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Preface

The goal of statistical data analysis is to extract the maximum information
from the data, and to present a product that is as accurate and as useful
as possible.

—David Scott, Multivariate Density Estimation:
Theory, Practice and Visualization, 1992

My purpose in writing this book is to introduce the mathematically sophisticated
reader to a large number of topics and techniques in the field variously known as
machine learning, statistical learning, or predictive modeling. I believe that a deeper
understanding of the subject as a whole will be obtained from reflection on an intuitive
understanding of many techniques rather than a very detailed understanding of only
one or two, and the book is structured accordingly. I have omitted many details while
focusing on what I think shows “what is really going on.” For details, the reader will
be directed to the relevant literature, or to the exercises, which form an integral part
of the text.

No work this small on a subject this large can be self-contained. Some
undergraduate-level calculus, linear algebra, and probability is assumed without ref-
erence, as are a few basic ideas from statistics. All of the techniques discussed here
can, I hope, be implemented using this book and a mid-level programming language
(such as C),1 and explicit implementation of many techniques using R is presented
in the last chapter.

The reader may detect a coverage bias in favor of classification over regression.
This is deliberate. The existing literature on the theory and practice of linear regres-
sion and many of its variants is so strong that it does not need any contribution from
me. Classification, I believe, is not yet so well documented. In keeping with what has
been important in my experience, loss functions are completely general and predictive
modeling is stressed more than explanatory modeling.

The intended audience for these notes has an extremely diverse background
in probability, ranging from one introductory undergraduate course to extensive

1 There is one exception: the convex programming needed to implement a support vector machine is
omitted.



xii PREFACE

graduate work and published research.2 In seeking a probability notation which will
create the least confusion for all concerned, I arrived at the non-standard use of P(x)
for both the probability of an event x and a probability mass or density function, with
respect to some measure which is never stated, evaluated at a point x. My hope, which
I believe has been borne out in practice, is that anyone with sufficient knowledge
to find this notation confusing will have sufficient knowledge to work through that
confusion.

2 This book is designed for two kinds of people: those who know what P(Y | X) means but do not know
the Radon–Nikodym theorem, and those who know what P(Y | X) means only because they know the
Radon–Nikodym theorem. I have tried to communicate with the first group, at the cost of possibly irri-
tating the second.



Organization—How to Use
This Book

The core material of this book is laid out in Chapters 1 through 7. These chapters
are intended to be read in order, as each chapter builds on the previous ones. Chap-
ters 1 and 2 introduce problems which machine learning methods can solve, and also
introduce the fundamental ideas and terminology used to describe these problems and
their solutions. Chapter 3 gives a brief introduction to regression.1

Chapter 4 presents many methods for classification, grouped according to how they
approach the problem. Chapter 5 discusses bias–variance trade-off, a topic essential
to understanding the design principles behind ensemble methods. Chapter 6 presents
various ensemble methods, focusing on how each method can be understood as trad-
ing off bias for variance, or vice versa. Chapter 7 concludes the core material with
methods for risk estimation and model selection. By the end of Chapter 7, the reader
will have encountered many useful methods for approaching classification and regres-
sion problems, and (I hope) will appreciate how each method works and why each
method approaches classification or regression the way it does.

After Chapter 7, the reader can select from among the remaining seven chapters in
any order, best suiting the reader’s goals or needs. For example, some readers might
wish to follow

a path toward machine learning practice or consultancy:

� Chapter 9, Clustering, and then Chapter 11, High-Dimensional Data

� Chapter 10, Optimization

� Chapter 12, Communication with Clients

� Chapter 14, R Source Code (optional—recommended if the reader plans to
use R)

1 The reader who has a thorough background in regression may choose to skip Chapter 3, or skim it for
notation.



xiv ORGANIZATION—HOW TO USE THIS BOOK

Other readers might wish to follow

a path toward machine learning research:

� Chapter 8, Consistency

� Chapter 11, High-Dimensional Data (optionally preceded by Chapter 9,
Clustering)

� Chapter 10, Optimization (optional)

� Chapter 13, Current Challenges in Machine Learning

Other readers might wish to develop insight empirically, through hands-on experi-
ence working with the methods covered in the core material of Chapters 1 through 7,
before progressing on to later chapters. Such readers can proceed directly to Chap-
ter 14, R Source Code, which illustrates how to apply and interpret many of the clas-
sification methods from Chapters 4 and 6. Finally, some readers might wish to learn
specifically about deep neural networks. Feed-forward deep neural networks2 are a
combination of several ideas, and these ideas are presented separately because each is
individually useful: feed-forward neural networks in Section 4.7, stochastic gradient
descent optimization in Sections 10.1 and 10.6, autoencoders in Section 11.3, and
parameter regularization in Section 11.4.

Three of the later chapters—8 (Consistency), 10 (Optimization), and 12 (Com-
munication with Clients)—may seem unusual in an introductory book on machine
learning. Chapter 8 is about consistency, which addresses whether or not a given
supervised learning method converges to an optimal solution as the number of data,
n, increases without bound, either for a given problem or for any problem. This sta-
tistical topic is present because some readers of Chapters 4, 5, and 6 may, upon being
presented with approximately 20 methods to solve classification problems, conclude
that the richness and diversity of methods is a sign that no one actually knows yet
how to deal with classification. Such readers might feel that there ought to be one
method which solves all classification or regression problems optimally, at least as
n →∞. Such readers may be comforted, or saved reinventing the wheel, by learning
of the large body of theory which addresses this issue.

Chapter 10 presents useful techniques in optimization, a topic which is required in
order to apply most methods in machine learning.3 Indeed, a common theme running
through Chapters 3, 4, 6, 7, 9, and 11 (most of the practical content of the book) is
the transformation of a classification, clustering, regression, density estimation, or
dimension-reduction problem into an optimization problem: find the best estimate 𝜃
of a vector of model parameters 𝜃, find the best trained model in a class of trained
models, find the best features to use or the best low-dimensional representation

2 Recurrent neural networks are not covered in this book.
3 Despite its importance, optimization is a topic which is often either taken for granted or ignored.
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of features, etc. Thus, in order to solve real-world problems, the machine learning
practitioner needs to be able to solve various kinds of optimization problems. Even
when relying on existing software for optimization, a machine learning practitioner
can be more effective if he or she understands a variety of optimization methods, and
their strengths and weaknesses.

Chapter 12 is about communication with clients. In the author’s experience,
machine learning practitioners do not generally work for themselves, in the sense
that they are not the ultimate beneficiary of a machine learning solution they cre-
ate for some real-world application. Instead, a machine learning practitioner’s work
is typically performed for a client, or customer, or mission stakeholder, or scientific
colleague. It is the client’s subjective judgment which matters in determining what
is a good solution to a problem, and what kind of trade-offs are acceptable in error,
computation, and model interpretability. A machine learning practitioner—no matter
how smart, how well trained, or how gifted in computational resources—is doomed
to failure if he or she cannot elicit from a client what is really needed, or cannot com-
municate to a client what the machine learning practitioner needs and can provide.
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1

Introduction—Examples from
Real Life

To call in a statistician after the experiment is done may be no more than
asking him to perform a postmortem examination: he may be able to say
what the experiment died of.

—R. A. Fisher, Presidential Address, 1938

The following examples will be used to illustrate the ideas of the next chapter.

Problem 1 (“Shuttle”). The space shuttle is set to launch. For every previous
launch, the air temperature is known and the number of O-rings on the solid rocket
boosters which were damaged is known (there are six O-rings, and O-ring damage is
a potentially catastrophic event). Based on the current air temperature, estimate the
probability that at least one O-ring on a solid rocket booster will be damaged if the
shuttle launches now.

This is a regression problem. Poor analysis, and poor communication of some good
analysis (Tufte, 2001), resulted in the loss of the shuttle Challenger and its crew on
January 28, 1986.

Problem 2 (“Ballot”). Immediately after the 2000 US presidential election, some
voters in Palm Beach County, Florida, claimed that a confusing ballot form caused
them to vote for Pat Buchanan, the Reform Party candidate, when they thought they

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning



2 MACHINE LEARNING

were voting for Al Gore, the Democratic Party candidate. Based on county-by-county
demographic information (number of registered members of each political party,
number of people with annual income in a certain range, number of people with
a certain level of education, etc.) and county-by-county vote counts from the 1996
presidential election, estimate how many people in Palm Beach County voted for
Buchanan but thought they were voting for Gore.

This regression problem was studied a great deal in 2000 and 2001, as the outcome
of the vote in Palm Beach County could have decided the election.

Problem 3 (“Heart”). A patient who is suffering from acute chest pain has entered
a hospital, where several numerical variables (for example, systolic blood pressure,
age) and several binary variables (for example, whether tachycardia present or not)
are measured. Identify the patient as “high risk” (probably will die within 30 days)
or “low risk” (probably will live 30 days).

This is a classification problem.

Problem 4 (“Postal Code”). An optical scanner has scanned a hand-written ZIP
code on a piece of mail. It has approximately separated the digits, and each digit
is represented as an 8 × 8 array of pixels, each of which has one of 256 gray-scale
values, 0 (white), ..., 255 (black). Identify each pixel array as one of the digits 0
through 9.

This is a classification problem which affects all of us (though not so much now as
formerly).

Problem 5 (“Spam”). Identify email as “spam” or “not spam,” based only on the
subject line. Or based on the full header. Or based on the content of the email.

This is probably the best known and most studied classification problem of all,
solutions to which are applied many billions of times per day.1

Problem 6 (“Vault”). Some neolithic tribes built dome-shaped stone burial vaults.
Given the location and several internal measurements of some burial vaults, estimate
how many distinct vault-building cultures there have been, say which vaults were built
by which culture and, for each culture, give the dimensions of a vault which represents
that culture’s ideal vault shape (or name the actual vault which best realizes each
culture’s ideal).

This is a clustering problem.

1 In 2013, approximately 182.9 billion emails were sent per day, on average, worldwide (Radicati and
Levenstein, 2013).



2

The Problem of Learning

Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be
made precise.

—John Tukey, The Future of Data Analysis, 1962

This book treats The Problem of Learning, which can be stated generally and suc-
cinctly as follows.

The Problem of Learning. There are a known set  and an unknown
function f on  . Given data, construct a good approximation f̂ of f . This
is called learning f .

The problem of learning has been studied in many guises and in different fields, such
as statistics, computer science, mathematics, and the natural and social sciences. An
advantage of this situation is that the set of methods now available for addressing the
problem has benefited from a tremendous diversity of perspective and knowledge.
A disadvantage is a certain lack of coherence in the language used to describe the
problem: there are, perhaps, more names for things than there are things which need
names, and this can make the study of the problem of learning appear more compli-
cated and confusing than it really is.

This chapter introduces the main ideas which occur in almost any applied prob-
lem in learning, and introduces language commonly used to describe these ideas.
The ideas and language introduced here will be used in every other chapter of this
book.

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning



4 MACHINE LEARNING

2.1 Domain

The set  is called feature space and an element X ∈  is called a feature vector
(or an input). The coordinates of X are called features. Individual features may take
values in a continuum, a discrete, ordered set, or a discrete, unordered set.

In Problem 1 (“Shuttle”),  is an interval of possible air temperatures: (−60, 140)
Fahrenheit, say, or [0,∞) Kelvin. In Problem 4 (“ZIP Code”),  is the set of all 8 × 8
matrices with entries in {0, 1,… , 255}. In Problem 2 (“Ballot”),  is {0, 1, 2,…}m

for the given number of features m, each feature being a count of people or votes,
though in practice  might well be taken to be the m-dimensional real numbers, ℝm.

2.2 Range

The range f () is usually either a finite, unordered set, in which case learning is called
classification,1 or it is a continuum, in which case learning is called regression.2 An
element Y ∈ f () is called a class in classification and a response in regression.

In Problem 1 (“Shuttle”), f () = [0, 1], the set of probabilities that an O-ring
is damaged.3 In Problem 4 (“Postal Code”), f () = {“0”, “1”, “2”, “3”, “4”, “5”,
“6”, “7”, “8”, “9”}, the quotes indicating that these are unordered labels rather than
numbers. In Problem 2 (“Ballot”), f () is the set of non-negative integers less than or
equal to the number of registered voters in Palm Beach County, but in practice f ()
would usually be taken to be ℝ, the set of real numbers.

2.3 Data

In principle, data are random draws (X, Y) from a probability distribution P on
 × f (). Depending on the problem at hand, the data which are observed may
either consist of domain-range pairs (X, Y) or just domain values X: learning is called
supervised in the former case and unsupervised in the latter.

1 Classification is sometimes referred to as pattern recognition, a term not to be confused with pattern
search (a general class of optimization algorithms) or pattern theory (Grenander, 1993, 1996).
2 If the range f () is a finite, ordered set, learning is called ordinal regression. The reader is directed to
Agresti (1984) for information on ordinal regression.
3 Problem 1 (“Shuttle”) could be either classification or regression, depending on the exact wording of
the question asked. It is a regression problem if the question asks for the probability that at least one O-
ring will be damaged (f () = [0, 1]) or asks for the expected number of O-rings which will be damaged
(f () = [0, 6], [0, 12], or [0, 18] depending on the specific booster design and on which O-rings are
being counted). It is a classification problem if the question asks whether or not any O-rings will be
damaged (f () = {yes, no}). In applied problems, it is important to be clear about what kind of question
is being asked. Answering a different question than the one asked may sometimes be beneficial, but it
should never be done unknowingly or unacknowledged.
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In supervised learning, the data are

(x1, y1),… , (xn, yn) ∈  × f (),

where each (xi, yi) is drawn from a joint probability distribution P(X, Y) on  × f ().
Such data are called marked data.4 It is sometimes useful to consider the data as pro-
duced by a two-step process, in one of two ways: by drawing y from marginal distribu-
tion P(Y) on f () and then drawing a corresponding feature vector x from conditional
distribution P(X |Y = y) on  ; or by drawing feature vector x from marginal distri-
bution P(X) on  and then drawing a corresponding y from conditional distribution
P(Y |X = x) on f (). These two points of view correspond to the two factorizations,5

P(X, Y) = P(Y) P(X |Y) = P(X) P(Y |X).

Both are useful in classification. The latter is more useful in regression, where the
function f to be learned is often, though not necessarily, the expected value of the
conditional distribution of Y |X, that is,

f (x) = E [Y |X = x] .

In unsupervised learning, the data are6

x1,… , xn ∈  .
Such data are called unmarked data. The range f () is either assumed to be finite, in
which case unsupervised learning is called clustering, or it is [0,∞) and the function
f to be learned is the mass or density function of the marginal distribution of the
features,

f (x) = P(X = x),

in which case unsupervised learning is called density estimation. In clustering prob-
lems, the size of the range, | f ()|, may or may not be known: usually it is not.

Problem 1 (“Shuttle”) is supervised learning, since the data are of the form

(temperature, number of damaged O-rings).

Problem 6 (“Vaults”) is unsupervised learning, and | f ()| is unknown (though
archaeologists might have other evidence outside the data — such as artifacts recov-
ered from the vaults or related sites — which indicates that, for example, 4 ≤| f ()| ≤ 10).

4 It may happen that two data points (xi, yi) and (xj, yj) agree in their features (xi = xj) but not their
response or class (yi ≠ yj). This does not mean that f is multivalued, but that the data are noisy. The

goal of learning is to find a deterministic function f̂ on  which approximates f .
5 We shall see in Chapter 4 that this relatively trivial piece of mathematics has a profound influence on
the design of practical machine learning algorithms.
6 It may be useful to think of x1,… , xn ∈  as being drawn originally as (x1, y1),… , (xn, yn) ∈
 × f (), but then y1,… , yn were lost or somehow unobserved. That is, to think of y1,… , yn as latent
variables.
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Figure 2.1 Four categories of learning problems, in bold type, split according to
whether the range of f is finite (and unordered) or continuous, and whether or not
elements of the range are observed directly. Some solutions to these problems are
devised by transforming one problem into another: examples of this are shown in red
and described in Chapters 3, 4, 6, and 9.

Figure 2.1 summarizes some of the terminology introduced so far and illustrates
some connections between the four learning problems mentioned.

Sometimes both marked and unmarked data are available. This situation is called
semi-supervised learning.7

2.4 Loss

What does “a good approximation” mean? This is specified by a loss function

L : f () × f̂ () → ℝ,

where for each (x, y) ∈  × f (), L(y, f̂ (x)) is the loss, or penalty, incurred by approx-
imating y with f̂ (x). Common examples are:

squared-error loss (regression) L(y, f̂ (x)) = (y − f̂ (x))2

absolute-error loss (regression) L(y, f̂ (x)) = |y − f̂ (x)|
zero-one loss (classification) L(y, f̂ (x)) =

{
0 if y = f̂ (x)
1 if y ≠ f̂ (x)

.

In classification, an arbitrary loss function can be specified by the cells of a C × C loss
matrix, usually with all-zero diagonal elements and positive off-diagonal elements

7 Semi-supervised learning is not covered in this book.
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(so correct classification incurs no loss and misclassification incurs positive loss).
Zero-one loss is represented by the C × C matrix with 0’s on the diagonal and 1’s
everywhere off the diagonal.

Some techniques for solving classification problems focus on estimating the con-
ditional probability distribution on class labels, given the feature vector,

(P(Y = 1 |X),… , P(Y = C |X))

(such techniques translate a classification problem into a regression problem, follow-
ing the top-most red arrow in Figure 2.1). Let

(P̂(Y = 1 |X),… , P̂(Y = C |X))

denote an estimate of this vector. Predicted class labels, f̂ (X), are obtained from this
estimated probability distribution in some way: for example, by predicting the most
probable class. Techniques which do this essentially convert a classification problem
into a regression problem, solve the regression problem, and apply the solution to
classification. A loss function8 often used in such cases is

cross-entropy loss (classification) L
(

y, (P̂(Y = c |X = x))C
c=1

)
= − log P̂(Y = y |X = x).

The choice of loss function is subjective and problem-dependent.9 An asymmetric
loss function is sometimes appropriate: for example, in Problem 3 (“Heart”),
declaring a healthy person to be sick may be viewed as a much less costly error than
declaring a sick person to be healthy.10 That said, loss functions are often chosen
for convenience and computational tractability.11 Exercises in Sections 3.6 and 4.6,

8 It may seem strange that here, a loss function is comparing a class to a probability distribution. A
formal justification is given in Exercise 2.1.
9 This means, among other things, that the choice of loss function depends on information which is not
in the data. And subjective decisions ought usually to be elicited from our clients, not ourselves!
10 Choice of loss function may depend not only on the consequences of misclassifying particular cases,
but on the aggregate consequences of misclassifying. Here is an example. Suppose there are two tests,
A and B, to screen for a rare, fatal, but treatable disease. Test A can be done in a doctor’s office or clinic
but is not completely accurate, while test B is perfectly accurate but requires a sophisticated medical lab
to perform. Whatever the “real” loss of misclassifying a person with test A is, test A must not declare
so many healthy people to be sick that the total capacity of medical labs to perform test B as a follow-
up is exceeded. Thus practical considerations may force the parameters of test A to be set so that the
probability of declaring a sick person to be healthy with test A is higher than really desired.
11 Many machine learning methods require solving optimization problems through iterative numerical
procedures because no closed-form solutions are known. This is addressed at length in Chapter 10. It has
been found empirically that some loss functions lead to easier optimization problems than others, and
that sometimes changing a loss function to make an optimization problem easier, say by replacing cross-
entropy loss with squared-error loss in a neural network, results in a better solution, even in terms of
the original loss function. Choice of loss function based on convenience does not necessarily go against
Tukeys’ advice at the beginning of this chapter.
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respectively, derive squared-error loss and cross-entropy loss from the (subjective)
principle that the best model in a class of models is one which assigns maximal
likelihood to the observed data.

Exercise 2.1 The Kullback–Leibler information12 (also called cross-entropy) for dis-
criminating between discrete probability distributions p and q on the set {1,… , C}
is

KL (p, q) =
C∑

c=1

pc log
pc

qc
.

It is sometimes interpreted as “the cost of using q in place of p when the true distri-
bution is p,” where the “cost” refers to loss of efficiency in encoding data drawn from
distribution p (see Cover and Thomas (2006) for a full explanation). When a datum is
class y, the true class probability vector is t = (0,… , 0, 1, 0,… , 0), where the single
1 occurs in position y.13 Show that cross-entropy loss is the same as Kullback–Leibler
information:

L
(

y, (P̂(Y = c |X = x))C
c=1

)
= KL

(
t, (P̂(Y = c |X = x))C

c=1

)
.

2.5 Risk

A standard criterion for a “good” approximation f̂ of f is one which minimizes the
expected loss,14 known as the generalization error or risk. Usually the expectation is
with respect to the joint probability distribution P on points (X, Y) ∈  × f ().

The risk of approximation f̂ at point x ∈  is the expected loss incurred by using
f̂ (x) in place of Y for new data (X, Y) such that X = x,

R( f̂ |X = x) = EY |X=x[L(Y , f̂ (x))] = ∫f ()
L(y, f̂ (x)) P(Y = y |X = x) dy.

The response variable Y is treated as random, with the conditional distribution
P(Y |X = x), while the input X = x and trained classifier f̂ are treated as fixed.15

12 Kullback–Leibler information will be seen again in Section 10.7, in the context of the expectation-
maximization algorithm.
13 This is called a one-hot encoding of the class y.
14 Two other criteria for a “good” approximation, different from “minimize the expected loss,” are the
minimax criterion—“minimize the maximum possible loss, max(x,y)∈×f () L(y, f̂ (x))”—and the struc-
tural risk minimization criterion—“minimize a provable and computable upper bound for the true risk
based on training risk.”
15 If the notation f̂ |X = x seems odd, keep in mind that f̂ is a deterministic function of a random vari-
able X, and thus is also a random variable.
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Choosing an approximation f̂ to minimize the risk of f̂ at a specific point (or finite set
of points) in  is called transductive learning. It is of use when the entire set of points
at which predictions are to be made is known at the time that f̂ is constructed.16 The
risk of f̂ at a point x ∈  is also useful theoretically—see Exercise 2.3 and Section 4.1.

The risk of approximation f̂ is the expected loss incurred by using f̂ (X) in place of
Y for new data (X, Y),

R( f̂ ) = E(X,Y)[ L(Y , f̂ (X)) ].

Data point (X, Y) is treated as random while the trained classifier f̂ is treated as fixed.
The risk of approximation f̂ is also the expected value (with respect to the distribution
on X) of the risk at X,

R( f̂ ) = EX[R( f̂ |X)] = ∫ ∫f ()
L(y, f̂ (x)) P(Y = y |X = x) dy P(X = x) dx.

Choosing an approximation f̂ to minimize the risk of f̂ is done when the points at
which f̂ is to make a prediction are not known at the time that f̂ is constructed, but
will be drawn from the distribution P(X) on  at some future time. This is the typical
situation in applied machine learning.

An approximation method is a function which maps training datasets to approxi-
mations of f . It maps a set S ∈ ( × f ())n of n observed data to a function f̂S, where
f̂S is in the set of all functions which map  → f (). Actually, approximations f̂S
lie in a method-specific proper subset of the set of all functions  → f (), about
which more will be said later. The probability distribution on  × f () extends to
training datasets S and thence to approximations f̂S, so approximations f̂S are random
variables.

The risk of an approximation method (trained on datasets of size n) is the expected
loss incurred by drawing a random training set17 S of size n, constructing an approx-
imation f̂S from it, and using f̂S(X) in place of Y for new data (X, Y),

Rn = E(S,X,Y)[ L(Y , f̂S(X)) ].

16 For example, the problem of determining who wrote which articles in The Federalist (Mosteller and
Wallace, 1963) is transductive learning.
17 It may seem strange to treat the training data as random, when in any particular problem it is fixed and
known. It is, however, the “orthodox” (frequentist) point of view in Statistics that the data are random.
This might be justified by declaring our goal to be finding approximation methods which are good, on
average, for constructing approximations f̂S on future, as-yet-unobserved training datasets S. That is, the
frequentist point of view is that of the algorithm designer, who wants an algorithm to perform well on
a large number of as-yet-unknown problems. In contrast, the Bayesian viewpoint might be called that
of the applied practitioner, who is more interested in what can be inferred from the particular dataset at
hand than in the performance of an algorithm on other problems.
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The risk of an approximation method is also the expected value of the risk of a clas-
sifier trained by the method on a random dataset of n points,

Rn = ES[R( f̂S)]
= ∫s∈(×f ())n ∫x∈ ∫y∈f () L(y, f̂s(x)) P(Y = y |X = x) dy P(X = x) dx P(S = s) ds.

The risk of a particular approximation f̂S, R( f̂S), can be viewed as the risk of the
approximation method conditional on the training dataset S. Choosing an approx-
imation method S ↦ f̂ to minimize the risk of the approximation method is done
by algorithm designers, whose goal is to produce approximation methods which are
useful in a wide variety of as-yet-unseen applied problems. A caveat for the applied
machine learning practitioner to keep in mind is that a low-risk approximation method
may, in any given application, produce a high-risk approximation f̂ .

Exercise 2.2 Consider the following situation, which will be revisited in Exercises
4.3, 4.7, and Section 12.1. There are C = 2 classes, and the marginal probabilities of
the two classes are

P(Y = 1) = p and P(Y = 2) = 1 − p

for some given value of p, 0 < p < 1. There is a one-dimensional feature X: for data
of class 1 it is distributed N(𝜇1, 1) and for data of class 2 it is distributed N(𝜇2, 1),
where means 𝜇1 < 𝜇2 are given, so

P(X = x |Y = 1) = 1√
2𝜋

e−
1
2

(x−𝜇1)2
and P(X = x |Y = 2) = 1√

2𝜋
e−

1
2

(x−𝜇2)2
.

Approximations to the true class label function f are assumed to have a particular
form: predict class 1 if the feature falls below a threshold, 𝜏, and otherwise predict
class 2, that is,

f̂𝜏 (x) =
{

1 if x ≤ 𝜏

2 if x > 𝜏
.

Express the following in terms of the given quantities p, 𝜇1, and 𝜇2 and, where appro-
priate, the threshold 𝜏 and given losses L(1, 2) > 0 and L(2, 1) > 0:

(A) the conditional probabilities of the classes, P(Y = 1 |X) and P(Y = 2 |X);

(B) the risk of approximation f̂𝜏 at a point x, R( f̂𝜏 |X = x);

(C) the risk of approximation f̂𝜏 , R( f̂𝜏 );

(D) the unique value 𝜏min of the threshold 𝜏 which produces the minimum-risk
approximation.

(E) Show that if L(1, 2) = L(2, 1) and p = 1
2
, then 𝜏min is the midpoint between

𝜇1 and 𝜇2.
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Except in special cases, risk cannot be computed exactly because P(Y |X) and P(X)
are unknown. In supervised learning, the risk of approximation f̂ can be approximated
(poorly) from training data

(x1, y1),… , (xn, yn)

by the training risk, or apparent risk,

R̂train( f̂ ) = 1
n

n∑
i=1

L(yi, f̂ (xi)).

Better approximations of risk will be discussed in Chapter 7.

Exercise 2.3 Show that if the risk of approximation f̂1(x) is no more than the risk of
approximation f̂2(x) at each point x ∈  , then the overall risk of f̂1 is no more than
the overall risk of approximation f̂2. Thus point-wise improvement in the risk of f̂ , if it
can be done without making the risk worse somewhere else, always results in overall
improvement of the risk of f̂ .

Exercise 2.4 Explain why training risk is a bad approximation of risk. Hint: Design
a classification algorithm, using 0–1 loss and assuming for convenience that the prob-
ability of seeing two identical feature vectors X is zero, such that the training risk is
0 for any set of training data but the risk is C−1

C
, where C is the number of classes.

Exercise 2.5 Open-Ended Challenge. Propose a better approximation of risk
than training risk (without looking at Chapter 7).

Exercise 2.6 A figure of merit sometimes used for classification is the so-called class-
averaged accuracy,

1
C

C∑
c=1

P( f̂ (X) = c |Y = c),

or equivalently the class-averaged inaccuracy,

1
C

C∑
c=1

P( f̂ (X) ≠ c |Y = c).

Show that the class-averaged inaccuracy of f̂ is the risk R( f̂ ) corresponding to the
loss function

L(y, f̂ (x)) =
⎧⎪⎨⎪⎩

0 if y = f̂ (x)

1
C P(Y = y)

if y ≠ f̂ (x)
.
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Does it make sense for a loss function to depend on the number of classes? Does it
make sense for a loss function to depend on the marginal distribution of the class
labels?

2.6 The Reality of the Unknown Function

A reasonable question to ask at this point is whether the unknown function f , or the
joint probability distribution P(X, Y), actually exists. One quick and easy answer is
that this is a mathematical model which is rich enough to be broadly applicable and
simple enough to analyze, and as such, it is defensible on purely utilitarian grounds.

A somewhat more nuanced answer is that we use the language of probability to
express our imperfect state of knowledge about the world. The data which we observe
were generated by a process which we do not fully understand: we introduce P(X, Y)
as a name for this process, and use the theory of probability both to derive names for
various aspects of the unknown process (such as the conditional distribution P(X |Y)
and the marginal distribution P(Y)) and also to enable us to quantify our uncertainty
about the process. If we accept using probability in this way, and accept as our goal
the development of a function f̂ which has low risk when used for prediction (recall
that the idea of risk follows from P(X, Y) but does not require that we accept the
existence of an unknown function f ), then the existence of an unknown function f to
be learned is straightforward. Given the joint distribution P(X, Y) and a point X = x at
which to predict a response or class Y , compute the risk of predicting every possible
value of Y at X = x, and predict a value of Y which corresponds to the minimal risk,
breaking any ties, if there are multiple distinct values of Y which are minimal-risk
predictions at x, in some deterministic but arbitrary way.18 Define f to be the function
which makes these minimal-risk predictions. This will be revisited in the context of
classification with the development of the Bayes classifier in Section 4.1.

2.7 Training and Selection of Models, and Purposes
of Learning

Given a practically computable optimality criterion (training risk, for example) for
approximations of f , a major goal is to find an optimal approximation f̂ in the
set of all functions  → f (). Generally, this set is too large to search effectively.
The purpose of each regression or classification method is to specify a subset  of
the set functions mapping  → f () which is simultaneously small enough that an

18 Ties could be broken randomly, but making f random without gaining anything in terms of risk need-
lessly complicates the problem of learning.
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approximately optimal approximation f̂ ∈  can be found and big enough that f̂ is
close to f , the true function, in many applications.

Specification of  is called model assumption and, given  , computation of f̂S ∈ 
from a dataset S is called training a model. Sometimes  can be described by a finite
number of scalar parameters, in which case the method which gave rise to it is called
a parametric method. Otherwise, the method is called a non-parametric method.19

There are at least two reasons for solving the Problem of Learning. The first reason
is that in the future, we will be presented with unmarked feature vectors, Xn+1,…,
and will be asked to make predictions f̂ (Xn+1),… of the unobserved responses or
class labels. Solving the Problem of Learning in this case is predictive learning or
predictive modeling.

The second reason for solving the Problem of Learning is to find relation-
ships between observed features vectors x1,… , xn and their corresponding observed
response or class labels y1,… , yn, in order to enhance human understanding of the
process by which the data were generated. This enhanced understanding often serves
an applied purpose, or it may be a goal in and of itself. The data of Problem 2 (“Bal-
lot”), for example, might reveal relationships between demographic features and vot-
ing behavior which could be used by political parties in various ways. Solving the
Problem of Learning in this case is explanatory learning or explanatory modeling.

In any given application, the two reasons for solving the Problem of Learning are
not necessarily exclusive. One may wish both to predict and to explain.20 The rela-
tive emphasis on prediction or explanation may influence the choice of approximation
method. An approximation method might not be used for explanatory modeling, even
if it has low risk, if the structure of the approximation f̂ it produces does not reveal
easily interpreted relationships between x1,… , xn and y1,… , yn. Such an approxima-
tion method also might not be used for predictive modeling, as some clients are reluc-
tant to trust an approximation f̂ which has not been validated through interpretation
by experts in the field of the application. This book focuses primarily on predictive
modeling, because it has been called for more often than explanatory modeling in the
author’s experience.

2.8 Notation

Throughout this book, unobserved feature vectors and responses (or classes), thought
of as random variables on  and f (), are denoted by upper-case letters X and Y
respectively. Specific values of feature vectors and responses (or classes), thought of

19 Non-parametric does not mean that a method uses no parameters. It refers to a method where the
number of parameters is determined in part by the data (in particular, where the number of parameters
can grow with the number of data).
20 For interesting further discussion, see Breiman (2001b).
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as fixed points in  and f (), are denoted by lower-case letters x and y respectively
(sometimes y is replaced by c or d in the case of classes). Context should prevent
confusion in the rare exceptions. A list of notation is provided in Appendix A.

The letter P denotes both the probability of an event and a probability density or
mass function. In the latter case, the density or mass function may be multiplied by a
positive, non-unit constant. Application and convenience determine whether P inte-
grates or sums to one or to some other positive number. By way of example, consider
P(Y = y |X = x) and P(X = x) in the expression of the risk of an approximation f̂ :

R( f̂ ) = ∫ ∫f ()
L(y, f̂ (x)) P(Y = y |X = x) dy P(X = x) dx.

If we are asked to choose, from a set of approximations, an optimal one, then these
density or mass functions can be multiplied by any positive constant without changing
the result: in particular, normalizing constants of certain statistical models can be
ignored for analytical or computational convenience. But if we are asked what is the
risk of a particular approximation, these functions must integrate or sum to one.



3

Regression

A statistical model involves the identification of those elements of our
problem which are subject to uncontrolled variation and a specification
of that variation in terms of probability distributions.

—David J. Bartholomew, Unobserved Variables:
Models and Misunderstandings, 2013

Essentially, all models are wrong, but some are useful.
—George E. P. Box and Norman R. Draper,

Empirical Model Building and Response Surfaces, 1987

This is the one chapter in this book which is dedicated to regression, and it presents
regression mostly from the classical, statistical, least-squares point of view. We open
the discussion of practical learning methods with least-squares regression for (at least)
four reasons. First, it is useful: the underlying model assumptions are, in many appli-
cations, close enough to correct that this method has been widely used in the literature
of many scientific domains.1 Second, it is relatively easy to treat analytically, and a
study of the analysis and the closed-form solutions it yields can provide insight into
“what is going on” with this approach to regression. The author hopes this will lead
to more informed application. The exercises of this chapter are an integral part of the
analytic development (solutions, as always, can be found in Appendix B). Third, it
enables the transformation of classification problems into regression problems, which
is an approach taken by logistic regression and neural networks in Chapter 4. Finally,

1 This is not to say that every use has been appropriate.

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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the thorough understanding we have of least-squares regression sets the bar high
for what is to follow in later chapters where, generally speaking, our theoretical
understanding is not as complete.2 Perhaps the contrast will motivate some readers
to improve the current state of the art.

For simplicity, in Sections 3.1 through 3.7, the domain of the function f which is to
be learned is assumed to be the m-dimensional real numbers,ℝm. Categorical features
are addressed in Section 3.8 and adding flexibility to a linear model by expanding and
transforming the features or response is addressed in Section 3.9. The range of f will
always be ℝ, except as briefly mentioned in Section 3.10.

Linear regression is an old technique3 and the subject of a large and excellent lit-
erature. The reader is directed to Rawlings et al. (2001) for a thorough introduction
to the theory and practice of fitting linear regression models to data, and to Searle
(1971) for more in-depth development of the theory.

3.1 General Framework

The model assumption of linear regression is that the function to be learned, f : ℝm →
ℝ, is linear.4 This means that, given a vector xi ∈ ℝm, f (xi) is the vector inner product

f (xi) = f𝜃(xi) = [ 1 xi1 xi2 … xim ]

⎡⎢⎢⎢⎣
𝜃0
𝜃1
⋮
𝜃m

⎤⎥⎥⎥⎦
= 𝜃0 + xi1𝜃1 +⋯ + xim𝜃m

for some fixed real (m + 1)-vector of parameters 𝜃 = (𝜃0, 𝜃1,… , 𝜃m)T. Observed
data (x1, y1),… , (xn, yn) are taken to be

yi = f𝜃(xi) + ei

for each i, where e1,… , en are realizations of independent, identically distributed
random variables with mean zero and unknown variance, 𝜎2. We do not assume that
e1,… , en are Gaussian-distributed, although we will make this assumption later,
starting in Section 3.6. In matrix notation with n observations, the data satisfy⎡⎢⎢⎢⎣

y1
y2
⋮
yn

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

f𝜃(x1) + e1
f𝜃(x2) + e2

⋮
f𝜃(xn) + en

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

1 x11 x12 … x1m
1 x21 x22 … x2m
⋮ ⋮ ⋮ ⋮
1 xn1 xn2 … xnm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜃0
𝜃1
⋮
𝜃m

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

e1
e2
⋮
en

⎤⎥⎥⎥⎦
.

2 Practice usually runs ahead of theory, and this can be observed in many aspects of machine learning.
See, in particular, Chapters 5 and 6.
3 Least-squares linear regression goes back to Legendre or Gauss.
4 Some readers, particularly those with a background in geometry or algebra, may insist that f as defined
here be called an affine function rather than a linear function unless 𝜃0 = 0. It is common in statistics to
ignore this distinction, and to call f linear whether 𝜃0 = 0 or not: we follow the statistical usage in this
book.
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Written more compactly,

y = x𝜃 + e,

where the n × (m + 1) matrix x (the design matrix), the n-long column vectors y and
e, and the (m + 1)-long parameter vector 𝜃 in the last equation are defined to be the
corresponding vectors and matrices in the one above it.

3.2 Loss

Although choice of loss function is subjective, squared-error loss

L(y, ŷ) = (y − ŷ)2

is by far the most commonly used, with absolute-error loss

L(y, ŷ) = | y − ŷ |
a distant second. This is partly a matter of computational and analytic convenience,
though Exercise 3.7 shows that squared-error loss also arises naturally from an addi-
tional model assumption and a widely used parameter estimation criterion. An advan-
tage of absolute-error loss is that the fitted model is more robust to outliers in the data
and so regression with absolute-error loss is sometimes called robust regression. This
chapter addresses squared-error loss exclusively.

Exercise 3.1 Suppose that there are no observable features, and that the response Y
is real-valued, so the linear model of Section 3.1 is Y = 𝜃0 plus mean-zero noise. The
predicted value for future Y’s is 𝜃0. Compute the risk of predicting any given value
of 𝜃0, and find the risk-minimizing value or values of 𝜃0, under

(A) squared-error loss, and

(B) absolute-error loss.

Hint: The answers will be in terms of the distribution of Y. For part (B), the fact
that |Y − 𝜃0| = ∫ 𝜃0

−∞[Y ≤ t]dt + ∫ ∞
𝜃0

[Y > t]dt may be useful, and it may be assumed
that the cumulative distribution function of Y is continuous on ℝ or, even more, that
Y has a density function on ℝ.

3.3 Estimating the Model Parameters

Given an (m + 1)-long (column) parameter vector 𝜃, the linear model predicts that at
point

xi = (xi1,… , xim)

in feature space, the response will be

(1, xi)𝜃.
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The difference between an actual response yi from observed datum (xi, yi) and the
predicted response (1, xi)𝜃 is

ei = yi − (1, xi) 𝜃.

Viewed this way, ei is what is left over from the observed response, after the effect of
the model has been removed. For this reason, e1,… , en are called residuals.

Using training risk as an estimate of risk, searching for a minimum-risk approxi-
mation to f𝜃 is equivalent to searching for a parameter vector 𝜃 which minimizes the
training risk,

n × R̂train(f𝜃) =
∑n

i=1

(
yi − (1, xi1,… , xim)(𝜃0, 𝜃1,… , 𝜃m)T

)2

= (y − x𝜃) T (y − x𝜃) = eTe =
∑n

i=1 e2
i = RSS.

Note that the training risk is equal to the sum of the squares of the residuals: it is called
the residual sum of squares and denoted RSS. Since minimizing training risk is equiv-
alent to minimizing the residual sum of squares, fitting a linear model under squared-
error loss is called least-squares linear regression.5 Minimizing the quadratic form
(y − x𝜃) T (y − x𝜃) over 𝜃 ∈ ℝm+1 is an exercise in multivariate calculus.

Exercise 3.2 Show that the unique minimizer of R̂train(f𝜃) = 1
n

(y − x𝜃) T (y − x𝜃)
is

𝜃 = (xTx)−1xT y,

when x is of full rank.6

5 The term regression, coined by Francis Galton in the 19th century, has its origin in “regression toward
mediocrity” which he observed in the height of adult children of exceptionally tall or exceptionally short
parents. Specifically, Galton’s fitted model was

adult child’s height = 1
3

population mean height + 1
3

father’s height + 1
3

mother’s height.

In fitting this model, Galton multiplied all female heights by 1.08 “so that no objection grounded on
the sexual difference of stature need be raised when I speak of averages” (Galton, 1886). Thus Galton’s
models are actually

adult son’s height = 1
3

population mean height + 1
3

father’s height + 1.08
3

mother’s height.

and

adult daughter’s height = 1
3.24

population mean height + 1
3.24

father’s height + 1
3

mother’s height.

The fact that the mother’s coefficient is larger than the father’s has drawn comment (Pagano and Anoke,
2013).
6 When x is not of full rank, the inverse of xTx in the expression for the least-squares estimate for 𝜃 must
be replaced by a generalized inverse. In this case, there is a (translated) non-trivial linear subspace of
parameter vectors 𝜃, all of which minimize (y − x𝜃) T (y − x𝜃). By convention, the shortest such vector
is presented as the least-squares solution, together with a basis for the subspace. Full details are given in
Searle (1971).
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With respect to squared-error loss, using training risk to estimate risk, the optimal
linear approximation is f̂𝜃(x) = f

𝜃
(x).

3.4 Properties of Fitted Values

Let 𝜃 denote the least-squares estimate for 𝜃 found in Exercise 3.1, 𝜃 = (xTx)−1xTy.
These are the fitted model parameters. Let i denote the n × n identity matrix and let h
denote the n × n matrix x

(
xTx

)−1
xT. The fitted response and the fitted residuals are

respectively

ŷ = x 𝜃 = h y and ê = y − ŷ = (i − h) y.

Given a new feature vector xn+1 which does not appear in the training data, the pre-
dicted response at xn+1 is

ŷn+1 = f̂𝜃(xn+1) = f
𝜃
(xn+1) = (1, xn+1)𝜃.

Exercise 3.3 The symmetric n × n matrix h = x(xTx)−1xT is called the hat matrix
because multiplication by h “puts the hat on y” in the sense that ŷ = hy. Prove three
properties of the hat matrix:

(A) hh = h, that is, h is idempotent;

(B) hx = x, that is, h acts as the identity map on the column space of the design
matrix x;

(C) hz = 0 for any n-long vector z orthogonal to the column space of x. Hint:
This will be useful in Exercises 3.4 and 3.5.

Together, parts (A), (B), and (C) of Exercise 3.3 say that left multiplication by h
is a linear projection of ℝn into the column space of x. The column space of x is
precisely the set of n-long vectors of the form

⎡⎢⎢⎢⎣
1 x11 x12 … x1m
1 x21 x22 … x2m
⋮ ⋮ ⋮ ⋮
1 xn1 xn2 … xnm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜃0
𝜃1
⋮
𝜃m

⎤⎥⎥⎥⎦
,

that is, the column space of x is the space of n-long vectors which can be realized as
the response of some linear model applied to the inputs x1, x2,… , xn with no error.

The fundamental random thing in the linear model is the vector of residuals, e,
with

E [e] = 0 and Var [e] = 𝜎
2 i.
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From this, it follows that y is also random,7 with

E [y] = x𝜃 and Var [y] = 𝜎
2 i,

and therefore all of the fitted and predicted values, being linear functions of y, are
also random.

Exercise 3.4 Show that the expected values and variances of the fitted and predicted
values are as follows, where xn+1 is a feature vector not in the training data and ŷn+1
is the estimated response at xn+1:

E[𝜃] = 𝜃 Var[𝜃] = 𝜎
2 (xTx)−1

E[ŷ] = E[y] Var[ŷ] = 𝜎
2 h

E[̂yn+1] = (1, xn+1)𝜃 Var[̂yn+1] = 𝜎
2(1, xn+1) (xTx)−1 (1, xn+1)T

E[̂e] = 0 Var[̂e] = 𝜎
2 (i − h).

Note that 𝜎2 and 𝜃 are unknown, while y, x, h, i, and xn+1 are known. Hint: Recall
that the variance of a real random variable Z satisfies Var [Z] = E[Z2] − E [Z]2.

The exercise shows that the fitted and predicted values are unbiased estimates of
the quantities they are estimating: the bias of an estimator ẑ of a fixed quantity z is
E[̂z] − z, and an estimator is unbiased if its bias is zero. In particular, 𝜃 is an unbiased
estimate of the model parameters, 𝜃. Historically, unbiasedness has been considered
a desirable property, and effort concentrated on finding optimal unbiased estimates,
where optimal usually meant minimal variance under certain restrictions. Since the
1960’s, however, it has been appreciated that biased parameter estimates can lead
to better predictive linear models, and that there is a bias–variance trade-off to be
managed. Chapter 5 is devoted entirely to the bias–variance trade-off, beginning with
the case of least-squares regression.

Two other sums of squares will be useful later: the total sum of squares is

TSS =
n∑

i=1

(yi − ȳ)2,

where ȳ = 1
n

∑n
i=1 yi is the mean response in the data. The TSS measures the overall

variability of the observed response about its mean: it is (n − 1) or n times the sample

7 It may strike the reader as strange that y, a vector of responses which has been observed, is random.
The reader may also be surprised to learn that the unknown parameter vector 𝜃 is not random. This is the
traditional statistical viewpoint: it is not the only one, or necessarily the best one.
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variance of the response.8 It is a property only of the data, not of the linear model.9

The model sum of squares is

MSS =
n∑

i=1

(̂yi − ȳ)2
.

The MSS measures the overall variability of the fitted values about the mean observed
response. When MSS is large relative to TSS, the fitted values vary about the mean,
and they can only do so through the presence of some estimated linear effect (that is,
because some of the components of 𝜃 are not zero). Conversely, when MSS is small
relative to TSS, this suggests that the fitted linear model does not explain much of the
variability in the data. In terms of fitted values, the residual sum of squares is

RSS =
n∑

i=1

(yi − ŷi)
2,

and it measures the variability of the observed response around the fitted response: a
way to interpret this is as the variability in the data not explained by the linear model.

Exercise 3.5 Show that

TSS = MSS + RSS.

Hint: TSS, MSS, and RSS are the squared lengths of certain vectors. Show that one of
these vectors is the sum of the other two, and that the two summands are orthogonal
to each other.

A statistic for assessing the quality of a fitted model, denoted R2, is defined in terms
of RSS, MSS, and TSS:

R2 = 1 − RSS
TSS

= MSS
TSS

.

It is interpreted as the proportion of the variation in the observed response which is
explained by the model. See Section 7.9 for further discussion, including a modifica-
tion of R2, called adjusted R2, which balances the proportion of variation explained
against the number of non-zero parameters in the model.

8 Depending on whether one divides by (n − 1) or n in computing the sample variance.
9 Another way to view TSS is as the residual sum of squares of a linear model consisting only of param-
eter 𝜃0, the least-squares estimate of which is 𝜃0 = ȳ.
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Exercise 3.6 Show that R2 = r2, where r is the sample correlation of the vector of
observed responses (y1,… , yn) with the vector of fitted responses (̂y1,… , ŷn),

r =
1

n−1

∑n
i=1(yi − ȳ)(̂yi − ȳ)√

1
n−1

∑n
i=1(yi − ȳ)2

√
1

n−1

∑n
i=1(̂yi − ȳ)2

.

Hint: In the numerator of r, write yi − ȳ as yi − ŷi + ŷi − ȳ. In the process of solving
Exercise 3.5, one shows that the vector ŷ − ȳ1 is orthogonal to the vector ê, where 1
is the n-long vector (1, 1,… , 1).

3.5 Estimating the Variance

There is another parameter in the model to be addressed: 𝜎2, the variance of the
residuals. It is not important for determining the least-squares estimate of the model
parameters 𝜃—we have seen that 𝜃 = (xTx)−1xTy—but estimating 𝜎2 is essential
for making statistical inferences about the response in terms of fitted or predicted
values.

The last line of Exercise 3.4 (E[̂e] = 0 and Var[̂e] = 𝜎
2(i − h)) and an intermediate

deduction needed in solving Exercise 3.5 (the fact that RSS = êTê) can be applied to
show that

E [RSS] =
n∑

i=1

E
[
ê2

i

]
=

n∑
i=1

E
[
ê2

i

]
− E

[
êi

]2 =
n∑

i=1

Var[êi]

=
n∑

i=1

𝜎
2 (1 − hii) = 𝜎

2 (n − tr(h)).

Recalling a result from linear algebra, and assuming x is full rank,10

tr(h) = tr(x(xTx)−1xT) = tr((xTx)−1xTx)

= tr((m + 1) × (m + 1)identity matrix) = m + 1,

so

E [RSS] = 𝜎
2 (n − m − 1).

Thus an unbiased estimate for the residual variance 𝜎2 is

𝜎
2 = RSS

n − m − 1
.

10 The trace of a square n × n matrix h is the sum of the diagonal elements, tr(h) =
∑n

i=1 hii. Generally,
the trace tr(h) is the rank of h. For any two matrices A and B, tr(AB) = tr(BA).
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3.6 A Normality Assumption

We now add the assumption that the residuals are Gaussian-distributed, that is, that
e1,… , en are independent, identically distributed N(0, 𝜎2). It then follows that y, 𝜃,
ŷ, ŷn+1, and ê are also Gaussian-distributed with the means and variances given in
Exercise 3.4.

Furthermore, for i = 1,… , m, let

ti =

𝜃i−𝜃i√
(xTx)−1

ii√
RSS

n−m−1

(3.1)

and let

F =
MSS

m

RSS
n−m−1

= n − m − 1
m

(TSS
RSS

− 1
)
. (3.2)

From the theory of quadratic forms of Gaussian random variables,11 it can be shown
that statistics ti have Student’s t distribution,

ti ∼ tn−m−1,

and, if 𝜃1 = 𝜃2 = ⋯ = 𝜃m = 0, statistic F has Snedecor’s F distribution,

F ∼ Fm,n−m−1.

These two facts play a central role in testing hypotheses about the parameter vector
of a linear model.

For any given value 𝜈, both the hypothesis that 𝜃i = 𝜈 and the hypothesis that 𝜃i ≤ 𝜈

can be tested by computing the statistic ti of (3.1) with 𝜃i = 𝜈. The null hypothesis that
𝜃i ≤ 𝜈 is rejected (in favor of the alternative hypothesis that 𝜃i > 𝜈) if the probability
that a tn−m−1-distributed random variable exceeds the observed value of ti is below
a user-specified threshold, 𝜏. The null hypothesis that 𝜃i = 𝜈 is rejected (in favor of
the alternative hypothesis that 𝜃i ≠ 𝜈) if the probability that the absolute value of a
tn−m−1-distributed random variable exceeds the observed absolute value of ti is below
a user-specified threshold, 𝜏. The hypothesis that the ith feature plays no real role in
the fitted linear model, and therefore should be excluded from the model, is equivalent
to the hypothesis 𝜃i = 0.

The hypothesis that 𝜃1 = 𝜃2 = ⋯ = 𝜃m = 0 is tested by computing the statistic F
of (3.2). This hypothesis is rejected (in favor of the alternative hypothesis that 𝜃i ≠ 0
for some 1 ≤ i ≤ m) if the probability that an Fm,n−m−1-distributed random variable
exceeds the observed value of F is below a user-specified threshold, 𝜏.

11 See, for example, Mardia et al. (1979).
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Under the assumption of independent N(0, 𝜎2)-distributed residuals, the likelihood
of the data for a given parameter vector 𝜃 is

P(y1,… , yn | x1,… , xn, 𝜃, 𝜎2) =
n∏

i=1

(
(2𝜋𝜎2)−

1
2 exp

(
−

(yi − (1, xi)𝜃)2

2𝜎2

))
, (3.3)

or, equivalently, the log-likelihood is

logP(y1,… , yn | x1,… , xn, 𝜃, 𝜎2) = −n
2
log(2𝜋𝜎2) − 1

2𝜎2

n∑
i=1

(yi − (1, xi)𝜃)2
.

Exercise 3.7 Show that the parameter estimates 𝜃 = (xTx)−1xTy and 𝜎
2 = RSS

n
maximize the likelihood of the data in (3.3). Compare these estimates to the least-
squares estimate of 𝜃 and the unbiased estimate of 𝜎2.

Exercise 3.7 shows that under the normality assumption, the least-squares param-
eter estimate 𝜃 is the maximum-likelihood estimate for 𝜃. Thus squared-error loss
in the learning problem can arise implicitly in regression from a decision to use a
maximum-likelihood estimate for a model with independent, Gaussian-distributed
residuals. Maximum-likelihood estimates have many useful properties and are com-
monly used as estimates. Note that the maximum-likelihood estimate for 𝜎2 is not
the unbiased estimate derived in Section 3.5.

The assumption that errors are Gaussian-distributed should be checked. This can
be done graphically with a quantile–quantile plot or by applying tests in D’Agostino
and Stephens (1986), Mardia et al. (1979), or Thode (2002).

3.7 Computation

In practice, 𝜃 = (xTx)−1xTy is not found by computing a matrix inverse.12 Instead,
the QR-decomposition of x, x = QR, is computed and 𝜃 is obtained as follows.13

Exercise 3.8 Assuming that x is full rank, show that 𝜃, the least-squares parameter
estimate, is the solution of the (m + 1) × (m + 1) triangular system of equations

first m + 1 coordinates of R𝜃 = first m + 1 coordinates of Q
T
y

where x = QR is the QR-decomposition of x.

12 A famous academic statistician once threatened his entire Statistical Computing class with death if
any of them were caught estimating 𝜃 by inverting xTx (the author was a student in this class).
13 In the QR-decomposition of x, Q is a n × n orthogonal matrix (meaning QT = Q−1) and R is a n ×
(m + 1) upper triangular matrix. The obvious way to compute the QR-decomposition, by Gram–Schmidt
orthonormalization, is numerically unstable. The QR-decomposition should be computed by one of the
methods described in Gentle (1998) or Golub and Van Loan (1996).
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In light of Exercise 3.8, it is sufficient to compute the n-long vector Q
T
y directly

rather than computing the n × n orthogonal matrix Q and then multiplying it by y.
This is what is done in practice (Gentle, 1998; Golub and Van Loan, 1996).

3.8 Categorical Features

A categorical feature taking values in an unordered set of size K can be encoded in
a set of K or K − 1 binary (and hence real-valued) features by the use of indicator
functions. For simplicity, say the model input consists of a single categorical feature,
so the ith input is xi = (xi1), and identify the set in which xi takes values with the
(unordered) set {1,… , K}. One way to encode the categorical feature is to define
vectors z1,… , zn by

zi = xith standard basis vector of ℝK = (0,… , 0, 1, 0,… , 0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1 in coordinate xi,
0’s elsewhere,

and to use the real K-dimensional feature vectors zi as input to a linear model. The
binary indicator variables zi1,… , ziK are called dummy variables for the categorical
variable xi and the vector of dummy variables (zi1,… , ziK) is called a one-hot encod-
ing of the categorical variable xi.

For example, if feature x1 is categorical and takes values in the set {orange, blue,
purple}, and if we arbitrarily identify orange with 1, blue with 2, and purple with 3,
then the design matrix

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 blue
1 orange
1 orange
1 purple
1 blue
⋮ ⋮
1 purple

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is encoded as x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
1 1 0 0
1 1 0 0
1 0 0 1
1 0 1 0
⋮ ⋮ ⋮ ⋮
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In this encoding, the single categorical column of x has been expanded into three
binary columns: the first binary column is the indicator for orange, the second binary
column is the indicator for blue, and the third binary column is the indicator for
purple.
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This leads to a complication, since the design matrix

x =
⎡⎢⎢⎢⎣

1 z11 z12 … z1K
1 z21 z22 … z2K
⋮ ⋮ ⋮ ⋮
1 zn1 zn2 … znK

⎤⎥⎥⎥⎦
is no longer full rank. The original categorical feature xi1 takes exactly one value
among the K categories, so zi1 +⋯ + ziK = 1 for all i, and therefore for all i =
1,… , n,

(1, zi1,… , ziK)

⎡⎢⎢⎢⎣
−1
1
⋮
1

⎤⎥⎥⎥⎦
= −1 + zi1 +⋯ + ziK = 0.

Thus the binary encoding of a categorical variable has resulted in a design matrix
which has a column space of dimension K (instead of K + 1).

One way to address this complication is to omit the explicit intercept (represented
by the column of 1’s in the design matrix and model parameter 𝜃0). This only works
when there is exactly one categorical variable.14 Another way to address this com-
plication is to expand a categorical feature with K categories into K − 1 binary fea-
tures such that the corresponding K − 1 columns of the design matrix span a (K − 1)-
dimensional subspace of ℝn orthogonal to the n-long vector of all 1’s. This could be
done, for example, by truncating the last coordinate off the zi’s defined above. The
choice of approach affects the interpretation of the model parameters. If the inter-
cept is omitted, then model parameter 𝜃j is the expected response, given that xi takes
the value j. If the intercept is retained but the last coordinate of the zi’s is truncated,
then value K becomes a default value of xi, and model parameter 𝜃j is the effect, or
contrast, due to xi taking the value j instead of K.

In the example above, if

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 0 0
1 0 0
0 0 1
0 1 0
⋮ ⋮ ⋮
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
then the model parameters would be denoted as (𝜃1, 𝜃2, 𝜃3)—because 𝜃0 is usually
reserved to denote an intercept term, and there is none in this model—and 𝜃i would
be interpreted as the mean response for data with a feature x belonging to category i (in

14 This observation seems to have originated with Suits (1957).
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the example, 𝜃1 ↔ mean effect for being orange, 𝜃2 ↔ mean effect for being blue,
and 𝜃3 ↔ mean effect for being purple). If instead

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 1 0
1 1 0
1 0 0
1 0 1
⋮ ⋮ ⋮
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
then the model parameters would be denoted as (𝜃0, 𝜃1, 𝜃2), and 𝜃0 would be
interpreted as the mean response for all data, which by default are in cate-
gory 3 (purple). For i = 1, 2, 𝜃i would be interpreted as the contrast in mean
response due to the feature belonging to category i instead of category 3 (in
the example, 𝜃1 ↔ difference in mean effect for being orange instead of purple and
𝜃2 ↔ difference in mean effect for being blue instead of purple).

3.9 Feature Transformations, Expansions,
and Interactions

Linear regression can be made to capture non-linear relationships between the fea-
tures and the response by transformations of variables and expansion of bases. For
example, the model assumption could be that f is a quadratic function without cross
terms, which in practice is written as a linear function in an expanded basis,

f𝜃(xi) = 𝜃0 +
m∑

j=1

xij𝜃j +
m∑

j=1

x2
ij𝜃2j

or the model assumption could be that f is a quadratic function with cross terms
(called interactions),

f𝜃(xi) = 𝜃0 +
m∑

j=1

xij𝜃j +
m∑

j=1

x2
ij𝜃2j +

m∑
j=1

m∑
k=j+1

xijxik𝜃(j,k).

A continuous feature can be made categorical if there is reason to believe that what
is important is not so much the value of the feature as whether the feature exceeds
one or more thresholds. Such discretization can be done following the outline in
Section 3.8.

Exercise 3.9 Suppose feature vector x = (x1,… , xm) measures the amount of each
of m possible ingredients in a serving of food, and that a linear model f𝜃(x) is used to
approximate how much a person likes the item described by the ingredients x (large
positive values of f𝜃(x) are interpreted as “likes strongly” and large negative values
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are interpreted as “dislikes strongly”). In an item of food, let xa represent the amount
of asparagus, let xb represent the amount of bacon, and let xc represent the amount of
chocolate. Assume the linear model f𝜃(x) includes quadratic terms and interactions,
as above.

(A) Give values of 𝜃a and 𝜃c indicating that the person dislikes food containing
asparagus but likes food containing chocolate.

(B) Give values of 𝜃c and 𝜃2c indicating that the person likes food containing
chocolate up to a certain amount, but dislikes food containing too much
chocolate.

(C) Give values of 𝜃a, 𝜃c, and 𝜃(a,c) indicating that the person likes food contain-
ing asparagus and likes food containing chocolate, but dislikes food contain-
ing both asparagus and chocolate.

(D) Give values of 𝜃a, 𝜃c, and 𝜃(a,c) indicating that the person likes food contain-
ing asparagus and likes food containing chocolate, and especially likes these
two ingredients in combination.

(E) What is the meaning of 𝜃0 in this model?

(F) Suggest a discrete replacement of feature xb and a value of 𝜃b to indicate
that a person strongly dislikes food containing any amount of bacon, without
regard to how much bacon is in the food.

3.10 Variations in Linear Regression

The brief treatment of linear regression given in this chapter concludes with an even
briefer description of a few of the many variants which have been developed. Many
more can be found in books such as Rawlings et al. (2001).

Ridge regression is a technique which explicitly seeks to optimize a bias–variance
trade-off, about which much more will be said in Chapter 5. Given a value of a param-
eter 𝜆 ≥ 0, the ridge regression estimate of the linear model parameters 𝜃 is the value
𝜃𝜆 which minimizes

RSS + 𝜆
m∑

i=1

𝜃
2
i .

The ridge parameter 𝜆 is chosen to minimize some estimate of the risk of the fitted
model. Note that when 𝜆 = 0, ridge regression is least-squares regression and when
𝜆 > 0, parameters 𝜃1,… , 𝜃m will tend to be smaller than they would be for least-
squares regression. Note also that the intercept coefficient 𝜃0 is not penalized. Ridge
regression tends to produce lower-risk models than least-squares regression, particu-
larly when the features are highly correlated. This will be revisited in Section 11.4.
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Exercise 3.10 Given the ridge parameter 𝜆, show that the ridge regression parameter
estimates for the model

⎡⎢⎢⎢⎣
y1
y2
⋮
yn

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 x11 x12 … x1m
1 x21 x22 … x2m

⋮ ⋮ ⋮ ⋮

1 xn1 xn2 … xnm

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝜃0
𝜃1
⋮
𝜃m

⎤⎥⎥⎥⎦
are the same as the least-squares parameter estimates for the model

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
⋮
yn
0
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x11 x12 … x1m
1 x21 x22 … x2m
⋮ ⋮ ⋮ ⋮
1 xn1 xn2 … xnm

0
√
𝜆 0 … 0

0 0
√
𝜆 … 0

⋮ ⋮ ⋮ ⋮

0 0 0 …
√
𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝜃0
𝜃1
⋮
𝜃m

⎤⎥⎥⎥⎦
.

Thus computing parameter estimates for ridge regression has approximately the same
computational cost as computing parameter estimates for ordinary least-squares
regression (provided m ≪ n).

A technique related to ridge regression is the lasso,15 which minimizes

RSS + 𝜆
m∑

i=1

|𝜃i|.
Computing the lasso-fitted parameters is more expensive than the ridge or least-
squares-fitted parameters. Lasso performs a useful sort of automatic feature selection:
see Section 11.4 and Hastie et al. (2001).

Cases where additive noise terms are uncorrelated but have different variances can
be treated by a method called weighted least squares. Suppose that instead of

Var [e] =
⎡⎢⎢⎢⎣
𝜎

2

𝜎
2

⋱
𝜎

2

⎤⎥⎥⎥⎦
15 Lasso stands for “least absolute selection and shrinkage operator” in Tibshirani (1996b). A slightly
earlier approach was called the nonnegative garrote (Breiman, 1995).
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we have, for some k2
1,… , k2

n,

Var [e] =
⎡⎢⎢⎢⎣

k2
1𝜎

2

k2
2𝜎

2

⋱
k2

n𝜎
2

⎤⎥⎥⎥⎦
.

Define matrix

W =
⎡⎢⎢⎢⎣

k−2
1

k−2
2

⋱
k−2

n

⎤⎥⎥⎥⎦
.

The linear model

y = x𝜃 + e

can be transformed to

W
1
2 y = W

1
2 x 𝜃 + W

1
2 e,

where Var [W
1
2 e] = 𝜎

2I. The least-squares estimate of the parameters of the trans-
formed model is

𝜃 =
(
xTWx

)−1
xT W y.

Exercise 3.11 Show that 𝜃 above minimizes the weighted sum of squares

n∑
i=1

k−2
i (yi − (1, xi1,… , xim)(𝜃0, 𝜃1,… , 𝜃m)T)2

.

Weighted least squares can be used to assign greater or lesser importance to certain
observations. Cases where additive noise terms are correlated can be treated similarly,
taking W

1
2 to be an inverse Cholesky factor16 of the covariance matrix: that is, W

1
2 is

a non-diagonal n × n matrix such that

(
(Cov[Yi, Yj])

n
i,j=1

)−1
= W

1
2 T W

1
2 .

16 The Cholesky decomposition of a positive-definite real matrix M is a lower-triangular matrix W such
that M = WWT. Every positive-definite real matrix has a unique Cholesky decomposition.
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Linear regression can be expanded naturally to the case where f is vector-valued,
f : ℝm → ℝk. The vector-valued model assumption is

⎡⎢⎢⎢⎣
y11 y12 … y1k
y21 y22 … y2k
⋮ ⋮ ⋮

yn1 yn2 … ynk

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

1 x11 x12 … x1m
1 x21 x22 … x2m
⋮ ⋮ ⋮ ⋮
1 xn1 xn2 … xnm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜃01 𝜃02 … 𝜃0k
𝜃11 𝜃12 … 𝜃1k
⋮ ⋮ ⋮
𝜃m1 𝜃m2 … 𝜃mk

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣
e11 e12 … e1k
e21 e22 … e2k
⋮ ⋮ ⋮

en1 en2 … enk

⎤⎥⎥⎥⎦
.

The least-squares solution is found exactly as in the scalar-valued case.
Logistic regression is a technique for estimating probabilities, that is, continuous

response vectors (p1,… , pk) such that pi ≥ 0 for all i and p1 +⋯ + pk = 1. It does
this by mapping the range of f from the simplex of k-long probability vectors

{(p1,… , pk) ∈ ℝk : p1 ≥ 0,… , pk ≥ 0, p1 +⋯ + pk = 1}

into ℝk−1 by the map

(p1,… , pk) ↦

(
log

p2

p1
,… , log

pk

p1

)
and fitting a linear model by maximum-likelihood estimation, using a different sta-
tistical framework than additive Gaussian-distributed noise—see Section 4.6. Logis-
tic regression is an example of a generalized linear model, in which the observed
response is not itself a linear function of the features, but the result of applying
some other function, called the link function, to the output of a linear function of the
features.

Sometimes feature vectors in the data are themselves a random sample from a pop-
ulation, and inference about the whole population is desired. In this case, the features
are known as random effects, as opposed to non-random features which are called
fixed effects. In a random effects model there should be multiple observations of the
response for each feature vector. A simple analysis of variance (ANOVA) example is

yij = 𝜃0 + 𝜃i + eij,

where yij is the jth observation of a response from the ith feature vector, 𝜃0 is an
intercept, 𝜃i is the effect for the ith feature vector (𝜃i is a random variable with with
mean 0 and variance 𝜎2

𝜃
) and eij is the usual error in the response (eij is a random

variable with mean 0 and variance 𝜎2
e ). Inference about 𝜃0 and 𝜎2

𝜃
is inference about

the population from which the features were drawn. A model with both random and
fixed effects is a mixed effects model.
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3.11 Nonparametric Regression

There are many regression techniques which do not rely on a linear model, or even
on any statistical model at all. Many of the techniques for classification, presented
in Chapter 4, have analogous regression techniques. Looking ahead to Chapter 4, we
conclude this section with two examples, k-nearest-neighbor regression and regres-
sion trees. The reader may wish to read Chapter 4, at least up through Section 4.8,
and then return to this section.

A k-nearest-neighbor regressor is exactly like a k-nearest-neighbor classifier in
Section 4.5, except that instead of predicting the minimum-risk class for a new point
based on the class of k neighbors, the minimum-risk response is predicted based on the
response of k neighbors. For squared-error loss, the mean response of the k-nearest-
neighbors is predicted.

A regression tree is trained and used exactly as a classification tree in Section 4.8,
except that instead of predicting the minimum-risk class for a new point entering a
leaf node t of the tree based on the class of the data in t, the minimum-risk response
is predicted based on the response of the data in t. For squared-error loss, the mean
response of the data in t is predicted,

𝜇(t) = 1|training data entering node t| ∑
training data (xi, yi)

xi∈t

yi,

For squared-error loss, the impurity of a node is the sum over the data which enter it
of the squared deviations of the response around its mean,

I(t) =
∑

training data (xi, yi)
xi∈t

(yi − 𝜇(t))2,

that is, I(t) is the sample variance of the responses of the data in leaf node t.
Regression trees and k-nearest-neighbor regression are non-parametric regression

methods, because the number of parameters (the splitting criteria of non-leaf nodes
and the estimated response returned by leaf nodes in the case of trees, the number of
training data in the case of k-nearest-neighbors) are not fixed prior to training.
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Survey of Classification
Techniques

Understand the modeling premises implicit in the tools you use. And, if
you don’t, understand that, too.

—Mark Jacobson, personal communication, 2006

It’s a totally black-box, brainless approach. You don’t have to think—it
just works.

—Jeremy Howard, referring to random forests
in Down with Experts, 2012

The statistician cannot evade the responsibility for understanding the pro-
cess he applies or recommends.

—R. A. Fisher, The Design of Experiments, 1937

This chapter introduces the reader to a wide variety of approaches to the problem
of classification, that is, to the problem of supervised learning when the range of the
unknown function f is a discrete, unordered set of labels. It begins in Section 4.1
by developing an optimal (minimum risk) classifier, the Bayes classifier, under the
assumption that the joint probability distribution P(X, Y) from which data are drawn
in known. This assumption is totally unrealistic, of course, but analyzing the Bayes
classifier allows one to perceive and appreciate the role played by our subjectivity,
encoded in the loss function L(Y , f̂ (X)), and the roles played by various aspects of the
joint probability distribution P(X, Y).

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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The practical part of the chapter begins in Section 4.2, which contains a brief survey
of many ways to approximate components of the Bayes classifier which are unknown
in real applications, focusing in particular on the design principles behind practical
classification methods. Viewing most methods as approximations of the Bayes clas-
sifier provides a common theme uniting the 14 or so practical classification algo-
rithms described in Sections 4.4 through 4.9, which at first glance may appear to be
quite different from each other. Some of these methods (quadratic discriminant anal-
ysis, linear discriminant analysis, Gaussian mixture models, logistic regression) are
based on relatively simple statistical models; some (k-nearest neighbors, histograms,
kernel density estimation, support vector machines) are based on geometric insight;
and some are based on understanding of how humans solve problems, either at the
behavioral level (k-nearest neighbors, classification trees) or at the neurological level
(neural networks).

Understanding the design principles behind applied machine learning algorithms
can lead to tangible benefits. If one method works considerably better than another
on an applied problem, and the practitioner understands how both methods work,
then he or she has learned something about the data which should inform the next
steps taken (more on this in Section 4.10). If domain knowledge about an applied
problem suggests that useful structure relating feature vectors X to class labels
Y exists and has a given form, and the practitioner understands which methods
are (and are not) capable of efficiently approximating the structure believed to be
present in the data, then he or she can select a method or a small set of methods to
apply.1 Finally, classification methods occasionally need to be modified in order to
solve applied problems, and understanding the design principles behind the meth-
ods leads to better-informed modifications, which lead to a greater chance of applied
success.

4.1 The Bayes Classifier

Suppose that one of the following two things is known about how data are generated:
either class labels are drawn (independently) from a known conditional distribution
on the set of class labels {1,… , C} given the features,

P(Y = c |X) for c = 1,… , C,

1 For example, if the probability of class membership P(Y |X) is believed to change suddenly with
respect to small changes in a continuous feature, then one would be more inclined to use a classification
tree than logistic regression—or if logistic regression were used, one would certainly explore feature
transformations of the type described in Section 3.9 to help capture the non-linear behavior.
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or class labels are drawn from a known marginal distribution on class labels2 and
features are drawn from a known conditional distribution of features given the class,

P(Y = c) and P(X |Y = c) for c = 1,… , C.

The former can be recovered from the latter by Bayes’ theorem:3

P(Y = c |X) = P(X |Y = c)P(Y = c)
P(X)

= P(X |Y = c)P(Y = c)∑C
d=1 P(X, Y = d)

= P(X |Y = c)P(Y = c)∑C
d=1 P(X |Y = d)P(Y = d)

.

Taking a Bayesian viewpoint, one can interpret P(Y = c) as the prior probability that
the class label of a new datum is c and P(Y = c |X) as the posterior probability after
observing the feature vector X. Knowledge of either of these things (P(Y = c |X) or
both P(Y = c) and P(X |Y = c), for all c) implies knowledge of the risk (expected
loss) of predicting any class c, given a feature vector X:

R(c |X) = EY|X[L(Y , c)] =
C∑

d=1

L(d, c) P(Y = d |X)

=
C∑

d=1

L(d, c)
P(X |Y = d) P(Y = d)∑C
e=1 P(X |Y = e) P(Y = e)

∝
C∑

d=1

L(d, c) P(X |Y = d) P(Y = d),

the constant of proportionality being the reciprocal of P(X) =
∑C

d=1 P(X |Y = e)
P(Y = e).

The Bayes classifier classifies a new datum X as the class with minimum risk,
conditional on X. That is, at X = x the Bayes classifier predicts

f̂Bayes(x) = argminc∈{1,…,C}R(c |X = x) = argminc∈{1,…,C} EY|X=x[L(Y , c)]. (4.1)

Any ties in the argument of the minimum are broken arbitrarily because they have no
effect on risk. As indicated by Exercise 2.3, this results in minimum overall risk,

RBayes = R(̂fBayes) = EX[ min
c∈{1,…,C}

EY|X[L(Y , c)]].

2 Explicit knowledge of the marginal distribution of class labels P(Y = c) can be practically quite impor-
tant: for example, when one class is known to be much rarer than another class, but an equal number of
training data of each class are provided.
3 Bayes’ theorem states that P(Y = c |X) = P(X | Y=c)P(Y=c)

P(X)
.
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The overall risk of the Bayes classifier, denoted RBayes above, is called the Bayes
risk or, for 0–1 loss, the Bayes error rate. The Bayes classifier is widely regarded as
an optimal classifier, because minimization of risk is widely regarded as an optimal
strategy for making decisions.4

Exercise 4.1 Knowledge of the conditional distribution P(Y |X) enables construc-
tion of the Bayes classifier. Show that, in general, knowledge of the Bayes classifier
does not enable reconstruction of the conditional distribution P(Y |X). In this sense,
P(Y |X) contains stronger information than f̂Bayes. Hint: Show that there are distri-

butions P̃(Y |X) other than P(Y |X) which, when substituted for P(Y |X) in (4.1), do
not change the classification decisions made.

Exercise 4.2 Show that under 0–1 loss, the Bayes classifier classifies a new point X
as the class with maximum posterior probability,

argmaxc∈{1,…,C}P(Y = c |X).

Show that under 0–1 loss, if the prior distribution on classes is uniform then the Bayes
classifier classifies X as the class under which X has the greatest likelihood,

argmaxc∈{1,…,C}P(X |Y = c).

Exercise 4.3 Explicitly construct the Bayes classifier for Exercise 2.2 as a func-
tion of the observed one-dimensional feature X. Does the Bayes classifier have the
form “predict class 1 if the feature falls below a threshold, and otherwise predict
class 2”?

Exercise 4.4 Show that for risk-minimization, the following are equivalent:

(A) an arbitrary prior distribution (p1, p2,… , pC) and a loss function which
depends only on the true class, that is,

L(d, c) =
{
𝛼d if d ≠ c
0 if d = c

for non-negative constants 𝛼1,… , 𝛼C;

(B) the 0–1 loss function and the prior distribution

P(Y = c) =
𝛼c pc∑C

d=1 𝛼d pd

for c = 1,… , C.

4 As noted in Section 2.5, there are other criteria for what makes a classifier “good.”
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4.2 Introduction to Classifiers

The Bayes classifier classifies a new datum X to be the class c which minimizes the
risk,

R(c |X) =
C∑

d=1

L(d, c) P(Y = d |X) ∝
C∑

d=1

L(d, c) P(X |Y = d) P(Y = d).

In real life P(Y = d |X), P(X |Y = d), and P(Y = d) are unknown. Thus some kind of
approximation is needed in order to follow the strategy of the Bayes classifier. The
approximation may be of either the conditional distribution on class labels given the
features,

P(Y = d |X),

or both the marginal distribution of class labels5 and the conditional distribution on
features given the class label,

P(Y = d) and P(X |Y = d).

Description of what is approximated, and how it is approximated, provides an intro-
duction to the practical algorithms described in Sections 4.4 through 4.9.

A likelihood method approximates the likelihood function P(X |Y = d) separately
for each class d either by positing a specific parametric form for this distribution and
using training data to approximate the parameters of this form or by fitting a non-
parametric statistical model to the training data of each class separately. Likelihood
methods are among methods which require that the marginal distribution of class
labels P(Y = d) be specified, or that it be learned from the training data.

A prototype method approximates P(Y = d |X) by assuming that this probability
changes slowly with respect to some kind of distance6 on  , the set of feature vec-
tors. Given a feature vector X, the distribution P(Y = d |X) is approximated by the
distribution of the class labels among a set of prototypical data points near X (what
“near” means may depend on the data). Depending on the specific method employed,
prototypical data points may be observed data or may be synthetic points which cor-
respond to no single, observed data point.

5 If it is believed that new data will be generated in approximately the same way as the training data, the
proportion of the training data belonging to the cth class, nc

n
, is a reasonable value to use for P(Y = c). In

some cases, though, very rare classes d are deliberately over-represented in training data, to better enable
estimation of P(X | Y = d): in such cases, it is important to estimate the marginal probability P(Y = d)
by other means than its proportion in the training data!
6 A distance function 𝛿 maps  ×  → [0,∞) such that 𝛿(x1, x1) = 0 and 𝛿(x1, x2) = 𝛿(x2, x1) for all
x1, x2 ∈  . We do not assume that 𝛿 satisfies any other properties, such as a triangle inequality, or even
that 𝛿(x1, x2) = 0 implies x1 = x2 (that is, we distinguish between the case x1 = x2 and the case that a
particular distance function 𝛿 cannot detect any difference between x1 and x2).
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A logistic regression classifier approximates P(Y = d |X) by assuming that for
classes d = 2,… , C, the log-odds in favor of class d over class 1,

log P(Y = d |X)
P(Y = 1 |X)

,

is a linear function of the features. Thus approximating P(Y = d |X) is akin to esti-
mating the parameters of C − 1 linear functions(

log P(Y = 2 |X)
P(Y = 1 |X)

,… , log P(Y = C |X)
P(Y = 1 |X)

)
,

through regression, as described in Chapter 3.
A neural network approximates P(Y = d |X) in a way very much like a logistic

regression classifier, except that it models the log-odds not as a linear function of
the features, but as a linear function of the outputs of other functions called neurons.
Approximating P(Y = d |X) with a neural network means simultaneously estimating
the parameters of the linear function and the parameters of the neurons.

A classification tree approximates P(X |Y = d) by partitioning feature space into
regions and approximating, for each region t,

P(X ∈ t |Y = d).

Classification trees are similar both to prototype methods (if feature vector X is in
region t, the training data in t are “near” X and used to predict a class label for X) and to
likelihood methods (within each region t, P(X |Y = d) is approximated by a constant,
P(X ∈ t |Y = d)). The partitioning of feature space into regions also depends on the
training data.

The author does not see how a support vector machine fits into this paradigm.
Support vector machines use a type of loss function which depends not only on the
true and predicted class labels, but also on the point x at which the prediction is made
(a support vector machine can incur positive loss for predicting the correct class at
x ∈ ). Support vector machines will be motivated geometrically in Section 4.9.

4.3 A Running Example

A toy example is used throughout this chapter and Chapters 5 and 6 to illustrate
the behavior of classification methods: in particular, to show classification decisions
made at points in feature space and method-specific details such as estimated likeli-
hood functions for each class. In this example, there are three classes, orange, blue,
and purple, and feature vectors are in  = ℝ2.

The three classes are equally likely:

P(Y) =
⎧⎪⎨⎪⎩

1
3

if Y = orange
1
3

if Y = blue
1
3

if Y = purple

.
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Means defining class densities Example training data

Figure 4.1 The left-hand cell shows a set of nine points which define the class den-
sities of each of three classes, orange, blue, and purple. The points lie on circles of
radius 1, 2, and 3 centered at the origin and angularly consecutive points are sep-
arated by an angle of 2𝜋

9
. The distribution of the data in each class is a mixture of

three equally weighted Gaussian distributions with means shown and unit covariance
matrix. The right-hand cell shows a set of 150 points drawn randomly from this dis-
tribution: there are 48 orange, 49 blue, and 53 purple points. The points shown are
used for training classifiers in the examples below.

Within each class, features are distributed as an equal-weight mixture of three
two-dimensional Gaussian distributions with unit covariance matrix and different
means. The means of the nine Gaussians are shown in the left-hand cell of Fig-
ure 4.1, colored according to class. In polar coordinates, the orange means are
{(3, 3𝜋

9
), (2, 5𝜋

9
), (1, 7𝜋

9
)}, the blue means are {(3, 9𝜋

9
), (2, 11𝜋

9
), (1, 13𝜋

9
)}, and the pur-

ple means are {(3, 15𝜋
9

), (2, 17𝜋
9

), (1, 1𝜋
9

)}. Thus, for example, the distribution of
X | (Y = orange) has density function

P(X = (x1, x2) |Y = orange) = 1
3

1
2𝜋

e
− 1

2

‖‖‖‖(x1, x2)−3
(
cos 3𝜋

9
, sin 3𝜋

9

)‖‖‖‖
2

+ 1
3

1
2𝜋

e
− 1

2

‖‖‖‖(x1, x2)−2
(
cos 5𝜋

9
, sin 5𝜋

9

)‖‖‖‖
2

+ 1
3

1
2𝜋

e
− 1

2

‖‖‖‖(x1, x2)−1
(
cos 7𝜋

9
, sin 7𝜋

9

)‖‖‖‖
2

.
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Data are generated from this model independently, one at a time, as follows. First
a class is chosen from P(Y), that is, uniformly at random from the set {orange,
blue, purple}. Then one of the three Gaussian distributions for the chosen class is
selected uniformly at random. Then a point inℝ2 is drawn randomly from the selected
Gaussian distribution.

A randomly drawn set of 150 points from the joint distribution P(X, Y) is shown in
the right-hand cell of Figure 4.1: there are 48 points from the orange class, 49 from
the blue class and 53 from the purple class. Throughout this and later chapters, clas-
sifiers will be trained on this dataset using 0–1 loss. A test set of 50,000 points drawn
from the same distribution is used to estimate the risk of trained classifiers.7 The data
illustrated in Figure 4.1 are given in Appendix D, along with fitted parameters of
many of the methods described in this chapter.

The likelihood functions for the three classes, and the classification decisions made
by the Bayes classifier, are shown in Figure 4.2. The Bayes risk, accurate to six dec-
imal places,8 is 0.191705.

4.4 Likelihood Methods

Suppose that the data from the cth class is randomly drawn from a distribution with
likelihood9 P(X |Y = c) on the sample space,  . A likelihood-based classifier uses
training data to compute an estimate P̂(X |Y = c) of the likelihood P(X |Y = c). Given
the marginal or prior distribution of the classes P(Y = c) (estimated from the training
data or obtained another way, as appropriate) the posterior distribution on the classes
is estimated by

P̂(Y = c |X) = P̂(X |Y = c)P(Y = c)∑C
d=1 P̂(X |Y = d)P(Y = d)

,

and a new data point X is classified to minimize estimated posterior risk.
The first three methods described in this section, quadratic discriminant analysis,

linear discriminant analysis, and Gaussian mixture models, are parametric methods,
because they specify a parametric form for the class densities. These have the advan-
tage of being cheap to implement and the disadvantage that they can produce rel-
atively high-risk approximations f̂ when the model assumptions on which they are

7 The risk estimates reported in this chapter and Chapters 5 and 6, obtained by applying trained clas-
sifiers to a 50,000-point test dataset and counting the proportion of errors made, all turned out to have
standard deviation about 0.0018 or 0.0019.
8 The Bayes risk was computed to six decimals of accuracy using numerical integration in Mathematica,
not estimated using the 50,000-point test set.
9 The likelihoods P(X | Y = c) need not be densities, but the constant of proportionality ∫ P(x | Y = c) dx
must be the same for all classes, that is, ∫ P(x | Y = c) dx = ∫ P(x | Y = d) dx for all classes c and d.
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True class densities Bayes predictions

Figure 4.2 The left-hand cell shows the density function for the orange data in
orange, the density function for the blue data in blue, and the density function for
the purple data in purple. In this example, the prior distribution of the classes is uni-
form and 0–1 loss is used, so at any point, the Bayes classifier predicts whatever class
has the highest density (Exercise 4.2). The regions of points classified by the Bayes
classifier as orange, blue, and purple are shown in the right-hand cell, with the class
boundaries highlighted in white. Shading in the right-hand cell is proportional to the
marginal density of the data, P(X): mistakes in bright areas contribute more to the
risk of a classifier than mistakes in dark areas. These plots are for comparison with
the plots illustrating the behavior of methods described in this chapter and Chapters 5
and 6. The Bayes risk for this problem is 0.191705.

based are far from the truth. The next two methods, kernel density estimation and
histograms, are non-parametric methods and can be expensive to implement. The last
method, the naive Bayes classifier, can be parametric, non-parametric, or a mixture
of the two (in which case it is a semi-parametric method).

4.4.1 Quadratic Discriminant Analysis

Suppose that for each class c, the likelihood function P(x |Y = c) is a Gaussian density
(all features must be real in order to use this method, so  = ℝm),10

P(x |Y = c) = 𝜙(x |𝜇c,Σc) = |2𝜋Σc|− 1
2 e−

1
2

(x−𝜇c)TΣ−1
c (x−𝜇c)

.

10 When applying likelihood methods which assume a Gaussian distribution, it is worth checking
whether the data really are approximately normally distributed. This can be done graphically with a
quantile–quantile plot or by applying tests in D’Agostino and Stephens (1986), Mardia et al. (1979), or
Thode (2002).
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QDA density estimate QDA predictions

Figure 4.3 Estimated class densities (left) and classification decisions (right) made
by quadratic discriminant analysis (QDA) trained on the data of Figure 4.1. The esti-
mated class boundaries are piecewise quadratic. Estimated class means are shown
by black dots, and level curves of the estimated densities with 50% of the probabil-
ity mass inside are shown by dashed lines (see Appendix C for how the level curves
were obtained). White curves show the Bayes class boundaries. QDA has estimated
risk 0.204.

The cth density is determined by a mean 𝜇c and a covariance matrix Σc, and train-
ing the density amounts to estimating these parameters, for example, by maximum
likelihood,11

(𝜇1,… ,𝜇C, Σ̂1,… , Σ̂C) = argmax(𝜇1,…,𝜇C ,Σ1,…,ΣC)

n∏
i=1

P(xi |Y = yi)

= argmax(𝜇1,…,𝜇C ,Σ1,…,ΣC)

C∏
c=1

n∏
i = 1
yi = c

P(xi |Y = c).

The name of this classifier comes from the fact that the estimated class boundaries
(surfaces which partition feature space into regions of homogeneous predicted class)
it produces are piecewise quadratic surfaces. Figure 4.3 illustrates the estimated
densities P̂(x |Y = c) and class predictions made by quadratic discriminant analysis
trained on the data of Figure 4.1.

11 Maximum likelihood estimation of parameters, which is typically used in QDA and several other
methods described in this section, is seeking a model which explains the training data well. It is not
explicitly seeking a model which is good at prediction.
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Exercise 4.5 Let (x1, y1),… , (xn, yn) be n independent draws from the joint distribu-
tion (X, Y), where for each class c = 1,… , C, the feature vector

X |Y = c ∼ N(𝜇c,Σc).

Show that the parameters 𝜇1,… ,𝜇C,Σ1,… ,ΣC which maximize the likelihood of the
feature vectors x1,… , xn conditional on the class labels y1,… , yn are given by

𝜇c =
1
nc

n∑
i = 1
yi = c

xi

and

Σ̂c =
1
nc

n∑
i = 1
yi = c

(xi − 𝜇c)(xi − 𝜇c)T =

(
1
nc

n∑
i = 1
yi = c

xixi
T

)
− 𝜇c𝜇c

T
.

where nc is the number of training data of class c. Hints: (1) maximizing the log-
likelihood is the same as maximizing the likelihood; (2) use matrix derivative iden-
tities (for any vectors v and w, and any invertible, symmetric matrix A, 𝜕

𝜕v
vTw = w,

𝜕

𝜕v
vTAv = 2Av, 𝜕

𝜕A
log |A| = A−1, and 𝜕

𝜕A
vTA−1v = −A−1vvTA−1).

The total number of parameters for each class is m (for the m-long vector 𝜇c) plus
m + m(m−1)

2
(for the m × m symmetric matrix Σ̂c), which is quite a lot when m is

large. If a class c is relatively rare, this can lead to an estimated covariance matrix Σ̂c

which is singular. Sometimes this problem is avoided by replacing Σ̂c by a convex
combination of Σ̂c and a covariance matrix Σ̂ estimated under the assumption that all
classes have the same covariance (see below for a definition of Σ̂)

𝛼 Σ̂c + (1 − 𝛼) Σ̂,

for some parameter 0 ≤ 𝛼 ≤ 1. This technique is called regularized discriminant
analysis. Sometimes the number of parameters is reduced to 2m per class by assuming
that the covariance matrix for each class is diagonal.

4.4.2 Linear Discriminant Analysis

Linear discriminant analysis is the same as quadratic discriminant analysis, except
that the covariance matrices of the class densities are assumed to be equal (it is regu-
larized discriminant analysis above with 𝛼 = 0). The estimated class boundaries are
piecewise linear, and the common covariance matrix Σ can be estimated from all of
the data. Figure 4.4 illustrates the estimated densities P̂(x |Y = c) and class predic-
tions made by linear discriminant analysis trained on the data of Figure 4.1.
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LDA density estimate LDA predictions

Figure 4.4 Estimated class densities (left) and classification decisions (right) made
by linear discriminant analysis (LDA) trained on the data of Figure 4.1. The estimated
class boundaries are piecewise linear. Estimated class means are shown by black dots,
and level curves of the estimated densities with 50% of the probability mass inside
are shown by dashed lines (see Appendix C for how the level curves were obtained).
Note that the level curves all have the same shape, differing only in location, unlike
QDA (Figure 4.3). White curves show the Bayes class boundaries. LDA has estimated
risk 0.229.

Exercise 4.6 Let (x1, y1),… , (xn, yn) be n independent draws from the joint distribu-
tion (X, Y), where for each class c = 1,… , C, the feature vector

X |Y = c ∼ N(𝜇c,Σ).

Show that the parameters 𝜇1,… ,𝜇C,Σ which maximize the likelihood of the feature
vectors x1,… , xn conditional on the class labels y1,… , yn are given by

𝜇c =
1
nc

n∑
i = 1
yi = c

xi

and

Σ̂ = 1
n

n∑
i=1

(
xi − 𝜇yi

)(
xi − 𝜇yi

)T =
C∑

c=1

nc

n
Σ̂c,

where nc is the number of training data of class c. Hint: See the hint for Exercise 4.5.

Exercise 4.7 In the case of C = 2 classes, the minimum-posterior-risk LDA class
boundary is a hyperplane. Establish this and find the equation of the hyperplane,
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given arbitrary priors P(Y = 1) and P(Y = 2) = 1 − P(Y = 1), an arbitrary loss func-
tion L with L(1, 1) = L(2, 2) = 0, and estimated class densities

P̂(x |Y = c) = 𝜙(x |𝜇c, Σ̂) = |2𝜋Σ̂|− 1
2 exp

(
−1

2
(x − 𝜇c)TΣ̂−1(x − 𝜇c)

)
.

Write the solution in the form “predict x is class 1 if x ⋅ v ≤ 𝛼.” What happens when
P(Y = 1) = 1

2
and L(1, 2) = L(2, 1)? Compare your solution to that of Exercise 2.2.

4.4.3 Gaussian Mixture Models

Suppose that for each class c, the likelihood function P(x |Y = c) is a mixture of
Gaussian densities,

P(x |Y = c) =
Jc∑

j=1

wjc 𝜙(x |𝜇jc,Σjc),

where 𝜙(x |𝜇,Σ) denotes a Gaussian density function with mean 𝜇 and covariance
matrix Σ, wjc are non-negative weights with w1c +⋯ + wJcc = 1 for each c, and
Jc > 0 is the number of mixture components for the cth class. Gaussian mixtures
are fit by the expectation-maximization (EM) algorithm described in Section 10.7.12

The number of mixture components Jc must be determined for each class using a
model selection criterion, such as those discussed in Chapter 7 (for example, a cross-
validation estimate of risk, or Akaike’s information criterion). Setting Jc = 1 for all
c is equivalent to QDA.

Using a Gaussian mixture model for a likelihood-based classifier can result in an
enormous number of parameters to estimate if m is large. Imposing structure on the
covariance matrices (such as all being equal to each other, or diagonal, or a scaled
identity matrix) can reduce the number of parameters.

Figure 4.5 shows two Gaussian mixture models fit to the data of Figure 4.1. The
first model used two Gaussian components for each class (J1 = J2 = J3 = 2), and
the second model used three Gaussian components for each class (J1 = J2 = J3 = 3).
It is obvious to the eye that the fitted three-component Gaussian mixture model per-
forms poorly (its risk, estimated from test data, is 0.228): yet a three-component
Gaussian mixture is the correct model, in the sense that the data were truly gen-
erated from a Gaussian mixture with three components per class. As measured by
likelihood (shown in Table 4.1), the fitted three-component model fits the training
data better than the true model: on average, each data point is assigned approximately
50% higher likelihood under the fitted model than under the true model.

12 In addition to presenting the expectation-maximization algorithm in general, Section 10.7 gives
complete details on fitting Gaussian mixture models via EM. In the example shown in Figure 4.5, the
Gaussian mixture for each class was fit by applying the expectation-maximization algorithm starting
from 1000 random starting states and retaining the single fit with maximal likelihood.
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Gaussian-mixture density estimate Gaussian-mixture predictions

Gaussian-mixture density estimate Gaussian-mixture predictions

Figure 4.5 Estimated class densities (left) and classification decisions (right) made
using Gaussian mixture models trained on the data of Figure 4.1. The upper two
cells correspond to Gaussian mixtures with two components for each class, and the
bottom two cells correspond to Gaussian mixtures with three components for each
class (graphing artifacts may cause a sawtooth appearance in densities which are truly
smooth). Note that a three-component Gaussian mixture is the correct model, in the
sense that the data were truly generated from a Gaussian mixture with three compo-
nents per class. White curves show the Bayes class boundaries. The Gaussian mixture
models have estimated risks 0.205 (two components per class) and 0.228 (three com-
ponents per class).

Some find it counter-intuitive that the “structurally correct” model could produce
a trained classifier with quite high risk. The high risk of this fitted model is due to
having too many parameters or too little data. In the language of Chapter 5, where this
issue will be addressed at length, the Gaussian mixture model with three components
for each class has low bias but high variance. Yet there is also merit in the intuition
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Table 4.1 The log-likelihood of the data of Figure 4.1, separated by class, under a
three-component Gaussian mixture model fitted by approximate maximum
likelihood (center column) and under the three-component Gaussian mixture model
from which the data were drawn (right column). In each class, the fitted model
assigns substantially higher likelihood to the data than the true model.

Log-likelihood of class c data,
fitted three-component model

Log-likelihood of class c data,
true three-component model

Class c = 1 −136.41 −153.10
Class c = 2 −145.45 −168.40
Class c = 3 −158.60 −179.53

that knowledge of the parametric form of the correct model should be helpful: see
Chapter 8, in particular Theorem 8.5, and also the comment on rates of convergence
in Section 4.4.5.

Using mixtures of Student’s t distributions in place of mixtures of Gaussians may
provide robustness against outliers. The density of Student’s t distribution with 𝜈
degrees of freedom is

P(x |𝜇,Σ, 𝜈) =
Γ
(
𝜈+m

2

)
(𝜋𝜈)

m
2 Γ

(
𝜈

2

) |Σ|− 1
2
(
1 + 𝜈−1(x − 𝜇)TΣ−1(x − 𝜇)

)− 𝜈+m
2 .

For small values of 𝜈, Student’s t distribution has much heavier tails than the Gaussian
distribution, while as 𝜈 → ∞, it approaches the Gaussian distribution. When 𝜈 = 1,
Student’s t distribution is called the Cauchy distribution.

4.4.4 Kernel Density Estimation

A kernel density estimate estimates the density function which produces a sample
of data by placing a probability mass at, and nearby, each observed datum. A kernel
density estimate for the data of class c, for c = 1,… , C, has the form

P̂(x |Y = c) = 1
nc

n∑
i = 1
yi = c

1
hm

c

K

(
x − xi

hc

)
,

where nc is the number of training data of class c, K :  → [0,∞) is a kernel function,
and hc is a parameter known as bandwidth.13 A kernel function in this context is any
function which is relatively large near zero and relatively small away from zero: two

13 Epanechnikov referred to the hc’s by the more descriptive term spreading coefficients (Epanechnikov,
1967).
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Gaussian kernel Epanechnikov kernel

K(x) = φ(x | 0, i) = (2π)−
m
2 e−

1
2x

T x K(x) =

{ Γ(m
2 +2)

π
m
2 (m+4)

m
2

(
1 − xT x

m+4

)
if xTx < m + 4

else0

Figure 4.6 Gaussian (left) and Epanechnikov (right) kernel functions. Both kernels
are probability density functions of distributions on ℝm with mean 0 and unit covari-
ance matrix.

commonly used kernel functions, the Gaussian and Epanechnikov kernels, are shown
in Figure 4.6.

The kernel density estimate P̂(x |Y = c) is large when the point x is near data of
class c and gets smaller as x gets farther from data of class c. The bandwidth parameter
hc controls how rapidly P̂(x |Y = c) decreases as x gets farther from data of class c.
Thus hc controls the smoothness14 of the density estimate: if hc is small, then there
is not much smoothing, while if hc is large, there is a lot of smoothing.

The effect of the bandwidth parameters hc is illustrated in Figure 4.7, where for
simplicity the constraint h1 = h2 = h3 was imposed. A value of the bandwidth param-
eter which is small (relative to the scale of the data) makes the density estimates
“spiky” and highly concentrated about the observed data. A middling value of the
bandwidth parameter produces density estimates which appear visually similar to
the true densities illustrated in Figure 4.1. A large value of the bandwidth parameter
results in a density estimate which is almost constant in a large neighborhood around
the data.

Multivariate kernel functions are sometimes built up as products of univariate ker-
nel functions. In that case

P̂(x |Y = c) = 1
nc

n∑
i = 1
yi = c

(
m∏

j=1

1
hc,j

Kj

(xj − xij

hc,j

))
,

where K1,… , Km are univariate kernel functions, xj and xij denote the jth coordinate
of x and xi respectively, and bandwidth parameters hc,j are allowed to depend on a
class c as well as a coordinate j in feature space. This can be useful when features are

14 In this book, the word smooth is used in its colloquial sense, not according to any technical definition.



Kernel density estimate, h = 0.1 KDE predictions, h = 0.1 

Kernel density estimate, h = 0.5 KDE predictions, h = 0.5 

Kernel density estimate, h = 5 KDE predictions, h = 5 

Figure 4.7 Estimated class densities (left) and classification decisions (right) made
using a Gaussian kernel density estimate with, from top to bottom, bandwidths
h = 0.1, 0.5, and 5, trained on the data of Figure 4.1. White curves show the Bayes
class boundaries. These kernel density estimates have estimated risks 0.246, 0.203,
and 0.261, respectively. Bandwidth h = 0.5 was selected as approximately optimal
using leave-one-out cross-validation, described in Section 7.3, to estimate risk from
the training data.
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Product kernel density estimate Product KDE predictions

Figure 4.8 Estimated class densities (left) and classification decisions (right) made
using a product Gaussian kernel density estimate, trained on the data of Figure 4.1
with bandwidths obtained from the normal reference rule, h1,1 = 0.76, h1,2 = 0.62,
h2,1 = 0.79, h2,2 = 0.67, h3,1 = 0.49, and h3,2 = 0.98. White curves show the Bayes
class boundaries. This kernel density estimate has estimated risk 0.199, although
leave-one-out cross-validation prefers the bandwidth h = 0.5 classifier shown in the
center cells of Figure 4.7.

measured on very different scales. The m-dimensional Gaussian kernel is a product
of m one-dimensional Gaussian kernels.

Common wisdom is that the choice of kernel function does not matter nearly as
much as a good choice of bandwidth parameter, although theoretical comparisons
of kernel functions have been made15 (Epanechnikov, 1967; Scott, 1992). Rules of
thumb have been developed for approximately optimal bandwidth selection, such as
the normal reference rule (Scott, 1992), which for product kernels is

hc,j =
(

4
nc(m + 2)

) 1
m+4

𝜎c,j,

where 𝜎c,j is the sample standard deviation of the jth feature coordinate among data
of class c. Note, however, that such rules generally select bandwidths which mini-
mize the risk of the kernel density estimate as an estimate of the true density with
respect to squared-error loss, and that optimality with respect to that criterion does
not imply optimality of a classifier based on the kernel density estimate. When using
kernel density estimation in a classifier, bandwidths should be tuned to optimize the
estimated risk of the classifier (though Figure 4.8 shows that the normal reference
rule can do well).

15 For some computational purposes, it is convenient to use a kernel function which is strictly positive on
all of  . The Gaussian kernel has this property, but the Epanechnikov kernel does not.



JWST888-c04 JWST888-Knox February 21, 2018 10:50 Printer Name: Trim: 6in × 9in

SURVEY OF CLASSIFICATION TECHNIQUES 51

Although the number of bandwidth parameters h1,… , hC is fixed in advance, note
that each observed datum (xi, yi) adds a term K( x−xi

hc
) to one of the density estimates,

and thus in effect the data are also parameters of the kernel density estimate, so the
number of parameters increases without bound as n → ∞. In this sense, kernel density
estimation is a non-parametric method. Since evaluation of P̂(x |Y = c) for each class
c involves one evaluation of the kernel function for each data point, KDE can be
expensive to implement when the number of data, n, is large.

4.4.5 Histograms

A histogram is a step-function approximation of a density function. As in kernel den-
sity estimates, histograms have a bandwidth parameter which must be chosen care-
fully. For each class c, a bandwidth-dependent tiling of feature space  into rectan-
gular cells is given. When  = ℝm, these cells are

Rc(i1,… , im)

= {(x1,… , xm)∈ℝm : i1hc,1 ≤ x1 < (i1 + 1)hc,1,… , imhc,m ≤ xm < (im + 1)hc,m},

indexed by (i1,… , im) ∈ ℤm, where hc,j is a bandwidth parameter for the jth feature
and the cth class. Given any feature vector x and any class c, let

Rc(x)

denote the rectangle Rc(i1,… , im) which contains x: the index vector (i1,… , im) is
found by setting

ij =
⌊ xj

hc,j

⌋
for j = 1,… , m, where ⌊r⌋ represents the integer floor of a real number r. For any
feature vector x and any class c, let n

Rc(x)
c denote the number of training data of class

c which fall in the rectangle Rc(x). The histogram density function estimate is

Note that unlike kernel density estimates, histogram density estimates depend on
a choice of origin in  in addition to bandwidth. The rectangular cells defined above
can be translated by addition of any constant vector in [0, hc,1) ×⋯ × [0, hc,m) to give
additional flexibility to the classifier. As with product kernel density estimates, rectan-
gular cells with different edge lengths hc,1,… , hc,m accommodate features measured
on different scales.

The effect of the bandwidth parameters hc,i is illustrated in Figure 4.10, where for
convenience the constraint h1,1 = h1,2 = h2,1 = h2,2 = h3,1 = h3,2 was imposed and

P x Y c
n

n V R
c
R x

c c

c

| ,1

where V(R
c
 ) = h

c,1
 … h

c,m
 is the volume of the rectangular cells for class c. This situation 

is illustrated in Figure 4.9. 
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R (−2,1)

x1

x2

–2×hc,1 –1×hc,1 0×hc,1 1×hc,1 2×hc,1

–2×hc,2

–1×hc,2

0×hc,2

1×hc,2

2×hc,2

P̂(x |Y = c) = for all x ∈

Figure 4.9 A partition of  = ℝ2 into a grid of hc,1 × hc,2 rectangles Rc(i, j), shown
with some of the purple data of Figure 4.1.

the lower-left corner of cell R(0, 0) is located at the origin for each class. A value of
the bandwidth parameter which is small (relative to the scale of the data) makes the
density estimates “spiky” and highly concentrated about the observed data. It also
causes many histogram cells to contain no data at all. In cells where R1(x) = ⋯ =
RC(x) = 0, the histogram classifier treats P(X = x |Y = c) as the same small, posi-
tive number for all classes c, and uses the estimate P(Y = c |X = x) ∝ P(Y = c) for
c = 1,… , C. A middling value of the bandwidth parameter produces density esti-
mates which appear visually similar to the true densities illustrated in Figure 4.1. A
large value of the bandwidth parameter results in a density estimate which is constant
in large rectangular regions.

Histograms are computationally more efficient than kernel density estimates, since
histogram cells are typically far fewer than the number of training data (this is shown
explicitly by the development of a histogram classifier using hash tables in Sec-
tion 14.9). On the other hand, histograms use the training data less efficiently than ker-
nel density estimates in the sense that, with bandwidths chosen appropriately (and in

dimension m = 1), the mean squared error of a histogram density estimate is O(n−
2
3 )

while the mean squared error of a kernel density estimate is O(n−
4
5 ). For comparison,

the mean squared error of a parametric density estimate is O(n−1) when the paramet-
ric model is correct. See Scott (1992) for details.

Histograms are particularly useful when knowledge about the data suggests that
there is a natural way for it to be binned into rectangular cells. Categorical features,
for example, have this property.

c

4
ncV (Rc)

Rc(1, 0)



Histogram density estimate, h = 0.5 Histogram predictions, h = 0.5

Histogram density estimate, h = 2 Histogram predictions, h = 2

Histogram density estimate, h = 8 Histogram predictions, h = 8

Figure 4.10 Estimated class densities (left) and classification decisions (right) made
using a histogram density estimate with, from top to bottom, bandwidths h = 0.5, 2,
and 8, trained on the data of Figure 4.1. These histogram density estimates have esti-
mated risks 0.444, 0.260, and 0.281, respectively. Bandwidth h = 2 was selected as
approximately optimal using leave-one-out cross-validation, described in Section 7.3,
to estimate risk from the training data. Points in empty histogram cells are predicted
to be the most frequent class (purple), which is the minimum-risk prediction based
on the estimated marginal distribution P(Y = c) = nc∕n.
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Exercise 4.8 Suppose that in a histogram classifier, the prior distribution on classes
(P(Y = 1),… , P(Y = C)) is estimated from the training data,

P(Y = c) =
nc

n
for c = 1,… , C. Show that at a feature vector x, the classifier predicts

Show that if, additionally, the classifier uses 0–1 loss, then the classifier predicts

4.4.6 The Naive Bayes Classifier

The naive Bayes classifier is a likelihood method which is based on the assumption
that the features (coordinates of X) are all independent, at least approximately. This
means that the likelihood function P(x |Y = c) for each class can be expressed as a
product of m marginal likelihoods: at the point x = (x1,… , xm),

P(x |Y = c) =
m∏

j=1

P(xj |Y = c).

The naive Bayes classifier is trained by estimating the one-dimensional coordinate
density P(xi |Y = c) for each class c and feature i in some way (any of the ways
above, for example) and plugging the estimates into the product. Figure 4.11 illus-
trates kernel density estimates of marginal densities P̂(x1 |Y = c) and P̂(x2 |Y = c),
the resulting estimated joint densities P̂(x |Y = c), and class predictions made by the
naive Bayes classifier trained on the data of Figure 4.1. This technique should not be
neglected merely because of its pejorative name.16

Exercise 4.9 Show that a naive Bayes classifier where all features are assumed to
be Gaussian-distributed is equivalent to a quadratic discriminant classifier where all
covariance matrices are assumed to be diagonal.

4.5 Prototype Methods

The general idea behind prototype methods is to classify new data points by consid-
ering the classes of nearby training data points, where “nearby” is defined in terms
of some kind of distance which makes sense for the application at hand. Training

16 The naive Bayes classifier is also known as the independence Bayes classifier, the simple Bayes clas-
sifier, and the idiot’s Bayes classifier Hand and Yu (2007).
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Naive Bayes density estimate Naive Bayes predictions
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Figure 4.11 Estimated class densities (upper left) and classification decisions (upper
right) made using a naive Bayes density estimate trained on the data of Figure 4.1. The
density estimate is formed from the product of two one-dimensional kernel density
estimates which used Gaussian kernels and bandwidth 0.7, shown in the lower two
cells (with one-dimensional projections of the data for reference). The naive Bayes
classifier has estimated risk 0.212. Bandwidth 0.7 was selected as approximately opti-
mal using leave-one-out cross-validation, described in Section 7.3, to estimate risk
from the training data.

data are represented by prototypes, which are feature vectors in  . Prototypes may
be observed data points or may be idealized data points.

4.5.1 k-Nearest-Neighbor

Given training data (x1, y1),… , (xn, yn) and a new point x, the k-nearest-neighbor
(KNN) algorithm classifies x to the most frequent class of the k nearest training data
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(ties, when possible, are usually decided randomly).17 Small values of k result in
wiggly class boundaries, while large values result in smooth ones. Taking k > 1 can
provide robustness in the presence of mislabeled training data. Every data point is a
prototype in the k-nearest-neighbor classifier.

The effect of the number-of-neighbors parameter k is illustrated in the left-hand
cells of Figure 4.12. A small value of k makes the behavior of the classifier sensitive
to particular data points. Note how the 1-nearest-neighbor classifier predicts that a
region in the top center of the upper-left cell is purple, due to the single out-lying
purple data point visible in at the top center of the right-hand cell of Figure 4.1.
Moderate values of k strike a balance between sensitivity to local variations in the
class densities and smoothing away noise in the data. Large values of k result in
classifiers which are relatively insensitive to local variations in the class densities.

Straightforward implementation of a k-nearest-neighbor classifier requires com-
putation of the distance between each new point X ∈  to be classified and every
training data point: O(n) work per point to be classified. If the number of points to be
classified is sufficiently large, a more efficient implementation of k-nearest-neighbor
can be achieved using a data structure called a multidimensional binary search tree
or, more commonly, a k-d tree (Bentley, 1975). A k-d tree requires O(n log n) work to
construct, but using a k-d tree requires only O(log n) work, on average, per point to
be classified.

This is a very old classification method: 1-nearest-neighbor goes back to a 1951
technical report of the United States Air Force School of Aviation Medicine (Fix and
Hodges, 1951). General k-nearest-neighbor is due to Cover and Hart (1967).

4.5.2 Condensed k-Nearest-Neighbor

Condensed k-nearest-neighbor is an attempt to get the performance of k-nearest-
neighbor at lower cost (Hart, 1968). Given training data (x1, y1),… , (xn, yn), a con-
densed set S is formed in the following way: initially, S = {(x1, y1)}. For i = 2,
3,… , n, if xi is misclassified by the k-nearest-neighbor classifier trained on S, then
(xi, yi) is added to S and otherwise is discarded. Once S has been constructed using
all of the training data, the condensed k-nearest-neighbor classifier is the k-nearest-
neighbor classifier trained on the subset S ⊆ {(x1, y1),… , (xn, yn)}. The condensed set
S is a set of prototypes which are actual data points. Of course, instead of training the
k-nearest neighbor classifier on S, one can use other classifiers—such as condensed
k-nearest-neighbor.

4.5.3 Nearest-Cluster

Nearest-cluster is another attempt to reduce the cost of k-nearest-neighbor. The idea
is simple: run a clustering algorithm on the training data from each class separately

17 The knn() function in R’s class package splits ties randomly for classification.
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9-NN predictions 6-Prototype LVQ predictions

100-NN predictions 3-Prototype LVQ predictions

Figure 4.12 Classification decisions made using k-nearest-neighbors (left) and
learning vector quantization (right), trained on the data of Figure 4.1. Numbers of
nearest neighbors k = 1, 9, and 100 produce estimated risks 0.248, 0.202, and 0.247,
respectively. Numbers of LVQ prototypes 60, 6, and 3 (20, 2, and 1 per class, shown
in black) produce estimated risks 0.213, 0.195, and 0.245, respectively. The values
k = 9 and 6 LVQ prototypes were selected as approximately optimal using leave-
one-out cross-validation, described in Section 7.3, to estimate risk from the training
data.
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(1) Draw a point (x,y) from the training data uniformly at random.

(2) Find the nearest prototype p to x and the distance d(p, x) between them.

(3) If p is a class-y prototype,

(4) move p towards x by distance ε d(p, x)
(5) else

(6) move p away from x by distance ε d(p, x).
(7) Update ε.

Figure 4.13 The learning vector quantization algorithm.

(see Chapter 9). The centers of the resulting clusters are the prototypes for each class,
and new data are classified by the k-nearest-neighbor classifier trained on the set of
prototypes (the class of a prototype is the class of the data from which it is con-
structed).

The class prototypes constructed by the nearest-cluster classifier need not be actual
training data points, as they were in k-nearest-neighbor and condensed k-nearest-
neighbor. For example, if  = ℝm and the k-means18 clustering algorithm (described
in Section 9.2) were used, the prototypes typically would not be observed feature
vectors. On the other hand, if the k-medoids clustering algorithm (described in Sec-
tion 9.6) were used, then the prototypes would be observed feature vectors.

4.5.4 Learning Vector Quantization

In the k-nearest-neighbor and nearest-cluster classifiers, prototypes for a class are
selected only based on the training data for that class, not based on all of the training
data.19 Learning vector quantization (LVQ), first described in Kohonen (1986), uses
all of the training data to choose the class prototypes. For each class, some number of
initial prototypes are chosen: this could be done by randomly sampling the training
data for each class or by using a clustering algorithm as in the nearest-cluster classi-
fier. Training the prototype set (which is the same as training the LVQ classifier) is
done by moving the prototypes toward data points of their own class and away from
data points of any other class. The trained LVQ classifier predicts the class at a point x
to be the class of the nearest prototype to x. Application of LVQ requires that feature
space  be such that a point x ∈  can move a given distance in a given direction
(for example,  = ℝm).

The training algorithm starts with a step size 𝜖 < 1 and iterates the steps shown in
Figure 4.13 until some convergence criterion or upper bound on iterations is reached.

18 The value of k in the k-nearest-neighbor classifier and the value of k in k-means or k-medoids cluster-
ing may be different. The double use of the letter k is an unfortunate collision in standard terminology.
19 While the k-nearest-neighbor and nearest-cluster classifiers choose prototypes to be representatives of
their class, the condensed k-nearest-neighbor and LVQ classifiers choose prototypes specifically for their
utility in performing the classification task at hand.
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Some versions of LVQ decrease 𝜖 in step (7) of every iteration, for example, by using
the update rule

𝜖i = 𝜖0

(
1 − i

I

)
,

where index i counts the iterations of the algorithm from 0 up to I − 1, and I is a
user-specified number of iterations to perform. Another, more sophisticated version
of LVQ20 uses different values of 𝜖 for each class c, updating 𝜖c in step (7) by the rule

𝜖c =
⎧⎪⎨⎪⎩

𝜖c

1+𝜖c
if x and p are of the same class

min
(
𝜖, 𝜖c

1−𝜖c

)
if x and p are of different classes,

where c is the class of prototype p and 𝜖 < 1 is the initial value of 𝜖1,… , 𝜖C. Thus
the training algorithm shrinks 𝜖c when it finds evidence that LVQ is performing well
on class c, and increases 𝜖c (up to a maximum of 𝜖) when it finds evidence that LVQ
is performing poorly on class c.

The effect of the number of prototypes k is illustrated in the right-hand cells of
Figure 4.12. In these examples, the prototypes were initialized by selecting proportion
P(Y = c) of the k points from feature vectors of class c uniformly at random without
replacement, for each c = 1,… , C. The “more sophisticated” update rule was used
with each 𝜖c initialized to 𝜖 = 0.3, and 6000 iterations were performed. Larger values
of k make the behavior of the LVQ classifier sensitive to particular data points, while
smaller values of k make the behavior less sensitive to particular data points. In the
extreme case of one prototype per class (k = C), the boundary between each pair of
classes is linear.

4.6 Logistic Regression

Logistic regression solves the classification problem by turning it into a regression
problem, explicitly estimating the vector of class probabilities

(P(Y = 1 |X),… , P(Y = C |X)).

Specifically, the model assumption made by logistic regression is that the (C − 1)-
long vector of log-odds with respect to some specified class, which without loss of
generality may as well be class 1,(

log P(Y = 2 |X)
P(Y = 1 |X)

,… , log P(Y = C |X)
P(Y = 1 |X)

)
,

20 This version is implemented in the R library class as function olvq1().
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is a linear function of the feature vector X. That is, it is assumed that

⎡⎢⎢⎢⎢⎢⎢⎢⎣

log P(Y=1 |X)
P(Y=1 |X)

log P(Y=2 |X)
P(Y=1 |X)

log P(Y=3 |X)
P(Y=1 |X)
⋮

log P(Y=C |X)
P(Y=1 |X)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0
𝜃2,0 𝜃2,1 ⋯ 𝜃2,m
𝜃3,0 𝜃3,1 ⋯ 𝜃3,m

⋮ ⋮ ⋮
𝜃C,0 𝜃C,1 ⋯ 𝜃C,m

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
1

X1
⋮

Xm

⎤⎥⎥⎥⎦
(4.2)

for some C × (m + 1) matrix of real parameters (m + 1 of which are constrained to
be zero)

𝜃 =

⎡⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0
𝜃2,0 𝜃2,1 ⋯ 𝜃2,m
𝜃3,0 𝜃3,1 ⋯ 𝜃3,m

⋮ ⋮ ⋮
𝜃C,0 𝜃C,1 ⋯ 𝜃C,m

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝜃1
𝜃2
𝜃3
⋮
𝜃m

⎤⎥⎥⎥⎥⎦
,

where 𝜃c denotes row c of 𝜃.
Given a value of matrix 𝜃, class-membership probabilities can be recovered from

(4.2). For c = 1,… , C, define linear functions

Tc = T(X, 𝜃c) = [𝜃c,0, 𝜃c,1,… , 𝜃c,m]

⎡⎢⎢⎢⎣
1

X1
⋮

Xm

⎤⎥⎥⎥⎦
= 𝜃c,0 +

m∑
j=1

𝜃c,jXj,

and note that T1 = T(X, 𝜃1) = 0. Linear function T(X, 𝜃c) is the logistic regression
estimate of the log-odds in favor of class c over class 1, log P(Y=c |X)

P(Y=1 |X)
, for c = 1,… , C.

Exercise 4.10 Show that under the logistic regression model assumption (4.2), the
probability that a feature vector X belongs to class c is21

P(Y = c |X) =
exp(T(X, 𝜃c))∑C

d=1 exp(T(X, 𝜃d))
. (4.3)

21 In the case of C = 2 classes, this results in one-dimensional real-valued functions,

P(Y = 1 |X) = 1
1 + exp(T(X, 𝜃2))

and P(Y = 2 |X) =
exp(T(X, 𝜃2))

1 + exp(T(X, 𝜃2))
= 1

1 + exp(−T(X, 𝜃2))
.

Thus P(Y = 1 |X) and P(Y = 2 |X) are the logistic function q(z) = 1
1+exp(−z)

, applied to the linear func-

tions ∓T(X, 𝜃2). The logistic function first arose as the solution of a boundary value problem for the
differential equation q′(z) = q(z)(1 − q(z)), and was named logistique by Verhulst (1838, 1844).

C
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means “data in class (+1 or −1) lie on or beyond the hyperplane {v : 𝜃⋆ v + 𝜃0 =
(+1 or −1)}, except for some error.” The PSVM constraint

yi(𝜃⋆ xi + 𝜃0) = 1 − 𝜉i

means “data in class (+1 or −1) lie on the hyperplane {v : 𝜃⋆ v + 𝜃0 = (+1 or −1)},
except for some error.” That is, a trained PSVM is approximating the data in the
two classes by a pair of parallel hyperplanes. Thus PSVM is essentially a prototype
method, where the class prototypes are not points, but hyperplanes. If kernelization
is used, then “hyperplane” becomes “manifold” in this statement, and the parallelism
between the two class prototypes exists in some higher-dimensional space.

The interpretation of PSVMs is made more explicit by rewriting (4.12) as

minimize over 𝜃⋆, 𝜃0: 1
2
‖𝜃⋆‖2 + 1

2
𝜃

2
0 + 1

2
𝛾
∑n

i=1(1 − yi(𝜃⋆ xi + 𝜃0))2 (4.13)

The sum in (4.13) is the total squared-error loss incurred by simultaneously fitting the
data in the two classes by the hyperplanes {v : 𝜃⋆ v − 𝜃0 = 1} and {v : 𝜃⋆ v − 𝜃0 =
−1}, while the other two terms penalize the size of the parameter vector 𝜃 = (𝜃0, 𝜃⋆).
Viewed this way, PSVMs are a rediscovery of ridge regression (see Chapter 3).

4.10 Postscript: Example Problem Revisited

The result of fitting the models described in this Chapter (and also some models
described in Chapter 6) to the example data of Figure 4.1 are summarized in Table 4.2
and Figure 4.34. It is interesting to note that while the Gaussian mixture model with
three components per class is the correct model, in the sense that the training data truly
were generated by such a model, it produced relatively poor predictive performance.
Many find this result counter-intuitive at first: this was addressed in Section 4.4.3 and
will be addressed further in Chapters 5 and 8.

It is absolutely not the purpose of Table 4.2 and Figure 4.34 to pass as evidence
that any classification method is superior to any other on any dataset besides the
one displayed in Figure 4.1. Nor was the dataset of Figure 4.1 designed to make any
method appear favorably compared to any other. What Table 4.2 and Figure 4.34 show
is that a range of different risks can be expected among classifiers trained on a given
set of data, and that the relative performance of the methods may give some clue to
the nature of the data. In this example, the classifiers of Chapter 4 fall naturally into
two sets separated by a significant performance gap: those with risk 0.2 or below,
and those with risk 0.220 or above. Seven of the eight classifiers with risk 0.220 or
above produce class boundaries which are piecewise hyperplanes, and among these,
performance tends to get worse when the hyperplanes are forced to be orthogonal
to the coordinate axes. We might infer from this that whatever the class boundaries

12
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Logistic regression predictions

Logistic regression log-odds vs ‘orange’ Logistic regression estimates of P(Y|X)

Figure 4.14 Classification decisions made using logistic regression trained on the
data of Figure 4.1 are shown in the upper cell. The class boundaries are piecewise
linear. The lower-left cell shows the three linear functions Tc: the blue plane is T2 =
T(x, 𝜃2), the log-odds in favor of the blue class over the orange class; the purple plane
is T3 = T(x, 𝜃3), the log-odds in favor of the purple class over the orange class; and the
orange plane is T1 = 0. The lower-right cell shows the three estimated probabilities
P̂(Y = c | x) for c = 1, 2, 3, plotted as functions of the features x. Logistic regression
has estimated risk 0.220.

4.7 Neural Networks

4.7.1 Activation Functions

A neural network classifier requires an activation function, which is often a “soft”
(piecewise differentiable) version of an indicator function. Most commonly used is
the sigmoid24 function,

𝜎(v) = 1
1 + e−v

,

24 The word sigmoid applies to any function shaped like the letter S, not just the logistic function shown
here.
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Figure 4.15 Activation functions used in neural networks.

which is a soft version of the indicator function25 [v ≥ 0]. This activation function is
graphed in the upper-left cell of Figure 4.15.

Other activation functions used sometimes in neural networks are the symmetric
sigmoid,

𝜎(v) = 2
1

1 + e−v
− 1 = 1 − e−v

1 + e−v
= tanh

( v
2

)
,

which is a sigmoid shifted and scaled to take values in (−1, 1), the rectified linear
unit (ReLU),

𝜎(v) =
{

0 v ≤ 0
v v > 0

,

and the radial basis function,

𝜎(v) = exp(−v2),

25 This is Iverson bracket notation: [statement] is 1 or 0 accordingly as the statement is true or false.
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which is a soft version of the indicator function [v = 0]. These activation functions are
graphed Figure 4.15. For specificity, we will use the sigmoid function 𝜎(v) = 1

1+e−v

in the rest of this section.

4.7.2 Neurons

The fundamental unit of a neural network is a neuron, which is the composition
of an activation function 𝜎 and a linear map ℝk → ℝ specified by a (k + 1)-long
parameter vector 𝜃 = (𝜃0, 𝜃1,… , 𝜃k). It will be convenient sometimes to think of the
parameter vector as the concatenation of a scalar parameter26

𝜃0 and a k-long vector
𝜃⋆ = (𝜃1,… , 𝜃k). A neuron, then, is the composition27

𝜎

⎛⎜⎜⎜⎝
[𝜃0, 𝜃1,… , 𝜃k]

⎡⎢⎢⎢⎣
1
v1
⋮
vk

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
= 𝜎(𝜃0 + 𝜃⋆ v) = 𝜎

(
𝜃0 +

k∑
i=1

𝜃ivi

)
,

where vector v = (v1,… , vk) is the input to the neuron. The geometric meaning of
a neuron becomes more apparent when the length of vector 𝜃⋆ is separated from its

direction, 𝜃⋆ = 𝜃⋆‖𝜃⋆‖‖𝜃⋆‖. The unit vector 𝜃⋆‖𝜃⋆‖ , length ‖𝜃⋆‖ and the scalar parameter

𝜃0 define a hyperplane H(𝜃⋆, 𝜃0) in ℝk,

H(𝜃⋆, 𝜃0) = {v : 𝜃0 + 𝜃⋆ v = 0} =
{

v :
𝜃0‖𝜃⋆‖ +

𝜃⋆‖𝜃⋆‖ v = 0

}

=
{

v :
𝜃⋆‖𝜃⋆‖ v = −

𝜃0‖𝜃⋆‖
}
.

The neuron specified above is a soft version of the indicator function[
𝜃⋆‖𝜃⋆‖ v ≥ −

𝜃0‖𝜃⋆‖
]

,

which is 1 when input v is in the direction of 𝜃⋆ from hyperplane H(𝜃⋆, 𝜃0) and is 0
when input v is in the direction of −𝜃⋆ from hyperplane H(𝜃⋆, 𝜃0). The geometry of
this situation is illustrated in Figure 4.16.

The length of the k-long vector ‖𝜃⋆‖, is called the activation rate and affects how
sensitive the neuron is to its input. If ‖𝜃⋆‖ is large, then the value of the neuron
changes quickly from nearly 0 (or 1) to nearly 1 (or 0) as v crosses from one side of
H(𝜃⋆, 𝜃0) to the other—so the neuron closely approximates an indicator function. If‖𝜃⋆‖ is small, the value of the neuron changes slowly as v moves from one side of

26 In the context of neural networks, the scalar parameter 𝜃0 is called the bias of the neuron.
27 Throughout this section, parameter vectors 𝜃 and 𝜃⋆ are row vectors, and inputs to neurons are col-
umn vectors.



SURVEY OF CLASSIFICATION TECHNIQUES 65

Hyperplane{ v : θ0 + θ�v = 0 }
= { v : θ�

‖θ�‖v = − θ0
‖θ�‖ }

= { v : σ(θ0 + θ�v) = 1
2 }

Half-space { v : θ�
‖θ�‖v > − θ0

‖θ�‖ }
= { v : σ(θ0 + θ�v) > 1

2 }

Half-space { v : θ�
‖θ�‖v < − θ0

‖θ�‖ }
= { v : σ(θ0 + θ�v) < 1

2 }
Hyperplane{ v : θ�

‖θ�‖v = 0 }

Signed distance− θ0
‖θ�‖

Unit vector θ�
‖θ�‖

Origin

Figure 4.16 For any scalar 𝜃0 and k-long real vector 𝜃⋆, the set of points H(𝜃⋆, 𝜃0) =
{v ∈ ℝk : 𝜃0 + 𝜃⋆v = 0} is a hyperplane in ℝk. The hyperplane lies at distance |𝜃0|‖𝜃⋆‖
from the origin, either in the direction of 𝜃⋆ (if − 𝜃0‖𝜃⋆‖ > 0, that is, if 𝜃0 < 0) or in

the direction of −𝜃⋆ (if − 𝜃0‖𝜃⋆‖ < 0, that is, if 𝜃0 > 0). The hyperplane H(𝜃⋆, 𝜃0) cuts

ℝk into two half-spaces. The neuron 𝜎(𝜃0 + 𝜃⋆v) increases from 1
2

as v moves away
from H(𝜃⋆, 𝜃0) in the direction of 𝜃⋆, eventually approaching the value 1. The neuron
𝜎(𝜃0 + 𝜃⋆v) decreases from 1

2
as v moves away from H(𝜃⋆, 𝜃0) in the direction of−𝜃⋆,

eventually approaching the value 0. This notation will be used again in Section 4.9.

H(𝜃⋆, 𝜃0) to the other—so for a substantial set of v’s, the neuron is approximately a
linear function of v with gradient 𝜃⋆.

4.7.3 Neural Networks

A neural network composes multiple neurons into a single function.28 Some of the
neurons in a neural network use the feature vector as input, some use the output of
other neurons as input, and some may use a combination of the two.29 The parameters
of a neural network are the parameters of the neurons (including the way in which
the neurons are connected together) and the parameters of an output layer of linear
functions defined as in logistic regression,

T(v, 𝜃) = 𝜃0 + 𝜃⋆ v,

but unlike logistic regression, none of the linear output functions are constrained to
be zero. Neurons are typically arranged in layers according to what kind of input they

28 It is difficult to define exactly what a neural network is, because there is great diversity among algo-
rithms which go by that name. What is being defined here is a common or “classical” type, sometimes
called a feed-forward neural network, or a perceptron.
29 In a recurrent neural network, some neurons use their own output as input.
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(P̂(Y =1 |X),..., P̂(Y = C |X)) Estimated class
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··· ···
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Figure 4.17 A single-hidden-layer neural network with N hidden nodes. The ith
hidden node is Zi = Zi(X, 𝜃(1)

i ) = 𝜎(𝜃(1)
i,0 + 𝜃(1)

i,⋆X), a neuron. The cth output node is

Tc = Tc(Z, 𝜃(2)
c ) = 𝜃

(2)
c,0 + 𝜃c,⋆Z, a linear function. Given estimates of parameters 𝜃(1)

and 𝜃(2), the estimated probability of the cth class, given feature vector X, is P̂(Y =
c |X) = exp(Tc)∕

∑C
d=1 exp(Td).

receive. The input layer of neurons receives feature vectors as input, while any layer
other than the input or output layers is called a hidden layer of neurons.

Figure 4.17 shows a neural network with an output layer of C linear functions,
T1,… , TC, and a single hidden layer of N neurons, Z1,… , ZN . Each neuron in the
hidden layer receives as input the entire feature vector, X = (X1,… , Xm). Each linear
function in the output layer receives as input the entire vector of values of the hidden
neurons, Z = (Z1,… , ZN). The parameters of this neural network can be written as
two matrices,

𝜃
(1) =

⎡⎢⎢⎢⎢⎢⎣

𝜃
(1)
1,0 𝜃

(1)
1,1 … 𝜃

(1)
1,m

𝜃
(1)
2,0 𝜃

(1)
2,1 … 𝜃

(1)
2,m

⋮ ⋮ ⋮

𝜃
(1)
N,0 𝜃

(1)
N,1 … 𝜃

(1)
N,m

⎤⎥⎥⎥⎥⎥⎦
which governs how the hidden-layer neurons respond to a feature vector, and

𝜃
(2) =

⎡⎢⎢⎢⎢⎢⎣

𝜃
(2)
1,0 𝜃

(2)
1,1 … 𝜃

(2)
1,N

𝜃
(2)
2,0 𝜃

(2)
2,1 … 𝜃

(2)
2,N

⋮ ⋮ ⋮

𝜃
(2)
C,0 𝜃

(2)
C,1 … 𝜃

(2)
C,N

⎤⎥⎥⎥⎥⎥⎦
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which governs how the output-layer linear functions respond to the vector of hidden-
layer neuron outputs. The total number of parameters is N(m + 1) + C(N + 1).

The output of the ith neuron in the hidden layer is

Zi = 𝜎

⎛⎜⎜⎜⎝
[
𝜃

(1)
i,0 , 𝜃(1)

i,1 ,… , 𝜃(1)
i,m

] ⎡⎢⎢⎢⎣
1

X1
⋮

Xm

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
= 𝜎

(
𝜃

(1)
i,0 + 𝜃(1)

i,⋆ X
)
= 𝜎

(
𝜃

(1)
i,0 +

m∑
j=1

𝜃
(1)
i,j Xj

)
.

Applying 𝜎 to a vector coordinatewise, the entire hidden layer may be written as

⎡⎢⎢⎣
Z1
⋮

ZN

⎤⎥⎥⎦ = 𝜎

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣

𝜃
(1)
1,0 𝜃

(1)
1,1 … 𝜃

(1)
1,m

𝜃
(1)
2,0 𝜃

(1)
2,1 … 𝜃

(1)
2,m

⋮ ⋮ ⋮

𝜃
(1)
N,0 𝜃

(1)
N,1 … 𝜃

(1)
N,m

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
1

X1
⋮

Xm

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
,

or, in more compact notation, writing 𝜃(1)
0 for the first column of 𝜃(1) and 𝜃(1)

⋆
for the

rest of 𝜃(1), as

Z = 𝜎
(
𝜃

(1)
0 + 𝜃(1)

⋆
X
)
.

The cth linear output function is

Tc = T
(
Z, 𝜃(2)

c

)
=

[
𝜃

(2)
c,0, 𝜃(2)

c,1,… , 𝜃(2)
c,N

] ⎡⎢⎢⎢⎣
1
Z1
⋮

ZN

⎤⎥⎥⎥⎦
= 𝜃

(2)
c,0 + 𝜃

(2)
c,⋆ Z = 𝜃

(2)
c,0 +

N∑
i=1

𝜃
(2)
c,i Zi.

The entire output layer may be written as

⎡⎢⎢⎣
T1
⋮
Tc

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣

𝜃
(2)
1,0 𝜃

(2)
1,1 … 𝜃

(2)
1,N

𝜃
(2)
2,0 𝜃

(2)
2,1 … 𝜃

(2)
2,N

⋮ ⋮ ⋮

𝜃
(2)
C,0 𝜃

(2)
C,1 … 𝜃

(2)
C,N

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
1
Z1
⋮

ZN

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

𝜃
(2)
1,0

𝜃
(2)
2,0

⋮

𝜃
(2)
C,0

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

𝜃
(2)
1,1 … 𝜃

(2)
1,N

𝜃
(2)
2,1 … 𝜃

(2)
2,N

⋮ ⋮

𝜃
(2)
C,1 … 𝜃

(2)
C,N

⎤⎥⎥⎥⎥⎥⎦
𝜎

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣

𝜃
(1)
1,0 𝜃

(1)
1,1 … 𝜃

(1)
1,m

𝜃
(1)
2,0 𝜃

(1)
2,1 … 𝜃

(1)
2,m

⋮ ⋮ ⋮

𝜃
(1)
N,0 𝜃

(1)
N,1 … 𝜃

(1)
N,m

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
1

X1
⋮

Xm

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
,

or, in more compact notation, as

T = 𝜃
(2)
0 + 𝜃(2)

⋆
Z = 𝜃

(2)
0 + 𝜃(2)

⋆
𝜎
(
𝜃

(1)
0 + 𝜃(1)

⋆
X
)
.
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Further layers

. . .

Yk = σ(θ(2)
k,0 + θ

(2)
k,�Z) Hidden layer 2

Zi = σ(θ(1)
i,0 + θ

(1)
i,�X) Zj = σ(θ(1)

j,0 + θ
(1)
j,�X) Hidden layer 1

(X1, . . . , Xm) Feature vector

Figure 4.18 Part of a neural network considered in Exercise 4.12.

The vector of outputs T = (T1,… , TC) is transformed into a vector of probabilities
just as in logistic regression,30

P̂(Y = c |X) =
exp(Tc)∑C

d=1 exp(Td)
.

In a neural network context, the map

(T1,… , TC) ↦
exp(Tc)∑C

d=1 exp(Td)

is called the softmax function. As in logistic regression, a new data point is classified
to minimize estimated risk.

Neural networks can have multiple hidden layers. A two-hidden-layer neural net-
work could be made from the one shown in Figure 4.17 by using the vector Z as input
to another layer of neurons (possibly a different number of them than in the first layer),
the output of which is then used as input to the linear functions T1,… , TC.

Training a neural network means estimating values of all of the parameters. Neural
networks are trained by minimizing squared-error or cross-entropy loss31 on training
data using a numerical optimization method (for example, the fitted neural networks
shown in Figure 4.18 were trained by applying the BFGS algorithm, described in

30 That is, the model assumes logP(Y = c |X) ∝ Tc, with the same constant of proportionality for all
c = 1,… , C.
31 For large neural networks, it has sometimes been found useful to include a penalty term on the param-
eters, similar to penalization used in ridge regression and lasso described in Section 3.10, and classifi-
cation trees and support vector machines described in Sections 4.8 and 4.9. Parameter penalization is
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Chapter 10, to 1000 randomly generated initial states and retaining the single fit with
maximum likelihood). An important computational element of neural networks is
back-propagation, which refers to an efficient method of computing the gradient of
the training risk for use in a gradient descent algorithm. Details, including compu-
tation of the gradient of the training estimate of risk under cross-entropy loss, may
be found in Chapter 10. A technique which has been found useful in training deep
networks (that is, networks with many layers) is described in Section 11.3.11.

Geometrically, the N hyperplanes corresponding to the N hidden neurons in
Figure 4.17 partitionℝm into

(N
0

)
+⋯ +

( N
min(m,N)

) ≤ 2N polyhedra (except in degen-
erate cases, where there are even fewer polyhedra) (Buck, 1943), and the complete
state of the hidden layer, Z = (Z1,… , ZN), may be viewed as a soft version of a binary
codeword which identifies the polyhedron containing input X. The linear functions
of the output layer can, then, be viewed as linear functions of (approximate) binary
codewords.

Exercise 4.12 For the partial neural network shown in Figure 4.18, for given
constants 𝛼1 and 𝛼2, provide explicit values of the scalar and vector parameters
𝜃

(1)
i,0 , 𝜃(1)

i,⋆, 𝜃(1)
j,0 , 𝜃(1)

j,⋆, 𝜃(2)
k,0, 𝜃(2)

k,⋆ so that the output Yk of the second-layer neuron is an
arbitrarily close approximation to the following Boolean functions:

(A) [X1 > 𝛼1 and X2 > 𝛼2]

(B) [X1 > 𝛼1 and X2 < 𝛼2]

(C) [X1 < 𝛼1 and X2 > 𝛼2]

(D) [X1 < 𝛼1 and X2 < 𝛼2] .

What modification of the parameters in each of (A) through (D) converts the logical
“and” operation to “nand” (“not and”)? Any Boolean function can be constructed
as a composition of nands, so this exercise shows that a sufficiently deep neural net-
work can approximate, arbitrarily well, any Boolean function of inequality statements
about its inputs. Hint: Express the answer in terms of a parameter r, so that as r → ∞,
output Yk converges pointwise to [X1 > 𝛼1 and X2 > 𝛼2] (or other Boolean function,
as appropriate).

Classification decisions made by a single-hidden-layer neural network trained on
the data of Figure 4.1 are shown in Figure 4.19. This figure illustrates the effect
of the number N of hidden states in a single-hidden-layer neural network: in one
extreme, the case N = 1 forces all class boundaries to be mutually parallel hyper-
planes; as more neurons are added, the classifier becomes more sensitive to particular
data points.

Figure 4.20 shows details of the two-neuron network32 whose classification deci-
sions are shown in the upper-right cell of Figure 4.19. The bottom two cells of

discussed more generally in Section 11.4. In the context of neural networks, parameter penalization is
called weight decay.
32 The fitted parameters for this network can be found in Appendix D.



1-Neuron network predictions 2-Neuron network predictions

3-Neuron network predictions 4-Neuron network predictions

5-Neuron network predictions 256-Neuron network predictions

Figure 4.19 Classification decisions made using a single-hidden-layer neural net-
work trained on the data of Figure 4.1. Numbers of hidden-layer neurons 1, 2, 3, 4, 5,
and 256 produce estimated risks 0.401, 0.201, 0.213, 0.224, 0.235, and 0.246 respec-
tively. A range of two to five hidden-layer neurons was selected as approximately
optimal using leave-one-out cross-validation, described in Section 7.3, to estimate
risk from the training data. Dashed black lines show hyperplanes on which a fitted
hidden neuron outputs the value 1

2
(omitted in the 256-neuron network).
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Neural network log-odds vs ‘orange’

X   2

X   1

Neural network estimates of P(Y|X)

   2X

Z   1

Neural network top layer

Z   2

Neural network top layer

X   2

X   1

X   1

Output: hidden neuron 1

X   2

X   1

Output: hidden neuron 2

X   2

X   1

Hyperplane: hidden neuron 1

X   2

X   1

Hyperplane: hidden neuron 2

X   2

Figure 4.20 Components of the neural network with two hidden neurons whose
performance is shown in Figure 4.18. Bottom: linear functions inside the two neu-
rons. Second-from-bottom: output of the neurons. Second-from-top: the output func-
tions, as functions of both Z and X. Top: estimated log-odds and posterior class
probabilities.
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Figure 4.20 show (from left to right) the linear functions of the two-dimensional fea-
ture vector (X1, X2),

𝜃
(1)
1 ⋅ (1, X1, X2) = 𝜃

(1)
1,0 + 𝜃

(1)
1,1X1 + 𝜃

(1)
1,2X2 and

𝜃
(1)
2 ⋅ (1, X1, X2) = 𝜃

(1)
2,0 + 𝜃

(1)
2,1X1 + 𝜃

(1)
2,2X2,

which define the two hidden neurons. Dashed lines show where these linear functions
take the value 0. These dashed lines are “hyperplanes” in  , and the neurons are soft
indicators of which side of these hyperplanes a point (X1, X2) ∈  falls on.

The second-from-bottom two cells of Figure 4.20 show (from left to right) the
values taken by the two hidden neurons,

Z1 = 𝜎
(
𝜃

(1)
1 ⋅ (1, X1, X2)

)
and Z2 = 𝜎

(
𝜃

(1)
2 ⋅ (1, X1, X2)

)
.

Hidden neuron Z1 only gets excited when feature vector X is in the extreme lower-
right corner of its domain, while hidden neuron Z2 gets excited when feature vector X
is roughly in the right half of its domain. Dashed lines show where the neurons take
the value 1

2
, which is the value corresponding to “being on the hyperplane” deter-

mined by the neuron.
In the second-from-top two cells of Figure 4.20, the left-hand cell shows the three

linear output functions as functions of the hidden layer output Z = (Z1, Z2),

T1 = 𝜃
(2)
1 Z = 𝜃

(2)
1,0 + 𝜃

(2)
1,1Z1 + 𝜃

(2)
1,2Z2 (orange plane)

T2 = 𝜃
(2)
2 Z = 𝜃

(2)
2,0 + 𝜃

(2)
2,1Z1 + 𝜃

(2)
2,2Z2 (blue plane)

T3 = 𝜃
(2)
3 Z = 𝜃

(2)
3,0 + 𝜃

(2)
3,1Z1 + 𝜃

(2)
3,2Z2 (purple plane)

and the right-hand cell shows the three output functions as functions of the feature
vector X,

T1 = 𝜃
(2)
1,0 + 𝜃

(2)
1,1 𝜎

(
𝜃

(1)
1 ⋅ (1, X1, X2)

)
+ 𝜃(2)

1,2 𝜎
(
𝜃

(1)
2 ⋅ (1, X1, X2)

)
(orange surface)

T2 = 𝜃
(2)
2,0 + 𝜃

(2)
2,1 𝜎

(
𝜃

(1)
1 ⋅ (1, X1, X2)

)
+ 𝜃(2)

2,2 𝜎
(
𝜃

(1)
2 ⋅ (1, X1, X2)

)
(blue surface)

T3 = 𝜃
(2)
3,0 + 𝜃

(2)
3,1 𝜎

(
𝜃

(1)
1 ⋅ (1, X1, X2)

)
+ 𝜃(2)

3,2 𝜎
(
𝜃

(1)
2 ⋅ (1, X1, X2)

)
(purple surface)

(recall that logP(Y = c |X) ∝ Tc, with the same constant of proportionality for all
c = 1,… , C). In the left-hand cell, the orange plane is above the blue and purple
planes in an almost invisible triangular region consisting of values of Z1 which are
nearly zero, and medium-to-large values of Z2.

In the top two cells of Figure 4.20, the left-hand cell shows the log-odds in favor
of each class relative to the orange class (c = 1), as functions of the feature vector
X. This is obtained by subtracting the output function for the orange class, T1, from
each output function, forming

T1 − T1 = 0 log-odds of orange over itself
T2 − T1 log-odds of blue over orange
T3 − T1 log-odds of purple over orange.
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The right-hand cell of the top row shows the estimated posterior probability
P̂(Y = c |X) for c = 1, 2, 3, as functions of X, obtained as

P̂(Y = 1 |X) = eT1

eT1 + eT2 + eT3
(orange surface)

P̂(Y = 2 |X) = eT2

eT1 + eT2 + eT3
(blue surface)

P̂(Y = 3 |X) = eT3

eT1 + eT2 + eT3
(purple surface).

4.7.4 Logistic Regression and Neural Networks

Consider a neural network with no hidden layer, shown in Figure 4.21. The output
vector of class probabilities is(

exp
(
Tc

(
X, 𝜃(1)

c

))
∑C

d=1 exp
(
Td

(
X, 𝜃(1)

d

))
)C

c=1

.

Without loss of generality, it can be assumed that any one of exp(T1(X, 𝜃(1)
1 )),… ,

exp(TC(X, 𝜃(1)
C )) has any given positive value by scaling them all (the scaling factor,

which depends on X and 𝜃(1), cancels out in normalization). In particular it can be
assumed that exp(T1(X, 𝜃(1)

1 )) is identically one, which is equivalent to assuming that

its parameter vector 𝜃(1)
1 is identically zero. This is exactly logistic regression.

This remark gives another interpretation of neural networks. A neural network with
a single hidden layer is logistic regression performed on a basis of “soft” indicator
functions of disjoint polyhedra, where the polyhedra are chosen adaptively when the

(P̂(Y = 1 |X), . . . , P̂(Y = C |X)) Estimated class
probabilities

· · · · · ·

T1 = 0 T2(X, θ
(1)
2 ) . . . Tc(X, θ

(1)
c ) . . . TC(X, θ

(1)
C ) Output layer

(No hidden layer)

(X1 , X2 , . . . , Xi , . . . , Xm ) Feature vector

Figure 4.21 Logistic regression drawn as a no-hidden-layer neural network. The
dashed arrows indicate that constant output node T1 = 0 may be regarded as a func-
tion of the feature vector (with fixed parameter vector 𝜃(1)

1 = 0) or may be omitted
from the network.
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neural network is trained. Neural networks with multiple hidden layers are logistic
regression on more complex adaptive bases.

4.8 Classification Trees

A classification tree is a decision tree algorithm which assigns class labels to data.
All data enter the root node of the tree, and each internal (non-leaf) node partitions
the data in some way, based on the feature vectors. Each leaf (terminal node) assigns
a particular class label to all data which enter it. Figure 4.22 shows a small classifi-
cation tree.

4.8.1 Classification of Data by Leaves (Terminal Nodes)

Let a tree be given, and let t denote a leaf node of the tree. The event “datum (X, Y)
enters node t” will be denoted X ∈ t: by construction, at least one training point enters
each leaf node of the tree. Let nc denote the number of training data of class c, nt

c

denote the number of training data of class c which enter node t, and nt =
∑C

c=1 nt
c

denote the total number of training data which enter node t.

Is x1 less than −0.311?

Is x2 less than −0.197?

Predict blue

Yes

Is x1 less than −1.801?

Predict blue

Yes

Predict orange

No

Yes

Is x2 less than 1.767?

Predict purple

Yes

Predict orange

No

No

Figure 4.22 A classification tree which maps an input vector (x1, x2) ∈ ℝ2 to one
of three classes. The root node is at the top. This tree was trained on the data of
Figure 4.1, and pruned to have five leaf nodes.
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The probability that a datum (X, Y) enters node t, given that its class is c, is esti-
mated by the proportion of training data of class c which enter it,33

P̂(X ∈ t |Y = c) =
nt

c

nc
.

This estimate is then used to make predictions as a likelihood classifier. That is, the
estimated posterior probability that a datum (X, Y) is class c, given that it enters node
t, is

P̂(Y = c |X ∈ t) = P̂(X ∈ t |Y = c) P(Y = c)

P̂(X ∈ t)
,

where

P̂(X ∈ t) =
C∑

d=1

P̂(X ∈ t, Y = d) =
C∑

d=1

P̂(X ∈ t |Y = d) P(Y = d).

Node t classifies all data which enter it as the class c which minimizes the estimated
posterior risk,

R̂(c |X ∈ t) =
C∑

d=1

L(d, c) P̂(Y = d |X ∈ t) ∝
C∑

d=1

L(d, c)
nt

d

nd
P(Y = d).

Exercise 4.13 Show that if the prior distribution is estimated from the training data
such that P(Y = c) = nc

n
, then

P̂(X ∈ t) = nt

n
and

P̂(Y = c |X ∈ t) =
nt

c

nt
.

Show that with this prior, under 0–1 loss, a leaf node classifies all data which enter
it to be the most common class among the training data which enter it.

4.8.2 Impurity of Nodes and Trees

The impurity of a leaf node t is a function, I(t), of the estimated posterior distribution
on the class of a datum (X, Y) given that X ∈ t,

(P̂(Y = 1 |X ∈ t),… , P̂(Y = C |X ∈ t)),

33 When training trees on samples of the training data (as, for example, when training trees used by
a random forest classifier as described in Chapter 6), it may happen that nc = 0, in which case P̂(X ∈
t | Y = c) is defined to be zero.
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which measures how diffuse the distribution is on the set of values {1,… , C}. Com-
monly used measures of impurity are:

proportion not of the I(t) = 1 − maxc∈{1,…,C} P̂(Y = c |X ∈ t)
majority class

entropy I(t) = −
∑C

c=1 P̂(Y = c |X ∈ t) log P̂(Y = c |X ∈ t)

Gini index of diversity34 I(t) = 1 −
∑C

c=1 P̂(Y = c |X ∈ t)2

=
∑

c≠d P̂(Y = c |X ∈ t) P̂(Y = d |X ∈ t).

Under each of these definitions, the impurity I(t) is non-negative, is uniquely max-
imized when the probability distribution (P̂(Y = 1 |X ∈ t),… , P̂(Y = C |X ∈ t)) is
the uniform distribution, and is minimal and equal to zero when this distribution
assigns probability one to one class and probability zero to all other classes.

The impurity of a tree is the expected impurity of a leaf node with respect to prob-
ability distribution P̂(X ∈ t) on leaf nodes,∑

all leaf nodes t

I(t) P̂(X ∈ t).

Exercise 4.14 Show that when the impurity of a leaf node is measured by the Gini
index of diversity, the impurity of the whole tree can be expressed as:

1 −
∑

all leaf nodes t

∑C
c=1(P̂(X ∈ t |Y = c) P(Y = c))2

P̂(X ∈ t)
.

4.8.3 Growing Trees

A classification tree is trained (“grown”) by beginning with a single node, which is
the root node and also a leaf, and iteratively splitting leaf nodes in the following way.
Let t be a leaf node, let

R = {(xi, yi) : xi ∈ t}

34 The Gini index of diversity is the probability that two class labels drawn independently at random
from P̂(Y |X ∈ t) are not equal. The Gini index preceded Shannon’s (1948) definition of entropy histori-
cally, but it can be viewed as a quadratic approximation of entropy since

−
C∑

c=1

P̂(Y = c |X ∈ t) log P̂(Y = c |X ∈ t) ≈
C∑

c=1

P̂(Y = c |X ∈ t)(1 − P̂(Y = c |X ∈ t))

= 1 −
C∑

c=1

P̂(Y = c |X ∈ t)2
.

The approximation is not very good when P̂(Y = c |X ∈ t) is small. See Breiman et al. (1984), Sections
4.2 and 4.3, for arguments in favor of the Gini index as a splitting criterion.
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be the set of training data which enter t, and suppose that at least two distinct classes
are represented in R, that is, |{yi : xi ∈ t}| ≥ 2. Consider all partitions of R into two
non-empty subsets, R = R1 ∪ R2, which arise by splitting the data according to the
jth feature, for each j = 1,… , m, as follows. If the jth feature is continuous, splitting
is performed by applying a threshold 𝜏,

R1 = {(xi, yi) ∈ R : xij ≤ 𝜏} and R2 = {(xi, yi) ∈ R : xij > 𝜏}.

There are infinitely many possible values of 𝜏, but only finitely many such partitions
to consider, since R is a finite set. If the jth feature is categorical, splitting is performed
by partitioning the range of the categorical feature,

R1 = {(xi, yi) ∈ R : xij ∈ S1} and R2 = {(xi, yi) ∈ R : xij ∈ S2},

where S1 ∪ S2 is a partition into two nonempty subsets of the finite set of values
attainable by the jth feature. Each partition35 of R corresponds to the addition of two
new leaf nodes t1 and t2 to the tree extending from t, which is no longer a leaf node:
R1 is the set of training data which enter t1 and R2 is the set of training data which
enter t2. The split which minimizes the impurity of the tree is retained, meaning that
the new nodes t1 and t2 are added to the tree.36

The splitting process is repeated, and splitting continues until each leaf node sat-
isfies a stopping criterion, for example, leaf nodes may be split until each satisfies at
least one of the following conditions: its training data are all of one class; its training
data all have the same feature vector; it contains no more than some specified number
of training data.

Figure 4.23 shows the first four steps of training of a classification tree on the data
of Figure 4.1. At each step, the partition of the data shown is that which minimizes the
impurity of the tree with the empirical prior distribution ( 48

150
, 49

150
, 53

150
) on the three

classes.37 The classification tree corresponding to the lower-right cell of Figure 4.23
is represented in Figure 4.22 as a decision tree algorithm. The predictions made by
this tree are shown in the upper-right cell of Figure 4.24. Any tree with only two leaf
nodes, such as that shown in the upper-left-hand cell of Figure 4.23, is called a stump.

Exercise 4.15 Show that when the impurity of a leaf node is measured by the Gini
index of diversity, the split which minimizes the impurity of the tree (and thus is

35 It appears that when splitting according to a categorical feature with k categories, 2k−1 − 1 splits must
be considered. In two important special cases, an optimal split can be found with far less work: it is
sufficient to consider only k splits in the case of binary classification (Breiman et al., 1984, Theorem 4.5,
p. 101) and only k − 1 splits the case of regression (Breiman et al., 1984, Proposition 8.16, p. 247).
36 The split node is the parent node of t1 and t2, and t1 and t2 are each a child node of their parent.
37 There are 48 orange, 49 blue, and 53 purple points in the training data.
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x1 = −0.311

x2 = 1.767

x2 = −0.197

x1 = −1.801

Figure 4.23 These four pictures show, from left to right and top to bottom, the first
four steps of training a classification tree on the data of Figure 4.1. The lower-right
cell corresponds to the tree shown in Figure 4.22, and to the predictions shown in the
upper-right cell of Figure 4.24.

retained) is the split which maximizes

−
∑C

c=1(P̂(X ∈ t |Y = c) P(Y = c))2

P̂(X ∈ t)

+
∑C

c=1(P̂(X ∈ t1 |Y = c) P(Y = c))2

P̂(X ∈ t1)
+

∑C
c=1(P̂(X ∈ t2 |Y = c) P(Y = c))2

P̂(X ∈ t2)
.

over all leaf nodes t and all splits of t into two new leaf nodes, t1 and t2. Hint: Use
Exercise 4.14.
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1-Leaf tree predictions 5-Leaf tree predictions

15-Leaf tree predictions 25-Leaf tree predictions

Figure 4.24 Classification decisions made using a classification tree trained on the
data of Figure 4.1. The numbers 1, 5, 15, and 25 of leaf nodes correspond to cost-
complexity parameter 𝛼 values of about 2−1, 2−4, 2−7, and 0, respectively, and pro-
duce respective estimated risks 0.665, 0.236, 0.243, and 0.259. The 15-leaf tree was
selected as approximately optimal using leave-one-out cross-validation, described in
Section 7.3, to estimate risk from the training data, though in this case the 5-node
tree has significantly lower risk on test data.

4.8.4 Pruning Trees

As explained so far, trees are trained until they have zero misclassification error on the
training data (unless there are training data with identical feature vectors but different
class labels) or some other stopping criterion is met. This suggests that they may be
badly over-fit (see Chapter 5 and Chapter 7). There are two ways to avoid over-fit
trees. The first is to stop growing the tree according to some criterion, such as if all
nodes either pass a (non-zero) threshold on the measure of impurity or contain fewer
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than some number of training points. The second, recommended by Breiman et al.
(1984), is to grow the tree completely and then to prune it back to a subtree of the
full-grown tree.

Breiman et al. (1984) recommend pruning a full-grown tree in the following way.
For a given value of a tuning parameter 𝛼 > 0, find the subtree of the full tree which
minimizes the cost-complexity criterion,

𝛼 × (number of leaf nodes)

+
∑

all leaf nodes t

(
min

c∈{1,…,C}

C∑
d=1

L(d, c) P̂(Y = d |X ∈ t)

)
P̂(X ∈ t).

The first term penalizes the size of the tree, the second penalizes the training esti-
mate of the risk of the tree, and parameter 𝛼 sets the relative importance of these two
terms38 (𝛼 = 0 puts no penalty on the size of the tree, in which case no nodes are
pruned, and as 𝛼 → ∞, the tree will be pruned back to the root node). Chapter 10 of
Breiman et al. (1984) shows how to compute efficiently the optimal subtree, in terms
of cost-complexity criterion, for any given 𝛼. An approximately optimal value of 𝛼 is
chosen by cross-validation or some other method of risk estimation—see Chapter 7.

Exercise 4.16 Show that under 0–1 loss, the cost-complexity criterion is

𝛼 × (number of leaf nodes) +
∑

all leaf nodes t

(
1− max

c∈{1,…,C}
P̂(Y = c |X ∈ t)

)
P̂(X ∈ t).

One of the strengths of trees is that they are very easy to interpret, and trees have
even been designed for implementation by hand. For example, the pocket-sized book
Berry Finder: A Guide to Native Plants with Fleshy Fruits by Dorcas S. Miller, illus-
trated by Cherie Hunter Day, contains a 54-page implementation of a classification
tree consisting of approximately 120 leaf nodes and 150 internal nodes (some of
which have more than two child nodes). Internal nodes are queries about features of
a plant (leaves, stems, fruit, growing location, etc.) and leaf nodes predict a distinct
species.39

38 The R tree-training function rpart() scales the cost-complexity criterion, dividing it by the training
estimate of risk for a one-leaf tree (that is, a tree consisting only of a root node), R̂0. Function rpart()

allows the user to control parameter 𝛼 by assigning a value to 𝛼∕R̂0, a quantity it names cp.
39 Here is one example of a descent through the tree in Miller and Day (1986). If a berry grows on a
woody plant with broad leaves which is → an erect shrub or small tree with many small stems → and
leaves alternate on the stem → and leaves are divided → and the berries are black or dark purple and
the plant is spiny → and the berries are not in umbels (many small stalks radiating from a common
point), and fruit separates from the plant → and the berries do not have a central receptacle → it is a
black raspberry. With due consideration for the asymmetric loss function involved (“miss eating fruit”
vs. “be poisoned”), the author ate the berry predicted to be a black raspberry by this classification tree.
It tasted like a black raspberry, and the author suffered no ill effects. Note that descent through the tree
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4.8.5 Regression Trees

Trees are also used for regression. Impurity measures used for regression trees are

variance I(t) = Var[Y |X ∈ t] = E[(Y − E[Y |X ∈ t])2 |X ∈ t]
mean absolute deviation I(t) = E[|Y − median [Y |X ∈ t]| |X ∈ t]

At a leaf node t, a regression tree predicts E[Y |X ∈ t] when squared-error loss is
used, and median [Y |X ∈ t] when absolute-error loss is used.

4.9 Support Vector Machines

The last classification method covered in this chapter is the support vector machine.
Support vector machines are somewhat different from all of the other methods in this
chapter, in that they are not explicit approximations of the Bayes classifier. Support
vector machines are motivated by a geometric idea of what makes a classifier “good”
and we shall see that this results in a loss function which is different from the loss
functions encountered in Chapters 2, 3, and 4 (indeed, which violates the definition
of a loss function given in Chapter 2). In particular, we shall encounter a loss function
which takes into account the location of a feature vector relative to a class boundary,
and which may penalize correctly classified data if their feature vectors are too close
to this boundary.

4.9.1 Support Vector Machine Classifiers

Suppose there are C = 2 classes, that the feature space  is ℝm and that the two
classes are linearly separable in the feature space, which means that there exists a
hyperplane40

H(𝜃⋆, 𝜃0) = {v ∈ ℝm : 𝜃⋆ v + 𝜃0 = 0} =
{

v ∈ ℝm :
𝜃⋆‖𝜃⋆‖ v +

𝜃0‖𝜃⋆‖ = 0

}
such that all data of one class lie on one side of H(𝜃⋆, 𝜃0) and all data of the other
class lie on the other side. Data with two linearly separable classes are shown in
Figure 4.25. Suppose also that our goal is to classify new data using a linear classi-
fication boundary: that is, we must choose a hyperplane in ℝm and declare all points
on one side to be class 1 and all points on the other side to be class 2. What is the best
hyperplane to choose?

determines which features are used, and that potentially only a few of many features need be collected
for any particular item to be classified.
40 As in Sections 4.6 and 4.7, we think of the m-long parameter vector 𝜃⋆ as a row vector, and of points
in ℝm as column vectors.
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Figure 4.25 Subsets of the orange and purple data of Figure 4.1, selected so that the
two classes are linearly separable. Three distinct hyperplanes (lines) which separate
the two classes are shown: there are, of course, infinitely many such lines. A geometric
definition of what makes a line separating the two classes “good” motivates support
vector machine (SVM) classifiers.

One answer to this question is the following. First, restrict the choice to the set of
hyperplanes which separate the training data. These and only these hyperplanes will
produce a classifier with zero training error.41 For any of these hyperplanes H, there is
a minimum distance d1 from H to the data in class 1 and a minimum distance d2 from
H to the data in class 2, and so H can be widened into a slab of width d1 + d2 which
separates the two classes. The width d1 + d2 is called the margin of the classifier
based on H. The basic assumption of a support vector machine classifier is that under
0–1 loss and uniform prior distribution on class, the “best” two-class linear classifier
is a separating hyperplane with maximum margin such that d1 = d2.

41 Zero training error is not necessarily a good thing (see Exercise 2.4 and Chapter 7) but is useful here
for motivation.
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Let the two class labels be encoded so that the response variables Yi are in {−1, 1}.
Data (x1, y1),… , (xn, yn) are separated by a hyperplane if and only if there is a hyper-
plane H(𝜃⋆, 𝜃0) such that, for all i,

yi =
{

1 if 𝜃⋆ xi + 𝜃0 ≥ 1
−1 if 𝜃⋆ xi + 𝜃0 ≤ −1,

(4.4)

which is written more compactly as

yi(𝜃⋆ xi + 𝜃0) ≥ 1 for all i. (4.5)

The geometry of the situation, illustrated in Figure 4.26, is more apparent if the nor-
mal vector of the separating hyperplane is made to be a unit vector,

yi

(
𝜃⋆‖𝜃⋆‖ xi +

𝜃0‖𝜃⋆‖
)

≥ 1‖𝜃⋆‖ for all i. (4.6)

{ v : θ� v + θ0 = 1 }

{ v : θ� v + θ0 = 0 }
(the separating hyperplane)

{ v : θ� v + θ0 = −1 }

Each dashed hyperplane is distance 1
‖θ�‖ from

the solid hyperplane. The margin is 2
‖θ�‖ .

The solid hyperplane is distance |θ0|
‖θ�‖ from

the origin.

The unit vector θ�
‖θ�‖ :

Figure 4.26 The linearly separable data of Figure 4.25, with the maximum-margin
separating hyperplane (solid line) and the two hyperplanes which define the margin
(dashed lines). The unit vector 𝜃⋆‖𝜃⋆‖ is shown at the lower right. The orange dots are

class “1” and the purple dots are class “−1,” and all data points (xi, yi) satisfy the
inequality yi(𝜃⋆ xi + 𝜃0) ≥ 1. The three filled dots—two orange and one purple—are
the support vectors, that is, the data points satisfying yi(𝜃⋆ xi + 𝜃0) = 1.
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Written this way, it is easy to see that the distance from feature vector xi to the sepa-
rating hyperplane H(𝜃⋆, 𝜃0) is |||| 𝜃⋆‖𝜃⋆‖ xi +

𝜃0‖𝜃⋆‖
|||| ,

and this is bounded below by 1‖𝜃⋆‖ .

Maximizing the margin, then, means solving the optimization problem42

minimize over 𝜃⋆ and 𝜃0: 1
2
‖𝜃⋆‖2

subject to, for all i: yi(𝜃⋆ xi + 𝜃0) ≥ 1.
(4.7)

This is done (approximately) by quadratic programming techniques, resulting in
trained parameter values 𝜃⋆ and 𝜃0. A trained support vector machine consists of
the trained parameters together with the classification rule “given a feature vector X,
predict the class to be the sign of 𝜃⋆X + 𝜃0.” The margin of the trained support vector
machine is 2∕‖𝜃⋆‖. Any training data point (xi, yi) which satisfies (4.5) with equality,
that is, satisfies yi(𝜃⋆xi + 𝜃0) = 1, is a support vector.

While the details of quadratic programming are beyond the scope of this book,
there are some points which are essential to mention here. The optimization problem
(4.7) is solved by solving a dual problem in which the objective function depends on
the data only through the set of inner products (xi

Txj)
n
i,j=1. Solving this dual problem

results in estimation of an n-long parameter vector 𝜓 = (𝜓1,… ,𝜓n), with the prop-
erty that �̂�i ≠ 0 only if the training data point (xi, yi) is a support vector. In terms of
the dual parameter 𝜓 , the predicted class of a new feature vector X is

sign

(
𝜃0 +

n∑
i=1

�̂�i yi xi
TX

)
= sign

(
𝜃0 +

∑
i : (xi, yi) is a

support vector

�̂�i yi xi
TX

)
= sign(𝜃0 + 𝜃⋆TX),

where 𝜃⋆ =
∑

i : (xi, yi) is a
support vector

�̂�i yi xi
T.

If the classes are not linearly separable, as shown in Figure 4.27, then the inequality
condition (4.5) cannot be satisfied. A weakened form of (4.5) can be satisfied, though,
by introducing slack variables43

𝜉i = max(0, 1 − yi(𝜃⋆ xi + 𝜃0))

and changing (4.5) to

yi(𝜃⋆ xi + 𝜃0) ≥ 1 − 𝜉i and 𝜉i ≥ 0 for all i. (4.8)

42 In (4.7), the term to minimize is ‖𝜃⋆‖2 rather than ‖𝜃⋆‖ because the former is a quadratic function.
The constant 1

2
is present to make notation clean when taking derivatives: we will not need it for that,

but include it to be consistent with later notation.
43 The variables 𝜃⋆ and 𝜃0 are then called decision variables.
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{ v : θ� v + θ0 = 1 }

{ v : θ� v + θ0 = 0 }
(the separating hyperplane)

{ v : θ� v + θ0 = −1 }

The unit vector θ�
‖θ�‖ :

0 < ξ < 1

1 < ξ < 2

ξ > 2

Figure 4.27 The data of Figures 4.25 and 4.26, modified so that the classes are
not linearly separable. The data with positive slack variables are indicated by gray
arrows. The purple dots above the solid line are data with slack variables 𝜉i > 1 and
are misclassified by the linear classifier. The purple dot below the solid line but above
the dashed line, and the orange dot above the solid line but below the dashed line,
are data with slack variables 0 < 𝜉i < 1: they contribute to the penalty without being
misclassified.

Slack variable 𝜉i is the smallest amount which can be added to yi(𝜃⋆ xi + 𝜃0) so
that the total is at least one: thus for each i, either yi(𝜃⋆ xi + 𝜃0) ≥ 1 and 𝜉i = 0 or
yi(𝜃⋆ xi + 𝜃0) + 𝜉i = 1, and 𝜉i > 0. A data point exceeds the margin if 𝜉i > 0. A data
point is misclassified by the classification boundary H(𝜃⋆, 𝜃0) if and only if 𝜉i > 1. A
support vector machine still seeks the maximum margin classifier, making allowance
for some data points to exceed the margin and even to be misclassified. Optimization
problem (4.7) becomes

minimize over 𝜃⋆, 𝜃0 and 𝜉1,… , 𝜉n: 1
2
‖𝜃⋆‖2 + 𝛾

∑n
i=1 𝜉i

subject to, for all i: yi(𝜃⋆ xi + 𝜃0) ≥ 1 − 𝜉i and 𝜉i ≥ 0,
(4.9)

where 𝛾 ≥ 0 is a tuning parameter. In this case, the support vectors are the training
data points (xi, yi) which satisfy (4.7) with equality or for which 𝜉i > 0.



86 MACHINE LEARNING

SVM loss functions

Figure 4.28 The loss functions max(0, 1 − Y(𝜃⋆X + 𝜃0)) which are applied to the
blue data (blue surface, class Y = 1) and the purple data (purple surface, class
Y = −1) in the example of Figure 4.1. Training data which are support vectors are
shown as solid dots, while the rest are shown as hollow dots, although this is partly
obscured by the viewing angle—which dots are truly hollow and which are truly filled
is more clearly seen in the lower-left-hand cell of Figure 4.29.

Optimization problem (4.9) has two goals: to maximize the margin (that is, to min-
imize ‖𝜃⋆‖) and to minimize a “risk” function of the training data,

∑n
i=1 𝜉i. These

goals are to be met simultaneously, and their relative importance is determined by 𝛾 .
The “loss” function

(X, Y) ↦ max(0, 1 − Y(𝜃⋆ X + 𝜃0))

assigns a zero penalty to correctly classified data which are on the correct side of
the classification boundary by distance at least 1‖𝜃⋆‖ . As the distance from correctly

classified data to the boundary hyperplane goes from 1‖𝜃⋆‖ to 0, the “loss” goes from

0 to 1, and as these data cross the boundary hyperplane and becomes misclassified,
the “loss” increases from 1 proportionately with the distance to the boundary.44 This
is made explicit by rewriting (4.9) as

minimize over 𝜃⋆ and 𝜃0: 1
2
‖𝜃⋆‖2 + 𝛾

∑n
i=1 max(0, 1 − yi(𝜃⋆ xi + 𝜃0)). (4.10)

The loss function max(0, 1 − Y(𝜃⋆X + 𝜃0)) is illustrated in Figure 4.28. In Fig-
ure 4.28, the left-hand dashed line drawn in the plane is {v : 𝜃⋆v + 𝜃0 = 1}, the
blue side of the margin: this line is where the blue surface representing the loss
incurred by blue data changes from zero (to the left of the dashed line) to positive
(to the right of the dashed line). The right-hand dashed line drawn in the plane is
{v : 𝜃⋆v + 𝜃0 = −1}, the purple side of the margin: this line is where the purple sur-
face representing the loss incurred by purple data changes from positive (to the left

44 Note that positive loss may be incurred for correctly classified training data.
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Linear SVM boundary & margins

Class 1 (orange) vs. class 2 (blue)

Linear SVM predictions

Class 1 (orange) vs. class 2 (blue)

Linear SVM boundary & margins

Class 1 (orange) vs. class 3 (purple)

Linear SVM predictions

Class 1 (orange) vs. class 3 (purple)

Linear SVM boundary & margins

Class 2 (blue) vs. class 3 (purple)

Linear SVM predictions

Class 2 (blue) vs. class 3 (purple)

Figure 4.29 Three linear support vector machines, each trained on data of two
classes. The left-hand cells show the separating hyperplane (solid lines), the mar-
gins (dashed lines), and the training data. Training data which are support vectors are
shown as solid dots, while the rest are shown as hollow dots. The right-hand cells
show the predictions made by the three support vector machines. All three support
vector machines were trained using error penalty value 𝛾 = 2.112.
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Linear SVM predictions Linear SVM predictions

Figure 4.30 Classification decisions made using a linear support vector machine
with error penalty values 𝛾 = 2−8 (left cell) and 𝛾 = 2.112 (right cell), trained on
the data of Figure 4.1. The value 𝛾 = 2.112 was selected as approximately optimal
using leave-one-out cross-validation, described in Section 7.3, to estimate risk from
the training data. These classifiers have estimated risks 0.568 and 0.221, respectively.
Larger values of 𝛾 , up to 216, produced essentially the same classifications as those
shown in the right-hand cell.

of the dashed line) to zero (to the right of the dashed line). The solid line drawn
in the plane is {v : 𝜃⋆v + 𝜃0 = 0}, the separating hyperplane (class boundary): the
trained support vector machine predicts the blue class to the left of this line, and
predicts the purple class to the right of this line. On the solid line, both blue and
purple data incur one unit of loss. Due to the shape looking somewhat like open
hinge, the loss function max(0, 1 − Y(𝜃⋆X + 𝜃0)) is called hinge loss. Note that loss
is incurred for any data point within the margin, that is, any point (X, Y) such that
−1 < 𝜃⋆X + 𝜃0 < 1, whether or not it is correctly classified (though misclassified
data are penalized more than correctly classified data).

An approximately optimal value of 𝛾 is chosen by cross-validation or some other
method of risk estimation—see Chapter 7. This is advisable even in the case of
linearly separable classes. The effect of the penalty parameter 𝛾 is illustrated in
Figure 4.30.

Support vector machines are applied to data of C > 2 classes by training multiple
binary SVMs and combining their predictions. This is illustrated in Figure 4.29—
detailed discussion is deferred to Section 6.1.

4.9.2 Kernelization

One way to use a simple classifier on hard-to-separate data is to map the features
into a higher-dimensional space in such a way that the classes become more easily
separated than in the original feature space. For example, using a linear classifier in
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Figure 4.31 The two classes (orange and purple) in this dataset are not linearly
separable in ℝ2, though they are clearly separable (for example, the light gray ellipse
is a class boundary which produces zero training error).

ℝ2 to classify the data shown in Figure 4.31 seems like a bad idea. Consider, though,

applying the map 𝜙 : ℝ2 → ℝ3, defined by 𝜙(x) = 𝜙(x1, x2) = (x2
1,
√

2x1x2, x2
2), to

the data in Figure 4.31. The result is shown in Figure 4.32, where, by looking in the
right direction, it can be seen that the classes have been made linearly separable in
ℝ3. The preimage in ℝ2 of a linear classification boundary in ℝ3 is an ellipse, shown
in gray in Figure 4.31.

Exercise 4.17 Name at least one very simple classifier which will perform well on
the data in Figure 4.31 without any transformation of the data.

A disadvantage of mapping data from ℝsmall to ℝbig is that training a classifier can
become computationally expensive in ℝbig. In some cases, though, there is a trick to
avoid this computational cost. If, for example, all of the information in the features
(xi)

n
i=1 which is needed to train the classifier is contained in the n × n matrix of inner

products (
xi

Txj

)n

i,j=1

(as in the case of support vector machines), then one need not compute (𝜙(xi))
n
i=1 but

only the n × n matrix (
𝜙(xi)

T
𝜙(xj)

)n

i,j=1
.
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Figure 4.32 The data of Figure 4.31 have been mapped into a two-dimensional sur-
face in ℝ3 so that the classes are linearly separable: the right-hand cell shows that
the two classes can be separated by a plane. The light gray ellipse of Figure 4.31 is
the intersection of the surface containing the data with a class-separating plane in ℝ3,
projected back into ℝ2.

Furthermore, we don’t even need to know 𝜙, we merely need to construct a map
K : ℝm ×ℝm → ℝ such that there exists some phi with

K(x, w) = 𝜙(x)T
𝜙(w).

Conditions under which a bivariate function K(x, w) has a decomposition as
K(x, w) = 𝜙(x)T

𝜙(w) (where the dimension of the range of 𝜙 is perhaps countably
infinite) are given by Mercer’s theorem45 (Ash, 1965). Typically one specifies K and
replaces xi

Txj in (4.9) with K(xi, xj). Commonly used kernels are:

polynomial K(x, w) = (𝛼 xTw + 𝛽)𝛿

sigmoid K(x, w) = tanh(𝛼 xTw + 𝛽)
Gaussian or radial K(x, w) = exp(−𝛼 ‖x − w‖2).

Parameter values of these kernels are chosen by cross-validation or some other risk
estimation method.

45 Mercer’s theorem extends, to more general function spaces, the fact from linear algebra that a non-
negative definite symmetric matrix M has a decomposition as M = QΛQT, where Q is the matrix of
eigenvectors of M and Λ is a diagonal matrix of the corresponding non-negative eigenvalues (a special
case of the spectral theorem (Strang, 1988)).
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Radial SVM predictions Polynomial SVM predictions

Figure 4.33 Classification decisions made using a radial kernel (left cell, with 𝛾 =
2.382 and 𝛼 = 0.219) and a polynomial kernel (right cell, with 𝛾 = 1.073, 𝛼 = 0.677,
𝛽 = 0.492, and 𝛿 = 3.525) support vector machine trained on the data of Figure 4.1.
All parameters of these two classifiers were set to approximately optimal values using
leave-one-out cross-validation, described in Section 7.3, to estimate risk from the
training data (with optimization performed by simulated annealing and the Nelder–
Mead algorithm, described in Chapter 10). These classifiers have estimated risks
0.201 and 0.208, respectively.

In terms of the estimated intercept parameter 𝜃0 and estimated dual parameter �̂� ,
the predicted class of a new feature vector X is

sign

(
𝜃0 +

∑
i : (xi, yi) is a

support vector

�̂�i yi K(xi, X)

)
.

Predictions made by support vector machines using a polynomial kernel and Gaussian
kernel, trained on the data of Figure 4.1, are shown in Figure 4.33.

Exercise 4.18 Show that the example illustrated in Figures 4.31 and 4.32 corre-
sponds to the polynomial kernel with parameters 𝛼 = 1, 𝛽 = 0, and 𝛿 = 2. What val-
ues of 𝛼, 𝛽, and 𝛿 produce the linear kernel K(x, w) = xTw?

Exercise 4.19 Show that for the polynomial kernel with integer parameter 𝛿, if
parameter 𝛽 ≠ 0, K(x, w) = 𝜙(x)T

𝜙(w) where 𝜙 is a function which maps x =
(x1,… , xm) to a vector in the

(m+𝛿
𝛿

)
-dimensional basis(

xk1
1 xk2

2 ⋯ x
km
m : k1,… , km are non-negative integers, k1 +⋯ + km ≤ 𝛿

)
.
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Show that if parameter 𝛽 = 0, then K(x, w) = 𝜙(x)T
𝜙(w) where 𝜙 is a function which

maps x = (x1,… , xm) to a vector in the
(m+𝛿−1

𝛿

)
-dimensional basis(

xk1
1 xk2

2 ⋯ x
km
m : k1,… , km are non-negative integers, k1 +⋯ + km = 𝛿

)
.

Hint: Use the multinomial theorem.

Exercise 4.20 Show that for the Gaussian kernel, K(x, w) = 𝜙(x)T
𝜙(w) where 𝜙 is a

function which maps x = (x1,… , xm) to a vector in the infinite-dimensional basis(
xk1

1 xk2
2 ⋯ x

km
m : k1,… , km are non-negative integers

)
.

4.9.3 Proximal Support Vector Machine Classifiers

It was observed empirically, some time in 1999 through 2001, that the minimization
problem of SVMs (4.9) could be modified without changing classification perfor-
mance, to

minimize over 𝜃⋆, 𝜃0 and 𝜉: 1
2
‖𝜃⋆‖2 + 1

2
𝜃

2
0 + 1

2
𝛾
∑n

i=1 𝜉
2
i

subject to, for all i: yi(𝜃⋆ xi + 𝜃0) ≥ 1 − 𝜉i .
(4.11)

The objective function has been made into a homogeneous quadratic function by
adding 1

2
𝜃

2
0 and changing the measure of the error vector from the 1-norm to the

2-norm. This makes the function strongly convex, which makes the quadratic pro-
gramming problem easier to solve. Note that the condition 𝜉 ≥ 0 has been made
superfluous by changing to the 2-norm: any negative 𝜉i can be set to 0 while main-
taining the inequalities and reducing the objective function.

A proximal support vector machine (PSVM) classifier, introduced by Fung and
Mangasarian in 2001, is a further and more extreme modification of SVMs: the linear
inequality constraints are changed to linear equations:

minimize over 𝜃⋆, 𝜃0 and 𝜉: 1
2
‖𝜃⋆‖2 + 1

2
𝜃

2
0 + 1

2
𝛾
∑n

i=1 𝜉
2
i

subject to, for all i: yi(𝜃⋆ xi + 𝜃0) = 1 − 𝜉i .
(4.12)

It is very simple to fit a PSVM. After all, PSVM is solving a weighted least-squares
regression problem, and the solution can be written down in closed form. Also, ker-
nelization can be used with PSVMs just as in SVMs, as the dual problem still involves
the data through inner products (Fung and Mangasarian, 2001).

Note that PSVMs differ from SVMs considerably in interpretation. The SVM con-
straint

yi(𝜃⋆ xi + 𝜃0) ≥ 1 − 𝜉i
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means “data in class (+1 or −1) lie on or beyond the hyperplane {v : 𝜃⋆ v + 𝜃0 =
(+1 or −1)}, except for some error.” The PSVM constraint

yi(𝜃⋆ xi + 𝜃0) = 1 − 𝜉i

means “data in class (+1 or −1) lie on the hyperplane {v : 𝜃⋆ v + 𝜃0 = (+1 or −1)},
except for some error.” That is, a trained PSVM is approximating the data in the
two classes by a pair of parallel hyperplanes. Thus PSVM is essentially a prototype
method, where the class prototypes are not points, but hyperplanes. If kernelization
is used, then “hyperplane” becomes “manifold” in this statement, and the parallelism
between the two class prototypes exists in some higher-dimensional space.

The interpretation of PSVMs is made more explicit by rewriting (4.12) as

minimize over 𝜃⋆, 𝜃0: 1
2
‖𝜃⋆‖2 + 1

2
𝜃

2
0 + 1

2
𝛾
∑n

i=1(1 − yi(𝜃⋆ xi + 𝜃0))2 (4.13)

The sum in (4.13) is the total squared-error loss incurred by simultaneously fitting the
data in the two classes by the hyperplanes {v : 𝜃⋆ v − 𝜃0 = 1} and {v : 𝜃⋆ v − 𝜃0 =
−1}, while the other two terms penalize the size of the parameter vector 𝜃 = (𝜃0, 𝜃⋆).
Viewed this way, PSVMs are a rediscovery of ridge regression (see Chapter 3).

4.10 Postscript: Example Problem Revisited

The result of fitting the models described in this Chapter (and also some models
described in Chapter 6) to the example data of Figure 4.1 are summarized in Table 4.2
and Figure 4.34. It is interesting to note that while the Gaussian mixture model with
three components per class is the correct model, in the sense that the training data truly
were generated by such a model, it produced relatively poor predictive performance.
Many find this result counter-intuitive at first: this was addressed in Section 4.4.3 and
will be addressed further in Chapters 5 and 8.

It is absolutely not the purpose of Table 4.2 and Figure 4.34 to pass as evidence
that any classification method is superior to any other on any dataset besides the
one displayed in Figure 4.1. Nor was the dataset of Figure 4.1 designed to make any
method appear favorably compared to any other. What Table 4.2 and Figure 4.34 show
is that a range of different risks can be expected among classifiers trained on a given
set of data, and that the relative performance of the methods may give some clue to
the nature of the data. In this example, the classifiers of Chapter 4 fall naturally into
two sets separated by a significant performance gap: those with risk 0.208 or below,
and those with risk 0.220 or above. Seven of the eight classifiers with risk 0.220 or
above produce class boundaries which are piecewise hyperplanes, and among these,
performance tends to get worse when the hyperplanes are forced to be orthogonal
to the coordinate axes. We might infer from this that whatever the class boundaries
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Table 4.2 The risk of the methods described in this chapter as a solution to the
example problem, estimated from 50,000 test points. Where applicable, tuning
parameters (such as bandwidth or the number of nearest neighbors) were selected to
minimize a computable risk estimate obtained from the training data.

Section Method
Risk

estimate
Standard

error

4.1 Bayes classifier 0.191705 —
4.5 Learning vector quantization 0.195 0.0018
4.4 Kernel density estimation (product kernel) 0.199 0.0018
6.3 Bagged 1-nearest-neighbor 0.199 0.0018
4.9 Support vector machine (radial) 0.201 0.0018
4.7 Neural network∗ 0.201 0.0018
4.5 k-nearest-neighbor 0.202 0.0018
4.4 Kernel density estimation (Gaussian kernel) 0.203 0.0018
4.4 Quadratic discriminant analysis 0.204 0.0018
4.4 Two-component Gaussian mixture 0.205 0.0018
4.9 Support vector machine (polynomial) 0.208 0.0018
6.1 Ensemble of “bad” classifiers 0.210 0.0018
4.4 Naive Bayes 0.212 0.0018
4.6 Logistic regression 0.220 0.0019
6.5 Random forest 0.220 0.0019
4.9 Support vector machine (linear) 0.221 0.0019
6.3 Bagged stumps 0.221 0.0019
6.8 LR mixture of experts (bootstrapped stumps) 0.227 0.0019
4.4 Three-component Gaussian mixture 0.228 0.0019
4.4 Linear discriminant analysis 0.229 0.0019
6.8 LR stacking (bootstrapped stumps) 0.231 0.0019
4.8 Classification tree† 0.243 0.0019
6.4 Bumped 1-nearest-neighbor 0.245 0.0019
4.4 Histogram 0.260 0.0019
6.7 Arced stumps 0.262 0.0019
6.6 Boosted stumps 0.268 0.0019

∗Cross-validation suggested that 2, 3, 4, or 5 neurons in the hidden layer would produce about the same
risk. Among models of approximately equal estimated risk, one would naturally choose the simplest (as
the most interpretable or the computationally cheapest to apply), which in this case means a neural
network with two neurons in the hidden layer. The risk of this network, estimated from test data, was
0.201. The mean risk of these four networks is 0.218.
†This is the risk of a 15-leaf tree, which had minimal risk as estimated by leave-one-out cross-validation
and so was selected as the optimal tree. A 5-leaf tree had significantly lower risk, 0.236, according to the
test data.
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Bayes classifier
Learning vector quantization
Kernel density estimation (product kernel)
Bagged 1-nearest-neighbor
Support vector machine (radial)
Neural network
k-nearest-neighbor
Kernel density estimation (Gaussian kernel)
Quadratic discriminant analysis
2-component Gaussian mixture
Support vector machine (polynomial)
Ensemble of 'bad' classifiers
Naive Bayes
Logistic regression
Random forest
Support vector machine (linear)
Bagged stumps
LR mixture of experts (bootstrapped stumps)
3-component Gaussian mixture
Linear discriminant analysis
LR stacking (bootstrapped stumps)
Classification tree
Bumped 1-nearest-neighbor
Histogram
Arced stumps
Boosted stumps

Method Estimated risk

Figure 4.34 Graphical representation of the data in Table 4.2. For each method,
estimated risk is plotted as a black dot, and red lines extend one standard error to
each side.

may be, they are not well approximated by hyperplanes and in particular are not well
approximated by hyperplanes orthogonal to the coordinate axes. Practically, we might
decide not to focus future classification effort in this example on classification trees or
histograms, and focus instead on methods which can learn curved class boundaries.
Fitting classifiers to data is an exploratory process!



5

Bias–Variance Trade-off

A machine [classifier] with too much capacity [ability to fit training data
exactly] is like a botanist with a photographic memory who, when pre-
sented with a new tree, concludes that it is not a tree because it has a
different number of leaves from anything she has seen before; a machine
with too little capacity is like the botanist’s lazy brother, who declares
that if it’s green, then it’s a tree. Neither can generalize well.

—Christopher J. C. Burges, Data Mining
and Knowledge Discovery, 1998

Recall from Chapter 2 that an approximation method is a function which maps a
training dataset S to an approximation f̂S, and the risk of an approximation method
is the expected loss with respect to the distribution of new data and of training
datasets,

R = ES,X,Y [L(Y , f̂S(X))].

The risk of an approximation method decomposes in an informative way when
squared-error loss is used. Specifically, under square-error loss, risk decomposes into
a sum of three non-negative terms, one of which we can do nothing about and two
of which we can affect. As we shall see in Chapter 6, viewing risk-minimization as
minimization of the sum of two non-negative terms, and having useful interpretations
of the two terms, strongly influences the design of approximation methods.

Various generalizations of this decomposition have been proposed for other loss
functions in both regression and classification. While the author does not regard the

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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issue of risk decomposition as definitively settled, intuitive understanding derived
from what is known has been of unquestionable benefit to algorithm design.

5.1 Squared-Error Loss

In additive-noise regression problems, Y = f (X) + E with E[E] = 0, so E[Y|X] =
f (X). In such settings, under squared-error loss, the risk decomposes as

R = ES,X,Y [(Y − f̂S(X))2]
= EX,Y [(Y − f (X))2] + EX[( f (X) − ES[ f̂S(X)])2] + EX[VarS f̂S(X)]

(5.1)

(Geman et al., 1992).
The three terms in this decomposition are worth description in words. The first,

EX,Y [(Y − f (X))2],

is the expected loss incurred when the predicted value at X is f (X). Under squared-
error loss, this is the minimum-risk prediction, so f (X) is the Bayes regressor and
the above term is the Bayes risk: in this context, it is called the intrinsic risk or the
irreducible risk, indicating that this much risk is inherent in the problem. It is also
EX[VarY|X[Y]]. Note that it does not depend on any approximation of f .

The expression ES[ f̂S(x)] − f (x) is called the bias1 of the approximation method
(at x). The second term,

EX[ (f (X) − ES[ f̂S(X)])2],

is the expected value (with respect to the distribution of X) of the squared bias. This
measures how close the average approximation, ES[ f̂S], is to the true function, f , on
average with respect to the distribution of X.

The variance, VarS f̂S(X), measures the average squared distance between a partic-
ular approximation, f̂S, and the average approximation, ES[ f̂S]. So the third term,

EX[VarS f̂S(X)],

measures the average squared distance (with respect to the distribution of X) between
approximations f̂S produced by the method and the average approximation, ES[ f̂S].

Exercise 5.1 Prove (5.1), assuming that E[Y|X] = f (X) and that the training set S is
independent of the point (X, Y) at which prediction is made.
Hint: Write Y − f̂S(X) as

Y − f (X) + f (X) − ES[ f̂S(X)] + ES[ f̂S(X)] − f̂S(X)

and use additivity of the integral.

1 Recall that in statistics, the bias of an estimator ẑ of a fixed quantity z is E[̂z] − z. The estimator is
unbiased if its bias is zero.
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Dataset 1

Degree−6 polynomial

Bias≈0.0002 Variance≈1.4340 Risk ≈2.4342

Dataset 1

Degree−3 polynomial

Bias≈0.0060 Variance ≈0.2314 Risk ≈1.2374

Dataset 1

Degree−0 polynomial

Bias ≈1.1644 Variance ≈0.1168 Risk ≈2.2812

Dataset 2 Dataset 2 Dataset 2

Dataset 3 Dataset 3 Dataset 3

Figure 5.1 Bias and variance in regression. A function f approximated from three
15-element datasets using three different approximation methods. In each cell, the
true function f is shown in blue, a training dataset S is shown in black, the estimate f̂S
produced from the training data is shown as a thin gray line or curve, and the average
estimate ES[ f̂S ] produced by the method is shown in dashed orange. The left-hand
cells illustrate a low-bias, high-variance method, the middle cells illustrate a relatively
low-bias, low-variance method, and the right-hand cells illustrate a high-bias, low-
variance method. The Bayes risk for this problem is 1.

The bias and variance of three different methods of approximating a real function
f of a single real variable are illustrated in Figure 5.1. In the examples illustrated, the
one-dimensional feature X is uniformly distributed in an interval, and Y|(X = x) is
drawn from a Gaussian distribution with mean f (x) and unit variance (so the intrinsic
risk with respect to squared-error loss is 1).
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Each cell of Figure 5.1 shows four things: (1) the true function f , represented by a
blue curve; (2) a specific 15-point dataset, represented by black dots; (3) the average
approximation produced by one of the three methods, represented by a dashed orange
curve2; (4) the specific approximation f̂ obtained by applying one of the three meth-
ods to the specific 15-point dataset shown, represented by a thin gray curve. Three
distinct datasets are shown, repeated across rows of cells.

The left-hand three cells of Figure 5.1 show a method which approximates f by the
least-squares fit of a degree-6 polynomial, that is, by performing linear regression on
the expanded vector (1, x, x2, x3, x4, x5, x6). This method has high variance: each spe-
cific approximation (thin gray curve) is far from the average approximation (orange
curve). It also has low bias: the average approximation (orange curve) is quite close
to the true f (blue curve) in most places.

The center three cells of Figure 5.1 show a method which approximates f by the
least-squares fit of a degree-3 polynomial, that is, by performing linear regression on
the expanded (1, x, x2, x3). This method has much lower variance and only slightly
higher bias than a degree-6 polynomial, producing a much lower risk.

The right-hand three cells of Figure 5.1 show a method which approximates f by
the least-squares fit of a degree-0 polynomial, that is, by performing linear regression
on the constant vector (1). This produces a horizontal line intersecting the vertical
axis at the mean response, 1

n

∑n
i=1 yi. This method has low variance: each specific

approximation (thin gray line) is relatively close to the average approximation (orange
line). It also has high bias: the average approximation (orange line) is far from the
true f (blue curve) in most places.

The risk of most approximation methods generally decreases as the number of
training data |S| increases, and therefore the bias and variance of such methods
depend on the number of training data. This is illustrated in the examples just
described by using training datasets of different sizes. For each data size |S| ∈ {15,
150, 1500, 15000, 150000}, the examples were replicated independently 10000 times
so that estimates of bias and variance could be computed. The results are shown in
Table 5.1.

For squared-error loss, the bias–variance trade-off is the idea that minimizing risk
requires minimizing the sum of the squared bias and the variance in (5.1),

EX[( f (X) − ES[ f̂S(X)])2] + EX[VarS f̂S(X)].

The importance of this has not always been recognized: in the early days of statistics,
there was a great deal of emphasis on finding approximation methods with minimal
variance, subject to having zero bias (that is, being unbiased). One can view ridge
regression, described in Section 3.10, as an early method which exploited the bias–
variance trade-off, reducing variance while increasing bias in order to produce lower-
risk predictions.

2 The average approximation shown is an estimate derived from 1000 random 15-point datasets simu-
lated according to the model.
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Table 5.1 The effect of data size on bias and variance in regression with
squared-error loss, estimated by replicating the example described in this section
10 000 times for various data sizes |S|. Except for the case of the degree-6
polynomial fit to 15 data points, the variance is approximately proportional to 1|S| .
Data size has far less effect on bias than on variance, and as data size increases, bias
becomes the dominant contribution to the total risk.

|S| Degree Bayes risk Bias Variance Total risk

15 0 1 1.164361 0.116805 2.281166
150 0 1 1.164361 0.014161 2.178523

1500 0 1 1.164361 0.001429 2.165790
15000 0 1 1.164361 0.000146 2.164507

150000 0 1 1.164361 0.000014 2.164375
15 3 1 0.006018 0.231417 1.237435

150 3 1 0.004459 0.026418 1.030877
1500 3 1 0.004427 0.002672 1.007099

15000 3 1 0.004427 0.000272 1.004700
150000 3 1 0.004427 0.000027 1.004454

15 6 1 0.000163 1.433968 2.434132
150 6 1 0.000029 0.045992 1.046022

1500 6 1 0.000019 0.004700 1.004719
15000 6 1 0.000019 0.000473 1.000492

150000 6 1 0.000019 0.000047 1.000065

5.2 Arbitrary Loss

The bias and variance of an approximation method extend intuitively to learning in
general (either regression or classification) with an arbitrary loss function:

low bias means

◦ the average approximation is close to the truth3;

high bias means

◦ the average approximation is far from the truth,

◦ the approximation method is not sufficiently flexible,

◦ individual approximations are not adequately adapted to the data;

3 One of the difficulties of formalizing bias and variance is determining what “the average approxima-
tion” is when the range of f is a discrete, unordered set with no algebraic or geometric structure.
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low variance means

◦ each individual approximation is close to the average approximation,

◦ individual approximations tend to be similar to one another,

◦ the approximation method is “stable” with respect to which dataset (of all
possible datasets) it is shown;

high variance means

◦ individual approximations are often far from the average approximation,

◦ individual approximations are quite different from one another,

◦ the approximation method is very sensitive to which dataset it is shown.

For arbitrary loss, the bias–variance trade-off is the idea, motivated by (5.1), that
finding a minimum-risk approximation method involves striking a balance between
minimizing bias (and hence being right on average) and minimizing variance (and
hence being stable with respect to variation in training datasets). An approximation
method which performs poorly due to high variance is said to over-fit when presented
with data. One which performs poorly due to high bias is said to under-fit.

Figure 5.2 illustrates bias and variance in the k-nearest-neighbors classifier, trained
on three different 150-point datasets drawn from the data source described in Sec-
tion 4.3 (the source of the running example of Chapter 4). Recall from Chapter 4 that
the Bayes risk for this problem, with respect to 0–1 loss, is 0.191705.

Figure 5.2 shows 12 cells, arranged in four rows of three. The first three rows
show three classifiers trained on three datasets. The first row shows the 1-NN, 9-NN,
and 100-NN classifiers, each trained on one particular 150-point dataset drawn from
the source described in Section 4.3. The second row shows the 1-NN, 9-NN, and
100-NN classifiers, each trained on another 150-point dataset drawn from the source
described in Section 4.3. The third row shows the 1-NN, 9-NN, and 100-NN classi-
fiers, each trained on yet another 150-point dataset drawn from the source described
in Section 4.3. The fourth row of Figure 5.2 shows the most common prediction made
by the 1-NN, 9-NN, and 100-NN classifiers, taken over 1000 independent 150-point
datasets drawn from the source described in Section 4.3. These 1000 datasets were
also used for risk estimation.

The left-most four cells of Figure 5.2 show the 1-nearest-neighbor classifier. This
method has high variance: from cell to cell, the classifications made in the plane
change considerably, particularly in the center of each cell. This method has low bias:
the class boundary of the most common prediction is very close to the Bayes class
boundary (white curve). The risk of this method is approximately 0.275 (standard
deviation 0.017).

The center four cells of Figure 5.2 show the 9-nearest-neighbor classifier. This
method has moderate variance: from cell to cell, the classifications made in the plane
change, but not as much as those of the 1-nearest-neighbor classifier, particularly in
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Most common prediction
among 1000 datasets

Most common prediction
among 1000 datasets

Most common prediction
among 1000 datasets

Dataset 3Dataset 3Dataset 3

Dataset 2Dataset 2Dataset 2

100-NN predictions

Dataset 1

9-NN predictions

Dataset 1

1-NN predictions

Dataset 1

Figure 5.2 Bias and variance in classification. The 1-NN, 9-NN and 100-NN classi-
fiers trained on datasets drawn from the running example distribution of Section 4.3.
See the text for explanation.
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the center of each cell. This method has moderate bias: the class boundary of the
most common prediction is close to the Bayes class boundary (white curve) toward
the center of the cell, but is not close toward the edges. The risk of this method is
approximately 0.215 (standard deviation 0.010).

The right-most four cells of Figure 5.2 show the 100-nearest-neighbor classifier.
This method has low variance: from cell to cell, the classifications made in the plane
change hardly at all. This method has high bias: the class boundary of the most com-
mon prediction is quite far from the Bayes class boundary (white curve). In particular,
the average class boundary is considerably less curved than the Bayes class boundary.
The risk of this method is approximately 0.272 (standard deviation 0.047).4

Formal extension of the bias–variance trade-off to an arbitrary loss function, or
just for classification with 0–1 loss, is an active area of research: see, for exam-
ple, Kong and Dietterich (1995), Breiman (1996b), Kohavi and Wolpert (1996),
Tibshirani (1996a), Friedman (1997b), James and Hastie (1997), Breiman (1998),
Domingos (2000), James (2003), Efron (2004), and Le Borgne (2005). Most of these
papers propose definitions of bias and variance for classification with 0–1 loss, though
some also treat more general loss. Also, most of these papers decompose risk addi-
tively, into a sum of intrinsic risk plus bias plus variance (mirroring the form of
(5.1)), although Domingos (1999) proposes a weighted additive decomposition, and
Friedman (1997b) proposes a multiplicative decomposition composed with a Gaus-
sian cumulative distribution function. It may be that formal extension of the bias–
variance trade-off actually requires more terms than just intrinsic risk, bias, and vari-
ance: James considers this possibility in the case of symmetric loss functions.

The following extension of bias and variance to classification with 0–1 loss is from
Breiman (1996b, 1998). Let f̂S(X) denote a classification method which takes as
input a training dataset S and a point X in feature space, and returns a class label
(the predicted class at X). Let fb denote the Bayes classifier, which in Exercise 4.2
was shown to be

fb(X) = argmaxc=1,…,C P(Y = c|X).

Let PS denote a probability distribution on training datasets of a given size, and let

f̂a(X) = argmaxc=1,…,C PS( f̂S(X) = c)

4 The astute reader will have noticed that the estimated risk of the 1-NN, 9-NN, and 100-NN approxi-
mation methods, respectively 0.275, 0.215, and 0.272, are higher than the risk of these classifiers when
trained on the specific dataset used in Chapter 4, respectively 0.248, 0.203, and 0.247. Of the 1000
datasets drawn from the source described in Section 4.3, 5.4% produced a 1-NN classifier with estimated
risk ≤ 0.248, 7.1% produced a 9-NN classifier with estimated risk ≤ 0.215, and 36.4% produced a 100-
NN classifier with estimated risk ≤ 0.247. Thus it appears that the specific dataset used in Chapter 4
produces somewhat lower-risk classifiers than average. This property was not consciously arranged by
the author.
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be the class label most likely to be predicted at X with respect to the distribution on
sets of training data. Looking ahead slightly to Chapter 7, one can think of f̂a(X) as
arising from applying the classification method to many datasets drawn from PS and
letting the trained classifiers “vote” on the predicted class label at X. Breiman calls
f̂a(X) the aggregated classifier.

Breiman defines a classification method to be unbiased at x ∈  if f̂a(x) = fb(x):
that is, if the prediction made at x by the classification method is more likely to be
the optimal (Bayes) prediction than it is to be any other single value. Breiman defines
the bias and variance of a classification method under 0–1 loss as

bias = PX,Y ( fb(X) = Y and fb(X) ≠ f̂a(X)) − ES

[
PX,Y ( f̂S(X) = Y and fb(X) ≠ f̂a(X))

]
and

var = PX,Y ( fb(X) = Y and fb(X) = f̂a(X)) − ES

[
PX,Y ( f̂S(X) = Y and fb(X) = f̂a(X))

]
,

and shows that, under 0–1 loss, the risk of a classification method can be decomposed
as

R = ES,X,Y [L(Y , f̂S(X))] = PX,Y (fb(X) ≠ Y) + bias + variance. (5.2)

The first term on the right-hand side is the irreducible error, the Bayes error rate.
Approximating Breiman’s measures of bias and variance for the three k-nearest-

neighbor classifiers illustrated in Figure 5.2, using the 1000 independent 150-point
datasets drawn from the source described in Section 4.3, produces the following:

k Intrinsic risk Bias Variance Total risk
1 0.191705 0.00002 0.082 0.275
9 0.191705 0.00049 0.021 0.215

100 0.191705 0.021 0.058 0.272

It is curious that the variance does not decrease monotonically with k.

Exercise 5.2 Prove (5.2).

Exercise 5.3 Show the following, using the above definitions of bias and variance
for a classification method:

(1) the Bayes classifier fb has zero bias;

(2) fb and f̂a have zero variance;

(3) more generally, any classification method has zero variance if the trained
classifier does not depend on the data;
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(4) bias and variance can be represented as

bias = ∫{x∈ :fb(x)≠f̂a(x)}

(
EY|X=x

[
[ fb(x) = Y]

]
− ES,Y|X=x

[
[ f̂S(x) = Y]

])
PX(x) dx

and

variance=∫{x∈ :fb(x)=f̂a(x)}

(
EY|X=x

[
[ fb(x)= Y]

]
−ES,Y|X=x

[
[ f̂S(x)= Y]

])
PX(x) dx

(5) the bias and variance are non-negative.

The point of the following exercise is that Breiman’s definitions of bias and vari-
ance have an odd property, which is that they can exhibit a discontinuity when a
classifier goes from being slightly more like the Bayes classifier than guessing class
labels uniformly at random to being slightly less like the Bayes classifier than guess-
ing class labels uniformly at random.

Exercise 5.4 Let a (fictional) C-class classification problem be given such that the
Bayes classifier is known, and let the noisy Bayes classifier be defined as follows.
Given x, the noisy Bayes classifier randomly chooses either to predict the class pre-
dicted by the Bayes classifier (with probability 𝛾) or it chooses its prediction uni-
formly at random from among the C − 1 classes not predicted by the Bayes classifier.
That is,

f̂S(x) ∼ Multinomial (1, (p1,… , pC)),

where, for c = 1,… , C,

pc =
{

𝛾 if fb(x) = c
1−𝛾
C−1

if fb(x) ≠ c
.

The random decisions are made once for each training set S and each input x, so
while f̂S(x) is randomly generated when it is trained, it is a deterministic function
once it is trained. In terms of 𝛾 , C, and the Bayes risk, express the bias, variance, and
risk of the noisy Bayes classifier, for any 𝛾 ∈ [0, 1], 𝛾 ≠ 1

C
, and any C ≥ 2. Describe

any discontinuities as 𝛾 changes continuously from one side of 1
C

to the other.
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Combining Classifiers

For each individual among the many has a share of virtue and prudence,
and when they meet together, they become in a manner one man, who
has many feet, and hands, and senses; that is a figure of their mind and
disposition. Hence the many are better judges than a single man of music
and poetry; for some understand one part, and some another, and among
them they understand the whole.

—Aristotle, Politics, c. 350 BCE

The methods described in Chapters 3 and 4 produce regressors or classifiers which
are not naturally decomposable into collections of smaller regressors or classifiers. As
such, these regressors and classifiers are called base learners or primitive learners—
although perhaps a more descriptive term would be atomic learners. This chapter
introduces classification methods which combine base learners in various ways. The
design of specific methods is usually based on an understanding of the bias–variance
trade-off described in Chapter 5.

6.1 Ensembles

If one is willing to do the work to train L classifiers, of any type or types, one can get
a new classifier by having the L classifiers “vote” as a committee. That is, one can
classify a new data point as the class most commonly assigned to it by the individ-
ual trained classifiers. The voting may be weighted to favor preferred classifiers, or
the votes of the individual classifiers may be used as inputs to another classification
algorithm. Such techniques are called ensemble methods, or committee methods.

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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Ensemble predictions

Figure 6.1 Predictions made by an ensemble of 20 bad classifiers (risk ≥ 0.220)
constructed on the data of Section 4.3. Each of the 20 base learners votes with equal
weight. The ensemble has risk 0.210.

An example of this type is illustrated in Figure 6.1. In Chapter 4, 36 classifiers were
trained on the data of Section 4.3. The estimated risks of these classifiers, based on
50,000 test data, range from 0.195 (LVQ) to 0.665 (a one-leaf tree which always pre-
dicts the purple class). The author made an arbitrary choice to declare a classifier bad
if its risk is at least 0.220. With this definition, there were 20 bad classifiers, repre-
senting every method in Chapter 4 except QDA and logistic regression. An ensemble
composed of these 20 bad classifiers, all voting with equal weight, has risk 0.210,
which is about 5.5 standard errors better than the risk of the best classifier in the
ensemble.

A binary classifier can be applied to an arbitrary number of classes C by committee.
One way to do this is to train a binary classifier to distinguish class c from the union
of all other classes, for each class c = 1,… , C, and to vote the resulting C binary
classifiers in a committee. Another way to do this is to train a binary classifier to
distinguish class c from class d, for all classes 1 ≤ c < d ≤ C, and to vote the resulting(C

2

)
binary classifiers in a committee.1 An example is shown in Figure 6.2.

Committees of regressors combine continuous-valued predictions (“votes”) of the
base learners in some numerical way, such as computing the mean or using the indi-
vidual votes as input to a linear function which is chosen to (approximately) mini-
mize the risk of of the committee’s predictions. This can be applied to classification
when some or all of the base learners compute approximate probabilities of class
membership,

(P̂(Y = 1 |X),… , P̂(Y = C |X)),

1 This is the method used to extend support vector machines to classification problems with C ≥ 3
classes in the R library e1071, used in the example of Section 4.9.
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Linear SVM predictions Linear SVM predictions

Linear SVM predictions Linear SVM predictions

Committee Class 1 (orange) vs. class 2 (blue)

Class 2 (blue) vs. class 3 (purple)Class 1 (orange) vs. class 3 (purple)

Figure 6.2 All trained support vector machines illustrated on the data of Section 4.3,
which has C = 3 classes, were obtained by training

(3
2

)
= 3 binary support vector

machines. That is, support vector machines were trained to distinguish “orange vs.
blue,” “orange vs. purple,” and “blue vs. purple,” and then voted in a committee to
produce a three-class classifier. The case of linear support vector machines is illus-
trated here: the upper-left cell, which is identical to the right-hand cell of Figure 4.30,
shows the majority vote while the other three cells show the three binary support vec-
tor machines (these are shown in Figure 4.29).

by using a combined estimate of class probabilities to produce a single predicted class.
If each of the classifiers under consideration compute approximate probabilities of
class membership,

(P̂(Y = 1 |X),… , P̂(Y = C |X)),
then one can get a new classifier by making the minimum risk prediction based on a
combined estimate of the class probabilities (such as the mean of the estimated class
probabilities).
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The observation that a combination of many poor statistical predictions might form
a good prediction is quite old. In 1907, Francis Galton reported an analysis of 787
guesses in a contest to guess the dressed weight of an ox, based on observation of
the ox while alive (Galton, 1907). Galton found that the median guess, 1207 pounds,
was very close to the actual dressed weight of the ox (1198 pounds) in spite of the
fact that the set of guesses displayed considerable variation (the inter-quartile range
was [1162, 1236] pounds, and the range between the 5th and 95th percentiles was
[1074, 1293] pounds). Each person casting a vote presumably had access to the same
data—visual observation of the live ox in question—but varied in experience and
expertise.2

6.2 Ensemble Design

An important part of the design of ensemble classifiers is the desire to control risk
by controlling bias and variance. Because these concepts do not have widely agreed-
upon formal definitions for classification and for general loss functions, as mentioned
in Section 5.2, ensemble design depends partly on intuition and analogy with the
bias–variance trade-off for squared-error loss.

Some ensemble design approaches may be arrived at by considering the risk,
under squared-error loss, incurred when estimating a real parameter vector. Suppose
Z1,… , ZL are estimators of an unknown real vector 𝜃.3 The lth estimator of 𝜃 has a
bias, Bias[Zl] = E[Zl] − 𝜃, and a variance, Var[Zl].

Now consider combining the estimates Z1,… , ZL into a single ensemble estimator
of 𝜃 by forming the sample mean,

Z̄ = 1
L

L∑
l=1

Zl.

The bias of Z̄ for 𝜃 and the variance of Z̄ are

Bias[Z̄] = 1
L

L∑
l=1

Bias[Zl]

and

Var[Z̄] = 1
L2

L∑
l=1

Var[Zl] +
1
L2

∑
l≠k

Cov[Zl, Zk]

= 1
L2

L∑
l=1

Var[Zl] +
1
L2

∑
l≠k

Cor[Zl, Zk]
√

Var[Zl]
√

Var[Zk].

2 Galton’s purpose in this analysis was not frivolous: he was using the weight-guessing contest as a
proxy for governing by democracy. In his words, “the average competitor was probably as well fitted
for making a just estimate of the weight of the ox, as an average voter is of judging the merits of most
political issues on which he votes, and the variety among the voters to judge justly was probably much
the same in either case” (Galton, 1907). Compare with Aristotle (350 BCE).
3 In this simple example, 𝜃 is unknown but fixed, so the intrinsic risk is zero.
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Ensemble Design Approach A. The expressions for bias and variance show that
if one can find a set of estimators Z1,… , ZL which:

(1) all have the same bias, 𝛽,

(2) all have the same variance, 𝜎2
> 0, and

(3) are all uncorrelated,

then the estimator Z̄ has bias 𝛽 and variance 𝜎
2

L
, and so has strictly smaller risk than

any of the individual estimators. Thus one might produce a low-risk estimator Z̄ of
𝜃 by constructing many high-risk estimators Z1,… , ZL, provided that the individual
high-risk estimators are uncorrelated and have low bias (but high variance).

Ensemble Design Approach B. The expressions for bias and variance also show
that if one can find a set of estimators Z1,… , ZL which:

(1) have non-zero biases 𝛽1,… , 𝛽L which sum to zero, and

(2) all have the same variance, 𝜎2
> 0,

then the estimator Z̄ has bias 0 and variance

𝜎
2

L2

(
L +

∑
l≠k

Cor[Zl, Zk]

)
≤ 𝜎

2,

and so has strictly smaller risk than any of the individual estimators. Thus one
might produce a low-risk estimator Z̄ of 𝜃 by constructing many high-risk estimators
Z1,… , ZL, provided that the individual high-risk estimators have low variance (but
have high biases which cancel each other out). While it is possible that Var[Z̄] = 𝜎

2,
such cases are pathological4 and typically, in addition to the bias being zero, we would
expect that Var[Z̄] < 𝜎2.

Exercise 6.1 Consider a generalization of the sample average: Z =
∑L

l=1 clZl, where
all the coefficients cl are non-negative and c1 +⋯ + cL = 1. Assuming that Z1,… , ZL
(1) all have the same bias, 𝛽, (2) have known, positive variances, 𝜎2

1 ,… , 𝜎2
L, and (3)

are all uncorrelated, find values of the coefficients c1,… , cL which minimize the risk
of Z under squared-error loss.

Exercise 6.2 For each of five ensemble methods (bagging, random forests, boosting,
arcing, and stacking, described in Sections 6.3, 6.5, 6.6, 6.7, and 6.8), state whether it
resembles design approach A or design approach B (or both, or neither). For each of
these ensemble methods, can you find choices of base learners and parameters (of the
ensemble method or of the base learners) which make the method resemble approach
A, and other choices which make the method resemble approach B?

4 If Var[Z̄] = 𝜎
2 then Cor[Zl, Zk] = 1 for all 1 ≤ l ≤ k ≤ L, which implies that every Zl is an increasing

linear function of every other Zk (that is, for each pair (l, k) there are constants al,k > 0 and bl,k such that
Zl = al,kZk + bl,k).
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6.3 Bootstrap Aggregation (Bagging)

The bootstrap is a technique, due to Efron (1979), for generating new datasets with
approximately the same (unknown) sampling distribution as a given dataset. A boot-
strap sample of a dataset of size n is obtained by sampling the set with replacement
n times. Thus a bootstrap sample of the set

{(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6)}

might be

{(x2, y2), (x4, y4), (x4, y4), (x5, y5), (x6, y6), (x6, y6)}.

Efron’s original motivation for the bootstrap was to estimate the variance of statistical
estimators.

Exercise 6.3 Let 𝜌 > 0. Show that if a dataset of size n is sampled independently with
replacement 𝜌n times, then the probability that any particular point in the dataset is
excluded from the sample is (1 − 1

n
)𝜌n. Show that

lim
n→∞

(
1 − 1

n

)𝜌n
= e−𝜌.

Thus, the expected proportion of a dataset which is excluded from a given bootstrap
sample is about e−1 ≈ 0.368, and the expected proportion which is included is about
1 − e−1 ≈ 0.632.

Bagging, a portmanteau word meaning “bootstrap aggregation,” is an ensemble
technique due to Breiman (1996a). Bagging is a simple idea: choose a classification
algorithm, draw L independent bootstrap samples of the training data (that is, draw L
sets of size n independently from the training data, with replacement), train a classifier
on each of the L sets, and then combine them in a committee.

The size of the bootstrap samples used in bagging need not be n, the number of
training data. Instead, bootstrap samples of size 𝜌n, for some real number 𝜌 > 0,
can be used (original bootstrapping corresponds to 𝜌 = 1). In light of Chapter 5, one
would expect that decreasing 𝜌 would result in increasing both the variance and the
bias of the base learners, while at the same time decreasing the correlation between
any two base learners (because the expected proportion of training data common to
two bootstrap samples of size 𝜌n is about (1 − e−𝜌)2).

The effects of varying bootstrap sample size in bagged 1-nearest neighbor classi-
fiers and bagged stumps,5 trained on the data of Section 4.3, are shown in Figures 6.3
and 6.4. The top two cells of Figure 6.3 show classification decisions made by a
1-nearest-neighbor classifier and a stump, trained on all of the data of Section 4.3.

5 Recall from Chapter 4 that a stump is a tree with only two leaf nodes.
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1-NN predictions Stump predictions

Bagged 1-NN predictions Bagged stumps predictions

Bagged 1-NN predictions Bagged stumps predictions

Figure 6.3 Top row: a 1-nearest-neighbor classifier (risk 0.247) and a stump (risk
0.423), trained on the data of Section 4.3. Middle row: bagged 1-nearest neighbor
classifiers (risk 0.248) and bagged stumps (risk 0.419) trained on L = 100 boot-
strap samples of size n. Bottom row: bagged 1-nearest neighbor classifiers trained on
L = 100

𝜌
bootstrap samples of size 𝜌n with 𝜌 = 1

8
(risk 0.199) and bagged stumps

trained on L = 100
𝜌

bootstrap samples of size 𝜌n with 𝜌 = 1
16

(risk 0.219). The boot-
strap sample sizes in the bottom row were selected as approximately optimal using
out-of-bag risk estimation, described in Section 7.3, to estimate risk from the train-
ing data.
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Bootstrap sample size
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R
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k

Bagged 1−NN

Bagged stump

Figure 6.4 The risk of bagged 1-nearest-neighbor classifiers and bagged stumps
trained on the data of Section 4.3, as a function of the size of the bootstrap samples.
The horizontal axis is the ratio 𝜌 of the bootstrap sample size to the total number
of training data, n. For various values of 𝜌, a bagged classifier consisting of either
1-nearest-neighbor classifiers or stumps was constructed by drawing 100

𝜌
bootstrap

samples of size 𝜌n (the variable number of bootstrap samples was chosen so that each
bagged classifier was trained on about 100 n data replicates in total). The bootstrap
sample size has a strong effect on the risk of the bagged classifier. In this example,
since n = 150, choosing 𝜌 much less than 2−6, leads to bootstrap samples consisting
of only one data point, and this results in an ensemble that predicts the same class at
every point x.

The middle two cells show classification decisions made by bagged ensembles of 100
classifiers each, using bootstrap samples of size n. The bottom two cells show classi-
fication decisions made by bagged ensembles of 100

𝜌
classifiers each, using bootstrap

samples of size 𝜌n, for values of 𝜌 chosen to be approximately optimal based on
out-of-bag risk estimation (described in Section 7.3).

Visual comparison of the top and middle rows of Figure 6.3 shows that the bagged
classifiers with sample size n perform nearly identically to their corresponding single
base learners trained on all of the data. Figure 6.4 shows the effect of 𝜌 on the risk
of bagged 1-nearest-neighbor classifiers and bagged stumps. When 𝜌 = 1, the risk
of each bagged classifier is essentially the same as the risk of its respective base
learner trained on all of the training data, as one would expect from the classification
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decisions shown in Figure 6.3. As 𝜌 decreases from 1, the risk decreases—the author
interprets this to mean that the increased bias and variance in the base learners is
more than offset by the decreased correlation between them. When 𝜌 = 2−5, each
base classifier is trained on five data points, and when 𝜌 = 2−6, each base classifier
is trained on two data points6, and even for these small bootstrap sample sizes this
example shows no evidence of the risk going back up. For sufficiently small 𝜌, each
bootstrap sample contains only one data point and each base learner predicts the class
of the datum it was trained on (regardless of the input feature vector), so the bagged
classifier predicts whichever class was most represented in the set of size-1 bootstrap
samples (again, regardless of the input feature vector). The author interprets this to
mean that increased bias and variance in the base learners have overwhelmed the
decreased correlation between them.

Exercise 6.4 Consider bagging the 1-nearest-neighbor classifier using L bootstrap
samples, each of size 𝜌n for some positive number 𝜌. Let X be a feature vector to be
classified by the bagged classifier, and let (x, y) be the nearest training data point to
X. Assuming n is large enough that the approximation (1 − 1

n
)𝜌n ≈ e−𝜌 of 6.3 can be

used with negligible error, show that as L → ∞, the probability that at least half of
the bootstrap samples contain the training point (x, y) approaches 1 if and only if 𝜌
is greater than log 2 ≈ 0.693. Conclude that a bagged 1-nearest-neighbor classifier
will perform similarly to a single 1-nearest-neighbor classifier unless 𝜌 is less than
about log 2.

6.4 Bumping

Bumping, introduced in Tibshirani and Knight (1999), constructs bootstrap samples
of the data, trains a classifier on each one, and then computes the training error of each
classifier on the whole dataset. The classifier with the smallest overall training error
is then used. This may be useful if a classifier is stuck at a sub-optimal fit due to a few
misleading data points. Predictions made by a bumped 1-nearest-neighbor classifier
trained on the data of Section 4.3 are shown in the upper-left cell of Figure 6.5. This
bumped classifier was selected from the set of all base classifiers trained in production
of Figure 6.4.

6 In the training dataset for the running example of Section 4.3, no two data points have identical val-
ues in either the first feature or the second feature. Thus when training a classification tree on two data
points of different classes, the root node can be split using either the first feature or the second feature
in order to produce a zero-impurity tree with two leaves. From an impurity-minimization point of view,
there is no reason to prefer splitting on the first feature over splitting on the second feature, but in this
case the R function rpart() always chooses to split using the first feature. For these examples, features
were permuted randomly when training any given tree with rpart(), so that choices between equally
good splits were made uniformly at random.
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Bumped 1-NN predictions Random forest predictions

Boosted stump predictions Arced stump predictions

Figure 6.5 Classification decisions made by bumping a 1-nearest-neighbor classi-
fier (upper left cell), applying a 1000-tree random forest (upper right cell), an ensem-
ble of 1000 boosted stumps (lower left cell), and an ensemble of 1000 arced 1-nearest-
neighbor classifiers (lower right cell), trained on the data of Section 4.3. The bumped
classifier is a single 1-nearest-neighbor classifier chosen to have minimal out-of-bag
risk from the set of all base classifiers trained in the bagging experiments illustrated in
Figure 6.4. A stump is a classification tree constrained to have at most two leaf nodes.
The estimated risks of these classifiers are 0.245 for bumped 1-nearest-neighbor,
0.220 for the random forest, 0.268 for boosted stumps, and 0.262 for arced stumps.

6.5 Random Forests

Random forest classifiers are due to Breiman (2001a) and are a combination earlier
techniques with which he is associated, classification trees and bagging.7 Omitting

7 Ensembles of classification trees trained on random subsets of features had been considered earlier in
Ho (1995) and Dietterich (2000).
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one detail, a random forest classifier is simply bagged trees: on L bootstrap samples
of the data, trees are trained (grown to be over-fit, with no pruning) and then the trees
vote in a committee. The omitted detail is that at each step in growing the tree, a
random training decision is made: a small random sample of the m features (typically
about

√
m of them) are considered for the split rather than all m. The purpose of this

is to reduce the correlation between pairs of trees in the forest.8 Predictions made by
a 1000-tree random forest trained on the data of Section 4.3 are shown in the upper-
right cell of Figure 6.5.

Random forests are provably resistant to over-fitting in the sense that increasing
the number of trees L without bound does not cause the random forest to be over-fit,
in spite of the fact that the number of parameters needed to describe the forest goes
to infinity.9 Let P(X,Y) be the probability distribution from which data are drawn: it
is assumed that the training data and all future data are drawn from this distribution.
Let (X, Y) denote a random datum drawn from P(X,Y). One can show that under 0–1
loss the risk of a random forest with trees T1,… , TL is

R(T1,… , TL) = P(X,Y)

(|trees voting for class Y| < max
c≠Y

|trees voting for class c|) .
Let PF be the probability distribution used for generating random decisions when
training the trees for a random forest. Breiman (2001a) has shown that as L → ∞, the
risk of a random forest with L trees approaches the probability that a new datum (X, Y)
drawn from the data distribution P(X,Y) is misclassified by a random tree constructed
on the training data using PF to make random training decisions, that is,

R(T1,… , TL)

→ P(X,Y)

(
PF (a tree votes for class Y) < max

c≠Y
PF (a tree votes for class c)

)
,

with probability 1. Thus in practice there is no reason to worry about making L too
large, except computational cost.

Breiman defined the random forest proximity of two data points (x1, y1) and (x2, y2)
to be the proportion of trees in a random forest with the property that (x1, y1) and
(x2, y2) are in the same terminal node (leaf). Random forest proximity can be useful
for discovering clusters in data, particularly clusters within a given class.

Exercise 6.5 Let L(d, c) be an arbitrary loss function with the (very minimal) prop-
erty that

L(c, c) = 0 for all c and L(d, c) > 0 for all d ≠ c.

8 Other alternatives have been explored. For example, at each internal node, completely random trees
use a random split of a feature selected at random (Liu et al., 2008), while extremely randomized trees
select a random split for each of

√
m features, and choose the optimal feature (Geurts et al., 2006). In

this case, optimal means impurity-minimizing.
9 This does not mean that any particular random forest is not over fit on any particular dataset!



118 MACHINE LEARNING

Show that if each tree in a random forest is grown until all leaf nodes have zero
impurity (that is, contain training data of only one class), then the actual values
taken by the loss function have no effect on predictions made by the forest. Does the
marginal distribution on classes (P(Y = 1),… , P(Y = C)) have any effect, assuming
P(Y = c) > 0 for all c?

6.6 Boosting

Let real, non-negative weights w1,… , wn be assigned to the training data, and let the
loss incurred by misclassifying (xi, yi) as class d be wiL(yi, d). Weight wi reflects the
relative importance of correctly classifying training datum (xi, yi).

Exercise 6.6 Open-Ended Challenge. Modify each classification algorithm of
Chapter 4 so that it is applicable to weighted data. Hint: If all of the weights
w1,… , wn are integers, then treat this as equivalent to a situation where data are
unweighted, but datum (xi, yi) occurs in the training set wi times. If all of the weights
are rational, then the weights can be scaled up by an integer constant 𝜌 > 0 such
that 𝜌w1,… , 𝜌wn are integers, and the loss function can be divided by 𝜌. A set of real
weights can be handled as the limit of sets of rational weights.

Boosting a classifier refers to an algorithm of the general type shown in Fig-
ure 6.6. A particular boosting algorithm is AdaBoost (short for “adaptive boosting”)
(Freund and Schapire, 1997; Schapire and Freund, 2012). The original AdaBoost
algorithm was defined for C = 2 classes. Using 0–1 loss, AdaBoost is shown in Fig-
ure 6.7 (Friedman et al., 2000).

In Adaboost, if ever R̂l = 0 then no reweighting occurs (because no training data
are misclassified), and if training in step (2A) is deterministic (that is, does not involve
a source of randomness external to the data) then f̂l = f̂l+1 = ⋯ = f̂L. These appar-
ently perfect classifiers have infinite weight assigned to their votes, so AdaBoost

(1) initialize w1, . . . , wn somehow (e.g., set all to 1).

(2) for l = 1, . . . , L ,

(2A) train classifier fl on the weighted training data.

(2B) compute an estimate R̂l of the risk of fl .

(2C) ‘boost’ (increase) the weights of the training data misclassified by fl .

(3) classify new data by voting classifiers f1, . . . , fL in a committee: classifier fl’s

vote has high weight when its risk estimate Rl is small, and vice versa.

Figure 6.6 A generic boosting algorithm.
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(1) initialize w1 = · · · = wn = 1
n .

(2) for l = 1, . . . , L ,

(2A) train classifier f̂l on the weighted training data.

(2B) estimate the risk of f̂l by the error on the weighted training data,

R̂l =
n∑

i=1

wi

[
yi �= f̂l(xi)

]
= sum of weights of the data misclassified by f̂l .

(2C) for i = 1, . . . , n , if yi �= f̂l(xi) update wi to the value wi
1−R̂l

R̂l
.

(2D) renormalize the weights so they sum to 1 .

(3) classify new data as

argmaxc=1,...,C

L∑
l=1

[
f̂l(X) = c

]
log

(
1 − R̂l

R̂l

)
,

that is, the individual classifiers vote in a committee, and fl casts a vote with

weight log 1−Rl

Rl
.

Figure 6.7 The AdaBoost algorithm for 0–1 loss and C = 2 classes. Modifications
for the case C > 2 are described in the text.

produces the same predictions as f̂l. If R̂l is positive but very small, then (1 − R̂l)∕R̂l is
large and the relatively few misclassified points are greatly up-weighted, causing f̂l+1

to focus on classifying these points correctly. Also, classifier f̂l votes with relatively
high weight. As long as R̂l <

1
2
, the predictions made by f̂l are taken to be better than

predicting by tossing a fair coin, and so misclassified points are up-weighted and f̂l
votes with positive weight.

If ever R̂l =
1
2

then predictions by f̂l are taken to be equivalent to tossing a fair coin

and weights are effectively not changed (raising again the possibility that f̂l = f̂l+1 =
⋯ = f̂L). These perfectly useless classifiers have zero weight assigned to their votes.

If R̂l >
1
2
, the predictions made by f̂l are taken to be worse than predictions made by

tossing a fair coin. This does not mean that the classifier is useless, it merely has con-
fused the meaning of the two class labels (or equivalently, f̂l is experiencing opposite
day (Watterson, 1988)). Thus its votes have negative weight, which is to say pos-
itive weight assigned to the opposite vote. Misclassified points are down-weighted,
because from the perspective of AdaBoost, it is useful to make a worse-than-coin-toss
classifier even worse, as long as we know to reverse the predictions of the classifier
by giving its votes negative weight. If ever R̂l = 1 then the weights of all misclassified
points are reduced to zero, and f̂l votes with infinite negative weight.
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Exercise 6.7 The AdaBoost algorithm can also be stated in a slightly different way
from that shown in Figure 6.7. Specifically, step (2C) can be replaced by

(2C′) for i = 1,… , n, if yi ≠ f̂l(xi) update weight wi to the value wi

(
1−R̂l

R̂l

) 1
2

, and

if yi = f̂l(xi) update weight wi to the value wi

(
1−R̂l

R̂l

)− 1
2

.

and step (3) can be replaced by

(3′) classify new data as argmax{c=1,…,C}

L∑
l=1

[̂fl(xi) = c] log
(

1−R̂l

R̂l

) 1
2

.

Show that this different statement of AdaBoost produces exactly the same ensemble
of classifiers as the version shown in Figure 6.7.

Exercise 6.8 In the lth iteration of the AdaBoost algorithm, illustrated in Figure 6.7
by steps (2A)-(2D), let w1,… , wn denote the weights in steps (2A) and (2B), and let
v1,… , vn denote the updated weights in step (2D). That is,

vi =
⎧⎪⎨⎪⎩

c wi if yi = f̂l(xi)

c wi
1−R̂l

R̂l
if yi ≠ f̂l(xi)

,

where c is chosen so that v1 +⋯ + vn = 1.

(A) Show that

c = 1

2(1 − R̂l)

so step (2D) in AdaBoost is equivalent to dividing each weight by 2(1 − R̂l).

(B) Show that the new weights v1,… , vn make the classifier f̂l(xi) as bad as pos-
sible with respect to training risk, in the sense that

n∑
i=1

vi[yi ≠ f̂l(xi)] =
1
2
.

AdaBoost was generalized to C > 2 classes by Zhu et al. (2009). Their generalized
algorithm differs from the original only in the re-weighting applied to the weights of
misclassified data in step (2C), which is

wi
1 − R̂l

R̂l

(C − 1),

and the weight assigned to the vote of the lth classifier in step (3), which is

log

(
1 − R̂l

R̂l

(C − 1)

)
.
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As long as R̂l <
C−1

C
, the interpretation and behavior of multiclass AdaBoost is the

same as the original. If ever R̂l =
C−1

C
, the predictions by f̂l are taken to be equivalent

to rolling a fair C-sided die. Weights are effectively not changed in this case (raising
the possibility that f̂l = f̂l+1 = ⋯ = f̂L), and f̂l has zero weight assigned to its vote.
If R̂l >

C−1
C

then generalized AdaBoost gives negative weight to votes by f̂l since f̂l
makes worse predictions than a fair die roll, but notice that with C > 2 classes being
frequently wrong does not mean that a classifier’s predictions can be modified so that
they are frequently right (as is the case when C = 2).

Predictions made by an ensemble consisting of 1000 stumps trained with three-
class generalized AdaBoost on the data of Section 4.3 are shown in the lower-left cell
of Figure 6.5.

6.7 Arcing

Arcing, which stands for adaptive resampling and combining, is similar to boosting.
Instead of applying weights to data within a classification algorithm, arcing draws a
new dataset on which to train a classifier at each step by sampling from the training
data with replacement according to a changing probability distribution.

A particular arcing algorithm,10 modeled on AdaBoost with 0–1 loss, is shown in
Figure 6.8. In the terminology of Breiman (1996b), AdaBoost is non-random arcing.

Predictions made by an ensemble consisting of 1000 stumps trained with three-
class generalized arcing on the data of Section 4.3 are shown in the lower-right cell
of Figure 6.5.

6.8 Stacking and Mixture of Experts

Instead of casting votes as in a committee, the output of a set of trained classifiers
(either predicted classes or estimated posterior distributions on the classes) can be
used as input to another classifier. This is called stacking classifiers (Wolpert, 1992).
When stacking, outputs of the trained classifiers are regarded as new features.

The left-hand cell of Figure 6.9 shows predictions made by a classification tree
trained on the dataset

(z1, y1),… , (z150, y150)

where

zi = (̂f1(xi),… , f̂L(xi))

10 In Breiman (1996b), this algorithm is called arc-fs in honor of Freund and Schapire, the creators of
AdaBoost.
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(1) initialize p1 = · · · = pn = 1
n .

(2) for l = 1, . . . , L ,

(2A) draw a sample Sl from the training data according to (p1, . . . , pn) .
(2B) train classifier f̂l on Sl.
(2C) estimate the risk of f̂l by the expected loss under (p1, . . . , pn) ,

R̂l =
n∑

i=1

pi

[
yi �= f̂l(xi)

]
.

(2D) for i = 1, . . . , n , if yi �= f̂l(xi) update pi = pi
1−R̂l

R̂l

.

(2E) renormalize (p1, . . . , pn) so it sums to 1.
(3) classify new data as

argmaxc=1,...,C

L∑
l=1

[
f̂l(X) = c

]
log

(
1 − R̂l

R̂l

)
,

that is, the individual classifiers vote in a committee, and f̂l casts a vote with

weight log
(

1−R̂l

R̂l

)
.

Figure 6.8 An arcing algorithm based on the AdaBoost algorithm for 0–1 loss and
C = 2 classes. Modifications for the case C > 2 are described in the text of Sec-
tion 6.6.

Tree stacked predictions LR stacked predictions

Figure 6.9 Predictions made by using the predictions of the 20 bad classifiers
(risk ≥ 0.220) described in Section 6.1 as categorical features, and training a clas-
sification tree (left-hand cell), and predictions made by using the predictions of
100 stumps trained on “full size” (size-150) bootstrap samples of the training data,
and training a logistic regression classifier (right-hand cell). The risk of the tree-
stacked-on-bad-classifiers is 0.247 and the risk of logistic-regression-stacked-on-
bootstrapped-stumps is 0.231.
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Does 1-NN predict purple?

Predict purple

Yes

Does KDE with bandwidth h = 0.1 predict orange?

Predict orange

Yes

Predict blue

No

No

Figure 6.10 The classification tree which takes as input the class predictions of the
20 bad classifiers described in Section 6.1, and predicts a single class. The predictions
made by this tree are shown in the left-hand cell of Figure 6.9.

and the base learners f̂1,… , f̂L are the bad classifiers described in Section 6.1 (so
L = 20). The vectors z1,… , zn are regarded as categorical features for training the
tree, since f̂l(xi) ∈ {orange, blue, purple} for all l and xi.

The classification tree stacked on 20 bad classifiers was grown and pruned as
described in Chapter 4, with the cost-complexity parameter chosen to minimize the
leave-one-out cross-validation estimate of risk described in Section 7.3. The tree has
only three leaf nodes, and is shown in Figure 6.10. Two of the bad classifiers, the 1-
nearest-neighbor classifier and the likelihood classifier based on kernel density esti-
mation using bandwidth h = 0.1, are over-fit to the training data and have very low
training risk, and as a result were identified by the classification tree as very good
predictors of the class labels on the training data. The result is a stacked classifier
which is very similar to its most over-fit base learners. The risk of the stacked clas-
sifier is 0.247, the risk of the 1-nearest-neighbor classifier is 0.248, and the risk of
the likelihood classifier based on kernel density estimation using bandwidth h = 0.1
is 0.246. Visual comparison of predictions by these three classifiers (left-hand cell
of Figure 6.9, upper-right cell of Figure 4.7, and upper-left cell of Figure 4.12) show
that they are very similar.

The right-hand cell of Figure 6.9 shows predictions made by a logistic regression
classifier trained on the dataset

(z1, y1),… , (z150, y150)

where

zi = (̂f1(xi),… , f̂L(xi))
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and the base learners f̂1,… , f̂L are stumps trained on 100 full-size (size-150) boot-
strap samples of the training data (so L = 100). As before, the vectors z1,… , zn are
regarded as categorical features for training the logistic regression classifier.

Stacking logistic regression required two minor modifications from logistic regres-
sion as described in Section 4.6: dummy variables and parameter penalization. The
predictions made by the L base learners are categorical features taking three possible
values (orange, blue, or purple), and each of these categorical features was repre-
sented11 by two binary dummy variables, described in Section 3.8. In terms of the
dummy variables,

zi = ([̂f1(xi) = blue], [̂f1(xi) = purple],… , [̂fL(xi) = blue], [̂fL(xi) = purple])

is a 2L-long binary vector: for l = 1,… , L, the coordinates (zi,2l−1, zi,2l) are (0, 0)

if f̂l(xi) = orange, (1, 0) if f̂l(xi) = blue, and (0, 1) if f̂l(xi) = purple. Since some of
these dummy variables are highly correlated with one another, a quadratic penalty
was placed on the non-intercept logistic regression parameters (compare this with
ridge regression in Section 3.10). That is, the C × (m + 1) matrix of logistic regression
model parameters

𝜃 =
⎡⎢⎢⎣

0 0 ⋯ 0
𝜃2,0 𝜃2,1 ⋯ 𝜃2,m
𝜃3,0 𝜃3,1 ⋯ 𝜃3,m

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝜃1
𝜃2
𝜃3

⎤⎥⎥⎦ ,

with C = 3 and m = 2L = 200 (the 100 base learners each have their class predictions
represented by two binary dummy variables) is chosen to minimize

−
n∑

i=1

T(zi, 𝜃yi
) +

n∑
i=1

log

(
C∑

d=1

exp(T(zi, 𝜃d))

)
+ 𝜆

C∑
d=1

m∑
j=1

𝜃
2
d,j

(compare this with ridge regression in Section 3.10, and note that the intercept param-
eters 𝜃d,0 are not penalized). The weight parameter 𝜆 applied to the quadratic penalty
was selected to be approximately optimal using leave-one-out cross-validation,
described in Section 7.3, to estimate the risk of the logistic regression classifier from
the training data.

In stacking, the top-level classifier uses only the L base learner outputs: its input
feature vectors are z1,… , zn. If the top-level classifier uses both the L base learner out-
puts and also original features, so that its input feature vectors are (x1, z1),… , (xn, zn),
then the resulting classifier is called a mixture of experts (Jacobs et al., 1991). Fig-
ure 6.11 shows predictions made by a logistic regression classifier trained on the
data set

((x1, z1), y1),… , ((x150, z150), y150)

11 The dummy variable representation of categorical features is handled automatically by the R function
multinom().
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LR mixture of experts predictions

Figure 6.11 Predictions made by using the predictions of 100 stumps trained on
“full size” (size-150) bootstrap samples of the training data, and the original feature
vectors, and training a logistic regression classifier. The risk of the logistic regression
mixture of experts is 0.227.

where each of z1,… , z150 is the concatenated output of stumps trained on 100 full
size (size-150) bootstrap samples of the training data, as described above.

Neural networks can be regarded as a type of stacking or a mixture of experts,
depending on the specific network architecture. The neurons in the hidden layer
immediately below the output layer can be thought of as base learners which are
soft versions of binary classifiers. The classes learned by each of these binary clas-
sifiers do not necessarily correspond to any of the classes 1,… , C. Rather, they are
latent classes which are extracted from the data and which are in some way pertinent
to solving the overall classification problem (if the neural network does a good job).
The continuous-valued “votes” of the base learners are combined by using logistic
regression in the top layer of the network. In a neural network, the base learners are
trained at the same time the logistic-regression output layer is trained, and the base
learners are all trained in parallel in an inter-dependent way, in contrast with bagging
(where base learners are trained independently in parallel) and boosting (where base
learners are inter-dependent but trained sequentially).
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Risk Estimation and
Model Selection

Aesthetics and statistical accuracy might not be the same thing.
—Larry Wasserman, personal communication, 2001

The very fact that the representation is of such generality that it can
always be made to fit the data exactly is considered an argument against
it, not for it.

—Harold Jeffreys, Scientific Inference, 1931

In Chapter 2, we stated our goal to be finding an approximation f̂ of f with minimal
risk R( f̂ ), the expected loss incurred when predicting values of response or class Y
for new features X,

R( f̂ ) = E(X,Y)[L(Y , f̂ (X))].

In general, there is no way to compute risk exactly because the joint distribution of
(X, Y) is unknown. The risk R( f̂ ) must be estimated from data, just as f must be.

This chapter describes several methods of estimating the risk of an approximation
f̂ of f , and of selecting approximations with approximately minimal risk. Sections 7.1
through 7.5 describe methods of estimating risk. All of these methods have drawbacks
as well as advantages, and these are discussed. Sections 7.6 through 7.9 describe
model selection criteria which do not involve explicit risk estimation. Sections 7.10
and 7.11 contain general remarks about model selection.

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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7.1 Risk Estimation via Training Data

Let (x1, y1),… , (xn, yn) be the data used to train an approximation f̂ of f . In Chapter
2, the training risk was defined as the average loss incurred by using f̂ (xi) to predict
the value of yi on the training data,

R̂train( f̂ ) = 1
n

n∑
i=1

L(yi, f̂ (xi)).

Training risk is cheap to compute, but it tends to underestimate risk (that is, to
be an optimistic risk estimate) because the data used to evaluate f̂ are the same data
used to compute f̂ in the first place. As a result, overly complex models with very
high variance, which approximate f very well near the training data but poorly away
from the training data, tend to be chosen when selecting models to minimize training
risk (an example of this phenomenon was suggested in Exercise 2.4).

Exercise 7.1 Let x1,… , xn be distinct real numbers and for each i let yi = 𝜃1xi + 𝜃0 +
ei, where e1,… , en are independent, identically distributed draws from a N(0, 𝜎2)
distribution. The pairs (x1, y1),… , (xn, yn) are known. Unknown are 𝜃0, 𝜃1, 𝜎2, the
ei’s and the fact that f (x) = 𝜃1x + 𝜃0 is a linear function. Consider the sequence of
approximations f̂0, f̂1, f̂2,… to f where f̂d is a degree-d real polynomial which min-
imizes training risk with respect to squared-error loss. Show that, with probability
one, R̂train( f̂d) is a decreasing function of the degree d. Show that R̂train( f̂d) = 0 when
d ≥ n − 1. Explain these facts in terms of bias–variance trade-off.

7.2 Risk Estimation via Validation or Test Data

The most accurate way to estimate the risk of an approximation f̂ of f is by using data
which have the same distribution as data to which f̂ is to be applied in the future, but
which have not been used to train f̂ . One way to obtain such validation data or test
data is to remove it from the set of all available data before training any models.

7.2.1 Training, Validation, and Test Data

Let the set of all available data be partitioned randomly1 into either two or three sets:
a training dataset on which models are trained, a validation dataset which is used to

1 It is important that each of the training, validation, and test sets be as much as possible like the future,
unmarked data to which a trained classifier will be applied. To achieve this likeness, pure random sam-
pling of the available data may be abandoned in favor of some form of stratified sampling. For exam-
ple, stratified sampling based on the class label could be used to ensure that the proportion of classes
among the training, validation, and test sets are as similar as possible. Stratified sampling is particu-
larly important when there are rare classes or categorical features with rare values. Stratified sampling
can be used any time data are randomly sampled or partitioned, for example in bagging (Section 6.3)
or cross-validation (Section 7.3). Stratified sampling is not used when forming bootstrap samples in the
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estimate the risk of trained models for the purpose of model selection, and perhaps
also a test dataset which is used to estimate the risk of the best model found by the
model selection process.

In some applications, an approximation f̂ is considered worth implementing only if
the risk, R( f̂ ), can be shown to fall below a given threshold. Such applications require
a test set in addition to a validation set. In other applications, the best approximation
f̂ will be used, at least on a trial basis, regardless of the risk, in which case only a
validation set may be needed.

In what follows, let (x̃1, ỹ1),… , (x̃ñ, ỹñ) denote validation data. It is assumed to be
drawn independently from the same distribution as the training data but it is not used
to train any models and, to the greatest extent possible, it is excluded from exploratory
data analysis.2 All remarks about validation data below also pertain to test data.

7.2.2 Risk Estimation

The validation estimate of the risk R( f̂ ) of f̂ is

R̂valid( f̂ ) = 1
ñ

ñ∑
i=1

L(ỹi, f̂ (x̃i)).

The validation estimate of risk is unbiased, since

E(X̃1,Ỹ1),…,(X̃ñ,Ỹñ)[R̂valid( f̂ )] = 1
ñ

ñ∑
i=1

E(X,Y)[L(Y , f̂ (X))] = R( f̂ ).

Consequently, by the strong law of large numbers, R̂valid( f̂ ) → R( f̂ ) with probabil-
ity 1 as ñ → ∞. By the central limit theorem, R̂valid( f̂ ) is approximately normal-
distributed under weak assumptions. This enables convenient testing of hypotheses
about risk, provided the variance of the risk estimate can be estimated.

Exercise 7.2 In the case of 0–1 loss, the risk (generalization error) of trained clas-
sifier f̂ is

R = probability that a new datum is misclassified by f̂ .

Show that under 0–1 loss, the validation estimate of risk is

R̂valid( f̂ ) = proportion of validation data misclassified by f̂ .

original Breiman–Cutler implementation of random forests, and thus some trees in a random forest may
be trained on samples which do not contain data of every class.
2 If stratified sampling is used in the construction of the validation and test sets, then some exploratory
data analysis has been done on these sets.
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Exercise 7.3 Use the fact that the variance of a sum of independent random variables
is equal to the sum of the individual variances to show that

Var(X̃1,Ỹ1),…,(X̃ñ,Ỹñ)[R̂valid( f̂ )] = 1
ñ

Var(X,Y)[L(Y , f̂ (X))]

= 1
ñ

(
E(X,Y)[L(Y , f̂ (X))2] − R( f̂ )2)

.

Exercise 7.4 Use result of Exercise 7.3 to show that if the range of L(c, d) is [0, 1]
(that is, the loss is never more than one) then

Var(X̃1,Ỹ1),…,(X̃ñ,Ỹñ)[R̂valid( f̂ )] ≤ 1
ñ

R( f̂ )(1 − R( f̂ ))

with equality if and only L is 0–1 loss. Show that if the range of L(c, d) is {0} ∪ [1,∞)
(that is, any non-zero loss is at least one) then

Var(X̃1,Ỹ1),…,(X̃ñ,Ỹñ)[R̂valid( f̂ )] ≥ 1
ñ

R( f̂ ) (1 − R( f̂ ))

with equality if and only L is 0–1 loss.

Exercises 7.3 and 7.4 lead to a simple plug-in estimator for the variance,

V̂ar[R̂valid( f̂ )] = 1
ñ

(
1
ñ

ñ∑
i=1

L(ỹi, f̂ (x̃i))
2 − R̂valid( f̂ )

2
)

,

which in the case of 0–1 loss simplifies to

V̂ar[R̂valid( f̂ )] = 1
ñ

R̂valid( f̂ ) (1 − R̂valid( f̂ )).

A consequence of Exercise 7.3 is that Var(X̃1,Ỹ1),…,(X̃ñ,Ỹñ)[R̂valid( f̂ )] → 0 as ñ → ∞,

provided that Var(X,Y)[L(Y , f̂ (X))] <∞.

7.2.3 Size of Training, Validation, and Test Sets

Given a dataset of a certain size, how large should the training, validation, and test sets
be? The answer depends balancing two (or three) competing demands. As more data
are assigned to the validation set, the validation estimate of risk, R̂valid( f̂ ), improves in

the sense that the standard deviation of R̂valid( f̂ ) goes to zero like ñ−
1
2 by Exercise 7.3.

The same is true of the test set and the test estimate of risk. But as more data are
assigned to the validation and test sets, fewer data are assigned to the training set,
and one naturally expects the risk of trained approximation f̂ get worse as the number
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of training data decreases—though perhaps this effect is negligible if enough data
remain in the training set.

Exercise 7.5 In a given application where 0–1 loss is used, it is desired that the
validation estimate of risk have standard deviation no more than 𝜎. Find the minimum
number ñ of validation data needed to achieve this, assuming:

(A) expert opinion or a pilot study suggests the risk of any “reasonable” classifier
will be no more than 𝜌, for some given number 𝜌 < 1

2
;

(B) there is no knowledge of what the risk might be;

(C) as in (A), with 𝜌 = 0.25 and 𝜎 = 0.01;

(D) Recommend a course of action in (C) if there are a total of 1800 data
available.

One occasionally encounters heuristic rules on the size of training, validation, and
test sets, such as use 70% of the data for training, 20% for validation, and 10% for
testing (or 60-20-20, or 50-30-20). The author advises that decisions about data be
made to suit the applied goal of the data analysis, rather than by heuristics which may
be unrelated to the applied goal.

7.2.4 Testing Hypotheses About Risk

The approximate normal distribution of the risk estimate R̂valid( f̂ ) enables the con-
struction of approximate confidence intervals for the true risk R( f̂ ) and hypothesis
testing based upon such intervals. In addition to tests based on the asymptotic nor-
mality of the risk estimate, one can also use non-parametric tests.

Exercise 7.6 Assume that the number ñ of validation data is large enough that the
validation estimate of risk, R̂valid( f̂ ), can be thought of as normal-distributed with
negligible error for any model f̂ under consideration. Given an observation of a ran-
dom variable (the test statistic) T ∼ N(𝜇, 𝜎2) and a fixed value 𝜌, a level-𝛼 one-sided
Z-test of the null hypothesis

H0 : 𝜇 ≥ 𝜌

against the alternative hypothesis

Ha : 𝜇 < 𝜌

works as follows: (1) let threshold 𝜏 be such that P(U ≤ 𝜏) = 𝛼, where U ∼ N(𝜌, 𝜎2)
(𝜏 is the 𝛼th quantile of the N(𝜌, 𝜎2) distribution); (2) reject H0 if T < 𝜏 and otherwise
retain H0.

(A) Show that if the null hypothesis is true, then the probability of rejecting the
null hypothesis is no more than 𝛼 (this is what it means for the test have level
𝛼—see Chapter 12).
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(B) Suppose that in a given application, a trained classifier f̂ will not be
implemented unless there is evidence that R( f̂ ) < 𝜌, where 𝜌 is a given
threshold. Using R̂valid( f̂ ) as a test statistic, construct a level-𝛼 one-sided
Z-test of the null hypothesis R( f̂ ) ≥ 𝜌 against the alternative hypothesis
R( f̂ ) < 𝜌.

(C) Let f̂1 and f̂2 be two trained classifiers. Using a test statistic based on
applying f̂1 and f̂2 to validation data, construct a level-𝛼 one-sided Z-
test of the null hypothesis R( f̂2) ≥ R( f̂1) against the alternative hypothesis
R( f̂2) < R( f̂1).

7.2.5 Example of Use of Training, Validation, and Test Sets

Say a classification dataset has been partitioned somehow into training, validation,
and (perhaps) test sets and that, for concreteness of the example, we are determined
to approximate f using a classification tree. We seek an approximately minimal-
risk tree for making predictions and (perhaps) to estimate the risk of the optimal
tree.

Recall from Section 4.8 that training a classification tree is a two-stage process: the
first stage is to grow the tree by successively splitting the data until a tree is obtained
which has zero, or nearly zero, training risk; the second stage is to prune the tree
by finding a subtree of the tree grown in the first stage which minimizes the cost-
complexity criterion,

𝛼 × (number of leaf nodes)

+
∑

all leaf nodes t

(
min

c=1,…,C

C∑
d=1

L(d, c)P̂(Y = d |X ∈ t)

)
P̂(X ∈ t).

Free, non-negative parameter 𝛼 controls a penalty on the overall size of the tree:
increasing 𝛼 increases bias and decreases variance.

For simplicity, let us assume that all other aspects of tree-training described in
Section 4.8 are fixed. The set of trees obtainable from any given set of training data,
then, is a one-parameter family indexed by 𝛼, and searching for an approximately
optimal tree corresponds to searching for an approximately optimal value of 𝛼. Intu-
itively, setting 𝛼 = 0 usually will result in a high-risk tree with very high variance
and low bias. Increasing 𝛼 from zero, we expect the risk of the tree which minimizes
the cost-complexity criterion to decrease at first, then to reach some (not necessarily
unique) minimum corresponding to the optimal bias–variance trade-off, and then to
increase as the tree gets too much bias and too little variance. Eventually, for all 𝛼
beyond some threshold, the tree which minimizes the cost-complexity criterion con-
sists of only a single leaf node: this tree has high bias and low variance, and is usually
high-risk.
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An approximately optimal tree can be found in this way:3

(1) specify a finite set A of non-negative numbers to use as values of 𝛼;

(2) use the training data to compute, for each 𝛼 ∈ A, the tree f̂𝛼 which minimizes
the cost-complexity criterion;

(3) use the validation data to compute the validation estimate R̂valid(̂f𝛼) of the risk
of each tree f̂𝛼;

(4) choose the tree f̂𝛼 with minimal estimated risk R̂valid(̂f𝛼).

The validation estimates of risk are estimates, so the criterion in step (4) is commonly
replaced by

(4) choose the simplest tree f̂𝛼 such that one cannot reject the hypothesis that it
has minimal risk, of all trees considered.

Having found4 an approximately optimal value 𝛼 of 𝛼, the trained tree returned
by this selection process is that corresponding to 𝛼, trained either just on the training
data or, so as not to waste data, on the training data and validation data combined.
The test estimate of risk is then computed for this tree, if a test set has been created.

7.3 Cross-Validation

When data are not plentiful, an alternative to creating training and validation sets is
k-fold cross-validation. In k-fold cross-validation, the data are partitioned randomly
into k subsets of approximately equal size, S = S1 ∪… ∪ Sk. Specifically, the k-fold
cross-validation estimate of risk is the quantity R̂cv( f̂ ) defined by the algorithm shown
in Figure 7.1.

The expected value of the cross-validated risk estimate (taken with respect to the
random partition 𝜋 of S into k subsets and the distribution of the training data) is

ES,𝜋[R̂cv( f̂ )] = 1
k

k∑
i=1

ES,𝜋[R̂i] ≈ R(̂f⋆),

3 Implementation of this procedure is given in detail in Section 14.15, using the R function rpart() and
using cross-validation to estimate risk in step (3) rather than a separate validation set.
4 Using, for example, one of the optimization algorithms of Chapter 10.
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(1) for i = 1, . . . , k

(2) train predictor f̂i on data S \ Si.

(3) estimate the risk of f̂i using Si as a validation set,

R̂i =
1

|Si|
∑

(x,y)∈Si

L(y, f̂i(x)) .

(4) estimate the risk of f̂ by the average of the individual risk estimates,

R̂cv(f̂) =
1
k

k∑
i=1

R̂i .

Figure 7.1 An algorithm for k-fold cross-validation.

where f̂⋆ is the classifier trained on k−1
k

n data instead of n data. The variance is
approximately

VarS,𝜋[R̂cv( f̂ )] = 1
k2

(
k∑

i=1

VarS,𝜋[R̂i] +
k∑

i, j = 1
i ≠ j

CovS,𝜋[R̂i, R̂j]

)

≈
(1

k
+ k − 1

k
CorS,𝜋[R̂1, R̂2]

)
VarS,𝜋[R̂1]

The approximate equality is equality when all subsets Si are exactly the same size.
Considering S1 as a validation set for f1, of size approximately n

k
, the result of

Exercise 7.2 yields

VarS,𝜋[R̂cv( f̂ )] ≈
(1

k
+ k − 1

k
CorS,𝜋[R̂1, R̂2]

) 1|S1|
(

E(X,Y)

[
L(Y , f̂1(X))2

]
− R(̂f1)2

)
≈
(1

n
+ k − 1

n
CorS,𝜋[R̂1, R̂2]

) (
E(X,Y)

[
L(Y , f̂⋆(X))2

]
− R(̂f⋆)2

)
.

As shown above, the expected value of the cross-validated risk estimate, R̂cv( f̂ ),
is (approximately) the risk of approximating f using k−1

k
n training data. When k is

small, k−1
k

is small and the expected value of R̂cv( f̂ ) is the risk of training the approx-
imation method on substantially fewer training data than are actually available. Since
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decreasing the amount of training data available to a given approximation method
tends to produce higher-risk approximations,5 R̂cv( f̂ ) is generally biased toward over-
estimating the risk of training f̂ on n data (R̂cv( f̂ ) is a pessimistic risk estimate). When
k is large (the extreme case, k = n, is called leave-one-out cross-validation), k−1

k
is

close to one and so R̂cv( f̂ ) is nearly unbiased. The correlation between pairs of risk
estimates, for example R̂1 and R̂2, depends on k. When k is large, approximations f̂1
and f̂2 are trained on nearly the same data, and so R̂1 and R̂2 will in general be highly
correlated: in the extreme case of leave-one-out cross-validation, the (n − 1)-point
datasets S ⧵ S1 and S ⧵ S2 used to train f̂1 and f̂2 have n − 2 points in common. Thus
when k is large, Cor[R̂1, R̂2] is relatively large. When k is small, approximations f̂1
and f̂2 are less correlated.

In computing the k-fold cross-validation estimate of risk, there is a bias–variance
trade-off problem in choosing k. When k is small, the estimate has relatively high bias
and low variance, and when k is large, it has relatively low bias but high variance.
Both the bias and variance get smaller as n increases, but this is of not much help
since, for large datasets, we would generally choose to estimate risk using a separate
validation set. It seems that k = 5, k = 10, and k = n are used most commonly in
practice.6

7.4 Improvements on Cross-Validation

The inventor of the bootstrap proposed several ways to apply bootstrapping to risk
estimation (Efron, 1983, 1986; Efron and Tibshirani, 1997). The general idea of these
methods is to construct bootstrap samples of the training data, train a model on each
bootstrap sample and apply the trained model to data not in the bootstrap sample on
which it was trained, and average the resulting risk estimates (bootstrap samples are
discussed in Section 6.3). In the words of Efron and Tibshirani (1997), “the boot-
strap procedures are nothing more than smoothed versions of cross-validation, with
some adjustments to correct for bias.” The best of these, as determined by simulation
studies in Efron and Tibshirani (1997), is the .632+ bootstrap risk estimate, which is
computed as follows (the notation follows Efron and Tibshirani (1997)).

First, construct B independent bootstrap samples from the training data: Efron and
Tibshirani (1997) recommend B = 50 samples and also discusses criteria for choosing
B. Train a model f̂b on the bth bootstrap sample for b ∈ {1,… , B}. For i ∈ {1,… , n},
let i be the set of indices of bootstrap samples which do not contain training datum

5 The possibly significant effect of computational cost is being ignored in this statement.
6 The author’s advice is to make k as large as one can afford computationally.
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(xi, yi), and let Ei be the average (over b ∈ i) loss incurred when using f̂b(xi) in place
of yi:

Ei =
⎧⎪⎨⎪⎩

0 if i = ∅ (that is, if (xi, yi) is in every
bootstrap sample)

|i|−1 ∑
b∈i

L(yi, f̂b(xi)) otherwise

Let the leave-one-out bootstrap estimate of risk be

Êrr
(1)

( f̂ ) = 1
n

n∑
i=1

Ei,

the average loss incurred by predicting the class or response of a datum using boot-
strap samples not containing the datum. Denote the training risk by R̂train( f̂ ) (̂f with
no subscript denotes a model trained on all of the training data, as usual). The no-
information risk is the expected loss incurred, using f̂ to make predictions, when the
input X and response or class label Y are independent, that is, when X is assumed to
contain no information about Y , in the sense that the conditional distribution P(Y |X)
is the same as the marginal distribution P(Y). The no-information risk is estimated
by

�̂�( f̂ ) = 1
n2

n∑
i=1

n∑
j=1

L(yi, f̂ (xj)),

and it is a very pessimistic risk estimate indeed! Efron and Tibshirani define

Êrr
(1)′

( f̂ ) = min
(
Êrr

(1)
( f̂ ), �̂�( f̂ )

)
,

which truncates the leave-one-out bootstrap risk estimate at the no-information risk
estimate, and they define the relative over-fitting rate to be

R̂′ =

⎧⎪⎪⎨⎪⎪⎩

Êrr
(1)′

( f̂ ) − R̂train( f̂ )

�̂�( f̂ ) − R̂train( f̂ )
if Êrr

(1)′
( f̂ ) > R̂train( f̂ )

(which implies �̂�( f̂ ) > R̂train( f̂ ))

0 otherwise

,

which takes values in [0,1]. The range in which any reasonable risk estimate must
fall is taken to be the interval [R̂train( f̂ ), �̂�( f̂ )], and R̂′ is the proportion of this range

Êrr
(1)′

( f̂ ) covers, starting at optimism and moving in the direction of pessimism. If

R̂′ = 1, then Êrr
(1)′

( f̂ ) ≥ �̂�( f̂ ) > R̂train( f̂ ), which means that the leave-one-out boot-
strap estimate of risk is at least as pessimistic as the estimated no-information risk
�̂�( f̂ ). If R̂′ = 0, then the training estimate of risk is at least as pessimistic as the leave-
one-out bootstrap estimate.
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The .632+ bootstrap risk estimate is

Êrr
(.632+)

( f̂ ) = 0.368 R̂train( f̂ ) + 0.632 Êrr
(1)′

( f̂ )

+
(

Êrr
(1)′

( f̂ ) − R̂train( f̂ )

)
0.368 × 0.632 R̂′

1 − 0.368 R̂′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

∈[0,0.368]

.

Intuitively, the .632+ bootstrap risk estimate strikes a balance between an optimistic
risk estimate (training risk) and one which tends to be pessimistic (the leave-one-out
bootstrap estimate). The balance point is chosen based on how these two estimates
disagree. The reader is directed to Efron (1983, 1986) and Efron and Tibshirani (1997)
for discussion of bootstrap estimates of risk.

7.5 Out-of-Bag Risk Estimation

A classifier produced by bootstrap aggregation (bagging) of other base classifiers is
called a bagged classifier (see Section 6.3). A random forest is a bagged classifier, for
example. The risk of a bagged classifier can be estimated using the bootstrap samples
already constructed in training.

Assuming that the bootstrap samples are of size n, each datum in a training set for a
bagged classifier is used to train approximately proportion 1 − 1

e
≈ 0.632 of the base

classifiers. For these base classifiers, the datum is in-bag and for the remaining ones
(which it is not used to train) it is out-of-bag: in the notation of Section 7.4, i indexes
the bootstrap samples for which (xi, yi) is out-of-bag. The set of base classifiers for
which a datum is out-of-bag, aggregated together into a committee classifier, is the
out-of-bag classifier for that datum.

The out-of-bag risk estimate R̂oob( f̂ ) of a bagged classifier is

R̂oob( f̂ ) = 1
n

n∑
i=1

L(yi, most common class among {f̂b(xi) : b ∈ i}).

The out-of-bag risk estimate is generally biased high (Bylander, 2002) that is, R̂oob( f̂ )
tends to over estimate the risk of f̂ . At least in the case of random forests, experiments
by the author indicate that the bias becomes small as the number of trees increases.
The author has observed empirically that a simple estimate of the variance of R̂oob( f̂ ),

1
n

(
1
n

∑
(d,c)∈×

L(d, c)2Noob(d, c) − R̂oob( f̂ )
2
)

where

Noob(d, c) = number of training data (xi, d) such that the out-of-bag classifier
for xi predicts c,

tends to be biased low.
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7.6 Akaike’s Information Criterion

In the case of parametric models which are trained by computing maximum likelihood
estimates of parameters (for example, likelihood methods, logistic regression, and
neural networks),

𝜃 = argmax
𝜃
P(y1,… , yn | x1,… , xn, 𝜃),

there is a computationally cheap method of choosing a model which has approxi-
mately minimal risk. This is by minimizing Akaike’s information criterion (AIC),
which is

−2 log P(y1,… , yn | x1,… , xn, 𝜃) + 2 k,

where k is the number of coordinates in the parameter vector 𝜃. Here and elsewhere,
log is the natural logarithm. In literature and software, AIC is sometimes defined as
the above expression multiplied by 1

2
, − 1

2
or −1 (software users are advised to find

out whether AIC is to maximized or minimized).
AIC decreases the better the model fits the observed data, and increases the more

complex the model is, where complexity is measured by the number of parameters, k
(that is, the number of coordinates in the parameter vector 𝜃). Akaike derived his cri-
terion by approximately minimizing risk with respect to squared-error loss in regres-
sion (Akaike, 1974). The term penalizing model complexity, 2k, is derived from the
expected improvement in −2 log P(Y |X, 𝜃) caused by including irrelevant parame-
ters. Application of AIC has been extended to other contexts (Sakamoto et al., 1986).

Shortly after cross-validation and AIC were both developed, Stone showed that in
the case of parametric models which are trained by computing maximum likelihood
estimates of parameters, cross-validation and AIC will choose the same model as the
data size n → ∞ (Stone, 1977).

7.7 Schwartz’s Bayesian Information Criterion

The Bayesian information criterion (BIC) is applicable in the same setting as AIC,
and has a similar form: choose a model to minimize

−2 log P(y1,… , yn | x1,… , xn, 𝜃) + k log n.

Like AIC, BIC decreases the better the model fits the observed data, and increases the
more complex the model is, where complexity is measured by the number of param-
eters, k. In literature and software, BIC is sometimes defined as the above expression
multiplied by 1

2
, − 1

2
or −1.

The idea behind BIC is this. Suppose there are L models under consideration,
M1,… , ML, and that model Mi has a vector parameter 𝜃i of dimension ki, and let
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P(Mi) and P(𝜃i |Mi) denote prior distributions on the set of models and on the param-
eter space Θi of the ith model, respectively. Given data, (x1, y1),… , (xn, yn), the pos-
terior probability of the ith model is

P(Mi | y1,… , yn, x1,… , xn) ∝ P(Mi)∫Θi

P(y1,… , yn | x1,… , xn, 𝜃i, Mi) P(𝜃i |Mi) d𝜃i,

where the constant of proportionality, P(y1,… , yn)−1, is the same for all models. In
Schwartz (1978), Schwartz proves that, under mild regularity conditions on the pri-
ors P(𝜃i |Mi) and the likelihoods P(y1,… , yn | x1,… , xn, 𝜃i, Mi), the logarithm of the
integral above is

logP(y1,… , yn | x1,… , xn, 𝜃i, Mi) −
ki

2
log n + (a term bounded in n),

where 𝜃i is the maximum likelihood estimate for 𝜃i. Thus, as n → ∞, choosing the
model with smallest BIC is equivalent to choosing the model with largest posterior
probability.

Since selecting a model with maximal BIC is selecting a model with (approx-
imately) maximal posterior probability, BIC is a criterion for selecting a good
explanatory model rather than a good predictive model. BIC places a heavier penalty
on the number of parameters than does AIC (provided models are trained on at least
eight data points), so BIC chooses models no more complex, and usually simpler,
than those chosen by AIC.

7.8 Rissanen’s Minimum Description
Length Criterion

The minimum description length (MDL) criterion is applicable more generally than
AIC or BIC. The MDL criterion is to choose the model which minimizes

− log2 P(y1,… , yn | x1,… , xn, 𝜃) + log⋆2

(
(𝜃TH𝜃)

k
2

𝜋
k
2

Γ
( k

2
+ 1

)),

where log2 is the base-2 logarithm and 𝜃 is a k-long parameter vector. In the second
term,

H =
[

𝜕
2

𝜕𝜃i𝜕𝜃j
− log2 P(y1,… , yn | x1,… , xn, 𝜃)

]k

i,j=1

is the Hessian of − log2 P(y1,… , yn | x1,… , xn, 𝜃) as a function of 𝜃, 𝜋
k
2 ∕Γ

( k
2
+ 1

)
is the volume of a k-dimensional Euclidean unit ball, and for any positive number z,

log⋆2 (z) = log2(z) + log2 log2(z) + log2 log2 log2(z) +⋯
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is a finite sum of all of the positive terms of the form log2 ⋯ log2(z). Note that the
MDL criterion applies to selection of a value of parameter 𝜃 as well as model com-
plexity k, unlike AIC and BIC, where 𝜃 is estimated by maximum likelihood.

The idea behind the MDL criterion is that the best model is one which simulta-
neously encodes the data efficiently while being itself efficient to encode. The first
term in the MDL criterion, − log2(P(y1,… , yn | x1,… , xn, 𝜃)), is the number of bits
required to represent the observed responses y1,… , yn, given the model, param-
eter 𝜃, and observed features x1,… , xn. The second term in the MDL criterion,

log⋆2 ((𝜃TH𝜃)
k
2 𝜋

k
2 ∕Γ( k

2
+ 1)), is the number of bits required to represent the model in

an approximately optimal encoding of models constructed in Rissanen (1978). Like
AIC and BIC, the MDL criterion decreases the better the model fits the observed data,
and increases the more complex the model is, although in MDL, the complexity of a
model is measured in the information-theoretic sense just described.

The MDL criterion is a practical criterion which builds on the idea of Kolmogorov
complexity, which defines the complexity of a dataset to be the length of the shortest
program which would cause a universal Turing machine to produce the dataset as
output7 (Cover and Thomas, 2006; Kolmogorov, 1968; Rissanen, 1978; Solomonoff,
1964a, 1964b). Since selecting a model with optimal MDL criterion is selecting a
model which (approximately) provides the simplest representation of the data in an
information-theoretic sense, the MDL criterion is, like BIC, a criterion for selecting
a good explanatory model rather than a good predictive model.

7.9 R2 and Adjusted R2

In the standard regression setting with squared-error loss, training error times n is
called the residual sum of squares (RSS) of a model,

RSS =
n∑

i=1

(yi − f̂ (xi))
2 = R̂train( f̂ ).

See Section 3.4. RSS is interpreted as the variability in the observed response not
explained by the trained model f̂ . The total sum of squares (TSS) is

TSS =
n∑

i=1

(yi − ȳ)2 = R̂train(constant model f̂ (x) = ȳ),

where ȳ = n−1 ∑n
i=1 yi is the mean response in the data: it measures the overall vari-

ability in the observed response. RSS can be no more than TSS (under very mild

7 Kolmogorov complexity is a literal, information-theoretic expression of the idea that the simplest
explanation of a dataset is the best explanation (see Occam’s Razor, Section 7.11). Also known as
Solomonoff complexity, this measure of complexity is non-computable in the formal sense that there
is no Turing machine which will input any set and output the set’s complexity.
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model assumptions) and the trained model predicts the observed response perfectly
if and only if RSS = 0. The model sum of squares is

MSS =
n∑

i=1

(̂yi − ȳ)2
.

The model sum of squares measures the overall variability of the fitted values about
the mean observed response.

A commonly used measure of fit in regression is

R2 = 1 − RSS
TSS

= MSS
TSS

.

It is interpreted as the proportion of the variation in the response which is explained by
the model. When R2 is close to 1, the model explains most of the variation in the data,
and when R2 is close to 0, the model explains very little. As stated in Exercise 3.6,
R2 is the square of the sample correlation between the vector of observed responses
(y1,… , yn) and the vector of fitted responses (̂y1,… , ŷn).

As models become more complex, R2 tends to increase (in fact, cannot decrease if
the models are nested—see Exercise 7.1). After all, RSS is a decreasing function of
the training error. This is compensated for in adjusted R2,

R2
adj = 1 − n − 1

n − k
RSS
TSS

,

which penalizes model complexity (the number of parameters, k).8 Note that when
k = m + 1,

R2
adj = 1 −

RSS
n−m−1

TSS
n−1

and, as seen in Chapter 3, TSS
n−1

is an unbiased estimate of Var [Y] while RSS
n−m−1

is an

unbiased estimate of Var [E]. The goal is to choose a model for which R2
adj is relatively

large, ideally close to 1.

7.10 Stepwise Model Selection

Let {1,… , m} index the set of all available features, let I denote a subset of this
index set, and let f̂I denote a classifier trained on the training data using exactly the
features indexed by I (note that if I is empty then f̂I predicts all data to be of the same

8 In linear regression, it is customary to count the intercept parameter separately from the other param-
eters, since the usual model assumption is f (x) = (1, x1,… , xm) ⋅ (𝜃0, 𝜃1,… , 𝜃m). A linear regression
model with m features has k = m + 1 parameters.
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(1) initialize index set I somehow (for example, set I = ∅ or I = {1, . . . ,m}) and esti-

mate R(f̂I)

(2) repeat until I does not change {
(3) for each i ∈ I, let J = I \ {i}, train f̂J on J, and estimate R(f̂J)

(4) for each i ∈ {1, . . . ,m} \ I, let J = I ∪ {i}, train f̂J on J, and estimate R(f̂J)

(5) replace I with argmin K∈{I}∪{all m subsets J
constructed in steps (2) and (3)}

R̂(f̂K)

}

Figure 7.2 An algorithm for stepwise model selection.

class). Stepwise model selection, generically, refers to any kind of discrete optimiza-
tion algorithm used to search the subsets of {1,… , m} to find a subset I for which
the estimated risk of f̂I is minimal.9 It also refers to the specific algorithm shown in
Figure 7.2, which is a discrete form of gradient descent (see Section 10.1).

7.11 Occam’s Razor

Occam’s Razor is a principle which says (in the context of statistical models) that,
given a set of statistical models, we ought to choose the simplest one which has suf-
ficiently low risk, or the simplest one for which there is no more complex model
with significantly lower risk. This principle is followed when simplicity of a model
is considered a virtue. Reasons for preferring a simple model include:

� a simple model is easier to understand than a complex one and therefore is more
likely to lead to insights about the data and to be understood—hence believed
(Jeffreys, 1931) and applied—by those not involved with its construction;

� a simple model may be computationally less burdensome than a complex one,
particularly when the complex model requires expensive-to-acquire features
which are not used by the simple model.

However, simple models do not necessarily make better predictions than complex
ones. To return to the quote at the start of the chapter, “aesthetics and statistical accu-
racy might not be the same thing.”

9 Typically, we can only hope to find local minima, although branch-and-bound algorithms for finding
global minima have been proposed (Furnival and Wilson, 1974).
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Consistency

When you have data, you analyze the data. When you don’t have data,
you prove theorems.

By this point, the mathematically sophisticated reader may, upon consideration of
all of the classification and regression methods presented in Chapters 3, 4, and 6,
throw up his or her hands in frustration due to the feeling that such a wide array of
different methods is a sign not of knowledge and understanding, but of ignorance.
“Surely,” such a reader might say, “there ought to be one method that solves all clas-
sification problems optimally, at least as the number of data, n, increases without
bound?”

This short chapter answers that question in the affirmative, introducing the reader
to a property of classification methods known as consistency. A classification method
is consistent for a given classification problem if the risk of the trained classifier(s) it
produces converges to the risk of the Bayes classifier for that problem as n → ∞ (for
some appropriate definition of convergence). A classification method is universally
consistent if it is consistent with respect to all joint distributions P(X, Y) on a given
domain and range,  × f ().

The main results presented in this chapter are: there are classification methods
which are known to be universally consistent; there is at least one classification
method (random forests) which is widely used in practice and which is known to
be not universally consistent; and (in the author’s opinion) the behavior of a clas-
sification method on an arbitrary problem as n → ∞ does not provide much useful
insight about how to solve any particular applied problem. That said, the application-
minded reader may skip this chapter without harm. The theory-minded reader can
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find proofs and other details, omitted in what follows, in Devroye et al. (1996), Biau
et al. (2008), and Biau and Devroye (2010).

8.1 Convergence of Sequences of Random Variables

Let Z1, Z2,… denote an infinite sequence of real-valued random vectors, and let Z
denote another real-valued random vector. The sequence Z1, Z2,… converges in prob-
ability to Z if, for any 𝜖 > 0,

lim
n→∞

P(‖Zn − Z‖ > 𝜖) = 0.

Convergence in probability is denoted Zn
P
→ Z. The sequence Z1, Z2,… converges

almost surely to Z (or converges strongly to Z, or converges with probability 1 to Z) if

P
(
lim

n→∞
Zn = Z

)
= 1.

Almost sure convergence is denoted Zn
a.s.
→ Z.1

8.2 Consistency for Parameter Estimation

Let z be a fixed but unknown quantity, and let Z1, Z2,… be a sequence of random vari-
ables which serve as estimates of z. The sequence of estimates Z1, Z2,… is consistent
for z (respectively strongly consistent for z) if Z1, Z2,… converges in probability to z
(respectively converges strongly to z).2

For example, consider the case that z is the mean of some distribution, that an
unlimited sequence of data W1, W2,… are drawn independently from this distribu-
tion, and that, for each n, Zn is the sample mean of the first n data, Zn = 1

n

∑n
i=1 Wi.

In this case, the sequence Z1, Z2,… is both consistent and strongly consistent for
z—these two facts are respectively known as the weak law of large numbers and the
strong law of large numbers.3

1 We shall not need it in what follows, but for completeness: the sequence Z1, Z2,… converges in distri-
bution to Z (or converges weakly to Z) if the cumulative distribution function FZ of Z is the pointwise
limit of the cumulative distribution function FZn

of Zn,

lim
n→∞

FZn
(x) = FZ (x),

for all x ∈ ℝm at which FZ (x) is continuous. Convergence in distribution is denoted Zn ⇝ Z. If Zn
P
→ Z

then Zn ⇝ Z.
2 When discussing convergence, we do not distinguish between the constant z and the random variable
which takes the value z with probability 1.
3 Yes, the strong law is about strong convergence and the weak law is about convergence in probability,
not weak convergence.



CONSISTENCY 145

Under certain regularity conditions (see Ferguson (1996) or van der Vaart (2000))
maximum likelihood estimators of model parameters are both consistent and strongly
consistent. In particular, in linear regression with independent, identically distributed
Gaussian noise, the regression parameter estimate

𝜃 = (xTx)−1xTy,

obtained in Exercise 3.2 and Exercise 3.7 is strongly consistent for the true parameter
𝜃 when the data (X1, Y1), (X2, Y2),… are in fact generated by the linear model, that
is, when Yi = (1, Xi)𝜃 + Ei where E1, E2,… are independent, identically distributed
N(0, 𝜎2).

8.3 Consistency for Prediction

Recall from Chapter 2 that an approximation method is a function which takes an
observed dataset (of size n, say) as input and outputs an approximation of the true
unknown function f which has produced class labels or continuous responses. The
risk of an approximation method (trained on datasets of size n) is the expected loss
incurred by drawing a random training set S of size n, constructing an approximation
f̂S of f from it and using f̂S(X) in place of Y for new data (X, Y),

Rn = E(S,X,Y)[L(Y , f̂S(X))] = ES[E(X,Y)[L(Y , f̂S(X))]] = ES[R( f̂S)],

where R( f̂S) is the risk of approximation f̂S. Recall from Section 4.1 that the Bayes
risk is the minimum possible risk for any approximation method for data with a given
joint distribution on (X, Y),

RBayes = EX[ min
c∈{1,…,C}

EY|X[L(Y , c)]].

The Bayes risk is the risk of the Bayes classifier.
With respect to a given joint distribution P(X, Y) on  × f (), as n → ∞, a pre-

diction method is a consistent prediction method (or a weakly consistent prediction
method) if

Rn → RBayes

(which implies R( f̂S)
P
→ RBayes) and is a strongly consistent prediction method if

R( f̂S)
a.s.
→ RBayes.

A prediction method is a universally consistent prediction method (respectively a
universally strongly consistent prediction method) if it is consistent (respectively
strongly consistent) with respect to all joint distributions on  × f ().

8.4 There Are Consistent and Universally
Consistent Classifiers

Much is known about consistency and universal consistency in general and for various
specific classification methods. We summarize it here for binary classifiers, following
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closely the book Devroye et al. (1996) and also the papers Biau et al. (2008) and Biau
and Devroye (2010).

The diameter of a set R ∈ ℝm is the supremum of the Euclidean distance between
any two points in R,

diamR = sup
(r,s)∈R×R

‖r − s‖.
Theorem 8.1 Consistency of Partitioning Classifiers. Let features X ∈ ℝm. Let a
binary classification method operate by partitioning ℝm into disjoint regions and,
given any point x ∈ ℝm, under 0–1 loss, predicting the majority class of the training
data in the region R(x) containing x (with ties broken in a fixed but arbitrary way).
The classification method is consistent for P(X, Y) if, as n → ∞,

diamR(X)
P
→ 0

and

the number of training data in R(X)
P
→ ∞.

Histogram classifiers (Section 4.4.5) and classification trees (Section 4.8) are exam-
ples of classifiers to which this theorem applies.

A cubic histogram classifier is one which partitions ℝm into cubes of side length h
and, given any point x ∈ ℝm, predicts the majority class of the training data in cube
R(x) containing x, breaking ties in a fixed but arbitrary way. In the next theorem,
which follows from Theorem 8.1, the bandwidth (side length) h = h(n) is a function
of the number n of training data.

Theorem 8.2 Universal Consistency of the Cubic Histogram Classifier. The
cubic histogram classifier is universally consistent if, as n → ∞, h(n) → 0 and
n h(n)m → ∞.

A weighted average classifier assigns a weight w(x, xi) to any point x ∈ ℝm and
any training point xi, i = 1,… , n. At a point x ∈ ℝm, it predicts the class c such that
the sum of the weights of that class is maximal, that is, it predicts

argmaxc∈{1,…,C}

n∑
i = 1
yi = c

w(x, xi).

For example, the k-nearest-neighbor classifier is a weighted average classifier where

w(x, xi) =
{

1 if xi is one of the k nearest training points to x
0 else

.

Theorem 8.3 Consistency of the Weighted-Average Classifier (Stone). Under the
following three conditions on the distribution of X and weights w(X, xi), i = 1,… , n,
the weighted-average classifier is consistent:
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(1) there is a constant 𝛼 such that for every measurable4 function g,

E[g(X)] < ∞ implies E

[
n∑

i=1

w(X, xi) f (xi)

]
< 𝛼 E[g(X)],

(2) for all 𝜖 > 0,

lim
n→∞

E

[
n∑

i=1

w(X, xi)[‖X − xi‖ > 𝜖]

]
= 0,

(3) lim
n→∞

E

[
max

i=1,…,n
w(X, xi)

]
= 0.

Theorem 8.3 implies universal consistency of the k-nearest-neighbor classifier under
certain conditions.

Theorem 8.4 Universal Consistency of the k-Nearest-Neighbor Classifier
(Stone). The k-nearest-neighbor classifier is universally consistent if, as n → ∞,
k → ∞ and k

n
→ 0.

Likelihood methods based on parametric models are consistent, provided that the
model assumption is correct and a consistent estimator of the model parameters
is used.

Theorem 8.5 Consistency of Parametric Likelihood Classifiers with Plug-in
Parameter Estimates. Let P(Y |X) = P(Y |X, 𝜃) be a continuous function of a fea-
ture vector X and a parameter vector 𝜃. If P(Y |X, 𝜃) is a continuous function of X

and 𝜃n
P
→ 𝜃, then the likelihood classifier constructed from P(Y |X, 𝜃) is consistent.

Some classifiers are known to be not universally consistent. For example, if k
remains bounded away from ∞ or if k

n
remains bounded away from 0 as n → ∞

then the k-nearest-neighbor classifier is not universally consistent (Devroye et al.,
1996, Exercise 11.1). Random forests are also known to be not universally consis-
tent, although there are bagged classifiers which are universally consistent Biau et al.
(2008).

8.5 Convergence to Asymptopia Is Not Uniform and
May Be Slow

The following two theorems should modulate any sense of euphoria caused by
the preceding section. The first says that for every classification method and every

4 This book has been written so that readers with and without a background in measure theory may
benefit equally. This is a technical condition needed for the proof of the theorem, and the non-measure-
theoretic reader may safely skip it without loss of appreciation of what is being developed here.
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Figure 8.1 The risk of QDA and LDA binary classifiers, as functions of the size of
the training data. The data were generated by drawing data of class 1 from one 100-
dimensional Gaussian distribution and the data of class 2 from another with different
mean and covariance. QDA is consistent for this problem and LDA is not.

data size, there is some joint distribution such that we are still arbitrarily far from
Asymptopia. The second says that there is some joint distribution such that the
approach to Asymptopia is arbitrarily slow.

Theorem 8.6 Every Method Fails Badly on Some Easy Problem (Devroye).
Under 0–1 loss, for any 𝜖 > 0, any integer n and any binary classification method,
there is a joint distribution on (X, Y) with Bayes risk 0 such that the risk of the method
satisfies Rn >

1
2
− 𝜖.

Theorem 8.7 Convergence to Bayes Risk Can Be Arbitrarily Slow (Devroye). Let
1

16
≥ a1 ≥ a2 ≥ … be any sequence of positive numbers converging to zero. Under

0–1 loss, for any sequence of binary classification methods applied to n training data,
there is a joint distribution on (X, Y) with Bayes risk 0 such that the risk of the nth
method satisfies Rn > an.

Selecting a consistent classification method may not lead to a good classifier
trained on limited data. Figure 8.1 shows QDA and LDA classifiers for a binary clas-
sification problem where QDA is the correct model (that is, the data of each class are
drawn from a Gaussian, and the Gaussians have different covariance matrices). QDA
is a consistent classifier in this case (Devroye et al., 1996, Theorem 16.1) and LDA is
not, but LDA has the lower risk when the two are trained on fewer than 10,000 points.
What is happening in Figure 8.1 is that QDA has higher variance and lower bias than
LDA. The variance of QDA is reduced as the number of training data increase, but
LDA wins the bias–variance trade-off for small data sizes.5

5 The author is grateful to Mark Jacobson for this example.
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Clustering

Do not assume that “clustering” methods are the best way to discover
interesting groupings in the data; in our experience the visualization
methods are often far more effective. There are many different cluster-
ing methods, often giving different answers, and so the danger of over-
interpretation is high.

—W. N. Venables and B. D. Ripley, Modern Applied Statistics with
S-PLUS, Third Edition, 2001

As described in Chapter 2, the goal of clustering is to learn an unknown, discrete-
valued function f without observing its outputs. Since no observed outputs of f are
available, no loss function which compares a predicted output to an observed out-
put can be computed. As a result, clustering tends to be driven by algorithms and
heuristics rather than by trying to minimize a meaningful measure of risk as is done
in classification.

The clustering algorithms presented in this chapter naturally fall into two groups.
Algorithms which are applicable when the observed data x1,… , xn are in ℝm (for
example, Gaussian mixture models, k-means, and mode-hunting in a density esti-
mate) are presented first, and algorithms which are applicable more generally (for
example, k-medoids and hierarchical methods) are presented later. Some clustering
algorithms partition the data x1,… , xn into k distinct clusters—that is, they perform a
k-clustering of the data—where k is a user-specified parameter of the algorithm. Other
clustering algorithms perform k-clusterings for a range of k’s, or for all k = 1,… , n.
Section 9.9 discusses methods for determining how many clusters are in a given
dataset.

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning



150 MACHINE LEARNING

9.1 Gaussian Mixture Models

Suppose that the data x1,… , xn are drawn from a Gaussian mixture model. That is,
suppose the data are drawn from a distribution which has a density function P(x) of
the form

P (x) =
J∑

j=1

wj𝜙(x |𝜇j,Σj),

where 𝜙(x |𝜇,Σ) denotes a Gaussian density function with mean 𝜇 and covariance
matrix Σ, w1,…wJ are non-negative weights with w1 +⋯ + wJ = 1, and J > 0 is
the number of clusters presumed to be in the data. Gaussian mixture models are dis-
cussed in Section 4.4.3 in the context of likelihood-based classifiers. Fitting Gaussian
mixture models (that is, estimating parameters 𝜇1,… ,𝜇J ,Σ1,… ,ΣJ , w1,… , wJ for
a given value of J) is done by the expectation-maximization algorithm described in
Section 10.7. Methods for selecting such models (that is, selecting J) are described
in several sections of Chapter 7: see in particular the Bayesian Information Criterion
(BIC) in Section 7.7.

A fitted Gaussian mixture model provides a “soft” or “fuzzy” clustering rule,
expressed in terms of the responsibility 𝛾ij of mixture component j for datum xi,

𝛾ij =
ŵj𝜙(xi |𝜇j, Σ̂j)∑J

k=1 ŵk𝜙(xi |𝜇k, Σ̂k)
.

The fitted means 𝜇1,… ,𝜇J are the cluster centers. Two advantages of clustering with
a Gaussian mixture model are that it provides a measure of certainty regarding which
data points are assigned to clusters, and it is an interpretable, statistical model. A dis-
advantage is that the expectation-maximization algorithm tends to converge slowly,
particularly when m is large and the covariance matrices Σj are unconstrained. Using
other distributions in place of the Gaussian distribution may be useful in some situa-
tions: for example, using Student’s t can provide robustness to outliers.

9.2 k-Means

The k-means algorithm begins with an initial set of putative cluster centers, 𝜇1,… ,𝜇k
(obtained, for example, by randomly sampling the data x1,… , xn without replacement
k times). The k-means algorithm then iterates the two steps shown in Figure 9.1.
The algorithm terminates when the cluster assignments do not change between
iterations.

The k-means algorithm approximates fitting a Gaussian mixture model, giving up
the flexibility of the mixture model (soft cluster assignment and variable covariance
matrices) in exchange for speed. Step (1) shown in Figure 9.1 is an approximation
of the expectation-step in the expectation-maximization algorithm, and step (2) is
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(1) Given a set of putative cluster centers µ̂1, . . . , µ̂k, assign each datum to

the cluster which has the nearest center: for i = 1, . . . , n, datum xi is

assigned to cluster argminj=1,...,k‖xi − µ̂j‖.
(2) Set the center of each cluster to be the mean of the data in the clus-

ter: for j = 1, . . . , k,

µ̂j =
1

number of data in cluster j

∑
xi∈ cluster j

xi .

Figure 9.1 The k-means clustering algorithm iterates two steps.

an approximation of the maximization-step (see Section 10.7). Geometrically, using
the mean in step (2) implicitly ties the k-means algorithm to (squared) Euclidean
distance. This is because the sample mean of a set of data S in ℝm is the point z
which minimizes the sum of squared deviations between z and every point in S. Thus
step (2) is equivalent to

𝜇j = argminz∈ℝm

∑
xi∈ cluster j

‖xi − z‖2
.

9.3 Clustering by Mode-Hunting in a Density Estimate

Clustering data x1,… , xn can be identified with the problem of finding modes (local
maxima) in the density function P(x) of the unknown probability distribution on
 from which the data were drawn (when taking this approach, the density func-
tion is assumed to exist). The density function P(x) can be estimated in a variety
of ways, either through parametric methods, such as Gaussian mixture models, or
non-parametric methods, such as kernel density estimation: a variety of methods are
described in Section 4.4 in the context of likelihood methods for classification. Modes
in a density estimate P̂(x) can be found by applying a numerical optimization algo-
rithm from many different starting points, and keeping track of the local maxima at
which the algorithm terminates. An algorithm for clustering by mode-hunting in a
density estimate is shown in Figure 9.2.

Clustering by mode-hunting can be sensitive to parameters of the optimization
algorithm used, and it can also be expensive. Note that for the purpose of cluster-
ing, the propensity of an optimization algorithm to terminate in a local, rather than
a global, optimum is a desirable feature: this affects the choice of optimizer and its
parameters. Computational cost can be reduced by terminating the optimization algo-
rithm early, combined with relaxing the criterion “distinct” in step (3).
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(1) Given a set of data, x1, . . . , xn, construct a density estimate P̂(x).
(2) For i = 1, . . . , n, apply a numerical optimization algorithm, initialized

at xi, to find an approximate local maximum mi of P̂(x).
(3) Let µ1, . . . , µk be the distinct values in the set {m1, . . . ,mn}.
(4) For j = 1, . . . , k, define cluster Sj as

Sj = {xi : the optimizer starting at xi climbs to µj } ,

and identify µj as the center of cluster Sj.

Figure 9.2 A generic mode-hunting clustering algorithm.

9.4 Using Classifiers to Cluster

“If you can classify, you can cluster”—or so one hears, occasionally. One way to
interpret this statement is the following trick for using a binary classifier to construct
a density estimate, which can then be used for clustering as in Section 9.3. Let data
x1,… , xn be given, and let this unlabeled data all be labeled as class 1. Our goal is
to estimate the density function for the distribution from which the data were drawn:
we write this density function as P(x |Y = 1).

The trick is to synthesize data xn+1,… , xn+n⋆ , which will all be labeled class 2,
by drawing it randomly from a probability distribution with known density function
P(x |Y = 2). A binary classification algorithm is trained on the marked data

(x1, 1), ..., (xn, 1), (xn+1, 2), ..., (xn+n⋆ , 2)

to produce an estimate of the posterior distribution of each class,1

( P̂(Y = 1 |X = x), P̂(Y = 2 |X = x))

which can be evaluated at any point x ∈  . Since

P(Y = 1 |X = x) = P(x |Y = 1) P(Y = 1)
P(x)

= P(x |Y = 1)P(Y = 1)
P(x |Y = 1)P(Y = 1) + P(x |Y = 2)P(Y = 2)

,

solving for P(x |Y = 1) yields

P(x |Y = 1) = P(x |Y = 2)
P(Y = 1 |X = x)
P(Y = 2 |X = x)

P(Y = 2)
P(Y = 1)

.

1 Not every classifier estimates these class probabilities explicitly. For this purpose, it is necessary to use
one that does.
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The density for data of class 2 is known, the conditional probabilities of the class
labels are estimated by the trained classifier, and the ratio of marginal probabilities

of the class labels is n⋆

n
by construction. This produces the density estimate

P̂(x |Y = 1) = P(x |Y = 2)
P̂(Y = 1 |X = x)

P̂(Y = 2 |X = x)

n⋆

n
.

9.5 Dissimilarity

Clustering requires an idea of something like distance between data. This often
takes the form of a dissimilarity measure, which is a function d :  ×  → ℝ+ such
that d(x, x) = 0 for all x ∈  and d(w, x) = d(x, w) for all w, x ∈  . For a particular
dataset, the dissimilarity matrix is

[ d(xi, xj)]
n
i,j=1,

an n × n symmetric matrix with zeros on the diagonal. Ideally the dissimilarity func-
tion will reflect something meaningful about the data, but it is often chosen for conve-
nience. Common convenience choices of dissimilarity when  = ℝm are Euclidean
and Manhattan distance on suitably scaled and transformed data—see Exercise 11.8.

Dissimilarity of data can be extended to dissimilarity of sets of data in a variety of
ways. Three popular ways of measuring the dissimilarity of two subsets, S1 and S2,
are:

single linkage d(S1, S2) = min(x,y)∈S1×S2
d(x, y)

complete linkage d(S1, S2) = max(x,y)∈S1×S2
d(x, y)

average linkage d(S1, S2) = 1|S1||S2|
∑

(x,y)∈S1×S2

d(x, y)

Some clustering algorithms, such as the hierarchical algorithms in Sections 9.7 and
9.8, make use of dissimilarity of clusters.

9.6 k-Medoids

The k-medoids algorithm is a generalization of k-means to an arbitrary dissimilarity
function. It requires that the cluster centers be observed data. As in k-means, the
k-medoids algorithm begins with an initial set of putative cluster centers, 𝜇1,… ,𝜇k
(obtained, for example, by randomly sampling the data x1,… , xn without replacement
k times). It then iterates the two steps shown in Figure 9.3. The algorithm terminates
when the cluster assignments do not change between iterations.
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(1) Given a set of putative cluster centers µ̂1, . . . , µ̂k, assign each datum to

the cluster which has the most similar center: for i = 1, . . . , n, datum xi

is assigned to cluster argminj=1,...,k d(xi, µ̂j).
(2) Set the center of each cluster to be the datum it contains which mini-

mizes the sum of dissimilarities to all other data in the cluster: for

j = 1, . . . , k,

µ̂j = argminxi∈ cluster j

∑
w∈ cluster j

d(xi, w) .

Figure 9.3 The k-medoids clustering algorithm iterates two steps.

The cluster centers found in step (2) are the medoids of the clusters. Generally,
clustering by k-medoids is more expensive than clustering by k-means because find-
ing the argmin in step (2) is computationally more intensive than computing a sample
mean.

9.7 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering constructs a k-clustering of the data for all
k = 1,… , n. It produces a hierarchical clustering in the sense that, for any k < k′,
every cluster in the k′-clustering is contained in a unique cluster in the k-clustering.
Agglomerative hierarchical clustering begins by considering all n data to be clus-
ters of size one. It iteratively computes the dissimilarity of all pairs of clusters and
merges two minimally dissimilar clusters, terminating when there is only one cluster,
as shown in Figure 9.4.

(1) Initialize the set of clusters to be {S1, . . . , Sn} where, for i = 1, . . . , n,
the ith cluster is the ith datum, Si = {xi}.

(2) Compute the dissimilarity between all pairs of clusters, that is, com-

pute d(Si, Sj) for all i < j.

(3) While there is more than one cluster in the set of clusters:

(4) Merge a pair of clusters which have minimal dissimilarity. Given

indices i′ < j′ such that

d(Si′ , Sj′) = min
i<j

d(Si, Sj) ,

set Si′ = Si′ ∪ Sj′ and remove Sj′ from the set of clusters.

(5) Compute the dissimilarity between the new cluster Si′ and all other

clusters in the set of clusters.

Figure 9.4 A generic agglomerative clustering algorithm.
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It is sometimes useful to think of clustering algorithms in terms of graph algo-
rithms. Suppose the dissimilarity function is bounded by some maximum value,
which by re-scaling we can assume to be 1. Let the similarity function s(w, x) be
defined by s(w, x) = 1 − d(w, x) and define the similarity graph of the data x1,… , xn
as follows: each datum is a vertex; an edge joins vertices xi and xj if and only if
s(xi, xj) > 0; and an edge joining xi and xj has weight s(xi, xj). Thinking of data-
clustering in terms of operations in the similarity graph can suggest computational
methods which are very efficient when the graph is sparse, that is, when the num-
ber of edges, e, is much less than the maximum possible number of edges,

(n
2

)
. For

example, most of the work in agglomerative hierarchical clustering, when using the
single-linkage criterion to measure the dissimilarity between clusters, can be done
by finding a minimal spanning tree of the similarity graph. Efficient algorithms2 can
find a minimal spanning tree in O(e log(e)) time, which can be much less than the
O(n2) time required by a naive approach to single-linkage agglomerative hierarchical
clustering when the graph is sparse.

9.8 Divisive Hierarchical Clustering

Similar to agglomerative hierarchical clustering, divisive hierarchical clustering con-
structs a k-clustering of the data for all k = 1,… , n such that, for any k < k′, every
cluster in the k′-clustering is contained in a unique cluster in the k-clustering. Divi-
sive hierarchical clustering begins by considering all data to belong to a single cluster
and then iteratively splits clusters until all clusters have size one. A specific divisive
hierarchical clustering algorithm, the DIANA algorithm of Kaufman and Rousseeuw
(1990), is shown in Figure 9.5.

9.9 How Many Clusters Are There? Interpretation
of Clustering

Determination of how many clusters are “really” in a dataset is a statistical inference,
so it should be addressed using statistical models for the data. One way to approach
this is by fitting Gaussian mixture models with different numbers of mixture compo-
nents and selecting a model with maximal probability in an appropriate sense, either
using an asymptotic approximation such as selecting a model with maximal Bayesian
Information Criterion as described in Section 7.7, or using an explicit, fully Bayesian
procedure and sampling from a posterior distribution on the number of clusters via
reversible-jump Markov chain Monte Carlo (Green, 1995).3

2 Kruskal’s or Prim’s algorithms, for example (Cormen et al., 2009).
3 Markov chain Monte Carlo methods in general, and reversible-jump MCMC in particular, are outside
the scope of this book.
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(1) Initialize the set of clusters to be {S} where S = {x1, . . . , xn} is all

of the data.

(2) While any cluster contains more than one data point:

(3) Find a cluster S which contains maximally dissimilar data,

S = argmaxall clusters T max
(w,x)∈T×T

d(w, x) .

(4) Find a datum w ∈ S which is maximally different from the rest of S,

remove this datum from S, and create a new one-point cluster, S′:

w = argmaxx∈S d(x, S \ {x}) ,

S′ = {w} , and S = S \ {w} .

(5) While S contains more than one datum and at least one x ∈ S satis-

fies d(x, S \ {x}) > d(x, S′), move a datum from S to S′:

w = argmaxx∈S : d(x,S\{x})>d(x,S′) d(x, S \ {x}) − d(x, S′) ,

S′ = S′ ∪ {w} , and S = S \ {w} .

Figure 9.5 The DIANA divisive clustering algorithm.

An extension of a statistical inferential method to a heuristic applicable to cluster-
ing, due to Sugar and James (2003), estimates the number of clusters in data as fol-
lows. For k ∈ {k1, k1 + 1,… , k2}, the data x1,… , xn are clustered with the k-means
algorithm and the distortion is computed,

d̂k = 1
m n

n∑
i=1

‖xi − center of cluster which contains xi‖2
.

The Sugar–James estimate of the number of clusters in the data is

argmaxk∈{k1+1,…,k2} d̂c
k − d̂c

k−1,

where c is a positive constant (Sugar and James (2003) recommend c = m
2

).
Selecting a reasonable clustering from among a hierarchical set of clusterings is a

well studied problem: see Gan et al. (2007), Chapter 17 for a survey. One method,
based on a non-parametric statistical test, is as follows. A clustering of the data
x1,… , xn partitions the set of all pairwise dissimilarities

{d(xi, xj) : 1 ≤ i < j ≤ n}
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into two sets: dissimilarities between two items which are in the same cluster, and
dissimilarities between two items which are in different clusters. Clusterings look
meaningful to the (author’s) eye when the inter-cluster pairwise item dissimilarities
are generally lower than the intra-cluster pairwise item dissimilarities.

The Mann–Whitney test (Conover, 1999, Section 5.1), also known as the Wilcoxon
test, is a non-parametric statistical test of the null hypothesis that two sets of num-
bers are drawn from the same one-dimensional probability distribution.4 It is pow-
erful against alternatives in which the distributions have different medians. One way
to measure the quality of a clustering is the strength of evidence which the Mann–
Whitney test statistic gives against the null hypothesis that the inter-cluster simi-
larities and the intra-cluster similarities have the same distribution. More generally,
a clustering of a set into k clusters partitions the set of pairwise item similarities
into k + 1 sets: similarities between items in cluster 1, similarities between items in
cluster 2, ..., similarities between items in cluster k and finally similarities between
items which are in different clusters. The Kruskal–Wallis test5 (Conover, 1999,
Section 5.2) is a generalization of the Mann–Whitney test to the case of more than
two sets. It tests the null hypothesis that the k + 1 sets of pairwise item similarities
have the same distribution, and it is powerful against alternatives in which some of
the k + 1 distributions have different medians.

9.10 An Impossibility Theorem

Clustering is sometimes perceived as a “squishy” subject due to the lack of an explicit,
rigorous statement of a goal (compared to predictive modeling, where the goal of risk-
minimization is relatively clear). Clustering can be the subject of rigorous, general
statements: we close with a remarkable theorem due to Kleinberg (2002).

4 Let W1,… , Wn⋆ and X1,… , Xn be samples from two distributions. The Mann–Whitney statistic for
testing the null hypothesis that the distributions are the same is

T1 =

∑n⋆

i=1 R(Wi) − 1
2

n⋆(n + n⋆ + 1)√√√√√ nn⋆

(n + n⋆)(n + n⋆ − 1)

⎛⎜⎜⎝
n⋆∑
i=1

R(Wi)
2 +

n∑
j=1

R(Xj)
2
⎞⎟⎟⎠ − nn⋆(n + n⋆ + 1)2

4(n + n⋆ − 1)

where R(Z) is the rank of Z in the concatenation {W1,… , Wn⋆ , X1,… , Xn} sorted into increasing order.
If unique, the smallest of W1,… , Wn⋆ , X1,… , Xn has rank 1 and the largest has rank n + n⋆. In the case
of ties, average ranks are used: see Conover (1999), Section 5.1 for details. The Mann–Whitney statistic
T1 is distributed approximately standard normal when n and n⋆ are large.
5 For the historically curious: Joseph Kruskal (of Kruskal’s algorithm), William Kruskal (of the Kruska–
Wallis test) and, for good measure, Martin Kruskal (the inventor of surreal numbers) were brothers.
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Kleinberg defines three properties of clustering algorithms, all of which seem
desirable:

Scale-invariance: The output of the algorithm does not change when the dissim-
ilarity matrix is scaled by a positive constant;

Richness: Given any partition of n data points, there is some n × n dissimilarity
matrix which will cause the algorithm to produce that partition;

Consistency: Given a clustering of data produced by the algorithm, decreasing the
dissimilarity between points in the same cluster and increasing the dissimilarity
between points in different clusters and running the algorithm again will not
cause the clusters to change.

He then proves three theorems:

Theorem 9.1 Kleinberg’s Impossibility Theorem. For n ≥ 2, no clustering algo-
rithm satisfies all three of these properties.

Theorem 9.2 For any two of these three properties, a stopping condition (which
Kleinberg explicitly states) can be defined for single-linkage agglomerative cluster-
ing so that the resulting algorithm satisfies the two properties.

Theorem 9.3 A general class of centroid-based clustering algorithms, which
includes both k-means and k-medoids and which trivially does not satisfy the richness
property, also does not satisfy the consistency property.

Critics have pointed out that Kleinberg’s consistency property is not necessarily desir-
able, as Figure 9.6 shows.

Figure 9.6 A two-dimensional dataset is shown in the left-hand cell. The center cell
shows a function applied to the dataset, with the property that the distance between
any two points in the image of the dataset (shown in red) is less than the distance
between the corresponding two points in the original dataset (shown in black). The
image of the dataset is shown in the right-hand cell. The function has transformed
data apparently in one cluster to data apparently in two clusters, but no clustering
algorithm which can detect this change is consistent in Kleinberg’s sense.
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Optimization

I envy you your self-confidence and assurance, but I mistrust exceedingly
the soundness of your judgment.

—Alcon of Thrale in Edward E. Smith, Second Stage Lensmen, 1943

Many predictive modeling techniques of Chapter 4, and clustering methods of
Chapter 9, require that certain numerical optimization problems be solved (at least
approximately). This chapter presents several classes of optimization techniques.

The problem of optimization is, given a known1 objective function g : ℝm → ℝ,
find a minimizer2

𝜔
⋆ of g, defined by g(𝜔⋆) = min𝜔∈ℝm g(𝜔). The minimizer may be

unique, or it may not. In some cases, the minimum value g(𝜔⋆) is of interest, but in
the context of Chapters 4 and 9 we are usually more interested in the minimizer, 𝜔⋆.

All of the methods of this chapter are iterative: that is, they begin with an initial
guess of the minimizer, 𝜔1, and for each iteration t = 1, 2, 3,…, they construct a new
approximation 𝜔t+1. The new approximation may or may not be better than the pre-
vious one. Typically, the methods are run until some upper bound on iterations is
reached, or convergence in both the domain and range of g is detected, for example
by both

max
i=1,…,m

||||||
𝜔

t+1
i − 𝜔t

i

𝜔
t
i

|||||| and
|||||
g(𝜔t+1) − g(𝜔t)

g(𝜔t)

|||||
1 Objective function g, while known, may be a surrogate for another function we would like to optimize.
For example, for a trained classifier f̂ we may minimize an estimate of risk such as R̂valid(̂f ) or R̂cv(̂f ) but
truly wish to minimize the risk R(̂f ).
2 Maximization of g is equivalent to minimization of −g.

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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falling below some preassigned thresholds. When the objective function is differen-
tiable, there may also be a convergence criterion applied to a norm of the gradient,
∇g(𝜔t): for example, to the maximum absolute value of any coordinate,

max
i=1,…,m

|||| 𝜕𝜕𝜔i
g(𝜔)

||||
|||||𝜔=𝜔t

.

The domain of g is a continuum in this chapter, but many of the methods presented
here have discrete-domain analogues.

10.1 Quasi-Newton Methods

10.1.1 Newton’s Method for Finding Zeros

We begin with Newton’s method for approximately finding zeros of a differentiable
function g : ℝ → ℝ. The goal is to find an𝜔⋆ ∈ ℝ such that g(𝜔⋆) = 0, starting from
an initial and presumably incorrect guess 𝜔1 of such a point. From a current estimate,
𝜔

t, Newton’s method produces a new estimate,

𝜔
t+1 = 𝜔

t −
g(𝜔t)
g′(𝜔t)

.

The geometric motivation for updating the estimate this way is shown in Figure 10.1.

curve (ω, g(ω))

ωtωt+1 ω-axis

g(ωt) = |ωt+1 − ωt| g′(ωt)

1

g′(ωt)

Figure 10.1 The geometry of Newton’s method for finding zeros. From estimate 𝜔t

on the 𝜔-axis, move vertically to the point (𝜔t, g(𝜔t)) on the curve (𝜔, g(𝜔)), then
leave (𝜔t, g(𝜔t)) on the ray tangent to the curve and toward the real line. The point at
which the ray hits the 𝜔-axis is the new estimate 𝜔t+1.
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Newton’s method does not always converge. Depending on the function g and the
starting point 𝜔1, it may diverge to ±∞ or get stuck revisiting a finite set of points
over and over in an infinite cycle.

10.1.2 Newton’s Method for Optimization

Newton’s method for optimizing a differentiable function g is to find a zero of the
gradient of g. Let ∇g denote the gradient of g and let Hg denote the Hessian of g, and
let a starting point 𝜔1 ∈ ℝm be given. From a current estimate, 𝜔t, Newton’s method
produces a new estimate,

𝜔
t+1 = 𝜔

t − 𝜌 (Hg(𝜔t))−1 ∇g(𝜔t),

where 𝜌 ∈ (0, 1] is a parameter (called the learning rate) which can be used to limit
the step size.

Computation of the inverse Hessian, (Hg(𝜔t))−1, can be expensive and can also
be numerically unstable. Furthermore, away from a local minimum of g the Hessian
Hg(𝜔t) may not be positive definite, which means that there may be no point on the ray
leaving 𝜔t in the direction of −(Hg(𝜔t))−1 ∇g(𝜔t) which has a value of g as small as
g(𝜔t). Heuristically, it is faster to perform more iterations of an approximate version
of Newton’s algorithm. Such methods are called quasi-Newton methods.

Exercise 10.1 A matrix M is a positive definite matrix if M is symmetric and xTMx >
0 for all x ∈ ℝm, x ≠ 0. Show that if M is positive definite and∇g(𝜔t) ≠ 0, then taking
a sufficiently small step from𝜔

t in the direction of −M−1 ∇g(𝜔t) results in a reduction
of the value of g. Hints: (1) a sufficiently small step from𝜔

t in the direction of a vector
v results in a reduction of the value of g if and only if the directional derivative of g
at 𝜔t in the direction of v, ∇g(𝜔t) ⋅ v, is negative; (2) all positive definite matrices are
invertible, and the inverse of a positive definite matrix is positive definite.

10.1.3 Gradient Descent

The gradient descent algorithm is the result of approximating the Hessian Hg(x) in
Newton’s method by the m × m identity matrix, so the update rule is

𝜔
t+1 = 𝜔

t − 𝜌∇g(𝜔t).

Gradient descent tends to be slow to converge when the starting point 𝜔1 is not near
a zero of the gradient ∇g and when it encounters regions in the domain of g where‖∇g‖ is small but no zero of ∇g is nearby. Gradient descent (in its stochastic form—
see Section 10.6.2) seems to be the de facto standard algorithm for training neural
networks.
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10.1.4 The BFGS Algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm keeps a running approx-
imation Ĥt of (Hg(𝜔t))−1, the inverse Hessian of g at 𝜔t. The initial value, Ĥ0, is the
m × m identity matrix. At each iteration, Ĥt is updated by addition of three rank-1
matrices.3 Specifically,

Ĥt+1 = Ĥt + uuT

t
− wwT

s
+ s

(u
t
− w

s

)(u
t
− w

s

)
T,

where vectors u, v, and w, and scalars s and t are defined by

u = 𝜔
t+1 − 𝜔t s = vTw = vTĤtv

v = ∇g(𝜔t+1) − ∇g(𝜔t) t = uTv
w = Ĥtv.

Instead of moving 𝜌 units in the direction of Ĥt∇g(𝜔t), the BFGS algorithm per-
forms a one-dimensional numerical minimization of g on the ray leaving 𝜔t in the
direction of Ĥt∇g(𝜔t). Furthermore, the update formula for Ĥt is such that Ĥt always
remains positive definite,4 so unless the algorithm has converged there is always a
point on this ray with a lower value of g than 𝜔t.

BFGS is sometimes used for maximum-likelihood estimation (as in logistic regres-
sion in Section 4.6, for example). Upon convergence, it is tempting to use the last
BFGS estimate of the inverse Hessian, Ĥt, to construct Gaussian confidence intervals
for the true parameters, but BFGS may converge to an approximate local minimum
without Ĥt converging to a good estimate of the inverse Hessian evaluated at that
minimum.

10.1.5 Modifications to Quasi-Newton Methods

Quasi-Newton methods are widely used, and through experimentation some modifi-
cations have been found to be generally useful. One of these modifications is to add
momentum, which in gradient descent changes the update rule to

𝜔
t+1 = 𝜔

t − 𝜌
t∑

s=1

𝜂
t−s ∇g(𝜔s),

where 𝜂 ∈ [0, 1] is the momentum parameter. This is implemented by initializing a
momentum term 𝜈

1 = 0 and iteratively updating

𝜈
t+1 = 𝜂 𝜈

t + ∇g(𝜔t)

𝜔
t+1 = 𝜔

t − 𝜌 𝜈t+1
.

3 If g is quadratic, then (Hg)−1 is constant and the BFGS update for Ĥt ensures that Ĥt converges to
Hg−1 in m steps.
4 Due to problems of numerical accuracy, care needs to be taken when programming that Ĥt remains
positive definite.
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A second modification is to use an adaptive learning rate, that is, to allow param-
eter 𝜌 = 𝜌i to change over time. One way to do this in gradient descent is the bold
driver method,5 which uses the update rule

(1) compute z = ωt − ρt∇g(ωt).

(2) if g(z) < g(ωt) set ωt+1 = z and set ρt+1 = c1 ρt.

(3) else set ωt+1 = ωt and set ρt+1 = c2 ρt.

Here, c1 and c2 are adaptation parameters, with c1 > 1 and c2 < 1. Typically c1 ∈
[1.01, 1.10] and c2 ≈ 0.5.

A third modification will be seen in Section 10.6.2.

10.1.6 Gradients for Logistic Regression and Neural Networks

The cost of computing the gradient ∇g of the objective function g can depend on mul-
tiple factors, such as dimension of the input space (ℝm, in this chapter), and whether
computation of g involves accumulation of some quantity over a set of observed data.
This is illustrated in the next two exercises by cases which arise when fitting a logis-
tic regression model or single-hidden-layer neural network described in Chapter 4,
where the objective function is the training estimate of risk with respect to cross-
entropy loss.

Exercise 10.2 Recall from Section 4.6 that a logistic regression classifier models the
probability of each class label c = 1,… , C, conditional on a feature vector X, as

P̂(Y = c |X) =
exp(T(X, 𝜃c))∑C

d=1 exp(T(X, 𝜃d))
,

where

T(X, 𝜃c) = 𝜃c,0 +
m∑

j=1

𝜃c,jXj

is a linear function of X and

𝜃 =

⎡⎢⎢⎢⎢⎣

𝜃1
𝜃2
𝜃3
⋮
𝜃C

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 0 ⋯ 0
𝜃2,0 𝜃2,1 ⋯ 𝜃2,m
𝜃3,0 𝜃3,1 ⋯ 𝜃3,m
⋮ ⋮ ⋮
𝜃C,0 𝜃C,1 ⋯ 𝜃C,m

⎤⎥⎥⎥⎥⎦
5 A bold driver is one whose speed increases exponentially until he or she is about to “drive off the road”
(g(z) > g(𝜔t)), in which case the driver “stays on the road” (𝜔t+1 = 𝜔

t) and continues at about half his or
her previous speed (Battiti, 1989). Such drivers can be found in many places.
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is a C × (m + 1) matrix of parameters with the top row constrained to be zero. Logistic
regression models are often fit by finding a value of 𝜃 which (approximately) maxi-
mizes the likelihood of a set of observed data. By Exercise 4.11, this is equivalent to
finding 𝜃 which minimizes the training risk with respect to cross-entropy loss,

R̂train = −
n∑

i=1

T(xi, 𝜃yi
) +

n∑
i=1

log

(
C∑

d=1

exp(T(xi, 𝜃d))

)
.

Show that, for c = 1,… , C, the gradient of R̂train is given by

𝜕

𝜕𝜃c,0
R̂train = −

n∑
i = 1
yi = c

1+
n∑

i=1

exp(T(xi, 𝜃c))∑C
d=1 exp(T(xi, 𝜃d))

= −
n∑

i = 1
yi = c

1+
n∑

i=1

P̂(Y = c |X = xi)

and, for j = 1,… , m,

𝜕

𝜕𝜃c,j
R̂train = −

n∑
i = 1
yi = c

xij +
n∑

i=1

xij
exp(T(xi, 𝜃c))∑C

d=1 exp(T(xi, 𝜃d))

= −
n∑

i = 1
yi = c

xij +
n∑

i=1

xij P̂(Y = c |X = xi).

Thus for any value of 𝜃, computation of the gradient may be accomplished in one pass
through the training data (x1, y1),… , (xn, yn), evaluating the summands and accumu-
lating the sums shown.

Exercise 10.3 Recall from Section 4.7 that a single-hidden-layer neural network
models the probability of each class label c = 1,… , C, conditional on a feature vec-
tor X, as

P̂(Y = c |Z) =
exp(T(Z, 𝜃(2)

c ))∑C
d=1 exp(T(Z, 𝜃(2)

d ))
,

where

T(Z, 𝜃(2)
c ) = 𝜃

(2)
c,0 +

N∑
j=1

𝜃
(2)
c,j Zj

is a linear function of Z = (Z1,… , ZN) and, for j = 1,… , N,

Zj = 𝜎

(
𝜃

(1)
j,0 +

m∑
k=1

𝜃
(1)
j,k Xk

)



OPTIMIZATION 165

is a composition of the sigmoid function 𝜎(v) = 1
1+e−v with a linear function of X,

and

𝜃
(2) =

⎡⎢⎢⎢⎢⎢⎣

𝜃
(2)
1

𝜃
(2)
2

⋮

𝜃
(2)
C

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝜃
(2)
1,0 𝜃

(2)
1,1 … 𝜃

(2)
1,N

𝜃
(2)
2,0 𝜃

(2)
2,1 … 𝜃

(2)
2,N

⋮ ⋮ ⋮

𝜃
(2)
C,0 𝜃

(2)
C,1 … 𝜃

(2)
C,N

⎤⎥⎥⎥⎥⎥⎦
and

𝜃
(1) =

⎡⎢⎢⎢⎢⎢⎣

𝜃
(1)
1

𝜃
(1)
2

⋮

𝜃
(1)
C

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝜃
(1)
1,0 𝜃

(1)
1,1 … 𝜃

(1)
1,m

𝜃
(1)
2,0 𝜃

(1)
2,1 … 𝜃

(1)
2,m

⋮ ⋮ ⋮

𝜃
(1)
N,0 𝜃

(1)
N,1 … 𝜃

(1)
N,m

⎤⎥⎥⎥⎥⎥⎦
are respectively C × (N + 1) and N × (m + 1) matrices of parameters. The training
risk with respect to cross-entropy loss is

R̂train = −
n∑

i=1

T
(
zi, 𝜃

(2)
yi

)
+

n∑
i=1

log

(
C∑

d=1

exp
(
T
(
zi, 𝜃

(2)
d

)))
,

where, for i = 1,… , n, zi represents the N-long vector(
𝜎

(
𝜃

(1)
j,0 +

m∑
k=1

𝜃
(1)
j,k xik

))N

j=1

.

Show that, for c = 1,… , C, the gradient of R̂train is given by

𝜕

𝜕𝜃
(2)
c,0

R̂train = −
n∑

i = 1
yi = c

1 +
n∑

i=1

exp
(
T
(
zi, 𝜃

(2)
c

))
∑C

d=1 exp
(
T
(
zi, 𝜃

(2)
d

))
= −

n∑
i = 1
yi = c

1 +
n∑

i=1

P̂(Y = c |Z = zi)

and, for j = 1,… , N,

𝜕

𝜕𝜃
(2)
c,j

R̂train = −
n∑

i = 1
yi = c

zij +
n∑

i=1

zij

exp
(
T
(
zi, 𝜃

(2)
c

))
∑C

d=1 exp
(
T
(
zi, 𝜃

(2)
d

))
= −

n∑
i = 1
yi = c

zij +
n∑

i=1

zij P̂(Y = c |Z = zi)
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and also, for j = 1,… , N,

𝜕

𝜕𝜃
(1)
j,0

R̂train = −
n∑

i=1

𝜃
(2)
yi,j

zij(1 − zij) +
n∑

i=1

∑C
d=1 𝜃

(2)
d,j zij(1 − zij) exp

(
T
(
zi, 𝜃

(2)
d

))
∑C

d=1 exp
(
T
(
zi, 𝜃

(2)
d

))
= −

n∑
i=1

𝜃
(2)
yi,j

zij(1 − zij) +
n∑

i=1

C∑
d=1

𝜃
(2)
d,j zij(1 − zij) P̂(Y = d |Z = zi)

and, for k = 1,… , m,

𝜕

𝜕𝜃
(1)
j,k

R̂train = −
n∑

i=1

𝜃
(2)
yi,j

zij(1 − zij) xik +
n∑

i=1

∑C
d=1 𝜃

(2)
d,j zij(1 − zij) xik exp

(
T
(
zi, 𝜃

(2)
d

))
∑C

d=1 exp
(
T
(
zi, 𝜃

(2)
d

))
= −

n∑
i=1

𝜃
(2)
yi,j

zij(1 − zij) xik +
n∑

i=1

C∑
d=1

𝜃
(2)
d,j zij(1 − zij) xik P̂(Y = d |Z = zi).

Thus for any value of 𝜃(1) and 𝜃(2), computation of the gradient may be accomplished
in one pass through the training data (x1, y1),… , (xn, yn), evaluating the summands
and accumulating the sums shown.

10.2 The Nelder–Mead Algorithm

The Nelder–Mead algorithm is useful for optimizing functions which are not differ-
entiable (or where the derivative is too expensive or troublesome to compute).6 It
begins with the m + 1 vertices of a simplex in ℝm, with function g evaluated at each
vertex.7

Each iteration of the algorithm is as illustrated in Figure 10.2. Moving along the
ray from A to the midpoint of the opposite simplex facet can be interpreted as an
approximation, given the available information, of a move in the direction of steepest
descent.

The Nelder–Mead algorithm is sometimes called the “amoeba method” because the
simplex oozes around ℝm, adapting its shape and size to the contours of the surface
defined by g. Convergence is declared when g(A)−g(C)|g(A)|+|g(C)| falls below a given threshold.

6 When confronted with an optimization problem, it is often good practice to start a simple optimizer
running, starting at many randomly selected initial points, while one works on a more complex opti-
mizer. The simple optimizer may find a good enough approximation to the optimum before implementa-
tion of the more complex optimizer is finished.
7 In the author’s implementation, the user provides a single point in ℝm and a side length. The software
constructs, as the starting point for the Nelder–Mead algorithm, a uniformly chosen random simplex in
ℝm with the given point at one vertex and all sides equal to the given length.
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(1) let vertices A, B and C be such that g(A) is the largest (worst), g(B) is the second

largest, and g(C) is the smallest (best) value.

(2) let S be the centroid of the simplex facet not containing A, S = 1
m

∑
all vertices v �=A v,

and let V be the vector from A to S, V = S −A.

(3) let point D = A+2V be the reflection of A through the centroid of the simplex facet

not containing A.

(4) if( g(D) < g(C) )

(5) let E = A + 3V be the point on ray
−→
AD which is half again as far from A as D is.

(6) if( g(D) < g(E) ) replace vertex A with vertex D.

(7) else replace vertex A with vertex E.

(8) else

(9) if( g(D) < g(B) ) replace vertex A with vertex D.

(10) else

(11) let F = A + 1
2V be the point on the ray

−→
AD which is halfway to the simplex facet.

(12) if( g(F ) < g(A) ) replace vertex A with vertex F.

(13) else move all vertices except C halfway to C along their edges to C,

v = v + 1
2 (C − v) for all vertices v �= C.

Figure 10.2 The points evaluated and the operations performed on a simplex by one
iteration of the Nelder–Mead algorithm.
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10.3 Simulated Annealing

Simulated annealing is a random search strategy. Given the current state, 𝜔t, a new
point w is drawn randomly from some probability distribution P, called the proposal
distribution, which is part of the definition of the algorithm and usually depends on the
current state. The decision whether to accept the proposed point w as the new state
𝜔

t+1 is also made randomly: the probability depends on g(w), g(𝜔t) and a positive
parameter T , the annealing temperature, which decreases as the algorithm proceeds.
Specifically, one step of a simulated annealing algorithm is

(1) draw w from the proposal distribution P(w |ωt).

(2) draw a uniform(0,1)-distributed random variable u.

(3) if u < min
(

1 , e−
g(w)−g(ωt)

T

)
set ωt+1 = w,

(4) else set ωt+1 = ωt.

(5) reduce T.

Usually, T is reduced by multiplication by a constant close to but less than one (for
example, 0.999) at each step.

Note that if g(w) ≤ g(𝜔t) then the proposed move is always accepted, meaning
𝜔

t+1 = w. If, on the other hand, g(w) > g(𝜔t) then the proposed move from 𝜔
t to

w is accepted with some positive probability, which depends on how much worse
g(w) is than g(𝜔t). As the annealing temperature T > 0 decreases, the probability of
accepting any given proposal w with g(w) > g(𝜔t) decreases. Toward the beginning,
simulated annealing is willing to move from a “good” point to a “bad” one, while
later on it is reluctant to move to a “bad” point, essentially becoming a greedy random
search. This makes simulated annealing a good search strategy when g has many local
minima.

10.4 Genetic Algorithms

In a genetic algorithm, a point 𝜔 in the domain of g is called a gene. The algorithm
acts iteratively on a set of genes, known as the population. Each gene𝜔 has a property
called fitness, which is a non-negative number that increases as g(𝜔) decreases:

fitness (𝜔) = e−g(𝜔)

is a typical example. The algorithm requires two randomized functions: a crossover
map C which takes a pair of genes and returns a new gene, and a mutation map M
which takes a single gene and returns a new gene.



OPTIMIZATION 169

At the tth iteration, the current population St is used to produce a new population
St+1 as follows:

(1) repeat some number of times:

(2) draw distinct genes u and v from St with probability proportional to fitness:

that is, u is drawn with probability fitness(u)∑
ω∈St fitness(ω)

.

(3) create the crossover of u and v, w = C(u, v).

(4) create a mutation of the crossover, z = M(w).

(5) insert the mutated crossover z into St+1.

Typically, the population size remains constant from one iteration (also known as a
generation) to the next.

In some genetic algorithms, St+1 may include unmutated crossovers of genes in
St and St+1 may include mutations of single genes drawn from St. Also, St+1 may
include genes directly copied from St, for example, by replacing St+1 with the fittest
elements of St ∪ St+1.

The mutation map M is similar to a simulated annealing proposal distribution:
given a gene 𝜔, it draws a random gene from some distribution, typically with prob-
ability mass centered at 𝜔 in some sense. The defining characteristic of a genetic
algorithm is the crossover map C, which creates a new gene by combining parts of
the two other genes. For example, when the domain of g is ℝm, a crossover map
applied to genes u and v could be defined as C(u, v) = (w1,… , wm), where each wi is
an independent, uniform random draw from the set {ui, vi}.

Genetic algorithms are most useful for minimizing functions which have a known
(or suspected) structural relationship among the inputs which can be exploited by a
well chosen crossover map. To give an unrealistically simple example, suppose the
domain of g is ℝ6 and

g(𝜔) = max(|𝜔1|, |𝜔2|, |𝜔3|) × max(|𝜔4|, |𝜔5|, |𝜔6|).
Here, if g is small then the first three coordinates or the last three coordinates are all
small. A crossover map which exploits this property to propose new members of the
population with potentially small values of g is

C(u, v) =
{

(u1, u2, u3, v4, v5, v6) if a fair coin toss comes up “heads”
(v1, v2, v3, u4, u5, u6) otherwise

.

10.5 Particle Swarm Optimization

Particle swarm optimization algorithms are an outgrowth proposed in Kennedy and
Eberhart (1995) of computer models for simulating the behavior of bird flocks, fish
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schools, and other group behavior. A particle swarm is a set of objects, each of which
has the following properties:

(1) a position p, point in the domain of g;

(2) a velocity v, a vector in the domain of g;

(3) a personal best point, the minimizer of g among all positions which the par-
ticle has occupied in the past;

(4) the global best point, the minimizer of g among all positions which any par-
ticle has occupied in the past.

Particles’ positions and velocities are initialized randomly (often in such a way that
they are well dispersed in the domain of g).

At each iteration, each particle in the swarm is updated according to the rules:

pnew = pcurrent + vcurrent

and

vnew = k(vcurrent + c1 U1 (personal best − pcurrent) + c2 U2 (global best − pcurrent)).

In the velocity update formula, k, c1 and c2 are universal positive constants and U1
and U2 are draws from a Uniform (0, 1) distribution (drawn independently for each
particle at each iteration). Particles’ personal best points and the global best point are
updated at each iteration.

The purpose of constants k, c1 and c2 are to control how “attracted” each particle
is to its own personal best point and to the global best point. Constants c1 and c2 are
respectively called the cognitive parameter and the social parameter, and constant
k is the constriction rate. Based on simulation studies, Carlisle and Dozier (2000)
recommend c1 = 2.8, c2 = 1.3, and k = 2|2−c1−c2−

√
(c1+c2)(c1+c2−4)| ≈ 0.7298.

There are many variations of particle swarm optimizers. One common variation
imposes a neighborhood structure on the particles, replacing the “global best” with a
“neighborhood best.” This means that information about the global best point found
so far propagates slowly through the swarm, as it is passed from neighbor to neighbor
in each iteration, which has the effect of making the swarm less aggressive and more
robust. Other variations include multiple swarms which avoid each other and multiple
types of particles in a swarm (“settlers” which refine estimates of local minima and
“explorers” which search for new local minima). How to identify when a particle
swarm has converged is an open question.

10.6 General Remarks on Optimization

10.6.1 Imperfectly Known Objective Functions

In machine learning it is usually the case that the objective function g we truly
wish to optimize is not computable, and therefore we are reduced to optimizing an
approximation or estimate, ĝ, of the ideal objective function g. Uncertainty in the
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estimate ĝ of g can lead to a new halting criterion for iterative optimization algo-
rithms: halt if the algorithm can’t tell whether it is really improving.

Let a training dataset be given, let a classification method be specified, and let 𝜃 be
a vector of both model parameters and tuning parameters which control the method’s
behavior: in classification trees, for example, 𝜃 could include the cost-complexity
parameter, while in a neural network 𝜃 could encode the number of hidden layers and
the number of neurons in each hidden layer as well as the parameters of the neurons.8

Training the classifier defines a function 𝜃 ↦ f̂𝜃 , and the optimal value of 𝜃 is that
which minimizes the risk of the trained classifier. That is, the objective function g is

g(𝜃) = R(̂f𝜃) = E(X,Y)[L(Y , f̂𝜃(X))].

The true risk of the trained classifier is not computable (because it depends on
the unknown probability distribution P(X, Y)), so an estimate must be used instead.
For example, if a validation dataset is available (see Chapter 7), parameter 𝜃 can be
sought to minimize the validation estimate of risk. This provides a surrogate objective
function ĝ,

ĝ(𝜃) = R̂valid(̂f𝜃) = 1
ñ

ñ∑
i=1

L(ỹi, f̂𝜃(x̃i)).

The surrogate objective function ĝ is derived from data, and hence is random with
mean and variance (and variance estimators) as described in Section 7.2.2.

Exercise 10.4 Assume that the number ñ of validation data is large enough that
ĝ(𝜃) = R̂valid(̂f𝜃), can be thought of as normal-distributed with negligible error for
any value of 𝜃 under consideration. Describe a halting criterion for an iterative opti-
mization algorithm 𝜃1, 𝜃2,… based on a level-𝛼 statistical test of the null hypothesis
that g(𝜃i+1) ≥ g(𝜃i) using the validation estimate ĝ for g. If a maximum number I of
iterations is fixed in advance, explain how Bonferroni correction, described in Chap-
ter 12, can be used so that the probability of any false rejection of the null is bounded
by 𝛼. Hint: See part (C) of Exercise 7.5 for the test, and see Exercise 12.7 for the
development of Bonferroni’s method.

10.6.2 Objective Functions Which Are Sums

In some cases, the objective function g to be optimized (or a surrogate, ĝ) is naturally
expressed as a sum. For example, some classifiers are trained by explicitly minimizing
a training or validation estimate of risk, in which case

ĝ(𝜃) = 1
n

n∑
i=1

L(yi, f̂𝜃(xi))

8 Parameter 𝜃 encodes any choice over which the user wishes to optimize. In addition to those men-
tioned above, 𝜃 could include the node impurity criterion and halting condition for classification trees, or
the inter-neuron connectivity or seed value for random initialization in a neural network.
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or

ĝ(𝜃) = 1
ñ

ñ∑
i=1

L(ỹi, f̂𝜃(x̃i)).

Some classifiers are trained by maximizing a log-likelihood function9 for independent
data, in which case

g(𝜃) = −
n∑

i=1

logP(yi |X = xi, 𝜃).

Ignoring the distinction between whether the objective function is the ideal one or
a surrogate, in both of the above cases the objective function is a sum over data, with
the ith summand depending only on the parameter 𝜃 and the ith datum. The same is
also true of the gradient, thus:

g(𝜃) =
n∑

i=1

g(xi, yi, 𝜃) and ∇g(𝜃) =
n∑

i=1

∇g(xi, yi, 𝜃).

When the number of data n is large, g and ∇g can be expensive to compute, and
even more so if the number of parameters k is large. One response to this situation,
when using quasi-Newton optimization methods, is to approximate ∇g by computing
it only on a random sample of the data,

∇g(𝜃) ≈
∑
i∈S

∇g(xi, yi, 𝜃),

where S is a small sample drawn randomly from {1,… , n}. In the most extreme case,
the random sample is a single data point: stochastic gradient descent is the gradient
descent algorithm with ∇g(𝜃) approximated by ∇g(xi, yi, 𝜃) computed for a single
point (xi, yi), which is drawn uniformly at random from the data at each iteration of
the algorithm.10

10.6.3 Optimization from Multiple Starting Points

Heuristically, it is good practice to start optimization algorithms from multiple points.
Indeed for a given total amount of work, many applications of a simple optimization
algorithm from different starting points may (in the aggregate) find a better optimum
than a sophisticated algorithm starting from only one point. Some algorithms incorpo-
rate this heuristic explicitly: there are particle swarms with “explorer” and “settler”
particles, and genetic algorithms with the population divided into “islands” which
interbreed only when a fluctuating “sea level” is sufficiently low.

9 In sections 4.6 and 4.7, it was seen that for training logistic regression and neural network classifiers
with cross-entropy loss, minimizing training risk and maximizing likelihood are equivalent.
10 Stochastic gradient descent may sample points from the data without replacement until all the data
have been used (so all data are used exactly once in the first n iterations), and then begin anew for the
next n iterations, and so on.
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10.7 The Expectation-Maximization Algorithm

10.7.1 The General Algorithm

In some applications, important data are missing. One example of this, which we
shall examine in detail, is the fitting of a Gaussian mixture model when the available
data are points x1,… , xn ∈ ℝm without any accompanying information about which
points were drawn from which mixture component of the distribution. In this section
we will denote observed (or observable) data by X, and unobserved (or hidden, or
latent) data by Z.

Let a statistical model be given for observable data X and hidden data Z,
parametrized by 𝜃. The likelihood is P(X, Z | 𝜃), and a maximum likelihood estimate
𝜃 for 𝜃 is desired. Ideally, this would be obtained by marginalizing out—that is, aver-
aging over—the distribution of the hidden data Z (which presumably depends on 𝜃),
selecting a value of 𝜃 which maximizes the marginal distribution of the observed data,
P(X | 𝜃):

𝜃 = argmax𝜃 P(X | 𝜃) = argmax
𝜃 ∫ P(X, z | 𝜃) dz. (10.1)

In the language of optimization, we seek 𝜃 to minimize the objective function g(𝜃) =
−P(x1,… , xn | 𝜃) for some observed data x1,… , xn. The integral in (10.1) is often too
hard to deal with, leading to an objective function which is not computable.

In response to this situation, Dempster et al. (1977) developed the expectation-
maximization (EM) algorithm, an iterative algorithm for approximating 𝜃. Given
observed data x1,… , xn and an initial value 𝜃0, the EM algorithm repeats the fol-
lowing two steps until convergence is declared:

(1) compute E
Z | x,θ̂t [ log P(x, Z | θ) ], a function of θ (the ‘‘expectation’’ step);

(2) compute θ̂(t+1) = argmaxθEZ | x,θ̂t [ log P(x, Z | θ) ] (the ‘‘maximization’’ step).

The expectation step looks daunting, but it really involves computing parameters
which describe a state of knowledge or belief at the tth iteration about the hidden
data Z.

10.7.2 EM Climbs the Marginal Likelihood of the Observations

It is remarkable (so we make this remark) that at any iteration of the EM algorithm,
the marginal likelihood of the observed data satisfies

P(X | 𝜃(t+1)) ≥ P(X | 𝜃t).
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The reason for this is as follows. For any value of 𝜃, x, and z, the joint density for the
observed and unobserved data can be factored as

P(X = x, Z = z | 𝜃) = P(Z = z | 𝜃, X = x) P(X = x | 𝜃).

Taking logs, this becomes

logP(X = x | 𝜃) = log P(X = x, Z = z | 𝜃) − log P(Z = z | 𝜃, X = x). (10.2)

Since equation (10.2) holds for all values z of the hidden variables, both sides can
be integrated with respect to any distribution on the hidden variables and still have
equality. In particular, we can pick some value 𝜃 of 𝜃 and integrate both sides of
(10.2) with respect to the distribution it induces on the hidden data, P(Z | 𝜃, X = x).
This yields

logP(X = x | 𝜃) = EZ | 𝜃,X=x[log P(X = x | 𝜃)]
= EZ | 𝜃,X=x[log P(X = x, Z | 𝜃)] − EZ | 𝜃,X=x[log P(Z | 𝜃, X = x)].

(10.3)

Consider the second term on the right-hand side of (10.3). The following sequence
of exercises shows that, as a function of 𝜃,

EZ | 𝜃,X=x[log P(Z | 𝜃, X = x)] (10.4)

is maximal when 𝜃 = 𝜃.

Exercise 10.5 Jensen’s Inequality. A function g : ℝ → ℝ is a concave function if
for any x, y ∈ ℝ and any t ∈ [0, 1], g(tx + (1 − t)y) ≥ tg(x) + (1 − t)g(y), and is a
strictly concave function if g(tx + (1 − t)y) > tg(x) + (1 − t)g(y). Equivalently, g is
concave if, at each point x, there is a line through the point (x, g(x)) such that the
curve parametrized by (y, g(y)) is always on or below the line. This is called a sup-
porting line of the curve at x. Put this way, g is strictly concave if, at each point x,
there is a line through the point (x, g(x)) such that the curve parametrized by (y, g(y))
is below the line, touching the line only at the point (x, g(x)). These definitions are
illustrated in Figure 10.3. Show that for a real random variable X, and a concave
function g,

E[g(X)] ≤ g(E[X]).

Figure 10.3 A concave function (left) and a strictly concave function (right). For
each curve, a dashed supporting line is shown at a point (x, g(x)). For the strictly
concave function, the supporting line intersects the curve at only this point, while for
the concave function, the line may intersect the curve elsewhere (shown in bold).
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Show that if g is strictly concave, then E[g(X)] = g(E[X]) if and only if P(X = c) = 1
for some constant c. Hint: Let 𝛼 = E[X], consider a line with equation g(𝛼) + s(y − 𝛼)
which lies above the curve (y, g(y)), and integrate both sides of an inequality.

Exercise 10.6 The Shannon–Kolmogorov Information Inequality.11 Let P0 and
P1 be probability densities on some set S and let X have the distribution with density
P0. Show that

E

[
log

(
P0(X)

P1(X)

)]
= ∫S

log
(

P0(x)

P1(x)

)
P0(x) dx ≥ 0,

with equality if and only if P(P0(X) = P1(X)) = 1. Hint: Use Jensen’s inequality, the
fact that log is strictly concave on the positive real line, and the fact that densities
integrate to 1.

Exercise 10.7 Apply the Shannon–Kolmogorov information inequality to show that
for all 𝜃,

EZ | 𝜃,X=x[log P(Z | 𝜃, X = x)] ≤ EZ | 𝜃,X=x[log P(Z | 𝜃, X = x)]. (10.5)

Now consider the first term on the right-hand side of (10.3). If 𝜃 and 𝜃 are any two
values such that

EZ | 𝜃,X=x[log P(X = x, Z | 𝜃)] ≤ EZ | 𝜃,X=x[logP(X = x, Z | 𝜃)] (10.6)

(for example, if 𝜃 is a maximizer of EZ | 𝜃,X=x[log P(X = x, Z | 𝜃)]), then inserting
(10.5) and (10.6) into (10.3) makes the positive term no smaller (generally bigger)
and the negative no bigger (generally smaller), yielding

log P(X = x | 𝜃) ≥ logP(X = x | 𝜃).

11 The Kullback–Leibler information between two discrete probability distributions was introduced in
Exercise 2.1. The Kullback–Leibler information between two distributions with densities P0 and P1 is

E[log( P0(X)
P1(X)

)], where P0 is the density of the distribution of X. The Shannon–Kolmogorov information

inequality states that the Kullback–Leibler information between two distributions is non-negative, and
positive unless P(P0(X) = P1(X)) = 1. The Shannon–Kolmogorov information inequality can be used to
prove that certain well known distributions have a maximum entropy property. Assuming that distribu-
tions have densities in parts (1)–(3),

(1) of all distributions on S = (−∞,∞) with mean 𝜇 and variance 𝜎2, the Gaussian distribution has
maximum entropy;

(2) of all distributions on S = (0,∞) with mean 𝜇, the exponential distribution has maximum
entropy;

(3) of all distributions on S = [a, b], the uniform distribution has maximum entropy;

(4) of all distributions on S = {1, 2, 3,…} with mean 𝜇, the geometric distribution has maximum
entropy.
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In actual implementation, 𝜃 = 𝜃
t and 𝜃

t+1 is set to the maximizer of
EZ | 𝜃,X=x[log P(X = x, Z | 𝜃)].

Thus the EM algorithm results in a sequence of parameter estimates 𝜃0, 𝜃1, 𝜃2,…
for which P(X = x | 𝜃0), P(X = x | 𝜃1), P(X = x | 𝜃2),… is non-decreasing (and in fact
is increasing unless equality holds in both (10.4) and (10.6)). Furthermore, we need
not actually maximize the expected log-likelihood in step (2) of EM (the M-step): it
is sufficient to merely find a new parameter 𝜃(t+1) which produces a greater expected
log-likelihood than the current parameter, 𝜃t. Algorithms which improve but do not
maximize the log-likelihood in step (2) are called generalized EM algorithms.

10.7.3 Example—Fitting a Gaussian Mixture Model Via EM

The EM algorithm is illustrated by providing technical details omitted in Section 4.4.3
and Section 9.2. Let x1,… , xn be independent draws from a Gaussian mixture with J
components. For each i, the density at xi is

P(xi | 𝜃) =
J∑

j=1

wj 𝜙(xi |𝜇j,Σj),

where 𝜙(x |𝜇,Σ) denotes a Gaussian density function with mean 𝜇 and covariance
matrix Σ, w1,… , wJ are non-negative weights which sum to 1 and

𝜃 = (w1,… , wJ ,𝜇1,… ,𝜇J ,Σ1,… ,ΣJ)

is a shorthand for all of the parameters. For i = 1,… , n, define zi ∈ {1,… , J} to be
the label of the mixture component from which xi was drawn. One can think of the
data as generated this way:

(1) for i = 1, . . . , n ,

(2) draw zi from {1, . . . , J} with probability distribution w1, . . . , wJ .

(3) draw xi from N(μzi , Σzi ) .

If z1,… , zn are known then it is easy to compute the maximum likelihood estimate
of 𝜃. The log-likelihood can be written as

logP(x1,… , xn, z1,… , zn | 𝜃) =
n∑

i=1

log
(
wzi

𝜙
(
xi |𝜇zi

,Σzi

))

=
J∑

j=1

⎛⎜⎜⎜⎝
n∑

i = 1
zi = j

log(wj 𝜙(xi |𝜇j,Σj))

⎞⎟⎟⎟⎠
.

and each term in the right-hand sum over j can be maximized separately.
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Exercise 10.8 Show that the maximum likelihood estimates of the parameters are:

ŵj =
|{i : zi = j}|

n
, 𝜇j =

1|{i : zi = j}| ∑
i:zi=j

xi

and

Σ̂j =
1|{i : zi = j}| ∑

i:zi=j

(x − 𝜇j)(x − 𝜇j)
T
.

Hint: Don’t forget to put in a Lagrange multiplier term to capture the constraint
w1 +⋯ + wJ = 1.

If z1,… , zn are unknown, an approximate maximizer of the marginal log-likelihood,

logP(x1,… , xn | 𝜃) =
n∑

i=1

logP(xi | 𝜃) =
n∑

i=1

log

(
J∑

j=1

wj 𝜙(xi |𝜇j,Σj)

)
,

can be found by the Expectation-Maximization (EM) algorithm.

10.7.4 Example—The Expectation Step

Theoretically, the point of the expectation step is to obtain the expected value of the
joint log-likelihood of X and Z with respect to the distribution on Z1,… , Zn induced
by the current estimate 𝜃t for 𝜃. Specifically,

E(Z1,…,Zn) | (x1,…,xn),𝜃t [log P(x1,… , xn, Z1,… , Zn | 𝜃)]

= E(Z1,…,Zn) | (x1,…,xn),𝜃t

[
n∑

i=1

log
(
wZi

𝜙
(
xi |𝜇Zi

,ΣZi

))]

=
n∑

i=1

EZi | xi,𝜃t

[
log

(
wZi

𝜙
(
xi |𝜇Zi

,ΣZi

))]

=
n∑

i=1

J∑
j=1

P(Zi = j | 𝜃t, xi) log(wj 𝜙(xi |𝜇j,Σj))

=
n∑

i=1

J∑
j=1

𝛾
t
ij log(wj 𝜙(xi |𝜇j,Σj)). (10.7)

The last step introduces the short-hand notation

𝛾
t
ij = P(Zi = j | 𝜃t, xi).
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Probability 𝛾 t
ij is called the responsibility of mixture component j for data xi at

iteration t, and it expresses “what is known so far” about the hidden states Z1,… , Zn.
The responsibilities can be computed using Bayes’ theorem, since

𝛾
t
ij ∝ P(Zi = j | 𝜃t) × P(xi | 𝜃t, Zi = j) = ŵt

j 𝜙
(
xi |𝜇t

j , Σ̂
t
j

)
.

The constant of proportionality comes from the fact that 𝛾 t
i1 +⋯ + 𝛾 t

iJ = 1, so

𝛾
t
ij =

ŵt
j 𝜙
(
xi |𝜇t

j , Σ̂
t
j

)
J∑

k=1

ŵt
k 𝜙
(
xi |𝜇t

k, Σ̂t
k

) .

Thus

E(Z1,…,Zn) | (x1,…,xn),𝜃t [log P(x1,… , xn, Z1,… , Zn | 𝜃)]

=
n∑

i=1

J∑
j=1

ŵt
j 𝜙
(
xi |𝜇t

j , Σ̂
t
j

)
J∑

k=1

ŵt
k 𝜙
(
xi |𝜇t

k, Σ̂t
k

) log(wj 𝜙(xi |𝜇j,Σj)),

and the right-hand side is a function of 𝜃 (all other quantities, 𝜃t and x1 … , xn, being
known).

10.7.5 Example—The Maximization Step

The purpose of the maximization step is to compute the parameter 𝜃t+1 which max-
imizes the expected log-likelihood (10.7) which was computed in the expectation
step.

Exercise 10.9 Modify the solution to Exercise 10.8 to show that the maximizer of
(10.7) is the value 𝜃t+1 defined by

ŵt+1
j =

∑n
i=1 𝛾

t
ij

n
, 𝜇

t+1
j =

∑n
i=1 𝛾

t
ij xi∑n

i=1 𝛾
t
ij

and

Σ̂t+1
j =

∑n
i=1 𝛾

t
ij

(
xi − 𝜇t+1

j

)(
xi − 𝜇t+1

j

)
T∑n

i=1 𝛾
t
ij

.

for j = 1,… , J. Hint: See the hints for Exercise 4.5 and Exercise 10.8.

From a computational or algorithmic point of view, the purpose of the expectation
step is to compute all of the 𝛾 t

ij’s from 𝜃
t, while the purpose of the maximization step

is to compute 𝜃t+1 from the 𝛾 t
ij’s.
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High-Dimensional Data

By lumping all these choices together, we “reduce” the problem to a clas-
sical problem of determining the maximum of a given function. ...

There are, however, some details to consider. In the first place, the
effective analytic solution of a large number of even simple equations
as, for example, linear equations, is a difficult affair. Lowering our sights,
even a computational solution usually has a number of difficulties of both
gross and subtle nature. Consequently, the determination of this maxi-
mum is quite definitely not routine when the number of variables is large.

All this may be subsumed under the heading “the curse of dimension-
ality.” Since this is a curse which has hung over the head of the physicist
and astronomer for many a year, there is no need to feel discouraged about
the possibility of obtaining significant results despite it.

—Richard E. Bellman, Dynamic Programming, 1957

Although it was originally defined in the context of numerical equation-solving and
optimization (in the quote above), the curse of dimensionality now serves as a catch-
all term describing difficulties which arise when the number of features, m, is large.
This chapter focuses on a major source of difficulty for the design and application
of machine learning algorithms: the fact that high-dimensional Euclidean space has
properties which conflict with intuition obtained from two- and three-dimensional
Euclidean space. In particular, three-dimensional intuition about the set of points
approximately a given distance away from a given point can be quite misleading
because of the changing relationship between distance and volume as the dimension
of Euclidean space increases.

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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Approaches to dealing with the curse of dimensionality fall roughly into two cate-
gories. First, there is searching for explicit or implicit mappings of a high-dimensional
feature space into a lower dimensional space such that useful information for solving
a given learning problem is preserved. Methods for this approach may be as simple
as linear projection, or as complex as deep autoencoders. Second, there are methods
which view high-dimensional data as a bias–variance problem, and introduce bias into
estimates of model parameters (typically by forcing them to be smaller in absolute
value than they would be otherwise) in order to reduce variance and produce a lower-
risk approximation f̂ . Such methods, encountered in specific instances in Chapters 3
and 4, are discussed in more detail and generality in this chapter.

11.1 The Curse of Dimensionality

This section illustrates the curse of dimensionality with some examples, leaving the-
oretical results to the exercises. A ball in ℝm is the set of points no more than some
given distance from a given point, that is, a ball is

{x ∈ ℝm : ‖x − c‖ ≤ r}

for some center c ∈ ℝm and positive radius r. For future reference, volume and sur-
face area of an m-dimensional ball of radius r are respectively

V(m, r) = 𝜋
m
2 rm

Γ
(

m
2
+ 1

) and S(m, r) = 𝜋
m
2 m rm−1

Γ
(

m
2
+ 1

) = 2𝜋
m
2 rm−1

Γ
(

m
2

) ,

where Γ(z) = ∫ ∞
0 tz−1e−t dt is the gamma function, the usual generalization of facto-

rial: Γ(z + 1) = z! for integer z ≥ 0. For our purposes, there is nothing special about
a sphere: it is merely an analytically tractable stand-in for an m-dimensional “blob”
in ℝm.

Consider a spherical shell S consisting of all points in a ball which are within a
given distance 𝛿 < 1 from the boundary (equivalently, S is a unit ball with a concentric
radius-(1 − 𝛿) ball removed):

S = { x ∈ ℝm : 1 − 𝛿 < ‖x − c‖ ≤ 1}
= { x ∈ ℝm : ‖x − c‖ ≤ 1} ⧵ { x ∈ ℝm : ‖x − c‖ ≤ 1 − 𝛿}.

How big does the distance 𝛿 need to be so that the volume of the spherical shell is a
given proportion of the volume of the sphere—for specificity, say, 90% of the volume?
The answer is whatever value of 𝛿 satisfies

V(m, 1) − V(m, 1 − 𝛿) = 0.90 × V(m, 1),
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Figure 11.1 In ℝ1, 90% of the volume of a unit sphere lies within a distance of 0.90
units of its boundary (left). In ℝ2, 90% of the volume of a unit sphere lies within a
distance of about 0.68 units of its boundary (center). In ℝ3, 90% of the volume of a
unit sphere lies within a distance of about 0.54 units of its boundary (right).
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Figure 11.2 In ℝm, 90% of the volume of a unit sphere lies within a distance of

1 − (1 − 0.90)
1
m units of its boundary, and this distance goes rapidly to zero as m

increases.

which is

𝛿 = 1 − (1 − 0.90)
1
m .

This value of 𝛿 is shown for various dimensions m in Figures 11.1 and 11.2. As the
dimension becomes large, the radius of the “smaller” concentric ball removed grows
to be nearly that of the original ball, as shown in Figure 11.2. What this means is that
nearly all the points in a high-dimensional ball are nearly on the boundary.1

1 Throughout this chapter, the term “nearly” is intended to have only intuitive, rather than technical,
meaning.
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Figure 11.3 The distribution of distance between pairs of points drawn uniformly
from a unit ball, in various dimensions. Each histogram was obtained from a sample
of 20,000 pairs of points.

The distribution of the distance between pairs of points chosen uniformly at random
from a unit ball is shown in Figure 11.3 (each cell is a histogram derived from 20,000
randomly drawn pairs). Note that as the dimension increases, the distribution becomes

quite concentrated around a single value (
√

2). What this means is that nearly all pairs
of points in a high-dimensional ball are nearly equidistant from each other.

The curse of dimensionality can negatively affect machine learning techniques
which depend on distance. For example, consider the following binary classification
problem. Feature vectors are points drawn uniformly from the m-dimensional unit
sphere centered at the origin, and a hyperplane H is given, passing through the center
of the sphere. Data falling on one side of H are defined to be class 1, while data falling
in or on the other side of H are defined to be class 2. The Bayes error rate is zero.

Figure 11.4 shows how the curse of dimensionality wrecks the performance of the
1-nearest-neighbor classification method on this problem relative to the performance
of logistic regression and a linear support vector machine. Each point in the figure
corresponds to training one of these classifiers on 10,000 training data and reporting
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Figure 11.4 The effect of dimension on the 1-nearest-neighbor classifier using
Euclidean distance, compared to logistic regression and a linear support vector
machine, on a binary classification problem with zero Bayes risk and a linear class
boundary. The risk of the 1-nearest-neighbor classifier rapidly increases with dimen-
sion, because the information contained in the distance between points decreases. The
horizontal gray line shows the maximum possible risk under 0–1 loss.

the test error, estimated by using 10,000 test data.2 As the dimension increases, the
risk of the 1-nearest-neighbor classifier rapidly increases toward one-half (shown as a
gray horizontal line), the maximum possible risk under 0–1 loss.3 This is not surpris-
ing: since nearly all pairs of points are nearly equidistant, the distance between any
pair of points provides little information about the points. The two linear classifiers
are less affected by increasing dimension.

By symmetry, if X and Y are independent, uniformly distributed points in the unit
ball or sphere then the distribution of XTY is the same as the distribution of ‖Y‖X1,
the length of Y times the first coordinate of X (the dot product of X with the first
standard basis vector). Thus by Exercises 11.2, 11.3, and 11.4 below, if X and Y are
independent and uniform in the ball then

E[X ⋅ Y] = 0 and Var[X ⋅ Y] = E
[
X2

1

]
E[‖Y‖2] − E[X1]2E[‖Y‖]2 = 1

m + 2
m

m + 2

and if X and Y are independent and uniform in the sphere then

E[X ⋅ Y] = 0 and Var[X ⋅ Y] = 1
m + 1

.

2 The specific hyperplane defining the problem should be irrelevant here, but for reference it is H = {x ∈
ℝm : x ⋅ (1,… , 1) = 0}.
3 As before, if a trained binary classifier had risk strictly greater than one-half, we would obtain a classi-
fier with risk less than one-half by reversing the class labels it predicts.
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In this sense, nearly all vectors in a high-dimensional ball or sphere centered at the
origin are nearly orthogonal to any given vector.

Exercise 11.1 Determine the proportion 𝜌 of the radius r of an m-dimensional ball
such that proportion 𝜈 of the volume is within 𝜌r of the boundary.

Exercise 11.2 Consider just the first coordinate, X1, of a uniformly distributed ran-
dom point X in the unit ball {x ∈ ℝm : ‖x‖ ≤ 1}. Show that the density of X1 at a
point x1 ∈ [−1, 1] is proportional to

V
(
m − 1,

√
1 − x2

1

)
∝
(
1 − x2

1

)m−1
2 .

Show that

E[X1] = 0 and Var[X1] = 1
m + 2

.

Show that X1 has the distribution of N × W
1
2 , where the sign N is uniformly distributed

on the set {−1, 1},

W ∼ Beta
(1

2
,

m + 1
2

)
,

and N and W are independent. Hint: The variance can be obtained by integration
by parts, but there is an easier way. Consider the distribution function P(X2

1 ≤ x) for
x ∈ [0, 1].

Exercise 11.3 Consider just the first coordinate, X1, of a uniformly distributed ran-
dom point X in the unit sphere {x ∈ ℝm : ‖x‖ = 1}. Show that the density of X1 at a
point x1 ∈ [−1, 1] is proportional to

S

(
m − 1,

√
1 − x2

1

)
∝
(
1 − x2

1

)m−2
2 .

Show that

E[X1] = 0 and Var[X1] = 1
m + 1

.

Show that X1 has the distribution of N × W
1
2 , where the sign N is uniformly distributed

on the set {−1, 1},

W ∼ Beta
(1

2
,

m
2

)
,

and N and W are independent. Hint: See the hint for Exercise 11.2. Note that X1 is
both the dot product of X with the first standard basis vector and also the cosine of
the angle between these vectors.

Note that by symmetry, Exercise 11.2 gives the distribution of the dot product of
a uniformly distributed random point in the unit ball {x ∈ ℝm : ‖x‖ ≤ 1} and any
given unit vector (in the exercise, the ball was rotated so that the given unit vector
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is (1, 0,… , 0)). Similarly, Exercise 11.3 gives the distribution of the dot product of
a uniformly distributed random point in the unit sphere {x ∈ ℝm : ‖x‖ = 1} and any
given unit vector. Both of these distributions are symmetric about zero (and therefore
have expected value zero) and have variances which approach zero as m → ∞. Thus
for large m, for any vector v, the vector from the origin to a uniform random point in
the ball or sphere is likely to be nearly orthogonal to v.

Exercise 11.4 What is the distribution of the distance between a random point uni-
formly distributed in a unit ball and the center of the ball? What is the distribution of
the squared distance?

Exercise 11.5 Let X and Y be independent and uniformly distributed in the unit ball.
Show that

E[X ⋅ Y] = 0, lim
m→∞

Var[X ⋅ Y] = 0,

lim
m→∞

E
[‖X − Y‖2] = 2, and lim

m→∞
Var

[‖X − Y‖2] = 0.

Since the function z →
√

z is continuous for positive z, it follows that4

lim
m→∞

E[‖X − Y‖] =
√

2 and lim
m→∞

Var[‖X − Y‖] = 0,

which explains why the distributions shown in Figure 11.3 become concentrated

about
√

2 as m increases. Hint: Use facts about ‖X‖, ‖Y‖ and X ⋅ Y established
in other exercises, and ‖X − Y‖2 = ‖X‖2 + ‖Y‖2 − 2X ⋅ Y.

Exercise 11.6 Show that if X and Y are independent, uniformly distributed points in
the non-negative orthant5 of either the unit ball or the unit sphere then E[X ⋅ Y] →
2
𝜋
≈ 0.63662 as m → ∞. Conclude that the expected squared distance from X to

Y approaches 2(1 − 2
𝜋

) ≈ 0.72676 as m → ∞ for both the sphere and the ball.
Hint: Use Exercises 11.2, 11.3, and 11.4. Also, two facts about the Gamma func-
tion may be useful: limx→∞

Γ(x+𝛼)
Γ(x)x𝛼

= 1 and Γ( 1
2
) =

√
𝜋.

Exercise 11.7 Let C be the m-dimensional cube with vertices at (±1,±1,… ,±1),
and let a sphere of radius 1

2
be centered at each of the 2m points of the form

(± 1
2
,± 1

2
,… ,± 1

2
). Each sphere is tangent to the surface of the cube at m points and

is tangent to m other spheres. Let S be the sphere which is centered at the origin and

4 This statement uses facts about convergence of random variables here which the reader may not have
encountered—see Ferguson (1996, Chapters 1–3) for full justification.
5 The non-negative orthant of ℝm (or any subset thereof) is the subset with all non-negative coordinates.
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tangent to all 2m other spheres. Sphere S is shown in bold in the figure, which illus-
trates the case m = 2. Determine the radius of S, and find the smallest dimension m
such that S contains a point outside of C (Hamming, 1995).

(−1,  1)

(−1,−1)

(−1,  1)

(−1,−1)

Exercise 11.8 The Minkowski distance with parameter p ∈ (0,∞], or lp distance,
between two m-long vectors is

dp(x, y) =

(
m∑

i=1

|xi − yi|p
) 1

p

for p < ∞ and

d∞(x, y) = max
i=1,…,m

|xi − yi|.
Euclidean distance corresponds to p = 2. Distance d1 is called Manhattan distance
or taxicab distance, and d∞ is called Chebyshev distance. Show that when p = ∞,
the “ball” centered at c ∈ ℝm with radius r is the cube

{ x ∈ ℝm : |xi − ci| ≤ r for all i = 1,… , m}

(the volume and surface area of this ball are (2r)m and 2m(2r)m−1, respectively).
Show that when p = 1, the “ball” centered at c with radius r is the cross-polytope
(the m-dimensional generalization of a regular octahedron)

{ x ∈ ℝm : (x − c) ⋅ (±1,… ,±1) ≤ r} .

(the volume and surface area of this ball are 1
m! (2r)m and 2

(m−1)! (2r)m−1, respectively).

Two-dimensional spheres in lp are shown for various values of p:

p = 1/8 p = 1/2 p = 1 p = 2 p = 8 p = ∞
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Exercise 11.9 Open-Ended Challenge. How do the observations of this section
change if l2 distance is replaced by l1 or l∞ distance?

11.2 Two Running Examples

In what follows it will be useful to have examples for illustrative purposes. As in
Chapter 4, we introduce the examples here and then refer to them in the rest of the
chapter.

11.2.1 Example 1: Equilateral Simplex

The simplex dataset consists of 650 points x1,… , x650 in ℝ64, and was constructed
as follows. An equilateral, 64-dimensional simplex with side length 1 was specified,
and its 65 vertices labeled v1,… , v65. Then for each i ∈ {1,… , 650}, an index j was
drawn uniformly at random from the set {1,… , 65}, and xi was drawn from a Gaus-
sian distribution with mean vj and covariance matrix equal to the identity matrix
scaled by 10−5. This dataset contains 65 tight clusters, all approximately equidis-
tant from one another and approximately the same size (the clusters vary in size from
4 to 19 data points). In plots, data points will be colored according to membership in
one of the 65 clusters, which is known due to the way the data are generated.

The methods of Section 11.3 will be applied to either the 64-dimensional vectors
of this dataset, or to the dissimilarity between vectors, as measured by Euclidean
distance. This dataset is a difficult case for dimension-reduction because, while it has
identifiable structure in the form of tight clusters, the structure is not low-dimensional.

11.2.2 Example 2: Text

The text dataset is obtained from this book itself.6 This book can be decomposed
into 130 small documents: 110 numbered chapter sections, 13 chapter introductions
(considered as “Section 0” of each chapter), plus Chapter 1 (which has no sections),
four appendices (labeled A through D), a preface (labeled P, and including the orga-
nization and acknowledgements), and a list of references (labeled R). Each of these
is contained in a computer file written in the TEX typesetting language.7 In plots,
sections will be colored by chapter.

A feature vector was constructed for each of the 130 files by counting the
occurrences of the terms in each file. A character N-gram is any sequence of N
consecutive characters, including whitespace characters. For example, the first ten
five-grams of this sentence, allowing overlaps, are

“For�e”, “or�ex”, “r�exa”, “�exam”, “examp”, “xampl”, “ample”, “mple,”,
“ple,�”, and “le,�t”,

6 Where convenient, references to this book may actually refer to a nearly identical, earlier draft—
otherwise, the book might never be finished!
7 The TEX files have been modified slightly. For example, all characters were converted to lowercase,
and punctuation, TEX comments, and extraneous white space characters were removed.
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where the symbol “�” stands for a single space character. In this example, a term is
any five-gram, allowing overlaps as above, which occurs in this book. This book
contains 61,190 distinct terms, the six most common being, in order, “�the�”
(which occurs 6429 times), “tion�” (2876), “�and�” (2145), “param” (1784), “regre”
(1706), and “class” (1573)—the high frequency of the terms “param” and “regre”
is due, in part, to the author’s use of the TEX macro \regreparam to typeset the
symbol 𝜃.

The occurrences of each term in each file are counted, producing a 61,190-long
term-frequency (TF) vector. The term-frequency vector can be treated as a numeric
feature vector describing each file. It is generally useful to weight the coordinates
of this vector so that terms which occur in most files (for example, “�the�” occurs
in all 130 sections of this book, “�and�” occurs in 126, and “�data” occurs in 110)
are suppressed and terms which occur in relatively few files (for example, “eigen”
occurs in only five sections of this book) are enhanced. One way to accomplish this
is to count the number of sections in which each term occurs (since the terms are
precisely those N-grams which occur in the book, each term occurs in at least one
section) and weight each term inversely to the number of sections. This is typically
done on a logarithmic scale, so that the feature vector associated with each section S
of the book is((

number of times term t
occurs in document S

)
× log

( total number of documents
number of documents in which term t occurs

))
all terms t

.

This is called the term-frequency inverse-document-frequency (TF-IDF) vector asso-
ciated with section S. TF-IDF vectors are usually scaled so that they are unit vectors.
In many applications, the set of terms is much larger than the set of terms occurring
in any particular document, in which case most coordinates of the resulting TF-IDF
vectors are equal to zero.

Let x1,… , xn denote the TF-IDF vectors for the n = 130 sections of the book.
One commonly used way to measure the similarity between these vectors is cosine
similarity,

s(w, x) = cos∠wx = w‖w‖ ⋅
x‖x‖ .

When vectors w and x have all non-negative coordinates, as is the case for TF-IDF
vectors, s(w, x) ∈ [0, 1]. When the cosine similarity of two TF-IDF vectors is large,
it generally means that some relatively rare terms occur relatively frequently in both
documents.

The methods of Section 11.3 will be applied to either the 61,190-dimensional TF-
IDF vectors of this dataset (normalized to be unit vectors), or to the dissimilarity
between vectors, as measured by cosine dissimilarity (that is, one minus the cosine
similarity). The dissimilarity between sections of this book are shown in Figure 11.5.



HIGH-DIMENSIONAL DATA 189

P
2
.0

2
.2

2
.4

2
.6

2
.8

3
.1

3
.3

3
.5

3
.7

3
.9

3
.1

1
4
.1

4
.3

4
.5

4
.7

4
.9

5
.0

5
.2

6
.1

6
.3

6
.5

6
.7

7
.0

7
.2

7
.4

7
.6

7
.8

7
.1

0
8
.0

8
.2

8
.4

9
.0

9
.2

9
.4

9
.6

9
.8

9
.1

0
1
0
.1

1
0
.3

1
0
.5

1
0
.7

1
1
.1

1
1
.3

1
2
.0

1
2
.2

1
2
.4

1
2
.6

1
3
.0

1
3
.2

1
3
.4

1
3
.6

1
4
.0

1
4
.2

1
4
.4

1
4
.6

1
4
.8

1
4

.1
0

1
4

.1
2

1
4

.1
4

1
4

.1
6

1
4

.1
8

1
4

.2
0 B D

1 2
.1

2
.3

2
.5

2
.7

3
.0

3
.2

3
.4

3
.6

3
.8

3
.1

0
4

.0
4

.2
4

.4
4

.6
4

.8
4

.1
0

5
.1

6
.0

6
.2

6
.4

6
.6

6
.8

7
.1

7
.3

7
.5

7
.7

7
.9

7
.1

1
8

.1
8

.3
8

.5
9

.1
9

.3
9

.5
9

.7
9

.9
1

0
.0

1
0

.2
1

0
.4

1
0

.6
1

1
.0

1
1

.2
1

1
.4

1
2

.1
1

2
.3

1
2

.5
1

2
.7

1
3

.1
1

3
.3

1
3

.5
1

3
.7

1
4

.1
1

4
.3

1
4

.5
1

4
.7

1
4

.9
1

4
.1

1
1

4
.1

3
1

4
.1

5
1

4
.1

7
1

4
.1

9
A C R

R
C
A
14.19
14.17
14.15
14.13
14.11
14.9
14.7
14.5
14.3
14.1
13.7
13.5
13.3
13.1
12.7
12.5
12.3
12.1
11.4
11.2
11.0
10.6
10.4
10.2
10.0
9.9
9.7
9.5
9.3
9.1
8.5
8.3
8.1
7.11
7.9
7.7
7.5
7.3
7.1
6.8
6.6
6.4
6.2
6.0
5.1
4.10
4.8
4.6
4.4
4.2
4.0
3.10
3.8
3.6
3.4
3.2
3.0
2.7
2.5
2.3
2.1
1

D
B

14.20
14.18
14.16
14.14
14.12
14.10
14.8
14.6
14.4
14.2
14.0
13.6
13.4
13.2
13.0
12.6
12.4
12.2
12.0
11.3
11.1
10.7
10.5
10.3
10.1
9.10
9.8
9.6
9.4
9.2
9.0
8.4
8.2
8.0

7.10
7.8
7.6
7.4
7.2
7.0
6.7
6.5
6.3
6.1
5.2
5.0
4.9
4.7
4.5
4.3
4.1

3.11
3.9
3.7
3.5
3.3
3.1
2.8
2.6
2.4
2.2
2.0

P

Dissimilarity of book sections

2 The problem of learning
3 Regression
4 Survey of classification techniques
5 Bias−variance trade−off
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11 High−dimensional data
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13 Current challenges in machine learning
14 R source code

Figure 11.5 The matrix of pairwise dissimilarities between the 130 sections of this
book, as measured by the cosine similarity between the corresponding TF-IDF vec-
tors computed from 5-grams. The dissimilarity is shown in grayscale, and ranges
from zero (black) to one (white).
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11.3 Reducing Dimension While Preserving
Information

This section presents various approaches to finding a k-dimensional, approximate
representation x̂1,… , x̂n ∈ ℝk of an observed set of m-dimensional feature vectors
x1,… , xn ∈ ℝm, where k < m. There are several reasons one might wish to do this:
because not all m features carry information relevant to a given problem, and a
smaller, more informative feature space is desired; because certain algorithms are
perceived to offer better performance (lower-risk predictions, lower computational
cost, or both) working in a lower-dimensional space; or for exploratory plots of the
data (in which case the values k = 1, k = 2, and k = 3 are of particular interest).

Each approach is distinguished by a set of criteria defining a “good” low-
dimensional representation of x1,… , xn, and a method of finding an optimal (or
approximately optimal) representation with respect to its criteria. Some approaches
(principal component analysis, linear multidimensional scaling, projection pursuit,
autoencoders) construct explicit maps ℝm → ℝk which can be applied to as-yet-
unobserved data, while others (stress-minimizing multidimensional scaling, manifold
learning, clustering) work only on the data given. Some approaches (multidimen-
sional scaling, manifold learning) depend only on a matrix of dissimilarities between
feature vectors, and thus generalize to the case where only these dissimilarities are
given, in which case the goal is to find a set of n points in ℝk whose interpoint
Euclidean distances approximate the given dissimilarities.

11.3.1 The Geometry of Means and Covariances of Real
Features

When all features are real, the observed feature vectors can be expressed in the rows
of a n × m matrix8

X =

⎡⎢⎢⎢⎢⎣

x11 x12 … x1m

x21 x22 … x2m

⋮ ⋮ ⋮

xn1 xn2 … xnm

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

x1

x2

⋮
xn

⎤⎥⎥⎥⎥⎦
.

8 In Chapter 3 and Sections 4.6 and 4.7, it was convenient within the context of linear models to use the
symbol X to represent this matrix with a column of all 1’s adjoined to it,

X =

⎡⎢⎢⎢⎢⎣

1 x11 x12 … x1m

1 x21 x22 … x2m

⋮ ⋮ ⋮ ⋮

1 xn1 xn2 … xnm

⎤⎥⎥⎥⎥⎦
.

In this chapter, X does not have a column of all 1’s adjoined to the features.
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We follow the convention of treating all vectors—including the feature vectors
x1,… , xn—as column vectors, although x1,… , xn are represented as the rows of X.
Sometimes it is convenient to have the data translated so that the mean feature vector
is at the origin, and sometimes it is convenient to have the data rotated so that the
features are uncorrelated. This can be done by matrix operations on X as follows.

Let the sample mean and the sample covariance matrix of feature vectors x1,… , xn
(the rows of X) be denoted respectively by

x̄ = 1
n

n∑
i=1

xi and S = 1
n

n∑
i=1

(xi − x̄)(xi − x̄)T = 1
n

XT X − x̄x̄T
.

Translating the data so that the mean feature vector is at the origin is equivalent to
subtracting x̄ from each row of X, and data which have been so translated are said
to be centered. One way to center data is by multiplying X on the left9 by the n × n
centering matrix

H = I − 1
n

⎡⎢⎢⎢⎣
1
1
⋮
1

⎤⎥⎥⎥⎦
[1,… , 1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
n

−1
n

… −1
n

−1
n

1 − 1
n

… −1
n

⋮ ⋮ ⋱ ⋮

−1
n

−1
n

… 1 − 1
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The following exercise says that if a dataset is represented by the rows of X, then the
centered dataset is represented by the rows of HX.

Exercise 11.10 Show that matrix HX is equal to matrix X with x̄ subtracted from
each row. Show that H2 = H. Show that the sample covariance matrix of X and of
HX is

S = 1
n

(HX)T(HX) = 1
n

XTHX.

The sample covariance matrix S is non-negative definite, so it can be represented
as

S = Q𝚲QT,

9 Geometrically, left multiplication by H projects a column vector z ∈ ℝm into the (m − 1)-dimensional
subspace {x ∈ ℝm : x ⋅ (1,… , 1) = 0}. Forming the product HX is not how one would compute the
translated version of X.
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where 𝚲 = diag(𝜆1, 𝜆2,… , 𝜆m) and 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆m ≥ 0 are the eigenvalues of
S written in non-increasing order,10 and where Q is an m × m orthogonal matrix11

whose columns are the corresponding eigenvectors. Rotating the centered data so
that the features are uncorrelated is accomplished by multiplying HX on the right by
Q. Feature vectors which have been translated so that the mean feature vector is at
the origin and rotated so that the features are uncorrelated are said to be centered and
decorrelated.

Exercise 11.11 Show that the sample covariance matrix of HXQ is the diagonal
matrix 𝚲.

This process can be taken one step further: the rows of HXQ𝚲− 1
2 have sample

mean zero and sample covariance matrix equal to the identity matrix. Feature vectors
which have been translated, rotated, and scaled this way are said to be sphered.

11.3.2 Principal Component Analysis

The goal of principal component analysis (PCA) is to find a linear projection of n
centered data points in ℝm into ℝk, k < m, which preserves as much information
as possible, where information is measured in terms of variance. Given a centered
dataset represented by the rows of HX, a linear map ℝm → ℝk, represented by an
m × k matrix W = [W1,… , Wk], is sought such that:

(1) the columns W1,… , Wk are mutually orthogonal unit vectors;

(2) SVar[HXW1] ≥ SVar[HXz] for all unit vectors z ∈ ℝm, that is,

W1 = argmax
z∈ℝm : ‖z‖=1

SVar [HXz] ;

(3) for j = 2,… , k, SVar
[
HXWj

] ≥ SVar [HXz] for all unit vectors z ∈ ℝm such
that HXz is uncorrelated with all of HXW1,… , HXWj−1, that is,

Wj = argmax
z∈ℝm : ‖z‖=1,

SCor[HXW1, HXz]=0,
⋯

SCor[HXWj−1, HXz]=0

SVar [HXz] .

where SVar [⋅] and SCor [⋅, ⋅] represent the sample variance and correlation, respec-
tively. In words, the first principal component W1 is a unit vector inℝm pointing in the
direction in which the data have maximal variance. The second principal component

10 The eigenvalues of a real, symmetric matrix are all real.
11 An orthogonal matrix Q is one which satisfies Q−1 = QT, that is, QTQ = QQT = I. Geometrically,
multiplication by Q performs a rotation and/or reflection of one basis onto another.
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W2 is a unit vector in ℝm, constrained to be orthogonal to the first principal compo-
nent, pointing in the direction in which the data have maximal variance. And so on:
the jth principal component Wj is a unit vector in ℝm, constrained to be orthogonal to
all of the first j − 1 principal components, pointing in the direction in which the data
have maximal variance. The rows of the n × k matrix HXW are the n feature vectors
(data points) projected onto their first k principal components.

Exercise 11.12 Show that the m × k matrix [Q1,… , Qk] formed by taking the first k
columns of Q satisfies properties (1), (2), and (3), so the first k columns of HXQ are
x1,… , xn projected onto their first k principal components.

Exercise 11.12 states that principle component analysis is the same as translating
a dataset to the origin, rotating it to decorrelate the features, and taking the first k
decorrelated features. This means that computationally, the projection of the data
onto the first k principal components is the same as finding the k largest eigenvalues
of the covariance matrix S and their corresponding eigenvectors. It also means that the
variance of the data projected onto the ith principal component is 𝜆i, the ith largest
eigenvalue of S. The results of applying PCA to the simplex dataset to produce a
two-dimensional representation is shown in the left-hand cell of Figure 11.6.

The choice of k is usually made heuristically, balancing the need in any given
application for k to be small against the need to preserve information in the data.
The proportion of total variation preserved in projecting data onto its first k principal
components is defined as ∑k

i=1 𝜆i∑m
i=1 𝜆i

=
∑k

i=1 𝜆i

tr(S)
∈ [0, 1]. (11.1)

In the context of PCA, the columns Q1,… , Qk of Q are called loading vectors.
The loading vectors can sometimes be interpreted to gain insight into the sources
of variance in the data. For example, one might find that most of the coordinates of
the first loading vector Q1 are negligibly small relative to a few of the coordinates.
Ignoring what is negligibly small, the first principal component can be viewed as a
linear combination of a few of the original features, with weights given according to
the non-negligible coordinates of Q1. Depending on the application, this particular
combination of the features may be found to be meaningful. Similarly for Q2, and
so on.

11.3.3 Working in “Dissimilarity Space”

A dissimilarity measure on feature space  is a function d :  ×  → ℝ+ such that
d(x, x) = 0 for all x ∈  and d(w, x) = d(x, w) for all w, x ∈  . The value d(w, x) is
interpreted as the dissimilarity of two feature vectors w and x. In general, d(w, x) need
not satisfy a triangle inequality, although commonly used dissimilarity measures on
ℝm often do, such as the family of metrics defined in Exercise 11.8. Construction of
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Figure 11.6 Linear MDS applied to the simplex dataset (left cell) and the text dataset
with TF-IDF (right cell) of Section 11.2. In the simplex dataset, linear MDS (which
in this case is equivalent to PCA) has separated the single largest cluster, of size 19,
from the rest of the data on the first principal axis (horizontal). It has separated the
two second-largest clusters, each of size 16, from each other and the rest of the data
on the second principal axis (vertical). Linear MDS has preserved the fact that these
three clusters are approximately equidistant from each other, at the cost of collapsing
the other 62 clusters together. The two-dimensional linear MDS representation of the
simplex data has preserved 5.4% of the total variation (11.1). In the text dataset, linear
MDS has separated most of Chapter 3 (regression) and parts of Chapters 4 (logistic
regression, neural networks, and support vector machines), 10 (quasi-Newton meth-
ods, general remarks, and EM), and 11 (model regularization) from the rest of the
book on the first principal axis (horizontal). It has separated most of Chapter 14
(R code) from the rest of the book on the second principal axis (vertical). The two-
dimensional linear MDS representation of the text data has preserved 10.3% of the
dissimilarity matrix (11.2).

a good dissimilarity measure for any particular application is something of an art:
some specific measures and their motivation will be discussed later in this chapter.12

A dissimilarity measure allows one to apply certain techniques without further
regard for the structure of the feature space  .13 For example, the hierarchical and
k-medoid clustering algorithms described in Chapter 9, and the k-nearest-neighbor

12 It is often useful computationally to have d(w, x) be equal to zero for most pairs of observed feature
vectors w and x, and to have all of the non-zero d(w, x) values be obtainable without doing O(n2) work.
13 It is to be hoped that the structure of  which is relevant to the application at hand is expressed in the
dissimilarity measure!
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and nearest-cluster classifiers described in Chapter 4, can be applied given only the
matrix of dissimilarity values

D = [d(xi, xj)]
n
i,j=1.

11.3.4 Linear Multidimensional Scaling

Multidimensional scaling (MDS) is a family of techniques for moving from dissimi-
larity space to real feature space ℝk. Suppose there are objects o1,… , on (which may
or may not be represented by vectors in some feature space) and a matrix of pairwise
dissimilarities between the objects is given,

D = [d(oi, oj)]
n
i,j=1.

Given a value of k, multidimensional scaling attempts to construct a set of n points,
x̂1,… , x̂n ∈ ℝk, with the property that the matrix of Euclidean distances between the
points,

[d2(x̂i, x̂j)]
n
i,j=1,

is close to the dissimilarity matrix D in some user-specified sense. The points
x̂1,… , x̂n are then used as surrogates for the objects o1,… , on, and the coordinates
of the x̂i’s are interpreted as latent features of the objects.14 This section presents the
original, linear multidimensional scaling algorithm. A different approach is presented
in Section 11.3.6.

We begin with the geometric motivation for a definition. Suppose that dissimilarity
matrix D actually arose as the matrix of pairwise Euclidean distances between points
in ℝm: that is, suppose the objects o1,… , on correspond to points x1,… , xn ∈ ℝm

and that Di,j = d(oi, oj) = d2(xi, xj) for all i and j. Then for all i and j,

D2
i,j = d(oi, oj)

2 = (xi − xj)
T(xi − xj) = xT

i xi + xT
j xj − 2xT

i xj,

which means that the matrix of distances D can be obtained from the matrix of
inner products [xT

i xj]
n
i,j=1. Since the distances between points x1,… , xn are transla-

tion invariant, D can also be obtained from the matrix of inner products of the xi’s
after they have been centered. Thus D can be obtained from the matrix

B = [(xi − x̄)(xj − x̄)T]n
i,j=1 = HX(HX)T

.

Furthermore, the matrix B of inner products can be obtained directly from the matrix
of distances.

14 The motivation for creating MDS was to enable the discovery of latent features in psychological data
originally obtained as a matrix of dissimilarities (Torgerson, 1952).
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Exercise 11.13 Show that in the above, B = HAH, where

A =
[
−1

2
d2(xi, xj)

2
]n

i,j=1

and H is the centering matrix.

This observation motivates a general definition. Given any dissimilarity matrix D =
[d(oi, oj)]

n
i,j=1 (not just a Euclidean distance matrix), define matrices A and B by

A =
[
−1

2
d(oi, oj)

2
]n

i,j=1
and B = HAH.

Theorem 11.1 A Property of Euclidean Distance (Young and Householder). A
necessary and sufficient condition for D to be the pairwise distances of a set of points
in Euclidean space is that the matrix B be non-negative definite, and in this case the
set of points is unique apart from a rigid motion.

Linear multidimensional scaling is the result of treating the matrix B as if it is a
matrix of inner products of n points in ℝk, for some value of k. Since B is real and
symmetric, it has an eigendecomposition

B = Q𝚲QT,

where𝚲 = diag(𝜆1, 𝜆2,… , 𝜆m) and 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆m are the eigenvalues of B writ-
ten in non-increasing order. It is possible that some of the eigenvalues are negative: in
fact, at least one of the eigenvalues must be negative unless D is Euclidean by Theo-
rem 11.1. If fewer than k of the eigenvalues are positive, linear MDS cannot construct
a k-dimensional realization. If at least k of the eigenvalues are positive, linear MDS
can construct a k-dimensional realization: it consists of the rows of the n × k matrix

X̂ = [Q1,… , Qk] diag
(
𝜆

1
2
1 ,… , 𝜆

1
2
k

)
.

Two generalizations of the proportion of total variation (11.1), both interpreted as “the
proportion of the dissimilarity matrix explained” by a k-dimensional representation,
are (Mardia et al., 1979): ∑k

i=1 |𝜆i|∑m
i=1 |𝜆i| (11.2)

and ∑k
i=1 𝜆

2
i∑m

i=1 𝜆
2
i

.

We shall use (11.2) in the examples which follow.
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When it exists, the k-dimensional dataset returned by linear MDS is optimal with
respect to two criteria, expressed in terms of the matrix of pairwise Euclidean dis-
tances between rows of X̂,

D̂ =
[
d2(x̂i, x̂j)

]n
i,j=1

,

and the corresponding matrix of inner products,

B̂ = HX̂(HX̂)T = H
[
−1

2
d2(x̂i, x̂j)

2
]n

i,j=1
H.

The optimality criteria are stated in terms of distance with respect to the Frobenius
norm. The Frobenius norm of an n × m real matrix M is its Euclidean length, consid-
ered as an nm-long vector:

‖M‖F =
( n∑

i=1

m∑
j=1

M2
ij

) 1
2

.

Theorem 11.2 Constrained Optimality Criterion of Linear MDS. If dissimilarity
matrix D is the matrix of Euclidean distances between the rows of X, then the lin-
ear MDS realization minimizes ‖D − D̂‖F over all configurations of n points in ℝk

obtained by a projection of X into ℝk.

Theorem 11.3 Global Optimality Criterion of Linear MDS. The linear MDS real-
ization minimizes ‖B − B̂‖F over all configurations of n points in ℝk.

Note that in Theorem 11.3, the matrix B̂ is a matrix of inner products, but the matrix
B need not be (because the matrix D need not be a matrix of Euclidean distances
among some set of points).

11.3.5 The Singular Value Decomposition and Low-Rank
Approximation

When the dissimilarity matrix D arises as the Euclidean distances between points
x1,… , xn ∈ ℝm, PCA and linear MDS are exactly the same thing. This can be shown
by using a low-rank (as opposed to low-dimension) approximation of the centered
data matrix HX obtained from its singular value decomposition.

The singular value decomposition (SVD) of an n × m matrix M is defined as

M = U𝚺VT

where U is an n × n orthogonal matrix, V is an m × m orthogonal matrix, and 𝚺 is
an n × m diagonal matrix with diagonal entries 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min(n,m) ≥ 0. The
diagonal entries of 𝚺 are the singular values of the matrix M, the columns of U are
the left singular vectors of M, and the columns of V (the rows of VT) are the right
singular vectors of M.
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Theorem 11.4 Existence of the SVD. Every real matrix has a singular value decom-
position.

The SVD can be used to construct low-rank approximations of a matrix which are
optimal with in the sense of distance with respect to the Frobenius norm.

Theorem 11.5 Optimality Criterion of the SVD (Eckhart-Young). Let M be an
n × m matrix with SVD M = U𝚺VT and let k ≤ rank(M). Among all n × m matrices
Z of rank k, ‖M − Z‖F is minimized by the matrix

Z = [U1,… , Uk]

⎡⎢⎢⎢⎣
𝜎1

𝜎2
⋱

𝜎k

⎤⎥⎥⎥⎦
[V1,… , Vk]T

.

where U1,… , Uk are the first k columns of U, V1,… , Vk are the first k columns of
V, and the matrix in the middle is diag(𝜎1,… , 𝜎k). The optimal matrix Z is uniquely
defined if 𝜎k > 𝜎k+1.

For an arbitrary matrix M, the eigendecomposition of both MMT and MTM can
be obtained from the singular value decomposition of M:

MMT = U (𝚺𝚺T) UT and MTM = V (𝚺𝚺T) VT

are the eigendecompositions of the respective matrices. In particular, the eigenvalues
of MMT are 𝜎2

1 ≥ 𝜎
2
2 ≥ ⋯ ≥ 𝜎

2
min(n,m)

≥ 0, plus n − m additional zero eigenvalues

if n > m, and the eigenvalues of MTM are 𝜎2
1 ≥ 𝜎

2
2 ≥ ⋯ ≥ 𝜎

2
min(n,m)

≥ 0, plus m − n
additional zero eigenvalues if m > n.

Exercise 11.14 Let X be an n × m matrix whose rows represent n feature vectors in
ℝm. Let HX be the matrix of centered feature vectors and let HX = U𝚺VT be the
singular value decomposition of HX.

(1) Show that projection of HX onto its first k principal components is the first k
columns of HXV.

(2) Show that linear multidimensional scaling constructs the first k columns of
U𝚺.

(3) Show that these are the same.

Exercise 11.14 shows that when principal component analysis is applicable, linear
multidimensional scaling on the matrix of Euclidean distances is also applicable and
produces the same k-dimensional realization as PCA. Multidimensional scaling, how-
ever, is applicable more generally than PCA since MDS only requires a dissimilarity
matrix, and the dissimilarity matrix can be non-Euclidean. The results of applying
linear MDS to find two-dimensional realizations of the simplex and text datasets are
shown in Figure 11.6.
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11.3.6 Stress-Minimizing Multidimensional Scaling

Another way to approach multidimensional scaling is by approximate numerical solu-
tion of an optimization problem. Given a configuration of points x̂1,… , x̂n ∈ ℝk, let

D̂ = [d2(x̂i, x̂j)]
n
i,j=1

be the matrix of interpoint Euclidean distances. Given a target dissimilarity matrix D,
the closeness of D̂ to D is measured by an objective function, which in this context is
called a stress function: for example, the Frobenius distance from D̂ to D, ‖D − D̂‖F .
Starting from an initial configuration of points, an optimization algorithm from Chap-
ter 10 can be used to find an approximately optimal configuration in the sense of min-
imizing the stress between D̂ and D. There are many variations of stress-minimizing
MDS: interpoint distances need not be Euclidean and the stress function need not be
Frobenius distance.

Given a high-dimensional dataset x1,… , xn ∈ ℝm, configurations of points in ℝk

whose interpoint distances are close to the interpoint distances between x1,… , xn
are found by both stress-minimizing MDS and PCA (or linear MDS, which is the
same thing in this case). One difference between the methods is that PCA constructs
a function from ℝm → ℝk while stress-minimizing MDS does not. A consequence
of this is that new data xn+1,… can be mapped into a k-dimensional realization by
the function found by PCA, while this cannot be done with stress-minimizing MDS.
Thus one criterion for choosing between the two methods is whether an application
requires that as-yet-unobserved data be mapped onto an existing low-dimensional
realization of observed data. The results of applying stress-minimizing MDS to
find two-dimensional realizations of the simplex and text datasets are shown in
Figure 11.7.

11.3.7 Projection Pursuit

Principal component analysis finds a linear projection of n data points in ℝm into
ℝk, k < m, which is optimal with respect to the criteria listed in (1), (2), and (3) of
Section 11.3.2, and computation of this optimum is achieved by computation of the
singular value decomposition of the centered data matrix HX. As an alternative, one
could retain the idea of linear projection, but replace (1), (2), and (3) with any set
of criteria and use the methods of Chapter 10 to search for the best representation
of a dataset with respect to the given criteria. Such approaches are called projection
pursuit.

This section describes one of the earliest approaches to projection pursuit. Based
on observation of human interaction with high-dimensional datasets, Friedman and
Tukey (1974, p. 882) proposed a criterion which rewards projections that “produce
many very small interpoint distances while, at the same time, maintaining the overall
spread of the data.” Let M = [M1,… , Mk] be an m × k matrix whose columns are
constrained to be unit vectors and mutually orthogonal, so that multiplication on the
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Figure 11.7 Stress-minimizing MDS applied to the simplex dataset (left cell) and
the text dataset (right cell) of Section 11.2. In the simplex dataset, stress-minimizing
MDS has separated all 65 clusters from one another, and has fragmented eight clusters
(cluster fragments are connected by gray line segments). In the text dataset, stress-
minimizing MDS has kept most of the chapters mostly together, exceptions being
Chapter 4 (classification), Chapter 6 (ensembles), Chapter 8 (consistency), and Chap-
ter 12 (communications), which are relatively diffuse.

right by M performs a linear projection of ℝm into ℝk. The projection pursuit realiza-
tion x̂1,… , x̂n will be the rows of the matrix X̂ = XM. Let three tuning parameters be
given: p ∈ [0, 1

2
), R > 0, and a function 𝜓 : [0,∞) → [0,∞) which decreases mono-

tonically to zero on [0, R] and is identically zero on [R,∞). Friedman and Tukey
proposed the objective function

𝛿(M)
k∏

j=1

𝜎(Mj),

where 𝛿(M) measures “local density” of projected data X̂ = XM,

𝛿(M) =
n∑

i,j=1

𝜓(d2(x̂i, x̂j)),

and 𝜎(Mj) measures the “spread” of the one-dimensional projected data X̂j = XMj
by a trimmed standard deviation: 𝜎(Mj) is the standard deviation of the set of num-

bers formed by sorting the coordinates of X̂j and deleting the pn smallest and pn
largest. The factor 𝛿(M) is large when data are concentrated locally, while the factor
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Figure 11.8 Projection pursuit applied to the simplex dataset (left cell, with tuning
parameters p = 0.1, R = 10, and 𝜓(r) = 1 − r

R
) and the text dataset (right cell, with

tuning parameters p = 0.1, R = 0.1, and𝜓(r) = 1 − r
R

) of Section 11.2. In the simplex
dataset, projection pursuit has separated some of the clusters and achieved a fairly
uniform spread of the data in both the horizontal and vertical directions. In the text
dataset, projection pursuit has put Chapters 6 and 9 mostly in the upper-right corner,
Chapter 14 mostly along the bottom side, and Chapters 2, 10, 12, and 13 in the upper-
left corner.

𝜎(Mj) is large when the data are spread out in the jth direction. The results of apply-
ing Friedman–Tukey projection pursuit to the simplex and text datasets is shown in
Figure 11.8.

11.3.8 Feature Selection

Feature selection is a projection of feature space onto a subspace consisting certain
coordinates, and the process of searching for a set of features which produce a low-
risk model can be viewed as a particular form of projection pursuit. Given a risk
estimate or model selection criterion from Chapter 7–or any other model selection
criterion—feature selection seeks a subset of the features {i1, i2,… , ik} ⊆ {1,… , m}
such that a model trained on that subset of features,

⎡⎢⎢⎢⎢⎣

x1i1
x1i2

… x1ik

x2i1
x2i2

… x2ik

⋮ ⋮ ⋮

xni1
xni2

… xnik

⎤⎥⎥⎥⎥⎦
,
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optimizes the criterion. This can be done by discrete optimization, using a discrete
analogue of methods described in Chapter 10 or stepwise feature selection described
in Section 7.10.

11.3.9 Clustering

Application of a clustering algorithm to any dataset can viewed as a “projection” of
m-dimensional features onto a single categorical variable (the cluster labels assigned
to the feature vectors). Different clusterings—obtained by changing the algorithms,
parameters, or raw features used—give different categorical variables.

11.3.10 Manifold Learning

Sometimes multidimensional scaling is preceded by a step in which a given dissimi-
larity matrix

D = [d(oi, oj)]
n
i,j=1

is replaced by another dissimilarity matrix

D′ = [d′(oi, oj)]
n
i,j=1,

where dissimilarity measure d′ is constructed from measure d, but d′ is thought to
represent information about the objects o1,… , on better than d. This situation arises
when data in ℝm lie in (or approximately in) a manifold15 of lower dimension than m,
and dissimilarity measure d is Euclidean distance in ℝm. In this case, a dissimilarity
measure d′ which respects the geometry of the manifold might be preferred to d, since
curvature of the manifold in ℝm might lead points which are far apart with respect
to d′ to be close to one another with respect to d. The problem of recovering the
manifold distance d′ is called manifold learning.

Several manifold methods approach the problem by constructing a weighted near-
est neighbors graph from the data and producing a new distance d′ from path weights
in the graph. These will be illustrated by a particular method, due to Tenenbaum et al.
(2000), known as isomap (short for “isometric feature mapping”). Two data objects
oi and oj are said to be neighbors if the distance d(oi, oj) < 𝜖 for some given threshold
𝜖 > 0, or, in an alternative approach, oi and oj are neighbors if oi is one of the k closest
data to oj—or vice versa—for a given parameter k ≥ 1. Each datum corresponds to
a vertex of the graph, and the pair of vertices corresponding (oi, oj) is connected by
an edge of the graph if and only if oi and oj are neighbors. If an edge correspond-
ing to the pair (oi, oj) is in the graph, it is assigned an edge weight of d(oi, oj). The
distance between oi and oj within the (presumed) manifold is approximated by the

15 For clarity, we omit the actual definition of a manifold.
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lowest-weight path (sequence of edges) in the graph which connects the vertex cor-
responding to oi to the vertex corresponding to oj.

16

This is illustrated in Figure 11.9 using a variation of the simplex dataset of Sec-
tion 11.2. The simplex-edges dataset consists of 1000 points x1,… , x1000 in ℝ64, and
was constructed as follows. An equilateral, 64-dimensional simplex with side length
1 was specified, and its 65 vertices labeled v1,… , v65. For each i ∈ {1,… , 1000}, an
index j was drawn uniformly at random from the set {1,… , 64}, and xi was drawn
uniformly at random from the edge of the simplex [vj, vj+1]. This dataset lies within a
simple polygonal path through the edges of the simplex, which we will think of as a
one-dimensional manifold (perhaps imagining that the corners of the path have been
slightly rounded). In Figure 11.9, data points are colored so that data on each edge
is the same color, and the colors corresponding to the edges form a rainbow as the
polygonal arc is traced from v1 to v65.

The top three cells of Figure 11.9 illustrate the matrix of Euclidean distances
between all pairs of points in the simplex-edges dataset, the matrix of true geodesic
distance within the manifold, and the matrix of approximate geodesic distances
obtained from the isomap algorithm (using the k-nearest-neighbors graph with k =
13, the smallest value which resulted in a connected graph). The center two cells
show the result of applying one-dimensional linear MDS the Euclidean (left) and
approximate geodesic (right) distance matrices, with vertical jitter added for clarity:
one-dimensional linear MDS has preserved 3.0% of the Euclidean distance matrix
and 99.3% of the approximate geodesic distance matrix, as measured by (11.2).
The bottom two cells show the result of applying two-dimensional linear MDS the
Euclidean (left) and approximate geodesic (right) distance matrices: two-dimensional
linear MDS has preserved 5.9% of the Euclidean distance matrix and 99.5% of the
approximate geodesic distance matrix. Working from the Euclidean distance matrix,
the first MDS dimension separates a set of edges with a relatively large number of
data (colored purple) from a set of edges with a relatively small number of data (col-
ored orange through yellow-green). Working from the approximate geodesic distance
matrix, the first MDS dimension has essentially recovered the order of the points
along the manifold (isomap plus linear MDS has correctly recovered the fact that the
data approximately lie on a one-dimensional manifold in ℝ64).

The isomap algorithm was applied to the matrix of TF-IDF cosine dissimilarities
between all points in the text dataset (using the k-nearest-neighbors graph with k = 2,
the smallest value which resulted in a connected graph), and a two-dimensional linear
MDS representation of the resulting approximate geodesic distance matrix is shown

16 The weight of the lowest-weight path between every pair of vertices can be computed in O(n3) time
using the Floyd–Warshall algorithm. Dijkstra’s algorithm may be more efficient if the nearest-neighbor
graph is sufficiently sparse, that is, has sufficiently few edges compared to the number of vertices. It may
be that the nearest neighbors graph contains vertices which are not connected by any sequence of edges,
in which case the distance d′ between these edges is set to +∞ (or, for practical purposes, a very large
number).
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Figure 11.9 The isomap manifold learning algorithm applied to the simplex-edges
dataset. The top three cells show distances between all pairs of points in the dataset,
with the points in order along the one-dimensional manifold (points are colored to
make a rainbow along the manifold). The center two cells show the result of applying
one-dimensional linear MDS to the Euclidean (left) and approximate geodesic (right)
distance matrices, with vertical jitter added for clarity. The bottom two cells show the
result of applying two-dimensional linear MDS the Euclidean (left) and approximate
geodesic (right) distance matrices. Further analysis is given in the text.
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Figure 11.10 A two-dimensional linear MDS representation of the approximate
geodesic distances recovered by the isomap manifold learning algorithm applied to
the text dataset. The strand to the left of the central ring contains sections of Chap-
ter 6 (ensemble design, boosting, and arcing) together with corresponding sections
of Chapter 14 (R code for bagging, boosting, and arcing). The “fuzz” at the top of
the ring also contains sections of Chapter 4 (classification) near corresponding sec-
tions of Chapter 14 (R code). The strand below the central ring shows Chapter 10
(optimization) separated from the rest of the book.

in Figure 11.10. In this case, two-dimensional linear MDS has preserved 34.8% of
the approximate geodesic distance matrix, as measured by (11.2).

11.3.11 Autoencoders

This section describes a rather clever idea for training deep neural networks which has
led to a way of finding useful lower-dimensional representations of high-dimensional
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data. Originating with the work of Hinton and Salakhutdinov (2006), it has led to the
dramatic increase in research and application of neural networks since about 2007.

Suppose that feature space  = [0, 1]m. This may occur naturally, or it may occur
by transforming real feature space in some way.17 Consider a single-hidden-layer
neural network, where the output layer T consists of m nodes, and both the output
layer T and the N-node hidden layer Z consist of neurons (this is slightly different
from the networks in Section 4.7, where the output layer consisted of linear func-
tions). In the notation of Section 4.7,

Z = 𝜎
(
𝜃

(1)
0 + 𝜃(1)

⋆
X
)
∈ [0, 1]N

and

T = 𝜎
(
𝜃

(2)
0 + 𝜃(2)

⋆
Z
)
= 𝜎

(
𝜃

(2)
0 + 𝜃(2)

⋆
𝜎
(
𝜃

(1)
0 + 𝜃(1)

⋆
X
))

∈ [0, 1]m
.

The neural network is a map  →  .
Observing that first layer’s matrix of parameters 𝜃(1)

⋆
is N × m and the second

layer’s matrix of parameters 𝜃(2)
⋆

is m × N, the following constraint can be placed
on the parameters:

𝜃
(2)
⋆

= 𝜃
(1)T
⋆

.

The other parameters, 𝜃(1)
0 and 𝜃(2)

0 , are unconstrained. Thus the free parameters of

this neural network are the full matrix 𝜃(1) and the m-long vector 𝜃(2)
0 .

Let d be any dissimilarity measure on elements of  .18 A single-hidden-layer
autoencoder is a neural network of the type just described, with the parameters cho-
sen to make the outputs match the inputs as closely as possible, with respect to the
dissimilarity measure d, on a given dataset. That is, the free parameters 𝜃(1) and 𝜃(2)

0
are chosen to minimize

n∑
i=1

d(xi, T(xi)).

In other words, the network is trained to approximate the identity function at the train-
ing data x1,… , xn (and presumably also nearby the training data). A single-hidden-
layer autoencoder is illustrated in Figure 11.11.

Using the estimated parameters 𝜃(1), a set of intermediate vectors z1,… , zn ∈
[0, 1]N is computed from the set of input vectors x1,… , xn ∈ [0, 1]m,

zi = 𝜎
(
𝜃

(1)
0 + 𝜃(1)

⋆
xi

)
for i = 1,… , n.

17 For example, by centering and decorrelating a set of feature vectors, and then, coordinatewise, replac-
ing each value xi,j with the probability that a standard normal random variable exceeds xi,j.
18 In this context, d is typically chosen to be squared Euclidean distance for computational convenience.
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Figure 11.11 A single-hidden-layer autoencoder. The N-long hidden layer is Z =
𝜎(𝜃(1)

0 + 𝜃(1)
⋆

X) and the m-long top layer is T = 𝜎(𝜃(2)
0 + 𝜃(2)

⋆
Z). Values for parame-

ter matrices 𝜃(1) and 𝜃(2) are sought which minimize
∑n

i=1 d(xi, T(xi)) subject to the

constraint 𝜃(2)
⋆

= (𝜃(1)
⋆

)T, where d is some dissimilarity measure on feature space.

The N-long vectors z1,… , zn represent the state of the hidden layer Z when the m-long
observed feature vectors x1,… , xn are fed through the network. A new single-hidden-
layer autoencoder can be trained on the intermediate vectors z1,… , zn.

This process can be iterated k times, according to the steps shown in Figure 11.12.
The result, when k > 1, is called a deep autoencoder and is illustrated in Figure 11.13.
The deep autoencoder has hidden layers Z(1), Z(2), …, Z(k−1), Z(k), Z(k+1), …, Z(2k−1)

(1) For i = 1, . . . , n, set z
(0)
i = xi.

(2) For j = 1, . . . , k:

(3) train a single-hidden-layer autoencoder with N (j) hidden states

on z
(j−1)
1 , . . . , z

(j−1)
n , learning parameters θ(j) and θ(2k−j), subject to

the constraint θ
(2k−j)
� = (θ(j)

� )T;

(4) for i = 1, . . . , n, set z
(j)
i = σ(θ̂(j)

0 + θ̂
(j)
� z

(j−1)
i ) .

(5) Interpret θ(1), . . . , θ(2k) as the parameters of a neural network with 2k − 1
hidden layers. The numbers of states in the hidden layers are

N (1), N (2), . . . , N (k−1), N (k), N (k−1), . . . , N (2), N (1).

(6) Train the entire (2k − 1)-hidden-layer network as an autoencoder,

minimzing
∑n

i=1 d(xi, T (xi)), without contraints on the parameters,

using θ̂(1), . . . , θ̂(2k) from steps (2-4) as an initial state.

Figure 11.12 Iteration of a single-hidden-layer autoencoder to train a deep
autoencoder.



208 MACHINE LEARNING

...

...

Hidden layer, N (k)-long

Hidden layer, N (k−1)-long

Hidden layer, N (k−1)-long

Hidden layer, N (2)-long

Hidden layer, N (2)-long

Hidden layer, N (1)-long

Hidden layer, N (1)-long

Output layer, m-long

Feature vector, m-long

Z(k)

Z(k+1)

Z(k−1)

Z(2k−2)

Z(2)

Z(2k−1)

Z(1)

T

X

Figure 11.13 A (2k − 1)-hidden-layer “deep” autoencoder. First, parameter matri-
ces 𝜃(j) and 𝜃(2k−j) are obtained sequentially for j = 1,… , k, by training a single-
hidden-layer autoencoder on Z(j−1) (where Z(0) = X). Using the resulting parameters
as an initial state, values for parameter matrices 𝜃(1),… , 𝜃(2k) are sought which min-
imize

∑n
i=1 d(xi, T(xi)), without constraints, where d is a given dissimilarity measure

on feature space. The resulting function [0, 1]m → [0, 1]N(k)
given by X ↦ Z(k) yields

a lower-dimensional representation of feature space when N(k)
< m.

of respective lengths N(1), N(2), …, N(k−1), N(k), N(k−1), …, N(2), N(1)—the symmetry
is a natural result of the iterative process, due to hidden layers Z(j) and Z(2k−j) being
constructed at the jth iteration. Typically N(1)

> m (N(1) ≈ 2m is a popular choice)
and N(1) ≥ N(2) ≥ … ≥ N(k), with N(k)

≪ m.
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Having trained a deep autoencoder, the map [0, 1]m → [0, 1]N(k)
given by

X ↦ Z(k) can be viewed as a lower-dimensional representation of feature space
 = [0, 1]m. If, overall, the deep autoencoder does a good job at minimizing its objec-
tive function,

n∑
i=1

d(xi, T(xi)),

then the set of intermediate states z(k)
1 ,… , z(k)

n ∈ [0, 1]N(k)
, which constitutes an N(k)-

dimensional representation of the data x1,… , xn, must contain sufficient informa-
tion about these original feature vectors to nearly reconstruct them (at least, as
far as dissimilarity measure d can tell) via the map [0, 1]N(k)

→ [0, 1]m given by
Z(k) ↦ T . Approximate reconstruction of the original feature vectors in this sense
(essentially, compression) is the criterion which can be viewed as motivating deep
autoencoders.

Deep autoencoders were originally developed to enable the training of deep neural
networks (networks with many hidden layers) as follows. To construct a neural net-
work with k hidden layers, first a (2k − 1)-hidden-layer autoencoder is constructed.
The top k − 1 hidden layers, Z(k+1),… , Z(2k), are discarded and the bottom k hid-
den layers, Z(1),… , Z(k), are retained. A new, linear output layer T with C nodes
is added above the hidden layer Z(k) and, using the trained autoencoder parameters
𝜃

(1),… , 𝜃(k) as an initial state, the entire network is trained as in Section 4.7.19 A deep
neural network is illustrated in Figure 11.14. Of course, one can use marked training
data (x1, y1),… , (xn, yn) to train any classifier on the (marked) transformed feature
vectors (z(k)

1 , y1),… , (z(k)
n , yn), and one can iteratively adapt parameters 𝜃(1),… , 𝜃(k)

to optimize the performance of any classifier.

11.4 Model Regularization

In the context of fitting predictive models to high-dimensional data, one can first find
a low-dimensional representation of the data using one of the methods described in
Section 11.3 and then fit a predictive model to the low-dimensional representation
of the data. Alternatively, one can design methods of predictive modeling which are
biased toward producing models which use a small subset of the features. This is done
by simultaneously maximizing a measure of model quality (usually maximizing a
likelihood function or minimizing some estimate of risk) and minimizing a measure

19 Only at the this last step is marked training data (x1, y1),… , (xn, yn) required. The set of feature vec-
tors used to construct the deep autoencoder may or may not be marked, and may or may not be the set of
feature vectors used to train the final deep neural network for classification. The case where the autoen-
coder and the neural network are trained on different feature vectors is an example of transfer learning.
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...

Output layer, C-long

Hidden layer, N (k)-long

Hidden layer, N (k−1)-long

Hidden layer, N (2)-long

Hidden layer, N (1)-long

Feature vector,m-long

Z(k)

T

Z(k−1)

Z(2)

Z(1)

X

Figure 11.14 A k-hidden-layer neural network, constructed by discarding the top
(k − 1) hidden layers from the autoencoder of Figure 11.13 and adding a C-node
linear output layer. Using the parameter values from the autoencoder as an initial
state, the network is trained as described in Section 4.7.

of model complexity, where the measure of model complexity is associated with the
number of features actually used by the model.20 This is known variously as model
regularization, parameter penalization, or shrinkage.

The principal tool in model regularization is the addition of a penalty function of
the model parameters 𝜃 to the objective function describing what makes a model-
ing technique “good.” In the most general case, a penalty function of 𝜃 is a function
which takes a minimum on some set Ω, and increases as 𝜃 moves away from Ω. Intu-
itively, Ω represents a set of “default” values of 𝜃, and the penalty function describes
one’s willingness (or unwillingness) to accept values of 𝜃 outside of Ω in the face of
evidence derived from data. Explicit connection between penalty functions and prior
belief about 𝜃 will be made in Section 11.4.2.

20 We have seen such methods before, in Chapter 3 (ridge regression, lasso), Chapter 4 (classification
trees, support vector machines), and Chapter 7 (AIC, BIC). Except for AIC and BIC, these methods have
not explicitly linked model complexity to the number of features used by the model.
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Consider the case of least-squares linear regression, described in Chapter 3. Using
the squared-error loss function, parameters are chosen to minimize a training estimate
of risk,

𝜃 = argmin𝜃

n∑
i=1

(
yi − (1, xi1,… , xim)(𝜃0, 𝜃1,… , 𝜃m)T)2

.

In Exercise 3.7 the goal was to show that, in the case of N
(
0, 𝜎2

)
-distributed resid-

uals, choosing 𝜃 to minimize the sum of squared errors is the same as choosing 𝜃
to maximize the likelihood of the data. A penalty function commonly applied to a
parameter vector 𝜃 = (𝜃0, 𝜃1,… , 𝜃m) is

m∑
i=1

|𝜃i|p
for some constant p > 0. In this penalty function, no penalty is applied to the intercept
term 𝜃0, while all other parameters are penalized increasingly as they grow large in
absolute value: the penalty function is minimal on the set Ω = {(r, 0,… , 0) : r ∈ ℝ}.
Using this penalty function, penalized least-squares regression chooses parameters
which minimize a weighted sum of the training risk and the penalty function,

𝜃 = argmin𝜃

(
n∑

i=1

(
yi − (1, xi1,… , xim)(𝜃0, 𝜃1,… , 𝜃m)T)2 + 𝜆

m∑
i=1

|𝜃i|p
)

, (11.3)

where weight parameter 𝜆 is chosen to minimize the estimated risk of the penalized
model.

In logistic regression, parameters are chosen to maximize the log-likelihood of the
data

n∑
i=1

logP(yi |X = xi) =
n∑

i=1

T(xi, 𝜃yi
) −

n∑
i=1

log

(
C∑

d=1

exp(T(xi, 𝜃d))

)
,

which corresponds to the case where, for each i, Yi is drawn from the multinomial dis-
tribution on {1,… , C} with probabilities (P(Y = 1 |X = xi),… , P(Y = C |X = xi)).
In Exercise 4.11 the goal was to show that choosing 𝜃 to maximize this likelihood
function is the same as choosing 𝜃 to minimize the training estimate of risk with
respect to cross-entropy loss. Using the same penalty function as above, penalized
logistic regression chooses parameters which minimize a weighted sum of the train-
ing risk and the penalty function,

𝜃 = argmin𝜃

(
−

n∑
i=1

logP(yi |X = xi) + 𝜆
m∑

i=1

|𝜃i|p
)

, (11.4)

where weight parameter 𝜆 is chosen to minimize the estimated risk of the penalized
model.
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11.4.1 Duality and the Geometry of Parameter Penalization

In some cases there is a useful duality between optimization of a penalized function
with no constraints and optimization of an unpenalized function with inequality con-
straints. For example, for any given p ≥ 1 and 𝜆 ≥ 0, parameter estimation in penal-
ized least-squares regression is performed by solving the unconstrained optimization
problem

minimize over 𝜃:

n∑
i=1

(
yi − (1, xi1,… , xim)(𝜃0, 𝜃1,… , 𝜃m)T)2 + 𝜆

m∑
i=1

|𝜃i|p,

which is equivalent to the constrained optimization problem

minimize over 𝜃:
∑n

i=1

(
yi − (1, xi1,… , xim)(𝜃0, 𝜃1,… , 𝜃m)T

)2

subject to:
∑m

i=1 |𝜃i|p ≤ c

The upper bound c in the constrained problem depends on the penalty parameter 𝜆 in
the unconstrained problem. A similar example appears in Section 4.9, in the context
of support vector machines.

Exercise 11.15 Let g and h be two real-valued functions of a vector 𝜃.

(A) Let 𝜆 be given, and let 𝜃 be a solution to the unconstrained optimization
problem

minimize over 𝜃: g(𝜃) + 𝜆 h(𝜃).

Let c𝜆 = h(𝜃). Show that 𝜃 is a solution to the constrained optimization
problem

minimize over 𝜃: g(𝜃)
subject to: h(𝜃) ≤ c𝜆.

Hint: Suppose there is a solution 𝜃 to the constrained problem such that
g(𝜃) < g(𝜃) and get a contradiction.

(B) Assume that g and h are convex and differentiable. Let c be given, and let 𝜃
be a solution to the constrained optimization problem

minimize over 𝜃: g(𝜃)
subject to: h(𝜃) ≤ c.

If h(𝜃) < c, let 𝜆c = 0, and if h(𝜃) = c, let 𝜆c ≥ 0 satisfy ∇g(𝜃) = −𝜆c∇h(𝜃).
Show that 𝜃 is a solution to the unconstrained optimization problem

minimize over 𝜃: g(𝜃) + 𝜆c h(𝜃).
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Hint: ∇g(𝜃) = 𝜆∇h(𝜃) for some 𝜆—this follows from a Lagrange multi-
plier argument, and the condition 𝜆 < 0 follows from convexity of g; a non-
negative linear combination of convex functions is convex; any local mini-
mum of a convex function is a global minimum.

There are various conditions under which two forms of an optimization problem—
one penalized and unconstrained, the other constrained and unpenalized—are equiv-
alent to each other or nearly equivalent to each other (in the latter case there is said to
be a positive duality gap). We do not concern ourselves with stating these conditions
precisely, as the geometric insight gained from the duality has proved useful even in
cases where the duality is not formally justified. This geometric insight is presented
in Figure 11.15.

11.4.2 Parameter Penalization as Prior Information

In cases where the measure of model quality is given by a log-likelihood function,
as in the cases of least-squares regression and logistic regression mentioned above,
adding a penalty term can be viewed as adding prior information about the model
parameters. In these specific examples, (11.3) and (11.4) can be viewed as explic-
itly choosing a value of the parameters 𝜃 which maximizes the density function of
a posterior distribution on the parameter 𝜃 induced by the data and a prior distribu-
tion. Figure 11.16 shows four prior distributions which correspond to the four penalty
functions shown in Figure 11.15.

Exercise 11.16 In the case of least-squares linear regression with additive, inde-
pendent Gaussian errors, where Y = (1, X)𝜃T + E and E ∼ N

(
0, 𝜎2

)
, the likelihood

function is

P(Y |X, 𝜃, 𝜎2) = 1√
2𝜋𝜎

exp
(
− 1

2𝜎2
(Y − (1, X)𝜃T)2

)
.

Show that, given independent, identically distributed data (x1, y1),… , (xn, yn), the
parameter value

𝜃 = argmin
𝜃

(
n∑

i=1

(
yi − (1, xi1,… , xim)(𝜃0, 𝜃1,… , 𝜃m)T)2 + 𝜆

m∑
i=1

|𝜃i|p
)

is the value which maximizes the posterior density P(𝜃 |Y , X, 𝜎2, 𝜆, p) when the prior
distribution on (𝜃1,… , 𝜃m) has density

P(𝜃 | 𝜎2, 𝜆, p) ∝ exp
(
− 𝜆

2𝜎2

m∑
j=1

|𝜃j|p).
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p = 1
2 p = 1

p = 2 p = 100

Figure 11.15 How a penalty function of the form
∑m

i=1 |𝜃i|p influences the sparsity
of a model. Each surface shows the minimum (red dot) of a function of the variables
(𝜃1, 𝜃2) (blue surface) subject to the constraint |𝜃1|p + |𝜃2|p ≤ c (pink cylinder), for
p = 1

2
, 1, 2, and 100. When p is small, the constraint region is “pointy” along the

coordinate axes, resulting in a tendency for the minimizing value of (𝜃1, 𝜃2) to occur
where one of the coordinates of 𝜃 is zero (in higher dimensions, where most of the
coordinates of 𝜃 are zero). When p is large, the constraint region is “pointy” along
the lines |𝜃1| = |𝜃2|, resulting in a tendency for the minimizing value of (𝜃1, 𝜃2) to
occur where |𝜃1| ≈ |𝜃2| (in higher dimensions, where most of the coordinates of 𝜃
are approximately equal in magnitude).
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p = 1
2 p = 1

p = 2 p = 100

Figure 11.16 How a penalty function of the form
∑m

i=1 |𝜃i|p influences the sparsity
of a model. Each surface shows the prior distribution on (𝜃1, 𝜃2) corresponding to
the penalty function |𝜃1|p + |𝜃2|p, for p = 1

2
, 1, 2, and 100. Each surface has a unique

global maximum at the origin, (𝜃1, 𝜃2) = (0, 0). When p is small, the prior distribution
strongly favors parameters which are exactly equal to zero.

When p = 2, the prior distribution is an m-dimensional Gaussian distribution, 𝜃 ∼
N(0, 𝜎

2

𝜆
I). When p = 1, the prior distribution is an m-dimensional generalization of

a Laplace distribution.

In Exercise 11.15, the weight parameter 𝜆 has an explicit meaning: up to a constant,
it is the reciprocal of the variance (the precision) of the prior distribution for 𝜃.
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Communication with Clients

If they fail to understand that we bring them mathematically infallible
happiness, it will be our duty to compel them to be happy. But before
resorting to arms, we shall try the power of words.

—The One State Gazette in Yevgeny Zamyatin, We, 1924

Many true statements are too long to fit on a slide, but this does not mean
we should abbreviate the truth to make the words fit.

—Edward R. Tufte, The Cognitive Style of PowerPoint, 2005

For a successful technology, reality must take precedence over public
relations, for Nature cannot be fooled.

—Richard Feynman, What Do You Care What Other People Think? 2001

The combination of some data and an aching desire for an answer does
not ensure that a reasonable answer can be extracted from a given body
of data.

—John Tukey, Sunset Salvo, 1986

I have not the pleasure of understanding you. Of what are you talking?
—Mr. Bennet in Jane Austen, Pride and Prejudice, 1813

In order to produce a real-world effect, a machine learning practitioner typically
works with clients or collaborators in the one or more of the natural, social, or

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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computer sciences. It is therefore beneficial to the machine learning practitioner to
be able to communicate with people working in these fields. Indeed, it is the author’s
view that it is more necessary for the machine learning practitioner to speak the lan-
guage of his or her scientific clients than vice versa—we must meet them more than
halfway.

12.1 Binary Classification and Hypothesis Testing

We begin with a review of two frameworks for making binary decisions based on
data. In binary classification, for each feature vector X we must decide between two
actions based on the value of an approximated function f̂ (X). Either we predict that X
belongs to class 1 (because f̂ (X) = 1) or we predict that X belongs to class 2 (because
f̂ (X) = 2).

Similarly, when performing a hypothesis test, for each feature vector X we must
decide between two actions based on the value of a test statistic1 S(X), and a rejection
region R (a subset of the range of S). Either we reject a null hypothesis H0 in favor
of an alternative hypothesis Ha (because S(X) ∈ R) or we retain the null hypothesis
(because S(X) ∉ R).

These two frameworks can be unified by considering the Bayes classifier, pro-
vided that we identify class 1 with H0 and class 2 with Ha.2 In classification (par-
ticularly Chapters 2 and 4), we have been concerned with making the minimum risk
prediction,

argminc∈{1,2}R(c |X),

where

R(c |X) =
C∑

d=1

L(d, c) P(Y = d |X) ∝
C∑

d=1

L(d, c) P(X |Y = d) P(Y = d).

Since there are only two classes, the Bayes classifier predicts class 2 if and only if

R(1 |X) ≥ R(2 |X),

that is, if and only if

L(2, 1) P(Y = 2 |X) ≥ L(1, 2) P(Y = 1 |X).

Putting all terms involving the feature vector X on one side, the Bayes classifier pre-
dicts class 2 if and only if

P(Y = 2 |X)
P(Y = 1 |X)

≥ L(1, 2)
L(2, 1)

,

1 Here, a statistic is any function of an observable feature vector, X.
2 Throughout this chapter, we will identify “class 1” with H0 and “class 2” with Ha.
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or equivalently, if and only if

P(X |Y = 2)
P(X |Y = 1)

≥ L(1, 2)
L(2, 1)

P(Y = 1)
P(Y = 2)

.

Defining a test statistic S(X) and rejection region R either by

S(X) = P(Y = 2 |X)
P(Y = 1 |X)

and R =
{
𝜌 ∈ ℝ : 𝜌 ≥ L(1, 2)

L(2, 1)

}
or by

S(X) = P(X |Y = 2)
P(X |Y = 1)

and R =
{
𝜌 ∈ ℝ : 𝜌 ≥ L(1, 2)

L(2, 1)
P(Y = 1)
P(Y = 2)

}
results in a hypothesis test which performs identically to the Bayes classifier (that is,
the test rejects H0 if and only if the Bayes classifier predicts class 2).3

12.2 Terminology for Binary Decisions

Statistics, computer science, and various natural and social sciences have given names
to many aspects of the problem of making a binary decision from data, whether
the problem is regarded as classification or hypothesis testing. Different fields have
emphasized different aspects of the problem and in some cases have given multiple,
different names to the same thing. These names are shown in Tables 12.1 and 12.2.

Table 12.1 shows the two possible decisions (predict class 1 or class 2, reject or
retain H0) with the two possible states of truth (the true class is 1 or 2, the datum was
generated under H0 or Ha). Each cell of the table contains a probability, a, b, c or d,
with a + b + c + d = 1. Table 12.2 shows names given certain marginal or conditional
probabilities in Table 12.1.

Two important terms do not appear in these tables because they are defined by
inequalities. A hypothesis test is a level-𝛼 test if the size of the test is no greater than
𝛼, that is, if P(reject H0 |H0 is true) ≤ 𝛼. The p-value of an observed statistic S(X) is
the smallest value of 𝛼 such that the observed value S(X) would cause a level-𝛼 test
to reject the null hypothesis.

12.3 ROC Curves

Let S be a real-valued statistic and consider for the moment making a classification
decision of the form “predict class 2 if the observed value of S is greater than or
equal to threshold value 𝜏, and otherwise predict class 1.” The equivalent form for a

3 Compare this to the solution of Exercise 2.2. Note that the rejection region of the hypothesis test can be
interpreted in terms of the relative losses incurred by the two kinds of errors.
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Table 12.1 The four possibilities in the decision-making problem described above.
The columns reflect the true state of an observation (a datum really is class 1 or
class 2, or really was produced under H0 or Ha). The rows reflect an action taken
(we predicted class 1 or class 2, we retained or rejected H0). The numbers a, b, c,
and d represent probabilities with a + b + c + d = 1.

Datum is class 1 Datum is class 2
H0 is true Ha is true

a b
Predict class 1 type II error
retain H0 true negative false negative

true nondiscovery false nondiscovery

c d
Predict class 2 type I error
reject H0 false positive true positive

false discovery true discovery

Table 12.2 Names given to marginal probabilities in Table 12.1. Given a classifier
or hypothesis test, a statistician might describe its performance in terms of power
and size, a computer scientist might describe it in terms of precision and recall, and
a physician might describe it in terms of sensitivity and specificity. Although the
notation used here is Bayesian (for example, P(reject H0 |H0 is true) notationally
treats the truth of H0 as a random variable), the ideas are applicable in both
Bayesian and frequentist approaches to making binary decisions.

Probability Meaning Names

c
a+c

P(reject H0 |H0 is true) false positive rate, fall-out, size
a

a+c
P(retain H0 |H0 is true) specificity, true negative rate

d
b+d

P(reject H0 |Ha is true) sensitivity, recall, power, true positive rate
b

b+d
P(retain H0 |Hais true) false negative rate

a
a+b

P(H0 is true | retain H0) negative predictive value
b

a+b
P(Ha is true | retain H0) false nondiscovery rate, false omission rate

c
c+d

P(H0 is true | reject H0) false discovery rate
d

c+d
P(Ha is true | reject H0) positive predictive value, precision

a + d P(prediction is correct) accuracy
b + c P(prediction is incorrect) risk, error rate
b + d P(Ha is true) prevalence
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hypothesis test is “reject the null hypothesis H0 in favor of alternative hypothesis Ha
if the observed value of S is greater than or equal to threshold value 𝜏.”

The two classes or hypotheses place (presumably different) distributions on test
statistic S: let P(S |Y = 1) denote the distribution of S when the true class is 1, and
let P(S |Y = 2) denote the distribution of S when the true class is 2. The receiver
operating characteristic curve, or ROC curve, is the curve parametrized by

{(P(S ≥ 𝜏 |Y = 1), P(S ≥ 𝜏 |Y = 2)) : 𝜏 ∈ ℝ}.

An example is shown in Figure 12.1.
ROC curves are useful because they illustrate the trade-off which a given classifier

or hypothesis test allows between the two kinds of error. ROC curves can thus enable
an applied statistician or machine learning practitioner to elicit a loss function from a
client or collaborator. Specifically, a client’s stated desire to attain a certain operating
point on a ROC curve reveals two things: first, the value of the threshold 𝜏 which
corresponds to that point; and second, the fact that no other point on the curve is
preferable, and so the client’s loss function implicitly satisifies d

d𝜏
R(̂f ) = 0 at that

Class 1 and class 2
distributions

P(S|Y=1)
P(S|Y=2)

0 1

0
1

ROC curve

P
(
S

≥
τ

|
Y

=
2

)

P(S ≥τ | Y =1)

Figure 12.1 Class-1 and class-2 distributions of a statistic S(X) and the correspond-
ing power-vs.-size (ROC) curve. In the left cell, the class-1 and class-2 distributions
are both normal, supported on the entire real line. The power-vs.-size curve, drawn in
the right-hand cell, is parametrized by (P(S ≥ 𝜏 |Y = 1), P(S ≥ 𝜏 |Y = 2)) as thresh-
old 𝜏 varies over the reals. In this example, the curve touches the vertical axis at (0, 0)
when 𝜏 = ∞ and touches the horizontal line y = 1 at (1, 1) when 𝜏 = −∞: otherwise,
it lies above the line y = x, which corresponds predicting class 1 or class 2 for each
datum based on a fair coin toss. The rainbow coloring of the real line in the left-hand
cell corresponds to the values of the threshold 𝜏 which yield the points of the ROC
curve with the same color.
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point. Exercise 12.1 shows how a client’s ratio of losses L(2,1)
L(1,2)

can be recovered from
a chosen operating point on the ROC curve, estimates of the density functions of the
statistic S for classes Y = 1 and Y = 2 (typically obtained by histograms or kernel
density estimates applied to data used to draw the ROC curve), and the marginal or
prior odds of the two classes, P(Y = 1)

P(Y = 2)
.

Exercise 12.1 Suppose classifier f̂ (X) is based on a statistic S(X) (a real-valued func-
tion of feature vector X) and a threshold 𝜏, so that

f̂ (X) =
{

1 if S(X) < 𝜏
2 if S(X) ≥ 𝜏

.

The ROC curve is

{(P(S(X) ≥ 𝜏 | Y = 1), P(S(X) ≥ 𝜏 | Y = 2)) : 𝜏 ∈ ℝ}.

(A) Show that the risk of f̂ is connected to a point on the ROC curve by the
equation

R(̂f ) = L(1, 2) P(S(X) ≥ 𝜏 | Y = 1) P(Y = 1)

+L(2, 1)(1 − P(S(X) ≥ 𝜏 | Y = 2)) P(Y = 2).

(B) Suppose that the distributions of S(X) | Y = 1 and S(X) | Y = 2 have density
functions, respectively P(s | Y = 1) and P(s | Y = 2), so that

P(S(X) < 𝜏 | Y = 1) = ∫
𝜏

−∞
P(s | Y = 1) ds and

P(S(X) < 𝜏 | Y = 2) = ∫
𝜏

−∞
P(s | Y = 2) ds.

�
Figure 12.2 The effect of various features of distributions for class 1 or class 2 on
power-vs.-size (ROC) curves. The upper-most left cell shows two distributions with
overlapping, non-nested, compact support. The ROC curve in the right cell hits the
vertical axis at a point other than (0, 0) and hits the horizontal line y = 1 at a point
other than (1, 1). The second-upper-most left cell shows two distributions with the
same mean, but the class-2 distribution has larger variance. The ROC curve in the
right cell shows power better than random guessing for small sizes (left of the point
where the curve crosses the line y = x, one-half in this example) but worse than ran-
dom guessing for large sizes. The second-lower-most left cell shows a distribution for
class 2 with a point mass (fattened slightly to make it visible). The ROC curve in the
right cell shows a vertical gap, corresponding to a discontinuity in P(S ≥ 𝜏 |Y = 2)
as a function of 𝜏, caused by the point mass. The lower-most left cell shows a distri-
bution for class 1 with a point mass (fattened slightly to make it visible). The ROC
curve in the right cell shows a horizontal gap, corresponding to a discontinuity in
P(S ≥ 𝜏 |Y = 1) as a function of 𝜏, caused by the point mass.
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Show that d
d𝜏

R(̂f ) = 0 if and only if the ratio of losses satisfies

L(2, 1)
L(1, 2)

= P(𝜏 | Y = 1)
P(𝜏 | Y = 2)

P(Y = 1)
P(Y = 2)

.

In many applications, we are more concerned about limiting one type of error (for
example, misclassifying class 1 as class 2) than about the other type of error (mis-
classifying class 2 as class 1). In such situations, we seek a classifier which correctly
identifies as many data of class 2 data as possible, while holding the misclassification
rate for data of class 1 at an acceptable level. This situation is recognized in hypoth-
esis testing, and the names of the hypotheses are assigned so that the goal is to find a
test which is most powerful, uniformly with respect to its size, as long as the size is
acceptably small.

Figure 12.2 shows pairs of class-1 and class-2 distributions for S and the corre-
sponding power-vs.-size curves. These distributions are chosen to illustrate features
which occur in empirical power-vs.-size curves encountered in practice.

12.4 One-Dimensional Measures of Performance

The risk of a given classifier f̂ (X) is a one-dimensional value which incorporates both
the classifier’s propensity for errors and the subjective loss incurred by making differ-
ent kinds of errors. As discussed in Chapter 2, using a loss function which expresses
the real-world consequences of these errors is critical to selecting and training a clas-
sifier appropriately.

That said, there are various attempts in the literature to express the performance of
a trained classifier as a single number. Two are presented here.

One popular way of reducing the probability of the two types of error to a single,
summary number is the area under a ROC curve, which is a number between 0 and 1.4

As shown by the following exercises, the area under a ROC curve can be interpreted
as the probability that, when a datum of class 2 and a datum of class 1 are drawn
randomly (and independently), the datum of class 2 produces the higher value of test
statistic S.

Exercise 12.2 Probability Integral Transform. Let S be a real-valued random vari-
able with positive density function, so that the cumulative distribution function of S,
F(s) = P(S ≤ s), is continuous and strictly increasing. Let U = F(S). Show that U has
the uniform distribution on the interval (0, 1). What changes if F(s) = P(S ≥ s)?

4 A ROC curve is considered to exist inside the square [0, 1] × [0, 1], so the area under a ROC curve is
the area under the curve and inside this square.
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Exercise 12.3 Let S1 be a random variable with the distribution of S | Y = 1 and
let S2 be a random variable with the distribution of S | Y = 2, and let S1 and S2 be
independent. Assume that S1 and S2 both have positive density functions. Show that
the area under the ROC curve

{(P(S ≥ 𝜏 | Y = 1), P(S ≥ 𝜏 | Y = 2)) : 𝜏 ∈ ℝ}

is P(S2 ≥ S1). Hint: Define function h : ℝ ×ℝ → (0, 1) × (0, 1) by h(s1, s2) =
P(S1 ≥ s1, S2 ≥ s2), apply h to the joint random variable (S1, S2), and note that the
ROC curve is the set {h(𝜏, 𝜏) : 𝜏 ∈ ℝ}.

Measuring the quality of a classifier by the area under a ROC curve implicitly
makes the assumption that the practitioner is completely ignorant of the loss function:
in binary classification, the ratio L(1, 2)∕L(2, 1). This never is (or should never be)
the case.

Another way of summarizing performance in a single number, which also takes
values between 0 and 1, is the F-measure or F1-measure5 of a classifier or hypothesis
test. It is defined as

F = 2
precision × recall

precision + recall
.

Exercise 12.4 Show that the F-measure satisfies

F = 2
P(Ha is true and reject H0)

P(Ha is true) + P(reject H0)
∈ [0, 1].

12.5 Confusion Matrices

The performance of a trained classifier on validation (or test) data can be summarized
by a C × C matrix, called the confusion matrix, defined by

N(d, c) = number of validation data (x̃i, d) such that f̂ (x̃i) = c.

Diagonal elements of this matrix count correctly classified validation data, and off-
diagonal element N(d, c) counts the number of times validation data of class d were
misclassified as class c by classifier f̂ . When a classifier is produced by bagging,
each datum can be passed through its out-of-bag classifier, producing an out-of-bag
confusion matrix.

There is no standard for whether the true class label indexes the rows of the confu-
sion matrix, as defined above, or the columns. When presenting a confusion matrix,
care should be taken to make clear what the row index is.

5 The notation F1 shows the place of this particular measure in one-parameter family of generalizations.
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Exercise 12.5 Show that, in terms of the confusion matrix, the validation estimate of
risk defined in Section 7.2 is

R̂valid(̂f ) = 1
ñ

∑
(d,c)∈×

L(d, c) N(d, c)

and the estimate of its variance is

V̂ar[R̂valid(̂f )] = 1
ñ

(
1
ñ

∑
(d,c)∈×

L(d, c)2 N(d, c) − R̂valid(̂f )
2
)
.

12.6 Multiple Testing

It is often the case that multiple class predictions are made—that is, a trained classifier
is applied to predict the class of more than just one data point—or, equivalently, that
multiple hypothesis tests are performed. In some applications, each datum for which
the null hypothesis is rejected (data predicted to be of class 2) prompts some kind of
action (perhaps further analysis) while each datum for which the null hypothesis is
retained (data predicted to be of class 1) prompts no action. Each action incurs a cost,
and there is presumably a benefit associated with correctly identifying data of class 2
(rejecting the null hypothesis when it is in fact false).

If T different size-𝛼 tests are performed, then the expected number of false posi-
tives is 𝛼T , which may correspond to an unacceptably high number of cost-incurring
actions if T is large. If T is known in advance, it is natural to adjust 𝛼 so that the
expected cost incurred due to false positives is constrained. There are at least two
views of how this should be done.

12.6.1 Control the Familywise Error

The familywise error rate of T statistical tests is the probability that any of the tests
incorrectly rejects the null hypothesis. The following exercises develop two methods,
known as Šidák correction and Bonferroni correction, which adjust the size of the
individual tests so that the familywise error rate is below a given bound. In applied
terms, these methods bound the probability that any cost at all is incurred by acting on
a false positive, regardless of how much cost is incurred by acting on true positives.

Exercise 12.6 Assume the null hypothesis is true in T0 ≤ T independent tests of size s.
Compute the probability p(s) that at least one test incorrectly rejects the null. Given 𝛼,
solve p(s) = 𝛼 for s, and propose a value of s such that the familywise error rate of the
T tests is less than or equal to 𝛼. This is called the Šidák correction for multiple tests.



COMMUNICATION WITH CLIENTS 227

Exercise 12.7 Assume the null hypothesis is true in T0 ≤ T (not necessarily indepen-
dent) tests of size s. Use the basic fact6 that P(E1 ∪⋯ ∪ Ek) ≤ P(E1) +⋯ + P(Ek) for
any set of events E1,… , Ek to find a bound p(s) on the probability that at least one
test incorrectly rejects the null. Given 𝛼, solve p(s) = 𝛼 for s, and propose a value of
s such that the familywise error rate of the T tests is less than or equal to 𝛼. This is
called the Bonferroni correction for multiple tests.

These methods are both conservative in the sense that if T0 ≪ T they will produce
a familywise error rate smaller than the target, 𝛼. The use of Boole’s inequality makes
Bonferroni’s correction even more conservative, particularly when s ≪ 1

T
.

12.6.2 Control the False Discovery Rate

The false discovery rate, P(H0 | reject H0), is the probability that the null hypothesis
is true for a given test, conditional on that test rejecting the null hypothesis. Two
slightly different methods have been presented to control the false discovery rate,
depending on whether or not the tests are independent:

(1) let p(1) ≤ · · · ≤ p(T ) denote the p-values of T tests, sorted into increasing order.

(2) let k be the largest value of index i such that p(i) ≤ i
T

α
aT

.

(3) set s = p(k), that is, reject H0 in exactly those tests with p-value less than or

equal to p(k).

where

aT =

{
1 if the tests are independent∑T

i=1
1
i
≈ 0.57722 + log(T) otherwise

These methods are known as the Benjamini–Hochberg procedure for independent
tests and the Benjamini–Hochberg–Yekutieli procedure for dependent tests. It is
proved in Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001) that
these methods result in a false discovery rate less than or equal to T0

T
𝛼 ≤ 𝛼 when the

null hypothesis is true in T0 of the T tests.
In applied terms, the Benjamini–Hochberg and Benjamini–Hochberg–Yekutieli

methods bound the proportion of the total incurred cost which is incurred by
acting on false positives: if the false discovery rate is less than or equal to 𝛼, then
at least 1 − 𝛼 units of benefit are obtained for each unit of cost incurred by acting on
a (true or false) positive. Controlling the false discovery rate is less conservative than

6 This is Boole’s inequality. It is the simplest of a set of inequalities known as Bonferroni’s inequalities.
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controlling the familywise error rate, in the sense that it is tolerant of false positives
as long as sufficient benefit is obtained from true positives.

12.7 Expert Systems

To every consulting statistician or machine learning practitioner, there will come a
time like this. You are asked to provide a client with a trained classifier which dis-
tinguishes apples from oranges. With a little friendly interrogation, you learn that the
client expects only McIntosh apples and navel oranges to be present in the opera-
tional environment of the classifier, so the problem is really to distinguish between
McIntosh apples and navel oranges. You are promised data appropriate to addressing
such a problem.

The data arrive: 20 items labeled apples and 300 items labeled oranges.
Exploratory data analysis reveals that the “apples” consist of 20 bruised Granny Smith
apples. The “oranges” consist of two navel oranges, three clementines and 295 polar
bears. You call your client and a conversation something like this ensues.

You: “The apples you sent me are rather different from the apples you’re looking
for.”

Client: “Those are the apples we have.”
You: “Do you realize you sent me polar bears instead of oranges?”
Client: “Polar bears? What are you talking about? We sent you 300 oranges.”
You: “Most of your so-called oranges are white, furry, and eight feet long. They

have eaten all of my seal data from another project. I am pretty sure they are
polar bears. In any case, I am certain they are not navel oranges.”

Client: “You’re supposed to be a smart math/stats person: we wouldn’t have asked
for your help if we didn’t think you could solve this problem for us. We will
try to get you better data, but we need a solution by next week.

There is a constructive response to this situation: find an expert (ideally, multi-
ple independent experts). An expert in this context is someone who, over the course
of her training or working life, has seen many McIntosh apples and many navel
oranges. There is a predictive process inside her brain which distinguishes apples
from oranges, a process which has been validated and updated by many sequential
applications. Parts of this process may be subconscious. In cases like that above, it
may be far better to model the expert than model the available data. The result of
modeling the expert is an expert system.

The simplest way to model the expert is to ask the expert how she makes deci-
sions, apple-vs.-orange, based on observations, and to try to mimic her decision pro-
cess with an algorithm. Naive Bayes and tree classifiers are good frameworks for
this. It is also useful, when possible, to observe the expert making decisions about
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previously unseen apples and oranges, in order to pick up on important but subcon-
scious elements of her decision process. This may take a long time.

Successfully approximating expert behavior can be quite challenging, particularly
when assigning weights to different types of evidence. A model elicited from an
expert should be validated on marked data, when possible. It may be, however, that
the only validation possible is another expert’s opinion of “that sounds reasonable.”
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Current Challenges in
Machine Learning

Decision makers need forecasts only if there is uncertainty about the
future.

—J. Scott Armstrong, Principles of Forecasting: A Handbook for
Researchers and Practitioners, 2001

This chapter briefly presents a few growth areas in machine learning, generally
arising from the changing relative costs of acquiring data, transmitting data, storing
data, analyzing data, and computing with data.

13.1 Streaming Data

Streaming data are data which are generated faster or in greater quantity than they
can be put in long-term storage. Each datum, on arrival, must be used immediately
for whatever purpose is appropriate (training a model, used for prediction, updating
a clustering, etc.) and then discarded forever. One area of concern is the ongoing
training and assessment of predictive models.

13.2 Distributed Data

Distributed data abstractly comprise a single dataset but physically reside in separate
storage devices on a communications network of such high latency that it is infeasible

Machine Learning: a Concise Introduction, First Edition. Steven W. Knox.
© This publication is a US Government work and is in the public domain.
Published 2018 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/Knox/MachineLearning
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for all of the data, in raw form, to be processed by a single processor. Data may
be distributed because it was originally collected in multiple locations, or to reduce
access time to a large amount of data by parallelizing the read operation across many
hard drives. To be practical, algorithms applied to distributed data may only transmit
across the network relatively small summaries of the data on any particular storage
device. This is the basis of cloud computing.

13.3 Semi-supervised Learning

Semi-supervised learning attempts to improve the performance of a classifier trained
on marked data by extracting information from unmarked data. The motivation for
semi-supervised learning is situations where marked data are expensive or rare, while
unmarked data are cheap or plentiful. An example of a semi-supervised learning prob-
lem is training a nearest-cluster classifier, where unmarked data may contribute infor-
mation on the size, shape, and number of clusters, while marked data also contribute
information on the class(es) of data in each cluster.

13.4 Active Learning

Active learning refers to an iterative process in which marked data are acquired
sequentially based on uncertainty in predictions made by a classifier. The goal of
active learning is to obtain a small (and therefore relatively cheap) marked dataset
which is as useful as possible for training classifiers. Active learning begins with
an initial set of marked data, M = {(x1, y1),… , (xn, yn)}, and a set of feature vec-
tors U = {x̃1,… , x̃k} which are unmarked. Assuming that the true class label of any
unmarked datum x̃i can be acquired (at some expense), active learning proceeds by
iterating the following steps:

(1) train a classifier f̂ on the set of marked data, M.

(2) apply f̂ to each feature vector in the unmarked data, U.

(3) determine a subset S ⊂ U on which f̂ is least certain about its predictions.

(4) acquire the true class labels of the feature vectors in S.

(5) update M = M ∪ S and U = U \ S.

Uncertainty about predictions may be measured by entropy in the estimated prob-
ability distribution (P̂(Y = 1 |X),… , P̂(Y = C |X)) in likelihood methods, logistic
regression, or neural networks; or by large slack variables in support vector machines;
or by entropy in the distribution of votes cast by an ensemble; or by a propensity to
misclassify marked training data in certain regions of feature space.



CURRENT CHALLENGES IN MACHINE LEARNING 233

13.5 Feature Construction via Deep Neural Networks

Construction of new, informative features by deep neural networks, such as the
autoencoders described in Section 11.3.11, is still in its early days. At the time of
writing, this is perhaps the fastest-moving part of the field of machine learning.

13.6 Transfer Learning

Transfer learning attempts to learn useful ideas from one classification problem and
apply them to another: typically, from a problem in which data are plentiful to a prob-
lem in which data are scarce. For example, given a sufficiently large collection of pho-
tographs, each labeled “cat” or “dog,” one could train a deep autoencoder to construct
high-order features which are useful for distinguishing pictures of cats from pictures
of dogs. Those features (which is to say, the parameters of the deep autoencoder)
may be very useful in a related classification problem (say, distinguishing pictures
of groundhogs from pictures of rabbits) for which there is not enough data to train a
useful autoencoder.

13.7 Interpretability of Complex Models

The need for accurate and interpretable predictive models will increase as humanity
relies more on using machine learning to make potentially life-changing decisions
(for example, in self-driving cars or algorithmic medical diagnoses) or decisions with
global impact (for example, algorithmic influence on financial markets). Interpretable
models will be needed for retrospective analysis, to know who or what is account-
able for the consequences of a serious error, and for developing models which are
verifiably robust to unforeseen combinations of inputs.
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R Source Code

I’m sorry, Dave. I’m afraid I can’t do that.
—HAL 9000 in Arthur C. Clarke and Stanley Kubrick,

2001: A Space Odyssey, 1968

This chapter shows how to implement almost every method of training and apply-
ing a classifier described in Chapters 4 and 6, using risk-estimation and model-
selection methods described in Chapter 7, and (at least implicitly) optimization meth-
ods described in Chapter 10. The purpose of providing the R code in this chapter is
to enable the reader, with minimal effort, to learn more about classification in general
and the many specific methods described in this book in particular. To that end, the
code is written to be both transparent and brief, so that the language of the computer
does not form an obstacle between the reader and perception of the mathematical, sta-
tistical, and algorithmic ideas being implemented. This led to the following choices.

(1) The code itself relies on R libraries readily available from the Comprehensive
R Archive Network (CRAN) at cran.r-project.org.

(2) No space is given to checking whether inputs satisfy various requirements
(for example, the reader is free to use a negative bandwidth in a classi-
fier which uses kernel density estimates, and accept the consequences). No
space is given to protecting against numerical problems such as underflow or
overflow.

(3) Much of the discussion around the code is focused on matching the tuning
parameters which govern the behavior of the classifiers (and, where relevant,
the model parameters estimated by training the classifiers on data) with values
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taken as input or returned as output by the software. That is, matching the
ideas behind the classifiers to code parameters, and thence to what the data
tell us about these ideas in a particular case.1

(4) Several things which could have been made more general, and thus perhaps
more useful as software, were intentionally not generalized.

This chapter is not intended to be a general tutorial on the R language, nor to be a
substitute for the documentation of the various R functions and libraries which are
used.

14.1 Author’s Biases

Unlike the other chapters of this book, which are essentially about what is (a neural
network is one thing, quadratic discriminant analysis is another, and the two are gen-
erally not the same), this chapter is about what one does. In the author’s experience,
what people do is affected by many things: habit, bias, and laziness as well as attempts
at rational, objective optimization of some subjective goals. In order that the reader
may more easily separate the objective requirements of the code in this chapter from
the author’s biases, several of these biases are listed here.

(1) For computation, my native language is C. I have written well over 100,000
lines of C, and I still prefer the elegant minimalism of C to any other language,
despite the convenience many “higher-level” languages offer.

(2) If I am going to invest much time in software development, I prefer to work
under a standard. My code written in ANSI-C over 20 years ago still com-
piles and runs correctly—something which cannot be said of the code writ-
ten for the first draft of this chapter, to say nothing of my code written for
R version 1.

(3) I prefer to put as much code as possible on a screen at one time, using hori-
zontal as well as vertical space to arrange lines. This means I end every line
of R with a (usually unnecessary) semicolon.

14.2 Libraries

The code in this chapter uses functions from the R libraries class, e1071,
hash, MASS, mclust, nnet, randomForest, rpart, stats, and (optionally)

1 It is one thing to train a support vector machine using the R function svm(), and then to predict the
classes of unmarked data using the output of svm() and the R function predict(). It is quite another
to extract the meaning of the output from svm() (the support vectors for each class, and the linear
boundaries between each pair of classes) to gain some insight about either the training data, or about
how a support vector machine performs, or both.
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parallel.2 Use of specific libraries will be indicated in each section by loading them
with the R library() function. These libraries have many functions and datasets
which are not used in this chapter, but which the reader may find useful when explor-
ing avenues not followed here.

Although existing R libraries are generally used, in some cases the author does not
know of libraries which implement specific methods described in Chapters 4 and 6
or found it preferable and reasonably efficient to implement a method directly in R.

14.3 The Running Example (Section 4.3)

The various classification methods described in Chapters 4 and 6 are illustrated in R
code using the data of the example classification problem introduced in Section 4.3.
Recall that in this example, data have m = 2 real features and belong to one of C = 3
classes: orange, blue, and purple. Marginally, the three classes are equally likely:

P(Y) =

⎧⎪⎪⎨⎪⎪⎩

1
3

if Y = 1 (orange)
1
3

if Y = 2 (blue)
1
3

if Y = 3 (purple)

.

Within each class, features are distributed as an equal-weight mixture of three
two-dimensional Gaussian distributions with unit covariance matrix and different
means. The means of the nine Gaussians are shown in the left-hand cell of Fig-
ure 4.1, colored according to class. In polar coordinates, the orange means are
{(3, 3𝜋

9
), (2, 5𝜋

9
), (1, 7𝜋

9
)}, the blue means are {(3, 9𝜋

9
), (2, 11𝜋

9
), (1, 13𝜋

9
)}, and the pur-

ple means are {(3, 15𝜋
9

), (2, 17𝜋
9

), (1, 1𝜋
9

)}. These means and covariance matrix are
defined in the following R code.

mus = matrix(NA,9,2); radius = c(3,2,1,3,2,1,3,2,1);
for(i in 1:9) {
angle = (2*i+1)*pi/9; mus[i,] = radius[i]*c(cos(angle),

sin(angle));
}
sigma = diag(c(1,1));

2 The R code provided in this chapter has been tested using the following versions of R and R libraries:
R version 3.4.1 (R Core Team, 2017), class version 7.3-14 (Venables and Ripley, 2002), e1071 version
1.6-8 (Meyer et al., 2017), hash version 2.2.6 (Brown, 2013), MASS version 7.3-47 (Venables and
Ripley, 2002), mclust version 5.4 (Scrucca et al., 2016), nnet version 7.3-12 (Venables and Ripley,
2002), parallel version 3.4.1 (R Core Team, 2017), randomForest version 4.6-12 (Liaw and Wiener,
2002), rpart version 4.1-11 (Therneau et al., 2017), and stats version 3.4.1 (R Core Team, 2017).
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The means corresponding to class Y = 1 are mus[1,], mus[2,], and mus[3,], the
means corresponding to class Y = 2 are mus[4,], mus[5,], and mus[6,], and the
means corresponding to class Y = 3 are mus[7,], mus[8,], and mus[9,].

A sample of data from the joint distribution P(X, Y) is drawn in the function
draw.sample(), which takes as input a number of samples, ndat, and outputs an
ndat × 3 matrix, where each row is a draw (X, Y) from P(X, Y). First, the class label
Y of each data point is drawn from the marginal distribution on class labels, which is
the uniform distribution on the set {1, 2, 3} (or {orange, blue, purple}). This is done
in the first line, and stored in the variable cls. Next, the Gaussian mixture component
of each data point is drawn from the distribution on mixture components conditional
on the class. For each class, this is the uniform distribution on the set {1, 2, 3}. This
is done in the second line, and stored in the variable mix (mix is Z in Section 10.7).
Then the feature vector X is drawn from the two-dimensional Gaussian distribution
with unit covariance matrix sigma and a mean determined by both the class label
and the mixture component within the class, mus[1+3*(cls-1)+(mix-1),]. This
is done in the third and fourth lines, using the multivariate normal sampling func-
tion mvrnorm() from the R library MASS, and stored in the first two columns of the
n × (m + 1) matrix variable dat. Finally, the class label Y is stored in the third col-
umn of dat, and the sample is returned with the rows of dat ordered so that the class
labels are non-decreasing (there is no reason to sort the rows of dat, except to make
visual inspection of the data easier).

library(MASS);
draw.sample = function(ndat) {

cls = sample(c(1,2,3),ndat,replace=TRUE);
mix = sample(c(1,2,3),ndat,replace=TRUE);
dat = matrix(NA,ndat,3);
dat[,1:2] = t(apply(mus[1+3*(cls-1)+(mix-1),],1,mvrnorm,
n=1,Sigma=sigma));

dat[,3] = cls;
return(dat[order(dat[,3]),]);

}

Interpreting the fourth line of draw.sample() from the inside out, the vari-
able 1+3*(cls-1)+(mix-1) is an ndat-long vector with coordinates in the
set {1,… , 9}, and the ith coordinate of this vector indicates which of the nine
Gaussian distributions the ith feature vector will be drawn from. The variable
mus[1+3*(cls-1)+(mix-1),] is an ndat × 2 matrix: the ith row is the mean
of the Gaussian distribution the ith feature will be drawn from. The function
mvrnorm() takes as input a mean, covariance matrix, and number of samples, and
outputs the given number of samples from a multivariate Gaussian distribution with
the given mean and covariance. The function apply(mus[1+3*(cls-1)+(mix-
1),],1,mvrnorm,n=1,Sigma=sigma) applies the function mvrnorm() to each
row of the matrix mus[1+3*(cls-1)+(mix-1),], drawing one (n=1) sample from
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a Gaussian distribution with identity covariance matrix (Sigma=sigma, and sigma
is the 2 × 2 identity matrix) and mean equal to a row of mus[1+3*(cls-1)+(mix-
1),]. The result of this operation stores the ndat samples as the columns of a
2 × ndat matrix, so the result is transposed by the R function t() to put it in the
usual form where feature vectors are rows.

Training and test sets of data, respectively of size n = 150 and ñ = 50, 000 and
called tdat and edat,3 are drawn using the function draw.sample().

nt=150; tdat = draw.sample(nt);
ne=50000; edat = draw.sample(ne);

Some R functions require that feature vectors be rows of an R matrix, while others
require that feature vectors be rows of an R data frame. To enhance readability of the
code which follows, the feature vectors of the training and evaluation data are stored
in data frames tdatDF and edatDF:

tdatDF = as.data.frame(tdat[,1:2]);
edatDF = as.data.frame(edat[,1:2]);

It will also be useful, when applying the code to other problems, to have the number
of classes stored in a variable:

nc = 3;

The test data (tiny points), training data (medium points), and Gaussian means (large
points with thick black boundaries) are shown in Figure 14.1 and can be plotted using
the following R code.

cols = c("orange","lightblue","purple");
par(mar=c(2,2,2,2)+0.1); idx=sample(1:ne,ne);
plot(edat[idx,1:2],col=cols[edat[idx,3]],axes=FALSE,xlab="",
ylab="",pch=".");

points(tdat[,1:2],col=cols[tdat[,3]],pch=20);
points(tdat[,1:2]);
points(mus,col=cols[c(1,1,1,2,2,2,3,3,3)],pch=19,cex=1.5);
points(mus,cex=1.5,lwd=2);

In summary, creating training and test samples of data for the example of Sec-
tion 4.3 defines the following R variables, which will be used throughout this chapter.

R variable Meaning Book notation
𝚗𝚝 number of training data n
𝚝𝚍𝚊𝚝[, 𝟷 : 𝟸] training feature vectors (n × 2 R matrix) x1,… , xn
𝚝𝚍𝚊𝚝𝙳𝙵 training feature vectors (n × 2 R data frame) x1,… , xn

3 The letter t in tdat stands for training, and the letter e in edat stands for evaluation. If a validation set
were used here, it would be called vdat.
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R variable Meaning Book notation
𝚝𝚍𝚊𝚝[, 𝟹] training class labels y1,… , yn
𝚗𝚎 number of test data ñ
𝚎𝚍𝚊𝚝[, 𝟷 : 𝟸] test feature vectors (ñ × 2 R matrix) x̃1,… , x̃ñ
𝚎𝚍𝚊𝚝𝙳𝙵 test feature vectors (ñ × 2 R data frame) x̃1,… , x̃ñ
𝚎𝚍𝚊𝚝[, 𝟹] test class labels ỹ1,… , ỹñ
𝚗𝚌 number of classes C

In the R code which follows, each method will be applied to test data, producing an
R vector pred.class of predicted class labels. The following function compares a

Test and training data

Figure 14.1 Test and training data generated by R code in this section. The data
are colored by class. Test data are plotted as tiny points, training data are plotted as
medium points with black boundaries, and the nine Gaussian means are plotted as
large points with black boundaries.
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vector of predicted class labels for the test data to the true labels, and reports the test
estimate of risk, plus or minus one standard deviation.

risk.test = function(pred.class) {
err = sum(as.numeric(pred.class)!=edat[,3]);
p = err/ne; sd = round(sqrt(p*(1-p)/ne),4); p = round(p,4);
print(paste("test estimate of risk:",p,"+/-",sd));

}

14.4 The Bayes Classifier (Section 4.1)

Under 0–1 loss, with a uniform prior probability distribution on class labels, the Bayes
classifier predicts that a feature vector X has the class which maximizes the condi-
tional likelihood P(X |Y), that is, the Bayes classifier predicts

argmaxc∈{1,…,C}P (X |Y = c)

(this statement is Exercise 4.2). The Bayes classifier is implemented by three R func-
tions. Function bayes.lik.one() inputs a feature vector x and a mean 𝜇, and
returns the likelihood function of the Gaussian distribution with mean 𝜇 and unit
covariance matrix, evaluated at x,

1
2𝜋

e−
1
2

(x−𝜇)T(x−𝜇)
.

bayes.lik.one = function(x,mu) { return(exp(-0.5*(x-mu)%*%
(x-mu))/(2*pi)); }

Function bayes.lik.mix() inputs a feature vector x, a matrix of means

𝜇 =
⎡⎢⎢⎣
𝜇1
⋮
𝜇J

⎤⎥⎥⎦ ,

and vector of non-negative weights w = (w1,… , wJ), and returns the likelihood func-
tion of the Gaussian mixture distribution with means given by the rows of 𝜇, unit
covariance matrices, and weights w, evaluated at x,

J∑
j=1

wj
1

2𝜋
e−

1
2

(x−𝜇j)
T(x−𝜇j).

bayes.lik.mix = function(x,mu,w) {
liks.one = apply(mu,1,bayes.lik.one,x=x);
return(sum(w*liks.one));

}
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The first line of bayes.lik.mix() applies the function bayes.lik.one() to each
row of the input matrix mu, producing the J-long vector( 1

2𝜋
e−

1
2

(x−𝜇1)T(x−𝜇1),… ,
1

2𝜋
e−

1
2

(x−𝜇J )T(x−𝜇J )
)
.

The second line multiplies this vector coordinatewise by the vector of weights
(w1,… , wJ) and returns the sum of the resulting J numbers. The number of mix-
ture components J is not explicitly specified in the R code because it is carried by the
dimension of the input matrix mu and the length of the input vector w.

The Bayes classifier applies function bayes.lik.mix() at a given point x,
using each set of three means corresponding to each of the three classes, with
equal mixture weights in each case. Function bayes.predict() outputs the class4

corresponding to a Gaussian mixture model which produces maximal likelihood
at x.

bayes.predict.one = function(x) {
liks.mix = c( bayes.lik.mix(x,mus[1:3,],rep(1/3,3)),

bayes.lik.mix(x,mus[4:6,],rep(1/3,3)),
bayes.lik.mix(x,mus[7:9,],rep(1/3,3)) );

return(max.col(t(liks.mix)));
}
bayes.predict.many = function(x) { return(apply(x,1,
bayes.predict.one)); }

Note that the constant 1
2𝜋

in bayes.lik.one() has no effect on the Bayes classifier,

and can be omitted to save work, as can the value 1
3

for the equal weights of the
mixture components in each Gaussian mixture in bayes.lik.mix(). The Bayes
risk can be estimated by applying the Bayes classifier to the test data:

pred.class = bayes.predict.many(edat[,1:2]);
risk.test(pred.class);

4 The R function max.col() applied to a real vector (v1,… , vk) returns an element of the set{
i : vi = max

j=1,…,k
vj

}
,

choosing an element uniformly at random if the set contains more than one element. That is,

max.col(t(v)) = argmaxi=1,…,kvi,

with ties broken by selecting an index uniformly at random. This is in contrast to the R function
which.max(), which breaks ties by choosing the smallest index.
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14.5 Quadratic Discriminant Analysis (Section 4.4.1)

A quadratic discriminant analysis (QDA) model is fit using the function qda() in the
MASS library:

library(MASS);
m = qda(as.factor(tdat[,3])~.,data=tdatDF,method="mle");

Fitting the model is equivalent to computing the mean and covariance of the training
data for each class separately. The estimated mean for each class is saved as

𝜇c = m$means[c,]

for c = 1,… , C. Instead of saving the estimated covariance matrices for each class,
Σ̂1,… , Σ̂C, the qda() function saves the Cholesky factors5 of the inverse covariance
matrices. That is, qda() computes and saves triangular matrices

Wc = m$scaling[,,c],

where Wc Wc
T = Σ̂−1

c , for c = 1,… , C. This is done for computation of the likelihood
function at any point x under the fitted model:

𝜙(x |𝜇c, Σ̂c) = (2𝜋)−
m
2 |Wc| e− 1

2
(Wc

T(x−𝜇c))T(Wc
T(x−𝜇c))

.

Predictions using the fitted model m are made on the test data using the function
predict(), and the predictions can be compared to the true class labels of the test
data to produce the test estimate of risk.

pred.class = predict(m,edatDF)$class;
risk.test(pred.class);

14.6 Linear Discriminant Analysis (Section 4.4.2)

A linear discriminant analysis (LDA) model is fit using the function lda() in the
MASS library:

library(MASS);
m = lda(as.factor(tdat[,3])~.,data=tdatDF,method="mle");

As with qda(), the estimated mean for each class is saved in m$means. The function
returns a not-necessarily-triangular matrix

W = m$scaling,

5 The Cholesky decomposition of a positive-definite real matrix M is a lower-triangular matrix W such
that M = WWT. Every positive-definite real matrix has a unique Cholesky decomposition.
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with the property that W WT = Σ̂−1. Predictions using the fitted model m are made on
the test data using the function predict(), exactly as for QDA,

pred.class = predict(m,edatDF)$class;
risk.test(pred.class);

14.7 Gaussian Mixture Models (Section 4.4.3)

A Gaussian mixture model is fit using the function MclustDA() in the mclust
library.

library(mclust);

The number of mixture components used for each class is represented by a vector
(J1,… , JC), which is user-specified. In Section 4.4, we considered using either two
mixture components for each class or three mixture components for each class,

J = c(2,2,2);

or

J = c(3,3,3);

Given J, the model is fit by calling

m = MclustDA(tdat[,1:2],tdat[,3],G=as.integer(J),
modelNames="VVV");

Fitting the model is equivalent to, for each class c = 1,… , C, finding weights
w1c,… , wJcc, means 𝜇1c,… , wJcc, and covariance matrices Σ1c,… ,ΣJcc which
approximately maximize the likelihood

n∏
i=1

⎛⎜⎜⎝
Jyi∑
j=1

wjyi
|2𝜋Σjyi

|− 1
2 e

− 1
2

(x−𝜇jyi
)TΣ−1

jyi
(x−𝜇jyi

)
⎞⎟⎟⎠ .

This is done using the expectation-maximization (EM) algorithm, as described6

in Section 10.7. The string argument modelNames="VVV" indicates that no

6 In fitting the Gaussian mixture models illustrated in Section 4.4.3, the author initialized the EM
algorithm by choosing 𝛾1

ij for i = 1,… , n and j = 1,… , J uniformly at random (provided that

𝛾
1
i1 + 𝛾

1
i2 + 𝛾

1
i2 = 1 for each i) and beginning EM with the maximization step, using the lower-level

functions mstep() and em() in the mclust library. This was repeated 1000 times, and the Gaussian
mixture model parameters which produced the highest expected log-likelihood were retained. In contrast
to this approach, the function MclustDA() is much more aggressive—it uses a hierarchical clustering
algorithm to produce an initial state with high expected log-likelihood and uses EM to climb from that
state. In the author’s experience, MclustDA() is much faster but produces fits with lower expected log-
likelihood than the many-random-starts approach. As a result, the “worse” fit produced by MclustDA()

yields a Gaussian mixture model with higher risk than the many-random-starts approach (risk 0.210
vs. 0.205) when J = (2, 2, 2) because the former is relatively underfit due to worse optimization of the
model parameters, but yields a Gaussian mixture model with lower risk than the many-random-starts
approach (risk 0.209 vs. 0.228) when J = (3, 3, 3) because the former does not overfit as much as it
could, again due to worse optimization of the model parameters.
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constraints are placed on the covariance matrices in the search for optimal
parameters.

The estimated weights, means, and covariances for each class c = 1,… , C and
each mixture component j = 1,… , Jc, are saved as

ŵjc = m$"c"$parameters$pro[j]
𝜇jc = m$"c"$parameters$mean[,j]

Σ̂jc = m$"c"$parameters$variance$sigma[,,j].

Cholesky factors of the estimated covariance matrices are also saved, with
cholsigma in place of sigma in the last line above. Predictions using the fitted model
m are made on the test data using the function predict(),

pred.class = as.numeric(predict(m,edat[,1:2])$class);
risk.test(pred.class);

14.8 Kernel Density Estimation (Section 4.4.4)

Kernel density estimation begins with a kernel function. In Section 4.4, the Gaussian
kernel was defined as

K = function(x) { return(exp(-0.5*x%*%x)); }

and the Epanechnikov kernel was defined as

K = function(x) { return(max(0,length(x)+4-x%*%x)); }

In the code above, the normalization constant (2𝜋)−
m
2 has been omitted from the

Gaussian kernel and the normalization constant Γ( m
2
+ 2)𝜋−

m
2 (m + 4)−

m
2
−1 has been

omitted from the Epanechnikov kernel because these constants do not affect predic-
tions made by the KDE classifier.

Function kde.liks() inputs a point x ∈ ℝm, a set of k points in ℝm stored as the
rows of a k × m matrix

dat =
⎡⎢⎢⎣

z1
⋮
zk

⎤⎥⎥⎦ ,

and a bandwidth parameter h, and computes the kernel density estimate of a likelihood
function at x,

P̂ (x) = 1
k

k∑
i=1

1
hm

K
(x − zi

h

)
.

kde.liks = function(x,dat,h) {
v = t(x-t(dat))/h;
liks = apply(v,1,K);
return(mean(h^-dim(dat)[2]*liks));

}
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The first line of kde.liks() computes the vector(x − dat[1,]
h

,… ,
x − dat[k,]

h

)
and the second line applies the kernel function K to this vector coordinatewise,
computing (

K
(x − dat[1,]

h

)
,… , K

(x − dat[k,]
h

))
.

The third line scales each coordinate of this vector by h−m, sums the entries of the
resulting k-long vector, and divides by k.

Function kde.predict.one() inputs a point x ∈ ℝm, a set of n points in ℝm

stored as the rows of a n × m matrix datx, an n-long vector of class labels daty in
the range 1,… , C, and an C-long vector of bandwidths h = (h1,… , hC). In the first
line, it estimates the prior (marginal) distribution of class labels based on the counts
of vector daty,

P(Y = c) ∝ |{i : daty[i] = c} |,
for c = 1,… , C. In the second and third lines, it computes kernel density estimates
of the likelihood function of data for each class,

P̂ (x |Y = c) = 1
nc

n∑
i=1
yi=c

1
hm

c

K

(
x − xi

hc

)
,

for c = 1,… , C. In the fourth line it predicts a class with maximal posterior
probability,

argmaxc=1,…,C P̂ (Y = c | x) = argmaxc=1,…,C P̂ (x |Y = c) P(Y = c).

kde.predict.one = function(x,datx,daty,h) {
t = table(daty); priors = t/sum(t);
liks = vector("numeric",nc);
for(cc in 1:nc) {
liks[cc] = kde.liks(x,datx[daty==cc,],h[cc]); }

return(max.col(t(priors*liks)));
}

Selecting a KDE classifier means selecting a vector of bandwidths h = (h1,… , hC)
to optimize some estimate of risk. Function kde.loo.one() inputs a n × m matrix
of feature vectors datx, an n-long vector of class labels daty, a C-long vector of
bandwidths h, and an index o in the set {1,… , n}. It predicts the class of the oth datum
using the KDE classifier with the bandwidth vector h and all data except the oth. It
then compares the prediction to the true class, daty[o]. It returns the R Boolean
value TRUE (numeric value 1) if the KDE classifier made an incorrect prediction, and
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returns the R Boolean value FALSE (numeric value 0) if the KDE classifier made the
correct prediction.

kde.loo.one = function(datx,daty,h,o) {
pred = kde.predict.one(datx[o,],datx[-o,],daty[-o],h);
return(pred!=daty[o]);

}

Function kde.loo.all() applies the function kde.loo.one() with each datum
held out in turn, and returns the average number of times the KDE classifier made
an incorrect prediction: that is, kde.loo.all() computes the leave-one-out cross-
validation estimate of risk under 0–1 loss for a KDE classifier using a given vector of
bandwidths h and given training data datx and daty.

kde.loo.all = function(datx,daty,h) {
errs = sapply(1:dim(datx)[1],kde.loo.one,datx=datx,

daty=daty,h=h);
return(mean(errs));

}

Introducing the constraint that all bandwidths be equal, h1 = ⋯ = hC, which seems
reasonable in the running example of Chapter 4, bandwidth selection is reduced to
a one-dimensional optimization. Figure 14.2 shows leave-one-out risk estimates for
various bandwidths, for both the Gaussian and Epanechnikov kernel. The plots in Fig-
ure 14.2 suggest that any bandwidth roughly in the range [0.3, 1.2] might be equally
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Figure 14.2 Leave-one-out cross-validated estimates of the risk of the kernel density
estimate classifier as a function of the bandwidth h = h1 = h2 = h3 used for each
class.
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good, and that from a risk perspective there is not much reason to choose the Gaussian
kernel over the Epanechnikov kernel.

hcol = c(0.01,0.05,seq(0.1,1.5,0.05),2:5);
hmat = cbind(hcol,hcol,hcol);
errs = apply(hmat,1,kde.loo.all,datx=tdat[,1:2],
daty=tdat[,3]);

plot(hcol,errs,xlab="Bandwidth",ylab="Estimated Risk",
type="l",ylim=c(0,0.4*1.05));
One need not accept the constraint h1 = ⋯ = hC, and could instead search for a

vector of bandwidths (h1,… , hC) which minimizes the leave-one-out cross-validated
estimate of risk, using an optimization method such as the Nelder–Mead algorithm
(described in Section 10.2). This is done by the R function optim(), starting from a
user-specified point (starting from h = (0.8, 0.8, 0.8) in the code below).

library(stats);
optim(rep(0.8,3),kde.loo.all,method="Nelder-Mead",

datx=tdat[,1:2],daty=tdat[,3]);
In this example, over many starts, Nelder–Mead tends to reach optima roughly in
the region h ∈ [0.3, 1.2]3, and if Nelder–Mead is started at a value in this box then
it quickly becomes stuck in a local optimum close to its starting point. This sug-
gests that the objective function (the leave-one-out cross-validation estimate of risk)
is sufficiently noisy that there is little or no information to allow us to choose among
bandwidth vectors in this region.

Classifiers are often applied to predict the class of more than one point at a time.
Function kde.predict.many() is an efficient way to apply kde.predict.one()
to many input points at once. The feature vectors to be classified are stored as the rows
of the input matrix x.

kde.predict.many = function(x,datx,daty,h) {
return(apply(x,1,kde.predict.one,datx=datx,daty=daty,h=h));

}

For example, kde.predict.many() could be used to compute the test estimate of
the KDE classifier’s risk:

pred.class = kde.predict.many(edat[,1:2],tdat[,1:2],tdat[,3],
rep(0.5,3));

risk.test(pred.class);

14.9 Histograms (Section 4.4.5)

Given a feature vector x = (x1,… , xm), and a C × m matrix of bandwidth parameters

h =
⎡⎢⎢⎣

h1,1 ⋯ h1,m
⋮ ⋮

hC,1 ⋯ hC,m

⎤⎥⎥⎦ ,
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the rectangle Rc(i1,… , im) ⊂ ℝm which contains x, for each class c = 1,… , C, can
be found by setting 7

ij =
⌊ xj

hc,j

⌋

for all j = 1,… , m (here, ⌊r⌋ represents the integer floor of a real number r). The
key to implementing a histogram classifier is constructing an efficient function
which inputs a feature vector x and outputs the number of training data in the class-c
rectangle Rc(i1,… , im) which contains x, for each class c = 1,… , C. One way to do
this, which in many cases is efficient, is by constructing a hash table.

For the present purpose, a hash table can be thought of as an array where the index,
instead of being a non-negative (or positive) integer, is an element of an arbitrary
discrete set.8 The indices of a hash table are called the keys of the hash table, and
the entries indexed by the keys are the values of the hash table.9 Hash tables are
implemented in the R library hash.

library(hash);

Selecting a histogram classifier is done by three functions: hist.key(),
hist.insert(), and hist.train(). These functions create and operate on an
R data structure (specifically, an R list) which has the following components:

HT[[1]],… , HT[[C]]—a list of C hash tables, one for each class;

HT$h—the C × m matrix of bandwidth parameters, h;

HT$prior—the marginal distribution of class labels which occur in the train-
ing data.

The data structure HT will be a global variable and will not be explicitly passed in
and out of the R functions which operate on it.

7 As mentioned in Section 4.4.5, for each class c, the rectangles Rc(i1,… , im) can be translated by any
vector in [0, hc,1)x… x[0, hc,m). For simplicity, this is omitted in the implementation presented here. It
could be added by introducing a C × m matrix of translation parameters HT$t and changing the main
line of the function hist.key() to read

bins= floor(as.numeric((datx-HT$t[cc,])/HT$h[cc,]))

The translation parameters HT$t and the bandwidth paramters HT$h would then all need to be chosen to
minimize the leave-one-out cross-validation estimate of risk (or some other risk estimate).
8 The mathematics and computer science of constructing efficient hash functions and hash tables is
extensive. See Cormen et al., Chapter 11, for an introduction.
9 Part of the practical value of using a histogram classifier is that it enables the use of a hash table as a
form of compression of the training data. Indeed, the statement that exactly k specific training data lie in
the rectangle Rc(i1,… , im) ⊂ ℝm may be viewed as a lossy compression of the k data.

HT$iv—a vector (V(R
1
)–1,…,V(R

C
)–1) of reciprocals of cell volumes;
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Function hist.key() inputs a feature vector x and a class label c, and outputs the
index (i1,… , im) of the class-c rectangle Rc(i1,… , im) which contains x. In the output
of hist.key(), the index (i1,… , im) is represented as a string (class “character”
in R): this string of characters will be used as a key in a hash table which will be
constructed in the function hist.train().

hist.key = function(datx,cc) {
bins = floor(as.numeric(datx)/HT$h[cc,]);
return(deparse(bins));

}

Function hist.insert() inputs a feature vector and class label pair (x, y). In
the second line, it calls hist.key() to find the index (i1,… , im) of the class-y rect-
angle Ry(i1,… , im) which contains x. In the third and fourth lines, if no previous
feature vector of class y has landed in Ry(i1,… , im), then hist.insert() creates
an entry in the class-y hash table recording that one feature vector has landed in
Ry(i1,… , im), and otherwise it increments the count of the class-y feature vectors
landing in Ry(i1,… , im) by one.

hist.insert = function(dat) {
datx = dat[1:(length(dat)-1)]; daty = dat[length(dat)];
key = hist.key(datx,daty);

}

Function hist.train() inputs a set of n points in ℝm stored as the rows of a n × m
matrix datx, an n-long vector of class labels daty in the range 1,… , C, and a C × m
matrix of bandwidths h, and produces a trained histogram classifier by first creating
the necessary hash tables, then processing every training point (x, y) in the appropriate
hash table using hist.insert(), and finally computing the empirical distribution
of class labels and storing it in HT$prior.

hist.train = function(datx,daty,h) {
HT <<- vector("list",nc); HT$h <<- h;
for(cc in 1:nc) { HT[[cc]] <<-hash(); };

apply(cbind(datx,daty),1,hist.insert);

HT$prior <<- as.numeric(table(daty)/length(daty));
}

The trained histogram classifier is HT, the structure which contains C hash tables, the
bandwidth matrix, and the marginal distribution of classes.

Making predictions with a trained histogram classifier is done with four
functions: hist.lookup(), hist.post(), hist.predict.one(), and
hist.predict.many(). Function hist.lookup() inputs a feature vector x

if(has.key(key,HT[[daty]])==FALSE) { HT[[daty]][key]=HT$iv[daty]; }
else { HT[[daty]][key]=values(HT[[daty]][key])+HT$iv[daty]; }

HT$iv <<– 1/apply(HT$h,1,prod);
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and a class label y, and returns the number of training data of class y which fall in the
class-y rectangle which contains x. It does this by computing the index (i1,… , im) of
the class-y rectangle which contains x in the first line. If this index does not occur
as a key in the class-y hash table, hist.lookup() returns the value 0 because the
absence of this index as a key in the hash table indicates that no class-y training data
fall in Ry(i1,… , im). Otherwise, (i1,… , im) occurs as a key in the class-y hash table,
and hist.lookup() returns the value associated with the key, which is the number
of class-y training data in the rectangle, |{j : yj = y and xj ∈ Ry(i1,… , im)}|.
hist.lookup = function(datx,daty) {
key = hist.key(datx,daty);
if(has.key(key,HT[[daty]])==FALSE) { return(0); }
return(as.numeric(values(HT[[daty]][key])));

}

Function hist.post() inputs a feature vector x and returns the number of training
data which occur in the class-c rectangle containing x for each class c = 1,… , C.
This is proportional to the histogram classifier’s estimate of the posterior distribu-
tion (P̂(Y = 1 |X = x),… , P̂(Y = C |X = x)) by Exercise 4.8. If there is a tie among
classes with maximal posterior probability (which happens if no training data fall in
any rectangle containing x), it is broken by the prior distribution on classes.

hist.post = function(datx) {
posterior = sapply(1:nc,hist.lookup,datx=datx);
idx = which(posterior==max(posterior));
if(length(idx)>1) { posterior=rep(0,nc);

posterior[idx]=HT$prior[idx]; }
return(posterior);

}

Selecting a histogram classifier means selecting a matrix of bandwidths h to opti-
mize some estimate of risk. Function hist.loo.one() inputs a n × m matrix of
feature vectors datx, an n-long vector of class labels daty, a C × m matrix of band-
widths h, and an index o in the set {1,… , n}. It predicts the class of the oth datum
using the histogram classifier with the bandwidth matrix h and all data except the oth.
It then compares the prediction to the true class, daty[o]. It returns the R Boolean
value TRUE (numeric value 1) if the histogram classifier made an incorrect prediction,
and returns the R Boolean value FALSE (numeric value 0) if the histogram classifier
made the correct prediction.

hist.loo.one = function(datx,daty,o) {
posterior = hist.post(datx[o,]);
posterior[daty[o]] = posterior[daty[o]]-1;
pred = max.col(t(posterior));
return(pred!=daty[o]);

}
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Function hist.loo.all() applies the function hist.loo.one()with each datum
held out in turn, and returns the average number of times the histogram classifier made
an incorrect prediction: that is, hist.loo.all() computes the leave-one-out cross-
validation estimate of risk under 0–1 loss for a histogram classifier using a given
vector of bandwidths h and given training data datx and daty.

hist.loo.all = function(datx,daty,h) {
hist.train(datx,daty,h);
errs = sapply(1:dim(datx)[1],hist.loo.one,datx=datx,
daty=daty);

return(mean(errs));
}

Introducing the constraint that all bandwidths be equal, h1,1 = ⋯ = hC,m, which
seems reasonable in the running example of Chapter 4, bandwidth selection is reduced
to a one-dimensional optimization. Figure 14.3 shows leave-one-out risk estimates for
various bandwidths. The plot in Figure 14.3 suggests that any bandwidth roughly in
the range [1.5, 2] might be equally good.

Function hist.predict.one inputs a feature vector x and predicts a class with
maximal posterior probability based on the trained histogram classifier. Function
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Figure 14.3 Leave-one-out cross-validated estimates of the risk of the histogram
classifier, as a function of the common bandwidth used for each feature and each class.
Bandwidth is an m × C matrix h, but we have added the constraint that its entries are
all equal to each other.
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hist.predict.many inputs a k × m matrix of feature vectors and predicts a class
for each.

hist.predict.one = function(datx) {
return(max.col(t(hist.post(datx)))); }

hist.predict.many = function(datx) {
return(apply(datx,1,hist.predict.one)); }

Now a histogram classifier with bandwidths h1,1 = ⋯ = hC,m = 2 can be trained, and
a test estimate of its risk can be computed:

hist.train(tdat[,1:2],tdat[,3],matrix(2.0,3,2));
pred.class = hist.predict.many(edat[,1:2]);
risk.test(pred.class);

14.10 The Naive Bayes Classifier (Section 4.4.6)

Applying the naive Bayes classifier using kernel density estimation for each feature
begins with a kernel function. We could use either the Gaussian or Epanechnikov
kernel functions as defined in Section 14.8, but since the naive Bayes classifier will
apply these kernels with scalar rather than vector input x, it is slightly more efficient to
use R’s scalar multiplication x*x rather than R’s vector inner product x%*%x. Thus we
define one-dimensional versions of the Gaussian and Epanechnikov kernel functions,

K = function(x) { return(exp(-0.5*x*x));}

and

K = function(x) { return(max(0,length(x)+4-x*x)); }

As in Section 14.8, the normalization constant
√

2𝜋 has been omitted from the Gaus-
sian kernel and the normalization constant 3

20
√

5
has been omitted from the Epanech-

nikov kernel because they do not affect predictions.
Function kde.liks.one() is a one-dimensional specialization of the function

kde.liks() in Section 14.8: it inputs a point x ∈ ℝ, a set of k points in z1,… , zk ∈ ℝ
stored in a k-long vector dat, and a bandwidth h, and computes the one-dimensional
kernel density estimate of a likelihood function at x,

P̂ (x) = 1
k

k∑
i=1

1
h

K
(x − zi

h

)
.

kde.liks.one = function(x,dat,h) {
v = (x-dat)/h;
liks = K(v);
return(mean(h^-1*liks));

}



254 MACHINE LEARNING

The first line of kde.liks.one() computes the vector(x − dat[1,]
h

,… ,
x − dat[k,]

h

)
and the second line applies the kernel function K to this vector coordinatewise, com-
puting (

K
(x − dat[1,]

h

)
,… , K

(x − dat[k,]
h

))
.

The third line scales each coordinate of this vector by h−1, sums the entries of the
resulting k-long vector, and divides by k.

Function kde.liks.dim() applies kde.liks.one() to one dimension of a
multi-dimensional input. Specifically, kde.liks.dim() inputs a point x ∈ ℝm, a
set of k points in ℝm stored as the rows of a k × m matrix dat, an m-long vec-
tor of bandwidths h = (h1,… , hm), and an index i ∈ {1,… , m}, and outputs the
value of kde.liks.one() applied to the ith dimension of the inputs (that is,
kde.liks.dim(x,dat,h,i) = kde.liks.one(xi, dat[,i],hi)).

kde.liks.dim = function(x,dat,h,i) {
return(kde.liks.one(x[i],dat[,i],h[i])); }

Function nb.kde.liks() inputs a point x ∈ ℝm, a set of k points in ℝm stored as
the rows of a k × m matrix dat, and an m-long vector of bandwidths h = (h1,… , hm),
and outputs the naive Bayes estimate of a density function,

P̂ (x) = P̂((x1,… , xm)) =
m∏

j=1

P̂(xj),

by applying kde.liks.dim() to each dimension of the input and multiplying the
results.

nb.kde.liks = function(x,dat,h) {
marginal.liks = sapply(1:dim(dat)[2],kde.liks.dim,x=x,
dat=dat,h=h);

return(prod(marginal.liks));
}

The application of the density estimate to a classifier works exactly as in the KDE
classifier of Section 14.8, with one exception: where the KDE classifier used a C-
long vector of bandwidth parameters h = (h1,… , hC), with bandwidth hc used to
form the density estimate for data of class c, the naive Bayes classifier based on one-
dimensional KDE uses a C × m matrix of bandwidth parameters

h =
⎡⎢⎢⎣

h1,1 ⋯ h1,m
⋮ ⋮

hC,1 ⋯ hC,m

⎤⎥⎥⎦ ,

with bandwidth hc,j used to form the density estimate of feature j for data of class c
(as for the Histogram classifier of Section 14.9).
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Functions for applying the naive Bayes classifier are essentially the same
as functions for applying the KDE classifier in Section 14.8. Function
nb.kde.predict.one() is identical to function kde.predict.one(), except
that the former calls function nb.kde.liks() where the latter calls kde.liks()
and a vector of bandwidths (hc,1,… , hc,m) is used instead of a scalar bandwidth hc.

nb.kde.predict.one = function(x,datx,daty,h) {
t = table(daty); priors = t/sum(t);
liks = vector("numeric",nc);
for(cc in 1:nc) {
liks[cc] = nb.kde.liks(x,datx[daty==cc,],h[cc,]); }

return(max.col(t(priors*liks)));
}

Functions kde.loo.one(), kde.loo.all(), and kde.predict.many() from
Section 14.8 can be reused simply by replacing the string “kde” with “nb.kde”
everywhere it occurs.

nb.kde.loo.one = function(datx,daty,h,o) {
pred = nb.kde.predict.one(datx[o,],datx[-o,],daty[-o],h);
return(pred!=daty[o]);

}

nb.kde.loo.all = function(datx,daty,h) {
errs = sapply(1:dim(datx)[1],nb.kde.loo.one,datx=datx,daty=

daty,h=h);
return(mean(errs));

}

nb.kde.predict.many = function(x,datx,daty,h) {
return(apply(x,1,nb.kde.predict.one,datx=datx,

daty=daty,h=h));
}

Once a matrix of bandwidths is chosen, nb.kde.predict.many() could be used
to compute the test estimate of the naive Bayes classifier’s error rate as follows:

pred.class = nb.kde.predict.many(edat[,1:2],tdat[,1:2],
tdat[,3],matrix(0.7,3,2)); risk.test(pred.class);

14.11 k-Nearest-Neighbor (Section 4.5.1)

A k-nearest-neighbor (KNN) classifier is trained using the function knn() in the
class library.

library(class);
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Given the training feature vectors tdat[,1:2] with associated class labels
tdat[,3], and given a value of k, say

k = 9;

the k-nearest-neighbor classifier predicts class labels for test feature vectors
edat[,1:2] in via the function call

pred.class = knn(tdat[,1:2],edat[,1:2],tdat[,3],k);
risk.test(pred.class);

Selecting a KNN classifier means selecting a number of prototypes k to optimize
some estimate of risk. Function knn.loo.one() inputs a n × m matrix of feature
vectors datx, an n-long vector of class labels daty, a number of prototypes k, and
an index o in the set {1,… , n}. It predicts the class of the oth datum using the KNN
classifier with k prototypes and all data except the oth. It then compares the prediction
to the true class, daty[o]. It returns the R Boolean value TRUE (numeric value 1)
if the KNN classifier made an incorrect prediction, and returns the R Boolean value
FALSE (numeric value 0) if the KNN classifier made the correct prediction.

knn.loo.one = function(datx,daty,k,o) {
pred = knn(datx[-o,],datx[o,],daty[-o],k);
return(pred!=daty[o]);

}

Function knn.loo.all() applies the function knn.loo.one() with each datum
held out in turn, and returns the average number of times the KNN classifier made
an incorrect prediction: that is, knn.loo.all() computes the leave-one-out cross-
validation estimate of risk under 0–1 loss for a KNN classifier using a given number
of prototypes k and given training data datx and daty.

knn.loo.all = function(datx,daty,k) {
errs = sapply(1:dim(datx)[1],knn.loo.one,datx=datx,
daty=daty,k=k);

return(mean(errs));
}

Selecting the number of prototypes is a one-dimensional optimization. The left-
hand cell of Figure 14.4 shows leave-one-out cross-validated risk estimates for vari-
ous numbers of prototypes. This graph suggests that the number of prototypes should
be small (about k = 9).

ks = 1:100; errs = vector("numeric",length(ks));
errs = sapply(ks,knn.loo.all,datx=tdat[,1:2],daty=tdat[,3]);
plot(ks,errs,xlab="Number of Nearest Neighbors",

ylab="Estimated Risk",type="l",ylim=c(0,0.3*1.05));
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Figure 14.4 Leave-one-out cross-validated estimates of the risk of the k-nearest-
neighbor classifier (left) and the learning vector quantization classifier (right), as
functions of the number of nearest neighbors or the number of prototypes per
class.

14.12 Learning Vector Quantization (Section 4.5.4)

A learning vector quantization (LVQ) classifier is trained using the functions
lvqinit() and olvq1() in the class library.

library(class);

Given the training feature vectors tdat[,1:2] with associated class labels
tdat[,3], and given a value of the total number of prototypes k, say

k = 6;

the LVQ classifier is initialized by the function call

cd1 = lvqinit(tdat[,1:2],tdat[,3],size=k);

This function selects a uniform random sample of training points, without replace-
ment, as the initial set of prototypes of each class. The number of prototypes of the
cth class is k × nc

n
, rounded to the nearest integer. Since the training data consists of

49, 48, and 53 points of the three classes respectively, setting k = 6 results in two
prototypes per class. The LVQ classifier is trained, starting from the initial state cd1,
by the function call

cd2 = olvq1(tdat[,1:2],tdat[,3],cd1,niter=3000*k);
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It is applied to test data edat using the function lvqtest(),

pred.class = lvqtest(cd2,edat[,1:2]);
risk.test(pred.class);

The trained LVQ classifier consists of a list of prototypes for each class. For i =
1,… , k, the feature vector and class label of the ith prototype are given by the pair

(cd2$x[i,], cd2$cl[i]) .

Training an LVQ classifier means selecting a number of prototypes k to optimize
some estimate of risk. Function lvq.loo.one() inputs a n × m matrix of feature
vectors datx, an n-long vector of class labels daty, a number of prototypes k, and
an index o in the set {1,… , n}. It predicts the class of the oth datum using the LVQ
classifier with k prototypes and all data except the oth. It then compares the prediction
to the true class, daty[o]. It returns the R Boolean value TRUE (numeric value 1)
if the LVQ classifier made an incorrect prediction, and returns the R Boolean value
FALSE (numeric value 0) if the LVQ classifier made the correct prediction.

lvq.loo.one = function(datx,daty,k,o) {
cd1 = lvqinit(datx[-o,],daty[-o],size=k);
cd2 = olvq1(datx[-o,],daty[-o],cd1,niter=3000*k);
pred = lvqtest(cd2,datx[o,]);
return(pred!=daty[o]);

}

Function lvq.loo.all() applies the function lvq.loo.one() with each datum
held out in turn, and returns the average number of times the LVQ classifier made
an incorrect prediction: that is, lvq.loo.all() computes the leave-one-out cross-
validation estimate of risk under 0–1 loss for a LVQ classifier using a given number
of prototypes k and given training data datx and daty.

lvq.loo.all = function(datx,daty,k) {
errs = sapply(1:dim(datx)[1],lvq.loo.one,datx=datx,
daty=daty,k=k);

return(mean(errs));
}

Selecting the number of prototypes is a one-dimensional optimization. The right-
hand cell of Figure 14.4 shows leave-one-out risk estimates for various numbers of
prototypes. This graph suggests that the number of prototypes should be small (about
k = 6).

ks = 3:20; errs = vector("numeric",length(ks));
for(i in 1:length(ks)) {
errs[i] = lvq.loo.all(tdat[,1:2],tdat[,3],ks[i]);

}
plot(ks,errs,xlab="Number of Prototypes",

ylab="Estimated Risk",type="l",ylim=c(0,0.3*1.05));
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14.13 Logistic Regression (Section 4.6)

For polytimous (C > 2) classification, a logistic regression classifier is trained using
the function multinom() in the nnet library.10

library(nnet);

The logistic regression model is trained by the function call

m = multinom(as.factor(tdat[,3])~.,maxit=10000,data=tdatDF,
MaxNWts=3000);

It is applied to test data using the function predict(),

pred.class = predict(m,edatDF,type="class");
risk.test(pred.class);

The logistic regression model assumes that the log-odds in favor of each class c rela-
tive to a particular reference class (which might as well be class 1) is a linear function
of the feature vectors,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log P (Y = 1 |X)
P (Y = 1 |X)

log P (Y = 2 |X)
P (Y = 1 |X)

log P (Y = 3 |X)
P (Y = 1 |X)

⋮

log P (Y = C |X)
P (Y = 1 |X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0

𝜃2,0 𝜃2,1 ⋯ 𝜃2,m

𝜃3,0 𝜃3,1 ⋯ 𝜃3,m

⋮ ⋮ ⋮

𝜃C,0 𝜃C,1 ⋯ 𝜃C,m

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1

X1

⋮

Xm

⎤⎥⎥⎥⎥⎦
.

Fitting a logistic regression model means finding a C × (m + 1) matrix 𝜃 of real
parameters (m + 1 of which are constrained to be zero) which approximately maxi-
mizes the likelihood of the training data. The fitted matrix of parameters, in the format
above, can be obtained from the fitted model m as

𝜃 = rbind(rep(0,m + 1),summary(m)$coefficients).

More explicitly, for i = 2,… , C and j = 0,… , m,

𝜃i,j = summary(m)$coefficients[i − 1,j + 1].

Selection among multiple competing logistic regression models (say, ones which
included different features or combinations of features) could be done by writing

10 For binary classification, a logistic regression classifier can also be trained using the function glm()

in the stats library.
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functions for cross-validated risk estimation, but since the parameter estimates are
found by maximizing the likelihood of the training data, selection could also be done
by choosing a model for which Akaike’s information criterion (AIC) is minimal. AIC
is computed by the function AIC() in the stats library,

library(stats);
AIC(m);

14.14 Neural Networks (Section 4.7)

A single-hidden-layer neural network classifier is trained using the function nnet()
in the nnet library.11

library(nnet);

Given a number k of neurons in the hidden layer, say

k = 2;

the neural network classifier is trained by the function call

m = nnet(as.factor(tdat[,3])~.,size=k,maxit=10000,data=
tdatDF,MaxNWts=3000);

It is applied to test data edatDF using the function predict(),

pred.class = predict(m,edatDF,type="class");
risk.test(pred.class);

An equivalent way to do this, using R matrix and vector input instead of the R data
frame and formula above, is

m = nnet(tdat[,1:2],class.ind(tdat[,3]),size=k,maxit=10000,
MaxNWts=3000);

pred.class = max.col(predict(m,edat));
risk.test(pred.class);

The number of neurons in the hidden layer, k, was selected to minimize the
leave-one-out cross-validated estimate of risk. The functions nnet.onestart()
and nnet.multistart() train multiple neural networks on a given set of data, and
returns the network which maximizes the likelihood of the data (equivalently, mini-
mizes the training risk with respect to cross-entropy loss). This is done to add some

11 In addition to nnet, there are other R libraries for training neural networks of various types: AMORE,
monmlp, and neuralnet, for example. The author is not prepared to describe the differences between
these libraries or recommend one over the others for any specific application.
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robustness to the gradient descent optimization which trains networks in nnet(), as
it can get stuck in local optima.

nnet.onestart = function(i,datx,daty,k) {
m = nnet(datx,class.ind(daty),size=k,maxit=10000,

MaxNWts=3000,trace=FALSE);
return(m);

}

nnet.multistart = function(datx,daty,k,nstart) {
ms = lapply(1:nstart,nnet.onestart,datx=datx,daty=daty,

k=k);
best.idx = which.min(unlist(lapply(ms,getElement,"value")));
return(ms[[best.idx]]);

}

Function nnet.loo.one() inputs a n × m matrix of feature vectors datx, an n-
long vector of class labels daty, number k of neurons in the hidden layer, and an index
o in the set {1,… , n}. It predicts the class of the oth datum using a neural network
with k nodes in the hidden layer and all data except the oth. It then compares the
prediction to the true class, daty[o]. It returns the R Boolean value TRUE (numeric
value 1) if the neural network made an incorrect prediction, and returns the R Boolean
value FALSE (numeric value 0) if the neural network made the correct prediction.

nnet.loo.one = function(datx,daty,k,o) {
m = nnet.multistart(datx[-o,],daty[-o],k,20);
pred = max.col(t(predict(m,datx[o,])));
return(pred!=daty[o]);

}

Function nnet.loo.all() applies the function nnet.loo.one()with each datum
held out in turn, and returns the average number of times the neural network made
an incorrect prediction: that is, nnet.loo.all() computes the leave-one-out cross-
validation estimate of risk under 0–1 loss for a neural network with k neurons in the
hidden layer and given training data datx and daty.

nnet.loo.all = function(datx,daty,k) {
if(require(parallel)) {
errs = unlist(mclapply(1:dim(datx)[1],nnet.loo.one,

datx=datx,daty=daty,k=k,mc.cores=256));
} else {
errs = sapply(1:dim(datx)[1],nnet.loo.one,datx=datx,

daty=daty,k=k);
}
return(mean(errs));

}
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Figure 14.5 Leave-one-out cross-validated estimates of the risk of a single-hidden-
layer neural network classifier with various numbers of neurons in the hidden layer.

The plot shown in Figure 14.5 suggests that any number of hidden neurons in the
range from two to five might be equally good.

ks = 1:16; errs = sapply(ks,nnet.loo.all,datx=tdat[,1:2],
daty=tdat[,3]);

plot(ks,errs,xlab="Number of Hidden Neurons",
ylab="Estimated Risk",type="l",ylim=c(0,max(errs)*1.05));

Because there are 150 training data in the example problem, and we are using
leave-one-out cross-validation, and each neural network is trained from 20 random
starting points (values of 𝜃), and 16 different numbers of hidden neurons are con-
sidered (k ranging from 1 up to 16), the process described above requires train-
ing 150 × 20 × 16 = 48, 000 small neural networks. Since none of these networks
depends on any of the others, they can all be trained in parallel if that is supported by
the available computing environment. Function nnet.loo.all() performs its loop
over the training datum left out in parallel using the mclapply() function from the
parallel library if it is available, and otherwise performs the loop serially using the
sapply() function.

As described in Section 4.7, the parameters of a single-hidden-layer neural net-
work can be written as two matrices, an N × (m + 1) matrix 𝜃(1) which governs how
the hidden-layer neurons respond to a feature vector, and a C × (N + 1) matrix 𝜃(2)
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which governs how the output functions respond to the vector of hidden-layer neu-
ron outputs. The estimated values of the parameters, 𝜃(1) and 𝜃(2), are recorded in an
(N(m + 1) + C(N + 1))-long array, m$wts, as follows. Matrix

𝜃
(1) =

⎡⎢⎢⎢⎢⎢⎣

𝜃
(1)
1,0 … 𝜃

(1)
1,m

𝜃
(1)
2,0 … 𝜃

(1)
2,m

⋮ ⋮

𝜃
(1)
N,0 … 𝜃

(1)
N,m

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

m$wts[1] … m$wts[m + 1]
m$wts[m + 2] … m$wts[2(m + 1)]

⋮ ⋮
m$wts[(N − 1)(m + 1) + 1] … m$wts[N(m + 1)]

⎤⎥⎥⎥⎦
is obtained as

𝜃
(1)
i,j = m$wts[(i − 1)(m + 1) + j + 1] for i = 1,… , N and j = 0,… , m

and, introducing the shorthand s = N(m + 1), matrix

𝜃
(2) =

⎡⎢⎢⎢⎢⎢⎣

𝜃
(2)
1,0 … 𝜃

(2)
1,N

𝜃
(2)
2,0 … 𝜃

(2)
2,N

⋮ ⋮

𝜃
(2)
C,0 … 𝜃

(2)
C,N

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

m$wts[s + 1] … m$wts[s + N + 1]
m$wts[s + N + 2] … m$wts[s + 2(N + 1)]

⋮ ⋮
m$wts[s + (C − 1)(N + 1) + 1] … m$wts[s + C(N + 1)]

⎤⎥⎥⎥⎦
is obtained as

𝜃
(2)
i,j = m$wts[s + (i − 1)(N + 1) + j + 1] for i = 1,… , C and j = 0,… , N.

14.15 Classification Trees (Section 4.8)

A classification tree is trained using the function rpart() in the rpart library.

library(rpart);

A tree is trained by the function call

m = rpart(as.factor(tdat[,3])~.,method="class",data=tdatDF,
cp=0.006,minsplit=2,minbucket=1);

It is applied to test data using the function predict(),

pred.class = predict(m,edatDF,type="class");
risk.test(pred.class);
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As described in Section 4.8, the function rpart() grows and prunes a tree to
optimize the cost-complexity criterion

𝛼 × (number of leaf nodes) +∑
all leaf nodest

(
min

c∈{1,…,C}

C∑
d=1

L(d, c) P̂(Y = d |X ∈ t)

)
P̂(X ∈ t),

and this depends on a tuning parameter 𝛼 which must be selected. In function
rpart(), one does not specify 𝛼 directly, but instead specifies a parameter cp which
is related to 𝛼:

cp = 𝛼

R̂0

,

where R̂0 is the training estimate of risk of a tree consisting of a single leaf node. The
value of R̂0 depends only on the loss function and the prior distribution of classes,
(P(Y = 1),… , P(Y = C)), and it can be extracted from the output of rpart() as

R̂0 = (m$frame$dev/m$frame$n)[1].

The estimated risk R̂0 of the one-leaf can be computed by setting the complexity
parameter to infinity and applying the resulting tree to the training data:

m = rpart(as.factor(tdat[,3])~.,method="class",data=tdatDF,
cp=Inf);

pred.class = predict(m,tdatDF,type="class");
rhat0 = mean(pred.class!=tdat[,3]);

In Section 4.8, it was shown that in the running example, under 0–1 loss and estimat-
ing class priors from the training data, a tree consisting of a single leaf node predicts
the purple class and thus has training error R̂0 = 48+49

150
≈ 0.647. If left unspecified by

the user, cp defaults to the value 0.01, which in the running example corresponds to
a default value of 𝛼 ≈ 0.00647.

The value of 𝛼, or equivalently of cp, can be selected to minimize a cross-validated
estimate of risk. An efficient method to do this, which takes advantage of the fact that a
sequence of trees trained on a given dataset with increasing values of 𝛼 are nested one
within the other, is known and implemented in the function rpart() (see Breiman
et al., 1984, Chapter 10). The function rpart() computes a k-fold cross-validated
estimate of risk, where k is specified by the optional rpart() argument xval (the
default value of k is 10, and the user can turn off cross-validation by setting k = 0).
The leave-one-out cross-validation estimate of risk is computed by setting xval=nt
(recall that nt is the number of training data) in the function call

m = rpart(as.factor(tdat[,3])~.,method="class",data=tdatDF,
cp=0,minsplit=2,minbucket=1,xval=nt);
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Figure 14.6 Leave-one-out cross-validated estimates of the risk of a classification
tree, as a function of the complexity parameter cp (left), and a linear support vector
machine, as a function of the penalty parameter 𝛾 (right). Both horizontal axes are
plotted on a logarithmic scale. The curve plotted in the left-hand cell is drawn as a
step function to emphasize that while the complexity parameter cp is real-valued,
there are only a finite number of classification tree which can be produced from a
given dataset. The number above each line segment of the curve in the left-hand
cell is the number of leaf nodes in the tree corresponding to a given range of cp
values.

Here, the complexity parameter cp=0 is set to allow the tree to maximally overfit, and
the optional arguments minsplit=2 and minbucket=1 are set to prevent the tree-
growing process from halting before overfitting has occurred. The cross-validated
estimates of risk, and the minimum corresponding values of cp, are stored in the R
matrix m$cptable. Specifically, the first column of m$cptable is a set of values
of cp, the second column of m$cptable is one less than the number of leaf nodes
in the trees corresponding to the values in the first column, and the fourth column
of m$cptable is the cross-validated risk estimate of the trees corresponding to the
values in the first column. These are displayed graphically by the following code, and
shown in the left-hand cell of Figure 14.6.

cps = m$cptable[,1]; cps=c(cps[1]*1.1,cps);
cps[cps==0]=min(cps[cps>0]/2);

errs = m$cptable[,4]*rhat0; errs=c(errs[1],errs);
leaves=1+m$cptable[,2];
plot(cps,errs,xlab="Complexity Parameter cp",ylab="Estimated
Risk",type="S",ylim=c(0,max(errs)*1.05),log="x");

err = errs[1]; lines(c(max(cps),max(cps)*2),c(err,err),lty=2);
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err = errs[length(errs)]; lines(c(min(cps),min(cps)/2),
c(err,err),lty=2);

text((cps[-length(cps)]+cps[-1])/2,errs[-1]+0.025,leaves);

As noted in Section 4.8, in this case, selecting a classification tree which minimizes
the leave-one-out risk estimate results in selecting a sub-optimal tree (it selects a 15-
leaf-node tree, while a 5-leaf-node tree trained on the same data has significantly
lower risk).

Classification trees can be represented by a variety of data structures. This sec-
tion describes the representation used by the R library rpart: the representation
used by the R library randomForest is presented in Section 14.20. The function
rpart() returns an R object of the class rpart, which contains the trained tree and
information about how it was constructed. The trained tree can be recovered from
two components of the object m: m$frame and m$splits. Component m$frame
is an R data frame which has one row for each node in the tree. The jth node of the
tree is a leaf if m$frame$var[j]=<leaf> and otherwise it is internal, in which case
m$frame$var[j] is the name of the feature used for the split. Component m$splits
is an R matrix which has a variable number of rows: the rows of interest here are those
corresponding to internal nodes, which are indexed by the variable internal defined
as follows (Therneau et al., 2017, source code for labels.rpart.R).

notleaf = (m$frame$var!="<leaf>");
idx = cumsum(c(1,m$frame$ncompete+m$frame$nsurrogate+notleaf));
internal = idx[c(notleaf,FALSE)];

Suppose that the jth row of m$frame happens to be the ith internal node of the tree,
counting 1-up from the top of m$frame. Assuming that R’s names for the m features
(stored in m$frame$var) are simply the integers 1, …, m, let

b = row.names(m$frame)[j] 𝜏 = m$splits[internal,][i,4]
k = m$frame$var[j] s = m$splits[internal,][i,2].

A feature vector X which reaches this internal node is sent to the “left” child
of the node—that is, the unique node corresponding to the index value 2b in
row.names(m$frame)—if Xk, 𝜏, and s satisfy

(s = −1 and Xk < 𝜏) or (s = 1 and Xk ≥ 𝜏)

and otherwise feature vector X is sent to the “right” child of the node—that is, the
unique node corresponding to the index value 2b + 1 in row.names(m$frame).
If, on the other hand, the jth row of m$frame corresponds to a leaf node, then
any feature vector X which reaches this node is predicted to belong to the class
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m$frame$yval[j]. Thus, for example, the tree illustrated12 in Figure 4.22 is repre-
sented by

$var $yval

m$frame =

1
2
4
8
9
5
3
6
7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋅ ⋅ ⋅ 3 ⋯
2 ⋅ ⋅ ⋅ 2 ⋯
1 ⋅ ⋅ ⋅ 1 ⋯

<leaf> ⋅ ⋅ ⋅ 1 ⋯
<leaf> ⋅ ⋅ ⋅ 2 ⋯
<leaf> ⋅ ⋅ ⋅ 2 ⋯

2 ⋅ ⋅ ⋅ 3 ⋯
<leaf> ⋅ ⋅ ⋅ 1 ⋯
<leaf> ⋅ ⋅ ⋅ 3 ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

m$splits[internal,] =
⎡⎢⎢⎢⎣
⋅ −1 ⋅ −0.3105329 ⋅
⋅ 1 ⋅ −0.1973331 ⋅
⋅ 1 ⋅ −1.8009377 ⋅
⋅ 1 ⋅ 1.7666253 ⋅

⎤⎥⎥⎥⎦
.

Here, the row names of m$frame have been written on the left-hand side of the matrix,
and values in columns other than one and five in m$frame and values in columns other
than two and four in m$splits have been suppressed.

14.16 Support Vector Machines (Section 4.9)

A support vector machine is trained using the function svm() in the e1071 library.

library(e1071);

A linear support vector machine is trained by the function call

m = svm(as.factor(tdat[,3])~.,data=tdatDF,kernel="linear",
cost=2.112);

and it is applied to test data using the function predict(),

pred.class = predict(m,edatDF);
risk.test(pred.class);

The value of the penalty parameter 𝛾 (represented by the argument cost in the
function svm()) was selected to minimize the leave-one-out cross-validated estimate

12 The terms “left” and “right” used in this section do not correspond to the way in which the tree in
Figure 4.22 is drawn.
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of risk. Function svm() provides the capability to perform k-fold cross-validation by
calling it with the option cross=k, in which case the cross-validated risk estimate
can be obtained from the function’s output as

R̂cv = 1 − m$tot.accuracy

100
.

Thus leave-one-out cross-validation can be performed by

svmlin.loo.all = function(datx,daty,gamma) {
m = svm(as.factor(daty)~.,data=datx,kernel="linear",

cost=gamma,cross=dim(datx)[1]);
return(1-m$tot.accuracy/100);

}

gammas = 2^seq(-12,12);
errs = sapply(gammas,svmlin.loo.all,datx=tdatDF,

daty=tdat[,3]);
plot(log2(gammas),errs,xlab=expression(paste("Penalty

Parameter ",log[2],"(", gamma,")")),ylab="Estimated Risk",
type="l",ylim=c(0,max(errs)*1.05));

Given a value of 𝛾 , function svmlin.loo.all() returns the leave-one-out cross-
validated estimate of the risk of a linear support vector machine with penalty param-
eter 𝛾 . The leave-one-out risk estimate is computed for many values of 𝛾 , and a value
of 𝛾 which approximately minimizes this is found by looking at the numbers or plot-
ting a graph, such as that shown in the right-hand cell of Figure 14.6.

Fitting a support vector machine with one of the commonly used kernels introduces
one, two, or three additional parameters to be optimized in addition to the penalty
parameter 𝛾:

polynomial K(x, w) = (𝛼 xTw + 𝛽)𝛿

sigmoid K(x, w) = tanh(𝛼 xTw + 𝛽)
Gaussian or radial K(x, w) = exp(−𝛼 ‖x − w‖2).

These parameters are all selected to minimize the leave-one-out cross-validated esti-
mate of risk. For example,

svmpoly.loo.all = function(datx,daty,theta) {
m = svm(as.factor(daty)~.,data=datx,kernel="polynomial",

cost=theta[1],gamma=theta[2],coef0=theta[3],
degree=theta[4],cross=dim(datx)[1]);

return(1-m$tot.accuracy/100);
}
library(stats);
opt = optim(c(1,1/nt,0,3),svmpoly.loo.all,method=

"Nelder-Mead",datx=tdatDF,daty=tdat[,3]);
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Given a value of 𝜃 (now a four-long vector), function svmpoly.loo.all() returns
the leave-one-out cross-validated estimate of the risk of a support vector machine with
a polynomial kernel, with penalty parameter 𝛾 = 𝜃1 and kernel parameters 𝛼 = 𝜃2,
𝛽 = 𝜃3, and 𝛿 = 𝜃4. Approximately optimal values of these parameters are found
using the general-purpose, multi-variate optimization function optim() from the
stats library. Function optim() implements versions of several optimization algo-
rithms: Nelder–Mead (Section 10.2), BFGS (Section 10.1.4), conjugate gradient (a
quasi-Newton method similar in spirit to BFGS, not covered in Chapter 10), and sim-
ulated annealing (Section 10.3). In this application, the Nelder–Mead algorithm is a
convenient choice which quickly finds a (local) minimizer of R̂cv. The author was
unable to find a better minimizer than the one found by Nelder–Mead, despite some
effort. The approximate minimizer of R̂cv is recovered from the output of optim()
as

𝛾 = opt$par[1], 𝛼 = opt$par[2], 𝛽 = opt$par[3], and 𝛿 = opt$par[4],

and the approximate minimum value is

R̂cv = opt$value.

The optimal polynomial svm can then be fit on the training data and applied to test
data by

theta = opt$par;
m = svm(as.factor(tdat[,3])~.,data=tdatDF,kernel="polynomial",

cost=theta[1],gamma=theta[2],coef0=theta[3],
degree=theta[4]);

pred.class = predict(m,edatDF);
risk.test(pred.class);

As described in Section 4.9, a support vector machine is a binary classifier with
class labels in the set {−1, 1}, and the class label predicted for a new feature vector
X by a trained support vector machine is

sign

(
𝜃0 +

∑
i : (xi, yi) is a

support vector

�̂�i yi K(xi, X)

)
,

where 𝜃0 is the estimated intercept parameter and �̂�1,… , �̂�n are parameters of a
dual optimization problem, where �̂�i ≠ 0 only if (xi, yi) is a support vector. As
described in Section 6.1, when faced with data of C > 2 classes, the function svm()
trains a binary support vector machine to distinguish class c from class d, for all
classes 1 ≤ c < d ≤ C, and the resulting

(C
2

)
classifiers vote in a committee. Thus the
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classifier output by svm() is determined by
(C

2

)
intercept parameters, 𝜃(c,d)

0 ,
(C

2

)
sets

of support vectors, and
(C

2

)
sets of values

{𝜓 (c,d)
i : (xi, yi) is a support vector for the (c, d)th classifier},

where 1 ≤ c < d ≤ C. Note that a given training datum (xi, yi) may be a support vec-
tor for one, several, or none of the

(C
2

)
binary support vector machines. Within the

function svm(), when the C class labels are the integers 1, 2,… , C, the binary clas-
sifier trained to distinguish class c from class d encodes class c as class “1” and class
d as class “−1” if and only if c < d.

The output of the function svm() contains all the estimated parameters of
(C

2

)
mod-

els concatenated together. For 1 ≤ c < d ≤ C, let the paired indices (c, d) be written
in the order

(1, 2), (1, 3),… , (1, C), (2, 3),… , (2, C),… , (C − 1, C)

and let this ordered set of paired indices be identified with the ordered set 1, 2,… ,
(C

2

)
:

explicitly, the map from a paired index (c, d) to a single index i is

i = C(c − 1) −
(

c + 1
2

)
+ d.

The negative of the intercept parameter of the (c, d)th classifier, −𝜃(c,d)
0 , is stored

in a
(C

2

)
-long vector m2$rho:

−𝜃(c,d)
0 = m2$rho[i].

The support vectors used by all
(C

2

)
classifiers are stored as the rows of a single matrix

m$SV with m columns. The support vectors are grouped by class in the rows of m$SV:
first the support vectors of class 1, then those of class 2, etc. The number of support
vectors of each class is stored in the C-long vector m$nSV. Thus the support vectors,
as rows of m$SV, are

m$nSV[1]support vectors of class 1

⎧⎪⎨⎪⎩
m$SV[1,]
⋮
m$SV[m$nSV[1],]

m$nSV[2]support vectors of class 2

⎧⎪⎨⎪⎩
m$SV[m$nSV[1] + 1,]
⋮
m$SV[m$nSV[1] + m$nSV[2],]

⋮
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m$nSV[C]support vectors of class C

⎧⎪⎪⎨⎪⎪⎩

m$SV[m$nSV[1] + m$nSV[2] +⋯
+ m$nSV[C − 1] + 1,]
⋮
m$SV[m$nSV[1] + m$nSV[2] +⋯
+ m$nSV[C],].

For future reference, we introduce a convenient way of indexing the support vectors
of each class. Let

idx = c(0,cumsum(m$nSV))

so that the support vectors of class c are the rows

m$SV[m$nSV[idx[c]+1],]
⋮
m$SV[m$nSV[idx[c + 1]],]

The binary support vector machine trained to distinguish class c from class d (with
c < d) makes decisions for new feature vectors X according to

sign

(
𝜃

(c,d)
0 +

∑
i : (xi, yi) is a support vector
for the “c vs. d” classifier

�̂�
(c,d)
i y(c,d)

i K(xi, X)

)
,

where the superscripts (c, d) indicate that the trained dual parameters �̂� (c,d)
i and the

assignment of class labels to the set {−1, 1} depends on the classes c and d:

y(c,d)
i =

{
1 if yi = c
−1 if yi = d

.

In the above expression, the sum can be taken over a larger set of vectors (because
𝜓

(c,d)
i = 0 unless xi is a support vector for the “c vs. d” classifier), so the binary

support vector machine trained to distinguish class c from class d makes decisions
according to

sign

(
𝜃

(c,d)
0 +

∑
i : xi is labeled class c

and is a support vector for
at least one classifier

�̂�
(c,d)
i y(c,d)

i K(xi, X)

+
∑

i : xi is labeled class d
and is a support vector for

at least one classifier

�̂�
(c,d)
i y(c,d)

i K(xi, X)

)
.

Now xi is labeled class c and is a support vector for at least one classifier if and only
if xi = m$SV[j,] for some j ∈ {m$nSV[idx[c]+1],… , m$nSV[idx[c + 1]]}. The
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corresponding value �̂� (c,d)
i y(c,d)

i is stored in the matrix m$coefs[j,c]. Similarly, xi
is labeled class d and is a support vector for at least one classifier if and only if
xi = m$SV[j,] for some j ∈ {m$nSV[idx[d]+1],… , m$nSV[idx[d + 1]]}. The
corresponding value �̂� (c,d)

i y(c,d)
i is stored in the matrix m$coefs[j,d − 1].13 Thus

the binary support vector machine trained to distinguish class c from class d (with
c < d) makes decisions according to

sign

(
𝜃

(c,d)
0 +

m$nSV[idx[c+1]]∑
j=m$nSV[idx[c]+1]

m$coefs[j,c]K(m$SV[j,], X)

+
m$nSV[idx[d+1]]∑

j=m$nSV[idx[d]+1]
m$coefs[j,d − 1]K(m$SV[j,], X)

)
.

In the case of a linear support vector machine, where K(xi, X) = xi
TX, the trained

classifier distinguishing between class c and class d is

sign
(
𝜃

(c,d)
0 + 𝜃 (c,d)TX

)
where 𝜃 (c,d) is the m-long vector

𝜃
(c,d) =

m$nSV[idx[c+1]]∑
j=m$nSV[idx[c]+1]

m$coefs[j,c] m$SV[j,]

+
m$nSV[idx[d+1]]∑

j=m$nSV[idx[d]+1]
m$coefs[j,d − 1] m$SV[j,].

14.17 Bootstrap Aggregation (Section 6.3)

The following two functions enable implementation of any committee classifica-
tion method by predicting the class which wins a weighted plurality vote. Function
weighted.count() inputs class label c, a vector v of class labels, and a vector w of
weights (which may be positive or negative, and may or may not all be equal to each

13 Note that for the binary classifier trained to distinguish class c from class d (with c < d), the terms
�̂�

(c,d)
i y(c,d)

i are stored in the cth column of m$coefs (rows idx[c] + 1 through idx[c + 1]) but are
stored in the (d − 1)th column of m$coefs (rows idx[d] + 1 through idx[d + 1]). The “−1” reflects
savings in memory enabled by the fact that there is no need to store parameters for a classifier trained to
distinguish class c from itself (Meyer, 2015).
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other), and outputs the sum of the weights in w corresponding to the occurrences of
class c in v: ∑

i:vi=c

wi.

weighted.count = function(c,v,w) {
return(sum(w[which(v==c)])); }

Function vote() combines weighted.count() and max.col() to input a vector
v of class labels and a vector w of weights and output a class label which receives
a maximal sum of weighted votes, with ties decided uniformly at random among all
classes which received the same sum of weighted votes.

vote = function(v,w) {
votes = sapply(1:nc,weighted.count,v=v,w=w);
return(max.col(t(votes)));

}

Thus L trained classifiers can be combined into a committee by collecting their votes
into a vector (v1,… , vL), and the weights of their votes into a vector (w1,… , wL), and
applying the function vote().

The committee methods of bagging, boosting, and arcing will all be illustrated
using trees as the base learners, specifically stumps. A stump is a tree which is con-
strained to have at most two leaves. The following function applies the tree-training
function rpart() from the rpart library to construct a stump.14

library(rpart);
train.stump = function(y,x,wt=NULL) {
if(length(wt)==0) { wt=rep(1,length(y)); }
m = rpart(as.factor(y)~.,data=x,method="class",maxdepth=1,

cp=0,minsplit=2,weights=wt);
return(m);

}

A committee of L (or in code, nbase) bagged stumps is trained by the follow-
ing code. Although it would be more efficient to use the R function lapply() (or
mclapply(), since bagged classifiers can be trained in parallel), we have used a for
loop to simplify comparison of the code for bagging with later code for boosting and
arcing. This block of code outputs an L-long R list of trained stumps, called commit-
tee, and an L × n matrix oob. If the training datum (xi, yi) is out-of-bag for the lth

14 As written, the function train.stump() can produce a tree with only one leaf (and hence with only
one node) if presented with data which is all of one class. Such a tree is called a root, and these can
arise when bagging with extremely small bag sizes or when one class is represented much more than
others in the training data. We allowed roots into the trained ensembles illustrated in Section 6 when
they occurred.
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classifier, then oob[l,i] is the class predicted by the lth classifier for feature vector
xi. Otherwise, oob[l,i] is the special R value NA to show that (xi, yi) is in-bag for the
lth classifier (the function votes() ignores values of NA, so using NA as the in-bag
indicator simplifies implementation of out-of-bag risk estimation).

nbase = 1000; bagsize = nt;
committee = vector("list",nbase); oob = matrix(NA,nbase,nt);
for(i in 1:nbase) {
idx = sample(1:nt,bagsize,replace=TRUE);
m = train.stump(tdat[idx,3],tdatDF[idx,]);
committee[[i]] = m;
oob[i,setdiff(1:nt,idx)] = predict(m,newdata=tdatDF[-idx,],

type="class");
}

The parameters of a bagged classifier are the number L of classifiers used and the
size of the bootstrap sample on which each classifier is trained (and, of course, the
choice of classifier and any parameters it may use). As noted in Section 6, the size of
the bootstrap sample can be quite important, and can be selected by minimizing the
out-of-bag estimate of risk, which is computed by the following code.

pred.oob = apply(oob,2,vote,w=rep(1,nbase));
errs = pred.oob!=tdat[,3]; risk.oob = mean(errs);

Once L = nbase and bagsize are chosen, the trained bagged classifier can be
applied to new data,

pred.stumps = do.call(rbind,lapply(committee,predict,
newdata=edatDF,type="class"));

pred.class = apply(pred.stumps,2,vote,w=rep(1,nbase));
risk.test(pred.class);

14.18 Boosting (Section 6.6)

The following code implements a classifier consisting of L = nbase boosted stumps.
It uses the same R structures as the code for bagging, and otherwise is a translation of
the Adaboost pseudocode shown in Figure 6.7, using the multi-class generalization
of Zhu et al. (2009) described in Section 6.6.

nbase = 1000; committee = vector("list",nbase);
committee.risk = rep(NA,nbase); data.weights = rep(1/nt,nt);
for(i in 1:nbase) {
m = train.stump(tdat[,3],tdatDF,data.weights);
committee[[i]] = m;
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pred.class = predict(m,tdatDF,type="class");
idx = which(pred.class!=tdat[,3]);
committee.risk[i] = risk = sum(data.weights[idx]);
data.weights[idx] = data.weights[idx] * (1-risk)/risk *

(nc-1);
data.weights = data.weights/sum(data.weights);

}

Applying a trained, boosted classifier is similar to applying the bagged classifier,
except that the individual stumps vote with different weights,

pred.stumps = do.call(rbind,lapply(committee,predict,
newdata=edatDF,type="class"));

committee.weights = log((1-committee.risk)/committee.risk*
(nc-1));

pred.class = apply(pred.stumps,2,vote,w=committee.weights);
risk.test(pred.class);

14.19 Arcing (Section 6.7)

There is only a small difference between boosting and arcing, in terms of the code
needed to implement them. An implementation of arcing is exactly the same boosting
above, except that the first line of the boosting loop, which is deterministic,

m = train.stump(tdat[,3],tdatDF,data.weights);

is replaced by a randomized process,

idx = sample(1:nt,nt,replace=TRUE,prob=data.weights);
m = train.stump(tdat[idx,3],tdatDF[idx,]);

14.20 Random Forests (Section 6.5)

A random forest is trained using the function randomForest() in the randomFor-
est library:

library(randomForest);
m = randomForest(as.factor(tdat[,3])~.,data=tdat[,1:2],

ntree=1000);

Selecting a random forest is equivalent to training some number (ntree) of generally
over-fit trees. The ith tree in the forest can be viewed by using the function getTree,

getTree(m,i)
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for i = 1,… , ntree. When all features are real-valued, a random forest tree reported
by getTree() is represented as a k × 6 matrix⎡⎢⎢⎣

t1,1 t1,2 ⋯ t1,6
⋮ ⋮ ⋮

tk,1 tk,2 ⋯ tk,6

⎤⎥⎥⎦ ,

where k is the total number of nodes (both internal and leaf) of the tree. Each node of
the tree corresponds to one row of the matrix, with

row.names(getTree(m,i)) = j for the jth node of the ith tree and
tj,1 = index in {1,… , k} of the node’s left descendant, or 0 if the node is a leaf
tj,2 = index in {1,… , k} of the node’s right descendant, or 0 if the node is a leaf
tj,3 = the index i ∈ {1,… , m} of the variable the node splits on, or 0 if the node is

a leaf
tj,4 = the threshold 𝜏 used for the split, or 0 if the node is a leaf
tj,5 = 1 if the node is internal, or −1 if the node is a leaf
tj,6 = the class c ∈ {1,… , C} predicted by the node, or 0 if the node is internal.

The terms “left” and “right” are defined to mean that, if the jth node is an internal
node, then a feature vector X which enters this node is passed to the left descendant
if Xtj,4

≤ tj,5 and is passed to the right descendant if Xtj,4
> tj,5. Thus, for example, the

tree illustrated in Figure 4.22 is represented in this form by the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 1 −0.311 1 0
4 5 2 −0.197 1 0
6 7 2 1.767 1 0
0 0 0 0.000 −1 2 (blue)
8 9 1 −1.801 1 0
0 0 0 0.000 −1 3 (purple)
0 0 0 0.000 −1 1 (orange)
0 0 0 0.000 −1 2 (blue)
0 0 0 0.000 −1 1 (orange)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since random forests are based on bagging, the out-of-bag estimate of risk can be
used. The out-of-bag confusion matrix is stored in m$confusion, and the confusion
matrix and the out-of-bag risk estimate with respect to 0–1 loss15 can be obtained
from

print(m);

Predictions using the trained random forest m are made on the test data using the
function predict(),

pred.class = predict(m,edat);
risk.test(pred.class);

15 The 0–1 loss function is hard-coded in Fortran 77 code underlying the randomForest library. As
indicated by Exercise 6.5, a random forest doesn’t pay much attention to the loss function.
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List of Symbols

The following notation is used more-or-less consistently.

 feature space
X a feature vector X ∈  , thought of as a random variable
x an observed feature vector x ∈  , a realization of X
f an unknown function on 
Y a response Y ∈ f (), thought of as a random variable
y an observed response y ∈ f (), a realization of Y
E error, as a random variable
e observed error, a realization of E
m the dimension of the feature space 
𝜃 a vector or matrix of parameters governing a parametric

model
k the dimension of the response space, f (), in regression;

more generally, the length of parameter vector, 𝜃| ⋅ | cardinality, when applied to a set
C the number of classes in a classification (or clustering)

problem, C = |f ()|
 the set of class labels,  = {1, 2,… , C}.
c a particular class, an element of 
n the number of training data available
nc the number of training data belonging to the cth class:

n1 +⋯ + nC = n
f̂ an approximation of f
f̂S an approximation of f trained on dataset S∈ ( × f ())n

(P(Y = 1),… , P(Y =C)) marginal distribution on the set of classes  ={1,… , C}
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P(X |Y = c) conditional density or likelihood function for feature vectors, given
membership in the cth class

P(Y |X) conditional density or likelihood function for responses (in regres-
sion) or class labels (in classification), given the feature vector X

L(d, c) loss incurred by classifying data of class d as class c
R(̂f |X = x) risk (expected loss) incurred by classifying a datum drawn randomly

from the data distribution conditional on the feature vector x, using
trained classifier f̂ (̂f and x fixed, Y random)

R(̂f ) risk (expected loss) incurred by classifying a new datum drawn ran-
domly from the data distribution, using trained classifier f̂ (̂f fixed,
X and Y random)

Rn risk (expected loss) incurred by classifying a new datum drawn ran-
domly from the data distribution, using a given classification method
trained on a random set of n independent, identically distributed
training data drawn from the data distribution (̂f , X and Y random)

N(d, c) the number of validation data of class d predicted to be class c by a
trained classifier, an entry in a confusion matrix

[⋅] the indicator function of a set S, taking the value 1 at all points in S
and the value 0 at all points not in S. Also, the indicator function of
the truth of a logical statement.

I(t) impurity of a terminal (leaf) node in a tree
N(𝜇, 𝜎2) a normal (Gaussian) distribution with mean 𝜇 and variance 𝜎2

𝜙(x |𝜇,Σ) a normal (Gaussian) density function, |2𝜋Σ|− 1
2 e−

1
2

(x−𝜇)TΣ−1(x−𝜇)

argmax a maximizer of a function, maxs∈S g(s) = g (argmaxs∈Sg(s))
argmin a minimizer of a function, mins∈S g(s) = g (argmins∈Sg(s))
⋅T the transpose of a matrix (or vector)
O(⋅) “big-oh” notation, g(s) = O(h(s)) means that there exists a positive

constant M such that |g(s)| ≤ Mh(s) for all s
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Solutions to Selected Exercises

Exercise 2.2

(A) By Bayes’ theorem,

P(Y = 1 |X = x) ∝ P(X = x |Y = 1)P(Y = 1) ∝ e−
1
2

(x−𝜇1)2
p

P(Y = 2 |X = x) ∝ P(X = x |Y = 2)P(Y = 2) ∝ e−
1
2

(x−𝜇2)2
(1 − p),

so, using the fact that P(Y = 1 |X = x) + P(Y = 2 |X = x) = 1,

P(Y = 1 |X = x) = e−
1
2

(x−𝜇1)2
p S−1

P(Y = 2 |X = x) = e−
1
2

(x−𝜇2)2
(1 − p) S−1,

where

S = e−
1
2

(x−𝜇1)2
p + e−

1
2

(x−𝜇2)2
(1 − p).

(B) Using the result of part A,

R(̂f𝜏 |X = x) = EY |X=x[L(Y , f̂𝜏 (x))]

= L(1, f̂𝜏 (x)) P(Y = 1 |X = x) + L(2, f̂𝜏 (x)) P(Y = 2 |X = x)

=

{
L(2, 1) e−

1
2

(x−𝜇2)2
(1 − p) S−1 if x ≤ 𝜏

L(1, 2) e−
1
2

(x−𝜇1)2
p S−1 if x > 𝜏

.

(C) Using the result of part B, and the fact that the marginal density of X is

1√
2𝜋

e−
1
2

(x−𝜇1)2
p + 1√

2𝜋
e−

1
2

(x−𝜇2)2
(1 − p) = 1√

2𝜋
S,
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we see that

R(̂f𝜏 ) = EX[R(̂f𝜏 |X)]

= ∫
𝜏

−∞
L(2, 1) e−

1
2

(x−𝜇2)2
(1 − p) S−1 1√

2𝜋
S dx

+ ∫
∞

𝜏

L(1, 2) e−
1
2

(x−𝜇1)2
p S−1 1√

2𝜋
S dx

= L(2, 1) (1 − p) P(Z2 ≤ 𝜏) + L(1, 2) p P(Z1 > 𝜏)

= L(2, 1) (1 − p) P(Z2 ≤ 𝜏) + L(1, 2) p (1 − P(Z1 ≤ 𝜏)),

where Z1 ∼ N(𝜇1, 1) and Z2 ∼ N(𝜇2, 1).

(D) Differentiating the result of part C with respect to 𝜏,

d
d𝜏

R(̂f𝜏 ) = L(2, 1) (1 − p)
1√
2𝜋

e−
1
2

(𝜏−𝜇2)2
− L(1, 2) p

1√
2𝜋

e−
1
2

(𝜏−𝜇1)2
.

Setting this equal to zero and solving for 𝜏 yields a unique critical point,

𝜏 =
𝜇1 + 𝜇2

2
+ 1
𝜇2 − 𝜇1

log
(

L(1, 2)
L(2, 1)

p

1 − p

)
.

The derivative d
d𝜏

R(̂f𝜏 ) approaches zero from below as 𝜏 → −∞ and
approaches zero from above as 𝜏 → ∞, so d

d𝜏
R(̂f𝜏 ) is negative to the left and

positive to the right of the unique critical point, which is therefore a minimum.
Note that as 𝜇1 → 𝜇2 from the left, the critical point goes to ±∞ according
to the sign of the log term.

(E) If L(1, 2) = L(2, 1), the critical point is

𝜏 =
𝜇1 + 𝜇2

2
+ 1
𝜇2 − 𝜇1

log
(

p

1 − p

)

and if, furthermore, p = 1
2
, the critical point is

𝜏 =
𝜇1 + 𝜇2

2
,

which is the midpoint between 𝜇1 and 𝜇2.

Exercise 2.4 Consider the following algorithm: given a training data set
{(x1, y1),… , (xn, yn)} and a feature vector x to classify, if x = xi for any i, predict yi,
and otherwise draw the prediction uniformly at random from the set of class labels
{1,… , C}. The training risk for this algorithm is zero, and the actual risk is C−1

C
.
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Exercise 2.6 The class-averaged inaccuracy is

1
C

C∑
c=1

P(̂f (X)≠ c |Y = c) =
C∑

c=1

P(̂f (X)≠ c and Y = c)
C P(Y = c)

= ∫
C∑

c=1

P(̂f (x)≠ c and X = x and Y = c)
C P(Y = c)

dx

= ∫
C∑

c=1

1
C P(Y = c)

[̂f (x)≠ c] P(Y = c |X = x) P(X = x) dx.

The last line is recognizable as the risk of approximation f̂ , R(̂f ), when for each class
c the loss incurred by misclassifying c as any other class is 1

CP(Y=c)
(and zero loss

is incurred by correctly classifying class c). There are certainly classification prob-
lems in which some classes are rare (have small marginal probability) and important
(incur high loss for misclassification). But the class-averaged inaccuracy criterion
seems to say that a class is important because it is rare, or at any rate that the impor-
tance of a class is proportional to how rare it is.

Exercise 3.2 The gradient of R̂train(̂f𝜃) with respect to 𝜃 is

∇R̂train(̂f𝜃) = 1
n

(∇((y − x𝜃)T(y − x𝜃)))

= 1
n

(∇yTy − ∇yTx𝜃 − ∇𝜃TxTy + ∇𝜃TxTx𝜃)

= 1
n

(0 − (yTx)T − xTy + 2xTx𝜃)

= 1
n

(−2xTy + 2xTx𝜃).

Setting the gradient equal to zero and solving for 𝜃 yields a unique critical point,

𝜃 = (xTx)−1xTy,

provided that xTx is invertible. Since R̂train(̂f𝜃) ≥ 0 and is quadratic, this critical point
is the unique global minimum.

Exercise 3.5 Let 1 denote the n-long vector (1, 1,… , 1), and let vT , vR, and vM be
n-long vectors defined by

vT = y − ȳ 1

vM = ŷ − ȳ 1 = hy − ȳ 1

vR = y − ŷ = y − hy = (i − h)y = ê.

Observe that

vM + vR = ŷ − ȳ 1 + y − ŷ = y − ȳ 1 = vT .
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Also, vM and vR are orthogonal because

vR
TvM = yT(i − h)hy − yT(i − h) ȳ 1 = yT(h − hh)y − ȳ yT(i − h) 1,

and Exercise 3.3 established that hh = h (so the first term on the right-hand side is
zero) and that h1 = i1 since 1 is in the column space of x (so the second term on the
right-hand side is zero). Since the squared Euclidean lengths of vR, vM, and vT are
respectively RSS, MSS, and TSS, the Pythagorean theorem establishes that

TSS = MSS + RSS.

Exercise 3.9 Here, the values 1 and −1 are stand-ins for any positive and negative
numbers, respectively. They need not be equal.

(A) 𝜃a = −1 and 𝜃c = 1.

(B) 𝜃c = 1 and 𝜃2c = −1.

(C) 𝜃a = 1, 𝜃c = 1, and 𝜃(a,c) = −1.

(D) 𝜃a = 1, 𝜃c = 1, and 𝜃(a,c) = 1.

(E) The intercept parameter 𝜃0 is a measure of how much the person likes food,
on average.

(F) Replace the continuous feature xb with the binary feature [xb > 0]. Make 𝜃b
large and negative.

Exercise 4.1 Let P(Y |X) be some conditional distribution with the property that

0 < P(Y |X) < 1

for at least one value of (X, Y). The Bayes classifier with respect to this conditional
distribution is

f̂Bayes,P(x)= argminc∈{1,…,C}RP(c |X = x)= argminc∈{1,…,C}

C∑
d=1

L(d, c) P(Y = d |X),

where the notation emphasizes the dependence on P. Let P̃(Y |X) be the probability
distribution which puts probability 1 on f̂Bayes,P(X), that is,

P̃(Y = y |X = x) =
{

1 if y = f̂Bayes,P(x)
0 else

.

Then f̂Bayes,P(x) = f̂Bayes,P̃(x) for all x ∈  but P̃ ≠ P (because P̃(Y |X) is always 0 or
1, and P(Y |X) is not).
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Exercise 4.3 The solution of part (A) of Exercise 2.2 is:

P(Y = 1 |X) ∝ e−
1
2

(X−𝜇1)2
p

P(Y = 2 |X) ∝ e−
1
2

(X−𝜇2)2
(1 − p),

so the Bayes classifier is

f̂Bayes(X) = argminc∈{1,2}R(c |X)

= argminc∈{1,2}

2∑
d=1

L(d, c) P(Y = d |X)

=

{
1 if L(2, 1) e−

1
2

(X−𝜇2)2
(1 − p) ≤ L(1, 2) e−

1
2

(X−𝜇1)2
p

2 else

=
⎧⎪⎨⎪⎩

1 if e−
1
2

(X−𝜇2)2+ 1
2

(X−𝜇1)2 ≤ L(1, 2)
L(2, 1)

p

1 − p
2 else

=
⎧⎪⎨⎪⎩

1 if − 1
2

(X − 𝜇2)2 + 1
2

(X − 𝜇1)2 ≤ log
(

L(1, 2)
L(2, 1)

p

1 − p

)
2 else

=
⎧⎪⎨⎪⎩

1 if X ≤ 𝜇2 + 𝜇1

2
+ 1
𝜇2 − 𝜇1

log
(

L(1, 2)
L(2, 1)

p

1 − p

)
2 else

.

Therefore the answer is yes, the Bayes classifier has the form “predict class 1 if the
feature falls below a threshold, and otherwise predict class 2.” The solution of part
D of Exercise 2.2 is the Bayes classifier.

Exercise 4.5 The likelihood of x1,… , xn conditional on the class labels y1,… , yn is

n∏
i=1

|2𝜋Σyi
|− 1

2 e
− 1

2
(xi−𝜇yi

)TΣ−1
yi

(xi−𝜇yi
)
,

so the log-likelihood is

−nm
2

log 2𝜋 +
n∑

i=1

(
− 1

2
log |Σyi

| − 1
2

(xi − 𝜇yi
)TΣ−1

yi
(xi − 𝜇yi

)

)

= −nm
2

log 2𝜋 +
C∑

c=1

(
−

nc

2
log |Σc| − 1

2

n∑
i=1
yi=c

(xi − 𝜇c)TΣ−1
c (xi − 𝜇c)

)
.
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Maximizing the log-likelihood requires finding the parameters 𝜇c and Σc which max-
imize the cth term in the sum, for c = 1,… , C. To find 𝜇c, note that the cth summand
can be written as

−
nc

2
log |Σc| − 1

2

n∑
i=1
yi=c

(
xi

TΣ−1
c xi − 2𝜇c

TΣ−1
c xi + 𝜇c

TΣ−1
c 𝜇c

)
,

so the derivative of the cth summand with respect to 𝜇c is

− 1
2

n∑
i=1
yi=c

(
−2Σ−1

c xi + 2Σ−1
c 𝜇c

)
= −Σ−1

c nc 𝜇c + Σ−1
c

n∑
i=1
yi=c

xi.

Setting this equal to zero and solving for 𝜇c yields the unique solution

𝜇c =
1
nc

n∑
i=1
yi=c

xi.

The derivative of the cth summand with respect to Σc is

−
nc

2
Σ−1

c + 1
2

n∑
i=1
yi=c

Σ−1
c (xi − 𝜇c)(xi − 𝜇c)TΣ−1

c .

Setting this equal to zero and solving for Σc yields the unique solution

Σ̂c =
1
nc

n∑
i=1
yi=c

(xi − 𝜇c)(xi − 𝜇c)T,

and using the value 𝜇c = 𝜇c in the above solution causes the derivatives of the log-
likelihood with respect to both 𝜇c and Σc to be zero simultaneously.

Exercise 4.7 The LDA classifier predicts class 1 if and only if predicting class 1
appears to have lower risk than predicting class 2, substituting, for c = 1, 2, the esti-
mates

P̂(x |Y = c) = 𝜙(x |𝜇c, Σ̂) = |2𝜋Σ̂|− 1
2 exp

(
−1

2
(x − 𝜇c)TΣ̂−1(x − 𝜇c)T

)
in place of the true but unknown conditional likelihoods P(x |Y = c) in the Bayes
classifier. Thus the LDA classifier predicts class 1 if and only if

L(2, 1) P(Y = 2) |2𝜋Σ̂|− 1
2 exp

(
−1

2
(x − 𝜇2)TΣ̂−1(x − 𝜇2)T

)
≤ L(1, 2) P(Y = 1) |2𝜋Σ̂|− 1

2 exp
(
−1

2
(x − 𝜇1)TΣ̂−1(x − 𝜇1)T

)
,
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and this inequality holds if and only if

−1
2

(x − 𝜇2)TΣ̂−1(x − 𝜇2)T + 1
2

(x − 𝜇1)TΣ̂−1(x − 𝜇1)T ≤ log
(

L(1, 2)
L(2, 1)

P(Y = 1)
P(Y = 2)

)
which holds if and only if

xT Σ̂−1 (𝜇2 − 𝜇1) ≤ 1
2

(
𝜇2

TΣ̂−1
𝜇2 − 𝜇1

TΣ̂−1
𝜇1

)
+ log

(
L(1, 2)
L(2, 1)

P(Y = 1)
P(Y = 2)

)
.

The LDA classifier therefore predicts class 1 if and only if x ⋅ v ≤ 𝛼, where

v = Σ̂−1 (𝜇2 − 𝜇1)

and

𝛼 = 1
2

(
𝜇2

TΣ̂−1
𝜇2 − 𝜇1

TΣ̂−1
𝜇1

)
+ log

(
L(1, 2)
L(2, 1)

P(Y = 1)
P(Y = 2)

)
.

That is, the LDA classifier predicts class 1 if and only if x is on one side of the hyper-
plane

{z ∈ ℝm : z ⋅ v = 𝛼}.

When P(Y = 1) = 1
2

and L(1, 2) = L(2, 1), the logarithmic term is zero and

𝛼 = 1
2

(
𝜇2

TΣ̂−1
𝜇2 − 𝜇1

TΣ̂−1
𝜇1

)
.

In the setting of Exercise 2.2, Σ = 1 and m = 1 (which means vector inner product is
scalar multiplication), so the LDA classifier predicts class 1 if and only if

x (𝜇2 − 𝜇1) ≤ 1
2

(�̂�2
2 − �̂�2

1) + log
(

L(1, 2)
L(2, 1)

P(Y = 1)
P(Y = 2)

)
.

If 𝜇2 − 𝜇1 > 0, the above condition is equivalent to

x ≤ 1
2

(𝜇2 + 𝜇1) + 1
𝜇2 − 𝜇1

log
(

L(1, 2)
L(2, 1)

P(Y = 1)
P(Y = 2)

)
,

which is the solution of part D of Exercise 2.2 with 𝜇1 and 𝜇2 substituted for 𝜇1
and 𝜇2.

Exercise 4.17 Let the orange data in Figure 4.31 be class 1 and let the purple data be
class 2. In the case of binary classification with 0–1 loss and uniform class prior prob-
abilities P(Y = 1) = P(Y = 2) = 1

2
, quadratic discriminant analysis predicts class 1

if and only if

|2𝜋Σ1|− 1
2 e−

1
2

(x−𝜇1)TΣ−1
1 (x−𝜇1) ≥ |2𝜋Σ2|− 1

2 e−
1
2

(x−𝜇2)TΣ−1
2 (x−𝜇2),

or equivalently (taking logs of both sides and moving terms), if and only if

(x − 𝜇2)TΣ−1
2 (x − 𝜇2) − (x − 𝜇1)TΣ−1

1 (x − 𝜇1) ≥ log |Σ1| − log |Σ2|.
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If we add the restrictions that 𝜇1 = 𝜇2 and Σ1 = 𝛼Σ2 for some 𝛼 > 1, which appear
to be approximately valid in the data illustrated in Figure 4.31, then quadratic dis-
criminant analysis predicts class 1 if and only if

(𝛼 − 1) (x − 𝜇1)TΣ−1
1 (x − 𝜇1) ≥ m log 𝛼.

Thus QDA predicts class 1 if and only if the feature vector x lies outside the ellipsoid

E =
{

z ∈ ℝm : (z − 𝜇1)TΣ−1
1 (z − 𝜇1) =

m log 𝛼
𝛼 − 1

}
.

Exercise 4.19 For any real numbers 𝛼 and 𝛽, for any integer 𝛿 ≥ 1,

K(x, w) = (𝛼 xTw + 𝛽)𝛿

=

(
m∑

j=1

𝛼 xjwj + 𝛽

)𝛿

=
∑

(k1,… , km, km+1)≥0
k1+⋯+km+km+1=𝛿

(
𝛿

k1,… , km, km+1

)
(𝛼x1w1)k1 ⋯ (𝛼xmwm)km 𝛽

km+1

=
∑

(k1,… , km, km+1)≥0
k1+⋯+km+km+1=𝛿

(
𝛿

k1,… , km, km+1

)
(x1w1)k1 ⋯ (xmwm)km 𝛼

k1+⋯+km 𝛽
km+1

by the multinomial theorem. Let 𝜙(x) be defined as a vector indexed by all
(k1,… , km) ≥ 0 such that k1 +⋯ + km ≤ 𝛿,

𝜙(x) =(((
𝛿

k1,… , km, 𝛿 − k1 −⋯− km

)
𝛼

k1+⋯+km 𝛽
𝛿−k1−⋯−km

) 1
2

xk1

1 ⋯ xkm
m

)
(k1,… , km)≥0
k1+⋯+km≤𝛿

.

Then

K(x, w) = 𝜙(x)T
𝜙(w).

If 𝛽 = 0 then all terms with km+1 > 0 are zero, so the index set runs over all
(k1,… , km) ≥ 0 such that k1 +⋯ + km = 𝛿.

Exercise 5.1 Following the hint, the risk can be decomposed into six terms:

R = ES,X,Y [(Y − f̂S(X))2]

= ES,X,Y [(Y − f (X) + f (X) − ES [̂fS(X)] + ES [̂fS(X)] − f̂S(X))2]

= ES,X,Y [(Y − f (X))2] + ES,X,Y [(f (X) − ES [̂fS(X)])2] + ES,X,Y [(ES [̂fS(X)] − f̂S(X))2]

+ 2ES,X,Y [(Y − f (X))(f (X)−ES [̂fS(X)])]+ 2ES,X,Y [(Y − f (X))(ES [̂fS(X)]− f̂S(X))]

+ 2ES,X,Y [(f (X) − ES [̂fS(X)])(ES [̂fS(X)] − f̂S(X))].
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In the first term, the random variable (Y − f (X))2 does not depend on S, so the expec-
tation over S can be dropped. Similarly, in the second term, where the random vari-
able (f (X) − ES [̂fS(X)])2 does not depend on S or Y. In the third term, the random
variable (ES [̂fS(X)] − f̂S(X))2 does not depend on Y, so the third term may be writ-
ten as

ES,X[(ES [̂fS(X)] − f̂S(X))2] = EX[ES[(ES [̂fS(X)] − f̂S(X))2]] = EX[VarS [̂fS(X)]]

(the first equality used the fact that X is independent of S). The fourth and fifth terms
both involve random variables of the form (Y − f (X))g(X) for some function g. These
two terms are both equal to zero: since E[Y |X] = f (X),

EX,Y [(Y − f (X))g(X)] = EX[g(X) EY |X[(Y − f (X))]] = 0.

The sixth term is shown to be zero in a similar way. It is the expected value of a
random variable which does not depend on Y, and since X is independent of S,

ES,X[(f (X) − ES [̂fS(X)]) (ES [̂fS(X)] − f̂S(X))]

= EX[(f (X) − ES [̂fS(X)]) ES[ES [̂fS(X)] − f̂S(X)]] = 0.

Exercise 6.1 Under squared-error loss, the risk is the squared bias of Z for 𝜃 plus the
variance of Z. Since c1 +⋯ + cL = 1,

Bias[Z] =
L∑

l=1

cl Bias[Zl] = 𝛽,

and since Z1,… , ZL are uncorrelated,

Var[Z] =
L∑

l=1

c2
l Var[Zl] =

L∑
l=1

c2
l 𝜎

2
l .

Thus minimizing the risk means minimizing

R = 𝛽
2 +

L∑
l=1

c2
l 𝜎

2
l

subject to the constraint c1 +⋯ + cL = 1. The Lagrangian for this constrained opti-
mization problem is

𝛽
2 +

L∑
l=1

c2
l 𝜎

2
l + 𝜆

(
1 −

L∑
l=1

cl

)
.

Differentiating with respect to cl and setting the derivative equal to zero yields

2 cl 𝜎
2
l − 𝜆 = 0.

That is, at the critical point

cl =
𝜆

2
1

𝜎
2
l

∝ 𝜎
−2
l .
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Using the fact that c1 +⋯ + cL = 1,

cl =
𝜎
−2
l∑L

k=1 𝜎
−2
k

.

The minimum risk is

𝛽
2 +

L∑
l=1

(
𝜎
−2
l∑L

k=1 𝜎
−2
k

)2

𝜎
2
l = 𝛽

2 +

(
1∑L

k=1 𝜎
−2
k

)2 L∑
l=1

𝜎
−2
l = 𝛽

2 + 1∑L
k=1 𝜎

−2
k

.

Exercise 6.5 Recall the notation of classification trees from Section 4.8: nc is the
number of training data of class c and nt

c is the number of training data of class c
which enter node t. At leaf node t, a classification tree applies Bayes’ theorem

P̂(Y = c |X ∈ t) ∝ P̂(X ∈ t |Y = c) P(Y = c)

and uses the estimate

P̂(X ∈ t |Y = c) =
nt

c

nc
.

Node t classifies all data which enter it as the class c which minimizes the estimated
posterior risk,

R̂(c |X ∈ t) =
C∑

d=1

L(d, c) P̂(Y = d |X ∈ t) ∝
C∑

d=1

L(d, c)
nt

d

nd
P(Y = d).

Now suppose a tree is grown until all leaf nodes have zero impurity, and let t be a leaf
node of this tree. All training data in t is of a single class, call it c′: that is, nt

c′
> 0

and nt
c = 0 for all c ≠ c′. The risk of predicting class c′ at leaf node t is

R̂(c′ |X ∈ t) ∝ L(c′, c′)
⏟⏟⏟

=0

nt
c′

nc′
P(Y = c′) +

C∑
d=1
d≠c′

L(d, c′)
nt

d

nd
⏟⏟⏟

=0

P(Y = d) = 0,

while the risk of predicting any other class c at leaf node t is

R̂(c |X ∈ t) ∝ L(c′, c)
⏟⏟⏟

>0

nt
c′

nc′
⏟⏟⏟

>0

P(Y = c′)
⏟⏞⏞⏟⏞⏞⏟

>0

+
C∑

d=1
d≠c′

L(d, c)
nt

d

nd
⏟⏟⏟

=0

P(Y = d) > 0.

Thus leaf node t predicts class c′ regardless of the values taken by the loss function
and regardless of the prior distribution on classes.
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Exercise 7.1 For any d, 0 ≤ d < n − 1, approximation f̂d is found by solving the opti-
mization problem

minimize
(𝜃0, 𝜃1,… , 𝜃d) ∈ ℝd+1

n∑
i=1

(
yi −

d∑
j=1

𝜃j xj
i

)2

,

and approximation f̂d+1 is found by solving the optimization problem

minimize
(𝜃0, 𝜃1,… , 𝜃d, 𝜃d+1) ∈ ℝd+2

n∑
i=1

(
yi −

d+1∑
j=1

𝜃j xj
i

)2

.

Since any vector (𝜃0, 𝜃1,… , 𝜃d) considered in the upper problem corresponds to a
vector (𝜃0, 𝜃1,… , 𝜃d, 0) considered in the lower problem, the solution to the lower
problem is at least as good as the solution to the upper problem, that is, R̂train(̂fd+1) ≥
R̂train(̂fd). If R̂train(̂fd+1) = R̂train(̂fd), then 𝜃d+1 = 0 in the solution of the lower problem
since the solutions to these optimization problems are unique (by Exercise 3.2). The
event 𝜃d+1 = 0 has probability zero since 𝜃d+1 is Gaussian-distributed (as we saw in
Section 3.6). When d ≥ n − 1, there are enough parameters (𝜃0, 𝜃1,… , 𝜃d) to inter-
polate the points (x1, y1),… , (xn, yn), at which point R̂train(̂fd) = 0. Specifically, when
d ≥ n − 1, any parameter vector (𝜃0, 𝜃1,… , 𝜃d) which solves the system of equations

⎡⎢⎢⎢⎢⎣

1 x1 x2
1 … xd

1

1 x2 x2
2 … xd

2

⋮ ⋮ ⋮ ⋮

1 xn x2
n … xd

n

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜃0
𝜃1
𝜃2
⋮
𝜃d

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
y1
y2
⋮
yn

⎤⎥⎥⎥⎦
produces an approximation f̂d with zero training risk (since the xi’s are distinct, the
rows of the matrix are independent, and the system is solvable when d ≥ n − 1). In
terms of bias and variance, as d increases, the bias of f̂d goes down and the variance
of f̂d goes up. Selecting a model based on the criterion of minimizing training risk
will tend to result in selecting an overfit model.

Exercise 7.5 By Exercise 7.3,

Var[R̂valid(̂f )] = 1
ñ

R(̂f ) (1 − R(̂f )).

As a function of R(̂f ), this increases from zero up to a unique maximum at R(̂f ) = 1
2
,

and then decreases.

(A) We choose ñ as small as possible so that

1
ñ
𝜌 (1 − 𝜌) ≤ 𝜎

2,

so ñ = ⌈ 𝜌(1−𝜌)
𝜎2 ⌉.
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(B) This is (A) with the 𝜌 chosen to maximize the upper bound on the variance,
that is, 𝜌 = 1

2
. This gives ñ = ⌈ 1

4𝜎2 ⌉.

(C) ñ = 1875.

(D) The desired value for 𝜎 is unattainable unless R(̂f ) turns out to be consider-
ably smaller than upper bound provided (𝜌 = 0.25)—a situation we would be
unlikely to recognize without using much of the available data for validation.
In case (D), either much more than 1800 data are needed, or the target upper
bound for the standard deviation (𝜎 = 0.01) must be relaxed.

Exercise 10.2 For any c = 1,… , C and any j = 0,… , m,

𝜕

𝜕𝜃c,j
R̂train = −

n∑
i=1

𝜕

𝜕𝜃c,j
T(xi, 𝜃yi

) +
n∑

i=1

∑C
d=1 exp(T(xi, 𝜃d)) 𝜕

𝜕𝜃c,j
T(xi, 𝜃d)∑C

d=1 exp(T(xi, 𝜃d))
.

For any c = 1,… , C, any d = 1,… , C, and any j = 0,… , m,

𝜕

𝜕𝜃c,j
T(X, 𝜃d) =

⎧⎪⎨⎪⎩
0 if c ≠ d
1 if c = d and j = 0
Xj if c = d and j > 0

.

Thus for any c = 1,… , C,

𝜕

𝜕𝜃c,0
R̂train = −

n∑
i=1
yi=c

1 +
n∑

i=1

exp(T(xi, 𝜃c))∑C
d=1 exp(T(xi, 𝜃d))

and for any j = 1,… , m,

𝜕

𝜕𝜃c,j
R̂train = −

n∑
i=1
yi=c

xij +
n∑

i=1

xij
exp(T(xi, 𝜃c))∑C

d=1 exp(T(xi, 𝜃d))
.

Exercise 10.4 The halting criterion is as follows. Having proposed the parameter
value 𝜃i+1, apply the level-𝛼 one-sided Z-test developed in part (C) of Exercise
7.5 to test the null hypothesis R(̂f𝜃i+1

) ≥ R(̂f𝜃i
) against the alternative hypothesis

R(̂f𝜃i+1
) < R(̂f𝜃1

). If this test retains the null hypothesis, halt and report 𝜃i as an opti-
mal value. If this test rejects the null hypothesis, continue the optimization. If it is
known in advance that at most I iterations will be performed, then applying Bonfer-
roni correction is equivalent to performing level- 𝛼

I
tests in the halting criterion.

Exercise 10.5 Let 𝛼 = E[X]. Since g is concave, there is a line through the point
(𝛼, g(𝛼)) such that the curve parametrized by (y, g(y)) is always on or below the line.
Let s be the slope of such a line, so

g(y) ≤ g(𝛼) + s(y − 𝛼)
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for all y ∈ ℝ. Then

E[g(X)] ≤ E[g(𝛼) + s(X − 𝛼)] = g(𝛼) + sE[X] − s𝛼 = g(E[X]).

If g is strictly concave, then

g(y) < g(𝛼) + s(y − 𝛼)

except at the point y = 𝛼, so

E[g(X)] < g(E[X])

unless P(X = 𝛼) = 1.

Exercise 10.6 Let X be a random variable with density P0 and let Z be a random
variable with density P1. We observe that

E

[
P1(X)

P0(X)

]
= ∫

P1(x)

P0(x)
P0(x) dx = ∫x:P0(x)>0

P1(x) dx = P(P0(Z) > 0) ≤ 1,

with equality if and only if

P(P0(Z) > 0) = 1.

Now

−E

[
log

(
P0(X)

P1(X)

)]
= E

[
log

(
P1(X)

P0(X)

)]
,

and applying Jensen’s inequality to the random variable P1(X)
P0(X)

, since log is strictly

concave on the positive reals,

E

[
log

(
P1(X)

P0(X)

)]
≤ log

(
E

[
P1(X)

P0(X)

])
≤ 0

with equality if and only if P( P1(X)
P0(X)

= c) = 1 for some constant c and P(P0(Z) > 0) =
1. The equality conditions imply that for any set S, P(X ∈ S) = c P(Z ∈ S). The par-
ticular case S = {x : P0(x) > 0} has

1 = P(X ∈ S) = c P(Z ∈ S) = c,

so c = 1. Therefore

E

[
log

(
P0(X)

P1(X)

)]
≥ 0

with equality if and only if P( P1(X)
P0(X)

= 1) = 1.
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Exercise 10.8 The Lagrangian for maximizing the log-likelihood subject to the con-
straint w1 +⋯ + wJ = 1 is

J∑
j=1

⎛⎜⎜⎜⎝
n∑

i=1
zi=j

log
(

wj |2𝜋Σj|− 1
2 e

− 1
2

(xi−𝜇j)
TΣ−1

j (xi−𝜇j)
)⎞⎟⎟⎟⎠

+ 𝜆

(
1 −

J∑
j=1

wj

)
.

Neglecting constants, this is

J∑
j=1

⎛⎜⎜⎜⎝
|{i : zi = j}| logwj −

1
2
|{i : zi = j}| log |Σj| − 1

2

n∑
i=1
zi=j

(xi − 𝜇j)
TΣ−1

j (xi − 𝜇j)

⎞⎟⎟⎟⎠
+ 𝜆

(
1 −

J∑
j=1

wj

)
.

The derivative with respect to wj is

|{i : zi = j}|
wj

− 𝜆,

and setting this equal to zero and solving for wj yields the solution

wj =
|{i : zi = j}|

𝜆
.

Since

1 =
J∑

j=1

wj =
J∑

j=1

|{i : zi = j}|
𝜆

= n
𝜆

,

it follows that 𝜆 = n and so for all j, the unique critical point for wj is

ŵj =
|{i : zi = j}|

n
.

Maximization of the Lagrangian with respect to 𝜇1,… ,𝜇J ,Σ1,… ,ΣJ when z1,… , zn
are known is identical to maximizing the log-likelihood of the model used in the
quadratic discriminant classifier: this was done in Exercise 4.5.

Exercise 11.2 Since X is uniformly distributed in the unit ball

B =
{

(z1, z2,… , zm) : z2
1 + z2

2 +⋯ + z2
m ≤ 1

}
,

the density of X1 at the point x1 is equal to the (m − 1)-dimensional volume of the
intersection of B with the hyperplane

H = {(z1, z2,… , zm) : (z1, z2,… , zm) ⋅ (1, 0,… , 0) = x1}.
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The intersection B ∩ H is empty (so the volume is zero) unless x1 ∈ [−1, 1], in which
case the intersection B ∩ H is an (m − 1)-dimensional ball centered at (x1, 0,… , 0)

with radius
√

1 − x2
1. Thus the density of X1 at x1 is

V

(
m − 1,

√
1 − x2

1

)
=
𝜋

m−1
2
(
1 − x2

1

)m−1
2

Γ
(

m−1
2

+ 1
) ∝

(
1 − x2

1

)m−1
2 .

for x1 ∈ [−1, 1]. The density of X1 is symmetric about zero, so X1 has the distribution
of N × |X1|, where the sign N is uniformly distributed on the set {−1, 1} and |X1| is a
random variable supported on the interval [0, 1], independent of N. This implies that

E[X1] = 0 and Var[X1] = E
[
X2

1

]
− E[X1]2 = E

[
X2

1

]
.

The distribution of X2
1 is obtained by

P
(
X2

1 ≤ x
)
= P

(|X1| ≤ √
x
)
∝ ∫

√
x

0

(
1 − x2

1

)m−1
2 dx1 = ∫

x

0
(1 − u)

m−1
2

1
2

u−
1
2 du,

using the substitution x1 = u
1
2 in the last integral. From this we recognize that X2

1 ∼
Beta ( 1

2
, m+1

2
), and therefore

Var[X1] = E
[
X2

1

]
=

1
2

1
2
+ m+1

2

= 1
m + 2

.

Exercise 11.4 Let D be the distance between the origin and a point uniformly dis-
tributed the unit ball centered at the origin. For r ∈ [0, 1], the density of D is propor-
tional to the surface area of an m-dimensional sphere of radius r,

S(m, r) = 𝜋
m
2 m rm−1

Γ
(

m
2
+ 1

) ∝ rm−1
.

From this we recognize that D is distributed Beta(m, 1). For the squared distance,

P(D2 ≤ x) = P(D ≤ √
x) ∝ ∫

√
x

0
rm−1 dr = ∫

x

0
u

m−1
2

1
2

u−
1
2 du,

using the substitution r = u
1
2 in the last integral. From this, we recognize that D2 ∼

Beta( m
2

, 1).
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Exercise 11.7 The inner sphere is tangent to the radius- 1
2

sphere centered at

( 1
2
, 1

2
,… , 1

2
) at the point (x, x,… , x), where x is the smaller of the two solutions to the

equation

m
(

x − 1
2

)2
=

(1
2

)2

that is, x = 1
2
− 1

2
√

m
. The radius of S is the distance from (x, x,… , x) to the origin,

which is √√√√√m

(
1
2
− 1

2
√

m

)2

=
√

m − 1

2
.

This radius exceeds 1 (and so S contains a point outside C) for all m ≥ 10.

Exercise 11.10 Let 1 denote the n-long column vector of all 1’s. Multiplication of X
on the left by the n × n matrix of all 1’s, 11T, results in a matrix with constant columns,
and each entry in the ith column of 11TX is the sum of all elements in the ith column
of X. Thus each entry in the ith column of 1

n
11TX is the mean of all elements in the

ith column of X, so

1
n

11TX =
⎡⎢⎢⎢⎣

x̄
x̄
⋮
x̄

⎤⎥⎥⎥⎦
.

Therefore,

HX =
(

I − 1
n

11T
)

X = X − 1
n

11TX = X −
⎡⎢⎢⎢⎣

x̄
x̄
⋮
x̄

⎤⎥⎥⎥⎦
is the matrix formed by subtracting x̄ from each row of X. The idempotency of H could
be said simply to follow from the above property, but formally it is shown by

H2 =
(

I − 1
n

11T
)2

= I − 2
n

11T + 1
n2

1 1T1
⏟⏟⏟

=n

1T = I − 1
n

11T = H.

The rows of HX are (x1 − x̄, x2 − x̄,… , xn − x̄), so

1
n

(HX)T(HX) = 1
n

n∑
i=1

(xi − x̄)(xi − x̄)T = S.
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Exercise 11.12 Since Q is an orthogonal matrix, its columns are all mutually orthog-
onal unit vectors, so (1) is satisfied. For (2), let z be an arbitrary m-dimensional unit
vector. The sample variance of HXz is, by Exercise 11.10,

1
n

(Xz)TH(Xz) = zT
(1

n
XTHX

)
z = zTSz = zTQ𝚲QTz = (QTz)T𝚲(QTz).

Note that since z is a unit vector and Q is orthogonal, QTz is also a unit vector
(because ‖QTz‖2 = zTQQTz = zTz = ‖z‖2 = 1). Since 𝚲 = diag(𝜆1, 𝜆2,… , 𝜆m), the
last expression for the sample covariance of HXz can be written as

m∑
i=1

𝜆i (QTz)2
i .

Since 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆m ≥ 0, the above expression for the sample covariance of
HXz is maximized when z is chosen so that

QTz =
⎡⎢⎢⎢⎣

1
0
⋮
0

⎤⎥⎥⎥⎦
or equivalently, multiplying on the left by Q, when

z = Q

⎡⎢⎢⎢⎣
1
0
⋮
0

⎤⎥⎥⎥⎦
= Q1,

unless 𝜆1 = 0. But if 𝜆1 = 0 then for all z,

m∑
i=1

𝜆i (QTz)2
i =

m∑
i=1

0 (QTz)2
i = 0

and we are free to choose z = Q1 as the (non-unique) maximizer. For (3), suppose
we have shown that (3) holds for all j = 1,… , h. We will show that (3) holds for j =
h + 1. Let z be an arbitrary m-dimensional unit vector, and observe that the sample
covariance between HXQj and HXz is

1
n

(HXQj)
THXz = … (as above)… = Qj

TQ𝚲QTz.

Since Q is orthogonal,

Qj
TQ𝚲QTz = [0,… , 0, 1, 0,… , 0]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1 in position j

𝚲QTz = 𝜆j(Q
Tz)j.

Thus if the sample covariance between HXQj and HXz is zero for j = 1,… , h then

𝜆j(Q
Tz)j = 0 for j = 1,… , h.
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As in (2), finding z which maximizes the sample variance of HXz is equivalent to
finding z which maximizes

m∑
i=1

𝜆i (QTz)2
i ,

and if the sample covariance between HXQj and HXz is zero for j = 1,… , h then the
expression to be maximized becomes

m∑
i=h+1

𝜆i (QTz)2
i .

The argument that z=Qh+1 maximizes this expression (whether 𝜆h+1 > 0 or 𝜆h+1 = 0)
is the same as the argument for z = Q1 in (2).

Exercise 11.15 For part (A), let c𝜆 = h(𝜃) and let 𝜃 be a solution to the constrained
optimization problem

minimize over 𝜃: g(𝜃)

subject to: h(𝜃) ≤ c𝜆.

If g(𝜃) < g(𝜃) then, since h(𝜃) ≤ h(𝜃),

g(𝜃) + 𝜆 h(𝜃) < g(𝜃) + 𝜆 h(𝜃),

contradicting the fact that 𝜃 minimizes g(𝜃) + 𝜆h(𝜃). So g(𝜃) ≥ g(𝜃), that is, 𝜃 is a
solution to the constrained problem. For part (B), let 𝜃 be a solution to the constrained
optimization problem

minimize over 𝜃: g(𝜃)

subject to: h(𝜃) ≤ c

(if this constrained optimization problem has more than one solution, take 𝜃 so that
h(𝜃) is as small as possible). If h(𝜃) < c, then 𝜃 is a local minimum of g. Since g is
convex, 𝜃 is a global minimum of g, and therefore 𝜃 is a solution to the unconstrained
optimization problem

minimize over 𝜃: g(𝜃) + 𝜆c h(𝜃)

for the value 𝜆c = 0. If h(𝜃) = c, then 𝜃 is a solution to the constrained optimization
problem

minimize over 𝜃: g(𝜃)

subject to: h(𝜃) = c.

Let 𝜕H = {𝜃 : h(𝜃) = c} be the boundary of the set H = {𝜃 : h(𝜃) ≤ c}. At every point
𝜃 ∈ 𝜕H, the gradient ∇h(𝜃) is orthogonal to 𝜕H and points outside of H (since h(𝜃)
increases as 𝜃 moves from inside H = {𝜃 : h(𝜃) ≤ c} across the boundary 𝜕H = {𝜃 :
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h(𝜃) = c} to the complement of H, which is {𝜃 : h(𝜃) > c}). In particular, ∇h(𝜃) is
orthogonal to H at 𝜃. Also, ∇g(𝜃) is orthogonal to H at 𝜃, because if it were not, then
a small move within H would reduce the value of g, and 𝜃 would not be a solution to
the constrained optimization problem. That is, there is a scalar 𝜆 such that

∇g(𝜃) = 𝜆∇h(𝜃).

Let 𝜕G = {𝜃 : g(𝜃) = g(𝜃)} be the boundary of the set G = {𝜃 : g(𝜃) ≤ g(𝜃)} (G is
also a convex set). At every point 𝜃 ∈ 𝜕G, the gradient ∇g(𝜃) is orthogonal to 𝜕G
and points outside of G. The interior of H and G have empty intersection, because if
they did not, there would exist a point 𝜃 such that g(𝜃) < g(𝜃) and h(𝜃) < c, and then
𝜃 would not be a solution to the constrained optimization problem. Thus at 𝜃, which
is in both 𝜕H and 𝜕G, the gradients ∇g(𝜃) and ∇h(𝜃) point in opposite directions,
that is, 𝜆 < 0. Let 𝜆c = −𝜆. Then 𝜆c ≥ 0 and

∇g(𝜃) + 𝜆c ∇h(𝜃) = 0.

Since 𝜆c ≥ 0, g(𝜃) + 𝜆ch(𝜃) is a convex function. Since ∇(g(𝜃) + 𝜆ch(𝜃))||𝜃=𝜃 = 0, 𝜃

is a local, and hence global, minimum of g(𝜃) + 𝜆ch(𝜃). That is, 𝜃 is a solution of the
unconstrained optimization problem.

Exercise 12.1 For part (A),

R(̂f ) = E(X,Y)[L(Y , f̂ (X))]

= L(1, 2) P(Y = 1, f̂ (X)= 2)+L(2, 1) P(Y = 2, f̂ (X)= 1)

= L(1, 2) P(̂f (X)= 2 | Y = 1) P(Y = 1)+L(2, 1) P(̂f (X)= 1 | Y = 2) P(Y = 2)

= L(1, 2) P(̂f (X)= 2 | Y = 1) P(Y = 1)+L(2, 1) (1− P(̂f (X)= 2 | Y = 2)) P(Y = 2)

= L(1, 2) P(S(X)≥ 𝜏 | Y = 1) P(Y = 1)+L(2, 1) (1− P(S(X)≥ 𝜏 | Y = 2)) P(Y = 2).

For part (B), we apply part (A) to solve

0 = d
d𝜏

R(̂f )

= L(1, 2)
d

d𝜏
P(S(X) ≥ 𝜏 |Y = 1) P(Y = 1)

+L(2, 1)
d

d𝜏
(1 − P(S(X) ≥ 𝜏 |Y = 2)) P(Y = 2)

= L(1, 2)
d

d𝜏
(1 − P(S(X) < 𝜏 |Y = 1)) P(Y = 1)

+L(2, 1)
d

d𝜏
P(S(X) < 𝜏 |Y = 2) P(Y = 2)

= L(1, 2) (−P(𝜏 |Y = 1)) P(Y = 1) + L(2, 1) P(𝜏 |Y = 2) P(Y = 2).
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Putting the losses on one side yields

L(2, 1)
L(1, 2)

= P(𝜏 |Y = 1)
P(𝜏 |Y = 2)

P(Y = 1)
P(Y = 2)

.

Exercise 12.2 Since F is a cumulative distribution function, lims→−∞ F(s) = 0 and
lims→∞ F(s) = 1, and since F is continuous and strictly increasing, it is a one-to-one
(hence invertible) and onto map of (−∞,∞) to (0, 1). For any u ∈ (0, 1),

P(U ≤ u) = P(F(S) ≤ u) = P(S ≤ F−1(u)) = F(F−1(u)) = u.

Thus U is uniformly distributed on (0, 1). Nothing changes if F(s) = P(S ≥ s) (that is,
U = F(S) is still uniformly distributed on (0, 1)).

Exercise 12.3 By application of Exercise 12.2, the distribution of (U1, U2) = h(S1, S2)
is uniform on (0, 1) × (0, 1) since each coordinate is uniformly distributed on (0, 1)
and the two coordinates are independent. By definition of the uniform distribution,
the area under the ROC curve is the probability that the point (U1, U2) is under the
ROC curve, and since h is one-to-one, this is the probability that h maps (S1, S2) to a
point under the ROC curve. Now h maps a point (s1, s2) under the ROC curve if and
only if the point (P(S1 ≥ s1), P(S2 ≥ s2)) is below the point (P(S1 ≥ s1), P(S2 ≥ s1)),
that is, if and only if P(S2 ≥ s2) ≤ P(S2 ≥ s1). Since P(S2 ≥ s) is a strictly decreasing
function of s, h maps a point (s1, s2) under the ROC curve if and only if s2 ≥ s1. Thus

P((U1, U2) is under the ROC curve) = P(S2 ≥ S1).

Exercise 12.7 Let Ei be the event that the ith test, out of the T − T0 tests in which
the null hypothesis is false, incorrectly rejects the null. By Boole’s inequality, the
probability that at least one test incorrectly rejects the null is

p(s) = P(E1 ∪⋯ ∪ ET−T0
) ≤ P(E1) +⋯ + P(ET−T0

) = (T − T0) s.

The solution to the equation p(s) = 𝛼, for 0 < 𝛼 < 1, is

s = 𝛼

T − T0
.

The value of T0 is unknown, but since p(s) is a decreasing function of T0, the value of
s obtained by replacing T0 with zero,

s0 = 𝛼

T
,

provides a computable value such that p(s0) ≤ 𝛼.



C

Converting Between Normal
Parameters and Level-Curve
Ellipsoids

Let Z be a m-dimensional normal random variable with mean 𝜇 and covariance matrix
Σ. The density function for Z is

𝜙(z) = (2𝜋)−
m
2 |Σ|− 1

2 e−
1
2

(z−𝜇)TΣ−1(z−𝜇),

so the level curves of the density can be written as

{z : 𝜙(z) = c} =
{

z : (z − 𝜇)TΣ−1(z − 𝜇) = −2 log
(

c(2𝜋)
m
2 |Σ| 1

2

)}
,

so level curves of 𝜙(z) are level curves of (z − 𝜇)TΣ−1(z − 𝜇).
By a well-known theorem,1 the random variable (Z − 𝜇)TΣ−1(Z − 𝜇) is distributed

𝜒
2
m. Thus the ellipsoid centered at 𝜇, bounded by a level curve of the density, and

containing total probability mass 𝜌 is that given by the equation

(z − 𝜇)TΣ−1(z − 𝜇) = k2, (C.1)

where k2 is the 𝜌-quantile of a 𝜒2
m random variable.

1 See, for example, Mardia et al. (1979, Theorem 2.5.2).
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C.1 Parameters to Axes

To compute the axes of the ellipsoid, given 𝜌 (and hence k) and covariance matrix Σ,
let Λ = diag(𝜆1,… , 𝜆m) be the diagonal matrix of eigenvalues of Σ and let Γ be the
corresponding matrix of eigenvectors (in columns) so that

ΓΛΓT = Σ.

Note that Γ is orthonormal, and that all the eigenvalues are positive since Σ is positive
definite, so Σ−1 = ΓΛ−1ΓT.

Let w = ΓT(z − 𝜇), so (C.1) is equivalent to

k2 = (z − 𝜇)TΓΛ−1ΓT(z − 𝜇) = wTΛ−1w.

The ellipsoid

{w : wTΛ−1w = k2}

has axes

{eik
√
𝜆i : i = 1,… , m},

where e1,… , em are the standard basis vectors of ℝm. The axes are the columns of

matrix kΛ
1
2 . The volume of the ellipsoid is

𝜋
m
2

Γ
(

m
2
+ 1

) m∏
i=1

k
√
𝜆i =

𝜋
m
2

Γ
(

m
2
+ 1

)km|Λ| 1
2 = 𝜋

m
2

Γ
(

m
2
+ 1

)km|Σ| 1
2 .

The axes of ellipsoid (C.1) are obtained by transforming back by z = Γw + 𝜇. They

are the columns of ΓkΛ
1
2 (and the ellipsoid is centered at 𝜇).

C.2 Axes to Parameters

To compute the covariance matrix, given k and a set of axes {a1,… , am}, let Γ be the
m × m matrix whose ith column is ai‖ai‖ and let Λ be the m × m diagonal matrix whose

ith diagonal element is ‖ai‖2

k2 . Then Σ = ΓΛΓT. For computational convenience, we
note that

Σij = k−2
m∑

l=1

alialj (Σ−1)ij = k2
m∑

l=1

alialj‖al‖−4 and |Σ| = m∏
l=1

(‖al‖
k

)2

.

The volume of the ellipsoid is

𝜋
m
2

Γ
(

m
2
+ 1

) m∏
i=1

‖ai‖.



D

Training Data and Fitted
Parameters

D.1 Training Data

The training data used in the examples of Chapters 4 and 6 are:

Orange Blue Purple

1.01835311 3.858188069 −2.44778619 0.411762949 0.88920445 −1.554771660
−0.39035021 2.296152712 −1.81633020 0.956820553 0.59253129 −2.200991648

1.45409603 2.767220184 −3.71879213 0.656435644 0.81555510 −3.534221374
1.25139303 2.240148404 −4.33296530 1.865524891 0.74919674 −2.554551343
1.47861376 4.169890444 −2.95165877 −1.981955555 1.01707661 −3.740811041
1.97106252 3.309064594 −3.23600711 0.318457605 0.83830882 −2.892823356
1.29525413 3.664758067 −3.71472179 1.963290297 0.04673084 −5.136697938
2.36633865 3.886386797 −0.67750270 0.573221485 1.81426495 −4.178348176
0.61478730 2.941948574 −3.20171872 1.851323283 1.09740306 −3.540756942
1.13013934 1.769883249 −4.72701125 1.157517690 2.57366436 −3.829619656
3.08806139 2.460464018 −4.17015401 2.875329033 1.74152363 −4.129447431
1.65043358 2.074489002 −3.04809093 −0.775681901 0.80962318 −2.734405293
1.13657335 2.817216261 −2.38590381 −1.403671955 1.04180389 −2.818153236
1.21845986 2.893188673 −3.93859341 1.315428603 1.57861364 −1.891101028
0.51819402 2.294952866 −2.73051526 0.817989003 1.42890558 −1.583289100
2.24860514 4.081035106 −2.76453011 −0.291580652 2.29935588 −2.998218571
2.02139794 1.975443811 0.10086777 −1.546832786 2.01047969 −3.146778337
0.65409179 1.920205104 −1.81167675 −0.534785884 3.26547873 −0.587171020
2.67129310 1.404452541 −0.80292510 −1.965567682 1.92613576 −1.995552239
0.66700023 1.107842837 −0.07977799 −0.206200508 2.07894932 −1.814050173

(continued)
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Orange Blue Purple

−0.72131160 2.432526464 −1.32543573 −1.136373467 2.55846461 −2.670704773
−1.78554518 0.958900921 −2.11904040 0.142818093 2.28421459 −0.562091196
−0.38147151 1.696933085 −1.29248964 −1.680869124 2.81930129 −0.897591518
−1.63970921 1.195835127 −2.70512615 −1.698475625 0.81160670 −0.017597401

0.16660581 1.627306919 −1.42575626 0.491183425 1.00021220 1.369779746
−0.53473335 0.256732142 −0.34499844 −1.478875991 1.85579676 −0.780971996

0.77922983 2.658307727 −0.41313214 −2.606355508 2.94224740 −0.917127449
−0.43405071 1.155635446 −1.73804314 −0.377478946 3.39946795 −1.290240370
−0.00392283 2.786281150 −3.34726854 −0.489081734 1.61400622 −0.098490359
−1.48783130 2.842362043 −3.33693741 0.652810034 3.07596402 −2.355845314
−1.62056323 2.471772577 −0.99798094 −0.197343843 2.70316623 −0.784568415
−1.13040474 3.993191633 −0.81619694 −0.904100285 0.16866374 0.087303778
−0.94676657 2.107545261 −0.83144496 −2.106851992 2.36020820 0.386671144
−0.87149783 0.443262467 −0.05076807 −0.942751092 1.54411490 1.270567501

0.72172938 1.330088990 0.40901775 −0.150548721 0.84342988 1.192702586
−1.48759633 2.142702781 −0.86619007 −0.422721220 −0.09665570 1.763367271
−1.30630746 0.337073803 0.33547868 −0.368116275 1.08326952 −0.506463053
−0.46927054 1.544676753 −0.42808889 −2.245273519 1.08068246 −0.110448148
−0.70760372 0.947117303 −1.02428998 −0.978266671 1.88326233 1.701906397

1.43817519 1.770816447 0.50581813 −0.924577068 1.68723111 0.455089492
−2.37831742 −0.464470754 −1.05376056 −0.235850726 1.82308565 0.805090510

0.74073626 0.883323110 0.38703888 0.472247048 1.90900463 −0.681547255
−1.02523935 1.694383192 −1.13726330 −1.158928528 1.04463161 0.587939704
−2.62367442 −0.095448930 −0.14537709 0.706053317 1.73276164 0.323584212
−1.72811292 0.300693402 −0.59091457 −0.202037204 −0.20000141 −0.107531745
−1.55782155 −0.197322454 1.56382176 1.917287127 −0.09333630 −0.127257567
−1.66553512 1.551425239 −1.23286663 −0.517321830 −0.27606741 3.713758001
−0.93240616 0.997272107 0.52671043 −2.443710226 0.71040903 1.743478628

−0.56358878 −1.396337990 0.19262828 −0.008076803
1.74211005 1.064850079
0.33966526 0.692246616

−0.15690328 0.054194159
0.85525127 1.068336589

D.2 Fitted Model Parameters

This section contains fitted parameters for some of the models fit in Chapter 4.

D.2.1 Quadratic and Linear Discriminant Analysis

𝜇1 = (0.09313711, 1.9437887) 𝜇2 = (−1.56152789,−0.2902658)

𝜇3 = (1.39352262,−0.9527820)

Σ̂1 =
(

2.0367611 0.9371364
0.9371364 1.3460017

)
Σ̂2 =

(
2.2583093 −0.8557902

−0.8557902 1.5960710

)

Σ̂3 =
(

0.8889359 −0.3959931
−0.3959931 3.5267115

)

Σ̂ =
(

1.703569 −0.119592
−0.119592 2.198208

)
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D.2.2 Logistic Regression

The approximate maximum-likelihood estimate of the parameter 𝜃 is

𝜃 =
⎛⎜⎜⎝

0 0 0
0.4198989 −0.8577562 −1.560357
0.3935905 1.2712873 −1.542454

⎞⎟⎟⎠ .
Thus the linear functions which define the log-odds in favor of class 2 or class 3 over
class 1 are, respectively,

T2 = T((x1, x2), 𝜃2) = 0.4198989 − 0.8577562 x1 − 1.560357 x2

and

T3 = T((x1, x2), 𝜃3) = 0.3935905 + 1.2712873 x1 − 1.542454 x2.

D.2.3 Neural Network

The fitted parameters of a single-hidden layer neural network with two hidden neu-
rons are as follows. For the hidden layer,

𝜃
(1)
1,0 = −5.27 𝜃

(1)
1,⋆ = (0.70,−1.46)

𝜃
(1)
2,0 = 2.72 𝜃

(1)
2,⋆ = (1.99, 1.23)

𝜃
(2)
1,0 = 7.93 𝜃

(2)
1,⋆ = (−655.57,−5.94)

𝜃
(2)
2,0 = 9.72 𝜃

(2)
2,⋆ = (311.05,−11.44)

𝜃
(2)
3,0 = −16.89 𝜃

(2)
3,⋆ = (344.26, 16.93).

As functions of the features,

T1 = 7.93− 655.57 𝜎(−5.27+ 0.70x1 − 1.46x2)− 5.94 𝜎(2.72+ 1.99x1 + 1.23x2)

T2 = 9.72+ 311.05 𝜎(−5.27+ 0.70x1 − 1.46x2)− 11.44 𝜎(2.72+ 1.99x1 + 1.23x2)

T3 =−16.89+ 344.26 𝜎(−5.27+ 0.70x1 − 1.46x2)+ 16.93 𝜎(2.72+ 1.99x1 + 1.23x2).

D.2.4 Classification Tree

See Figure 4.22.
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Verhulst, P. F. (1844). Recherches in mathématiques sur la loi d’accroissement de la popula-
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