-top” or “maximally flat”) with an 
attenuation of 3 dB at the cutoff frequency f1 and a slope P ≤ 20 n dB/decade 
in the transition band. With normalized circular frequencies, the unique 
parameter is the order of the filter.  

– Bessel polynomials: these filters guarantee a group delay tg as constant 
as possible in the bandwidth. We can show that the polynomials defined by 
the equation Dn(s) = (2n − 1) Dn−1(s) + s 2 Dn−2(s) with D0(s) = 1 and D1(s) = 
s + 1 satisfy this criteria. The slope is P ≤ 20 n dB/decade in the transition 
band. With normalized circular frequencies, the unique parameter is the 
order of the filter. The impulse response of this filter is non-oscillating, 
unlike all other filters. 

– Type I Chebyschev polynomials: |D(jω)|2 = 1 + [mTn(ω)]2 where 
Tn(ω) oscillates between −1 and +1 in the bandwidth (ω < 1 in normalized 
circular frequency). The oscillation of |D(jω)| is therefore from 1 to 

21 m+ , that is 10log(1 + m2) in dB. This condition leads to the differential 

equation: 
2 21 1

n

n

dT dn
T

ω
ω

=
− −

, which admits the solutions  
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Tn(ω) = cos[nArccos(ω)]. Defining m = 1/sinh(na), the roots of 
1 + [mTn(ω)]2 located in the left half-plane are:  

sk = ( ) ( )sinh( ) sin 2 1 cosh( ) cos 2 1
2 2

a k j a k
n n

π π   − − + −      
,  

distributed over an ellipse centered on the origin in the complex plane. The 
criterion that is preferred here is the transmittance stiffness in the transition 
band. The decisive advantage of these filters is based on a cutoff slope  
P > 20 n dB/decade at the beginning of the transition band. On the other 
hand, there are attenuation zeroes in the bandwidth, which leads to a ripple 
Amax. With normalized circular frequencies, the two parameters to set are the 
order of the filter and the ripple in the bandwidth. 

The transmittances based on type II Chebyschev polynomials, obtained 
by replacing jω by 1/jω (in normalized circular frequencies) instead exhibit 
undulating (or rippling) attenuation in the stopband but a flat response in the 
bandwidth. This property may make these filters more interesting than those 
of type I, although the stiffness of the cutoff is less pronounced at the 
beginning of the transition band. The numerator is also a polynomial of 
degree equal to the order of the filter.  

– Elliptical filters (or Jacobi or Cauer or Zolotarev filters): The numerator 
of H(s) has zeros on the imaginary axis, allowing the increase in the cutoff 
stiffness (P > 20n dB/decade), at the expense of a finite transmittance 
undulating in both the bandwidth and the stopband:  

H(s) 

2

2/2

2 2
1

1

1 2

n
k

k k k k

s

b s b s
ω

ζ=

+
=

+ +∏  for n even. Here, the preferred criterion is the 

reduction of the transition band width by means of the presence of an 
attenuation pole at circular frequency ω2. Parameters ωk, ζk, bk cannot be 
directly calculated following an analytical approach because it is necessary 
to resort to elliptical integrals (hence the name), but can be obtained based 
on series expansions or by numerical evaluation. There are three parameters 
necessary to define these filters: the order n, the ripple in the bandwidth Amax 
and either the minimal attenuation in the stopband Amin or the ratio between 
the circular frequency of the first attenuation pole ω2 (or zero of the 
transmittance) in the stopband and the cutoff circular frequency ω1, or still 
the exact measure of the relative value of the transition band. The attenuation 
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in the stopband decreases as this last ratio is approaching unity. Therefore, a 
tradeoff must be decided between these two characteristics. 

All these polynomials can be obtained nowadays from the characteristics 
requested in the template by numerical computation programs, for example 
in MATLAB in the “signal processing” toolbox (“besselap, buttap, cheb1ap, 
cheb2ap, ellipap” for normalized transmittances and “lp2lp, lp2bp, lp2hp, 
lp2bs” for type transformations). Also in MATLAB, operations on 
polynomials or rational fractions can be performed with “conv, deconv, 
roots, poly, residue”, respectively, for multiplication, Euclidean division, for 
calculating the roots, polynomial expansion and the partial fraction 
expansion of rational functions or conversely the reduction to a single 
rational fraction. Further in the chapter, all examples will be developed from 
the polynomials and normalized transmittances available in MATLAB.   

Based on a template determined by the synthesis methods of the 
following sections, it is possible to shift from a low-pass filter to the other 
types by directly transforming the elements in the circuit of the low-pass 
filter using the below table. 

– In order to obtain a low-pass filter with cut-off pulse ωc' instead of  

1 rd/s, s has simply to be substituted (in fact s/ωc with ωc = 1 rd/s) by 
'c

s
ω

. 

– The transformation to obtain a high-pass filter 'c

c

s
s

ω
ω

→  indicates the 

replacement of capacitances by inductances and vice versa. Resistances are 
not affected. 

– The transformation for obtaining a band-pass filter 
0 0

0c

s s
s

ω ω
ω ω ω

 
→ +  Δ 

 (where ω0 is the central circular frequency and Δω the 

bandwidth) corresponds to replacing each inductance by an inductance and a 
capacitance in series, and each capacitance by a capacitance and an 
inductance in parallel.  

– The transformation 
0 0

0

1
c

s
s

s

ω
ω ω ω

ω

Δ→
 

+ 
 

, namely low-pass  
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toward band-stop requires replacing each capacitance by an inductance and a 
capacitance in series, and each inductance by a capacitance and an 
inductance in parallel.  

In summary, these transformations are shown in the following table:  

Elements 
in a low-pass 

filter 

Inductance L 
  

Capacitance C 

 

Corresponding 
elements of the 
high-pass filter 

 
1/L 

  
1/C 

Corresponding 
elements of the 
band-pass filter 

  

          
ω

ω
Δ

Δ L
L           

   
 

ω

ω

Δ

Δ

C

C 

 

Corresponding 
elements of the 
band-stop filter 

   
 

ω

ω

Δ

Δ

L

L

1

 

ωω ΔΔ CC 1          

 

For the normalized transmittances ωc = ωc′ = ω0 = 1 rd/s and the 
bandwidth, Δω is taken as a relative value. Practical central or cutoff 
frequencies can be subsequently obtained by changing inductances and 
capacitances according to the denormalization procedure described in 
section 2.4.1.3. 

As a comparison, the Bode diagrams of the modulus of four fourth-order 
low-pass filters, obtained with different types of polynomials, as well as the 
group delays are plotted in Figure 2.27 according to the normalized circular 
frequency (or with the cutoff circular frequency ωc = 1 rd/s). 

In this example, for type I Chebyschev and elliptical filters, the ripple in 
the bandwidth is set to 1dB and the ratio of the frequency of the first 
transmittance zero at ωc is 2 for the elliptical filter. We clearly see that the 
Bessel filter gives a rather “soft” attenuation in the vicinity of ωc, but it is the 
only one to provide a group delay almost constant up to 0.7ωc and then 
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decreasing. The other filters all show a ripple of the group delay tg with a 
pronounced maximum at ωc, especially for Chebyschev and elliptical filters, 
which also causes ripples in the impulse response.  

Figure 2.27. Transmittance modulus and group delay for fourth-order  
low-pass filters (Bessel in red broken line, Butterworth in blue dash-dot line, 

Chebyschev in full light green line, elliptical in dark green dash). 
For a color version of this figure, see www.iste.co.uk/muret/electronics2.zip 

The Butterworth filter clearly shows a response with a maximal flatness 
of the modulus in the bandwidth but similarly to the Bessel filter, the 
stopband slope is limited to −20n dB/dec, where n is the order of the filter (4 
here). Conversely, type I Chebyschev and elliptic filters provide a more 
accentuated slope in the immediate vicinity of ωc in the transition band. To 
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reduce the variations of tg, the solution consists of adding an all-pass filter 
partly compensating for variations of the phase shift with ω, and thus those 
of tg (see section 2.4.2.7). 

2.2.2.7. Approximation of any kind of transmittance: Padé 
approximation and other approximations 

The problem is defined in terms of searching for the best approximation 
to a transmittance H(jω) or H(s) with a usable function, which in addition 
must result in a stable transmittance. If the desired transmittance Hd is 
known only in a finite number of circular frequencies ωi, we should employ 
methods based on the algebra of function spaces used in signal processing 
and control of systems, which fall outside the scope of this book. In 
particular, it is often necessary to resort to a system representation using 
state variables, which are internal variables and not necessarily observable. 
Nevertheless, they facilitate the description of time responses by a system of 
first-order differential equations (see Chapter 1 and, for example, [UNS 04]). 
Interpolation methods (Lagrange polynomials, for instance) may 
nevertheless constitute a first step in the process for obtaining an analytical 
approximation. 

In the event that there is already an analytical expression, the calculation 
of a Padé approximation allows us to obtain a first relation in the form of a 
rational fraction P(s)/Q(s), which is then directly usable for the synthesis of 
the transmittance. This method is the subject of a large number of 
mathematical approaches implemented by algorithms, some of which being 
available in software programs. The sequences of Padé approximates can 
always be expressed in the form of continued fraction expansion. A first step 
involves therefore finding an expression for the function H(s), even if it is 
trivial, in the form of a constant a0 in addition to a fraction P1(s)/Q1(s). If 
P1(s) = sn1, the same process is restarted for Q1(s), which can either 
indefinitely continue (infinite continued fraction), or stop at a certain order n 
if Qn(s) is itself a rational fraction. If P1(s) is not a power of s, we try to  
perform a limited expansion of P1(s) and Q1(s), then through repeated 
polynomial division up to a certain order, it also yields a continued fraction. 
Being restricted to a certain order, the continued fraction can be reduced to a 
rational fraction. The resulting filter is not considered one of the 
conventional filters described in section 2.2.2.6, which is also the case for 
the approximations briefly mentioned hereafter.  
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Other methods are possible, which make use of criteria of a different 
nature. For example, it is possible to use the function “invfreqs” in 
MATLAB to obtain the numerator and the denominator of a transfer 
function passing through the points specified in the complex plane. Some 
options are able to define the tolerance over the deviations, the iteration 
process, and to ensure the stability of the system. Other methods can be 
applied primarily to the synthesis of sampled filters but in light of the 
transformations studied in Volume III, it is possible to find once more the 
transfer function of an analog filter. The Yule–Walker method is based on 
the minimization of quadratic deviations between the desired time response, 
obtained if necessary by means of the inverse Fourier transform of transfer 
function in the frequency domain, and the synthesized time response (see the 
function “yulewalk” in MATLAB). The Prony method can be used from the 
desired impulse response. The corresponding algorithm and others inspired 
by signal processing methods can be found in the MATLAB “signal 
processing” toolbox. 

2.3. Synthesis of analog active filters using operational 
amplifiers 

2.3.1. Cascading second-order cell filters 

An n-order filter requires n/2 second-order cells (or elementary filters) if 
n is even; (n−1)/2 if n is odd in addition to one of the first order. Elementary 
second-order active filters employing a single operational amplifier are 
Sallen–Key (non-inverting) or Rauch (inverting) structures (see figure 2.28).  

These circuits have the disadvantage of exhibiting interdependent quality 
coefficients and natural circular frequency. It is thus preferable to use 
structures in which the quality coefficient can be adjusted independently of 
the natural circular frequency such as so-called biquadratic structures 
(second degree) and the simplest is described hereafter (see Figures 2.29, 
2.30 and section 1.7.2. in Chapter 1). Other passive or active internal 
feedback loops can also be added. The various outputs allow for several 
types of filters (low-pass, band-pass or high-pass). 
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Figure 2.28. Active filters with a single  
operational amplifier  

 

R1 

Vs1 

C 

Ve 

R3 

Vs3 

R4 

Vs2 

R2 C' R' 

R5 

 

Figure 2.29. Second-order active filter using  
three operational amplifiers 
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In order to obtain a second-order transmittance comprising of both a 
second-degree numerator and a denominator in s (biquadratic), the 
Delyannis–Friend structure can be employed (see figure 2.30), in which the 
transmittance parameters can be adjusted without mutual interaction.  

 

E 
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R3 

R4 R5 R6 

R7 
R8 

 

Figure 2.30. Delyannis–Friend second-order active filter 

The synthesis of operational amplifier-based active filters can easily be 
achieved from the decomposition of the denominator of the normalized 
transmittance into a product of second-degree polynomials in s (and possibly 
a first-degree factor in the case of odd-degree denominator), which can be 
computed after determining the roots of the denominator and eventually of 
the numerator (e.g. using the MATLAB function “roots”). Each of them can 
then be implemented by one of the previous circuits because there is no 
coupling between one stage and the next. The elements are then calculated 
by denormalization, by dividing time constants by the ratio of the desired 
cutoff circular frequency to ωc = 1 rd/s.  

2.3.2. Multiple feedback loop cell 

The previous circuits can be generalized through the diagram shown in 
Figure 2.31, which theoretically allows us to synthesize the transfer function 
only once. 
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Figure 2.31. Multiple feedback loop cell with forward transmittances  
Tn, Tn-1, … T2, T1 and feedback transmittances R1, R2, … Rn-1 Rn 

The relation between voltages Vi (i = 1 to n) and Vn+1 is written as: 

1 1 1

n

i n n n i n j
j i

V V T T T V T+ − +
=

= = ∏  

And in addition 
=

+ +=
n

i
iin VREV

1
1 . The transfer function T = V1/E can 

therefore be deduced:  
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1
1

=

= =
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∏
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The synthesis is carried out from the transfer function T supposed to be of 
the 2n degree and from real numbers with a modulus less than 1 for the R1, 
R2, … Rn using a recursive method. Firstly, we split the diagram into two 

looped blocks T'1 and R1. Hence 1

1 1

'
1 '

=
−

T
T

R T
, which is verified by: 

1
1

'
1

TT
R T

=
+

. Next, T'1 is factorized in order to break down this  

transmittance into a biquadratic transmittance (of the second degree) 
achieved by an assembly like in section 2.3.1. and a rational fraction  
T''1 of degree 2n – 2. The second step is the repetition of the previous one 
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but with T”1 instead of T and R2 instead of R1. The process is then restarted 
to achieve the final system. 

Nonetheless, the stability of the system should be verified, for example 
based on the state representation, because it can be more problematic than 
for previous assemblies studied in section 2.3.1.  

2.4. Non-dissipative filters synthesis methods 

This type of filter assumes that purely reactive elements are being used, 
such as capacitances, inductances and possibly ideal transformers, excluding 
any resistance and neglecting Joule losses in reactances. This solution is 
especially interesting at high frequencies where operational amplifiers can 
no longer be employed and when it is desirable to minimize active power 
dissipation. As a matter of fact, only a small number of pure reactances 
(inductance, capacitance or quartz resonator) are sufficient to synthesize all 
types of filters previously described. In addition, it is superior to active 
filters in terms of sensitivity to the value of elements, mentioned at the end 
of chapter. 

These quadripoles are arranged in a chain and are generally terminated by 
a resistance. Iterative impedance is not always purely resistive and it is 
preferable to determine recurrence relations between parameters when an 
element is added to achieve the synthesis of these filters; a second option is 
to use a more general method that takes termination impedances into 
account, since the response of the filter depends therefrom. The best model 
is then the one making use of s-parameters (see sections 2.1.6 and 2.1.7.2), 
which find a very powerful application below. A first exact method makes it 
possible to obtain the minimum number of elements from the effective 
parameters of the filter, themselves calculated based on the transfer function 
chosen for the transfer coefficient s21. Another method, not fully exact and 
eventually making use of a larger number of elements, relies on image- 
matching. It permits to built any filter by cascading passive cells made of 
capacitors and inductors without mutual interaction like for active filters 
based on operational amplifiers and studied in the section 2.3.1. It provides 
good results in the case of narrow-band band-pass filters and allows 
calculations by hand. These two procedures are described in the following 
sections. 
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2.4.1. Synthesis based on effective parameters  

2.4.1.1. Zero dissipation condition in the quadripole (unitarity relation) 

The zero dissipation condition in the quadripole can be developed from 
β = s α , where: α = v + i and β = v − i (in matrix notation), that is to say:  

1 1 11 12 1 1

2 2 21 22 2 2

v i s s v i
v i s s v i

− +     
= = =     − +     

β αs
 

The power absorbed by the quadripole taking into account its two ports is 

1 1 2 2Re v i v i +   or in a more symmetrical way:  

1 1 2 2 1 1 2 2
1
2

P v i v i v i v i = + + +  . 

However, [ ] 1
1 2 1 1 2 2

2

ti
v v v i v i

i

 
= + = 

  
v i , where tv is the transpose of 

matrix v and i  the complex conjugate matrix of i. Therefore: 

2
ttP = +v i v i  or even 2

t t
P = +i v v i  

From sum and difference of α = v + i and β = v − i , and by establishing
1 0
0 1
 

=  
 

2I :  

   βααβββααβαβαiv
ttttttt

4  
   βααβββααβαβαvi

ttttttt
4  

  ββααviiv tt 224  tt  
αssααIαββαα 2

tt tttP 4  
 αssIαββαα t
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152     Fundamentals of Electronics 2 

The cancellation of this power P thus implies that:  

    or alternatively    t t -1
2ss = I s = s  

thereby making matrices explicit:  
2 2

11 21 11 12 21 2211 21 11 12
2 2

21 2212 22 12 11 22 21 12 22

1 0
0 1

   + +    = =        + +      

s s s s s ss s s s
s ss s s s s s s s

, 

which gives the Feldkeller relations: 2 2 2 2
12 22 11 21 1s s s s+ = + =  and a 

dependency relation between the four coefficients 11 12 21 22 0s s s s+ = , which is 
normal for a passive quadripole.  

All of these coefficients are actually rational fractions of polynomials that 
depend on the variable s in the same way as the variable jω and therefore the 
conjugate complexes can be replaced by Hurwitzian conjugates in all these 
expressions. The equality 1−=t s s  then implies the equality of determinants, 
which is expressed by (det s)

*
 (det s) = 1, which is a characteristic property 

of an all-pass transmittance of the det s = *g
g

  type, where g is a Hurwitzian 

polynomial. Since g appears in the denominator of the determinant of s, it is 
necessarily part of the denominator of the coefficients of the matrix s. This 
allows us to write the previous matrix relation 1−=t s s after simplification of 
common polynomial factors in the form: 

11* 21* 22 12

12* 22* 21 11*

1 1
det

n n n n
n n n ng g

−   
=   −   s

, where the nij represent the polynomials 

of the numerators of coefficients sij, and g the polynomial common to their 
denominator. After simplification by g and g*, this yields equalities 

11* 22n n=  , 21* 12n n= ±  and 12* 21n n= ± , which properly verify 
11* 12 21* 22 0s s s s+ = . Finally, there are only three distinct polynomials 

remaining, g for the common denominator and we will denote 11h n=  and 
 for the numerators. The matrix s then takes the form:  

* *

1 ,
h f
f hg

 
=  ± 

s
  

 
12nf =
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where * 21f n± =  and * 22h n=  are, respectively, replaced by f and –h for 
reciprocal quadripoles, which is the case for passive circuits including only 
inductances and capacitances. 

Since det s = *g
g

 , the computation of det s leads to the “unitarity 

relation”: 

* * *= +gg hh f f  

This relation constitutes the basis for the synthesis of these filters, since 

12 21
fs s
g

= =  is determined from the transmittance desired for the filter, its 

power gain being proportional to |s21|2 (see section 2.1.7.2). This 
transmittance is itself sized based on the template and the two polynomials  
f and g are thus known. The unitarity relation makes it possible to deduce the 
third polynomial h, which gives the diagonal coefficients of the matrix s.  

We can therefore deduce matrices z = (I2 + s) (I2 − s)−1 and  
y = (I2 − s) (I2 + s)−1 and especially impedances z11 and z22 or admittances y11 
and y22, which give access to the circuit diagram of the quadripole based on 
impedance or admittance synthesis as seen in section 2.1.5.3. It follows that: 

( ) ( )
( ) ( )

* *
11

* *

± + ±
=

− 
g g h h

z
g g h h

; 
( ) ( )
( ) ( )

* *
22

* *

± − ±
=

− 
g g h h

z
g g h h

; 

( ) ( )12 21
* *

2= =
− 
fz z

g g h h
; 

( ) ( )
( ) ( )

* *
11

* *

± − ±
=

+ 
g g h h

y
g g h h

; 
( ) ( )
( ) ( )

* *
22

* *

± + ±
=

+ 
g g h h

y
g g h h

. 

It can be observed that z11, z22 , y11 and y22 only involve sums and 
differences of two polynomials and their Hurwitzian conjugate, which 
automatically gives rise to polynomials with either even or odd degree, as  
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this is necessary for impedances zii or admittances yii comprising reactive 
elements only (inductances and capacitances). The number of reactive 
passive elements is directly related to the order of the filter. The elements are 
numbered in the order of the branches encountered from the input to the 
output as in the following example (Figure 2.32). 

 

C2

L1 

C4

L3

C6

L5

 

Figure 2.32. Ladder sixth-order low-pass filter 

The different possibilities of assembling the inductances and capacitances 
either correspond to filters of the same transmittance, which can be 
implemented in different ways if different syntheses are used (Foster, Cauer 
or mixed), or to the filters of different types (low-pass, band-pass, high-pass 
or band-stop). Therefore in the second case, the right configuration has to be 
chosen according to the requested type, mainly by placing inductances and 
capacitances to achieve the desired low-frequency and high-frequency 
behaviors (see section 2.1.5.3). However, it is generally easier to synthesize 
the low-pass filter and then to deduce the elements of the filter of the desired 
type by the transformations specified in section 2.2.2.5. 

EXAMPLE.– Eighth-order band-pass filter synthesized from the fourth-order 
low-pass filter. 

Consider the fourth-order Chebyschev low-pass filter giving a ripple of 
0.1 dB in the bandwidth, with normalized transmittance 

4 3 2

0.819
1.804 2.627 2.026 0.8285

f
gs s s s

=
+ + + +

. With the unitarity relation, we 

get h = s4 + s2 + 0.125. The diagram can be synthesized in the form shown in 
the previous circuit (Figure 2.32) with four elements only: L1 = 1.109; 
C2 = 1.306; L3 = 1.77; C4 = 0.818 from the Cauer’s synthesis (section 
2.1.5.3.). The low-pass → band-pass transformation (section 2.2.2.5) with a 
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reduced bandwidth Δω = 0.3, for example, gives the network, as shown in 
Figure 2.33. 

4.354

3.696 0.271      0.169        5.901

0.230 2.727 0.367

 

Figure 2.33. Network of the normalized Chebyschev filter obtained after the 
transformation low-pass to band-pass with a normalized bandwidth Δω = 0.3 and a 
ripple of 0.1 dB within the bandwidth 

 

Figure 2.34. Transmittance modulus of the eighth-order Chebyshev band-pass filter 
with normalized bandwidth equal to 0.3 and a ripple of 0.1 dB within the bandwidth 

This corresponds to the transmittance:  

3 4

8 7 6 5 4 3 2

6.63 10
0.5411 4.2364 1.6781 6.4795 1.6781 4.2364 0.5411 1

s
s s s s s s s s

−×
+ + + + + + + +

.  
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The latter would result in a more complicated direct synthesis because the 
impedances zii and admittances yii obtained by the expressions previously 
provided are composed of polynomials of the seventh-degree at most and 
thus do not make it possible to deduce the value of all elements at once. 

The Bode diagram simulated from the filter response whose network is 
given above shows breaks located around 0.84 and 1.18 (corresponding in 
fact to Δω = 0.34) and an almost flat response in the bandwidth according to 
the original specifications (0.1 dB ripple). The practical implementation, 
however, generates a response more distant from the template, because the 
ratio of two elements of the same kind can reach 20, which turns the 
condition of negligible dissipation problematic in all elements. An even 
narrower bandwidth would enhance this flaw. 

2.4.1.2. Elliptic filters 

There are, nonetheless, cases where the syntheses exposed in section 
2.1.5.3 do not allow us to obtain the transfer function corresponding to the 
transmission parameter s21 = f /g. This is the case if the polynomial f of the 
numerator includes zeros (or roots), as in elliptical or Jacobi filters (see 
section 2.2.2.5). In effect, in this case the circuit requires LC-series resonant 
branches in parallel or LC-parallel antiresonant branches in series, as in 
Figure 2.35, in order to cause, respectively, a short circuit or an open circuit 
at every angular frequency "1j j jL Cω = .  

 

C1’’ 

L1 

C1’ 

= C2 − C1’’ 

C3’’ 

L3 

C5’’ 

L5 

C3’ 

= C4 − C3’’ 

C5’ 

= C6 − C5’

 

Figure 2.35. Sixth-order low-pass elliptic filter 

The synthesis then requires one additional step that consists of achieving 
a partial extraction of an element of the network shown in Figure 2.32 in 
order to carry forward the residual element (capacitance or inductance) onto 
the previous element, of opposite nature (respectively, inductance or 
capacitance), as shown in Figure 2.35. 
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Let a normalized impedance or a admittance be xii = zii or yii whose 

synthesis is achieved using the Cauer method:  2
1

2

( )
( )ii

N p
x p

D p
τ= + , where τ1 

represents the time constant of either an inductance if xii = zii or a 
capacitance if xii = yii, and where N2(p) has a degree k – 1, one unit 
lower than that of D2(p), which has a degree k. The partial extraction consists 
of breaking down τ1 into , ,,

1 1τ + τ  in order to carry forward and to 

combine 2sτ  with the fraction 2

2

( )
( )

N s
D s

 so that its denominator is now 

2
2

2
0

1

s
s

τ

ω
+

 instead of 2 ,sτ  thus corresponding to a resonant or antiresonant 

branch at angular frequency ω0. Hence, the sequence of the following 

operations:  
,,

, ,, ,2 2 1 2 2
1 1 1 1

2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( )ii

N s N s s D s N s
x s s s s

D s D s D s
τ

τ τ τ τ
+

= + = + + = + , 

which makes it possible to obtain a k+1-degree numerator for the last 
fraction, denoted by ,,.iix   

How can the value of ,,
1τ  be calculated?  

It derives from the next stage of Cauer’s synthesis that consists of 
expressing the reciprocal of the last fraction in the form 

32 2
,, ,, 2

31 2 2
2
0

( )( )1
( )( ) ( ) 1ii

D sD s s
N sx s D s N s s

τ
τ

ω

= = +
+ +

, which has thus two poles at  

s = ±jω0. 

Therefore, ,,
0

1
( )iix jω

→ ∞
±

, or still ,,
0( ) 0iix jω± = , which implies that 

,,
0 1 2 0 2 0( ) ( ) 0j D j N jω τ ω ω+ = ,  that is:  ,, 2 0

1
0 2 0

( )
( )

N j
j

D j
ω

τ
ω ω

= and ,
1τ  can be 

inferred by ,,
1 1−τ τ .    

This time constant is real since one of the polynomials is of odd degree, it 
is imaginary, and the other is of even degree, thereby is real. However, if 

,,
1 0τ <  or if ,,

1 1τ τ>  the synthesis is impossible. If it is possible, the result is, 
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for example, the previous network where each capacitance C’’ is calculated 
from an angular frequency corresponding to a zero of the polynomial f and 
every capacitance C’ is obtained by C − C’’, where C represents the 
capacitance previously found by the complete synthesis. 

EXAMPLE.– Fourth-order elliptic low-pass filter  

A fourth-order low-pass elliptic filter, providing a ripple of 1 dB in the 
bandwidth and a minimum of 52 dB of stop band attenuation, has a 
normalized transmittance (from MATLAB “ellipap” function): 

( ) ( )2 2

4 3 2

0.002539 24.227 4.5933

0.9455 1.4831 0.7753 0.3170

s sf
g s ps s s

+ +
=

+ + + +
 

The unitarity relation provides the polynomial h = s4 + 1.0338 
s2 + 0.1426, then the one giving y22 and the complete Cauer synthesis lead to:  

4 2 2

22 3 3

4 5.0339 0.9193 1.7538 0.91932,1153
1.981 1.5506 1.981 1.5506

s s s
y s

s s s s
+ + +

= = +
+ +

 or: 

22
12.1153 11.078 13.135

0.6086

= +
+

+

y s
s

s
s

; next, the zeros of f 

(ω01 = 4.922 and ω02 = 2.143) allow us to change the ladder network to add 
the capacitances that unveil the two antiresonant circuits in Figure 2.36 and 
which have to be subtracted from initial capacitances.  

 

0.35775 

0.60855 

2.7772 
0.03877 

1.0782 

2.0765 

y22 

 

Figure 2.36. Fourth-order elliptic filter synthesis based  
on its normalized admittance y22 
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EXERCISE.– Check coherency of the elements value with y22, ω01 and ω02. 
The Bode diagram of this elliptical filter transmittance can be seen at the end 
of section 2.2.2.5. 

2.4.1.3. Development of the filter network and denormalization 

Given that impedances zii(s) and admittances yii(s) are normalized 
(dimensionless), the coefficients appearing in their expressions are actually 
time constants, expressed in seconds, which leads to a notation making use 
of an expansion into successive fractions (for instance for a sixth-order low-
pass filter) for diagonal impedances:  

1

2

3

4

5
6

1( ) 1
1

1
1

= +
+

+
+

+

iiz s s
s

s
s

s
s

τ
τ

τ
τ

τ
τ

  

(using Euclidean polynomial division to obtain the integer part of the 
fraction, and then that of the denominator, etc). 

Because of the symmetry of the roots on each side of the real axis for the 
polynomials f, g and h, certain combinations existing in the numerators and 
denominators of z11(s), z22(s), y11(s), y22(s) yield identical results. Two 
identical expressions are then found for z11(s) and y22(s), for example (or for 
y11(s) and z22(s) ), which can be represented for the ladder low-pass filter 
(Figures 2.37 and 2.38) by applying the valid definitions for the impedance 
or admittance quadripole.  

 

τ2 

τ1 

τ4 

τ3 

τ6 

τ5 

Z11/R1 

 

Figure 2.37. Low-pass filter synthesis based on its  
normalized impedance z11 = Z11/R1 
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τ5 

τ6 

τ3 

τ4 

τ1 

τ2 

Y22 R2 

 

Figure 2.38. Low-pass filter synthesis based on its  
normalized admittance y22 = Y22 R2 

Based on these time constants, the final network is shown in Figure 2.39.  
 

C2

L1 

C4

L3

C6

L5 R1 

R2 

 

Figure 2.39. Full filter 

By matching the identical elements of previous diagrams, we obtain  
the identities:  1 5 3 3

1 2 6 2 1 2 3 2 4 4 1 4
1 2 1 2

 ;      ;    ;    ; = = = = = = = =L L L LR C R C R C R C
R R R R

τ τ τ τ
 

5 1
5 2 2 6 1 6

1 2

  ;    
L L

R C R C
R R

τ τ= = = = , which by dividing each member in both 

expressions giving L1, C2, L3, C4, etc, implies that: 
 

3 52 1

1 6 4 2

 R
R

r
R

τ ττ
τ τ τ

= = = =  

and more generally for an nth-order ladder filter: 

3 52 1

1 2 4

 R
n n- n-

R
r

R
τ ττ

τ τ τ
= = = = =  

Nevertheless, the consistency of the ratios of the various time constants 
may not be rigorously ensured in some cases. We will then refer to the 
completed impedance method exposed later in this section.  
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In the case of elliptic filters for which the transmittance has zeros, the 
circuit has to be modified by extracting some of the capacitances to carry 
them forward in parallel onto the inductances in order to identify notch 
circuits at frequencies corresponding to the zeros of the transmittance, as 
mentioned in the previous section. 

Finally, it is important to consider changing the cutoff angular frequency 
of the filter, which so far was ωc = 1 rd/s in the normalized transmittance, to 
obtain the final circuit. The cutoff angular frequency can be modified in two 
ways, by altering inductances with the ratio k and by fiddling with 
capacitances with the ratio m:  

– if inductances L are changed into L
k

 Ls becomes 

'  Ls m sL s L
k k mk

= = ; 

– if capacitances C are changed into C
m

 Cs becomes 

'  Cs k sC s C
m m mk

= = . 

The variable s is therefore divided by mk (and similarly for jω) in both 

cases, while impedances are all multiplied by m
k

. In order to find the same 

variation with frequency than with the normalized transmittance, larger 
angular frequencies by a factor mk  have to be used, which leads to sizing 

 fmk r=  so as to be equal to the desired cutoff angular frequency  

ωc’ = rf ωc with ωc = 1 rd/s (Note: the new cutoff frequency is then '
c  

2
fr

f
π

=  

Hz) and thus to divide all the time constants by rf to obtain the new time 

constants ' ' ' 31 2
1 2 3 ;     ;    ;  etc.= = =

f f fr r r
ττ ττ τ τ   
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Since the impedances are multiplied by m
k

, the resistances R1 and R2 

also become the new resistances '
1 1

mR R
k

= , '
2 2

mR R
k

=  and 
'
2
'
1

R
R

r
R

= .  

Then, either R1’, or R2’ has to be chosen (or possibly a capacitance or an 
inductance). 

The new capacitances and inductances are then inferred from: 
' ' ' '

' ' ' '1 1 2 2 1 3 1 2 2 4 3
1 2 3 4' ' ' '

1 2 1 2

  ;    ;   ;    ;  etc.− − −= = = = = = = =n n n n

f f f f f f f f

R R R RL C L C
r r r R r R r r r R r R

τ τ τ τ τ τ τ τ   

If the object is not a low-pass filter, the appropriate transformations of 
initial inductances and capacitances are performed to obtain the desired filter 
type.  

EXAMPLE– Sixth-order type-1 Chebyschev low-pass filter giving a 0.2 dB 
ripple in the bandwidth.  

The calculation achieved with help of the relevant functions available in 
MATLAB gives:   

g = s6 + 1.4708 s5 + 2.5816 s4 + 2.2082 s3 + 1.6029 s2 + 0.6611 s + 0.1473. 

The numerator f = 0.1439 is a constant in the case of a low-pass filter. 
From the unitarity relation, it follows h = s6 + 1.5 s4 + 0.5625 s2 + 0.0313, 

then a normalized impedance 
6 4 2

11 5 3

4 8,1632 4.3308 0.3571
2.9416 4.4163 1.3222

s s sz
s s s

+ + +=
+ +

 that can 

be synthesized using the Cauer method (Figure 2.40). 

 

1.3632

1.3598

1.4556

2.2395

0.8838

2.0974

 

Figure 2.40. Low-pass filter synthesized from its normalized impedance z11 
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NOTE.– Important: a number of useful MATLAB files for performing these 
computations based on the expression of the two polynomials f and g have 
been developed by the author. They can be found at the Mathworks site 
(http://www.mathworks.fr/matlabcentral) in user communities proposing file 
exchanges: hurwitz.m for the Hurwitzian conjugate of a polynomial; 
unitarh.m to determine the polynomial h; z11sh.m; z22sh.m; z11sb.m; 
z22sb.m; y11sh.m; y22sh.m; y11sb.m; y22sb.m to determine the normalized 
elements of the ladder structure based on the result of the function chosen 
among the last eight and giving the maximum amount of elements.  

The equivalent network to calculate 11
11

1

Z
z

R
=  is then the following 

(Figure 2.41). 

 

1.3632

1.3598

1.4556

2.2395

0.8838

2.0974

Z11

 

Figure 2.41. Z11 computation network  

But we also find that 22 22 2y Y R=  corresponds to network shown in  
Figure 2.42. 

 1.3632

1.3598

1.4556

2.2395
0.8838

2.0974 Y22 

 

Figure 2.42. Y22 computation network  

This implies that 3 52 1

1 6 4 2

1.539R

R
r

R
τ ττ

τ τ τ
= = = = = . Imposing, for example, 

R1' at 140 Ω and the new cutoff frequency fc' = 11.1 MHz, the final network 
is fully determined and sketched in Figure 2.43.  
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 2.7 μΗ140 Ω 4.45 μΗ 4.15 μΗ

140 pF 150 pF 90 pF 215 Ω

 

Figure 2.43. Final network of the Chebyschev sixth-order low-pass filter  

EXERCISE.– Check the previous calculations. 

A more rigorous and more general method for the determination of 
termination resistances ratio rR relies on the computation of input and output 
impedances or “terminated impedances”.  

In the matrix expression β = s α, terminating the quadripole with the 
resistance R2 yields v2 = −i2 and we still get v1 + i1 = eg. Since  
2 v1 = eg (1 + s11), the input impedance is deduced: 

2 2 2

1 11
1 1

1 11

1
1in

V R I

V s g hZ R R
I s g h

=−

+ +
= = =

− −
 

Similarly for the output impedance at Eg = 0, we get v1 = −i1 and 
v2 − i2 = s22 (v2 + i2). Hence:  

1 1 1

2 22 *
2 2

2 22 *

1
1out

V R I

V s g h
Z R R

I s g h
=−

+
= = =

− ±
  

The polynomials appearing in these two terminated impedances are, at 
least for one of the two factors of the quotient, neither even nor odd. This 
corresponds to impedances that are not purely reactive, which is quite 
expected, since R2 is included in Zin and R1 in Zout. The signs to be considered 
for reciprocal quadripoles are the higher signs in the expression of Zout. If we 
reason about the polynomials g and h = h* specific to the template of the low-
pass filter, the zero angular frequency limit of Zin or Zout corresponds to a 
purely resistive impedance because there are only terms of degree zero in the 
numerator and denominator, the others being cancelled. These are obviously 
R2 in the first case and R1 in the second. Hence, a direct evaluation has been 
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done of the ratio rR, which leads to the same expression both from Zin and 
Zout (higher signs): 

2

01

limR
s

R g hr
R g h=

 += =  − 
 

If in practice the two resistances are imposed, one will be set to the 
desired value and the other will be completed by adding a resistance in series 
(or in parallel) to bring the overall termination resistance on the port 
opposite to the value calculated from the ratio rR. If none are imposed, we 
will be able to set any one capacitance or inductance chosen among all and 
then deduce the two termination resistances. 

In all cases, once the template f/g is established and the synthesis 
achieved in normalized values, only two degrees of freedom will remain: 
one to choose the new cutoff frequency or center frequency, the other to 
choose a single element among the two resistances, or among the 
inductances or capacitances. Therefrom, all other elements will be 
computable. These two degrees of freedom derive from the independence of 
only two of the three polynomials f, g and h, and from the unitarity relation.  

In conclusion, it is remarkable that the method exposed here makes it 
possible to simultaneously solve the filtering problem by synthesizing the 
filter that satisfies a template; and in addition, it also solves the problem of 
impedance matching since the elements can be calculated by taking into 
account the termination resistances whose ratio is, nevertheless, imposed by 
the nature of the filter chosen through the expression of s21. Subsequently, 
this last restriction may be lifted by adding an ideal transformer, except for 
low-pass filters. In the case of narrow-band band-pass filters, the reduced 
bandwidth Δω plays a role in the determination of the elements during the 
band-pass → low-pass transformation and gives place to elements that are in 
a ratio close to 1/Δω 2 (see section 2.2.2.5). This leads to filters unfeasible in 
practice if Δω < 0.25 due to the difficulty in implementing elements 
absolutely lossless with very different values. The impedance-image method 
exposed hereafter is a means to size such filters at the cost of an 
approximation, which is largely offset by the efficiency of the 
implementation and by solving the previous difficulty.  
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2.4.2. Synthesis based on image parameters  

This method relies on the search for a device able to define an overall 
transfer function from the chaining of elementary quadripoles, called 
“elementary cells” in the following: their transmittances are themselves 
known and easily computable without the help of software programs. This 
device is image-matching and has been described in section 2.1.8. Image 
impedances are generally not rational and thus not implementable using 
passive elements. However, this does not prevent us from using them to 
ensure image-matching between the input and the output of two cascading 
elementary cells. The problem only actually appears for termination 
impedances for which the image-matching condition can only be 
approximately satisfied with the exception of certain frequencies. In the 
following, the characteristics of elementary low-pass, high-pass and band-
pass cells will be first calculated, namely image impedances 

11
1 0

11
i e esc

Z
Z Z Z

Y
= =  and 22

2 0
22

i s ssc
Z

Z Z Z
Y

= =  at each port and the 

corresponding transmission coefficients si = exp[−Γ] = exp[−(γ + jδ)] by 
evaluating image attenuations γ and image phase-shifts δ from exp[2Γ] (see 
section 2.1.8).  

The frequency band in which we simultaneously have γ = 0 and real 
image impedances will be systematically assimilated to a bandwidth, 
whereas it will be assimilated to a stop band otherwise.  

2.4.2.1. Low-pass and high-pass elementary cells 

The simplest elementary cells are obviously those involving only two 
reactive elements. However, they have the disadvantage of presenting image 
impedances that vary a lot in the bandwidth and since there are no adjustable 
parameters, we are always driven to repeat the same cell for a low-pass or 
high-pass type of filter. This solution is certainly not optimal. Since image- 
matching must be ensured at both ports of each cell, type (a) or (a') cells 
should moreover be grouped together in the following table following a 
“head-to-tail” assembly, either in T or in Π, in order to obtain symmetrical 
cells presenting the same image impedance at both ports and an image 
attenuation Γ, which is twice that of the initial cell. It is generally preferred 
to also have recourse to cells presenting a resonant or antiresonant (b)- or 
(c)-type circuit, which combine several advantages. The network and image 
properties of these four cells are grouped in the following table.  
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Elementary cell Zi1 Zi2 exp(Γ) Case ω <1 Case ω >1 

(a)
 

C0 
L0 

 

2 1s +  2

1
1s +

2 1s s+ +

γ = 0 

 

δ = asinω 

γ = 





 +− ωω 1ln 2

 

δ = π/2 

 (a')  
 C0 

L0

 

2 1s
s
+  

2 1
s

s +

2 1 1s
s
+ +

 

γ = 





 +− ωω 1ln 2  

δ = −π/2 

γ = 0 

 

δ = 
−asin(1/ω) 

(b)
 

m
m

C
2

0

1 −
 

mL0 

mC0

with  m < 1 

 

2

2 2
1

1 (1 )
s

m s
+

+ −
 

2

1
1s +

2

2

1
1

s ms
s ms

+ +
+ −
 

γ = 0 

δ = 

2
atan

1
ω
ω−

m  

2γ = 

ωω

ωω

m

m

−−

+−

1

1
ln

2

2

δ = π/2 if 
1<ω<ω∞ 

δ = 0 if ω> ω∞ 

(c)
 

20 '1
'

m
m

C
−

 

L0/m' 

C0/m' 

with  m' < 1 

 

2 1s
s
+

 
2 2

2

(1 ' )
1

s m
s s
+ −

+

2

2

1 '
1 '

s m
s m

+ +
+ −
 

2γ = 

'1

'1
ln

2

2

m

m

−−

+−

ω

ω

δ = 0 if ω < ω'∞

δ = −π/2  if ω'∞ 
<ω < 1 

γ = 0 

δ = 

atan
2 1

'
ω −
m

 

Type (b) and (c) cells enable for each of them that an attenuation pole ω∞ 

or '∞ω  be introduced (or transmittance zero), whose position can be 
adjusted, and they present impedance images approaching a constant in the 
bandwidth, as this will be detailed in the following. For low-pass filters, it is 
possible to place elementary (a)- and (b)-cells in cascade provided that only 
Zi2 is used as image impedance, which requires the combination of two (a)- 
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or (b)-cells grouped in a “head-to-tail” fashion. In addition, it proves more 
advantageous to assemble (b)-type cells whose image impedance Zi1 can be 
much closer to a constant resistance in the bandwidth (see Figures 2.45 and 
2.46), directly connected with a termination resistance. Generally speaking, 
if the letter “i” is added to indicate the interchanging of both ports with 
regard to the cells presented in the table, the logical sequence for the low-
pass filter can be read as (b) (ai) (a) (bi) in Figure 2.44. 

 

C0

2L0

1

2
1

0

1
m
m

C
−

 

m1L0 

m1C0

with  m1 < 1 

C0

2

2
2

0

1
m
m

C
−

 

m2L0

m2C0

with  m2 < 1  

Figure 2.44. Four-cell low-pass filter, two of each type, with  
the same image impedance at each port, given by the expression  

of Zi1 in the previous table, provided that m2 = m1 

It is also possible to use (b) (bi) (b) (bi) …(b) (bi) in the case it is 
desirable to benefit from finite-frequency attenuation poles in preference to 
those placed at zero and infinite frequencies. Capacitances in parallel will be 
obviously grouped.  

For high-pass cells denoted by (a'), (a'i), (c) and (ci), image-matching 
must use Zi1. This leads to the sequence (a'i), (c), (ci) and (a'), which imposes 
the same parameter m' for the two central (c)- and (ci)-type cells.  

The image impedances and transmittances of the table are normalized 
with ωc = ω0 = 1 rd/s as usual in this chapter. The parameters of the cell (a') 
are inferred from those of the cell (a) by way of the usual low-pass to high-
pass transformation, namely by replacing s by 1/s, because the capacitance 
and the inductance have been inverted. Conversely, this transformation is not 
the one that allows switching from (b) to (c) cells. The normalized 

attenuation poles for (b) and (c) are, respectively, 
2

1
1 m

ω∞ =
−

 and 

2' 1 '∞ = − mω , giving rise to zero transmittance. 
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Figure 2.45. Modulus of image impedances normalized by the characteristic 
impedance R0 for the low-pass (a) and (b) cells (real if ω < 1, imaginary if ω > 1): 

Zi1(b) in solid lines for m = 0.5; Zi1(a) in dotted line and Zi2(a) = Zi2 (b) in dash-dotted 
line. For a color version of this figure, see www.iste.co.uk/muret/electronics2.zip 
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Figure 2.46. Modulus of the image impedances normalized by the  
characteristic impedance R0 for high-pass cells (a') and (c) (imaginary for  

ω < 1, real for ω > 1): Zi2(c) in solid lines for m' = 0.5; Zi1(c) = Zi1(a') in dash-dotted 
line and Zi2(a') in dotted line. For a color version of this figure, see 

www.iste.co.uk/muret/electronics2.zip 

As it can be observed in Figures 2.45 and 2.46, the normalized impedance 

images in the bandwidth 
2

1 2 2

1
1 (1 )i bZ

m
ω

ω
−=

− −
 for cell (b) and 
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2 2

2 2

(1 ' )

1
i c

mZ ω
ω ω

− −
=

−
 for cell (c) constitute excellent approximations to a 

constant resistance in 90% of the bandwidth, provided that we take m = 0.5 = 
m' . These cells will thus be systematically adopted as ending cells with 
values for parameters m and m' very close to 1/2 or equal to 1/2. 

2.4.2.2. Denormalization and filter synthesis 

In order to denormalize image impedances and image transmittances, the 
change in variable has to be carried out by shifting from ω to ω /ω0 where 

0 0 01 L Cω = , and by multiplying the image impedances by the 
characteristic impedance R0 = 0 0L C . This last factor and ω0, the cutoff 
angular frequency, thus allow sizing L0 and C0 from the image impedance in 
the bandwidth, which is purely resistive, and the cutoff frequency ω0/2π, 

which determines: 0
0 0

1C
R ω

=  and 0
0

0

R
L

ω
= . Nevertheless, this operation 

will be carried out as a last step, once the effective attenuation is adjusted 
onto the template.  

The main operation of the synthesis consists of determining the number 
and the type of cells and to choose the value of the adjustable parameter(s) m 
or m'. From a desired template, the procedure will be to achieve successive 
approximations consisting of initially determining the image attenuation that 
needs for a certain number of cells placed in cascade. This is achieved by 
analogy with Chebyschev or elliptic low-pass or high-pass filters through the 
matching of the number of branches of the circuit and the order of the filter 
and by anticipating a margin of safety with respect to the effective 
attenuation that needs to be achieved. Ultimately, we will verify through 
simulation the deviation of the actual response with those from the image 
impedances and the template method, and an extra iteration will be executed 
if deviations become too significant. In all cases, it is important to first carry 
out an evaluation of maximum deviations between ideal values of image 
attenuations obtained from s21 and their effective values. 

In order to try to evaluate certain bounds of the deviations between the 
gain or the attenuation resulting from the approximation of image 
impedances and the same quantities that will actually be obtained, all general 
expressions of s-parameters (section 2.1.6) and gain or impedance (section 
2.1.7.3) can be used with the image impedance normalization, except for 
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power calculations which will have to be excluded when image impedances 
are not real, which is the case in the stop band. That being said, the decisive 
advantage of this method is to enable us to simultaneously consider all the 
cells placed in cascade to evaluate an overall parameter s12 = s21 = e−Γ since 
normalization using image impedances implies that s11 = s22 = 0. 
Nevertheless, it is important to properly note that Zi2 and Zi1, the image 
impedances to be considered, are supposed to match those of ending cells 
found at every port of the overall filter (therefore in the network, Figure 
2.44, we have the image impedance Zi1 of cell (b) at each port) during the 
synthesis, which is not exactly the reality.  

The voltage gain V2/Eg is obtained from the expression given for v2 
according to e'g in section 2.17.3, taking into account zg to calculate eg: 

22 21

1 12 21

1
1 1

i u

g i g u g

Z rV s
E Z r r s s z

+
=

− +
.  

The mismatching factor of the voltage gain ui2
v

i1 g u 12 21 g

r 1Z 1
Z 1 r r s s z 1

+
λ =

− +
 

relative to s21 is equal to 2

1

1
2

i

i

Z
Z

 when the image-matching is implemented, 

as a result of rg = ru = 0 and zg = 1.   

It is also possible to evaluate the current gain from the ratio i2/i1 given in 

section 2.1.7.3, still with s11 = s22 = 0:  2 1 21

1 2 12 21

(1 )
1

i u

i u

I Z s r
I Z r s s

−=
−

. The deviation 

with respect to s21 is measured using the mismatching factor of the current 

gain 1

2 12 21

1
1

i u
i

i u

Z r
Z r s s

λ −=
−

, which can be reduced to 1

2

i

i

Z
Z

when matching 

occurs. The product of these two factors will affect the overall power gain 
and thus will be equal to 1

2
 in the event of a match Ru = Zi2 and Rg = Zi1, 

which is equivalent to the result 
22

22
21

2 14
gEV

s
R R

=  mentioned in section 2.1.7.2 

in the case of the match Rg = Zi1 = R1 and Ru = Zi2 = R2 because then 
|I1| = |Eg|/(2R1) and |I2| = |V2|/R2. If the modulus of their product is larger than 
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1
2

, the true power gain will be increased and the true attenuation will be 

reduced with regard to the image values or, on the other hand, vice versa. 

In general, for the calculation of these two mismatch factors, it will be 
necessary to take into account effective termination impedances that should 

be assumed to be real, equal to Rg and Ru, which gives 
1 2

   ;    = =g u
g u

i i

R R
z z

Z Z
; 

1 2

1 2

;
− −

= =
+ +

g i u i
g u

g i u i

R Z R Z
r r

R Z R Z
 from which it can inferred that: 

1 2
2

2 1

2 1
1 − Γ=

+ + −
i iu

v
u i g i g u

Z ZR
R Z R Z r r e

λ  

1 21
2

2 12 21 2

21 1
1 1 − Γ

−
= =

− + −
i ii u

i
i u u i u

Z ZZ r
Z r s s R Z r e

λ  

NOTE.– Important: These factors and previous gains become meaningless at 
the cutoff frequency, because the normalization enabling the computation of 
the s-parameters has been made using Zi1 and Zi2, which become either zero 
or infinite. On the other hand, outside of this particular frequency, the 
analysis of deviations between effective attenuation and image attenuation 
can be performed, differently however, depending on whether the bandwidth 
or the stop band is under consideration. 

In the stop band, impedances Zi1 and Zi2 are purely imaginary and 
accordingly the power gain is not given by the product between voltage and 
current gains, but this does not prevent an estimate of the mismatch factors 
in modulus being obtained for each of them. Since the image attenuation eΓ 
is much larger than 1, the factors 21 − Γ− g ur r e  and 21 − Γ− ur e  are close to 1. We 
define that Zi1 = jX1 and Zi2 = jX2, which leads to 

1 2

2 2 2 2
1 2

2=
+ +

g uu
v

g g u

R X R XR
R R X R X

λ , which is maximum when Rg = X1 and Ru = 

X2 and is equal to u

g

R
R

. Similarly, 21
2 2

2

2=
+
u

i
u u

R XX
R R X

λ  equals 2 g

u

R
R

 at 

the maximum under the same conditions. The product of the two thus gives 
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an overall factor 2  which is 2 2  times larger than the factor 1
2

 that we 

get when there is a match and reflects an effective attenuation deficit of 

( )10log 2 2 = 4.5 dB compared to the image attenuation. This would require 
the anticipation of a safety margin with respect to the desired final template. 
In fact, since conditions Rg = X1 and Ru = X2 take place very close to the cut-
off frequency, as it can be seen in Figures 2.45 and 2.46, because Rg and 
Ru are very close to R0 for a later-discussed reason, the most important 
consequence is that this attenuation deficit with regard to the image 
attenuation may push the cut-off frequency toward higher values for the low-
pass filter or toward lower ones for the high-pass filter. It will thus be 
necessary to be cautious when addressing the assessment of the image cutoff 
frequency compared to the one desired in reality. On the other hand, when 
ratios Rg/X1 and Ru/X2 or inverse ratios exceed about 2 , a true attenuation 
greater than the image attenuation is obtained and it is no longer necessary to 
take a safety margin. It can thus be concluded that in reality, a cutoff 
frequency offset and a transition band should appear between the bandwidth 
and the stop band that did not exist in the image attenuation. 

NOTE.– Important: This conclusion, however, must be tempered by the 
approximate nature of the correction affected with mismatching factors that 
do not take into account the presence of terminations other than constant 
resistances in the previous computation. Moreover, this is only achieved in 
the case of a single-cell filter since, for a multiple-cell filter, the terminations 
of each cell are the dipole impedances of adjacent cells, except at the ends of 
the filter. Therefore, less severe corrections are expected as well as a 
performance that better approximates the actual attenuation to the image 
attenuation, as we will seen in the practical examples that follow. 

In the case of a filter solely made up of (b)- or (c)-cells, it is important to 
know the asymptotic value of the image attenuation, which can be derived 
from the stop band values of γ given in the table of the previous section. For 
a set of n pairs of (b)(bi)-cells with parameter m1, m2, … mi … mn and with ω 

tending to infinity, a total image attenuation of 
1

120 log
1=

+
−

n
i

i i

m
m

 is obtained, 

taking into account the proportionality of the power gain to |si|2, after 
converting into decibels. It is therefore helpful to choose values for the 
parameter mi close to 1 to increase the stop band image attenuation.  
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In the bandwidth, the impedances Zi1 and Zi2 are real and it is therefore 
possible to carry out an accurate calculation of mismatch factors that will 
reflect the effective ripple, the image attenuation being zero as well as its 
ripple. As a first step, we can find out what the frequencies make the 
modulus of the overall mismatch factor equal to 1/2. As previously seen, 
these frequencies correspond, on the one hand, to the match Ru = Zi2 and 
Rg = Zi1. To obtain this match and thus to benefit from an additional finite-
frequency attenuation zero, we will place Rg and Ru slightly above R0 in the 
case of the low-pass filter whose end cells are (b) and (bi), that is Rg = Ru = 
μ R0 (with μ >1) or slightly below in the case of the high-pass, namely Rg = 
Ru = μ' R0 (with μ' <1), which will also impose two identical parameters m1 
or m1' identical at the ends of the filter, therefore two symmetric end cells. 
Coefficients rg and ru will be close to zero, much smaller than 1 in absolute 
value. In addition, since the image impedance is very close to a constant 
value and equal to R0 when m1 or m1' is equal to 0.5, this numerical value 
will be retained, at least as a first approximation.  

On the other hand, additional attenuation zeros appear due to the presence 
of factors 21 − Γ− g ur r e  and 21 − Γ− ur e , which cannot be neglected in the 
denominators of λv and λi in the bandwidth. Since the image attenuation γ is 
zero in the exponents of exp[−2Γ] = exp[−2(γ + jδ)], the exponent is purely 
imaginary and corresponds to the single image phase-shift, which allows us 
to write:  

2 2

1 11
1 1 1− −

+ −
=

+ − −
u u

v i j j
g g u u

r r
z r r e r eδ δλ λ  

As seen in the previous section, rg and ru are real and less than 1 in 
absolute value in the bandwidth. The factors existing in the denominator thus 
oscillate between 1− g ur r  and 1+ g ur r  for the first, 1− ur  and 1+ ur  for the 

second, respectively, for =kδ π  and for (2 1)
2

= +k πδ . It can be concluded 

therefore that there will be increasingly more effective attenuation 
oscillations as the variation of the image phase-shift will be larger in the 
bandwidth, in other words when the number of cells will be more significant. 
For symmetrical terminal cells (Zi1 of cell b) and for equal termination 
resistances (Ru = Rg), we obtain with =kδ π : 
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[ ] 1

1 2

1 1 1
1 1 2=

+
= = =

+ − +
u u i

v i k
g g u u i g i

r R Z
z r r R Z R Zδ π

λ λ   

as in the image-matching case. In the case where (2 1)
2

= +k πδ : 

[ ]
( )
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2 2

21 2
2(2 1) / 2
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1 111 1
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−

= +
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v i k

g g u i i g u

mr Z Z
z r r Z Z R Rδ π

ω
λ λ μ

ω
, 

the last equality applying to the case of the (b)- and (bi)-type cell of the low-
pass filter. 

The envelope of the ripple in the bandwidth is thus computable using the 
ratio of the product of the mismatch factors for image phase-shifts =kδ π  

and (2 1)
2

= +k πδ . We get: 
( ) 2

2 2

2
2

1 11 1
2 1

  − −  Ω = + − 
 

m ω
μ

ω
, which takes the 

value 1 at each image-matching case, occuring twice in the bandwidth as it 
can be observed in Figure 2.47. Nevertheless, in addition, λvλi will also 
assume the value 1/2, resulting in an attenuation zero, every time the phase-
shift image will be equal to =kδ π . This phase shift either corresponds to a 
direct link (k is even or zero, as for ω = 0), or to crossing connections 
between the two ports of the quadripole (k is odd) since the image 
attenuation is zero. It is then logical that effective attenuation be also zero 
for these angular frequencies that are called antiphase zeros.  
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Figure 2.47. Ripple envelope in the bandwidth of low-pass filters  
of parameter m1 = 0.5 characterizing the end cells for three values of  
the parameter µ = 1.02; 1.07; 1.12 in ascending order of the values at  

ω = 0 (respectively, in dotted line, solid line and dash-dotted line). For a color version 
of this figure, see www.iste.co.uk/muret/electronics2.zip 
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The absolute value of 10 times the decimal logarithm of Ω gives the 
envelope of the ripple in the bandwidth, which does not exceed 0.3 dB in the 
interval of normalized angular frequency [0; 0.9] in the most favorable case. 
This corresponds to a choice of the ratio of termination resistances and the 
characteristic impedance µ = 1.07 when m1 = 0.5 as it can be seen in Figure 
2.47. The antiphase zeros are increasingly tightened as the normalized 
angular frequency progresses from zero to one, because of the expression of 

the total image phase shift, corresponding to 
2

1
2 atan

1=

 
  − 


n

i

i

m ω
ω

 for n pairs of 

cells of type (b)-(bi). The value of each term 
2

atan
1

 
  − 

im ω
ω

 for ω = 1 being 

2
π

, there will be n antiphase zeros in the bandwidth, namely as many as cell 

pairs, the first being still located at ω = 0.  

Nonetheless, here again, this calculation of the ripple in the bandwidth 
has been obtained assuming that for each cell, the two termination 
resistances were constant. This is, however, no longer achieved when the 
number of cells is greater than one, because each cell is then terminated by 
the impedance presented by the neighboring cell at one of the ports, or even 
at both ports. Furthermore, we thus approach the ideal condition of 
termination impedance identical to the image impedance with a number of 
cells that increases proportionally as the number of cells itself becomes more 
significant. As a result, it can be concluded that the previous calculation of 
the ripple indicates an upper bound of the actual ripple and that it gives an all 
the more pessimistic indication with more significant numbers of cells. In 
other words:  

NOTE.– The actual attenuation ripple in the bandwidth will be the smallest 
compared to Ω with a greater number of cells. 

EXAMPLE.– Low-pass filter with pairs of cells of type (b) (bi)   

Given a template enforcing an effective attenuation of 52 dB above the 
normalized angular frequency ω2 = 1.5 and an actual ripple not exceeding 
0.2 dB in the bandwidth. This last condition is stricter than in the example 
addressed with the exact method of effective parameters, in which a fourth-
order elliptic filter had been employed, giving a ripple of 1 dB. If the value 
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m1 = 0.5 is retained for both terminal cells with the aim of ensuring the best 

possible match to the end ports, we obtain 1

1

120log
1

+
−

m
m

 = 9.4 dB of 

attenuation with infinite angular frequency and an attenuation pole at ω∞1 = 
1.15. Therefore, 43 dB are missing which would be difficult to recover by 
solely adding a pair of cells. We therefore prefer to rely on the following 
network (Figure 2.48), which includes three pairs of cells of types (b) (bi).  
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Figure 2.48. Schematic of a low-pass filter, symmetrical and composed of two 
doubled cells of type (b)-(bi) and two simple terminal (b) and (bi) cells. Terminations 

are not illustrated  

It is useful to place an attenuation pole in the vicinity of ω2, which results 
in a value of m2 close to 0.7, providing an additional 15 dB of attenuation. 
There are 28 dB that remain to be attributed to the cell characterized by a 
parameter m3, which then assumes the value 0.92.  

The final step is denormalization which is performed based on the 
characteristic impedance inferred from Rg = Ru = μ R0 (with μ =1.07),  
R0 = 0 0L C  and the cutoff frequency 0 0 01= L Cω  which is to be obtained. 
If for example we have Rg = Ru = 75 Ω and ω0=2π×(6 MHz), it is deduced 
that R0 = 70 Ω, and it is calculated that L0 = 1.859 μH and C0 = 378.4 pF; 
then all the elements shown in Figure 2.48 from the expressions included in 
it as well as the numeric value of the parameters. The Bode diagram 
calculated from the image attenuation and that obtained through simulation 
is shown in Figure 2.49. 
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It can be noted that the template that imposed at least 52 dB of 
attenuation in the stop band beyond the reduced frequency 1.5 is enforced 
since we have –58 dB at most for the highest lobe of the transmittance, 
compared to –6 dB in the bandwidth, and that this is obtained from the 
reduced frequency of 1.2. The simulation gives a normalized cutoff 
frequency for a 3 dB relative attenuation (that is to say for an absolute 
transmittance of –9 dB) of 0.996; namely only 4‰ of deviation from the 
theoretical value, and therefore, it is not necessary to redo a calculation of 
the elements by applying a correction. The improvement of the ripple in the 
bandwidth with regard to the upper bound given by the ratio Ω is very 
significant, as shown in Figure 2.50, since the actual maximal ripple is only 
0.04 dB within 95% of the bandwidth against a theoretical value 
approximately 10 times larger, as shown in Figure 2.47.  

 

Figure 2.49. Image-transmittance in red and actual transmittance  
in blue for the low-pass filter synthesized in this section. For a color version of this 

figure, see www.iste.co.uk/muret/electronics2.zip 
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Figure 2.50. Deviation of the actual attenuation in the bandwidth with  
respect to 6 dB for the low-pass filter synthesized in this section 

2.4.2.3. Elementary band-pass cells 

These cells make it possible to define a bandwidth between the upper 
cutoff angular frequency ωsup and the lower cutoff frequency ωinf and in 
addition to introduce an attenuation pole located either in the lower stop 
band, or in the upper stop band. They are symmetric, which simplifies 
matching since the image impedances are the same at each port. According 
to the desired template, we will either be able to combine them or not and 
add them to additional low-pass or high-pass cells studied in the following 
section if we want to benefit from attenuation poles at zero and/or infinite 
frequencies. The first cell, denoted by (d), is drawn in Figure 2.51. 

 L0 
C1 

C2 C2 
C0 

 

Figure 2.51. Elementary type-(d) band-pass cell, with an  
attenuation pole in the upper lateral stop band 
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Let 1 1 0 ;a C C=  2 2 0 ;a C C=  the attenuation pole 0 01 ;L Cω∞ =  and the 
image-impedance is determined from Z11 and Y11: 
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The squared image attenuation is:  

( ) ( )( )
( ) ( )( )

2 2 2 2 2 2
1 2 3

2 2 2 2 2 2
1 2 3

exp(2 )
− + − −

Γ =
− − − −

d
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(with eventual change of sign from terms including Kd factor) where it is 
established that: 

( )( ) ( )( )
1 0 2 0 1 21 2 1 2

2 1 2 1 2 1 2 2 0 1 2 1 0 2 0 1 22 2
+ ++ +

= =
+ + + + + +

d
C C C C C Ca a a aK

a a a a a a a C C C C C C C C C C
. 

Due to the previous expressions of angular frequency, the conditions are 
the following: 3 1 2 ∞< < <ω ω ω ω  as sketched further.  

With harmonic behavior, when 3 2< <ω ω ω , exp(2Γd) is complex, with 
modulus equal to 1 because square roots are imaginary and therefore 
numerator and denominator are complex conjugates. There is thus no image 
attenuation between angular frequencies ω3 and ω2, which then define 
bandwidth [ω3 , ω2] = [ωinf , ωsup]: 
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ω 3   ω 1   ω 2  ω ∞   ω 
=ω inf     =ω sup  

 
Conversely, outside the bandwidth [ω3 , ω2], the differences under 

the radicals of exp(2Γd) have the same sign, therefore the radicals are 

real and so is exp(2Γd), hence an image attenuation 21 ln
2

Γ =  
deγ . 

Therefore, let ω3 = ωinf, ω2 = ωsup and exp(2Γd) is rewritten as: 
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, the chosen determination 

has to ensure Γd > 0 in each stop band. 

The image impedance takes the form  
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In the bandwidth with harmonic behavior: 
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+
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angular frequency ω1 gives an effective attenuation equal to zero in the 
bandwidth by analogy with the case of the antiphase zeros described in the 

(b)-(bi)-type cells, because the image phase-shift equals 
2
π  for ω =ω1. This 

implies that there are effective transmittance ripples in the bandwidth. 
Outside the bandwidth, the denominator and the numerator of the last radical 
have the same sign. The two radicals are thus real and the factor 1/jω makes 
the image impedance purely imaginary.  

We must address in a similar way the type (e) band-pass cell, with an 
attenuation pole in the lower lateral stop band, as shown in Figure 2.52.  
Let us establish ' ' '

1 1 0=a C C ; ' ' '
2 2 0=a C C ; ' ' '

0 01∞ = L Cω . 
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C1' 

C0' 

L0' 

C2' C2' 

 

Figure 2.52. Elementary type (e) band-pass cell, with an attenuation pole in the 
lower lateral stop band 

Similarly to the previous case (d), it is determined that: 

( ) ( )
( )

' ' 2 ' ' ' 2 ' ' 2 2
1 2 1 2 1 2 inf

' ' ' 2 2' 2 ' ' 2
2 2 1 sup1 1

2 1 2 21 1
1

∞

∞

+ + + + + +
= =

++ +ie

a a s a a C C sZ
C s C s C sa s a

ω ω
ωω

 

with '2
' '
0 0

1
∞ =

L C
ω ; 

' ' '
' 2 '2 0 1 2
1 ' '

1 2
∞

+ +
=

+
C C C

C C
ω ω ; 

' ' '
2 '2 0 1 2
inf ' '

1 2

2
2∞

+ +
=

+
C C C

C C
ω ω ; 

' '
2 '2 0 1
sup '

1
∞

+
=

C C
C

ω ω  and the following order according to the various angular 

frequencies:  

ω '∞   ω inf   ω '1  ω sup   ω 

 
We also obtain:   

( )( )
2 '2

1

2 2 2 2
sup inf

coth +
Γ =

+ +
e e

sK
s s

ω

ω ω
  with 

( ) ( )
' ' ' '
1 2 1 2

' ' ' ' ' '
1 1 2 1 1 22 2

+ +
= =

+ +
e

a a C CK
a a a C C C
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In the harmonic regime: 
2 2

infsup'
0 2 2

sup

( )
−

=
−ie iZ Z

ω ωω
ω

ω ω ω
 where we have 

defined 
( )

( )
' ' ' '
0 1 2 0'

0 0 '2 ' '
2 0 1

2
( )

+
= =

+i ie

C C C L
Z Z

C C C
ω  and ' 2

0 inf sup=ω ω ω . 

The squared image attenuation is calculated as previously from coth(Γe) 
by replacing s by jω and is written as: 

( ) ( )( )
( ) ( )( )

' 2 2 2 2 2 2
1 sup inf

' 2 2 2 2 2 2
1 sup inf

exp(2 )
± − + − −

Γ =
± − − − −

e

e

e

K

K

ω ω ω ω ω ω

ω ω ω ω ω ω
, by choosing the sign 

that renders Γe positive in every stop band. 

The expressions of image attenuation and image impedance are then 
highly similar for the two (d) and (e) cells regarding the dependence with 
respect to the variable ω and only differ by certain constants. The angular 
frequencies ωinf and ωsup that define the bandwidth [ωinf , ωsup] obviously 
must be the same for both cells. 

The image adaptation between the two cells then requires the equality: 

'
0 0 0= =i iZ Z R , 

where R0 will represent the effective termination resistance at each port, 
which can be described also as iterative resistance. 

The effective adaptation will be achieved only for '
0 0 inf sup= = =ω ω ω ω ω , 

while ( ) ( ) ( )= =i id ieZ Z Zω ω ω  will be smaller than R0 between ωinf and ω0 
(zero value for ω = ωinf) and will be larger than R0 between ω0 and ωsup 
(infinite value for ω = ωsup).  

Since there are four passive elements in each cell, if we set the iterative 
resistance R0 and the two angular frequencies ωinf and ωsup, only a single free 
parameter remains, which is obviously the attenuation pole of the cell, that is 
to say ∞ω  or '

∞ω . It is then possible to directly establish the expressions of 
the elements based on the values of the four parameters R0 , ωinf , ωsup and 

∞ω  or '
∞ω  from the previous equations. 
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For the cell of type (d), with an attenuation pole in the upper stop band, 
we find:  

( )
2 22 2

sup supinf inf inf
0 2 2 2 22 2

inf supsup inf0 inf2
∞∞

∞ ∞∞

 −− = −
− − −  

C
R

ω ω ωω ω ω ω
ω ωω ω ω ωω ω

; 

2 22 2
sup supinf inf

1 2 2 2 2
0 inf inf supsup inf

1
2

∞∞

∞ ∞

 −− = −
− −  

C
R

ω ω ωω ω ω
ω ω ωω ω ω ω

; 

2 2
sup

2 2 2
0 sup inf

1 ∞

∞

−
=

−
C

R
ω ω

ω ω ω
; 0 2

0

1
∞

=L
C ω

. 

For the cell of type (e), with an attenuation pole in the lower stop band, 
we get:  

( )( )
( )

2 '2 2 '2' sup infsup'
0 ' ' 2 2

sup0 sup inf

2 ∞ ∞∞

∞ ∞

− − 
= − 
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C

R

ω ω ω ωω ω
ωω ω ω ω

; 

( )( )
( )

2 '2 2 '2
sup inf'

1 2 2
0 sup sup inf

2 ∞ ∞− −
=

−
C

R

ω ω ω ω

ω ω ω
; 

2 '2
sup'

2 2 '2
0 sup inf

1 ∞

∞

−
=

−
C

R
ω ω

ω ω ω
; '

0 ' '2
0

1

∞

=L
C ω

. 

These expressions therefore allow us to size the elements in each cell 
based on the parameters chosen for the bandwidth, the iterative resistance 
and the attenuation pole. 

In return, the expressions of the necessary parameters to calculate the 
image attenuations can be determined according to the angular frequencies, 
that only define the filters, that is to say the boundaries of the bandwidth ωinf, 
ωsup and the attenuation pole ∞ω  or '

∞ω .  

For type (d): 
( )( )

2 2 2
inf sup

2 2 2 2
inf sup

2

2
∞

∞ ∞

− −
=

− −
dK

ω ω ω

ω ω ω ω
 and 

( )2 2 2 2 2
sup inf sup inf

1 2 2 2
inf sup

2
2

∞

∞

+ −
=

− −

ω ω ω ω ω
ω

ω ω ω
. 
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For type (e):   and ( )2 2 '2 2 2
inf sup sup inf'

1 2 2 '2
inf sup

2
2

∞

∞

− +
=

+ −

ω ω ω ω ω
ω

ω ω ω
. 

Based on these expressions, it is easy to determine the asymptotic 
behaviors of the image attenuation in the stop bands. For type (d), when  
ω →0:  

2
1 sup inf

0 2
1 sup inf

exp(2 )
+

Γ =
−

d
d

d

K
K

ω ω ω
ω ω ω

 gives 

2 2
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inf sup
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1
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For ω → ∞, we simply get 1exp(2 )
1∞

+
Γ =

−
d

d
d

K
K

 by choosing the negative 

determination in front of Kd in the general expression, which yields 
2 2

inf
2 2

sup

2 2
inf

2 2
sup

1
exp( )

1

∞

∞
∞

∞

∞

− +
−
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d

ω ω
ω ω

ω ω
ω ω

. 

For type (e), where ω →0: 

2 '2
supinf
2 '2

sup inf
0 2 '2

supinf
2 '2

sup inf

1
exp( )

1

∞

∞

∞

∞

−
+

−
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−
−

−

e

ω ωω
ω ω ω

ω ωω
ω ω ω

; and when 

ω → ∞, 

2 '2
sup
2 '2
inf

2 '2
sup
2 '2
inf

1
exp( )

1

∞

∞
∞

∞

∞

−
+

−
Γ =

−
−

−

e

ω ω
ω ω

ω ω
ω ω

. 

The asymptotic image attenuations in dB are therefore obtained by taking 
20 times the decimal logarithm of the previous quantities, which are nothing 
other than the asymptotic expressions of the |s21| of the image transmittance. 

( )( )2'2
sup

2'2
inf

2'2
sup

2
inf

2

2

∞∞

∞

−−

−+
=

ωωωω

ωωω
eK



186     Fundamentals of Electronics 2 

2.4.2.4. Complementary low-pass and high-pass cells adapted to the 
band-pass cells 

These cells provide a means to add a zero or infinite frequency 
attenuation pole. They must have one of their image impedances identical to 
that of the previous band-pass cells, namely ( )iZ ω . The networks that satisfy 
this condition are shown in Figure 2.53. 

 L0 

C1

C0 

Type-(f) low-pass cell

Zif 

 

 
 
 

)(ωiZ  

 

 

C0' L0' 

C1' 

Type-(g) high-pass cell 

Zig 

 
Figure 2.53. Complementary cells of band-pass cells 

As a matter of fact, if we establish 4
0 0

1=
L C

ω ; 0 1
5 4

1

+
=

C C
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ω ω ; 

6 ' '
0 0

1=
L C

ω ;
'
0

7 6 ' '
0 1

=
+

C
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ω ω , we obtain 
2 2
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2 2

1 5

1 +
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+i
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C s s
ω
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 for type (f) and 

2 2'
71

' ' 2 2
0 1 6

11 +
= +

+i
sCZ

C C s s
ω
ω

 for type (g). It is therefore necessary to impose 

ω4 = ωinf; ω5 = ωsup; ω7 = ωinf; ω6 = ωsup to find an expression that depends 
on ω similarly to the image impedance ( )iZ ω  of cells (d) and (e), with 

'
1

0 ' '
1 sup 1 sup 0

1 1 1= = +
CR

C C Cω ω
 in addition. 

The external image impedances, shown in Figure 2.53, are in the general 

case: for type (f) at the left port and 

( )( )
' 2
0

' ' ' 2 2 2 20 0 1 inf sup

1=
+ + +

ig
C sZ

C s C C s sω ω
 for type (g) at the right port. They 
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ω
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are real in the bandwidth of the corresponding band-pass filter, that is for 

inf sup< <ω ω ω  and are, respectively, equal to ( )( )2 2 2 2
sup inf

2
0 inf

1( )ifZ
C

ω ω ω ω
ω

ω ω

− −
=  

for type (f) and ( ) ( )( )' ' ' 2 2 2 2
0 0 1 sup inf

1( )igZ
C C C

ωω
ω ω ω ω

=
+ − −

 for type (g).  

The first one crosses a maximum equal to sup
0

sup inf+
R

ω
ω ω

, neighboring 0

2
R  

for a narrow bandwidth, for 0 inf sup= =ω ω ω ω  and always remains smaller 
than this value in the bandwidth, tending toward zero at both ends. The 

second one crosses a minimum equal to sup inf
0

sup

+
R

ω ω
ω

, neighboring 02R  for a 

narrow bandwidth, for 0 inf sup= =ω ω ω ω  and always remains larger than this 
value in the bandwidth, tending toward infinity at both ends. 

If it is desirable to find an image impedance equal to ( )iZ ω , each of these 
cells can be doubled by assembling them upside down (head-to-tail), as in 
type (b) low-pass or type (c) high-pass cells.  

The calculation of the elements for both of these cells derives from the 
identifications made previously and gives:  

2 2
sup inf

0 2
0 sup inf

−
=C

R
ω ω

ω ω
; 1

0 sup

1=C
R ω

; 0 sup
0 2 2
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=
−

R
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ω
ω ω

 for type (f);  

( )
' inf
0 2 2
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=
−

C
R

ω
ω ω

; '
1

0 inf

1=C
R ω

; 
( )2 2

0 sup inf'
0 2
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−
=

R
L

ω ω
ω ω

 for type (g). 

The image attenuations can be evaluated from ( )coth Γ =

11 11 22 22Z Y Z Y=  then from ( ) ( )
( )

coth 1
exp 2

coth 1
Γ +

Γ =
Γ −

. For type (f): 22
1

1=Z
C p

 

and 0
22 1 2

2
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1
= +

+

C s
Y C s

s
ω

; where from ( )
2 2

sup
2 2

inf

coth
−

Γ =
−f

ω ω
ω ω

 and 
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( )

2 2
sup

2 2
inf

2 2
sup
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1
exp 2

1

−
+

−
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−
−

−

f

ω ω
ω ω

ω ω
ω ω

 are deduced in the upper stop band (ω > ωsup) 

using the expressions found above. 

For type (g), '
11 1=Y C s  and ( )11 ' ' 2 2

1 0 sup

1= +
+
sZ

C s C s ω
, from which it can 

inferred that ( )
2 2 2
sup inf
2 2 2
inf sup

coth −
Γ =

−g

ω ω ω
ω ω ω

 and ( )

2 2 2
sup inf
2 2 2
inf sup

2 2 2
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2 2 2
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1
exp 2

1

− +
−

Γ =
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g

ω ω ω
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 in 

the lower stop band (ω < ωinf).  

When using two “head-to-tail” cells, the image attenuations calculated in 
dB must obviously be doubled.  

2.4.2.5. Synthesis of band-pass filters 

It is therefore possible to build a full band-pass filter in various ways by 
combining (d)- and/or (e)-type band-pass cells, and eventually 
complementary (f)-type low-pass and/or (g)-type high-pass cells, doubled or 
not. If these complementary cells are used without doubling them, one will 
need to be placed at the beginning and the other at the end of the filter and, 

in this case, the termination impedances should be close to 0

2
R , or even 

lower for the (f)-type cell, and to 02R , or even higher, for the (g)-type cell. 
This solution thus implies asymmetry. If on the contrary, we want 
symmetrical termination resistances R1 and R2 equal to R0, we should choose 
to only use band-pass-based cells or also doubled complementary cells 
assembled head-to-tail if one or more attenuation poles are imposed at the 
origin or at infinity. According to the theory of image-matching developed in 
this section, these elementary cells will be assembled in cascade as in the 
following operation schematic. 
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R2 
R1

 

Figure 2.54. Image-matching filter, composed of cascading cells represented by 
rectangles, with their termination resistances 

The synthesis in itself consists of determining the nature and the number 
of cells needed to satisfy a template, and then the position of the attenuation 
pole for each cell. However, the calculations that can precisely predict the 
effective attenuation based on all these data are generally complex since for 
each cell they must take into account a termination impedance that is 
different from both the image impedance assumed in theory and also from 
the iterative resistance R0 if this is not involving the first or the last cell. As a 
result, here we will only consider an approximated method to be 
implemented in two stages:  

1) the template will be first approximated by the asymptotic image 
attenuation after the choice of the number of cells and of their type 
determined according to the symmetry or asymmetry of terminations, the 
number of finite-frequency attenuation poles and the existence of attenuation 
poles at zero and/or infinite frequency. It will be possible to evaluate a limit 
of the ripple in the bandwidth compared with the standard-type elliptical 
filter that gives the same finite-frequency attenuation poles and a stop band 
attenuation similar to that of the template;  

2) the result of the simulation of the effective attenuation with the 
desired template will allow us to rectify the previous choices, and to 
possibly modify the cutoff frequencies to take account of the effect of the 
attenuation factors whose expressions have been determined independently 
of the type of filter (section 2.4.2.2), for a single cell however. Therefore, 
their actual impact may be very different in multiple-cell-based filters, with 
most often a real decrease in the bandwidth compared with the image 
bandwidth.  

EXAMPLE.– Two (d) cells and two (e) cells band-pass filter, providing two 
attenuation poles in the lower stop band and two in the upper stop band.   



190     Fundamentals of Electronics 2 

In this example the template requires a normalized cutoff angular 
frequency of 0.95 and 1.05 as well as attenuation poles at angular 
frequencies 0.6, 0.8, 1.25 and 1.5 between symmetrical terminations, with a 
minimal stop band attenuation of 82 dB. Based on the asymptotic 
expressions of image attenuation, it can be verified that a filter made up of 
two (d) cells and two (e) cells is suitable. When looking for the eighth-order 
elliptical filter giving the minimal attenuation and neighboring attenuation 
poles (0.6, 0.8, 1.25 and 1.7) using MATLAB, we find that the ripple in 
the passband is 1.5 dB. Then, the elements are determined based on the 
expressions of the previous two sections. The plots of the moduli of the 
image attenuation and simulated attenuation are presented in Figure 2.55 
(the simulation has been achieved for symmetrical termination resistances R1 
and R2 and equal to R0 = 50 Ω and frequencies identical to the normalized 
values but expressed in MHz). 

 

Figure 2.55. Image attenuation in red and effective attenuation in blue, obtained by 
simulation, for the filter whose template is defined in the example above. For a color 

version of this figure, see www.iste.co.uk/muret/electronics2.zip 

The cutoff frequencies normalized at –3 dB are 0.958 instead of 0.950 
and 1.041 instead of 1.050, which is equivalent to a reduction of 17% of the 
bandwidth. This would therefore require us to recalculate the elements 
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starting from an image bandwidth about 17% higher, therefore with 
normalized cutoff frequencies of 0.942 and 1.059. The minimum stop band 
attenuation is 84 dB above the 6 dB specific to the bandwidth, about 6 dB 
less than the image attenuation in the area of the lobes, the deviation 
decreasing when moving away from external attenuation poles, to achieve an 
attenuation of the order of 90 dB above that in the bandwidth. The template 
is thus satisfied in the stop bands. The actual ripple in the bandwidth is 0.9 
dB, with 2 minima and 3 maxima, smaller than that of the elliptical filter that 
has been previously considered. With the exception of the bandwidth that 
can be easily rectified, the performances of this filter are thus superior to 
those of an elliptic filter with equivalent order. 

The effective ripple of the order of 1 dB in the bandwidth is explained by 
the fact that for the external (d)- and (e)-type cells, the image impedance is 
equal to the termination resistances only at the center of the bandwidth and 
moves considerably away at their boundaries where it tends either toward 
zero, or to infinity. From the perspective of image-matching, the simple cells 
of type (f) and (g) are more interesting if one accepts a dissymmetry of the 
terminations because matching can be twice achieved at each port in the 
bandwidth. This would significantly enable the ripple in the bandwidth to be 
decreased. 

EXERCISE.– Check all the steps of the previous synthesis in a quantitative 
way. 

2.4.2.6. Band-pass filter based on quartz or ceramic resonator: lattice 
filters  

An equivalent circuit of a piezoelectric quartz resonator, obtained by 
neglecting the damping resistance (Joule losses), is shown in Figure 2.56. 

 

C'1 

C'0 L'0 

= 

 
Figure 2.56. Equivalent circuit and symbol of the quartz resonator, where the 

damping resistance (Joule losses) is neglected 
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A distinction is made between series or resonance angular frequency ωS 
and parallel or antiresonance angular frequency ω//. The circuit is identical to 
the central part of the previous (e)-type cell whose admittance is written as 

2 2
' ' / /
0 1 2 2

1( ) ( )
1

+
= +

+Q
S

s
Y s C C s

s
ω
ω

 with 2 '2
' '
0 0

1
∞= =S L C

ω ω  and 
' '

2 '2 20 1
/ / sup'

1
∞

+
= =

C C
C

ω ω ω , 

the two extreme angular frequencies of the (e) cell. The bandwidth of a filter 
built with such a resonator and an (e)-type circuit is thus necessarily smaller 
than the interval [ωS, ω//]. To give an order of magnitude, the relative 
difference between ωS and ω// is of the order of 0.05 % if the ratio ' '

1 0C C  is 
close to 1,000, which is a minimum for quartz, in which ratio up to several 
times 106 can be reached. This bandwidth can be extended by resorting 
either to ceramic resonators with smaller ratios ' '

1 0C C  but also presenting 
greater losses than quartz crystals, or to specially designed quartz resonators 
with an enhanced parallel capacitance '

1C . A different network such as the 
lattice filter can also be adopted. 

The equivalent diagram can also be that of the central part of the (d)-cell 

(Figure 2.57) whose admittance is 
2 2

1 2 2
inf

1( )
1

∞+
=

+Q
sY s C s
s

ω
ω

 and angular 

frequencies are those previously defined for the same cell. Here again, the 
bandwidth is necessarily smaller than the interval that is defined by these 
two angular frequencies in the band-pass filter synthesized by the image 
impedance method, which remains still applicable for ladder filters. 

 

C1 
C0 

L0

 
Figure 2.57. Another equivalent circuit of the quartz resonator 

Another solution consists of using symmetrical lattice filters whose 
operation circuit is illustrated in Figure 2.58. 
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 ZA 

ZA 

ZB 

ZB 

Port 2  

(toward termination 
resistance R2 or 
image-impedance Zi2) 

Port 1  

(toward termination 
resistance R1 or 
image-impedance Zi1) 

 

Figure 2.58. Lattice filter 

It can be shown (see section 2.5) that parameters Zij of the corresponding 

quadripole are given by 11 22 2
+

= = B AZ ZZ Z ; 12 21 2
−

= = B AZ ZZ Z  and 

det Z = ZA ZB ; the image impedances are given by 1 2= =i i A BZ Z Z Z . Under 
image-matching conditions, the matrix of normalized z-parameters is  

z coth 1/ sinh
1/ sinh coth

Γ Γ 
=  Γ Γ 

 and the parameters s21 = si and Γ are computable by 

21 12

11 11 22

exp( )
1 det

= = −Γ =
+ +i
z Zs

z Z Z Z
 according to section 2.1.8. When Zi1 

and Zi2 are real, Z11 and Z21 are purely imaginary, it is because ZA and ZB are 
also imaginary (in other words, ZA and ZB are reactances). If these reactances 
are opposite in nature (one capacitive, the other inductive), the logarithmic 
image attenuation factor Γ is thus also imaginary and accordingly the image 
attenuation γ is zero. This case thus corresponds to the bandwidth, which is 
consequently determined by the frequency domain where ZA and ZB are 
reactances of opposite nature, one being inductive, the other capacitive. This 
is achieved in the lattice if ZA is the impedance of a resonator and ZB that of a 
capacitance (see section 2.5) in all the frequency domain where the resonator 
is inductive. Lattice filters also have the advantage of exhibiting  
an attenuation pole determined by the angular frequency omegaAB  
where ZA = ZB (which cancels out Z12 and Z21) and therefore omegaAB is 
independent of the characteristic frequencies of impedances ZA and ZB such 
as ωS and ω//. 
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2.4.2.7. All-pass lattice or bridged-T filter structure  

It is easy to turn the lattice filter mentioned previously into an all-pass 
filter whose bandwidth by definition ranges from the zero frequency to 
infinite frequencies. Furthermore, since the image impedance 

1 2= =i i A BZ Z Z Z  is real in the bandwidth, it simply suffices to impose that 
it remains always real by means of the condition ZA ZB = R0

2, verified 
regardless of the frequency. It can be shown that R0 is then the effective 
iterative resistance (and not only the image impedance) by deferring Z11 and 
Z12 into the expression of the terminated input impedance with Zu = R0 

(according to section 2.1.5.2): 11

2 22

det
2

+
==− +

u
e

u
V

Z Z Z
Z Z I Z Zu

, which is 

simplified into R0 taking ZA ZB = R0
2 into account. Moreover, the voltage gain 

of the quadripole loaded by R0 is equal to 21 0

2 11 0 det0 2
==− +v V

Z R
G R I Z R Z

 giving 

0

2 00 2
−

==− +
A

v
A

V
R ZG R I R Z

 after simplification. Therefore, we can easily get a 

first-order all-pass transmittance with an inductance L for ZA, which implies 
a capacitance C = L/R0

2 for ZB, in order to satisfy the condition ZA ZB = R0
2. 

Nevertheless, the second-order all-pass is often more useful and requires 
then that an inductance L and a capacitance C be placed in parallel for ZA 
(see section 2.5). In this case, a transmittance can be obtained 

2 2

2 2

2( )
2

− +
=

+ +
n n

v
n n

s s
G s

s s
ζω ω
ζω ω

. Under a certain condition, it is possible to transform 

the lattice into a bridged-T structure (see section 2.5). 

An all-pass filter or a cascade of all-pass filters enable the correction of 
the phase of a first minimal phase-shift filter for which the synthesis was 
carried out based on a template of the modulus of the desired transmittance. 
For example, it may be useful to reduce group delay variations by at least 
partially compensating for the strong variations of the phase shift introduced 
by the first filter in order to approximate an overall linear phase shift with 
frequency. To this end, we can add with no major problem an all-pass filter 
to the first filter such as those described above with a value of R0 equal to 
that provided for the termination resistance of the first filter since the 
iterative resistance of all-pass filters itself is R0, regardless of the synthesis 
method employed for the first filter. The synthesis of the all-pass filter 
consists of finding a phase shift whose variations with the angular frequency  
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are shifted relatively to that of the first filter so as to minimize the derivative 
of the overall phase shift, namely the group delay, with respect to a constant 
value. This search requires software-based simulation.  

Other circuits (double T, circuits comprising a transformer) can be 
implemented to synthesize passive filters, including RC circuits. It is also 
possible to make use of active elements such as gyrators or negative 
resistances. Since the latter have mainly an historical interest, they will not 
be addressed here. For more information and further theoretical study, the 
reader can refer to [DED 96]. 

2.4.3. Filter sensitivity and Orchard’s argument 

The sensitivity of a filter can be defined as the derivative of one of the 
basic parameters of the filter, such as its cutoff frequency or its central 
frequency, its ripple in the bandwidth, etc., with respect to the value of a 
passive element from which it is built, or with respect to termination 
resistances. With the emergence of operational amplifiers, it has been noted 
that this sensitivity is much less significant when the filter includes passive 
elements only. Moreover, this has resulted in a renewed interest for passive 
filters because lower sensitivity with regard to the dispersion of element 
values constitutes a decisive advantage in industrial production.  

The phenomenon was explained by Orchard in 1966 with the following 
reasoning.  

As seen in section 2.1.8 for image adaptation, the modulus of the 
parameter s21 is equal to 1 in the bandwidth and the attenuation 1/|s21|2 is 
also equal to 1. The first derivative of this attenuation with respect to 
frequency in the bandwidth is therefore zero. However then, it is also with 
respect to the values of capacitive and inductive elements, respectively, Ci 
and Li, of the passive filter because Li or Ci play a dual frequency role since 
they define frequencies specific to the filter or their square root; the same 
occurs for termination resistances that fall within the definition of time 
constants. We could also reason by stating the fact that the attenuation 
1/|s21|2 reaches its absolute minimum because its derivative is also zero with 
respect to the same variables. At the first order, the sensibility of a passive 
filter with respect to its elements is therefore zero in the bandwidth. The 
same cannot be said if energy is supplied (active elements) within the 
quadripole because the previous argument is no longer valid. The argument 
applies all the more when the attenuation is lower (close to the unity, or  
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0 dB) in the bandwidth, when the ripple in the bandwidth is lower and when 
the filter is inserted between terminations with non-zero resistances, because 
in the case where the resistance is too close to zero, it is no longer possible to 
consider that the aforementioned derivatives are zero with respect to a 
termination resistance zero. This shows the superiority of doubly terminated 
filters and having termination resistances not too distant from one another 
compared to simply terminated filters, that is to say supplied by an ideal 
voltage or current generator. All-pass filters equally display a nature more 
sensitive to variations of elements because one of the parameters depends on 
the difference of two impedances, whose derivative tends to infinity when 
this difference is cancelled out. For this reason, these filters can prove to be 
good detectors, as well as bridged circuits, because in this case high 
sensitivity becomes an advantage. 

2.5. Exercises 

2.5.1. Impedance matching by means of passive two-port 
networks; application to class B push–pull power RF amplifier 
with MOS transistors 

This exercise is based on the circuit described in Philips application note 
NCO8701 (see the complete circuit at the end of the exercise). 

1) Matching on input 

a) Rewrite the admittance equations of a two-port network 
1 11 1 12 2

2 21 1 22 2

= +
 = +

I Y V Y V
I Y V Y V

 using the term ±Y12(V1−V2) in both equations so that the 

circuit contains only one source and one admittance −Y12 subject to voltage 
(V1−V2). From this, deduce the condition necessary for the two-port network 
to be passive (no source). 

b) Find the flow relations between Y11, Y12, Y22 and the electrical 
quantities of the following Π two-port network: 

I1 I2

V1
V2Ya

Yb

Yc
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c) Find the circuit and relations that allow matching of a generator with 
an internal resistance Rg = 25 Ω  using a passive Π two-port network with 
the input of a field effect transistor (BLF244). Here, its input impedance is 
purely capacitive (Cu = 117 pF) but is completed by adding a parallel 
resistance Ru. The working frequency is f1 = 55 MHz = ω1/2π (central 
frequency of useable bandwidth). Each admittance of the passive two-port 
network will be purely reactive to avoid consuming active power, 
comprising only one element (capacitance or inductance). For Yb, a pure 
inductance Lb is selected.  

Show that, in this case, Ya has to be a capacitance Ca. Determine Lb, Ca 
and Lc (assuming that Yc must be the admittance of a pure inductance Lc) in 

relation to Ru, Rg, Cu and ω1. Write L' = 
+
b c

b c

L L
L L

, also calculating its 

algebraic expression. 

d) Determine transfer function T = V2 / V1, its natural frequency fn and 
its quality coefficient Q relative to Ru, Cu, ω1. Assuming that at a frequency 
of 110 MHz, a variation of −10 dB is accepted relative to low-frequency 
conditions, determine the value of Q, showing that if Ru = Rg, the previous 
hypothesis on Yc (where Yc is the admittance of a pure inductance Lc) is 
justified. What is the relative value of |T| in dB at 55 MHz relative to low-
frequency conditions? 

2) Matching on output using transformer between the transistors of the 
push–pull stage (class B) and load Rload = 50 Ω  

a) Modeling the presumably linear transformer: primary composed of 
resistance R1 in series with inductance L1, secondary composed of resistance 
R2 in series with inductance L2, with both inductances coupled by mutual 
inductance M. 

Write 2

1

=
Ln
L

 and 
1 2

= Mk
L L

. Write out the system of characteristic 

equations for an impedance two-port network, that is V1, V2 relative to I1, I2. 
Next, transform it into a system with hybrid parameters of type III: I1, V2 
relative to V1, I2 , establishing the equivalent electrical circuit.  
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What happens to the equations and the circuit if the transformer has no 
losses, that is if R1 = R2 = 0? And if in addition the coupling is unitary:  
k = 1? 

In the latter case, determine the input impedance (or impedance brought 
to primary) when the secondary is loaded by impedance Zch.  

b) Show that the amplifier allows (disregarding the reactive elements as 
a first approximation and considering the MOS drain as an ideal source of 
current) for the use of a half-load, Rload/2, as internal source resistance and 
the other half as load resistance. 

ID1 

Rload 

ID2 
VD2 

VD1 

 

Deduce the theoretical yield if matching is perfect (compensated 
reactance). 

In reference to the previous results, analyze and comment on the full 
circuit shown below. 
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Answer: 

1) Matching on input 

a) Adding and subtracting term Y12V1 to and from the first equation, and 
term Y12(V1 − V2) to the second, provides:  

 1 11 12 1 12 1 2

2 21 12 1 12 2 1 22 12 2

( ) ( )( )
( ) ( )( ) ( )

= + + − −
 = − + − − + +

I Y Y V Y V V
I Y Y V Y V V Y Y V

 

Corresponding to:  

I1 I2

V1
V2

Y11 + Y12

−Y12

Y22 + Y12 (Y21 − Y12) V1

 
If Y12 = Y21, this provides a passive two-port network:  

I1 I2

V1
V2

Ya= Y11+ Y12

Yb = −Y12

Yc = Y22+ Y12

 

b) With: 
11

21 12

22

= +
 = = −
 = +

a b

b

c b

Y Y Y
Y Y Y
Y Y Y

 

therefore: 1 1 2

2 1 2

( )
( )

= + −
 = − + +

a b b

b c b

I Y Y V Y V
I Y V Y Y V

 

c) If the output of the two-port network is loaded by admittance Yu, this 
gives Yu V2 = −I2 that, when carried into the second equation, provides: 
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2 1=
+ +

b

b c u

YV V
Y Y Y

 and by carrying this into the first: 

2
1

1

= = + −
+ +

b
e a b

b c u

YIY Y Y
V Y Y Y

 where Ya, Yb, Yc are pure susceptances. Taking 

Yu = Gu + j Bu where Gu = 1/Ru, Bu = Cuω  and setting 1=b
b

Y
jL ω

. 

Clearly, to obtain the real Ye, we should set Ya + Yb = 0 and  
Yb + Yc + jBu = 0. 

Yb
2 is then a real negative quantity. Furthermore, for matching at the 

generator, we must set 
2

2 1= = =b
e b u

u g

Y
Y Y R

G R
. 

Hence: 1=b
u g

Y
R R

 where =b u gL R Rω  at ω = ω1 = 2πf1 or alternatively 

1

= u g
b

R R
L

ω
. 

It is deduced that Ya = −Yb must be capacitive 1
1

1= − =a
b u g

jjC
jL R R

ω
ω

; 

hence: 

1

1=a
u g

C
R Rω

. 

So 1 1 1
1 1

1 1 
= − − = − − = − 

 
c b u u u

b b

Y Y jC jC j C
jL L

ω ω ω
ω ω

. If the bracket is 

positive, it is a capacitive admittance, otherwise inductive, where 

2
1 1

=
−

b
c

b u

LL
L C ω

 in the latter case where there is also 2
1

1 1 1
'
= + = u

b c

C
L L L

ω  and 

1 =b u gL R Rω . 
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d) Transmittance T is given by:  

2
2

1

1 1 1

1
1

1 1 1 11

= = =
+ + +  + + + + −  

 

b b c

b c u c b
u

b c u
u u

Y jL LV
V Y Y Y L LjC jjL jL R R C

ω

ω ωω
ω ω ω ω ω

 

Where natural frequency ωn = ω1 and quality coefficient Q = Ru Cuω1.  

To obtain 2
1 1 0− >b uL C ω , there must be . Writing u = ω /ω1:  

2

1( )
1

=
+ + −

c

c b

LT u
uL L j u
Q

; hence 
( )

222
2

1( )
1

=
+

− +

c

c b

L
T u

L L uu
Q

. 

For u = 2, there is 
(2)

20log 10 dB
(0)

= −
T
T

 resulting in Q = 2. Inequality 

 is then verified with Rg = Ru.  

This provides 
(1)

20log 6 dB
(0)

= +
T
T

. This solution thus leads to a variation 

of 16 dB between f1 = 55 MHz and fn = 2 f1 = 110 MHz, which is high for an 
amplifier supposed to have an approximately flat response in its bandwidth. 
To improve this response, a more complex solution should be used in which 
admittances Yb and Yc are not reduced to purely reactive  
elements but rather to associations, as per the real circuit provided at the end 
of the introduction of this exercise. 

2) Matching on output using a transformer between the transistors of the 
push–pull stage (class B) and load Rload = 50 Ω  

a) For the transformer, set: 1 1 1 1 2

2 2 2 2 1

( )
( )

= + +
 = + +

V R jL I jM I
V R jL I jM I

ω ω
ω ω

 

1>
u

g

R
R

Q

1>
u

g

R
R

Q
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Write 
1 2

= Mk
L L

, 2

1

=
Ln
L

 and 2
2 2' =

RR
n

. Hence: 

1 1 1 1 1 2
2

2 1 1 2 1 2

( )
( ' )

= + +


= + +

V R jL I jnkL I
V jnkL I n R jL I

ω ω
ω ω

 

Dividing the first equation by 1 1( )+R jL ω and carrying it over to the 
second provides a system with type III hybrid parameters:  

( )

1 1
1 2

1 1 1 1

2
1 21

2 1 2 1 2
1 1 1 1

( ' )

 = − + +
  
  = + + + + +  

V jLI nk I
R jL R jL

nkLjLV nk V n R jL I
R jL R jL

ω
ω ω

ωω ω
ω ω

 

The equivalent circuit then becomes:  

 I1 I2 

V1 
V2 

h'11  
−h'12 I2 

h'22  h'21 V1 

 

with 

( )2
1

11 22 2 2
1 1 1 1

1 1
21 12

1 1 1 1

1'       ;      '

'     ;     '


 = = + +
 + +

 = = + +

nkL
h h R jL

R jL R jL
jL jLh nk - h nk

R jL R jL

ω
ω

ω ω
ω ω

ω ω

 

where h′11 and h′22 are, respectively, an admittance and an impedance.  

For the transformer with no losses, R1 = R2 = 0, which provides:  
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I1 I2

V1
V2L1 nkI2

L2(1−k2)
nkV1

 

If in addition the coupling is worth 1:  

I1 I2

V1
V2L1 −nI2

nV1

 

NOTE.– In this case, the secondary cannot be transformed into a current 
source and the quadripole passed to the admittance parameters system. 

If V2 = n V1 = −Zch I2, the current source inside the primary becomes 
2

1
2− =

ch

n VnI
Z

, which is equivalent to a primary comprising L1 in parallel with 

impedance 2
chZ

n
. 

b) Disregarding the reactive elements, since the circuit is symmetrical, 
Rload can be separated into two resistances equal to Rload/2, and when the 
higher transistor is conductive with a current ID1, the equivalent circuit 
becomes:  

          

 ID1 

L1  
n =1 
k =1

Rload /2 

Rload /2 
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where the current source ID1 is loaded by Rload/4 since the lower resistance 
Rload/2 occurs in parallel on the other by means of the transformer, as if it 
played the role of the internal resistance of the generator supplying current to 
the higher resistance. Thus, no power is lost since the two half-load 
resistances each receive half of the total power. This system avoids half 
power loss in the internal resistance of the generator, reaching maximum 
yield for the class B circuit (78%), or even more when class C is used. An 
LC network should be added at the secondary to compensate the reactances 
due to the output capacitances of the transistors, as in the full circuit shown 
previously. 

2.5.2. Passive low-pass filtering of an ideal voltage source by a 
two-port network built with an LC ladder (single-ended ladder 
filter) 

A ladder network LC-n is a passive two-port network comprising n 
elements (with as many inductances as capacitances when n is even and one 
more inductance than capacitance when n is odd) responding to the 
following circuit: 

U1
U2C2

L1

C4

L3

C6

L5
I1

I2

 
circuit no. 1 

The inductances are numbered with odd integers and the capacitances 
with even integers. The two-port network comprising n elements is described 
by the admittance matrix. Assuming that parameters Y12,n and Y22,n are 

written 21, 12, 2

1
( )

−= =n n
n

Y Y
s Q s

 and 
2

22, 2

( )
( )

= n
n

n

S s
Y

sQ s
 where Qn(s2) and Sn(s2) are 

polynomials in s2 (of the type b0 + b1s2 + b2s4 +…), a property addressed 
through recurrence in question 3. 

1) Any passive two-port network can be represented by the following 
circuit in which Yij represents admittance (inverse of impedance) and  
Y21 = Y12:  
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I1 I2

U1 U2Y21+ Y22Y11+ Y12

−Y12 = −Y21

 
circuit no. 2 

 
a) Using circuit no. 2, find the equations providing I1 and I2 relative to 

U1 and U2 for a passive two-port network described by the previous 
admittances. 

b) How can two distinct elements of admittance Ya and Yb be arranged 
so that the global admittance is equal to Ya + Yb and what is then the fraction 
of the total current going into Ya? 

2) a) Determine transmittance 2

1

( ) =n
UT p
U

 when ladder LC-n represented 

by circuit no. 2 is closed on a resistance for which conductance is G (for this, 
write the relation between I2 and U2) first relative to Y21,n , Y22,n , and then 
Sn(s2), Qn(s2), G and s. 

b) In order to implement transmittance filter 

5 2 3 4 5
0 1 2 3 4 5

1( ) =
+ + + + +

T s
a a s a s a s a s a s  

find G Q5(s2) and S5(s2) relative to the 

terms of denominator of T5(s). 

3) Try to prove the relations giving Y12,n and Y22,n relative to the 
polynomials Qn(s2) and Sn(s2) by recurrence. Draw the circuits corresponding 
to both cases below using circuit no. 2, when U1 = 0: 

a) When adding inductance Ln+1 to ladder LC-n, find the relations 
providing I1 and U2 relative to I2 , Y21,n , Y22,n and Ln+1s when U1 = 0. 
Deduce Y21,n+1 and Y22,n+1 relative to Y21,n , Y22,n and Ln+1s then relative 
to Qn(s2), Sn(s2), Ln+1 and s. 

b) When adding a capacitance Cn+1 to ladder LC-n, find the relations 
providing I1 and U2 relative to I2 , Y21,n , Y22,n and Cn+1s when U1 = 0. 
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Deduce Y21,n+1 and Y22,n+1 relative to Y21,n , Y22,n and Cn+1s then relative 
to Qn(s2), Sn(s2), Cn+1 and s. Which is the admittance that remains 
unchanged?  

c) Deduce that Y21,n+1 and Y22,n+1 retain the same properties as Y21,n 
and Y22,n , and that as a general rule:  

- for n = 2k+1, odd :  S2k+1(s2) = S2k(s2) = S2k−1(s2) + s2C2k Q2k−1(s2) 

- for n = 2k , even :   

4) a) Show from circuit no. 1, using the elements of impedance associated 
in series and the elements of admittance associated in parallel, that Y22,5 
occurs in the form of a continued fraction:  

22,5

5

4

3

2
1

1
1

1
1

1

=
+

+
+

+

Y
K p

K p
K p

K p
K p

 

What do K5, K4, K3, K2, K1 represent, respectively? 

b) Using the relation giving Y22,n at the beginning of question 3, n = 5, 
and the result of 2) b), show by performing successive division (no more 
than 2) of the denominator or the remainder of the previous division by the 
numerator of Y22,n according to decreasing powers of s, that Y22,5 can be 
written in the previous form with coefficients, K5, K4, K3, K2, K1 functions of 
a5 , a4 , a3 , a2 , a1, a0. Use this method to deduce expressions of K5 and K4. 

Answer: 

1) a) The equations relative to circuit no. 2 are written as: 

1 11 12 1 12 1 2 11 1 12 2

2 21 22 2 21 2 1 21 1 22 2

( ) ( )( )
( ) ( )( )

= + + − − = +
 = + + − − = +

I Y Y U Y U U Y U Y U
I Y Y U Y U U Y U Y U

 

here again are the definition equations of the admittance two-port network 
after simplification. 

Q2k(s2) = Q2k −1(s2) = Q2k −2(s2)  +  L2k −1 S2k −2(s2) 
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b) The product of an admittance Ya + Yb by unique voltage V gives 
current I = (Ya + Yb) V, which is the total of two currents. Both elements are 
necessarily in parallel because they undergo the same voltage V and the ratio 

of currents Ya V over (Ya + Yb)V gives a fraction 
+
a

a b

Y
Y Y

 of the total current in 

the element with admittance Ya. 

2) a) When the port no. 2 of ladder LC-n is closed on a resistance whose 
conductance is G, there is I2 = −G U2 ; so carrying this into the equation 
gives I2: I2 = −G U2 = Y21,n U1 + Y22,n U2  

Hence: 21,2

1 22,

( ) = = −
+

n
n

n

YUT s
U G Y

 

that can be rewritten by replacing the admittances by their expressions 
according to polynomials Qn(s2) and Sn(s2): 

2

1

( ) = =n
UT s
U 2

2
2

1
( )( )
( )

 
+ 

 
n

n
n

S ssQ s G
sQ s

 

resulting in: 2 2

1( )
( ) ( )

=
+n

n n

T s
G sQ s S s

 

b) G s Q5(s2) can be identified with the odd degree terms of the 
denominator of T5(s) (that is 2 3 4 5

0 1 2 3 4 5+ + + + +a a s a s a s a s a s ) while S5(s2) 
with the polynomial’s terms of even degree which provides:  

2 3 5
5 1 3 5

2 2 4
5 0 2 4

( )
( )

 = + +


= + +

G sQ s a s a s a s
S s a a s a s

 

3) a) When inductance Ln+1 is added and when U1 = 0, circuit no. 2 
becomes:  
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I1 I2

U2

Y11,n+ Y12,n

−Y12,n = −Y21,n

−I1

Ln+1

Y21,n+ Y22,n

 
Hence the current division ratio (with Y11,n+ Y12,n short circuited, thus 

cancelling the current through it): 12,
1 2

12, 12, 22,

−
− =

− + +
n

n n n

Y
I I

Y Y Y
 leading to 

12,
1 2

22,

= n

n

Y
I I

Y
  

and 2 2
2 1 2 1 2

21, 21, 22, 22,
+ += + = +

− + +n n
n n n n

I IU L sI L sI
Y Y Y Y

 

deducing: 1

1

21,1
21, 1

2 1 22,0

22,2
22, 1

2 1 22,0

1

1

+
+=

+
+=


= =

+

 = = +

n
n

n nU

n
n

n nU

YIY
U L sY

YIY
U L sY

 

Carrying the admittance values relative to the polynomials Qn(s2) and 
Sn(s2):  

21, 1 2 2
1

2

22, 1 2 2
1

1
[ ( ) ( )]

( )
[ ( ) ( )]

+
+

+
+

− = +

 = +

n
n n n

n
n

n n n

Y
s Q s L S s

S sY
s Q s L S s

 

b) When capacitance Cn+1 is added and when U1 = 0, circuit no. 2 
becomes:  
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I1 I2

U2

Y11,n+ Y12,n

−Y12,n = −Y21,n

−I1
Cn+1

Y21,n+ Y22,n
 

Hence, the current division ratio is: 12,
1 2

12, 12, 22, 1+

−
− =

− + + +
n

n n n n

Y
I I

Y Y Y C s
 

leading to 12,
1 2

22, 1+

=
+

n

n n

Y
I I

Y C s
  

and 2
2

22, 1+

=
+n n

IU
Y C s

 

deducing:

 

1

1

1
21, 1 21,

2 0

2
22, 1 22, 1

2 0

+
=

+ +
=


= =



 = = +


n n
U

n n n
U

IY Y
U

IY Y C s
U

 

Carrying the admittance expressions function of the polynomials Qn(s2) 

and Sn(s2): 
21, 1 2

2 2 2 2
1

22, 1 12 2

1
( )

( ) ( ) ( )
( ) ( )

+

+
+ +

− =

 + = + =

n
n

n n n n
n n

n n

Y
s Q s
S s S s s C Q sY C s

sQ s sQ s

 

c) When adding a capacitance Cn+1, n+1 is even and thus n odd. Note in 
the numerator of Y22,n+1 that Sn(s2) is replaced by Sn(s2) + s2 Cn+1 Qn(s2); so for 
odd n = 2k−1: S2k(s2) = S2k−1(s2) + s2C2k Q2k−1(s2). Since for the next integer, 
no capacitance is added, there is also S2k+1(s2) = S2k(s2). 

When adding an inductance Ln+1, n+1 is odd and n even. Note in the 
denominator of Y21,n+1 and of Y22,n+1 that Qn(s2) is replaced by  
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Qn(s2) + s2Ln+1 Sn(s2); so for even n = 2k−2: Q2k−1(s2) = Q2k −2(s2) +  
L2k−1 S2k −2(s2). Since for the next integer, no inductance is added, there is also 
Q2k(s2) = Q2k −1(s2). 

4) a) When closing the port no. 1 of ladder LC-n on short-circuit U1 = 0, 
Y22,5 can be assessed directly by the ratio I2/U2, that is the equivalent 
admittance observed between the output terminals where voltage U2 is 
applied. 

U2C2

L1

C4

L3 L5 I2

 

Going from the left, L1 and C2 are in parallel, giving an admittance

2
1

1+C s
L s

, occurring in series with L3, with an impedance 3

2
1

1
1+

+
L s

C s
L s

, 

which occurs in parallel on C4, yielding an admittance 4

3

2
1

1
1

1

+
+

+

C s
L s

C s
L s

,  

which occurs in series with L5 to provide an impedance 

5

4

3

2
1

1
1

1
1

+
+

+
+

L s
C s

L s
C s

L s

, which may simply be reversed to provide 

admittance Y22,5 . 

Thus, identifying K5 = L5, K4 = C4, K3 = L3, K2 = C2, K1 = L1. 

b) According to questions 2 and 3(b): 
2 2 4

0 2 4
22.5 2 3 5

1 3 5

( )
( )

+ +
= =

+ +
n

n

S s a a s a s
Y G

s Q s a s a s a s
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Division of 5 3
5 3 1+ +a s a s a s  by 4 2

4 2 0+ +a s a s a  provides 5

4

a s
a

 as quotient 

and 32 5 5
3 1

4 4

   
− + −   

   

a a a
a s a s

a a
 as remainder. Hence, 5

5
4

=
aL

a G
. 

Division of 4 2
4 2 0+ +a s a s a  by remainder 32 5 5

3 1
4 4

   
− + −   

   

a a a
a s a s

a a
 

provides a quotient 4

2 5
3

4

−

a s
a aa
a

. Hence 4
4

2 5
3

4

=
−

a GC a aa
a

; etc. 

2.5.3. Dual-ended passive filter, synthesized by the image-
impedance method  

The aim is to create a band-pass filter with normalized angular cut-off 
frequencies 0.97 and 1.03, and additionally with attenuation poles at circular 
frequencies zero; infinite; 0.8 and 1.25. Resistance terminations are 
symmetrical and equal to R0 = 50 Ω. Minimum attenuation in stop band has 
to be 58 dB greater than that in pass band. The central frequency must be of 
10.7 MHz. 

1) Choose the type of cell to be used and their arrangement. Define the 
network. 

2) Find the value of the components, with termination resistances being 
equal to R0. 

3) Verify the minimum attenuation in stop band with help of asymptotic 
expressions.  

Answer: 

1) For the conditions applied, the choice is a (d) cell and an (e) cell used, 
respectively, to help the attenuation poles in the higher and lower stop bands. 
These are surrounded (f) and (g) cells redoubled and symmetrized for the 
attenuation poles at zero and infinite frequencies: 
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C'1e

C'0e

L'0e 

C'2e C'2e

L0d
C1d 

C2dC2d 

C0d

2L0f 

C1f 

C0f /2 

C1f 
2C'0g 

L'0g/2 

C'1g 

C'1g 

 

2) The termination resistances are noted R0 (not shown on the figure). 

The cutoff frequencies of cells (d) and (e) must be the same, noting the 
symmetrical attenuation poles ω'∞inf and ω∞sup, which leads to:  

( )
2 2 2 2

sup sup inf sup supinf inf
0 2 2 2 22 2

inf supsup sup sup inf0 sup inf2
∞ ∞

∞ ∞∞

 − −
 = −

− − −  
dC

R

ω ω ω ω ωω ω
ω ωω ω ω ωω ω

; 

0 2
0 sup

1

∞

=dL
C ω

;
2 2

sup sup
2 2 2

0 sup sup inf

1 ∞

∞

−
=

−dC
R

ω ω
ω ω ω

; 

2 2 2 2
sup sup inf sup supinf

1 2 2 2 2
0 inf inf supsup sup sup inf

1
2

∞ ∞

∞ ∞

 − −
 = −

− −  
dC

R
ω ω ω ω ωω

ω ω ωω ω ω ω
; 

( )( )
( )

2 '2 2 '2' sup inf inf infsup' inf
0 ' ' 2 2

sup0 inf inf sup inf

2 ∞ ∞∞

∞ ∞

− − 
= − 

−  
eC

R

ω ω ω ωω ω
ωω ω ω ω

; '
0 ' '2

0 inf

1

∞

=eL
C ω

; 

2 '2
sup inf'

2 2 '2
0 sup inf inf

1 ∞

∞

−
=

−eC
R

ω ω
ω ω ω  ; 

( )( )
( )

2 '2 2 '2
sup inf inf inf'

1 2 2
0 sup sup inf

2 ∞ ∞− −
=

−eC
R

ω ω ω ω

ω ω ω
. 

Then, determine the components of cells (f) and (g) by:  

2 2
sup inf

0 2
0 sup inf

−
=fC

R
ω ω

ω ω
; 1

0 sup

1=fC
R ω

; 0 sup
0 2 2

sup inf

=
−f

R
L

ω
ω ω

 for type (f);  

( )
' inf
0 2 2

0 sup inf

=
−gC

R
ω

ω ω
;
 

'
1

0 inf

1=gC
R ω

;
 ( )2 2

0 sup inf'
0 2

sup inf

−
=g

R
L

ω ω
ω ω

 

for type (g). 
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Numerical application provides:  

C0d = 78 pF; C1d = 51.5 pF; C2d = 259 pF; L0d = 1.81 µH; 

C'0e = 1.12 nF; C'1e = 1.71 nF; C'2ed = 341 pF; L'0e = 0.307 µH; 

C0f = 37 pF; C1f = 289 pF; L0d = 6.38 µH; 

C'0g = 2.40 nF; C'1g = 289 pF; C'2g = 259 pF; L'0g = 87 nH. 

Of course, capacitances in parallel or in series are merged into a single 
one by the usual formula. 

3) Zero and infinite frequency asymptotic image-attenuations for cells (d) 
and (e) are calculated from the following expressions by 20 log(Γ):  

2 2
sup inf

2 2
inf sup

0 2 2
sup inf

2 2
inf sup

1
exp( )

1

∞

∞

∞

∞

− +
−

Γ =
− −
−

d

ω ω ω
ω ω ω

ω ω ω
ω ω ω

; 

2 2
inf

2 2
sup

2 2
inf

2 2
sup

1
exp( )

1

∞

∞
∞

∞

∞

− +
−

Γ =
− −
−

d

ω ω
ω ω

ω ω
ω ω

 ; 

2 '2
supinf
2 '2

sup inf
0 2 '2

supinf
2 '2

sup inf

1
exp( )

1

∞

∞

∞

∞

−
+

−
Γ =

−
−

−

e

ω ωω
ω ω ω

ω ωω
ω ω ω

; 

2 '2
sup
2 '2
inf

2 '2
sup
2 '2
inf

1
exp( )

1

∞

∞
∞

∞

∞

−
+

−
Γ =

−
−

−

e

ω ω
ω ω

ω ω
ω ω

 

Providing 47 dB for the two asymptotic values. The image attenuation 

must be added twice: ( )

2 2
sup

2 2
inf

2 2
sup

2 2
inf

1
exp 2

1

−
+

−
Γ =

−
−

−

f

ω ω
ω ω

ω ω
ω ω

 for ω > ωsup and 

( )

2 2 2
sup inf
2 2 2
inf sup

2 2 2
sup inf
2 2 2
inf sup

1
exp 2

1

− +
−

Γ =
− −
−

g

ω ω ω
ω ω ω

ω ω ω
ω ω ω

 for ω < ωinf, for cells (f) and (g), which 
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quickly tend to a constant that can be evaluated quite precisely for  
ω = 10 ωsup and ω = ωinf/10. 

Using these expressions, the 40 log(Γ) image-attenuations can be 
deduced, finding 13 dB for both 47 dB cells (f) and (g). Adding to the 
image-attenuations of cells (d) and (e) provides 60 dB, which is greater than 
the requirement. 

2.5.4. Lattice filter 

The circuit of the symmetrical lattice is provided below: 

 ZA 

ZA 

ZB 

ZB 

Port 2  
(to end resistance R2 
or image-impedance  
Zi2) 

Port 1  
(to end resistance R1 
or image-impedance 
Zi1) 

 

1) Show that the reference potential (ground) can be placed so that the 
potentials are made antisymmetric relative to the median horizontal axis. 
Deduce the consequence of this for the currents. 

2) Deduce parameters Z and Y as a function of ZA and ZB, then the image-
impedances. 

3) In the case where ZA is the impedance of a quartz resonator (with the 
series capacitance C0 much larger than the parallel one C1) and ZB that of a 
capacitor C2, find the function of the two-port network as well as its image-
parameters (characteristic frequencies, bandwidth, asymptotic attenuations). 
Is the response curve symmetric in the frequency domain? How should the 
image-attenuation in the stop bands be designed? 

4) Show that the frequency of the attenuation pole can be set 
independently by calculating the voltage gain for a resistive load Rl. 

5) By keeping the lattice structure but loaded by the iterative resistance 
R0, apply the expressions provided in the course for voltage gain Gv and 
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input impedance, then determine the elements necessary to obtain voltage 

gain with all-pass transmittance 
2 2

2 2

2( )
2

− +
=

+ +
n n

v
n n

s s
G s

s s
ζω ω
ζω ω

. 

6) Show that a bridged-T structure such as the one below can, under a 
certain condition (to be defined), have the same parameters (Z for example) 
as the previous all-pass-type lattice filter. 

 ZW 

ZT 

ZV 

ZV 

V1 V2 

I1 I2 

 
Answer: 

1) Applying the ground in order to divide V1 into 2 parts equal in 
modulus and opposites, where V1 = V1/2 – (–V1/2), and similarly for V2, 
providing:  

R2 

R1 

ZA 

ZA 

ZB 

ZB 

V1/2 

–V1/2 

V2/2 

–V2/2 

IA 

I'B 

I'A 

I1 I2 

IB 

 
By symmetry relative to the median horizontal axis, since the voltages are 

antisymmetric, the currents must be likewise: I'A = – IA ; I'B = – IB since 
currents are related to voltages by means of a system of linear equations. 
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2) With I2 = 0, current I1 divides into two equal parts in two identical 

branches in parallel with impedance ZA + ZB , where 11 222
+

= =B AZ ZZ Z   

due to the symmetry relative to the median vertical axis. Similarly, Z21 =  
V2/ I1 can be calculated by means of the two voltage dividers  

ZA, ZB: ( ) ( )1 1
2 1 2

 
= − = − = − + + + 

B A
B A B A

B A B A B A

Z Z V IV V Z Z Z Z
Z Z Z Z Z Z

. Hence, 

21 122
−

= =B AZ ZZ Z  by symmetry relative to the median vertical axis. 

For the Y parameters, with V2 = 0, the ZA and ZB parameters are in parallel 

and two cells ZA // ZB are placed in series, thus 11 222
+

= =B A

B A

Z ZY Y
Z Z

. The same 

condition allows for the calculation of 

( ) ( ) ( ) ( )2 1 11 1

   
= − = − = −   

+ + + +      

B A B A
A B

B A B A B A B A

Z Z Z ZI I I I Y V
Z Z Z Z Z Z Z Z

, 

accounting for the current dividers, which leads to 21 122
−

= =B A

B A

Z ZY Y
Z Z

. 

The image-impedance (symmetrical relative to the median vertical axis) 

is calculated by 11

11

= =iT A B
ZZ Z Z
Y

. 

3) Simulating the quartz resonator with the following schematics,  
 

C1

C0 L0 

 
its impedance turns out to be: 
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2
0 0

0 20 1
1 2 0 1 0

0 0 0 1

2

2
0

2

0 1 2

11

( ) 11

1

( ) 1
∞

+
= =

 + + + + + 

+
=

 
+ + 

 

A
L C s

Z C s C CC s C C s L sL C s C C

s

sC C s

ω

ω

  

writing 2
0

0 0

1=
L C

ω  and 2 20 1
1 0

0 0 1

(1 )∞
+

= = +
C C a
L C C

ω ω  where 0
1

1

=
Ca
C

<< 1. 

Impedance ZA = j XA with reactance

2

2
0

2

0 1 2

1

( ) 1
∞

−
= −

 
+ − 

 

AX
C C

ω
ω

ωω
ω

 under 

sinusoidal conditions always results in the following response in linear 
scales:  

 

If ZB is the impedance of a capacitor C2, the image-impedance is 

2

= A
A B

XZ Z
C ω

, real when XA is positive (inductive ZA) and imaginary when 

XA is negative (capacitive ZA). The bandwidth is thus the interval [ω0, ω∞], 
surrounded by two stop bands; accordingly this is a band-pass. Its image-
attenuation ΓT is provided by ( ) 11 11coth

2
+

Γ = = A B
T

A B

Z ZZ Y
Z Z

, which is real 

when XA is negative (capacitive ZA), corresponding to the stop bands. The 
full expression is:   

 0      ω0   ω∞              ω 

XA 

 capacitive  inductive           capacitive 
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( )

2 2

2 0 12 2
0

2 2

0 1 22 2
0

1 ( ) 1
1 1coth
2 2

( ) 1 1

∞

∞

   
− + −   

   Γ = +
   

+ − −   
   

T

C C C

C C C

ω ω
ω ω

ω ω
ω ω

  

approaching 0 12

0 1 2

( )1 1
2 ( ) 2

C CC
C C C

+
+

+
 for ω 0 and approaching 

2 1

1 2

1 1
2 2

C C
C C

+  for ω → ∞. 

Since C0 is much lower than C1 in quartz, the two previous limits are very 
close to each other. Consequently, the response curve is almost symmetric. 
Since both of these asymptotic values contain the total of a quantity and its 
opposite, thus providing a minimum value when both quantities are equal, it 
is worthwhile to favor either one term or the other in each, for example with 
either C2 >> C1, or the opposite. Then, image-attenuation can be designed 

with 2

1

1coth( ) exp( )
2

Γ ≈ Γ ≈T T
C
C

in the first case. In order to augment this, 

several identical filters may be placed in cascade, which has the further 
effect of minimizing deviations between the image response curve and the 
real response curve in so far as the intermediate dipolar impedances 
approach the image-impedances.  

4) The voltage gain can be easily obtained from the Z parameters: 
21

11det
l

v
l

Z R
G

Z Z R
=

+
, that is 

2
2

lB A
v

B A
B A l

RZ ZG
Z ZZ Z R

−
= =

++
 

( )
( )2

B A l

B A B A l

Z Z R
Z Z Z Z R

−
=

+ +
. 

There is thus zero transmittance or attenuation pole at the frequency 
where ZA = ZB, independently of the characteristic frequencies of the 
previous question. 

5) Returning to the previous expression in which ZA ZB is replaced by R0
2:  
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( ) ( )
2
0

2
0 0 0

2 2
0 0

2 2
00 0

/
2 2 /

2

A AB A
v

B A A A

A A

AA A

R Z ZZ ZG
R Z Z R R Z Z

R Z R Z
R ZZ R Z R

−−
= =

+ + + +

− −
= =

++ +

  

and using the input impedance given at the end of section 2.1.5.1:  

11 0

2 0 22

det
0 2

+
==− +e V

Z R Z
Z R I R Z

 

  

( ) ( )2 2
0 0 00

2
0 0 0

2 2
0 0

0 02 2
0 0

/ 22
2 2 /

2
2

+ ++ +
= =

+ + + +

+ +
= =

+ +

A AA B A B
e

A B A A

A A

A A

R Z R Z RR Z Z Z Z
Z

R Z Z R Z R Z
Z R R ZR R
Z R R Z

 

An inductance L and capacitance C placed in parallel for ZA provide

2

1
1 1A

LsZ
LCsCs

Ls

= =
++

, which sets 
( )
( )

2
2

0 0
2

20

0

1
1

11v

ssR LCs Ls R C LC
G

sR LCs Ls s
R C LC

− ++ −
= =

+ + + +
 

that is identified with the form of the all-pass transmittance of the second 

order if 1
n LC

ω =  and if the damping coefficient is 
0

1
2

L
R C

ζ = . The 

elements can be calculated by 
0

1
2 n

C
Rζω

=  and 02

n

R
L

ζ
ω

= . Lastly, 

establishing the expression of impedance ZB: 

( )
2 2 2

2 20 0 0
01= = + = +B

A

R R R
Z LCs R Cs

Z Ls Ls
. It is thus the serial association of an  

inductance 2 0
0'

2 n

R
L R C

ζω
= = and a capacitance 2

00

2'
n

LC
RR

ζ
ω

= = . Hence the 

filter circuit:  
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6) Parameters Z11 and Z12 of the T-bridge two-port network can be 
determined by calculating the impedance of the associations that appear in 
the circuit for I2=0 in the first case and I1=0 in the second: 

( ) ( )1
11

1
2

/ /
20

+
= = + + = +

+=

V V W
T V V W T

V WI

Z Z ZVZ Z Z Z Z Z
I Z Z

 

1
12

2
1 0

=
=I

VZ
I

 is deduced from the calculation of  

( )1 2 2= − TV V Z I 2+ =
+

V
T

V W

Z Z I
Z Z

2 2+
+

V W T

V W

V Z Z Z I
Z Z

 and of 2 22 2 11 2= =V Z I Z I . 

Carrying over the expression of V2 into that of V1, after simplification, 

provides 
2

12 2
= +

+
V

T
V W

Z
Z Z

Z Z
. Note that 11 12 2

= +
+

V W

V W

Z ZZ Z
Z Z

. 

For the lattice, according to the response to question 2, 

11 12 2
= − =

+
V W

A
V W

Z Z
Z Z Z

Z Z
 thus ZV in parallel with ZW/2. Since ZA itself 

comprises two branches in parallel, there is clearly either ZV with jLω and 
ZW/2 with 1/ jCω (case 1), or ZV with 1/ jCω and ZW/2 with jLω (case 2). 
Next, calculate 11 12= +BZ Z Z  which after simplification gives 2= +B T VZ Z Z . 

Hence the deduction ( )1
2

= −T B VZ Z Z  when possible.  

  

R0 

R0 

C

C'
L 

L

C

C' 

L'

L' 
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In the first case, ZV = jLω; 2=WZ
jCω

;

1 1 ' 1'
2 ' 2 '
  −= + − = + 
 

T
L LZ jL jL j

jC jC
ω ω ω

ω ω
 and in the second case 

1=VZ
jCω

 ; ZW = 2jLω ; 

1 1 1 1 '' '
2 ' '
  −= + − = + 
 

T
C CZ jL jL

jC jC jC C
ω ω

ω ω ω
.  

In both cases, the difference must be positive, which requires 1 2
2

> ζ
ζ

 

using the expressions of C, C' or L, L' from question 5, implying 1
2

<ζ .  

This condition is often applied for an all-pass filter group delay corrector 
since the significant variations of the derivative of the phase for one filter are 
due to factors of the second order presenting a low damping coefficient, 
which requires compensation by means of the all-pass transmittance. The 
second version is to be favored, in which there are only two inductances (the 
R0 terminations can be replaced by iterative resistance cells or identical 
image-resistance):  

 

'
'
CC

CC
−

2L 

C C

L' R0 
R0

 



Appendix 

Notions of Distribution 
and Operating Properties  

While a function establishes a correspondence between a set of numbers 
and another set of numbers, a T functional (or form) is an application that 
maps a set of numbers (end set) to a set of functions or operators g (start set) 
belonging to a vector space by means of a function φ that should be 
indefinitely differentiable with bounded support or, alternatively, quickly 
decreasing. 

A distribution is a linear functional with respect to φ and g, which is 
calculated like a scalar product if g is assumed to be locally integrable, that 
is to say integrable as defined by Lebesgue, on any bounded interval (or 
support):  

< Tg, φ > = ( ) ( )
∞

−∞
 g x x dxφ  

For measurable subsets of ℝ, for which a length can be defined, 
Lebesgue’s integration approaches the result by summing “slices” with 
height dy, where y are the ordinates, in contrast to Riemann’s integration that 
approximates the result by summing rectangles of width dx, where x 
represents abscissa. These subsets, called X, form a σ-algebra if they have a 
complement, if the empty subset exists and if countable unions and 
intersections still generate another subset; therefore, a measure µ(X), which 
is related to the size of the “slices”, can be defined and enables us to 
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calculate the Lebesgue integral. In the following example we will only focus 
on the distributions that are useful for signal processing. 

A.1. Dirac distribution or Dirac impulse δa or δ(x − a)  

The Dirac impulse δa can be understood as an operator that makes 
obtaining the value of the function φ  at point a possible. In general, it can be 
written in the following form: 

< Tδa, φ > = ( ) ( ) ( )
∞

−∞

− = x a x dx aδ φ φ  

The generally adopted notation δ(x −  a)  suggests  that  it  is  a  function;  this  
is, however, not the case. The integral must be taken within the meaning of 
distributions. It makes sense if it is a Lebesgue integral, which is defined if 
the integrand can be integrated (it is then part of the vector space of 
summable functions denoted by L1), and in order to make g integrable, it is 
necessary and sufficient that |g| is so, that is to say that the integral be 
absolutely convergent.  

This implies that g(x) → 0 when x → ±∞ or that the support of the 
function or of the operator g(x) be bounded (g equal to zero outside of one or 
more closed intervals). In the case of the Dirac impulse, the support is 
reduced to a single point at the abscissa x = a (the size along x is zero) and 

the measure µ(X) = ( ) 1
∞

−∞

= − = a d x a dxδ μ δ  is unitary. 

– Application to the convolution product:  

( ) ( )
∞

−∞

− = h t dτ δ τ τ
 

( ) ( ) ( )
∞

−∞

− = h t d h tτ δ τ τ
. 

The Dirac impulse is the neutral element of the convolution product. 

NOTE.– If the integration interval is [b, c] instead of ]−∞,∞[ , the result is the 
same when the support a is included in [b, c] or b ≤ a ≤ c. Otherwise, the 
result is zero. 
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– Application to the Fourier and Laplace transforms of the Dirac impulse:  

[ ]exp 2 ( ) 1
∞

−∞
− = j ft t dtπ δ  and [ ]exp ( ) 1

∞

−∞
− = pt t dtδ . 

It can be shown that any pulse sequence fn(x) (rectangular, triangular, 
sinc, Gaussian, etc.) whose amplitude fn(0) tends to infinity and the width to 
zero while maintaining the area under the curve equal to 1, that is 

( ) 1= nf x dx  when n → ∞, converges toward the Dirac distribution. This is 
the case of:  

[ ]0

0

1 0
0

0

sin(2 )TF [1] lim exp 2 lim 2 ( )
2

−

−→∞ →∞

 
= = → 

 


nf

nfn n

nf t
j ft df nf t

nf t
ππ δ

π
 and 

symmetrically [ ]0

0

0
0

0

sin(2 )TF[1] lim exp 2 lim 2 ( )
2−→∞ →∞

 
= − = → 

 


nT

nTn n

nT f
j f t dt nT f

nT f
ππ δ

π
  

In summary:
1

1

-FT FT

-FT FT

( ) 1        1 ( )

( ) 1        1 ( )

 ⎯⎯→ ⎯⎯⎯→


⎯⎯⎯→ ⎯⎯→

t t

f f

δ δ

δ δ
 

Meanwhile, the replacement of δ(x) with fn(x) in ( ) ( )
∞

−∞
 nf x x dxϕ  does not 

necessarily lead to a converging integral. But it can be shown that 
2

1 sin( / 2)( ) lim
2 sin( / 2)→∞

  
 =  
   

n n

nxf x
n xπ

 involves convergence for all continuous 

functions φ(x) on a compact support. 

By extension, the infinite and periodic suites of Dirac impulses, known as 

Dirac “combs” 0( )
+∞

=−∞

−
k

t kTδ  with a period T0 in the time domain and 

0( )
+∞

=−∞

−
n

f nfδ  with a period f0 in the frequency domain can be devised. 
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A.2. Derivation of a distribution and derivation of discontinuous 
functions 

The derivative of a distribution < Tg , φ > is obtained by the distribution 

associated with g', the derivative of the function: < Tg' , φ > = '( ) ( )
∞

−∞
 g x x dxφ . 

Since g' is not necessarily defined, it is useful to calculate the result of the 
integration by parts:  

[ ]'( ) ( ) ( ) ( ) ( ) '( ) ( ) '( )
∞ ∞ ∞

∞

−∞
−∞ −∞ −∞

= − = −  g x x dx g x x g x x dx g x x dxφ φ φ φ  

= − < Tg , φ ' >  

because g(x) → 0 when x → ±∞.  

Therefore by definition, it is established that:  < Tg', φ > = − < Tg, φ ' >. 

For δa': < Tδ' , φ > = − < Tδ , φ ' > = − φ '(a). δa' is therefore an operator 
that makes it possible to obtain the value of the derivative of the function φ 
at the abscissa point a, with changed sign.  

More generally, the nth derivatives of the Dirac distribution δa
(n) are 

defined by: 

( ) ( )( ) ( ) ( 1) ( )
∞

−∞

− = − n n nx a x dx aδ φ φ  

NOTE.– The Dirac distribution and its nth derivatives δa
(n) are operators that 

provide the value of the function φ or of its nth derivatives × (−1)n at point a 
when the product φ δa

(n) is integrated on an interval including abscissa a. 

If a function g(x) exhibits 1st-kind discontinuity at x = b with a step Δg, 
we look for the derivative of the distribution associated with g and we use 
two integrations by parts:  

− < Tg', φ > = < Tg,φ ' > = ( ) '( ) ( ) '( ) ( ) ( )
− ∞

−

−∞
−∞ +

+ =   
b

b

b

g x x dx g x x dx g x xφ φ φ   

− [ ]'( ) ( ) ( ) ( ) '( ) ( )
− ∞

∞

+
−∞ +

+ − 
b

b
b

g x x dx g x x g x x dxφ φ φ [ ]( ) ( ) ( )+ −= − −g b g b bφ

'( ) ( ) ( ) '( ) ( )
∞ ∞

−∞ −∞

− = −Δ − md mdg x x dx g b g x x dxφ φ φ ,  
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where gmd'(x) is the derivative of the function minus the discontinuity 
Δg U(t). Then  

< Tg', φ > = Δg < Tδb, φ > + < Tgmd', φ > 

or to simplify the notation, but still within the definition of distributions:  

g' = gmd' + Δg δb = gmd' + Δg δ(x − b) 

By extension to the case of the second derivative:  

g'' = gmd'' + Δg δ '(x − b) + Δg' δ(x − b)  

– Application to the derivative of the unit step function U(t): 
U'(t) = 0 + 1 δ(t) = δ(t). 

The derivative of the Heaviside step function within the sense of 
distributions is equal to the Dirac impulse.  

A.3. Laplace transform of distributions 

Let Tf
(n) be a distribution associated with the nth derivative of a function 

f(t) within the meaning of distributions. Let F(s) be the Laplace transform of 
f(t). By definition, it is defined that the LT of the distribution Tf

(n) is equal to 
sn F(s). 

The LT[δ(t)] is then simply LT[δ(t)] = 1 1=s
s

. 

This is by no means inconsistent with the derivation rule of the LT. In 
fact, if f(t) has a 1st-kind discontinuity Δf = f(0+) − f(0−) at the origin, for 
example, the LT of the functions without discontinuity indicates that: 

'( ) ( ) (0 )+⎯⎯→ −TL
mdf t sF s f  

However, f '(t) = fmd '(t) + [f(0+) − f(0−)]δ(t) = fmd '(t) + f(0+)δ(t), which 
gives after Laplace transform:  

'( ) ( ) (0 ) (0 ) ( )+ +⎯⎯→ − + =LTf t sF s f f sF s  
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This can be used to solve a circuit equation with the Laplace transform. 
For example, for a C-R circuit, we can write if x(t) is the input voltage and 
y(t) the output voltage at the terminals of R : q = C (x − y) for the charge 

within the capacitor, and by differentiating it yields: 1+ =dy dxy
dt RC dt

, which 

gives by taking the LT within the meaning of distributions sY(s) + Y(s)/ 
RC = sX(s).   

 

If x(t) = V0U(t), sX(s) = V0 , where: 0( ) 1=
+

V
Y s

s
RC

 and by identification 

y(t) = V0 exp(−t / RC)U(t) for the forced behavior.  

A.4. Distribution in principal value p.v.  
 
 

1
x

 following Cauchy’s 
definition 

When integrating a function φ (x) divided by x, it happens that the 
integral be only computable as a Cauchy principal value (except if φ (x) can 
be divided by x), that is to say by excluding the origin or a discontinuity 
point: 

0 0

( ) ( ) ( ) ( )lim lim
+ +

−

→ →
>

  
 = + = 
    

  / b

a x

x x x xdx dx dx dx
x x x x

ε

ε ε
ε ε

φ φ φ φ  with a < 0 and 

b > 0.  

Here, the second-kind discontinuity is located at the origin. The definition 

domain of the principal value p.v. ( ) 
 
 

x
x

φ  of the function ( )x
x

φ  is then  

]−∞ 0[ ∪ ]0 +∞[. 

C 
R y(t) x(t) 
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We can then define the distribution T associated with 1/x and applied to 

the function φ  (x): 1
1 ( )T ,  p.v. , < > = < > = 

 
/

x

x dx
x x

φφ φ and it can be shown 

that it can be written as '( ) Ln−
b

a

x x dxφ  from integration by parts. 

A more general result is 
0

( )lim
+→

>

 
  =

±  


x

x dx
x jε

ε

φ
ε 0

( )(0) lim
+→

>

 
 +
  


x

xj dx
xε

ε

φπφ . 

When φ(x) = 1 ∀x, φ(0) must be replaced by δ(0). 

– Application to the search for the FT of the sign function sgn(t) and the 
Heaviside step function U(t): 

Let sgn(t) = 2U(t) − 1, which equals −1 for t < 0 and +1 for t > 0, 

therefore it is an odd function, and s(t) = FT−1[j p.v. 1 
 
 f

], which is therefore 

also odd, because j p.v. 1 
 
 f

 is purely imaginary.  

However, FT−1[j2πf p.v. 1 
 
 f

] = 1 ds
j dt

 FT−1[j2π×1] = j2π δ(t) because 

f p.v. 1 
= 

 

f
f f

=1. 

Thereby ds
dt

 = −2π δ(t), which yields that s(t) = −2π U(t) + C .  

Let us determine the constant C by means of the odd symmetry of s(t) 
and the identity U(t) + U(−t) =1:  

s(t) = − s(−t)  −2π U(t) + C = 2π U(−t) − C  C = π  s(t)  
       =  − π [2U(t) − 1] 

Let finally: s(t) = −π sgn(t) 



230     Fundamentals of Electronics 2 

Since FT−1[Vs 1 
 
 f

] = 1 ( )  sgn( )=s t j t
j

π  or still FT[sgn(t)] = 1 1 p.v.
 
 
 j fπ

. 

Hence, the FT of U(t): FT[U(t)] ( )( )1= FT 1 sgn
2
 + =  

t

1 1 1( ) p.v.
2 2

 
+  

 
t

j f
δ

π
 

We could also demonstrate that sgn(f) = 1 1 TF p.v.
  

−   
   j fπ

. 

A.5. Solving equations with discontinuous functions derivatives 

The derivation of distributions can be used to solve equations, especially 
differential equations, within the meaning of distributions without resorting 

to the Laplace transform. For a capacitance C, ( ) = =dqi t
dt

( )= + ΔmddvdvC C q t
dt dt

δ  if a charge impulse Δq is suddenly injected at t = 0 

and in this case i(t) is a distribution. Otherwise (only physically possible 
case), it is a function only exhibiting 1st-kind discontinuities. 

Similarly, for an inductance L, ( )  ( )= = = + Δmddid die t L L t
dt dt dt
φ φ δ  is a 

distribution if we impose a sudden variation of the magnetic flux Δφ. 
Otherwise (only physically possible case), it is a function only exhibiting 
1st-kind discontinuities. 

For a circuit physically implementable C-R, if x(t) is the input voltage and 
y(t) the output voltage at the terminals of R: q = C (x − y) is the charge 
stored by the capacitor and we find within the meaning of distributions 

1+ =dy dxy
dt RC dt

.  

If x(t) = V0U(t): 0
1(0 ) (0 ) ( ) (0 ) (0 ) ( ) ( )+ − + −   + − + = − =   

mddy y y t y x x t V t
dt RC

δ δ δ . 
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This imposes that there is separate equality between distributions in two 

members and ordinary functions in two members, that is:  

0(0 ) (0 )    + −− =y y V for distributions and 1 0+ =md
md

dy y
dt RC

 for t > 0 for 

ordinary functions. As a result, we automatically have 
0(0 ) (0 ) (0 ) (0 )  + − + −− = − =y y x x V because there was no sudden charge 

injection, corresponding to the case where q = C (x − y) = ( ) i t dt  remains 
continuous.  

For the function ymd, it is deduced that: ymd(t) = K exp(−t/RC) at t > 0. 
Hence finally, y(t) = V0 exp(−t/RC) U(t) + y(0−) if C was initially charged 
and with y(0−) = 0 otherwise. 

C 
R y(t) x(t) 
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