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Preface

Today, we can consider electronics to be a subject derived from both the
theoretical advances achieved during the 20th Century in areas comprising
the modeling and conception of components, circuits, signals and systems,
together with the tremendous development attained in integrated circuit
technology. However, such development led to something of a knowledge
diaspora that this work will attempt to contravene by collecting both the
general principles at the center of all electronic systems and components,
together with the synthesis and analysis methods required to describe and
understand these components and subcomponents. The work is divided into
three volumes. Each volume follows one guiding principle from which
various concepts flow. Accordingly, Volume 1 addresses the physics of
semiconductor components and the consequences thereof, that is, the
relations between component properties and electrical models. Volume 2
addresses continuous time systems, initially adopting a general approach in
Chapter 1, followed by a review of the highly involved subject of
quadripoles in Chapter 2. Volume 3 is devoted to discrete-time and/or
quantized level systems. The former, also known as sampled systems, which
can either be analog or digital, are studied in Chapter 1, while the latter,
conversion systems, we address in Chapter 2. The chapter headings are
indicated in the following general outline.

Each chapter is paired with exercises and detailed corrections, with two
objectives. First, these exercises help illustrate the general principles
addressed in the course, proposing new application layouts and showing how
theory can be implemented to assess their properties. Second, the exercises
act as extensions of the course, illustrating circuits that may have been
described briefly, but whose properties have not been studied in detail. The
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first volume should be accessible to students with a scientific literacy
corresponding to the first 2 years of university education, allowing them to
acquire the level of understanding required for the third year of their
electronics degree. The level of comprehension required for the following
two volumes is that of students on a master’s degree program or enrolled in
engineering school.

In summary, electronics, as presented in this book, is an engineering
science that concerns the modeling of components and systems from their
physical properties to their established function, allowing for the
transformation of electrical signals and information processing. Here, the
various items are summarized along with their properties to help readers
follow the broader direction of their organization and thereby avoid
fragmentation and overlap. The representation of signals is treated in a
balanced manner, which means that the spectral aspect is given its proper
place; to do otherwise would have been outmoded and against the grain of
modern electronics, since now a wide range of problems are initially
addressed according to criteria concerning frequency response, bandwidth
and signal spectrum modification. This should by no means overshadow the
application of electrokinetic laws, which remains a necessary first step since
electronics remains fundamentally concerned with electric circuits. Concepts
related to radio-frequency circuits are not given special treatment here, but
can be found in several chapters. Since the summary of logical circuits
involves digital electronics and industrial computing, the part treated here is
limited to logical functions that may be useful in binary numbers computing
and elementary sequencing. The author hopes that this work contributes to a
broad foundation for the analysis, modeling and synthesis of most active and
passive circuits in electronics, giving readers a good start to begin the
development and simulation of integrated circuits.

Outline

1) Volume 1: Electronic Components and Elementary Functions [MUR
17].

i) Diodes and Applications
ii) Bipolar Transistors and Applications
1ii) Field Effect Transistor and Applications

iv) Amplifiers, Comparators and Other Analog Circuits
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2) Volume 2: Continuous-time Signals and Systems.

1) Continuous-time Stationary Systems: General Properties, Feedback,
Stability, Oscillators

ii) Continuous-time Linear and Stationary Systems: Two-port
Networks, Filtering and Analog Filter Synthesis
3) Volume 3: Discrete-time Signals and Systems and Conversion

Systems [MUR 18].

i) Discrete-time Signals: Sampling, Filtering and Phase Control,
Frequency control circuits

ii) Quantized Level Systems: Digital-to-analog and Analog-to-digital
Conversions

Pierre MURET
November 2017



Introduction

This volume is dedicated to the study of linear and stationary systems in
which time is considered as a continuous variable, as well as certain
extensions in the case of nonlinear systems. It is mainly centered on single-
input and single-output systems but a method capable of generalizing studies
to linear or nonlinear multi-input and multi-output systems is also addressed.
Generally, in order to highlight the properties of these systems, one must
necessarily rely on the analysis of electrical signals that either characterize
their response to an excitation signal or their natural (or proper) response.
The former output signal is dependent on the input signal and is called
forced response, whereas their natural response is independent of the
excitation signal placed on their input. Therefore, it is essential to begin with
the representations of signals by forming a close correlation between the
time domain and the frequency domain, which are connected by the Fourier
transform or decomposition into Fourier series. It is then natural to
customize the study to the case of stationary systems, for which the forced
response is invariant under time translation of the signal applied on input,
and which, in addition, follow the principle of causality. The unilateral
Laplace transform then proves to be useful and it leads us to the notion of
transfer function or transmittance, together with the Fourier transform in the
case of finite energy signals. The properties of these two types of transforms
and their application to the case of electronic systems are covered in the first
part of Chapter 1 while the consequences of causality are addressed in
Chapter 2.

The second part of Chapter 1 is dedicated to the study of feedback and its
applications, and then to the different methods for studying the stability of
the systems, or to means able to control their instability, as is the case for
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oscillators. A system is stable if, after a finite life span excitation, it finally
returns to its previous idle state, namely without any variation of electrical
quantities, and it is unstable otherwise. In the early stages of electronics,
feedback was paramount and it led to much progress and the development of
a multitude of applications, which are reviewed here. The mathematical tools
constituted by the time—frequency transforms mentioned earlier or
representations in the complex plane are then used to address problems of
system stability, including the case of those that incorporate a feedback loop,
known as looped systems. The extension to state variables and state
representation, which is based on the decomposition of the response of a
system into a set of first-order differential equations, is then addressed. The
previous concepts finally make it possible to detail the different ways for
analyzing oscillators’ operation, which initially can be considered as linear
systems at the limit of stability, but which in practice are always subject to a
limitation of the amplitude that requires nonlinearity to be taken into
account. The transition from predictable operation to a chaotic regime is
presented in the case of a model system.

In Chapter 2, the properties of stable electronic systems are particularized
to the case of networks and specially quadripoles. The different
representations of networks in the form of quadripoles are discussed, as well
as all notions of impedance or admittance deriving therefrom. Some are
measurable, thus experimentally feasible, while others are fictional, such as
image impedances, but open a highly fruitful scope of application, which is
the subject of the last section of this chapter. The concepts of matching,
whether power or impedance matching, are detailed, as well as their
consequences and rules to apply in practice in order to optimize the
operation of electronic assemblies and to best take advantage of the
components that are included.

The last part of Chapter 2 is devoted to stable systems that can be
analyzed as analog filters, namely satisfying the principle of causality, of
which the general consequences are presented. There are either circuits
incorporating one or more active devices such as operational amplifiers or
passive circuits, limited here to non-dissipative cases. The synthesis of these
analog filters is thorough, and can be used to determine the value of all the
components of a filter based on imposed criteria, most often a template in
the frequency domain. Two topics are presented; on the one hand for active
filters and on the other hand for non-dissipative passive filters. In the second
case, the method using effective parameters is an exact method, but not



Introduction  xv

covering all the applications, while the method of image parameters is
suitable to most requirements, with a deviation from the template that can be
minimized. The ways to make adjustments and all circuits necessary for the
practical implementation of the filters are detailed. Examples are given for
each important case, based on the transfer functions calculated by means of
software programs (here, MATLAB). The different possible choices for the
computational functions are presented in relation to the criteria to be
verified. In the case of the synthesis based on image parameters, formulas
allowing the calculation of all elements are demonstrated. Although the case
of systems with distributed (or scattered) elements, essential when the
wavelength becomes comparable to the dimensions of the circuit, is not
explicitly addressed, the description of the quadripoles using s-parameters,
as detailed in Chapter 2, easily adapts.



Continuous-time Systems: General
Properties, Feedback, Stability, Oscillators

The linear and stationary systems that concern us here deliver output
signal y(f) when input signal x(¢) is applied to them, solution to a rea/ and
linear ordinary differential equation, where ¢ represents the time variable:

dn dnfl d dm dmfl d
an _y+an—1 —j}++a1 _y+a0y = bm _x+bn—1 —j++b1 _x+b0x
dt" dt" dt dt" dr" dt

which can also be seen as a linear application:

x(f)—> System [—— (%)

Function exp(« t), with real or complex ¢, is of special importance since
it is the specific function of the system’s differential equation, which means
that if x(¢) = exp(« ¢), the output signal is also proportional to exp(« ). It is
this fundamental property that warrants the approaches discussed in the
following sections 1.1 and 1.2. Another method, based on the state-space
form, also applicable to nonlinear systems, is presented in sections 1.4.5 and
1.5.

Fundamentals of Electronics 2: Continuous-time Signals and Systems,
First Edition. Pierre Muret.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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1.1. Representation of continuous time signals

These signals are real electrical quantities and thus measurable functions
of time variable ¢, which itself is a continuous variable. They are also
referred to as analog signals. An additional representation is formed by the
frequency spectrum.

1.1.1. Sinusoidal signals

In general, any real sinusoidal signal of angular frequency @, and
constant frequency fi (@ = 2n f}) is written as y(f) = A cos(@t + ¢,), once a
time and phase origin has been selected. But in complex numbers, this can
also be written as:

exp[j(wlt +o, )] +exp [— j(wlt +o, )]

wn=4 >

Both exponential terms with imaginary exponent appear with the same 4
coefficient and are always complex conjugates, two conditions that are
required if y(¢) is real. The two vectors corresponding to images on the
complex plane rotate in opposite directions; thus, frequency —f; is
consistently found at the same time as frequency f;.

(4/2) exp[j(@it + @)] att=0

Figure 1.1. Representation of a sinusoidal signal on the complex plane
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The spectral or frequency representation is thus formed simply by two
lines of amplitude 4/2 at frequencies f; and —f;, and phase lines ¢, and —¢; at
these same frequencies.

A/2

Kl 0 l
_¢1:

Figure 1.2. Spectrum of a sinusoidal signal (amplitude solid line, phase dotted)

Indeed, sinusoidal signals of the same frequency form a two-dimensional
vector space for which a basis is provided by exp[janf] and exp[—jat]
(cos[ mt] and sin[ wyt] form another basis). Thus, we can write:

¥(t) = cexp| j2afit] +c_exp[—j2aft]
with

e
and

A .
c, = Eexp(—ﬂﬁl)

where ¢ and c¢_; are complex conjugates.

However, here only the first of these terms will be considered, with the
second provided by complex conjugates. This leads to rotating vector or
Fresnel representation: concerning the instantaneous values, only

A expl[j(ant + ¢)] is used in the complex plane (or rather A4 exp[j(ant + @)]

V2

if these values are considered to be root mean square (rms) quantities for
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power calculations). Again, y(¢) is found in the first case by projection on the
real axis, that is, by taking the real part of symbolic representation to within
a coefficient of 2.

1.1.2. Periodic signals

From sinusoidal signals, the case of periodic signals y(¢) with period T
equal to 1/f; can be generalized by performing the development as a Fourier
series. Periodic signals of period T also constitute a vector space but of
dimension 2N if signal reconstitution requires N sinusoidal signals of
harmonic frequencies fi, 2fi, 3f1, 4f1, ... Nfi. The series’ convergence to ys(¢)
is made certain if N approaches infinity:

. N . 27nt
yT (Z) = }/ILIEO Zn:—N Cﬂ eXp |:] T i|
where the coefficients are calculated by Fourier series decomposition:

1 LO+T 2ﬂ-nt
¢, ==| yr(@O)exp|—j T t

T Y6

Since y1(?) is real, ¢, and c¢_, are complex conjugates (same module and
opposite phase). Hence, the even and odd symmetries respectively for
module spectrum |c,| and for that of argument Arg{c,}.

Cs C4 C3 Co C Co C1 Cy C3 C4 Cs

A
uE ],
S S oA A 0 f i 3fi Ef SH

Figure 1.3. Spectrum of a periodic signal of repetition frequency f;
(modules in bold and arguments in dotted lines)
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By merging the conjugated terms, the real series can be written as:

2

L 7nt
v ) =c,+ ]1V1£r°1022|cn|cos{ 7 +¢n} where ¢, = Arg{c,}
n=1

1.1.2.1. Power of a periodic signal

Power (average energy over time) is calculated by Parseval’s rule, which
shows that this energy is independent of time or frequency representation (to
within the factor R or 1/R) and is obtained by a scalar product of the signal
by itself:

1y+T

1 2 = ?
S = ,I [y, O] dt=3 |e,|

n=—co

No ¢, ¢, term with n # n' appears since the basis of the vector space is
orthogonal (scalar products of all basis vectors are zero unless n = n'). It

should be noted that |c,* = ¢ ¢, and in the frequent event where power is

n-n

calculated from a complex voltage U or a current /, using Z Uﬂa or

n=

alternatively Z IWZ if U, and I, represent, respectively, the u(f) and i(¢)

n=-—oo

complex Fourier series decomposition coefficients.

1.1.3. Non-periodic real signals and Fourier transforms

If the signals are non-periodic, it can be assumed that the period 7 of the
signals approach infinity on condition that lim7c, is convergent (the signals

T—oo
have to approach zero for ¢t —zeo), replacing discrete variable n/T by
continuous variable f (frequency) and thus defining the Fourier transform of

. T .
»(H) by : limTe, = LT y(¢)exp[—j27 fildt thus:

FTy(0)] =

Y(f) =" y@yexp[-j2r fildt = [~ y(t)cos[ j2m fildi - j |~ y()sin[ j27 fi]de
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The symmetry properties are the same as for ¢, since y(¢) is assumed to
be a real function:

Y(-/)=Y(f)

By changing variable ¢ to —, only the sine term changes sign thus
providing:

FTy(-01= Y(/)
Obtaining y(z) by means of the reverse FT calculated from the Fourier
R 2 1 .
series by approaching the limit y(¢) = ;1m Z Tc, exp [ J FTM}? by replacing

lim Te, by Y(f), n/T by f, 1/T by df and the total by an integral:

FT'[Y(N] = () = [ Y(f)exp[ 27 fildf

Other properties of the FT are as follows:

— The FT and the reverse transform are linear applications:

If y(£) = ay1(£) + by (1) FT[y(0)] = aF[y()] + b FT[yx(9)]
IfY(f) = avi(f) + BYo(f)  FT[Y(H)] = oF [Y1(f)] + BFT[Y(f)]

— Derivation and integration of y(¢):

If () = FT()], FT[%}z joY(f)= 2z fY(f) and FT U y(t)dt]

= Lf) = M (integration by parts of the definition where y(¥) is replaced
jo  j2rf

by dy/dt).
— Delay theorem:

IfY(f) = FT[y()], FT(t —t0)] = exp(—j27 f1,)Y (f)

The phase alone is modified (phase delay if #, > 0 is a time delay) and not
the transform modulus.
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Figure 1.4. Triangular signals (left) and their spectrum (FT) (right). For a color
version of this figure, see www.iste.co.uk/muret/electronics2.zip

— Similarity and dilatation/contraction of time/frequency scales:

L f
IfY(f)=FT[(9)], FT ()] = MY [Ej (obtained by changing

variable ¢’ = o« in the definition, ¢rreal), as illustrated in Figure 1.4.

— Ordinary product of two functions and convolution product

If Y(f) = FT[(H)] and X(f) = FTx(], Z({F)= FT(@) x@)] =
[Y(r-vxw)av = [Y0)x(f -v)dv
and FT'[Y(f) X(N] = T yt—-7)x(7)dr = ]i y(@)x(t—7)dr or alternatively
FT { T y(t— T)x(T)dT:| = FT{ T y(@)x(t— r)dz’} =Y(H)X()
— Wiener—Kinchine and Parseval theorems:

Fr Yo =P Y0¥ (D)= [y@vt+ode= [ yope-odr,  the
autocorrelation function of y(¢) (after reversing the names of variables ¢ and

7) or rather FT{ if y@Oy(t —T)dt} = |Y(f)|2 .
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The autocorrelation function C,,(7)= J. y(@)y(t—7)dt measures the degree

of resemblance between the function and delayed function. Unlike the
convolution product, the integration variable operates with the same sign in
both factors under the integral symbol.

FTU y(@)y(t —7)dt} =|r(r )|2 is the Wiener—Kinchine theorem stating that

the FT of the autocorrelation function of y(¢) is equal to the squared modulus
of the FT of y(¢). This autocorrelation function may be calculated not only
for known (or determined) signals but also for random signals such as noise
defined only by a density of probability.

FI YO |= [y ool esp(aefodr = [ vov—ode—is rewritten

simply for 7= 0:
[[renfar= [y a

This is the Parseval theorem that allows us to perform the energy
calculation (clearly visible in the second member to within R or I/R
coefficient if y is, respectively, a current or a voltage) both in the time
domain from y(f) and in the frequency domain from Y(f). Thus, we can

proceed to “Y f )|2df , which is an energy with |y (f )|2 a spectral energy

density in J/Hz;

Y(f )| a spectral density of current or voltage within R or
1/R factor in A/Hz'"? or in V/Hz"*.

1.2. Representations of linear and stationary systems and
circuits built with localized elements

1.2.1. Representation using ordinary differential equation

Electric or electronic circuits built with localized elements are those
featuring elements in which instantaneous currents (and voltages) are the
same irrespective of the location considered in a conductor. Accordingly, it
can be assumed that the wavelength of these currents, voltages and
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associated fields is very large relative to the dimensions of these circuits
(approximation applicable up to approximately 1 GHz, corresponding to a
vacuum wavelength of 30 cm). Furthermore, the only operational elements
here are the sources of current and voltage, together with the linear passive
elements: resistance, capacitance, self-inductance and mutual inductance. In
electronics, this generally results from an approximation of linearization,
which is applicable over a voltage or current range that must be defined.

The result of these two hypotheses is that these systems are also
stationary, which is to say that their response is unchanging irrespective of
the instant chosen as the time origin, and that they can be described
mathematically by one or several linear ordinary differential equations.

The laws for linear electrical circuits (although this also applies in
mechanical engineering for forces or torques, velocities and movements) are

those of electrokinetics, valid for resistances (u = Ri), capacitances (i =C 7?)

and inductances (u = L%) (where coefficients R, C and L are assumed to be

constant if the system is linear), loop law and node law (system of linear
equation) (see the Appendix in Volume 1 [MUR 17]). Any system in which
value y(¢) depends on circuit elements and on an excitation x(#) can thus be
described by one (or several) ordinary differential equations of the form:

dn dnfl d dm dmfl d
a, —y+an_1 —j}+---+a¢1 —y+a0y =b, —x+b”_1 —jCJr---er1 —x+b0x
dt" dt" dt dt” dt” dt

All of these linear equations can also be constructed by means of the
superposition theorem. Solutions are always given by the total of the
equation’s general solution without the second member and a special
solution to the whole equation, the first corresponding to the system’s free
regime and the second to the regime forced by x().

If the system is stable, the equation’s solution without the second
member corresponds to a transient response that ceases after a certain
duration. This does not persist while the forced regime will continue. One
may assume that the forced regime has begun at 1 — —eo since the system is
stationary so its responses are independent of the time origin. Under
permanent conditions, if x(¢) = exp(& f), )(¢) is also proportional to exp(« ¢).
As shown previously, real signals that can be expressed as linear
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combinations of complex exponentials (as is the case for sinusoidal signals)
also verify this fundamental property. This allows for a transformation from
the time domain to the frequency domain, or alternatively, from real signals
to the complex plane, while simultaneously defining transmittance, which
draws out the proportionality relation between the complex representation of
input and output signals. These complex representations will be indicated in
the following with capital letters in the frequency domain or in the complex
plane.

X — System —— Y

The systems’ responses for various signals are studied in section 1.2.2.

1.2.2. Periodic permanent conditions and harmonic conditions

In permanent sinusoidal conditions at frequency & = 2m fi, x(¢) =
Xocos(2m f1f) if x(¢) is chosen as the phase origin, and y(¢) = ¥, cos(2m fit +
exp| j27 fit]|+exp[—j27 f;1)]

2

and y(z):YoeXp[i(zmtw‘)]Jr;Xp[_j (27-71”(/)1)], which duplicate each term of
the differential equation, on the one hand, into a term factor of exp(j27fi?),
with frequency f;, and, on the other hand, into a term factor of exp(—j27f?),
the complex conjugate, with frequency —f;. Since this equation has to be
verified irrespective of instant ¢, the only solution is that the two equations,
one written with exp(j2zfif) as a common factor, and the other with
exp(—j2afif) as a common factor, be verified separately. As a consequence,
the member to member total will also be the same.

¢1). These signals can be rewritten as x(¢) = X,

We can manage the first set of terms by writing Y(f1) = Y, exp(j¢;) and
X(fi) = Xy, and by simplifying both members by exp(j2xfif) after the
derivations have been performed. The result reads:

[ay G271 + any G271)" + ...+ ay (2710) + ao] Y(f)
= [by G275)" + by G2775)™" + ...+ by (j2715) + bo] X(fy)
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We also obtain a similar equation in which f; has been replaced by —f;.
Variable ¢ has disappeared.

Signals Y(f1) = Yo exp(jg) and X(fj)) = X, are typically complex
numbers expressed from a modulus and an argument. These are
representations of only half of the amplitude spectrum of real sinusoidal
signals; they are known as “symbolic signals” or cissoidal representations, or
complex exponentials.

It should be noted that the equation above is verified at each frequency f;
with coefficients of Y(f}) in the first member and X(f) in the second member,
which differs at each frequency since they are polynomials of variable f;.

1.2.2.1. Symbolic (complex) notation of signals, impedances and
admittances and power calculation in sinusoidal conditions

In sinusoidal conditions, the use of values Y(f;) and X(f;) whose modulus
is equal to the rms value of y(¢) and x(?) is preferred, that is ¥, / V2 and

X, / 2, respectively. The ratios of current / = Y(f;) and voltage V = X(f})
are then complex impedances or admittances.
to+T

Y, X
The active power P = T tJO. y(O)x(t)dt = T;T;COS @, is then obtained by:

P=Re(IV)=Re(I1V) :%(Il7+7V)

If the conditions are periodic but non-sinusoidal, a Fourier series
decomposition of the signals lets us process this equation as many times as
there are useful harmonics in the signals, at frequencies f1, > =2 f1, /3 = 3 f1,

. to deduce Y(f1), X(f2), Y(f5), ... as a function of X(f1), X(f2), X(f3), ... . We
can then recompose the total signal j(f) accounting for the signal’s
decomposition coefficients x(f).

If the signal is not periodic but has an FT, the transform of the differential
equation must be verified for each frequency f belonging to the infinite set of
real numbers.
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In all cases (periodic sinusoidal conditions or with calculable FT), that
can be grouped under the term harmonic conditions, this equation establishes
the equality of the coordinates of the two vectors representing signals in the
time domain after projection on a basis of exponential functions exp(j2mf ')
in the first member and in the second member.

Indeed, by taking the FT of both members of the whole differential
equation, where X(f) = TF[x(¢)] and Y(f) = TF[)(¢)], we obtain:

[ay G270 + any G270 + ... + ay (270) + ao] Y(f)

= [bu (G279)" + By 27" + ... + by (127) + bo] X(f)

Thus, by writing H(f) = Y(f)/ X(f), the ratio of FTs of both quantities
present in the system (or with @ = 27f):

Y(f) _b,(j27f)" +b,.,(j27f)" 4 4b (j27f )+,

H =
) XN a,(j2xf) +a,, (jzzzf)"’1 +ota (j27f)+a,

NOTE.— H(f) or H(jf) or H(jw), the transmittance of the system in harmonic
conditions, 1is a rational fraction of variable jf* or jw of m degrees for the
numerator and » for the denominator.

1.2.3. Unilateral Laplace transform of causal systems and study
of the various regimes

1.2.3.1. Transform properties

In the broadest cases applicable to all operating conditions, such as used
when studying system stability and transient regime, if x(#) does not
approach zero when ¢ —+oo, the unilateral Laplace transform should be used.
It can be deduced from the FT by multiplying the integrand by the unity step
U(f) (zero when ¢t < 0, one for ¢ > 0), which allows for the introduction of
causality, and by an exponential factor exp(—of), (with 6 > 0, giving a real

negative exponent), thus I y(OU®) exp[(—O'— j2rf )t]dt. These modifications
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will ensure convergence by inducing a faster decrease for ¢ — +eo. By
writing complex variable s = ¢ + 27z f, we obtain:

LT[(5)] = Y,(s) = [ »(¢)exp(=st)dt

The properties are the same as those indicated for the FT except for the
derivation, and we must add (if X;(s) = LT[x(?)]):

— Symmetry in the complex plane: if y(f) is real YL(E) =Y,(s)
(symmetry relative to the real axis).

— Exponential damping: if y(z) = x(f)exp(Ae) (real A), Yi(s) = Xi(s—A4)
(transposition parallel to the real axis of the LT).

—1If a x(f) signal has limited support [0,7] (i.e. zero outside of the
interval), the LT of the periodic repetition y(¢) = ix(t—nT ) appears to be

X, (s) =

1) = I1—exp(—sT) '

dx
— Time derivation and integration: if y(¢) = E then Y, (s) = sX, (s)—x(0").
More generally, if further derivations are possible:

n o . .
lfy(t)—d ,then Y, (s)=5"X,(s) Z “dx(O)

k=0

And if y(¢) = jx(z’)dl’ , then Y, (s)= X, () .
S

0

— Theorems of initial and final values: of the previous properties and of
integration by parts, we can deduce:

lim sY, (s) = y(0")

and

linngL (s) = lim y(¢)
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These latter properties are deduced by integration by parts in which the
derivative of function y(¢) applies. If y(¢) is initially discontinuous (but not
singular), which is often the case, the LT must be calculated in the open
interval ]J0 +eo[ rather than in the half-closed interval [0 +eo[ . This
restriction allows the use of the derivative of y(¢) in the latter properties
while simultaneously needing the assessment of y(7) at t=0" rather than at
0 or 0. Any other approach would be non-rigorous, leading to serious
inconsistencies, particularly when singular functions at the time origin are
concerned. Non-continuous functions can only be derived and transformed
by the LT in the context of distributions formalism (see Appendix).
However, the LT of ordinary functions can be retained for transforming
functions with finite discontinuities on condition that they can be obtained
by a time translation of one discontinuous function at ¢+ = 0 and by
application of the delay theorem.

1.2.3.2. Application of the Laplace transform to the system’s
differential equation

By taking the transform of both members of the system’s characteristic

y(t) Z d ”X(t)

differential equation Y a,

r=0

derivation property, we obtain:

and accounting for the

aOYL(S)‘f'ia [ VY(S) Z r— kld y(0+)]

= dt*

:bOXL(s)+ib ( X, (s)— Z i 430 )J

7
=0 dt

By transferring all of the independent terms of Y;(s) to the second
member, we discover that the response Y;(s) can be shared into two parts:
one depending on the initial conditions at #=0" that corresponds to the
system’s proper (or free) regime Yp(s), and one that does not depend on this
and that thus corresponds to the forced or steady-state regime Yq(s), with
Yi(s) = Yp(s) + Yi(s). Yp(s) also corresponds to the LT of the solution of the
differential equation without the second member:
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: a(Zs dky(0+)j $h ( = i dlx(0*>]

=0

while Yx(s) is given by the result of the product of the transmittance H(s) by
XL(S):
prs”

Yo (s) =X, (5) = H(s)X,(5)

r

"
r=0

Zas

However, it should be noted that the denominator is the same for both
signals, which would suggest characteristics of the same nature, as addressed
below in this section.

The properties of the convolution and ordinary products are also applied
to the LT; one can deduced that, since the LT and FT of y(¢) are given by an
ordinary product, y(¢) is given by a convolution product of x(f) with a
characteristic function of the system.

Furthermore, the expression of H(s) is strictly identical to that deduced in
harmonic conditions obtained by replacing j@by the complex variables.

CONCLUSIONS.— Transmittance H(s) is a rational fraction whose
polynomials have only real coefficients b, in numerator and a, in
denominator, which are, respectively, the pth and rth order derivative
coefficients of the input and output signals in the system’s differential
equation. The roots are thus necessarily real or complex conjugates.

Moreover, there is complete identity for the expressions of H(s) and
H(jw) obtained, respectively, by the ratio of the Laplace transforms for
steady-state input and output signals and the ratio of FTs for input and
output signals.

The roots of the numerator are called zeros, noted as z; and those of the
denominator poles, noted as s;:
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Hesy=n 5] Gma=z)s=z)
0 wo

(s=s)(s=5,)(s—5;) " ’

which can also be written by grouping the terms whose roots are complex
conjugates (with H, or Hy’ real constants) and by factoring all of the roots:

2 2
N N N N N N
. (1+J[1+j---[1+2§’21+2J[1+2§’22+2j---
ij @ @, @y W Wy Wy
2 2
(1+SJ(1+SJ--.[1+2441S+S2J(1+z§4zs+szj--.
w3 1 w32 w4 1 w4 1 w42 a)42

This expression is written in reference to cases in which the roots have a
real negative part, a property of stable systems as seen further. Here, the
three characteristic factors of elementary transmittance may be found:
1) s? corresponding to a pole at infinity if ¢ >1 and at origin if ¢<-1,
single if g =1, multiple if |g| > 1; 2) the first degree polynomials give
first-order transmittances, with a real and negative root, so that —a@;, —@»,
-y, —Ws...; 3) second-degree  polynomials give second-order

H(s)=H(',(

0

transmittances, with two complex conjugate roots —a)ﬂ(g’z]i J 1—4’221),

_wzz(gzzij 1_{222)’ _a)4l(§4li_j\/1_é’fl)’ _w4z(§4zij\/1_§fz), where the

¢ are the damping coefficients. ...

1.2.3.3. Properties of elementary transmittances in harmonic regime

In the harmonic regime, s is replaced by j27' = j@ and again we find the
three types of elementary transmittances, corresponding to: 1) monomials;
(2) first-degree polynomials and 3) second-degree polynomials in which 2¢
(where {'is the damping coefficient) can be replaced by 1/Q, the reverse of
the quality coefficient. Each is characterized by a break frequency f.= &.2x.

The study is performed in the Bode plane, that is in logarithmic

coordinates or in decibels (=dB) for |H(1' w)| or |H(j27g‘)| and in
semilogarithmic coordinates for Arg{H(jw)} or Arg{H(j2zf)}. The
logarithm of the whole transmittance is then easily obtained by means of the
total of elementary transmittance logarithms and the argument of the whole
transmittance by the totals and differences of individual arguments according
to the position of the numerator or denominator of each elementary
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transmittance. If K is the modulus of the logarithmic scale, K log|H(j27g‘)| is
plotted according to K log(f) or alternatively, for elementary transmittances,
we can work with the reduced frequency u = f/ f;;, and do plots as a function
of U=K 10g(f/f,-j). K can be equal to 20 dB (decibel) and in this case, the
vertical scale becomes linear with a dB graduation of 20 dB for a decade.

For a first approximation, the study is performed by means of asymptotic
diagrams in which only the predominant term is considered, which amounts

to studying only K10g|H(j2ﬂj)| in relation to K log( /), so K10g|H(u)| =

U
K log(iJ = uKlog(u)=uU line of slope 4 in the valid region of the
i
asymptotic approximation, so for u < 1 or alternatively u > 1, thatis f< ﬁj

or > f.

Another graphical representation is performed when plotting the complex
number H(jw) in the complex plane. This is the Nyquist diagram, in which
frequency plays the role of a variable parameter, taking values from 0 to
infinity. This graph has the advantage of clearly showing the position of the
image of the complex number representing transmittance in the complex
plane and thus facilitating the visualization of its modulus in linear
coordinates and moreover its argument. However, we should add
graduations indicating frequency or u on the curve if we also require
information concerning frequency.

The elementary first- and second-order transmittances are presented in
detail in the following:

— In this case (2), writing H,(u)=1+ ju ; and for the inverse, corresponding
to the low-pass filter [H,(w)]" :H;" the plots are obtained as shown in
ju

Figure 1.5.
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Figure 1.5. Bode and Nyquist diagrams of a first-order low-pass filter [H1(u)] !
in full lines and H+(u) as a dotted line in the complex plane. For a color version of this
figure, see www.iste.co.uk/muret/electronics2.zip

4§

For u = 1 where f'=f, (cut-off frequency), we obtain: |H,|" = 1/\2

where 20 log‘H1|’1 =-3 dB and Arg{H, '} = —45°, while the signs are
reversed for H;.

—In this case (3), we write: H,(u)=1-u"+2jlu where f,= @, /27 (natural
1

1=’ +2j¢u

order low-pass filter transmittance. Bode and Nyquist diagrams of [H,] " are

shown in Figure 1.6.

frequency) and u ={Jf, We then have: [H,w)]" = , the second-
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Figure 1.6. Bode and Nyquist diagrams of a second-order low-pass filter with
transmittance [Hz(u)]" (from the highest to the lowest curve, the { values, displayed
as z inside the figure, are 0.05, 0.5, 0.707, 5 in the Bode diagrams at left and from
the lowest to the highest 0.2, 0.5, 5 in the Nyquist diagram at right). H»(u) is plotted in
the case = 0.5 as a dotted line in the complex plane. For a color version of this
figure, see www.iste.co.uk/ muret/electronics2.zip

If {>1 (or Q < 1/2), Hy(u) is decomposed into a product of two
elementary first-order transmittances:

[1+ju(§+\/§2 —1)][1+ju(§—«/§2 —1)]

Ju 1+ Ju
C-NC-D]|| €+ -1)

or alternatively| 1+
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thus returning to the previous case of the first-degree polynomials.

In any case, when u = 1, H2| =2¢=1/ Q and Arg{Hy(u)} = 90°.

Furthermore, atan( 2§uj = 45° or 135° when 12g”u =+1 that is for

2 2
Uip = \/§2+1i§.

—u —u
Distance |u, — uj| between these last two values is equal to 2 {'= 1/Q and

allows for {to be determined knowing f, according to the previous property:
Arg{T>(u)} =90° foru =1, thatis f=/,.

The smaller the damping coefficient ¢, the less the deviation |u, — uy]
(phase variation faster as damping is smaller and also as resonance is greater
when Q is higher).

1
If ¢ <$ (or O > %), the minimum value of |H2| occurs for

u, = J1-2¢* and in this case |H2|min = 2{\1-¢* (resonance). In

electronics, the expression of H,(u) is often rewritten in a more

symmetrical form as: H,(u) = %{1 +jO [u _lﬂ .
u

Other elementary transmittances are as follows:

— Band-pass filter:  H,(u)= Ju — = Q
1—u® +Lu 1+jQ[u—l}
0 u
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Figure 1.7. Bode and Nyquist diagrams of a second-order band-pass filter (from the
highest to the lowest curves, the { values are 0.06, 0.6, 0.707, 6 in the Bode diagram
at left and 0.2, 0.6, 6 in the Nyquist diagram at right). For a color version of this
figure, see www.iste.co.uk/muret/electronics2.zip
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Figure 1.8. Bode and Nyquist diagrams of a second-order high-pass circuit (from the
highest to the lowest curves, the { values are 0.06, 0.6, 0.707, 6 in the Bode diagram
at left and 0.2, 0.6, 6 in the Nyquist diagram at right). For a color version of this
figure, see www.iste.co.uk/muret/electronics2.zip

Transmittance Hs(u) is Q (real) for u =1 (resonance). A symmetry
of |H;(u)| relative to the vertical axis at u = 1 occurs in the Bode plot while a
symmetry of Hs(u) relative to the real axis exists in the Nyquist plot. Phase
is deduced from that of the low-pass by adding +90° (or 7/2 rad) to the
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argument of the numerator, inducing a symmetry of Arg{H3(u)} relative to
the origin located at Arg{H;(1)} = 0.

2

— High-pass filter:  H,(u)=—— —= JQu 1
- +Lu 1+i0lu——
0 ]Q[“ u}
The maximum value of ‘H4(u)| here occurs for u'.= . in cases

1-2¢7

where ¢ < L and is |H L) = — 1 Phase is deduced from that of the

V2 20 1-¢2

low-pass by adding 180° (or & rad) to the numerator’s argument.

1.2.3.4. Transient responses to a causal-type excitation (x(t) = 0 for
t<0)

Transform Y;(s) is calculated from the general expression given in section
1.2.3.1, and then searching for the original exponential responses in y(¢) after
partial fraction decomposition over the reals into fractions with linear and
quadratic denominators and the use of a dictionary of Laplace transforms
(see below).

It should be noted that the denominator D(s) is the same for both terms
Yp(s) (proper regime) and Y(s) (forced regime) and that, as a consequence,
the transmittance poles are the same and of fundamental significance. They
determine the aspect of the transient response by means of coefficient A4 of
exponent A¢ appearing in the exponential functions contained in y(7).

We can rewrite the denominator D(s) from section 1.2.3.2 in the form of
a s polynomial factorized in the first-degree polynomials, and in second
degree only for those with complex poles (i.e. if < 1 or Q > %)

D(s):(s+a)3,)(s+a)32)---(s2 +2§4]a)4ls+a)f,)(s2 +2§420)42s+a)fz)~--

The map of poles, that is the roots of D(s), in the complex plane is those
composed of negative real values (or exceptionally positive, however the
system is unstable in this case) —a3, , —@s, , ... and complex conjugated

roots, that are symmetrical relative to the real axis —ay, (g“ NI EYe ),

—wp (¢t j1-8,, ) .. with @;> 0.
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Type H(s) Step response at ¢ > 0
! 1 —exp(-m?)
t
1* order low-pass 1+5
@ f
) exp(-a?)
@

1* order high-pass .
1+
@

2 Orzizr:c;\;-pass M 1- exj%?;t) cos[@,1- -]
o with sin(g) = ¢
S
2" order passband @,

(¢<D

7 exp(—{w, 1) . 2
———2 1 "sin[w,+/1-{"¢]
1+2§S+ESJ VI=¢7
[ ) ]Z
2" order high-pass @, exn(—
B A — p(—={w,t) 2
1 2 ———=>cos[w,\1-{"t+¢,]
(=D 1+2§—; +[—; ] ﬁ d ?

NOTE.— The step response for the products of the transmittances above is
obtained by the convolution of the individual time responses if the numerator
and denominator are under the form of first- and second-degree polynomial
products. If the rational fraction has been completely decomposed into a sum
of fractions with first- and second-degree denominators (total of elementary
transmittances), we must simply add the corresponding step responses.
When one wants to explicitly introduce the unit step U(f), the rules of the
distribution for LT (see Appendix) must be applied, which makes the Dirac
impulse appear after derivation in the time domain, in the case of high-pass
transmittances (see Chapter 2).
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Let us return to the system equation replaced by a block diagram in which
transmittance H(s) = N(s) / D(s) is set, which allows for Y(s) = H(s) X(s) to
be obtained if the initial conditions (»(0") and its derivatives) are zero and in
harmonic state by replacing s by jo or j2xf":

Ns—— HS [— Xy)

In the case where x() is a unit step U(f) (zero for ¢t <0, =1 for ¢ > 0), the
step response is obtained after searching in H(s)/s the original exponential
elementary functions of the transmittances presented in the previous table.

1.2.3.5. Pole map in the complex plane and interpretation

The transmittance poles are the roots of the denominator

D(s)=(s+ay, ) (s+ @) (5" +20 0,5+ @}, ) (s° +28 0,5+ @}, )+, that are
-y, —@p, ... in first-degree polynomials and —ay (g’ﬂijw/l—ﬁl),

— W (g” wE 1= ) ,... in the second-degree polynomials. As seen in the

previous section, only the poles have an influence on the transient response
since the roots of the numerator (the zeros) no longer appear as special
values after partial fraction expansion of the rational fraction H(s). The
presence of simple real poles suggests non-oscillating and exponentially
damped responses, while complex conjugate poles leads to exponentially

damped oscillating responses. For a complex pole —ay, (; e NIETY 421),

with natural angular frequency ay;, the modulus is constant and equal to ay;
irrespective of {4; (Figure 1.9). The argument is equal to 7+ Acos{y,
corresponding to a vector whose extremity is located in the left half-plane
since the real part is negative. When {;; goes from 0 to 1, both conjugate
poles then describe a quarter circle of radius @, in the complex plane. If the
damping coefficient increases above 1, the poles will become real and move
away on both sides from value —ay, located on the real axis, with values

W51, W3y = (;4] +/2 _1) (Figure 1.9).
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Figure 1.9. Map of transmittance poles

1.3. Negative feedback

Many analog electronic systems are made by means of negative feedback
that allows for certain properties to be improved and for the development of
new systems. Considering only forced conditions, a one-input-one-output
system with negative feedback can be represented by the following
functional diagram (or block diagram) in which all the quantities are
dependent on the complex variable s.

E —p K > A » S

B [¢—

Figure 1.10. Block diagram of a negative feedback system

Signal € =KE — BS is multiplied by A4 to give S = A(KE — BS) = KAE —
ABS, then:

or alternatively S_py-_H
1+ A4B E 1+ 4B

S=E
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where A is the open loop gain, AB is the loop gain and H is the closed loop
gain.

1.3.1. Inversion of a transfer function

It should suffice that AB >> 1 so that SzE%, which is reduced to

S~EL ifK=1.
B

The transfer functionis H =

BS—-BS=0.

and since KE = BS, we have € =

S_K
E B

This is the basis of operational amplifier systems, which have high 4 gain
in open loop, but prone to variation, which can be escaped by means of
negative feedback. For example, a voltage amplifier can be obtained in

. .. . R

closed loop by reversing the voltage divider function B = 2 IR .
1 + 2
R2 R2
Rl Rl
T £ l — € i N
Ve T Vs + T v,
™ Ve T ‘:“_:\ ™

Figure 1.11. Inverting amplifier (left) and non-inverter (right) circuit

. 14 .
Neglecting input currents:—e =BV, +(1-B)V, = —j for the inverter and
e=V, -BV, =% for the non-inverter; hence the deduction in the general
case, and since AB >>1:

V. AB-1) 1 R
V. 1+4B B R
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R .
4 —>i:1+—2 for the non-inverter. These
1+4B B \

results can be obtained directly by initially assuming £= 0.

. V
for the inverter and — =

This operation can be applied to nonlinear functions to obtain the
reciprocal function. For example, multiplication or raising to square placed
in the return loop provides an analog division or a square root function
(assuming €= 0 initially):

VxVs

Vz
2 —— 1y

w1 X

R

Ve T Vg=-— VEVo
14
«n X

Figure 1.12. Divider (left) and square root function (right),
with Vj as a constant voltage

CONCLUSION.— Negative feedback leads to implementation of the reverse
function or of the reciprocal function to that present in the return loop if the
modulus of the loop gain is much greater than 1.

1.3.2. Linearization of a nonlinear system

The relation between closed-loop transfer function variations and their
open loop counterparts is deduced from the logarithmic derivation of H:

dA

d_sz(LogH)zd_A_ Bdd _ 4
H A 1+AB 1+ AB

The relative variation of 4 is divided by 1 + AB >> 1 and the
nonlinearity can then be reduced in the same proportion. In terms of
applications use, we can point to feedback in B or AB class amplifiers
working to reduce distortion at the zero crossing of the output current, the
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suppression of diode threshold in rectification (see Figure 1.13) and
improvement of operational amplifier linearity.

R

R VsZ
Vs 1

NN

Figure 1.13. “No threshold” rectification

1.3.3. Gain-bandwidth product for first-order low-pass systems

If A(jH) = 4 where A, is real, the open loop gain is 4% = 4, at f<< f;
1+
h
and the high-frequency asymptote is A =A'ﬂ—;‘. This is produced for
J

operational amplifiers with unity gain compensation that results in a —20
dB/decade slope until the frequency Af;.

If the feedback coefficient is real, being B = By:

y
-4 . fo L lf if 4,B,>> 1
AB i vaB, Boej L
fl‘ AOBOfl

which shows that H** = 1/B, at low frequency (LF) and that the high
_ A

frequency (HF) asymptote is still H"™" "
J



Continuous-time Systems: General Properties, Feedback, Stability, Oscillators 29

dB 4 20 log|A4| or |H|

20 log|Ao| 4 HF asymptote:

/ 20 log|Aofi/ fl

20 log|1/Bo 1

of £ AoBo fi \

Figure 1.14. Asymptotic Bode diagram of operational amplifier circuit gains

The high-frequency asymptote remains the same in closed loop as in open
loop or, in other words, the gain-bandwidth product (= LF gain x upper
cutoff frequency), equal to A4, f; is likewise unchanged.

In some cases, this rule is not accurately set, particularly when the
number of parameters is greater than 3 (here the parameters are only Ay, f;
and By); nonetheless, negative feedback always increases bandwidth.

1.3.4. Simultaneous negative and positive feedback

This situation can be found in operational amplifier impedance converters
fitted with two return loops, one on the inverter input and the other on the
non-inverter input. Input impedance can be calculated from the evaluation of
Zb

Z,+Z,

I, and the elimination of V; and & using relations V,

=V, +e,

Vi=A¢€ and Z,1,=V,-V,.

Z

A1+ 2Z2,12,)
A-(1+2,/2,)

. . V.
After calculation this gives: [—‘
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Figure 1.15. Impedance converter circuit

It is evident that this positive feedback has entailed a difference in the
denominator. Inside the bandwidth, 4 >> |1+Z,/Z;| and consequently:

In the simple case where Z,=Z,=R, input impedance is Z, with changed
sign. This circuit can work to create negative resistance, providing energy to
the external circuit when it is crossed by a current and is used in oscillator
circuits. Feedback coefficient B depends on the circuit into which the
converter is inserted. In particular, if an impedance Z; is positioned in series
e Z Z,
V. Z,+Z, Z,+Z,
the complex number AB in the complex plane will be the system’s stability
or instability determinant, as addressed in the following.

with the negative input, for V, = 0: =B. The path of

1.4. Study of system stability

Systems are strictly stable if the output y(¢) tends to zero asymptotic
value after the return to zero of a transient excitation x(¢) on the input.

In contrast, systems are unstable if, under the same input conditions,
output diverges or alternatively leads to a limited signal that does not
however approach zero.
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1.4.1. Time response: pole mapping

As discussed in section 1.2.3.1, the LT of y(#) is composed of the proper
response Yp(s) and forced response Y(s) = H(s) Xi(s), which is proportional
to input LT[ x(?)]:

ia [Z mdy(o )] ib{”'swdx(w] pr

r=1 k=0 1=0 +p 0 XL(S)

r r
Sas Sas
r=0

r=0

Y, (s)=

The initial conditions are only non-zero in the first fraction if the system
has enough energy stored in capacitances or inductances to dissipate. Thus,
nothing prevents a study of the possibility of an output divergence from zero
initial conditions, which is more severe. Moreover, it is evident that the
denominator, whose roots (the poles) determine the time response, is the
same for both terms. Accordingly, only the following is studied:

3,
Yo (s) =25 ——X () = H($)X, (5)

:
Sas

r=0

Following the same reasoning, the case of excitation with a Dirac
impulse, whose LT is 1, may be considered, yielding a more straightforward

Zm:b s?

P

conclusion. Hence, it should suffice to study H(s)= ”jo
Zars
r=0

whose inverse

r

Laplace transform LT ' is the impulse response. According to the
convergence or non-convergence of the output signal LT '[H(s)] toward
zero, the system will be stable or unstable.

Once the poles have been determined, we can then deduce the integer part
after division of both polynomials if m > n, and the following rational
fractions by partial fraction expansion into fractions with first- and second-
degree denominators:
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Zbl’sp m—n n' o
H(S):N(S):S:O _b_m ZSI"'Z Ar + Zzl BkS+2Ck -
D(s) as’ a, | i—o =1 S T8, k=n4 (S—Sk) + @,
r=0

where poles s, are real, possibly multiples of total number n'; s; and @, are,
respectively, the real part and the imaginary part of the complex conjugate
poles. The natural frequency is then the pole modulus, that is /& +s; .

When s, and s; have negative values, we obtain positive signs if the
denominators are expressed with positive numerical coefficients.

The table below presents the original or LT of each term, with s, as a

real pole, s; the real part of a complex pole ,U(¢) the step function and &7)
the Dirac distribution if needed:

F(s) A =TL {F(s)}
1 . n-1
= with n>0 h Ur)
SLZ 0
1
s 1%0)
1 an *
s" §(n)(t) *
. exp(s, HU1)
ﬁ t exp(s, 1) U)
_ " exp(s, t) u)
G5y withn>0 (n—1)!
wlc
m exp(sy £)sin( @, 1) U(¥)
s
(s—5) +@} exp(se H)cos(ax 1) U1)

*In terms of distributions (see Appendix).
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The LT of the integer part (if m > n) corresponds to the Dirac impulse
and their derivatives, which contribute nothing when ¢ > 0". Accordingly,
only rational fractions need to be examined here.

b & A
Among the LT of —mz—r, some are systematically divergent

a, r=1 (S -5,
(in cases of a multiple pole at origin, that is when s, = 0); and others only if
s, or s is positive due to factor exp(s,f) or exp(sy?) present in the time
response. And conversely:

THEOREM 1.1. — A4 system is stable if all the poles of its transfer function are
located on the left half plane (strictly negative real part) of the complex
plane.

The polynomial of the denominator is in this case known as a Hurwitz
polynomial.

1.4.2. Nyquist criterion in general case

If the roots of numerator N(s) of degree m and denominator D(s) of

m
P

b s
p= ! N(s)

degree n in the rational fraction H (s):;o—:— are not known,

Za s D(s)

r=0
nonetheless their number is known, m and n. Then, the Nyquist criterion is
based on the Cauchy theorem.

THEOREM 1.2.—

H(s) is supposed to be a function of the complex variable s, holomorphic
inside a closed contour C (i.e. single-valued and derivable), except in a
certain number of poles (singular points). If image P of s describes C in one
direction, image H of H(s) describes closed contour I'in the same direction
with a variation of the argument of H(s) equal to 2r(m; —n;), where m; and
n; are, respectively, the number of zeros and poles of H(s) included in
contour C.
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Figure 1.16. Nyquist diagrams of the complex variable s= o + jo
and of the transfer function H(s)

CONVENTION.— The direction of rotation giving positive angles measured
relative to the real positive axis is that indicated in the upper parts of
Figure 1.16, which is called counter-clockwise direction, whereas the
opposite rotation direction is called clockwise or direct.

If P follows closed contour C that encircles the right half-plane of the
complex plane (Nyquist contour) when radius R approaches infinity, in the
clockwise direction (as shown here) and if the number of zeros m of H(s) is
known in this right half-plane, the number of turns & done by H on I in the
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same direction is equal to m —n > 0, where #n is the number of poles in the
right half-plane. Accordingly, if £ > 0, the number of poles in this same right
half-plane may be deduced as equal to m — k (if, however, H follows I" in the
counter-clockwise direction & times around the origin, this is an indication
that n > m). However, since the system is only stable if n =0, the Nyquist
rule may be deduced.

THEOREM 1.3. — 4 system is stable if the Nyquist diagram of its transfer
function H(s) encircles the origin in the clockwise direction as many times as
H(s) has zeros with real positive part. Where there are none, the system is
stable if the Nyquist diagram does not surround the origin.

Note that when P is on the imaginary axis, s = tjw, so H(s) = HHjw),
which can be studied with the Bode diagram by making @ go from 0 to oo.
When P is on the circle of constant radius R, s = R exp(j¢). But if R — oo,

n

. b A, . .
simple elements _mz( : ) approach zero if |s| — o, whether it is pure or
a, 7 (s—s,

complex imaginary and as a consequence, no new information is supplied.
Thus, it should suffice to study the contour followed by H(j @), from H(—jeo)
to H(+jeo). This is the reason for which the clockwise direction was chosen,
since the path of radius R is then made in this way. However, it is often
difficult to verify if H encircles the origin or not when H(j@) — 0 for @ — oo,
which is always the case for physical systems that never have infinite
bandwidth (the integer part of H(s) is zero). Furthermore, systems are very
regularly built by feedback from subsystems themselves stable. Accordingly,
it would be more useful to study this case.

1.4.3. Stability of looped systems assumed stable in open loop:
Nyquist and Bode criteria

N(@s) _ As)

D(s) 1+ A(s)B(s)
D(s), that is the zeros of 1 + A(s)B(s), which only has poles with negative
real part if it is assumed that the system is stable in open loop. Thus, it is
sufficient that the denominator 1 + A(s)B(s) also has no root with real
positive part. When applying the Nyquist criterion to 1 + A(s)B(s) in order
for the system to be stable, the Nyquist diagram of 1 + A(fw)B(jw) must not

Here, H(s)= and the poles of H(s) are the roots of
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encircle the origin in the clockwise direction when @ goes from 0 to infinity
or in more usual words.

THEOREM 1.4. — For system stable in open loop to be stable in closed loop,
the Nyquist diagram of the loop transmittance A(j@)B(j @) must not surround
point —1 (located on the real axis) in the clockwise direction when @ goes
from 0 to infinity.

If the Nyquist diagram of A(jw)B(jw) crosses point —1, the stability limit
has been reached and the denominator D(jw) = 1 + AGjw)B(jw) crosses
through 0 for the special frequency an, which is the oscillator frequency in
steady-state regime. Condition A(jwy)B(jwy) = —1 is written alternatively:

Arg{A(jwy)B(jay)} = 2k+1)n (k integer) and |A(jwy)B(j awy)| = 1

If modulus [AGawy)B(jawy)| > 1, the image of A(jw)B(jw) goes beyond
point —1 on the left side of the negative real numbers and the system is thus
unstable. So, the Bode criterion can be deduced.

THEOREM 1.5. — 4 system including a feedback loop whose loop gain is
A(G@)B(Ga) is stable if and only if, when Arg{AG@)B(@w)} = (2k+1)x, we

. 1
have |A0w)| < m .

1t should suffice then to study the Bode diagrams for A(j@w) and 1/B(j@)
together.

Furthermore, an unstable system can be stabilized by adding a suitable
corrector to reduce |A(jw)| or increase |B(jw)| in the neighborhood of @ to
make a gain margin appear, or alternatively that modifies Arg{A(j w)B(j w)}
in order for the phase stability condition to be met within some phase margin
(see Figure 1.17).
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Figure 1.17. Bode diagrams of the gain modulus and the reverse of the feedback
coefficient, and loop gain argument, for a closed-loop system stable in open loop (full
line, system stable in closed loop since |1/B| > |A| for f = f,; dotted line, system
unstable in closed loop since |1/B| < |A| for f = f;; the frequencies corresponding to
Arg{AB}=rin each case)

1.4.4. Stability of linear and nonlinear networks of any order,
analyzed from state variables

In networks comprising passive elements and both independent and
current or voltage-dependent sources, formed of b branches and n nodes, we
can write b — n+ 1 independent equations (see Appendix of Volume 1
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[MUR 17]), which in general are first-order differential equations in the time
domain. Each equation links a voltage or current derivative in a reactance
(capacitance or inductance) with the other voltages or currents that are the
network state variables. Number k= b — n + 1 is the system order, and can
be written in matrix form g = AF +B', where F is the column vector of state
t

variables f;, A the matrix of coefficients that can be dependent on the F
coefficients when nonlinear elements are present (however stationary, that is,
with a response independent of the time origin) and B' a column vector
containing the parameters of external and internal sources, as well as certain
nonlinear element parameters. In the case of linear ordinary differential
equations, this system can be transformed into the differential equation given
in the introduction to this chapter or in section 1.2.1, the order of which will
then be k£ and which will act only on one state variable and one external
variable. Application of the Laplace transform to this equation together with
partial fraction expansion has already shown that the transmittance poles
located in the real positive part half plane of the complex plane lead to
existence in the time domain of signal variations or maximum variations like
exp(+#/7) (where 7is a positive time constant). Such an exponential growth
is a clear indication of the system’s instability. The presence of one or
several of these factors in the time response of the system can be determined
from the previous matrix equation. In the case of a nonlinear system, since it
is sufficient to treat small variations around one or several operating points
in order to find factors like exp(+#/7), the first-order development of
nonlinear function occurring in A and B' allows for the conservation of the
same differential system though with A and B' containing only real
constants.

In this approximation, the solution of the differential system is
determined through diagonalization of matrix A. We then find the
eigenvalues A; and the eigenvectors V; so that the characteristic equation
det(A — A T)=0 is verified (with I = unit matrix) for the various eigenvalues
A = A;, each assumed distinct. Base change is performed by means of left and
right multiplication by square and invertible matrices V™' and V, the latter
comprising the components of each eigenvector V; in each of its columns, in

the same order as the corresponding eigenvalues. The initial matrix equation

is rewritten introducing I=VV™": i—f = AVV'F +B' then multiplying on the
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left side by V', which allows for the production of diagonal matrix

A=V AV, containing A;: ‘Z(%:F) =A(V'F)+V'B

This matrix equation can be rewritten in the form of a system of
independent first-order differential equations, each containing a single new
state variable w;, elements of matrix column W =V F and element d; of
V! B, yielding k ordinary differential equations like:

dw, . :
AL A w, +d, or alternatively _am_ Adt .
dt w+d, /A

T

Each of these equations has a solution w,(r)=c, exp(A41)—d, /A, where c¢;

is an integration constant and where A; are the system poles because of the
form like exp(A#) of the solutions. The problem becomes here to merely
determine whether any of the eigenvalues contain a real positive part, which
would be sufficient to provoke system instability from the operating point
subject to calculation. Since F=VW, the original state variables may be

readily found through the linear combination resulting from the matrix
b—n+l

product VW, where f,(1) = Z v; w;(t) if v; represents V elements. However,
j=1

since a single diverging term included in this sum is sufficient to make the
operating point in question become unstable, we need only to search for the
real part of the eigenvalues. If there are several possible static operating
points, some can be stable and others unstable, in which case the system can
converge to one of the stable points. If, on the other hand, all of the
operating points are unstable, the whole system is unstable.

This is broader and more flexible than previous methods, since it adapts
to nonlinear networks and can receive assistance from the eigenvalues
evaluation supplied by numerical or symbolic calculation software, in
symbolic value up to the fourth order. In addition, it forms the basis of the
calculations performed in simulators to determine the time responses, since it
is easy to determine how the state variables evolve step by step over a long
duration by considering the new operating point reached through the first
calculation that ceases to be valid as initial vector for the next calculation
and again thereafter (see section 1.5 for more details).
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1.5. State space form

In the stability study performed in the previous section using the first-
order differential equations system (state equations, numbering k, also the
system order) describing the system, the notion of input and output variables
is not completely clear. In order to apply this representation to dynamic
systems, electronic or otherwise, controlled by one or several input variables
and delivering one or several output variables, the equation above must be
modified and another must be added. Column vector B' results from the
application of input signals or system inputs, numbering m. As a result, B' is
replaced by BX, where B is the control matrix, of format kxm and X the
column vector of the input variables, with m lines. The second matrix
equation allows for the definition of the output(s), numbering p, whose
column vector is Y, depending linearly on state variables F and input
variables X, by means of observation matrix C, of format pxk, and at the
direct action matrix D, of format pxm. This results in a system of two
matricial equations, which are entirely defined by state matrix A, of format
kxk, whose eigenvalues are the system poles, and matrices B, C and D:

d—F=AF+BX
dt
Y =CF + DX

For linear and stationary systems, all the elements of matrices A, B, C
and D are constant quantities, independent of time. Of course, it is indeed
possible to take the LT of these equations, which corresponds to the system
block diagram in Figure 1.18.

» D
+ sF F +
X B 1/s C Y
h +
A |

Figure 1.18. Block diagram of a system in state representation
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It is obvious that this representation accounts for the internal operation of
the system. This can unveil some poles that are referred to as “hidden” if
they do not appear in the system’s expression of the transmittance, which is
then of an order less than k. Generally speaking, A, B, C and D are the
application matrix acting on vectors X, Y and F, belonging to the vector
spaces of respective dimensions m, s and k. Subject to the bases selected,
there can be an infinity of system representations with their corresponding
matrix. However, as discussed in section 1.4.5, a single base allows for a
diagonal representation A, of the application acting on F, which can be
determined by calculating the eigenvalues and eigenvectors of A. Since the
eigenvalues are independent of the selected base and are the system poles,
the system is stable if no eigenvalue has positive or zero real part.
Integration of the first equation requires the use of matrix exponentials,
which are more readily calculated if A is diagonal. In this respect, it is still
possible to assess the time evolution of F(¢) at instant #; due to a command
X(?) if the state F(#,) at the initial instant ¢ and all the matrix elements are
known by means of a calculation software:

F(t,)=F(,)explAx(t, —1,))+ j BX(r) exp(Ax (¢, 1))t

This expression can be used for nonlinear systems in which A and B have
elements function of F and X, and even for non-stationary systems and
sampled systems in particular. This representation allows for the
introduction and determination of new properties not present in the
representation by transfer function, in addition to stability, which are
controllability and observability, subject, respectively, to matrix B and C and
to their product with A. Since this area is more a concern of automation and
robotics, it will not be discussed in detail here. In the case of multiinput
and/or multioutput systems, the state-space representation is crucial.
Furthermore, matrix calculation programs (MATLAB, Scilab, etc.) include
modules adapted to managing signals and systems in both automation and
electronics (filtering in particular), which make significant use of the state-
space form since it is more general and powerful than representation by
transfer function, relying entirely on matrix calculation. More specifically,
these programs include the functions necessary to assess the Kalman criteria
that allow for controllability and observability to be checked, which occurs if
certain square matrices comprising submatrix BA" and CA" (0 <r <k) have
eigenvalues with no positive or zero real part. In electronics, as soon as the
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electrical circuit of the application in question is known, reaching the state-
space form is easy by writing, on the one hand, the network equations in
number k= b — n + 1 as indicated in section 1.4.5 to determine A and B, and,
on the other hand, the equations providing the expression of the outputs (or
output) to determine C and D.

1.6. Oscillators and unstable systems
1.6.1. Sinusoidal oscillators

The creation of a sinusoidal oscillator requires only the presence of two
purely imaginary and complex conjugated poles in the transmittance H(s),
that is on the imaginary axis. All of the system responses then provide a
sinusoidal signal function of time without damping since the real part s; or
that determines the decrease in factors exp(s; #) or exp(—C@, t) due to the
first or second degree polynomials of the denominator D(s) of the
transmittance will be zero.

Since here this is a looped system, it may also be defined in this case as a
system at its stability limit according to the Bode criterion, that is a system
whose loop gain location A(fw)B(jw) crosses the critical point —1 in the
complex plane. Denominator D(jay) = 1 + A(jan)B(jax) then goes through 0
for o= a, the oscillator angular frequency.

Angular frequency ay such that A(jay)B(jan) =—1 defines the condition
of oscillation that can be presented either in Cartesian form or in polar form:

either Re[4(jan)B(jan)] = —1 and Im[A(j an)B(jar)] = 0O;
or |A(jan)B(jan)| = 1 and Arg{A(jan)B(ja)} = 2k + 1)n

In practice, either the amplifier is of the inverter type and the minus sign
in the block diagram is verified automatically:
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or the return loop generates sign reversal. Nonetheless, oscillators can be
made without dephasing because in the above circuit total dephasing is
(2k+ Dr (due to Arg{4(jan)B(jar)}) to which may be added Zm (due to the
minus sign) equal to 2k ® in total, which can be an indication of zero
dephasing.

This is the case of the Wien bridge oscillator for example.

E' -

C i [ Ry —_
R, s
R,

mwm - mw AL\

Figure 1.19. Sinusoidal Wien bridge oscillator

Input signal £ becomes redundant since oscillation begins when a
disturbance such as noise occurs, which is always present. So, it may be
considered that £ = 0. Conversely, the amplitude of output signal § is not
known since writing S=4 E' and E'=—B S resultsin (1+4B)S = 0,
which indicates that S #0 when 4 B=-1, however any value of S #0 is
suitable.

In practice, amplitude is limited by the system’s nonlinearity. Or
alternatively, if perfectly constant amplitude is required, an amplitude
regulator should be added capable of measuring and correcting it by acting
on gain 4 in order to permanently maintain the oscillating state in a precise
manner (see below).
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— Other circuits with negative gain:

4>
Dephaser 4
Network B
N
I
i \\\ ALIN

Figure 1.20. Sinusoidal oscillator using an inverter
circuit based on an operational amplifier

In the following oscillators, gain is provided by a field effect transistor
and the admittance modulus of L.k can be considered weak enough for the
load to be comprised exclusively of elements C;, L;, C,. C; represents a
binding capacitance, C, a decoupling one, with negligible impedances at the
oscillation frequency.

+ VL’C

choke
C, — Ly

J—

4 ¢

L1 °T

Figure 1.21. Colpitts oscillator

In the Colpitts oscillator, inductance L; can be replaced by a quartz
resonator, allowing for a highly precise oscillator frequency to be obtained.
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—0O— - — —

Figure 1.22. Symbol and equivalent circuit of quartz resonator

The quartz equivalent circuit is effectively a dipole with serial resonance
frequency (minimum impedance) and very close antiresonance frequency (or
parallel resonance with maximum impedance, or alternatively notch effect).
In between these two frequencies, the dipole is inductive, whereas outside
this interval, it is capacitive (see section 1.7).

— Other oscillator circuits with transistor amplifier (or inverter logic
gate):

tVee

choke

C

| Ly

L
T

Figure 1.23. Hartley oscillator
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+Vee

L choke

Figure 1.24. Clapp oscillator

In Clapp oscillators, feedback happens at the FET source, with the
variable Cy capacitance allowing for the control of oscillator frequency.

| IQ
L]
- —
Ry

R;

C, = =

Figure 1.25. Quartz oscillator operating with an inverting logic gate

In quartz oscillators with a CMOS inverting gate as amplifier (Figure
1.25), the O — C; network (input capacitance of the gate) constitutes the main
part of the return loop. Furthermore, circuit R, — C, supplies the additional
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dephasing required to surpass 7 in the return loop. R, allows for the static
operating point to be stabilized around the middle of the static characteristic
of the inverting gate.

This type of oscillator is used systematically in circuits in which a stable
and precise clock frequency, provided by the quartz, is required, with the
signal’s waveform being of lesser importance. Indeed, the oscillation status
is reached at a unique frequency situated in a highly restricted range in
which the quartz has an inductive impedance (see section 1.7).

— Regulation of oscillator amplitude:

When the circuit gain is supplied by a transistor, amplitude regulation can
be performed by simply dissociating the resistance in series with the source
(or with the emitter) into two parts, with one always being decoupled by a
filtering capacitor, and the other non-decoupled and connected in parallel
with a junction field effect transistor between the drain and the source. The
JFET operates as a variable resistance controlled by the rectified output
voltage of the oscillator.

: Oscillator output
|
Transistor ! V\(l)/ltage
amplifier T1
~ | Y. -|
Ca Clyor G,
Rsl —
— Vo
RS2 c"
—

N-JFET variable resistance
field effect transistor T2

Figure 1.26. Amplitude oscillator stabilization mechanism
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Capacitances C;, C';, C"; act as decoupling ones, presenting negligible
impedance at oscillator frequency. When the alternative voltage supplied by
the oscillator increases in amplitude, with the rectified voltage Vg being
negative, transistor T2 becomes less conductive and the non-decoupled part
of the resistance in series with the source of T1 increases and accordingly
decreases T1 gain. Accordingly, there is a negative feedback effect together
with amplitude oscillator stabilization. Other circuits can act on the T1 gate
(or base) or use more efficient rectification in order to reduce the filter time
constant, thereby accelerating stabilization.

— Voltage controlled oscillator:

In some circuits like phase-locked loops (see Chapter 1 in Volume 3
[MUR 18]), it is indispensable to control the oscillator frequency using
voltage (or current). A frequency-voltage converter can fulfill this role;
however, if a sinusoidal signal is required, the sinusoidal oscillator
frequency must be modified in the same manner as described previously. In
such cases, a “Varicap” diode can be used (see Chapter 1 in Volume 1
[MUR 17]) under reverse polarization given by the control voltage. Then, its
capacitance, in parallel with one of the capacitors acting in the resonant
circuit where oscillation occurs, can be adjusted, thus involving the control
of the oscillator frequency. In theory, the relation frequency-bias voltage is

not linear largely due to the square root that appears in @ , but we

1
oscil \/E
can approach linearity on condition that the capacitance excursion, and
consequently frequency, is limited. Oscillators made in this way are referred
to as voltage controlled oscillators. An amplitude stabilization loop can be
added, and in cases where the linearity of the voltage-frequency conversion
is indispensable, another feedback loop can also be added on frequency
detection according to the principle of reduction of the nonlinearities
described in section 1.3.2.

— Stability of oscillator frequency:

The active component generates noise (see Chapter 4 in Volume 1 [MUR
17]) and as all of these oscillators include at least one resistor in the return
loop, which is also a source of noise, the loop transmittance is subject to
slight fluctuations, in both modulus and phase. These are essentially phase ¢
fluctuations that determine the stability of oscillator frequency fo, that is
better as dfy/d@ is smaller and consequently as d@ /df; is greater. In the case
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of second-order circuits and in accordance with the study of elementary
transmittances in harmonic conditions, the argument is ¢ = Atan[Q(u — 1/u)]
where u = fIf,, f, being the natural frequency, which is indeed very close to

dp  O1+1/u?)

du 1+0°(u—-1/u)*’
condition close to the oscillation frequency. Frequency stability is thus
greater as the quality (or overvoltage) coefficient O is higher. The Wien
bridge oscillator for which Q does not exceed 1/2 is consequently much less
stable than resonant circuit oscillators. However, it is the quartz oscillator
that ensures the greatest stability since the difference between the two
frequencies limiting the range in which quartz is inductive and in which the
oscillator frequency is found is extremely narrow (in the order of 1% of
oscillator frequency or much less). The calculation of d@/du provides a result
depending on the resistance representing dissipation losses in the quartz and
the R,C, dephasing network in Figure 1.25 must be adjusted in order to
optimize the effective value of the oscillation frequency and its stability.

fo- Deriving which is 2Q for u=1, in general a

1.6.2. Relaxation oscillators using a nonlinear dipole and other
resonant circuit oscillators

When approximating the linear operation of the active component, this
can be modeled by means of negative conductance —G, in the dynamic
circuit of sinusoidal oscillators (with G, > 0). If the conductance of losses G,
is exactly compensated by G, the total of both is zero and there is
consequently no damping of the oscillating circuit, which, following initial
excitation, is the origin of a permanent and non-damped sinusoidal signal.
This approximation amounts to the assumption of a linearized current—
voltage characteristic with an average negative slope within an amplitude
range limited by two thresholds beyond which the dynamic conductance
again becomes positive.

Figure 1.27. Dynamic circuit with negative conductance —G, and circuit with series
(at left) or parallel (at right) resonant network, damped by positive conductance Gp
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The effective operation approaches this model when a dipole with
negative resistance or conductance is used, such as a tunnel diode, diac, etc.
These dipoles are sorted according to two types: with S and N current—
voltage characteristic /(V,) (Figure 1.28).

A ""/-—load line 1; 1
L v (slope —1/R))
Lyar o
1
(
Slope G,—
\ (negative)
Lty '1. ‘ Va
O /;)m/; "\» Vvullpy
\
®_Slope 1/R, (negative)

Figure 1.28. Nonlinear dipole N characteristics to the left and
S to the right, with negative dynamic resistances and conductance
(1/Rq or G4 = - Gg), and load lines suited to relaxation oscillator operation

Operation analysis becomes particularly difficult in harmonic conditions
and must instead be conducted according to changes in the position of the
operating point under the influence of a disturbance. In the case of relaxation
oscillators, it is sufficient to add a single reactive element (inductance or
capacitance) to a nonlinear dipole for the instability of the operating point to
entail cyclical operation around the zone of negative resistance (and
conductance), as shown below. Incidentally, it is worth noting that this type
of nonlinear dipole cannot contain a semiconductor device but rather a
saturable magnetic circuit associated with an inductance or mutual
inductance decreasing significantly when the magnetic circuit saturates.
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Rl Ll 1 I

Iy
—C Va

| = ARSI
Figure 1.29. Relaxation oscillator circuits with N dipole to the left and S to the right

The circuit to the left in Figure 1.29 under static conditions verifies
E,=RI,+V,(I,); then, under the influence of disturbance dE:

dl . .
E,+dE=R/(I, +d1d)+L17;"+I{,(1d)+Rdd1d, where R, is the dynamic
resistance of the N dipole, dependent on /,. Subtracting static conditions, it
remains:

dE=Rdl, +L, %+ R, .

If the dynamic resistance R, is sufficiently negative relative to R, that is
R;+ R, <0, the sign of dI, should be opposite to that of dF in order for
equality to be respected, whether inductance is present or not. This implies a
decrease in current when dE > 0. When inductance is present, the latter term
is also negative in this case, which has the effect of extending the decrease in
current down to the operating point at which R; becomes positive enough
again to change the sign of the second member. The evolution will be then
reversed, giving rise to a cyclical variation. The operating point becomes
therefore unstable since even after the reestablishment of dE = 0, the second
member can cancel itself without di; being zero, due to the inductive term
and on condition that (R, + R;) and dI; are negative in order for the product

. dl . . .
to be positive and compensated by L, 7d < 0. This condition thus requires a
t

static operating point with a single intersection of the load line with the
characteristic /, (V) in the range where R, is sufficiently negative for
condition (R; + R,) <0 to be realized. Otherwise, in the presence of other
intersections with stable operating points, the system stops on one of them
and oscillation ceases. The half-period may be calculated by integrating the
complete equation with dE =0, either analytically by linearizing the
characteristic, or more precisely by a numeric integration, between the two




52 Fundamentals of Electronics 2

currents limiting the negative resistance zone. In the first case, linearization

Vvvul ley - Vpeak

is equivalent to take R, between — in Figure 1.28 and the reverse

valley - peak
of the maximum slope, that is a value —|R,|<0. There is then

proportionality between [/, and its derivative /,; according to the variational
equation, which implies a solution of the exponential type I; = I,eu €Xp(#/7)
where 7=1, /(|R,|-R,)-

The oscillation period is then very approximately given by the double of

. . I
the time taken for current to go from J,eu t0 Lygey, thatis 7 =27In {"—"] .
valley
Precision can be improved by piecewise integration of the whole equation.
For the other circuit, operation can analyze symmetrically by searching for
the development of voltage under the influence of a current perturbation
emanating from the source.

It is clear that these circuits can by no means provide stable and precise
frequency oscillation, since it is too dependent on the current—voltage
characteristic of the nonlinear dipole, susceptible to dispersion, to being
dependent on temperature, etc., and thus can only operate in case of
alternative signal generation without any severe demands on the signal’s
shape or frequency. These relaxation oscillators, whose only advantage is
their simplicity, have as a consequence almost disappeared, with the
exception of components liable to operate at extremely high frequencies,
unattainable for transistors, beyond several tens of gigahertz and up to
terahertz. To obtain a more precise oscillator frequency, the principle applied
in the circuits of Figure 1.27, comprising a resonance circuit, can be usefully
applied again here.

1.6.3. General case of systems comprising a nonlinear dipole
and study of oscillation in phase space

Regardless of the oscillator circuit in question, there is always
nonlinearity due to the active components. Studying over one or several
periods of time can prove insufficient in characterizing long-term operation
and in addition does not account for the initial conditions. Since there is
always at least one reactance in the oscillator circuit, as shown in the circuits
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in Figure 1.27 for instance, it is worthwhile to investigate current and
voltage at the terminals of at least one of them, since one of these values is
proportional to the derivative of the other. The study in the time domain of
one of these quantities can then be replaced by the study of this quantity ¢
and its derivative relative to time ¢ (according to the usual mechanical and

thermodynamic notation) in the phase plane, with time becoming a
parametric variable. This allows for initial oscillation to be studied along
with the operating point at which the established oscillation converges. The
trajectory of the operating point defined by (g, ¢) in the phase plane then

becomes the preferred mean for this type of study that had its beginnings in
the mechanical sciences, mathematics and thermodynamics in the 19th
Century and has continued until today. For systems comprising a number &
of independent variables, the phase plane is replaced by the phase space,
which consequently has a dimension equal to 2k, which is also the number of
degrees of freedom of the system.

1.6.3.1. First- and second-degree systems

If g represents the charge on an armature of capacitance C accepting
instantaneous voltage v, it is equal to Cv (where v=¢/C) and the
instantaneous current crossing the capacitor is ¢ = dq/dt. We can study the

trajectory of the point (¢, ¢) in the phase plane, either from the solution of
the differential equation that defines the relation between ¢ and ¢, obtained

by algebraic calculation or, as is typically the case, by numeric resolution
needed by the nonlinearity of the system, and the initial conditions, or
alternatively from the measurement effected on the experimental device if
available. If the solution converges to a sinusoidal oscillation, then ¢ is
proportional to sin(anf) for example, and as a result, ¢ is proportional to

cos(ant). The parametric variable ¢ can be eliminated by writing
2 . \2
sin®(af) + cos*(ant) = [zj +[%) = 1, which is the equation of an ellipse in
a

the phase plane, with a and b as constants (Figure 1.30). A distortion of the
ideal ellipse appears if the signal is not purely sinusoidal, which in practice
is systematically the case due to the amplitude being limited by the intrinsic
nonlinearity of the active component, even if it can be minimal and difficult
to detect. At the other extreme, in the generator of rectangular signals and
squares based on a loop containing an integrator and a hysteresis comparator
(see Chapter 4 exercises in Volume 1 [MUR 17]), the capacitance is crossed
by a constant current for one half-period and the reverse current for the other
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half-period, corresponding to linearly increasing and decreasing voltages at
the terminals with two opposite slopes. The resulting cycle for the coordinate
points (g,q¢) is thus rectangular. Consequently, relevant information
concerning the permanent conditions of the oscillator can be obtained from
these observations.

However, the trajectory in the phase plane also advantageously provides
information about transient conditions, in particular the beginning of the
oscillation, as well as for more complex cycles that can be found in other
oscillators such as those addressed below.

av -

W o
-B0mA -50mA -40mA -20mA ]

Figure 1.30. Start cycle and limiting cycle of a quasi-sinusoidal
oscillator obtained from simulation results

In the case where the circuit shown on the right in Figure 1.27 is taken as
example, the law of nodes and the presence of voltage ¢/C, at the terminals
d| 4q(G —Ga)_q. _4q

C

of all elements lead to LZE c , or alternatively
2

2

. G -G . ) 1
+——G+@,q=0 with o=

q q b4 with @ L.C

2 22

(adopting the notation used in

mechanics for the derivations relative to time).
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If G,- G,=0, the equation becomes that of the harmonic oscillator with
a purely sinusoidal solution, with the characteristic equation not having a
first-degree term. But in order for the oscillation to start, it must be assumed
that the coefficient of ¢ is initially negative since in this case

(Gﬂ _Gi)t . : . . .
exp +C—' acts as a factor inducing a progressive increase in
2

amplitude, exponentially up to the cancellation of G, — G,, from the smallest
spontaneous fluctuation due to noise in the resistive elements (see Chapter 4
of [MUR 17]) or in practice, from circuit power up, required to polarize the
active element. This evolution is expressed in the phase plane by a trajectory
from the coordinate point (g, ¢ ) that encircles the origin, converging then to

an ellipse (Figure 1.30), which comprises the limiting cycle in the case of
quasi-sinusoidal oscillation. The limiting cycle can be of different shapes in
the case of more complex non-sinusoidal oscillators such as those studied
below, and likewise for its center of gravity, known as the attractor, which is
not necessarily the origin or can even be plural.

1.6.3.2. Nonlinear systems of order higher than two
The previous method of study is extended here in two steps:

— determination of the static operating point or points from the equation
of the load line and the characteristic parameters of the nonlinear elements;

— for small variations around each operating point, the writing of the
electrical state equations under given conditions as a function of time and
transformed into matrix form %zAF+B‘ as in section 1.4.5. Then, the

t
eigenvalues are calculated for the state matrix A. The stability (or instability)
of the operating points can then be deduced from the existence or absence of
poles with positive or zero real part, the poles being the eigenvalues of A.

A third step can be performed successfully by means of a simulator
capable of solving the previous system while accounting for changes in the
dynamic parameters of nonlinear elements, consisting of the determination
of system changes after a perturbation, and the convergence of state
variables to certain types of behavior. Since the solution of a differential
system can be highly dependent on the initial conditions, which are renewed
each time the simulator has to change parameters, it can evolve either to a
phase space trajectory around a single attractor (in the case of a
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quasi-sinusoidal oscillator), or around several attractors, if the system is
unstable. In this second case, it is possible that the evolution will lead to a
deterministic chaos, as Poincaré showed initially, when the phase space
trajectory becomes highly complex with a very high number of cycles before
returning to the same point. In this case, the signal resembles quasi-random
noise more closely than a periodic signal. For example, these various
operating conditions can be studied with the Chua oscillator, third-order
circuit proposed by Leon Chua in 1983 then revived and simplified in 1984
by T. Matsumoto, and then studied by a great many authors since, including
the inventor himself (see the bibliography and history in http://www.
scholarpedia.org/article/Chua_circuit). This indicates that these chaotic
behaviors can appear from the third order on condition that the circuit
comprises a nonlinear conductance, which in the most simple case is that of
a dipole presenting a current—voltage characteristic of odd symmetry, with
two negative slopes, as shown in Figure 1.32. Another oscillator that can
present such behavior is that of Van der Pol, invented in 1927.

The Chua oscillator comprises three reactances, one or two resistances
and one D dipole with negative, nonlinear type N conductance (Figure 1.31).

; R i
PLE — >
A — A
L I
" T T D| |u

Figure 1.31. Chua oscillator

This can be described as a system comprising a relaxation oscillator
composed of D and C), coupled by resistance R to a notch resonant circuit L,
Ry, C,. Resistance Ry is not indispensable but does allow for real losses in
inductances to be accounted for, and offers the possibility that an additional
parameter may be introduced. Characteristic i=g(u) of dipole D is shown in
Figure 1.32 and comprises a negative conductance —G, around the origin
(G, > 0), then for |u|>u. the conductance becomes —G, (G, > 0) with
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G, < G, and finally the conductance (this is also the slope) becomes positive
outside of an interval wider than [—u., u.] in order to simulate a real
component that can provide only finite energy.

\‘gi)

Figure 1.32. Characteristic i = g(u) of dipole D used in the Chua oscillator
and load lines corresponding to R equal to (i) Ry, (ii) Rz and (iii)) Rs

In static conditions, the load line is written as u = —(R+Ry)ior
alternatively i = -G u, with G= 1/(R + Ry). According to the value of G,
three cases may occur: (1) the absolute value of slope G is the greatest, that
is G > G, in which case there is only one static operating point at the origin;
(2) G»<G <G, and there are three static operating points (P_;, 0 and P.,),
all in regions with negative conductance of D; (3) G < G,, and also three
static operating points, one at origin and the other in regions with positive
conductance of D. However, in this last case, the operation is inclined
toward a relaxation oscillator that is more insulated as R is greater. This will
not be addressed here since the perturbation method of current i around one
of its operating points allows for its stability to be determined as mentioned
in section 1.6.2 (both of the end points are stable and the origin is not).
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The second step consists of writing the network equations in transient
conditions. As there are five branches and three nodes, the number of
independent variables is 5 —3 + 1 = 3. Selecting values that are derivatives
in the reactances, that is u, u, and i3, leads directly to a differential system
such as the one indicated previously:

du 1 [(u,-u

- = - u
d cl( T )j
du, 1 (u—u, _i

a c\ R °
di, 1 .
d_;=z(u2_Rols)

Around the origin, there is simply i = g(u) = -G, u for the load line (i);
and around the intersection points of the load line (ii), i = g(u) = -G, u +
(Gy — G) u. sgn(u) where function sgn(u) = 1 according to the sign of u.

In order to reach a system with only state variables and dimensionless
parameters, we must make the changes:

t u u Ri
. . 2., =3

for variables;

and a=g; a=RG,;
Cl

—_ b

G 2
b=RG,=at; g RGC,
G, L

_ RR,C,

for parameters.
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Hence the dimensionless system:

ﬁ=0{y—x—£g(u)j
u

de .
dz

- = —vZz
16 By-v

For load line (i), there is ES g(u) :5(—G“u) =—ax around the origin,

and this is also true for load line (ii). For operating points P_; and P., located
in the part of the characteristic where conductance is —Gj,, at the intersection

. . .. . . R
with load line (ii), this can be written as: —g(u)=
u,

c

5[—Gb u+(G, -G, )u, sgn(u)] =—bx+(b—a)sgn(x); respectively, deducing
uC

-o(l-a) o O -o(1-b) o 0
matrices A, = 1 -1 -1| and A,= 1 -1 -1|; and if
0 B -y 0 B -r
o(a—b)sgn(x)
required, matrices B/ (vector column zero) and B, = 0 It
0
R
R+R,
and thus (1- a) is always positive in case (i) around the origin. And in case

<l1;

2

should be noted that in case (i), G, < G leads to a=RG, <RG =

(i), b=RG,<RG<RG, and also b< <1 for intersection points P_,

T 13

and P,; but around the origin, a >

. Since Ry is clearly always smaller
0

than R, this condition typically leads to a >1 and thus to a positive sign for
the element in the first line and the first column of the matrix A;.
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This step should end with the calculation of eigenvalues for matrices A;
and A;. This could be done with symbolic values since the characteristic
equation is of the third degree; however, it leads to long expressions that are
difficult to use due to the four parameters involved. It is preferable to set
some of these to numeric values using the following considerations.

Since resistance R determines coupling between the two parts of the
circuit, any value of C; greater than C, would significantly alter the
resonance frequency of circuit LC, in the case of strong coupling, that is
when R is weak. So, as to avoid multiplying these changes, it is instead

preferable to take C; << C, and leave ratio « :& constant, which will be

1
set to 15.6. According to their expressions, parameters f and y relate to the
squared damping coefficients of circuit LC (or the inverse of the squared
quality coefficients) and thus have a significant impact on oscillating
conditions. The evolution of the eigenvalues may be studied according to /3,
which is modified by means of L, leaving the other components unaltered
and ¥ initially at zero.

. . G s
Setting ratio y =G—b _b , and considering the two cases of the load
a

a

3

>
8
S, . oy 8 . 5 .

line’s intersection with (i) « =5 and (ii) a= S ,b =7; the three eigenvalues

[I3%4]

of A are denoted as A, W and v, followed by “i” or “ii” to distinguish the two
cases and by 0 or 1 in case (ii) depending whether it concerns the operating
point at the origin or at P.,.

In case (i), for the only possible static operating point around the origin,
for which a <I, the zone for which f is taken between 0 and around 38
comprises one or several eigenvalues with positive real part (Figure 1.33). It
follows that the system is unstable.

In case (ii), for the static operating point around the origin, for which
a >1, all the eigenvalues have negative real part (Figure 1.34). It follows that
this operating point is stable. Conversely, for the static operating points P.,
for which b <1, all of the eigenvalues have their positive real part for £ from
0 to around 57 (Figure 1.35), which implies that these points are unstable.
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Im(vi)

Re(pi)

10 20 30 D —- S

Figure 1.33. Eigenvalues of A in case (i) for the operating point at the origin. For a
color version of this figure, see www.iste.co.uk/muret/electronics2.zip
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Figure 1.34. Eigenvalues of A in case (ii) for operating point “0” around the origin.
For a color version of this figure, see www.iste.co.uk/muret/electronics2.zip
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Consequently, it is verified that the unstable operating points can be
obtained only when the load line cuts the characteristic of the nonlinear
dipole with a conductance —G (or slope) whose absolute value is greater than
the absolute value of the dipole conductance (G, or G, depending on the
operating point), which the qualitative analysis in section 1.6.2 has shown
already.

F." Im(v110)
!
.'r -
-L;“‘}-_:Eff"‘h 1)
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—
e : : — —
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Figure 1.35. Eigenvalues of A in case (ii) for operating points P.4. For a color version
of this figure, see www.iste.co.uk/muret/electronics2.zip

It should be noted that this system is one of the first dynamic systems that
can present a chaotic regime from experimental studies, although the last
step of this study is here performed only in simulation. Since the system is of
the third order, the phase space has six dimensions. However, it should
suffice to plot a state variable relative to one of the capacitors (here u,) as a
function of a state variable relative to the other capacitor (1) or the
inductance (i3) to acquire a sufficiently detailed overview of the oscillator’s
behavior.
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In case (i), where a <1, a quasi-sinusoidal oscillator is obtained together
with trajectory u,=f(i;) as that represented in Figure 1.30, with a cycle
limited by an ellipse.

In case (ii), where b <1, the cycles visible in Figure 1.36 are obtained.

B=21,y=0 B=30, y=0

et o

B=24, y=0,24

Figure 1.36. Cycles completed by the operating point ux(is) in various conditions

In case f=21, y=0, a limiting cycle representing a quasi-sinusoidal
oscillation is reached after one start-up in which the trajectory alternates
between both attractors (Figure 1.36). The spectrum includes the odd
harmonics of the fundamental frequency around 42 kHz and an erratic
spectrum in the lower frequencies corresponding to oscillator start-up
(Figure 1.37).

Case =24, y=0, is unique since the limiting cycle is no longer evident
(Figure 1.36); however, the trajectory retains a certain regularity with a
period that is multiple of the fundamental one. Observation of the signal or
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of its spectrum shows here that the period has been tripled, leading to the
appearance of a subharmonic frequency, one near 12 kHz, equal to one-third
of the fundamental frequency that is close to 36 kHz, and at fractional
harmonics that are 5/3 and 7/3 of the fundamental frequency (Figure 1.38).
This condition is referred to as a subharmonic cascade.

Spectrum of the signal obtained for 8=21, y=0
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v T v T T T T =
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0.00 0 100000 200000 300000 400000
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Figure 1.37. FFT of the Chua oscillator signal for =21, y=0. For a
color version of this figure, see www.iste.co.uk/muret/electronics2.zip

Figure 1.38. FFT of the Chua oscillator signal for =24, y=0. For a color
version of this figure, see www.iste.co.uk/muret/electronics2.zip
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In case =24, y=0.24 and F=30, y=0, the phase space trajectory
includes a very high number of different trajectories (several hundred)
before returning to the same point alternating around the two attractors that
are the two unstable operating points P_; and P, (Figure 1.36). This is
known as a deterministic chaos, since the signal approaches a random signal
as its period becomes extremely high relative to the fundamental period.
This is illustrated by the signal’s spectrum that itself becomes highly chaotic
(Figure 1.39), the peak fundamental frequency barely exceeds the
continuous, erratic background, or can even disappear completely when
parameter ¥ is no longer zero.
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Figure 1.39. FFT of Chua oscillator signals in
deterministic chaotic conditions obtained with =30, y=0 in red
(higher spectrum) and with 3 =24, y=0.24 in blue (lower spectrum). For
a color version of this figure, see www.iste.co.uk/muret/electronics2.zip

Numerous applications of this deterministic chaos have emerged since the
1990s in a variety of areas, both in science and art (music, design, etc.).
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1.7. Exercises

1.7.1. Response and stability of an operational amplifier not
compensated until unity gain and loaded by a capacitor

An operational amplifier included in a non-inverter circuit has an open
loop gain A(s) for which the approximate expression used is

A(s) = A applicable to circular frequencies exceeding @.
13
@ @,
The feedback coefficient is B; real number belonging to the interval
[1/4, 1] and the circuit diagram is as follows:

E A » S

B [

Circular frequency a is defined by ay = A4y @ so that:

A(s) =

1) a) Determine the expression of the transfer function in closed loop

H(s)=& and place it under form H(s)=—L where
E(s) B D(s)
2
Ds) =1+ 45
0 n n

b) Determine the expressions of the natural circular frequency @, and of
the quality coefficient O, of D(s) depending on an, @ and B. For what value
of B €[1/4p, 1] is quality coefficient O, maximum when @ = a»/2 and what
is its numerical value? With this value of B and a» = an/2, what is then the
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maximum value of 20 log|1/D(j@)| equal to 20log|l/D(jm)| for the
resonance angular frequency @.?

2) A capacitive load C is added between output S and the ground,
forming a low-pass circuit with the amplifier’s output resistance R. The
1

1
where @, =—.
— | 1+— || I+—
wO a)Z @

a) Determine the expression of the argument of A'(jw). For what value
of circular frequency @ expressed as a function of @» and w; is this argument
equal to —mt?

open loop gain then becomes: A4'(s) =

NOTE.— Atan(a)+ Atan(b) = Atan ( 1a * IZJ can be useful here.

—a

b) Determine the condition that must verify the loop gain A'(ja)B in
order for the circuit to remain stable and the resulting inequality between B,

@y, ayand @;. In the case where &:% ,B=1, R=50Q and ay=2m 10’ rd/s,
@,
determine the condition on C in numeric value for the circuit to remain stable.
Answer:
1)
S(s A 1 1 1 1
a) H(S) = ( ) = = — g >
E(s) 1+4B B, 1 B s s
o 1+ +
4B Bw, Baw,
b) Hence o, =.Bw,w, and Q)= Ba, _ 1 maximum when B = 1 and
n 02 602 2;

Q0=\/§ when a)2=%.
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Resonance occurs at @, =w,\/1-2¢{* = o, [1- 12 =.,/Bayw, -2 :a)O\F
| 20 \' 2Baq, 8
providing the value of |D(j@,)
log |1/D(j@,)| = 3.6 dB.
2)

=2{\1-{* (see section 1.2.3.3), where 20

a) This is A(p)= !

hence: A'(jw)
N S S
[1 + j [1 + j
a)O w2 w3
1

in harmonic conditions for which the argument is
E 1+E 1+£
wO wZ

) @,

o, 0
AI"g{A '(]w)} = _%— Atan [ﬂ] — Atan [E) 4 @,

w,
To obtain a total of —m, the second term must also give —m/2; therefore,
the tangent must approach infinity, where o = /0,0, .

b) To ensure stability, it is necessary that |4A'Ga)B| < 1 since
Arg{A'(jm)B}=—m.

Hence, by replacing @by w. =./o,@, in A'(ja), this provides:

Hence, it may be deduced that C <

= 640 pF.

0
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1.7.2. Active filters built with operational amplifiers
1) Butterworth, Bessel or Tchebyschev type active filters
Assuming perfect operational amplifiers, determine V3 according to Vi,

and the law at the minus input node of the first operational amplifier in the
following circuit:

Rs
Rl |_|1€2 :
. T t Vs

Now deduce from this the transfer function giving Vg / V, when Ry = Rs;
R; = R'; C = (C and determine the natural circular frequency and damping
coefficient. In addition, determine transfer function ¥,/ V, and its type.

Indicate which elements are required to set the gain and then the damping
factor independently of the natural circular frequency.

Same process for the next filter with V;; as main output; in addition,
indicate the type of filter obtained at outputs V, and V3.

The equalities R C = R' C'; R; = R, can be set here, maintaining however
the necessary settings with other independent elements.
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Accordingly, which elements are required to set the gain and then the
damping factor independently of the natural circular frequency?

One solution that improves the ease of these settings consists of replacing
the voltage divider R4, Ry with an inverting amplifier whose gain would be
—Rs/R4 and connecting its output through a resistance R; to the minus input
node of the first amplifier whose plus input is then grounded.

2) Elliptic-type filters

In order to obtain a numerator of the same degree as the denominator
with zero damping coefficient at the numerator (or equivalently zero
transmission at the natural frequency), the solution preserving the settings’
independence consists of making the sum of low-pass and high-pass
transmittances.

Adding the function indicated above to the previous circuit, deduce the
circuit that would provide an elliptic-type second-degree transfer function
with independent settings of the natural circular frequency for the
denominator and numerator. Give the expression of the transfer function.

Answer:

— Butterworth, Bessel or Tchebyschev type filters

Assuming the operational amplifiers to be perfect, we see:

R R 1
Vs = . Vo= . [_ jVu
R, R, R'C's

v, V, V.
and —+—=2+2L(1+R,Cs)=0
R R, R

1 5 2

Eliminating V;; and V,, provides a second-order low-pass inverter on
output 3:

v, R, 1
h R.R R.R
1+ 23 R'C's+ %R'C'Csz

24y 4

Accordingly, gain is set by R; and Rs while the other elements set the
natural circular frequency @, and R, independently determines the damping
factor £
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There is also a band-pass on output 1:

Va_ RR R'C's
Voo BB LR pog BR poey
R, R,
. 1 1 R,
with R4 = RS, R3 R c=C" w, = and ; =——
R,C 2R,

On output V; of the second circuit:

V R VG2
H(s)=ro=_R RCR'C's

v R
¢ e B R B R
R+R,| R R

Taking RC=R'C' and R, =R,

(RCs)’

V.
H(s)=—L=-"1x
vV, s R,

1+
R,+R,

{2+ Ry }RCS-F(RCS)
Ré

while the numerator becomes 1 instead of (RCs)” if the output is given in

V.

— Making the sum of V3 and V;; on the second filter provides an elliptic-

Rl R'C'RCs*

2

type transmittance by means of a summing and inverting circuit, with Vy;

being applied on resistance R; V,; on resistance Rg, and Ry being the

feedback resistance. This provides transmittance:

H (s) =2t =2 d d
o Ny By Rlres v (Res)
R, +R, s

The natural circular frequencies of both numerator and denominator are

then independent and the numerator’s damping coefficient is zero (which

entails a zero of transmittance situated on the imaginary axis, also known as
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an attenuation pole, inducing the cancellation of the transmittance at the
corresponding circular frequency in sinusoidal conditions).

1.7.3. Study of a looped system and its stability: sample and
hold circuit

Ve Vs
v
v
It is assumed that the operational amplifiers are compensated until unity
gain, that is they have an open loop gain of type: A(jf)= 4 ; their input
I+

/,

current and output resistance are neglected.

1) Show that the loop gain of an integrator (such as A2, R, Cy) always
has an argument between +m/2 and —mw/2 and as a consequence the
integrator is unconditionally stable, since its image on the complex plane can
never surround point —1. Next, make the approximation that A2 is a perfect
operational amplified with a loop gain much greater than 1 in modulus
(inducing €, = 0). Determine the domain of validity of this approximation
according to the plot of the Bode diagrams for |A(f)] and 1/|B(f)| assuming

Ao=10’; f; =500 Hz;

=5x10°Hz; use the new next
H

ters: fo =4 d fu=——
parameters: fo=Aofi and fy 2 RC

H

2) Draw the general block diagram of the system and return it to the
standard case by changing all the signs. Now determine the expression of the
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loop gain and then of the closed loop gain when the switch is closed. By
studying the Bode diagram of the loop gain and by calculating quality
coefficient Q (or damping coefficient {) and natural frequency f, of the
closed loop, show that the system does not oscillate but is very poorly
dampened and consequently useless in practice.

3) The real system can be improved by using an operational amplifier for
Al with the same gain bandwidth product but with much lower DC open
loop gain, where, for example, A4y= 10° and f1:5><105 Hz and taking
fi = 2.10" Hz. Recalculate Q, ¢ and f;. Determine the final value of the
output voltage when the input signal is a unit step of 1 V and when the
capacitance Cy is initially discharged (no free regime). Determine the step
response and time taken after step application for output voltage to return
within the range of £10~ times the final value calculated previously.

Show that another solution is to introduce a phase lead corrector with
transmittance B' in the return loop like below:

G

|1

A
—
T

R,
R,

Recalculate the loop gain A'(f)B'(f) where A'(f) is now written as:

1+£
\ 4, 1 A, A T R
A'(f) = = ; and with f, = s f'= . Plot
l-i-jil+—2 1+j£ 2”R2C2 27R,C,
SR A

its argument qualitatively assuming that ./f, f,' is made to correspond with

frequency f,' where |4'(f,)B'(f,))] = 1. Show that this allows for the loop gain
image to be removed farther from point —1 in the complex plane.
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Determine f; and f;' to have an additional phase margin of m/4 when
keeping the values of question 2, giving the transmittance argument of the
corrector a value of + w/4 for f=1, .

Answer:

\ 20 log|1/B|

N\
20 loglAB| >0 >

> f
AN
0 N Ju  Jfo= Ao&

1) The integrator’s return loop transmittance is determined by high-pass

.. . RC .. . e
voltage divider Cy-R, that is: 2 g iy Loop gain in harmonic condition is
+

s
S
"ty A
thus ‘ , with asymptotic arguments of +m/2 in low frequency
S EASYA
J +J
fu A

and of —m/2 in high frequency. Loop gain cannot surround point —1 in the
complex plane since its image remains in the right half-plane (positive real
part). The integrator is thus always stable.

Between the two intersections of 20 log|4| with 20 log|1/B|, the loop gain
is far greater than 1, validating the use of perfect operational amplifier
approximation (¢, = 0). In the parallelogram visible in the graph, the



Continuous-time Systems: General Properties, Feedback, Stability, Oscillators 75

intersection frequencies are fy = Ay f; = 5 x 10’ Hz for the higher one, 100
times higher than f;;, and so f/100 = 5 Hz for the lower frequency.

2) Returning the minus sign of the transmittance of the inverting

. . . . 1
integrator considered as perfect, with transmittance ————, onto the
A
H
subtractor, provides the following block diagram in forced conditions:

12 1 1 Vs
e — -1 A s
& o RC,s

v

A Ju

A , yielding ———-" in harmonic
1+ 5 RCys 1+
2r f, h

K A(s)
1+ A(s)B

Thus, the loop gain is

condition and in closed loop H(s)= with B =1 since the feedback

loop is unitary:

4, 1 1
H(S) = =
S 1 RC, RC, ,

RCHS(I-F )1+ 1+ s+ s
A 2
27 1y RCHS(1+ S ] 0 Sy
7 h

Its natural frequency is ./f;, f,, and its damping coefficient is EVR ]{—0
0 H

=5 x 107, an extremely low value. Closed loop transmission is stable

CH

. . R
nonetheless since the poles have a negative real part — ; however, the

absolute value is too low due to the value of 4, being too high.

3) The new values provide f; = A4, f; = 5x10” Hz unchanged, a natural

frequency f, =,/ f, f,, =10° Hz and a damping coefficient ¢ =i ]{—0
H

=0.25.
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The final value of the output voltage can be determined by applying the
theorem of the final value on the output voltage whose LT may be calculated
by the product of H(s) by 1/s, the LT of the 1 V step:

lim V. (1) = lims 2 = lim H(s) =1 V
t—too " s—0 K 5—0

coherent with the sign reversal due to the minus sign present on the input
block.
The step response of the second-order low-pass filter representative of

H(s) fulfills the expression 1—%?2””0%[0)"\/1—{ ’t—¢,] multiplied by
1-—

—1 V. Accordingly, voltage fits into the range of +10~* times the final value

4
when exp(ea) becomes lower than 107, thus for t>Lln 10
\'1_;2 ;wn '\'1_42

=5.9 us.

N

1+
4) Feedback loop transmittance is equal to B'(s) = R, 27 f,
R +R, 143
21
, 1+ ji
The loop gain is thus: A()B'(f)= Ay f—” /2 in harmonic
1+ ji i ji

h Ve

condition.
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Argument close to — for
B 1

Images of 4B

and A'B' in the
complex plane
[ increasing

Argument close
AB L to-3m/4for
R4 [4'B| =1

.-
Ll A

For f; = 500 Hz, f;; = 5 x 10° Hz while accounting for [, = Nt s |A'B

I+ S
=1 and with /', >> f; , the argument of —j} must be of +7m/4 in order
I+
/4
to obtain a total —3m/4.
So:
f /f |
E—Atan(f' j Atan{f' J Atan S S fz = Atan fz
4 J2 f 2 1+ f
LS

S

2

1 "
The tangent must thus be equal to 1. So  x——=2 writing x =
X

The positive root of x> — 2x — 1 = 0 is 1++/2 = 2.414, involving
&:H&:S.S&
5 R,
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There remains only to determine frequency /", for which |[4'B’| = 1 while
making the approximation f',>> f; , which will be verified below; since

/. A
12 Ao St fo|_AshiTu Sy | _ A fify 14583
/5 S | 5 1
T el e s
10°

Furthermore, since 4', =

B

3 then finally

1

' =3.2x10°Hz>>500Hz, ,=1.3x 10°Hz andf;'=7.7 x 10° Hz.

1.7.4. Study of a Colpitts oscillator built with a JFET

Let us take the sinusoidal oscillator represented below. The impedances
of capacitors C, and C are considered as zero at oscillation frequency and
that of inductance Lcnoke as infinite. The conductance of R, and the
transistor’s input admittance between G and S are negligible relative to the
admittance of C,. The transistor is equivalent to a current source g, Vgs
between D and S from a dynamic point of view (g, is the transconductance).

el (]

No contact between the two

e

Lchoke

=C G
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1) In order to obtain an operating point at Ipgs / 2 (Ipss being the saturation
current at V= 0), there must be a static voltage Vgs = —2 V. If Ipgs =2 mA,
calculate R, with the static gate current being zero. If V.. = +5 V, calculate
static Vpg.

2) Determine the equivalent dynamic circuit while accounting for the
hypotheses above.

3) Using the calculation of admittance seen to the right of point D and the
AC voltage division performed by L; and C,, determine the oscillation
condition (on the imaginary part and on the real part) and deduce the circular
frequency a for oscillation according to L;, C; and C), together with the
relation between Rp, g,,, C; and C,. Comment about amplitude stabilization.

Answer:

1) In static condition, there is Vgs=— RsIp =—2 V, then for Ip = Ipgs/2
=1mA, Rs=2kQ. And since Vps=Vce —Rslp, Vps=5 —2=3V.

2) Accounting for the conditions provided in the presentation, the
dynamic operational circuit is made up as follows:

i L,
> ANV

gmVGs Rp _
VD -, —C | ves

Writing gp = 1/ Rp and calling Y(s) the admittance of the circuit crossed
by current i:

Y(s)=g, +Cs +L2 and V. (s) =V, (s)

+L,C,s 1+L,C,s’
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Furthermore, the LT of i reads /(s) =Y (s)V,(s) =—g, V. (s). Replacing s
by ja:

1-L,C, o) 1-L,C, &

12 770

. C . " .
{gD + ], (Cl +—22J:|VD(]w0)+g—2VD(]wO)=O

The oscillation condition allows for V,(j@,)# 0 only if:

C g
+jw,| C + - + - =0
&) 0[‘ 1—Llc2a)§J 1-L,C, &}

Accordingly, the real part must be zero, and the same for the imaginary
part:

C
En ~=0 and C + 2

+— —_—
LG o 1-LC, &

Hence, it may be deduced:

11 1
@, = —(—+—j and R, _1_G
L C gD Clgm

1

Stabilization of the amplitude would need a detection circuit controlling
the conductance of a second JFET whose drain and source terminals are in
parallel on R, in order to modulate the transconductance of the initial JFET,
as described in the lecture of this chapter.

1.7.5. Study of a system in state-space form

The system below, based on two coupled resonant circuits, will now be
studied in the aim of determining its poles and its stability. D is a dipole
capable of presenting a positive, negative or zero conductance G around the
origin, and is nonlinear beyond a certain voltage threshold, as in the Chua
oscillator. The independent source of current i, can represent the collector or
the drain of a transistor.
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Co

Io . 1l

]|
; Ny
il 1553 i=Gu,

[2%)
L

U
Cl C2
17" T

— Determine the number of nodes and branches in which it is possible to
write a relation between voltage and current. From this, deduce the system’s
number of independent equations (state equations).

~
T

— Write the system’s state equations, taking the various derivations of the
state variables as first members in the order visible in the circuit from left to

. . . C . .
right. Taking C; = C; = C and writing yzﬁ (coupling coefficient),
+ 0
resolve the subsystem of equations where the derivations of u; and u, appear
in order to obtain a subsystem in which only one of the two derivations
exists in each equation. In addition, since there are still too many settings, it
may also be taken that L, =L, =L and R, =R, =R,.

— Normalize the system of equations by making the following variable

changes: 9:#; 4 =R0\/% € [0 1] (damping coefficient to within a

JLe

L _GR, R

factor of 2); =G ol o Uy R, i,

;W px=—"L; y=-—2; z= , U, being
4 u, u

a constant voltage reference. From this, deduce the dimensionless elements
(with the exception of the second term of the second member) in which the
column vector of the first member only includes derivatives relative to 8 of

normalized state variables w, x, y, z .

m um m

—1In case =0, representative of a circuit with no D dipole, determine
eigenvalues 4; of the state matrix A. It is indicated that the development of
the determinant det(A —AI), where T is the unit matrix, leads to equality
between two squared expressions for which the square root assigned to the
plus or minus sign may readily be taken. Now deduce the expressions of the
poles. From the symbolic value of their real part, deduce whether the system
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is stable or not. Determine the system’s two natural circular frequencies.
What is the effect of an increase in the coupling coefficient y?

—In the case where <0, it is possible to obtain a system whose
behavior is different; however, the poles can be only be calculated by a
numerical method, available in mathematical softwares. For example, for
¢=0.02 and y=0.25; the eigenvalues of 4 follow the following laws with a
precision better than one thousandth

{ o, | & { Be, |-y &
PO 1-=2— and =2 _"“+jl—L -2 for -0.1<a<0.
Ao 2 4T, ba=73 20 Nivy 4

Deduce the value of « allowing the system to oscillate and the oscillation
frequency reasoning from the cancellation of the real part of one pole.

Answer:

1) The circuit comprises three nodes and six branches in which it is
possible to write a relation between voltage and current, unlike in the case of
the ideal source. There are 6 — 3 + 1 = 4 independent equations.

2) The four state equations are written as:

di :

le_tl =u, — R,

o, A=) ;g
dt dt

c, du, _ c, d(u, —u,) i i
dt dt
di .

Lz?? =u, =Ry,

The subsystem comprised by the second and third equations is resolved
CO
c+C,’

after introducing C; = C, = C and y=
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LlE_ul R
du, N .
C(1+7/)E=—7(12+l)—1,+10
di L. ..
C(1+7) ;‘t =—i,—i+7(i,~i,)
Lz%zuz—Rzi2

3) Making the changes as indicated gives:

N 2 % S

- ¢ 0 0
-1 -ay -y
F+y) (I+y) ¢d+p)
-y - -1
F+y) (I+y) ¢d+p
0 0 ¢ £

N ®I

cd+pm,

YR,

c+7m,

0

[is]

that can be condensed into F = A F + B U, where A is the state matrix. The
eigenvalues are the roots of the characteristic equation det (A —AI) = 0.

4) In the case of o= 0, developing det(A —AI) relative to the first line

. . A y -1 ﬂ@m)}
ives: det(A—Al) = (= —A)| =A% (& +4) - - _ -
s “ )=(=¢ ){ (€+4) (1+7)} éVL“(HW {a+y)
Factoring: /1(§’+/1){/1(g“+/1)+ } 1= 7/2
A+ | A+’
Developing: [A(¢+2)T PYT O B G , equality of two
ping: [A(¢+4) [+ M A =y Y
. . 1 14
squared expressions, whose square root gives: A({+A4)+ =+ .
q p q g (+4) o STy
The 4 root solutions can be deduced from
A(C+A)==1 and A({+A)= —ﬁ-
¢, 2 ¢, iy ¢
=—24 d -2+ -2
ﬂl.z B 4 an /134 > J 1 7 4
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These are the system poles, for which all the real parts are equal to —%,

negative, and as a result, the system is stable. Its free regime is of the form
t
v,exp(460)=) v,exp| L ——| with identical eigenvectors v; for the
Z (46) Z ( JLC g

complex conjugate poles.

. . 1 ?
So, the natural circular frequencies are —— 1_(_ and
VJLC 4
1ty &
Jec\i+y 4

5) Starting from = 0 and moving toward o < 0, the first pole whose real
part reaches zero is A, for a=-0.04. For this value of ¢, there will

{20,999

1 . 1
consequently be oscillation at circular frequency T -2
LC

4 JLC
t
the sum v.exp| A ——| vyields a sinusoidal function of time while the
Z i p[ I\/Rj y

1,2

since

other oscillation dampens due to pole A4 still with negative real part. This
operation requires negative conductance G around the origin for dipole D,

which is calculable from the value of =G é = G—R° =-0.04 .

g
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Continuous-time Linear Systems:
Quadripoles, Filtering and Filter Synthesis

2.1. Quadripoles or two-port networks

Quadripoles are networks described by a system of two linear equations
linking four electric quantities, two currents and two voltages, which can be
written in the matrix form, the matrix Q or T of the quadripole having to be
chosen among six possible combinations of the four electric quantities. By
convention, the electric quantities will be written in capital letters because
they represent either complex symbolic quantities (with sinusoidal behavior)
or Laplace or Fourier transforms of time functions with variable behavior.
When the convention about the current directions at the terminal where the
potential is highest (tip of the arrow) corresponds to incoming currents, this
is a receptor convention (Figure 2.1).

N A A e
> 1—1—

g Q T Y
B L D

Figure 2.1. Input and output receptor conventions
in a quadripole or two-port network

In the case of a current leaving the terminal presenting the highest
potential, this represents a generator convention, which will be adopted in
certain cases. It is assumed that terminals A—B, on the one hand (the left
port), and C-D, on the other hand (the right port), are connected to external

Fundamentals of Electronics 2: Continuous-time Signals and Systems,
First Edition. Pierre Muret.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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dipoles and thus crossed by currents of same name. A—B and C—D pairs are
called “ports”.

The interest of quadripoles lies in showing both voltages and currents,
which will allow us to perform power calculations. Since filtering can be
regarded as an operation that makes the transferred power dependent on the
frequency, this issue will be naturally addressed based on the concepts
introduced for quadripoles, even when filters make use of circuits that can be
represented by block diagrams as in Chapter 1, such as operational
amplifier-based circuits.

2.1.1. Quadripoles deduced from dynamic circuits

The four types of quadripoles presented below are simply deduced from
the association of two dipoles composed of either a voltage source in series
with an impedance, or a current source in parallel with an admittance. The
corresponding electrical equations are expressed from the sums of the two
voltages in the first case or of the two currents in the second case, giving a
relationship for each of the two ports. Each makes it possible to express the
characteristic quantity of the dipole according to the other two, one relative
to the same terminal and the other relative to the opposite terminal, which
offers the possibility of generating electrical couplings between the two ports
(direct transfer and inverse transfer). Types Il or IV are generally used to
describe transistors, type I for standard operational amplifiers, type III for
transformers and types I or IV for passive circuits.

1 1
type I: with {Vl =zl +Z,1, . 1 Zy ~ 2
impedance _ ! .
parameters Vy=2yl+2Zyl, o IT 221 [1 =

type II: with hybrid
parameters (voltage-
current)

Vi=h,1 +h,V,
I, =hy 1, +hy,V,

parameters (current-
voltage) th Vl + hzzlz

¢ | ’ ’ V2
type IV: with 1 Yl 1 V + Y] 2V 1 y 12‘
admittance 1% 1 633 V.
12 Y21V1 +Y22V2 1 TiaVay Y21 "1 :

parameters

type I1I: with hybrid {[1 = h“V + hlzl
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The two-equation systems can be written in the matrix form, Z for type I
and Y for type IV.

In associations of quadripoles, type I will be adopted for associations in
series (addition of voltages V1 +V'; V>+V,'), that is to say, if currents /; and
I, are common to the homologous ports of both quadripoles, and type IV for
the association in parallel (addition of currents [,+/'; L,+l,' ), namely if
voltages V, and V, are common to the homologous ports (Figure 2.2).
Different associations for both ports will require mixed types II or III.

1 1 -
1 Z 2
4] & 1% " i
2
Z]ZIZT 1 4 _| Yiohy Y11y L
)
vy 2
— Yi'hy Yar'ly —

Figure 2.2. Association of quadripoles in series (on the left)
and in parallel (on the right), using the appropriate models

Generally speaking, any quadripole can be described by

{X1:Q11VV1+Q12X2 .
, where Xi, Xp, W and W, represent the four electric
W, =0pW +0,X,

quantities (two currents and two voltages) and Q,, O1», O and Oy, the four
parameters (), the inverse transfer parameter, (,; the direct transfer
parameter). It should be noted that matrices Z and Y are inverses of one
another and that the same happens for the two types of matrices with hybrid
parameters.

2.1.2. Quadripoles and transfer matrices

For a cascading configuration, that is, quadripoles assembled one after
the other, quantities ¥, and 7, (“output port”) must be expressed according to
V1 and I, (“input port”), and it should be more convenient to take /; outgoing,
namely following an output generator convention (Figure 2.3).
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[1 grmmmee e sy, ]2
VlT T T v,

Figure 2.3. Quadripole with receptor convention at left (input)
and generator convention at right (output)

V, =1V +T1, . . .
It should be denoted by or in matrix form:

2 2171 2271
IZ ];1 7;2 ll
2 21 22 1

A linear combination of the two characteristic equations of one of the
quadripoles deduced from the dynamic circuits (or substitutions) allows for
this structure to be obtained, on the condition that the determinant of the
initial matrix or some coefficients are non-zero. Therefore, it is not always
possible to obtain these two types of quadripoles from one of those in the
previous section. Where possible, we can also calculate V; and /; according
to V, and I, by means of the inverse matrix of matrix T.

For example, from the admittances (type [V):

Y 1
V==V ],
12 12
AY Y,
L=—WV-2]
h L

where AY=det Y= Yll Yzz— Y12 Y21.

When the calculation is possible, it is then easy to “chain” (or “cascade”)
several quadripoles of this type and to execute the calculation of the matrices
product by a computer.
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2.1.3. Modification of the parameters of the quadripoles using
negative feedback

X, =0, M +0,X, _ _ .
Let the system be where X; = V, and W, = I, or vice
W, =0,W,+0,,X,

versa and X, = V, and W, = I, or vice versa.

By applying negative feedback from W, onto W, W, will be replaced by
Wi — B W, in both equations. In the second equation, W, =0, (W, — B W) +
00 X>.

_ 0
1+ BQ,,

Wz — QZ] VVI + Q22 X2
1+ BQ,, 1+ BQ,,

1

W[QD_BQHszsz

Therefore: 1+B80;,

It can be observed that the output impedance (,, can be decreased (if X,
is a current) by a factor (1 + BQ,;) when the output generator is a voltage
generator or the output admittance 0,, (if X, is a voltage) when the output
generator is a current generator; in other words, in both cases it results in a
better approximation of an ideal output source.

On input, Oy, is also divided by (1 + B(Q»). This is an impedance if W is
a current and an admittance if /) is a voltage. It should be noted that this is
done at the expense of the direct transfer coefficient Q,;, also divided by

(1 +BQy).

Replacing X; by X; — B'X; is of less interest because only the inverse
transfer coefficient is changed into Q,, + B’ and that of W, by W, — B"X,
changes O, into O, — B’ and Oy, into O, — B’, which can lead to the
instability of the quadripole.

According to the parameter types, the feedback of W, onto W is carried
out with current or voltage quantities from the output toward the input, with
Oi11, O»1 and Oy, divided by (1 + BQs;). The type of feedback assumes one of
the designations shown in the following table, the first term indicating the
output quantity used to develop B and the second term indicating the input
quantity onto which the feedback loop acts:
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w, = I Vi
w,=1, Current—current Current—voltage
W=7, Voltage—current Voltage—voltage

Examples of negative feedback applied onto quadripoles (the quadripoles
are usually transistors or associations of transistors or operational
amplifiers):

R
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Figure 2.4. Current-voltage feedback on the left and
voltage—current feedback on the right
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Figure 2.5. Current—current feedback on the left and
voltage—voltage feedback on the right

It is essential to write the circuit equations of the aforementioned circuits
to obtain exact expressions of the new parameters because the resistances
introduced in some cases modify more than one quantity 1, V;, I, or V,
(except eventually if Q is an ideal operational amplifier), contrary to the
assumption made at the beginning of the section. The resistors can also be
replaced by impedances, transformers or active components, which offers
many possibilities to change the initial properties of a quadripole.
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2.1.4. Passive quadripoles

A quadripole is said to be passive if it is possible to find an internal
circuit comprising no source.

. Vi=2,1,+2,1,
For example, for type I, the system of equations can be
V=21, + 2,1,

. Vi=(Z,-Z,)],+Z,(I,+1)) .
transformed into which can be
Vz = (Zzz _le)]z +le (12 +]1)+(ZZI _ZIZ)II

represented by Figure 2.6.

Zy—2Zyp Zyy—Z1p L
L X

Vs
4] Z12 (Z21= Z12)])

Figure 2.6. Representation of a type | quadripole with a single linked source

Only a single source remains. The only way to make it disappear is to
impose Z,; = Zy,.

Then, there are only three independent parameters left for a passive
quadripole instead of four for a quadripole in the more general case.

The reciprocal passive quadripole is defined, regardless of its type,
X, =0, W+0, X,
W, =0, W +0, X,
coefficients: Q1 = Os;.

represented by { , by the equality of non-diagonal

For a reciprocal passive quadripole having a transfer defined by
{Vz =T,V + 1,1,
I, =T,V +T,1,
output, the determinant A is equal to 1 (verify by setting Y, = Y;; in the

with the receptor convention on input and generator on



92 Fundamentals of Electronics 2

system in section 2.1.2) and A = —1 with the receptor convention on input
and output. In addition, if the passive quadripole is symmetric, in other
words if both ports can be swapped without this having consequences on
electrical properties, then O, = O, for the quadripoles deduced from the
dynamic circuits with the receptor convention on input and output. For
symmetric transfer quadripoles, Tj; = T, with the receptor convention on
input and generator on output (or 77, = —T», with the receptor convention on
input and output).

2.1.5. Dipole impedances and admittances; iterative impedance

2.1.5.1. Impedances or admittances seen at one port, the other being
connected to a termination impedance

The input and output impedances, or dipolar impedances (or even
“terminated impedances”), are defined for each port, respectively, by

Z, = V\/I, and Zy=V>/I, (or admittances by their reciprocals), and by a
condition on the parameter related to the opposite port of the quadripole in
the equation under consideration, which is obtained by means of the current
flow in a termination impedance or admittance. It is therefore possible to
admit that the quadripole can be reduced to the dipole whose impedance or
admittance is being calculated, the opposite port seeing a condition definitely
imposed by the termination impedance or admittance.

In the two extreme cases either corresponding to an open circuit or to a
short circuit at the opposite port, we shall add the index o or sc, respectively.
The simplest dipole impedances or admittances are those which are already
present in the circuit of the quadripole and that are obtained by canceling the
dependent term of the opposite port in each equation:

for type I: Z,, = Z11; Zgo = Zap; for type 11: Zoge = hi1; Yoo = oo
for type IIL: Yo, = h11'; Zsse = hay'; Tor type IV: Yoo = Y113 Yooe = Yoo

The others are inferred by canceling the first member of the other
equation. Generally speaking, when any quadripole is represented by

X, =0.W +0.X
{ =0, +0, > e find:

W, =0,W,+0,X,
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X, _detQ

W1 W,y=0 sz

W detQ
X, x,=0 0,

and

where det O = Q11 O — 012 Oa1,

whereas we would have found Q; and Q,, for the other two impedances or
admittances, the opposite port in open circuit in the case of a voltage dipole
or short circuit in the case of a current dipole. There is thus a relation of
proportionality between these four parameters, since they depend only on the
three quantities Q;;, O and det Q. Clearly, it can be seen that the 01,/0»
ratio is equal to that of the other two terminated impedances or admittances
calculated above.

More generally, the input impedance or admittance is defined with the
termination (or load) impedance Z, connected to the output; and the output
impedance or admittance with the termination impedance (or internal
impedance of the external generator) Z, connected to the input. For example,
for the previous transfer quadripole, calculations are carried out by imposing
the condition corresponding to this impedance connected to the opposite
port:

eu:ﬁ :ZuTzz_le and Z:g=£ _ 1,-2,T, .
1) V2=Zul2 I, -2,T, =1, K:_Zgll ZgTzl_Tzz
Then, it can easily be found that:
D] I SO/t B
eo I T > esc I 3 T >
1 Zu(x, 21 1 Zu 0 11
_7 I A S
50 _12 T > ssc I T s
/ oo 21 2l7 =0 22
g g

. . . V4 V4 .
which verifies the relation: —<2= Z” , the general relation for all

quadripoles, which could be proven independently of their type, as noted in
the previous section.
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.. X] :Q11VV1 +Q12X2 P . .
By generalizing to , it is possible to determine the
W, =0,W +0,X,
admittance or the impedance as seen from the input (port no. 1) depending

on the termination Q, = —72 at port no. 2, by extracting X, from the second
2

equation with respect to W, and by deferring it into the first one:

Xl

m

_0,0,+AQ
w, =_Qu X2 Qu +Q22

where AQ =det Q.

In the same way, we determine (port no. 2) the admittance or impedance

. . o X,
as viewed from the output according to the termination Q, = T at port

1
no. 1, by extracting X, from the first equation with respect to W, and by
deferring into the second:

W, _ 0.0, +40

Xz Xlz_QgVVl Qg +Q||

. Z,Z +detZ

For example, for a quadripole of type I: Z,| _ = fnt, TA
=21, Z,+7Z,

| ZyZ,+detZ

andZ | _ =
M==Z,1y Z,+Z7,

2.1.5.2. lterative impedance or characteristic impedance

It is the impedance Z. that, connected to the output, can also be found as
input impedance. In other words, this corresponds to the special case where
the dipole impedance is the same as the termination impedance connected to

b for a quadripole

. v
the opposite port. Thereby, we have 7. =—1
z,=z, ~h

1

. . |14
following receptor convention on output and Z,. =-1

1

v
=—2 for a

7z =z b
u C

quadripole with generator convention on output.
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In this particular case, the two equations that define the quadripole are no
longer independent. In the case of impedance or admittance quadripoles with
generator convention on output (types I and IV modified by inverting the
direction of 1), Y= 1/Z. directly represents the eigenvalue with a real
positive part of the impedance or admittance matrix.

It is possible to find a general characteristic equation for Z. using
impedances Z.,, Zes, Zs, and Z,. that can be defined for any quadripole. For
ZcTzz _le
Tll - Zc T21 ’
and by replacing the parameters Ty, T1,, T»; and T, by their expressions
according to Z,,, Z.s., Zs, and Zg, previously defined:

example, for the transfer quadripole, we get by setting Z, = Z, =

z:+(Z2,-2,)2.-2,2,=0 or Z+(Z,-2,)2, -2, Z,=0
In the general case, Z. is thus a solution of a second-degree equation and
comprises an irrational term because of the square root. This term is
therefore not necessarily an impedance achievable with passive elements R,
L or C. In the particular case of a symmetric passive quadripole, Z,, = Z,, and
Zsse = Zese, TESUlting in:

ZL‘ = \/Zmz‘Zm = \/Zxcc Zeo
2.1.5.3. Non-dissipative passive quadripoles: synthesis of diagonal
impedances and admittances

This type of quadripole does not comprise resistance and therefore only
uses inductances and capacitances. The functions that it allows to be realized
involve matching the impedances and filtering. The properties of such
passive quadripoles consisting only of inductances and capacitances are
primarily based on those of dipoles existing between the ports when only
one term subsists in every system equation describing the quadripole, the
other quantity being canceled out, corresponding to the diagonal elements
Zi{s) or Y;(s) of the matrices:

—impedances Z;,(s) and admittances Y;(s) are odd functions of the
variable s. This directly follows from the fact that the active power
consumption is zero and thus Re[Z;(s)] |/]* = 0 for example, in other words
Re[Zi(s)] = 0. In sinusoidal regime, if the real part is zero, it remains Z;(jw)
= jXidw) where Xy (w) is the reactance (real number). Thus,
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Zi(—jo) = —j Xi(w) =— Z;(jw); however, since this relation is an algebraic
relation independent of the nature of the variable, purely imaginary or
complex, we also get Z;(—s) =— Zi(s). Zi—s)is called the Hurwitzian
conjugate of Z;(s);

—since these are rational fractions, they are formed by the ratio of two

polynomials, one only comprising odd-degree terms and the other only even-
2

degree terms: Z;(s) or Yi(s) :w. This comes from the fact that they
W(s*)

are obtained by sums or ratios of terms either proportional to s or to s~

However, the degrees of the numerator and the denominator differ only by a

single unit because the polynomial part of the fraction can only be of degree

1 or —1, corresponding to an impedance Ls, an admittance Cs or their

reciprocals; the zero degree is forbidden due to the lack of resistance and the

other degrees do not match any feasible passive elements admittance or

impedance;

—poles and zeros are alternated on the imaginary axis, and a pole may
exist at the origin and/or one at infinity. In fact, according to the foregoing,
by means of  partial fraction expansion, we get:

4 4
Z,(s) or ¥y(s) =Ty AS S
s st s o

+---+ A_s , where the coefficients can

only be positive (because they are proportional to products or quotients of
positive capacitances or inductances and squared angular frequencies, as
seen here below) or equal to zero, particularly the first or the last. In
harmonic regime, this corresponds to a reactance or a susceptance (the
imaginary part of the admittance):

y y
X, (@) or Byw) =- 0 AP ___ 4O 4w
0 O-0 -6

&+
(a)2 - )2
is always positive. However, when @ = w,, X;(w) brutally shifts from +eo to
—oo to again reach a value that tends to +eo at the next pole that will be called

w,. Therefore, since reactance is always increasing, it necessarily crosses
zero between both poles and so on.

ax,(@) dB(®) 4 @ +af

_()
dw dw o’ 1(0)2—0)12)2

whose derivative

+4,
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These properties can be used to synthesize a dipole impedance Z;{(s) or
admittance Y;;(s) from their expression using two different methods. Foster's
synthesis is simply obtained by decomposing the rational fraction over the
reals into fractions with linear and quadratic denominators, whereas Cauer's

synthesis is obtained by decomposing the rational fraction into a continuous
fraction through successive Euclidean divisions.

4, 4 p 4,5

— series Foster’s synthesis for Z,(s) =—+———5+—5——5++Ls;
s sTHo st
A w? Asl w?
L VvV
I I FaVaVaVaVaN —
1/40 I I
1/4, 1/4,

— parallel Foster's synthesis for ¥, (s) =—>+

—Cauer’s synthesis: If in the expressionZ,(s) =i+

A4,

s +a@

Figure 2.7. Series Foster’s synthesis

B Bs B,s
——+t—5——5++Cs;
s STt STt

1/Bl I/Bz

1/By

Bl/wlzT Bz/wzzT

Figure 2.8. Parallel Foster’s synthesis

As
s s +a)l2

+-+Ls, L1 #0, then Z,(s) =Ls+Z,(s) can be rewritten, which

amounts to placing inductance L, in series with a dipole of impedance Z,(s).
Consequently, after transformation into a single fraction, the degree of the
numerator of Z,(s) is a unit less than that of its denominator.
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By inverting, it is thus possible to extract a polynomial part
corresponding to the admittance of a capacitance in parallel with the
admittance Y,(s) = 1/Z,(s) = Cys + Y3(s), by means of Euclidean division of
polynomials and so forth. A “ladder” circuit is then obtained, whose
elements are alternatively a branch in series and then a branch connected to
the reference potential. These elements are the following, by limiting
associations to two elements at most (L and C):

Element(s) Impedance Admittance
Inductance L Ls 1/Ls
Capacitance C 1/Cs Cs
L 2
L and C in parallel —Sz I+ LCs
1+ LCs Ls
2
L and C in series 1+ LCs Cs >
Cs 1+ LCs

Example: by simplifying to the same denominator Z,(s) =i+
S

As N Ays
ss+a S+
in the numerator and a fifth-degree polynomial in the denominator.

+Ls would give the quotient of a sixth-degree polynomial

. As A,s
We can write Z,(s) :i+ ——+———5+Ls=Ls+Z(s), where
s s ta 5T+

A A .
Z,(s) :i+ . 13 —+— 2 . corresponding  to Y, (s) =
s st s+, Z,(s)

s5+(w52+a)22)s3+a)fa)§s
(dy+ 4 +4,)s" +[ (4 +4) B +(4,+ 4) @ |° + 4,0 &
1 s5+(w12+w22)s3+a)12a)22s
ZGs) 1, @

1
— sttt 2@
CZ C3 CO a)l ’

which is rewritten

as: Y,(s) = to simplify the notation.
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The Euclidean division gives a polynomial part equal to C,s and Y,(s) =
Cys + Y3(s) where:

C C
{(a)f +a)22)—cia)§}s3 +& @ (l_Cz}S

1
Zy(s) LS4+&2S2+L@2(022
G G G

Y (s) =

The Euclidean division of Zi(s) gives a polynomial part equal to

a c and it is deduced that Z;(s) = Lis + Z4(s) where
G, (of ot ) o |
3
1
L= and where Y, (s) = o is an admittance of the
p) G o, Z,(s
C|(af +af)- e
3

3 2
C,s"+C,w; s

s+

form that yields by way of Euclidean division a polynomial

. . .. C, (wf - wsz )p
part Cys added to the quotient of the remainder by the divisor

s’ +ar
which following the previous table can be associated with the admittance of
a capacitance C,=C, (;“—1 in series with an inductance

S

The corresponding circuit is therefore obtained by combining the
following elements, where the order of the last two is arbitrary (Ce and Ls).

L L3 C()

—YYYL YYY |

Zi —> =G — Ls

Figure 2.9. Ladder network obtained through Cauer’s synthesis,
the order of the last two elements Ls and Cs being arbitrary



100 Fundamentals of Electronics 2

It corresponds to the impedance that is written in the form of a continued
fraction:

Z.(s)=Ls+
1
C,s+
1
Ls+ I
C,s+
1
Lis+—
Cys

There are thus many possible circuits corresponding to a same expression
of Z;(s) according to the type of synthesis that is adopted. It should be noted
that Foster's syntheses lead to associations in series or in parallel in which
the order of the elements is free, which does not indicate the actual
connection for the opposite port in the case of a quadripole, unlike Cauer’s
synthesis that imposes the order of the elements except for the last two.

Several types of synthesis can also be combined in a decomposition
because it may prove necessary to impose a fixed succession of elements
according to a ladder structure, in particular for the implementation of band-
pass or band-stop filters in which the alternation of capacitances and
inductances cannot always be repeated following the same order anywhere
in the circuit. In this case, a solution is to perform a Cauer synthesis of Z;(s)
to extract the first part of the elements, and then for the second part of the
elements to shift to a Foster synthesis, in series or in parallel, but in which
only the extraction of the single term is addressed, having a pole at
the origin, after that of the term having a pole at infinity (in other words, the
polynomial part). This is possible by factoring the first-degree term in the
denominator of the fraction being considered assuming that its degree is odd.
Recalling the previous example but by stopping the Cauer synthesis at the
element L3, we can rewrite:

1+ L,C,s’
(C,+Cy)s+L;C,Cqs’

Z,(s)=Ls+ , where 7, (s) =

Cosv— b
Lis+Z,(s)

By factorizing the first term of the denominator and by decomposing it
into simple fractions, we get:
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1 1+ L,Cs’ 1 Lys
Z4(S) = > = + : 2
(C+Co)s 11p GG o (C+C)s 1+LGs

S

C,+C

C2
where L, =L ————— ,and C, :M.

(C,+Cy)

6

In addition, establishing C, = C, + C, yields to an overall impedance:

Z.(s)=Ls+ !

which is represented by the following circuit, where the alternation of the

last three elements is reversed with regard to the first three, which can be
useful when synthesizing a band-pass filter.

L 1 L3 C7 C9
_IYYYL__(YYYL

Zi —> =

Figure 2.10. Ladder network obtained through Cauer synthesis up to Ls,
then Foster synthesis in series for the element C7 and finally using
Cauer synthesis for the last two

This method can be considered a mixed synthesis because it makes use of
both the continued fraction expansion (Cauer’s synthesis) and extraction of

elements by partial fraction decomposition (Foster's synthesis) restricted to
the term exhibiting a pole at the origin.
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2.1.6. Scattering matrix (or s-matrix) and transfer matrix

2.1.6.1. General case: incident and reflected waves

This type of representation of quadripoles is useful when it is desirable to
study power transfers operated by the quadripole and filtering is one such
case. Nonetheless, ideal quadripoles comprise elements such as ideal short
circuit, open circuit, perfect transformer (V, = nVy; I, = —nl,) or gyrator (V, =
RL; V, = =RI). Then, some matrices of quadripoles of type L, II, IIl or IV or
transfer matrices cannot be written because shifting from one representation
to another always involves a ratio with the determinant or a parameter in the
denominator. If one of them is zero, the matrix inversion is impossible.

It is also still possible to write AV = BI where A and B are 2 X 2 matrix,
with V:{V‘} and I :{1‘}.
v 1

For instance, if we have the impedance matrix (type I), matrix A is
simply the unit matrix and matrix B is the impedance matrix:

1 0|/ Z, Z 1
{ H '}={ ! IZH 1}. With the admittance matrix (type IV), we

O 1 I/2 Z21 Z22 2
v, %% 1 ool _ : :
have: = . And any other matrix equality obtained
L Ly ] [0 14

by multiplying on the left the two members of one of the above expressions
also satisfies the general relation AV = BIL.

However, it can happen that A~ or B™' may not be computable (as an
exercise, write these matrices for the ideal gyrator and the ideal transformer,
and show in which case it is possible to calculate or not V=A"'BI and I =
B'AV).

This type of problem can be overcome by using s-parameters, which will
establish links between new quantities, called incident and reflected waves,
themselves in direct relation with the power transfers performed by the
quadripole. Consider the case of a termination impedance (load resistance or
internal resistance of a generator) equal to R, assumed to be a normalization
factor only, and define v=V R i=1R" a=AR" b=BR " where v
and i have the dimension of the square root of a power while a and b are
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dimensionless, which gives place to av = bi. Define the incident & = v +i and
: o, b,
reflected waves f =v —i, where o = and f= 5| In that case:
2 2
2v=qg+ fand 2i =a — f; from which: 2av=a(a+f)=2bi=b (a - p).
We deduce: (a + b)f = (b — a)a.

It is shown that the inverse matrix (a + b)™" exists in all cases (unlike @'
or b™' as seen in previous examples), which allows us to write:

p=sawheres=(b+a)" (b—a)

Incident and reflected powers are then, respectively, computed based on
the square moduli of oy, a,, on the one hand, and of /5, f,, on the other hand;
S12, $21 are the transmission coefficients and sy, 52, the reflection coefficients.

{lb— —41—2 o — - &
Vl T Q TVz = s >
] |
T [ B B

Figure 2.11. Representations of a quadripole, including currents, voltages
and complex parameters on the left and using incident and reflected
waves, and s-parameters on the right

However in reality, what represents these incident and reflected powers?

To help clarify this issue, consider, for example, the case of the input of
the quadripole assumed to be connected to a generator with internal
resistance R. The active power P; absorbed by port no. 1 can be calculated

based on Re[v, j] or better with %(vlzfﬂ'lﬁ), where we have set

vi=Vi R and i; =1, R". On the other hand, the calculation of the square
moduli of a; = v, +i; and of B, = v| — i gives:

s = n+ i)+ D= [ + 2R +[i

B =00 iD(T - D=w[ -2 +[if
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In the particular case where the input impedance of the quadripole V1/1; is
resistive and equal to R, that is also |v, / ij|=1, the generator provides the sum
of the same two powers Pj, both on input of the quadripole and in its internal
resistance. As it will be seen in the following section, this case corresponds
to the ideal power match, that is to the maximum power transferred from the
generator to the load, which here is the input port of the quadripole. It is

obvious that B, = |v] |2 = |i] * | from which it is finally deduced that:

1 1
Slesf =P+ R and Z|B[ =R, -F

These so-called “incident” and “reflected” half-powers are thus fictional
powers, which do not directly correspond to a power dissipated in one of the
elements, generators or ports of the quadripole. It is more advantageous to
compute the active power actually absorbed by port no.1 of the quadripole in
the general case by the difference of the two previous equations:

1 2 2
R =l I8 ).
Similarly, the power absorbed by port no. 2 would be obtained:

A ANE

These directional powers absorbed by the two ports of the quadripole
exactly reflect the diagram showing the incident and the reflected waves
(Figure 2.11 on the right).

This description using s-parameters therefore makes it possible to address
power transmission and matching problems, and also problems of filtering
since filtering is nothing but power transmission depending on the

N S
1 2| . . .. . .
} is either originating from documentation

frequency. Matrix! s={
Su Sy

(case of high-frequency active components) or computable from the

elements of impedance or admittance matrix (see section 2.1.7.2.) and again

we obtain 51, = sp; for reciprocal passive quadripoles. In addition, this

description proves to be very well suited to scattered element systems in

which concepts of propagation and termination impedance essentially

govern them. This description does not restrict in any way the study to the

1 The s matrix, written in bold font, and the four elements of the matrix comprising two
figure subscripts, must not be confused with the complex variable s
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case of termination resistances equal to R, because by applying the same
transformation to equations V, = E, — Z, I, and V, = —Z, I,, representative of
the relations appropriate to a generator with an open-circuit voltage E, and
with an internal impedance Z, connected on the quadripole input, and to a

load Z, on output, we obtain: (zg—l),[)’l:(ngrl)al—Zeg and

(z,-1) B, =(z, +1) where we have established
E, z, Z
e, =——; z, =— z, =—.
g \/ﬁ g R u R

2.1.6.2. Case where the termination impedance equals the
normalization resistance R and impedance matching for maximum
power transfer

In the case where Z,= R, we have e, = a; and the evaluation of

powers can be achieved from i :%(0(1 —-p), by calculating the power
delivered by the generator: P, :%(egZﬂ‘l §)=%(2|a1 i —aIE—;I,BI):
1 J—

E(|a]|2 —Re[ozl ﬂ]}) .

Moreover, the power dissipated in the resistance R of the generator is

simply ;| =%(|011 " +|8] —2Re[0{1 Fl}) . Therefore, we finally obtain once
more the equality P, =|i[ +A = %(|a] I —2Re[0(l EJ+|,B, | +|es| —|,Bl|2)=
l J—

el ~Re[e A7)

Since e, = a; is fixed, the maximal power P, transferred in the quadripole
is obtained when £, = 0 because the only way to maximize it is to cancel out

the second term in the expression B (|0: -8 )

. . . VA
If the input impedance is equal to Z;, we have: z, = 2" v—l Therefore,

we obtain:

.z 1
Iy Z?](al _ﬁl)zvlzg(a,l +8)
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We can thus look for the expression of the reflected wave according to
the incident wave:

z, —1
ﬂl=] Q

z, +1

Therefore, it can be concluded that matching is obtained when Z; =R
yielding z; =1 and f; = 0, which is a reflected wave equal to zero.

On the output side, if Z, = R, then z, =1 and (z, -1) 5, =(z, +1)a, is

simplified into a, = 0. The power reflected by the load is then zero, which
indicates that the load dissipates all the power it receives.

2.1.6.3. Cascading quadripoles and chain matrix

When several quadripoles have to be connected in cascade or in chain, it
is advantageous to define a system of parameters that enables incident
and reflected waves to be obtained at both endpoints of the chain with a
matrix  product. The system is reorganized, starting from

{ﬂl}z{sll Slz}{%} to obtain {ﬂ'}={cl' Cu}{%} where c¢; are the
B, Sy Sy | O 21 ¢ oy LB

elements of the transfer matrix ¢. The quantities related to a single port are
grouped in the same matrix column as for a transfer matrix but with the
difference that incident and reflected waves do not occupy the same row.
This makes it possible to effectively obtain the identity of the waves at the
ports of the two quadripoles connected in cascade and to perform the
calculation of the matrix equivalent to the whole by a matrix product as
sketched in Figure 2.12.

ﬂll ] arz :ﬂul a”z
' cH
C
—> | —> —
o 1 ﬁrz — anl ﬂ”z

Figure 2.12. Chain of two quadripoles described by their chain
parameters, deduced from s-parameters
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Since a% = p”7 and p» = a";, we infer that
' CY C’ cll cll a"
{'B,l}={ ,” '12 }{ "“ "12 H "2}. By combining the two equations of a
a ¢y c'yfe"y "y 1B

system based on the matrix s to obtain the two waves related to the same port
according to the waves related to the other port, we obtain the coefficients ¢;
according to the s; The chain matrix is then defined by:

B | 1|-dets s, | o| 1|1 =5 |8
=— and conversely: =— .
| Syl ~S» L5 Bl sylsn —dets|
It is in this way possible to chain quadripoles whose elements are known,
or, on the contrary, to decompose a quadripole into a simpler array of
elements or extract an element from a quadripole having multiple elements.

It should be noted that the determinant of the transfer matrix is equal to s,
and the c,, element is equal to (s5;) .

It will be possible to show as an exercise that in the special case of a
quadripole comprising only one impedance in series between the high
terminals of each port, with a normalized value z, or still of that including
only one admittance in parallel with normalized value y connected
between the conductors directly linking the homologous terminals of each
1-z/2  z/2 }

port, the chain matrices can be, respectively, written as:
—z/2 1+z/2

1-y/2 /2
and Y Y

—-y/2 1+y/2
currents flowing on the side of each port, which are matrices whose
determinants are equal to 1.

} by splitting into two equal parts the voltage drops or

2.1.7. Powers in quadripoles and matching

2.1.7.1. Matching source and load: efficiency

We calculate the power delivered to a load (eventually the input
admittance of another quadripole) by a generator (eventually the output
circuit of a type II or type IV quadripole).
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Figure 2.13. Generator with current source and internal
admittance Yy loaded by an admittance Y,

We then have the equations: 7, = and I, =1 f
Y, +7, Y, +Y,
. Re[1)]

which the power in Y, is deduced: P, = |I g| —_—
Y, +Y,]

2
The maximum of P, is obtained when ‘I é‘ / P is minimum:

|1g|2 ) (Re[};]+Re[Yu])2+(Im[Yg]+Im[Yu])2
B RelY, |

_(Rel7, —Re[Yu]2+ Im| Y, |+Im[Y, ]
LA ie[ﬁ]” )

u

2

from

namely when the second term is zero (because it can only be positive or

zero), which implies that:

Re[Y,] = Re[Y,] and Im[Y,] = ~Im[Y,]

These are the power matching conditions. Therefore, we conclude as

follows:

Impedance matching or in other words the maximum transfer of power from
the generator or the quadripole to the load or termination is obtained when
dipolar and termination impedances or admittances are complex conjugates

of one another.
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2

1

It should be noted that in this case: P = L = ng since both
TEARE

conductances are equal and subject to the same voltage. They thus dissipate

the same power, that is an efficiency of 50%, a situation that does not

correspond to the maximum performance. As P, =|Ig |2 Re[Y lY :lz
+
g u

RelY
=¢ tends to 1 only if

2 Re[7, +7, |
Re[ Y, |+Re[Y,]

|Ig| the efficiency 7=
Re[Y,] tends toward zero (which avoids dissipating power in the generator
conductance). This result can be extended to what follows:

2 b

WD |;0

¥, +7.]

Generally, maximum efficiency is obtained when the generator (voltage or
current) supplying the load becomes an ideal source.

CONCLUSION.— Matching by compensating the imaginary parts of
admittances (or impedances) is beneficial for power transfer. We will either
choose to make the real parts equal to maximize power transfer when the
generator is imposed, or to find an ideal source to maximize efficiency.

In the case of a quadripole, a full match requires matching both input and
output, which can be illustrated in Figure 2.14.

Figure 2.14. Quadripole matched to the input generator and the output load

2.1.7.2. Insertion of an active or passive quadripole: normalized
impedances and significance of the parameter s

A gain of power is obtained by inserting an active quadripole between the
generator and the load, with the Y parameters as an example.
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I, il
Y11
Yg Vl[ %)
Yo 1h N u

Figure 2.15. Active quadripole described by its parameters
Y, inserted between a generator and a load

The useful power on input P, = Re [IIVl] is now dissipated in the input

admittance Y,, which can be calculated according to the parameters after
having determined the voltage gain.

The power gain is then the ratio of active powers dissipated in the load
Y,, thatis P, =Re[ (-1,) V, ] and in Y, that gives:

. 2 Re[1]

P
[Re[m—Re{Y‘ZYZ‘ D|Y22+Yuz
Yoty

According to the expression of the denominator, it can be seen that it is
advantageous to cancel the imaginary part of Y2, + Y, (matching the output)
to maximize this power gain, which moreover is proportional to |Y5*. To
obtain the overall power gain, namely the ratio of P, and P,, the power
supplied by the ideal source /,, it can be shown as an exercise that it suffices
to replace Y;, by Yy, + Y, in the previous expression.

On the one hand, the insertion gain G; is the ratio of powers dissipated in
the load when the active quadripole is inserted, and, on the other hand, when
it is directly connected to the output of the generator:

vy +x,|

G = -
)(Yg +Yu)_YnYu

ch

(7 +7,
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In order to minimize the denominator it can be seen that the input has to
be matched: Re[Y,] = Re[Y;]; Im[Y,] = —Im[Y},] in addition to matching the
output, and also the unilateralization (or neutrodynation), that is Y}, = 0 or
even the lack of feedback from the output onto the input, which is also a
condition useful for the stability as will be seen further on.

For reference, two stability criteria can be given, one intrinsic to the
quadripole, the other taking into account the load and the source, because
they are used in certain documents giving the characteristics of transistors
operating at high frequency:

|12 21|

2Re[Y, |Re[Y, ] -Re[Y, Y, ]

Linvill criterion: for < 1 the quadripole is

stable.

2Re[ ¥, +7, |Re[V;, +7,]

| 12 21|+Re 12 21]

Stern criterion: for > 1 the quadripole is stable.

The issue of stability will be addressed in greater depth with s-parameters
in the following.

Power and power gains measures use as units: decibels (dB) defined by
10 logG,, 10 logG; for gains and dBW or dBm, respectively, defined by
10 logP/1W or 10 logP/1mW for absolute powers.

Obviously, the s-parameters can be used of course to address in a more
general manner these matching issues for maximum power transfer in a
quadripole inserted between a source having an internal impedance and a
load. To this end, normalized parameters can be defined (dimensionless)
initially assuming that this internal impedance and this load are purely
resistive, but different: for example, a type 1 quadripole (Z parameters)
inserted between a voltage generator E, and with an internal resistance R,
and a load R, will be studied (see Figure 2.16).

Second, it will be possible to modify R; and R, terminations by replacing
them with any impedance Z; and Z, as it will be seen in the following
section, the resistors R; and R, then being used only for the normalization of
all the elements including Z, and Z,.
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E K
¢ C) v, R 7

Figure 2.16. Quadripole inserted between a generator and
a load for the description by the s-parameters

W==2,1,+2,1,

Starting from {
V=21, + 2y,

, by multiplying the first equation by

_1 and the second equation by

1
75 Tr:

, wWe obtain:

\/» Rl\/_+\/L1\/_

1

W 2y Zy
R 2

Reduced (or normalized) parameters are defined by establishing:
z = le . ZlZ . — ZZ] . ZZZ

% E

The z; parameters (lowercase, but always depending on the complex
variable s) are dimensionless.
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. 1 0|y Zy Zp || g . .
We can then write: = . |or still denoting by I,
0 Ijw 2 Zyp |k

(bold character) the unit 2 x 2 matrix and z the matrix of parameters z;:
Iz v=2zI

As previously for the s-parameters: @ = v + i and f = v — i, that is
a=zi+thLi=+h)iandf=zi—-Li=(z—1L)i.We are looking for the
matrix s such that f# = sa:

(z-h)i=si+DhL)i
and finally:
s=@-b)@z+h)"

NOTE.— Using the same method, it could be demonstrated that
s=(I,—y) (I, + y)”" with the reduced admittance parameters and conversely
thatz= (I, +s)(I,—s) andy=(I,—s) (L +s)" .

Thereby, we can determine the consequences of the insertion of the
quadripole between the generator and the load with the matrix equation:

,B=|:vl _1:1 :|=|:S11 Sio :||:v1 +l:1 :|=sa

V, =l Sy Sy [t

if V=-R, I, , v, =— i, and accordingly a, = v, + i, = 0, which indicates that
there is no power reflected by the load, and f, =v, —i, =2 v,.

On the generator side, V, = E, =R, I, thatis o, =v, +i, =——==e¢ and

B=v —i=e,~2i=e,—2(e, —v,)=2v, —e,; thus:

2y, —e, _[snose e
2v, Sy Sy || 0
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Hence, we deduce that 2 v, = s e, and subsequently that
4 |V2|2 = |S21|2 |€g|2, that is:

2 E 2
A
=5

4R,

Is2,|° is thus the ratio of the active power dissipated in the resistive load
R; to the maximum power likely to be provided by the generator.

This power is actually supplied by the generator only if the input is
matched, expressed in equality between R; and the real part of the input
impedance of the quadripole. Nonetheless in any situation, it appears that s,
is a fundamental parameter of the active or passive quadripole, because it
determines the power transfer and can therefore be used to size the
transmittance of a filter.

2.1.7.3. Gains, dipole impedances and stability of a quadripole
inserted between a generator and any load from the s-parameters

In order to determine the properties of the quadripole in the general case,
the equations relating to the arbitrary terminations Z, and Z, are taken as
defined in section 2.1.2 but by normalizing them by R; and R, as in the
previous section:

— __ : Eg . Zg . Zu
Vl—Eg—Zgll, Vz——Zulz,Wlth €g=\/Fl ,Zg 2?1 5 ZMIR2

It follows that (z,—1)f, =(z,+1)&,—-2¢, and (z,-1)fB,=(z,+1),.

By analogy with the definitions given in section 2.1.2 for s-parameters,
reflection coefficients r, and r, are then, respectively, defined onto the
generator and the load:

z, —1 z —1
ro=f and r, =
£z, +1 z +1

These coefficients are equal to zero when matching is achieved, namely
for Z, = R, and Z, = R,, and cannot exceed the unit modulus when z, and z,
are located in the right half-plane of the complex plane, which is the case for
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dissipative impedances, because |z,—1| < |z, +1]| and |z,—1| < |z,+1|, provided
that R, and R, be indeed real and positive resistances.

. . 2e,
The previous equations then become: ¢, = rB + :1 and o, =1, 3,
V4

g

Waves incident on both terminations are £, and S, while a; and a, act as
waves reflected by these same terminations, as can be seen in Figure 2.17.

Z

g 1 1,
o [25)
Rt B
Eg S V2 Z u
<— W
A Py

Figure 2.17. Quadripole described by its
s-parameters with terminations of any kind

There is therefore a four-equation system that completely defines the four

, 2e
quantities ai, o, £ and £, and is written by establishing e, = —_i 1 :
o -rp =e, M
5,0, +85,0, =B =0 (2)
$,,06 + 8,0, — 3, =0 3)
a,—rp, =0 (4)

The resolution of this system allows us to write the four waves that all
have the same denominator D, =(1-7,s, )(sy,5;, =) +7,7,5,,5,, :

o = ) _le' . B = 1 (8150 = 81,8,) =8, e
1= D g b 1= D g
s s
—-r. S ' —S
_ u21 . _ 21
a, = e B =

—e
D, D, ¢
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Starting from o =v + il . ,B] =V — i1 ,0)=1Vy + iz . ﬂz =V, — iz, the Vi, il,
vy, iy can easily be deduced with a half-sum or half-difference of a;, ay, 5
and f,:

_ (7,85, =D(sy, +1) = 1,81,8,, e

1 2D, ¢
_ (1- 7S )s,, — D+ 781282

1= 2D, ¢,
_ =5, (1+7) .

? 2D, ¢
1- ,
i, = S21(2D r“)eg

In addition, voltage, current gains and dipole impedance at port no. 1 can
finally be obtained:

sk
11

V_l_R (s, + D8, =D = 17,8,8,,
1

. 1 .
Vy=2,1, L (s =DA=7,8,) +7,5,8,

To obtain the dipole impedance at port no. 2, the generator must be
placed on the same side and E, has to be replaced by a short circuit, which
amounts to canceling €', in equation (1) and defining a second member equal
to e', in equation (4). After solving the system, we can then compute:

v, (83 + D15,y =) = 1,558y,
2 . — i .
I — ) (55, _1)(1_rg511)+ Ty S12821

2

A further approach consists of defining the new reflexion coefficients that
are modified by the terminations on the opposite port when matching occurs
_ 1285, 7,
on the port connected to the generator, that is: p, =i =s,, +-——2L
e

1—s,7
grg:() 22%u
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The power gain is obtained from powers P, and P, previously defined,
that is:

_-p_|B[ el _ sl (1=l
’ Pl |0!1 |2 _|ﬂ1 |2 |S22ru _1|2 _|ru (311522 _312521)_511 |2
o (1 ", 2) 1 .
oreven G, = - independent of 7.
|1 Snl, I-lg — 75125
: 1=s,,1,

When it is desirable to determine the overall power gain G,, taking into
account the total power supplied by the generator, the ratio of (—P,) with

P, =(e, i, +e,i)/2, that is, P, =[e,(1+z,)i +e,(1+2,)i]/4 has to be

r

u

calculated. Hence, the gain G,, depending on r:
2
-P, |S21| (1_

)
G, =—2== .
£ P Re{(zg + 1)[(1 —1.8,)(8;, =D +7,8,,8,, ][(1 =18, )(SpT, = 1) + 1,151, J}

If €'y is zero, all electric quantities oy, B, &, B2, Vi, i1, V2, I» are equal to
zero, unless the denominator Dy itself is zero, which corresponds to the
oscillation condition that is then written as (1-7,s,,)(sp, 5, =1) +7,7,5,5,, =0..

This condition, which makes instability possible, can be obtained in
several ways. The coefficient 51, that corresponds to the inverse transfer
parameter determines the feedback of the output onto the input, as in all
quadripoles. If it is equal to zero, D, =(1-r.s,)(s,7, —1) and the

denominator Ds can in any case be rewritten as:
rr 312521

D =D,|1+ £ .
(1_’}‘5‘11)(‘5‘22’2 -1

It is also possible to obtain Dy when r, or r, is zero. If none of these
parameters are equal to zero, the denominator D then takes the same form as
that of the closed-loop transmittance of a single-input and single-output
system, such as studied in Chapter 1, where 1 + AB appears, with 4 being
the direct transmittance and B the feedback coefficient. To ensure stability, it
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is necessary to avoid the Nyquist diagram of AB surrounding the point —1 in

the complex plane. Therefore, the same rule will be applied here, that is to
TeTu$1252)

(1- Ty Sh )(s,7, —1)

surround the point —1 in the complex plane.

say that the path of in the Nyquist diagram should not

It is remarkable that when there is matching on input and output, 7, and r,
are equal to zero as well as the previous quantity equivalent to AB, which
yields D;=Ds,=-1, independently of any other parameter and the
frequency, if matching does not depend on it. It can thus be concluded that
matching the input and the output ensures the unconditional stability of the
quadripole. Nonetheless, since most often this matching is only rigorously
performed at a single frequency, a comprehensive study should not be
ignored.

Another stability criterion is based on the sign of P, or P,, calculable

. . 1
from the previous expressions and from Z(|a1 - ﬂ1|2) for the first one, or

from (e, E+gi])/2 for the second. As a matter of fact, if one of these

powers is negative, there is excess power reflected by the quadripole input
with respect to the incident power provided by the generator, which indicates
that the quadripole is capable of delivering more power than it absorbs and
hence becomes unstable.

Finally, from the previous discussion, one can deduce that the four
conditions |ry| < 1; || < 1; || <1; |po| <1 ensure the unconditional stability
of the quadripole if they are simultaneously fulfilled at all frequencies. These
conditions can be assessed with the help of plots of the quantities r, 7., p,
P> (Smith charts, in polar coordinates), which have to be compared to the
circle with unity radius. Notice that p; and p, depend on s-parameters.

2.1.8. Image-impedances and image-matching

Quadripoles often need to be assembled in cascade or in chain, by
necessity as the passive filters, or to reflect the real situation of a system.
Except in cases where internal sources are ideal and internal dipolar
impedances are infinite or zero, the connections of a quadripole with
external circuits generally cause alterations in the input and output
impedances of the overall quadripole, as can be seen in the expressions of Z,
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and Z; at the end of section 2.1.5.1, most often with a dependency with
regard to the frequency. In other words, there is no decoupling or
independence of the transfer functions of each quadripole and, as a result, a
global transfer function cannot just be obtained from individual transfer
functions. In order to overcome this drawback, we can try to satisfy the
image-matching conditions at every port, by way of the equality of the
dipolar impedances of the quadripole and terminations, as illustrated in
Figure 2.18.

Figure 2.18. Quadripole in a situation of image-matching, where Z, and Zs are also,
respectively, the input and output impedance of the quadripole

In fact, when symmetrical quadripoles are placed in cascade, the
condition for effective matching cannot be satisfied, thatis Z; = Z, and Z,=
Z with Z,=Z7, unless we also have ZE=Z, therefore only if the

impedances are real. This is another reason to choose these image-matching
conditions as they just have been defined, namely by imposing the two
equalities illustrated in Figure 2.18.

A condition is met as soon as the other is also met, which is expressed by
Z,Z, +det Z
Z[Z +ZZZ

two simultaneous equalities for Z, and Z: Z, = and

_ZpZ, +detZ
Zil +le .

i2
This system of two equations (nonlinear) defines the image impedances

Z; and Z; and can be rewritten by expanding:

Z,2,+2,2,,=2,Z, +detZ
2yly+Z2,2, =227, +detZ
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By carrying out half the sum and half the difference of the two equations,
we simply get:

{anﬂ =detZ
2,2, =2,2Z,

We can evaluate Z; and Z, separately by eliminating either one in these
two equations and it is preferable to replace (det Z)/Z,, and (det Z2)/Z,,
respectively, by Y;; and Y,,, which are the admittance parameters of the
quadripole (or type IV, see section 2.1.5.1) because Z; and Z, are then
expressed only according to the diagonal impedances and admittances Z;; =
Zo » Zop = Zg, Y11 = 1/Zss , Yoo = 1/Z of the quadripole. The following
expressions can be deduced, which define the image impedances of the
quadripole:

/Z Z
Zil = Y_” = \/ZeO Zesc a'nd ZiZ = Y_22 = \/ZSO Zssc
11 22

With these expressions already satisfied for the iterative impedance of
symmetric passive quadripoles, this notion is thus generalized to any kind of
quadripole distinguishing an image impedance specific to each port. These
impedances are not rational and therefore not achievable with passive
elements, which however do not prevent them from existing as input or
output impedances in a quadripole and thus the possibility that they be used
as references. We have chosen here the positive determination for radicals
but previous systems of equations can also be satisfied with the negative
determination, which can prove useful in some cases as it will be seen with
band-pass filters.

Image-matching conditions superimpose onto those of effective matching
every time that Z;; and Z,, are real, since in this case the complex conjugation
operation no longer has any effect, with nonetheless a dependency from Z;
and Z, with respect to frequency.

Following the same method as in section 2.1.7.2, we can define the
impedance parameters normalized by quadripole image impedances and then
calculate the s-parameters:



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis 121

- _i S, = Z, P Z,, - Z,,
T s Zpp = s 2y T s Zp =

Zil \/Z,-lz,-z ZiIZi2 le

v . V. . b
Vi =7]“ s W=0Zy 5 v, = Zz,-z s b =[2\/Zi2 5 €, = ;“

detZ

We then have detz= land z,, =z, according to the previous

27702

. . . . . Z Z,
definition relations of image impedances and the general relation Z"“ ==

esc ssc

demonstrated in section 2.1.5.1 and valid regardless of the quadripole,
passive or not, symmetrical or not.

Based on the matrix expression s = (z — I,) (z + I,)"', we obtain:

0 Zp
_|:S11 S12:| I+z,
S = =
S S Z
2 Sm 21 0
1+z,

The diagonal elements s;; and s, which are the reflection coefficients,
are therefore zero. We thus have image-matching in the sense where incident
waves a; and a, no longer give place to reflected waves 5, and f,, and there
are transmitted waves only because of 51, and s, are non-zero.

In such conditions, it proves helpful to determine the elements of the

. . . 1|—dets s, .
transfer matrix, according to relations ¢=— from section 2.1.6
Sul TS
s, O
and dets=-s,,s, . We obtain ¢ = 0 1 |, a diagonal matrix. It is therefore
S21

possible to easily chain quadripoles if image-matching is carried out and to
calculate the overall transmittance that directly results from the products of
coefficients s1, and s,; of each quadripole. We thus recover the
straightforwardness provided by the transmittances of systems with a single
input quantity and single output quantity, which is the main interest of
image-matching.
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NOTE.— If image-matching is not performed, only s, and s,; will have to be
recalculated by taking effective terminations into account, s;; and sy
remaining equal to zero, provided that the normalization of impedance
parameters and s-parameters has been achieved with the image impedances.

In the case of reciprocal passive quadripoles, z; and z,; are equal and
therefore sy, and s; too. Then, we outline the image transmittance

s, = li =exp(-T') and we have dets=-s’. Hence the transfer matrix:
+2z,
.0
g exp(-T) 0
¢ = l|= 5
0 — 0 exp(l)

Si
where I' is defined as the image attenuation complex logarithmic factor and
we outline I' = y + jJ, with y = image attenuation (in Neper, with 1 Np = 8.68
dB) and 60 = image dephasing. This formalism and the image-matching
assumption enable us to address matching and filtering problems, directly
from the cascading of quadripoles, with deviations from effective
transmittances that generally remain reasonable, and especially with
mechanisms close to objectives, such as obtaining a filter template based on
fixed criteria.

0 s 0 e’ :
In that case: s = = and according to
s, 0 e 0

z=(L+s) (I, —s)"' (section 2.1.7.2) we have

[ cothT" 1/sinhT an
_1/ sinh["  coth’

;- | Z,cothT  [Z,Z, [sinhT
- | NZuZ /sinh r Z,cothT’ .

Image transmittance can be advantageously estimated from the diagonal
impedances or admittances Z;; and Y;; or Zy and Y, for passive
quadripoles. In the foregoing, it can be seen that it is helpful to calculate
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coth(T), then exp(I), from g = 1?; =exp(-IN) = 7 ZZ“(?Z 2 =
11 i1i2 il 11
exp(I')+exp(-I"
o _Zo_ _ Zi then coth(") = p(D)+exp(-T) =
Z, Z,+2, delZ +\Z,Z, exp(T)—exp(-T)

NdetZ +./Z,,Z,, . Z,
Z, NdetZ +./Z,,Z,,

, which is simplified after a few

VdetZ +./7,,Z,, Z,
Z, Jdetz +/2,Z,,
manipulations into coth(T')=./Z,,Y,, = {Z,,Y,, -
We obtain:

coth(T)+1 JZ, Y, +1 |Z,, Y, +1

COth(F)_l B \/ZIIY]] -1 B \/Zzzyzz -1

exp(2I) = exp(2y) exp(2,J) =

NOTE.— In AC regime, depending on whether I is purely imaginary or not,
image attenuation y is, respectively, zero or non-zero, the first case
corresponding to an angular frequency w in the bandwidth of the system,
since there is no attenuation. Conversely, when coth(I") is real and positive
(and therefore greater than 1), I is also in agreement with what is expected
of a passive filter for attenuation. If on the other hand, coth(I") appear as
being real and negative, especially when @ tends to 0 or infinity, which
would imply amplification rather than attenuation, it is negative
determination that should be used for radicals in order to restore real
attenuation, only physically feasible for passive filters.

For non-dissipative passive (or lossless) filters, thus comprising inductors
and capacitors only, each parameter Z is such that Z = j X where X is a
reactance, and each parameter Y is such that ¥ = j B where B is a
susceptance. If X and B have the same sign, image impedances are thus real
according to the expressions previously established, and coth(I') is imaginary
and equal to j u (u real) . It can be deduced that j u + 1 and j u — 1 having the
same modulus, exp(2I") has a modulus equal to 1, which implies that the
image attenuation y is zero, which is a characteristic of the bandwidth. If X
and B have opposite signs, image impedances are instead imaginary and
cothl” is real with a positive determination as stated above; exp(2I') is then
also real and greater than 1, yielding an image attenuation larger than 1,
which is a characteristic feature of a stopband.



124  Fundamentals of Electronics 2

CONCLUSION.— Important: when the frequency lies in the bandwidth of a
non-dissipative passive filter, the image impedance is real and the image
attenuation modulus is zero, whereas when the frequency lies in a stopband,
the image impedance is imaginary and the image attenuation moduus is
greater than 1.

2.1.9. Representation of quadripoles by block diagrams

Another way of representing equations linking electrical quantities is
based on block diagrams. This representation will make it possible to show
transfer functions that are useful for the study of stability, for instance. To
represent the equation V' = ZI, we use the operator capable of switching from
a current to a voltage, in other words, an impedance / —»| 7z — V

or an admittance y—| y —» ;.

Example: Hybrid quadripole (type 1I)

Rg [1 hll [2
b () g h IR
hia Vs hyy 1 2

Figure 2.19. Quadripole with hybrid parameters (type Il)
between a generator and a load

V.=hd +h,V, E -V
P =t haD ; I,=——L and V, = —R, I, can be represented by
I, =h,I, +h,V, R

Figure 2.20.

Figure 2.20. Block diagram representing the
quadripole and termination elements
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It should be recalled that:

is simplifiedinto —9 15 45 — >

NOTE.— If the comparator is an adder namely with two + signs, the transfer

function becomes

By way of graphic transformations (or elimination of variables in the
equations), it is possible to derive the transfer function that can yield V>, for
example.

+ N _hZIRu L V.
E; R, (1+y,R,) 2

by hphyR,

R, R,(1+hyR,)

Figure 2.21. Block diagram giving V> from Eg for the
quadripole and termination elements

The stability of the system is then analyzed with the methods set out in
Chapter 1.

Another case where a synthesis between quadripole and block diagram is
very useful is that of the “leapfrog” structure, which accounts for ladder
networks of passive elements.



126 Fundamentals of Electronics 2

Figure 2.22. [ adder admittance and impedance network

We thus have recurrence equations 5,1 =(Vauo1 — Vaye1) You1 and
(lon-1 = byw1) Zoy = Voper that can be translated into the following block
diagram with a leapfrog structure.

12n+1

Y2n+l [2n+l

V2;1+3

Figure 2.23. Block diagram of an unspecified portion
of the ladder network of Figure 2.22

2.2. Analog filters
2.2.1. Definition and impulse response

A filter is a linear and stationary system (or invariant under time
translation), stable, of transmittance H(jw) or H(s), whose forced response
Y(jow) or Y(s) at an input X(jw) or X(s) is being studied, since the natural
response is supposed to be extinct. Provided that we have ordinary products
Y(jow) = H(jw) X(jw) and Y(s) = H(s) X(s), we have, according to the
properties of the Fourier and Laplace transforms, a convolution product in
the time domain, giving the output signal y as function of the input x:

y(t) = ]i h(t—7)x(7)dt = T h(@)x(t—7)dr.

—oo
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The question is to understand what represents 4(¢). In order to determine
it, it can be assumed that X(jw) or X(s) = 1. It then follows that
Y(jo) = Y{(jw) = H(jw) and in this case, x(f) = x/(¢) is given by the TF™' of 1,

or x,(t) = J:l.exp [j27ft]df , which we can guess by taking the limit of:

o . . sin(27 f,t)
%, (0= lim L»O exp|j2z/t]df = lim {2]% Tfo;} .

The function sinc(u) = sin(u) (sinc function, with here u = 2xfyt) is an
u

impulse, which is maximal and equal to 1 at # = 0, an even function, having
many secondary extrema decreasing in absolute value on each side of the
origin with zeros for ¢ = k/fy (k integer > 0 or < 0). Therefore, x,(¢) is a pulse
centered at the origin whose width tends toward zero and amplitude tends to
infinity due to the prefactor 2f; when fy—co. It is considered as being
analogous to a “Dirac pulse” d(¢) that has to be addressed using distributions
(see Appendix). It can however already be concluded that 4(¢) represents the
impulse response of the system.

0.8 [ 0.8
= 0.6 - — 0.6
L= = _
B - 4
o 04 - 0.4
= L ]
.B r q
Wl = -

0.2 [ H0.2

-0.2

Figure 2.24. Sinc function
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NOTE.— The output signal y(¢) of a filter is given by the convolution of its
impulse (or impact) response /(f) by the input signal x(?).

Conversely, the transmittance or transfer function, obtained by taking the
FT or LT of the convolution product defining y(t), is the simple product of
the transforms Y(jw) X(jw) or Y(s) X(s). In the presence of a Dirac pulse on
input whose LT or FT is equal to 1, Y(jw) = H(jw) or Y(s) = H(s).

NOTE.— The transmittance or transfer function H(jw) or H(s) is the FT or LT
of the impulse response A(2).

There are many cases (passive high-pass and band-stop filters; some low-
pass or band-pass filters) in which the transmittance H(jw) does not cancel
out when w tends to infinity. This is the case, for example, for all rational
transmittance that share the same degree in the numerator and denominator,
as for high-pass filters.

This leads to a difficulty in the computation of the impulse response A(%)

by the FT™ 4(s) = ZLJ'W H(jw).exp|jwt]dw because the convergence is not
P

guaranteed at infinite frequencies. The computation can then be divided into
two terms:

h(t) = %jz [H(jo)-H(e)].exp[jwt]ldo +H(=)|" exp[j27f]df .

The possibility of convergence of the first term derives from the
cancellation of the integrand for w tending to infinity, whereas similarly to
the beginning of the section, the integral contained in the second term can be
regarded as the Dirac impulse J(7) at the origin. The impulse response A(%) is
therefore not always an ordinary, continuous and differentiable function, but
often a generalized function comprising a Dirac distribution. If necessary,
the first term can be subsequently isolated, which for its part is an ordinary,
continuous and differentiable function by establishing:

h (1) = %ji [H(jw)-H()].exp[jot]dw.

Nonetheless, another difficulty arises if the integrand has no obvious
antiderivative (or primitive) analytic expression. Another approach is then
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based on the treatment of the time responses in the interval ]—oo +oo[ for the
variable ¢, either based on those already known in the interval ]0 +oo[ or
based on the differential equation of the system. This requires that
distribution properties be applied (see Appendix), which can be summarized
in four points: (1) the derivative of the unit step function U(?) is the Dirac
pulse J(z) within the meaning of distributions and successive derived
distributions are denoted by 0(r), 8(7), ... d"(¢); (2) the derivation of a
function g(¢) exhibiting a finite discontinuity Ag at abscissa ¢, is obtained by
g'@®t) = glut) + Ag ot —ty) where g'o(t) represents the derivative of the
function without discontinuity; (3) an equation including ordinary functions
(continuous and differentiable) and distributions must verify two equalities,
one for each type of expression; (4) the product of the variable s by the LT
of a function that can have discontinuities and defined in the interval ]—oo
+oo[ corresponds to the LT of the derivative of this function within the
meaning of distributions. This type of approach is applied here to obtain the
impulse response of first- and second-order elementary low-pass filters and
then to deduce that of band-pass and high-pass filters.

Type H(s) Impulse response A(t)
Fi der 1 4 u
rst-order low-pass t -7t
L W-p: P o1 U(t) exp(-mii)
. ) s
First-order high-pass (1) — 0, U(2) exp(—m£)
s+
@’ , exp(-¢wt) .
Second-order low-pass n U(f) —————=""sin |: w J1— {2 t]
€<n s’ +2{w s+ @) J1=-¢?

U@

@, exp(—(w,t) 3
— 2" "cos| w,\1-{"t+ @,
/1_4’2 [ J

Second-order band- S,

pass (C<1) s’ +2lw,s+ @)
with sin( ¢, )=¢
. &0 -U()
Second-order high- s o, exp(~L 1) .
pass ((<1) S2+2§a)ns+a)f %sm[a)wll—ft+2(p(&

Ji-¢




130 Fundamentals of Electronics 2

In the above table, the impulse response of the low-pass filter

@

transmittance is deduced from the solution of the differential

s+

dh(t)

equation L7+h(r) =9d(t), according to Chapter 1 and in the case of a
@,

Dirac impulse at the system input. By applying the previous rules, the
solution can be written as /,(f) = w; U(¢) exp(—w:f). The verification that
involves transcribing this solution into the differential equation shows that in
the first member J(¢) exp(—w1f) can be replaced by J(f) since exp(—w?) is
equal to 1 for £ = 0, which becomes balanced with the impulse d(f) present in
the second member. The impulse response of the high-pass filter can be
inferred from the derivation of the previous one since its transmittance is a)i
1
times that of the low-pass. Furthermore, it can be verified that the
differential equation in which only its second member differs from the
previous one where the input signal d(¢) is replaced by its derivative divided
by w; or 0"(r)/w, is satisfied because J(f) exp(—w,?) can be replaced by d(7)
once the derivation is performed. Concerning the second-order filters, we
can similarly look for solutions of the differential equation whose first
L d*h(t) , 24 dh(t)

member is —
w, dt w, dt

n

+h(t) and whose second member is o(¢),

1 1 . .
— 8" (1) or — 8% (1), respectively, for the low-pass, band-pass, or high-
pass filter. It is however faster to notice that if a solution %(f) has been
already determined for an input x(¢), the derivation of the two members of

dh(t)

the differential equation leads to the conclusion that is a solution

dx(t)

when the second member is equal to . We can then proceed to these

operations based on the step response of the low-pass filter (see Chapter 1)
modified by the factor U(¢) in order for us to work with a function defined in
the interval |-oo +oo[. The first derivation gives the impulse response of the
low-pass filter and those of the high-pass and band-pass filters, also taking
into account the presence of the factor @, or @ in the numerator of the

corresponding transmittances. It is possible to verify the validity of these
solutions by means of rather tedious calculations. It can be noted that the
Dirac impulse is present in the impulse response of high-pass filters whose
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transmittance modulus tends to a constant beyond the cutoff frequency and
up to infinitely large frequencies, which makes it possible to transmit the
infinitely rapid variations of this impulse. Note also that its dimension is that
of a circular frequency to ensure homogeneity.

2.2.2. Properties of real, causal and stable filters

2.2.2.1. Hermitian and Hurwitzian symmetries of transmittances

The impulse response A(?) being real, H(s)=H(s), even if s = jo,
therefore: H(-jw)=H(jw)=Re[H(jw)]- jIm[H(jo)] or also:
Re[H (jw)]=Re[H(-jw)] and Im[H (jw)|=-Im[H (-jw)].

In the frequency domain, the real part of the transmittance is even while
its imaginary part is odd. The modulus of the transmittance is itself also

even: |H(ja))|=\/Re[H(ja))]2 +Im[H(jw)| =|H(-jw)|, while its argument

(or phase shift) is odd. These properties are consequences of the Hermitian
symmetry.

In addition, if a stable system described by a differential equation with
real and constant coefficients has, as transmittance, a rational fraction H(s)
of polynomials having only real or complex conjugated roots, H(-s), called
the Hurwitzian conjugate, also denoted by H,, the poles and zeros of H(—s)
are the real or complex numbers opposite to the poles and zeros of H(s)
(symmetrical with respect to the origin in the complex plane). In fact, if
changing s — —s in a polynomial A s?(s—s)(s—s5,)(s—s;)--, we get
A, 5T (s+5)(s+8,)(s+8;5) .

2.2.2.2. Causality and Bayard—Bode relations

If the filter is causal, A(¢t —7) is zero for t — 7 < 0 that is for 7 > ¢; the
infinite upper bound can therefore be replaced by 7 in the first expression of
the convolution product, or alternatively in the second expression of the
convolution product, the lower bound can be replaced by 0 since A(7) is zero
for r<0:

y(t) = j ht—7)x(7)dt = T h(@)x(t—-71)dt.

—co
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Another very important consequence of causality is that there is identity
between A(f) and A(z).sgn(f), where sgn(f) represents the “sign” function
equal to — 1 for ¢ <0, zero for t =0, and +1 for ¢ > 0, since A(¢) must be zero
for ¢t < 0: h(f) = h(t).sgn(?).

Hence, a convolution relation between the Fourier transforms (in Cauchy
principal value, see Appendix) is inferred. However, in the case where A(%) is
a distribution comprising a Dirac impulse at the time origin, the product
h(?).sgn(?) is indeterminate at # = 0. It is then preferable to apply this property
to the impulse response from which has been removed a possible Dirac
impulse at the origin, and previously named #p(¢f). By taking the real
(subscript R) and imaginary (subscript I) parts of
TF{hp(t)} = TF{hyp(f).sgn(?)}, we obtain:

H(jeo) — H(e3) = Hy(e) + jHie) — H(e)
=jH(ju)—d - j H, (u)——

1 1
Jr(w—u) n(w—u)

n(w—u)

du—j XHR(u) du

calculated from the convolution product of TF{h,p(¢)} and TF{sgn(?)} (see
Appendix), yielding the relations between real and imaginary parts:

H (@) H(0) = ”(Ha’)—(_ul)t)du
Hyw)=— | LW g,
! T(w—u)

because, on the one hand, H(e) being the asymptotic constant value of
H(jw), we will verify later that the asymptotic argument and the imaginary
part are zero for w—eo, and, on the other hand, the integrals above are zero
when the numerator of the integrand is a constant K:

I K duzKlim{ln }zO.

u—w oo
These expressions, called Bayard—Bode relations, show that the real and
imaginary parts of a causal transfer function are dependent on each other.

u—a
u+a

The real and imaginary parts are Hilbert transforms of one another.
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jw
JR C
. P
I ) radius R
[ o
0|
—R

Figure 2.25. Integration contour for the application of the Cauchy theorem to the
function H(jw) — H(e<) divided by s—jw+

Nonetheless, these relations can be demonstrated from other assumptions,
by using the Cauchy theorem and by integrating the transfer function
H(jow) — H(e0) divided by s—jw; around the contour of the Figure 2.25 in the
complex plane.

If the system is stable (no poles having positive real parts) and does not
have zeros with positive real parts either (minimal phase-shifting system),
the result of the integration in the complex plane is zero and we obtain
exactly the same Bayard—Bode relations by replacing w; with the common
variable w. It can even be accepted that the transfer function is at the limit of
stability (oscillator), in other words it has a pair of poles on the imaginary
axis that can be avoided in the same way as the pole jw; in the Figure 2.25.

Bayard—Bode relations are therefore also valid for a transfer function with
neither poles nor zeros in the right half-plane of the complex plane.

In addition, taking into account the property that 4(¢) has to be real, which
implies that Hg(w) is even and Hfw) is odd, we obtain Kramers—Kronig
relations, also valid for any representative function ®(jw) of the response of
a physical system, linear and stationary, in the frequency domain (dielectric,
magnetic susceptibilities, etc.):
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H, (a,)_H(oo)=£T ulj’ (uz) du R (a))—q{(‘x’)=zjuqz{l uz) du
3 —u Ty —u
) or even .
H, (0)=-22 ’zR(”)z du q{,(w)=—2—wf q?’*(”? du
T & —u Ty —u

However, these relations are not the most helpful for electronics experts
who are primarily interested in the modulus and the argument of the
transmittance. It is therefore preferable to deduce the link between the
modulus of H(jw) and its argument ¢ (w) that appears as the imaginary part
of In[H(jw)] = In[|H(jw)| exp(j@)] = In|H(jw)| + j@ (»). If H(jw) has neither
poles no zeros in the right half-plane of the complex plane, In[H(jw)] has no
poles in the right half-plane, except potentially at infinity. As a result, the
previous relations can be applied and we obtain by defining

R(jo) = In[H(jo)]:

.
In|H (@) ~ n|H (=)| =~ | ;f)—_(uu)zdu
0

o= 22211,
T, W —u
The modulus and the argument of a minimal phase-shift transmittance,
namely that there are no zeros in the right half-plane of the complex plane,
are thus dependent on one another. In particular, the second expression
makes it possible to calculate the argument from the modulus. Therefore,
this type of transmittance also corresponds to that of a causal system (as is
the case for a rational transmittance obtained by the LT of the differential
equation of the system), whereas conversely, it cannot be said that the

transmittance of any causal system verifies the last two expressions.

2.2.2.3. Stable rational transfer functions

Stable rational transfer functions only have poles with negative real parts
(or comprising Hurwitzian polynomials only) and are of the type:

2 2
(HPJ[HPJ...[HZ;HP+172J[1+2;22P+172j...
a)ll wlZ a)Zl a)ll a)ZZ a)ZZ

2 2
(HPIHPJ"{H% P+172J[1+2;42P+PZJ...
a)3 1 0)3 2 6()4 1 a)4 1 a)42 6()42

H(p)= H(;(”j

0
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assuming the angular frequency and damping coefficient parameters are
all positive.

The degree of the denominator defines the n order of the filter and the
degree of the numerator is at most equal to n. As mentioned in the previous
section, two cases ought to be distinguished:

— minimal phase-shift transmittances H,(jw), which only have zeros with
negative real parts. Only + signs appear in the numerator when the
parameters are expressed from strictly positive quantities. In this case, the

asymptotic values of the argument Arg{H,(jw)} are simply k% if k is the

exponent of s = jw in the asymptotic expression of H,,(jw);

— non-minimal phase-shift transmittances, comprising zeros with positive
real part. It is then possible to split the overall transmittance H(jw) into a
minimal phase-shift transmittance H,(jo) and another transmittance H,,(j)
in which all factors P(s) having zeros with positive real parts are grouped
together, called an all-pass filter, because it only introduces an additional
phase shift without attenuation (or amplification); then

P(s)

H(s) = Hyu(s) Hay(s) = Hy(s) P(~s)

where P(s) is a Hurwitz polynomial, that is to say having roots with negative
real parts only. This is especially the case in which the numerator of H(s)
shows minus signs when the parameters are expressed from strictly positive
quantities, which is a sufficient but not necessary condition (there may be
roots with positive real parts even with polynomial coefficients all positive).
For non-minimal phase shift transmittances, Bayard—Bode relations do not

apply.

All-pass filters can prove useful when it is desirable to correct the phase
shift and the group propagation delay (see section 2.2.2.4) of a minimal
phase shifting filter. As a matter of fact, in this case, the transmittance
modulus is not modified and it is therefore possible to work on modifying
the phase shift only, while knowing that the latter will be necessarily
increased.
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2.2.2.4. Group delay

d[4rg{H(j)}]  dp(w)
dw . do

We define group delay by ¢, (@)=~ if we

establish that ¢ (w) = Arg{H(jw)}.

It gives the variation of the phase shift with respect to the circular
frequency. If it is constant and equal to t, the phase shift varies linearly
with the circular frequency: @(w) = —w tym, and with the frequency:

o= _antgo-

This last property is useful if it is not desired that a signal with a part of
its spectrum inside the bandwidth of the filter be distorted, although the filter
induces a frequency-dependent phase shift.

N
For example, a periodic signal x; (1) = ¢, + lim 2y
- n=1

CH

cos 27nt + will
T @,

undergo additional phase shift for each of its frequency harmonics f, = 2% ,

which will give on the filter output a complex amplitude ¢, H ( j MTnj whose

argument will be @, — 2;" t,,- The time delay between harmonics k" and n”
. T T T T . .
will then be: | —¢@ -t |-| —@ —t,, |=——@ ———¢,, which is the
{mn 4 g"} {2ﬁk @ g"} 2n 2k

same as for the input signal. It can be concluded that the distortion of the
signal will be minimal because the relative delay between each harmonic
composing the signal will be preserved in the bandwidth of the filter in the
case where the group delay is constant.

For an input signal whose spectrum is X(j2zf), the spectrum of the output
signal will be |H(j2xf)| explj@ (f)] X(j2xf) = |H(j2xf)| exp[—j 27 f'ty0] X(j27f)
if #; is constant in the frequency band under consideration, which
corresponds to a constant delay and equal to f#, for the output signal
compared to the input signal. When this frequency band is the bandwidth of
the filter, the same conclusion is attained.

A constant group delay can thereby constitute a fundamental criterion in
the selection of a filter when it is desirable to limit the distortion of the signal
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by delaying in a uniform manner all signal components that are not
attenuated, namely whose frequencies are located within the bandwidth of
the filter. If the filter does not have a constant group delay, one can try to
approach this property by adding an all-pass filter, with a non-minimal phase
shift, intended to correct the phase shift without modifying the overall
transmittances module.

2.2.2.5. Types of minimal phase shift filters and templates
Minimal phase-shift transmittances can be categorized into:

— low-pass filter if 20log|Hm(jw)| has an negative slope asymptote for
w > w, the cut-off angular frequency;

—band-pass filter if 20log|Hm(jw)| has a positive slope asymptote for
o < w.1 and a negative slope asymptote for o > w, with w., > w.1;

— high-pass filter if 20log|H,(jw)| has an positive slope asymptote for
© < 0

— band-stop or band-rejection filter if 20log|H,,(jw)| has a minimum for
@ = w; and horizontal asymptotes for w — 0 and w — co.

Filter synthesis is then performed based on a template of the Bode
diagram of the reciprocal of the transmittance [H(j27f)]”" of the low-pass
filter, whose modulus is called attenuation. If the numerator of H(j2xf) is
equal to a constant H, (frequent case of low-pass filters), [H(2zf)]" is
simply equal to the denominator D(j2zf) divided by the constant H,. Other

types of filters can be deduced by changing variables: 552 o shift to
@, s

c

1) 10)
the high-pass filter with a new cutoff frequency w,’; AN [—°+ij—° to
[0) s o )Aw

shift to the band-pass filter with a new central frequency w, and bandwidth
s Aw

1
_% _—_—
“ GG, s
s o

frequency @, and bandwidth Aw. The order of the filter is doubled in the last
two cases.

Aw; to switch to the band-stop filter with a new central
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- 20 loglH(j2n) £ o)

0rd

-nm2

=20 log|H{j2mf)|
dB 4 = attenuation \/ \/
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Figure 2.26. Transmittance and attenuation template of a low-pass filter

The filters whose transmittance differs only by the cutoff frequency or
center frequency all have the same Bode diagrams which can be deduced by
a translation along the logarithmic frequency axis. The study thus only
considers a single transmittance called normalized transmittance, for which
w.=w. =wy=1rd/s, the circular frequency @ can then be regarded as a
normalized (dimensionless) one. The transmittance having a different
frequency w. or wy can be inferred by the denormalization (or back-
normalization) operation as it will be seen further in the text.
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The characteristics of the low-pass filter are as follows:
— Apmax = maximal ripple in the bandwidth;

— f1 = cutoff frequency (cutoff circular frequency w;);
— A, = minimal attenuation in the stopband;

— /> = minimal frequency of the stopband (circular frequency w;).

The ratio f,/fi measures the attenuation stiffness and the filter requires a
degree n of the polynomial D(j2zf) that is increasingly higher as this ratio
becomes closer to 1, which defines the order of the filter. The slope
d[-20log|H(j2xf)|)/df is measured in dB/decade. The frequency range [f1, /2]
is called transition band. Its width is quantified as a relative value by the
ratio fo/fi = w,/w,. With normalized circular frequency, w; = 1 rd/s and this
ratio then becomes equal to ws.

An example of the response of a low-pass filter and the template used to
infer the attenuation is shown in Figure 2.26.

This allows us to visualize all of the characteristics defined at the
beginning of this section (4.« = maximal ripple in the bandwidth, f; = cutoff
frequency, 4mi, = minimal attenuation in the bandwidth, /, = minimal
frequency of the stopband), [f, f2] = transition band). The areas which the
attenuation curve must be excluded from are shown with a hatched line,
which graphically defines the template of the filter.

2.2.2.6. Approximation criteria of the transmittance of a low-pass filter

To approximate the template, it is necessary to find a polynomial D(j27f)
(or a rational fraction [H(2zf)]”" if the numerator N(j2xf) is not equal to a
constant) that allows |D(j27f)| (or |[H(j2zf)|") to stay in the proximity of 1 for
f<fi and to quickly increase for f; < f<f.

Every time 20 log|H(j2zf)| crosses 0 dB in the bandwidth for a specific
frequency, it is referred to as an attenuation zero; whenever 20 log|H(j2xf)|
shifts to infinity in the stopband for a particular frequencys, it is referred to as

an attenuation pole.

The square modulus |D(jw)]* of the polynomial is then of the form
ID(jw)|* =1+ R,(w®) where R,(w”) is a 2n-degree polynomial in which even
powers of w only appear in order to ensure the even symmetry of the
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modulus [D(jw)|. Since the imaginary variable jw or j2xf'is a special case of
the complex variable s, we will give preference to working with the latter.

There are numerous criteria enabling an approximation of the ideal
transmittance to be obtained and one must be chosen as a priority, which
implies that the other criteria will not be perfectly satisfied. The four most
common cases are detailed below, with the corresponding polynomials, and
some extensions are commented thereafter.

— Butterworth polynomials: |D(jw)|* =1 + (—1)"»" has the 2nth roots of

1 or —1. For |D(s)? only roots with negative real parts are kept:

- 1+2k
D(s) = H(s—sk) with s, =exp ( ]%[ D, 2k assuming integer values
n
k=1

such as nT_lskS 3n-1

. This type of transmittance is obtained when the

criterion giving the flattest possible response in the bandwidth is preferred
(this is a filter also known as “flat-top” or “maximally flat”) with an
attenuation of 3 dB at the cutoff frequency f; and a slope P <20 n dB/decade
in the transition band. With normalized circular frequencies, the unique
parameter is the order of the filter.

— Bessel polynomials: these filters guarantee a group delay ¢, as constant
as possible in the bandwidth. We can show that the polynomials defined by
the equation D,(s) = (2n — 1) D,_1(s) + s > D,_»(s) with Dy(s) = 1 and D;(s) =
s + 1 satisfy this criteria. The slope is P < 20 n dB/decade in the transition
band. With normalized circular frequencies, the unique parameter is the
order of the filter. The impulse response of this filter is non-oscillating,
unlike all other filters.

— Type I Chebyschev polynomials:  |D(jw)* = 1 + [mT,(w)]* where
T,(w) oscillates between —1 and +1 in the bandwidth (w < 1 in normalized
circular frequency). The oscillation of |D(jw)| is therefore from 1 to

V1+m? | that is 10log(1 + m?) in dB. This condition leads to the differential
dT, da

~—=np , which admits the solutions
J-7 J1-@

equation:
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T.(w) = -cos[nArccos(w)]. Defining m = 1/sinh(rna), the roots of
1 + [mT,(w)]* located in the left half-plane are:

sy = —sinh(a)sin {(2]( -1) 21} + jcosh(a) cos {(2/( -1) 21} ,
n n

distributed over an ellipse centered on the origin in the complex plane. The
criterion that is preferred here is the transmittance stiffness in the transition
band. The decisive advantage of these filters is based on a cutoff slope
P > 20 n dB/decade at the beginning of the transition band. On the other
hand, there are attenuation zeroes in the bandwidth, which leads to a ripple
Amax- With normalized circular frequencies, the two parameters to set are the
order of the filter and the ripple in the bandwidth.

The transmittances based on type II Chebyschev polynomials, obtained
by replacing jow by 1/jw (in normalized circular frequencies) instead exhibit
undulating (or rippling) attenuation in the stopband but a flat response in the
bandwidth. This property may make these filters more interesting than those
of type I, although the stiffness of the cutoff is less pronounced at the
beginning of the transition band. The numerator is also a polynomial of
degree equal to the order of the filter.

— Elliptical filters (or Jacobi or Cauer or Zolotarev filters): The numerator
of H(s) has zeros on the imaginary axis, allowing the increase in the cutoff
stiffness (P > 20n dB/decade), at the expense of a finite transmittance
undulating in  both  the  bandwidth and the  stopband:

2
S

1+—

n/2 0)2 . . .
H(s) :H —————— for n even. Here, the preferred criterion is the
ko 1428, b,s+b.s

reduction of the transition band width by means of the presence of an
attenuation pole at circular frequency w,. Parameters wy, i, by cannot be
directly calculated following an analytical approach because it is necessary
to resort to elliptical integrals (hence the name), but can be obtained based
on series expansions or by numerical evaluation. There are three parameters
necessary to define these filters: the order n, the ripple in the bandwidth A«
and either the minimal attenuation in the stopband 4., or the ratio between
the circular frequency of the first attenuation pole w, (or zero of the
transmittance) in the stopband and the cutoff circular frequency w;, or still
the exact measure of the relative value of the transition band. The attenuation
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in the stopband decreases as this last ratio is approaching unity. Therefore, a
tradeoff must be decided between these two characteristics.

All these polynomials can be obtained nowadays from the characteristics
requested in the template by numerical computation programs, for example
in MATLAB in the “signal processing” toolbox (“besselap, buttap, cheblap,
cheb2ap, ellipap” for normalized transmittances and “lp2lp, Ip2bp, Ip2hp,
Ip2bs” for type transformations). Also in MATLAB, operations on
polynomials or rational fractions can be performed with “conv, deconv,
roots, poly, residue”, respectively, for multiplication, Euclidean division, for
calculating the roots, polynomial expansion and the partial fraction
expansion of rational functions or conversely the reduction to a single
rational fraction. Further in the chapter, all examples will be developed from
the polynomials and normalized transmittances available in MATLAB.

Based on a template determined by the synthesis methods of the
following sections, it is possible to shift from a low-pass filter to the other
types by directly transforming the elements in the circuit of the low-pass
filter using the below table.

—1In order to obtain a low-pass filter with cut-off pulse w,. instead of

1 rd/s, s has simply to be substituted (in fact s/, with @, = 1 rd/s) by i' .
1)

c

c

— The transformation to obtain a high-pass filter LN indicates the

. N

c

replacement of capacitances by inductances and vice versa. Resistances are
not affected.

—The  transformation for  obtaining a  band-pass filter

N @, s | @4 . .
— —| —+— |—= (where o, is the central circular frequency and Aw the
10} s @ )Aw

bandwidth) corresponds to replacing each inductance by an inductance and a
capacitance in series, and each capacitance by a capacitance and an
inductance in parallel.

. s Aw 1
—The transformation ——>——-—— namely  low-pass

b
N
s
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toward band-stop requires replacing each capacitance by an inductance and a
capacitance in series, and each inductance by a capacitance and an
inductance in parallel.

In summary, these transformations are shown in the following table:

) Elclaments Inductance L Capacitance C
n a low-pass —VVVVYL_
filter _| I_
Corresponding —VVV YL
elements of the —l I—
high-pass filter 1/L 1/C

Corresponding |_f\/‘\/‘\f‘\/\_ Aw

elements of the
band-pass filter

Corresponding LAw

elements of the
band-stop filter 7 ia} CAw T Aw

For the normalized transmittances w, = w., = wo = 1 rd/s and the
bandwidth, Aw is taken as a relative value. Practical central or cutoff
frequencies can be subsequently obtained by changing inductances and
capacitances according to the denormalization procedure described in
section 2.4.1.3.

As a comparison, the Bode diagrams of the modulus of four fourth-order
low-pass filters, obtained with different types of polynomials, as well as the
group delays are plotted in Figure 2.27 according to the normalized circular
frequency (or with the cutoff circular frequency w. = 1 rd/s).

In this example, for type I Chebyschev and elliptical filters, the ripple in
the bandwidth is set to 1dB and the ratio of the frequency of the first
transmittance zero at w, is 2 for the elliptical filter. We clearly see that the
Bessel filter gives a rather “soft” attenuation in the vicinity of w., but it is the
only one to provide a group delay almost constant up to 0.7, and then
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decreasing. The other filters all show a ripple of the group delay ¢, with a

pronounced maximum at w., especially for Chebyschev and elliptical filters,
which also causes ripples in the impulse response.

0.1 1 10
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N3 ]
= Y'Y 1
g -1op "
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Figure 2.27. Transmittance modulus and group delay for fourth-order
low-pass filters (Bessel in red broken line, Butterworth in blue dash-dot line,
Chebyschev in full light green line, elliptical in dark green dash).

For a color version of this figure, see www.iste.co.uk/muret/electronics2.zip

The Butterworth filter clearly shows a response with a maximal flatness
of the modulus in the bandwidth but similarly to the Bessel filter, the
stopband slope is limited to —20n dB/dec, where n is the order of the filter (4
here). Conversely, type I Chebyschev and elliptic filters provide a more
accentuated slope in the immediate vicinity of w,. in the transition band. To
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reduce the variations of ¢, the solution consists of adding an all-pass filter
partly compensating for variations of the phase shift with w, and thus those
of 7, (see section 2.4.2.7).

2.2.2.7. Approximation of any kind of transmittance: Padé
approximation and other approximations

The problem is defined in terms of searching for the best approximation
to a transmittance H(jw) or H(s) with a usable function, which in addition
must result in a stable transmittance. If the desired transmittance H; is
known only in a finite number of circular frequencies w;, we should employ
methods based on the algebra of function spaces used in signal processing
and control of systems, which fall outside the scope of this book. In
particular, it is often necessary to resort to a system representation using
state variables, which are internal variables and not necessarily observable.
Nevertheless, they facilitate the description of time responses by a system of
first-order differential equations (see Chapter 1 and, for example, [UNS 04]).
Interpolation methods (Lagrange polynomials, for instance) may
nevertheless constitute a first step in the process for obtaining an analytical
approximation.

In the event that there is already an analytical expression, the calculation
of a Padé approximation allows us to obtain a first relation in the form of a
rational fraction P(s)/Q(s), which is then directly usable for the synthesis of
the transmittance. This method is the subject of a large number of
mathematical approaches implemented by algorithms, some of which being
available in software programs. The sequences of Padé approximates can
always be expressed in the form of continued fraction expansion. A first step
involves therefore finding an expression for the function H(s), even if it is
trivial, in the form of a constant g, in addition to a fraction P;(s)/Qi(s). If
Pi(s)=s"', the same process is restarted for Q;(s), which can either
indefinitely continue (infinite continued fraction), or stop at a certain order n
if O,(s) is itself a rational fraction. If P;(s) is not a power of s, we try to
perform a limited expansion of Pi(s) and Qi(s), then through repeated
polynomial division up to a certain order, it also yields a continued fraction.
Being restricted to a certain order, the continued fraction can be reduced to a
rational fraction. The resulting filter is not considered one of the
conventional filters described in section 2.2.2.6, which is also the case for
the approximations briefly mentioned hereafter.
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Other methods are possible, which make use of criteria of a different
nature. For example, it is possible to use the function “invfreqs” in
MATLAB to obtain the numerator and the denominator of a transfer
function passing through the points specified in the complex plane. Some
options are able to define the tolerance over the deviations, the iteration
process, and to ensure the stability of the system. Other methods can be
applied primarily to the synthesis of sampled filters but in light of the
transformations studied in Volume III, it is possible to find once more the
transfer function of an analog filter. The Yule—Walker method is based on
the minimization of quadratic deviations between the desired time response,
obtained if necessary by means of the inverse Fourier transform of transfer
function in the frequency domain, and the synthesized time response (see the
function “yulewalk” in MATLAB). The Prony method can be used from the
desired impulse response. The corresponding algorithm and others inspired
by signal processing methods can be found in the MATLAB “signal
processing” toolbox.

2.3. Synthesis of analog active filters using operational
amplifiers

2.3.1. Cascading second-order cell filters

An n-order filter requires n/2 second-order cells (or elementary filters) if
n is even; (n—1)/2 if n is odd in addition to one of the first order. Elementary
second-order active filters employing a single operational amplifier are
Sallen—Key (non-inverting) or Rauch (inverting) structures (see figure 2.28).

These circuits have the disadvantage of exhibiting interdependent quality
coefficients and natural circular frequency. It is thus preferable to use
structures in which the quality coefficient can be adjusted independently of
the natural circular frequency such as so-called biquadratic structures
(second degree) and the simplest is described hereafter (see Figures 2.29,
2.30 and section 1.7.2. in Chapter 1). Other passive or active internal
feedback loops can also be added. The various outputs allow for several
types of filters (low-pass, band-pass or high-pass).
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Sallen-K ey structure

Figure 2.28. Active filters with a single
operational amplifier

R

Figure 2.29. Second-order active filter using
three operational amplifiers
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In order to obtain a second-order transmittance comprising of both a
second-degree numerator and a denominator in s (biquadratic), the
Delyannis—Friend structure can be employed (see figure 2.30), in which the
transmittance parameters can be adjusted without mutual interaction.

Rs

Figure 2.30. Delyannis—Friend second-order active filter

The synthesis of operational amplifier-based active filters can easily be
achieved from the decomposition of the denominator of the normalized
transmittance into a product of second-degree polynomials in s (and possibly
a first-degree factor in the case of odd-degree denominator), which can be
computed after determining the roots of the denominator and eventually of
the numerator (e.g. using the MATLAB function “roots™). Each of them can
then be implemented by one of the previous circuits because there is no
coupling between one stage and the next. The elements are then calculated
by denormalization, by dividing time constants by the ratio of the desired
cutoff circular frequency to w. =1 rd/s.

2.3.2. Multiple feedback loop cell

The previous circuits can be generalized through the diagram shown in
Figure 2.31, which theoretically allows us to synthesize the transfer function
only once.
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R,

=

T

Vi V3 V2

Figure 2.31. Multiple feedback loop cell with forward transmittances
Tn, Th-1, ... To, T1 and feedback transmittances R+, R», ... Rn.1 Rn

T,

The relation between voltages V; (i = 1 to n) and V4 is written as:

V; = V:‘l+1 i n

T, --T=V, HT/
j=i

And in addition V.

n+l

=FE+ ZRI. V. . The transfer function 7= V}/E can
i=1

therefore be deduced:

I[17,
= —]:1
1- ZH: R ﬁ Tj
i=1 j=i

r b
E

The synthesis is carried out from the transfer function 7 supposed to be of
the 2n degree and from real numbers with a modulus less than 1 for the Ry,
Ry, ... R, using a recursive method. Firstly, we split the diagram into two

'
1

————, which is verified by:
1-R T

looped blocks 7', and R;. Hence T =

T . . . .

T = . Next, 7" is factorized in order to break down this
1+R T

transmittance into a biquadratic transmittance (of the second degree)

achieved by an assembly like in section 2.3.1. and a rational fraction

T", of degree 2n — 2. The second step is the repetition of the previous one
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but with 7" instead of 7 and R, instead of R;. The process is then restarted
to achieve the final system.

Nonetheless, the stability of the system should be verified, for example
based on the state representation, because it can be more problematic than
for previous assemblies studied in section 2.3.1.

2.4. Non-dissipative filters synthesis methods

This type of filter assumes that purely reactive elements are being used,
such as capacitances, inductances and possibly ideal transformers, excluding
any resistance and neglecting Joule losses in reactances. This solution is
especially interesting at high frequencies where operational amplifiers can
no longer be employed and when it is desirable to minimize active power
dissipation. As a matter of fact, only a small number of pure reactances
(inductance, capacitance or quartz resonator) are sufficient to synthesize all
types of filters previously described. In addition, it is superior to active
filters in terms of sensitivity to the value of elements, mentioned at the end
of chapter.

These quadripoles are arranged in a chain and are generally terminated by
a resistance. Iterative impedance is not always purely resistive and it is
preferable to determine recurrence relations between parameters when an
element is added to achieve the synthesis of these filters; a second option is
to use a more general method that takes termination impedances into
account, since the response of the filter depends therefrom. The best model
is then the one making use of s-parameters (see sections 2.1.6 and 2.1.7.2),
which find a very powerful application below. A first exact method makes it
possible to obtain the minimum number of elements from the effective
parameters of the filter, themselves calculated based on the transfer function
chosen for the transfer coefficient s,;. Another method, not fully exact and
eventually making use of a larger number of elements, relies on image-
matching. It permits to built any filter by cascading passive cells made of
capacitors and inductors without mutual interaction like for active filters
based on operational amplifiers and studied in the section 2.3.1. It provides
good results in the case of narrow-band band-pass filters and allows
calculations by hand. These two procedures are described in the following
sections.
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2.4.1. Synthesis based on effective parameters

2.4.1.1. Zero dissipation condition in the quadripole (unitarity relation)

The zero dissipation condition in the quadripole can be developed from
p=sa,where: a=v+iand f=v—i(in matrix notation), that is to say:

v, =1 S, S v, +i
ﬂ=|:1 1:|=|: 11 12:||:1 .1:|=sa
VY, 7h Sy Sp |V th
The power absorbed by the quadripole taking into account its two ports is
Re[v1 i +v, iz] or in a more symmetrical way:

1 - - . .
P:E[v1 L+v, Lty i+, zz].

i T T N t :

However, [v, vz][_llz\»1 i +v,i,="vi, where v is the transpose of
i
2

matrix v and i the complex conjugate matrix of i. Therefore:
P [ =,
2P="vi+ vi oreven 2P= iv+ vi

From sum and difference of @ = v + i and # = v — i , and by establishing

(@ + B)a-p)="aa-"Bp+ Ba-'ap
Tv=a-Bla+p)="da-"Bp-"Fa+'ap
4(vit'iv)=2"aa—2"pp

4p= ’aa—?/)’: ‘al,a—'a'ssa

4P = Ga—?/)’:Z[IZ—?s]a
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The cancellation of this power P thus implies that:

‘ss=1, oralternatively ‘s=s"

thereby making matrices explicit:

- 5 , =

|:Sll SZIjH:SH S1z:|_ |Sll| +|521| S1181, 558, _{1 0:|

—_— — - — — 2 2 | ’

S Sy |LSa Sz S12811 T 85,85 |S12| +|Szz| 01
which gives the Feldkeller relations: |s12|2 +|s22|2 = |s,,|2 +|s2]|2 =1 and a
dependency relation between the four coefficients s, s, +s,,s,, =0, which is
normal for a passive quadripole.

All of these coefficients are actually rational fractions of polynomials that

depend on the variable s in the same way as the variable jo and therefore the
conjugate complexes can be replaced by Hurwitzian conjugates in all these

expressions. The equality ‘s=s"' then implies the equality of determinants,
which is expressed by (det s)_ (det s) = 1, which is a characteristic property

of an all-pass transmittance of the det s = Tr& type, where g is a Hurwitzian
g

polynomial. Since g appears in the denominator of the determinant of s, it is
necessarily part of the denominator of the coefficients of the matrix s. This

1

allows us to write the previous matrix relation ‘s=s"' after simplification of

common polynomial factors in the form:

8« - gdets|—ny,

of the numerators of coefficients s;, and g the polynomial common to their
denominator. After simplification by g and g« this yields equalities
My =Fny,, n,.==xn, and  n, =*n,, which properly verify

Ry Tys

1. 1. 1 n -n, .
—{ S }— { 2 12} , where the n; represent the polynomials

Sys Sy + 8, 85, =0, Finally, there are only three distinct polynomials
remaining, g for the common denominator and we will denote 4= n, and
f =n, for the numerators. The matrix s then takes the form:

TL
gltf Fh
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where + f, = n,, and Fh =n, are, respectively, replaced by f'and —4 for

reciprocal quadripoles, which is the case for passive circuits including only
inductances and capacitances.

Since det s = $&, the computation of det s leads to the “unitarity
g

relation”:

gg.=hh.+ ff.

This relation constitutes the basis for the synthesis of these filters, since

$, =8, = L is determined from the transmittance desired for the filter, its
g

power gain being proportional to |S21|2 (see section 2.1.7.2). This
transmittance is itself sized based on the template and the two polynomials
fand g are thus known. The unitarity relation makes it possible to deduce the

third polynomial %, which gives the diagonal coefficients of the matrix §.

We can therefore deduce matrices z = (I, + s) (I, — s)' and
y=W—-s) L+ s)_1 and especially impedances z;; and z;; or admittances yy;
and y,,, which give access to the circuit diagram of the quadripole based on
impedance or admittance synthesis as seen in section 2.1.5.3. It follows that:

| _(gxg)e(nzn) _(g*g)-(hth)
Fe)-(hvh)’ 7 (g7g)-(hTh)’

V4 Z, = 2f

T (g7 g)-(hFh)’
’ _(gxg.)-(hxh L _(gtg)+(hth)
U (gFg)+(hFh)TTE (gFg)+(hFh)

It can be observed that zj;, z» , y;; and yy only involve sums and
differences of two polynomials and their Hurwitzian conjugate, which
automatically gives rise to polynomials with either even or odd degree, as
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this is necessary for impedances z; or admittances y; comprising reactive
elements only (inductances and capacitances). The number of reactive
passive elements is directly related to the order of the filter. The elements are
numbered in the order of the branches encountered from the input to the
output as in the following example (Figure 2.32).

Figure 2.32. Ladder sixth-order low-pass filter

The different possibilities of assembling the inductances and capacitances
either correspond to filters of the same transmittance, which can be
implemented in different ways if different syntheses are used (Foster, Cauer
or mixed), or to the filters of different types (low-pass, band-pass, high-pass
or band-stop). Therefore in the second case, the right configuration has to be
chosen according to the requested type, mainly by placing inductances and
capacitances to achieve the desired low-frequency and high-frequency
behaviors (see section 2.1.5.3). However, it is generally easier to synthesize
the low-pass filter and then to deduce the elements of the filter of the desired
type by the transformations specified in section 2.2.2.5.

EXAMPLE.— Eighth-order band-pass filter synthesized from the fourth-order
low-pass filter.

Consider the fourth-order Chebyschev low-pass filter giving a ripple of
0.1 dB in the Dbandwidth, with normalized transmittance

0.819 . o .
:1. With the unitarity relation, we

st +1.804s° +2.6275% +2.0265+0.8285 g

get h=s*+ 5%+ 0.125. The diagram can be synthesized in the form shown in
the previous circuit (Figure 2.32) with four elements only: L, = 1.109;
C,=1.306; L;=1.77, C4,=0.818 from the Cauer’s synthesis (section
2.1.5.3.). The low-pass — band-pass transformation (section 2.2.2.5) with a
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reduced bandwidth Aw = 0.3, for example, gives the network, as shown in
Figure 2.33.

3.696 0271  0.169 5.901

YN\

4.354T 0.230 2.727T 0.367

Figure 2.33. Network of the normalized Chebyschev filter obtained after the
transformation low-pass to band-pass with a normalized bandwidth Aw = 0.3 and a
ripple of 0.1 dB within the bandwidth

=20 [

—40

TR RS ST S N T ANMRNY TR S S

0.6 0.8 1.0 12 1.4 16

normalized frequency

Figure 2.34. Transmittance modulus of the eighth-order Chebyshev band-pass filter
with normalized bandwidth equal to 0.3 and a ripple of 0.1 dB within the bandwidth

This corresponds to the transmittance:

6.63x107 s*
s* 40541157 +4.23645° +1.6781s° +6.4795s" +1.6781s> +4.2364s> +0.5411s+1
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The latter would result in a more complicated direct synthesis because the
impedances z; and admittances y; obtained by the expressions previously
provided are composed of polynomials of the seventh-degree at most and
thus do not make it possible to deduce the value of all elements at once.

The Bode diagram simulated from the filter response whose network is
given above shows breaks located around 0.84 and 1.18 (corresponding in
fact to Aw = 0.34) and an almost flat response in the bandwidth according to
the original specifications (0.1 dB ripple). The practical implementation,
however, generates a response more distant from the template, because the
ratio of two elements of the same kind can reach 20, which turns the
condition of negligible dissipation problematic in all elements. An even
narrower bandwidth would enhance this flaw.

2.4.1.2. Elliptic filters

There are, nonetheless, cases where the syntheses exposed in section
2.1.5.3 do not allow us to obtain the transfer function corresponding to the
transmission parameter s; = f/g. This is the case if the polynomial f of the
numerator includes zeros (or roots), as in elliptical or Jacobi filters (see
section 2.2.2.5). In effect, in this case the circuit requires LC-series resonant
branches in parallel or LC-parallel antiresonant branches in series, as in
Figure 2.35, in order to cause, respectively, a short circuit or an open circuit

at every angular frequency @, =l/. IL, C, .

Ly L3 Ls
— V'V VYV —t V'V V V
¢~ o o
— 11 Ll ,
— C]’ __C3’ __CS
=G,-C” =Cy—- G =Cs—Cs

Figure 2.35. Sixth-order low-pass elliptic filter

The synthesis then requires one additional step that consists of achieving
a partial extraction of an element of the network shown in Figure 2.32 in
order to carry forward the residual element (capacitance or inductance) onto
the previous element, of opposite nature (respectively, inductance or
capacitance), as shown in Figure 2.35.
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Let a normalized impedance or a admittance be x; = z; or y; whose

.. . . N.
synthesis is achieved using the Cauer method:  x,=7, p+DZEp ;, where 1
, P
represents the time constant of either an inductance if x; = z; or a

capacitance if x; = y;, and where N,(p) has a degree & — 1, one unit
lower than that of D,(p), which has a degree k. The partial extraction consists
of breaking down 7, into 1, +1; in order to carry forward and to
N, (s)

, (s

combine 7,s with the fraction so that its denominator is now

— instead of 7,s, thus corresponding to a resonant or antiresonant

N

I+ —
@,
branch at angular frequency w, Hence, the sequence of the following
. N, N 775 D,(s)+ N.
operations: X, =78+ () _ TS+ 178+ 2(9) _ T REAORDAC) )
D, (s) D, (s) D, (s)

which makes it possible to obtain a k+1-degree numerator for the last
fraction, denoted by x;.

How can the value of 7; be calculated?

It derives from the next stage of Cauer’s synthesis that consists of
expressing the reciprocal of the last fraction in the form
I D, (s) s +D3(S)
X GsD()+N, () 8T N(s)
s
0

, which has thus two poles at

s =tjw,.

Therefore, ; —oo,or still x;(£j@)=0, which implies that
x;(£ja,)
. N,(j
jo, T D,(jo,)+N,(ja,)=0, thatis: 77 =jM and 7, canbe
@, D, (j @)

inferred by 7, — 7.
This time constant is real since one of the polynomials is of odd degree, it

is imaginary, and the other is of even degree, thereby is real. However, if
77<0 orif 77> 17, the synthesis is impossible. If it is possible, the result is,



158 Fundamentals of Electronics 2

for example, the previous network where each capacitance C’’ is calculated
from an angular frequency corresponding to a zero of the polynomial f and
every capacitance C’ is obtained by C — C*’, where C represents the
capacitance previously found by the complete synthesis.

EXAMPLE.— Fourth-order elliptic low-pass filter

A fourth-order low-pass elliptic filter, providing a ripple of 1 dB in the
bandwidth and a minimum of 52 dB of stop band attenuation, has a
normalized transmittance (from MATLAB “ellipap” function):

i 0.002539 (s> +24.227)(s” +4.5933)
g 5 +0.9455ps’ +1.4831s> +0.77535+0.3170

The unitarity relation provides the polynomial /4 =s*+1.0338
s* + 0.1426, then the one giving y», and the complete Cauer synthesis lead to:

45" +5.0339s5% +0.9193 1.7538s* +0.9193
Yy = 3 =2,1153s+ 5 or
1.981s” +1.5506s 1.981s” +1.5506s
1 .
¥y, =2.1153s+ : ; next, the zeros of f
1.078s +
3.135s +——
0.6086s

(wo1 =4.922 and @, = 2.143) allow us to change the ladder network to add
the capacitances that unveil the two antiresonant circuits in Figure 2.36 and
which have to be subtracted from initial capacitances.

0.60855 1.0782
VTV V VYL IV VV VL
H ] /| ‘ V22
0.35775 - 0.03877

o

T 27172 T 2.0765

Figure 2.36. Fourth-order elliptic filter synthesis based
on its normalized admittance y»
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EXERCISE.— Check coherency of the elements value with y,,, @ and wg;.
The Bode diagram of this elliptical filter transmittance can be seen at the end
of section 2.2.2.5.

2.4.1.3. Development of the filter network and denormalization

Given that impedances z;(s) and admittances y;{s) are normalized
(dimensionless), the coefficients appearing in their expressions are actually
time constants, expressed in seconds, which leads to a notation making use
of an expansion into successive fractions (for instance for a sixth-order low-
pass filter) for diagonal impedances:

1

z,(s)=7,5+

7,5+
T,s+

(using Euclidean polynomial division to obtain the integer part of the
fraction, and then that of the denominator, etc).

Because of the symmetry of the roots on each side of the real axis for the
polynomials f; g and £, certain combinations existing in the numerators and
denominators of zyi(s), zx(s), y11(s), ya(s) yield identical results. Two
identical expressions are then found for z;,(s) and yy(s), for example (or for
y11(s) and zp(s) ), which can be represented for the ladder low-pass filter
(Figures 2.37 and 2.38) by applying the valid definitions for the impedance
or admittance quadripole.

7 73 (4]

Zu/Ri —>

Tzz Tm T

Figure 2.37. Low-pass filter synthesis based on its
normalized impedance z11 = Z11/R1
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(7 n

76
\fY\T/YY\/'\T/'WY\T
I~ T~ T°

Figure 2.38. Low-pass filter synthesis based on its
normalized admittance y2> = Y22 R»

Based on these time constants, the final network is shown in Figure 2.39.

R Ly L3 Ls

O T C, T Cs T Cs

Figure 2.39. Full filter

By matching the identical elements of previous diagrams, we obtain

the identities: 7, =5=R2c6 ; 7,=RC, = L A =5=ch4 ; T,=RC, = £;
Rl RZ Rl RZ
L L . . .
7 =% = R,C, ; 7,=RC, = 2 which by dividing each member in both
1 2

and more generally for an nth-order ladder filter:

_ R2 LT
TR = ? == — = =
1 Tn Tn-2 Tn-4

Nevertheless, the consistency of the ratios of the various time constants
may not be rigorously ensured in some cases. We will then refer to the
completed impedance method exposed later in this section.
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In the case of elliptic filters for which the transmittance has zeros, the
circuit has to be modified by extracting some of the capacitances to carry
them forward in parallel onto the inductances in order to identify notch
circuits at frequencies corresponding to the zeros of the transmittance, as
mentioned in the previous section.

Finally, it is important to consider changing the cutoff angular frequency
of the filter, which so far was @, =1 rd/s in the normalized transmittance, to
obtain the final circuit. The cutoff angular frequency can be modified in two
ways, by altering inductances with the ratio £ and by fiddling with
capacitances with the ratio m:

—if inductances L are changed into % Ls  becomes
Ls m s
L's=— =L,|— 5
k k Jmk
—if capacitances C are changed into < Cs  becomes
m

Cs \/? K
C's=— =C,[— .
m m ~Imk

The variable s is therefore divided by +mk (and similarly for jw) in both
cases, while impedances are all multiplied by \/% . In order to find the same

variation with frequency than with the normalized transmittance, larger
angular frequencies by a factor+/mk have to be used, which leads to sizing

Jmk =r, so as to be equal to the desired cutoff angular frequency

, v,
. = ryo. with . = 1 rd/s (Note: the new cutoff frequency is then f; =é

Hz) and thus to divide all the time constants by r, to obtain the new time
LT LT LT
constants 7, =—-; 7,=-%; 7,=—; etc.

Ty Ty Ty
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Since the impedances are multiplied by \/% , the resistances R, and R,

. , , R,
also become the new resistances R, = /%Rl, R, = \/%RZ and ?2 =r,.

1

Then, either R,’, or R,’ has to be chosen (or possibly a capacitance or an
inductance).

The new capacitances and inductances are then inferred from:

L _TlRl — TnRZ . o TZ _ Tn—l ! _TSRI _ Tn—ZRZ . C' _ T4 _ Tn—}
1 - s 2 T I T = s Ly = iani—
v r R R, T r reR TR,

, etc.

If the object is not a low-pass filter, the appropriate transformations of
initial inductances and capacitances are performed to obtain the desired filter

type.

EXAMPLE- Sixth-order type-1 Chebyschev low-pass filter giving a 0.2 dB
ripple in the bandwidth.

The calculation achieved with help of the relevant functions available in
MATLAB gives:

g=s°+1.47085" +2.58165" +2.20825° + 1.6029 s> + 0.6611 5 + 0.1473.

The numerator = 0.1439 is a constant in the case of a low-pass filter.
From the unitarity relation, it follows 4 = &+ 1.55% +0.5625 > + 0.0313,

. . 4s° +8,1632s" +4.3308s” +0.3571
then a normalized impedance z,, = . S
2.9416s> +4.4163s° +1.3222s

be synthesized using the Cauer method (Figure 2.40).

that can

1.3598 2.2395 2.0974

T 1.3632 'l' 1.4556 T 0.8838

Figure 2.40. Low-pass filter synthesized from its normalized impedance z14
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NOTE.— Important: a number of useful MATLAB files for performing these
computations based on the expression of the two polynomials f and g have
been developed by the author. They can be found at the Mathworks site
(http://www.mathworks.fr/matlabcentral) in user communities proposing file
exchanges: hurwitzzm for the Hurwitzian conjugate of a polynomial;
unitarh.m to determine the polynomial #4; zllsh.m; z22sh.m; z11sb.m;
z22sb.m; y11sh.m; y22sh.m; y11sb.m; y22sb.m to determine the normalized
elements of the ladder structure based on the result of the function chosen
among the last eight and giving the maximum amount of elements.

. Z, . .
The equivalent network to calculate z,, :# is then the following

1

(Figure 2.41).

1.3598 2.2395 2.0974

T

T 1.3632 T 1.4556 T 0.8838

Figure 2.41. Z; computation network

le

But we also find that y,, =Y,,R, corresponds to network shown in
Figure 2.42.

1.4556 1.3632

0.8838

— I

-|— 2.0974 -|— 2.2395 -|— 1.3598

Figure 2.42. Y,, computation network

This implies that r, = = 2 =-2=1.539. Imposing, for example,

1 TG T4 T2

Ry" at 140 Q and the new cutoff frequency f.’= 11.1 MHz, the final network
is fully determined and sketched in Figure 2.43.
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140 Q 2.7 uH 4.45 uH 4.15 uH

215Q

C) -|—140 pF -|—150 pF -|—90 pF

Figure 2.43. Final network of the Chebyschev sixth-order low-pass filter

EXERCISE.— Check the previous calculations.

A more rigorous and more general method for the determination of
termination resistances ratio r¢ relies on the computation of input and output
impedances or “terminated impedances”.

In the matrix expression f =s a, terminating the quadripole with the
resistance R, yields v,=—i, and we still get vi+ i, =e, Since
2 v; = e, (1 +s11), the input impedance is deduced:

1+, _R g+h

l I-s, ] g—h

1 Vy==Ry1,
Similarly for the output impedance at E, = 0, we get v;=—i; and
Vv, — 1p = 82 (1, + 1). Hence:

1+ Fh
=R, Sy =R2g+
I-s,,

2 =Ry,

The polynomials appearing in these two terminated impedances are, at
least for one of the two factors of the quotient, neither even nor odd. This
corresponds to impedances that are not purely reactive, which is quite
expected, since R, is included in Z;, and R, in Z,,,. The signs to be considered
for reciprocal quadripoles are the higher signs in the expression of Z,,,. If we
reason about the polynomials g and & = A« specific to the template of the low-
pass filter, the zero angular frequency limit of Z;, or Z,, corresponds to a
purely resistive impedance because there are only terms of degree zero in the
numerator and denominator, the others being cancelled. These are obviously
R, in the first case and R; in the second. Hence, a direct evaluation has been
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done of the ratio rz, which leads to the same expression both from Z;, and
Z,u: (higher signs):

R
r, =—==lim g_+h
R] s=0 | g— h

If in practice the two resistances are imposed, one will be set to the
desired value and the other will be completed by adding a resistance in series
(or in parallel) to bring the overall termination resistance on the port
opposite to the value calculated from the ratio 7. If none are imposed, we
will be able to set any one capacitance or inductance chosen among all and
then deduce the two termination resistances.

In all cases, once the template f/g is established and the synthesis
achieved in normalized values, only two degrees of freedom will remain:
one to choose the new cutoff frequency or center frequency, the other to
choose a single element among the two resistances, or among the
inductances or capacitances. Therefrom, all other elements will be
computable. These two degrees of freedom derive from the independence of
only two of the three polynomials f, g and %, and from the unitarity relation.

In conclusion, it is remarkable that the method exposed here makes it
possible to simultaneously solve the filtering problem by synthesizing the
filter that satisfies a template; and in addition, it also solves the problem of
impedance matching since the elements can be calculated by taking into
account the termination resistances whose ratio is, nevertheless, imposed by
the nature of the filter chosen through the expression of s,;. Subsequently,
this last restriction may be lifted by adding an ideal transformer, except for
low-pass filters. In the case of narrow-band band-pass filters, the reduced
bandwidth Aw plays a role in the determination of the elements during the
band-pass — low-pass transformation and gives place to elements that are in
a ratio close to 1/Aw * (see section 2.2.2.5). This leads to filters unfeasible in
practice if Aw <0.25 due to the difficulty in implementing elements
absolutely lossless with very different values. The impedance-image method
exposed hereafter is a means to size such filters at the cost of an
approximation, which is largely offset by the efficiency of the
implementation and by solving the previous difficulty.
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2.4.2. Synthesis based on image parameters

This method relies on the search for a device able to define an overall
transfer function from the chaining of elementary quadripoles, called
“elementary cells” in the following: their transmittances are themselves
known and easily computable without the help of software programs. This
device is image-matching and has been described in section 2.1.8. Image
impedances are generally not rational and thus not implementable using
passive elements. However, this does not prevent us from using them to
ensure image-matching between the input and the output of two cascading
elementary cells. The problem only actually appears for termination
impedances for which the image-matching condition can only be
approximately satisfied with the exception of certain frequencies. In the
following, the characteristics of elementary low-pass, high-pass and band-
pass cells will be first calculated, namely image impedances

Z V4
Z, = /Y—”=4/ZeoZm and Z, = Y—Zz= Z,Z, at each port and the
11 22

corresponding transmission coefficients s;=exp[-'] =exp[—(y +/d)] by
evaluating image attenuations y and image phase-shifts 0 from exp[2['] (see
section 2.1.8).

The frequency band in which we simultaneously have y = 0 and real
image impedances will be systematically assimilated to a bandwidth,
whereas it will be assimilated to a stop band otherwise.

2.4.2.1. Low-pass and high-pass elementary cells

The simplest elementary cells are obviously those involving only two
reactive elements. However, they have the disadvantage of presenting image
impedances that vary a lot in the bandwidth and since there are no adjustable
parameters, we are always driven to repeat the same cell for a low-pass or
high-pass type of filter. This solution is certainly not optimal. Since image-
matching must be ensured at both ports of each cell, type (a) or (a') cells
should moreover be grouped together in the following table following a
“head-to-tail” assembly, either in T or in II, in order to obtain symmetrical
cells presenting the same image impedance at both ports and an image
attenuation I', which is twice that of the initial cell. It is generally preferred
to also have recourse to cells presenting a resonant or antiresonant (b)- or
(¢)-type circuit, which combine several advantages. The network and image
properties of these four cells are grouped in the following table.
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Elementary cell Zy Zn exp(l) Case o <1 Case o >1
(a) Y=
vy=0
Lo 1 In|Vao® -1+
G | 241 T 11 V' +1+s [ }
| Ky
0 = asinw 5=
=7
(a)
Co \/2— Y= =0
— RN s s”+1+] ln[\/wz—l+H)}
Lo Ky \/S2 +1 § 8=
§=—n/2 —asin(1/w)
(b) 2=
mL =
0 y=0 \/ﬁ +mam
m—f B S e T N T N N i N o,
(,‘017”’:17 —|—’”C 1+(1_mz)sz S2 +1 S2+1—ms ) o =m/2if
with m <1 atan 1<w<w..
-’
3=0if > w..
2 =
© !
S - = e 1=0
olm’ C, o /.2 |10
' » 52 +1 £ +(1=m") ssz 1-0® —m' 8=
with m'< 1 svs*+1 Ns"+1—m 0=0ifw<w'. 2
N atan Y@ !
S=—n2 ifo'. m
<w <1

Type (b) and (c) cells enable for each of them that an attenuation pole ..
or @', be introduced (or transmittance zero), whose position can be

adjusted, and they present impedance images approaching a constant in the
bandwidth, as this will be detailed in the following. For low-pass filters, it is
possible to place elementary (a)- and (b)-cells in cascade provided that only
Z; 1s used as image impedance, which requires the combination of two (a)-
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or (b)-cells grouped in a “head-to-tail” fashion. In addition, it proves more
advantageous to assemble (b)-type cells whose image impedance Z;; can be
much closer to a constant resistance in the bandwidth (see Figures 2.45 and
2.46), directly connected with a termination resistance. Generally speaking,
if the letter “i” is added to indicate the interchanging of both ports with
regard to the cells presented in the table, the logical sequence for the low-
pass filter can be read as (b) (ai) (a) (bi) in Figure 2.44.

miLg 2L maLo
— SV VYV VYV —tVVV VY
— [YY Y I
I | l l I
) m1C0 1— 2
C l_ml ::CO Co m,Co C e
L -l_ -l' 0 m,
1
with m; <1 with m, <1

Figure 2.44. Four-cell low-pass filter, two of each type, with
the same image impedance at each port, given by the expression
of Zj1 in the previous table, provided that my = my

It is also possible to use (b) (bi) (b) (bi) ...(b) (bi) in the case it is
desirable to benefit from finite-frequency attenuation poles in preference to
those placed at zero and infinite frequencies. Capacitances in parallel will be
obviously grouped.

For high-pass cells denoted by (a'), (a'i), (¢) and (ci), image-matching
must use Z;;. This leads to the sequence (a'i), (c), (ci) and (a'), which imposes
the same parameter m' for the two central (¢)- and (ci)-type cells.

The image impedances and transmittances of the table are normalized
with w. = wy = 1 rd/s as usual in this chapter. The parameters of the cell (a')
are inferred from those of the cell (a) by way of the usual low-pass to high-
pass transformation, namely by replacing s by 1/s, because the capacitance
and the inductance have been inverted. Conversely, this transformation is not
the one that allows switching from (b) to (c) cells. The normalized

. . 1
attenuation poles for (b) and (c) are, respectively, @, = = and
1-m

', =~1-m" , giving rise to zero transmittance.
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Figure 2.45. Modulus of image impedances normalized by the characteristic
impedance R, for the low-pass (a) and (b) cells (real if w < 1, imaginary if w > 1):
Zj1(b) in solid lines for m = 0.5; Zis(a) in dotted line and Zjx(a) = Zi> (b) in dash-dotted
line. For a color version of this figure, see www.iste.co.uk/muret/electronics2.zip

Figure 2.46. Modulus of the image impedances normalized by the
characteristic impedance R, for high-pass cells (a') and (c) (imaginary for
w < 1, real for w > 1): Ziy(c) in solid lines for m' = 0.5; Zj1(c) = Zi1(a') in dash-dotted
line and Z;»(a’) in dotted line. For a color version of this figure, see
www.iste.co.uk/muret/electronics2.zip

As it can be observed in Figures 2.45 and 2.46, the normalized impedance
-
images in the bandwidth Z,=————— for cell (b) and
g ilb 1_(1_m2)a)2 ( )
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2 2
S0 =M for cell (c) constitute excellent approximations to a
oNw® -1
constant resistance in 90% of the bandwidth, provided that we take m = 0.5 =
m'. These cells will thus be systematically adopted as ending cells with
values for parameters m and m' very close to 1/2 or equal to 1/2.

Z

i2c

2.4.2.2. Denormalization and filter synthesis

In order to denormalize image impedances and image transmittances, the
change in variable has to be carried out by shifting from w to w /w, where
w, = 1/ JL,C, » and by multiplying the image impedances by the
characteristic impedance Ry =,/L,/C, . This last factor and w,, the cutoff

angular frequency, thus allow sizing Ly and C, from the image impedance in
the bandwidth, which is purely resistive, and the cutoff frequency wy/2m,

R . .
and L, =—". Nevertheless, this operation

which determines: C, =
RO a)O a)O

will be carried out as a last step, once the effective attenuation is adjusted
onto the template.

The main operation of the synthesis consists of determining the number
and the type of cells and to choose the value of the adjustable parameter(s) m
or m'. From a desired template, the procedure will be to achieve successive
approximations consisting of initially determining the image attenuation that
needs for a certain number of cells placed in cascade. This is achieved by
analogy with Chebyschev or elliptic low-pass or high-pass filters through the
matching of the number of branches of the circuit and the order of the filter
and by anticipating a margin of safety with respect to the effective
attenuation that needs to be achieved. Ultimately, we will verify through
simulation the deviation of the actual response with those from the image
impedances and the template method, and an extra iteration will be executed
if deviations become too significant. In all cases, it is important to first carry
out an evaluation of maximum deviations between ideal values of image
attenuations obtained from s,; and their effective values.

In order to try to evaluate certain bounds of the deviations between the
gain or the attenuation resulting from the approximation of image
impedances and the same quantities that will actually be obtained, all general
expressions of s-parameters (section 2.1.6) and gain or impedance (section
2.1.7.3) can be used with the image impedance normalization, except for
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power calculations which will have to be excluded when image impedances
are not real, which is the case in the stop band. That being said, the decisive
advantage of this method is to enable us to simultaneously consider all the
cells placed in cascade to evaluate an overall parameter 51, = 55, = e since
normalization using image impedances implies that s;;,=s» = 0.
Nevertheless, it is important to properly note that Z, and Z;, the image
impedances to be considered, are supposed to match those of ending cells
found at every port of the overall filter (therefore in the network, Figure
2.44, we have the image impedance Z; of cell (b) at each port) during the
synthesis, which is not exactly the reality.

The voltage gain V,/E, is obtained from the expression given for v,
according to e’y in section 2.17.3, taking into account z, to calculate e,:
Vz _ Zi2 $y1 , +1

E, Zy 1=r,rs,8, z, +1

1 r, +1
l—rgrus]zs21 z, +1

The mismatching factor of the voltage gain A, = %

il

. . 1 |Z . o
relative to s, is equal to — |—> when the image-matching is implemented,
il

as aresult of 7,=7r,=0and z, = 1.

It is also possible to evaluate the current gain from the ratio #/i; given in
% \/Z f”(rlsu'ﬁ;‘z)l . The deviation
with respect to s,; is measured using the mismatching factor of the current
gain A = il_—r", which can be reduced to \/Z when matching

Zy 1=1,51,8,, Z,

section 2.1.7.3, still with s;; =52, = 0:

occurs. The product of these two factors will affect the overall power gain

and thus will be equal to % in the event of a match R, =7, and R, = Z;,

i
R,

Eg

which is equivalent to the result mentioned in section 2.1.7.2

= 21|
1

in the case of the match R,=Z;=R, and R,=Z;=R, because then
1| =|Eg[/(2R}) and || = |V>|/R,. If the modulus of their product is larger than



172  Fundamentals of Electronics 2

%, the true power gain will be increased and the true attenuation will be

reduced with regard to the image values or, on the other hand, vice versa.

In general, for the calculation of these two mismatch factors, it will be
necessary to take into account effective termination impedances that should

. . R R
be assumed to be real, equal to R, and R,, which gives z, = Z—g ; z, = Z—“ ;
il i2

R, -7 - C . .
ro=—t—1L. = R =25 from which it can inferred that:
¢ R, +Z, R,+Z,

2R, 72,2, 1

v = -2
R +Z, Rg +Z, l—rgrue

Zil l_ru _ 2 ZiIZiZ 1

Z[Z 1_72,S12521 Ru+Zi2 1_7113

i 2T

NOTE.— Important: These factors and previous gains become meaningless at
the cutoff frequency, because the normalization enabling the computation of
the s-parameters has been made using Z;; and Z,, which become either zero
or infinite. On the other hand, outside of this particular frequency, the
analysis of deviations between effective attenuation and image attenuation
can be performed, differently however, depending on whether the bandwidth
or the stop band is under consideration.

In the stop band, impedances Z; and Z, are purely imaginary and
accordingly the power gain is not given by the product between voltage and
current gains, but this does not prevent an estimate of the mismatch factors
in modulus being obtained for each of them. Since the image attenuation e"
is much larger than 1, the factors 1-r,re™" and 1-re”" are close to 1. We

define that Zin =jX, and Zn=jXs, which leads to
) B JRE R,

— , which is maximum when R, = X; and R, =
R, R+ X} R +X]

. R o X, JRX R
X, and is equal to |—- . Similarly, l,.|=2 L X2 equals V2. =5 at
R, R, (|R*+X? R,

the maximum under the same conditions. The product of the two thus gives
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an overall factor v2 which is 242 times larger than the factor % that we

get when there is a match and reflects an effective attenuation deficit of
1010g(2\/5 ) =4.5 dB compared to the image attenuation. This would require

the anticipation of a safety margin with respect to the desired final template.
In fact, since conditions R, = X; and R, = X, take place very close to the cut-
off frequency, as it can be seen in Figures 2.45 and 2.46, because R, and
R, are very close to R, for a later-discussed reason, the most important
consequence is that this attenuation deficit with regard to the image
attenuation may push the cut-off frequency toward higher values for the low-
pass filter or toward lower ones for the high-pass filter. It will thus be
necessary to be cautious when addressing the assessment of the image cutoff
frequency compared to the one desired in reality. On the other hand, when
ratios R,/X; and R,/X, or inverse ratios exceed about J2 , a true attenuation
greater than the image attenuation is obtained and it is no longer necessary to
take a safety margin. It can thus be concluded that in reality, a cutoff
frequency offset and a transition band should appear between the bandwidth
and the stop band that did not exist in the image attenuation.

NOTE.— Important: This conclusion, however, must be tempered by the
approximate nature of the correction affected with mismatching factors that
do not take into account the presence of terminations other than constant
resistances in the previous computation. Moreover, this is only achieved in
the case of a single-cell filter since, for a multiple-cell filter, the terminations
of each cell are the dipole impedances of adjacent cells, except at the ends of
the filter. Therefore, less severe corrections are expected as well as a
performance that better approximates the actual attenuation to the image
attenuation, as we will seen in the practical examples that follow.

In the case of a filter solely made up of (b)- or (c¢)-cells, it is important to
know the asymptotic value of the image attenuation, which can be derived
from the stop band values of y given in the table of the previous section. For
a set of n pairs of (b)(bi)-cells with parameter my, m,, ... m; ... m, and with w

: e . . L 1+m, . .
tending to infinity, a total image attenuation of 202 log1 ™ s obtained,
i=1 _m,‘

taking into account the proportionality of the power gain to |s), after
converting into decibels. It is therefore helpful to choose values for the
parameter m; close to 1 to increase the stop band image attenuation.
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In the bandwidth, the impedances Z; and Z, are real and it is therefore
possible to carry out an accurate calculation of mismatch factors that will
reflect the effective ripple, the image attenuation being zero as well as its
ripple. As a first step, we can find out what the frequencies make the
modulus of the overall mismatch factor equal to 1/2. As previously seen,
these frequencies correspond, on the one hand, to the match R,=Z;, and
Ry, =Z;. To obtain this match and thus to benefit from an additional finite-
frequency attenuation zero, we will place R, and R, slightly above R, in the
case of the low-pass filter whose end cells are (b) and (bi), that is R, = R, =
u Ry (with z>1) or slightly below in the case of the high-pass, namely R, =
R, = pt' Ry (with u'<1), which will also impose two identical parameters m;
or m;" identical at the ends of the filter, therefore two symmetric end cells.
Coefficients r, and r, will be close to zero, much smaller than 1 in absolute
value. In addition, since the image impedance is very close to a constant
value and equal to Ry when m, or m,’ is equal to 0.5, this numerical value
will be retained, at least as a first approximation.

On the other hand, additional attenuation zeros appear due to the presence
of factors 1-rre™ and 1-re?", which cannot be neglected in the

denominators of 4, and /; in the bandwidth. Since the image attenuation y is
zero in the exponents of exp[—2I"] = exp[—2(y +jd)], the exponent is purely
imaginary and corresponds to the single image phase-shift, which allows us

to write:
1 I+7, l-r,

_ 25 7 _,. 270
z,+11-rrne I-re

AA =

v

As seen in the previous section, r, and r, are real and less than 1 in
absolute value in the bandwidth. The factors existing in the denominator thus
oscillate between 1-r,7, and 1+7,7, for the first, 1-7, and 1+, for the

second, respectively, for 0=k and for & =(2k+l)%. It can be concluded

therefore that there will be increasingly more effective attenuation
oscillations as the variation of the image phase-shift will be larger in the
bandwidth, in other words when the number of cells will be more significant.
For symmetrical terminal cells (Z; of cell b) and for equal termination
resistances (R, = Ry), we obtain with d=kx:
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1+, 1 R Z.

u il

(4.4 _1
Z,+RZ, 2

v i]ézkﬂ -

u

1+zg l—rgru R

as in the image-matching case. In the case where 6= (2k+1)% :

5\
1 l—ru ZiIZiZ 2 |:1—(1—m2)a)2}
[ﬂvﬂi]az(Zkﬂ)ﬂ/Z = 1+ 1 = = 1+,U

z, 1+r.r, Z,Z, +RgRu

-

the last equality applying to the case of the (b)- and (bi)-type cell of the low-
pass filter.

The envelope of the ripple in the bandwidth is thus computable using the
ratio of the product of the mismatch factors for image phase-shifts d=kx

2[1—(1—m2)a)2]2

5 , which takes the
l-w

and 5:(2k+1)§. We get: Q:% 1+u

value 1 at each image-matching case, occuring twice in the bandwidth as it
can be observed in Figure 2.47. Nevertheless, in addition, 4,4; will also
assume the value 1/2, resulting in an attenuation zero, every time the phase-
shift image will be equal to d=kx. This phase shift either corresponds to a
direct link (k is even or zero, as for w = 0), or to crossing connections
between the two ports of the quadripole (k£ is odd) since the image
attenuation is zero. It is then logical that effective attenuation be also zero
for these angular frequencies that are called antiphase zeros.

1 T T T T
dB

0.75

0.25

Figure 2.47. Ripple envelope in the bandwidth of low-pass filters
of parameter m; = 0.5 characterizing the end cells for three values of
the parameter u = 1.02; 1.07; 1.12 in ascending order of the values at
w = 0 (respectively, in dotted line, solid line and dash-dotted line). For a color version
of this figure, see www.iste.co.uk/muret/electronics2.zip
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The absolute value of 10 times the decimal logarithm of Q gives the
envelope of the ripple in the bandwidth, which does not exceed 0.3 dB in the
interval of normalized angular frequency [0; 0.9] in the most favorable case.
This corresponds to a choice of the ratio of termination resistances and the
characteristic impedance u = 1.07 when m; = 0.5 as it can be seen in Figure
2.47. The antiphase zeros are increasingly tightened as the normalized
angular frequency progresses from zero to one, because of the expression of

the total image phase shift, corresponding to 2’ atan[ 7, a)z ] for n pairs of
l-w

i=1

cells of type (b)-(bi). The value of each term atan[ i a)z ] for w = 1 being
l-w

% , there will be n antiphase zeros in the bandwidth, namely as many as cell

pairs, the first being still located at w = 0.

Nonetheless, here again, this calculation of the ripple in the bandwidth
has been obtained assuming that for each cell, the two termination
resistances were constant. This is, however, no longer achieved when the
number of cells is greater than one, because each cell is then terminated by
the impedance presented by the neighboring cell at one of the ports, or even
at both ports. Furthermore, we thus approach the ideal condition of
termination impedance identical to the image impedance with a number of
cells that increases proportionally as the number of cells itself becomes more
significant. As a result, it can be concluded that the previous calculation of
the ripple indicates an upper bound of the actual ripple and that it gives an all
the more pessimistic indication with more significant numbers of cells. In
other words:

NOTE.— The actual attenuation ripple in the bandwidth will be the smallest
compared to Q with a greater number of cells.

EXAMPLE.— Low-pass filter with pairs of cells of type (b) (bi)

Given a template enforcing an effective attenuation of 52 dB above the
normalized angular frequency w, = 1.5 and an actual ripple not exceeding
0.2 dB in the bandwidth. This last condition is stricter than in the example
addressed with the exact method of effective parameters, in which a fourth-
order elliptic filter had been employed, giving a ripple of 1 dB. If the value
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my = 0.5 is retained for both terminal cells with the aim of ensuring the best

=94dB of

+m,

possible match to the end ports, we obtain 201og1
—m,
attenuation with infinite angular frequency and an attenuation pole at ®.., =
1.15. Therefore, 43 dB are missing which would be difficult to recover by
solely adding a pair of cells. We therefore prefer to rely on the following
network (Figure 2.48), which includes three pairs of cells of types (b) (bi).

miLg 2maLo 2m3Lo miLg
_r/\’\f\f\’\_ — V'V VY —V V'V Vg —f\/.\l-\/\’\—l‘
] I I —
2 2 2 —m
Col_ml :‘: Col_mz f_ 01_m3 C, !
m, 2m, 2m, g
(my+ my)Cy (may+ m3)Co (m3+my)Co

Figure 2.48. Schematic of a low-pass filter, symmetrical and composed of two
doubled cells of type (b)-(bi) and two simple terminal (b) and (bi) cells. Terminations
are not illustrated

It is useful to place an attenuation pole in the vicinity of w,, which results
in a value of m; close to 0.7, providing an additional 15 dB of attenuation.
There are 28 dB that remain to be attributed to the cell characterized by a
parameter m;, which then assumes the value 0.92.

The final step is denormalization which is performed based on the
characteristic impedance inferred from R,= R,= u R, (with u=1.07),
Ry =/L,/C, and the cutoff frequency «, =1/,/L,C, which is to be obtained.

If for example we have R,= R, = 75 Q and w=2nx(6 MHz), it is deduced
that Ry= 70 Q, and it is calculated that L, = 1.859 puH and C, = 378.4 pF;
then all the elements shown in Figure 2.48 from the expressions included in
it as well as the numeric value of the parameters. The Bode diagram
calculated from the image attenuation and that obtained through simulation
is shown in Figure 2.49.
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It can be noted that the template that imposed at least 52 dB of
attenuation in the stop band beyond the reduced frequency 1.5 is enforced
since we have —58 dB at most for the highest lobe of the transmittance,
compared to —6 dB in the bandwidth, and that this is obtained from the
reduced frequency of 1.2. The simulation gives a normalized cutoff
frequency for a 3 dB relative attenuation (that is to say for an absolute
transmittance of —9 dB) of 0.996; namely only 4%o of deviation from the
theoretical value, and therefore, it is not necessary to redo a calculation of
the elements by applying a correction. The improvement of the ripple in the
bandwidth with regard to the upper bound given by the ratio @ is very
significant, as shown in Figure 2.50, since the actual maximal ripple is only
0.04 dB within 95% of the bandwidth against a theoretical value
approximately 10 times larger, as shown in Figure 2.47.

0 3 I v I -
g of -:
2 ; ]
s a0} -:
c 3 o
© -
£ 4k ]
= ] ]
2 50: .
s “F r
= : ]

o | 3

-5

_80: L L a1 a3 a3l i ]

0.1 1.0 10.0
Normalized frequency
Figure 2.49. Image-transmittance in red and actual transmittance

in blue for the low-pass filter synthesized in this section. For a color version of this
figure, see www.iste.co.uk/muret/electronics2.zip
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Figure 2.50. Deviation of the actual attenuation in the bandwidth with
respect to 6 dB for the low-pass filter synthesized in this section

2.4.2.3. Elementary band-pass cells

These cells make it possible to define a bandwidth between the upper
cutoff angular frequency ws,, and the lower cutoff frequency wi, and in
addition to introduce an attenuation pole located either in the lower stop
band, or in the upper stop band. They are symmetric, which simplifies
matching since the image impedances are the same at each port. According
to the desired template, we will either be able to combine them or not and
add them to additional low-pass or high-pass cells studied in the following
section if we want to benefit from attenuation poles at zero and/or infinite
frequencies. The first cell, denoted by (d), is drawn in Figure 2.51.

L
_nrvgnn_ C
HF—
] L
11
| 4
— G Co -—C

Figure 2.51. Elementary type-(d) band-pass cell, with an
attenuation pole in the upper lateral stop band
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Let a,=C,/C,; a,=C,/C,; the attenuation pole w_=1/,/L,C,; and the

image-impedance is determined from Z;; and Yy;:

1 l+a)s’+a’
Zy,=2,=2,= CC ( 1)
VG 2S\/[2+a2+azjs2+(2+%Ja)j
al al
2
a +a,+aa s°+
then coth Fd — 1 2 1% qu

@mJ2+az+Zz Js+a)(s +ar)

2

. a +a 2a,+a (0]

with @ =& ——2—; & =& ———2—; 0} =——.
a, +a,+aa, 2a, +a, +aa, 1+a,

The squared image attenuation is:

K, (o ~07) + [0l e (o1 7]

K, (@ ~)- (0} -?) (ot -7

exp(2l',) =

(with eventual change of sign from terms including K, factor) where it is
established that:

a, +a,+aa, cC, +CC +CC,

g .
Ja,+aa,)(2a, +a, +aa,)  \J(C,C,+C,C,)(2GC, +C,C, +CC,)

Due to the previous expressions of angular frequency, the conditions are
the following: @, < @, < @, < @, as sketched further.

With harmonic behavior, when @, <w<wa®,, exp(2l'y) is complex, with

modulus equal to 1 because square roots are imaginary and therefore
numerator and denominator are complex conjugates. There is thus no image
attenuation between angular frequencies w; and w,, which then define
bandwidth [ws , @2] = [@inf , Osup):
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[OF} (O3] [0F) a ., a
= Wint =Wsup

Conversely, outside the bandwidth [w; , ®,], the differences under
the radicals of exp(2l';) have the same sign, therefore the radicals are
real and so is exp(2l;), hence an image attenuation ;/:%ln[e”d].

Therefore, let ;= wi, @r=wy, and exp(2l;) is rewritten as:
J_rKd(a)f—a)z)+\/(a)2 —af)(w2 —a)z)

sup inf

+K, (of —a)2)—\/(a)2 - ), - o)

exp(2l’,) = , the chosen determination

sup i

has to ensure I'; > 0 in each stop band.

The image impedance takes the form

7 - C,+C, 1 [s*+a,
NG (C,C+CC+2C,C,) s\ St +ar

sup

. . . . o, |&-a,
In the bandwidth with harmonic behavior: Z,(w)=Z,—= a)z—a); where
'sup
C,+C))L
we have defined o =00, =0, 0, and Z,=Z,(®)= {G+G)L, . The
p G, (C,+2C)

angular frequency w; gives an effective attenuation equal to zero in the
bandwidth by analogy with the case of the antiphase zeros described in the

(b)-(bi)-type cells, because the image phase-shift equals % for v =w,. This

implies that there are effective transmittance ripples in the bandwidth.
Outside the bandwidth, the denominator and the numerator of the last radical
have the same sign. The two radicals are thus real and the factor 1/jw makes
the image impedance purely imaginary.

We must address in a similar way the type (e) band-pass cell, with an
attenuation pole in the lower lateral stop band, as shown in Figure 2.52.

Let us establish ¢, =C,/C, ; ¢, =C,/C, ; o = I/JL'OC(') .
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| |
1 1
Cz' J_ C0' Cz'

Lo TC

Figure 2.52. Elementary type (e) band-pass cell, with an attenuation pole in the
lower lateral stop band

Similarly to the previous case (d), it is determined that:

inf

_ (a£+2a§)52+(1+a{+2a;)wf :L\/C{+2C£\/s2+a)2

ie ] ' ' ' ! 2 2
C,s as’ + (1 +a, ) w’ C,s G 5T+,
: : 1 0 2 G+ +G, , C,+C, +2G,
with 0 =——-); o= 22 =0 22—
L,C, C +C, C +2C,
) , C,+C, . . .
@, =0, —L and the following order according to the various angular
1
frequencies:
| I | |
T T T T
' Wint w'] a‘sup @

al'+a'2 _ C1'+C;

Ja(a+2a) (¢ +20)

with K, =
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a)sup a)2 _wz‘

In the harmonic regime: Z,(w)=Z, where we have

G, (G +26) L,
c; (G +C)

defined Z,, =7, (w,) =

The squared image attenuation is calculated as previously from coth(I’)
by replacing s by jw and is written as:

+K, (@ —a)z)+\/(a)fup ~0' (e, - o)
+K, (@] —a)z)—\/(a)2 - ) (@, - o)

sup inf

exp(2T’,) = , by choosing the sign

that renders [, positive in every stop band.

The expressions of image attenuation and image impedance are then
highly similar for the two (d) and (e) cells regarding the dependence with
respect to the variable w and only differ by certain constants. The angular
frequencies winr and wg,, that define the bandwidth [win , wgp] Obviously
must be the same for both cells.

The image adaptation between the two cells then requires the equality:

Z, =Z;0=R0=

where Ry, will represent the effective termination resistance at each port,
which can be described also as iterative resistance.

The effective adaptation will be achieved only for w=a, =, =/, 0,,
while Z(w)=Z,(w)=Z,(w) will be smaller than R, between wi,r and @y
(zero value for w = wiy) and will be larger than R, between w, and wgy,
(infinite value for @ = wgyp).

Since there are four passive elements in each cell, if we set the iterative
resistance R, and the two angular frequencies wiyr and wg,p, only a single free
parameter remains, which is obviously the attenuation pole of the cell, that is

to say @ or .. It is then possible to directly establish the expressions of
the elements based on the values of the four parameters Ry, Wiy, g, and
@_ or @, from the previous equations.
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For the cell of type (d), with an attenuation pole in the upper stop band,
we find:

2 2 2 2
C _ a)mf a)SUP a)ee a)mf a)mf w“ a)SUP
0 2 2 2 2 2 > |
2R0 (woc - a)mf ) a)mf ., — a)sup a)aup a, — a)mf
2 2 2 _ 2
C _ 1 a)sup ww B a)mf _ a)inf a)w wS“P
1= 2 2 2 2 ’
2RO a)mf a)inf a)w - wsup wsup woo - a)mf
2 2
=t [T, ]
2 R 2 2 0 0T C ot
OQ)Sup a)vo a)inf 0 "o

For the cell of type (e), with an attenuation pole in the lower stop band,
we get:

' 2 |:a)SUP @, :|\/(wszup _a):)(a)lif _a).j)
C, = e e .

' b
@, @, (a)z _a)iif)

el sup sup

o Alet, e e —e2)

1 R, (a)2 af) '

sup sup = Winr

2 '2
co L |Gyl 1
2—R > TEE O—Cy D -
Oa)sup a)inf _weo 0 a)w

These expressions therefore allow us to size the elements in each cell
based on the parameters chosen for the bandwidth, the iterative resistance
and the attenuation pole.

In return, the expressions of the necessary parameters to calculate the
image attenuations can be determined according to the angular frequencies,
that only define the filters, that is to say the boundaries of the bandwidth w;,s,
sy and the attenuation pole @, or ..

2 2 2 a)i -
For type (d): k, = 20~ O ~ Oy ) and @ = \/ (

2 2 2 2
2\/(0)00 - a)inf)(a)o0 _a)sup



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis 185

2 2 _9p? —
For type (e): KE = a)sz + a)vsz'm - @- = and (q :\/2 inf ““sup a, (a)szup-’*' mf) )
2\/( - )(a) -o )

inf sup

Based on these expressions, it is easy to determine the asymptotic
behaviors of the image attenuation in the stop bands. For type (d), when

w —0:
2
a)sup Q)i— LIS |
2 2
K a)lz +0 @. -\l —Q,
d f . f =
exP(2 ) = gives exp(Lyy)=—
— 2 2
Kd@ a)supa)mf Cl)sup ., — A, 1
2 2
a)mf a)m - a)sup

K,+1

d
determination in front of K, in the general expression, which yields

by choosing the negative

For @ — oo, we simply get exp(2I',.) =

2 2
a)oo - a)mf +1
2 _ 2
oo sup
exp(I';.) = > >
woo — a)mf 1
2 2
a)oo - a)sup

o, \o,;-o

sup 1

For type (e), where w —0:  exp(I',,) =

2 '2
D 7Oy

2 '2

_ a)mf _ww

w —> , exp(rew) - > >
a)sup -0 1

2 '2

a)mf _a)ee

The asymptotic image attenuations in dB are therefore obtained by taking
20 times the decimal logarithm of the previous quantities, which are nothing
other than the asymptotic expressions of the |s,;| of the image transmittance.
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2.4.2.4. Complementary low-pass and high-pass cells adapted to the
band-pass cells

These cells provide a means to add a zero or infinite frequency
attenuation pole. They must have one of their image impedances identical to
that of the previous band-pass cells, namely Z (). The networks that satisfy

this condition are shown in Figure 2.53.

L C
G —i|
11 ok
Zy — = L o v
<+ Z,(0) >
Type-(f) low-pass cell Type-(g) high-pass cell
Figure 2.53. Complementary cells of band-pass cells
. . 1 C,+C
As a matter of fact, if we establish w, = o=, [——;
LOCO q
1 . 1 |’ +@;
= ® = , , we obtain Z, =— 1 for type (f) and
° LC, @ =% G, +C " Cs\ s+ ad ype ()

Z = \/1+£}— \/ 5 a)72 for type (g). It is therefore necessary to impose
s+

04 = Winf;, W5 = Wgyp; 7 = Wing; W6 = Wg,p to find an expression that depends
on o similarly to the image impedance Z (w) of cells (d) and (e), with

R=— =1 1+5 in addition,
C o, C o, G,

sup sup

The external image impedances, shown in Figure 2.53, are in the general

1 \/S + mfxs + sup)

case: Z, = for type (f) at the left port and

mf

if
Z, for type (g) at the right port. They
VC +C \/s +cuj1f (s +a)sup)
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are real in the bandwidth of the corresponding band-pass filter, that is for

o, ) at,)

sup

@, <w<a,, and are, respectively, equal to Z,(w) = Cla) \/( -

0 a)inf
1 w
for type (f) and Z, (@)= |——— for type (g).
\jCo(Co +C) \/(a)fup -0 )0 - )
The first one crosses a maximum equal to R, &, neighboring %
+o

sup inf

for a narrow bandwidth, for w=w, = /@ @, and always remains smaller

inf ~“sup

than this value in the bandwidth, tending toward zero at both ends. The

,, + o, . .
—w ' neighboring 2R, for a
o,

sup

second one crosses a minimum equal to R,

narrow bandwidth, for o=, = /@ @, and always remains larger than this

inf ““sup

value in the bandwidth, tending toward infinity at both ends.

If it is desirable to find an image impedance equal to Z,(w), each of these

cells can be doubled by assembling them upside down (head-to-tail), as in
type (b) low-pass or type (c) high-pass cells.

The calculation of the elements for both of these cells derives from the
identifications made previously and gives:

%, — @, 1 R,
CO — _sw inf ’ Cl — ’ L = 0 ““sup for type (f),
ROa)sup a)lif Roa)sup ’ a)szup - a)lit
2 2
. ' 1 ' RO a)su _a)mf
Cp=——"— inf — C=—; L, :% for type (g).
RO (a)sup - a)inf) Roa)mf sup a)mf

The image attenuations can be evaluated from coth(I')=

coth(I')+1 1
Jz. Y =.2z,Y, then from exp(2')=————. For e (f): 7. =——
11711 22722 p( ) Coth(r)—l typ (f) 22 Clp
C a)Z _a)Z
and Y,=Cs +—°S2 ; where from coth(F | ) = |=——= and
1+ s @ _a)inf

2
nf
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exp(zr,)=—‘“ are deduced in the upper stop band (@ > @)

s

inf

using the expressions found above.

For type (g), ¥,=Cs and Z, = ! +;, from which it can
Cs C, (s +a? )

sup

@, @
o

inferred that coth (l"g ) =

o
Z); and exp(ZFg): o

§N

B
| |

SHESH
|

the lower stop band (v < @jny).

When using two “head-to-tail” cells, the image attenuations calculated in
dB must obviously be doubled.

2.4.2.5. Synthesis of band-pass filters

It is therefore possible to build a full band-pass filter in various ways by
combining (d)- and/or (e)-type band-pass cells, and eventually
complementary (f)-type low-pass and/or (g)-type high-pass cells, doubled or
not. If these complementary cells are used without doubling them, one will
need to be placed at the beginning and the other at the end of the filter and,

. . . . R
in this case, the termination impedances should be close to 70, or even

lower for the (f)-type cell, and to 2R,, or even higher, for the (g)-type cell.

This solution thus implies asymmetry. If on the contrary, we want
symmetrical termination resistances R, and R, equal to Ry, we should choose
to only use band-pass-based cells or also doubled complementary cells
assembled head-to-tail if one or more attenuation poles are imposed at the
origin or at infinity. According to the theory of image-matching developed in
this section, these elementary cells will be assembled in cascade as in the
following operation schematic.
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o - I @

Figure 2.54. Image-matching filter, composed of cascading cells represented by
rectangles, with their termination resistances

The synthesis in itself consists of determining the nature and the number
of cells needed to satisfy a template, and then the position of the attenuation
pole for each cell. However, the calculations that can precisely predict the
effective attenuation based on all these data are generally complex since for
each cell they must take into account a termination impedance that is
different from both the image impedance assumed in theory and also from
the iterative resistance Ry if this is not involving the first or the last cell. As a
result, here we will only consider an approximated method to be
implemented in two stages:

1) the template will be first approximated by the asymptotic image
attenuation after the choice of the number of cells and of their type
determined according to the symmetry or asymmetry of terminations, the
number of finite-frequency attenuation poles and the existence of attenuation
poles at zero and/or infinite frequency. It will be possible to evaluate a limit
of the ripple in the bandwidth compared with the standard-type elliptical
filter that gives the same finite-frequency attenuation poles and a stop band
attenuation similar to that of the template;

2) the result of the simulation of the effective attenuation with the
desired template will allow us to rectify the previous choices, and to
possibly modify the cutoff frequencies to take account of the effect of the
attenuation factors whose expressions have been determined independently
of the type of filter (section 2.4.2.2), for a single cell however. Therefore,
their actual impact may be very different in multiple-cell-based filters, with
most often a real decrease in the bandwidth compared with the image
bandwidth.

EXAMPLE.— Two (d) cells and two (e) cells band-pass filter, providing two
attenuation poles in the lower stop band and two in the upper stop band.
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In this example the template requires a normalized cutoff angular
frequency of 0.95 and 1.05 as well as attenuation poles at angular
frequencies 0.6, 0.8, 1.25 and 1.5 between symmetrical terminations, with a
minimal stop band attenuation of 82 dB. Based on the asymptotic
expressions of image attenuation, it can be verified that a filter made up of
two (d) cells and two (e) cells is suitable. When looking for the eighth-order
elliptical filter giving the minimal attenuation and neighboring attenuation
poles (0.6, 0.8, 1.25 and 1.7) using MATLAB, we find that the ripple in
the passband is 1.5 dB. Then, the elements are determined based on the
expressions of the previous two sections. The plots of the moduli of the
image attenuation and simulated attenuation are presented in Figure 2.55
(the simulation has been achieved for symmetrical termination resistances R;
and R, and equal to Ry = 50 Q and frequencies identical to the normalized
values but expressed in MHz).

T

Attenuation (dB)
Y [=1] co
o L= o

[
[=]
™TT
1

ol :
0.4 0.6 0.8 1.0 2.0 3.0
Normalized frequency

Figure 2.55. Image attenuation in red and effective attenuation in blue, obtained by
simulation, for the filter whose template is defined in the example above. For a color
version of this figure, see www.iste.co.uk/muret/electronics2.zip

The cutoff frequencies normalized at —3 dB are 0.958 instead of 0.950
and 1.041 instead of 1.050, which is equivalent to a reduction of 17% of the
bandwidth. This would therefore require us to recalculate the elements
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starting from an image bandwidth about 17% higher, therefore with
normalized cutoff frequencies of 0.942 and 1.059. The minimum stop band
attenuation is 84 dB above the 6 dB specific to the bandwidth, about 6 dB
less than the image attenuation in the area of the lobes, the deviation
decreasing when moving away from external attenuation poles, to achieve an
attenuation of the order of 90 dB above that in the bandwidth. The template
is thus satisfied in the stop bands. The actual ripple in the bandwidth is 0.9
dB, with 2 minima and 3 maxima, smaller than that of the elliptical filter that
has been previously considered. With the exception of the bandwidth that
can be easily rectified, the performances of this filter are thus superior to
those of an elliptic filter with equivalent order.

The effective ripple of the order of 1 dB in the bandwidth is explained by
the fact that for the external (d)- and (e)-type cells, the image impedance is
equal to the termination resistances only at the center of the bandwidth and
moves considerably away at their boundaries where it tends either toward
zero, or to infinity. From the perspective of image-matching, the simple cells
of type (f) and (g) are more interesting if one accepts a dissymmetry of the
terminations because matching can be twice achieved at each port in the
bandwidth. This would significantly enable the ripple in the bandwidth to be
decreased.

EXERCISE.— Check all the steps of the previous synthesis in a quantitative
way.

2.4.2.6. Band-pass filter based on quartz or ceramic resonator: lattice
filters

An equivalent circuit of a piezoelectric quartz resonator, obtained by
neglecting the damping resistance (Joule losses), is shown in Figure 2.56.

C' L'

A S a

Ch

Figure 2.56. Equivalent circuit and symbol of the quartz resonator, where the
damping resistance (Joule losses) is neglected
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A distinction is made between series or resonance angular frequency ws
and parallel or antiresonance angular frequency w,,. The circuit is identical to
the central part of the previous (e)-type cell whose admittance is written as

1+s° /@), . 1 , , C,+C,
/@, with @, =——=w’ and & =0’ "=’

o0 sup 2

Yo =G+ Qs 5 @ L,C, C

the two extreme angular frequencies of the (e) cell. The bandwidth of a filter
built with such a resonator and an (¢)-type circuit is thus necessarily smaller
than the interval [ws, w,]. To give an order of magnitude, the relative
difference between ws and wy is of the order of 0.05 % if the ratio C, / C, is
close to 1,000, which is a minimum for quartz, in which ratio up to several
times 10° can be reached. This bandwidth can be extended by resorting

either to ceramic resonators with smaller ratios C, / C, but also presenting
greater losses than quartz crystals, or to specially designed quartz resonators
with an enhanced parallel capacitance C,. A different network such as the
lattice filter can also be adopted.

The equivalent diagram can also be that of the central part of the (d)-cell

) ) : 1+s* /@)
(Figure 2.57) whose admittance is YQ(s):ClsH%

inf

and angular

frequencies are those previously defined for the same cell. Here again, the
bandwidth is necessarily smaller than the interval that is defined by these
two angular frequencies in the band-pass filter synthesized by the image
impedance method, which remains still applicable for ladder filters.

Lo
— NV VYV
Ci ]
Co

Figure 2.57. Another equivalent circuit of the quartz resonator

Another solution consists of using symmetrical lattice filters whose
operation circuit is illustrated in Figure 2.58.
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Zy
1
—1
Port 1 7 Port 2
(toward  termination (toward  termination
resistance Ry or gz, resistance R,  or
image-impedance Z;) image-impedance Z;)
1
—1
Zy

Figure 2.58. Lattice filter

It can be shown (see section 2.5) that parameters Z; of the corresponding

. . Zy+7Z Z,—7Z
quadripole are given by Z,,=Zzz=%; le=221=%

det Z=Z, Zp ; the image impedances are given by 7, =7, =,/Z, Z, . Under

and

image-matching conditions, the matrix of normalized z-parameters is
_{ cothl"  1/sinhT"

. and the parameters s,; = s; and I are computable by
1/sinhT"  coth"

Zy

s, = =exp(-I') = #

N E - JdetZ +./7,,7,,
and Z;, are real, Z; and Z,, are purely imaginary, it is because Z, and Z; are
also imaginary (in other words, Z, and Z are reactances). If these reactances
are opposite in nature (one capacitive, the other inductive), the logarithmic
image attenuation factor I is thus also imaginary and accordingly the image
attenuation p is zero. This case thus corresponds to the bandwidth, which is
consequently determined by the frequency domain where Z, and Zz are
reactances of opposite nature, one being inductive, the other capacitive. This
is achieved in the lattice if Z, is the impedance of a resonator and Zp that of a
capacitance (see section 2.5) in all the frequency domain where the resonator
is inductive. Lattice filters also have the advantage of exhibiting
an attenuation pole determined by the angular frequency omegasg
where Z, = Zp (which cancels out Z;; and Z;;) and therefore omegaagp is
independent of the characteristic frequencies of impedances Z, and Zp such
as ws and wy,.

according to section 2.1.8. When Z;
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2.4.2.7. All-pass lattice or bridged-T filter structure

It is easy to turn the lattice filter mentioned previously into an all-pass
filter whose bandwidth by definition ranges from the zero frequency to
infinite  frequencies.  Furthermore, since the image impedance
Z,=2,=+Z,Z, 1sreal in the bandwidth, it simply suffices to impose that
it remains always real by means of the condition Z,Zp =R02, verified
regardless of the frequency. It can be shown that R, is then the effective
iterative resistance (and not only the image impedance) by deferring Z;; and
Z\, into the expression of the terminated input impedance with Z, = Ry

7,7, +detZ
nh==_2,,  z,+7,
simplified into R, taking Z, Z = Ro2 into account. Moreover, the voltage gain

— ZZI RO
==Ryly 7 R, +detZ

(according to section 2.1.5.2): Z which is

e

of the quadripole loaded by Ry is equal to G,

giving

_ Rz, after simplification. Therefore, we can easily get a
n==Roly  R+Z,
first-order all-pass transmittance with an inductance L for Z,, which implies
a capacitance C = L/R,* for Z3, in order to satisfy the condition Z,Zz = R
Nevertheless, the second-order all-pass is often more useful and requires
then that an inductance L and a capacitance C be placed in parallel for Z,
(see section 2.5). In this case, a transmittance can be obtained
s =2lws+a;
s’ +20w,s+ @)
the lattice into a bridged-T structure (see section 2.5).

v

G (s)= . Under a certain condition, it is possible to transform

An all-pass filter or a cascade of all-pass filters enable the correction of
the phase of a first minimal phase-shift filter for which the synthesis was
carried out based on a template of the modulus of the desired transmittance.
For example, it may be useful to reduce group delay variations by at least
partially compensating for the strong variations of the phase shift introduced
by the first filter in order to approximate an overall linear phase shift with
frequency. To this end, we can add with no major problem an all-pass filter
to the first filter such as those described above with a value of R, equal to
that provided for the termination resistance of the first filter since the
iterative resistance of all-pass filters itself is R, regardless of the synthesis
method employed for the first filter. The synthesis of the all-pass filter
consists of finding a phase shift whose variations with the angular frequency
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are shifted relatively to that of the first filter so as to minimize the derivative
of the overall phase shift, namely the group delay, with respect to a constant
value. This search requires software-based simulation.

Other circuits (double T, circuits comprising a transformer) can be
implemented to synthesize passive filters, including RC circuits. It is also
possible to make use of active elements such as gyrators or negative
resistances. Since the latter have mainly an historical interest, they will not
be addressed here. For more information and further theoretical study, the
reader can refer to [DED 96].

2.4.3. Filter sensitivity and Orchard’s argument

The sensitivity of a filter can be defined as the derivative of one of the
basic parameters of the filter, such as its cutoff frequency or its central
frequency, its ripple in the bandwidth, etc., with respect to the value of a
passive element from which it is built, or with respect to termination
resistances. With the emergence of operational amplifiers, it has been noted
that this sensitivity is much less significant when the filter includes passive
elements only. Moreover, this has resulted in a renewed interest for passive
filters because lower sensitivity with regard to the dispersion of element
values constitutes a decisive advantage in industrial production.

The phenomenon was explained by Orchard in 1966 with the following
reasoning.

As seen in section 2.1.8 for image adaptation, the modulus of the

parameter S,; is equal to 1 in the bandwidth and the attenuation 1/|S2]|2 1S
also equal to 1. The first derivative of this attenuation with respect to
frequency in the bandwidth is therefore zero. However then, it is also with
respect to the values of capacitive and inductive elements, respectively, C;
and L; of the passive filter because L, or C; play a dual frequency role since
they define frequencies specific to the filter or their square root; the same
occurs for termination resistances that fall within the definition of time
constants. We could also reason by stating the fact that the attenuation

1/]851|* reaches its absolute minimum because its derivative is also zero with
respect to the same variables. At the first order, the sensibility of a passive
filter with respect to its elements is therefore zero in the bandwidth. The
same cannot be said if energy is supplied (active elements) within the
quadripole because the previous argument is no longer valid. The argument
applies all the more when the attenuation is lower (close to the unity, or



196 Fundamentals of Electronics 2

0 dB) in the bandwidth, when the ripple in the bandwidth is lower and when
the filter is inserted between terminations with non-zero resistances, because
in the case where the resistance is too close to zero, it is no longer possible to
consider that the aforementioned derivatives are zero with respect to a
termination resistance zero. This shows the superiority of doubly terminated
filters and having termination resistances not too distant from one another
compared to simply terminated filters, that is to say supplied by an ideal
voltage or current generator. All-pass filters equally display a nature more
sensitive to variations of elements because one of the parameters depends on
the difference of two impedances, whose derivative tends to infinity when
this difference is cancelled out. For this reason, these filters can prove to be
good detectors, as well as bridged circuits, because in this case high
sensitivity becomes an advantage.

2.5. Exercises

2.5.1. Impedance matching by means of passive two-port
networks; application to class B push—pull power RF amplifier
with MOS transistors

This exercise is based on the circuit described in Philips application note
NCO8701 (see the complete circuit at the end of the exercise).
1) Matching on input
a) Rewrite the admittance equations of a two-port network
I ={ i+ 1,0, . . .
using the term tY;,(¥1—)3) in both equations so that the
L =YV +YV,0,

circuit contains only one source and one admittance —Y, subject to voltage
(V1=V>). From this, deduce the condition necessary for the two-port network
to be passive (no source).

b) Find the flow relations between Yi; Y1, Y2, and the electrical
quantities of the following IT two-port network:

%)
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¢) Find the circuit and relations that allow matching of a generator with
an internal resistance R, = 25 € using a passive Il two-port network with
the input of a field effect transistor (BLF244). Here, its input impedance is
purely capacitive (C, = 117 pF) but is completed by adding a parallel
resistance R,. The working frequency is f; =55 MHz = @/2n (central
frequency of useable bandwidth). Each admittance of the passive two-port
network will be purely reactive to avoid consuming active power,
comprising only one element (capacitance or inductance). For Y,, a pure
inductance L, is selected.

Show that, in this case, Y, has to be a capacitance C,. Determine L;, C,
and L. (assuming that Y, must be the admittance of a pure inductance L.) in

. . LL . .
relation to R,, R,, C, and @. Write L' = ”—CL, also calculating its
b+ c
algebraic expression.

d) Determine transfer function 7'= V, / V1, its natural frequency f, and
its quality coefficient Q relative to R,, C,, @. Assuming that at a frequency
of 110 MHz, a variation of —10 dB is accepted relative to low-frequency
conditions, determine the value of O, showing that if R, = R,, the previous
hypothesis on Y, (where Y. is the admittance of a pure inductance L.) is
justified. What is the relative value of |7] in dB at 55 MHz relative to low-
frequency conditions?

2) Matching on output using transformer between the transistors of the
push—pull stage (class B) and load R,,s = 50 Q

a) Modeling the presumably linear transformer: primary composed of
resistance R, in series with inductance L,, secondary composed of resistance
R, in series with inductance L,, with both inductances coupled by mutual
inductance M.

Write n= \/L—i2 and % =—"__ . Write out the system of characteristic

L NoTs
equations for an impedance two-port network, that is Vy, ¥, relative to [, L.
Next, transform it into a system with hybrid parameters of type III: [;, V;
relative to V3, I, , establishing the equivalent electrical circuit.
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What happens to the equations and the circuit if the transformer has no
losses, that is if Ry =R, =0? And if in addition the coupling is unitary:
k=1?

In the latter case, determine the input impedance (or impedance brought
to primary) when the secondary is loaded by impedance Z,.

b) Show that the amplifier allows (disregarding the reactive elements as
a first approximation and considering the MOS drain as an ideal source of
current) for the use of a half-load, R,.+/2, as internal source resistance and
the other half as load resistance.

Ipi

N

V. ‘ |:| Rload

Ipy

Deduce the theoretical yield if matching is perfect (compensated
reactance).

In reference to the previous results, analyze and comment on the full
circuit shown below.

TI
500 Y

input ;—»—y—.—\_

S e e

MGF340
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Answer:

1) Matching on input

a) Adding and subtracting term Y,/ to and from the first equation, and
term Y1,(V;— V) to the second, provides:

¥f4%+KQK+F%XK_%)
12 =(Y21 _YIZ)Vl +(_le)(l/z _V1)+(Yzz +le)V2

Corresponding to:

=iy

I 7
Y22+Y12 V2
4 (Y1 -Y12)
Yi1+ 7Y

If Y1, = Y, this provides a passive two-port network:

Yb :—Y12
I
4 Y, = Yoot Y15 "
Y =Yut7Yn
Yl] =Y:1+Yb
b) With: {¥,, =Y, =-1,
Y, =1+,

L=, 1)V =10,

therefore:
L==YV +(X. +Y)V,

c) If the output of the two-port network is loaded by admittance Y, this
gives Y, V, = —I, that, when carried into the second equation, provides:
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and b carryin this into the first:
Ty rv ey y Iryimng
1, Y .
Y =—=Y +Y, ———2—— where Y, Y, Y. are pure susceptances. Taking
4 Y +Y +7,

Y., =G, +j B,where G, = 1/R,, B, = C,® and setting ¥, =— ! .
JL,@

Clearly, to obtain the real Y, we should set Y, + ¥, = 0 and
Y,+Y.+jB,=0.

Y,? is then a real negative quantity. Furthermore, for matching at the

generator, we must set Y, = | b| =y, | R, = =
g

1 .
Hence: |Y,,| ZW where L, o= /R,R, at ®= @ =2nf, or alternatively

R R
Lb — u'g
w,
. e 1 i
It is deduced that Y, = —Y, must be capacitive jC,a =—— -7 ;
L, R,R

u''g

hence:

So ¥, =-Y,—-jCa=- -JjC.a ZJ{ —Cuwl}. If the bracket is

JL,@ L,
positive, it is a capacitive admittance, otherwise inductive, where

L . . 1 1 1
L, =——"-— in the latter case where there is also —=—+—=C,¢f and

¢ LbCua,{z—l L' L L
Lo =
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d) Transmittance 7 is given by:

1

V2 _ Y;J _ ija) _ Lc 1
- - - 2
Vl Yb+Yc+Yu ;+;+]‘Cua)+i Lc+Lb 1+] 1 2_ 2
]Lb o ]Lc @ Ru Ru Cu a)l a)l a)l

Where natural frequency @,= @ and quality coefficient 0 =R, C,@.

u

R
To obtain L,C,af ~1>0, there must be 9 |—£ > 1. Writing u = @/
R

L, 1
T(u)= L ! ; hence |T(u)|=—= .
Lc+Lb 1+ .l_uz Lc+Lb )2 1/[2
J Q (l—u ) +72
_ . ) o .
For u = 2, there is 20log |T(O)| =-10 dB resulting in Q = 2. Inequality
Rg . . .
O.|—== >11is then verified with R, = R,
RM
7|

This provides 20log =46 dB. This solution thus leads to a variation

|7(0)
of 16 dB between f; = 55 MHz and f,, = 2 f; = 110 MHz, which is high for an
amplifier supposed to have an approximately flat response in its bandwidth.
To improve this response, a more complex solution should be used in which
admittances Y, and Y. are not reduced to purely reactive
elements but rather to associations, as per the real circuit provided at the end
of the introduction of this exercise.

2) Matching on output using a transformer between the transistors of the
push—pull stage (class B) and load Ry, = 50 Q

V.= (R +jLw)l, + Mo,

a) For the transformer, set: . .
V,=(R,+ jL,o)l, + Mo,
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. L
Write k=, n= |-~ and R', =R—§. Hence:
LL, L n

1

V=R +jLo), + jrkLol,
V, = jnkL oI, +n*(R',+ jLo)I,

Dividing the first equation by (R, + jL,®)and carrying it over to the
second provides a system with type III hybrid parameters:

iL
— — k1212 I,
R +jLw R +jLw

Lo . { (nkL, @)’

1

V, =nk +n*(R',+ jLw) |I,

R+jLow ' | R+ jLo

The equivalent circuit then becomes:

I A
)
h'y Vs
% h'y1 C)
! h' ,
—h'12 1y
1 (nkL @)’ .
hyy=—-— 5 hy=———7"—+R +jL0
with R+ jLw R+ jLw
L iL
e e
R+ jLw R +jLw

where 4’y and h'y, are, respectively, an admittance and an impedance.

For the transformer with no losses, R; = R, = 0, which provides:
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I8 I
— MN__
, . o D Ly(1-k) v
If in addition the coupling is worth 1:
I I
——4—
d Ly -nl, ) <> "

NOTE.— In this case, the secondary cannot be transformed into a current
source and the quadripole passed to the admittance parameters system.

If V, =n Vy=—-Z, b, the current source inside the primary becomes

2
1

—nl, = , which is equivalent to a primary comprising L; in parallel with

ch

. V4
ch
impedance —

b) Disregarding the reactive elements, since the circuit is symmetrical,
Ri,.a can be separated into two resistances equal to Rj.,/2, and when the
higher transistor is conductive with a current Ip,, the equivalent circuit
becomes:

Rload 2

R[aad 2




204 Fundamentals of Electronics 2

where the current source Ip; is loaded by Rj,../4 since the lower resistance
Ri,qa/2 occurs in parallel on the other by means of the transformer, as if it
played the role of the internal resistance of the generator supplying current to
the higher resistance. Thus, no power is lost since the two half-load
resistances each receive half of the total power. This system avoids half
power loss in the internal resistance of the generator, reaching maximum
yield for the class B circuit (78%), or even more when class C is used. An
LC network should be added at the secondary to compensate the reactances
due to the output capacitances of the transistors, as in the full circuit shown
previously.

2.5.2. Passive low-pass filtering of an ideal voltage source by a
two-port network built with an LC ladder (single-ended ladder
filter)

A ladder network LC-n is a passive two-port network comprising »
elements (with as many inductances as capacitances when # is even and one
more inductance than capacitance when n is odd) responding to the
following circuit:

T*”Y “T”W“T’W“i TUz
o T¢ 7o

circuit no. 1

The inductances are numbered with odd integers and the capacitances
with even integers. The two-port network comprising 7 elements is described
by the admittance matrix. Assuming that parameters Y1, , and Y, are

. -1 S (s%) 2 2
written ¥,, =Y, =———— and ¥, =—2 where O, and S, are
21,n 12,n SQn (Sz) 22.n SQn (Sz) Q (S ) (S )
polynomials in s* (of the type by + bys* + bas* +...), a property addressed
through recurrence in question 3.

1) Any passive two-port network can be represented by the following
circuit in which Y; represents admittance (inverse of impedance) and
Y. 21 — =Y 12-
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U U
! Yyt Y51+ Yoy 2

circuit no. 2

a) Using circuit no. 2, find the equations providing /] and /, relative to
Uy and U, for a passive two-port network described by the previous

admittances.

b) How can two distinct elements of admittance Y, and Y}, be arranged
so that the global admittance is equal to Y, + Y, and what is then the fraction
of the total current going into Y,?

2) a) Determine transmittance 7, (p) = % when ladder LC-n represented

1
by circuit no. 2 is closed on a resistance for which conductance is G (for this,
write the relation between /, and U») first relative to Y51 ,,, Y25 5, , and then

Si(s%), Oul(s?), G and s.
b) In order to implement transmittance filter

! - find G Os(s”) and Ss(s) relative to the

2 3 4
a,+a,s+a,s” +a,s” +a,s” +ass

Ii(s) =
terms of denominator of 7s(s).

3) Try to prove the relations giving Y, and Y, relative to the

polynomials O,(s%) and S,(s*) by recurrence. Draw the circuits corresponding
to both cases below using circuit no. 2, when U; = 0:

a) When adding inductance L,.; to ladder LC-n, find the relations
providing /; and U, relative to I , YZl,n , Y22,n and L,.;s when U; = 0.

Deduce Y31 41 and Y 41 relative to Y51, , Y22 , and Lyis then relative
to 0,(s%), S,(s%), L1 and s.

b) When adding a capacitance C,.; to ladder LC-n, find the relations
providing /; and U, relative to I, , Yzl,n , Y22,n and C,.;s when U, = 0.
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Deduce Yy ,,+1 and Ypj ;11 relative to Yy, , Ypp 5, and Gy then relative

to 0u(s%), Su(s?), Cui and s. Which is the admittance that remains
unchanged?

¢) Deduce that Y5 ;41 and Y53 ;4 retain the same properties as Y5
and Y7; ,, , and that as a general rule:

- for n=2k+1, odd : So1(5%) = Sai(s) = Soir(s7) + 57 Cop Qi (57)
- for n =2k , even : Qu(s”) = Qor-1(s”) = Qo 2(s") + Low—1 So—(s7)

4) a) Show from circuit no. 1, using the elements of impedance associated
in series and the elements of admittance associated in parallel, that Y5 5

occurs in the form of a continued fraction:

1
Yzz,s = 1

K;p+

K,p+ I
K,p+

K p+—
sz

P
What do K, K4, K3, K>, K represent, respectively?

b) Using the relation giving Y5 ,, at the beginning of question 3, n = 5,
and the result of 2) b), show by performing successive division (no more

than 2) of the denominator or the remainder of the previous division by the
numerator of Y53 ,, according to decreasing powers of s, that Y55 5 can be

written in the previous form with coefficients, Ks, K4, K3, K,, K; functions of
as,as, as, a, dy, ap. Use this method to deduce expressions of K5 and K.
Answer:
1) a) The equations relative to circuit no. 2 are written as:
{11 =1, + 1)U + (1)U, -U,)) =YU, +Y,U,
I, =(Y21 + Yzz)Uz +(_Y21)(U2 _Ul) =1U, +1,U,

here again are the definition equations of the admittance two-port network
after simplification.
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b) The product of an admittance Y, + Y, by unique voltage V gives
current / = (Y, + Y,) ¥, which is the total of two currents. Both elements are
necessarily in parallel because they undergo the same voltage J and the ratio

. . Y .
of currents Y, V over (Y, + Y,)V gives a fraction 4 v of the total current in
a + b
the element with admittance Y.

2) a) When the port no. 2 of ladder LC-# is closed on a resistance whose
conductance is G, there is [, = =G U, ; so carrying this into the equation
gives Izl 12 =-G Uz = Y217,, U1 + Ygz’,, Uz

2 _ YZ],n

U
Hence: 7,(s)=—2=
Ul G + YZZ,n

that can be rewritten by replacing the admittances by their expressions
according to polynomials Q,(s*) and S,(s%):

T (s) U, 1
WA8)=—= 2
) (sz){m SSé((SS?J

1
GsQn(sz) +Sn(s2)

resulting in: 7, (s) =

b) G s Os(s*) can be identified with the odd degree terms of the
denominator of Ti(s) (that is a,+as+a,s’ +a,s° +a,s* +a,s’) while Ss(s%)
with the polynomial’s terms of even degree which provides:

{G 5O (s*)=a;s +a,s’ +ass’

S,(s’)=a,+a,s’ +a,s"

3) a) When inductance L,.; is added and when U, = 0, circuit no. 2
becomes:
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11 _YIZ,n: _Y21,n Ln+1 12

:m

-1, [] Uy

Yiint+ Yion Y21t Yoo

Hence the current division ratio (with Yj;,+ Y,, short circuited, thus

. . -Y, .
cancelling the current through it):-7 = L2 I, leading to
_)IIZ,n + YlZ,n + )722,n
Y n
I =Y12! I,

I 1
and U, =L,,,sl, + : =L, sl +—2
_Y21,n + Yan +Yzz,n 2.1
Y _ 11 _ YZl,n
gL LY,
. 2 u,=0 1S 22,n
deducing:
Y _ 1 _ )722,n
22,n+1 _U_ - 1+ L Y.
2 U, =0 + n+1S 22.n

Carrying the admittance values relative to the polynomials O,(s*) and
S,(s%):

Y21 il = 2 -l 2
" S[0,(87)+ LS, (5M)]

Y _ S, (sz)

200 () + L, S, (57)]

b) When capacitance C,.; is added and when U, = 0, circuit no. 2
becomes:



Continuous-time Linear Systems: Quadripoles, Filtering and Filter Synthesis 209

Iy I
Y2, =—Yain 2

e 1_

Cn+1
-1 :: U,

Yiiat Yion  Yauut Yoon

-Y,

Hence, the current division ratio is:-7 = o I,
_YlZ,n + YlZ,n + },22,)1 + Cn+ls
. Y,
leading to j, =——22 ],
Y22,n + Cn+ls
12
and U, =——+—
Y22,n + Cn+ls
II
YZl,nH U_ = Y21,n
. 2 lu,=0
deducing:
12
Y22,n+] — = Y22,n + Cn+]s
UZ
U,=0

Carrying the admittance expressions function of the polynomials Q,(s?)

-1
Yywn =
Ky S
and Sn(Sz)i SQ(nS(z) : S (s*)+s°C.., 0 (s%)
v _ 5,07 g =2n n+l =n
22,n+1 s Qn (SZ) n+l s Qn (SZ)

¢) When adding a capacitance C,+;, nt+1 is even and thus » odd. Note in
the numerator of Y5, that S,,(sz) is replaced by S,,(sz) +5°Chiy Qn(sz); so for
odd n=2k—1: Syu(s®) = Sui(s?) + s*Cox QZk_l(Sz). Since for the next integer,
no capacitance is added, there is also Sszr](Sz) = Sgk(Sz).

When adding an inductance L,.+;, n+1 is odd and »n even. Note in the
denominator of Yy, and of Y, that Q,(s%) is replaced by
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0.(s)) + 5°Lysy Si(s7); so for even n = 2k=2: Oyi(s?) = Ona(s’) +
Loy SZk_z(sz). Since for the next integer, no inductance is added, there is also

O0u(s”) = One-1(s).

4) a) When closing the port no. 1 of ladder LC-# on short-circuit U; = 0,
Y25 can be assessed directly by the ratio ,/U,, that is the equivalent
admittance observed between the output terminals where voltage U, is

_/YY TC2 TC4 Y\—‘_

Going from the left, L, and C, are in parallel, giving an admittance

1 . . . . . .
C25+L—, occurring in series with L3, with an impedance L s+
1 C,s+—

]

which occurs in parallel on Cy, yielding an admittance C,s >
Lys+———
C,s+—
1S

which occurs in series with Ls to provide an impedance

Lis+ , which may simply be reversed to provide

1
C,s+—
Ls

admittance Y25 .
ThUS, 1dent1fy1ng Ks Ls, K4 C4, K3 L3, K2 Cz, K1

2 2 4
_S,(7) _aytastags

= G
2 3 5
sQ,(s7) astas +ags

b) According to questions 2 and 3(b): Y,
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.. . a .
Division of as’+a,s’ +as by a,s*+a,s* +a, provides —~s as quotient
a
4

aa | 4 a . a
and | a;,—— |s’ +| @, —— |s as remainder. Hence, L, = ——
a, a, a,G

- . a,a a
Division of a,s*+a,s*+a, by remalnder[a3— 2 5js3+[al__5] s

a, a,
. . a,s a,G
provides a quotient ——* . Hence C, = —*——; etc.
4,4, a,4;s
3T 3T
614 (14

2.5.3. Dual-ended passive filter, synthesized by the image-
impedance method

The aim is to create a band-pass filter with normalized angular cut-off
frequencies 0.97 and 1.03, and additionally with attenuation poles at circular
frequencies zero; infinite; 0.8 and 1.25. Resistance terminations are
symmetrical and equal to Ry = 50 Q. Minimum attenuation in stop band has
to be 58 dB greater than that in pass band. The central frequency must be of
10.7 MHz.

1) Choose the type of cell to be used and their arrangement. Define the
network.

2) Find the value of the components, with termination resistances being
equal to R,.

3) Verify the minimum attenuation in stop band with help of asymptotic
expressions.

Answer:

1) For the conditions applied, the choice is a (d) cell and an (e) cell used,
respectively, to help the attenuation poles in the higher and lower stop bands.
These are surrounded (f) and (g) cells redoubled and symmetrized for the
attenuation poles at zero and infinite frequencies:
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Loy
2Ly Cyl2 Cu e
l |
} }__‘H _L ”_—|| ||_
Cu 20
, gt 0Og
Tclf Crm ==y = Cu Lo Ce L'og/2

2) The termination resistances are noted R, (not shown on the figure).

The cutoff frequencies of cells (d) and (e) must be the same, noting the
symmetrical attenuation poles @ '.ins and @, Which leads to:

., —a’ )(a)if—a)‘z )

sup eoinf 1

R, (d, - @)

sup sup = Wint

Then, determine the components of cells (f) and (g) by:

2 2
a)qup - a)mf 1 R o
= - — . _ 0sup .
T R le_Ra) 5 Ly, =———— for type (f);
0~ sup ~inf 0“Ysup a)sup - winf
2 2
C' inf ' 1 v R() (a)sup a)mf)
0g P >N\ g T > g T
RO (a)su - a)mf ) Roa)inf a)szup inf

for type (g).
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Numerical application provides:

Coa= T8 pF; Ciy=51.5 pF; Co4 =259 pF; Lo, = 1.81 uH;
C%=1.12nF; C',= 1.71 nF; C'; = 341 pF; L', = 0.307 pH;
Cor=37 pF; Ciy= 289 pF; Lo; = 6.38 uH;

C'og =2.40 nF; C', = 289 pF; C"; =259 pF; L'y, = 87 nH.

Of course, capacitances in parallel or in series are merged into a single
one by the usual formula.

3) Zero and infinite frequency asymptotic image-attenuations for cells (d)
and (e) are calculated from the following expressions by 20 log(I'):

2 2 2 2
Bup | OL =D W=y
) wZ _ + wZ R +
f oo sup oo sup
exp(I',,) = — ; exp,.) = —
a)S“P woo - a)mf 1 ., - a)mt 1
2 2 2 2
a)mf woc a)sup ww - a)s up
2 '2 2 2
a)mf a)S“P B C()m +1 a)sup e +1
r _ a)sup a)lif j T _ I%If - oez
exp(T,) = " exp(T) 2
@ \/wsup -, _ @, — @, 1
2 '2 2
a)sup a)mf - wcc a);f - wee

-,
s t1
must be added twice: exp(2r,)= o for ®>wy, and
-,
wz_a)lif
a)sz\lp a)lif_a)z +1
W @, — @ .
exp (2T, ) = for o < iy, for cells (f) and (g), which
wfuv a)‘if—wz -1
o @, &
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quickly tend to a constant that can be evaluated quite precisely for
® =10 g, and @ = @i/ 10.

Using these expressions, the 40 log(I') image-attenuations can be
deduced, finding 13 dB for both 47 dB cells (f) and (g). Adding to the
image-attenuations of cells (d) and (e) provides 60 dB, which is greater than
the requirement.

2.5.4. Lattice filter

The circuit of the symmetrical lattice is provided below:

Z4
 I—
Port 1 7 Port 2
(to end resistance R, (to end resistance R,
or image-impedance or image-impedance
Zi) Z Zp)
— 1
Zy

1) Show that the reference potential (ground) can be placed so that the
potentials are made antisymmetric relative to the median horizontal axis.
Deduce the consequence of this for the currents.

2) Deduce parameters Z and Y as a function of Z, and Z, then the image-
impedances.

3) In the case where Z, is the impedance of a quartz resonator (with the
series capacitance Cy, much larger than the parallel one C)) and Z; that of a
capacitor C,, find the function of the two-port network as well as its image-
parameters (characteristic frequencies, bandwidth, asymptotic attenuations).
Is the response curve symmetric in the frequency domain? How should the
image-attenuation in the stop bands be designed?

4) Show that the frequency of the attenuation pole can be set
independently by calculating the voltage gain for a resistive load R;.

5) By keeping the lattice structure but loaded by the iterative resistance
Ry, apply the expressions provided in the course for voltage gain G, and
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input impedance, then determine the elements necessary to obtain voltage
s -2ms+ @,

gain with all-pass transmittance G, (s)=—5——=—"——.
s +2lw,s+ @,

6) Show that a bridged-T structure such as the one below can, under a
certain condition (to be defined), have the same parameters (Z for example)
as the previous all-pass-type lattice filter.

Zy

 ——
—d

]1 ZV [2

Zy

Vl ZT V2

Answer:

1) Applying the ground in order to divide V; into 2 parts equal in
modulus and opposites, where V|, = Vi/2 — (—V1/2), and similarly for V5,
providing:

I Zy I L

e— v
I!
Zy 4
By symmetry relative to the median horizontal axis, since the voltages are

antisymmetric, the currents must be likewise: I'y=— I, ; I's=— I since
currents are related to voltages by means of a system of linear equations.
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2) With [, =0, current /; divides into two equal parts in two identical
Zy+Z, 7

-

branches in parallel with impedance Z,+ Zz, where Z, =

due to the symmetry relative to the median vertical axis. Similarly, Z,, =
Vo/ I} can be calculated by means of the two voltage dividers

V4 VA Vi 1

Zy, Zp: VZ:[ S ]VIZ(ZB_ZA) ——=(2,-Z,)~ . Hence,
Z,+7Z, Z,+Z, Z,+7, 2
Z, = Zs ;ZA =Z,, by symmetry relative to the median vertical axis.

For the Y parameters, with ¥, =0, the Z, and Zz parameters are in parallel

and two cells Z, // Zp are placed in series, thus ¥, = Zyt 2y _ Y,,. The same
B~ 4
condition allows for the calculation of
Iz=IA_IB=|: % - Zs }]1={ % - 2 D
(Z,+2,) (Z,+Z,) (Z,+Z,) (Z,+Z,)
accounting for the current dividers, which leads to ¥,, = i_BZ _ZZA =Y,.
B4

The image-impedance (symmetrical relative to the median vertical axis)

. VA
is calculated by Z,, = }Y—“ =JZ,Z, .
11

3) Simulating the quartz resonator with the following schematics,

_I'V'WV\_”_
Lo C

0

I
11
C

its impedance turns out to be:
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;- 1 _ L,Cys” +1
A_CSJFi_ C,+C)s| 140, 06 ¢
! L0C0s2+1 (S Vs 0C0+C1S
2
1+S—2
— a)O
= .
(CO+C1)S|:1+2:|
.,
... C +C C
writing @ = and @ =—"—'=(+q)w, where q=-2<< 1.
LOCO LOCOCI 1
2
. I0)
Impedance Z,=; X, with reactanceX, = 2 under

G+ Cl)w{l —wj}
[2)

o

sinusoidal conditions always results in the following response in linear
scales:

Xa

e E oM ®

1

. Lo .

inductive 1 capacitive
1

If Zp is the impedance of a capacitor C,, the image-impedance is
JZ,Z, = C_A , real when X is positive (inductive Z,) and imaginary when
\j 1)
2

X, is negative (capacitive Z,). The bandwidth is thus the interval [wo, w..],

surrounded by two stop bands; accordingly this is a band-pass. Its image-

attenuation I'r is provided by coth(T,)=./Z, ¥, ~ %4t Zs  which is real
2Z,Z

A“B

when X, is negative (capacitive Z,), corresponding to the stop bands. The
full expression is:
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@ @
C2|:1_2:| (C0+C1)|:1_2:|
;) N 1 @,

1
2 @] 2 o
(C0+C1)|:1_zi| C2|:1_2:|
[0) [0)

0

1 C 1 (G, +C
approaching — L +— G+6) for @ 0 and approaching
2\, +C) 2\ G

1 &+l Qfora)—><><>.
2\ c,  2\C,

Since Cj is much lower than C; in quartz, the two previous limits are very
close to each other. Consequently, the response curve is almost symmetric.
Since both of these asymptotic values contain the total of a quantity and its
opposite, thus providing a minimum value when both quantities are equal, it
is worthwhile to favor either one term or the other in each, for example with
either C, >> C,, or the opposite. Then, image-attenuation can be designed

. 1 /C . .
with coth(I",) = exp(I",) :E FZ in the first case. In order to augment this,
1

several identical filters may be placed in cascade, which has the further
effect of minimizing deviations between the image response curve and the
real response curve in so far as the intermediate dipolar impedances
approach the image-impedances.

4) The voltage gain can be easily obtained from the Z parameters:

Z,—7 R
: Lk , that is G ==L 5 R Z[ =
detZ+Z”R1 ZBZA+ B A Rl
_ (ZB_ZA)R/
22,7, +(Z,+Z )R~

There is thus zero transmittance or attenuation pole at the frequency
where Z, = Zp, independently of the characteristic frequencies of the
previous question.

5) Returning to the previous expression in which Z, Z; is replaced by R,
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_ Z,-Z, Rz, -Z,
" 2R +(Z,+Z,) 2R +(R1/Z,+Z,)

— R(? _Zj — Ro _ZA
Z2+2RZ,+R; R,+Z,

and using the input impedance given at the end of section 2.1.5.1:

_ Z,R,+detZ

7 -
) :_Rolz R,+Z,

e

R(Z,+2,)+22,Z, R(Z,+R}/Z,)+2R;
T 2R +Z,+Z, 2R +Z,+R/Z,
_R Z:+R}+2R Z, R

" Z2+ R +2R,Z,

0

An inductance L and capacitance C placed in parallel for Z, provide

, S 1
R
1 L _ R,(LCs* +1)—Ls RC LC
Z, = = i , which sets G, = 0( > ) = .
Cs+ I LCs*+1 RO(LCS +1)+Ls S2+L+L
Ls RC LC

that is identified with the form of the all-pass transmittance of the second

1 . . . . 1 L
—— and if the damping coefficient is ¢ = Z . The
C ping 4 2R, \l C

! and Z;—RO .

order if o, =

elements can be calculated by C= L= Lastly,
2§wnRo n

establishing the expression of impedance Zg:
R R ) N . : L

Z, :—:—(LCs +1):R0Cs +—>=. It is thus the serial association of an
Z, Ls Ls

. . L 2

inductance L'=R;C= il and a capacitance C'=—= 2 ¢ . Hence the

n 0 Own

filter circuit:
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Ro

6) Parameters Z,; and Z;, of the T-bridge two-port network can be
determined by calculating the impedance of the associations that appear in
the circuit for /,=0 in the first case and /;=0 in the second:

Z,(Z,+Z
Z”:5 :ZT+ZV//(ZV+ZW):ZT+M
- 27, +7,
4 . .
Z,= A is deduced from the calculation of
215,=0

Z V,Z, +Zy 7,1
Vi=(V,=Z,1,) =t 7,1, = 2L 20212 and of W, =Z,,1, =71, .
1 2 T 2 Z Z T72 ZV+ZW 2 2272 1172

Vv w

Carrying over the expression of V; into that of V), after simplification,
. Z; Z,Z
provides Z,, =Z, +——"— . Note that Z,, =Z,, + ——"—.
27, +7, 27, +7,

For the lattice, according to the response to question 2,

_ZZv_ thus 7, in parallel with Zy/2. Since 7, itself
2Z,+7,

comprises two branches in parallel, there is clearly either Z;, with jLw and
Zwl/2 with 1/ jCw (case 1), or Zy with 1/ jCw and Zy/2 with jLw (case 2).
Next, calculate Z, =Z,, +Z,, which after simplification gives Z, =27, +Z,.

Z,=2,-Z2,=

Hence the deduction Z, = %(Z s —Z,) when possible.
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In the first case, Zy = JLw; Z, = L ;
jCw

1 1 L'-L 1 .
Z,=—| jL'o+— —jLo|=j——®+—— and in the second case
2 jC'ow 2 jC'ow

Z, = Zy=2jLo;
jCw

ZT=l JjL'o+ ! —L =jL'a)+Lﬁ.
2 jC'o jCw jCw C'

. .. . . 1
In both cases, the difference must be positive, which requires — >2¢

27

using the expressions of C, C'or L, L' from question 5, implying ¢ <% .

This condition is often applied for an all-pass filter group delay corrector
since the significant variations of the derivative of the phase for one filter are
due to factors of the second order presenting a low damping coefficient,
which requires compensation by means of the all-pass transmittance. The
second version is to be favored, in which there are only two inductances (the
R, terminations can be replaced by iterative resistance cells or identical
image-resistance):

2L
—_— VNN

C C
| | |
I LA}

: EL, R []
0
<
T




Appendix

Notions of Distribution
and Operating Properties

While a function establishes a correspondence between a set of numbers
and another set of numbers, a T functional (or form) is an application that
maps a set of numbers (end set) to a set of functions or operators g (start set)
belonging to a vector space by means of a function ¢ that should be
indefinitely differentiable with bounded support or, alternatively, quickly
decreasing.

A distribution is a linear functional with respect to ¢ and g, which is
calculated like a scalar product if g is assumed to be locally integrable, that
is to say integrable as defined by Lebesgue, on any bounded interval (or
support):

<Ty ¢>= [ g(x)p(x)dx

For measurable subsets of R, for which a length can be defined,

Lebesgue’s integration approaches the result by summing “slices” with
height dy, where y are the ordinates, in contrast to Riemann’s integration that
approximates the result by summing rectangles of width dx, where x
represents abscissa. These subsets, called X, form a c-algebra if they have a
complement, if the empty subset exists and if countable unions and
intersections still generate another subset; therefore, a measure p(X), which
is related to the size of the “slices”, can be defined and enables us to

Fundamentals of Electronics 2: Continuous-time Signals and Systems,
First Edition. Pierre Muret.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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calculate the Lebesgue integral. In the following example we will only focus
on the distributions that are useful for signal processing.

A.1. Dirac distribution or Dirac impulse &, or 6(x —a)

The Dirac impulse Jd, can be understood as an operator that makes
obtaining the value of the function ¢ at point a possible. In general, it can be
written in the following form:

<Thu 9> = [ S(r-a)0()dx = 9(@)

The generally adopted notation d(x — a) suggests that it is a function; this
is, however, not the case. The integral must be taken within the meaning of
distributions. It makes sense if it is a Lebesgue integral, which is defined if
the integrand can be integrated (it is then part of the vector space of
summable functions denoted by L"), and in order to make g integrable, it is
necessary and sufficient that |g| is so, that is to say that the integral be
absolutely convergent.

This implies that g(x) — 0 when x — *eo or that the support of the
function or of the operator g(x) be bounded (g equal to zero outside of one or
more closed intervals). In the case of the Dirac impulse, the support is
reduced to a single point at the abscissa x = a (the size along x is zero) and

the measure u(X) = J‘(Sa du= '[ O(x—a)dx =1 is unitary.
— Application to the convolution product:

T h(t—1)o(r)dT = ]: h(T)o(t—71)dT = h(t)

The Dirac impulse is the neutral element of the convolution product.

NOTE.— If the integration interval is [b, c] instead of |—eo,co[ , the result is the
same when the support « is included in [b, ¢] or b < a < ¢. Otherwise, the
result is zero.
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— Application to the Fourier and Laplace transforms of the Dirac impulse:
[~ exp[-j2zft]8(t)de =1 and [~ exp[-pt]S()de=1.

It can be shown that any pulse sequence f,(x) (rectangular, triangular,
sinc, Gaussian, etc.) whose amplitude f,(0) tends to infinity and the width to
zero while maintaining the area under the curve equal to 1, that is
_[ f,(x)dx=1 when n — oo, converges toward the Dirac distribution. This is

the case of:

sin(2znft)

nfo .
TF'[1]=lm | ' exp|j2zftldf =lim| 2n
[1]=1lim [*" exp[j27/i}df Hw{ Ly

} — d(t) and

sin(2znI, 1)

symmetrically TF[1]= limI"T; exp[—j2zftldt = lim{znﬂ) —
n—yoo & —nTj n—eo n 0

}—>5(f)

SH—E51 15500

In summary: }
{5(f)L>1 1—568(1)

Meanwhile, the replacement of &x) with f,(x) in j £, (x)@(x)dx does not

necessarily lead to a converging integral. But it can be shown that

. 2
S, (x)= limlz1 [%] ] involves convergence for all continuous
noel 27N\ SIN(X

functions ¢(x) on a compact support.

By extension, the infinite and periodic suites of Dirac impulses, known as

Dirac “combs” Z o(t—kT,) with a period T, in the time domain and

k=—oc0

Z O(f —nf,) with a period f; in the frequency domain can be devised.

n=—co
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A.2. Derivation of a distribution and derivation of discontinuous
functions

The derivative of a distribution < T, , ¢ > is obtained by the distribution

associated with g’, the derivative of the function: < T, , ¢> = j g'(x)o(x)dx .

Since g’ is not necessarily defined, it is useful to calculate the result of the
integration by parts:

[ 2000 =[¢o] ~ [ 209 I == [ e ()

:— < Tg ,9'> N N
because g(x) — 0 when x — oo,

Therefore by definition, it is established that: <T,, ¢>=—<T,, @' >.

Ford,:<Ty, ¢p>=—<Ts, ¢'>=— ¢'(a). d,is therefore an operator
that makes it possible to obtain the value of the derivative of the function ¢
at the abscissa point @, with changed sign.

More generally, the nth derivatives of the Dirac distribution 3, are
defined by:
[ 6" (x=a)p(x)dx = (-1)" 9" (a)

NOTE.— The Dirac distribution and its nth derivatives 6, are operators that
provide the value of the function ¢ or of its nth derivatives x (—1)" at point a
when the product ¢ J,” is integrated on an interval including abscissa a.

If a function g(x) exhibits 1st-kind discontinuity at x = b with a step Ag,
we look for the derivative of the distribution associated with g and we use
two integrations by parts:

S < Ty §> = < Tep' > = [+ [ g@pdrLe(x)o(]
- [ g@ods + [0, - [ g @oeIdr =—[gb,)~g(b)]ob)

~ [ g0 () p(x)dx =-Ag 9(b) - [ g,,,'(x) p(x)dx,
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where g,,,/(x) is the derivative of the function minus the discontinuity
Ag U(%). Then

< Tg,, P>=Ag<Ts, p>+< Tgmd’5 o>
or to simplify the notation, but still within the definition of distributions:
g =8gud +AgOp= gund + Ag I(x —b)
By extension to the case of the second derivative:
8" =8md" +AgO'(x =b) + Ag'o(x —b)

— Application to the derivative of the unit step function U(?):
U'()=0+10@) =d®).

The derivative of the Heaviside step function within the sense of
distributions is equal to the Dirac impulse.

A.3. Laplace transform of distributions

Let T” be a distribution associated with the nth derivative of a function
f(¢) within the meaning of distributions. Let F(s) be the Laplace transform of
f(?). By definition, it is defined that the LT of the distribution Tf(”) is equal to
s" F(s).

The LT[5(#)] is then simply LT[5(1)] =5~ =1.
S

This is by no means inconsistent with the derivation rule of the LT. In
fact, if f{f) has a 1st-kind discontinuity Af = f0") — f07) at the origin, for
example, the LT of the functions without discontinuity indicates that:

Joa (O—sF(s)= £(07)

However, £'(t) = fou '(£) + [0 — A0)16(1) = foa '(£) + A0)S(?), which

gives after Laplace transform:

[ (O—>sF(s)= f(07)+ f(07) = sF (s)
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This can be used to solve a circuit equation with the Laplace transform.
For example, for a C-R circuit, we can write if x(¢) is the input voltage and
() the output voltage at the terminals of R: ¢ = C (x — y) for the charge
within the capacitor, and by differentiating it yields: —+L _ & , which

dt RC dt

gives by taking the LT within the meaning of distributions sY(s) + Y(s)/
RC = sX(s).

| |

[
C
x(?) H R »()

If x(¢) = VoU(®), sX(s) = Vy , where: Y(s)= and by identification

S+——
RC

(t) = Voexp(—t / RC)U(¢) for the forced behavior.

A.4. Distribution in principal value p.v. (lj following Cauchy’s
definition X

When integrating a function ¢(x) divided by x, it happens that the
integral be only computable as a Cauchy principal value (except if ¢ (x) can

be divided by x), that is to say by excluding the origin or a discontinuity
point:

jwdx +U¢(x)d +I¢(x) } {J. o )dx] with a <0 and
x eﬁo ‘9%0

[x[>¢

b>0.

Here, the second-kind discontinuity is located at the origin. The definition

9

X

domain of the principal value p.v. (Mj of the function is then
X

]~00 O L 10 +oo].
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We can then define the distribution T associated with 1/x and applied to

the function ¢ (x): <Tl,¢> —<pv( j o>= j;fﬁ( )dxand it can be shown

that it can be written as —j¢'(x) Ln|x|dx from integration by parts.

£—0" X

A more general result is hm{ I o= ) dx} = F,jzp(0)+ hm[ J. de].

e ¥ |if>e

When ¢(x) = 1 Vx, ¢0) must be replaced by &0).

— Application to the search for the FT of the sign function sgn(¢) and the
Heaviside step function U(?):

Let sgn(f) = 2U(¢) — 1, which equals —1 for ¢ < 0 and +1 for ¢ > 0,
therefore it is an odd function, and s(z) = FT"'[j p.v. (%) ], which is therefore

also odd, because j p.v. (%] is purely imaginary.

However, FT'[2nf p.v.(%)]— l% FT '[[2nx1] = j2rn &(f) because
J

Thereby % = =21 J(f), which yields that s(£) = 2n U() + C .

Let us determine the constant C by means of the odd symmetry of s(¢)
and the identity U(¢) + U(—¢) =1:

s(t) = — s(f) = —2nU@®) + C =2nU(=f) = C = C = 1 = s(f)
= —a2U@) - 1]

Let finally: s(¢) = —m sgn(?)
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Since FT™ [Vs( j] = —s(t) jm sgn(?) or still FT[sgn(?)] = L p.v. ( ! J
f J in f

Hence, the FT of  U(: FT[U®] =FT {%(1 +sgn (t))} =
Lo (L
YA 7

We could also demonstrate that sgn(f) = —.L TF {pv(%ﬂ .
jr

A.5. Solving equations with discontinuous functions derivatives

The derivation of distributions can be used to solve equations, especially
differential equations, within the meaning of distributions without resorting

to the Laplace transform. For a capacitance C, i(t)=%=

C%_ C d:{ +Aqd(¢) if a charge impulse Ag is suddenly injected at = 0
and in this case i(¢) is a distribution. Otherwise (only physically possible

case), it is a function only exhibiting 1st-kind discontinuities.

a9 Lﬂ iy — + Ag O(t) 1s a
dt dt dt

distribution if we impose a sudden variation of the magnetic flux Ag.
Otherwise (only physically possible case), it is a function only exhibiting
Ist-kind discontinuities.

Similarly, for an inductance L, e(t)=—-

For a circuit physically implementable C-R, if x(¢) is the input voltage and
¥(t) the output voltage at the terminals of R: ¢ = C (x — y) is the charge
stored by the capacitor and we find within the meaning of distributions

dy 1 1 ﬂ
di RC® dr
If x(5) = Vo L +[ y(07) = y(07)]8(r) +$y =[%(07) = x(07) |8(1) = V,8(¢) -
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x(?) R W)

This imposes that there is separate equality between distributions in two
members and ordinary functions in two members, that is:

»(0")=y(07)=V, for distributions and d);—’;d+$ v, =0 for ¢t > 0 for
ordinary  functions. As a result, we automatically have
»(0)=»(07)=x(0")—x(0") =¥, because there was no sudden charge
injection, corresponding to the case where ¢ = C (x — y) = J'i(t)dt remains

continuous.
For the function y,,, it is deduced that: y,.(¢) = K exp(—#/RC) at t > 0.

Hence finally, y(f) = Voexp(—#/RC) U(t) + y(07) if C was initially charged
and with y(07) = 0 otherwise.



Bibliography

[AUG 99] AUGER F., Introduction a la théorie du signal et de [’information,
Technip, Paris,1999.

[DED 96] DEDIEU H., DEHOLLAIN C., HASLER M., NEIRYNCK J., Les filtres
électriques, 3rd ed., Presses Polytechniques et Universitaires Romandes,
Lausanne, 1996.

[FEL 81] FELDMANN M., Théorie des réseaux et systemes linéaires, Eyrolles,
Paris, 1981.

[MAN 89] MANNEVILLE F., ESQUIEU J., Electronique: Systemes bouclés linéaires de
communication et de filtrage, Dunod, Paris, 1989.

[MUR 17] MURET P., Fundamentals of Electronics 1: Electronic Components and
Elementary Functions, ISTE Ltd, London and John Wiley & Sons, New York,
2017.

[MUR 18] MURET P., Fundamentals of Electronics 3: Discrete-time Signals and
Systems and Conversion Systems, ISTE Ltd, London and John Wiley & Sons,
New York, 2018.

[NEI 83] NEIRYNCK J., BOITE R., Théorie des réseaux de Kirchhoff', Presses
Polytechniques et Universitaires Romandes, Lausanne, 1983.

[PER 06] PEREZ J.-P., LAGOUTE C., FOURNIOLS J.-Y., BOUHOURS S., Electronique :
Fondements et applications, Dunod, Paris, 2006.

[PET 98] PETIT R., L’outil mathématique pour la physique, Dunod, Paris, 1998.

Fundamentals of Electronics 2: Continuous-time Signals and Systems,
First Edition. Pierre Muret.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.



234  Fundamentals of Electronics 2

[PIC 89] PICINBONO B., Théorie des signaux et des systemes, Bordas, 1989.

[UNS 04] UNSWORTH L., “All-pole equiripple approximations to arbitrary functions
of frequency”, The International Journal for Computation and Mathematics in
Electrical and Electronic Engineering, vol. 23, no. 2, p. 452, 2004.



Index

A

antisymmetric, 214, 216

asymptotic diagram, 17

attenuation, 73, 122—-124, 135, 137—
141, 143, 158, 166-68, 170, 172—
193, 195,211-214, 217, 218

autocorrelation, 7, 8

B

Bayard-Bode, 131-135

Bessel, 69, 70, 140, 143, 144

block diagram, 24, 25, 40, 42, 72, 75,
86, 124-126

Bode, 16, 18, 19, 21, 29, 35-37, 42,
72,73, 131-133, 135, 137, 138,
143, 156, 159, 177

Butterworth, 69, 70, 140, 144

Cc

Cauer, 97, 99-101, 141, 154, 157,
158,162

causality, causal, 12, 131, 132

Chebyschev, 140, 141, 143, 144, 154,
155,162, 164, 170

Chua, 56, 57, 64, 65, 80

Clapp, 46

Colpitts, 44, 78

complex plane, 2, 3, 10, 13, 17-19,
22,24, 30, 33, 34, 38, 42, 72-74,
114,117,131, 133, 134, 141, 146

continued fraction (expansion), 100,
101, 145, 206

convolution product, 7, 8, 15, 127,
128,131, 132, 224

D

damping, 13, 16, 20, 24, 42, 49, 60,
69-71, 73,75, 81, 191, 219, 221

Delyannis-Friend, 148

denormalization, 138, 143, 148, 159,
170, 177

derivation, 6, 13, 14, 23, 27, 129,
130, 226, 227, 230

dipole (or two-port network), 45, 49—
53,56, 57, 62, 81, 82, 85, 86, 92—
94,97, 114, 116, 173, 196, 197,
199, 204206, 214, 220

Dirac, 23, 31-33, 127-132, 224-227

dissipation (or power loss), 49, 150,
151, 156, 204

E, F

electrical, 2, 9, 42, 55, 86, 92, 124,
196, 197

Fundamentals of Electronics 2: Continuous-time Signals and Systems,

First Edition. Pierre Muret.

© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.



236 Fundamentals of Electronics 2

elliptical filter (or Jacobi, Zolotarev,
Cauer filter), 141, 143, 156, 159,
189-191
feedback, 1, 25-30, 35-37, 46, 48,
66,71,75,76,89,90, 111, 117,
146, 148, 149
filters, 41, 47, 86, 95, 102, 104, 122,
165
analog, 126-130, 146
all-pass, 135, 196
band-pass, 21, 101, 120, 128, 130,
137, 142, 143, 150, 154, 155,
165, 187, 188, 189, 192, 211
band-stop, 100, 128, 137, 143
high-pass, 128-130, 137, 142, 143,
170, 173
low-pass, 17-19, 77, 129, 130,
137-139, 142-144, 154, 158,
159, 162, 164, 165, 167, 168,
173-175, 177-179, 204
final value, 13, 73, 75, 76
first degree, 16, 20, 22, 24, 55, 100,
148
forced, free running or regime, 9, 14,
22,25,31,75, 126, 128
Foster, 97, 100, 101, 154
Fourier transform (FT) , 5-8, 85,
132, 146

G,H

gain margin, 36

group delay, 135, 136, 140, 143, 144,
194, 221

harmonic, 4, 10, 12, 15, 16, 24, 49,
50, 55, 68, 74-76, 96, 136, 180—
183

Hartley, 45

Hurwitz’s polynomial, 33, 135

|

image-impedance, 118—-124, 193,
214,216,217, 218

image-matching, 118-124, 121, 122,
150, 166, 171, 175, 189, 191, 193

impulse response, 31, 126132, 140,
144, 146

incident, 102-105, 121

instability, 30, 38, 39, 50, 55, 89,
117,118

integration, 6, 8, 13, 14, 39, 41, 52,
133,223-226, 229

iterative (impedance), 92, 94, 120,
150

K, L

Kramers-Kronig, 133,

ladder network, 99, 101, 126, 158,
204

Laplace transform (LT) , 12-24, 31,
38, 127,225,227, 228

lattice filter, 191-194, 214, 215

leapfrog, 125, 126

linear, 1, 6, 8-10, 17, 22, 37— 40, 48,
49, 85, 88,97, 126, 133, 194, 197,
216,217,223

loop
closed, 26, 29, 36, 37, 66, 73, 75
open, 26-29, 35-37, 66, 67,72, 73

M, N

minimal phase-shift, 133-135, 137,
194

noise, 8, 43, 48, 55, 56

normalization, 102, 105, 111, 122,
138,170, 172

Nyquist, 17-21, 33-36, 117



Index 237

o,P

operational amplifier, 2629, 44, 66,
69, 70, 72-74, 86, 90, 146148,
150, 195

Orchard, 195

ordinary differential equation (ODE),
8-10, 38, 39

oscillator, 30, 36, 42-48, 50-57, 62—
65,78, 80, 133

Padg¢, 145

Parseval, 5,7, 8

passive, 9, 37, 86, 91, 95, 96, 104,
109, 114, 118, 120-126, 128, 146,
150, 152—154, 166, 183, 195-197,
199, 204, 205, 211

periodic, 4, 5, 10-13, 56, 136, 225

phase

margin, 36, 74
space, 52, 53, 55, 62, 65

pole, 16,24, 31-33, 72, 82, 84, 96,
100, 101, 133, 139, 141, 167, 177,
179-186, 189, 193, 215, 218

map, 24, 31

port, 85, 87, 92-94, 100, 103-107,
116,119, 120, 165168, 171, 179,
183, 186, 191, 196, 197, 199, 204—
207,210,214, 220

Q,R

quadripole or two-port network, 85

quality, 16, 49, 60, 66, 73, 146, 197,
201

quartz, 44-47, 49, 150, 191, 192,
214,216,218

random (signal), 8, 65

Rauch, 146

reciprocal, 27, 91, 104, 122, 137,
153, 157, 164

regime
forced, 9, 22
steady-state, 14, 36

relaxation, 49-52, 56, 57

resonant, 48, 49, 56, 80, 156, 157,
166

ripple, 139, 141, 143, 154-158, 162,
174-176, 178, 189-191, 195, 196

rotating vector, 3

S

Sallen-Key, 146, 147

second degree, 31, 148

sinusoidal signals, 2—4, 10, 11

spectral density, 8

spectrum, 24, 7, 11, 63-65, 136

stable (or stability), 9, 12, 16, 30, 31,
33,35-37,39-42,47,48, 52, 55,
58,61, 67-69, 73,75, 76, 81, 83,
85,111,114,117, 118, 124-126,
131, 133, 145, 146, 150

state variables, 3740, 55, 58, 81, 145

state-space form, 1, 41, 80

stationary, 1, 8, 9, 38, 40, 41, 126,
133

T

template, 122, 137-139, 142, 153,
156, 164, 165,170, 173, 176, 178,
179, 189-191, 194

terminal, 85, 86, 174, 177

termination, 92-94, 102, 104, 105,
108, 125, 150, 164166, 168, 172,
174, 176, 183, 188, 189-191, 194,
195,211, 212

transfer function (or transmittance),
10, 12, 15-19, 22, 24-27, 33-36,
38,41, 42,48, 67, 70-72, 74-717,
114,117,119, 121, 122, 124-126,
128, 130-141, 143, 145, 146, 148—
150, 152-156, 158, 159, 161, 166—
168, 178, 181, 185, 194, 197, 205,
215,218,219, 221



238 Fundamentals of Electronics 2

transfer matrix, 102-107, 121, 122

transformer, 102, 165, 195, 197, 198,
201, 202, 204

transistor, 44-48, 78, 80, 197, 203

transmittance, 167

Uuv,w

unilateralisation (or neutrodynation),
111

unitarity, 151-154, 158, 162, 165

voltage controlled oscillator (VCO),
48

Wiener-Kinchine, 7, 8



Other titles from
SSle=
n

Electronics Engineering

2017

MURET Pierre
Fundamentals of Electronics 1: Electronic Components and Elementary
Functions

Buccr Davide
Analog Electronics for Measuring Systems

2016

BAUDRAND Henri, TITAOUINE Mohammed, RAVEU Nathalie
The Wave Concept in Electromagnetism and Circuits: Theory and
Applications

FANET Hervé
Ultra Low Power Electronics and Adiabatic Solutions

NDJOUNTCHE Tertulien

Digital Electronics 1: Combinational Logic Circuits

Digital Electronics 2: Sequential and Arithmetic Logic Circuits
Digital Electronics 3:Finite-state Machines



2015

DURAFFOURG Laurent, ARCAMONE Julien
Nanoelectromechanical Systems

2014

APPRIOU Alain
Uncertainty Theories and Multisensor Data Fusion

CONSONNI Vincent, FEUILLET Guy
Wide Band Gap Semiconductor Nanowires 1: Low-Dimensionality Effects
and Growth

Wide Band Gap Semiconductor Nanowires 2: Heterostructures and
Optoelectronic Devices

GAUTIER Jean-Luc
Design of Microwave Active Devices

LACAZE Pierre Camille, LACROIX Jean-Christophe
Non-volatile Memories

TEMPLIER Frangois
OLED Microdisplays: Technology and Applications

THOMAS Jean-Hugh, YAAKOUBI Nourdin
New Sensors and Processing Chain

2013

COSTA Frangois, GAUTIER Cyrille, LABOURE Eric, REVOL Bertrand
Electromagnetic Compatibility in Power Electronics

KORDON Fabrice, HUGUES Jérome, CANALS Agusti, DOHET Alain
Embedded Systems: Analysis and Modeling with SysML, UML and AADL

LE TIEC Yannick
Chemistry in Microelectronics

2012

BECHERRAWY Tamer
Electromagnetism: Maxwell Equations, Wave Propagation and Emission

LALAUZE René
Chemical Sensors and Biosensors



LE MENN Marc
Instrumentation and Metrology in Oceanography

SAGUET Pierre
Numerical Analysis in Electromagnetics: The TLM Method

2011

ALGANI Catherine, RUMELHARD Christian, BILLABERT Anne-Laure
Microwaves Photonic Links: Components and Circuits

BAUDRANT Annie
Silicon Technologies: lon Implantation and Thermal Treatment

DEFAY Emmanuel
Integration of Ferroelectric and Piezoelectric Thin Films: Concepts and
Applications for Microsystems

DEFAY Emmanuel
Ferroelectric Dielectrics Integrated on Silicon

BESNIER Philippe, DEMOULIN Bernard
Electromagnetic Reverberation Chambers

LANDIS Stefan
Nano-lithography

2010

LANDIS Stefan
Lithography

PIETTE Bernard
VHF / UHF Filters and Multicouplers

2009

DE SALVO Barbara
Silicon Non-volatile Memories / Paths of Innovation

DECOSTER Didier, HARARI Joseph
Optoelectronic Sensors

FABRY Pierre, FOULETIER Jacques
Chemical and Biological Microsensors / Applications in Fluid Media



GAUTIER Jacques
Physics and Operation of Silicon Devices in Integrated Circuits

MOLITON André
Solid-State Physics for Electronics

PERRET Robert
Power Electronics Semiconductor Devices

SAGUET Pierre
Passive RF Integrated Circuits

2008

CHARRUAU Stéphane
Electromagnetism and Interconnections

2007

RIPKA Pavel, TIPEK Alois
Modern Sensors Handbook



