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FOREWORD
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THs 1s the Astronomy section of my large physics-
teaching text Physics for the Inquiring Mind, re-
printed in this book for the same special purpose.
Astronomy is part of physical science, but I do not
use it here as one more field of knowledge to learn.
It is here for a very important purpose: to provide
a clear example of the growth and use of THEORY
in science. With that aim this section deals with
the history of our knowledge of the solar system—
Sun, Moon, Earth, and planets—from early watch-
ing and simple fables to the magnificent success of
Newton's gravitational theory. By giving a simple
historical treatment we can make the nature of
theory clearer than by describing it ready-made.
A genuine understanding of theory and its rela-
tionship with experiment is essential if one wishes
to know science; and gravitational planetary theory
gives the best example here because readers need
not just learn its results but can see why it is
needed and how it is formed.

It would be a great further advantage if this his-
tory could also show the interplay between scien-
tific discovery and the social environment, and the
reactions between scientific theory and other
branches of philosophy. However, that would re-
quire far more discussion of historical background.
So this section is not a fair setting-forth of history.
If accounts of people show a one-sided tendency
to moralize, or if a few great scientists seem to

stand like isolated lighthouses in a formless ocean,
remember that this is not fair history, but only a
restricted summary for a special purpose.

These chapters were published in the main text
two decades ago. In the course of time the fabric of
descriptions and explanations has developed a
frayed edge here and there—also new discoveries
have offered embroidery to add decoration. But to
make corrections that would bring the material up
to date would not only increase printing costs but
would also probably add new frayed edges by
changes of style. 5o, since I intend the present
book to show development of theory rather than
give up-to-date information, 1 have kept to the
original text with only a few necessary corrections
and some condensation.

In the chapters of Physics for the Inquiring Mind
that follow the astronomy section {400 pages, more
than half the book ), readers will find other uses of
theory as well as experiment in developing our
knowledge of energy, electricity, atoms, nuclei. . . .

In the present book I have used the same figure
numbers for illustrations as in the large text: so
they serve as useful landmarks common to both
books.

Eric M. Rocems

Princeton, New Jersey
May, 1981
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SIGNS AND ABBREVIATIONS
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% in5 x 2 = 10 means “multiplied by”
« inb-2=10
or in force - time
means “multiplied by”
=~ means “equals approximately”
~ means “equals roughly”
means “is (or are) proportional to”
or “varies as’
£ means “change of”
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“Give me matter and motion, and I will construct the
universe.” —Rene Descartes (1640)

“... from the phenomena of motions to investigate the
forces of nature, and then from these forces to demon-
strate the other phenomena; . . . the motions of the
planets, the comets, the moon and the sea. .. ."

—Isaac Newron (1686)

“No one must think that Newton's great creation can
be overthrown by [Relativity] or any other theory.
His clear and wide ideas will forever retain their
significance as the foundation on which our modern
conceptions of physics have been built.”

—AvserT Emstem (1948)
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PRELIMINARY INTRODUCTION
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“What distinguishes the language of science from language as we ordinarily understand the
word? How is it that scientific language is international? . . . The super-national character
of scientific concepts and scientific language is due to the fact that they have been set up
by the best brains of all countries and all times. In solitude and yet in cooperative effort
as regards the final effect, they created the spiritual tools for the technical revolutions
which have transformed the life of mankind in the last centuries. Their system of concepts
has served as a guide in the bewildering chaos of perceptions, so that we learned to grasp

general truths from particular observations.”

—A. Emstemy, Out of My Later Years

B T e T N T o T M T e M T T o e T o e o T T e e o o T o e T A o L e

Introduction

In this book you can study some methods of
physical science and especially the development
and use of some scientific theories. You will learn
scientific facts and principles, some useful for life
in general, others important groundwork for dis-
cussions. To gain much from your reading you
need to learn this subject-matter carefully. In itself
it may seem unimportant—such factual knowledge
is easily forgotten,' and we are concerned with a
more general understanding which will be of last-
ing value to you as an educated person—yet we
shall use the factual knowledge as a means to im-
portant ends. The better your grasp of that knowl-
edge, the greater your insight into the science be-
hind it. And this book is concerned with the ways
and work of science and scientists.

In this book we choose Astronomy for our series
of samples of stages because it provides an unusu-
ally clear view of the growth of theories. We hope
to lead readers to an understanding of the use of
theories in science. However, to begin by discus-
sing scientific methods or the structure of science
would be like arguing about a foreign country be-
fore you have visited it. So we shall start with an
easy sample of physics—gravity and falling objects
—and then begin Astronomy.

What to Do about Footnotes

You are advised to read a chapter straight through
first, omitting the footnotes. Then reread carefully,
studying both text and footnotes. Some of the foot-
notes are trivial, but many contain important com-
ments relevant to the work of the course. They are
not minor details put there with a twinge of con-
science to avoid their being omitted altogether. They

1 Omnee learned, it is easily relearned if needed later. Much
of the difficulty of leaming a piece of jﬂaysics lies in undes-
standing its background. When you un erstand what physics
is driving at, the rules or calculations will seem sensible
a.ﬂd eas:,'.

rougnt o you by ne Mational Library of the Fhiippine

are moved out to make the text more continuous for
a first reading. Often the footnotes wander off on a
side issue and would distract attention if placed in
the main text. Yet this developing of new threads
itself shows the complex texture of scientific work;
so at a second reading you should include the
footnotes.

Falling Bodies

Watch a falling stone and reflect on man’s knowl-
edge of falling objects. What knowledge have we?
How did we obtain it? How is it codified into laws
that are clearly remembered and easily used? What
use is it? Why do we value scientific knowledge in
the form of laws? Try the following experiment be-
fore you read further. Take two stones (or books or
coins ) of different sizes. Feel how much heavier the
larger one is. Imagine how much faster it will fall
if the two are released together. You might well
expect them to fall with speeds proportional to their
weights: a two-ounce stone twice as fast as a one-
ounce stone. Now hold them high and release them
together. . . . Which are you going to believe: what
you saw, what you expected, or “what the book
says'?

People must have noticed thousands of years ago
that most things fall faster and faster—and that some
do not. Yet they did not bother to find out carefully
just how things fall. Why should primitive people
want to find out how or why? If they speculated at
all about causes or explanations, they were easily led
by superstitious fear to ideas of good and evil spirits.
We can imagine how such people living a dangerous
life would classify most normal occurrences as
“good” and many unusual ones as “bad"—today we
use “natural” as a term of praise and “unnatural”
with a flavor of dislike.

This liking for the usual seems wise: a haphazard
unregulated world would be an insecure one to live
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in. Children emerge from the sheltered life of a baby
into a hard unrelenting world where brick walls
make bruises, hot stoves make blisters. They want
a secure well-ordered world, bound by definite rules,
so they are glad to have its quirky behavior “ex-
plained” by reassuring statements. The pattern of
secking security in order, which we find in growing
children today, probably applied to the slower
growing-up of primitive savages into civilized men.
As civilization developed, the great thinkers codified
the world—inanimate nature and living things and
even the thoughts of man—into sets of rules and
reasons. Why they did this is a difficult question.
Perhaps some were acting as priests and teachers
for their simpler brethren. Perhaps others were
driven by childish curiosity—again a need to know
definitely, born of a sense of insecurity. Still others
may have been inspired by some deeper senses of
curiosity and enjoyment of thinking—senses rooted
in intellectual delight rather than fear—and these
men might be called true philosophers and scientists.

You yourself in growing up run through many
stages of knowledge, from superstitious nonsense to
scientific sense. What stage have you reached in the
simple matter of knowledge of falling objects? Check
your present knowledge by actually watching some
things fall. Take two different stomes (or coins)
and let them fall, starting together. Then start them
again together, this time throwing both outward
horizontally (Fig. 1-1). Then throw one outward

Fie. 1-1.

and at the same instant release the other to fall
vertically. Watch these motions again and again.
See how much information about nature you can
extract from such trials. If this seems a childish
waste of time, consider the following comments:

(i) This is experimenting. All science is built with
information from direct experiments like yours.

(ii) To physicists the experiment of dropping light
and heavy stones together is not just a fable of
history; it shows an amazing simple fact that is a
delight to see again and again. The physicist who
does not enjoy watching a dime and a quarter drop
together has no heart.

(iii) In the observed behavior of falling objects
and projectiles lies the germ of a great scientific
notion: the idea of fields of force, which plays an

essential part in the development of modern me-
chanics in the theory of relativity.

{iv) And here is the practical taunt: if you use
all your ingenuity and only household apparatus to
try every relevant experiment you can think of, you
will still miss some of the possible discoveries; this
field of investigation is so wide and so rich that a
neighbor with similar apparatus will find out some-
thing you have missed.

Mankind, of course, did not gather knowledge
this way. Men did not say, “We will go into the
laboratory and do experiments.” The experimenting
was done in daily life as they learned trades or de-
veloped new machines. You have been doing experi-
ments of a sort all your life. When you were a baby,
your bathtub and toys were the apparatus of your
first physics laboratory. You made good use of them
in learning about the real world; but rather poor
use in extracting organized scientific knowledge.
For instance, did your toys teach you what you have
now learned by experimenting on falling objects?

Out of man’s growing-up came some knowledge
and some prejudices. Out of the secret traditions of
craftsmen came organized knowledge of nature,
taught with authority and preserved in prized books.
That was the beginning of reliable science. If you
experimented on falling objects you should have
extracted some scientific knowledge. You found that
the small stone and the big one, released together,
fall together.* So do lumps of lead, gold, iron, glass,
etc., of many sizes. From such experiments we infer
a simple general rule: the motion of free fall is uni-
versally the same, independent of size and material.
This is a remarkable, simple fact which people find
surprising—in fact, some will not believe it when
they are told it,* but yet are reluctant to try a simple
experiment.*

*Yes; if you did not try the experiment, you now know
the result of at least part of it. This is true of a book like
this: by reading ahead you can find the answers to questions
you are asked to solve. When you work on a crossword
puzzle you would feel foolish to solve it by looking at the
answers. In reading a detective story, is it much fun to turn
to the end at once? Here you lose more still if you skip: you
not only spoil the puzzle, but you lose a sense of the reality
of science; you damage your own education. Tt is still not
too late. If you have not tried the experiments, try them now
Drop a dime and a quarter together, and wate them fall
:’E:u:uat:r;:ald\mg a great piece of simplicity in the structure

* Notice your own reaction to this statement: *
boy and a i:ght boy start coasting down a ld]lttagjth:fag
equal bicycles. In a short run they will reach the bottom
together.” The statement is based on the same general be-
havior of nature. See a demonstration, In g J'.ongg run th
gain high speeds and air resistance makes a difference. N



The result is surprising. Would you expect a 2-
pound stone to fall just as fast as a 10-pound one?
Wouldn't it seem more reasonable for the 10-pound
one to fall five times as fast? Yet direct trial shows
that 1-pound, 2-pound, and 10-pound lumps of
metal, stone, etc., all fall with the same motion.

FACT ?

FANCY ?
or

IDEAL RULE

O+

CRILRLS

Fiz. 1-2. Free FaLL

Early Science of Falling Bodies

What is the history of this piece of scientific
knowledge? There may have been a long gap be-
tween casual observation and careful experimenting,
Interest in falling objects and projectiles grew with
the development of weapons. Spears, arrows, cata-
pults, and more ambitious “engines of war” favored
a simple vague knowledge of ballistics. But that
took the form of craftsmen’s working rules rather
than scientists’ understanding—unspoken familiarity
rather than extracted simplicity. Two thousand years
ago the Greeks thought and wrote about nature with
genuine scientific interest, possibly inspired by simi-
lar activity earlier still in Egypt and Babylon. They
gave rules and reasons for falling, but not very
reliable ones. Though some of the ancient scientists
must have experimented sensibly with falling ob-
jects, medieval use of the Greek written tradition set
down by Aristotle { ~ 340 8.c.) clouded the matter
rather than clarified it, and led to a muddle which
lasted for many centuries. Gunpowder greatly in-
creased the interest in projectiles, but early cannon
were still chiefly used to frighten the enemy when
Galileo [ ~ 1600} rewrote the science of ballistics
in clear rules that agreed with experiment. Those
were rules for heavy slow cannonballs that ignored
air resistance. Since then, speeding up of projectiles

+We all rely in many matters on authority embedded in
home teaching or common sense; we are reluctant to risk
disturbing our sense of security. If you do not believe this
accusation, wait and you will presently catch yourself.
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has made air resistance more and more important,
requiring modification of Galileo’s simple treatment.

Aristotle and Philosophy

The great Greek philosopher and scientist Aris-
totle appears to have supported the popular idea
that heavy things fall faster than light ones. Aristotle
was a pupil of Plato and for a time the tutor of
Alexander the Great. He founded a great school of
philosophy and wrote many books. His writings were
the authoritative sources of learning for centuries—
through the dark ages when there were still no
printed books but only handwritten ones copied and
handed down by devout scholars in a rough and
troubled world.

Why should philosophers be concerned with sci-
ence? How is science related to philosophy? What
is philosophy? Philosophy is not a weird high-brow
scheme of impractical argument; it is man's thinking
about his own thoughts and knowledge. Professional
philosophy consists of criticizing knowledge, evolv-
ing systems of knowledge with rules of logic for
critical argument. Philosophers are interested in
questions of truth and nonsense, right and wrong,
and in judgments of values. Just as professional
physicians advise us on health, eating, sleeping, etc.,
so professional philosophers offer us advice on think-
ing and understanding, on all our intellectual activ-
ities. You and I indulge in amateur philosophy when
we think intelligently about our life and its relation
to the world around us, whenever we ask questions
such as: “Is this really true?” “Does that really
exist?” “What does it mean when I say something is
right?” “Why is arithmetic right?” “Is happiness
real or imaginary®” “Does a pin cause pain in the
same sense that it causes a puncture?” Thinking
about our place in the world is closely tied with our
scientific knowledge of the world, so it is not sur-
prising that the great philosophers studied science
and influenced its progress. You cannot embark on
science without a first step in philosophy. You need
a philosophical assumption and a philosophical
interest: you practically have to assume that there
is an external world; and you have to wish to find
out about it and “understand” it. And when you
collect facts, formulate scientific laws, or invent
theories, the philosopher in you will ask, “Are these
true?” As you brood on that question you may
change your view of science. When you have read
this book, you may not have settled a general phi-
losophy, but you will have done some philosophical
thinking and vou will have started making your
own Philosophy of Science.
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Aristotle inherited a general philosophical view-
point from Plato. In trying to answer the question
of ultimate truth and reality, Plato sheared away
individual differences among the things we observe
and extracted simple ideal forms. From dogs he
extracted an ideal class, DOG; from all varieties of
stones, an ideal STONE, and so on. Then he set
forth the view that only these primary types or ideal
forms really exist. These forms or essences remain
universal and unchangeable, and individual exam-
ples of them are just shadows of the ideal. Aristotle
used this insistence on classes of things as a basis
for logical argument (If ..., then....). Yet, as a
great observer and classifier of nature, he had to
credit individual stones and dogs with some real
existence; so his outlook was a compromise. Later
students of his work gave increasing reality to ordi-
nary objects, and came to treat the underlying
classes as mental concepts or even mere names. This
later view, that individual things are important and
real, is a comfortable one for a scientist experiment-
ing on objects and events in nature—he would like
to feel that he is working with real things. Sir
William Dampier seems to call some such view
“nominalism” in the passage below, though modern
philosophers use this name somewhat differently.

“Whatever be the truth of Plato’s doctrine of ideas
from a metaphysical point of view, the mental atti-
tude which gave it birth is not adapted to further
the cause of experimental science. It seems clear
that, while philosophy still exerted a predominating
influence on science, nominalism, whether conscious
or unconscious, was more favourable to the growth
of scientific methods. But Plato’s search for the
‘forms of intelligible things’ may perhaps be re-
garded as a guess about the causes of visible phe-
nomena. Science, we have now come to understand,
cannot deal with ultimate reality; it can only draw
a picture of nature as seen by the human mind. Our
ideas are in a sense real in that ideal picture world,
but the individual things represented are pictures
and not realities. Hence it may prove that a modern
form of [Plato’s view of] ideas may be nearer the
truth than is a crude nominalism. Nevertheless, the
rough-and-ready suppositions which underlie most
experiments assume that individual things are real,
and most men of science talk nominalism without
knowing it . . .

“The characteristic weakness of the inductive
sciences among the Greeks is explicable when we
examine their procedure. Aristotle, while dealing
skilfully with the theory of the passage from particu-
lar instances to general propositions, in practice

often failed lamentably. Taking the few available
facts, he would rush at once to the widest generali-
zations. Naturally he failed. Enough facts were not
available, and there was no adequate scientific back-
ground into which they could be fitted. Moreover,
Aristotle regarded this work of induction as merely
a necessary preliminary to true science of the de-
ductive type, which, by logical reasoning, deduces
consequences from the premises reached by the
former process.™

While Aristotle may be regarded as having given
experimental science a strong push forward, Plato
was perhaps nearer to the modern theoretical physi-
cist with his insistence on the importance of under-
lying general forms and principles. As a tool for
his thinking, Aristotle developed a magnificent sys-
tem of formal logic, that is, cast-iron argument that
starts from admitted facts or agreed assumptions
and draws a compelling conclusion. In treating
science he first tried to extract some general scien-
tific principles from observations, a process we call
induction. Then he reasoned logically from these
principles to deduce new scientific knowledge. His
system of logic was itself a magnificent discovery,
but it cramped the development of early experi-
mental science by directing too much attention to
argument. It has influenced the growth of our civili-
zation profoundly. Most of us never realize how
much our pattern of thinking has been influenced by
the age-long tradition of Aristotelian logic, though
many thinkers today question its rigid simplicity.
It argued from one absolute yes or no to another
absolute yes or no; argued with good logic to a valid
conclusion, provided the starting-point was valid,
“Is every man mortal?” “Do 4 times 3 make 147"
“Do 2 plus 2 make 47" “Do all dogs have 7 legs?”
We answer any of these with an absolute “yes” or
“no” and then deduce answers to questions such as,
“Is Jones mortal? “Does my terrier have 7 legs?”
But try the following:

“Is self-sacrifice good?”

“Was Lincoln a success?”

“Is my Boyle's law experiment right?”
These are important questions, but we can make
fools of ourselves by insisting on a yes or no answer.
If instead we spread our judgments over a wider
scale of values, we may lose some “logic” but gain
greatly in intellectual stature. It is well to beware
of people who try to dissect every problem or dis-

8 Sir William Dampier in A History of Science {4th edn.,

Cambridge University Press, Cambridge, Eng., 19459), pp.
34-35, from which some of this discussion is drawn,



cussion into components that have an absolute yes
ar no,

Aristotle’s logic was safe as far as it went; modern
logicians regard it as restricted and unfruitful but
“true.” The damage to your thinking and mine
comes from centuries of medieval scholarship draw-
ing blindly and insistently on his writings—"the in-
grown, argumentative, book-learned, world-ignorant
atmosphere of medieval university learning.” That
medieval Aristotelian tradition is built into today's
language and thought, and people often mistakenly
require an absolute yes or no. For example, people
trained to think they must choose between complete
success and complete failure are heartbroken when
they find they cannot attain the impossible goal of
complete success. We are all in danger: students in
college, athletes in contests, men and women in their
careers, older people reviewing their life—all face
terrible discouragement or worse if they demand
absolute success as the only alternative to failure.
Fortunately, many of us achieve a wiser balance;
we stop judging ourselves by an absolute yes or no
and enjoy our own measure of success. We then
find the conflicting mixture of our record easier to
live with.”

In science, where simple logic: once seemed so
safe, we are now more careful. Asked whether a
beam of light is a wave, we no longer assume there
is an absolute yes or no. We have to say that in some
respects it is a wave and in others it is not. We are
more cautious about our wording. Remembering
that our modern scientific theory is more a way of
regarding and understanding nature than a true
portrait of it, we change our question, “Is it a
wave?” to “Does it behave as a wave? And then

® Roughly speaking, Aristotelian logic deals with classes
of things, and its arguments can be carried out by machines,
e.f., “electronic brains” in which “yes™ or “no"™ is signified
by an electron stream being switched “on” or "off.” Modern
logic deals with relations (such as “. . . larger than . . .7
.. . better than . . ") as well as classes (such as “dogs.”
"mammals”) and, nowadays, with implicational relations
between r:mnp!ete propositions. Its arguments, too, can
probably be carried out by machines, though that may be
more difficult to arrange, But a machine cannot criticize the
svstern of Iugjc that it is asked to administer. Gnl}r man still
thinks he can do that, making judgments of value.

For descriptions of machines see the following numbers
of Scientific American:

Vol. 183, No. 5, “Simple Simon™ (a small mechanical
brain); Vol. 180, No. 4, "Mathematical Machines™ (a de-
tailed account of electronic calculators); Vol 182, No. 5,
“An Imitation of Life” (mechanical animals that leam);
¥ol. 185, No. 3, “Logic Machines™; Vol. 192, No. 4, "Man
Viewed as a Machine” (excellent article bjl' a phi]owphh'}l;
Vol. 197, No. 3, a complete issue on self-regulating machines.

T For a fuller discussion, see Ch. I of People in Quandaries
by Wendell Johnson (Harper and Bros., New York, 1946},
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we can answer, In some circumstances it does, in
other circumstances it does not.” Where an Aristo-
telian would say an electron must be either inside
a certain box or not inside it, we have to say we
would rather regard it as both! If you find such
cautiousness irritating and paradoxical, remember
two things: first, you have been brought up in the
Aristotelian tradition (and perhaps you would be
wise to question its strong authority ); second, physi-
cists themselves shared your dismay when experi-
ments first forced some changes of view on them,
but they would rather be true to experiment than

loyal to a formality of logic.

Aristotle and Authority

Aristotle’s chief interests lay in philosophy and
logic, but he also wrote scientific treatises, summing
up the knowledge available in his day, some 2000
years ago. His works on Biology were good because
they were primarily descriptive. In his works on
Physics he was too much concerned with laying
down the law and then arguing “logically” from it.
He and his followers wanted to explain why things
happen and they did not always bother to observe
what happens or how things happen. Aristotle ex-
plained why things fall quite simply: they seek their
natural place, on the ground. In describing how
things fall, he made statements such as these: *. . .
just as the downward movement of a mass of lead
or gold or of any other body endowed with weight
is quicker in proportion to its size. . . " . . . a body
is heavier than another which in equal bulk moves
down more quickly. . . " He was a very able man,
discussing as a philosopher the why of falling, and
he probably had in mind a more general survey of
falling bodies, knowing that stones do fall faster
than feathers, blocks of wood faster than sawdust,
In the course of a long fall air-friction brings a fall-
ing body to a steady speed, and he probably referred
to that.* But later generations of thinkers and teach-
ers who used his books took his statements baldly
and taught that “bodies fall with speeds propor-
tional to their weights.”

The philosophers of the Middle Ages grew more
and more concerned with argument and disdained
experimental tests. Most of the earlier writings
on geometry and algebra had been lost and experi-
mental physics had to wait until they were found
and translated. For centuries, right on thmugh the
“dark ages,” the authority of Aristotle’s writings

& A denser body (or a bigger one ) has to fall farther before
approaching its limiting speed; and then that speed is much
greater.

Gugnt to wou by ne Mational Library of the
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remained supreme, in a misinterpreted form at that.
Simple people, like children, love security more
than freedom; they will worship authority blindly,
and swallow its teaching whole. You may smile at
this and say, “We are civilized. We don't behave
like that.” But you may presently ask, “Why doesn't
this book give us the facts and tell us the right laws,
so that we can learn reliable science quickly?”; and
that would be your demand for simple authority
and easy security! We now condemn “Aristotelian
dogmatism” as unscientific, yet there are still people
who would rather argue from a book than go out
and find what really does happen. The modern
scientist is realistic; he tries experiments and abides
by what he gets, even if it is not what he expected.

Logic and Modern Science

Wholesale appeal to Aristotle’s logic may restrict
our intellectual outlook, and medieval wrangling
with it certainly hampered science; but logic itself
is an essential tool of all good science. We have to
reason inductively, as Arstotle did, from experi-
ments to simple rules. Then we often assume such
rules hold generally and reason deductively from
them to predictions and explanations. Some of our
reasoning is done in the shorthand logic of algebra,
some of it follows the rules of formal logic, and some
of it is argued more loosely.

In extracting scientific rules from old laws we
trust the “Uniformity of Nature™: we trust that what
happens on Friday and Saturday will also happen on
Sunday; or that a simple rule which holds for several
different spiral springs will hold for other springs.®
Above all, we rely on the agreement of other ob-
servers. That is what makes the difference between
dreams and hallucinations on one hand and science
on the other. Dreams belong to each of us alone,
but scientific observations are common to many
observers. In fact, scientists often refuse to accept
a discovery until other experimenters have con-
firmed it.

Scientists do more than asserie that nature is
simple, that there are rules to be found; they also
assume that they can apply logic to nature’s ways.
There lies the essential distinction that enabled sci-
ence to emerge from superstition: a growing belief
that nature is reasonable, As science grows, mathe-
matics and simple logic play an essential part as

# The obvious condition, “all other circumstances remain
the same,” is often difficult to maintain, and we blame many
an exception to the Uniformity of Nature on some failure in
that respect. Magnetic experiments in towns that have street-

cars may give different results on Sundays, when fewer cars
are running.

faithful servants. The modern scientist puts them
to more use than ever, but he goes back to nature
for experimental checks. In a sense, the ideal scien-
tist has his head in the clouds of speculation, his
arms wielding the tools of mathematics and logic,
and his feet on the ground of experimental fact.

Greeks to Galileo

“In studying the science of the past, students
very easily make the mistake of thinking that
people who lived in earlier times were rather
more stupid than they are now."—I. BERNARD
COHEN

Aristotle’s authority grew and lasted until the 17th
century when the Italian scientist Galileo attacked
it with open ridicule. Meanwhile, many people must
have privately doubted the Aristotelian views on
gravity and motion. In the 14th century a group of
philosophers in Paris revolted against traditional
mechanics and devised a much more sensible scheme
which was handed down and spread to Italy and
influenced Galileo two centuries later. They talked
of accelerated motion, and even of uniform accelera-
tion (under archaic names), and they endowed
moving objects with “impetus,” meaning motion or
momentum of their own, to carry them along with-
out needing a force.

Galileo ( ~ 1600) was a great scientist. He started
science advancing to a new level where critical
thinking and imagination join with an Exl’]cl‘il‘ﬂﬂ!’ltﬂ.I
attitude—a partnership of theory and experiment.
He gathered the available knowledge and ideas,
subjected them to ruthless examination by thinking,
experimenting, and arguing; and then taught and
wrote what he believed to be true. He lost his
temper with the Aristotelians when they disliked his
teaching and disdained his telescope; and he wrote
a scathing attack on their whole system of science,
setting forth his own realistic mechanics instead. He
cleared away cobwebs of muddled thinking and
built his scheme on real experiment—not always his
own experiments, more often those of earlier work-
ers whose results he collected,

Thought-Experiments

In his books and lectures, Galileo often reasoned
by drawing on common sense, quoting “thought-
experiments.” For example, he discussed the break-
ing-strength of ropes in this manner: suppose a rope
1 inch in diameter can just support 3 tons. Then a
rope of double diameter, 2 inches, has four times
the cross-section area (»r?) and therefore four times



as many fibers. Therefore, the rope of double diame-
ter has four times the strength—it should support
12 tons. In general, sTRENGTH must increase as
piaMeTER?, Galileo gave this argument and extended
it to wooden beams, pillars, and bones of animals.'®
Some thought-experiments deal with simplified or
idealized conditions, such as an object falling in
a vacuum.'!

Ideal Rules for Free Fall

Galileo realized that air resistance had entangled
the Aristotelians. He pointed out that dense objects
for which air resistance is relatively unimportant
fall almost together. He wrote: “. . . the variation of
speed in air between balls of gold, lead, copper,
porphyry, and other heavy materials is so slight that
in a fall of one hundred cubits a ball of gold would
surely not outstrip one of copper by as much as four
fingers. Having observed this, I came to the con-
clusion that, in a medium totally devoid of all re-
sistance, all bodies would fall with the same
speed.”® By guessing what would happen in the
imaginary case of objects falling freely in a vacuum,
Galileo extracted ideal rules:

(1) All falling bodies fall with the same motion;
started together, they fall together.

(2) The motion is one “with constant accelera-
tion”: the body gains speed at a steady rate; it gains
the same addition of speed in each successive
second.

Having guessed the rules for the ideal case, he
could test them in real experiments by making
allowances for the complications of friction.

Galileo’s P Experiment: Myth and Symbol

There is a fable that Galileo gave a great demon-
stration of dropping a light object and a heavy one
from the top of the leaning tower of Pisa.'* (Some
say he dropped a steel ball and a wooden one, others
say a l-pound iron ball and a 100-pound iron ball.)

1% See problems in Ch:‘ptcr 5.

11 The Aristotelians had argued themselves into believing
a vacuum to be impossible, so they cut themselves off from
Galileo's satisfying simplification.

12 From Dial.ague: Concerning Two New Sciences, h}r
Calileo Galilei, English translation by H. Crew and H.
de Salvio, Northwestern University Press, p, 72,

12 Pisa. The leaning tower is a charming little building in
a friendly Italian town. It is a round tower of white marble,
built beside the cathedral. It began to lean as it was built,
and it now has a remarkable tilt, about 5° from the vertical.
The visitor who climbs its winding stair or walks around one
of its open slanting balconies has strange sensations of shift-
ing gravity, The tower was built long before Galileo's day,
and he must have tried using it for some experiments. In his
lifetime a pro-Aristotelian used the tower, to demonstrate
unequﬂ! fﬂlf

9
There is no record of such a public performance,
and Galileo certainly would not have used it to
show his ideal rule. He knew that the wooden ball
would be left far behind the iron one, but he said
that a taller tower would be needed to show a differ-
ence for two unequal iron balls. He certainly tried
rough experiments as a youth and knew as you do
what does happen, but he did not suddenly turn the
course of science with one fabulous experiment. He
did accelerate the growth of real physics by refuting
the Aristotelians silly dogmatic statements. And he
did start science on a new kind of growth by apply-
ing his simplifying imagination to experimental
knowledge. These, and not the leaning tower, made
him a landmark in scientific history. Many a myth
is attached to great figures in history—stories about
cherry trees, burning cakes, etc. Though scholars
delight in debunking these anecdotes, they also use
some of them to show how the people of the great
man’s day thought of him. The leaning tower story
is not even credited with that advantage. Yet we
might use it, quite apart from Galileo and the
growth of science, as a symbol of a simple experi-
ment. In your own experiment with unequal stones,
they fell almost together, and not, as some people

expect, the heavy one much faster. We shall use
this Myth & Symbol in our course as a reminder of
two things: the need for direct experiment, and a
surprising, simple, important fact about gravity.

Honest Experimenting vs. Authority

Your own experiments do not show that all things
fall together; they did not even show that large and
small stones fall exactly together; and if in obedience
to book or teacher you said, “They fall exactly to-
gether,” you were cheating yourself of honest sci-
ence, Small stones lag slightly behind big ones—the
difference growing more noticeable the farther they
tall. Nor is it simply a matter of different sizes: a
wooden ball and a steel ball of the same size do not
fall exactly together.

Once you accept Galileo’s view that air resistance
obscures a simple story, vou can interpret vour own
observations easily—though that still leaves air re-
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sistance to be investigated. Or you might pretend
you had never heard Galileo’s view, and proceed
towards it yourself through a series of experiments
with denser and denser objects. Finding the motion
more and more nearly the same for larger or denser
bodies, you might guess the rule for the ideal case.
To examine the blame against air resistance, you
might try streamlining, or reducing, using some ob-
ject such as a sheet of paper.

Galileo’s Guess: Newton's Crucial Experiment

Galileo could only decrease air resistance. He
could not remove it completely, so he had to argue
from real observations with less and less resistance
to an ideal case with none. This intellectual jump,
from real observations to an ideal case, was his
great contribution, Then, looking back, he could
“explain” the differences in real experiments by
blaming air resistance. He could even study air
resistance, codify its behavior, and learn how to
make allowances for it. Not long after his time, air
pumps were developed which enabled people to try
free-fall experiments in a vacuum. Newton pumped
the air out of a tall glass pipe and released a feather
and a gold coin at the top. Even this extreme pair
fell together. There was a crucial test of Calileo’s
guess.

Scientific Explanations

When we “explain” the differences of fall by air
resistance, the term “explain” means, as so often in
science, to point out a likeness between the thing
under investigation and something else already
known. We are saying essentially, “You know about
wind resistance, when you move a thing along in
the air. Well, the falli.ng bodies experience wind
resistance which depends in some way on their
bulkiness. A wooden ball and a lead ball of the same
size moving at the same speed would suffer the
same air resistance—how could the air know or
mind what is inside?—but the lead ball weighs more,
is pulled harder by gravity, so the air resistance
matters less to it in comparison with the pull of the
Earth."+

Further Investigation

The explanation leads to a whole new line of
enquiry: wind resistance, fluid friction, streamlin-
ing—with applications to ballistics and airplane
design—new science from more accurate study of

1At this stage, the explanation ends in unsupported

dogmatism that might be “straight out of Aristotle.” Wait
for studies of mass, e, and motion to make it good science,

some simple rule of behavior, from a study of its
failures.

You could extend your series of experiments
in the other direction, making more and more re-
sistance, first with air, then with water, and find
things of importance in the design of ships and
planes. For simple experiments with fluid friction,
try dropping small balls in water instead of in air.
Balls of different sizes do not fall together. Moreover
they fail to move any faster after a while in a long
fall. Each ball seems to reach a fixed speed and then
move steadily down at that speed. What is happen-
ing then? Investigations might lead you to Stokes’
Law for fluid friction on a moving ball, a law which
plays a vital part in measuring the electric charge
of a single electron, If you investigated still smaller
falling bodies, specks of dust or drops of mist, you
would discover surprising irregularities in their fall,
and these in turn could lead to useful information in
atomic physies.

Galileo's experimenting and thinking, which you
have been repeating, led to a simple rule that ap-
plies accurately to objects falling in a vacuum. For
things falling in air, it applies with limited pre-
cision. In other words, the simple statement “all
freely falling bodies fall together” is an artificial ex-
tract distilled by scientists out of the real happenings
of nature. This is a good scientific procedure: first
to extract a general rule, under simplified or re-
stricted conditions, secondly to look for modifica-
tions or exceptions and then to use them to polish
up the rule and to extend our knowledge to new
things. In the case of falling bodies we can now test
the extracted rule by dropping things in a vacuum.
Ask to see Newton's “"guinea and feather” experi-
ment. In many cases in physics, however, we have
to be content with knowing that our rule is an ex-
tracted simplification, believing in it as a sort of
ideal statement, with only indirect evidence to
justify our full belief.

Restricting the Number of Variables

Apart from ignoring air resistance, we have re-
stricted our study of falling bodies in another way:
we have concentrated attention on just one aspect
of them, their comparative rate of fall. We have not
observed what noise they make as they fall, or
watched how they spin, or looked for temperature
changes, ete. By narrowing our interests, tempo-
rarily, we have better hopes of finding a simple
guiding rule. Again this is good scientific procedure.
In many investigations we not only concentrate on a
few aspects but even arrange to hold other aspects
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constant so that they do not muddle the investiga-
tion. In physics we nearly always try to limit our
investigation to one pair of variables at a time. For
example, we compress a sample of air and measure
its vOLUME at various pressures, while we keep the
temperature constant. Or we warm up the gas and
measure the PRESSURE at various TEMPERATURES,
while we keep the volume constant. From these ex-
periments we can extract two useful “gas laws” that
can be combined into one grand law. If we did not
make restrictions but let TEMPERATURE and PRESSURE
and voLume change during our experiments, we
could still discover the grand law but our measure-
ments would seem mixed and complicated—it
would be harder to see the simple relationship con-
necting them. But other sciences such as biology
and psychology, following the successful example
of physics, have found this method very dangerous.
While restricting attention to one aspect of growth
or behavior, the investigator may lose sight of the
body or mind as a whole. In attempts to apply the
methods of natural sciences to social sciences such
as economics this danger is even more severe.

Why Do Things Fall?

Aristotle was concerned with the answer to
“Why?” Why do things fall? What is your answer
to the question? If you say, “because of gravitation
or gravity,” are you not just taking refuge behind a
long word? These words come from the Latin for
heavy or weighty. You are saying, “things fall be-
cause they are heavy.” Why, then, are things heavy?
If you reply “because of gravity,” you are talking
in a circle. If you answer, “because the Earth pulls
them,” the next question is, “How do you know the
Earth goes on pulling them when they are falling?”
Any attempt to demonstrate this with a weighing
machine during fall leads to disaster. You may have
to answer, “I know the Earth pulls them because
they fall"—and there you are back at the beginning.
Argument like this can reduce a young physicist to
tears. In fact, physics does not explain gravitation;
it cannot state a cause for it, lh{:ugh it can tell you
some useful things about it. The Theory of General
Relativity offers to let you look at gravitation in a
new light but still states no ultimate cause. We may
say that things fall because the Earth pulls them,
but when we wish to explain why the Earth pulls
things all we can really say is, “Well it just does.
Nature is like that,"** This is disappeinting to people

15 Parents often give answers such as, “Well it just &" or

“hecause it i5" to children's questions. Such answers are not
so foolish as they sound. For a child they provide the reply

11

who hope that science will explain everything, but
we now consider such questions of ultimate cause
outside the scope of science. They are in the prov-
ince of philosophy and religion. Modern science
asks what? and how? not the primary why? Scien-
tists often explain wh}! an event occurs, and you
will be asked “why . . . ?" in this course; but that
does not mean giving a first cause or ultimate expla-
nation. It only means relating the event to other
behavior already agreed to in our scientific knowl-
edge. Science can give considerable reassurance and
understanding by linking together seemingly differ-
ent things. For example, while science can never
tell us what electricity is, it can tell us that the boom
of thunder and the crack of a man-made electric
spark are much the same, thus removing one piece
of fearful superstition.

Aristotle’s explanation of falling was: "The natural
place of things is on the ground, therefore they try
to seek that place.” People today call that a silly
explanation. Yet it is in a way similar to our present
attitude, He was just saying, “Things do fall. That's
natural.” He carried his scheme too far however. He
explained why clouds float upward by saying that
their natural place is up in the sky and thus he
missed some simple discoveries of buoyancy.®
Aristotle was much concerned with stating the
“natural place” and “natural path” for things, and
he distinguished between “natural motion” (of fall-
ing bodies) and “violent motion” (of projectiles).
He might have produced good science of force and
motion except for a mistake of applying common
knowledge of horses pulling carts to all motion. If
the horse exerts a constant pull, the cart keeps going
with constant speed. This probably suggested Aris-
totle’s general view that a constant force is needed
to keep a body moving steadily; a larger force main-
tains larger speed in proportion. This is a sensible
explanation for pulling things against an adjustable
resisting force, but it is misleading for falling bodies
and projectiles. In all cases it forgets the resisting
force is there and prevents our seeing what happens
when there is no resistance.

To explain the motion of projectiles, the Greeks

that is really needed at that stage, an assurance that every-
thing is nommal, that the matter asked about is a part of a
consistent world. When a child asks "Why is the pgrass
green?” he does not want to have a lecture on chlorophyll.
He merely wants to be reassured that it is ok, for the grass
to be green.

1¢ Buoyancy affects falling objects. When a thing falls in
water its effective weight is lessened by buoyancy, and this
makes falling in water qguite different for different objects,
Even air buoyancy has some effect, trivial for cannon balls,
overwhelming for balloons,
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imagined a “rush of air” to keep them going; and
even more m}rsteriuus agcnts wereg required to ker:p
the stars and planets moving. On their view—shove
is needed to maintain motion—an arrow was kept
moving by the push of the bowstring until it left
the bow. After that another pushing agent had to be
invoked to keep the arrow moving. Aristotelian phi-
losophers imagined a rush of air pushing the arrow,
not just a gust of wind travelling with it, but a circu-
lation of air, with the air ahead of the arrow being
pushed aside and running around to shove the ar-
row from behind. This rush of air satisfactorily pre-
vented the unthinkable vacuum forming behind the
arrow.'” So firmly established was the idea of a rush
of air, with embellishments of initial commaotions,
that it was used as an argument to show that pro-
jectiles could not move in a vacuum. “In a vacuum
with zero resistance any force would maintain infi-
nite velocity,” argued the Creeks, “therefore a
vacuumn is impossible.” God could never make a
vacuum. Aristotle himself understood that all things
would fall equally in a vacuum, but he considered
that too a proof that a vacuum could not exist.

Mass

Whatever gravity really is, falling bodies do fall
together except for effects of air resistance. This
hints at a useful idea which we shall meet again
and again: the idea of mass. Suppose we have a
2-pound lump of lead and a 1-pound lump. When
we hold them, we feel the big lump being pulled
more; we feel its greater weight, That is why we
expect it to fall faster. Yet it does not, so there must
be some other factor involved, something that the
doubled weight-pull has to contend with. The
reason is: there is twice as much lead to be moved.
The double chunk needs twice the pull to give the
same motion to its double quantity of lead. Galileo
felt his way towards this idea of quantity of matter,
which we shall call mass, but it had to wait for
Newton to state it clearly. Mass is not an easy idea
to grasp, but we shall return to it many times, be-
cause it plays a very important part in physics. At
this stage, the amazing thing about gravitation is
this: whatever the materials, gravitational pulls are
exactly proportional to the amounts of stuff being
pulled. Gravity, the mysterious pulling agent, seems
to be ready to pull indiscriminately on any body,
whatever it is made of, ready to pull just twice as
hard on two bricks as on one, four times as hard on

1" For a Fuller and very interesting account of these views

on motion, see H. Butterfield, The Origins of Modern Science
{ New York, 1852), Ch, 1.

4 cubic feet of lead as on 1 cubic foot, so that the
object with more stuff in it to be pulled on has just
the bigger pull needed to make it fall with the same
motion as a smaller object.

Gravitational Field

We give a name to this state of affairs all around
us of gravity-prepared-to-pull. We say there is a
gravitational field. We are not really explaining any-
thing by inventing a new term," but we shall find it
useful later. For the moment you should think of a
gravitational field as waiting to clutch (propor-
tionally ) on any piece of matter put there, to pull
it down towards the Earth, to make it fall. Near
a magnet there is a similar state of affairs for bits
of iron, a magnetic field waiting to clutch them. In
your television tube, electric fields and magnetic
fields clutch the whizzing electrons, speed them up,
and swing the beam to and fro to sketch the picture.

Here we have been letting our thoughts run away
with new words and ideas, such as MASS and
FIELD, arising from simple experimenting. If we
just worship such new ideas and phrases we are
liable to fall back to a state of witchcraft. But if we
use them to develop our knowledge, and if we put
our suggestions to experimental tests, they may help
the progress of science.

Calileo’s Argument

Galileo was a great arguer. The Aristotelians had
woven a web of “scientific” arguments based on Aris-
totle’s statements, but Galileo beat them with their
own weapons. An argument would upset them more
than an experimental demonstration. So he revived
a thought-experiment which ran thus: Take three
equal bricks, A, B, C. Release them together, to fall
freely. Now chain A and B together (by an invisible
chain which is not really there) so that they form
one object A 4+ B which is twice as heavy as C.

] [ wc3a B am i s
+ ¥ + i -q'r
212
¥

Fre. 1-4. Cavmnea's THovcuT-ExpemmesT

Again release them. The Aristotelians would now
expect A + B to fall twice as fast as C; yet since it

1% Cf. the great use in psychology or biclogy of special
words such as “repression,” “complex,” “helintropism,” ete,

Such new terms, coined or adopted for scientific use, cannot
explain things, but they can aid clear thinking and discussion.
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is really only two separate bricks it will fall just as
before, at the same rate as C. Therefore, the double
brick A 4 B and the single one C must fall together.
“Ah no,” says the Aristotelian in the argument,
“there is the chain that joins A and B. One of the
bricks will somehow get a little ahead of the other
and then it will drag the other downward, making
the combine fall faster.” I see,” says the Calilean
spokesman, “then the other, being a little behind,
drags the first one back, making the combine fall
slower!” Can you see in the comparison of A 4+ B
and C, the germ of the idea of mass?

The Mation of Free Fall

If all freely falling bodies have the same motion,
that motion itself is worth detailed investigation.
It might tell us something about nature in general,
something common to all falling things. We can
see that falling bodies move faster and faster; they
accelerate. (This is merely a word meaning “move
faster"—using it does not make our statement more
scientific.) Just what kind of accelerated motion
do they have?

(1) Does the speep increase by sudden jumps? Ex-
periment says no.

(2) Does the speen increase in direct proportion to
the pisTance TRAVELLED? Galileo devised an in-
genious argument to show that this is very
unlikely.'®

(3) Does the speep increase in direct proportion to
the TimMEe?

(4) or to the {TmME)?,

(3) or in some other, more complicated manner?

Since we are asking a question about real nature,
only experiments on real nature can answer it. (If
you want to know how tall Abraham Lincoln was
you must find out from someone who actually meas-
ured his height. Information from books is useless
unless it came originally from real measurements.
Algebra alone cannot possibly tell you.] We might
go straight to the laboratory and experiment wildly
and boldly, hoping to extract the essential story

1% Galilen's argument was ingenious but not quite sound.
It ran thus: “Compare two trips, each starting from rest,
trip A of a certain distance, trip B of twice that distance,
Then if speed increases in proportion to distance travelled,
the specds at corresponding stages (half way, & way, ete.) of
trip B are twice tﬁos:: of A. Then the double trip, B, is
travelled with doubled speeds. Therefore B would take the
same total time as A; which is absurd.” But this argument
supposes that the motion could start from rest. A sound
wversion of the argument requires calculus to show that such
a motion could never start from rest. Given a start, however,

such a motion would continue in an ever increasing rush, its
speed growing with compound interest.

fought to you by | The
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from a host of measurements. Or we might do some
thinking first, guess cunningly at some simple types
of motion, calculate the consequences of each, and
then go into the laboratory and experiment on the
consequences. Both methods have contributed to
the growth of science.

Inductive and Deductive Methods

The frst method is named the inductive method.,
We gather information either in a laboratory or
from the accumulated lore of some trade; then we
extract from it some simple rule, or story about
nature. We call this extracting process “inductive
inference” or simply “induction.” We first gather
experimental data and then infer some general rule
or scientific law from the data. For example, after
watching the Moon for some years an observer
might extract the general rule that the Moon travels
around the Earth regularly, about 13 times a year,
and it might seem a safe inference by induction that
this will continue. Again, from an extensive record
of eclipses, we might infer inductively a rule that
eclipses of the Moon run in several regular series,
with a fixed time-interval of about 18 years between
successive eclipses in any one series.

The second method is named the deductive
method. We start with some general rules or ideas
then derive particular consequences or predictions
from them by logical argument. If we are scientists,
we then test the predictions exPerImcnta]]y. IF ex-
periment confirms the predictions, we continue our
scheme. If it disagrees with our predictions, we
throw doubt on our eriginal assumptions and try to
modify them. For example, we might assume that
eclipses of the Moon are due to the Earth getting in
the Sun's light, casting a shadow on it; assume sim-
ple orbital motions for Sun and Moon, and then
infer deductively (or deduce) that an eclipse must
occur again after an interval of time sufficient for
Sun and Moon to return to the same positions rela-
tive to the Earth. This interval must he the “lowest
common multiple” of one Moon-month and one
Sun-vear. S0, by combining simple observations with
sensible assumptions we could make a striking de-
ductive prediction of the 18-vear repeat cycle of
eclipses. (For a successful calculation, the “Sun-
year” must be a special, short vear geared to the
Moon's changing orbit. )

As Lancelot Hogben points out:

“Readers of crime fiction will be familiar with
two types of detectives. One adopts the card in-
dex method of Francis Bacon, collecting all rele-
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vant information piece by piece. The other follows
a hunch, like Newton, and, like Newton, abandons
it at once when it comes into conflict with ob-
served facts. From time to time the philosophers
of science emphasize the merits of one or the
other, and write as if one or the other were the
true method of science. There is no one method of
science. The unity of science resides in the nature
of the result, the unity of theory with practice.
Each type of detection has its use, and the best
detective is one who combines both methods,
letting his hunch lead him to test hypotheses and
keeping alert to new facts while doing so."*°

And here is an overall view, from a leading Amer-
ican physicist, P. W. Bridgman:

“I like to say that there is no scientific method as
such, but that the most vital feature of the scien-
tist's procedure has been merely to do his utmost
with his mind, no holds barred."®

Accelerated Motion: Inductive and
Deductive Treatment

Much of the early growth of science was made
by induction; general laws were inferred from the
knowledge gained in crafts and trades. In a simple
way we have treated falling bodies inductively, in-
ferring from many observations a general statement
that all bodies falling freely in a vacuum fall to-
gether. When Calileo studied the details of this
falling motion, he probably used a mixture of two
approaches. He was good at making guesses, and
he used geometry and reasoning powerfully.

We shall now follow the second method, dedue-
tion, in our study. We shall start by assuming a
likely rule, and then we shall make a test comparing
its consequences with real falling motion.

We choose guess (3) above and assume that a
falling body gains speed steadily, gaining equal
amounts of speed in equal stretches of time. We can
express this more conveniently if we give a definite
meaning to the word acceleration, so that we can
say “the acceleration is constant.” Therefore, we
give the name ACCELERATION to

CAIN OF SPEED
———————— Or RATE-OF-CHANGE OF SPEED
TIME TAKEN
In making this definition of acceleration, we are
really choosing the thing (camv oF speEp)/(TIME

20 Spdence for the Citizen (Allen and Unwin, London,
1938}, p. T47.

1 New Vistas for Intellipence” in Physical Science and
Human Values, ed. E, P. Wigner {Princeton, 1947), p. 144.
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TAKEN ) to work with, and then giving it a name. We
are not discovering some true meaning which the
word acceleration possessed all alon g! We make this
choice and assign it a name because it turns out to
be useful in describing nature easily.

We shall start using the grander word ﬂeiﬂ-:'l'ty
instead of speed, and presently we shall make a
distinction between their meanings. Since we shall
often deal with changing things, we want a short
way of writing “change of . . " or “gain of . ..." We
choose the symbol A, a capital Greek letter D, pro-
nounced “delta.” It was originally used to stand for
the d of “difference.” Then our definition® of aceel-
eration states that:

GAIN OF VELOCITY

TIME TAKEN

ACCELERATION =

 CHANGE OF VELOCITY
" CHANCE OF TIME-OF-DAY
AU
0 = —
At

where a, v, and ¢ are obvious shorthand.

Deductive Treatment of Motion with
Constant Acceleration

Now we express our assumption about falling
bodies in this new terminology. We are assuming
that:

% is constant, for bodies freely falling (in

vacuum ). This states a huge assumption regarding
real nature, Is it true? Is Av/At constant? To test
this directly we should need an accelerometer to
measure the acceleration of a body, Av/At, at each
stage of its fall. Such instruments are manufactured,
but they are complicated gadgets which would not
provide convincing proofs at this stage. Instead, we
follow Galileo’s example and ask mathematics, the
logical machine, to grind out a consequence of our
assurnption, and then we test the consequence by
experiment. The machine tells us that:

IF the acceleration a { = Av/at) is constant, and
5 is the distance travelled in time ¢ with this constant
acceleration, THEN

8 =Y at? if the motion starts from rest

§ = vyt + Y at®, if the motion starts with velocity
v, at the instant ¢ = 0, when the
clock is started,

*2In calculus, veELoerTy, v, at an instant, is defined by

= — and ACCELERATION, g, at an instant, is E’:’ or E.
dt - dr de
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In these relations, 14a is a constant number,
since we are assuming a is constant; so, for mo-
tion starting from rest,
DISTANCE = (constant number) {Tove)?
Or DISTANCE increases in direct proportion to TiMEe®
OF DISTANCE Varies directly as Tove?

OT DISTANCE = TIME?, this being shorthand for any of
the versions above,

For example, if a body moving with fixed accelera-
tion falls so far in one second from rest, then it will
fall four times as far in two seconds from rest, nine
times in three seconds, and so on.

Experimental Investigations

The converse can be shown to be true. IF the
distance s varies directly as t?, THEN the accelera-
tion is constant.*® That gives us a relation to test in
investigating real motions. We can arrange a clock
to beat equal intervals of time, and measure the
distances travelled from rest by a falling body, in
total times with proportions 1:2:3: . . . If the total
distances run in the proportions 1:4:9: . . . and so
on, we may infer a fixed acceleration. Or, as in one
form of laboratory experiment, we can measure the
time ¢ for various total distances s, and test the
relation 5 = (constant number) (#*) by arithmetic,

by graph-plotting,

Over three centuries ago Galileo used this method,
though he had neither a modern clock nor graph-
plotting analysis. Galileo was one of the first to sug-
gest an accurate pendulum clock, but he probably
never made one. All he used to measure time was a
large tank of water with a spout from which water
ran into a cup. He estimated times by weighing the
water that ran out—a crude method vet accurate
ennugh to test his law. However, free fall from
reasonable heights takes very little time—the experi-
ment was too difficult with Galileo's apparatus.*
So he “diluted” gravity by using a ball rolling down
a sloping plank. He measured the times taken to roll
distances such as 1 foot, 2 feet, etc., from rest.

On the basis of rough experimenting and sturdy
guessing, Galileo decided that a ball rolls down a
sloping plank with constant acceleration. Believing
that this would be true for any slope, and arguing
from one slope to greater slopes and greater still,
he expected it to hold for a vertical plank, that is
for free fall.?* The idea of constant acceleration had

23 By caleulus: if & = ke, then velocity :—:: 2 kt,
T (:!—r'} = 2k, which is constant.

24 Galileos apparatus was rough. He used it to illustrate
his argument rather than to measure acceleration.

do
and acceleration — = =
dt

2t He convinced himself that the speed acquired by a )
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been suggested by earlier scientists—who were
scorned for it. Galileo did his best to minimize fric-
tion, which threatened to complicate matters—
though we now know that constant friction would
not spoil the simple relationship. His results were
rough, but seemed to convince him that his guess
was right. It was the simplest kind of accelerated
motion he could imagine, and he was probably in-
fluenced by the general faith, which has inspired
scientists from the Greeks to Einstein, that nature
is simple.

Later experiments, with imprm«'ed apparatus, con-
firmed Galileo's conclusion: the motion is one with
constant acceleration, ie, with Ac/At = constant,
in all the following cases:

for a ball or wheel rolling down a straight inclined
plank;

for a body sliding down a smooth inclined plank,
or a truck with wheels running down it;

for free fall.

Yet each such test has only shown that the accelera-
tion is constant for that one set of apparatus, on that
one occasion and within the limits of accuracy of
that experiment. If as scientists we want to believe
in a general rule inferred from these experiments,
it we want to codify nature’s behavior in a simple
“law” as a starting point for new deductions, then
we need a great body of consistent testimony as a
foundation for our inference. The more the better,
in quantity and varietv, and no witness is unwel-
come. If any experiment contradicts this genf-ra]
smn—and some do—it therebu offers a saarehmg
test. “The exception proves the rule” is a fine scien-
tific proverb—though often misunderstood—if
“proves” means “tests” {as in “proving-grounds” for
artillerv, the “proving” of bank accounts). If
“proves” had the modern common meaning of
“shows it to be right” the proverb would be non-
sense,® E\;l:eptjuns do not show that the rule is

hudv slld.l.ng down a fnr.t]un[l:s& ml:].me depends only on the
height, h, not on the length of slope, L. If so, a body falling
freely 'I‘_hmugh a vertical height, h, wuuld acquire the same
speed, since this would be like a vertical incline. Then he

could argue safely Irm:n his fxpcrimrnts to vertical fall.

WA LITTUCRNY
Fie. 1-5.

2% The original lezal meaning is amusines, bot irrelevant
here: “the ruoting of an exception makes it elear that the
rule evists.”
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correct. Exceptions do put a rule to fine tests and
show its limitations. They raise the question "What
is to blame?®” and thev lead either to limitations of
the rule or to greater care in experimenting. Either
wav, the rule emerges more clearly established.

The work of many scientists, professional re-
searchers and amateurs such as yourselves, has
built up great faith in Galileo’s discovery: bodies
falling freely under gravity, and bodies sliding or
raHing down a straight slope, under diluted grav-
ityy, move with constant acceleration.

Further experiments show that the acceleration
has the same constant value even if the body does
not start from rest but is given a push to start it.
If it already has speed v, when the clock starts,
then the simple relation s = 4 at* no longer holds;
we must use 5 = vt + 14 agt*. But the aceceleration,
a, is the same. It could hardly be different: how
could the ball know that it had started with a shove
instead of rolling down an earlier piece of the same
incline?

The Actual Acceleration

Experiments do more than just assure us the ac-
celeration is constant: they tell us its actual value.
If a is constant, then pistance = (lha) (TIME)?,
50 DISTANCE/ TIME® = ' ACCELERATION,

Suppose in some experiment we measured time
in seconds and distance in feet, then calculated 4a
and obtained 0.076. Then, in that experiment, a =
052 or 2/13. But 2/13 is incomplete—two-thir-
teenths of what? Such a number is useless unless it
carries a tag to show its units. We calculated this
number by dividing distance, in feet, by time.
Since the time is in seconds, the answer must be
feet/sec®. (This is read "feet per second squared”
or “feet per second per second.”)

Units for Acceleration

Return to the definition of acceleration to look
for its units directly;

Av, measured in velocity-units, e.g., feet/second

a=
At, measured in time-units, e.g., seconds
= acceleration measured in acceleration-units,
ft/sec

sec
Thus we expect to measure acceleration in units

ft/sec
sec

such as , which we write ft/sec/sec or ft/sec?.

Scientific Units

In ordinary life, we measure speeds in feet per
second or in miles per hour, and engineers often use
these units. We express accelerations in feet/second
per second, or sometimes in stranger units such as
miles/hour per second. But scientists all over the
world have agreed to use the metric system of units
in their measurements, and we shall use one version
of this, the Meter-Kilﬂgram-Secnnd system. In this
“MKS” system, lengths and distances are measured
in meters instead of feet, masses of stuff in kilograms
instead of pounds, and times in seconds. A meter is
almost 10% longer than a yard, its exact length being
defined by a bar of fireproof metal which is carefully
preserved, with copies in standardizing laboratories
throughout the world. A kilogram is roughly 2.2
pounds, 10% more than 2 pounds.

Acceleration of Free Fall

For free fall the acceleration can be measured.
To show that the acceleration is constant as a body
falls faster and faster is difficult, though of course
it can be done with modern timing apparatus, some
of which can measure to one-millionth of a second.
If we assume the acceleration is constant, then it is
fairly easy to measure its value by timing free fall
for one known distance from rest and using the
relation 5 = Yat®. This leads to a = 25/t*. As a
reminder that we are dealing with a characteristic
constant acceleration “due to gravity,” we label this
particular acceleration “g" and write g=2s/t%
Using experimental values of s and t we can com-
pute g. However, air friction limits the accuracy; it
is difficult to make sure that we start the timing just
when the falling body starts from rest, and the time
of fall itself is a very short one; so such measure-
ments do not give an accurate value of g. Yet we
need to know g accuratelv for a number of uses in
physics. Could we possibly eliminate the effects of
friction? And could we lump together many falls,
sav several thousand, and measure the total time
for the whole bunch to obtain the time for one fall
with greater accuracy? These look like hopeless
ambitions. Yet they can be achieved in a simple,
easy experiment which Galileo foreshadowed, and
which you will meet.

Measurements give a value about 9.8 meters/sec?
for g, or 32.2 ft/sec®. For ordinary calculations, 32
ft/sec* will suffice: accurate within 14,

At the Equator, g is slightly smaller; and at the
North Pole g is slightly greater.

& Mational Libiary of the Philippines
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Force and Acceleration

We think of a falling body as being pulled down
by a force which we call its weight. To hold a bedy
suspended we must support its full weight. If we
cut the suspending cord we imagine the weight
still acting, now unopposed by our supporting pull.
If we suppose the body's weight remains constant
while the body is falling, we may picture this con-
stant force “causing” the constant acceleration of
free fall. Trucks running down a slope have a
smaller acceleration, a fraction of g; but only a
fraction of their weight is available to pull them
down along the slope. This fraction is, in fact, the
hill's “slope” (height/slant length). If you knew
this fraction, you could follow Galileo in compar-
ing downhill Force and downhill AccELERATION.
What kind of relation would you expect® to find
between the force and the acceleration? You can
see how early experimenters like Galileo could
guess at it by studying falling and rolling bodies.
That relation, to be discussed soon, is a very impor-
tant piece of physics, a basic relation governing the

20 Do we mean “expect” or “hope™? Ii erpect, on what
basis? If hope, is this scientific or not®

17
motion of stars and the action of atoms, one of
obvious importance in engineering,

We will end on a note of doubt. How do you
know the weight of a body pulls it while it is fall-
ing freely? When you sit on a chair you feel the
supporting force of the chair, and vou believe you
feel your own weight. But if vou jump out of a
window, do you feel your weight while you are
falling? Suppose you jump out of a window with
a lump of metal in your hand and try to weigh the
lump as you fall. To make the temporary labora-
tory more comfortable, for a time, suppose you and
the lump and the weighing apparatus are enclosed
in a vast box which has been dropped from a tower
and is falling freely. Suppose the box has no win-
dows. When you release the lead lump inside the
box, will it fall to the floor® If you think about this,
you will see that gravity will seem to have disap-
peared. Can you possibly tell whether gravity has
really disappeared or whether your laboratory is
accelerating downwards? If yvou cannot tell the dif-
ference, is there any difference? Discussion of
these questions would lead you towards the Theory
of Relativity.



CHAPTER 1 - MANKIND AND THE HEAVENS
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“An undevout astronomer is mad.”

—EDWARD YOUNG ( ~1700)
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The Beginnings of Man!
AsTRoNOMY is almost as old as man himself. How
old is man, and why did he bother about astronomy?
Man began to emerge as a distinct creature
several thousand centuries ago. The records of the
caves and rocks—the only records stretching so far
back—are far from completely explored. Anthro-
pologists warn us not to guess too confidently, and
not to guess at all unless we first decide what we
mean by Man. What essential characteristics dis-
tinguish man from animals? Solving problems? Rats
can solve a maze: ants organize war. Using tools?
Apes use sticks and stones to solve an immediate
problem, and some build simple tree huts. Planning
for the future? Perhaps a clear difference begins
there. Man makes tools for fufure use. Such plan-
ning involves a simple form of reasoning: if . . .
then. Man makes arrows for game that may come;
and he builds graves to comfort the dead if they
have some future life. Planning for food supply and
shelter could lead, with the help of speech, to larger

1 Some of the comments here are drawn from an excellent
popular hook on primitive man, Man Maokes Himself, by
V. Gordon Childe, published in paperback as a Mentor
Book (New York, 1851).

\
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Mar B. Copernicus lived and worked near Thorn. Kepler
was born in Weil and frst I.:nght at Gratz.

plans . . . community life . . . traditions . .. laws. ...
Thus, man emerged as a planner and reasoner, a
worrier. He used his toolmaking hands and worry-
ing brain in adapting himself to changes of environ-
ment. Unlike animals, man changed his living-
equipment quickly to meet new conditions: shifts of
climate, invasions, floods, famines. Instead of de-
pending on heredity—the chance survival of an
animal’s mutation in several generations—man con-
trolled his own adaptation. He changed tools, cloth-
ing, housing, feeding and defense to meet each new
environment. That gave him far greater chances of
survival—and hopes of progress.

How old is man? Perhaps as long as 2,000,000
years ago, very primitive tool-making man was
showing divergencies from ape-like “cousins.” Some
200,000 years ago simple “Neanderthal man” devel-
oped along a side-line of our family tree, and was
later displaced by our more capable ancestors. He
was a simple hunter with rough tools, but he made
some use of fire, and he buried his dead with care.
There are few signs of our direct ancestors until,
say, 100,000 years ago,* when men using carefully

? These spans of time may be wrong by a factor of 2,

Even if they are true of man’s development in one region
of the world, they are untrue in others.
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chipped stones pushed their way across Europe. In
the next 80,000 years these stone tools and weapons
improved, bone needles were made and used, carv-
ings and pictures were added; but man remained
a food-collecting savage, living in small groups,
with leisure when game was plentiful. Stone-age
artists made little statues to symbolize fertility and
drew animals on cave walls, for simple magic. Some
are masterpieces of artistic skill and sympathetic
insight.

It was not till some 12,000 years ago that an age
of cultivation began. Then a new level of human
life developed—perhaps even new races of man—
in which better tools were used, agriculture began
to supplement chance cropping, herding began to
replace hunting of wild animals, and pottery and
cooking came into use. Village life developed in
this food-producing culture, and simple trade was
carried on.

Then, five or six thousand Years ago, a New revo-
lution of man's living started: groups of villages
were gathered into states, with farm and town
developing their distinct activities—the beginning
of the great civilizations. Large cities were built to
maintain secondary industries, fed by organized
farming outside and enriched by far reaching trade.
Craftsmen’s knowledge brought metals to replace
stone for tools: copper, bronze, then iron. In cities,
problems of building and trade and government re-
quired arithmetic; geometry; measures of weight,
]eng‘th, area, volume; and timckeeping, Drgani:;ed
agriculture to feed the cities required a good calen-
dar to arrange for planting, animal breeding, and
irrigation by river floods. Long trade routes by sea
and land required signposts for navigation. Com-
pass, clock, and calendar were essential in the early
civilizations, as they are now: astronomy provided
all three.

Man's Growth

Three thousand years agop, there were flourishing
civilizations with good practical knowledge of
astronomy. Observations of the Sun, Moon, and
stars, recorded, codified, and extended to predic-
tions, provided a daily clock and an accurate calen-
dar of months and years and a compass for steering
journeys. Thirteen thousand years ago, man had
been a simple food-gatherer, using Sun, Moon, and
stars as rough guides at most. A great science of
astronomy grew up in the ten thousand years be-
tween. If that seems long, write it in generations:
from savage with simple magic to civilization with
working astronomy in 40 generations, another 120

to our knowledge of science today. That is rapid
progress, both in power over environment and in
intellectual grasp.

The Beginning of Astronomy

Yet, earliest knowledge of the heavens grew
slowly. For centuries very primitive man must have
watched the stars, perhaps wondering a little,
taking the Sun for granted, yet using it as a guide,
relying on moonlight for hunting, and even reckon-
ing simple time by moons. Then slowly gathered
knowledge was built into tradition with the help
of speech. The Sun offered a rough clock by day
and the stars by night* For simple geography, sun-
rise marked a general easterly region, and sunset
a westerly one; and the highest Sun (noon) marked
an unchanging South all the year round. At night
the pole-star marked a constant North.

As the year runs through its seasons the Sun’s
daily path changes from a low arc in winter to a
high one in summer; and the exact direction of
sunrise shifts round the horizon. Thus the Sun's
path provided a calendar of seasons; and so did the
midnight star-pattern, which shifts from night to
night through the year.

With the age of cultivation, herding and agricul-
ture made a calendar essential. It was necessary to
foretell the seasons so that the ground could be
prepared and wheat planted at the right time.
Sheep, among the first animals domesticated, are
seasonal breeders, so the early herdsmen also
needed a calendar. Crude calendar-making seems
easy enough to us today, but to simple men with
no written records it was a difficult art to be prac-
tised by skilled priests. The priest calendar-makers
were practical astronomers. They were so important
that they were exempt from work with herds or
crops and were paid a good share of food, just as
in many savage tribes today.

When urban civilizations developed, clear knowl-
edge of the apparent motions of Sun, Moon, and
stars was gathered with growing accuracy and
recorded. These regular changes were worth codify-
ing for the purpose of making predictions. In the
great Nile valley, where one of the early civiliza-
tions grew, the river floods at definite seasons, and
it was important for agriculture and for safety to
predict these floods, And fishermen and other sailors
at the mercy of ocean tides took careful note of tide
regularities: a shifting schedule of two tides a day,
with a eycle of big and little tides that follows the

3 An experienced camper can tell the time by the stars
within % hour.



Moon's month. In cities, too, time was important:
clocks and calendars were needed for commerce
and travel.*

Timekeeping promoted an intellectual develop-
ment: “In counting the shadow hours and learning
to use the star clock, man had begun to use geom-
etry. He had begun to find his bearings in cosmic
and terrestrial space."

Astronomy and Religion

Apart from practical uses, why did early man
attach such importance to astronomy and build
myths and superstitions round the Sun, Moon, and
planets?

The blazing Sun assumed an obvious importance
as soon as man began to think about his surround-
ings. It gave light and warmth for man and crops.
The Moon, too, gave light for hunters, lovers, trav-
ellers, warriors. These great lamps in the sky seemed
closely tied to the life of man, so it is not surprising
to find them watched and worshipped. The stars
were a myriad lesser lights, also a source of wonder.
Men imagined that gods or demons moved these
lamps, and endowed them with powers of good and
evil. We should not condemn such magic as stupid
superstition. The Sun does bring welcome summer
and the Moon does give useful light. The simple
mind might well reason that Sun and Moon could
be persuaded to bring other benefits. The very
bright star, Sirius, rose just at dawn at the season
of the Nile floods. If the Egyptians reasoned that
Sirius caused the floods, it was a forgivable mis-
take—the confusion of post hoc and propter hoc
that is often made today.

When a few bright stars were found to wander
strangely among the rest, these “planets” (literally
“wanderers”) were watched with anxious interest.
At a later time, early civilized man evolved a great
neurotic superstition that man’s fate and character
are controlled by the Sun, Moon, and wandering
planets. This superstition of astrology, built on
earlier belief in magic, added drive—and profit—to
astronomical observation.

1 The ancient civilizations had no reliable mechanical
clocks, but only sand-glasses, simple lamps, and water-clocks.
For accurate timekeeping they used the Sun and stars. Pen-
dulum clocks and good portable watches are recent medieval
inventions to meet the demands of ocean trade.

% Lancelot Hogben, Science for the Citizen (Allen and
Unwin Ltd., London, 1938}, In the early chapters, the
author discusses how and wh}r astronomy develﬂped; and
he gives a fine account of astronomical measurements and
their use in navigation. Some of the material of the present

section is drawn from that stimulating book on the social
bnﬂcgm‘unﬂ of scientific discovery.
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Thus the growth of astronomy was interwoven
with that of religion—and they still lie very close,
since modern astronomy is bounded by the ultimate
questions of the beginning of the world in the past
and its fate in the future. The next two pages con-
tain speculations on the early stages of that de-
velopment.®

Science, Magic, and Religion

Science began in magic. Early man lived at the
mercy of uncontrolled nature. Simple reasoning
made him try to persuade and control nature as one
would a powerful human neighbor. He tried simple
imitative magiec, such as jumping and croaking like
a frog in the rain to encourage rainfall, or drawing
animals on cave walls to promote success in hunting.
He buried his dead near the hearth, with logical
hope of restoring their warmth; and he gave them
tools and provisions for future use. In a way, he
was carrying out scientific experiments, with simple
reasoning behind them. It was not his fault that he
guessed wrong. The modern scientist disowns magi-
cians because they refuse to learn from their re-
sults—that is the essential defect of superstition,
a continuing blind faith. Primitive man, however,
had neither the information nor the clear scientific
reasoning to judge his magic.

As he carried out jumping ceremonies, or squatted
before magic pictures, man could form the idea of
presiding spirits: kindly deities who could help,
malicious demons who brought disaster, powerful
gods who controlled destiny. Like a child, man tried
to please these gods so that they would grant good
weather, health, plentiful game, fertility. The origi-
nal reasons and purposes were then forgotten and
the ceremonies continued by habit.

Speech was the essential vehicle of this develop-
ment, Earliest man, just beginning speech, was
forging his own foundations of thought, slowly and
uncertainly. Other creatures communicate—bees
dance well-coded news of honey, dogs bark with
meaning—but man’s speech opened up greater
intellectual advances. In the course of a long de-

& Such speculative guessing is very risky. It is the mis-
fortune of the young Science of Prehistory that laymen,
and even scientists from other Belds, think they can guess
::Mreq_ﬂ}' how man grew and even what he thought. { History
suffers similarly from amateur speculation; Education is
almost built on it.) Yet here we need some picture of the
backpround of the beginning of science. Make your own
speculations, if you prefer; or look at the early chapters of
H. G. Wells’ Outline of History, on which some of the com-
ments here are based. In that book, often criticized for in-
accuracy of fact and view, the general reader finds what

the experts fail to give him, a connected story—though a
risky one.
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velopment, it not only gave him a rich vocabulary
for communicating information but it enabled him
to store information in tales for later generations;
and then it blossomed into a higher intellectual level
with words for abstract ideas. Thus speech opened
up a new field of ideas and reasoning. Of course,
this development did not happen suddenly.” Early
verbal thinking must have been crude and confused,
with reasoning left unfinished, and words mistaken
for the things they represent—as they are in chil-
dren's thinking today and even in simple people’s
attitude to science,

With speech could come the beginnings of religion
and science: rules of conduct for the individual and
the community; and, in a different sense, rules for
nature. Even before speech developed, family life
involved obedience; but speech could hand on the
tradition of “the strong father, the old man whose
word was law, whose possessions must not be
touched,” and of a kindlier mother-figure. As fami-
lies gathered into groups . . . villages . . . tribes . . .,
these traditions erystallized into law and custom
that restricted the individual's freedom for the
general good. Out of such feelings and traditions,
out of hopes of success and fears of disaster, grew
a sense of being bound together in a community, a
sense of religion.

Primitive religion wove together myths of gods,
magic ceremonies, and tales of nature, in attempts
to codify both the natural world and man's growing
social system., Astronomy pla}'ed an important part
in this ceremonial religion. The priests—wise men
of the village or tribe—were the calendar-makers,
the first professional astronomers. Their successors
were the powerful priesthood of the first urban
civilizations. In early Babylon, for example, the
priests were bankers, physicians, scientists, and
rulers—they were the government. In their knowl-
edge, and that of their craftsmen, there were the
foundations of many sciences. The practical infor-
mation was there, at first unrecognized, then held
secret, then published in texts. Was it science?

T Anthropologists warn us: do not assume that primitive
savage communities today give a reliable picture of our
equally primitive ancestors long ago. Contemporary savages
may be primitive in technology and yet maintain a complex
of customs or religion developed over thousands of years,
It may be safer to %:asfe surmises on the behavior of civilized
children.

Science, the Art of Understanding Nature

Curiosity and cu]]ecti,ng knowledge go back
before earliest man. Primitive man collected knowl-
edge and used it: a beginning of applied science.
Then, as a reasoner, he began to organize knowledge
for use and thought. That is a difficult step, from
individual examples to generalization—watch a
child trying to do it. It is difficult to grasp the idea
of a common behavior or a general law or an abstract
quality. Yet that is the essential step in turning a
“stamp collection” of facts into a piece of science.
Science, as we think of it and use it now, never was
just a pile of information. Scientists themselves,
beginning perhaps with the early priesthood, are
not just collectors. They dig under the facts for a
more general understanding: they extract general
ideas from observed events.

Scientists feel driven to know, know what hap-
pens, know how things happen; and, for ages, they
have speculated why things happen. That drive to
know was essential to the survival of man—a gen-
eration of children that did not want to find out,
did not want to understand, would barely survive.
That drive may have begun with necessity and fear;
it may have been fostered by anxiety to replace
capricious demons by a trustworthy rule. Yet there
was also an element of wonder: an intellectual
delight in nature, a delight in one’s own sense of
understanding, a delight in creating science. These
delights mav go back to primitive man's tales to
his children, tales about the world and its nature,
tales of the gods. We can read wonder and delight
in stone-age man’s drawings; he watched animals
with intense appreciation and delighted in his art.
And we meet wonder and delight in scientists of
everv age who make their science an art of under-
standing nature.

As scientists, we have travelled a long way from
capricious gods to orderly rules; but all the way
we have been driven by strong forces: a sense of
urgent curiosity and a sense of delight.

Fear and anxiety, wonder and delight—these are
two aspects of awe, mainspring of both science and
religion. Lucretius held, 2000 years ago, that
“Science liberates man from the terror of the gods.”
Walt Whitman grieved for man’s anxiety while he
rejoiced in the scientist’s delight:




I believe a leaf of grass is no less than the journeywork of the stars,

And the pismire is equally perfect, and a grain of sand, and the egg of the wren,

And the tree-toad is a chef-d’ceuvre for the highest,

And the running blackberry would adorn the parlors of heaven,

And the narrowest hinge in my hand puts to scorn all machinery,

And the cow crunching with depressed head surpasses any statue,

And a mouse is miracle enough to stagger sextillions of infidels,

And I could come every afternoon of my life to look at the farmer’s girl boiling
her iron tea-kettle and baking shortcake.

I think I could turn and live awhile with the animals . . . they are so placid
and self-contained,

I stand and look at them sometimes half the day long.

They do not sweat and whine about their condition,

They do not lie awake in the dark and weep for their sins,

They do not make me sick discussing their duty to God,

Not one is dissatisfied . . . not one is demented with the mania of owning things,

Not one kneels to another nor to his kind that lived thousands of years ago,

Not one is respectable or industrious over the whole earth.

Leaves of Grass
Doubleday, N.Y.
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CHAPTER 2 - FACTS AND EARLY PROGRESS
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“To speculate without facts is to attempt to enter a house of which one has not the key, by
wandering aimlessly round and round, searching the walls and now and then peeping through
the windows. Facts are the key.” —JULLAN HUXLEY, Essays in Popular Science
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Before showing how astronomy was organized
into great schemes of thought, we shall review the
knnw]etlge that you—or primitive man—could gain
by watching the heavens. If you have lived in the
country you will be familiar with most of this. If
you have grown up in a town this will seem a con-
fusing pile of information unless you go out and
watch the sky—now is the time to observe.

Spring, Fall

MOoDMN

The Sun as a Marker

Each day the Sun rises from the eastern horizon,
sweeps up in an arc to a highest point at noon, due
South,! and down to set on the western horizon.
It is too bright for accurate watching, but it casts
a clear shadow of a vertical post. At noon, mid-day
between sunrise and sunset, the shadow is shortest
and points in the same direction, due North, every
day of the year. The positions of the noon Sun in

(a)

the sky from day to day mark a vertical “meridian” ¢ M — L?u -~
(= mid-day) plane running N-5. /f o N

In winter the shadows are longer because the Lo “‘x\‘
Sun sweeps in a low are, rising south of East and _;’/ .ﬂil"'!r,._- - — \\
setting south of West.' In summer the arc is much lr 4 ~ woow ~
higher, shadows are shorter, daylight lasts longer. { / Y
Half-way between these extremes are the “equinox” U L’___________s_{l”T H \
seasons, when day and night are equally long and E Q\L . WN W
the Sun rises due East, sets due West. z - T T

On the horizon—simple man's extension of the (b) MNORTH

flat land he lived on—sunrise marked a general
eastern region for him and the exact place of sun-
rise showed the season. The length of noonday
shadows also provided a calendar. The shadow of
a post made a rough clock, Though it told noon
correctly, its other hours changed with the seasons—
until some genius thought of tilting the post at the
latitude-angle ( parallel to the Earth's axis) to make
a true sundial.

Stars

The stars at night present a constant pattern, in
which early civilizations gave fanciful names to
prominent groups (constellations). The whole pat-

1 This description applies to the northern latitudes of the Fic. 13-1. Tux Pats oF THE Suw v THE
early civilizations. Sky CHANGES WITH THE SEAsons
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Fig. 13-2. Noow. Sunlight casts the shadow of a pillar
on horizontal ground. The shadow is shortest at noon.
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Fic. 13-3. MERIDLAN. Noon-day Sun is due South
{or due Morth). The meridian (= mid-ﬂa}r} plan.e is a
vertical plane passing through the Sun’s noon positions.

Fic. 134, Tue Star Patrerw Revorves

Brought to you by | The Mational Libiary of th

Fre. 13-5. A Proto oF THE SKY NEar PoLe Stam
Taken with an cigl:t-hﬂur exposure. The Pole Star
itself made the very heavy trail near the center,
Photo from Lick Dl:rsenratﬂry.

tern whirls steadily across the sky each night, as if
carried by a rigid frame. One star, the pole-star,
stays practically still while the rest of the pattern
swings round it. Watch the stars for a few hours
and you will see the pole-star, due North, staying
still while the others move in circles round it. Or,
point a camera at the sky with open lens, and let
it take a picture of those circles. Night after night,
vear after year, the pattern rotates without noticea-
ble change. These are the “fixed stars.”* The pole-
star is due North, in the N-S meridian plane of the
noonday Sun. The star pattern revolves round it at
an absolutely uniform rate. This motion of the stars
gave early man a clock, and the pole-star was a
clear North-pointing guide.®

The simplest “explanation” or descriptive scheme
for the stars is that they are shining lights embedded
in a great spinning bowl, and we are inside at the
center. That occurred to man long ago, and you
would feel it true if you watched the sky for many
nights. It was a clever thinker who extended the
bowl to a complete sphere, of which we see only
half at a time. This is the celestial sphere, with its
axis running through the pole-star and a celestial
equator that is an extension of the Earth’s equator.

? However, if you could live for many centuries you would
notice changes in the shape of some constellations. Stars are
moving,

3 The procession of the equinoves carries the Earth's spin-
axis-direction slowly round in a cone among the stars, so
only in some ages has it pointed to a bright star as pole-star,
{See sketches in later chapters. ) It is mear to one now, our
present pole-star, and was near to another when the pyra-
mids were built. In a.p. 1000 there was no bright pole-star—
perhaps that lack delayed the growth of navigation.

F
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The celestial sphere revolves steadily, carrying all
the stars, once in 24 hours. The Sun is too dazzling
for us to see the stars by day, so we only see the
stars that are in the celestial hemisphere above us
at night, when the Sun is in the other hemisphere
below. The Sun's daily path across the sky is near
the celestial equator; but it wobbles above and
below in the course of the year, 23'4° N in summer,
23" § in winter.

Summer in Northern Hemisphere
{long days, short :niﬁ_[hts]l
Winter in Southern Hemisphere
{short days, long nights)

At equinox
{ March or September}
Equal day and night everywhere

Winter in Northern Hemisphere
{short days, Im;ﬁ nights )
Summer in Southern Hemisphere
{long days, short nights)

Frc. 13-8a. Eantit Avn SUNSHINE
Day and night at various seasons

. n@r_ht._‘

- -

O

-\.D H
' WINTER =3
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Fic. 13-6b. Patu oF Sux,

Viewed from stationary Earth, at various seasons. The
Sun-positions are labeled noon, afterncon, ete., for ob-
servers in the longitude of New York. If such an ob-
server could wat{-ﬁ continuously, unebstructed by the
Earth, he would see the Sun Ferfnm] the "spim], of
cireles” sketched in Fre. 13-6e, during the course of 6
months from summer to winter; then he would see the
Sun spiral wpwards, revolving the same way, from
winter to summer.

Though the pattern of stars has unchanging
shape, we do not see it in the same position night
after night. As the seasons run, the part of the pat-
tern overhead at midnight shifts westward and a
new part takes its place, a whole cycle taking a year.
Stars that set an hour after sunset are 1° lower in

[mi

FALL

Fic. 13-Bec. Tue Sun's Semat oF CmcLEs,
in course of half a year of seasons.

the West next night and set a few minutes ear-
lier; and two weeks later they are level with the
Sun and set at sunset. Thus, in 24 hours the celestial
sphere makes a little more than one revolution:
360° 4 about 1°. It is moving a little faster than
the Sun, which makes one revolution, from due
South to due South in the 24 hours from noon to
noon. The celestial sphere of stars makes one extra
complete revolution in a year.

Sun and Stars

This difference between the Sun’s daily motion
and that of the stars (really due to the Earth's mo-

> Later during the night —>-

e
Y

o
d
o #

P

4
mn
-

-

P ——— . .

-

a :

Jan.1, 2 AM.

.
]
-
g

Jan. 1, 4 Am.

R .
It CLOCK g

A PQ Z2MmMmr- B

At the same Rowr
mﬁmrm'ﬁﬁn

v \

Fic. 13-7. Tur STaR-PaTTERMS
keep constant shape but revolve nightly and advance 30°
per month, compared with Sun’s noon and midnight.
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tion in its orbit round the Sun) was obvious, and
suggested that the Sun is moved by a separate
agent. The Sun-god became a central figure in many
primitive religiuns, and his travels were carefully
traced by shadows and recorded by alignments of
great stones in ceremonial temples.

Instead of saying the star pattern “gains” (like
a clock running fast) 1° a day, we take the very
constant star motion as our standard and say the
Sun lags behind it 1° a day. We may stick the Sun
as well as the stars on the inside of the celestial
sphere; but since the Sun lags behind the stars it
does not stay in a fixed place in the starry sphere;
it crawls slowly backwards round the inside of the
sphere, making a complete circuit in a year. Thus
we can picture the Sun’s motion compounded of a
daily motion shared with the stars of the celestial
sphere and a yearly motion backward through the
star pattern.

Ecliptic and Zodiac

This is a sophisticated idea, a piece of scientific
analysis: to separate out the Sun's yearly motion
trom its daily motion across the sky with the star-
pattern. Once this idea was clear it was easy to map
the Sun'’s yearly track among the stars—not directly,
because the Sun outglares the nearby stars by day,
but by simple reference to the patteru of stars in
the sky at midnight instead of noon. The Sun's
yearly track is not the celestial equator but a tilted
circle making 23%° with the eguator. It is this tilt
that makes the Sun’s daily path across the sky
change with the seasons. At the equinoxes the Sun’s

Fic. 13-8. Tue Ecvieric, the Sun's track through
the star pattern in the course of a year.
Here the daily motion is imagined “frozen.”

Brought to you by e

Fic. 13-9. The Zooiac, a belt of the celestial
sphere, tilted 23%° from the equator. The Sun's vearly path
{the ecliptic) runs along the middle line of this belt,

The paths of Moon and planets lie within this belt.
The Eﬂdi.il:.‘ was divided into twelve sections named

alter prominent star-groups or constellations,

{Zodiac patterns after H. A. Rey, The Stars. )
vearly track crosses the equator. In summer, the
tilted track has carried the daily path 23'2* higher in
the sky and in winter 23'¢° lower. This tilted yearly
track is called the ecliptic.

As the Sun travels round the ecliptic in the course
of the year, it passes through the same constellations
of stars at the same season vear after vear. This
broad belt of constellations containing the ecliptic
is called the zodiac. The constellations in it were
given special names long ago by the astrologer
priests, a named group for each month in the vear,

Jational Libi ary of the Philippines
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Moon

The Moon is obviously moving round the Earth
and illuminated by sunlight. Watch it for a week

or two; think where the Sun is each time and see
if it accounts for the Moon’s lighting. The Moon

E2EER
|'~_.'; . ll'f: LS

A.M wrrk
M !i ;.;lﬂ Ml
fak
Fie. 13-10. Tue Moon's Motion
The Moon, while moving across the sky with the stars
each night, slips rapidly backward through the
star-pattern, a whole circle in a month.

swings across the sky with the neighboring stars,
but even in one night it lags noticeably behind the
stars. It lags much quicker than the Sun, 90° in a
week; right round the star-pattern in a month. Its
monthly track is tilted about 5° from the ecliptic,
but it is still within the broad band of the zodiac.

Fic. 13-11. Zopiac BELT witk Posrmowns oF Moo,
m Vamious Puases, v THE Couvrse oF a MonTh
The daily motion of the celestial sphere is “frozen” here.

Eclipses

Eclipses are impressive events. Something seems
to take a bite out of the Sun or Moon. A total eclipse
of the Sun is awe-inspiring even to educated peo-

ple—daylight disappears and it grows strangely Sousnjqon ok o bbuR" Schenas rok bh

cold,

“In the priestly calendar lore, magic and genuine
science were inextricably entangled. . . . As liaison
officers to the celestial beings, the priests found it
paid to encourage the belief that nature can be
bought off with bribes like a big chief. One of their
most powerful weapons was their ability to forecast
eclipses. Eclipses were indisputable signs of divine
disapproval, and divine disapproval provided a co-
gent justification for raising the divine income-tax.
No practical utility other than the advancement of
the priestly prestige and the wealth of the priesthood
can account for the astonishingly painstaking atten-
tion paid to these phenomena.™

Later, men realized that eclipses are just shadows.
When the Moon is eclipsed the Sun throws the
Earth’s shadow on the Moon. The Sun is eclipsed
when the Moon gets in the light between us and

Fiz. 13-12. EcLirses
MOT TO SCALE. See Fic. 14-19b, e.

Fic. 13-12a. Eclipses of the Sun occur when the Moon
gets in the light between Sun and Earth.
The Moon's size and distance are such that total
eclipses are just possible,

Fic. 13-12b. Eclipses of the Moon oceur
when the Moon passes through the Earth's shadow,

Plane of Earth’s_ /
orbir or plane *"‘3/ -~

ECLIPTIC PLANE"

Fic. 13-12c. Eclipses occur only at certain times, Angle

A is about 5°. However, as the line where the Moon's

arhit-plane cuts the ecliptic plane slowly moves around

—due to perturbing attractions—eclipses do not always
ocour at the same season of our year,

win, Ltd,, pp. 43-44.



the Sun, and we are in the Moon’s shadow, which
sweeps rapidly across (part of ) the Earth.

For an eclipse, Sun, Moon, and Earth must be
in line. There is a chance of this only when the
Moon in its tilted orbit crosses the ecliptic plane,
which by definition contains Sun and Earth—hence
the name “ecliptic.” Even then, the necessary align-
ment is rare. An eclipse of the Moon is a shadow on
the Moon, and looks the same from everywhere on
the Earth. So an eclipse of the Moon observed from
different parts of the Earth occurs at different times
by the local clocks—a proof that the Earth is round,
not flat.

Calendar Periods

Day. The Sun's motion from noon to noon marks
an almost constant day. However, it varies slightly;
sundial noon runs ahead of a constant clock at some
seasons and behind at others, sometimes by many
minutes. The Sun’s apparent motion along the
ecliptic is not exactly regular through the year—it
moves faster in winter—so its daily motion shows
slight changes. (The Moon’s motion shows even
more complex irregularities.) The stars’ motion
round the celestial axis l'.hmugh the pole-star defines
a constant, slightly shorter, day—man’s ultimate
standard of timekeeping until the perfection of
electronic clocks.

Month. The Moon was probably the first calendar-
marker for men. The month from full moon to full
moon is about 29% days. The full moon is exactly
opposite the Sun, so that is the month judged
relative to the Sun. In 29% days the Sun travels
almost 29° along the ecliptic, so the Moon makes
more than one revolution, 360° -4 28°, relative to
the stars to catch up with the Sun. Relative to the
stars as fixed markers, the Moon takes 27.3 davs
for one revolution. We use a 29%-day month, like
the early-calendar makers, to predict full moon,
new moon, etc.; but we shall use the 27.3-day
period when we calculate the Moon's motion under
gravity,

Year. The idea of a year grew up as:

(a) the repeat-time of the seasons

(b) the time the Sun takes to return to the same
place among the stars (or the stars to return
to the same midnight position in the sky ). This
differs slightly from (a).

(e) a period of 12 {or 13) moon-months. Easy to
ohserve, such a year soon gets out of step with
the solar year of seasons.

29
Planets

A few bright “stars” do change their positions,
and move so unevenly compared with Sun, Moon,
and the rest that they are called planets, meaning
wanderers. These planets, which look like very
bright stars, with less twinkling, wander across the
sky in tracks of their own near the ecliptic. They

Frc. 13-13. Tue Pati oF & PLANET
All the planets wander through the star pattern
in a belt near the ecliptic—the zodiac belt.
{a) General region of a p[drlc't's pa.th—-l:h# zodiac belt.
(b} In detail, a planet’s path has loops—an
epicyeloid seen almost edge-on.

follow the general backward movement of the Sun
and Moon through the constellations of the zodiac,
but at different speeds and with occasional reverse
motions. Primitive man must have observed the
brighter planets but cannot have got any good use
from his observations, unless like eclipses they
were used to impress people.

Zodiac

Thus the zoediac belt includes the Sun's }’L‘!.’ir]:r’
path, the Moon's monthly path, and the wandering
paths of all the planets. In modern terms, the orbits
of Earth, Moon, and planets all lie near to the same
plane. Astrology assigned fate and character by the



Fic. 13-14. Zopwac Bert with Patis oF Sux (in one

year ), MooN {in one month ), and a specimen PLANET

{in planet’s "year”), The daily motion of the celestial
sphere is “frozen” here.

places in the zodiac occupied by Sun, Moon, and
planets at the time of a man's birth.

The Planets and Their Motions

Five wandering planets were known to the early
civilizations, in addition to the Sun and Moon which
were counted with them. These were:

Mercury and Venus, bright “stars” which never
wander far from the Sun, but move to-and-fro in
front of it or behind, so that they are seen only
near dawn or sunset. Mercury is small and keeps
very close to the Sun, so it is hard to locate. Venus
is a great bright lamp in the evening or morning
sky. It is called both the “evening star” and the
“morning star’—the earliest astronomers did not
realize that the two are the same.

Mars, a reddish “star” wandering in a looped track
round the zodiac, taking about two years for a
complete trip.

Jupiter, a very bright “star” wandering slowly
round the ecliptic in a dozen years.

Saturn, a bright “star” wandering slowly round
the ecliptic, in about thirty years.

Jupiter and Saturn make many loops in their
track, almost one loop in each of our years,

When one of the outer planets, Mars, Jupiter or
Saturn, makes a loop in its path it crawls slower
and slower eastward among the stars, comes to a
stop, crawls in reverse direction westward for a

while, comes to a stop, then crawls eastward again,
like the Sun and Moon.*

The sketches show the looped tracks of planets
through the star patterns. Once noticed, planets
presented an exciting problem to early scientists:
what gives them this extraordinary motion? From
now our main concern in this section on astronomy
will be: how can we explain (produce, predict)
the strange motions of the planets, which excited
so much wonder and superstition? We study this
to show how scientific theory is made.

Epicycloid

Nowadays we call the looped pattern of a planet’s
track an epicycloid (from the Greek for outer-
circle) because we can imitate it by rolling a little
circle round the circumference of a big one. Fig. 13-
17 shows a scheme to manufacture an epicycloid
which imitates a planet’s track. A large wheel W

spins steadily round a fixed axle. At some point A
on its rim, there is an axle carrying a small wheel,

&
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Fic. 13-15. Patis oF PLaMeTs THROUuGH THE STAR PATTERN
(a) Venus (January-July 1953)
(b) Mars (June-December 1956 )
[ The ecliptic is the Sun’s apparent path. The planets”
orbits run close to the ecliptic, because the planes
of those orhits are close to the plane of the Earth's
orhit {or the Sun's apparent orbit, the ecliptic).

o Remember that though the Sun sweeps from East to
West in its daily motion with the stars, it crawls backward, or
West to East, in its yearly motion round the ecliptic. So do
plancts.

orougnt o you by ne Mational Library of the




Fic. 13-16. Patus oF PLANETs IN THE 5KY.

This sketch shows the apparent paths of Jupiter and
Saturn, plotted for many years, as they would appear to
an observer attached to the Earth but viewing them from
far out from the Earth, so that the epicycles are seen
face-on, without the fﬂreshnrh:ni.ng [ea“y ohserved.
The apparent orbit of the Sun is also shown.

The Earth is at the center. When the astronomer Cassini
constructed this diagram in 1709 he used Copernican
measurements of orbit sizes,

P
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g;lw A Adgrer @

Fie. 1317, Maciuxe ron Drawise ErcycLomns

w, which spins steadily, much faster than W. Then
a point P on the rim of the small wheel traces out
an epicycloid. The planetary path we observe is
like this epicycloid seen obliquely, as if the whole
contraption of wheels were at eye level. (There is
a strong hint in this model that a planet’s
apparent motion is compounded of two circular
motions. The hint grows stronger when we find one
of those motions is a vearly one for every planet,
taking almost one of our vears. The ancient astrono-
mers did not take this hint.)

Observation

Many city-dwellers today take little notice of the
sky, but to anyone living out of doors at night the
planets are obvious strange bright things. Once you
have seen them, you are not likely to miss them
again. With even the simplest telescope or field

ught to wou by | The
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glasses you can see surprising details: the crescent-
shaped phases of Venus, Jupiter’s moons, perhaps
Saturn’s rings. With a telescope the planets look
bigger, while the fixed stars do not. This is because
the planets are much nearer. The fixed stars are
farther away and higger, but so much farther than
bigger that they look like points.®

Planets and Stars

We now know that these nearby wanderers, the
planets, are things of much the same size as our
Earth, and, like the Earth and the Moon, shine only
by reflected sunlight. (As a test of this we now
examine their light with a spectroscope and find it
carries all the characteristic absorption-lines of sun-
light.) The fixed stars, however, are lights in their
own right. They are white-hot furnaces like our
Sun (and the spectroscope tells us how they differ
in composition and temperature ).

Parallax

You and I know the Earth moves round the Sun,
swinging 186,000,000 miles across its orbit in six
months. Then we ought to see some changes in the
pattern of stars when we make that huge move—
parallax shifts as they are called. Try this personal
experiment on parallax. Look at a group of pe:}ple,
or chairs or other objects at different distances. Walk
to-and-fro sideways, or walk round in a circular
orbit, and notice how the relative positions change
in the group. Those in the remote background, seem
to stay still, while nearer ones move in little orbits
against the background, with a motion the reverse
of yours. Such parallax shifts are used unconsciously
by people in judging distances by a wagging head;
and modern astronomers use them to ]'utlge the dis-
tance of the Moon, planets, and stars.

Even if the stars were all embedded in a single
spherical bowl, the move across the Earth's orbit
would bring us nearer some of the bowl and distort
the pattern by foreshortening. The ancient astrono-
mers saw no such changes and concluded that the
Earth must be at rest at the center of the universe.
The only alternative explanation was that the stars
are infinitely far away compared with the diameter
of the Earth's orbit. Nowadays very delicate tele-
scopic measurements show that there are srmall
parallax shifts, which place even the nearest stars

¢ Telescopes fail to show the real size of stars. Even the
most powerful telescope would still show stars as points but
for the gprcading of Iight waves, which affects the imapes
formed by all optical instruments and makes a small dise

pattern for each star—the !:r'_ggc'r the tc!:'!‘pt'npc, the smaller
the disc.
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at vast distances. Much easier measurements place
the planets a million times closer. If we could meas-
ure distances by clocking a flash of light from each
body to us, we should find that light takes 8 minutes
from the Sun, a few minutes from the nearer planets
and a few hours from the farthest, while from the
nearest fixed star it takes several years.

Early Progress

Early astronomy, then, had three driving motives:
(a) practical uses: for compass, clock, and calendar
(b) magic to impress people; and astrology to pre-
dict fates and good and bad luck—such beliefs
made many a king in later ages support a good
astronomer

(¢) pure scientific interest: as men grew up, there
were scientists like those today whose delight
in nature and interest in understanding are the
driving forces.

Astronomy in the Early Civilizations

[It is difficult to tell who made the great dis-
coveries because these were probably made in
stages and then spread slowly, being re-discovered
and claimed many times. Therefore, the notes which
follow are not reliable and are offered only as gen-
eral indications. They cover the development of
astronomy from the age when it mattered for corn
and animals to the stage when it had taken its place
as a science. Here and later,-we give short notes
instead of a developed account.]

Urban civilizations developed in several great
river vallevs 5000 or more vears ago. Much “applied
science” had already been discovered—a few thou-
sand years before then—such as: artificial irrigation
of crops by canals and ditches; plow, sailboat,
wheeled vehicles; use of animals for motive power;
production and use of copper, bricks, glazes; and,
finally, a solar calendar, writing, a number system,
and the use of bronze.”

Sumerians, Babylonians, and Chaldeans (Three
separate peoples in Mesopotamia)

By 4000 years ago (2000 p.c.) there were flourish-
ing towns with extensive trade. They had excellent
commercial arithmetic that was almost algebra: thev
could solve problems leading to quadratics, even
cubics; they knew value of /2 accurately, but took
= as roughly = 3; and thev used similar triangles
and knew Pythagoras’ rule. They had good weights
and measures, sundials, and water-clocks. Records

TSee V. Gordon Childe, Man Makes Himself (Mentor
Books, New York, 1951).

and teaching texts were stamped in clay tablets,
which we can now decipher.

Their astronomical observations were not the
wonders often claimed, but made a good working
basis for calendars. Near the equator the Sun’s daily
path does not provide an obvious calendar, as it
does farther North. The Moon is much easier. So
the Babylonians based their calendar on new
Moons; but they had to reduce that to a solar
calendar of seasons for agriculture and seasonal
ceremonies. This required careful observations of
Sun and Moon. Positions were mapped with refer-
ence to the zodiac, which was divided into 12 sec-
tions. Stars were cata]agued, ecljpms recorded,
planets observed, and the returns of the planet
Venus specially studied.

A thousand years later, the Babylonians developed
a marvelous mathematical system for predicting the
motions of Sun and Moon accurately. This con-
sisted, essentially, of rules for calculating, like zg-
zag time-graphs of the uneven motions. These were
empirical, with no theoretical basis, but they main-
tained an accurate calendar and could even predict
probable eclipses. A similar scheme, with rougher
interpolation, gave positions of planets. Belief in
omens (prophetic signs) flourished, and astrology
took a strong hold.

Egyptians

More than 4000 vears ago, the Egyvptians were
living a comfortable life—with more friendly gods—
as the Nile floods renewed the soil's fertility every
vear. Their mathematicians served magic and com-
merce. Their papyrus texts dealt with measuring
corn stores, dividing propertv, building an exact
pyramid. Their magnificent building projects neces-
sitated good mathematics for the organization of
the work and the management of armies of work-
men. They had good weights and measures and
ingenious water-clocks.

Their astronomv was simpler than the Babvlon-
ians. They had an efficient solar vear of 12
months of 30 days -+ 5 extra days; so they paid less
attention to eclipses, the Moon, and planets. The
Sun-god was supreme in the state religion. Two
thousand years later thev recorded accurate planet
observations, probably for astrology.

Greeks

Some 3000 vears ago, Greek civilization began
to evolve. It produced mathematicians, scientists,
philosophers, who made such important advances
that we shall spend a chapter on them—even so,

Fi
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the choice of the few names to be mentioned is

unfair,
PROBLEMS FOR CHAPTER 2

1. During the winter, in the Morthern Hemisphere, the
Earth is octually a little necrer the Sun than in the summer,
Why then is the winter colder?

2. APPARENT MOTIOMS

Contrast prevents us seeing the stars in doytime. Suppose
we could see them in daytime: them we should see some
pattern of stars near the Sum.

(al Suppose we could note that pattern at noon in Jume.
When should we zee the some star pattern in the same
position in the midnight sky?

() What path should we see the Sun toke relotive to the
unchanging patterns of stars, from month ta month
[disregording dofly motion of stars, etc.)?

(e} Describe the path of an “cuter” planet such as Jupiter
or Mars relative to the unchanging potterns of stars
{disregarding doily motion of stars, etc.)?

{d) Describe the path of an “inner” planet such as Venus,
relative to the stars.

3. FINDING LATITUDE AND LONGITUDE

(a) State rough walues for the latitude of: Mew York, Son
Francisco, London, Marth Pale, Arctic Circle, equatar.

(b) Stote rough values for the longitude of New York, San
Francisco, London, Tokyo.

[mi
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[c} Suppose you are making an explaration in o small baat
ond are wrecked on an unknown desert island, for off
your course. You wish to find your position, but hove no
radic or other modern electronic equipment, and no spe-
cigl instrument such as o sextant. You do have o simple
stick with markers for sighting stars etc, ond o plumb
lime and a protractor for measuring angles. Explain how
you would estimate the fellowing: (5ay whot measure-
ments you would moke and how you would treat them,
Give g practical explonotion that on untrained sailor
could use—gvoid technicol phroses such os “obtain a
fix"').

(i}  your lotitude by ocbserving star(s) on o clear night

{ii}  your lotitude by observing the Sun

{iii) your longitude by observing Sun or stars. (For this o
certain guxiliary instrument is essential. 'What in-
strument?)

How could occurate predictions of eclipses of the

Meon help in g rough determination of longitude in

remote ploces?

(i) Why was this use of eclipses seriously considered in
ancient times?

{d) i}

How great love is, presence best tryall maokes,

But absence tryes how long this love will bee;

To take a letitude,

Sun, or starres, are fitliest view'd

At their brightest, but to conclude

Of longitudes, whaot other woy have wee,

But to marke when, and where the darke
eclipses bee?

—John Donne {~ 146000
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CHAPTER 3 - GREEK ASTRONOMY:
GREAT THEORIES AND GREAT OBSERVATIONS

T T T e e T T T T U L

“If science is more than an accumulation of facts; if it is not simply positive knowledge,
but systematized positive knowledge; if it is not simply unguided analysis and haphazard
empiricism, but synthesis; if it is not simply a passive recording, but constructive activity;
then, undoubtedly [ancient Greece] was its cradle.”

—GEORGE SARTON"
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Theory, a House for the Facts, “To Save the
Phenomena”

Astronomical knowledge grew up with the early
civilizations from simple noticing to systematic
observing that provided an official priesthood of
astronomers with material for calendar-making on
one hand, and on the other a growing tangle of
superstitious astrology. With this knowledge came
stories to teach children or reassure simple folk.
Describing the Sun as a god, worshipping the planet
Venus, telling of the “abode of the blessed” above
a crystal globe of stars: these were not merely super-
stitious myths, they were the forerunners, too, of
theoretical science. They were not real science:
their relationship with fact was thin and fanciful;
but they set the pattern of a speculative scheme to
“explain” the facts. When Greek civilization formed
out of neighboring groups, the wisest thinkers
brought a new attitude to science: they sought
general schemes of explanation that would appeal
to the inquiring mind, not simple myths to satisfy
public curiosity. Their aim, as they put it, was to
“save the phenomena,” or save the appearances,
meaning to make a scheme that would account for
the facts. This was a grander business than either
collecting facts or telling a new tale for each fact.
This was an intellectual advance, the beginning of
great scientific theory.

The earliest of the CGreek “natura] philosophers”
gave simple pictures of the structure of the Universe,
but as more information was gathered and intel-
lectual tradition grew they evolved schemes to save
the phenomena in detail: first simple tales to tell
about the Earth, then fuller ones to explain the
motion of the sky as a whole and the detailed mo-
tions of the Sun, Moon and planets.

At each stage, these philosophers tried to start

® Introduction to the History of Science (1927), Vol. 1,
page 8, Carnegie Institute of Washington.

with a few simple assumptions or general principles
and draw from them as logically as possible a com-
plete “explanation”—or setting forth—of the ob-
served behavior. This explanation would serve to
coordinate the information and to make future pre-
dictions, but above all to give a feeling that there
is a pattern that holds diverse behavior together,
that nature makes sense. Although some of the
search for a good scheme was prompted by practical
needs such as calendar-making, this delight in a
unified clear explanation went far beyond that.
Driven by an urge to ask WHY, the Greek philoso-
phers were seeking and making scientific theory.
Though our modern tradition of experimenting and
our modern wealth of scientific tools have made
great changes, we still hold the Greek delight in a
theory that will save the phenomena.

This chapter gives an account of some of the
Greek scientists. Watch how they built their theory.

Early Greek Astronomy

As Greek civilization developed, some 3000 years
ago, the poets (Homer) told the history of earlier
neighbors and tried to answer some of the great
WHY questions that intelligent people were asking
about mankind and about the world. The Earth was
pictured as an island surrounded by a great river
and covered by a huge bell of the heavens. The
home of the gods was at the “ends of the Earth.”
Hell or the land of the dead was also at the ends
of the Earth, or perhaps underneath. A daily Sun
rose from the surrounding river and swept over
the vault above.

By about 2500 years ago, we hear of great
“natural philosophers” telling fuller stories with
clearer thinking.

Thales (~ 600 sv.c.) was a founder of Greek
science and philosophy. In later centuries his repu-
tation as one of the “seven wise men” grew so



fabulous that impossible feats were ascribed to him, :
such as predicting a solar eclipse. He collected CLIPTIC (Yearly path of Sun)
geometrical knowledge, perhaps from Egypt, and
began to reduce geometry to a system of principles
and deduction—the beginning of a science that
Euclid was to bring to full flower. He thought the
Earth was a flat disc floating on water; yet he knew
the Moon shines by reflected sunlight, so he had
applied reasoning to common observations. He is
said to have known that lodestone, mnative rock
magnet, will attract pieces of iron; and he is ru-
mored to have discovered electricity by rubbing
amber ( = “electron” in Greek). Moreover, he went
beyond these bits of knowledge and set forth a
general explanation of the Universe: that water is

Fi. 14-2. EarLy Greex View

The Sun's yearly path through the star patterns was mapped.
This is the tilted band called the ecliptic. The Sun
is shown in one position (near mid-summer} and other
positions are sketched. Here the celestial sphere is not
spinning, but “frozen” with one star pattern overhead,

ence, politics . . . —the time was ripe for the idea
of a round Earth. Travellers’ tales of ships and stars
would suggest a curved Earth to an inquiring mind,
Yet the picture of the Earth as a round ball is hard
to believe. You accept it easily because you were
indoctrinated when very young—but watch a child
first learning about the antipodes where the people

Fic. 14-1. Tue Usivense Accormsc To THALES

the “first principle,” the basic material of which all
else is made. This was a bold beginning in “natural
philosophy.” He was a man of science, who assumed
that the whole universe could be explained by ; . |
ordinary knowledge and reasoning. AL
Others described the stars as set in a rotating v Dwy  pla
sphere and discovered the obliquity of the ecliptic, jags:
the slant of the Sun's yearly path among the stars.
This sorting out of the Sun’s yearly motion from its
daily motion was a useful step. The belt of star
patterns along the Sun's yearly path came to be
divided into twelve equal sections, the “signs of
the zodiac,” each named for a constellation. The
Moon's path and the planets’ paths are very near
the Sun’s, so they too travel through the signs of
the zodiac.

Frz. 14-3. PyTHAcoREAN VIEW
The Pythagorean school adopted spherical Earth; and
Pythagoras ( ~ 530 p.c.). By the time Pythagoras separated the peneral daily mation of stars, Sun,

. Moon, and Planpts, from the slow, backward motion
established his school of philosophy—religion, sci- of Sun, ete., through the star pattern.
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Eancy Greek SysTes oF CRYsTAL SPHERES. | Pythagoras)

Fic. 14-da. Part of the system, showing the rotating spheres of the Sun and

twao planets, carried around by the outer sphere

are “upside down”! Pythagoras himself probably
taught that the Earth is round; but we do not know
whether most of the Pythagorean discoveries and
views were his or those of later members of his
school, which fourished for some 200 years. For
the heavenly system, they pictured a round Earth
inhabited all over, surrounded by concentric trans-
parent spheres each carrying a heavenly body. The
innermost sphere carried the Moon, obviously closer
to the Earth than the rest. The outermost sphere
carried the stars, and the intermediate ones carried
Mercury, Venus, the Sun, Mars, Jupiter, and Saturn.
The outer sphere of stars rotated once in a day and
a night; the others ran slightly slower to show the
lagging course of Sun, Moon, and planets. Here was
a simple scientific theory, a conceptual scheme of
rotating spheres that was simple (plain spheres,
steady spins) and which could claim to be based
on a simple general principle (spheres are the
“perfect” shape and uniform rotation is the “perfect”

stars which spins daily.

ABODE_QFZ=y
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Fiz. 14-d4b. EapLy GREEE S¥STEM oF CRYSTAL SPHERES
A “section” of the whale system in the ecliptic plane.
f the Philippines
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motion for a sphere). The spheres carrying planets
were arranged in order of their spinning speeds:
Saturn, moving almost as fast as the stars—lagging
only one revelution in thirty years—was placed just
inside the stars; then Jupiter, Mars, Sun; with Venus
and Mercury just inside or outside the Sun’s sphere.
This arranging by speeds was a lucky guess. We
now know Saturn, Jupiter, and Mars are the “outer”
planets, farther from the Sun than the Earth, with
Saturn outermost, Mars nearest.

Some members of the school realized that a com-
mon 24-hour rotation could be separated, so they
made the outer sphere of stars carry all the inner
spheres with it. Then the inner ones had to spin
slowly backwards within the outermost, thus carry-
ing Sun, Moon, and planets backwards through the
zodiac band of stars, Each inner sphere had its ap-
propriate rate, once round in a year for the Sun,
once in a month for the Moon, . . . once in 12 years
for Jupiter. . . .

Pythagoras made discoveries in geometry. Though
his “square on the hypotenuse” theorem was known
long before him, he showed how to derive it. And
he developed a theory of numbers. He preached
that “numbers are the very essence of things,” the
basis of all natural knowledge; and his school was
much concerned with the arithmetical properties
of numbers and their use in science. He thus at-
tached to the study of numbers mystical values that
have appealed to thinking men from long before
him till long after. Among primitive men, supersti-
tion gave lucky and unlucky numbers magic powers,
and to this day reputable scientists discuss the struc-
tures of atoms and universes in terms of “"magic
numbers.” Such Pythagorean mysticism turns up
again and again in the development of science. The
hardheaded condemn it as a mischievous rock that
can shipwreck rational science, but most of us wel-
come it as a lifebuoy that can keep fruitful specula-
tion afloat when the way ahead seems stormy. The
layman today finds it hard to distinguish between
useful mysticism—such as dreams of a positive elec-
tron or of “anti-matter”— and cranky nonsense. But
the difference is sharp enough: the modern scientist,
even when he is being most mystical, uses a clear
vocabulary of well-defined terms with agreed mean-
ing between him and his colleagues; and he not only
draws on experiment for suggestions and checks but
insists on critical study of the reliability of the ex-
perimental evidence. The crank can quote experi-

1 “Magic numbers” in nuclear physics are useful, so they
are respectable. For an elementary modern example of almost
meaningless number-witcheraft see the account of the Bohr
atom in some beginning Chemistry texts.
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ments to suit his purpose but fails to win confidence
by his biased choice. There is, in fact, a corporate
sanity among scientists that guides thinking in wise
channels without restricting fruitful imagination.
Pythagoras was a sane scientist. In developing the
science of music—a fine field in which to look for
number properties—he assigned simple number
ratios to musical harmonies. We keep these today:
to be in perfect tune, two notes an octave apart must
have vibration-frequencies that are as 2:1; two notes
a musical fifth apart as 3:2. If different lengths of a
harp string are chosen to give these harmonic inter-
vals, they show the same proportions: the lengths
are 2:1 for an octave, 3:2 for a fifth. Other simple
ratios like 4:3 give a pleasant chord, but outlandish
ones like 4.32 : 3.17 make an ugly dissonance in our
ears trained by generations of the classical musical
scale. This idea of ruling harmonic proportions was
extended to astronomy. Pythagoras’ pupils imagined
the planetary spheres to be arranged by musical in-
tervals: sizes and speeds had to fit simple number
proportions. In rolling round with appropriate mo-
tion, each sphere made a musical note. The whole
system of spheres made a harmony, “the music of
the spheres,” unheard by ordinary men, though
some held that the master Pythagoras was priv-
ileged to hear it. Even this fanciful scheme was
hardly unscientific, for its time. There was an utter
absence of data; the distances of Sun and planets
were unknown, and there was no prospect of meas-
uring them; so the celestial harmonies merely added
zest to thinking. A historian eight centuries later,
wrote romantically: “Pythagoras maintained that the
universe sings and is constructed in accordance with
harmony; and he was the first to reduce the motions
of the seven heavenly bodies to rhythm and song.™

Philolaus. The Sun, Moon, Venus, Mercury, Mars,
Jupiter, Saturn—the seven planets as the Greeks
listed them—all travel slowly across the stars from
West to East. The star pattern carries the whole
lot daily from East to West. This unfortunate re-
versal that spoiled the simplicity could be removed
it the central Earth revolved instead of the stars;
then all would revolve the same way. Philolaus,
a pupil of Pythagoras, recorded such a view: in-
stead of the Earth being the center of the Uni-
verse, there is a central fire—"the watchtower of
the gods"—and the Earth swings round this fire
daily in a small orbit, its inhabited part always fac-
ing outward away from the fire. This daily motion
of the Earth would account for the daily motion of

® Hippolytos, quoted by G. Sarton in A History of Science
{ Harvard University Press, 1852), p. 214,
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Fiz, 14-5. SCHEME OF THE PYTHAGOREAN PHILOLAUS,
who pictured the Earth swinginﬁ around a central fire once in twenty-four hours.

This accounted for the da

y motion of stars, Sun, Moon and planets.

Then spheres spinning slowly in the same direction carried the Moon, Sun, planets,
(a) View of spheres. (b) Skeleton scheme of orbits.

the stars across the sky: the outermost crystal sphere
could be at rest. (Some went further and imagined
an extra planet interposed between the Earth and
the central fire. That counter-earth would protect
the antipodes from being scorched—or perhaps it
just was the antipodes—and it brought the total
number of heavenly bodies up to the sacred Pythag-
orean number of ten.)

This fantastic scheme was revolutionary: it treated
the Earth as a planet instead of making it the divine
center, and it pointed out that the rotation of the
starry sphere could be transferred to a daily revolu-
tion of the Earth. It may have paved the way for
later theories of a moving Earth, but it did not
last long, and it never suggested that the Sun is at
the center nor even that the Earth is simply spin-
ning. That last simplifying idea was suggested soon
after, but it too did not find favor.

The Pythagoreans knew the Earth is round. They
based their belief on a simple principle (spheres
are perfect) and on practical facts. And they de-
scribed the motions of the heavenly bodies by a
rough but simple scheme that could be called a
theory, in contrast with the more accurate workaday
rules that were developed in Babylon. As a machine
for making predictions, this first Greek system of

uniform spins was hopelessly inaccurate; but as a
frame of knowledge it was indeed superior: it gave
a feeling that the heavenly scheme of things makes
sense.

Socrates {~ 430 m.c.). The great philosopher
championed clear thinking with careful definitions,
and condemned the astronomers for their wild con-
jectures. Thus he probably helped astronomy to-
wards becoming an inductive science that extracts
its picture from experimental observations,

At much the same time, two philosophers, Democ-
ritus and Leucippus, were constructing a theory of
atoms to explain the properties of matter and even
the structure of the world. It was unthinkable, they
held, that matter could be chopped up into smaller
and smaller pieces without limit. There must be tiny
hard unsplittable atoms. Though they had no ex-
perimental evidence but only fanciful speculations,
they managed to sketch a theory of fiery particles
that looks sensible today.® They provided the idea

* It would be silly historical mysticism to call this Greek
atomic theory, for all its modern flavor, a foreseeing of
Dalton's atomic chemistry of 1800. It was not a scientific
discovery 2000 years before its time. It was a great idea
that had to wait 2000 years to direct the course of scientific
thinking,
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ON FIXED SPHERE

Fiz. 14-6. Laten PymracorEay ViEw
The round Earth spinning accounted for the daily motion of stars, Sun, Moon and planets.
Then spheres rotating slowly in the same direction carried the Moon around once in a month,
the Sun around onee in a year, and each planet around once in that Ellauet's “year.”

{a) View of spheres carrying Sun and two planets, (b} Skeleton sc

of atoms, to be mulled over, and occasionally used,
through the centuries until chemical knﬂ“‘lﬂdge
finally allowed an experimental atomic theory, in
the last two hundred years. Their writings are lost,
but the Latin poet Lucretius recorded their ideas in
a magnificent poem two centuries later. He held
that “reason liberates man from the terror of the
gods”"—a poetic version of the modern view “science
cures superstition.”

Though atomic theory did not concern astronomy
directly, its insistence on a vacuum between atoms
made it easier to think of empty space between
heavenly bodies, or beyond them—contrary to the
usual Greek view that space is limited and filled
with an invisible @&ther.

Plato ( ~ 390 B.c.) was not much of an astrono-
mer. He favored a simple scheme of spheres, and
placed the planets in order of their speeds of revolu-
tion: Moon; Sun; Mercury and Venus travelling with
the Sun; Mars; Jupiter; Saturn. The first great scheme
that seemed to give a successful account of planetary
motions came from FEudoxus, possibly at Flato's
suggestion.

Eudoxus { ~ 370 p.c.) studied geometry and phi-
losophy under Plato, then travelled in Egypt, and re-
turned to Greece to become a great mathematician

eme of orbits.

and the founder of scientific astronomy. Gathering
Greek and Egyptian knowledge of astronomy and
adding better observations from contemporary Bab-
vlon, he devised a scheme that would save the
phenomena,

The svstem of a few spheres, one for each moving
body, was obviously inadequate. A planet does not
move steadily along a circle among the stars. It
moves faster and slower, and even stops and moves
backwards at intervals, The Sun and Moon move
with varying speeds along their yearly and monthly
paths.* Eudoxus elaborated that scheme into a vast
family of concentric spheres, like the shells of an
onion. Each planet was given several adjacent
spheres spinning about different axes, one within
the next: 3 each for Sun and Moon, 4 each for the
planets; and the usual outermost sphere of all for
the stars. Each sphere was carried on an axle that
ran in a hole in the next sphere outside it, and the
axes of spin had different directions from one sphere
to the next. The combined motions, with suitably
chosen spins, imitated the observed facts. Here was
a system that was simple in form fspheres} with a

*For example, the four seasons, from spring e uinox to
midsummer to autumn equinos, &c., are unequal. The Baby-
lonians in their schemes for rl.'gu].a.hng the calendar by the
new Moon had, essentially, time-graphs of the uneven mo-
tions of Meon and Sun,
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Fic. 14-7. Evpoxus’ ScuevE oF Mavy CoNcENTRIC SPHERES
Each body, Sun, Moon or planet, had several spheres
spinning steadily around different axes. T
combination of these motions suceeeded in imitating
the actual motions of Sun, Moon and even planets
across the star pattern.

simple principle (uniform spins), adjustable to fit
the facts—by introducing more spheres if necessary.
In fact, this was a good theory.

To make a good theory, we must have basic prin-
ciples or assumptions that are simple; and wé must
be able to derive from them a scheme that fits the
facts reasonably closely. Both the usefulness of a
theory and our aesthetic delight in it depend on the
simplicity of the principles as well as on the close
fitting to facts. We also expect fruitfulness in making
predictions, but that often comes with these two
virtues of simplicity and accuracy. To the Greek
mind. and to many a scientific mind todayv, a good
theory is a simple one that can save all the phe-
nomena with precision. Questions to ask, in judging
a good theory, are, “Is it as simple as possible?” and
“Does it save the phenomena as closely as possible?”
If we also ask, “Is it true?, that is not quite the right
requirement. We could give a remarkably true story
of a planet’s motion by just reciting its locations
from day to day through the last 100 vears; our
account would be true, but so far from simple, so
spineless, that we should call it just a list, not a
theorv.® The earlier Creek pictures with real crvstal
spheres had been like myths or tales for children—
simple teaching from wise men for simple people.
But Eudoxus tried to devise a successful machine
that would express the actual motions and predict

* Young scientists are urged, nuw:lda}'s, not to be satisfed
with just collecting specimens, or facts or formulas, lest they
get stuck at the pre-Greek stage,

their future. He probably considered his spheres
geometrical constructions, not real globes, so he had
no difficulty in imagining several dozen of them
spinning smoothly within each other. He gave no
mechanism for maintaining the spins—one might
picture them as driven by gods or merely imagined
by mathematicians.

Here is how Euvudoxus accounted for the motion of a
planet, with four spheres. The planet itself is carried by
the innermost, embedded at some place on the equator.
The outermost of the four spins round a North-South
axle once in 24 hours, to account for the planet’s daily
motion in common with the stars. The next inner sphere

ins with its axle pivoted in the outermost sphere and

ted 23%° from the N-S direction, so that its equator
is the ecliptic path of the Sun and planets. This sphere
revolves in the planet’s own “year” Fl.’hc time the planet
takes to travel round the zodiac), so its motion accounts
for the planet’s general motion through the star pattern.®
These two spheres are equivalent to two spheres of the
simple system, the outermost sphere of stars that carried
all gme inner ones with it, and the planet's own sphere.
The third and fourth spheres have equal and opposite
%:':u about axes inclined at a small angle to each other.

e third sphere has its axle pivoted in the zodiac of
the second, and the fourth carries the planet itself em-

Goparat

Fic. 14-8. Pant oF Evboxuvs' Scuese:
Four SeHERES To lurmate ThE MoTion oF A PLANET
The sketch shows machinery for one planet,

The outermost sphere spins once in twenty-four hours.
The next inner sphere rotates once in the planet’s
‘vear,” The two innermost spheres spin with equal
and opposite motions, once in our year, to produce

the planet's epicycloid Joops.

% In terms of our view today, the spin of the rmost
sphere corresponds to the Eartﬁ's dajIyPrututiun; mu:zin of
the next sphere corresponds to the planet's own motion along
its orbit round the Sun; the spins of the other two spheres
combine to show the effect of viewing from the Earth which
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bedded in the equator, Their motions combine to add
the irre motion of stopping and backing to make
the planet follow a looped path. The complete picture
of this three dimensional motion is difficult to visualize.

With 27 spheres in all, Eudoxus had a system that
imitated the observed motions quite well: he could
save the phenomena. The basis of his scheme was
simple: perfect spheres, all with the same center at
the Earth, spinning with unchanging speeds. The
mathematical work was far from simple: a master-
piece of geometry to work out the effect of four
spinning motions for each planet and choose the
speeds and axes so that the resultant motion fitted
the facts. In a sense, Eudoxus used harmonic analy-
sis—in a three-dimensional form!—two thousand
years before Fourier. It was a good theory.

But not very good: Eudoxus knew there were
discrepancies, and more accurate observations re-
vealed further troubles. The obvious cure—add
more spheres—was applied by his successors. One
of his pupils, after consulting Aristotle, added 7
more spheres, greatly improving the agreement. For
example, the changes in the Sun’s motion that make

the four seasons unequal were now Predicted:_l oHngha

properly. Aristotle himself was worried because
the complex motion made by one planet’s quartet of
spheres would be handed on, unwanted, to the next
planet’s quartet. So he inserted extra spheres to
“unroll” the motion between one planet and the
next, making 55 spheres in all. The system seems to
have stayed in use for a century or more till a
simpler geometrical scheme was devised. (An
Italian enthusiast attempted to revive it 2000 years
later, with 77 spheres.

Aristotle (340 p.c.), the great teacher, philos-
opher, and encyclopedic scientist was the “last great
speculative philosopher in ancient astronomy.” He
had a strong sense of religion and placed much of
his belief in the existence of Eud‘un the glorious
sight of the starry heavens. He delighted in astron-
omy and gave much thought to it. In supporting the
scheme of concentric spinning spheres, he gave a
dogmatic reason: the sphere is the perfect solid
shape; and this prejudiced astronomical thinlcTﬁg
;]:}u_ut_nr'hits for centuries. By the same token, the
Sun, Moon, planets, stars must be spherical in form,
The heavens, then, are the region of perfection, of
_I.Il.r!!.chr:-l '?Efab-lﬁ Q:Jdgﬁ_fndl_ﬁlfl;cqllar motions. The space
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Fiz. 14-10.

between Earth and Moon is unsettled and change-
able, with vertical fall the natural motion.

For ages Aristotle’s writings were the only at-
tempt to systematize the whole of nature. They
were translated from language to language, carried
from Greece to Rome to Arabia, and back to Europe
centuries later, to be copied and printed and studied
and quoted as the authority. Long after the crystal
spheres were discredited and replaced by eccentrics,
those circles were spoken of as spheres and the
medieval schoolmen returned to crystal spheres in
their short-sighted arguments, and believed them
real. The distinction between the perfect heavens
and the corruptible Earth remained so strong that
Galileo, 2000 vears later, caused great annoyance
by showing mountains on the Moon and claiming
the Moon was earthy; and even he, with his under-
standing of motion, found it hard to extend the
mechanics of downward earthly fall to the circular
motion of the heavenly bodies.

Aristotle made a strong case for the Earth itself
being round. He gave theoretical reasons:

(i) Symmetry: a sphere is symmetrical, per-
fect

(ii) Pressure: the Earth’s component pieces,
falling naturally towards the center, wﬂuld
press into a round form

and experimental reasons:
(iii) Shadow: in an eclipse of the Moon, the
Earth’s shadow is always circular: a flat
disc could cast an oval shadow.

(iv) Star heights: even in short travels North-
ward or Southward, one sees a change in
the position of the star pattern.

This mixture of dogmatic “reasons” and experimental
common sense is typical of him, and he did much
to set science on its feet. His whole teaching was a
remarkable life work of vast range and enormous
influence. At one extreme he catalogued scientific
information and listed stimulating questions; at the
other extreme he emphasized the basic problems of
scientific _philosophy, distinguishing between the
true physical causes of things and imaginary schemes
to save the phenomena.

Euclid, soon after Aristotle, collected earlier dis-
coveries in geometry, added his own, and produced
his magnificent science: geometry developed by de-
ductive logic. Such mathematics is automatically
true to its own assumptions and definitions. Whether
it also fits the natural world is a matter for experi-
SUsrient” Therefore! owe- shauld neithér “uestion the
truth of a PIEEE_.?f._,'}]F-El}Ema&_IE-?- -?a?f-.F_ﬁR it a natural

sCience,



STARS OM FIXED SPHERE
AT INFINITY

Fic. 14-11. ARISTARCHUS  SCHEME
Only two specimen planets are shown. P; might be Mars, Jupiter or Saturn.
Ps might be Mercury or Venus,
(a) View of spheres. (b) Skeleton scheme showing planetary orbits,

The Scientific School at Alexandria

Alexander the Great built a huge empire, sweep-
ing in a dozen years from Greece through Asia
Minor, Egypt, Persia, to the borders of India and
back to Babylon. Early in his campaign, he founded
the great city of Alexandria at the mouth of the Nile.
Greek scholars collected there, and the Museum or
University of Alexandria grew to be a great center
of learning. A school of astronomers started there
about 330 s.c. and flourished for centuries. Some
made new and more accurate observations, devising
new instruments; some made a new kind of advance
by trying to measure the actual sizes and distances of
the Sun and Moon; and some produced new and
better theories.

Before the new school changed the spinning
spheres into eccentrie circles, one Greek astronomer,
Aristarchus ( ~ 240 B.c. ), made two simplifying sug-
gestions:

(i) The Earth spins—and that accounts for
the daily motion of the stars. (Others had
made this suggestion. )

Gugnt to wou by ne M

(i} The Earth moves round the Sun in a yearly
orbit; and the other planets do likewise—
that accounts for the apparent motions of
the Sun and planets across the star pat-
terns.

This simple scheme failed to catch on: tradition
was against it; and it was merely an idea, not backed
by a reasoned set of measurements, such as Coperni-
cus gave many centuries later. Earth moving around
an orbit raised mechanical objections that seemed
even more serious in later ages; and it raised a great
astronomical difficulty immediately. If the Earth
moves in a vast orbit, the pattern of fixed stars
should show parallax changes during the year. None
were observed, and Aristarchus could only reply
that the stars must be almost infinitely far off com-
pared with the diameter of the Earth’s orbit. Thus
he pushed the stars away to far greater distances.
He also released them from being all on one great
sphere. As long as they are far enough away, they
may be scattered through a great range of space, at
rest while the Earth spins.
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A4
Measurements of Size and Distance

Astronomers were now trying to gauge the actual
sizes of Sun, Moon, and Earth, and their distances
apart. Earlier, there had been vague guesses: the
Sun and Moon are very far away, or they are only
just beyond the clouds; the Sun is the size of Greece,
the Moon smaller. . . . Definite measurements would
turn astronomy into a much more real science, but
they were difficult to make.

Man iudges ordinary distances by his eye-muscles,
estimating the angle of squint when both eyes are
directed on the object. For remote objects, our eyes
are too close, and we use a longer base line and
actually measure angles. Then we draw a diagram
to scale, or use trigonometry. We now know that,
for the Moon, a base line of 1000 miles gives an
angle-of-squint of only %°. And for the Sun it would
be only 4en®, a very difficult difference to measure
even today, with observers so far apart.

The size of the Sun (or Moon) is connected with
its distance from us by an easy measurement: its
angular diameter. Fix a coin on a window and
move until it just blots out the Sun’s disc. Measure
the coin’s diameter and distance from your eye:
their ratio, coin diameter/coin distance, gives the
ratio, Sun’s diameter/Sun’s distance. The ratio is
about 410, Or use some instrument to measure the
angle the Sun’s diameter subtends—almost exactly
%°, Draw a triangle with vertex angle %° on a big
sheet of paper and measure its sides. Or use simple
trigonometry. You will find the distance from base
to vertex is about 110 times the base. The Sun's
distance from us is 110 times its diameter. Almost
the same proportion holds for the Moon—Moon and
Sun look about the same size, and this is confirmed
in total eclipses of the Sun, when the Moon only just

- "‘\ﬁ' .
ﬁ'_':,_";‘::‘_:"___._‘_'-—--_.__ - Angfe of squint
i’

Fic. 14-13. Estoqatvcg [DisTANCES
(a) Judging distance by squint.

(b) Judging Moon’s distance by squint would require
observers 1000 miles apart to notice a difference of X°,

manages to cover it. A measurement of one of the
two quantities piaMeTeR and DISTANCE then com-
bines with 110 to give the other. The usual measure-
ment is DISTANCE, estimated by squint.

Size of the Earth

The first measurement to be made was the size
of the Earth itself, and the other measurements
emerged in terms of the Earth's radius.

Eratosthenes ( ~ 235 B.c.) made one of the early
estimates. He compared the direction of the local
vertical with parallel beams of sunlight at two sta-
tions a measured distance apart. He assumed that
the Sun is so remote that all sunbeams reaching the
Earth at any instant are practically parallel.

He needed simultaneous observations at two sta-
tions far apart. Good clocks that could be compared
and transported were not available. So he obtained

P
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Fic. 14-12. Revation Berween Sie ano Distance can be found by holding measured coin at
measured distance. This does not tell us absolute size or distance.
Sketch (a) is not to scale. Sketch (b)) shows the “angular size” of Sun and Moon drawn fo scale.
Measurements show the Sun and Moon each subtend about %* at Earth. Measurements or
trigonometry tables give a proportion of about 1:110 for base:height.
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Fiz. 14-14. How ERaTOosTHENES ESTIMATED
THE SzZE oF THE EarnTi

simultaneity by choosing noon (highest Sun) on the
same day at stations in the same longitude. He used
observations at Alexandria, where he worked, and
at Syene,” 500 miles farther south. The essential ob-
servation at Syene was this: at noon on midsummer
day, June 22, sunbeams falling on a deep well there
reach the water and are reflected up again. Eratos-
thenes knew this from library information. There-
fore the noonday Sun must be vertically overhead at
Syene on that day. At noon on the same day of the
year, he measured the shadow of a tall obelisk at
Alexandria and found that the Sun’s rays made 7%"°
with the vertical. He assumed that all sunbeams
reaching the Earth are parallel. So it was the vertical

? Modem name: Aswan, where the great dam has been
built on the Nile.

45

(the Earth’s radius) that had different directions.
Therefore the Earth’s radii to Alexandria and Syene
make T%" at the center. Then if T%° carries 500
miles of Earth’s circumference, 360° carries how
much? The rest was arithmetic. Measuring the 500
miles separation was hard—probably a military
measurement done by professional pacers. There is
doubt about the units he used, but some say his
error was less than 5%—a remarkable success for this
early simple attempt. He also guessed at the dis-
tances of Sun and Moon.

Moon's Size and Distance

The size of the Moon was compared with the size
of the Earth by watching eclipses of the Moon.
Timing the Moon as it crossed the Earth’s shadow,
Aristarchus found that the diameter of the round
patch of Earth’s shadow out at the Moon was 2%
Moon diameters. If the Sun were a point-source of
light at infinity, it would shadow the Earth in a
parallel beam as wide as the Earth itself. In that case
we should have:

EARTH'S DIAMETER — 2% MOON DIAMETERS;
OF MOON'S DIAMETER — % EARTH'S DIAMETER,
.5, MooN's piIsTANCE, which is 110 MOON DIAMETERS
= (%) 110 EARTH DIAMETERS
= 44 EARTH DIAMETERS OF 85 EARTH HRADIL

That, with Eratosthenes’ value of about 4000 miles
for the Earth’s radius, would place the Moon 350,000
miles away. Taking the Sun at infinity is reasonable.
Treating it as a point source is not, and of course

Fic. 14-15. EarLy GrREEx MEASUREMENT OF SIZE oF THE Moo (AND THEREFORE [Ts DisTANCE].

Observations of eclipses showed that the width of the Earth's shadow at the Moon is 2.5 Moen-

diameters. However, the Earth's shadow narrows as its distance from Earth increases because

the Sun is not a point-source. Since the Moon's shadow almost dies out in the Moon-Earth dis-

tance, the Earth’s shadow must narrow by the same amount—one Moon-diameter—in the same
distance. Then Earth-diameter must be 3.5 Moon-diameters.

F
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Aristarchus knew that. The Sun is a great flaming
globe that casts tapering shadows (of angle about
%°). When there is a total eclipse of the Sun the
Moon can only just shut the whole Sun off from
our eyes, 5o the Moon's shadow cone only just
reaches us—it ends practically at the Earth. There-
fore, in running the Moon-to-Earth distance, the
Moon's shadow narrows by the whole Moon di-
ameter. In an eclipse of the Moon, the Earth's
shadow is thrown the same distance, Earth-to-Moon,
50 it too must lose the same amount of width, one
Moon diameter. Thus, Aristarchus argued:

EARTH'S DIAMETER — One MOON DIAMETER
= 2% MOON DIAMETERS,
. EARTH'S DIAMETER = (1 4 2% ) M0ON DIAMETERS
= % MOON DIAMETERS,
.5, MooN's DISTANCE = 110 MOON DIAMETERS
=% (110) EARTH DIAMETERS
— 31.4 EARTH DIAMETERS or 63 EARTH RADIL

More accurate measurements, used by Aristarchus
and his successors, gave 60 Earth’s radii (within 1%
of the modern measurement ), about 240,000 miles.

Later, the Moon's distance was measured by the
squint method, thus: Observers at two stations far apart,
in the same longitude, sight the Moon at the same
time on an agreed night, They measure the angle be-
tween the Moon's direction and a vertical plumb-line
(which gives the local zenith direction). These angles u,
v suffice to locate the Moon if the base-line distance be-
tween the stations is known. With stations far apart, that
distance would be a difficult measurement for early as-
tronomers; but the angle between the Earth's radii to
the two stations will do instead. So the observer at each
station measures the angle between his local vertical

(!

{iki)

Fic. 14-16, Measvnmic Moox's Distasce sy Sguint MetHob

and the light from a standard star. Any star will do: a
perfect pole star, or any other star observed at its high-
est point. Then, as in sﬁemh (ii) of Fig. 14-16, the sum
of these two measured angles (x + y) gives the angle z
at the center. Now in diagram (iii) the three angles u,
v, z are known, and the two radii R and R are known

Frc. 14-17. Scave Duscras Method for Calcu!at.ing
[ Moon's misTance)/{ EArTa’s rapivs) from measurements

to be equal. To find the Moon's distance, either use trigo-
nometry or make a simple drawing to seale, thus: on a
big sheet of paper (sand on the floor for early astrono-
mers ), draw a circle and mark radii OA and OB making
the angle z (known by adding measurements x + y).
Continue these radii out to represent the zenith verticals
at stations A and B. From A draw a “Moon-line” AP
making measured angle u with the radius there. Draw
BQ from B. Where they cross is the Moon's position M
on the scale diagram. Measure OM and divide it by the
radius OA. The result gives the Moon’s distance as a
multiple of Earth's radius.

Accurate measurements give

MOON'S DISTANCE = just over 60 EARTH'S RADII
== 240 000 miles

Sun's Size and Distance

The Sun’s distance is much harder to estimate
even today because the Sun is in fact so far away,
so bright, and so big. The squint method angle at
the Sun is too small to measure without telescopic
accuracy. However Aristarchus used an ingenious
scheme to get a rough estimate. He watched the
Moon for the stage at which it showed exactly half
moon. Then sunlight must be falling on the Moon
at right angles to the observer's line of sight, EM.
At that instant, he measured the angle between the

Fic. 14-18. Sux's Distance
Early Greek estimate of the Sun's distance from
the Earth, in terms of the Moon's known distance,
Greek astronomers tried to measure the angle x
{or SEM ), which is itself nearly 90°,
Brought to you by | The Mational Library of the Philippines
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Fic. 14-19a. Sun, Moo, Eanti. Sketch not to seale, The Sun is shown much too near, and the Moon is too big and too near.

Moon'’s direction and the Sun’s direction. This angle,
SEM, was nearly a right angle but not quite. Then
in the great triangle, SEM, two angles were known.
The third angle, ESM, is the small one that gives the
essential measure of the Sun’s distance. It is got by
subtracting from 180°. It is small: 3° as Aristar-
chus estimated, but really only %°. So Aristarchus’
conclusion that the Sun's distance is about 20 times
the Moon's was an underestimate, about 20 Himes
too small. This proportion, SUN'S DISTANCE/MOON'S
DISTANCE, is got from the angles by a scale draw-
ing or by very simple trigonometry. (EM/ES is
the cosine of the measured angle SEM. Therefore

ES
EM  cosSEM

Thus, the astronomers at Alexandria had estimates
of the dimensions of the heavenly system, and these
were used by their successors with little change for
many centuries:

Earnta:  radius 4000 miles

Moo distance from Earth, 60 Earth's radii

or 240,000 miles
personal radius 1100 miles

, easily taken from trig. tables. )

SUN /

ABOUT
80 FEET /

e |'
AWAY &

ON THIS |

SCALE \

Sun: distance from Earth 77 1200 Earth's
radii. (Thought to be inaccurate: it
was. )

personal radius PP 44,000 miles

Praners: distances quite unknown, but pre-
sumed farther than Moon
STARs: distances quite unknown, presumed

beyond Sun and planets

Looking at these estimates, you can see that the
vsual pictures in books to illustrate eclipses are
badly out of scale. Fig. 14-19 shows more realistic
pictures based on modern measurements. No won-
der eclipses are rare. It is easy enough to miss the
slender cones of shadow. The Moon's orbit is tilted
about 5° from the Sun's apparent path, and that
makes eclipses still rarer.

New Theories: Eccentrics; Epicycles

In the school at Alexandria, the bold suggestion
of making the Earth spin and move round a central
Sun did not find favor. A stationary central Earth
remained the popular basis, but spinning concentric

A\

Moons \
orbit *i
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Fie. 14-19b. Sketch to scale shnwmg the shadow cones of Moon and Earth,

Sun

cMoen's orfut
® fand Earth)

Fie. 14-19c. Sketeh to scale. Here the scale has been reduced so that Sun, Moon and Earth are in the picture.

The small circle is the Moon’s orbit. The Earthiat th
On this scale it is a dot oo inch in diameter:
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Decenher Sun
seems to move ©

Fiz. 14-20, Tue EccENTRIC SCHEME FOR THE SuN
The Sun is carried around a circular path by a radius
that rotates at constant speed, as in the simplest

stem of spheres. The observer, on the Earth, is
off-center, so that he sees the Sun move unevenly—
as it does—Ffaster in December, slower in ]une.

spheres made the model too difficult. Instead, the
slightly uneven motion of the Sun around its “orbit”
could be accounted for by a single eccentric circle:
the Sun was made to move steadily round a circle,
with the Earth fixed a short distance off center.
Then, as seen from the Earth, the Sun would seem
to move faster at some seasons (about December,
at A) and slower 6 months later (at B). This was
still good theory. For good theory, the scheme
should have an appealing simplicity and be based
on simple assumptions.® These needs were met: a
perfect circle of constant radius, and motion with
constant speed round it. Such constancies were nec-
essary to the Greek mind—in fact to any orderly
scientific mind. Without them theory would de-
generate into a pack of demons. Placing the Earth

—

Fic. 14-21. THE EccenThRic SCHEME, Fom A PLANET
Each planet is carried at the end of a radius that rotates
at constant speed; but this whole circle—center, radius
and planet—revolves onee a year round the eccentric
Earth. (To picture the motion, imagine the radius CP
continued out to be the handle of a frying pan. Then
imagine the frying pan given a circular motion | of
small radius, EC} around E as center, by a housewife
who wants to melt a piece of butter in it uickly, Then
make the handle CP revolve too—very :IDW].}", for an
outer planet like Jupiter. )

& The assumptions should be logical in the schoolboy slang
sense—a sense that would have pained the Greek thinkers.
In their use, it was the argument from the assumptions that

had to be logical.

off-center was a regrettable lapse from symmetry,
but then the Sun’s speed does behave unsymmetri-
cally—our summer is longer than our winter. A
similar scheme served for the Moon, but the planets
needed more machinery. Each planet was made to
move steadily around a circle, once around in its
own “year,” with the Earth fixed off center; but then
the whole circle, planet's orbit and center was made
to revolve around the Earth once in 365 days. This
added a small circular motion (radius EC) to the
large main one, producing the planet’s epicycloid
track. The daily motion with the whole star pattern
was superimposed on this.

=

Fic. 14-22. Tue EcceEnTric SCHEME
Sketch showing machinery for motions of Sun and one planet.

Another scheme to produce the same effect used
a fixed main cirele (the deferent) with a radius arm
rotating at constant rate. The end of that arm car-

The wihele pattem, € and its The Earth remains fieed
circle with radies C P, rowelies at ohe center of the main
u.rwnd'_fmd' Farth, E L&d’:fdg‘irml:l \
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Fiz, 14-23.

Tue ECcENTRIC SCHMEME AND THE EPICYCLE SCHEME

ried a small sub-circle (the epicycle). A radius of
that small circle carried the planet round at a steady
rate, once in 365 days. Though these schemes oper-
ate with circles, they were described more grandly
in terms of spinning spheres and sub-spheres. For
many centuries, astronomers thought in terms of
such “motions of the heavenly spheres"—the
spheres themselves growing more and more real as
Greek delight in pure theory gave place to childish
5ingistenge on| authoritasiantoythine Phiippines
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Fiz. 14-24.

Maxmc THE PATH oF A PLANET BY THE EricycLE ScHEME.
This sketch shows how the two circular motions combine
to produce the epicycloid pattern that is observed
for a planet.

Hipparchus (~ 140 B.c.), "one of the greatest
mathematicians and astronomers of all time,” made
great advances. He was a careful observer, made
new instruments and used them to measure star posi-
tions. A new star that blazed into prominence for a
short time is said to have inspired him to make his
great star catalogue, classifying stars by brightness
and recording the positions of nearly a thousand by
celestial latitude and longitude. He made the first
recorded celestial globe. There were no telescopes,'®
nothing but human eyes looking through sighting
holes or along wooden sticks. Simple instruments
like dividers measured angles between one star (or
planet) and another, or between star and plumb
line. Yet Hipparchus tried to measure within %°.

He practically invented spherical trigonometry
for use in his studies of the Sun and Moon, He
showed that eccentrics and epicycles are equivalent
for representing heavenly motions. Adding his own
observations to earlier Greek ones and Babylonian
records, he worked out epicyclic systems for the Sun
and Moon. The planets proved difficult for want
of accurate data, so he embarked on new measure-
ments.

From Greek observations dating back 150 years
Hipparchus discovered a very small but very im-
portant astronomical creep: the “precession of the
equinoxes.” At the spring equinox, midway between
winter and summer, the Sun is at a definite place

% Sarton, History of Science.

10 That invention was seventeen centuries in the future.

By magnifying a patch of sky it enables much finer measure-
ments to be made.

49

in the zodiac, and it returns there each year. But
Hipparchus discovered that the Sun is not quite in
the same patch of stars at the next equinox. In fact
it gets around to the old patch of stars about 20
minutes too late, so that at the exact instant of
equinox it is a little earlier on its zodiac path, about
¥0® after one year, nearly 1'¢" after a century. Hip-
parchus found this from changes in star longitudes
between old records and new. Longitudes are reck-
oned along the zodiac, from the spring equinox
where the equator cuts the ecliptic. Since all longi-
tudes seemed to be changing by one or two degrees
a century, Hipparchus saw that the zodiac girdle
must be slipping round the celestial sphere at this
rate, carrying all the stars with it, leaving the celes-
tial equator fixed with the fixed Earth.** This motion
seems small—a whole cycle takes 26,000 years—
yet it matters in astronomical measurements, and
has always been allowed for since Hipparchus dis-
covered it. The discovery itself was a masterpiece of
careful observing and clever thinking.

Precession remained dificult to visualize until
Copernicus, sixteen centuries later, simplified the
story with a complete change of view (see Ch. 16).
Even then it remained unexplained—unconnected
with other celestial phenomena—until Newton gave
a simple explanation. Discovered as a mysterious
creep, precession is now a magniﬁcent witness to
gravitation,

Hipparchus left a fine catalogue of stars, epicycle
schemes, and good planetary observations—a mag-
nificent memorial to a great astronomer. These had
to wait two and a half centuries for the great mathe-
matician Ptolemy to organize them into a successful
theory.

1! The Sun's ecliptic path cuts the eclestial equator in two
points, When the Sun reaches either of these it is sym-
metrical with respect to the Earth’s axis. Day and night are
equal for all parts of the Earth: that is an equinox. Precession
is a slow rotation of the whole celestial sphere, including the
zodiac and the Sun, around the axis of the ecliptic, perpen-
dicular to the ecliptic plane. From one century to the next,
the creeping of precession brings a slightly different part of
the zodiac belt to the equinox-points (where ecliptic cuts
equator )—hence the name. The whole celestial sphere joins
in this slow rotation round the ecliptic axis. This applies, for
example, to the stars near the N-§ axis, which is fixed with
the Earth and 235" from the ecliptic axis; so the motion
carries the current pole-star away from the N-§ axis and
brings a new one in the course of time. Thus, in some cen-
turies there is a bright star in the right position for pole-star,
and in others there is no real star, only a blank in the pattern.
In the 40-0dd centuries between the building of the pyramids
and the present, this motion has accumulated a considerable
effect. In fact, by examining the pyramid tunnels that were
built to face the dog-star Sirius at midnight at the Spring
equinox, we can guess reughly how long ago they were Euitt.

Fi
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Fic. 14-25. PreEcession oF THE EQuinoxes
In addition to (a) the daily motion of the whole heavens around the N-5 axis fixed in the fixed Earth and (b) the year
motion of the Sun around its ecliptic path in the zodiac band of stars, Hipparchus discovered (c) a slow rotation of the wh
pattern of stars around a different axis, the ecliptic axis (perpendicular to the zodiac belt),

Ptolemy ( ~a.n. 120) made a “critical reappraisal
of the planetary records.” He collected the work of
Hipparchus and his predecessors, adding his own
observations, evolved a first-class theory and left a
masterly exposition that dominated astronomy for
the next fourteen centuries. The positions of the
Sun, Moon, and planets, relative to the fixed stars,
had been mapped with angles measured to a frac-
tion of a degree. He could therefore elaborate the
system of eccentric crystal spheres and epicycles
and refine its machinery, so that it carried out past
motions accurately and could grind out future pre-
dictions with success. He devised a brilliant mathe-
matical machine, with simple rules but complex
details, that could “save the phenomena” with cen-
tur}'-lung accuracy. In this, he negleeted the crystal
spheres as moving agents; he concentrated on the
rotating spoke or radius that carried the planet
around, and he provided sub-spokes and arranged
eccentric distances. He expounded his whole system
for Sun, Moon, and planets in a great book, the
Almagest.

Ptolemy set forth this general picture: the heaven
of the stars is a sphere turning steadily round a fixed
axis in 24 hours; the Earth must remain at the center
of the heavens—otherwise the star pattern would
show parallax changes; the Earth is a sphere, and it
must be at rest, for various reasons—e.g., objects

thrown into the air would be left behind a moving
Earth. The Sun moves round the Earth with the
simple epicycle arrangement of Hipparchus, and
the Moon has a more complicated epicyclic scheme.

In his study of the “five wandering stars,” as he
called the planets, Ptolemy found he could not “save
the phenomena” with a simple epicyclic scheme.
There were residual inequalities or discrepancies
between theory and observation. He tried an epi-
cycle scheme with the Earth eccentric, moved out
from the center of the main circle. That was not
sufficient, so he not only moved the Earth off center
but also moved the center of uniform rotation out
on the other side. He evolved the successful scheme
shown in Fig. 14-26. C is the center of the main
circle; E is the eccentric Earth; Q is a point called
the “equant,” an equal distance the other side of C
(QC = CE). An arm QA rotates with constant
speed around Q, swinging through equal angles in
equal times, carrying the center of the small epi-
eycle, A, round the main circle. Then a radius, AP,
of the epicycle rotates steadily, carrying the planet
P. It was a desperate and successful attempt to
maintain a scheme of circles, with constant rota-
tions. The arm of the little circle carrying the planet
rotated at constant rate. Ptolemy felt compelled to
have an arm of the main circle also rotating at con-
stant rate. To fit the facts, that arm could not be a
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E - Earth (fixed)

¢ - Center of rcle

Q- Cagane
Qc=CE

Fic. 14-26. Tue PTOLEMAIC SCHEME
This system imitated the motions of
Sun, Moon, and planets very accurately.

radius from the center of the main circle, as in the
simplest epicycle scheme. Nor could it be the arm
from an eccentric Earth E. But he could save the
phenomena with an arm from the equant point Q
that did rotate at constant speed. Thus for each
planet’s main circle, there were three points, all
quite close together, each with a characteristic con-

stancy.
E c Q
the Earth the center of the the equant point
in main circle with arm QA
fixed position with arm CA of rotating at
constant leagth constant speed

By choosing suitable radii, speeds of rotation, and
eccentric distance EC (= CQ), Ptolemy could save
the phenomena for all planets (though Mercury re-
quired a small additional circle). The main circle
was given a different tilt for each planet, and the
epicycle itself was tilted from the main cirele.

Here was a gorgeously complicated system of
main circles and sub-circles, with different radii,
speeds, tilts, and different amounts and directions
of eccentricity. The system worked: like a set of
mechanical gears, it ground out accurate predictions
of planetary positions for year after year into the
future, or back into the past. And, like a good set
of gears, it was based on essentially simple prin-
ciples: circles with constant radii, rotations with
constant speeds, symmetry of equant (QC = CE),
constant tilts of circles, and the Earth fixed in a con-
stant position.!*

12 If this insistence on circles seems artificial—a silly way of
dealing with planetary orhits—remember:

{i) that you have modern knowledge built into your ewn
folklore,

(i} that though this now seems to you an unreal model,

[mi
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In the Almagest, Ptolemy described a detailed
scheme for each planet and gave tables from which
the motion of each heavenly body could be read off.
The book was copied (by hand, of course), trans-
lated from Greek to Latin to Arabic and back to
Latin as culture moved eastward and then back to
Europe. There are modern printed versions with
translations. It served for centuries as a guide to
astronomers, and a handbook for navigators. It also
provided basic information for that extraordinary
elaboration of man’s fears, hopes, and greed—astrol-
ogy—which needed detailed records of planetary
positions.

The Ptolemaic scheme was efficient and intellec-
tually satisfying. We can say the same of our modern
atomic and nuclear theory. If you asked whether it
is true, both Greeks and moderns would question
your word “true”; but if you offered an alternative
that is simpler and more fruitful, they would wel-
come it.

& ;
.?‘ .

Fic. 14-27. THE PTOLEMAIC SCHEME
for the Sun, 5, and two planets, P, and P,

it is still fashionable as a method of analysis. Adding circle
on circle in Greek astronomy corresponds to our use of a
series of sines {Emjeﬂtcfl circular motions) to analyze com-
plex motions. Physicists today use such “Fourier analysis”
in studying any repeating motion: analyzing musical sounds,
predicting tides in a port, expressing atomic behavior. Any
repeating motion however complex can be expressed as the
resultant of simple harmonic components. Each circular
motion in a Ptolemaic scheme provides two such components,
one up-and-down, one to-and-fro. The concentric spheres
of Eudoxus could be regarded as a similar analysis, but in a
more complex form. Either scheme can succeed in expressin

planetary motion to any accuracy desired, if it is al]awe§
to use enough components,
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CHAPTER 4 - AWAKENING QUESTIONS
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[The Angel Raphael discusses the alternative views with Adam:]

Hereafter, when they come to model Heav'n
And calculate the Stars, how they will wield
The mighty frame, how build, unbuild, contrive
To save appearances, how gird the Sphere
With Centric and Eccentric scribbl'd o'er

Cycle and Epicycle, Orb in Orb:

. « . What if the Sun

Be Center to the World, and other Stars

By his attractive virtue and their own

Incited, dance about him various rounds?

Their wandering course now high, now low, then hid,
ngrcsaivc, rctrograde. or stam:ling still,

In six thou seest, and what if seventh to these
The planet Earth, so stedfast though she seem,
Insensibly three different Motions move? . . .

—]John Milton, Paradise Lost, Book VIII (1667)
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Such was the Ptolemaic picture of the heavens—
a complicated, clums:,r system but workable and
successful. To your mind and mine, it may seem
unreal or unthinkable, but to Ptolemy and to many
after him it was the alternative that seemed un-
thinkable, a spinning Earth whizzing round the
Sun in a vast orbit. Would not objects be thrown
off a spinning Earth or left behind by a moving
Earth? And would not the nearer of the fixed stars
change their apparent positions when the Earth
moved right across the diameter of its orbit in half
a year? Mankind’s muddled ideas about motion had
to wait for Galileos teaching and Newton's clear
thinking before the fog of the first objection cleared
away. The second objection would still be serious
if the stars did show absolutely no parallax shifts.
We now know there are shifts, but they are too small
to be observed without very delicate instruments,
The first successful observation was made in 1832,
These scientific objections to the Sun-in-center al-
ternative were overshadowed by one that seemed
to arise naturally from man’s sense of his own im-
portance. The Earth on which We live must be the
center of the Universe—other things must revolve
round Us.! This view, suggested by observation,
gained easy support from simple self-centered think-
ing and from humanist teaching. It was firmly

[mi

placed in people’s beliefs. So we must not be sur-
prised to find that Ptolemy’s picture, with Man’s
world at the center, held the field in man's beliels
right on through the Dark Ages until the Renais-
sance brought questionings with awakening flexi-
bility of mind.

The other view, with the Sun as center and a
spinning Earth travelling round it, was suggested
by some Greek astronomers; also discussed by an
occasional philosopher or churchman in the 12th
to 15th centuries, but the suggestions were put

! Hesitate before you condemn this arrogance unsympa-
thetically. You, too, have passed through just such attil'ur}:-
Healthy children today start with much this kind of view:
“I am the important person, almost the only person, and the
world is arranged around Me.” The process of growing up
socially involves the broadening of this view, perhaps in
stages such as “ME”; “Me and Mother™; “Me and family™;
“Me and you"; “Me and other people”; “Me and my coun-
try”; and, finally, for a few, “me and the world.” Most people
fail to advance through all these stages. A man's success in
social adjustment and wisdom would seem to depend on how
far he progresses along this series. Many fail to advance be-
yvond the first few stages, and though they may be very
successful in material matters we are unlikely to find much
to admire in them spiritually or intellectually. Some of the
world’s dictators got stuck at the “ME" stage, though others
got as far as “Me and Mother” and regressed. At other
extreme, the rare souls who think and feel in terms of “me
and the world™ are the great philosophers and prophets.
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apologetically as unreal theories, and gained little
acceptance. For a thousand years the Ptolemaic
picture was believed and hardly questioned. Peo-
ple in Europe had little interest in science, except
as a basis for wordy discussions, arguing from au-
thority instead of inferring principles from experi-
ment. The Church of Rome was responsible for
what teaching there was, and it treated science with
the same dogmatic authority that maintained its
religious structure. Any dispute with its teachings,
even a simple appeal to experiment and observation,
would bring disturbing questions to threaten its
authority. Such disturbances were not welcome in
an age when simple men were directed and taught
in all matters by the Church and nobles and kings
ruled by the authority of the Church.

In the thousand years between the Greek astron-
omers and the awakening of scientific experimenting
there must have been questioning scientists, but
their work remains forgotten. After centuries of
“dark ages,” came glimmerings of the new light.
Roger Bacon, an English monk (~1250), almost
cried aloud, “Experiment, experiment.” He was an
honest but intemperate critic, attacking churchmen
and other thinkers in his insistence on the need to
experiment and to collect real knowledge instead
of poring over bad Latin translations. In his books
he attacked ignorance and prejudice and made wise
suggestions for gathering more knowledge. One
writer pictures him shouting to mankind, "Cease to
be ruled by dogmas and authorities; look at the
world!™ His tactless manner brought him into con-
flict with his brother friars and with some Church
authorities as he discussed and wrote. His teaching
and books, and those of others like him, were prob-
ably suppressed and certainly forgotten for a long
time—he was centuries ahead of his time. (The
later Bacon, Francis, is credited with formulating
the new scientific attitude, but some modern critics
doubt whether his contribution was very helpful. )

Two hundred years later Leonardo da Vinei
{~1480) thought and experimented and wrote and
drew as a scientist as well as an artist. In mechanics
he hegﬂn to sort out ideas of force and mass and
motion: and he formulated scientific ideas and
sketched skillful models. His famous notebooks are
a storehouse of mechanical inventions and include
some of the finest drawings in the history of art.
In making these notebooks, he was both historian
and prophet, recording interesting ideas from others
and ingenious schemes he had thought of. A new ap-

2 H. G. Wells, The Outline of History { London, 1923).
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proach was starting which would have warmed
Roger Bacon's heart.

Meanwhile, astronomical records had grown, with
observations from Arab astronomers and others.
The needs of medicine and navigation kept scientific
teaching alive and ultimately impressed scientific
growth on the Renaissance. Alphonso X of Castille
( ~1260), ordered his school of navigators to con-
struct new tables to predict the motions of the heav-
enly bodies. These tables were collected, printed
some 200 years later, and used for a further 100
years. Alphonso is rumored to have said, when he
first had the complicated Ptolemaic system ex-
plained to him, that if he had been consulted at
the Creation, he would have made the world on a
simpler and better plan.

Others added measurements and in turn made
mathematical refinements of the Ptolemaic machin-
ery, but even in the intellectual awakening of the
early Renaissance the alternative idea, Sun-at-cen-
ter, was not put forward seriously until Copernicus
wrote his great book. Then, running right through
the Renaissance and up to the present day, came the
great series of scientists who developed the science
of mechanics from the foggy views of the dark
ages to its present precise and powerful form, using
the solar system (and, later, atomic systems) as a
vast laboratory with frictionless apparatus. We are
concerned not only with the physics they developed
but also with the interaction between their work
and the life and thought of other men. Therefore,
we shall give some account of their lives as well as
their work. First we shall give a set of short notes
showing how their main contributions were related.

SHORT NOTES

[In these notes, as in earlier ones, the dates
given are not the date the man was born or
died but “average” dates usually showing
when he was about 40.]

Nicolaus Copernicus, a Polish monk ( ~1510), sug-
gested that the Sun-at-center (heliocentric) pic-
ture of the planetary system would be simpler. He
wrote a great book setting forth the details of this
system, showing calculations of its size, etc., and
predicting tests. After his death this view spread,
though it was not universally accepted until
much later.

Tycho Brahe, a Danish nobleman (~ 1580) who,
fired with curiosity about the planets, became a
brilliant observer, a genius at devising and using
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precise instruments. He built the first great ob-
servatory. He knew of Copernicus’ suggestion but
did not wholly accept it, and was not much con-
cerned with theory, He constructed far more
accurate planetary tables than any before him,
and left his pupil Kepler to complete their publi-
cation.

Johannes Kepler, a German { ~1610), was a power-
ful mathematician with a gift for subtle specu-
lation and a great belief that there are simple
underlying rules in nature. Using Tycho's ob-
servations, he extracted three general rules for
the motion of the planets. He could not find any
underlying explanation of these rules.

Meanwhile, Galileo Galilei ( ~ 1610), was experi-
menting and thinking and teaching new scientific
knowledge of mechanics and astronomy. To the
dismay of classical philosophers, and to his own
danger, he preached the need to abide by experi-
ment. With the newly-invented telescope he
gained evidence supporting Copernicus’ picture
which he advocated violently until the Church
stopped him.

René Descartes, French philosopher ( ~1640), de-
scribed a world system deduced from general
principles which he felt were implanted by God.
He opposed the idea of a vacuum and filled space
with whirling vortices to carry the planets.
His greatest contribution to science was the in-
vention of co-ordinate geometry: the use of x-y
graphs to link algebra and geometry. This enabled
caleulus to develop.

GreAT SciENTIFIC SocteTES were formed for the ex-
change of knowledge, and experimental science
throve publicly. (1600- . . ., 1700- . . . now.)

Isaac Newton (~1680), gathered up the results of

Galileo’s experimenting and the work and think-
ing of others into clearly-worded “laws”™ summing
up the experimental facts concerning mass, mo-
tion, and force, with the help of clear ideas and
definitions. He extended the force of gravity to
universal inverse-square-law gravitation, showing
that this would account for the moon's motion,
for Kepler's three planetary laws, for the tides,
etc., thus building a great deductive theory. In
the course of this he needed calculus as a mathe-
matical tool, and invented it. He experimented
and speculated in other branches of physics, too,
particularly optics.

In terms of his summary of mechanics, Newton

showed that universal gravitation would “explain”
the whole of the behavior of the Moon and planets
as described by the Copernicus-Kepler system. In
the next two centuries further consequences were
worked out by other mathematicians and physi-
cists, including the French mathematicians, Jos-
eph Louis Lagrange and Pierre Simon de Laplace;
and a new planet was discovered by its minute
gravitational effects on the known ones.

Early in this century, Albert Einstein suggested

modifications and reinterpretation of the laws of
mechanics. These do not destroy Newton's work,
but enable us to account for such things as a small
unexplained motion of the planet Mercury, and
to deal successfully with very rapid atomic mo-
tion. In addition to such modification of the
“wnrking rules” of mechanics, the great value
of Relativity lies in the light it throws on the
relation between experiment and theory, ruling
out unobservable things from even the specula-
tion of wise scientists.



CHAPTER 5 - NICOLAUS COPERNICUS (1473-1543)
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Beauty is truth, truth beauty,—that is all
Ye know on Earth, and all ye need to know.
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Fic. 16-1A. CorERNICUS” PLANETARY SYSTEM

Nicolaus Copernicus was born in Polish Prussia.
He seems to have lived a quiet, uneventful life.
He was pious, capable, not brilliant, but inspired
by a love of truth. He had the clear vision and the
courage to challenge traditional authority, but he
had no delight in entering into conflict with it.

Copernicus was brought up by his uncle, who was
Bishop and ruler, practically prince, of the district.
His uncle intended him to serve the Church and sent
him to school and university near home to study the
great classics. He also studied some astronomy and
learned to use the clumsy astronomical instruments
of the time. Then he travelled to Italy, learned Greek,
and studied Church Law, in which he received
the degree of Doctor. He also continued to study
astronomy, and was now able to read the original
Greek texts, After a few years, when he was 26, he
visited Rome, and while there gave a course of lec-
tures in mathematics (P?=astronomy). Meanwhile
his uncle had named him canon in the cathedral but
allowed him to spend two more years in Italy to
study medicine.

At last, in his early thirties, Copernicus returned
to his uncle’s cathedral near home. There he spent

ught to wou by | The

the rest of his life, as a scholarly monk, dividing
his time between church duties, account keeping,
occasional medical consultations, and meditation on
the System of the World.

For his meditations he liked solitude, and he
seems to have made few friends, though his repu-
tation as a scholar drew several students to him.
He had no use for the long wrangling arguments
that were fashionable; yet, when asked to help a
government committee which was trying to simplify
the coinage, he accepted willingly and presented a
clear capable report, which the senate adopted.

Copernicus was impressed by the variety and dis-
agreement of opinions on planetary motions. The
Ptolemaic system, with its artificial equants, seemed
to him too clumsy to be God's best choice. He be-
lieved that the planetary system, spheres and all,
was a divine creation; but he believed God's ar-
rangement would be a simple one, all the more
splendid for great simplicity. He collected together
observations of the planets in more reliable tables
than had so far been available; and in thinking
about the planetary motions he was struck by the
simplicity that would come from changing to a Sun-
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in-center picture. He made an intuitive guess that
the Earth is a planet like the rest—an extraordinary
shift of view. Then he pictured all the planets mov-
ing in circular orbits around a fixed Sun. He made
the Earth travel once around the Sun in a wvear,
spinning once in 24 hours as it goes. The “fixed
stars” and the Sun could then remain at rest in the
sky.

This scheme replaced Ptolemy’s epicycles and
equants with simpler circular motions. The daily
motion of the stars, carrying Sun, Moon, and planets
as well, could obviously be replaced by a daily
spinning Earth. That alternative had often been dis-
cussed, but had been turmmed down becaunse the
critics did not understand the mechanics of motion.
(They claimed that there would be a howling wind
of air left behind, and that the ground would out-
strip a stone dropped from a high tower. On the
other hand, the stars ete. could well be carried
around by Ptolemy’s spheres because spheres and
rotations were natural in the heavenly region.)

The slower, irregular motions of Sun and planets
through the star pattern could be simplified to cir-

cular motions around the Sun. This was Copernicus’
main contribution: to stop the Sun and place it at
the center of the planetary system. Then the Sun’s
yearly motion around the ecliptic was only an ap-
parent one due to the Earth's yearly motion around
the Sun. And the complex epicyeloid of a planet
was simply a compound of the planet’s own motion
around a circle and the Earth's yearly motion. (On
this view, the epicycloid picture is making us pay
for ignoring the Earth’s motion. ) This tempting idea
of a Sun-in-center scheme had been thought of be-
fore, but not strongly supported. Copernicus, search-
ing early records for such ideas, had both the clear
mind and the store of data to develop it.

His detailed explanation of a planet’s epicycloid
ran like this. Suppose the Earth travels around a
circular orbit and Jupiter more slowly around a big-
ger orbit, both with the Sun at the center, as in
Fig. 16-2. The fixed stars must be much farther
away, because no parallax-shifts are observed. Then
in marking the position of Jupiter among the fixed
stars we look along a sightline running from Earth
to Jupiter and on, far bevond, to the pattern of the

Fic, 16-1B. Tue Corenmican Svstesm | with later additions) seen in perspective

{a) The whole system,

(b} Inner region of {a) magnified several times.

The orbits are almost circular, with the Sun only a little off center.
The arrangement of orbits is shown here, but the sizes are not to scale.
The planets themselves are much smaller in proportion than these sketches show—on the scale
used here for orbits the planets would be invisible dots.
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Fiz. 16-2, CorERNICUS’ EXPLANATION OF PLANETARY EPICYCLOIDS
The lines E.Js, Ez]s, etc., are sight-lines from positions of the Earth every two months through Jupiter's position towards the stars.

{a) Two stages sketched

stars. As the Earth sweeps round and round its
orbit and Jupiter crawls more slowly, this sightline
wags to and fro as it goes around, marking an
epicycloid among the stars. When the Earth is at
E,, Jupiter is at J,, and an observer locking along
the sightline E ], sees Jupiter among the stars at
J?. As the Earth travels from E, to E; to E,, E,, E,,
E,, &c., Jupiter travels steadily but slowly forward
from ], to J, to J.. J., J.. ] &c. Then the observer
on E sees |® in directions that swing mostly for-
wards but sometimes backwards. To see this, look
at Fig. 16-3, which shows Fig. 16-2 condensed to a
small scale with the sightlines continued out to a
remote background of stars.

Copernicus accounted for the epicycloids of Mars,
Jupiter, and Saturn by making them move around
large circular orbits outside the Earth's orbit. He
made Venus and Mercury move around smaller
orbits, nearer the Sun than the Earth's. This ac-
counted for their observed behavior—keeping close
to the Sun and swinging to and fro each side of it.
Thus the same scheme served for both the “inner”
planets and the “outer” ones.

Copernicus did not just offer an alternative that
looked simpler; he extracted new information from
his scheme: the order and sizes of the planetary
orbits, a remarkable advance contributed by theory.
In the Ptolemaic scheme the main circles could be
chosen with any sizes—it did not even matter which
planet was put outermost. In fact, Ptolemy was just
drawing patterns with a mathematical machine, to
fit the observations, on the celestial sphere. In the

{b) More stages sketched.

Sun-in-center scheme, the orbits must be in a defi-
nite order and must have definite proportions. From
the planets’ apparent motions in the sky it was
obvious to Copernicus whose orbits were largest
and whose least.! The order must be (as in Fig.
16-1):

SUN, stationary at the center

Hera:ur}r, nearest the Sun

Venus

Earth, with the Moon travelling around it
Mars

Jupiter

Saturn, farthest of the planets then known.

Treating the orbits as simple circles, Copernicus cal-
culated their relative radii from available observa-
tions; he could thus plot a fairly accurate scale map
of the system. To obtain the actual radii from these
relative values, he needed an absolute measurement
of any one of them, say the distance from Sun to
Earth. This was known only roughly,* so the scale
of his complete picture was unreliable.

! Try this theoretical discussion, with Figs. 16-2 and 16-3,
Suppose that Jupiter and the Earth each keep their present
times of revolution (our year, and Jupiter's “planetary year”),
but that the radius of the Earth’s orbit is changed. What
would happen to the shape of the loops of Jupiter's apparent
path, among the fixed stars,

{a} if the Earth's orbit changed to a very small radius?

(b} if the Earth's orbit changed to be nearly as big as
Jupiter's?

®In fact he used a Greek estimate that was IE'.EI times too
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{c) Many stages sketched. The sight-line E] wags

up and down in a complicated way.

Estimating Orbits

To see how he caleulated relative radii, suppose
you are attacking the problem for an inner planet,
say Venus. Venus, nearer the Sun than the Earth,
travels in a small orbit round the Sun. This circle
is seen practically edge-on from the Earth; so Venus
seems to swing to-and-fro in front of the Sun or
behind it, travelling only a small way each side of
the Sun before it turns back. Thus it is seen only
near the Sun as a morning or evening “star.” When
Venus seems farthest to one side of the Sun, just
about to turn back, it must be at a point such as C
lying on a tangent from the Earth to its orbit (Fig.
16-4). In positions A, B, D, . . . etc,, it would seem
nearer the Sun. This tangent is perpendicular to
the radius, SC, of the orbit { by geometry of circle).
So the triangle ECS has a right angle at C and
an angle at E that can be measured by sighting
from the Earth. Given these, vou can draw a scale
model of this triangle (ie., a similar triangle), and
by measuring that you can find the proportion be-
tween SC and SE which are the radii of the orbits
of Venus and the Earth, To measure the required
angle at E, you must find the angular distance be-
tween Venus and the Sun at the moment when
Venus seems farthest from the Sun. In trying to
make a direct measurement vou might be prevented
by the glare of the Sun, but you can wait till the
Sun has set, calculating where it will have got to,
and then observe Venus day after day till the separa-
tion is greatest. So you may imagine yourself meas-

uring the angle with two jointed sticks with peep-

Fic. 16-3. Corenxicus’ EXPLANATION
The apparent positions of Jupiter in the background
of fixed stars. This shows Fic. 16-2c redrawn on a
much more condensed scale with the sight-lines from
Earth to Jupiter continued on out to the stars.
(E.g. the line to J,* here is continuation of EI]|-]I

The Eecimen sight-lines are drawn g_a.ra“u to
2c.

e corresponding ones in Fio. 1

—— —

Fic. 164, Estivatiie REratve Bann oF ORBITS:
Venus is shown farthest from the sun,

holes, though the real method must be slightly less
direct. Actual observations show that this angle is
about 46°. Drawing and measuring a triangle with
angles 467, 90°, and 44° will show vou that the frac-
tion (medium side) / (longest side) is about s
This tells you that the orbit-radii for Venus and
Earth are in the proportion 72:100. You need not
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draw the triangle, if you have trig. tables, as Co-
pernicus had. The fraction you want (medium
side) /(longest side) is sin 46°, and, from tables,
this is 0.72. Copernicus had measurements which
gave him this angle, and he performed this calcu-
lation for Venus and Mercury. For the outer planets
the argument and the geometry are rather more
complicated, but Copernicus calculated the relative
sizes of their orbits in much the same way. Thus, he
could draw a scale map of the orbits and place the
planets correctly in them at some chosen starting
time. To predict their positions at other times he
needed to know each planet's “year,” the time it
takes to travel round its orbit. These “years,” or
times of revolution, he found from recorded obser-
vations. Essentially, he found how long the planet
took to get back to the same place among the stars.

Using recorded data, Copernicus placed the plan-
ets on his scale map and predicted their positions at
other times, past and future. He could check the
past ones, and thus test his “picture,” or “theory” as
we should now call it. These tests were encouraging,
but there were some disagreements which led,
through long careful calculations, to modifications
of the simple picture.

Copernicus gave other points in support of his
theory:

(i) Mars is much brighter (seemins larger) in
some seasons, obviously because it is nearer the
Earth then. On the Ptolemaic system its slightly
eccentric orbit round the Earth could not possibly
provide big enough changes of distance. But on
the Copernican scheme the distance ranges from the
sum of the orbit radii to the diference. In fact Mars
is brightest when that distance is least, at the sea-
sons when Mars and the Earth are on the same side
of the Sun—Mars in “opposition” to the Sun, over-
head at midnight.

(ii) Just when an outer planet makes the reverse
part of a loop it is exactly in opposition to the Sun.
Ptolemy could give no reason for this. It is obvious
from the Copernican geometry (study Fig. 16-2).

(iii) If Venus and Mercury are nearer the Sun
than the Earth is and travel round the Sun in small
orbits, then when we look at them we should see
only part of them brightly lit, the side facing the
Sun, not the whole planet (see Fig. 16-5). Thus
these two planets should show stages or “phases,”
like the Moon as it changes from new Moon to half
Moon to full Moon and so on?® With the large

*0n a pure Ptolemaic scheme, Venus would also show
phases but not the whole range from crescent to “half moon”
to full.

Brought 1o you by | The
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planet Venus, these stages should, the ecritics
thought, be visible. As they were not observed, the
critics claimed the Sun-in-center idea was wrong.
There is a story, almost certainly mythical, that
Copernicus replied: “If the sense of sight could ever
be made sufficiently powerful, we should see phases
in Mercury and Venus.” Within a century, Galileo’s
telescope showed the phases of Venus.
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Fic. 16-5. Prases oF VENUS, a5 SEEN FRos THE EarTi

As a crowning virtue of simplicity, Copernicus
gave a new interpretation of the precession of the
equinoxes. Precession, as discovered by the Greeks,
was described as the whole star system (and the
Sun) crawling slowly around the axis of the ecliptic,
while the Earth and its equator plane and N-§ axis
stayed still. Copernicus reversed the deseription,
saying the Sun and its ecliptic plane stay fixed;
that is, the plane of the Earth's orbit stays fixed.
And the Earth’s equator-plane (and celestial equa-
tor) swings slowly around, always tilted 23%° to
the ecliptic. Then Copernicus could describe pre-
cession simply: the Earth’s spin-axis has a slow
conical movement; carrying the equator-plane, it
gyrates around a cone of angle 23%° in 26,000 years.
Though Copernicus gave this clear picture of what
happens in the precession of the equinoxes, he had
no idea what “caused” it. That problem had to
wait for Newton, who showed that, like so many
astronomical phenomena, it is a result of universal
gravitation.

Though the simplicity delighted him, Copernicus
presently found that steady motion in simple circu-
lar orbits would not fit the facts. He had to make
the orbits eccentric, and even add little epicycles.
In doing this he spoiled the simplicity somewhat,
and perhaps made it harder to guess the underlying
simple rules which Kepler found later; but, like
Ptolemy, he was insistent on making his machinery
fit observations aceurately. In this respect both sys-

lational Library of the Philippir

es




To Palk
hﬂ' FJ_'_,_:--)'_._. i - T —
= Ts10M OF THE Eoemr —
\( ﬁ_ﬁ; E QUrmg*E‘;,
NS
-
\ {:——"’Iﬁﬂﬁﬂjﬂd

umqwm

Fic. 16-8. Sxeren Smowine Motion CALLED THE
Precession oF THE Egumnoxes

tems were good descriptions of the observed mo-

tions, and we ought not to call either “wrong,”

Copernicus spent twenty years or more construct-
ing and perfecting his scheme. During this time he
became well known among mathematicians and as-
tronomers, and some came to talk and study with
him and carry away his powerful idea. He sent a
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Fig. 16-7. Tue Precession oF THeE EqQuinoxes
Sketch of a large patch of Northern sky (about 80° by
40}, showing the slow movement of the celestial
North Pole among the stars. The point where the
Earth's spin-axis cuts the pattern of the stars moves
slowly around a roughly cireular path making one revo-
lution in about 26 () vears. { After Sir Robert Ball,)

small outline of his scheme to friends. Yet he had
no wish for fame, Many urged him to publish his
work: his star maps, his tables of observations, and
his great scheme of the Solar System with its full
defense and all the details he had worked out. Even
after a friend had published a preliminary review
of his scheme, he delayed for many years because
he wanted to correct and improve it before he of-
fered such a revolutionary change of view to a
conservative public. He had no fear of conflict with
the Church of which he was a well-accepted mem-
ber; and the friend who offered to pay for the pub-
lishing was himself a Cardinal. But he knew that
such a book would arouse opposition, and he feared
ridicule, Great clearness, critical reasoning, and or-
ganized data would be needed to convince a preju-
diced world. It was a tremendous thing to try to
overthrow the Ptolemaic system, founded and per-
fected by the great men of the past and made almost
sacred by tradition and practical use. For a long
time the Ptolemaic scheme had been failing in accu-
racy—even the calendar had accumulated a big
error. Yet no one doubted its essential rightness.
Astronomers merely tried to correct its radii and
shift its equants for better agreement. Copernicus
wanted to be very sure of his ground. He could
afford to wait, for he knew that truth is very strong,

At last he was persuaded, and he wrote a great
book which was set up in type and published at the
very end of his life. Its title was De Revolutionibus
Orbium Ceelestium, “On the Revolutions of the
Heavenly Spheres.” He dedicated it to the Pope,
saying in his dedication,

“I can easily conceive, most Holy Father, that as
soon as some people learn that in this book . . . 1
ascribe certain motions to the Earth, they will cry
out at once that I and my theory should be rejected.
For I am not so much in love with my conclusions
as not to weigh what others will think about them,
and a]ﬂ'lcrug]'l I know that the meditations of a Phi-
losopher are far removed from the judgment of the
laity, because his endeavor is to seek out the truth
in all things, so far as this is permitted by Cod to
the human reason, I still believe that one must
avoid theories altogether foreign to orthodoxy. Ac-
cordingly, when I consider in my own mind how
absurd a performance it must seem to those who
know that the judgment of many centuries has ap-
proved the view that the Earth remains fixed as
center in the midst of the heavens, if I should, on
the contrary, assert that the Earth moves; I was for
a long time at a loss to know whether I should pub-
lish the commentaries which I have written in proof
of its motion.”




Fic. 16-8a. ProLEmalc SysTEM,
sketched without eccentricity or equants,
Order and proportions of orbits not determinate,
Epicycle radii not “to scale.”
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Fic. 16-8b, Corennicas SysTeM,
sketched without eccentricity or minor epicycles.
Orbit Propurt'luns, which are determinate, are
roughly to scale. {Moon's orbit out of scale.)

Fic. 16-8. Comparison oF SiMPLE ProLeEmaric
ScuEMmE anp Spvrre Corervican Scuewe

He further says,

“If there be some babblers, who, though ignorant
of all mathematics, take upon them to judge of these
things, and dare to blame and cavil at my work,
because of some passage of Scripture which they
have wrested to their own purpose, 1 regard them
not, and will not seruple to hold their judgment in
contempt.”

In the book he gave his star tables and planetary
observations as well as his great exposition of the
new view of the Solar System.

The book was set in type and printed far away,
in Nuremberg. It starts with a general deseription
of the scheme and its advantages.* Then chapters

4 A friend added a timid preface to say this was only a
theory—far from that, Copernicus believed his scheme was
frue.

expound the necessary trigonometry, and a section
develops the rules of spherical astronomy. Then the
Sun’s “motion”"—or rather the Earth's—is discussed
in full, with the explanation of precession of the
equinoxes. The Moon's motion is then discussed, and
the last two sections deal with the motions of the
planets in full detail. In the latter, he included dis-
cussions of measurements of the distances of Sun
and Moon and the sizes of planetary orbits.

It was a great book indeed, destined to have far-
reaching effects. Copernicus never read it in its final
printed form. While he was waiting for its publica-
tion, an old man of 70, he was taken very ill, partly
paralyzed. On May 23, 1543 the first printed copy
was sent him, so he saw it and touched it. That
night he died peacefully.



CHAPTER 6 - TYCHO BRAHE (1546-1601)
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“The fault, dear Brutus, lies not in our stars. . . .

B R T A e WL M

The Copernican Revolution

Copernicus struggled to escape from the atmos-
phere of Aristotelian dogmatism and argumentation
in which he had been brought up. He loved truth,
and he succeeded in producing a clearer, hetter
picture of the heavens. Though insistent, he was
calm and peaceful and considerate, and he per-
suaded manv to his view. After his death, knowl-
edge of his system spread. His tables were checked,
corrected, and printed. His estimate of the length
of the vear (365 days, 5 hours, 55 minutes, 58 sec-
onds) was used by a later Pope to reform the
calendar, which was by then days out of gear with
the seasons. When Copernicus himself had been
consulted on calendar reform some eighty vears
earlier, he had demurred because he wanted first
to clear up his own ideas about the system of the
world. Here is a tribute to his final work: the re-
formed calendar, which we still use, has its scheme
of leap vears so well arranged that it will remain
true to the 5Sun’s seasonal calendar within one day
tor the next 3,000 years!

But as time went on others taught the new sistem
less quietly and less tactfully, and its real effect
began to be felt. It upset philosophers, disturbed
ordinary people, started scientists towards new
thinking, and brought the official Church into open
opposition, Within a century of his death, Coperni-
cus’ work, originally dedicated to the Pope, became
the center of one of the most violent intellectual con-
troversies that the world has known. How could it
do this® Because it upset knowledge that was taken
for granted and seemed obviously right; and be-
cause it upset the intellectual outlock of the times.
Copernicus was attacking—though he did not
realize he was—a great interwoven structure of
thought and belief. In those davs scholarly knowl-

edge was not divided into separate fields o[ Slud‘-
5uch as physical science, bm[c:-g} ph}smlﬂ gv, psy-
chology, sociology, languages, arts, and philosophy.
We who are taught in organized classes and special-
ized courses can hardly picture the confused but
strongly knit general intellectual outlook of the
medieval intellectual world. The medieval scholars
who met and discussed and taught were masters

"
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of all fields, anxious to maintain a scheme that gave
all knowledge the same assured standing. They tied
all studies together in a unified system.

The natural world was regarded as made up of
four basic elements: earth, air, fire, and water,
Liquids flowed because they were mostly water;
solids were dense and strong because they were
mostly earth; and so on. Four corresponding “hu-
mours” ruled men’s behavior—according to which
of the four is dominant in him, a man is angry, sad,
calm, or strong in his temperament. The planets,
marked out among the stars by their wandering,
were given qualities that linked them both to man
and to the four physical elements. They were linked
to human temperament and fate, and they were
linked to the metals whose properties depend on
their proportions of earth and fire. (For example,
Mars, the reddish planet, might represent the god
of war, angry temperament, fiery metal.) The planets
and stars in turn linked man to divine providence.
The celestial system of spheres formed a vast ideal
model for man himself. And bevend the outermost
sphere of stars was heaven—placed on top of the
astronomical world in the proudest place of the
celestial scheme. Thus an attack on the planetary
system threatened to change all teaching about na-
ture and man, and even man's relation to God.

But did Copernicus attack the planetary system
with its moving spheres® He onlv moved the center
from the Earth to the Sun. To see why that upset
the whole svstem of thought, first see why the
spheres were taken for granted.

Professor Herbert Dingle gives one historian’s
view as fgllows:

“They were not seen or directly observed in any
wayv; why, then, were they believed to be there? If
vou imagine the Earth to be at rest and watch the
skv for a few hours, vou will have no difficulty in
answering this question. You will see a host of stars,
all moving in circles round a single axis at precisely
the same rate of about one revolution a day. You
cannot then believe that each one moves indepcl.‘:d-
ently of the others, and that their motions just hap-
pen to have this relation to one another. No one but
a lunatic would doubt that he was looking at the

F
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revolution of a single sphere with all the stars at-
tached to it. And if the stars had a sphere, then the

Sun, Moon and planets, whose movements were
almost the same, would also be moved by the same
kind of mechanism. The existence of the spheres
having thus been established and accepted implicitly
for century after century, men no longer thought of
the reasons which demanded them, but took them
for granted as facts of experience; and Copernicus
himself, despite his long years of meditation on the
fundamental problems of astronomy, never dreamed
of doubting their existence.™

But presently the full meaning of Copernicus’
work was realized. A spinning Earth would remove
any need for a spinning bowl to carry the stars. The
stars needed no bowl: they could just hang in the
sky at any great distance, and if at any perhaps at
many different distances. That pushed the stars back
into the remoter region of Heaven. That was a terri-
f}'ing change—where was the Heaven of theo]ag}'
now to be located, the Home of God and the abode
of departed souls? A century after Copernicus,
Giordano Bruno suggested such a picture of infinite
space, peopled with stars which were distant suns.
He was burnt at the stake as a heretic for his un-
fortunate views.

Again, Copernicus pushed the Earth out of its
ruling position as center of the universe, to join
Mars and Jupiter, as a planet ruled by the Sun. That
made the machinery of spheres seem less complex
and less necessary; and it completely upset the
picture of planets holding controlling influences
over a central Earth and Man.

“We can hardly imagine today the effect of such
a change on the minds of thoughtful men in the six-
teenth century. . . . With the spheres went a local-
ised heaven for the souls of the blessed, the dis-
tinction between celestial and earthly matter and
motion became meaningless, the whole place of
man in the cosmic scheme became uncertain,

“. . . Copernicus himself . . . was thoroughly
medieval in outlook, and had he been able to foresee
what his work was to do we may well believe that
he would have shrunk in the utmost horror from the
responsibility which he would have felt. But what
he did was to make it possible for the new scientific
philosophy to emerge.™

L From Copernicus and the Planets, a talk hjr Herbert
Dingle, Frofessor of the History and Philosophy of Science in
the University of London. The rest of the discussion on this
page and the previous one also draws on Professor Dingle's

talk, published as Chapter I1I of a symposium of talks on the
History of Science { Cohen and West, Ltd., London ).
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1f this was an upheaval for scholars, what might
it not do to the vast uneducated crowd once they
understood it? Not only was the machinery of the
spheres wrecked, but the general outlook on knowl-
edge was threatened with a change, and so was
men’s faith in God's provision for their souls.

Copernicus’ work reached the common people
through its effect on astrology. For many centuries,
superstitious people—almost everyone, from king to
beggar—believed that the Sun, Moon, and planets
influenced their fate. Casting a man’s horoscope was
a system of fortune-telling based on the positions of
the planets at his birth. A horoscope by an accred-
ited astrologer was trusted to help kings rule wisely
(or safely) and to foretell any man’s character and
future. As long as the Earth was considered the cen-
ter of the heavenly system, with planets wandering
strangely around our important selves, it was natural
to think that planetary motions occurred for our
benefit and might even control our fate. When
Copernicus moved the Sun into the center of the
planetary system and described the Earth as merely
one of the planets, he started the downfall of astrol-
ogy from its position as counsellor of kings and com-
forter of common men to its present rank as amusing
fiction. Yet civilized man is still gullible enough—
insecure enough, or perhaps romantic enough—to
keep the publishing of astrology books a thriving
business.

Opposition to the Copernican system arose from
the Church, probably for two reasons; first because
the system contradicted the Church’s teaching of
astronomy and philosophy; and second because
preaching the new system meant a questioning of
authority—questioning, even defying, the authority
and tradition of the Ptolemaic system. Rebellious
people who like new ideas, and enjoy proving others
wrong, seldom find themselves popular. In those
days the Church was anxious to maintain its tre-
mendous power and insisted that all people obey
its authority strictly and believe its teachings com-
pletelv. Anyone who questioned the Church’s au-
thority or disagreed with its teaching was, to his
own knowledge, risking his life and, in the Church’s
view, risking his soul. There were a few such men
at that time. They were the martyrs. Though a scien-
tist preaching a new theory might seem harmless,
one insisting that it was true would seem an annoy-
ing rebel. He who rebels in one field may rebel in
other fields, too, so the provocative arguer in any
field is apt to strike the Church (or the State—au-
thority wherever it is) as a dangerous man politi-
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De Revolutionibus Orbium Ceelestium, had been
placed on the list of forbidden books by the Church.
(It remained there for 200 vears, and was quietly
dropped about 1530.)

In this stormy time for Astronomy, came Tvcho
Brahe. the great observer whose amazingly accurate
measurements formed the basis for Kepler's discov-
eries and in turn Newton's explanat:'c-ns. Calileo
lived at the same time as Kepler, and bore some
of the worst of the storm. A few centuries later,
Copernican advocates seemed harmless. As Lodge*
points out. this happens in age after age. In the
early 1500s geologists met with violent condem-
nation as impious critics of the Bible storv of Crea-
tion. Later in the centurv geologv was safe. but
theories of evolution were condemned and the
teaching of them forbidden—perhaps this continues.
Every age has one or more groups of intellectual
rebels who are persecuted, condemned. or sup-
pressed at the time but, to a later age, seem harm-
less. Some are cranks and others are wise proph-
ets—pacing the growth of man and man's knowl-
edge—men ahead of their time.

Tycho Brahe

Tvcho Brahe was the eldest son of a noble Danish
familv—"as noble and ignorant as sixteen undis-
puted quarterings [of their coat of arms] could
make them.” Hunting and warfare were regarded as
the natural aristocratic occupations: though books
were fashionable, study was fit onlv for monks, and
science was useless and savoured of witcheraft.
Tvcho would probably have been brought up to be
a soldier had not his uncle, a man of more educa-
tion, adopted him, his parents agreeing unn'illingl}'
when their second son was born. His uncle gave him
a good education. Tvcho began Latin at the age of
7: his parents objected. but his uncle urged this
would help him with law. At 13 he went to the
universitv to studv philosophyv and law, and there
his interest was suddenlv turned toward astronomy
by a special event. An eclipse of the Sun took place.
The astronomers had predicted it. and people turned
out to watch for it with great excitement. Tvcho
watched and was amazed and delichted. When it

*] owe a debt of inspiration and delight to Sir Oliver
Lodge, who first showed me how the history of astronomy
illuminates physics. in his Pioneers of Science | Macmillan,
London, 15931, In the next few chapters. I have drawn on
Sir Oliver's book for general ideas and in many places for
words and phrases. 1 am grateful to him and to those earlier
writers on whom he drew in turn, Modern historians of sci-
ence have weeded out some mistaken information, and they
quite richtly plead for a wider view with less hero worship;
vet the book was the work of a physicist and a great man
with vision.

happened at the predicted time it awoke in him a
great love for the marvelous that made him long to
understand a science that could do such wonders.
He continued to study law, but his heart was set on
astronomy. He spent his pocket-money on astro-
nomical tables and a Latin translation of Pto]e'my's
Almagest for serious study. After three years, his
uncle sent him abroad with a tutor, to travel and to
read law in German universities. There he continued
to work at astronomy secretly. He sat up much of
each night, observing stars with the help of a celes-
tial globe as small as his fist. He bought instruments
and books with all the money he could get from his
tutor without revealing his purpose. He found the
tables of planetary positions inaccurate. Ptolemaic
tables and Copernican tables disagreed, and both
differed from the facts. As a bov of 16, he realized—
what the professional astronomers of Europe had
missed—that a long series of precise observations
was needed to establish astronomical theory. A few
planetary observations made at random could not
decide between one svstem for the heavens and an-
other. Here was the start of his life work.

When he was 17 he observed another special
event, a conjunction of Jupiter and Saturn. Two
planets are in “conjunction” when they cross the
same celestial longitude together, very close to each
other. This strange “clashing” of two planets could
be predicted with the help of tables such as Ptol-
emv’s or Copernicus’. Such events were regarded by
superstitions people as bringing good or bad luck.
The enthusiastic voung Tvcho observed the con-
junction and compared his observed time with the
predictions of the planetarv tables. He found Al-
phonso’s revision of the Ptolemaic tables wrong
bv a month,’ and Copernicus’ tables wrong bv sev-
eral davs. He decided then to devote his life to the
making of better tables—and he succeeded with 2
vengeance, He became one of the most skillful ob-
servers the world has known. Neither his aristocratic
birth nor his education had saved him, however,
from being superstitious, full of belief in occult in-
fHuences: and he believed that this conjunction fore-
told, and was responsible for, the great plague
which soon after swept across Europe.

Tveho started observing with a simple instru-
ment: a pair of jointed sticks like compasses, one
leg pointed at a planet and the other at a fixed star.
Then he measured the angular separation by plac-

* A month’s error may seem large in predicting a meeting
of planets; but those tables dated back, essentially, to
Prolemy fourteen centuries before. One month in 1400 years

seems little enough, a great credit to the Ptolemaic system
as representing the facts accurately, however clumsily.
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ing the compasses on a graduated circle drawn on
paper. He often used eyes + brain alone to mark
a planet’s position when it formed a 90° triangle
with two stars that he knew. Soon he obtained a
“cross staff,” a graduated stick with a slider at right
angles that carried sights at its ends. An observer
looking through a peephole at the near end of the
main stick could set the sights on two stars, and
thus measure the angle between them. He found
his instrument was not accurately graduated, so he
made a careful table of corrections, showing the
error at each part of the scale—a method of pre-
cision that he used all his life. This is the way of the
best experimenters: for great precision they do not
try to make an instrument “perfectly accurate,” but
they make it robust and sensitive, and then they
calibrate it and record a trustworthy table of errors.

Presently he was called home by threats of war.
His uncle died and the rest of his family did not
welcome him. They blamed him for neglecting law,
and they despised his interest in star-gazing. Disap-
pointed, Tycho left Denmark for Germany to con-
tinue his studies. In his travels, he made friends
with some rich amateur astronomers in Augsburg.
He persuaded them that very precise measurements
were needed, and they joined in constructing an
enormous quadrant for observing altitude-angles by

orougnt o you by ne Mational Library of the Fhiippine

means of a plumb line and sighting holes fixed on
the arm of a huge graduated circle. This wooden
instrument was so big that it took twenty men to
carry it to its place in a garden and set it up. Its
circle had a radius of 19 feet. It had to be big for
accurate measurements—there were no telescopes
in those days, merely peep-holes for sighting. The
quﬁdrant was graduated in sixtieths of a degr&e.
Tycho and his enthusiastic friends also had a huge
sextant of radius about 7 feet. This was the begin-
ning of his accurate planetary observations.

In his stay in Germany he met with a strange ac-
cident. His violent temper led him into a quarrel
over mathematics, and that led to a duel which was
fought with swords at seven o'clock one December
night. In the poorly lit fight, part of Tycho’s nose
was cut off. However, he made himself a false nose
{of metal or putty, probably painted metal). He
is said to have earried around with him a small hox
of cement to stick the nose on again when it came
off.

After four years in Germany, Tycho went home
again, this time to be received well as an astronomer
of growing fame. His aristocratic relatives thought
more kindl}r of science and received him with ad-
miration. When Tycho's father died, another uncle
weleomed Tycho to his estate and gave him an
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QUADRANS MAXIMUS QUALEM OLIM
PROPE AUGUSTAM VINDELICORUM EXSTRUXIMUS

Fic. 17-2. Tvcuo's Earcy Quaprant, built with his
friends when he was a young man, travelling in Ger-
many. (BRadius of circle: about 19 feet.) Sighting the
Sun or a planet through holes [, E, the abserver
could rcag its “altitude” E;eghe plemb line AH on the
scale graduated in sixtieths of a degree. This picture
and the following ones are reprinted from Tycho
Brohe's Description of His Instruments and Scientific
Work by permission of The Royal Danish Academy
of Sciences and Letters,

extra house as a laboratory for alchemy. Tycho's
fascination with the marvelous had drawn him to
alchemy. This was not a complete break with as-
tronomy because the astrology of the time linked
the planets closely with various metals and their
properties. Alchemy had a useful side too: it gave
Tycho knowledge of metals for instruments. There-
after he often combined a little alchemy with his
astronomieal work and even concocted a universal
medicine.

The New Star

The year after his return, a new star blazed up in
the sky and was visible for many months. At first
it was as bright as Venus, and could even be seen
in daylight.* Tycho, amazed and delighted, observed
it carefully with a large sextant, and found it was
very far away, one of the fixed stars, “in the Sth

*We now know that a new star, or nova, appears in
the sky fairly frequently—some sudden condensation, or
other change, heats a star to higher temperature. Much more
rarely—averaging once in several centuries in our galaxy—

sphere, previously thought unchangeable.” After
much careful watching and recording, Tycho pub-
lished a report on it.

Tycho's fame was growing, and a group of young
nobles asked him to give a course of lectures on
astronomy. He refused at first, thinking this below
the dignity of one of noble birth; but he was per-
suaded when he received a request from the King,

At this time, Tycho married a peasant girl—to
the horror of most of his family—and thereafter
seems to have modified some of his aristocratic
prejudices.

The Great Observatory, Uraniborg

Finding his life as a noble interfered with astron-
omy, he embarked on another move to Germany;
but King Frederik II of Denmark, understanding
that Tycho’s work would bring the country great
honor, made him a magnificent offer. If Tycho
would work in Denmark, he should have an island
for his observatory, estates to provide for him, a
good pension, and money to build the observatory.
Tycho accepted with enthusiasm. Here at last was
a chance to carry out his ambitions.

Tycho built and equipped the finest observatory
ever made—at enormous cost.® He called it Urani-
borg, The Castle of the Heavens. It was built on a
hill on the isle of Hveen, surrounded by a square
wall 250 feet long on each side, facing North, East,
South, and West. In the main building there were
magnificent living quarters, a laboratory, library,
and four large observatories, with attic quarters for
students and observers. There were shops for mak-
ing instruments, a printing press, paper mill, even
a prison for recalcitrant servants. Tycho made and
installed a dozen huge instruments and as many
smaller ones. These instruments were the best that
Tycho could devise and get made—all constructed,
graduated, and tested with superb skill and fanatical
attention to accuracy. Some of them were graduated
at intervals of Yo degree, and could be read to a
fraction of that.

In the library, Tycho installed the great celestial

there is a far brighter outburst, a supermova. Hipparchus
probably saw one, and Tycho's new star was one. A recent
speculative theory suggests that the appearance of a super-
nova involves the radicactive element californium. Tycho's
careful comparisons of the brightness of his star with stand-
ard stars as it died down fit well with the “half life” of
californium—a fantastic modern use of his careful work.
® Some years later, Tycho stated the total cost. His estimate
was equivalent to about 17,000 English pounds at that time.
Translated in terms of cost-of-living this would be at least
$200,000 today. Translated in terms of luxury and equip-
ment, Uraniborg would be a multimillion dollar observatory.
orougnt o you by he Mational Library of the Philippines
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Fie. 17-3. Upawmonc. Design of the main building, built about 1580.

globe he had ordered in Augsburg some years be-
fore. It was covered with polished brass, an accurate
sphere as high as a man. As the work of the ob-
servatory proceeded, star positions were engraved
on it. Making and marking it took 25 years in all.

In Tycho's study, a quadrant was built on the
wall itself, a huge arc with movable sights for ob-
serving stars as they passed a peg in a hole in the
wall opposite. This was one of his most important
instruments, and Tycho had the empty wall space
inside the arc decorated with a picture showing
himself and his laboratory, library, and observa-
tories. Fig. 17-5 is an engraving of this mural, with
observers in front using the quadrant and the primi-
tive unreliable clocks of Tycho's day, (Tycho said
the portrait was a good likeness.)

It was a gorgeous temple of science, and Tycho
worked in it for twenty years, measuring and record-
ing with astounding precision. Students came from
far and wide to work as observers, recorders, and
computers. This was Tycho's great work, to make
continuous accurate records of the positions of Sun,
Moon, and planets. Then he proposed to make a
theory for them. At first he did not concern himself
much with theory—though he insisted that without
some theory an astronomer could not proceed with
his work. Later in life he put forward a useful com-

promise that acted as a stepping stone for thinkers Bro

U letal drld baok " With i

GLOBUS MAGNUS ORICHALCICUS

Fic. 17-4. Tycuo's Great GLose
Tycho had this globe made very carcfully, at great
crpmsc, 5o that he could mark his measurements of star
positions on its polished brass surface. He ordered it
before he started Uran:i'r.mrg!, had it brm:tgll'tt and installed

. .Whéﬂ"hdt.lmﬁi;'ﬂ";m Prague.
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QVADRANS MVRALIS
SIVE TICHONICUS

Fiz. 17-5. Tvcro's MuRaL QuADRANT
The huge brass arc was firmly fixed in a western wall,
with its center at an open window in a southern wall.
The empty wall above the arc was decorated by a huge
painting showing: Tycho nbser\ling; students calculating;
Tycho's globe, books, dog; and some of Uraniborg's
main instruments. An observer sl'ghte{i the star {or Sun)
by pinholes at F and a marker in the window. The brass
are (radius over 8 ft.) could be read to 14z depgree.
This sketch, from Tycho's own book, shows an observer
at F, a recorder, and a timclceeper with several clocks.
Good clocks had not been invented, but these were
the best Tycho could make.

who found the jump from Ptolemy to Copernicus
too big. He pictured the five planets (without the
Earth) all moving in circles around the Sun. Then
the whole group, Sun and planets, moved around
the Earth; and so did the Moon. Geometrically, this
is equivalent to the Copernican scheme, but it avoids
the uncomfortable feeling of a moving Earth.
Tycho became the foremost man of science in
Europe. Fhilosophers, statesmen, even kings, and
many scientists, came to visit him. They were re-
ceived in grand style and shown the wonders of
the castle and its instruments. Yet Tycho could be
hot tempered and haughty to people he thought
stupid or visiting only for fashionable gossip. To

orougnt o you by ne M

such he appeared to be a rude contradictory little
man with a violent temper, but to the wise he was
a great experimental scientist with a passion for
accuracy and a delight in marvels.

For all his scientific fervor, Tycho was vain and
superstitious, He kept a half-witted dwarf in his
household; and at banquets, with his peasant-born
wife presiding, Tycho insisted on listening to the
dwarf’s remarks as prophetic. “It must have been
an odd dinner party, with this strange, wild, terribly
clever man, with his red hair and brazen nose, some-
times flashing with wit and knowledge, sometimes
making the whole company, princes and servants
alike, hold their peace and listen humbly to the rav-
ings of a poor imbecile."

Troubles

While Tycho’s grand observatory attracted visitors
from far and wide, his impetuous ways brought him
troubles. He made jealous enemies at court, and he
had serious troubles with his tenants. When the
King had given Tycho the island for life, the peas-
ants who had small farms on it were bound to do
some work for him as his tenants. They did much
of the work of building Uraniborg, and after that

L]
i

I
(a) - . Saturn /

Fiz. 17-10a. Tycwo BRaHE'S THEORY OF PLANETARY MoTioN
The Sun moves around a fixed Earth and carries
all the rest of the Copernican system with it.

Fuz, 17-10b, Tycho Brane's THEory oF PLaneTany MoTios
A sketch, not to scale, showing successive positions
of the system in January, April, July, September.
{ The planetary system moves like a frying-
given a circular motion by a housewife ?:I:IEE:EB
to melt a piece of butter in it quickly. )

® Professor Stuart quoted by Sir Oliver Lodge.
Mational Library of the Philippines
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Fics. 17-6, 7, 8, 9. SoMme oF TycHo's INsTRUMENTS 1N URantBoRG.
Reprinted from Tycho Brahe's Description of His Instruments and Scientific Work by permission of The Royal Danish
Academy of Sciences and Letters.

ARMILLA ZODIACALES SEXTANS ASTRONOMICUS TRIGO-
NICUS PRO DISTANTIIS RIMANDIS

Fic. 17-6. An “AstRoLase” Buit By Tycuo, follow- ~ Fie. 17-7. O~E or Tycuo's SEXTANTS

ing the design used by Hipparchus. This instrument This instrument, with brass scales and wooden frame,

measures the latitude and longitude of a star or planet was used to measure the angle between the directions

directly. { Diameter of circles: about 4 ft.) Tycho built of two stars, by two chservers sighting simultaneousl

several improved forms, with one axis parallel to the ﬂlmls arms AD, AC. It was carried on a globe whi
Earth’s polar axis. could twist in firm supports, so that it could be tilted

in any direction. (Length of arms: about 5 ft.
Angles estimated to 4" )

QUADRANS MAGNUS CHALIBEUS.
IN QUADRAT() ETIAM CHALIDED COMPREMENSUS.
P EA s PARALLATICUM ALIUD SIVE REGULAE

TAM ALTITUDINES QUAM AZIMUTHA
EXPEDIENTES

Fic. 17-8. Tycuo's GREAT Quappawt Fic. 17-9. A Buren Bunr sy Tyomo,
Radius about 6 . Brought to you by Iﬁ?@ﬂgﬁ'ﬁﬁIﬂﬁ%’fﬁﬁgilﬁﬁﬁﬁgﬁ'
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Tycho made them do chores for his household. He
was unreasonable in his demands and haughty in
his treatment—he mav even have put unwilling
workers in his prison. Several times complaints
reached the King, who had to intervene. The King
had given Tvcho other estates as well, whose rents
were to provide him with money for living and run-
ning the observatory. In return, Tycho was expected
to keep the estates in reasonable repair; and, again,
complaints reached the King that he failed to do so.
King Frederik's intense interest in Tvcho's work
protected him, but when the King died, eleven vears
after the observatorv was ]:Iulll Tycho's troubles
began to grow. ‘luung King Christian IV came to
the throne and was surrounded by nobles who were
less favorable to Tvcho. Some of Tvcho's estates
were withdrawn, and he began to worry about the
future. He wrote to a friend saving he might have
to leave the island, comforting himself that “every
land is home to a great man,” and that wherever
he went the same heavens would be over his head.
The voung King was sj."mpathetir: but needed to
economize. More of Tyvcho's estates were taken.
Tvcho, seeing that he would not have enough monev
to maintain Uraniborg, moved to the mainland.
Feeling unwelcome there, he decided to leave his
ungrateful country and look for a new patron and
place to work. He took his smaller instruments with
him and set them up in temporarv quarters in Ger-
many while he negotiated with the Emperor Ru-
dolph of Bohemia, an enlightened ruler with a great
interest in science. He wrote a long haughty letter
to young King Christian of DemnarL nEenncr to
return, and IE'CE'I'LE'EI onlv a chillv reply. \Ieam-.hﬂe
he printed a large illustrated r:ata.lnzue of his in-
struments and sent elegantly bound copies to pos-
sible patrons, including Rudolph.

The New Observatory in Prague

Finally, after two vears of travelling and visiting,
he arrived in Prague and was welcomed bv Ru-
dolph, who gave him a castle for observatorv and
promised him a huge salarv. The Emperor was
genuinelv interested in astronomy (and probably
astrology too), but he was careless as a ruler and
could not alwayvs pav Tvcho in full. Yet he did re-
establish Tvcho, and he deserves great credit for
thus saving Tvcho's work—credit which he received
when Tvcho's records were published with the name
“Rudolphine Tables.”

In his new castle, Tvcho lived the same weird.
earnest life he had lived in Denmark. He fetched
his big instruments across Germany from Denmark

Brought to you by | The Mational Libiary of th

and gathered round him a small school of astrono-
mers and mathematicians. But his spirit was broken;
he was a stranger in a strange land. He continued his
observations and began setting up the Rudolphine
Tables, but de became more and more despond-
ent. After less than three years in Prague, he was
seized with a painful disease and died. In the de-
lirium of his illness he often cried, “Ne frustra vixisse
videar,” “Oh that I may not appear to have lived
in vain.,” His life had been given him not just to
enjoy but to achieve a great work and, stll
vearning for this, his life’s ideal, he died. This doubt
was undeserved by an astronomer who had cata-
logued a thousand stars so accurately that his ob-
servations are still used, a man who recorded the
planets’ positions for twenty years with accuracy
calculated to s of a degree, a man who gave Kepler
and Newton the essential basis for their work in
turn. He had succeeded in his original intention, and
his work was not in vain.

Just before he died, free from delirium, Tycho
gathered his household around him, asked them to
preserve his work, and entrusted one of his students,
Johannes Kepler, with the editing and correcting
and publishing of his planetary tables. The great
instruments were preserved for a time but were
smashed in the course of later warfare: only Tycho's
great celestial globe now remains. The island
observatory was broken up and there is little sign
of it today. Denmark lost its great name as a center
of science; and it was not until this century that its
fame grew again as such a world center, this time
around the name of Niels Bohr.

PROBLEMS FOR CHAPTER 6
% 1. TYCHO'S PRECISION

Tycho made some of his sbservations with plumb lines
and peegholes like rifle sights. His final estimates were
usually to be trusted to | minute of ongle (= Y of 1 de-
gree). To see how careful he must have been, gnswer the
following gquestions:

{al Suppose he hod pointed his peephole sights at a
planet, and that they carnied o gradugted angle-scole
with them on which he could read the position of a
vertical plumb line. Suppose his angle-scole wos port
of a circle of radius 7 feet, (Your protrgctor in an
ordimary box of geametrical instruments hes o rodius
gbout 3 inches.) How thin must the threod of his
plumb line have been sa that a mistake of 1 thread-
thickngss on the scale made on error of | minute of
angle? (Give your answer as a froction of an inch.)
(Hint: With r = T ft, langth of whaole scale of 380°
round the circumference would be . ., , Then 1°
must teke @ length of scale cbout . . . . Then
1 minute must take . . . .]

(b} Does your estimate call for o cord, a string, o thread,
or a spider filament?
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2. Why did Kings often support Astronomers?

% 3. PARALLAX AND STARS

{a) Suppose all the stars in some group or constellation
were infinitely for awoy except one star and thaot
single star was only o few billion miles away. What
would its parallax motion look like? How long would
the motion toke for cne cycle? Describe the pattern
of this {apparent) motion for a close star i} near the
ecliptic; (i) near the pole of the ecliptic ($0* from
ecliptic),

To see whether Tycha Brahe had o hope of detecting
the tiny parallax motion of the nearest fixed stars try
the following calculation. In & months the Earth
swings around half its arbit from one end of a di-
ameter to the other, 186,000,000 miles, stroight
across from A to B. (Fig. 17-11) Suppose Tycho
looked at @ very near star, 5, ogainst g background

b

Earth [ Dee) .
A
e S : * % sbuigmed
'n'm LT
'l'hh ——— - - = -q‘__i * *
oo 4 ¥ o, v
e R P
Earth | pund) | woT To scaLel -
Fic. 17-11. ProsLEM Z.
( Diagram not fo scale—the real angle is only L4g" )

71

of other stars which are very much farther away. In

watching the position of 5 against the background,

Tycho would swing his sight-lime through on angle

ASE which he would measure as an angular disploce-

ment of star 5, omong the background stars. Suppose

this angle to be o of a degree. It seems doubtful
that ke could have detected a smaller shift than that,

Use rough arithmetic ("judging’’) to answer the fal-

lowing:

(i} Taking the angle ASE to be Y of a degree,
estimate the distance, AS, of the star fram the
Earth, Use a method like that of Problem 1
above—do not try to use trigonometry for these
extreme angles, (Take the shallow arc, AB, with
center at 5, as 186,000,000 = 200,000,000
miles.)

(i) Compare the result of (i) obove with modern
meosurements. These are usually expressed by
giving the time light takes to travel the distance
considered. Light travels the diameter of the
Earth’s arbit, AB, in about 16 minutes (8 minutes
from the Sun to us), Light from the nearest star
takes about 4 years (= 2 000,000 minutes) to
reach us. What value does this give for the angle
ASB? (Avoid trig. Argue simply by proportions.}

Brought to you by | The Mational Library of the P
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CHAPTER 7 - JOHANNES KEPLER (1571-1630)

T M A T M A N M M e M e A A o W A W A W W W W L Ll Wl W

Out of the night that covers me,
Black as the pit from pole to pole
I thank whatever gods there be
For my unconquerable soul.

—W. E. Henley (in hospital, 1875)

“For there is a musick where ever there is a harmony, order, or proportion: and thus far
we may maintain the musick of the sphears; for those well-ordered motions and regular
paces, though they give no sound unto the ear, yet to the understanding they strike a

note most full of harmony.”

From Religio Medici
Sir Thomas Browne ( 1642)

T M A T M M e M N M A M A M A N N M W W e N N S el S S "

Kepler, the young German to whom Tychﬂ Brahe
left his tables, was well worthy of this trust. He grew
into one of the greatest scientists of the age—per-
haps equalled in his own time only by Galileo and
later outshone only by Newton. As Sir Oliver Lodge
points out, Tycho and Kepler form a strange con-
trast: Tycho “rich, noble, vigorous, passionate,
strong in mechanical ingenuity and experimental
skill, but not above the average in theoretical power
and mathematical skill”; and Kepler “poor, sickly,
devoid of experimental gifts, and unfitted by nature
for accurate observation, but strong almost beyond
competition in speculative subtlety and innate
mathematical perception.” Tycho's work was well
supported by royalty, at one time magnificently en-
dowed; Kepler's material life was largely one of
poverty and misfortune. They had in common a
profound interest in astronomy and a consuming
determination in pursuing that interest.

Kepler was born in Germany, the eldest son of
an army officer. He was a sickly child, delicate and
subject to violent illnesses, and his life was often
despaired of. The parents lost their income and
were reduced to keeping a country tavern. Young
Johannes was taken from school when he was nine
and continued as a servant till he was twelve, Ulti-
mately he returned to school and went on to the
University where he graduated second in his class.
Meanwhile, his father abandoned his home and re-
turned to the army; and his mother quarreled with
her relations, including her son, who was therefore
glad to get away. At first he had no special interest
in astronomy. At the University he heard the Coper-

1 Sir Oliver Lodge, Pioneers of Science.

nican system expounded. He adopted it, defended
it in a college debate, and even wrote an essay on
one aspect of it. Yet his major interests at that time
seem to have been in philosophy and religion, and
he did not think much of astronomy. But then an
astronomical lecturership fell vacant and Kepler,
who was looking for work, was offered it. He ac-
cepted reluctantly, protesting, he said, that he was
not thereby abandoning his claim “to be provided
for in some more brilliant pmfession." In those days
astronomy had little of the dignity which KEPIE‘]’
himself later helped to give it. However, he set to
work to master the science he was to teach; and soon
his learning and thinking led to more thinking and
enjoyment. "He was a born speculator just as Mozart
was a born musician™: and he had to find the mathe-
matical scheme underlying the planetary system. He
had a restless inquisitive mind and was fascinated
by puzzles concerning numbers and size? Like
Pythagoras, he “was convinced that God created
the world in accordance with the principle of per-

2 Most of us have similar delights, though less intense.
You have pmbab!y cnjuycd w:!rking on series of numbers,
E'ven as a puzzle or an ‘fimel]igcn{'e test,” trying to continue

e series, Try to continue each of the fr:l]]mwng. If you

enjoy puzzling over them (as well as succeeding) you are
tasting something of Kepler's happiness,

{a) 1, 3,5, 7,9, 11, ... How does this series probably
go on?

(h) 1,4, 9, 16, 25, ... 7

{e) 5. 8, 7,10, 11, 12, 15, 16, . . . ?

(dy 2,3 4,6 8 12, 14, 18, ... ?

{e) 4, 7,12, 19,28, ...7

(g) 01881102415625...°
[Mote that in (f) and (g} you must also find where to put
the commas. ]




Fic. 18-1. ? Law RELATING 525 OF PLANETARY ORBITS 7
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Fic. 18-1a. KerLenr's Fmst Guess
A regular plane figure (such as a square) can have a
circle inscribed, to touch its sides. It can also have an
outside circle, through its corners. Then that outside
circle can be the inner circle for another, larger plane
figure, The ratio of radii, R/r, is the same for all
squares; and it has a different fixed value for all tri-
angles. Geometrical puzele: what is the fxed value of
R/r for the inner and outer circles of a square? What
is the value for a triangle?

&

(a)

Fic. 18-1b. The same two circles can be generated by

letting the figure (here a triangle) spin around its own

center, in its own plane, Its comners will touch the outer
circle, and its sides envelop the inner one.

(¢)

Fic. 18-1c. A series of regular plane Ggures,
separated by inner and outer circles, provides a series
of circles which might show the proportions of the
planetary orbits. Even the best choice of fgures
failed to fit the solar system.

)
Fic. 18-1d. KerLer's Seconn Guess
This shows the basis of Kepler's final scheme. He chose

the order of regular solids that gave the best agreement
with the known proportions of planetary orbits.

orougnt o you by 18
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fect numbers, so that the underlying mathematical
harmony . . . is the real and discoverable cause of
the planetary motions.” Kepler himself said, "I
brooded with the whole energy of my mind on this
subject.”

His mind burned with questions: Why are there
only six planets? Why do their orbits have just the
proportions and sizes they do? Are the times of the
planets’ “years” related to their orbit-sizes? The first
question, “Why just six?” is characteristic of Kepler's
times—nowadays we should just hunt for a seventh.
But then there was a finality in facts and a magic
in numbers. The Ptolemaic system counted seven
planets (including Sun and Moon, excluding the
Earth) and even had arguments to prove seven
must be right.

Kepler tried again and again to find some simple
relation connecting the radius of one orbit with the
next. Here are rough relative radii from Tycho's
observations, calculated for the Copernican scheme:
8:15:20:30: 115 : 195. He tried to guess the secret
in these proportions. Each guess meant a good deal
of work, and each time he found it did not fit the facts
he rejected that guess honestly. His mystical mind
clung to the Greek tradition that circles are perfect;
and at one time he thought he could construct a
model of the orbits thus: draw a cirele, inseribe an
equilateral triangle in it, inscribe a circle in that
triangle, then another triangle inside the inner circle,
and so on. This scheme gives successive circles a
definite ratio of radii, 2:1. He hoped the circles
would fit the proportions of the planetary orbits
if he used squares, hexagons, etc., instead of some
of the triangles. No such arrangement fitted. Sud-
denly he cried out, “What have flat patterns to do
with orbits in space? Use solid figures.” He knew
there are only five completely regular erystalline
solid shapes (see Fig. 18-3). Greek mathemati-
cians had proved there cannot be more than five.
If he used these five solids to make the separating
spaces between six spherical bowls, the bowls would
define six orbits. Here was a wonderful reason for
the number six. So he started with a sphere for the
Earth’s orbit, fitted a dodecahedron outside it with
its faces touching the sphere, and another sphere
outside the dodecahedron passing through its cor-
ners to give the orbit of Mars; outside that sphere
he put a tetrahedron, then a sphere for Jupiter, then
a cube, then a sphere for Saturn. Inside the Earth's
sphere he placed two more solids separated by
spheres, to give the orbits of Venus and Mercury.

3 Sir William Dampier, History of Science (4th edn,
Cambridge University Press, 1949).
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T4
THE REGULAR SOLIDS, A geometrical intelligence test

How mony different shopes of regulor solid ore possible?
To find out, follow argument (a); then try (B,

A regular solid is o geometrical solid with identicol regular
plane foces; that is, a solid that has:
all its edges the same length
all its face angles the same
all its comers the same
ond all its foces the same shope.
(See opposite for shapes that do not
meet the requirements.)

For exomple, o cube is o regular

salid.
The faces of a regular solid might be:
all equilateral triongles

or all squares

or all regular pentagons

or ... and s0 on . .,

{a) Here is the argument for square
foces. Try to moke o cormer of o
regular solid by hoving several corners
of squares meeting there.

We already know that in g cube each
cormer has three square foces meeting
there, Toke three squares of card-
board and ploce them on the table
like this, then try to pick up the place
where three comers of squares meet.
The squares will fold to moke o cube
cormer.

Therefore we con moke a regular salid
with three sguare foces meeting at
each of the solid's cormers. (We need
three more tquares to make the rest
of the faces and complete the cube.)

- -

Could we maoke another regular solid,
with only one, or two, or four square
faces meeting ot o corner?

With one sguore, we cannot moke a
solid corner.

With two squares, we can only make
a flat sandwich.

With three squares, we maoke a cubical
comer, leading to o cube,

With four sguares meeting at a corner,
they moke a flat sheet there, and
cannot fold to moke a comer for g
closed solid.

Thus, SQUARES CAN MAKE OMLY ONE KIND OF REGLU-
LAR SOLID, A CUBE.

(b) Mow try for yourself with regular pentagons, and ask
how maony regular solids con be mode with such faces.

Then try hexogons, and other pelygaons.

Then return to triangles and carry out similar arguments
with trigngular foces.

THE RESULT: Only FIVE wvarieties are possible in our
3-dimensional world. (Fig. 18-3)

(MOTE that these arguments need pencil sketches but can
be carried out in your heaod without cordboard maodels.)

THE 50LIDS BELOW ARE
NOT REGULAR 50LIDS

THE REGULAR S0LIDS

Fic. 18-3
The five regular solids are drawn after D, Hilbert and
8. Cohn-Vossen in Anschauliche Geometrie | Berlin:
Julius Springer, 1932 ).
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Fic. 18-4. Kerrer's Scuesme oF REcuvLar Sovms,
Fros mis Boox
The relative sizes of planetary orbits were shown b
bowls separating one solid from the next. The bowls
were not thin shells but were just thick enough to
accommodate the eccentric orbits of the planets.

The relative radii of the spheres, calculated by
geometry, agreed fairly well with the proportions
then known for planetary orbits, and Kepler was
overjoyed. He said: "The intense pleasure I have
received from this discovery can never be told in
words. I regretted no more the time wasted: I tired
of no labor; I shunned no toil of reckoning, days and
nights spent in calculation, until I could see whether
my hprthEsis would agree with the orbits of Co-
pernicus, or whether my joy was to vanish into air.”

We now know the scheme was only a chance suc-
cess. In later years, Kepler himself had to juggle the
proportions by thickening up the bowls to fit the
facts; and, when more planets were discovered
centuries after, the scheme was completely broken.t
Yet this "success” sent Kepler on to further, great
discoveries.

He published his discovery in a book, including
an account of all his unsuccessful trials as well as
the successful one. This unusual characteristic ap-
peared in many of his writings. He showed how his
discoveries were made. He had no fear of damaging
his reputation but only wanted to increase human
knowledge, so instead of concealing his mistakes he
gave a full account of them, “For it is my opinion,”

4 There iz a rough e’mpi:rir:al rule n:]al‘_ing orhit-radii to
each other, called Bodes Law; but until recently no reason
for it could be found, However, see G. Gamow, 1, 2, 3, . . .
fnﬁm':!y {New York, Mentor Books, 1953) for a 5uggested

rcason.
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he said, “that the occasions by which men have ac-
quired a knowledge of celestial phenomena are not
less admirable than the discoveries themselves. . . .
If Christopher Columbus, if Magellan, if the Portu-
guese when they narrate their wanderings, are not
only excused, but if we do not wish these passages
omitted, and should lose much pleasure if they were,
let no one blame me for doing the same.”

The book also contained an admirable defense of
the Copernican system, with good solid reasons in
its favor. Young Kepler sent copies of his book to
Tycho Brahe and Galileo, who praised it as a
courageous beginning. This started Kepler's life-
long friendship with them.® In the same book, he
made the suggestion that each planet may be pushed
along in its orbit by a spoke carrying some influence
from the Sun—a vague and improbable idea that
later helped him discover his second Law.

Kepler was a Protestant, and he found himself
being turned out of his job by Roman Catholic pres-
sure on the administration, Worrying about his
future, and anxious to consult Tycho on planetary
observations, he travelled across Germany to Prague.
Tycho, busy observing Mars, “the difficult planet,”
wrote to him: “Come not as a stranger but as a
friend; come and share in my observations with such
instruments as I have with me.” While the work of
the observatory proceeded, Tycho was turning to
detailed “theory,” schemes to fit his long series of
observations. Kepler was soon set to work on Mars,
working with Tycho to find a cireular orbit that
fitted the facts. Sensitive, and sick, Kepler com-
plained that Tycho treated him as a student and
did not share his records freely. Once, driven half
crazy by worry, he wrote Tycho a violent letter full
of quite unjust reproaches, but Tycho merely ar-
gued gently with him. Kepler, repenting, wrote:

“Most Noble Tycho,

How shall I enumerate or rightly estimate your
benefits conferred on me? For two months you have
liberally and gratuitously maintained me, and my
whole family . . . you have done me every possible
kindness; you have communicated to me everything
you hold most dear. . . . I cannot reflect without
consternation that I should have been so given up
by God to my own intemperance as to shut my eyes

®In a later edition, Kepler took special trouble to aveid
eny appearance of stealing credit from Galileo. In one of his
rejected theories he assumed a planet between Mars and
Jupiter. Fearing a careless reader might take this to be a
claim anticipating Galileo’s discovery of Jupiter's moons, he
added a note, saying of his extra planet, "Not circulating
round Jupiter like the Medicaean stars. Be not deceived. 1
never had them in my thoughts.”
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on all these benefits; that, instead of modest and
respectful gratitude, I should indulge for three
weeks in continual moroseness towards all your
family, in headlong passion and the utmost inso-
lence towards yourself. . . . Whatever 1 have said
or written . . . against }Fﬂur excelleney . . . 1.
honestly dec]are and confess to be ground]css false
and incapable of proof.”

When Kepler ended his visit and returned to
Cermany, Tycho again invited him to join him
permanently. Kepler accepted but was delayed by
poverty and sickness, and when he reached Prague
with no money he was entirely dependent on Tycho.
Tycho secured him the position of Imperial Mathe-
matician to assist in the work on the planets.

Tycho died soon after, leaving Kepler to publish
the tables. Though he still held the imperial ap-
pointment, Kepler had difficulty getting his salary
paid and he remained poor, often very poor. At one
time he resorted to publishing a prophesying alma-
nac. The idea was abhorrent to him, but he needed
the money, and he knew that astrology was the
form of astronomy that would pay. For the rest of
his life, over a quarter of a century, he worked on
the planetary motions, determined to extract the
simple secrets he was sure must be there.

The Great Investigation of Mars

When Tycho died, Kepler had already embarked
on his planetary investigations, chiefly studying the
motion of Mars. What scheme would predict Mars’
orbit? Still thinking in terms of circles, Kepler made
the planet’s orbit a circle round the Sun, with the
Sun a short distance off center (like Ptolemy's ec-
centric Earth). Then he placed an equant point Q
off center on the other side, with a spoke from Q to
swing the planet around at constant speed. He did
not insist, like Ptolemy, on making the eccentric
distances CS and CQ equal, but calculated the best
proportions for them from some of Tycho's observa-
tions. Then he could imagine the planet moving
around such an orbit and compare other predicted
positions with Tvcho's record. He did not know the
direction of the line SCQ) in space, so he had to
make a guess and then try to place a circular orbit
on it to fit the facts, Each trial involved long tedious
calculations, and Kepler went through 70 such trials
before he found a direction and proportions that
fitted a dozen observed longitudes of Mars closely.
He rejoiced at the results, but then to his dismay
the scheme failed badly with Mars' latitudes. He
shifted his eccentric distances to a compromise value
to fit the latitudes; but, in some parts of the orbit,

Mars' position as calculated from his theory dis-
agreed with observation by 8" (8 sixtieths of one
degree). Might not the observations be wrong by
this small amount? Would not “experimental error”
take the blame? No. Kepler knew Tycho, and he
was sure Tycho was never wrong by this amount.
Tycho was dead, but Kepler trusted his record. This
was a great tribute to his friend and a just one.
Faithful to Tycho’s memory, and knowing Tycho's
methods, Kepler set his belief in Tycho against his
own hopeful theory. He bravely set to work to go
the whole weary way again, saying that upon these
eight minutes he would yet build up a theory of the
universe.

It was now clear that a circular orbit would not
do. Yet to recognize any other shape of orbit he must
obtain an accurate picture of Mars' real orbit from
the observations—not so easy, since we only ob-
serve the apparent path of Mars from a moving
Earth. The true distances were unknown; only
angles were measured and those gave a foreshort-
ened compound of Mars' orbital motion and the
Earth’s. So Kepler attacked the Earth’s orbit first,
by a method that had all the marks of genius.

Mapping the Earth's Orbit in Space and Time

To map the Earth’s orbit around the Sun on a
scale diagram, we need many sets of measurements,
each set giving the Earth’s bearings from two fixed
points. Kepler took the fixed Sun for one of these,
and for the other he took Mars at a series of times
when it was in the same position in its orbit. He
proceeded thus: he marked the “position” of Mars in
the star pattern at one opposition (opposite the Sun,
overhead at midnight). That gave him the direction
of a base line Sun-(Earth)-Mars, SE,M. Then he
turned the pages of Tycho's records to a time ex-
actly one Martian year later. (That time of Mars’
motion around its orbit was known accurately, from
records over centuries.) Then he knew that Mars
was in the same position, M, so that SM had the
same direction. By now, the Earth had moved on
to E, in its orbit. Tycho's record of the position of
the Mars in the star-pattern gave him the new
apparent direction of Mars, E.M; and the Sun's
position gave him the direction E.S. Then he could
calculate the angles of the triangle SE,M from the
record, thus: since he knew the directions EM and
E.M (marked on the celestial sphere of stars) he
could calculate the angle A between them. Since he
knew the directions E .S and E.§, he could calculate
the angle B, between them. Then on a scale diagram
he could choose two points to represent § and M and
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Fic. 18-5. KEpLER'S ScHEME To ProT THE Earmi’s Omnerr

locate the Earth’s position, E,, as follows: at the
ends of the fixed baseline SM, draw lines making
angles A and B and mark their intersection E,. One
Martian year later still, he could find the directions
E,M and E,S from the records, and mark E, on his
diagram. Thus Kepler could start with the points 5
and M and locate E,, E,, E,, . . . enough points to
show the orbit’s shape.®

Then, knowing the Earth’s true orbit, he could
invert the investigation and plot the shape of Mars’
orbit. He found he could treat the Earth's orbit
either as an eccentric circle or as slightly oval; but
Mars' orbit was far from circular: it was definitely
oval or, as he thought, egg-shaped, but he still
could not find its mathematical form.

Variable Speed of Planets: Law II

Meanwhile his plot of the Earth’s motion in space
showed him just how the Earth moves unevenly
along its orbit, faster in our winter than in summer.

® Einstein spoke of this method as one of Kepler's greatest
achievements.
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He sought for a law of uneven speed, to replace the
use of the equant. His early picture of some push-
ing influence from the Sun suggested a law to try.
He believed that motion needed a force to maintain
it, so he pictured a “spoke” from the Sun pushing
each planet along its orbit, a weaker push at greater
distance. He tried (with a confused geometrical
scheme) to add up the effects of such pushes from
an eccentric Sun; and he discovered a simple law:
the spoke from Sun to planet sweeps out equal areas
in equal times. It does not swing around the Sun
with constant speed (as Ptolemy would have liked ),
but it does have a constancy in its motion: constant
rate of sweeping out area (which Ptolemy would
probably have accepted). Look at the areas for
equal periods, say a month each. When the planet
is far from the Sun the spoke sweeps out a long thin
triangle in a month; and as the planet approaches
the Sun the triangles grow shorter and fatter—the
planet moves faster. Later on, when Kepler knew
the shape of Mars’ orbit he tried the same rule and
found it true for Mars too. Here he had a simple
law for planetary speeds: each planet moves around
the Sun with such speeds that the radius from Sun
to planet sweeps out equal areas in equal times.
Kepler had only a vague “reason” for it, in terms of
solar influences, perhaps magnetic; but he treasured
it as a true, simple statement, and used it in later
investigations. We treasure it too, and assign a first-
class reason to it. We call it Kepler's Second Law.
His First Law, discovered soon after, gave the true
shape of planetary orbits.

The Orbit of Mars: Law 1

When he had plotted Mars’ orbit (forty labori-
ously computed points), Kepler tried to describe
its oval shape mathematically. He had endless diffi-
culties—at one time he says he was driven nearly
out of his mind by the frustrating complexity. He
wrote to the Emperor (to encourage finances), in

Fie. lﬂ_-ﬁ. KerLen's Dlscm'l-:nn:__s rFoR Mans
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Fic. 18-T. A Socanr Systesm with Evviericar Onbits
Arounp A Cosaion Suw
{ The planets’ orbits in our own Solar System have much
smaller eccentricities. But some comets move in
elliptical orbits with great eccentricity.)

his grandiose style: “While triumphing over Mars,
and preparing for him, as for one already van-
quished, tabular prisons and equated excentric fet-
ters, it is buzzed here and there that my victory is
vain, and that the war is raging anew, For the
enemy left at home a despised captive has burst all
the chains of the equations, and broken forth from
the prisons of the tables.”

Finally, he found the true orbit sandwiched be-
tween an eccentric circle that was too wide and
an inscribed ellipse that was too narrow. Both dis-
agreed with observation, the circle by 4-5" at some
places, the inner ellipse by —8’. He suddenly saw
how to compromise half way between the two, and
found that gave him an orbit that is an ellipse with
the Sun in one focus. He was so delighted with his
final proof that this would work that he decorated
his diagram with a sketch of victorious Astronomy
(Fig. 18-8). At last he knew the true orbit of Mars.®
A similar rule holds for the Earth and other planets.
This is his First Law.

® It may seem strange that he did not think of an ellipse
earlier. It was a well-known oval, studied by the Greeks as
one of the sections of a cone. But then we know the answer,
Besides, ellipses were not so important then. It was Kepler
who added greatly to their fame. { An ellipse is easy to draw
with a loop of string and two thumb-tacks. If you have never
tried making one for yourself you should do sa. This is an
amusing experiment which will show you a property of el-
lipses that is valuahble in uPtics.}

Fie. 18-9,
Drawing aw Evvrese, with a loop of thread and two nails
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Kepler had then extracted two great “laws” from
Tycho's tables, by his fearless thinking and untir-
ing work. He continued to brood on one of his early
questions: what connection is there between the
sizes of the planets’ orbits and the times of their
“years"? He now knew the average radii’ of the
orbits; the times of revolution (“years") had long
been known. (As the Greeks surmised, the planets
with the longest “years” have the largest orbits.)
He felt sure there was some relation between radius
and time. He must have made and tried many a
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Fic. 18-8.

KerLer's Trivmrrant Discrant, Fros mis Boox on Magrs
When he succeeded in proving that an ellipse with the
Sun in one focus Cﬂu].lFIEP]H.L't an oseillating circular
orhit and maintain an “equal area” law, Kepler added
a sketch of Victorious Astronomy, to show his delight

and to cmPhasize the importance of the Pmnf.

guess, some of them sterile ones like his early
scheme of the five regular solids or wild mystical
ones like his speculation of musical chords for the
planets. Fortunately there is a connection between
radii and times, and Kepler lived to experience the
joy of finding it. He found that the fraction R*/T*
is the same for all the planets, where R is the planet’s
average orbit-radius, and T is the planet's “year,”
measured in our days. See the table.

"Amnming circular orbits, Copernicus made [ng]‘l. esti-
mates, and Tycho made better ones. Kepler knew these when
he tried his strange scheme of regular solids, and he traded
on their roughness to let his test of that theory seem “sue-
cessful.”




PLANETARY DATA — TEST OF KEPLER'S THIRD LAW
(These are modern data, more accurate than Kepler's)

Time of
Radius of revolution R:
planet's (planet’s -
orbit “year”)
R R T2 (miles)®
Planet (miles) (days) (miles)? (days)*? (duys)*
Mercury 5.785 » 10¥ 87.97 1.936 x 10# 7739, 2502 x 10
Venus 1081 = 107 2247 12.63 = 10 50490, 2501 » 10ee
Earth 14895 = 107 365.3 33.41 » 10# 133400. 2.504 > 100
Mars 2278 = 17 687.1 11521 = 10# 472100. 2504 = 10=
Jupiter 7796 = 107 4333, 470,18 = 10° 18770000. 2505 = 100=
Saturn 14258 = 100 10760, 28985 = 10# 115800000, 2503 = 100

4,0000 om

4. 0006 om

The test of Kepler's guess is shown in the last column.
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Fizc. 18-10. ELvirse: THE Earti's Oneit Deraws To SCALE

The actual eccentricity of planetary orbits is very small.
The orbits are almest cireles, yet Tycho's ohservations
enabled Kepler to show that they are not circles but
ellipses. The sketch above shows the Earth’s orbit
drawn to scale. If a 4.0000 centimeter line is used, as
here, to represent the minimum radius, which is really
some 93,000,000 miles, the maximum radius needs a
line 4.0006 centimeters |Unpr‘). The eccentricity of Mars'
orbit is over thirty times as big, but even then the ratio
of radii is only 1.0043 to 1.0000. Mercury is the onl

planet with a much greater eccentricity of orbit, wit

radil in propertion 1.022 to 1.000. Even this eecen-
tricity orbit seems small, but it is sufficient to
involve Mercury in such sp-eed changes around the
orbit that Relativity mechanics predicts a very slow
slewing around of the orbit—a precession of only 1/80
of a degree per century, discovered and measured

ﬁig gcfme the Relativity prediction!
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Fiz. 18-11a. ? ReLamionsHir BETWEEN
RADIUS awp “YEAR" ron Pranerany Onarrs P

ﬂP]::Lne!ar}r orhits ruughly to scale. )

Fiz. 18-11b, Praner’s “Year”
The planet’s year is the time it takes to go onee around
its orbit. This is the time-interval from the moment
when its direction hits some standard mark in the star-
pattern wntil it returns to the same mark. (The Earth
moves too. Ap allowance for the Earth's motion must
be made when extracting the planet’s true year from
observations, )
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Again he was m'erj{:l}'f_‘d at wresting a divine secret
from Nature by brilliant guessing and patient trial.
He said:

“What 1 prophesied two-and-twentv years ago,
as soon as 1 discovered the five solids among the
heavenly orbits—what I firmly believed long before
I had seen Ptolemy's “Harmonies”"—what 1 had
promised my friends in the title of this book, which
I named before I was sure of my discoverv—what
sixteen years ago, I urged as a thing to be sought—
that for which I joined Tvcho Brahe, for which I
settled in Prague, for which [ have devoted the best
part of my life to astronomical contemplations, at
length 1 have brought to light, and recognized its
truth beyond my most sanguine expectations. It is
not eighteen months since I got the first glimpse of
light, three months since the dawn, very few days
since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me . . . the die
is cast, the book is written, to be read either now
or by posterity, I care not which; it may well wait
a centurv for a reader, as God has waited six
thousand vears for an observer.”

Eepler's Laws
These investigations took years of calculating,
changing, speculating, calculating. . . . Kepler dis-

covered—among other “harmonies™ that he valued—

three great laws that are clear and true. Here they
are:

LAWI EACH PLANET MOVES IN AN ELLIFSE WITH
THE SUN IN ONE FOCUS,
LAW 1l Tue rADIUS VECTOR ( LINE JOINING SUN TO

PLANET) SWEEPS OUT EQUAL AREAS IN
EQUAL TIMES,

LAW III THE $sQUARES OF THE TIMES OF REVOLU-
TION (OR YEARS) OF THE PLANETS ARE
PROPORTIONAL TO THE CUBES OF THEIR
AVERAGE DISTANCES FROM THE SL'?\T.

(Or R*/T* is the same for all the planets)

Once guessed, the first two laws could be tested
with precision with available data; so Kepler could
make sure he had guessed right. Law III was tested

in its discoverv. ﬂn]t relative values of orbit-radii
were needed.

kepler had done a great piece of work, He had
discovered the laws that Newton linked with uni-
versal gravitation. Of course that was not what
Kepler thought he was doing. “He was not tediously
searching for empirical rules to be rationalised bv
a coming Newton. He was searching for ultimate

causes, the mathematical harmonies in the mind of
the Creator.”™ He emerged with no general reason
for his ellipses and mathematical relationships; but
he delighted in their truth.

Guessing the Right Law

Guessing the third law was a matter of finding a
numerical relationship which would hold for several
pairs of numbers. An infinite variety of “wrong”
guesses can be made to fit a limited supply of data,
in this case values of T and R for only six planets.
Many such guesses that succeed with six planets
fail when applied to a seventh planet (Uranus, dis-
covered later). Of those that still succeed, many
would fail if tried on an eighth planet (Neptune).
So trials with more and more sets of data can help
to remove “wrong” guesses, leaving the “right” one.
But in what sense is the “right” one right? Some of
us believe there is a really true story behind the
things we see in Nature. Kepler, Galileo, and New-
ton probably thought like that. Others now say
that the right rule is merely (a) the rule that ap-
plies most generally (for example, to the greatest
variety of planets). In this sense Kepler's RY/T?
guess was right because it applies to later-discov-
ered planets and to other systems such as Jupiter's
moons. His five-regular-solids rule was wrong, be-
cause it did not agree well with data for the original
six planets and failed completely when required to
deal with more than six. And, they say, the right
rule is (b) the rule that fits best into a theoretical
framework which ties together a variety of knowl
edge of Nature. If that theory has been manufac-
tured just to deal with the problem in hand, then
(b) is nonsense—it would merely say that the rule
is right because it agrees with its own theory con-
structed to agree with it. We call that an ad hoc
theory. If, huwever the theorv connects the prﬂh
lem in hand to other natural ]mﬂu.]edge then (b) is
a cogent recommendation. Newton, guessing at uni-
versal gravitation, made a theory that connects fall-
ing bodies and the Moon's motion and planetary
motion and tides, ete. He showed that Kepler's Law
IIT (as well as the other two) was a necessary de-
duction from this theory. Thus Kepler's R*/T* rule
seems “right” on both scores, (a) and (b), general-
ness and agreement with wide theory. It might have
been a “wrong” guess, waiting like the early “five-
regular-solids” law for more data to refute it and for
theory to fail to “predict™ it.

& Sir William Dampier, op.cit.

® Scientists use “predict” in this way, but it is an un-

fortunate choice of word. Here it means “coordinate with
other knowledge.”




A Fil:ﬁﬂm qKﬁ‘P!,gf Problem™

To see something of the hazards involved in an in-
vestigation like Kepler's let us trace through a specimen
problem using imaginary data, with a fictitious relation-
ship. Suppose you have invented a planetary puzzle and
know the scheme you have used, but ask me to try to
find the scheme. You present me with the following data.

Data Froblem
“Planet”™ R T What is the "law™
A 1 3 connecting R and T?
B 2 3]
C 4 18

You know the scheme, since you have invented it. (It
is not an inverse square law system: the “planets” are
not real ones!) In fact, you got T by squaring R and
adding 2. That is, you chose the relation T = R* + 2
and used it. (Make sure our data fit this formula.)
So if a new planet D is discovered with R = 5 it will
have T = 5% + 2, or 27. Suppose you give me the data
for A, B, C (holding D up your sleeve). In locking for
a rule, I try to find some algebraic combination of T and
R which will be the same for each of these planets.
Starting with planets A and B, I notice that T/R is 3/1
for A, 6/2 for B, the same for both. Hoping I have
found the right rule (T/R the same for all), L try this
on planet C. For C, T/R is 18/4 and this is not the
same as 3/1. I must therefore reject this simple guess.
In trying other schemes which give the same answer for
planets A and B, I find several more which fail for C.
But presently I find that I get the same answer for
planets A and B if I proceed thus: I divide R into 8 and
add 7 times R and subtract T; that is, ] find the value of
8/R+ TR — T.

Forplanet A, 8/1 + 7T x 1 -3 =12;

and for planet B, 8/2 + 7 x 2 — 6 = 12,

So the answer is the same, 12, for both A and B. Try-
ing the same rule on planet C,

I have 8/4 + 7 x 4 — 18 = 12 again.

S0 I am delighted to find the rule works for C and A
and B. Confident that I have got the right rule, I plan to
publish it, but you then divulge the data for planet D:
R = 5and T = 27. Trying my rule on planet D,

I abtain 8/5 + 7 x 5 — 27 = 9.6.

After asking you whether your data might be wrong
enough to excuse the difference between 9.6 and 12.0, 1
start all over again. If I am lucky as well as patient, I may
hit upon a scheme such as this: add 2 to the square of R
and divide by T. This yields an answer 1.000 for all four
planets, A, B, C, D.** Therefore it has a better chance of
being the right rule than the others. Tests on more data
would improve its reputation further and if some general
theory could endorse it 1 might feel sure I had the right
rule. Summing up this investigation in a table, we have

10 There is no special virtue in the answer being 1.000. If
I divide by 5T instead of 'b:r T the answers would all be
0.200, but the essential story is unchanged.

rougnt o you by ne Mational Library of the Fhihppin

81

ATTEMPTS TO OBTAIN

"PLANET = DATA COMSTANT NUMBERS

N'™ Trial Q"™ Trial

1*" Trial
T 8 R+2
R T - —4TR-T *
R R T
A 1 3 3 12 1
B 2 6 3 12 1
C 4 18 4.5 12 1
D 5 27 54 9.6 1
e 3 11 3667 12.67 1

Note that at the last moment another “planet” has been
discovered, e, which is so0 small that it was not noticed
before. It too fits with the final rule {of course it does,
in this game, since you manufactured its data by using
your private knowledge of that rule), and it fails to fit
with the earlier rules. Notice, however, that it nearly
fits with the second rule, giving 12.67 instead of 12.00.
If the data for planet e had been available when I was
working on my second rule, should I not have been
tempted to say “12.67 is near enough; the difference is
due to experimental error”™?

Kepler's Writing

Kepler wrote many books and letters setting forth
his discoveries in detail, describing failures as well
as successes. His account of his Laws is immersed
in much mystical writing about other discoveries
and ideas: planetary harmonies, schemes of mag-
netic influence, hints about gravitation, and a con-
tinuing delight in his earliest scheme of the five
regular solids. Remember Kepler did not know the
“right answers.” He had no idea which of his
theories would be validated by later discoveries and
thought. He finally managed to get the Rudolphine
tables printed—paying some of the cost himself,
which he could hardly afford—so that at last really
good astronomical data were available. Among his
own books, he wrote a careful fairly popular book
on general astronomy in which he explained the
Copernican theory and described his own discov-
eries. The book was at once suppressed by the
Church authorities, leaving him all the poorer by
making it hard to get any of his books published
and sold.

Comments on Kepler

“When Kepler directed his mind to the discovery
of a general principle, he . . . never once lost sight
of the explicit object of his search. His imagination,
now unreined, indulged itself in the creation and in-
vention of various hypotheses. The most plausible,
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or, perhaps, the most fascinating of these, was then
submitted to a rigorous scrutiny; and the moment it
was found to be incompatible with the results of
observation and experiment, it was willingly aban-
doned, and another hypothesis submitted to the
same severe ordeal. . . . By pursuing this method
he succeeded in his most difficult researches, and
discovered those beautiful and profound laws which
have been the admiration of succeeding ages.”

Sir Arthur Eddington says:**

“I think it is not too fanciful to regard Kepler as
in a particular degree the forerunner of the modern
theoretical physicist, who is now trying to reduce
the atom to order as Kepler reduced the solar system
to order. It is not merely similarity of subject matter
but a similarity of outlook. We are apt to forget that
in the discovery of the laws of the solar system, as
well as of the laws of the atom, an essential step was
the emancipation from mechanical models. Keoler
did not proceed by thinking out possible devices by
which the planets might be moved across the sky—
the wheels upon wheels of Ptolemy, or the whirling
vortices of later speculation. I think that is how
most of us would have attacked the problem; we
should have hunted for some concrete mechanism
to yield the observed motion, and have approached
the laws of motion through an explanation of the
motion. But Kepler was guided by a sense of mathe-
matical form, an aesthetic instinct for the fitness of
things. In these later days it seems to us less incon-
gruous that a planet should be guided by the condi-
tion of keeping the Action stationary than that it
should be pulled and pushed by concrete agencies.
In like manner Kepler was attracted by the thought
of a planet moving so as to keep the growth of area
steady—a suggestion which more orthodox minds
would have rejected as too fanciful. I wonder how
this abandonment of mechanical conceptions struck
his contemporaries. Were there some who frowned
on these rash adventures of scientific thought, and
felt unable to accept the new kind of law without
any explanation or model to show how it could
possibly be worked? After Kepler came Newtan,
and gradually mechanism came into predominance
again. It is only in the latest vears that we have
gone back to something like Kepler's outlook, so
that the music of the spheres is no longer drowned
by the roar of machinery.”

12 Sir David Brewster, Martyrs of Science, 1848,

12 In his Introduction to the Tercentenary Commemora-
tion book on Kepler's life and work, Johann Kepler, Williams

and Wilkins Company, for The History of Science Society,
1931

Kepler carried astronomy through a great stage
of development. His laws are landmarks in knowl-
edge, rules true today for planetary systems and
perhaps even for atomic models.

FROBLEM FOR CHAPTER 7

PUZZILE FOR A MODERM KEFLER

" Rodicoctive atoms shoot out small atomic “projectiles,”
which are pieces of their own inngrmost coré oF Aucleus.
Many such atoms, including rodium itself, shoot out a pro-
jectile that is itself am electrically charged helium atom
(= a helium nucleus, = o helium atom stripped of its two
electrons). These are colled alpha-particles, or a-particles.
The atemic “explosion” in which o radicactive atom shoots
out an alphg-particle occurs spontaneously, the parent gtom
then changing into am entirely different kind of otom with
different chemical properties. This is the charocteristic of
radicactivity., Such radicoctive changes give us information
about atomic structure. But they also provide "projectiles”
which can be used to investigate the structure of other atoms,
somewhat in the way in which o boxer investigates the struc-
ture of other boxers’ faces. In particular a stream of alpha-
particles was used to investigate the structure of atoms of
gold in a very fomous experiment which led to @ revolu-
tionary chonge in aotomic theory. The problem below refers
to that experiment. This and other tests of grand thecretical
prediction are described in Chopter 40 of Physics for the
fnq;.rihng Mrﬂd.

A stream of a-particles wos shot ot @ very thin leaf of
gold in @ vacuum, Most of them passed straight through,
missing severe collisions with any gold atoms in the very thin
leaf. But a few of the a-particles bounced out in new direc-
tions, hoving suffered severe collisions. A wvery few even
bounced bock, These cbservations suggested @ new theory
which then predicted just how maony should bounce back in
some chosen direction, out of every million fired. The theory
predicted a definite relationship between the number of
a-particles bouncing bock (per million) and the speed with
which they were travelling when they hit the gold leaf, The
theory waos tested by a crucial experiment, reported by
Geiger and Marsden in Philosophical Magozine, Vel. 25,
poge 620, 1913. Some of the measurements are given
below:

N
MNumber of helium atoms
bouncing back per minute
in o stondord chosem di-

W
Yelocity of helium otoms
(Im "arbitrary units'"*)

rection
200 25
1.91 29
1.70 44
1.53 81
1.39 101
1.13 255

* These velacites are m arbitrary units, One swuch wnit wos prab=
ably worth obout 10,000,000 meters/second

These data provide a problem somewhat like the one that
foced Kepler when he had planetary orbit dota but had not
guessed his third low. There is o fairly simple relationship
berween N and v.

Gugnt to wou by ne Mational Library of the




Can you find this relotionship? Try this, as Kepler would,
with courage and care, without any help from a theory or
a book. If you find the relationship, show how closely the data
fit it, Of course, the original experimenters had an odvantage
over you; they knew what relation to try first—but then they

[mi

B3

hod to do g difficult experiment. In these difficult experi-
ments of counting single octams as they bounce away from
the gold, you must not expect great accuracy; so, unlike
Kepler's, your constant may wobble by 10% but not in any
particular direction,
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CHAPTER 8 - GALILEO GALILEI (1564-1642)
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“Science came down from Heaven to Earth on the inclined plane of Galileo.”
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Galileo’s life overlapped that of Kepler. When
Tycho Brahe had moved to Prague with those instru-
ments he had saved, and Kepler was starting his
attack on Mars, Galileo, in his thirties, was growing
famous as a mathematician and natural philosopher.
In his life, Galileo did many great things for science;
perhaps the greatest was establishing mathematical
argument, tied to experiment, as the basis of sci-
entific knowledge. He experimented, and he drew
on the experiments of others, until he had an in-
stinct for sound science; but he was above all a
thinker and a teacher, and so gucld an arguer that
he could out-argue the traditional philosophers on
their own ground. He liked to use what we call his
'thﬂught Experiments": hypothetical experiments de-
vised for use in argument.’ In these he appealed to
common-sense knowledge of nature, or sometimes to
specific experiments, and then argued out predic-
tions of behavior or relationships. Thus, rather than
call him the father of experimental science—as
used to be the fashion—we might look on him as the
first modern theoretical physicist.

Galileo gathered and taught the facts and ideas
from which Newton formed his Laws of Motion. He
drew on many contributions from earlier experi-
menters and thinkers—we even know, from the
phrasing, which edition of certain earlier writers
he cﬂpied in hiz books, He did not pull the new
mechanics out of his hat, all his own discovery; but
he did hegin to build it into a comprehensive pic-
ture and he did make it public and convincing. He
constructed one of the earliest telescopes and with
it gathered new evidence to support Copernicus’
theory and even Kepler's Third Law. He expounded
the Copernican Theory with such compeﬂing clear-
ness that he upset traditional authorities, And he
preached honest experiment and clear thinking with
such exasperating fervour that he started physics
on a new life.

Galileo and the New Science

Galileo’s greatest contribution to the new physical
science was a change of treatment. He brought back
the scientific attitude of Pythagoras and Archimedes:

t Example: His argument about three bricks falling.

experimental knowledge should be codified by ab-
stract mathematical ideas. For example, he stated
clearly that for an object falling freely the distances
fallen in times 1, 2, 3, 4, from rest run in the propor-
tions 1:4:9:16: . . . (which we now express com-
pactly by algebra: § o« ¢*). In stating this he cleared
away modifications made by air-resistance, spinning,
horizontal motion, ete., and deseribed an ideal case
for a particle falling in a vacuum. He derived, by
simple mathematical reasoning, an alternative form:
the distances fallen in successive equal intervals of
time increase steadily, 1:2:3:4: . . ., or, as we now
say, As (for At = 1) = t (see note 2). Galileo, and
his successors down to the present day, do not speil
science when they “think away” real conditions such
as air-resistance. The modern scientist can formulate
ideal mechanical laws for frictionless materials,
weightless carts, unstretchable strings, . . . and then
add the real conditions to modify the ideal laws.
Galileo also promoted a complete change of
thought in astronomy: he broke the sharp distine-
tion between heavenly affairs and earthly science.
Copernicus had maintained the mystical ideal of
perfect spheres, but Galileo tried to treat the planets
and Sun and Moon as ordinary earthy bodies. He
started applying the same treatment to a ball rolling
downhill and a planet in the sky. He did not carry
this democratic treatment through—he still en-
dowed planets with a natural eireular motion—yet
he drew man's understanding of the whole universe
towards a scheme of general mathematical laws.
For his mathematical treatment, Galileo had to
deal with things that could be measured definitely.
So he gave importance to “primary” qualities of
matter, such as length, volume, velocity, force; and
he disowned, as outside proper science, such sub-
jective things as color, taste, smell, and musical
sound, which he said, just disappear when the ob-
server is not present.® Shakespeare hinted at this
2 This is Galileo's simpler rule, for free fall with constant
wcceleration, If At = 1, As is the 'f'eluc':it}': and this progres-
sion of As-values is a statement of constant acceleration—
velocity increasing steadily with time.
# Such exclusions could be revoked if a scheme of meas-
urement appeared. For example, the invention of a ther-

mometer with a definite scale may bring our sense of warmth
into good science.




(in The Merchant of Venice):

The crow doth sing as sweetly as the lark,
When neither is attended, . . .

Thus Galileo moved science towards the hardheaded
mathematical treatment that followed Newton; and
he carried philosophy towards the complete separa-
tion of matter and mind that followed Descartes.
His teaching helped to make matter and motion
seem true and real, while taste and color, etc.,
seem unreal, mere sensations in the observer’s mind
produced by shapes or motions of atoms—though
those atoms themselves are well disciplined by
mathematical laws. A century later Berkeley sug-
gested that even the primary qualities of matter are
unreal; they too come to our minds only as “sense-
perceptions.” On that view the whole organization of
scientific laws and knowledge which Galileo helped
to build is a framework of abstractions, a picture
that we extract from the sense impressions the world
sends us. It is a good picture, comforting, useful,
interesting: but it is not the world itself. The world
itself—whatever real or concrete world there is out-
side our senses—may well be far more complex than
we can “kmow” in our scientific way. If we believe
our scientific picture is completely real and true,
we may find the laws of mechanics offering to trace
the course of every atom from now into the future,
and thereby threatening to predict all events, in-
cluding our own decisions and actions. That would
take away all our choice of action, all free will—a
very distressing prospect. But that offer applies only
to the abstract world of Newtonian science, not to
the complex concrete world beyond. We should not
let ourselves be frightened by the “fallacy of the mis-
placed concrete.™

Galileo’s Life and Work—Pisa

Galileo was the son of an Italian nobleman who
was himself a philosopher and musician, His home
was in Pisa, near Florence. Though young Galileo
wanted to be a painter, his father sent him to the
University to study medicine, a field that was much
respected and well paid. There, at the University
of Pisa, he seized on a chance to learn geometry.
(There is a story that he overheard a lecture on
Euclid, was thrilled with it, and implored the lec-
turer to teach him.) His father opposed this new
interest—mathematicians were poorly paid—but
Galileo’s enthusiasm could not be stopped. He de-
voured the works of Euclid, then read Archimedes,
and soon started his own investigations of the prop-
erties of centers of gravity.

4+ A. N. Whitehead's phrase.
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When he was 25, Galileo was appointed by the
Duke, one of the ruling family of Medici, to the
post of lecturer in mathematics—at a miserable
salary. With great energy and zeal, but little tact,
he set to work on the mechanics of moving bodies:
reading the earlier books, sorting sense from non-
sense, and putting statements and ideas to the test
of experiment. He enjoyed annoying the Aristotelian
philosophers around him by showing up the mis-
takes in their teaching. Though he was right and
they were wrong, his tactless manner was not wise.
“The detection of long-established errors is apt to
inspire the young philosopher with an exultation
which reason condemns. The feeling of triumph is
apt to clothe itself in the language of asperity, and
the abettor of erroneous opinions is treated as a
species of enemy to science. Like the soldier who
fleshes his first spear in battle, the philosopher is apt
to leave the stain of cruelty on his early achieve-
ments. . . . Galileo seems to have waged this stern
warfare against the followers of Aristotle; and such
was the exasperation which was excited by his re-
iterated and successful attacks, that he was assailed,
during the rest of his life, with a degree of rancour
which seldom originates in a mere difference of
opinion,”™
Galileos realistic discussions of falling bodies and
accelerated motion upset traditional teaching and
were not welcome; nor were his arguments exposing
the fallacies of old doctrines. While he gathered
enthusiastic followers he also made enemies. Malice
and jealousy made his position at Pisa so uncom-
fortable that he accepted an invitation to move to
the University of Padua in the neighboring republic
of Venice. At Padua, he found philosophers already
talking of free fall as due to a force, and doubting
whether it was wise science to rely on “natural
places” or to look for “first causes.” The time was
ripe for Galileo's teaching. He taught with vigor
and amazing skill, and he wrote on motion, me-
chanics, astronomy. Even then he was poorly paid.
He had to run a lodging house for his students, and
he set up an instrument-making shop.*

Padua

In his new post at Padua, his reputation grew.
He loved to expound and argue. He was formidable
in argument because he started by expounding his

& Sir David Brewster, Martyrs of Science (1848).

¢ He manufactured a “military compass” that combined
the uses of a protractor and a slide rule, and received orders
for it from many parts of Europe. He also sent some as
presents to important people, to show how he could aid “the
military art.” .
e Fn HRIN

ae
ted
Y]




86

opponents’ case more clearly than they could and
then he demolished it—he was an intellectual truck-
driver. He stayed at Padua twenty years, during
which he gathered much knowledge of mechanics
and developed his defense of Copernican astronomy.
He lectured to large audiences; and princes and
nobles came to study under him.

When a bright new star suddenly appeared in the
sky, he gave three lectures on it. Crowds came to
hear him, but he rebuked them for paying attention
to a temporary phenomenon while they overlooked
the wonders of everyday nature. His lectures be-
came so popular that even the great hall of the
school of medicine was sometimes too small and he
lectured in the open air. He taught honest science
with compelling force.

Copernican Astronomy

Early in his career Calileo was converted to the
Copernican system, and he taught it quietly at first,
incautiously later. In a dialogue he describes what
was probably his own conversion:

"I must upon this occasion relate some accidents
that befell me when I first began to hear of this
new doctrine [the Copernican system]. Being very
voung, and having scarcely finished my course of
philosophy, . . . there chanced to come into these
parts . . . a follower of Copernicus, who in an
Academy made two or three lectures upon this
point, to whom many flocked as auditors, but I,
thinking they went more for the novelty of the sub-
ject than otherwise, did not go to hear him, for I had
concluded with myself that that opinion could be
no other than a solemn madness. Questioning some
of those who had been there, I perceived they all
made a jest of it, except one. He told me that the
business was not altogether to be laughed at, and,
because this man was reputed to be very intelligent
and wary, | repented that I was not there. From
that time forward, as often as I met with anvone
of the Copernican persuasion, I demanded of them
if they had been always of the same judgment; and,
of as many as I examined, I found not so much as
one who did not tell me that he had been a long
time of the contrarv opinion but had changed it
for this, as convinced by the strength of the reasons
in its favour. Afterwards, questioning them one by
one, to see whether they were well possessed of the
reasons of the other side, I found them all to be
very readv and perfect in them; so that I could not
tr'u]'l.' sav that thev had taken up this opinion out of
ignorance, or vanity, or to show the acuteness of
their wits.

“On the contrary, of as many of the [Aristotelians]
and Ptolemeans as I have asked (and out of curios-
ity I have talked with many) what pains they had
taken in the book of Copernicus, I found very few
that had so much as superficially perused it. But
of those whom I thought had understood it, not
one; and, moreover, I have enquired amongst the
followers of the [Aristotelian] doctrine if ever any
of them had held the contrary opinion and likewise
found none that had. In other words, there was no
man who followed the opinion of Copernicus who
had not been first on the contrary side and who was
not very well acquainted with the reasons of Aris-
totle and Ptolemy; and, on the contrary, there is not
one of the followers of Ptolemy who had ever been
of the judgment of Copernicus and had left that to
embrace this of Aristotle. Considering these things,
I began to think that a man who leaves the opinion
imbued with his milk and followed by very many to
take up another owned by very few and denied by
all the schools, one that really seems a very great
paradox, must needs have been moved, not to say
forced, by more powerful reasons. For this cause
I am become very curious to dive into the bottom
of this business.”™

Galileo’s Mechanics of Motion

At Pisa and Padua, Galileo collected his knowl-
edge of mechanics that he set forth much later in
Two New Sciences. One of his early discoveries was
the remarkable property of pendulums: that (for
small amplitude) the time of swing is independent
of amplitude. There is a fable that he discovered
this in his student davs in Pisa by timing the
decreasing swings of a long lamp hanging in the
cathedral. He had no accurate clock—in fact he was
discovering the basis for good clocks—so he used
his own pulse for the timing.* He then turned his
discovery to use in medicine by constructing a short
adjustable pendulum for timing pulses.

At some early stage, Galileo studied falling
bodies, and he knew it was nonsense to say that
heavier bodies fall faster in proportion to their
weight. This had come from Aristotle—who prob-
ably gave it as a sensible description of final velocity
in a very Inng fall, when air friction has increased

* Reprinted from the Salusbury translation of Galileo's
Dialogue, as revised by Giorgio de Santillana, by permission
of the University of Chicago Press. Cupw:ght 1953 by The
University of Ehu;'agn;\ Press. All nghts reserved. Pages 142-
144

# The lamp quoted in the fable was not installed till some
years later, so the story is doubted. Yet Galileo wrote in a
dialogue . Thousands of times | have ohserved vibra-
tions, e;pec:a]ly in churches where lamps, h:spended by long
curd_g had been inadvertently set in motion,”




till it balances weight. However, this was being
taught as a rule for simple fall from rest—a piece
of nonsense made almost sacred by ages of dogmatic
teaching. Galileo saw that unequal bodies fall to-
gether, with motion independent of their weight,
except for relatively slight differences. He satisfied
himself by experiment and argument that those
differences are due to air resistance. He pointed out
that though a piece of gold falls fast, the same piece
when beaten out to a thin leaf flutters down slowly.
And he suggested a clinching proof: drop a serap
of lead and a wisp of wool in a vacuum—impossible
in his day, but later carried out by Newton. He
complained bitterly at the Aristotelians who claimed
that in the time taken by a 100-pound cannon ball
to fall 100 feet a 1-pound ball would fall only 1 foot.
Actual experiment, he said, showed only a differ-
ence of finger-breadths. “How can you hide Aris-
totle’s 99-foot difference behind a couple of finger-
breadths?” he asked, to ridicule his opponents.
Galileo confirmed his belief of equal fall by com-
paring pendulums with light and heavy bobs on
equal threads. The time of swing is the same, what-
ever the bob. Here was gravity-fall diluted, in a form
that was easily timed accurately (a bunch of
swings ), and practically free from friction-troubles.
(Since the time-of-swing is independent of ampli-
tude, air friction should not affect the time of swing.
Friction does reduce the amplitude from one swing
to the next, but that does not matter!) This result
contributed to the ideas of mass and gravitation
that Newton later extracted and used. A heavy body
has more weight than a light one—the Earth pulls
it more. On that score we should expect it to fall
faster. However, it also has more stuff-in-it-to-be-
moved than a light one, a greater quantity of matter
or mass, as Newton later called it. It has more “in-
ertia,” needs more force for its acceleration.” There-
fore, when experiment shows that heavy and light
bodies fall with the same acceleration (or swing
with the same motion as pendulums | it suggests that
the heavier body has greater mass in just the same
proportion as it has greater weight. This is a re-
markable property of gravitation, that Earth-pulls
are proportional to the inertial masses of matter

* Though mass is an idea partly invented and partly ex-
tracted from properties of nature, it is not something that can
be described successfully in a few words, One has to gain a
feeling of its nature by working with jt—calling it “inertia”
is mere naming. When Newton defined it as “quantity of
matter” he simply moved the doubt on to the definition of
matter. Yet this description of Newton's was not as worthless
as some critics claim. As a descriptive phrase it helped the
scientists of Newton's day to understand what he meant.
Perhaps it is useful in the same way for students today.
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pulled. Galileo seems to have accepted it without
seeking its cause, He did not formulate the concept
of mass clearly in his studies of force and motion. It
was Newton who put it to use. In this century mass
gained new importance when we came to think of
it as specially related to energy.

To investigate the motion of a falling body in
detail, Galileo diluted gravity by using an inclined
plane. He describes an experiment of rolling a ball

Fic. 19-1. GavLiLeo's EXPERIMENT

down a long shallow incline, a grooved plank with
a smooth parchment lining. Time-of-travel was meas-
ured with a simple water clock: the experimenter
had a tank of water with a small spout and weighed
the water that ran out. Measurements of time and
distance agreed with the simple relation:

DISTANCE TRAVELLED FROM REST o TIME?®

It is not clear whether Galileo actually did the ex-
periment or just quoted it from earlier scientists.
Anyway, the measurements were rough, but Galileo
was confident he knew the correct “law.” By an in-
genious geometrical argument, he proved that this
is the necessary rule for motion with constant
av/At. Therefore the rolling ball moved with con-
stant acceleration. By confident extrapolation from
his shallow incline to a steeper one to a still steeper
one and finally to vertical fall, he argued that freely
falling bodies have constant acceleration; hence he
knew their law of fall,

On any chosen incline, the force producing the
acceleration must be the same all the way down.
(It is a constant fraction of the ball's weight.) Al-
ready part of Newton's Law Il had emerged: a
constant force leads to constant acceleration.

Continuing with hills of different slopes, Galileo
was on the verge of finding the main relation of
Newton's Law I[: ACCELERATION varies as FORCE;
but he kept this in geometrical forms which ob-
scured the part played by force. He was preparing
the way for an experimental science of motion which
could be applied to a variety of problems: pro-
jectiles, pendulums, the planets themselves; and,
later, moving machinery and even the moving parts
dational Library of the Philippines

Authenticated

10148 B:29 AM

- _—
Download Date



58
Specd at Bottom of Hill

Galileo guessed that if a ball rolls down one in-
cline, A, and up another, B, it will roll up to the
original level, whatever the slopes; and that led
him to a very important general assumption from
which he made many predictions. Imagine several
downhill slopes A,, A., A,, all of the same height,
all leading to the same uphill slope B. Then if his
guess were true, the ball would rise to the same
height on B whichever of the A slopes it descended.
At the bottom, just about to run up B, the ball has
the momentum needed to carry it up to the final
point on B. That momentum must therefore be the
same at the bottom of hill A, hill A,, . . . ; the
same for all slopes. Therefore the ball must have
the same speed at the bottom of A, whatever the

Fiz. 19-2a. Cavicen’s EssentiaL Facr
ldeal downhill-and-uphill motion.

slope. So Galileo made his general assumption: The
speeds acquired by any body moving down planes
of different slopes are equal if the heights are equal.
This is the property sketched in Ch. 7, where we
showed it belongs with Newton's Law II. Galileo
generalized this to curved hills. He deduced many
geometrical predictions for motion down inclines
from this assumption, combined with his proven
knowledge of constant acceleration.

The Downhill = Uphill Guess

Friction would prevent a satisfactory demonstra-
tion of a ball rolling down one hill and up another
to the same height. Galileo probably based his guess
on a mixture of experiment and thinking—he had
a genius for making the right intuitive guesses with
the help of rough experiments. It seemed plausible.
For his colleagues he made it more plausible by
a careful argument about compounding motions
dowmhill and uphill. Look at the following irritating
Galilean “thought experiment” {due to a later au-
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thor): Suppose the ball finished higher on the
further slope B, We could insert an extra plank, C,
and let it roll back to its starting-place on A, and
then start again with the velocity it had gained. This
could continue, with the ball gaining more and more
motion, cycle after cycle, which seems absurd, If
the ball finished lower on the further slope B, then
we might start it on B instead, at that lower point,
If it rolled down B we should expect it to retrace
its path to the original point on A, thus ending up
higher in this backward journey. Again with an extra
plank, D, we could arrange for cycle after eycle of an
absurd increasing motion. Both cases seem absurd
and therefore the ball must rise to the same height

Fic, 19-3. A Gaviean “TrovcHT Exrerivest”

Fic. 19-3a. If the ball finishes higher, let it run back
down a temporary extra plank, C. Absurd increasing motion.

Fie. 19-3b. If the ball finishes lower, let it make the
return trip, presumably (?) retracing its path and ending
higher on A than on B. Then let it roll back, via
a Iemgora:y plank D, to the same place on B.
Absurd, perpetually increasing motion.

on the opposite hill. The weak point in the argu-
ment is the claim in the second case that the motion
must be exactly reversible. Even apart from this,
the method of solving problems by argument does
not seem to us very scientific. But Galileo lived in
an age of arguers and knew that such attacks would
carry considerable weight. Besides, here, as else-
where in physics, arguments can help to clarify the
problem, to suggest what to think out and what to
im'estigate.

Calileo himself clinched his contention by pro-
ducing what seems impossible, a frictionless version
of the downhill = uphill experiment, an amazingly
simple but convincing demonstration, his “pin and
pendulum” experiment. In this a peg catches the
thread of a pendulum as it swings through its lowest
point, thus converting the pendulum abruptly from
a long one to a short one. In all cases, the bob after

pies
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Fiz, 19-4. Tue Piv anp Pesnpurusm ExrERIMENT
The pendulum bob rises to the same vertical level, in

spite of the change of motion caused by the peg.

falling down a long shallow arc rises up a steep arc
to the same height. Try this experiment of genius
yourself,

In this property of nature, Galileo had the key to
one aspect of conservation of energy, though that
general idea was not formulated till later.

Newton’s First Law of Motion

The downhill=uphill rule suggested one thing
more. Galileo argued to the extreme case when the
second hill is horizontal, with no slope. Then a ball
that rolls down the first hill must continue along the
horizontal forever. Thus he found the essence of
Newton's First Law of Motion: Every body con-
tinues to move with constant velocity (in a straight
line), unless acted on by a resultant force. Here, had
he but known, he had the key to one puzzle of
planetary motion: What forces maintain the motion
of the planets, Moon, etc.? What pushes them along
their orbits? The new answer was to be: no force;
none is needed, because motion continues of its
own accord,

Fic. 19-2b. CALILEO'S ARGUMENT
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Independence of Motion

The parallelogram addition of velocities, forces,
etc, was just being recognized or discovered—
essentially this implies that one vector does not
disturb another: they act independently and just
add geometrically. All through his experiments
Galileo insisted that motions (and forces) are in-
dependent of each other. For example, a vertical
accelerated motion and a constant horizontal motion
simply add by vectors—one motion does not modify
the other, but each has its full effect. He applied
this to ideal projectiles and showed that their paths
are parabolas.

Galileo preached this independence of vectors
again and again in his dialogues, as an essential
reply to critics of Copernicus. When they claimed
that a moving Earth would leave falling bodies far
behind, Galileo asked about things dropped from the
mast of a ship that was sailing steadily. If they then
murmured about wind, he repeated the “thought ex-
periment” in the ship's cabin. He said that clouds
and air, which already have the motion of the
Earth’s surface, simply continue to move with it.
He carried his readers through problems like those
at the end of Chapters 1 and 2 and showed that a
steady motion of the laboratory does not affect ex-
periments on statics, free fall, or projectiles. A
laboratory’s steady motion cannot be detected by
any mechanical experiments inside. That is Galilean
Relativity.

Leaving Padua

After 20 years at Padua, Galileo was tempted to
return to his home university at Pisa. He had kept
in touch with the Medici family there, and now he
negotiated with the Duke for an appointment in
Florence with better pay and more leisure. His
public duties at Padua took only an hour a week,
but to supplement his salary—which was still small,
though an admiring university increased it several
times—he had to do private teaching. “He was
weary of universities, of lecturing, tutoring, and
boarding students; he had had enough of the stuffed
robes against which he had written satirical poems;

. . of the closed and petty atmosphere of Padua.
. .. He wanted to be in his own land, in his own
native light and air, free, and among friends of his
own choosing.”" He needed leisure to study and
write, and the support of noble patronage. In return

1w de Santillana in his “Historical Introduction™ to
Galiles's Dialogue, ap.cit., p. xi.
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for a better salary he promised the Duke he would
write a series of books: “. . . principally two books
on the System of the Universe, an immense design
full of Philosophy, Astronomy, and Geometry; then
three books on Motion, three on Statics, two on the
Demonstration of Principles, one of Problems; also
treatises on Sound and Speech, Light and Colors,
Tides, the Composition of Continuous Quantity,*
the Motion of Animals, and the Military Art."” This
gives some indication of his eagerness and wide
interests,

The Telescope

While he was considering the move to Pisa and
Florence, Galileo happened to hear of the invention
of the telescope. It is said that a Dutch spectacle-
maker'* had found an arrangement of two lenses
that made distant things seem large and close.
Hearing about this, Galileo made a simple telescope,
magnifying only three times, by fixing two lenses
in a pipe. He used a weak convex lens for the first
lens, and a concave lens for the eyepiece. This may
have differed from the invention he heard of, in
which case he was the first to make an “opera glass”
which we now sometimes call a Galilean telescope.
He was delighted with his new instrument and the
fame of this marvel soon spread. The telescope was
the talk of society, and crowds came to look through
it. The Venetian Senate hinted they would like a

11 The composition of continuous quantity sounds like an
attempt at the calculus problem of integration, The need for
calculus as a mathematical tool was growing. Galileo himself
needed_it. andlmade pnlaliminar]_.-' attemFts By the mnext
generation the time was ripe for its development, and it is

not surprising that Newton and Leibniz invented it inde-
penden

12 The spread of printing in the century before had in-
creased the use of spectacles, so the time was ripe for the
discovery of telescopes by the chance putting together of
lenses.

Two rm:rni tubes,
in the other

mrrj-micmﬁ
‘/Vﬂm

Fﬁntw corweX
E‘prm

a_.:b-r.m_q

piannommr:

Fie. 19-5. GaLiceo’s TELESCOPE

copy. Galileo presented them with one. His salary
was doubled soon after!

Galileo looked at the Moon and then the planets
and stars with, he says, “incredible delight.” If you
have never seen the Moon through a telescope,
borrow any small instrument, field-glasses or a toy,
and try it.

On observing the Moon, Calileo saw mountains
and craters. He even estimated the heights of Moon-
mountains from their shadows. What he saw was
unwelcome to many who had been taught that the
Moon is a smooth round ball. Mountains and craters
made the Moon earthy and broke the Aristotelians’
sharp distinction between the rough, corruptible
Earth and the polished unchangeable heavens. The
telescope dealt a smashing blow to the old astron-
omy of perfect spheres and globes. Human beings
are conservative and do not like to have their settled
opinions changed by a newcomer who proves he is
right. Far from pleased at being shown something
new, they are angry to find their beliefs upset,
particularly if those beliefs have been firmly es-
tablished in childhood—their sense of security is
assailed. So Galileo found some people angry over
his discovery. When he offered a convincing look
through his telescope, many were delighted, but
some refused, and others looked and then said they
didn't believe it. One Aristotelian admitted the
mountains were there but explained away the dam-
age by saying that the valleys between them are
filled with invisible crystal material to bring the
surface back to a perfect sphere. Sure, said Galileo,
and there are mountains of invisible erystal there as
well, that stick out ten times as far!

Good lenses were hard to obtain and Galileo had
to grind and polish his own in his instrument shop.
He made better ones than most, so that his tele-
scopes succeeded where others failed. Even so, his
telescope (preserved in Florence) gives a poor
image compared with modern instruments. He made
a second instrument which magnified eight times,
then another which magnified 30 times and which
involved great labor: the grinding of a block of
glass into the right shape is a tedious, difficult busi-
ness, and much of the final performance depends
on care in polishing. Through the new telescope the
planets appeared as bright dises. The stars looked
brighter and farther apart, but were still just points.
Galileo was delighted to find how many more stars
he could see. The luminous haze of the “milky way”
was resolved into a myriad of stars.




Fic. 19-Ga.
A Prorocrard oF THE Moox Near Last Quarter { Photo-
graph by ]. H. Moore and J. F. Chappell with 36-inch re-
fractor, at Lick Observatory.) The sunshine catching the
mountain tops near the edge shows the rough landscape that
Calileo's telescope revealed, to the dismay of many people.
[This shows the Moon inverted, as we see it with a medemn

telescape.|

Jupiter's Moons

With this new powerful telescope Galileo made
a still more important discovery. On the night of
January 7, 1610, he observed three small stars in a
line (Fig. 19-7) near Jupiter, two to the East of
Jupiter, and one to the West. He thought they were
fixed stars and paid little attention to them. The
next night he happened to lock at Jupiter again and
found all three of the stars were to the West of
Jupiter and nearer one another than before. He
ignored the latter peculiarity and thought the shift
was due to Jupiter's motion; but then he realized
that this would require Jupiter to have moved in the
wrong direction, for Jupiter was on a backward
loop. This was mysterious indeed. He waited anx-
iously to observe them again the next night but
the sky was cloudy. The night after that, on January
10, only two of the stars appeared, both to the East

91

Frz, 19-6Gh, A PuorocrapH oF Mooxn MouvsTtans | Lick

Observatory}. This is a section of the picture (a}, enlarged

about 6 times. The pcalc with the Iﬂng shadow near the
hottom is the mountain “Piton.”

Fic. 19-6c. Skercn oF Prron amp 115 SHapow,
to show how mountain heights are estimated.
( After Whipple, in Earth, Moon and Planets.

Harvard University Press, 1941.)

of Jupiter. Jupiter could hardly have moved from
West to East in one day and then from East to West
in two days by such amounts. Galileo decided the
“stars” themselves must be moving and he set him-
self to watch them. The sketches show his record of
what he saw. He had really discovered four small
moons moving around Jupiter,

Look at Jupiter yourself, with any small telescope,
even field glasses. You cannot miss the moons, which
you will see better than Galileo did with his simple
lenses.

Kepler, when Galileo wrote to him about his dis-
covery, shared Galileo’s delight, although the extra
moons seemed rather contrary to his limit of six

Brought to you by ne Mational Library o the Fhiippines
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These sketches are copied from Galileo’s handwritten record.

(The orbits of the moons are nearly in planes containing

our line of sight from Earth to Jupiter; so the moons are
often in front of Jupiter or behind, and they are often
Edip@ed h}' moving into Jupiter’s shadow, They move
quickly around their orbits, That is why the pattern
changes so quickly and why, often, less than four moons
are visible.) (For a copy of Galileo’s written record,

see Galileo by ], ]. Fahie.)

planets. The Aristotelian philosophers did not wel-
come the discovery hecause it made Jupiter an im-
portant center, spoiling the Earth's unique position,
supporting, in fact, the Copernican theory. One
argued,

“There are seven windows in the head, two nostrils,
two eves, two ears, and a mouth; so in the heavens
there are two favorable stars, teo unpropitious, two
luminaries, and Mercury alone undecided and in-
different. From which and many other similar phe-
nomena of nature, such as the seven metals, ete.,
which it were tedious to enumerate, we gather that
the number of planets is necessarily seven. Moreover
the satellites of ]upiter are invisible to the naked

eve, and therefore can have no influence on the
earth, and therefore would be useless, and therefore
cannot exist, . ..

Galileo wrote to Kepler:

“Oh, my dear Kepler, how 1 wish that we could
have one hearty laugh together! Here, at Padua, is
the principal professor of philosophy whom I have
repeatedly and urgently requested to look at the
moon and planets through my glass, which he per-
tinaciously refuses to do. Why are you not here?
What shouts of laughter we should have at this
glorious folly! And to hear the professor of philos-
ophy at Pisa labouring before the grand duke with
logical arguments, as if with magical incantations,
to charm the new planets out of the sky.”

Jupiter and his moons provided a small scale
model of the Copernican system of Sun and planets
—a compelling argument for the Copernican view,
Kepler used Galileo’s measurements in a rough test
to see whether his Law III applied to Jupiter's
moons. He found it does apply, though the constant
obtained for R*/T* is different from the value given
by the Sun’s planets. The table below shows modern,
more accurate, data. More moons, smaller and
farther out, have been discovered since. We now
know a dozen.

Return to Pisa and Florence

When Galileo accepted the new post at Florence
he had to resign his professorship at Padua. This
unexpected resignation was most unwelcome there;
it seemed ungrateful and even unfair, but the new
post offered better opportunities. Calileo made the
move and lost some friends. Thnugh he now en-
joved the leisure he needed for his work, the move
proved unwise in the lnng run, because it was a
return to enemies as well as friends. (Back in his
student days there he had been known as “the

JUPITER'S SATELLITES AND KEPLER'S THIRD LAW

DISTANCE FROM JUPITER TIME OF
NAME OF in Jovian in miles REVOLUTION
SATELLITE diameters (R) in hours (T)
Io 3.02 262,220 42.36
Europa 4.580 417,190 8§5.23
Ganym ede 7.66 665,490 171.71
Callisto 15.48 1.170,7 400,54

[ see note 13)

120t is simplest to measure the moons’ orhits in terms of
]11Pj1'l."'.-5 diameter. The radii could remain in those units for
a test of Kepler's Law I11; but, if these data are to be used
in gravitational theory (e.g., to compare Jupiter's mass with

CALCULATIONS FOR TEST OF LAW 11

H! Ti Hi
(miles)? (hours)® T
1.803 » 10+ 1802.8 TRY
7.261 x 100 7264. THIS
29,473 » 10 29,454, (See
160.440 > 10 160,430. note 14)

the Sun's), then the same units, e.g., miles, must be used
on both sides of the comparison.

14 The test is made easy by a lucky chance arising from the
choice of units, miles andyhnrum- Lock at the numbers.

Fi
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wrangler,” and he had been violent in his attacks
on those he called the “paper philosophers.”) He
was a sincere man but not tactful, and the opposition
which his discoveries and arguments excited was
more a subject of triumph to him than sorrow. “The
Aristotelian professors, the temporizing Jesuits, the
political churchmen, and that timid but respectable
body who at all times dread innovation, whether it
be in religion or science, entered into an alliance
against the philosophical tyrant who threatened
them with the penalties of knowledge.”*

At Florence he continued to study the planets
with his new telescope and soon made more discov-
eries. He found that Saturn seemed to have a small
knob on each side, almost fixed to it. Modern tele-
scopes show Saturn as a bright ball with a flat ring
round it like a hat-brim; and we now know that the
ring is made up of small pebbles, possibly ice, all
circulating independently around Saturn—an army
of Kepler III examples. In Calileo’s telescope the
ring was not clear—seen almost edge-on, it looked
like side-planets. Galileo next found that Venus
showed phases like the Moon. Here was direct con-
firmation of the Copernican picture. On the Sun,
Galileo found sunspots, black blotches that moved
and changed—another blow at the purity of the
heavens.

He took his telescope on a tremendously success-
ful visit to Rome, where he was welcomed with en-
thusiasm. His telescope was the wonder of the day,
and a Church committee approved his discoveries.

Growing Troubles

Galileo returned to Pisa full of plans for a great
treatise on the Constitution of the Universe. The
Copernican system seemed right in its simplicity
and compellingly vouched for by his telescope. An
Earth spinning with its own momentum would re-
move the improbable daily motion of an outermost
sphere of stars, driven by “an immense transmission
belt from nowhere,”** with uncouth gears to run the
inner spheres. A central Sun, with Earth a planet,
simplified many heaven]}r motions and predicted
what he saw in his telescope. He even saw a model
of the Solar System in Jupiter and his moons. But
that Copernican view conflicted with the simple
poetic astronomy of the Bible, taught with full au-
thority of the Churches, Roman Catholic and Protes-
tant alike. Just as Galileo felt confident he could
prove the Copernican case, Church disapproval
suddenly hardened. He was attacked in sermons,

18 Sir David Brewster, Marlyrs of Science (1848).
18 . de Santillana, op.cif.
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and his arguments in reply were sent secretly to the
Inquisition in Rome. From Rome, friends wamed
him the Copernican doctrines were under grave
question. Galileo’s pupils and friends, including the
Duke himself, defended him nobly, but he started
his most serious troubles by writing dangerous pub-
lic letters on scripture and science. In these he
claimed that the language of the Bible should be
taken metaphorically and not literally, where science
is discussed. The Bible, he said, teaches us spiritual
matters, but not the facts of nature—and he quoted
a cardinal: “The Holy Spirit teaches us how to go
to Heaven, not how the heavens go.” Since scripture
and nature are both works of the same divine author,
they cannot really be in conflict, but they serve dif-
ferent purposes; and the Church should not try to
make astronomers disbelieve what they see. Nor
should people condemn Copernicus’ book without
first reading and understanding it. Such was his
open defense.

Authorities in Rome were still more disturbed.
Church astronomers withdrew their support of Gali-
leo in the light of this subversive attack. Galileo,
alarmed, went to Rome to investigate his own safety.
There he argued persistently with friend and foe
alike; but “to such minds, Galileo could not com-
municate what he and Kepler were alone to see:
the three forces of mathematics, physics, and as-
tronomy converging toward a junction which would
make them irresistible and creating a physical sci-
ence of the heavens.""* Meanwhile the Church had
appointed a group of theological experts to examine
the Copernican teaching and they reported on two
key propositions:

THAT THE SUN DOES NoT Move: “, . . false and absurd
in philosophy, and formally heretical.”

THAT THE EARTH BOTH MOVES AND SPINS: . . . false
and absurd, and at least erroneous in faith.”

Galileo stayed on in Rome to help the discussion, as
he thought. He was summoned and told that the
Copernican doctrine was condemned as “erroneous.”
Copernicus’ book was suspended—no devout Catho-
lic could read it until it had been “corrected.” And
Galileo himself was not to hold or defend the doe-
trine as true. He waited a short while, to show a
brave face, then returned home, in good standing as
a devout Catholic, but reproved and hitterI}r dis-
appointed.

He remained in Florence for half a dozen years.
A new Pope was elected to the throne who was
friendlier to science and was in fact a friend of
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Calileo, Delighte_d, but in poor health, Caliles made
an uncomfortable journey to Rome to congratulate
the new Pope, and he had a marvelous visit there.
He had several audiences with the Pope, who gave
him rich presents and honors. He even argued deli-
cately on the Copernican system, emphasizing its
simplicity. The cardinals were reserved, but the
Pope himself commented, “The Church has not con-
demned this system. It should not be condemned as
heretical but only as rash.” However, when Galileo
pressed his views, the Pope replied sharply that the
earlier prohibition must stand. He told Galileo not
to limit the wisdom of God to a scientific scheme:
God could devise any scheme he pleased—a very
able argument that can stop all science. However,
the Pope finally agreed that Galileo might write a
non-committal book explaining the arguments on
both sides between Copernicus and Ptolemy. That
would be a mere theoretical discussion, leaving any
question of fact and truth to be decided by the
higher wisdom of the Church.

The Great Dialogue

Galileo returned home, disappointed yet honored
and confident. He was confident that he had permis-
sion to write his long-planned book on the System
of the Universe. But he was overconfident, and per-
haps undergrateful to the Church. He continued
surreptitious teaching of Copernican ideas and de-
veloped his book. He wrote it in the form of a dia-
logue—a very acceptable form of teaching in those
days. After some difficulty with Church censors,
one of them a personal friend, Galileo got the book
published. Its title runs

THE DIALOGUE
OF

GALILEO GALILEI, Member of the Academy of
Lincei
PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF
PISA
And Philosopher and Principal Mathematician to
THE MOST SERENE

GRAND DUKE OF TUSCANY
Where he discusses, in four days of discourse,
the two
GREAT 5YSTEMS OF THE WORLD
THE PTOLEMAIC AND THE COPERNICAN
Propounding impartially and indefinitely the
Philosophical and Physical arguments,
equally for one side and for the other side

It begins with a preface addressed “to the prudent
reader” which looks like a most imprudent attack
on the Inquisition. The dialogue is conducted by
Salviati, a philosopher, who sets forth with able
arguments Galileo’s Copernican views; Sagredo,
who, as a sort of attorney to Salviati, asks questions
and raises difficulties and cheers up the dialogue
with his wit; and Simplicio, a dogged follower of
Aristotle and Ptolemy, who is beaten in argument by
Salviati every time and made a fool of by Sagredo.

The Dialogue was not written in Latin for scholars
but in Italian, for the general reader, in rolling
prose with long discussions and cunning arguments,
One critic says it “meanders at ease across the whole
cultural landscape of the time";'" but essentially it
was a great setting forth of the nature of motion,
terrestrial and celestial, with the fullest arguments
in favor of the Copernican scheme. It had much
guod teaching and argument, and some serious
shortcomings. Galileo was a great man, but the new
science that he taught was still unfinished and some-
times unclear. He never realized that circular orhits
need an inward pull. He maintained vertical fall as
natural for earthly bodies and circular motion as na-
tural for celestial bodies—an Aristotelian prejudice
—despite his understanding of inertia in earthly
mechanics. He never taught Kepler's elliptical orbits,
perhaps because of that principle of circles, or per-
haps because as a hard-headed teacher he realized
how very close to circles the actual ellipses are. His
explanation of tides—caused by a breathing Earth
—seems even more pig-headed.

The book proved popular and carried conviction.
By contrast, Copernicus’ book was difficult—few
had understood its full import, and now it was pro-
hibited. There had been talk and covert discussion,
but most educated people could not “piece together
the great puzzle that stayed disassembled by su-
perior orders. The Diglogue did exactly that: it as-
sembled the puzzle and for the first time showed the
picture. It did not go into technical developments;
it left all sorts of loose ends and hazardous sug-
gestions showing to the technical critic. But it was
exactly on the level of educated public opinion, and
it was able to carry it irresistibly. It was a charge
of dynamite planted by an expert engineer.”*

News of this tremendous attack soon reached Rome
and the Pope, good friend though he was, ordered
the Inquisition to forbid the book and re-examine
Galileo. Galileo, aged and sick, was summoned to

17 . de Santillana, “Historical Introduction” to Galileo's

Dialogue, op.cit., p. xxx.
1= (G de Santillana, op.cit., p.oxxxd,




Rome. There he was well treated on the whole and
and comfortably housed—they knew he was a great
man—but the Inquisition proceeded to a strict ex-
amination, formulating his offenses then asking him
to defend his actions. Galileo knew he had written
dangerously, but with permission. The original pro-
hibition had only instructed him not to teach Co-
pernican astronomy as true, and he had obeyed the
dictum, thinly and insincerely. So he felt fairly
safe until a document, probably forged, was pro-
duced that showed he had promised never to teach
or discuss the Copernican system at all. In that case,
the indictment was very serious: heretical teaching
and writing in the face of a pledge to desist. Failing
repentance and abjuration, a heretic faced terrifying
threats of torture, and then torture. Galileo was in a
very grave position. He had disobeyed instructions
of the Church; he had set forth the Copernican
picture in print (with a thin pretense that it was
only a piece of theorizing); and he had even criti-
cized the interpretation of the Seriptures. The pow-
erful, ruthless Church, which crushed questioners
with severe punishment and condemned defiant
martyrs to be burned at the stake, would stand no
such behavior. Outside the Inquisition’s court, he
was well treated; inside, they were lenient at first,
reasoning with him and asking him to defend his
position. Yet he was being questioned by a court
that held both the physical powers of torture and
the spiritual powers of a great Church. His health
grew worse; he was questioned and questioned
again. Still he held on to his beliefs, holding on to
his real life. A friendly examiner suggested he should
confess to false pride as the cause of his writing
and be let off lightly. Galileo, giving up hope of
arguing his position, at last ngreed. However, the
highest court of the Church overruled this lenient
compromise and insisted on unconditional surrender.
Galileo was summoned to a “rigorous inquiry.” He
did not emerge from the court till three days later.
We do not know how far he was taken in the steps
towards torture. He was not tortured physically—
that was ruled out by his great age—vet to his intel-
lect much of the proceedings must have had the
horrors of mental torture. In the course of this in-
quiry he agreed to recant completely, to withdraw
his unorthodox statements and deny his own earlier
beliefs. He accepted the judgment of the Inquisition
as a penitent—remember he was a pious if argu-
mentative member of the Church—and he knelt and
read the abjuration required of him, swearing never
again to believe in or teach the Copernican system.
It was a long grim document of abject apology, con-
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fession of errors, complete recantation of views, and
absolute promises for the future under severest
Fenalties. Kneeling, he signed.

There is a tale that as he rose from his knees he
muttered “E pur si muove”™—"and yet it [the Earth]
does move"—but that is hardly likely. There was no
friend there to hear, it was far too dangerous, and
Galileo was a broken old man. As Bertrand Russell
has said, "It was the world that said this—not
Galileo.”

Galileo was imprisoned for a time, then allowed
to return home, under some restrictions. His health
was poor, but his head, he complained, was “too
busy for his body.” He composed his great discourse
on Two New Sciences. It contained the account of
his work on accelerated motion which formed the
basis for Newton's laws, his rules for elasticity of
beams, and his foundations for caleulus. This was
no popular account, but a great technical text. While
he was wnr]{ing on it he became blind in one eye
and soon the other one became blind too. He says
of this calamity: “Alas! your dear friend and servant
has become totally and irreparably blind. These
heavens, this earth, this universe, which by wonder-
ful observation I had enlarged a thousand times be-
yond the belief of past ages, are henceforth shrunk
into the narrow space which I myself occupy. So
it pleases God; it shall therefore please me also.”
He was now allowed more freedom, and in spite
of much sickness, he continued his writing with the
help of friends. His health grew worse, and he died
at the age of 78.

The Contest between Science and Church

Galileo brought into the open the differences be-
tween authoritarian churchmen and independent
scientists. By his tactless manner and P::-werlu[ ar-
guments he brought great troubles on himself, and
on science too. His biographers differ in their views
of his conflict with the Roman Catholic Church, ac-
cording to their own feeling about authority. Some
paint him as almost a martyr, threatened with tor-
ture h}' a higﬂteﬂ Inquisition, suspected, pers-&*cutetL
imprisoned, and forbidden to teach the great Truths
he had helped to discover—with the Church as the
villain of the piece taking the side of superstition
and prejudic‘n, trying to suppress, in the interest of
dogmatic‘ authority, the simple things of nature that
should be to the g]nr}r of a worldwide religion.
Others show Galileo bringing his troubles on him-
self by his hotheaded arguments and exasperating
manner of setting people right; they paint him as
ungl';itefn] towards the Church which listened to his
Jational Libi ary of the Philippines
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teaching and honored him with pensions; and they
point out that his conflict with the Church arose
directly from his attack on scriptural science—in
which he was meddling in the Church’s rightful
province. Others again regret his subservient be-
havior—in not making himself a martyr for science
—but this seems a cruel criticism of one who was so
far from subservient most of his life.

Bertrand Russell says,

“The conflict between Galileo and the Inquisition
is not merely the conflict between free thought and
bigotry or between science and religion; it is a con-
flict between the spirit of induction and the spirit
of deduction. Those who believe in deduction as the
method of arriving at knowledge are compelled to
find their premises somewhere, usually in a sacred
book. Deduction from inspired books is the method
of arriving at truth employed by jurists, Christians,
Mohammedans, and Communists, Since deduction
as a means of uhtaining lmawledge m]lapses when
doubt is thrown upon its premises, those who be-
lieve in deduction must necessarily be bitter against
men who question the authority of the sacred books,
Galileo questioned both Aristotle and the Scriptures,
and thereby destroyed the whole edifice of medi-
aeval knowledge. His predecessors had known how
the world was created, what was man's destiny,
the deepest mysteries of metaphysics, and the hid-
den principles governing the behavior of bodies.
Throughout the moral and material universe nothing
was mysterious to them, nothing hidden, nothing
incapable of exposition in orderly syllogisms. Com-
pared with all this wealth, what was left to the fol-
lowers of Calileo?—a law of falling bodies, the
theory of the pendulum, and Kepler's ellipses. Can
it be wondered at that the learned cried out at such
a destruction of their hard-won wealth® As the rising
sun scatters the multitude of stars, so Galileo's few
proved truths banished the scintillating firmament
of mediaeval certainties. . . . Knowledge, as opposed
to fantasies of wish-fulflment, is difficult to come
by. A little contact with real knowledge makes
fantasies less acceptable. As a matter of fact, knowl-
edge is even harder to come by than Galileo sup-
posed, and much that he believed was only approxi-
mate; but in the process of acquiring knowledge at
once secure and general, Galileo took the first great
step. He is, therefore, the father of modern times.
Whatever we may like or dislike about the age in
which we live, its increase of population, its im-
provement in health, its trains, motor-cars, radio,
politics, and advertisements of soap—all emanate

from Galileo. If the Inquisition could have caught
him young, we might not now be enjoying the bless-
ings of air-warfare and puisoned gas, mor on the
other hand, the diminution of poverty and disease
which is characteristic of our age.”*

The principal mistake was the same one on both
sides: failure to regard the Cuperniean scheme as a
useful picture, an hypothesis or piece of “theory.”
Galileo and the Church argued whether it was true,

“. .. it is entirely false to assert that the Church
stopped the scientific experiments of Galileo. Gali-
leo’s difficulties with the Church had nothing to do
with his experiments. They developed, apart from
purely personal causes, out of his refusal to yield to
the request that he treat the Copernican hypothesis
as an hypothesis, which in the light of modern rela-
tivity was not an unreasonable request. There seem
to be as many myths about Galileo as about any of
the saints.”*"

Galileo himself, with his love of truth, might have
decided more calmly to treat the Copernican view
as an hypothesis—though in mechanics he did be-
lieve in absolute fixed space. He might well have
defended the wisdom of such an open mind.

The new scientific temper was unwelcome to the
academic philosophers, busy with cultured dis-
course—though their spirited Renaissance prede-
cessors might have enjoyed it. The Church, busy
maintaining political power and spiritual good,
feared it. [ Earlier in Galileo’s lifetime, Bruno had
been burned at the stake for heretical views, among
them his use of Copernican astronomy. He had
pointed out that, with the outermost “sphere” of
stars at rest, the stars could be spread into infinite
space beyond—myriad suns occupying Heaven.
That dissolving of our universe’s neat outer shell
was a shﬂclu'ng novelty to the medieval mind.)
Galileo's Dialogue was placed on the forbidden list,
and his abjuration was read in churches and uni-
versities, "as a warning to others.” The new Protes-
tant Church was no less intolerant. With no papal
authority, its leaders placed even greater importance
on the literal truth of the Bible. Martin Luther had
said of Copernicus, “the fool will overturn astron-
omy.” In Italy and elsewhere, the new science was

19 Bertrand Russell, The Scientific Outlook ( W. W. Norton
and CnrnE:Lng,.l, Inc., New "l"nrk_. 1931}, p%. 33-534,

20 Maorris R, Cohen, The Faith of a Liberal: Selected Es-
says, in which there is a delightful essay, reviewing Galileo's
book Twe New Seiences. These three pages (417-419), are

well worth reading. (Henry Holt and Company, New York,
1946.)
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discouraged by authority and restricted by fear for
another half century.

This struggle is not unique, an isolated battle of
the past. There is some such struggle in every age.
Conditions of living, interacting with men’s knowl-
edge and powers and beliefs, produce struggles be-
tween conservative elements—not always the same
kind of people—and rebellious ones—not always
with the same kind of causes. In each age, from Gali-
leo’s to now, the struggles of the day have usually
seemed just as serious, making it just as dangerous to
take, or even to discuss, the rebel’s side. Often, a
generation or two later, both sides regret the quar-
rels; vet mankind still learns sadly little from those
regrets. Age after age, current quarrels seem as vital
and as dangerous as their forgotten or regretted an-
cestors did in their own time.

Here is a translation of a note in Galileo’s hand-
writing in the margin of his own copy of the Dia-
logue:
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“In the matter of introducing novelties. And who
can doubt that it will lead to the worst disorders
when minds created free by God are compelled to
submit slavishly to an outside will? When we are
told to deny our senses and subject them to the
whim of others? When people devoid of whatsoever
competence are made judges over experts and are
granted authority to treat them as they please?
These are the novelties which are apt to bring about
the ruin of commonwealths and the subversion of
the state,”

Whatever we make of Galileo's life, his work re-
mains, as a foundation of physics, a monument of
method for all who came after, and a basis of
knowledge on which the science of mechanics was
already being built.

*1 From the English translation edited by G. de Santillana,
preceding p. xi. Chicago University Press, 1853,




CHAPTER 9 - THE SEVENTEENTH CENTURY
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“Great ideas emerge from the common cauldron of intellectual activity, and are rarely
cooked up in private kettles from original recipes.”

—James R. Newman
in Scientific American
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A Hundred Centuries of Astronomy

In the hundred or more centuries between the
earliest civilized men and the time of Galileo, As-
tronomy grew from simple beginnings rooted in
primitive man'’s curiosity and wonder and fear to a
well-ordered science ready to furnish a great labora-
tory in which mechanics, the basis of all physics,
could be developed and tested. For many centuries,
astronomy remained in the hands of the calendar-
makers and priests, with only a rare scientist to ob-
serve more carefully than the rest or to extract some
new thread of law from the tangle of ohservation,
Astrologers throve on men's superstitious fears; yet,
just as alchemy did much for chemistry, astrology
helped early astronomy. Then came philosophers
and scientists with greater interest in knowledge for
its own sake. They gathered careful observations
and extracted rules for the motions of planets, Moon,
and Sun—working rules, though clumsy ones. They
invented reasons or causes which now seem faneiful
and complex. Astronomy waited centuries more, al-
most asleep but for a few keen observers, while
civilization reformed itself toward a new awakening.
In those dark ages, the teaching of the Church and
the method of deductive argument based on the
authority of books were supreme in intellectual
matters. Tradition replaced experiment, prejudice
overrode science.

Yet there were practical needs, in medicine and
navigation, to keep good science alive. Then came
the cry with growing fervor, “Watch what does
happen; stop arguing about what ought to happen.”
Prejudice was being pushed aside by careful think-
ing in terms of experimental chservations.

The Renaissance

In the three centuries preceding 1600, the Renais-
sance grew and spread across Europe, a great awak-
ening of new interests in art and literature and a
new outlook in religion. The tight hold of the tradi-
tional scholastics loosened, and the study of Greek
writers in the original opened out after centuries

[mi

of obscurity; paper and printing came to spread
knowledge, and the renewed interest in knowledge,
far and wide; great navigations brought new mar-
kets, new wealth, new outlooks, and new leisure
for intellectual growth; the arts flourished more
freely and helped to release man’s restless spirit of
inquiry.

The Renaissance brought a new attitude of mind:
the idea of man as an individual developed, in con-
trast with man as a servant to his group and its tradi-
tions. The enthusiasm for study and the general
spirit of free inquiry that came with the renewed
“humanities” prepared the ground for the develop-
ment of science in the 17th century: “. . . the human-
. . played the chief part in that widening of
the mental horizon which alone made science pos-
sible. Without them, men with scientific minds
would never have thrown off the intellectual fetters
of theological preconception; without them, external
obstacles might have proved insurmountable.™

In Renaissance science, one man towers above the
rest, Leonardo da Vinei, a new scientist a century
or two before his time. A genius at whatever he
turned his hand and mind to—painting, sculpture,
architecture, engineering, . . . physics, biology, . . .
philosophy, . . . —he regarded observation and
experiment as the only true approach to science.
“He dismissed scornfully the follies of alchemy,
astrology . . . ; to him nature is orderly, non-magical,
subject to immutable necessity.”® He trusted the
logical conclusions of arithmetic and geometry be-
cause they are based on concepts of universal truth;
but science must be based on experiment. He said,
“those sciences are vain and full of errors which are
not born from experiment, the mother of all cer-
tainty, and which do not end with one clear experi-
ment.” His own experimenting with techniques for
art and architecture and engineering led him to
much scientific knowledge: machines and forces;

ists .

1 Sir William Dampier, A History of Science, 4th edn.
{ Cambridge University Press, 1949), p. 98,

? pp.cit., p. 107.

2 Quoted by Dampier, ep.cit., p. 103
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properties of motion; Newton's Law I in simple
form, long before Galileo taught it; properties of
liquid pressure and fluid flow; waves in water and
sound waves in air; the impossibility of perpetual
motion. He advanced optics with studies of the
eye and perspective; and he may have constructed
a pendulum cleck 200 years before Huygens. He
saw in fossils the evidence of geological history;
he may have discovered the circulation of the blood;
and he set forth human anatomy in brilliant draw-
ings that used the knowledge from many dissec-
tions. We learn all this from his drawings and from
scrappy notes in his private notebooks. “Had he
published his work, science must at one step have
advanced to the place it reached a century later.™

“Progress”

Sometime then the idea of progress appeared, as a
new outlook. We now take progress as an obvious
aim—progress toward a better state, a higher educa-
tion, a finer man, ete.—and we might think our an-
cestors always aspired to progress. Yet, for many
centuries, as men looked back on a golden age in the
past and tried to model their conduct on tradition,
the idea of progress in earthly life had been almost
unknown, When a forward outlock Emerged from
the Renaissance, it offered science new encour-
agement.

The Seventeenth Century

The simpler Sun-in-center idea suggested by
Copernicus gained ground faster and faster, as new
experimental evidence came to its support and free-
dom of speech and teaching increased. Tycho and
Kepler untangled the actual motions of the planets,
extracting simple general “laws.” Galileo explored
and expounded mechanics; he argued and taught
and preached to establish realistic science. It was
a tremendous advance from earliest watching of the
planets and awed marking of eclipses to Galileo's
telescope and Kepler's Laws. If ten thousand years
seems a long time even for that, remember it is only
some four hundred human generations. Are four
hundred generations too many for man's under-
standing to grow from simple superstitions to mathe-
matical certainty? Many of us think this was rapid
advance. Yet in the three or four generations of the
following century the awakened experimental sci-
ence made still greater strides.

By 1600 the new growth of science was well under
way. Kepler and Galileo were at work. Astronomy
was nearly ready to provide a vast frictionless labo-

" ]'}amljicr, op.cil., P- 108,

ratory for mechanics, and experimenting was be-
coming fashionable. By 1700, planetary laws ex-
tracted from observations had already been used to
test general laws and theories of mechanics. Newton
was developing a new scientific method, in which
general theory, devised by shrewd guessing, was
made to vield a variety of results by deduction—an
ancient method in itself, but now the results were
tested by experiment. The deductive method, so
dangerous and unscientific when used with wordy
arguments alone, was taking its proper place in
science, fostering a real alliance between theory and
experiment. There were changes in the political,
social, and religious structure of Western civilization
which gave science greater opportunities, Thrnugh-
out the century science was blossoming and be-
coming fashionable; experimenting and realistic ar-
gument were all the rage.

Many people helped to build the science of
mechanics and to put the backbone of theory into
astronomy. Some invented or improved the mathe-
matical tools needed by the physicists—though the
latter, like the true blacksmiths, mostly learned to
make their own tools to suit their needs. Some car-
ried over the new experimental attitude and the
zest for clear thinking into other elds of science;
with growing interchange of knowledge, many sci-
ences developed together. Scientists brought fame
to their country, and royal favors were bestowed
on them from pride instead of superstition. Besides,
there was a suspicion that scientists could be useful
in commerce and manufacture and war—an early
glimpse of their contributions to industry today’—
so perhaps it paid to favor them!

This was also the time of starting of scientific
societies. An Academy of Science was founded in
Florence and another in Paris; and the Royal So-
ciety was founded in London. These helped science
to emerge from the secrecies of the dark ages. They
supported some experimenting and encouraged
much discussion and interchange of problems and
knowledge, but their greatest contribution was pub-
lication. No longer were scientific discoveries trans-
mitted by letter to a few friends. They were tested
and extended by experiment and argument, then
published in print for others to teach and use. With
so much keen discussion among able, leisured peo-
ple, scientific questions were in the air, and the time
was ripe for rapid progress.

The names of Copernicus, Tycho Brahe, Kepler,

s Seventeenth-century science is said by some to have laid
the foundations of the Industrial Revolution, Others see that

later change growing quite independently of scientific at-
titudes, and only drawing on some factual knowledge.

Fi
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Galileo, and Newton serve as landmarks, but there
were many others who helped to build science in
the seventeenth century. Here are short notes on a
few of those concerned with physics and astronomy.
Others made tremendous advances in biology and
medical science (circulation of the blood, mecha-
nism of breathing, embryology . . .).

William Gilbert (1540-1603). Physician. Experi-
mented with magnetism and wrote a very good
book on it. Also experimented on static electricity.

Francis Bacon (1561-1626). Brilliant writer who
laid down rules for making discoveries by ex-
perimenting and induction. These rules are not
very practical and did not contribute much to the
development of science. He sneered at the work
of Gilbert and Galileo and rejected the Coperni-
can theory. However, he did help to spread the
idea that nature should be investigated by experi-
ment and not just described by argument.

René Descartes (1596-1650). Philosopher and mathe-
matician. Contributed greatly to Newton's work.
Born in France of a rich family, he took life easily
yet accomplished much. Did a great deal for
philosophy and mathematics, and contributed to
anatomy. In physics, he studied optics and mo-
tion—going some way toward Newtons Laws—
and the nature of matter. He produced an in-
genious vortex theory to account for gravity, co-
hesion, and the motion of the planets. His greatest
contribution to physics was his invention of graph-
plotting with x and y coordinates, leading to the
use of algebraic equations for curves, tangents,
ete. This prepared the ground for the invention
of calculus, which is concerned with drawing
tangents and finding areas on such graphs by
calculation from their equations instead of by
measurement. OQur xz-y graphs are named “car-
tesian” after him.

Otto von Guericke (1602-1686 ). Devised a workable
vacuum pump and used it to give demonstrations
of atmospheric pressure with the “Magdeburg
hemispheres,” great hollow cups that teams of
horses could not pull apart when the air had
been pumped out.

Evangelista Torricelli (1608-1647 ). Physicist. Made
first barometer.

Blaise Pascal (1623-1662). Theologian and scientist.
Started the mathematics of probability. Stated
laws of pressure for fluids at rest.

Robert Boyle (1626-1691). A great experimenter:
vacuum, gas law, chemistry. One of the original
members of the Royal Society. Wrote “The Skepti-
cal Chymist.”

101

Christian Huygens ( 1629-1695 ). Mathematician and
physicist. Developed a wave theory of light. Built
a very good clock (probably the first working
pendulum clock); and even arranged to correct
for slight increase of pendulum period with large
amplitude. Studied mechanics, and derived v*/R
for centripetal acceleration earlier than Newton.

Robert Hooke (1632-1702). Began scientific work as
Boyle's assistant, but soon rose to be a great scien-
tific experimenter and thinker. His rivalry with
Newton obscured his fame and hurt him greatly.
But for Newton's overshadowing genius, Hooke
would have been classed as one of the great
scientists of the age. He bitterly claimed some of
Newton's mechanics as his own discovery. Orig-
inal member of the Royal Society.

Edmund Halley (1656-1742). Astronomer. Friend of
Newton. Did much to help the publication of
Newton's Principia. Important member of the
Roval Society.

Science.

There were five important growths in science:
(i) the growth in respectability of experimental
science with increasing freedom of speech; (ii) the
growth of factual knowledge and theory used in
describing it; (iii) the growth of mathematical
tools: (iv) the invention of new instruments for ex-
perimenting; and (v) the change in scientific method
and attitudes.

(i) Respectability. We see the growth of science’s
respectability in Galileo’s own life. His father re-
garded mathematics and science as a poor academic
occupation; yet Galileo, rebel though he was, was
respected as one of the world's great men in his
later years. Newton, Boyle, and Hooke did not have
to defend their interest in science; they argued
about their discoveries, but not about the spirit of
discovery itself. They wrote with little fear of con-
demnation or ridicule, only with anxiety lest they
miss priority or fame. The discussions and publica-
tions sponsored by the new societies started scien-
tific knowledge on its way to becoming public and
universal—thus the idea of scientific truthfulness
began to react on the thinking of mankind.

(i) Knowledge. The growth of actual knowledge
was great and varied: e.g. Kepler's Laws, Halley's
orbit for his repeating comet, Hooke's Law for
springs, Harvey's discovery of the circulation of the
blood, Boyle's chemical discoveries and his gas Law.

(iii) Mathematics. Coordinate geometry (x-y
graphs) was invented, caleulus followed, and each
helped the other.



Fic. 20-2. CarteEsian Grarns

Graphs link algebra with geometry by converting
geometrical forms and operations to compact al-
gebra, and by exhibiting algebra for easy survey.

Graph I shows a straight line through the origin,
with several points (x,y,), (x.y.), . . . marked.
By similar triangles, the fractions y,/x,, y./x., . . .
are all equal—the same for every point on the line.
Call the constant value of this fraction k. Then every
point on the line represents a pair of valuas, (e.g.
x,.y, ), which fit the relationship y/x = kory = k- x.
This is the algebraic description of the graph, and
the line is the geometric picture of the relationship.
If y and x are a pair of physical measurements (e.g.
s and ¢* for a falling body) the straight line ex-
presses the relationship y = (constant) x, or y = x,
and the slope of the line gives the (constant).

In Graph I every y has a constant bonus, ¢; so its
equation is y = kx <4 ¢. In this case we can not say
that y « x, but only that Ay = Ax.

Graph III is a circle, and

for a point P,, x* 4y = R%
for P,, x4y, = R?,

so the equation of this circle is:

5 _!I_ HZ e REI
3 -4
Or we can write this: ;;; + %;: 1

An i!'“i[jSE can be made by distum'ng a circle with
uniform strain. Draw a circle on a sheet of rubber
and stretch it. Radii R and R become semi-axes a, b,

Fiz. 20-3. Cimcre Stramws Into Eviiese

Then, at a guess, a circle with
xl y-'l
equation YT +  Tha 1 and AREA = R* = <R*R

becomes an ellipse with
equation . . . =1 and AREA="7

Thus, coordinate geometry could reduce orbit el-
lipses to equations that are easier to handle.

Science had developed two serious mathematical
needs, both filled by calculus: to calculate tangent-
slopes of curved graphs, and to calculate areas in-
side curves, by algebra. Differential calculus does
the first, and the reverse process, integration, does
the second. A tangent-slope gives a rate-of-change.
Calculus is just an algebraic process to find a rate-
of-change at an instant. It enables us to calculate
ACCELERATIONS from an equation that specifies ve-
LOCITIES, or VELOCITIES from an equation relating
pisTance and TiMe. (For example: given s = 16,
calculus tells us that v = 32¢; and it then tells us
that @ — 32, a constant value.) Integration—again
just a refined algebra-logic-machine—adds up an
infinite number of infinitely small contributions:
tiny patches to find an area (eg. for Kepler's Law
I1), or tiny attractions to find a total gravitational
pull.

You used graphs and caleulus for your early in-
vestigation of a wheel rolling downhill:

Stage 1. Experiment — Empmicar Grarn. You
plotted s against #*, each point coming from an
experimental timing. The points are the facts. A
line sketched to follow them is a summary of
facts—in the grammar of graphs, an “indicative”
graph.

Stage 2. Tumkme — Taeory. Guess at constant ac-
celeration, as a possible simple rule for nature.
Use calculus to predict the necessary relation
between s and t. Integration adds all the little
distances travelled with growing speed, and shows
that if acceleration is constant, then s must vary
as .

Stage 3. Test. Draw a straight line through origin
to represent the relationship s = ¢* from theory.

Fi
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IF your points lie close to this line, THEN the
wheel's motion in the experiment is close to con-
stant acceleration. That straight line on your
graph is an “interrogative” line: drawing it is
asking a question, “do the facts fit constant ac-
celeration?™ You would be wise to call such a
graph line a “question-asking line.” Drawing the
“best straight line” on your graph of an experi-
ment exhibits your hypothesis—a temporary rule,
guessed at and to be trusted for the moment (e.g.
“suppose Av/At is constant . ..").

(iv) Instruments. A new instrument, as well as a
new mathematical tool, can promote great develop-
ments of science, The 17th century was a century of
great inventions of instruments: the telescope, the
microscope, the vacuum pump, the barometer, the
pendulum-controlled clock, and the first crude ther-
mometers were the tools that promoted a new range
of experimental science.

{v) Attitude and Method. From the Greeks io
Galileo, science was being built by collectors, ac-
curate observers, makers of schemes, authoritarian
philosophers® The collectors gathered a lot of
knowledge which by itself would have been too
diverse to be called science. The scheme-makers
organized this knowledge and extracted rules that
were good working preseriptions, able to summarize
the facts and often to make predictions. Rules and
knowledge, together with techniques for gaining
more knowledge, made the beginning of the new
science.

Meanwhile the thinkers were busy devising ex-
planations—statements that would make knowl{:dge
fit together better and become easier to “under-
stand” or easier to accept. Many explanations or
reasons were drawn from their own thinking with
only remote experimental background—e.g., for
epicycles, “circles are perfect”; for the barometer,
“invisible threads hold the mercury up.” Some ex-
planations seem to be little more than a statement
that nature “is like that,” put with authﬂrit}'—c.g..
for falling bodies, “the lowest place on the ground
is natural” Man needed such reassurance that the
external world of nature has a simple organization
in it; otherwise his fears of a profuse unknown
would have driven him to more superstition and

& We may trace some survivals from childhood in these
activities: a child's delight in collecting may turn to scientific
data-collecting instead of adult stamp-collecting or even
money-hoarding; the grim determination of many adolescents
not to be beaten by a hard problem may turn to a Tycho's
drive for accuracy, instead of to some more cruel behavior;
the insecure child's craving for a definite framework of rules
may turn to hunting for simple laws instead of to some more
neurotic form of worry.
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even madness. As general working rules emerged—
e.g, the epicycle scheme, Hooke's Law, Kepler's
Laws—the sense of security and comfort increased,
and the early belief that nature is definite and rea-
sonable gained ground as a basic belief in science.
The Greeks deduced their explanations and schemes
for nature from a few general ideas which they just
assumed—e.g., from “circles are perfect” they de-
duced epicycloids. In the course of the 17th century
that kind of deductive reasoning fell into disfavor;
it was really philosophical speculation flourishing
with authority, rather than science. By the middle
of that century experiment was regarded as the real
source and test of science. Men were occupied with
extracting rules or laws by inductive reasoning from
experiment. In doing this, they too were making
assumptions: that nature is simple, and that nature
is uniform—that is, that in the same conditions the
same behavior will occur again and again. They
still assumed that there are causes for things, but the
meaning of causality remained as difficult a prob-
lem as ever.

Though this inductive method was an honest
one leading to good rules, it lacked the general
tying-together and mental satisfaction that a grand
theory can give. Newton, with greater insight,
looked at experiment then jumped to theory and
worked back deductively from theory, predicting
results that could be tested. This brought theory
back into science as a framework of thought, but
in a more respectable and responsible form. Theory
was again considered valuable—e.g., the theory of
universal gravitation—but as a servant to science
rather than as master.

Later still, say in the last century, theory was
subjected more and more to the test of produc-
tiveness. Scientists asked, "Can this theory make
(further) predictions?™ If not, it was shelved or
modified. That now seems too harsh a treatment
for theory. Its use may lie not only in its ability to
make predictions but also in our enjoyment of the
scheme of thinking that it offers us.

Descartes’ New FPhilosophy

While the viewpoint of wnrking scientists was
thus changing with the temper of the times, René
Descartes in France advanced a new philosophy
that had a lasting effect on scientific thinking. And
with it he announced a new model of the universe
that remained popular for a century. Seeing faults
in classical philosophy, Descartes turned his consid-
eration of the world inward to his own thoughts and
feelings and set himself to doubt every stage of his
knowledge. From this examination he evolved a
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dualism, a picture of two sharply-divided worlds
existing together, each as real as the other: a world
of matter, with size and shape and motion, and a
world of soul and mind. Just as two clocks side by
side can keep the same time, so the two worlds, al-
though entirelv separate, keep in tune, because “God
made them so.”

In this scheme, matter is entirely dead, without
spirit, and it can onlv exchange motion with other
matter by contact. The motion of matter must have
been started originally by Cod. Thus, to Descartes,
God was not a presiding power who controlled the
world for man's life in it; but God was the First
Cause, who started the Universe with motion, laid
down rules for its running, and then left it to run.
Thereafter, motion can only be carried from one
piece of matter to another by some matter. There-
fore, the open spaces in the solar svstem cannot be
empty. Thev must be full of an invisible material
“aether” that carries the motion. Since a moving
region of aether cannot continue out indefinitely, it
must be arranged in a closed circuit, a whirlpool or
vortex. All space in fact is full of vortices of aether,
large and small all geared together, conveving the
motions of visible bodies. The planets are carried
around their orbits by a huge vortex belonging to
the Sun. The Earth, carried with the other planets
in that vortex, has a smaller vortex of its own to
draw objects inward. Thus, inward fall under grav-
ity corresponds to the sweeping af Huating straws
towards the center of a whirlpool in water. On a
smaller scale the picture accounted for cohesive
forces that hold small pieces of matter together.
This scheme of whirlpools within whirlpools, all
invisible, sounds fantastic today; yet it proved very
popular at the time, because it explained the whole
svstem of the universe by a vast machine started by
God but then kept running by constant mechanical
rules. In fact, Descartes’ picture of a “full” universe
with no vacuum, running as a machine, became a
serious rival when Newton published his gravita-
tional theory. Newton favored a vacuum and gave
no ultimate cause for gravitation. Descartes’ theory
offered more explanation, but it rejoiced in unsup-
ported speculation—the vortices were undetectable
except by the motions they were to explain. Newton
attacked them mathcmatmalh showing thev could
not fit with Kepler's Law 111, and he attacked them
on principle when he claimed, “I will not feign
hypotheses.”

Out of his systematic doubting, Descartes seems
to have emerged with a certainty of God. God
started the universe and provided laws to govern

ought to you by | The

it. Therefore, the laws of nature must be completely
right: God would neither make a careless mistake
nor accept a rough average. This view of the laws of
nature influenced the next generation of scientists—
Newton and his contemporaries felt they were look-
ing for great laws established by God's command
and waiting to be found.

If you think this a strange digression in a discus-
sion of hardheaded physics, reflect that the same
problems remain today at the borders of science
and philosophy: What is the nature of space (that
carries electromagnetic and gravitational fields, and
obeys Relativity geometry)?; What do the laws of
nature mean?; How did the world begin?; How old
is time?; Will time go on?

Francis Bacon

While Descartes tried to explain the universe
with a grand deductive theory operated by mathe-
matics, Francis Bacon in England advocated a grand
inductive treatment of systematic experimenting. He
sought universal knowledge by great organized
schemes of research, to produce stores of data from
which scientific knowledge could be extracted. He
claimed that science could not advance by pure de-
duction and argument, nor could it advance rapidly
by haphazard data collecting—children’s play. Rath-
er, scientists should plan their experimenting care-
fully and treat it by a formal system of inductive
reasoning and testing.

Thus, Bacon saw clearly the difference between
“good experimenting” and “just playing around
with apparatus.” He set forth an ideal scheme for
science: collect information, extract rules, frame
hypothesis, deduce consequences, test deductions.

However, if vou watch scientists at work you will
see there is no one scientific method. Physical sci-
ence does not develop as a simple rigid chess-game
of alternating moves; there is far more variable and
complex interplay of pieces, players, and the board
itself. Nor is the progress just a series of forward
leaps. A first round of l'_hinlcing and experimenting
may even lead back to the starting point—"this is
where we came in"—but, as with seeing a movie
over again, we have a richer knowledge with which
to pursue the second round. As |. R. Zacharias puts
it, “science bootstraps itself.”

Bacon wrote with great eloquence, advocating a
vast organization of professional experimenters and
reasoners. His grandiose scheme was too artificial
for successful science, and it aimed more at Practica]
values than ultimate understanding of nature. (It
had some of the misplaced zeal that we might ex-
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pect today from a non-scientist research-director
placed in charge of a large commercial research
laboratory.) His proposals were only schemes on
paper, yet they had great influence on the starting
of the Royal Society and the experimental work of
its members, in particular Boyle. By mid-century,
“art was giving way to science under the pressure
of Bacon’s influence, . . .”" Nowadays, two centuries
later, we see that in a deeper sense science is an art.

The Growth of Theory: A Necessity for
Modern Science

1600 to 1700 was an exciting century for astron-
omy—as for all the life of the intellect. At its begin-
T Dorothy Stmsen, Scientists and Amateurs, A History of

the Royal Society | Abelard-Schuman Lid., New York, 1948,
p- 36
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ning, there was a growing stock of facts and rules,
pressing for explanation. Speculations on general
causes were in the air: the time was ripe for a com-
prehensive view. By the end of the century, knowl-
edge and interest had grown and spread; but, above
all else in importance, Newton had built and pub-
lished a great theoretical scheme that pulled astron-
omy into a single “explanation” and projected it
into a future of rich promise.

If you wish to understand modemn physical sci-
ence, you need to know what theory does; you need
to have a feeling for "good theory.” You can hardly
learn that from sermons about theory. Instead, study
a good example of it. The next four chapters describe
and discuss Newton’s great theory of gravitation.



CHAPTER 10 - VECTORS AND GEOMETRICAL ADDITION

NOTES ON PROJECTILES AND VECTORS, TO PREPARE FOR DISCUSSIONS OF MOTION IN ORBITS
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“What hopes and fears does the scientific method imply for mankind? I do not think
that this is the right way to put that question. Whatever this tool in the hand of man
will produce depends entirely on the nature of the gaa]s alive in this mankind. Once
these goals exist, the scientific method furnishes means to realize them. Yet it cannot
furnish the very goals. The scientific method itself would not have led anywhere, it
would not even have been born without a passionate striving for clear understanding.”

—A. Emstem, Out of My Later Years
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A Personal Experiment

Galileo tried to separate the up and down (ver-
tical ) motion of a projectile from its horizontal mo-
tion. Experiment vouches for this treatment by
showing that these two motions are independent.
Try this yourself. Throw one stone out horizontally
and at the same moment release another to fall

Fic. 24, ExrepivenTan CoMpParison oF MoTions:
inferring tl'l-edgmeraI result that falling stone

and projected stone keep level all the way.
vertically. They both hit the floor at the same in-
stant. Stone B moving in a curve has to fall the
same vertical distance to reach the floor as stone A
falling vertically. They take the same time. Do A
and B keep abreast at intermediate stages of their
fall? You need not place 5pecial observers to sight
them at various levels. Instead, vou can move the
floor up to catch them earlier and repeat the ex-
periment. Or, more easily, you can move the start-
ing point down nearer to the floor. If A and B ar-
rive at the same instant whatever height they start
from, vou can sav fairly that they keep abreast all
the way down. Notice how a series of experiments
can be used to replace a difficult complex of simul-
taneous observations. In trusting our inference
from such a set of experiments, we assume the
“Uniformity of Nature.”

Here are “rules” for the motion of ideal projec-
tiles, without air-friction:

(I) the motion is independent of the size or
mass of the object,

(I1) the vertical and horizontal motions are inde-
pendent of each other,

(III} the wvertical motion has a constant down-
ward acceleration, the same as that of any
falling body,

(IV) the horizontal motion continues unchanged.

A projectile does not really have separate hori-
zontal and vertical motions. As it moves along its
curved path, its motion at any instant is directed
along the tangent. While it rises from A to B to C
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Fic. 2-14. ProjecTiLe Motios

it moves slower and slower, then falling from C to
D to E it moves faster and faster, the speed chang
ing as the vertical part of the motion is changed by
“gravity.”

The splitting up of the actual motion along the
path into horizontal and vertical motions, called
components, is an artificial trick. The process of
compounding separate motions into a single motion
which we call the resultant, is important in naviga-
tion where motions of ship and ocean currents, or
plane and wind, are to be combined. In the next
section we shall study such adding of motions.




Geometrical Addition

No one watching the curved flight of a stone
flung in the air would automatically separate it
into vertical motion and unchanging horizontal
motion; yet as scientists we are encouraged to
make this separation—analysis—when we discover
that the two motions are of different types and are
independent of each other. Attempting such analy-
sis at once raises the questions: (i) How is a single
slanting motion split up into two ingredients or
“components”? (ii) How are two separate motions
to be compounded together into one single motion?
We can guess the answer to the second question,
and use it to answer the first. If we try to add two
or more motions, we have to keep track of simul-
taneous movements in different directions. Instead,
let us allow the motions to proceed for some speci-
fied time, say one hour, and then deal with the
distances travelled in that time, Then the problem
of adding motions becomes a simple one of adding
travelled distances, or journeys or trips." Is the ad-
dition rule the same as in arithmetic, as in adding
2 and 3 to make 57

Experiment soon shows us this will not work un-
less the separate journeys to be added are straight
ahead in the same direction. Then we see 4 ft due
North and 3 ft due North do make a total trip of
7 ft due North as in Fig. 2-15. (And, therefore a
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Fiz. 2-15. Apome Moriow ™ Sasve Dimmecrion

speed of 4 ft/sec and a speed of 3 ft/sec both due
North do make a total speed of 7 ft/sec due North.
And 4 miles/hr plus 3 miles/hr both in the same
direction do make a total speed of 7 miles/hr.)
However, if the directions are different simple
arithmetic does not work. A trip of 4 ft due East

1 The technical term for such directed distances is “dis-
p]n.c:rncnlj."
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added to 3 ft due North does not make a trip of 7
ft. Nor does a speed 4 miles/hr due East plus a
speed 3 miles/hr due North make a speed of 7
miles/hr in any direction. To fit the facts of the
world, we have to use another kind of addition,
which we call geometrical addition. Common
sense—in this case simple knowledge accumulated
in crawling, walking, driving, sailing, etc.—sug-
gests how geometrical adding should be done. Sup-
pose you wish to add trips of 4 ft to the East and
3 ft Northward, to find the single trip that would
carry you from the starting point to the destina-
tion. Though it seems childish, try this for yourself.
Stand facing North with your feet together. Then
try to make both these trips, i.e., step four paces to
the right and three paces forward at the same time.
You could try this by doing one trip with each
toot; sideways with your right foot and forward
with your left foot, simultaneously; but the result

/25 /

Fic. 2-16. Taymic To App Two MoTions
v DirFeRENT DmEcTIONS

is uncomfortable (Fig. 2-16). Instead you had
better take one trip first, then the other, thus:

move 4 paces to the right then 3 paces forward
(Fig. 2-17). Or you can reverse the order and ar-
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Fic. 2-17. Appivc MoTions

rive at the same destination. If you could some-
how make the two trips simultaneously you should
reach the same end-point. In fact this can be done
if you have a rug which can be drawn across the
floor by an electric motor. Then have the motor
drag the rug with you on it (or a toy, as in Fig
2-18) 4 paces to the right while you move 3 paces
forward at the same time. On the rug—relative
to the rug—you only move 3 paces forward. From
a bird’s eye view you make both journeys simul-
taneously and reach the same destination as if
you made first one journey then the other. What
single trip could replace these two, whether they
are taken simultaneously or separately, and get
}ou to the same destination? The simple single
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Fiz. 2-18. Avoanc Momions, The toy crawls aleng the rug
while an electric motor pulls the rug across the floor,
The toy has a diagonal motion over the floor.

trip is along the straight line from starting point to
finish. This is called the resultant of the two trips.
I the trips are drawn to scale on paper, as in Fig.
2-19, then the single trip which would replace

¥
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Fic. 2-19, Appmve PERPENDICULAR THIFS

them (if they are taken separately) is trip R. If the
trips are not at right angles, a similar scale drawing
will work, as in Fig. 2-20. If the trips are taken

Fic. 2-20, Aopme Troes

simultaneously—as when a plane flies in a wind—
we can still pretend to take first one then the other,
and arrive at the resultant R, as in Fig. 2-21.

2
A
Fiz. 2-21. Avomveg Treoes

We find the resultant by taking first one trip
then the other, as in Fig, 2-22a or Fig. 2-22b. Com-
bining these figures in Fig. 2-22¢c, we see that the

Fie. 2-22. Apmivc Trirs

resultant is given by the diagonal of the parallelo-
gram whose sides are the original trips.

This system is obviously right for adding trips:
we are assured by common sense, based on ex-

perience ranging from nursery exploration to com-
plex navigation.

|‘ "1#’ | B :’:;,#"#: B\ “-’l j
‘_ﬁ.—_b A A
: This additon is WRONG
The proper diagenal for R
) thtﬁrmﬁﬁ.

Fig. 2-23. EXaMPLES OF PARALLELOGRAM ADDITION

The system can be reversed, and the trip R split
into components A and B. They are one possible
pair that would combine to make R. There are an
infinite number of such pairs, each adding to the
same R.

Velocity and Speed

The direction of a motion is just as important as
its size. We now need a name for the idea of a
definite speed associated with a definite direction.
We call this velocity.* Velocity then has two quali-
ties: size (= speed) and direction. Do velocities
add by the geometrical system? Or, as a scientist
would say, are velocities “vectors”?

Vectors: Definition

Vectors are those things which are added by the
geometrical system. They are called “vectors,” be-
cause we can draw a line to represent them, show-
ing both their size (to some scale) and their direc-
tion.

RULE FOR ADDING TWO VECTORS

The following rule describes geometrical addi-
tion. Our definition of vectors makes it automati-
cally true for vectors.

Geometrical addition: To add {fwo vectors,
choose a suitable scale, and draw them to scale
starting from the same point. Complete the paral-
lelogram. Then, on the same scale, their resultant
is represented by the diagonal from the starting-
point to the opposite corner.

In this, the resultant of a set of vectors is defined

*In ordinary language, speed and velocity mean the
same thing: how fast an object is moving. In physics, it is
useful to reserve the name velocity for speed-in-a-particu-
lar-direction, which is a vector. From now on, we shall use
speed to mean just rate of covering distance along some
path whether straight or crooked—a worm's measure of
progress. A speed is speeified by a number with a unit, such
as 15 miles/hour. A velocity needs a number with a unit
and a dircction to specify it, e.g., 15 miles/hour Northward,
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as that single vector which can replace, or has the
same physical effect as, the original vectors taken
together.

Fie. 2-27. "Tan-to-Hean" Apprriows.
Adding two vectors by parallelogram g
method is equivalent to “tail-to-head”
addition, A
Starting with parallelogram addition,
we can omit part of the drawing and
still obtain A.

We can economize still further and A
draw only a triangle, and we are back i
to our first discussion of trips, where

we added them by taking first one trip

and then the other. This leads to an A
easy rule for adding vectors:
DRAW ONE OF THEM FIRST. A
THEN DRAW THE SECOND, STARTING IT
WHERE THE FIRST ONE ENDED—that is,
draw them one after the other, “tail-
to-head.”

THEN DRAW THE LINE JOINING START
TO FINISH, AND THAT REFRESENTS THE

RESULTANT, R. A

[ 7
Fie. 2-28. Bewane of adding 'lr'l'.'ftl'lfﬁ-ll A
“head-to-head.” That gives quite the| Mot R B
wrong answer, not their resultant,

WRONG

Which things are vectors? That is, which things
in science do add geometrically by the parallelo-
gram construction? Trips, or to give them a more
official name “directed distances” or “displace-
ments,” are vectors. If trips are vectors, we need
only divide by the time taken to travel them to see
that velocities are vectors too. If we use as vectors
the length travelled in unit time, then these vectors,
which add geometrically as trips, themselves repre-
sent velocities. As an extension of this, we see that
accelerations are vectors too.? We shall find other
vectors, other things that can be measured with in-
struments and which obey geometrical addition.
At the moment an important question arises: are
forces vectors, i.e., do they obey geometrical addi-
tion? This cannot be answered by thinking about
it.* It is not obvious. It needs experimental investi-
gation. Experiments show that forces are vectors.
They do add by geometrical addition to give a re-
sultant—a single force that can replace them.

2 Trips are vectors. Velocities are trips per hour, say.
Therefore wvelocities are vectors, Therefore changes of ve-
locity (which are themselves each a velocity gained or lost)
are vectors. Accelerations are changes of velocity per hour,
say. Therefore accelerations are vectors.

4 Unless we are prepared to define forces as things which
add geometrically and then take the consequences of our
definition in later developments.
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Scalars and "Super-vectors”

Things which are not vectors but have only size,
without any direction attached, are called scalars,
for example, volume, speed, temperature. There are
other things which are neither vectors nor scalars;
some vague things such as kindness, and definite
ones, some of them “super-vectors” called tensors.
The stresses in a strained solid provide an exam-
ple of tensors: pressure perpendicular to any sam-
ple face and shearing forces along it. More com-
plicated examples appear in the mathematical
theory of Relativity. For example, we shall treat
momentum, mv, as a vector with three components,
mv,, m¥,, mv,; and we shall treat kinetic energy
as a scalar. Einstein, taking an overall view of
space-time, would lump momentum and kinetic
energy into a “four-vector” with four components,
three for momentum, one for kinetic energy.

Projectiles and Parabolas

We can analyze the shape of a projectile’s path
with the help of geometry.

Geometrical analysis: Suppose a stone is thrown
out horizontally, Then its horizontal motion carries
it the same distance horizontally every second,
while it accelerates vertically. It falls 16 feet verti-
cally in the first second from its start, 64 feet in
the first two seconds, 144 in the first three seconds,
ete. Make a scale map of its positions at several
instants of time. Choose total times from the start
which run in the proportions 1:2:3:4. . . . In these
times it travels steadily sideways, covering dis-
tances in the same proportions 1:2:3:4 . . . . ; but
it falls vertical distances proportional to the squares
of these numbers, to 1, 4, 9, 16 . . . because

VERTICAL FALL = l4g (TIME)*

and (TiMe)* has values in proportions 1:4:9. . . .
Map its position at these equally spaced instants of
time by drawing vertical lines evenly spaced, say at
intervals of 2 inches across the map; and horizontal
lines 1 inch down from starting level, 4" down, 9"
down, and so on to show vertical falls. Then the
predicted path is marked by the crossing of these
lines, as shown in Fig. 2-36. This can be tested by
throwing marbles or coins in front of a wall on
which such lines have been ruled.

If the stone is not thrown out horizontally but
is lung up along a slanting direction, the story is
similar. The initial slanting motion given by the
thrower remains unchanged during flight while an
increasing vertical falling motion, due to gravity,
is added to it
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Fiz, 2-36. Compramic e HommzoNnTaL
AND VERTICAL MoTions oF A PROJECTILE.

But for air-friction, any projectile drops freely
from its starting line, from the very beginning, It
falls 1, 4, 9, 16, . . . feet in 1, 2, 3, 4, . . . quarter-
seconds from start. If the starting line slants up-
wards, the projectile’s actual path rises at first and

m

then falls when the accelerated rate of free fall has
beaten the steady speed of rise due to the initial
motion. (See Fig. 2-41. Note that this path is a
parabola, )

Fic. 2-41. Free FavLn oF a PRojECTILE.
However it is started, a projectile falls with the same
“free fall” from its mEma.\ starting-line as an object

ea

released from rest, T coelerated motion of fall
is independent of both the vertical and horizontal
components of the initial motion.

Notice how our discussion has torn the problem
of projectile motion to pieces, leaving it easier to
deal with, ready for further studies by experts in
ballistics. We have not so much set forth new infor-
mation as made existing knowledge easier to use.
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CHAPTER 11 - CIRCULAR ORBITS AND ACCELERATION
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"

. all science as it grows towards perfection becomes mathematical in its ideas.”

—A. N. Whitehead (1911)
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The Froblem of Orbital Motion

Why do the planets move in Kepler orbits? Why
do they keep moving, and why are their orbits el-
lipses? These questions naturally followed Kepler's
discoveries, in the long tradition of asking WHY,
dating from the Greek philosophers. Astronomers
had measured and recorded WHAT the planets do.
Copernicus and Kepler had shown HOW the plan-

ets’ motions can be expressed in a simple scheme; but
they had only the traditional answers to WHY. Co-
pernicus thought of spheres rolling around, though
with simpler motion; Kepler imagined a spoke of
influence from the Sun carrying each planet and
pushing it along its orbit; and he talked mystically
of magnetism shaping the orbits. His spokes were
real in one sense; they were needed to express his

FPROBELEM O SURTRACTING VECTORS (Problem L.)

We shall meed to subtract vectors io studylog planetary motion. This problea
i to glve you practice.
I. Dt‘ﬁiE [H‘il'.hne't.icul}l subtracticn. BSuppose we want to subtract 2 from 5.

This can be regarded in several ways:

(a) We can say, 2 subtracted from Smakes . . . . . «

or, -the same thing in other words, 5 - 2 19 . . .

(o) Or we can change the sign of the 2 to -2 and ask

an "additioa"™ question:

5 s [-2) makes T . . . .

(=) Or we can pat this more childlishly apd ask:

What mmust we add to 2 to make 57 . .

I T

This lmst form gives the key to subtracting wectors (or ficding the difference
betwéen twoe vectors, or fioding the chﬂ.EE of wectar from ook vectér Lo ancther.)

II. Vectors.

Suppose we bave an "old wector" and a "pew vector™ and wast to find

the change {ar galn, or difference ). We ask, "What vector must be added to
(Mis 15 like form I(c) sbove; but Lt

the old ope to make the mew onel™
requires geometrical addition. )

o) If the wectors both poiot due East as below, old wector 2 and mev vector 5
r {]
what i3 the change or differsoce}

make the wvector 5 1%

"What mst be added to the wector 2 to

FIG. 21-1.

Old veebor 2

w

{B) If the vectors (old wector A aod cew vector B) bave differeat directlons, as
4n the various cases ghown below, what 1s the change or difference? ‘What

dravicg an arrow, oo this sheet,

In each case, you want E_'.i

A,
, B

> c

{e} Ir the vectors do mot eprout from a common starting polot, you must fisst

transfer one or both till they do.

Then find differense, B = A, in each

oase helow, Aguin using an arrov to Ahow your AnSWer.
FI5. 21-2,
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Law II; and they are still with us, as geometrical
lines that sweep out areas. As solid arms to propel
the planets Kepler's spokes soon seemed unneces-
sary: Galileo’s new teaching put things in a dif-
ferent light. A moving thing, said Galileo, will con-
tinue if it is left alone, and he gave a clever thuught-
experiment to justify his view. A generation later,
Newton expressed this view as a working rule:
Law I, “Every body will remain at rest or con-
tinue to move with constant speed in a straight
line unless acted on by a resultant force.” Then
Newton crystallized the vague idea of motion into
definite momentum, to be calculated by multiply-
ing mass {which he tried to define) by velocity,
and said: Law 11, “When there is a resultant force,
there are changes of momentum in the direction of
the force. RATE OF CHANGE OF MOMENTUM varies
directly as the resuLtanT Fonce.” This was equiva-
lent to “MASS + ACCELERATION varies as RESULTANT
FORCE.”

From Galileo to Newton these new views of
motion—groped for by philosophers far earlier, half
stated by Leonardo long before Galileo and by
Descartes after him—were getting ready to play
a profound part in astronomy. The members of the
newly-formed Royal Society, which soon welcomed
Newton as a younger Fellow, discussed Kepler's
laws Eﬂgerl}r, asking quite a different kind of WHY
question. They no longer worried about an agent
to push the planets along. Galileo told them no
push—and therefore no pusher—is needed for that;
the planet will continue to move of its own accord
if left alone, like a block of ice on a frozen pond or
a bullet in space. Scientists had dissolved away
Kepler's spoke. What they sought instead was an
inward force, along the spoke perhaps, to pull the
planet into a curved orbit instead of a straight line.
Such a force pulling sideways, “across the motion”
of the planet, would give it momentum in a new
direction. What kind of forces would do this? This
new question was in the air. Hooke, Huygens, and
Newton all attacked it. Taking the planetary orbits
as roughly circular, they argued back from Kepler's
Law IIT and suggested that there is an inward at-
traction, pulling planets to the Sun, a pull that de-
creases with increasing distance according to an
“inverse square law"—a scheme we shall discuss in
the next chapter. But would such a force, half sus-
pected and quite unexplained, produce elliptical
orbits fitting with Kepler's Laws I and I1? This was
too difficult for all but Newton. It required clear
formulation of laws of motion, and then clever
mathematics. Newton not only solved it but ex-

tended his solution into a magnificent framework of
good theory. Before you study his work, you should
extend your discussion of force and motion to this
new case of “sideways forces” that pull a moving
body's path into a curve. You have already met this
with projectiles, where gravity adds vertical mo-
mentum to horizontal motion, making a curved path.

But acceleration in that motion with its increasing
speed seems easier to understand—dare we say it
“seems more natural’?—than in steady motion
around a circular orbit, with unchanging speed.

Acceleration of Body Moving Around a Circle

Suppose we have a planet moving around a circle
(or a stone on a string, or an airplane, or an atom ).
Does it have any acceleration? If not, we hardly ex-
pect to find any resultant force acting on it; and in
that case why does it not continue straight ahead?
Does it have any acceleration? Certainly not any
acceleration along its path—we have chosen a case
of constant speed, with no 5peeding-up along the
path. Is there any acceleration across the path, per-
pendicular to it? Try drawing vectors to look for
changes of (vector) velocity. The moving body P
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travels around a circle of radius R with fixed speed
v.! Then v is also the size of P's velocity, but that
velocity, as a vector, has direction as well as size
and the direction changes from instant to instant.
When the moving body, P, is at A it has velocity v
in the direction shown, along the tangent. 1f it moves
with unchanging speed, the size of v is the same
at B as at A, but its direction is different; the two
vectors are not identical. There is a change of
velocity between A and B. (And therefore an ac-
celeration, and therefore . . . on to planetary as-
tronomy with a wonderful tale, if this is so.) Cal-
culate the change of velocity and divide it by the

1
F

Fiz. 21-5. Verocity VeECTORS

time taken, to find the “acceleration.” This involves
subtracting vectors to find a change as in the pre-
liminary problem at the b-eginm'ng of this chapter.

Derivation of Expression a = v*/R

While ¥ moves from A to B it changes its velocity
from (v along AT) to (v along BT"). Make a vector
diagram to find the change of velocity. Transfer the
two veIcltit],' vectors to a commaon sta.rl'ing point, X,
and draw XY to represent veLocrTy v at A and XZ
to represent veLocrTy v at B. Then XY is the “old
velocity” and XZ the “new velocity.” What is the
change? What velocity must be added to the old
to get the new? The change is shown by YZ, the
vector marked Av in the sketch. Then

(old ¥) 4+ Av makes (new v), by vector addition

To see the direction of Aw, redraw the original
picture, and slide the v's along their tangent lines
till they both sprout out from the common point C.
Then we can treat C like X and draw old v and new
v from it and mark Av. Look at the direction of Awv,
It is parallel to CO, from C to the circle’s center. If
we took B very close to A, the Av would have to be
along the radius from the region AB to the center.
Av is an inward velocity vector, towards the center
of the circle.

! Remember we use “speed” for rate of travel along an
path, straight or eurved—the drunkard’s speedometer-read-
ing. Speed is a scalar. Velocity is a vector, with direction as
well as size.
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Fic. 21-8. Vevocity Cuance
Since velocities are along tangents, which are perpen-
dicular to radii, the fact-picture triangle OAB and the
vector-diagram triangle XYZ are similar.

If there are velocity changes, there is accelera-
tion.* Calculate the acceleration by dividing velocity
change, Av, by the time it takes, At. Time At is the
time taken by P to move from A to B with speed v

arc AB

along the orbit. In fact sPEED v is . To calcu-

late Av/At in terms of v and R, ete., we need some
geometry discovered by Newtons contemporaries.
Here it is. Join A and B by the chord AB. As often
in solving geometrical problems, the trick is to add
one construction line, here the chord AB. Now look
for similar triangles between the fact-picture and
the vector diagram of velocities. Radii OA, OB in
the fact-picture make a small angle E. The velocity
vectors are along tangents, perpendicular to the

Fre. 21-7. Dimmecrion oF YVeEvroormry CHANGE
Here the vectors for old v and new ¢ have been slid
along their lines in the fact Ficlum s0 that they both

start from C. The change of velocity, Av, is parallel
to CO. The change of velocity during travel from
A to B is inward towards the center,

* From now on we shall stop showing v and Av as vectors
by boldface type because we are poing to calculate the size
u{ the acceleration, using the speed o, which is the size of
the vclu-.‘:ily, and av, the size of the c!lange of v:lOcit}'. Re-
member, however, that the acceleration has the direction of
the vector Aw.
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radii, so the velocity vectors (old v) and (new v)
make the same small angle E* Then in the fact-
picture we have triangle OAB with two equal sides,
R and R, enclosing angle E; and in the vector-dia-
gram we have triangle XYZ with two equal sides
v and v, enclosing the same angle E. Therefore the
two triangles OAB, XYZ are similar.

“short side,” Av “short side,” AB
Then ——————— must = — —
equal side,” v equal side,” R
in vector triangle in fact triangle
. Av ET} X N E
"% - ®”R AT TR
MNow we can caleulate the “aceeleration.”
AUV ©+AB /ﬁt v AB
ACCELERATION — —— = _
At R R At

To go further we need to know what AB/At is.
What is AB/At? What is the fraction [(cronp AB)
divided by (TmME oF TRAVEL from A to B)]? We
know what (are E}HM is. That is distance/time,
around the orbit from A to B, so it is the sPeED v
But, for a very short arc, with B very close to A,
the curved arc AB is very nearly the same as the
chord straight across, AB. Look at the series shown
in Fig, 21-9. As we move A and B closer and closer
together the arc rfﬁ and the chord AB get smaller
but they also show much less difference from each
other. Like mathematicians inventing calculus, we
crawl towards the “limit” when B coincides with A.
We never get to that limit, but we can crawl as close
as we like and make the difference between arc and
chord as trivial as we like. We do not merely make
the difference, AB — AB, trivially small: we make
the fraction { diference/chord ), or (.ﬁ — AB)/AB,

——

AB
trivial. This makes the rativ — very nearly 1. So,
AB

3 If you take two lines mak’mg an angle X, and turn each
line through 90, you tum the whole pattern through 90°
and the two lines in their new position will still make
angle X,

Fiz. 21-8,

with a big separation between A and B, we can say
arc is somewhat greater than chord; with small
separation we can say arc = chord approximately;
with still smaller separation, are = chord very
nearly; and we can get as near as we like to the limit

arc = chord. Mathematicians prefer to describe
this limit thus: Limit( ) = 1. Now we want
chord

the acceleration at an instant of time, when B and
A do practically coincide—we do not want a vague
average over a long separation. We want the limit
when B coincides with A. So we say: in the limit,

arc = chord, AB = AB.

arc  chord
Then — =
At At
AB AB
—— iz . in the limit.
At
Av
Then acceleration = —
At
v AB , v AB
= — . — =, in the limit, — . —
R at R at
® . (o) since AL 5
= : ince — is v,
R v) since o
. Au v
the leration — = — - (v
Then accelerati 5 H (v)
v? o || SPEED AROUND OHRBIT )7
= — Or
R RADIUS OF ORBIT

This relation, acceLeraTioN = v*/R, is of great
importance. We shall use it in planetary theory,
in stud}'ing electron streams, in making a mass
spectrograph for atoms, in designing a eyclotron—
in fact wherever we meet motion around orbits.
It is so important that you should retrace its deriva-
tion for yourself and make sure it is sensible. Once
you understand the derivation you will see that
you can reduce it to a short explanation 4 two
sketches + a few lines of algebra.

Two Important Questions

The result, accELERaTION = 0°/R, brings two
questions:

I. How can a moving thing have an acceleration
and yet neither go anv faster nor ret any nearer
the center?
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Fic. 21-8. As we proceed from larger arc to smaller and smaller arcs of the same circle,
we proceed from large chord to smaller and smaller chords,
but the cherd grows maore and more nearly equal to the are.

115
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IN the limit

arc

chord -

(If you disbelieve this, and claim that the disagreement between arc and chord remains unchanged and is only
disguised by moving A and B closer, examine the lollowing case (see Fig. 21-10): Choose some size of AB,

then change to cho

ab half as long, but blow up the new picture to double scale, so that the new chord a'h’

returns to the full length that you chose originally for AB, Now look at the new chord a'b’. Is it nearer
to its arc? Mote that the blowing-up does not itself alter the relative proportions of a chord and its
arc—it does not change the angles. but mt::l}' acts like a magnif}'ing-g]ass_}

ORIGINAL CHORD HALVED

a f
sar
~.. —

—_—
,w""f

~
~

ﬂ'IEI

r "'A B *
- a F' -

Fic. 21-10.

II. Does this kind of acceleration need a force. ac-
cording to F = M - a, just like a speeding-up ac-
celeration along the path? Does a force M - v*/R
act on a mass M moving around a circle?

Real Forces Needed?

Both questions express real difficulties which kept
mankind from jumping to the explanation of planet-
ary orbits at once. Question 1I is answered by ex-
periment, “Yes every real motion around a circle
does need a real force, inwards; and Mv*/R does
predict the size of that force correctly.” To make it

move in a circle a body must be pulled or pushed
inward by real external agents, such as string or
spring or gravity.!

 People sometimes think that motion in a circle manu-
factures the inward force, provides the inward force needed
to maintain itself. A child who wants candy does not find
his need provides the moncy to buy it. Some real outside
agent such as a rich uncle or an employer must provide the
money to buy with—otherwise, no candy, The condition for
circular motion is similar, A real outside agent must provide
the inward force—otherwise, no curved orbit.
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Look for real forces in the following examples: Fic. 21-12. Tests o F = Mvi/R
A. Whirl a stone around with a string. You pull on __
the string, and the string pulls the stone inward. 7 .
‘e
T
S N
{a)

Fic. 21-12a. A metal ball, tied to a steel spring by a
cord, is whirled steadily in a circle. The sprin
stretches till it applies a suitable pull, and I.Ee

Fiz. 21-11. WHIRLIXG STONE ON A STHING
The farce on the whirling stone is an inward pull,

exerted by the string. (The string also pulls the man's length, B, of cord 4 spring remains constant during
hand outward—but he is not moving in a circle. whirling. The motion is timed and the predicted value of
He is held in equilibrium by extra forces on his feet.] the inward force, Muv?/R, is caleulated. The force actually

exerted by the spring is found by hanging loads on it in

The string tugs the stone, gives it some mo- a separate experiment. Some indicating device is needed

to show how much the spring is stretched during whirling.

mentum in a new direction, Changmg the direc- This arrangement is shown in detail later.

tion of its velocity. Think of the string as giving
a series of small tugs: tug to change velocity
direction, tug to change it again, tug to change
it again, . . . all around the circle. If you release
the string, the tugging stops, the velocity no
longer changes, so the stone continues steadily
along a tangent. (To say that it "flies off on a
tangent,” is a misleading description.)

Swing a stone on a string in a horizontal circle,
with a spring or a weight providing a measurable
inward force. See Fig. 21-12. Any of the experi-

Fic. 21-12b. A metal ball, tied to a cord, is whirled
ments sketched can be used as a test of the pre- steadily in a circle. The cord runs down a glass tube
diction F = Mv*/R. with smooth open ends and carries a pulling load W
at its lower end. By moving the tube around in a tiny circle

. Watch a “conical d " Th i the experimenter keeps the ball moving around a constant
B ! nical pendulum.” The bob, which horizontal circle. The motion is timed, and the predicted

moves in a ?orimntal circle, is pulled by two value of the inward force Me?/R is caleulated. force
real forces, its weight and the string tension. ncmsd:if exerted by the cord on the ball is its tension,
and that is practically equal, but for slight friction,

to the pull of the weight of the load W,

P and - D-HW
ball-brari -

! .
swawel L }I-
Fic. 21-13.
If vou measure these fo
(1f ese forces and add them by AL LA N LAl TARL E

vectors you will find they produce a resultant ]_U

horizontal force inward, towards the center of
the bob’s orbit. With measurements of dimen-
sions and time of revolution you can test the pre-
diction a = v*/R.)

C. A smooth ball rolls around inside a glass funnel. Fic. 21-12¢. A ;lx;actieal[_-.r frictionless version of (b}
D. A steel ball rolls on a horizontal sheet of glass i coashng on an ataminam tble. The cord s vl & ol
the field of a magnet pole, in the center of the table, and the glass tube is replaced
by a small pulley that swivels around the hole

E. The motions of Moon and planets. on very good bearings.
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Fic. Z1-14.

ExanrLes oF ORmTar Mormion with CENTRIPETAL Fonce
{a) Steel ball rolling in elliptical orbit in a glass funnel,
(b} Steel ball rolling on a smooth table in the field of

a magnet, (In practice an electromagnet is used in
showing this. It is often placed under the table.) The
magnet’s magnetic field magnetizes the ball (7 temporarily)
in such a way that it is attracted by the magnet’s pole,

Given a suitable push, the ball will then pursue an orbit

around the magnet pole.

PROBLEM 2

Accept for the moment the idea that a body moving in a
circle must be pulled inward by a real force (o force supplied
by real agents such as strings, springs, roads), In each of the
following coses, say what agency produces the needed inward
force. (The first onswer is given as o specimen.}

(a) Stone whirled en a string, in horizontal circle. (Answer:
“Strimg tension,” or “string pulls it}

(b} i) Roller-cooster on rails going around sharp corner on
level section of track.
P B
E c(i)
A
RN c(i)
Fic. 21-15 and Fie. 21-16. PropLEM 2.
{ii} Roller-cooster looping-the-loop at Al
liii) Roller-coaster looping-the-loop at B,
le} (iy Bicyclist rounding sharp corner on level road.

lii} Bicyclist rounding sharp corner on properly banked
track,

td} Plane flying around a curve.

(e} Megative electron pursuing circular orbit around positive
nucleus of atom.

Acceleration with No Change of Speed

Experiments answer question II above: motion
around a circle does need an inward force; and
Mv*/R does predict the size of the needed force.
Now return to question I: how can a thing ac-
celerate towards the center of a circle and vet
neither move faster nor get nearer the center? This
is still puzzling, but it now seems to be more a
matter of wording than physics. The facts are clear;

[mi
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there are circular motions, and inward forces are
needed to maintain them. These inward forces pro-
duce inward momentum changes which swing the
moving object’s veloeity around, changing its direc-
tion without adding to its size. If we like to include
such changes of velocity in our definition of accel-
eration, @ = Av/At, then there are accelerations in
circular motion. But if we restrict “acceleration” to
its earlier meaning, “going faster and faster,” then
there can be no “acceleration” in steady motion
around a circle, If we take that restricted view we
must then announce a new set of forces, in addition
to those given by:

“oLD” FORCE = MASS * RATE OF GOING FASTER AND
FASTER
The new forces would be given by:

“NEW" FORCE = MASS * ( SPEED ) ®/RADIUS

These new forces would have to be real forces, ex-
periment assures us, forces that must be provided
to make a body move in a circle. However, to save
trouble, we aveid the restricted view and use the
name acceleration for all kinds of Av/At, because
we find by experiment® that F — M - a then predicts
the resultant foree invelved in all cases. On this view
we must undertake two sets of tests and illustrations
of F = M - a, one set with little carts pulled along
a track, the other set with objects whirled around
in a circle.

As it goes around a circle, the moving body does
fall in, towards the center, in from the tangent it
would otherwise pursue and in again, from the new
tangent line, and in again, and so on, continually
falling in without ever getting nearer the center.
If this seems paradoxical, you may get some comfort
b}r watching a skater making a small circle on ice—
he leans inward and is falling, yet never falls over.

=
3 ’.“r' - - -u.\
¢ A
v '
L
(a) ) "~ e e ="
Fuz. 21-17.

5 Galileo really told us this when he said that a projectile’s
horizontal and wvertical motions are independent of each
other. At the “nose” of its parabola, the vertical acceleration

is perpendicular to the motion and does need a real vertical
force.
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{a}) Motion in a circle requires changes of
dirgction of velocity; and, in that sense, in-
volves a definite, inward Av/At. Experiment
shows that this, like “speeding-up aceclera-
tion,” needs a force M - {Ao/At). Geometry
shows that the inward av/st is given by
t*/R. Then some real agent must provide
the needed force M - v*/R.

(6)

o L7 S )
1"'--—"'...!-# T e,
Fa My? F mare than MY F less than 20"
R R
Fic. 21-18. Momow v a4 CmcLe
(b) Of course the pulling agent may fail to provide 'ﬁust the

required force Mue's/R—al ous_h strings stretch and rails eom-
press, and friction changes its drag, to adjust the force provided
to the need in many cases. The sketches above show what hap-
pens when the agent provides (i) the right force, (ii) too big a
force, (iii] too small a force. You can arrange these yourself with
a stone on a string. In some atomic orbits there may be sudden
rhanqes. In Franc\ta!}' motion there are chqnges which take

place smoothly, modifying a circular orbit to an ellipse.

The essential answer to question (I) is this: the
acceleration is perpendicular to the motion, so it
does not increase the speed along the motion. And,
added to zero velocity across the motion, the ac-
celeration’s contribution just pulls the object in to
the standard radius-distance,

Centripetal or Centrifugal Force?

When the force pulls towards the center of a round
orbit, producing changes of velocity-direction only,
we call it a centripetal force (from the Latin, mean-
ing a center-seeking force. The opposite of this, a
flying-out-from-center force, is called centrifugal
foree).® You have often heard that name, but un-
fortunately it is a misleading term when applied to
the moving object. Of course there is an outward,
centrifugal, pull on the “other fellow” at the center;
e.g., on the man who holds the string that whirls a
stone. But this gets confused with the force on the
moving body, so you will learn good physics most
easily if you avoid the phrase “centrifugal force.”
However, since the idea and phrase are in common
use, and are much trusted by many formula-sup-
ported engineers, we will discuss it briefly in a
later section.

Centripetal Force. Mv*/R

Real agents must provide the needed force which
is equal to Mv*/R, if the mass M is to follow a
circular orbit with radius R at fixed speed v. If the

% These two words have opposite meanings, but their
proper pronunciations sound somewhat alike: centript’] and
centrif’'g’l. To avold dangerous confusion in discussions, it
would be wise to mispronounce them: centsi-pet’]l and
centri-fewg’l,

real forces on M produce a greater resultant than
this needed force, the body will speed up inward;
it will spiral in. If the actual forces are too small it
will again fail to follow the circle; it will spiral
outward. In many cases the mechanical system ad-
justs the force to the needed amount, as in the

examples below,

EXAMPLES OF CENTRIPETAL FORCE

We shall now discuss in detail some important
examples of circular motion ranging from a stone
on a string to the modern centrifuge.

Stone whirled on string: the string stretches till
its tension is Mv'/R pulling inward

Roller-coaster looping the loop: the car is pulled
by gravity, and it is pushed by the rails. Apart from
friction, the rails push perpendicular to their own
surface, out from the track. Continue this discussion
by answering Problem 3 below.

FROBLEM 3

Suppose a roller-coaster is looping-the-loop os shown in
sketch, At A, a force is needed to maoke the truck move in
a circle.

o

¥,

S

Fre, 21-15.

fa) What direction must that force have?
(b) What provides that force?
(e} What other real forcels) must oct on truck at A?
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(d} What effect must the other forcels) have on the truck’'s
mation?

(Mate: In answering {d), forget the force discussed in (a)
and (b), It must be there, a real force, but it does a special
job. Combining by vectors into a resultant force would not
be helpful here.}

At B, a certain force is needed to make the truck move in
a circle.
e} What direction must that force have at B?
{f} How is that force provided?
(gl If the truck is moving much slower, @ much smaller
force is needed. Why?
{h} Why may the force provided ot B be too big? If it is too
big, what happens?

Bicycling. When a bicyclist rounds a corner, trav-
elling in a horizontal circle, some real agent must
provide an inward, centripetal force. On a rough
road, friction does this; it provides a horizontal
force, pushing the tires sideways. (On an icy road
friction is not available, and the cyelist does not
make the corner—he skids straight ahead, thinking,
by contrast to his wishes, that he is skidding round
a reverse corner.) He leans sideways as he goes
round. Leaning does not in itself help friction, but
it is necessary, because otherwise the road’s push
topples him over. If he rides on a tilted cycling
track instead of a flat road, he may not need help
from sideways friction; the banked track pushes
him straight out from its surface with a force which
has a vertical component to balance his weight and
a horizontal component that provides the needed
centripetal force.

Airplanes. A pilot flying round a corner must
bank so that air-pressures on his plane push it to-
wards the center of its circular orbit. Instead of
just balancing the weight, as they do in steady,
straight flight, much greater “lift forces™ must be
provided through a change of control flaps.” The
pilot himself must also move in the curve, and thus
needs an inward push to make him do it. In the
banked plane, his seat pushes him with the required
extra force. But what about his blood, circulating to
his head (which is pointed towards the center of
the banked turn)? The blood must not only make

N (ﬁw Y 4

™~ - —— — —

Fic. 21-20a. When a plane loops-the-loop, the pilot’s head
points towards center. When a plane makes sharp turn, it
banks, tilting the pilot over with his head towards
center of turning circle.

* Gravity, often trivial in a turn, is neglected in this dis-
Cussion,
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Fic. 21-20b. Air exerts forces on wings and body,
pushing plane towards center of circle, in loop or furn.
( In this sketch, gravity is ignored, In sharp tums it
is relatively unimportant. )

the turn, it must move inward (“upward”) from his
heart to his head. His heart must pump extra
hard to feed his brain with an adequate supply. If
it cannot pump strongly enough, the blood fails to
reach his brain and he faints or blacks out, In
ordinary life when you are standing your heart must
push a mass m kilograms of blood upward with
force (m - 9.8} newtons to keep it moving steadily
up against gravity. If the plane flies fast (large v)

Pressure nieded
dxH H

Pressure needed
dxh (\
Fic, 21-21. In a man at rest, standing or lying, the heart
must provide pressure to pump blood up to brain. In a plane
making a tum or loop, the pilot’s heart must provide

extra pressure for centripetal force, or blood will
fail to reach his brain.

around a sharp curve (small R}, the needed force
from heart to head, m(v*/R), may be many times
bigger than m - 9.8. The pilot’s heart may be unable
to provide the force, me?/H, so he may soon black
out. If you lie down instead of standing upright,
you make much smaller demands on your heart. If,
instead of sitting "upright” with his head pointed
towards the center of his flying curve the pilot lies
down with his body along the curve, he can remain
conscious much longer. Fig. 21-22 shows the results
of some experiments. The centripetal acceleration
of the plane, v*/R, is expressed as a multiple of “g.”

Electrons in atoms. In a later chapter we shall
discuss atomie structure and picture electrons whirl-
ing around tiny orbits. We assume Newton's Laws
apply, and invoke electric attractions to provide
mue /R

Cream separators and centrifuges. If we whirl a
bottle of liquid around on a string, every chunk of
]i-r_lu:'[] must be given the needed centripetal force
me® /R, or it cannot make the orbit, This extra in-
ward force must be provided by real pressure-dif-

F
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Fic. 21-22. ErFect oF PosTURE oM TOLERANCE OF
ACCELERATION
The safe accelerations are those for which the pilot does
not black out. (Data from Ruff)
(From Nature, June 10, 1944, vol. 153.)

ferences. The outer end of a chunk must experi-
ence bigger pressure than the inner end. Thus there
is a gradation of pressure increasing outwards
much like the vertical gradation of pressure due to
gravity in a liquid at rest, but with fast whirling
these pressures may be far greater. An air bubble,
or anything else less dense than the liquid, would
experience these pressures but would not need so
big an inward force—m being extra small, its needed
mo?/R would be extra small. It would get more
than it needs and be driven inward. In moving
inward it would accelerate for a short time until it
reached that speed at which fluid friction just bal-
ances the available extra force. Then:

INWARD FORCE — OUTWARD FORCE -— FRICTION DRAG

due to large due to smaller due to motion
pressure on pressure on inward through
outer end inner end liquid

— HRESULTANT FORCE
which is the
needed inward
force me*/R

That is what happens to cream in a whirling cream
separator. Anything extra dense—a piece of sand
in muddy water, for example—receives the same in-
ward force from surrounding pressure, but needs
more, so fails to make the orbit, spirals out and lands
on the outer edge of the bottle. Take a bottle of
muddy water containing air bubbles. If you stand it
on the table, mud will settle and air bubbles move to
the top with slow steady motions against fuid fric-
tion. If you whirl it on a string, mud settles and bub-
bles rise much faster. Machines called centrifuges

Fic. 21-23. Wmnumwe o Borrie oF Ligum on 4 CoRp

In each case the actual inward force provided is the
resultant of {END AREA) * { PRESSURE AT OUTER END) minug
[END AREA) * [ PRESSURE AT INNER END) and these pressures
depend on radii and speeds, but not on contents of sample.,

Therefore, the force provided is the same, for a given
vodume, in all cases; but the force needed differs
according to density of sample—hence the separating action,

g( Mass M

(b) Any specimen chunk of liquid, such as the one

marked in sketch, is moving in a eircle and therefore
requires an inward resultant force to keep it in its
orbit. That force must be provided by difference of

fluid-pressure on its ends. The pressure on the outer
end of the chunk must be greater than the pressure
on its inner end.

{c) A bottle of liquid at rest standing on a table, with
pressure gauges to indicate the gradation of pressure.
(d} A bottle of liguid being whirled in a herizontal circle,
with pressure gauges to indicate the gradation of pressure.
(The vertical effects due to gravity, relatively
unimportant, are ignored here. )

Sample
] chunk
(£} less deruse

(e} If the immersed chunk is not just a sample of
liquid but has smaller density, it has smaller mass,
therefore needs smaller Mu®/R. But pressures supply the
same resultant inward push, so sample accelerates .

Foogeed ) Sample
e, e thunk
( f ) Aenspr

() 1f the sample has greater density than the liguid,
it has greater mass and needs greater Mv?/R than it gets.
Therefore it accelerates our, and settles to what will
be the “bottom” of the bottle when it is placed
upright on the table after whirling.
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are used to separate cream, to promote settling of
fine sediment, and even to sort out oversized mole-
cules of proteins by their rate of settling, against
streamline friction, in water.

Fic. 21-24. Cextriruce

Square-dancing. When partners “swing” in a
square dance, they interlock hands or arms and
rotate around a common axis ( possibly one or more
heels}. The partners A and B pull each other in-
ward, the pulls of their arms providing the needed
centripetal forces. Even if A has large mass and B
small mass, the pulls are equal and opposite (New-
ton Law III), but the system adjusts its orbit-radii
to make these forces just suffice. As a result the
dancers rotate around an axis that passes through
their common center of gravity.

Fic. 21-25. SQUARE-DANCERS

M, M,

ot

EG-F.I--tf-- Rl--r

Fic. 21-26.

Here is the algebra of square-dance swinging:
Suppose A and B have masses M, and M, and move
around their common axis in circles of radii R, and
R,, with speeds v, and v,. One revolution takes time

(=]
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T, the same for A and B, Then v, = 2Z=R /T and

L

v, = 2=R,/T (and .". L—’

R
ﬁt though this is not

needed ). The two {:EIILTEP-EEHI fm-"f:cs must be equal
and opposite, since they are provided by the action
and reaction of the dancers.

. M2 B M,u;* M, (2«R,/T)* N M,(2=R,/T)?
""" R, ~ R, " R, - R,

o MR, = M,R, {cancelling (2=)?, and T?, etc.).

Then MASS « DISTANCE FROM AXIS OF ROTATION is the
same for both partners. The massive partner must
therefore take a correspondingly smaller distance
from the axis. If you consult the rules in physics
books for finding the position of the center of gravity
of two bodies, you will find that if R, and R, are
measured from an axis through the center of gravity
of M, and M,, then M R, must — MR, as a
property of centers of gravity. And here we find
M,R, = MR, for the rotating motion. Therefore
the rotating pair must revolve around their common
center of gravity.

This piece of physics is true of square dancers,
but it is not important to them. It is also true of the
motion of the Moon and Earth, and it is important
for an understanding of tides. Astronomers use it
for double stars. You will meet other examples of
centripetal force in astronomy and in atomic physics.

CENTRIFUGAL FORCE AND THE
NOVICE'S HEADACHE-CURE

Motion in a circle needs a real inward force,
provided by real external agents. This view of
centripetal force will help you to deal with all
real problems of circular motion. Then what is cen-
trifugal force? You often hear of it, may find
yourself speaking of it when you whirl something
around, and will find books using it to explain
things in physics. Here are a variety of opinions
on it. You mav choose according to your taste.

Orsioxn [: “Centrifugal force is a phony force, im-
agined :hrough a misinterpretation of
evidence confusing agent and victim.”

1f you whirl a stone on a string, the string-tension
pulls your hand outwards (just as it pulls the stone
inwards ). This is a real centrifugal force on your
stationary hand, not on the whirling stone. You feel

your hand being pulled outwards, so you say, "1

feel the stone and string pulling my hand outwards.

That tells me the stone is being pulled outwards,

by some centrifugal force, and the string is just
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Frz. 21-27. ? Centrirvcar Fonce ¥ Orivions 1 awo 11
Some people confuse the inward pull, F:, on the stone
with the string’s outward pull, F;, on the hand.

transmitting that force.” That is where you are mis-
taken. There is no outward force on the stone.
Really the string, in a state of tension, pulls at both
its ends. While it pulls your hand outwards it pulls
the stone inwards. The only real force on the stone
is inward, centripetal.

Again, suppose you visit one of those amusements
at a fair in which people sit on a Hoor that rotates.

Fiz. 21-28. AsmusEMeENT AT Fam on Cricus
The pnllshrd floor rotates around a central vertical axis.
If one visitor is allowed to slide, he appears, to the
other visitor to move radially outward, with acceleration,
But an outsider, bird or man, sees him move along tangent.

You and a friend enter the room while the floor is at
rest, and sit on the polished floor. Knowing the trick
of the performance, you glue yourself to the floor.
When the floor begins to spin you note that a mys-
terious force seems to pull you outward; and, but for
the glue, it would make vou slide out to the wall.
Your friend will slide out to the wall if you do not
hold on to him, exerting an inward pull on him. Both
of vou feel you are struggling against “centrifugal
force.” But now let a stationary observer take a bird'’s-
eye view from above. Seen from outside the spinning
room, vou are both moving in a cirenlar orbit, and
vou both need real inward forces to keep you in
vour orbit. For vour friend, the force is the inward

pull you provide; for vou it is the pull of the sticky
floor on you. Once again, you merely imagined an
outward force on your friend because you had to
apply a real inward force to him. As the outsider
sees, these inward forces are not neutralizing a
mysterious outward force, they are making an in-
ward acceleration; they are making you move in a
curve. The outside observer offers a further com-
ment. When vou let go of your friend he then con-
tinues along a tangent (if there is no friction). His
successive positions along that tangent are farther
and farther out from the center of the circle; so, as
seen by you spinning with the floor he seems to be
sliding out along a radius. But really he is just
continuing a straight (tangent) path, a simple
example of Newton Law L

Orprox 11: “Centrifugal force is a delusion arising
from living in the rotating system and
trying to forget it.”

The rotating-floor discussion leads straight to this
view. To people sitting on the table in a concealing
fog—and ignoring its motion—there is an outward
field of force, endowing every mass M with an out-
ward force Mv?/R. Unless some real agent applies
an inward force to balance this, any object left
alone will seem to slide outward with acceleration
v®/R. Preferring to take a sober view from outside,
we say that both the outward field of force and the
outward sliding are delusions due to living in a
rotating framework and not allowing for its motion.

Opmaon I1I: The Novice's Headache-Cure

Here is a good use for centrifugal force. Let us
be rude and say, with some truth, that a weak en-
gineering student prefers “Statics,” the physics of
things at rest (in equilibrium), to the physics of
motion. Problems involving acceleration and rota-
tion make his head ache; and he wishes they could
be reduced to simple statics problems that he is so
good at—forces in bridges and cranes. And they
can. Consider, for example, the problem of a pendu-
lum whirling around in a conical motion. The two
real forces acting on the bob are its weight and the
string tension. These two real forces must add up to
a resultant force Moe?/R inward—otherwise the bob
could not continue around the orbit. Here then are
two forces W and T which have horizontal resultant
Muv?/R inward. Let us turn this into a statics prob-
lem with equilibrium (resultant zero} by adding
an extra fictitious force. What fictitious force must
we add to W and T to make zero? The third force
would have to be —Mv*/R, or Mv*/R outward. So

Fi
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Fic. 21-249,

some teachers say this to the faint-hearted engineer:
“Yes, you can turn any problem with circular motion
into a statics problem if you take all the real forces
acting on the moving body and ADD a fictitious cen-
trifugal force, Mv'/R outward, and then write an
equation stating that these forces (including the
fictitious one) have resultant zero. Solving the equa-
tion will give you the same information as the
method of making the real forces combine to pro-
duce inward acceleration v*/R."

F
.
TOI—<—0 THE HEADACHE

The spring (- agent) provides the real force, F,
0 make acceleration v /R

MO
MOTION

-y
Fe—0O—"
THE CURE
Imajiu.nj‘fm-mﬁ"‘: + real foree F
maﬁenru-rﬁ&wm

Fic. 21-30.
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On this view, centrifugal force is a fictitious force,
but a useful one, to cure the engineer’s headache.
It is also used thus in advanced physics, to save
trouble—but then it is a sophisticated trick in the
hands of skilled craftsmen. As used by most stu-
dents, it gives the right answer but makes some of
the theory harder to understand—how can it help
that when it reduces obvious motion to fictitious
rest? The trustful user, with his right answer, is
confused about the forces: he is not sure which are
real or which way they pull. If you value your un-
derstanding of physics, avoid this headache-cure at
all costs. Of course, a mixture of this centrifugal
headache-cure with centripetal forces will produce
utter confusion!

Oremaon IV: Relativity.

( This opinion sketches some comments from very
sophisticated relativity theory. Read it for amuse-
ment or for a good moral warning, but do not let it
convert you to the engineer's headache-cure for
problems. This relativity-view is true, but only
within the framework of definitions constructed for
it.} Can nothing better be said of centrifugal foree?
Returning to Opinion II, some scientists ask, "Why
is it so wicked to view things from a rotating frame-
work? After all, we live on a spinning Earth. Are
the ‘centrifugal forces™ that arise from our rotating-
framework viewpoint really different from other
forces, and less real? Who are we to say which is
really rotating, ourselves or everything else?” (We
are back to Copernicus vs. Ptolemy.) This last ques-
tion is like the problem of testing Newton's laws in
an accelerating railroad coach. By building a tilted
room in the coach we could still find the same laws,
though we should find “gravity” changed in size and
direction. We suspect that we cannot distinguish
between the effect of acceleration and a change of
gravity—Einstein built General Relativity theory on
an elaboration of that “cannot.”

Relativity theory starts with an axiomatic state-
ment, that we cannot tell which is moving, ourselves
or “the other fellow,” that there is no such thing as
absolute motion. 1f that is so, “absolute space” is
meaningless; it should not be used, and cannot be
needed, in science. In that case, the working geome-
try of “space” must be such that we discover the
same physics whether we think we are moving or
“the other fellow” is. And that makes us modify the
simple geometry of space and motion that Euclid
assumed and Calileo and Newton used. For constant
velocities, we have many experimental failures to
distinguish absolute motion even with the help of
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light-signals, so we feel justified in accepting the
Relativity principle and its modified geometry. In
practical life, the modifications are not noticeable,
and they only affect experiments noticeably when
very high speeds are involved, as they are in astron-
omy and in atomic physics. Extending the Relativity
attitude to accelerated motion we assume that
a local observer will find the effects of acceleration
indistinguishable from a local change of gravity;
and thus we decide that gravitational fields can be
treated as local changes of geometry in space-&-
time. This is Einstein’s Principle of Equivalence.
Though the viewpoint is entirely new, its practical
form shows only small deviations from Newton’s
law of gravitation.

Extending this idea to rotation, we suggest that
a local observer cannot distinguish between the
effects of a rotating framework and a local change
of gravity, if he is moving with that frame. In that
case centrifugal force tugging outward would be
just as real to him on his spinning floor as an extra,
horizontal pull of gravity. Then, to a bug in a cen-
trifuge, centrifugal force-fields should appear just
like real gravitational fields, only some thousands of
times as strong as ordinary gravity. To the bug,
gravity would take on a new direction—he would
quite forget about its old direction—and it would be
enormously stronger. This General Relativity view
has proved useful in coordinating thinking and sue-
cessful in making predictions; and so far we have not
observed anything inconsistent with it. In this way,
centrifugal force has grown to be respectable. When
we want to test the effects of large gravitational
fields. unattainable on Earth. we think we may use
a centrifuge instead. .

The general principle of equivalence forbids us to
call the motions of the Earth absolute. It therefore
leads to a new mechanics and geometry that will
predict the same effects whether the Earth spins
and moves around the Sun, or the stars and Sun
move around us. On General Relativity theorv, a ro-
tating universe would produce “centrifugal forces” at
a stationary Earth: so tests of a spinning Earth, with
a Foucault pendulum® or equatorial changes of “g,”
could not distinguish between the two causes: Earth
spinning or evervthing-else-spinning. Faced with
the old question, “Is Copernicus right and Ptolemy
wrong?” we must demur at Galileo's cocksure insist-
ence and say, “Both views may well be equally true,
though one is a simpler description for practical
thinking and working.” Here is Hegel's develop-
ment: thesis . . . antithesis . . . svnthesis,

See p. 42,
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Make your own choice. However, for problems
and experiments in this course, you are advised to
use only centripetal force.

PROBLEMS FOR CHAPTER 11

I. In the following problems ossume: (i) that the cen-
tripetal occeleration is v'/R, and (i} that F = Ma opplies
to this motion, (Remember that whenever F = Ma is involved
the force must be in newtons or poundols, if the moss is in
kilograms or pounds.)

{a) A 2.00-kilogram stone is whirled in a horizontal circle on
a level frictionless table by means of a string. The string
is 4,0 meters long, so the circle has radius 4.0 meters,
The stone moves with speed 7.0 meters/sec around its
erbit. Calculate, with o word or two of explanation:

{i} the stone’s acceleration. (Leave it in factors.)
{ii} the tension in the string (state the units of your
answer).

(b) Suppose the string just breoks under the tension calcu-
lated in (a). What is its brecking force in ki ms-
weight?

{e} As in (o), a 2.00-kilogram stone is whirled in a circle
by o rope 4.0 meters long but with such o speed thot it
makes 5 revolutions in 2 seconds.

(i) Coleulgte the orbitol speed. (Leove answer in foctors,
keeping = o5 w.)

{ii} Caoleulate the tension in the rope. State the units of
the anzwer. (A rough onswer will suffice. You may
toke = = 10.)

_————
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2. A certain kind of string con just carry 10,0 kilograms
hung on it vertically, but breaks with the smallest increase
of load.

fa) What is its breaking force in kilograms-weight?
{b) Whot is its breoking force in newtons?

A piece of this string 1.00 meter long is used to whirl o
2.0-kilogram stome in @ horizontol circle foster ond foster
till the string breaks.
fe) Colculate the stone’s maoximum speed around its orbit,

giving a short explonation of your caleulation.

3. A locrosse player running with the ball weaves his
stick to ond fro in front of him as he runs. He does not
maove it in o stroight line from side to side, but swings it in
a curve that is concave towards him. Explain how this motion
prevents the ball from falling out of the net of his stick.

4. A plane flying 600 ft/sec (410 miles/br) is pursuing
a smaoll slow plane flying 300 ft/sec. The slow plone tums
around and runs away by flying in o horizontal semicircle;
and the fast plane tries to follow. The pilot in each plane
can just stand an acceleration of Sg.

fa} Caleulate the radius of the smallest semicircle the pilot
of the slow plone con safely make at 300 ft/sec.

F
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(b) How long (roughly) will the slow plane take to tum
around its semicircle?

lc) Calculate the rodius of the smallest circle the pursuer
con safely make,

(d] Where will the pursuer be when the slow plane has
finished its semicircle? (Maork its path on a sketch.)

5. ALTERMATIVE DERIVATIOM OF o=+v/R (Mewton's
method).

As the body moves around the circle from A to B, treat
it a5 o faolling body with constamt acceleration dowrward,
Then in time t it folls distance h with occeleration o, from
rest.

(a) Write an equation for @ in terms of h and t assuming o
is constant.

(b} Using a geometrical property of chords of a circle, write
an equation expressing h in terms of other measurements
in the diagram.

(e} Substitute the expression for h in the equation of (a).

Fic. 21-43.

(a) ProeLEm 7 (b)) ProBLEM 8

125

(d) Mow imagine B is moved closer and closer to A, As B — A,
the horizontal distance x — arc AB. And, as B — A, the
chord MM —* full diometer, 2B, Make these changes in
your expression for occeleration.

6. CEMTRIFUGIMNG (Estimate roughly throughout this prob-

lem).

{al A centrifuge whirls its test-tube in o circle of averoge
radius 1 ft, ot 5000 revolutions/minute, thus placing the
contents in a force-field of strength many times “g.""
How many times “'g"'?

(k) A sample of muddy water contains particles about the
size of blood-corpuscles (diameter 107 meter). If it is
standing in a vertical test-tube, the particles fall at con-
stant speed obout % inch/minute. 50 a saomple about
4 inches high clears in about § hour. (The particles do
not settle completely to the bettom. Brownion-motion
diffusion keeps some in suspension. ) How long would the
same somple take to clear in the centrifuge of (g)?

(e} Protein molecules (several hundred times smaller in di-
ameter thon the mud of (bl, but lorge compared with the
simpler molecules of, say, salt or air) fall about 300,000
times slower in woter thon the mud particles of (b,
How long would a 4-inch tube of o suspension of such
protein malecules in water toke to clear in the centrifuge
of (a)?

(d) Without the use of the centrifuge, the suspension of
protein would never clear. Why?

(#) From the rotes of clearing, the diameters of the particles
involved con be compared, if their densities are known,
[Friction drag on a small sphere & rodiuz and o velocity,}
The mud specks of (b) con be measured with o micro-
scope. The protein molecules are invisible., “Chemical”
measurements (e.g., osmotic pressure) show the proten
molecules are about 10° times os massive as o hydrogen
atomn, What important otomic information could the
centrifuging yield?
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CHAPTER 12 - ISAAC NEWTON (1642-1727)
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“If 1 have seen farther than others, it is by standing on the shoulders of giants.”

—An old saying, quoted by Newton.
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PRELIMIMNARY PROBLEM FOR CHAPTER 22

% PROBLEM 1. NEWTOMN'S FIRST TEST OF
GRAVITATION.

Mewton did not explain why apgples fall. (Calling the couse
of weight “gravitation,’”” from the Lotin and French for
“heavy,” does not explain. Saying “'the Earth attracts the
apple’”’ does put the blome on the Eorth and not the sky,
but beyond that gives no further information about the at-
traction.) However, faced with the problem “‘whot keeps the
Moon and planets moving in their orbits?” Newton was able
to suggest an '‘explangtion’’ in the sense that the same
property of Moture is invelved in these maotions as in the
already-well-known apple fall, “Explaining’” therefore just
meant linking together under o common couse—but this
linking is very useful for further predicting and for simplify-
ing our understanding of Mature,

Operating first on the Moon, Newton calculated its
actual gcceleration, v*/R. This is much smaller than the
ordinary value of “'g,"" 32.2 fr/sec”. Therefore, the Moon
cannat merely be ““falling under gravity™ wnless Earth's
gravity out there is much smaller, diluted by distance.
Mewton tried using o simple form of distonce-dilution, an
inverse square law: he assumed that at twice the distance
g"" would be & as big, at ten times the distonce 1/100 as
big, &c.

Lsing the dota below, repeat Mewton’s test, calculating
{accurately—see note below™):

{a) The Moon’s octual occeleration, in ft/sec”, assuming
a=+vR.

(b} The expected value of "'g"' at the Moon, in #t/sec?, as-
suming the ordinary value of “g" is diluted occording
to an inverse squore low, (Assume that the Earth pulls
an apple as if all the material of the Earth is concen-
trated at the center, one Earth’s rodius from the opgple.)

Since the answers are asked for in FEET/sec”, it is im-
portant to express distances in feet and times in seconds
before wsing them in any colculotion. However, you may
write in the conversion foctors ond postpone the multiplying-
out if you like, till you find you hove to do it, A mixture of
miles, hours, feet, seconds, and hope will lead to frustration,

Data: Rodius of Earth = 3957 miles.

Rodius of Moon's orbit is 60.3 times rodius of

Earth
1 month is 27 .3 days. (This is the Moon's abzolute

pericd, relative to the srars.)

1 mile is 5280 feet.
g* for the opple is 32.2 feet/sec”.

* This was o crucial calculation, o great test of g theoretical idea.
Therefore, in trying it for yourself you need to do the arithmetic
corfectly, or it i3 a complete waste of time. The two amwers fo
{a) end (b} which are ta be compared should éach be caolculated to
three significont figures (which will require five decimal ploces in
ft/sect), First show your armswers to [a) ond (b) in foctors without
amy cancelling, and then reduce 1o fimol decimals,

Newton's Life and Work

Newton was born in the year Galileo died. Even
as a boy he enjoyed experimenting—like Galileo
and Tycho he made ingenious toys such as water
mills, and he even measured the “force” of the
wind in a great storm by noting how far he could
jump with the wind and against it. He went to gram-
mar school, doing poorly at first in its principal
subject, Latin, then showing unusual promise in
mathematics. His uncle, who acted as informal
guardian, sent him to the university when he was
19. There, at Cambridge, he devoured a book on
logic and Kepler's treatise on optics (so fast that
he found no use in attending the lectures on that
subject). He read Euclid’s geometry, finding it
childishly easy; then started on Descartes’ geometry.
He had to work hard to master this, but he threw
himself heart and soul into the study of mathematics.
Soon he was doing original work. While still a stu-
dent he discovered the binomial theorem,® and by
the time he was 21 he had started to develop his
work on infinite series and “fluxions"—the beginning
of caleulus. He was too absorbed in his work, or too
shy, to publish his discoveries—this curious absent-
mindedness or dislike of public argument lasted

! Early play with bricks, toys, stoves, and bathtubs pro-
vides a store of experimental knowledge which we call com-
mon sense. When we say “common sense tells us that” we
are often appealing to such knowledge—though sometimes
to prejudice or tradition instead.

? Binomial theorem:

i aln—1) nin — 1)(n — 2)
(l+z*=14+— t
TR 1-2-3
4+ ...ete. M nisa positive whole number, the series ends

after (n+ 1) terms. If not, the series is infinite and T must
not exceed 1 for the statement to be true. When 1 is much
smaller than 1, we can say (1 4 )" = 1 4 nx, because the
later terms are so much smaller. This provides some useful
approximations such as {1 + 2} = 1 4 3z, if £ is small

VI +x =1+ Y, if x is small
Note how this shows that an error of y% in a factor Y makes
an error of 3¢% in Y?, or of %% in Y.

Examples: When a solid is heated and its linear dimensions
expand by 0.02%, its volume expands by 0.06%. When a
clock’s pendulum expands in length from winter to summer
by 0.02%, its time of swing increases only 0.01%,
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through his life. He was also interested in astronomy,
observing Moon halos and a comet. Later he was to
design and make his own telescopes. He took his
bachelor’s degree, continuing to work on mathe-
matics and optics, helping the professor of mathe-
matics with original suggestions. In the next two
years he turned his attention to the solar system.
He began to think of common gravity extending to
the Moon and holding the Moon in its orbit, like a
string holding a whirling stone. He arrived at the
formula for centripetal acceleration, a = v*/R,
which he needed to test his idea for the Moon—
be found this before Huygens published his version
of it. Then he extended the idea to the planets and
imagined them held in their orbits by gravitational
pulls from the Sun. Thus he guessed at universal
gravitation: attractions between Earth and apple,
Earth and Moon, Sun and Mars, Sun and Earth, . . .
Kepler's Law III told him that these attractive forces
must decrease at greater distances, and that the at-
traction must vary as 1/pistance®. He was already
making his great discoveries. When asked how he
made his discoveries, Newton replied that he did
it by thinking about them.® This seems to have
been his way: quiet, steady thinking, uninterrupted
brooding. This is probably the way in which much
of the world’s greatest thinking is done. Genius is
not solely patience or “an infinite capacity for tak-
ing trouble”; yet patience and perseverance must go
with great ability and insight for the latter to bear
their fullest fruit.

In his use of the Moon’s motion to test his new
theﬂ-ry Newton met a serious difficulty, so he put
that work on one side, shelving it for some years,
and threw himself heart and soul into optics, buying
prisms, grinding lenses, delighting in his experi-
ments on the spectrum.

By the time he was 24 he had laid the foundations
of his greatest discoveries: differential and integral
calculus, gravitation, theory of light and color; but
he had revealed little of his results. Then his mathe-
matics teacher consulted him about a new discovery
in mathematics that was being discussed. Newton
made the surprising reply that he had worked this
out himself, among some other things, some years
earlier. The papers he fetched showed he had gone
further and solved a more general form of the prob-
lem. This made such an impression that, when the
professor retired shortly after, Newton was elected,

® His remark was “by always thinking unto them. I keep
the subject constantly before me and wait till the first dawn-
ings open slowly by little and little into a full and clear light.”
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at 26, to one of the most distinguished mathe-
matical professorships in Europe. In his new post,
he lectured on optics but he still did not publish
his work on calculus. He was invited to give a dis-
course to the newly-formed Royal Society of London
on his reflecting telescope. The members were de-
lighted with his talk and proceeded to elect him a
Fellow. In later lectures he expounded to them his
discoveries concerning color.

It was then, after six years, that he returned to
his work on astronomy. He could now carry through
his test on the Moon’s motion with delightful suc-
cess. Yet for a dozen years more he worked on in
silence. Meanwhile Kepler's Laws were begging for
explanation. The idea of gravitation was in the air.
The members of the new and flourishing Royal So-
ciety were arguing about it. They could prove that
some inverse-square-law force would account for
circular orbits with Kepler's Law 11, but they found
elliptical orbits too difficult. One of them appealed
to Newton for help, and he calmly explained that he
had already solved the problem, that he knew, and
could prove, that an inverse-square-law-force would
require planets to obey all three of Kepler's Laws!

Then came a time of writing and publishing (not
always willingly) and extending his work on me-
chanics and astronomy and the mathematics that
went with it. His friends in the Roval Society per-
suaded him to publish his theory of the solar system.
The book he then produced was far more than that;
it was the world’s greatest treatise on mechanics:
definitions, laws, theorems, all beautifully set forth
and then applied to a general gravitational theory
of the solar system, with explanations, examples, and
far reaching predictions—a magnificent structure
of knowledge. This was the Principia, “The Mathe-
matical Principles of Natural Philosophy.”

An appreciative people made him a Member of
Parliament and later Master of the Mint, This was a
way of rewarding him financially as well as honoring
him. Newton took the work seriously and did some
work on metallurgy, extending his earlier interest
in chemistry.* Through most of his life he seems to
have wanted to be a man of importance and prop-
erty. This appointment, as well as his election to
Parliament, fulfilled the wish in some measure.
When he was 61 he was made FPresident of the
Royal Society and held that very distinguished
office for twenty-four years, the rest of his life. When

4 At Cambridge he had carried out long chemical investi-
gations, recording a wealth of detail, but even he was ham-
pered I,;?: the chaotic state of chemical knowledge and think-
ing at that time.
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he was 65, he was knighted, becoming Sir Isaac
Newton. The people of his country, and their neigh-
bors far and wide, realized that they had more than
a great man, a very great man, and they did their
best to honor him and provide for him in a time
when scientists were only just coming to their own.

When he died at 85, Newton left books on laws
of motion, gravitation, astronomy and mathematics,
and optics, in addition to many writings on religion.
(He was a religious man with devout, though rather
unorthodox views—perhaps something like those
of Unitarians today. Having unravelled astronomy
with magnificent success, he hoped to do the same
for religion. ) He had raised astronomy to an entirely
new plane in science, bringing it to order by a
general explanation in terms of laws which he laid
down and tested. Since we are concerned here with
the growth of astronomy, we now return to an ac-
count of Newton's work in that field.

Laws of Motion

To bring all the heavens into one explanatory
scheme, Newton needed rules for motion. He found
in Galileo’s writing clear statements about force and
motion, with a less clear understanding of the nature
of mass. He re-stated Galileo’s findings in clear
usable form, carefully defining his terms. In his
Principia he published his statements in the form of
two laws, after he had been using them in his work
for some time, and he added a third law supported
by his own experiments.®

In this he was a great law-maker, a codifier, the
Moses of Physics. Of course, Moses stated laws with
an entirely different attitude, codifying heavenly
commands to be obeyed by man, while Newton
was codifying Nature’s ways and man's interpreta-
tion of them. Yet both were extracting, codifying,
and teaching. Moses did not invent all the laws and
and rules he set forth; he gathered them together,

* He probably formulated his Law III, when he found
the need for it in developing mechanics systematically—
others had already put forward the general idea. He tested
it by experiment thus: he allowed moving pendulum bobs to
collide, and measured their veloeities before and after col-
lision. He calculated the changes of momentum and found
these were equal and opposite. Arguing from his own Law II,
he concluded the forces involved must be equal and opposite.
That was an honest test of Law I1I, but he had to make a
housekeeping-assumption about masses: that when several
are put together the total mass is got by adding—one mass
does not shield another, (Attempts to “prove” Law [II
by pulling two spring balances against each other, or by
allowing ingeniously for the effects of air-friction on his
penduloms. He gives a detailed account in his Principia,
available in good translations, and quoted in Magie's Source
Book in Fhysics.

edited them so to speak, and put them clearly so that
the people could understand them. As a great law-
maker he was a great teacher. Newton, like Moses,
was a great teacher, though shy and modest, almost
teaching himself rather than others. Much of his
writing was done originally to make things clear
for himself, but it served when published to clarify,
for the scientists of his day and of ages to come,
what had been difficult and unclear.

Nature and Nature’s Laws lay hid in Night.
God said, “Let Newton be”; and all was Light.
—Alexander Pope.

Newton wrote his laws to be clear, not pompous;
though, since he disliked argumentative criticism
by amateurs, he kept his mathematics tough and
elegant. He used Latin for his Principia because it
was the universal language among scholars. When
he wrote in English (e.g., his book on Optics) he
used the English of his day, and where that now
seems pompous or obscure it is because vocabulary
and usage have changed with time. If he were
writing his laws now he would want them well
worded and would write them in English, avoiding
the involved phrases that lawyers love. Here are the
three laws in their original Latin from the Principis,
followed by versions in ordinary English.

LEX I

Corpus omne perseverare in statu suo quie-
scendi vel movendi uniformiter in directum,
nisi quatenus a viribus impressis cogitur statum
illum mutare.

LEX II

Mutationem motus proportionalem esse vi
motrici impressae et fieri secundum lineam
rectam qua vis illa imprimitur,

LEX III

Actioni contrariam semper et aequalem esse
reactionem: sive corporum duorum actiones in
se mutuo semper esse aequales et in partes con-
trarias dirigi.

Newton added comments and explanations, in Latin,
after each law. Using modern terminology we trans-
late the laws thus:

LAW 1

Every body remains at rest or moves with
constant velocity (in a straight line) unless
compelled to change its velocity by a resultant
force acting on it.
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LAW II

When a force acts on a body, RATE OF CHANGE
OF MOMENTUM, (Mv), varies directly as the
RESULTANT FORCE; and the change takes place
in the direction of that force.

OR

The product mass - AccELERATION varies di-
rectly as the rREsuLTANT FORCE, and the accel-
eration is in the direction of that force.

LAW I1II

To every action there is an equal and opposite

reaction.

Or, when any two bodies interact, the force
exerted by the first body on the second is
equal and opposite to the force exerted by
the second body on the first.

Note that in the English version of Law II, Newton'’s
form which uses momentum is given first. This is
still the best, most general, form today; but the sec-
ond form, using acceleration, is often used in ele-
mentary teaching because it seems simpler. Here
is the reverse change from the momentum version

to F = Ma:

HATE OF CHANCE OF MOMENTUM varies as FORCE

CAMe) L (Mo, —Me)
At At
M{v, —
jﬁ;{i}— e F if M remains constant.

S M{av/at) = F . Ma=xF

Or, in one stride with Newton's own invention,
caleulus:

or, F = Ma.

M — ME'.J_ — Ma if M is constant,
dt dt

We assumed above that the moving mass remains
constant. When the mass is nh:mging the first version,
A(Mv)/At « F, gives correct predictions, and this
is the version that Newton chose. He must have seen
that it would apply to a moving object gaining mass
(e.g., a truck with rain falling into it). He could not
have foreseen its extension to modern Relativity
where we still use it to define force in terms of mass
which increases with velocity—an increase that is
undetectable except at very high speeds.

Earlier views

Motion had been worrying scientists for some
time.
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Leonardo da Vinci (150 years before Newton},
had stated, probably just as guesses copied from
still earlier writers:

(1) If a force moves a body in a given time over a
certain distance, the same force will move half
the body in the same time through twice the
distance,

(2) Or: the same force will move half the body
through the same distance in half the time.

(3) Or: half the force will move half the body
through the same distance in the same time.

Descartes (some 40 years before Newton), stated:

(1) All bodies strive with all their might to stay as
they are.

(2) A moving body tends to keep the same speed
and direction. (He gave a theological reason.)

(3) The measure of a body's force is its mass (not
clearly defined) and its speed.

Query: How many of these early views on motion
seem true to Nature? (At least one of them seems
quite wrong. )

Out of such earlier statements, together with
Galileo’s books and his own thinking, Newton pro-
duced his three Laws of Motion. Today we trust
them to predict many kinds of motion: a ball rolling
downhill, a rocket starting, planets in their orbits,
and even streams of electrons deflected by fields.
Einstein has added a modification, but the original
summaries are very close to the real behavior of
Nature,

Newton's Laws: Natural Truths or Definitions?

Like any modern scientist, Newton tried to give
clear definitions of velocity, momentum, and force.
In science, a definition is not an experimental fact,
or a risky assumption or a speculat{vﬂ idea. It is a
piece of dictionary-work explaining as precisely as
possible how we are going to use a word or phrase or
even an idea. For example, we define “acceleration”
as “Av/At” and thereafter whenever we say “acceler-
ation” we mean, definitely, caN oF vELoCITY/TIME
TAKEN, 0T RATE-OF-GAIN-OF-VELOCITY, and we do not
mean something else such as Av/As, or something
vague such as “going faster.” We define “gravita-
tional field-strength at a point” as “Force, due to
gravity, on unrr mass, placed at that point”; and
that is both a deseription of what we mean by field-
strength and a definite statement showing how it
is measured.

Newton’s Laws were clear, powerful rules, based
on observation of mechanical behavior, meant to be
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used to predict other cases of mechanical behavior.
However, they were not merely statements extracted
from experiment. They incorporated definitions and
descriptions of words and ideas such as mass and
momentum; and they provided a consistent scheme
of prediction in terms of those definitions. Defini-
tions often take part in theory like that. For example,
two centuries after Newton the science of thermo-
dvnamics was developed to produce amazing pre-
dictions of heat-properties, in terms of a tempera-
ture scale. But this scale had to be a particular scale
defined in the scheme of thermodynamics itself. We
find disagreement when we compare this scale (the
Kelvin scale) with other scales such as that given
bv the mercury thermometer, or that given by the
gas thermometer. Yet we cannot say one scale is
“right” and another "wrong.” Each scale is defined
clearly and unambigu-uusl}', and all three are Equall:,r
right as ways of giving a precise measure to man's
vague sense of hotness, But when we have a par-
ticular use in mind one scale may be best, and when
we have a particular theory we may be restricted
to the scale whose definition is in::nrporated in the
theory. In using thermodynamic theory and its pre-
dictions we must use the Kelvin scale of tempera-
ture. Furtunate[}' the Kelvin scale is almost the same
as the common mercury thermometer's scale, so we
can put the predictinns to practical uses.

This close interweaving of experiment and defini-
tion to make the structure of a theory is character-
istic of modern science. So if you examine Newton's
Laws eritically you may come to the conclusion that
Law I merely Explains what is meant by force—in
fact, defines the nature of foree—and that Law 11
defines the measurement of either force or mass,
Then perhaps the laws are just our own inventions:
a put-up job? That is going too far, Both laws refer
to real nature as revealed by experiment and there
is a solid core of fact in them—though that may be
hard to disentangle lngic‘a"}' from the definitions
involved.

Two centuries after Newton stated his laws,
further doubts and difficulties began to appear.
Newton had adopted “Galilean relativity.” In his
mechanies it did not matter whether the observer
was at rest or moving with constant velocity, Yet
Newton thought abselute space must be identifiable
by rotational effects. (If the Earth were at rest with
all the heavens spinning around it once a day, should
we observe the Earth's bulge, differences of gravity,
Foucault's pendulum slewing around?) So Newton
wrote of absolute motion, forces producing absolute
accelerations—not just accelerations relative to some
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moving frame. Yet where is the fixed, unmoving
frame in space? Earth, Sun, stars, may all be mov-
ing. Is there a real fixed frame? If we cannot find
one, we may be foolish to talk in terms of it. Out of
these doubts grew Relativity theory.® In your pres-
ent studies of mechanics you would be wise to forget
these doubts and take Newton's Laws as good
simple working rules. In using them for solving
problems, remember that they are at best carefully
worded summaries of agreed definitions and ex-
perimental knowledge. They are not sacred laws
to be cited to make things true! All they do is
remind us how to interpret past experiments, and
how to predict what will happen in some future
ones. At the same time they teach us useful ideas
or concepts, such as mass and momentum.

Newton and Planetary Motion

Newton formulated his laws so that he could use
them. Turning then to astronomical problems, he at
once had the answer to the problem which had mis-
led the Greeks and had puzzled Kepler and even
Galileo: “What keeps the Moon and the planets
moving along their orbits? Crystal spheres, natural
circular motions, rotating spokes of magnetic influ-
ence, vortices—had all been suggested. Newton saw
that these explanations provided an agency where
none is needed. To keep a planet moving, no force
is needed (Law I). Left alone it would just go
straight on forever. But a force is needed to pull its
path into a curved orbit, away from the no-force
straight line. How big an inward force is needed?
And what agency provides that force? These were
Newton's new questions. If Law II holds for this
motion, the required force F must be mass - accEL-
eraTion. But what is the acceleration for this motion
in an orbit? Newton attacked uniform motion in
circular orbits first. (The orbits of the Moon and
most planets are nearly circular.) He arrived at the
same result as others who were working on the same
problem around that time: accELEraTION, directed
inward along the radius, = v*/R, where v is the or-
bital speed and R the orbit radius. (See Ch. 11 for
the derivation of this from the definition of accelera-
tion. Geometry is involved, but no knowledge of
force or mass. Newton's proof was an unusual one,
treating the moving body as a projectile and each
short piece of the circle’s circumference as a "nose”
of the projectile’s parabola.) Then the force must be

# Simple forms of Einstein's Relativity deny any fived
framework of “space” but more thoroughpoing discussions of
General Relativity still refer their predictions ({such as the

slow slewing of Mercury’s orbit) to a framework made by
the most distant stars.
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Mv'/R, inward along the radius. So the Moon,
moving steadily around a circular orbit, is always
amelerating inward toward the Earth, yet never
getting any nearer. You may think of it as falling
in to the circle from a straight tangent path, reach-
ing the orbit just in time to start falling in enough
to reach the next part of the orbit, still without
getting any nearer. If this seems paradoxical, re-
member that any projectile thrown in a parabola
is accelerating down (“g”) just as much as ever at
the nose or vertex of its parabola—yet at that
point it is not moving upward or downward, not
getting any nearer the ground, Thus, it is possible
to have acceleration without any velocity at the
moment in its direction. The Moon's orbit is a series
of “noses,” so to speak.

Now came Newton’s guess to explain what pro-
vides this force. He suggested that the agency which
makes bodies near the Earth fall may also pull the
Moon in to follow its orbit. There is a story, prob-
ably true, that he was thinking about this problem
while sitting in an orchard, and an apple falling
on his head suggested the answer. We call such
pulls “gravity,” a word which just means heaviness
or implies some connection with weight, and this
name in itself is no explanation. The commoner

"
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word, weight, is better for most purposes. Newton
suggested that it is the Moon's weight that keeps it
in its orbit. If the Moon were very near the Earth’s
surface its weight would give it an acceleration,
“g," about 32 ft/sec*—the same for the Moon as
for an apple, except for the bulkiness of the Moon
spoiling such an experiment. Does the Moon out in
its real orbit have this acceleration? Is ¢*/R for the
Moon about 32 ft/sec®® The Moon takes a month
of 27.3 days to travel once around its orbit relative
to the fixed stars. Newton knew the Moon's orbit-
radius, R, was 60 Earth's radii, 60r. He had a rough
value for the Earth’s radius, r. So he could calculate
the Moon's speed, v, in the form (circumference
2-R)/(time T, one month) and thence the Moon's
actual acceleration v®/R. The answer is far smaller
than 32 ft/sec?. If “gravity” is responsible, it must
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be much weaker out at the Moon's orbit. Newton
guessed at a simple dilution-rule, the inverse-square
law. This is the rule governing the thinning out of
light (and radio) and sound, and the force due to a
magnetic pole or electric charge—the rule for any-
ﬂ'l.i.ng that spreads out in straight lines from some
“source” without getting absorbed.” He had got a hint
by working backwards from Kepler's third law! He
tried this invchE-squarc-law rule, For a Moon at
60 Earth's radii, instead of an apple at only one
Earth’s radius from the center of the Earth, the
pull should be reduced in the proportion of 1:.1,
or 1:— 12— Then the Moon's acceleration should be

I
not 32 ft/sec® but 22 ft/sec?. You can easily com-

L

pute v*/R for the Moon and will find that it comes
out very close to that “predicted value.” Think what
a joy it would have been if you had discovered this
agreement for the first time. It is a successful test
of a combination of F = Ma and 2 = v*/R and the
inverse-square law of gravitation. You would have
made a first check of a tremendous theory; a great
discovery would have been yours.

Yet Newton himself, eager but far-seeing, was
not entirely happy about this test. He mysteriously
put the whole calculation aside for some years. He
was probably worried about calculating the attrac-
tion of a bulky sphere like the Earth. He diluted “g”

by a factor 607, but this dilution, 1 to L, assumes

that the body near the Earth, with "g" = 32 ft/sec?,
is one Earth's radius from the attracting Earth. Does
the great, round Earth attract an apple as if the
whole attracting mass were 4000 miles below the
surface, at its center? Some of the Earth's mass
is very near the apple and must pull very hard
(according to an inverse-square law, which for
the moment is being assumed ). Some of the Earth
is B000 miles away and must pull very little.

T Suppose a small sprayer acts as a butter-gun and projects
a fine spray of specks of butter from its muzzle, in straight
lines in a wide cone. If the cone just covers one slice of bread

L
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Isvense-Sguane Law

held one foot from the muzzle, it will cover four slices at 2
feet or mine slices at 3 feet, &c.; therefore, for specimen
slices of bread placed 1 foot, 2 feet, 3 feet, . . . from the
muzzle, the thickness of buttering will be in the proportion
1:%:%. . .. This is the “inverse-square law of buttering.”
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Fic. 22.3. NewTton's PROBLEM: ATTRACTION OF SPHERE
Apple being attracted by various parts of the Earth.
{Four specimen blocks of Earth are shown.) What
will be the resultant, for whole Earth?

Other parts of it pull in slanting directions, What
is the resultant of all these pulls? Here was a
very difficult mathematical problem; the adding up
of an infinite number of small, different pulls. It is
easily done by integral calculus, but that fine mathe-
matical tool was just being constructed. Newton
himself invented it, for this and other purposes in
his work, simultaneously with the German mathe-
matician Leibniz. He shelved his Moon calcula-
tion till he knew from caleulus that a solid sphere
attracting with inverse-square-law forces attracts as
if its mass were all at its center. “No sooner had
Newton proved this superb theorem—and we know
from his own words that he had no expectation of
so beautiful a result till it emerged from his mathe-
matical investigation—than all the mechanism of
the universe at once lay spread before him.”* Then
he could attack the Moon's motion again and test,
in one single calculation, his laws of motion, his
formula, v*/R, and his great guess of inverse-square-
law gravity as the cause of the Moon's round orbit.
This time he was overjoyed with the calculation.
The agreement was excellent; the needed force is
provided by diluted gravity. He had explained the
mystery of the Moon’s motion.

Newton's Explanation

In one sense Newton had explained the mystery,
by saying that gravity holds the Moon in its orbit.
In another sense, he had not explained anything.
He had produced no explanation whatever of grav-
ity, no “reason why” to explain the mystery of
gravity itself. He had only shown that the same
agency causes, or is concerned in, both an apple’s
fall and the Moon's motion. This finding of general

8 ]. W. L. Glaisher, on the bicentenary of the Principia,

1887, quoted in Dampier, A History of Science [ Cambridge
University Press, 1952), p. 153.

causes common to several things is called “explain-
ing” in science. If you are disappointed, reflect that
this process does simplify our picture of Nature and
note that in common speech “to explain” means to
make things clearer. It also means to give reasons
for, and in Newton's work, as in most science, the
basic reasons or first causes do not emerge; but
things that seemed to have different causes are
shown to be related. Thus, while we learn more
about Nature by finding these common explana-
tions, the basic questions of how the Universe
started, and why things in it behave just so, remain
unanswered,

Universal Gravitation

So, plain gravity—or rather diluted gravity—is
the tether that holds the Moon in its orbit. How
about the planets? Does a similar force hold them
in their orbits? Since they move round the Sun
rather than round the Earth, the force must be a
Sun-pull not an Earth-pull. To deal with this, New-
ton guessed at universal gravitation: a umiversal
set of mutual attractions, with an inverse-square
law. He said he reasoned it must be that, by work-
ing backwards from Kepler's Law IIL

Every piece of matter in the Universe, he guessed,
attracts every other piece of matter. He knew,
from the Myth-and-Symbol experiment, that the
weights of bodies (Earth-pulls on them) are pro-
portional to their masses. Thus the Earth’s attrac-
tion varies as the mass of the victim. So the at-
traction exerted by Earth of mass M, on mass M,
varies as M. If the attraction is mutual (Law IIL),
symmetry vouches for a factor M, to match M,. For
changes with distance, the Moon’s motion had given
a single successful test of inverse-square attraction.

UMNIVERSAL GRAVITATION
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So Newton tried a factor 1/d® in his general law.
Thus he formulated his Law of Gravitation:

MM,
dz

:IMZ

F = —
D

or F = (constant) -

MM,

a2
where G is a universal constant, M, and M, are the
two masses and d is the distance between them.
F is the force with which each pulls the other.
Note that G, the universal constant, is quite a dif-
ferent physical quantity from g, the local value of
“gravity.™

Would this general law account for planetary
motion? Newton showed it would. He proved that
such an attraction would make a planet move in an
ellipse with the Sun in one focus. It was easy (for
him) to show that Kepler's other two laws also
followed from his guess of universal gravitation.
(These laws hold for a sun attracting alone. Then
we must add the effects of other planets attracting
the moving planet. In the solar system those are
trivial compared with the pull of the massive Sun—
trivial but far from negligible in the precise account-
ing of modern astronomy. )

Thus Newton carried his simple idea for the Moon
far out to the whole planetary system. He assumed
that every piece of matter attracts every other piece,
with a force that varies directly as each of the two
masses and inversely as the square of the distance
between them: and from that he deduced the whole
detailed motion of the solar system, already codified
in laws that had been tested by precise measure-
ments over two centuries. Satellites of planets
formed a similar scheme. Even comets followed
the same discipline. All these motions were linked
with the gravity that was well known on Earth
Newton explained the heavenly system in a single
rational scheme.

This is so great an achievement that you should
see for yourself how Newton derived Kepler's three
laws—and then put them to further use. The first
proof, the ellipse, requires either calculus, which
Newton devised, or cumbersome geometry (which
Newton had to provide as well, to convince those
who distrusted his new calculus). So, with great

a F=G

® For the case of the Earth and the apple, M, is the Earth's
mass and M. the apple’s; and their distance apart is the
Earth's radius, r. So the apple’s weight, M:g, must be
G M\M./r. This shows the relation between g and G:

g =GM/r

ACCELERATION (Or FIELD-STREMGTH), 2,
CHAVITATION CONSTANT * MASS OF EARTH

{ RADIUS OF EARTH }*
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regret, we shall not give it here. We shall now de-
rive Kepler's Law III, and then Law II—equal areas
in equal times. Law II follows from any attractive
force-law, provided the force always pulls directly
from planet to Sun; but Kepler's first and third
laws fit only with inverse-square attraction.

Kepler's Law 111

To deduce Kepler's third law, Newton had merely
to combine his laws of motion with his law of uni-
versal gravitation. For elliptical orbits, calculus is
needed to average the radius and to deal with the
planet’s varying speed, but the same law then
follows.

Pﬂ F='|:"MR-:“

Fiz. 22-5, PLaneTaRy MoTiom

For circular orbits, suppose a planet of mass m
moves with speed v in a circle of radius R around a
Sun of mass M. This motion requires an inward
resultant force on the planet, mv?/R to produce its
centripetal acceleration v*/R (see Ch. 11). Assume
that gravitational attraction between sun and planet
just provides this needed force. Then

Mm mu?®
G —— must = ——
d? R
and distance d between m and M = orbit-radius, R.
circumference 2-R
Butv = - - =
time of revolution T

where T is the time of one revolution
Mm (2=R/T)? Mm  4"mR?
F R S CR TR
To look for Kepler's Law 111, collect all R's and T's
on one side; move everything else to the other.

. B _GM

T
Now change to another planet, with different orbit
radius R' and time of revolution T°, then the new

LG
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value of (R')*/(T")* will again be GM/4=*; and
this has the same value for all such planets, since G
is a universal constant and M is the mass of the sun,
which is the same whatever the planet. Thus R*,T*
should be the same for all planets owned by the sun,
in agreement with Kep]er's third law. For another
system, such as ]upiter's moons, M will be different
{ this time the mass of Jupiter) and R?/T? will have
a different value, the same for all the moons.

The planet's mass, m, cancels out. Several planets
of different masses could all pursue the same orbit
with the same motion. You might have foreseen
that—it is the Myth and Svmbol story on a celestial
scale.

With any other law of force than the inverse-
square law, R*/T* would not be the same for all
pIanets. An inverse-cube law, for Example, would
make R*/T? the same for all; then values of R*/T®
would be proportional to (1/R), and not the same
for all planets. In fact, as Kepler found, they are
all the same. The inverse-square law is the right one.

Calculus predicts Law 111 for elliptical orbits too,
where R is now the average of the planet’s greatest
and least distances from the Sun.

Kepler's Law 11

Here is a crude derivation, due to Newton. We use
Newton's Law 1I, ciaxce oF sosveENTUNM = F o AL
Then changes of me are vectors, along the direction
of F, proportional to F.

First suppose we have a planet moving under
zero force. We can still draw a radius to it from a
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Fie. 22-8,

{a! Momox oF o PLANET WITH N0 ATTRACTION.
Planet P moves in a Stmight line with constant 511r_-|;-<1.
SF sweeps out equal areas in equal times,

ibY Tre Prorerty ofF Triaxcies Usen Hene. All
triangles on the same base and with the same height
have the same area. Another version: If umng]es have
the same base and their vertices lie on a line parallel
to the base, their arcas are equal,

non-attracting sun, S | The planet, P, moves with
fixed speed in a straight line, AF (Newton Law I).
Mark the distances travelled by the planet in equal
intervals of time: AB, BC, CD, . . . etc. Since the
speed is constant, AB = BC = . . ., etc. Consider
the areas swept out by the radius SP. How do the
following triangles compare, 7AB, SBC, SCD? All
these triangles have the same height, SM, and equal
bases, AB, BC, CD. Therefore all their areas are
equal: the spoke from S sweeps out equal areas in
equal times. This simple motion obeys Kepler's sec-
ond law.

Now suppose the planet P moves in an orbit be-
cause the Sun pulls it inward along the radius PS.
But, to simplify the geometry, suppose the attraction
only acts in sudden big tugs, for very short times,
leaving the planet free to travel in a straight line
betweenwhiles. Then it will follow a path such as
that shown in Fig. 22-7. Suppose it travels AB, BC,

Fic. 22-T. MoTiox oF a4 Praxer wite Tucs oF ATTRACTION
Without tug at B, P would move on to X.

CD, ete., in equal times, the inward tugs occurring
abruptly at B, at C, at D, ete. The planet moves
steadily along AB; then, acted on by a brief tug at
B, along BS, it changes its velocity abruptly and
moves {with new speed) along BC. Except for the
tug at B the planet would have continued straight
on, as in the simple case discussed above, On this
continuation, mark the point X an equal distance
ahead, making AB and BX equal. But for the tug
at B, the planet would have travelled AB and BX in
Equa] times, and the radius from S would have swept
out equal triangles, SAB and SBX. But in fact the
planet reaches C instead of X. Does this change
spoil the equality of areas? If the planet travels to C,
the two areas are SAB and SBC. Are these equal?
To change the motion from along AB to along BC,
the tug at B pulls straight towards the Sun, along
BS. This tug gives the planet some inward mo-
mentum along BS, which must combine with the
planet’s previous momentum to make the planet
move along BC. The planet’s previous momentum
was along AB.
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Therefore,
uriginnl gain of new
momentum ++ momentum  must =  momentum
along AB inward along BC.
along BS

Newton's Law Il reminds us that momentum is a
vector. So the adding must be done by vector addi-
tion (see Fig. 22-8). As the planet’s mass is constant,
we may cancel it all through and use velocities thus:

velocity
along AB

gain of velocity
along BS

_ velocity
e along BC

Let us use the actual distance AB to represent the
planet’s velocity along AB. Then, BX must also
represent this velocity and BC must represent the
planet’'s new velocity along BC (since all these are
distances travelled in equal times). Using this scale,
we make a vector diagram (see Fig. 22.9) express-

A B
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Fic. 22-9. Cory oF Fic. 22-8,
wITH VECTORS TO SHOW VELOCITIES AT B
Scale has been chosen so that AB or BX represents
original velocity along AB, before tug acts at B.

ing the equation above. Use BX (= AB) for the
original velocity before the tug. Use BC for the
velocity after. The change of velocity must be shown
by some vector BY along BS straight towards 5.
Complete the parallelogram, with BC the diagonal
giving the resultant. Because this is a parallelogram
the side XC is parallel to BY, so C lies on a line
parallel to BS.

Now look at the triangles SBC and SBX, in Fig.
22-10. They have the same base, BS, and lie be-
tween the same parallels, BS and XC, so they have
equ.a] areas. Therefore, area of SBC = area S5BX,
which = area SBA. Therefore, the triangles SBA
and SBC have equal areas. By a similar argument,

XCf to BS

Fic. 22-10.
(a) Fic. 22-7, redrawn with C in its
proper place on XC parallel to BY or BS.
(b) Fic. 22-10a, redrawn with equal-area triangles shaded.

the triangles SBC and SCD have equal areas, so
all the triangle areas are equal, and Kepler's second
law does hold for this motion, This argument only
holds if all the tugs come from the same point S.
1f we now make the tugs more frequent (but corre-
spondingly smaller) we have an orbit like Fig. 22-11,
nearer to a smooth curve, and Kepler's law still
holds, provided the tugs are directed straight from
planet to Sun. If we make the tugs still more fre-
quent, we approach the limit of a continual force,
with an orbit that is a smooth curve. The argument
extends to this limit, so Kepler's Law II holds for a
smooth curved orbit.

Fic. 22-11.

The equal time-intervals from A to B to C . . . are much
shorter. Orbit is nearer to a smooth curve. With a
smooth-curve orbit, the segments swept out in equal
times may each be regarded as a bunch of small triangles
like those here. So the segments must have cqual areas.

Kepler's Law 11 and Rotational-momentum.

Newton deduced Kepler's second law from his me-
chanical assumptions. The inverse-square law is not
necessary; any central attraclion, directed straight
to Sun as center, will require this law of equal areas.




136

In advanced mechanics, this is treated as a case
of Conservation of Rotational-momentum (or An-
gular Momentum ). What is rotational-momentum,*®
and why are we sure it is conserved? Here is a short
account, too rough to be convineing but intended to
give you an idea of this fundamental conservation
law. For motion along a straight track, we have
quantities such as: pisTANCE (5), VELOCITY (0), AC-
CELERATING FORCE (F), . .., and laws or relations
such as F - At = A(Mv), ..., and Principles such as
Conservation of Momentum. When we have a body
that is only spinning without moving along, we can
apply Newton's Laws to each moving part of it and
produce an equivalent scheme. Instead of pisTance
MOVED we have ANCLE TURNED (in revolutions or in
radians ). Instead of veLocrTy we have RATE-OF-RO-
TATION (in r.p.m. or in radians/sec). Instead of
FORCE we have the MOMENT OF FORCE OF TORQUE,
which is Force - arRM—the common-sense agent to
make a thing spin faster and faster. Then instead of

FORCE * TIME = GAIN OF MOMENTUM,
Newton’s Law II gives
TORQUE = TIME = GAIN OF ROTATIONAL-MOMENTUM,

Guess at rotational-momentum and you will prob-
ably guess right: just as TORQUE is FORCE + ARM
(F »r), s0 ROTATIONAL-MOMENTUM is

' For a spinning body we might call this “spin-momen-
tum” or simply “spin”—which we do for an electron—but,
for a planet swinging around a remote Sun, we use the gen-
eral name “rotational-momentum.” This name applies to
spinning objects and objects revolving in an orbit.

(@) STRAIGHT FORWARD MOTION

- — V
® . O 0.
\l‘i‘ﬂ:la}fj = dustance /time Ft = almv]

Newlon Law I

MOMENTUM + ARM, (Muy + r). Multiply F and Mo
each by the arm from some chosen axis, and the new
rotational version of Newton's Law 11 is just as true.
In all this, the arm is the perpendicular arm from
the axis to the line of the vector force or momentum.

Now suppose two bodies that are not spinning
collide and exert forces on each other so that one
body is left rotating. The rorces are equal and op-
posite (Newton Law III); and the arm from any
chosen axis is the same arm for both the forces.
Therefore, the TorQUESs around that axis on the two
bodies are equal and opposite during the collision.
Therefore, the rRoTaTIONAL-MOMENTUM gained by
one body must be just equal and opposite to the
ROTATIONAL-MOMENTUM gained by the other. There-
fore, the total roTATIONAL-MOMENTUM generated
must be zero. If one body develops rotation, the
other body must also develop a counter rotation
around the same axis. In any collision or other inter-
action: rofational-momentum is conserved—it can
only be exchanged without loss, or created in equal
and opposite amounts.

Therefore, an isolated spinning body (eg., a
skater whirling on one toe) cannot change its
rotational-momentumn. It cannot change the total
of all the Mv-r products of its parts. Suppose it
shrinks (skater draws in his outstretched arms). The
“r" decreases for the parts drawn in, and if the
total rotational-momentum stays constant, Mo must
increase: the body must spin faster. Watch a skater.
Whether he wishes to or not, he spins faster when
he draws in his arms or curls up an extended leg.

IN ANY COLLISION:

Total myv remains consfant
Conservatim @‘ mementum _

- ————

(f) ROTATIONAL MOTION

IN ANY COLLISIOMN:

Chosen axs #‘ l

i——

-

N Axis
J LY
*‘%' “@ﬁ" Equal and

F i ' , :

ora _,1II o ¥ [Fr]- at = A [mtmmnf] {P"ﬂ' Axis Spin ’ oppesite cﬁdnjf.i )
j::nrnkfr, " L.
rotasimal momendum = mover Newton Law I l Total rotational momentum remains constant

Fie. 22-12. Roramow
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Fic. 22-13. A Semwwine Bawr, with no torque acting on it
from outside, keeps its rotational-momentum constant
in size and direction. (e.g. spinning Earth).

“An isolated spinning body cannot change its
rotational-momentum.” Apply that to the spinning
Earth. Apply that to a man spinning on a frictionless
piano stool. Turn yourself into an “isolated spinning
body” as follows: pivot yourself by standing on one
heel so that you can spin around several times before
fricion stops you. (Better still, stand or sit on a

A7 R

Fic. 22-14. Maw on “Frcmioniess” Prvor
changes speed of spin when he pulls load in nearer to axis.

turntable that rotates freely.) Hold a massive book
at arm’s length. Now, as you spin, bend your arm
and pull the book suddenly toward you. Notice
what happens to your speed. Here is rotational-mo-
mentum being conserved. But here is Kepler's Law
II: the book is a “planet” drawn nearer by you as
“Sun” as it revolves in its orbit. (Your own great
mass is hopelessly involved in this rough test, so you
will not observe Kepler's Law accurately. )

For a real planet, if the Sun pulls along the direct
spoke, that pull has no torque around an axis
through the Sun; so that pull cannot change the
planet’s rotational-momentum around the Sun. A
real planet has rotational-momentum Mup + r around
the Sun, where r is not Kepler's spoke but the
perpendicular arm from the Sun to the line of ve-
locity v (the orbit tangent). As the planet moves
nearer the Sun, r decreases and, to keep Muvr con-
stant, v must increase in the same proportion. Sup-
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pose that in a very short time ¢t the planet moves
along a short bit of arc s with velocity v = s/t. Then
the planet’s rotational-momentum around the Sun
is M(s/t)-r, or Msr/t. But 5.r is BASE + PERPENDI-
cuLAR HEIGHT for the thin triangle swept out by the

PFLANET

Fic. 22-15. BoraniosaL-MoMeENTUM oF PLANET
Equals mur=m+{s/t)*r=m (TWICE AREA
SWEPT OUT | /TIME.

spoke in this time. That is twice the triangle’s area.
Therefore,

planet’s ROTATIONAL-MOMENTUM
(»ass, M) (twice the area swePT 0UT by spoke )
TIME, &

AREA SWEPT QUT
TIME

change: the RATE-OF-SWEEPING-OUT-AREA is constant;
KepIer’s Law II must hold. Conversely, when Kepler
discovered his equal-areas-in-equal-times law, he
was showing that the only force on the p|anet is
directed straight towards the Sun, and that there
is no other kind of force such as a friction-drag due
to viscous mther.

Of all the great conservation-rules of mechanics—
holding the total constant for mass, momentum, ete.
—the Conservation of Rotational-momentum is as
universal as any. In atomic physics we shorten it mis-
leadingly to Conservation of “Spin” and expect it to
hold through thick and thin, even in violent inter-
changes between atomic partir:]es and radiation,

For direct pull by Sun, cannot

Fruitful Theory

Newton formed his theory: he framed his laws
as starting points by intelligent guessing helped by
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hints from experimental knowledge; then he de-
duced consequences, such as Kepler's laws, then
tested those deductions against experiment. In the
case of Kepler's laws, the experiments were already
done. Tycho's observations had provided rigorous
tests; so when Newton deduced them his experi-
mental tests of theory were ready for him. With
these successes, there seemed little doubt that the
theory was “right.” By this stage it seemed worth
more than the separate facts that went into it. It
gave a simple general meaning to planetary be-
havior by linking it with the familiar facts of falling
bodies, and it offered hopes of many further predic-
tions. Newton, armed with powerful mathematical
methods and guided by an uncanny insight, applied
his theory to a variety of problems in his book the
Principia. Some of these are described below,

1. Masses of Sun and Earth. Newton calculated
the mass of the Sun in terms of the Earth's mass.
( The Earth’s mass itself was not known and could
not be estimated without some terrestrial measure-
ments like Cavendish’s. See Ch. 13.) His calenlation
can be carried out as follows. Subseripts , and , and
w refer to Sun and Earth and Moon.
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Fie. 22-186.

CaLcuLaTvg THE Batio oF Sus’s Mass o Eanta's M,/ M.,
by using the motion of the Moon. The Moon's mass Ma
cancels out. For each motion, Earth-zround-Sun and
Moon-around-Earth, just write an equation stating that
the needed force Mo2/R is provided by gravitation,

For the Earth's motion arcund the Sun in its
yearly orbit,

MM, Ve 4x*R*
G e f. R M, R
M — 4="| R,’ | Note that the Earth's
TTETG| TS mass, M,, cancels

For the Moon's motion around the Earth in its
monthly orbit,

MM, Ug? 4x*Rn?
G = - rm
Rt Mo R. Mo RoTo*

M _ 4" B | Again, the Moon's
TG Te? |mass, Mu, cancels

Therefore, dividing one equation by the other
M, _[ R*/T. ]_ R> Ta’

M, Bo'/Te: | BRa® T

DISTANCE OF SUN | 1 month |’
= | bisTancE oF mMoon 1 year
With the known wvalues of these times and orhit

radii, the ratio of the Sun's mass M, to the Earth's
mass M, can be calculated.

2. Masses of planets. Newton could make similar
estimates for the mass of Jupiter or any other planet
with a satellite, in terms of the Earth’s or Sun’s mass.
(Our own Moon has no obvious satellite yet; so its
mass, which cancels out in the first equation applied
to it, seems difficult to find.)

3. “g" at equator. Since the Earth spins, an object
should seem to weigh less at the equator than at the
pole, because some of its weight must be used to
provide the needed centripetal force to keep it mov-
ing in a circle with the Earth’s surface. An object at
rest on a weighing scale must be pushed up by the
scale less than it is pulled down by gravity (its
weight ). Therefore, the object’s push down on the
scale (which is what the scale indicates), must be
less than its weight by the small centripetal force
mv*/R. The Earth’s gravitational field-strength must
seem less. Newton calculated this small modification
of “g," which is now observed, together with the
effects of the Earth’s spheroidal shape.

4. The Earth’s bulge. Newton calculated the bulg-
ing shape of the Earth, arguing as follows. Suppose
the Earth was spinning with its present motion when
it was a pasty half-liquid mass. What shape would
it take? To answer this, consider a pipe of water
running through a spherical Earth from the North
Pole to the center and out to the Equator. If this
were filled with water, just to the Earth’s surface
at the North Pole, where would the water-level be
in the equatorial branch of the pipe? The water pres-
sure at the bottom of the polar pipe is due to the
weight of the water in that pipe; and this pressure
pushes around the elbow at the bottom and out along
the other branch, trying to push the column of water
up that branch. The weight of water in that branch
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Fiz. 22-17. To Estivate THE Burce oF a Seivnmic EarTH,
imagine a pipe of water running from North Pole to center
and out to equator, Calculate the extra height of
water in equatorial branch needed to provide mo®/R
forces for spin. This gives extra radius of hulge for
a pasty Earth congealing while spinning.

pulls it down. But these two forces on water in the
equatorial branch must be unequal. They must differ
by enough to provide an inward centripetal force
to act on the water in that pipe, which is being
carried around with the spinning Earth, The wcight
of the water in that branch must exceed the upward
push from the water at the elbow by the amount
needed for me®/R forces. Therefore, the water col-
umn in this pipe must be taller than that in the
polar pipe. The equatorial pipe must extend out
beyond the Earth's surface to carry the extra height
of water. Newton calculated the extra height and

SPHERICAL EARTH wwﬁm;naﬁ FYen gcjpﬂuﬂrﬂ.
= "“'_a e
Y ® 5

CENTURIES LATER o would 1w|:rtﬂ argund
ks orful wilh b anas af same R
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found that 14 miles would be required. He argued
that the Earth at an early pasty stage would bulge
out about this distance. This bulge had not yet been
observed. A short time later, measurements of ihe
Earth confirmed the prediction. Jupiter shows a
more marked elliptical shape.

5. Precession. Newton explained the precession
of the equinoxes thus: the axis of spinning Earth is
made to slew around in a cone by the pulls of Sun
and Moon on its equatorial bulge The Earth’s axis
is tilted and not perpendicular to the ecliptic plane
of the Earth’s orbit; so the equatorial bulge is sub-
ject to unsymmetrical gravitational pulls by Sun and
Moon. Here we shall describe the effect of the Sun's
pulls. The Sun would pull a spherical Earth evenly,
as if all the Earth's mass were at its center. The re-
sultant pull would run along the line joining centers
of Earth and Sun, whether the Earth spins or not
(Fig. 22-19a). A spheroid with an equatorial bulge
is subject to small extra pulls on the bulge (Fig.
22-19b). These pulls are uneven, the largest pull
being on the portion of bulge nearest the Sun (Fig.
22-19¢). These small extra pulls are equivalent to
an average pull on the whole bulge, along the line
of centers, plus a small residual force, f, which tries
to rock the spin-axis ( Fig. 22-19¢). Since the Earth'’s
axis is tilted, this force f is a slanting one, off center,
with greatest slants at midsummer and midwinter.
When such a slanting pull acts on any spinning
body it does not succeed in rocking the body over
in the expected way. Instead, it produces a very
curious motion, called precession, which you have
seen when a spinning top leans over while spinning
fast. The pull of gravity on the leaning top does not

OBLATE EARTH frecesses.
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Fic. 22-19. Pnecession
{a) The Sun would pull a spherical Earth with a
central pull along line joining centers,
whether the Earth spins or not.
(b) The Sun exeris extra unequal
pulls on the bulge of oblate Earth.

(¢) A

{c) The Sun pulls the nearer part of
the bulge harder than it pulls the re-

maoter part.

-
:L: - These small extra pulls are equiva-
j' lent to some extra pull along the line
of centers and a small residual force,
. f, which tries to rock the Earth’s axis,
1
2

Y As with any spinning body, the ef-

fect of any force, f, tending to tilt the
spin-axis is NOT to tilt the axis but to
make it “precess” instead around an-
other axis.

J
A3

make it fall over, but makes the spin-axis slew slowly
round a cone. Newton showed that the attractions
of the Sun, and even more the Moon, would make
the Earth's axis precess round a cone of angle 23%°
taking some 26,000 years to complete a cycle (Fig.
22-19¢). Here was a deduction of the precession
that was observed by the Greeks and expressed
more simply by Copernicus, but entirely unex-
plained until Newton's day. It had seemed such a
strange motion that men must have had little hope
of finding a simple explanation. Yet Newton showed
that it is just one more result of universal gravita-
tion: the spinning Earth is made to precess like an
unbalanced top.

Demonstration Experiment

Fig. 22-20 shows an experiment to illustrate pre-
cession of the Earth. A frame carrying a rapidly
spinning flywheel is hung on a long thread. The
thread and frame enable the wheel to twist freely
about a vertical axis or about a horizontal axis (in
the frame, perpendicular to the vertical axis). Left

orougnt o you by ne Mational Library of the
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Fic, 22-20.
ExpERIMENT TO ILLUSTRATE THE PRECESSION OF THE EARTH

alone, the tilted spinning wheel continues to spin
without other motion. Then a rubber band is at-
tached so that it pulls the frame with a force that
tries to rock the spinning wheel about the horizontal
axis; the wheel does not obey the rocking force in
the obvious way, but instead precesses around the
vertical thread as axis.

Explaining precession of a gyroscope

The Earth, and a spinning top, and a “mysterious
gyroscope” all precess in the same way, for the same
reason (Fig. 22-21). Precession looks mysterious,
but it is just a complicated example of Newton’s
Laws applied to the parts of a spinning body. With
no off-center force, the body retains its spin, un-
changing in size or direction. With an off-center
force making a rocking torque, we can compound
rotational-momentum changes as vectors to show
that the axis will precess. The geometry of preces-
sion is given in standard texts.

Here is a simpler explanation that shows preces-
sion as a straight case of Newton's Law II. Fig. 22-22
shows a large wheel with massive rim hung by a
cord, PQ, and precessing. Consider the momentum
of a small chunk of rim at the top, A. It is moving
forward; but the wheel's weight, rocking the wheel
over a little, moves A to the right, giving A a little
momentum to the right. This momentum is added
to A’s main momentum forward: so after a short
time A has momentum in a skew direction, forward
and to the right. Similarly B, at the bottom, develops
skew momentum backwards and to the left. Then,
for A and B to have these momenta, the wheel must
have twisted round the vertical axis (ie., pre-
cessed ). Here is a hint of the mechanism of preces-
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Fic. 22-21. Precession
The Earth, a spinning top, and a “mysterious gyroscope” all precess in the same way, for the same reason. In
the sketches above “torque axis” means the avis around which the tilting force tries to rock the spinning object.

Fic. 22-22, PRECESSION,
treated as a case of Newton's Law II. The sketch shows a
large bicycle wheel with massive rim, precessing.

sion but it is hard to visualize the extension of this
discussion to the rest of the moving rim.

6. Moon's motion. The Moon suffers many dis-
turbances from a uniform circular motion. For one
thing, it moves in a Kepler ellipse, as any satellite
may, with the Earth in one focus. But that orbit
is upset by small variations'* in the Sun’s attraction.
The Moon is nearer the Sun at new moon than two
weeks later at full Moon, and that makes changes
of attraction that hurry and slow it in the course of
a month. This effect is exaggerated when the Sun is
nearer in our winter, so there is also a yearly varia-

11 The Sun exerts a strong, almoest constant, attraction on
the Moon, and the average of this is just sufficient to make

the Moon amm]l:mn_-,r the Earth in its ycltly orhit: a solar
Myth-and-Symbaol.

tion of speed. In addition, the changes in Sun-pull
make the Moon's orbit change its ellipticity; they
tilt the Moon's orbit up and down a little; they
slew the orbit-plane slowly around; and they make
the oval orbit revolve in its own plane. Newton
predicted these effects on the Moon's motion, mak-
ing estimates of their size where he could. Some
effects had long ago been observed; some were
actually being sorted out—and Newton begged the
Astronomer Royal for the measurements; some were
not observed till afterwards. For the revolution of
the elliptical orbit in its own plane, measured as 3°
a month, Newton’s first calculations predicted only
1%°. For years after Newton, mathematicians wres-
tled with the problem, trying to explain the disagree-
ment—they even tried modifying the inverse-square
law with an inverse 3" power term. Then one of
them found that some terms of Newton's algebra
had been neglected unjustifiably and that with them
theory agreed with experiment. Still later, it was
found from Newton's papers that Newton himself
discovered the mistake and obtained the correct
result,

Thus Newton showed that the marked irregu-
larities of the Moon's motion fit a system controlled
by universal gravitation. He did not work out the
effects of the Sun's pull in complete detail: and the
Moon's motion has remained a complex problem,
solved with increasing detail from then till now.
The ideal method would be the general one: attack
the disease, not each of its many symptoms, and
simply calculate the path of the Moon in the com-
bined gravitational field of Earth and Sun. This
is the “Three Body Problem”: given three large
masses, heaved into space with any given initial
velocities, work out their motions for all time there-

Gugnt to wou by ne Mational Library of the Fhiippines
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after, Though this problem looks simple in its in-
gredients, it has remained a challenge for centuries;
its possibilities have proved too complex for a com-
plete explicit solution. Methods are still being ex-
plored.

7. Tides. Ocean tides had long been a puzzle,
crying for some explanation connected with the
Moon. Yet men found it hard to imagine a real con-
nection and even Calileo laughed at the idea. New-
ton showed that tides are due to differences of the
Moon's attraction on the water of the ocean. The
Moon does not make its orbit around the Earth's
center; but Moon and Earth together swing around
their common center of gravity like two unequal
square-dance partners. That center of gravity is
3000 miles from the center of the Earth, only 1000
miles under ground. While the Earth pulls the
Moon, the Moon pulls the Earth with an equal and
opposite pull (Law IIT), which just provides Muv®/r
to keep the whole Earth moving around the common
center-of-gravity, once around in a month. The

rtion of ocean nearest the Moon is pulled extra
hard (because it is nearer) so it rises in a lump
which is a high tide. The ocean farthest from the
Moon needs the same pull as all the rest, but is
pulled less than average; so, local gravity, “g",
must provide the remainder of the needed pull.*®
That makes the ocean farthest from the Moon
slightly lighter; so it is pushed up inte a hump
away from the Earth—another high tide.

Therefore, there are two high tides in twenty-

&)
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Fic, 22-23,
OceEan Tmes ane Cavsep By DiFFenesces oF Moox's
ATTRACTION
{a) The extra-large pull on ocean nearest the Moon
raises one high tide. The extra-small pull on
ocean farthest from the Moon lets it fow
away inte another high tide,
(b} Delayed tides. Actually the %Ligh-ﬁde humps are
delayed by inertia, tidal friction, and effects of rotation.
As the Earth spins, they are not opposite the Moon. In
most places they arrive about 1/4 cyele (6 hours) late.

5idt tedo the same for the oceans). 7 . Prilppines

four hours. As the Earth spins, its surface travels
around, while the tidal humps, held by Moon and
Sun, stay still, so the tides surge up and down the
shores that are carried under them. The ocean water
moves around with the Earth; but the tidal humps
move like a wave from shore to shore. Friction and
inertia delay those surgings in a complicated man-
ner, so high tide is not just “under the Moon” but
often lags as much as % of a day. The Sun also pro-
duces tides—not so big, because its greater distance
makes the differences of pull smaller. Twice a
month, when the Sun’s and Moon's tides coincide,
we have large “spring” tides. When the two sets of
tides are out of step we have small “neap” tides.

We can estimate the “tide-generating-forces” that act
on some standard chunk of material in various parts of
the Earth. Take a sample chunk that weighs 30,000,000
newtons' at all places on the Earth's surface.® Then at
Earth's center, E, Earth's pull on the chunk is zero;
Moon's pull just provides the needed force mo?/ (radius
EG) for the chunk’s monthly motion—and calculation
shows that to be 100 newtons. At all other places, A,B.C,
..., the needed foree is the same, 100 newtons towards
the Moon.*'? But Moon’s pull is only 97 at A, and 103
at C. So the radial pulls on a sample chunk are;

at A, 30,000,000 + 97, which will provide the needed
100 and leave 29,999,997 for effective “g”

at B, 30,000,000 + the vertical :m;:ﬁmnt of Moon's
pull, which is now slanting. t component is
Wwolhynan of 100, or about 1% This makes
30,000,001% for effective “g".

at C, 30,000,000 (inward) and 103 {outward ), which
will provide the needed 100 (outward) and
leave 29999997 (inward) for effective “g".

Thus, at A and C the chunk is “lighter” than at B: it
feels an outward tide-generating-force of 4% newtons.
That is the force that piles u L%e two humps, only 4%
newtons on each 3300 tons of ocean.

12 The Moon travels in its orbit around the common
center-of-gravity, G, in a month. And, since it always keeps
the same face to the Earth, it also spins, one complete tum
per month—as seen by a stationary observer, at rest among
the stars. But the Earth does not the same face always
to the Moon, The whole Earth moves around G, one revolu-
tion in a month; but it does not also have a monthly spin.
Instead, it keeps a fixed orientation as it moves around G
(apart from daily spin, neglected here®). Thus, all parts
of the Earth move in circles of the same size—like the
circular motion of a man's hand cleaning a window, or
the frying-pan motion of Fig. 17-10b on p. 257. This motion
requires every part to have the same aﬂccﬂmtiun v*/r, where
r = EG, towards the Moon.

t Mass of sample = 3 w 107/98 = 3 % 10F kg = 3300
tons. 5o it is a 3300-ton chunk of rock (the size of a house)
or of water, or even of air.

* We neglect the differences of “g” from equator to poles.
These differences are real, but they do not produce a
noticeable effect on the oceans. That is because the oceans
suffer the same efects of the Earth’s spin as the “pasty”
Earth of Newton's calculation (4 above); so the values of
“g” are fust those that will spread the oceans evenly over
the bulgy s;ll:nin; Earth. (Le., we assume that dail‘; spin
has given the Earth an “equilibrium shape” and expect
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8. The Moon's Mass. By comparing neap tides
and spring tides we can separate out and compare
the effects of the Sun and the Moon.*® Newton did
this and was able to make an estimate of the Moon's
mass from the size of the tide it causes. In other
words the Moon has always had a satellite after all,
the hump of ocean which we call high tide. No in-
dependent check of the Moon’s mass could be made
for two centuries, until man could send up “Moon-
probe” satellites.

9. Comets. Newton explained the nature of
comets, those visitors in the solar system which
had always aroused interest and even fear, (It is
strange to note how comets are still regarded as
mysterious things by the popular press. A tabloid

12 At shores where there are bays and river mouths, tides
may pile up to great heights; but at islands in mid-ocean the
spring tides rise only about 4 ft, and the neap tides only 2 ft.
Therefore: tide due to [Moon 4 Sun] is 4 ft, and tide due to
[Moan — Sun] is 2 ft. This makes the Moon's tide 3 ft and
the Sun's tide 1 ft. Thus we can estimate the ratio of Moon's
to Sun's mass. However, momentum and friction make the
problem very complicated.

[mi

143

newspaper hesitates to call an eclipse a mystery
because it will be laughed at; but when a visible
comet appears, Or even rumors of one, most news-
papers make a fuss about the “mysterious event in
the heavens.” This superstition survives with some
of the feelings that made astrology powerful for
centuries—a sad reminder of the way in which the
pressures of civilized life curdled man's simple
wonder into fear, )

Tycho and Kepler had shown that comets are not
just “vapor in the clouds” but that they travel across
the planetary orbits, making a single trip, as was
thought, through the solar system. They seemed to
be illuminated by sunlight, and therefore could
only be seen when fairly near. Newton showed how
comets move in a long elliptical orbit, with the Sun
in one focus. They are controlled by gravity just
like the planets; but they are small and they have
far more eccentric orbits so they are only visible
when they are near the Sun. Such comets travel out
beyond the farthest planets, slower and slower
(Kepler Law II); finally turn around the remote

Fie. 22-25.
SEETCH OF THE SoLan Svstes, witHh HaLpey's
CoMET SHOWHN
The most recently discovered planet, Pluto, is very
small and pursues an cll:ipti::al arbit extcndjng from
within Meptune's to a much greater distance,
{Mercury and Venus are not shown)
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nose of their ellipse (Kepler Law I); and after a
long time (Kepler Law III), come hurtling back
into our region; then they swing, at maximum speed,
around the Sun and away again. The elliptical orbit
can be measured and the comet’s return predicted.
One of the most famous, named after its discoverer
Halley (who saw the Principia through the press)
was the first case of successful prediction, 76 years
from one visit to the next. Newton pointed to an
earlier record by Kepler at just the right time, and
predicted future returns. When these occurred on
time, comets should have lost all mystery, though
not their glory. Their regular return on predicted
dates gives a test of our orbit-observations, and a
further confirmation of the law of gravitation. We
can carry the calculations back and identify some of
the comets of history. For example, Newton's comet,
observed by him in 1680 and expected to return in
2255, may have been the comet that was thought
to herald the death of Julius Caesar.

Occasionally a comet suffers a severe gravita-
tional perturbation in passing near a big planet, and
changes to a new orbit with a different cycle of re-
turns. That is how we know comets have small mass:
they are affected, but the planet, pulled with an
equal and opposite force, fails to show a noticeable
effect.

If a comet arrives from outer space very fast, it
swings around the Sun and away in its new direction
in a hyperbola instead of an ellipse, and then it
never comes back.**

Comets move so fast and visit so seldom that we
are still waiting to apply the most modern methods
of investigation to a big one. We believe they are

collections of rock, dust, gas, etc. all travelling to-
gether. As they approach the Sun, they reflect more
and more sunlight and look brighter and brighter.
When very near they may be heated so much by
sunlight that they emit some light of their own. The
Sun’s radiation roasts vapor out of some, adding to
the light-scattering material, making these comets
look bulkier and brighter. Many comets develop a
“tail” of bright (but transparent) material which
streams out behind and curves sideways from the
orbit, away from the Sun. Why does this tail not
keep up with the rest? The body of the comet is
made up of many pieces, but these will all move
around the orbit together since the Sun's gravita-
tional pulls are proportional to the masses—remem-
ber the Myth-and-Symbol experiment. The tail how-
ever seems to be an exception. It fails to keep up
with the rest and even swings sideways. This sug-
gests some repulsive force between Sun and comet
which affects the tail proportionally more than the
rest. The tail probably contains the smallest par-
ticles—dust, perhaps, or just gas molecules. What
forces affect a small particle proportionally more
than a big one? Surface tension, fluid friction, and
any forces that vary directly as the surface area of
the particle; whereas masses, and therefore gravity
forces, vary as the volume. The most likely “surface
forces™ on comets” dust are the pressure of sunlight
and the pressure of ions streaming from the Sun.
Making a particle ten times smaller in linear dimen-
sions reduces its mass by a factor of 1000 but re-
duces its surface area by a factor of only 100, making
surface-forces 10 times more important than they
were, compared with gravitational pulls in their

If we ask, as Newtons fellow scientists did, “Given
inverse-square law attraction, what Eha.FE must a planet’s
—ar a comet’s—orbit have?”, the mathematical machine re-
plies, as it did in Newton's hands, “The orbit will be a
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Fic. 22-28. Comme SgpcTioms

conic section with the Sun in one focus.” Conic sections are
curves got by taking plane slices of a solid eircular cone. A
cone sliced "st:raighr across gives a circle. If the slice is
slanted, the section is an ellipse. With greater slant, just

FNtoniah mechanics estiblished 'the Huclear” ato

“parallel to the cone’s edge,” the section is a parabola. With
still greater slant, the section is a hyperbola. These curves all
belong to one geometrical family. Their algebraie equations
are similar;:

4y =9, a circle

:_"l L]
y -+ y = 1, an ellipse

I:l
? % = 1, a hyperhala

The equations for parabolas look different (eg., © = 9y)
but are closely related to the others. In physics, we meet
eﬂir'ies in planets’ orbits, all these curves in comets' orbits;
and hyperbolas when alpha-particles are shot at other atomic
nuclel. From measurements of such rebounding of alpha-
particles, we can calculate the arrangement of forces that
must cause these rehounds; and we find the forces must be
inverse-sijuare ones between the alpha-particle and some
very Hny core of the atom it “hits.” We guess that these
forces are inverse square repulsions between electric charges.
From further measurements we can even estimate the electric

_ charges of diferent atom cores. That is how, in _thl|'_5 century,
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If one particle of the comet has 10 times the diameter
of another, its mass, for the same density, is
10 x 10 x 10, or 100d, times as great as the other's.
Gravitational forces on it will be 1000 times as big,
But surface-forces, e.g., light-Prﬁmre from sunlight,
will be only 10 x 10, or 100, times as great. Thercfore,
light-pressure matters proportionally more for small
particles; less for large ones. It can push the very tiny
particles in the comet's tail away,

effect on the mass. Near the Sun, the radiation is
intense, also streams of protons gush out, and the
pressure on the smallest particles becomes impor-
tant, It is thought that such pressures drive the
comet’s tail away from the Sun.

10. Gravity inside the Earth. Newton showed by
calculus that a hollow spherical shell of matter at-
tracts a small mass outside it as if the shell's mass
were concentrated at its center. By imagining the
Earth built of concentric shells (even of different
densities), Newton was able to proceed with the
“apple and Moon” comparison, knowing that the
Earth would attract as if its whole mass were at its
center. He also showed that a hollow spherical shell
would exert no force at all on a small mass inside it.
This result is not much use in treating the Earth’s
gravity, though it is very important in the corre-
sponding theory of electric fields. There it provides
a first-class test of the inverse-square law of forces
between charges. We shall derive it in the chapter
on electric fields.
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These two results for a spherical shell give an
interesting picture of the gravitational field of a
solid uniform sphere. Outside, the field decreases
with an inverse-square law: “g" varies as 1/R®
where R is the distance from the center. If we are
at an inside point, we are inside some of its con-
centric spherical shells, and we lose their attraction
completely. We are outside the remaining central
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batch of shells. These make a smaller attracting
mass, but we are closer to the center. The resultant
attraction makes "g” vary directly as R, inside the
sphere.

11. Artificial satellites. Newton pointed out that
any projectile is an Earth-satellite. Suppose a man
on a mountain top fires a bullet horizontally. A slow
bullet falls to the ground in a “parabola,” which has
its focus just below its nose. The path is really a
Kepler ellipse, with the lower focus at the Earth's
center. Parabola and ellipse are indistinguishable
in the small part of the orbit observed before the
ball hits the ground. (To obtain a true parabola we
would need a great flat Earth, not a round one with
radial directions of “g”). A faster bullet still makes
an ellipse, but not so eccentric—still faster, an even
rounder ellipse. One fired fast enough would go on
around the Earth, like a little moon, travel]ing round
its circular orbit again and again (provided the
man got out of the way one “little-moon-month”
after firing the bullet). Here was Newton's picture
of an artificial satellite. It and the Moon would
form a Kepler-Law-III group, with Earth as owner.
We now have satellites that do this,

.o Fire, the bullet still faster than for a circular orbit,
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Fic. 22.79 EarTH-SaTeELLITE Onmts (from Newton's sketch)
Where elliptical orhits are drawn through the Earth, they show how the original path weuld econtinue
putside a tiny concentrated mass. They do not allow for the decrease of attraction inside the Earth.

and its path would be an ellipse with the Earth's
center in the nearer focus this time. Still faster and
the ellipse would elongate to a great parabola.
Faster still and the bullet would leave the Earth in
a hyperbola and weould never return. The velocity
necessary for such “escape” can be calculated—an
important matter for future space travel, and impor-
tant long ago for speedy gas molecules that escaped
from the atmosphere.

12. Planetary perturbations. The great discovery.
The major influence on a planet’s motion comes from
the Sun; but the other planets, acting with the same
universal gravitation, also apply small forces which
“perturb” the simple motion. Newton began the
study of these perturbations. For example, the great
planet Jupiter attracts neighboring Saturn enough
to make noticeable changes in Saturn’s orbit. The
attraction changes in direction, since Jupiter and
Saturn are both moving in their orbits; and it
changﬁ grmﬂ}' in amount, as the p]anets move from
greatest separation to closest approach.® This small,
tilting, changing pull builds up changes of motion
that accumulate in tiny perceptible changes of orbit.
Newton estimated this effect and showed that it
fitted with observed peculiarities of Saturn’s motion.
However, the general problem is very difficult, and
Newton only made a start on it.

A study of planetary perturbations looks like fid-
dling with trivial details; yet over a century later it
led to a great triumph, the discovery of a new

15 Their distance apart changes from the sum of orbit
radii to the difference: 880 million miles + 480 million to
(BB0 — 480) million, a change in proportion 3% to 1. This

makes the perturbing attraction increase in proportion 1
to 12

planet. Before that the first planet beyond the five
known to Copernicus was discovered by telescopic
observation. In 1781 Herschel noticed a star that
looked larger than its neighbors and was found to
move. This proved to be a planet, soon named
Uranus. The new planet was found to be twice as
far away as Saturn, and its orbit radius and “year”
fitted into Kepler's Law III.

The continued observations of Uranus showed
small deviations from the Kepler orbit. Some of
these could be explained as perturbations due to
Saturn and Jupiter. However an unexplained “error”
remained—a mere Yoo of a degree in 1820. Some
astronomers questioned whether the inverse-square
law was f:xact'!y true of nature; others spacu]ated
about another, unknown planet perturbing Uranus.
That was ingenious but posed almost impossible
problems. However, two young mathematicians,
Adams in England and Leverrier in France, set out
to locate the planet. It is hard enough to compute
the effect of one known planet on another. Here was
the reverse problem, with one of the participants
quite unknown: its mass, distance, direction and
motion all had to be guessed and tried from the tiny
residual deviations of Uranus from its Kepler orbit.

Adams started on the problem as soon as he fin-
ished his undergraduate career. Two years later he
wrote to the Astronomer Royal telling him where to
look for a new planet. Adams was right within 2°;
but the Astronomer Royal took no notice, beyond
asking Adams for more information. Then, as now,
professional scientists were besieged with letters
from cranky enthusiasts and had to ignore them.

Meanwhile, Leverrier was worln’ng on the prab—
lem quite independently. He examined several
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The “error” is the difference between the observed
position of Uranus and the expected position (for a
Kepler orbit) after known perturbations had been sub-
tracted. The point X marks the discovery of Uranus by
Herschel. Working back to its orbit in earlier times,
astronomers found that Uranus had been observed and
recorded as a star in several instances. These earlier
records are marked by ® on the graph.
{After O. Lodge, Pionecers of Science)

hypotheses, decided on an unknown planet, and
finally rn:maged to predict its position, near to
Adams’. He too wrote to the Astronomer Royal, who
then arranged for a careful but leisurely search. By
this time other astronomers began to believe in the
possibility—"We see it as Columbus saw America
from the shores of Spain.” Leverrier wrote also to
the head of the Berlin observatory, who looked as
directed, compared his observation with his new
star-map, and saw the planet! The discovery raced
around the world and was soon confirmed in every
observatory. This new planet, discovered by pure
theory, was named Neptune.
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Fic. 22-31. Pentummivg Fonces ow Usasus, Due
To NEPTUNE

The sketch shows positions of the planets in the years

marked. Before 1822 Meptune’s pull made Uranus

move faster along its orbit so that it reached positions

ahead of expectation. After 1822 Neptune's pull re-

tarded Uranus. { After O, Lodge, Fioneers of Science )
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Newton's Method

Newton set forth his treatment of astronomy in
the Principia. He was using deduction to derive
many things from a few laws, but his treatment was
essentially different from the deductive methods of
the Greeks and their followers, Newton devised his
theory with the help of guesses from experiment;
then drew from that theory many deductions; and
then tested as many of these deductions as he could
by experiment. Thus his theory was a framework
of thought and knowledge, tied to reality by experi-
ment and clear definitions, able to make new pre-
dictions which in turn were tested by experiment.
A theory, as Newton used it, “explained” a variety
of mysteries by referring them to a few familiar
things.

Newton’s successors mistook Newton's view of
gravitation. They thought he treated it as “action at
a distance,” a mysterious force that arrives instan-
taneously through a wvacuum, in contrast with
Descartes’ picture of space filled with whirlpool
vortices that transmit force and motion. Newton
himself merely said that an inverse-square field of
force will account for Kepler's laws and many things
besides. For this “explanation” he did not need to
know how the force got there. He said clearly that
he did not know the cause of gravitation. He sug-
gested it must be some kind of influence that travels
out from every piece of matter, and penetrates every
other piece, but that was only description of ob-
served properties. He insisted he did not know its
ultimate cause. “Hypotheses non fingo™—"1 will not
feign hypotheses”—he wrote fiercely at one time.
He meant he would not invent unnecessary details
in his description of Nature, or pretend to explana-
tions that could never be tested. Yet in later writing
he offered many a keen guess, at the nature of light,
at the properties of atoms, and even at the mecha-
nism of gravitation.

Newton is usually described as a genius of eold,
unemotional logic and clear insight who set the style
for modern science. But one of his biographers,
Lord Keynes, who studied many of Newton's writ-
ings, found him a difficult recluse who treated Na-
ture as a myvstical field of magic.

“Newton was not the first of the age of reason. He
was the last of the magicians, the last of the Baby-
lonians and Sumerians, the last great mind which
looked out on the visible and intellectual world with
the same eyes as those who began to build our
intellectual inheritance rather less than 10,000 years
ago. Isaac Newton, a posthumous child born with
no father on Christmas Day 1642, was the last
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wonder-child to whom the Magi could do sincere
and appropriate homage.™*

He felt himself the magician who had unlocked
God’s riddle of the solar system by reasoning from
clues strewn around by God in recorded measure-
ments, in experiments waiting to be done, in useful
folklore, and even in some inspired hints in ancient
writings. He succeeded in this by his extraordinary
gift of concentrating continuously on a problem in
reasoning, “his muscles of intuition being the
strongest and most enduring with which a man has
ever been gifted.”’” Could he not in the same way
unlock the great riddle of Religion: discover the
nature of God, explain the behavior of matter and
man’s mind, and reveal the whole progress of time
from the original creation to the ultimate heaven?
This tremendous mind aspired, as Keynes sees him,
to be “Copernicus and Faustus in one.”* Be that as
it may, all the biographers, from Newton's con-
temporaries to Keynes and Einstein, regard Newton
as the greatest mathematical scientist of a thousand
years.

Newton's "Guesses”

As an architect of science Newton set a new build-
ing style, much of which is still in great use. As a
thinker about science he seems to have been a
remarkably lucky guesser—he guessed right more
often than mere chance would make likely. He
formulated laws of motion which we still use and
consider very nearly “right.” He guessed gorrectly
at universal gravitation. He even made a guess, on
scanty evidence, at the mass of the Earth—a guess
which could not be tested at the time but had to
wait for Cavendish's experiment. He argued, specu-
latively, that none of the solid ground can be less
dense than water, or it would float up into moun-
tains. On the contrary, the central regions must be
much denser than the outer rocks. So, he guessed,
the average density of the whole Earth must be
between 5 and 6 times the density of water. We now
know it is 5% times! The Earth’s mass is 3.5 times
that of an equal globe of water. Again, Newton de-
vised a theory of light waves that would explain
both the properties of rays and the interference
colors of thin films ( which he discovered and meas-
ured ). It was a curious scheme in which light con-
sists of bullets accompanied by waves to arrange
where they shall travel. A century later, the wave
theory of light displaced and discredited the bullet

t "Newton the Man™ by |. M. Kevnes, in Newton Ter-
centenary Celebrations of The Reyal Society of London
{Cambridge University Press, 1947}, p. 27,

17 Jhid., p. 28, 1% 1bid., p. 34.
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theory. For many years scientists laughed at New-
ton’s queer mixed scheme. Now, two centuries later,
we have gathered clear evidence to show that light
does behave both as waves and as bullets, and we
now hold a composite theory which has a surprising
resemblance to Newton's! Once again he guessed
right.

I do not think this successful guessing which
characterizes Newton and other great men is due
to luck or to a mysterious intuition, or divine inspi-
ration. I believe it is due to Newton using more of
his knowledge; gathering in and using chance im-
pressions and other things barely perceived and
soon quite forgotten by ordinary men; and thinking
with great flexibility of mind. He had unusual in-
tuition just because he drew upon a greater fund of
detailed knowledge—he was sensitive and could
remember, where most of us are insensitive and for-
getful; and he was willing to turn his thinking
quickly in different directions. Just as the great actor
is aware of his audience and can draw upon a rich
knowledge of other people’s emotions and behavior,
so Newton was aware of nature and could draw on
a rich fund of observation. Perhaps in some respects
that is where greatness lies, in sensitive awareness of
the world around—the world of people or the world
of things.

PROBLEMS FOR CHAPTER 12
1. Iln text,

* 2. KEPLER'S LAW 1N

Mewton guessed at wniversal, inverse-square-low gravita-
tion, We express his guess in the form F = GM.M./d". From
his guess (g “principle™) he deduced (predicted) the behavior
of the Moon, planetary systems, tides, etc

Predict Kepler's Low 1l by following the instructions [A)
and (B} below. Suppose a Sun of mass M holds a planet of
rmiass m in a cirgular arbit of radius R by gravitational attrac-
tion. Suppose the plonet moves with fixed speed v, toking
time T [its “'year") to traovel once round its orbit.

(M) Algebra. State in clgebraic form, eoch of the following:
{a) The planet's acceleration
(B} The force needed to give this planet this acceleration.
(c) The force provided by gravitotional attraction, if it
follows Mewton's low of gravitation.
(d) The planet's velocity v in terms of B and T.

{B] Argument:

(il  Mow write down, os an algebroic equation, Mewton's
guess, that the needed force (b} is just provided by
gravitational pull {c).

(i} Then get rid of v in this equaticn by using relation
id)

(i) Mow meve all the BR's and T's in the equation over to
the left hand side of the equation and everything else
te the right haond side, thus obloining a new [version
of the old) eguation.

{iv) In the new equation, do you find R*/T? on the left?
{If not, check your algebrol Do you now find the

F
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right hand side is the same for all planets; that is, o
constant which does not contain m, or R, er T?

(v} Would this new equation hold, with the same right
hand side for other planets with different masses,
orbits, and years, but with same Sun? Then does
Mewton's guess predict Kepler's Law (112

3. RELATIVE MASSES OF PLAMETS

(o) Starting with Mewton's lows of motion, aond a = v*/R,
and universal gravitation, F = G MM/ &, show how
the ratio (JUFITER'S MASS)/(SUN'S MASS) con be
obtained from astronomical measurements. Show your
tull working; do not just guote algebraic results,

{b) Make a rough estimate” of the ratio, (See below for
datal

{c) Make o similar rough estimate® for the ratio (EARTH'S
MASS)(SUN'S MASS).

{d) From terrestrial experiments, such os Cavendish’s, we
can estimate the mass of the Earth. It is about
&.6 = 10" tons. Calculate roughly,® from (e, the Sun's
actual mass, in tons,

DATA (some of which may not be needed):

Rodii of plonetary orbits: see table in Ch, 18,
Lengths of planetary 'years”: see table in Ch. 18.
Data for sotellites of Jupiter: see Ch, 19, (Do not use
the volues of orbit-radii given in multiples of Jupi-
ter's personal radius; but use the values in miles,
The "times" are given in hours. Convert them to
the units you use for all other “times” in the cal-
culation.)
Data for Earth: personel radius == 4,000 miles
time of revolution about axis = 24 hours
radius of orbit == 93,000,000 milgs = 1.5 = 10"
meters
I year = 365 days = 3 x 10" seconds
Data for Moorn: radius of orbit = 240,000 miles
(== &0 Earth-radii.
Personal rodius = 1,000 miles
1 month = 27.3 days. (This is the Moon's absalute
period, relative to stars.)

4 ARTIFICIAL SATELLITES

(a) Suppose an Earth-satellite pursues a circular arbit
4000 miles obove the Earth's surfoce—thot is, ot
radius BODO miles from the Earth's center. From your
knowledge of plonetary motion, estimate the time re-

* In these questions where o VERY ROUGH AMSWER i3 osked for—
te grve o general wea of relative masses, or the size of some force—
precise arithmetic wouwld miss the pont and gwe nd advantage far
1":-5 purpose. Theretore, you ore strongly odvised to procesd as

|lgws.;

i} USE ALGEBRA UMTIL AS LATE A STAGE AS POSSIBLE.

{it) Then insert arthmetical values, with ne concelhing, and SHOW
THE RESULT IM FULL FACTORS. (DO MNOT CAMCEL THAT
FIRST “RESULT" BUT LEAVE IT UNTOUCHED, M CASE YOU
NEED TO RETURMW TO IT OR READERS WISH TO CHECK 1T}

liii} Be-copy the “result” of (ii] ond maoke ruthlgss opproxmations
ta find o rough onswer.

1§ your result is wrong by a factor of 1000 throwgh coreless con-
celling, it is worthless; but if it only suffers from o 409 error due
ta rough anthmetic, of atill corries o useful metsage in such problems.

[mi
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quired for the satellite to moke one trip around,
Give your answer () in foctars with no concelling
(it} reduced to o rough numericol
estimate” in minutes or hours,
or days or years,
{Obtain ony data you wont from earlier problems
above. You do not need the value of G).

i) Mowadeys we have “stationory’ satellites which link

ane part of the Earth with another for television or

for carrying telephone messages. Such a satellite re-
ceives ond re-broodcasts short-wove radic signals.

Therefore we wont the satellite to stay in place, hov-

ering permanently over Chicago (for example), with-

out using any motive power once it is there.

(i} Describe the behavior of such o satellite, as seen
by an observer far away from the Earth,

(i1} Calculate the height ot which the satellite would
have to hover, (Give your answer first in foctors,
then worked out roughly® in miles,)

A satellite is clocked ot 90 minutes per revolution

around the Earth (relative to the stors). Assuming that

its orbit is circular, estimaote® its height above the
surface of the Earth.

(d) Suppose a projectile could be shot out of a gun hori-

zontally so fast that it never hits the ground but con-

tinues around the world just above the grownd.

(i} How long® would it take to return to its starting
point {if air resistance were negligible)?

(i) Estimate® its speed.

(iii) The speed asked for in (i} is the speed that o
point on the Eorth's eguator would have if the
Earth were spinning so fast that . . ... ?

[A quick guestion to try on your neighbor: time limit

15 secs.] How long would a 1-ton satellite toke to go

ground a circular arbit areund the Earth, with rodius

o guarter of o million miles?

(e

—r

(e

. BOHR ATOM-MODEL

Bohr constructed his simplest model of o hydrogen atom
with an electron pursuing a circular erbit around a mas-
sive nucleus, which exerted on electrical inverse-squore-
low attroction on it. (This farm of atom-picture 15 now gan.
sidered misleading. Yer it is still used in odvertising, and
even by physicists when they need a crude picture to aid
ropid thinking.) The “guontum theory restriction’ formu-
lated by Bohr stated, essentially, that only those circular
orbits are ollowable for which

{momentum of electron) » {circumference of orbit) = n - h
where h is a universol "quantum-constant” and n is a
whole number: 1, or 2, or 3, 4, 53, 6, etc. . . .

Thus, (mv) = (2wel = nh allows the atem to have its
electron only in orbits, with n = 1, 2, 3, etc.

{a) With help from Kepler ond Mewton, show that the
radii of allowed orbits must be proportional to A7, so
that they run in proportions 1:4:9.. . . . (Thus if an
“unexcited” atom hod rodius x, the atom in higher
excited states would have rodius dx, ¥x, efc.

ib} For simple hydrogen atoms with n = 1, r = 0.5 Ang-
strom Unit (0.5 % 107" meter), and thiz seems to be
the “size” of the atoms. Excited hydrogen atoms in
stars have been observed with n as large as 30, What
would be the “size” of such otoems?

Mational Libiaiy of the
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CHAPTER 13

UNIVERSAL GRAVITATION

e e e e T e o T o . M e e T e T e e T e T e T M e T e e T e T N T N L N W W W L "N Wl

. You must be satisfied beyond all reasonable doubt, . . "
(part of Judge’s charge to Jury in criminal trials)
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The idea of inverse-square-law gravitation was
“in the air" when Newton made his calculations.
Other scientists were speculating on a cause for
Kepler's laws and asking whether planetary motions
could be explained by an attraction spreading from
the Sun, thinning out as it spreads. Newton rescued
the question from mere speculation and Ex'tended
the guess of some-kind-of-pull-from-the-Sun to uni-
versal gravitation. He tested his guess of inverse-
square-law gravity by treating the Moon’s motion,
and by showing it led to Kepler's Laws. Further
tests on Jupiter's satellites showed that the same kind
of force acts between planets and satellites as be-
tween Sun and planets. So the 1/d* factor in the
relation F = G M ,M./d* seemed well established
by experimental evidence from the solar system.

The “Myth-and-Symbol” experiment guaranteed
the factor M., the mass of the attracted body. Since
all bodies fall freely with the same acceleration, g,
the Earth must pull them with gravitational attrac-
tions that are proportional to their masses, M, M.’

ARERS

Myra-&-SyapoL

NN

Newton trusted his Law III, action equals reac-
tion, which he considered he had tested somewhat
by his pendulum experiments on momentum-con-
servation, Then the gravitational pull of M, on A,
must be equal and opposite to the gravitational pull
of M. on Af,. That is, ,F. — .F,. Therefore, G must
be the same in the two forces below

F.= G(M,M,)/d? F, = G(MM,)/d

Thus the attracted and attracting bodies are inter-
changeable in this story, and gravitational attraction

Mass of Moon

must also vary directly as the mass of attracting
body. This seems very likely, even certain, to any-
one believing in symmetry; but it can not be proved
experimentally by astronomical measurements since
we have no other way of estimating astronomical
masses—until rocket explorers can bring back sur-
veys and samples.

Trusting his general theory, Newton could esti-

Mass of Jupiter
mate the ratios of celestial masses, Jup

Mass of Earth
Mass of Sun

Mass of Sun

, and even, by guesses from tides,

; but he could not caleulate actual
Mass of Sun

masses separately because he did not know the value
of the universal gravitation constant, G. To find the
value of G required terrestrial experiments to meas-
ure the very small attraction between two known
masses.

Measuring G

The gravitation constant, G, remained unknown
for over half a century after Newton. A rough esti-
mate of G from guesses like Newton’s of the average
density of the Earth showed that the attractions
between small objects in a laboratory must be almost
hopelessly small. The common forces of gravity
seem strong; but they are due to an Earth of huge
mass. And the Sun, with enormously greater mass
still, controls the whole planetary system with
gravitational pulls. But the pulls between man-
sized objects are so small that we never notice
them compared with Earth-pulls and the short-range
forces between objects in “contact.” It was clear
that to measure G very delicate and difficult experi-
ments would be needed.

As a desperate attempt, several scientists at the
end of the 18th century tried to use a measured
mountain as the attracting body. They estimated G
by the pull of the mountain on a pendulum hung
near it. They had to measure, astronomically, the
tiny deflection of the pendulum from the vertical,

F
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caused by the sideways attraction of the mountain.
They had to estimate, geologically, the mass of the
mountain and its “average distance” from the pendu-
lum. Substituting these measurements in
F = G M M,/d* gave an estimate of G.

About the same time Cavendish, and later manv
others, measured the attraction between a large
lump of metal and a small metal ball by a form of
direct “weighing.” Cavendish placed a pair of small
metal balls on a light trapeze suspended by a long
thin fiber. He brought large lead balls near the
small ones in such positions that their attractions
on the small balls pulled the trapeze round the fiber
as axis, twisting the fiber until its Hooke's-Law
forces balanced the effects of the tiny attractions.

T
{al

()
t

Fic. 232, Tue CavEnDisH APPARATUS
(a) The trapeze carrying the small lead ball was hung

on a very fine twista le fiber. When the |:|:ig balls were
brought into position, their attraction made the trapeze
twist the fiber slightly. This minute twist was shown

by rays of light reflected by a small mirror, A, on

the trapeze.

(b) Ta double the measured twist, the big balls were
then moved across to the “opposite” positions, so that

they pulled the trapeze around the other way.

He measured the masses and the distances between
small balls and large attracting balls; but, to calcu-
late the value of G, he also needed to know the
attraction forces, and to find these he needed to
know the twisting spring-strength of the fiber. The
fiber was far too thin and delicate for any direct
measurements. So Cavendish let the trapeze and its
balls twist to and fro freely with simple harmonic
motion (Ch. 10) and timed the period of that
isochronous motion. From that, with measurements
of mass and dimensions of the trapeze, he could
calculate the twisting strength of the fiber. Then, he
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obtained a good estimate of G, confirmed by similar
measurements made more carefully by Boys, Heyl,
and others. In all cases the apparatus is so delicate
that the slightest air currents will spoil the measure-
ments. To avoid convection currents, Cavendish
placed his apparatus in a box, then placed the box
in a closed room and ohserved the apparatus with
a telescope from outside the room.

Results of Measurements of G

The table shows some details of many measure-
ments of G made over the past 220 years. It not
only shows increasingly reliable values for the
important quantity G, but it also gives great sup-
port to the relationships

FaM,
FalM,
Fal/d®
It gives this support because it shows that a great
variety of masses, materials, and distances all yield
the same value of G, within forgivable experimental
errors. If we wished to show how we know the value
of G accurately (agreed for some reason or other to
be universally constant) we should describe just
one very good experiment; but since we want to give
evidence for the validity of Newton's great theory,
we give many experiments with great variety.

which are combined in F = G M M, /d*

Modern Uses of the Cavendish Experiment

Early rough estimates of G gave a good idea of the
general size of gravitational forces. The attraction be-
tween two people seated side by side is almost immeas-
urably small; the attraction between the Sun and the
Earth is unbelievably hig—a steel cable as wide as the
Earth could just about replace it. And the electric
attraction bebtween electron and nucleus in a hj.'drogen
atom exceeds their gravitational attraction by a stu-
pendous factor of about

20000000000000000000 B0000000000000000N00,

Later measurements of G gave us the value fairlv
accuratelv, with a likely error of less than 0.2%. As
recentlv as 1942, Hevl, at the National Bureau of
Standards in Washington, made one of our most trusted
measurements of this fundamental constant. Unless
some new theory asked for much more precise measure-
ments, the Cavendish Experiment would hardly be
repeated, However, the apparatus has been refined into
a differential gravity meter which can estimate tiny
differences of gravitational field due to local deposits
of rock of unusual densitv. This instrument is used by
geologists for surveving the Earth’s crust, and by oil
companies to look for geological peculiarities that might
yield oil. { The commercial explorers treat the instrument
and its technicians with an attitude of naive empirical
hopefulness.} In one form, the two balls of a small
Cavendish Apparatus are hung at different levels. The
balls would be pulled unevenly by a shallow deposit of

Brought to wou by | The Mational Library of the P
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MEASUREMENTS OF C

Artracting Mass Artracted Mass Distance Result
Date Experimenter Mass Mass apart G
(approx.) Description kg kg Description meters newton = m.* kg
A Bo
1740 Bouger Mountain __% " pendulum 12 % 10"
[=]
1774 Ma.ilc:l:m-e Mountain Z2E -: Pendulum B Tto 8 "o
=2 B 2 =R =
- . == a ¥w B -
1821 | Carlin Mount EE52 s dul 525 8
4ar. 1 auniaim E E E Eéraﬂ PEI'.I (LR pi] i-g E
=
1854 | Airy Outer shell 3x 10 | 2 HE pendulum 6,000,000 57
af Earth 2%= meters
o | &=2
1854 James Mountain - pendulum 7 .
S5
1880 | Mendenhall Mountain g . pendulum = 6.4 o
5 § TIE
1887 | Preston Mountain E=E =..E. pendulum sz2 6.6 .
XEE
e e e I B e
1798 Cavendish lead ball 167 0.8 lead ball 0.2 675 » 107"
0.1 balls of : 65 o
£ y ] ﬂd, i 1) :
1842 | Baily lead ball 175 fo platinam, 0.3 oL
' glass, brass
1881 von Jolly lead ball 45,000 5 metal ball 0.5 646 o
1851 Poynting lead ball 160 23 lead ball 0.3 6.70 o
1895 | Boys lead ball 7 0.0012 | gold ball 0.08 6658
brassball
189 | Braun { iron ball 4 0.05 | brassball 0.08 666 "
1898 H];:;I;?gr:fﬂ:ienzel lead cube 100,000 1 copper ball L1 6.68 “
1930 ] | Heyl and platinum, -
19-12} Chrzanowski steel E}']:Inﬂt:r 66 0.05 { glass, guld 0.1 6.673

T‘wﬁfﬂ*
Sealkt {%’ Trapezr
M

(=

T
fﬁ'ff?; / ;//;j
vy /ff WG
Fiz. 23-3. DirFERENTIAL GRAVITY-METER

A compact, highly sensitive form of Cavendish ap-
aratus, with the two small balls hung at different
vels. An extra dense vock nearby has a slightly

E‘reater Fuuing-aruund-:EtEI on the lower ball than

on the upper one. This is because: (i) The rock is
slightly nearer the lower ball and inverse-square-law
force is bigger; (ii) the pull is slightly nearer to hori-
zontal, s0 that the horizontal component, which does
the pulling around, is a slightly greater fraction of it.

The instrument is set up, brought to an even tem-

perature, and chserved {with a tcll:sc‘l:lpl.-} in several
different orientations.

dense rock nearby, and the trapeze would show a small
twist when oriented suitably. TE.IS is the physicist's form
of the “divining rod.” To make such an instrument
rugged enough to be portable and sensitive enough to
be useful is a triumph of skill. Oil explorers are now
replacing these differential gravity meters by more direct
instruments that measure small differences of wvertical
g itself.

Modifications of Cavendish’s experiment have been
done to see whether gravitational attractons are influ-
enced by temperature changes, or shielded b}r inter-
vening slabs of matter, or dependent on crystalline form,
etc. No changes have been observed—so far. G seems
to be universally the same even when M, or M, includes
the mass of some releasable nuclear energy in radioactive
material: the relationship F = G M, M, /d* still holds,
with G the same.

Speculations
At present, most physicists regard the gravitation
constant as a true constant, to be ranked with the
of light, the charge of the electron, and a few others
that seem to be the same for all matter in all circum-
_stances, fundamental constants of the universe. How-
“ever) others, 'bold” speculitors “but wﬁém'&we sug-
AuUlnenucatec
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gested that © may be slowly changing as time goes on
(see below). A C that was much larger in earlier times
could bring gravitational forces nearer to matching
electrical ones in the distant past.

Cood theoretical physicists are trying to coordinate
gravitational fields with electric and magnetic fields in a
sing,le “unified field theory.”

ome enterprising ﬂ'lin?ers hope to show a connection
between & and other basic physical constants—paossibly
in connection with magnetism or perhaps in terms of the
total population of atomic pa.rticll::rin the universe.

Time is of the Essence

Some physicists and astronomers speculating on the
properties of space, time, and matter have suggested a
slowly changing G, as measured by apparatus using
atomic clocks. (1f we used a pendulum clock to time the
period of the trapeze, or if we held a pendulum near a
mountain, we should find no change, because we should
be comparing G with Earth’s g which contains G as a
factor.) This raises the whole question of Tive. What
do we mean by time; and how do we know one second
is the same length as the second before? We have several
kinds of “clocks.” Some use pendulum-swings for their
constant unit of time; others use the S.H.M. of a loaded
spring (Ch. 10); others use the spin of the Earth
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(sidereal day); others the Earth’s revolution around the
Sun (solar year); and others the motions of atoms
{spectral lines, atomic spins, . . .); and the decay of
radioactive material (Ch. 39) has been suggested. Many
of these depend chiefly on utamicrﬁmperﬁes (e.g. radio-
active decay; and even the Earth's spin, which stays
practically the same even if gravity chanFes]l. But some
involve gravitation directly (e.g. pendulums, the solar
vear). So we may have to deal with two different scales
of time.

Geologists and astronomers are making good guesses
at the age of the Universe from measurements of radio-
activity, star temperatures, speeds and distances of
nebulae. Estimates run to some 10 billion years but these
are on an atomic scale of time. There might be such a
different gravitational scale of time (e.g. by pendulum
clock or by solar years) that ifs date for the Eeginm’ng
of the Universe stretches much farther back, perhaps
even to “minus infinity.”* That would put questions of
the “beginning of the world” in a different light.

Much of this is fanciful speculation in the boundary
layer of metaphysics between philosophy and science.
Yet hardheaded experiments on g and G are proceeding
and the next ten years may see surprising developments
in our views of gravitation, with implications ranging
from standards of timekeeping to theoretical cosmology.

! Here is one scheme that might be imagined. Suppose
that & is slowly decreasing, as measured by “atomic” clocks.
Then a pendulum clock, keeping gravitational time, must
have ticked faster {judged by the spinning Earth, an atomic
clock) in earlier days. So the Earth must have been spin-
ning slower [judged by the pendulum clock) in earlier days.
We shall take the pendulum clock’s gravitational time as our
reference standard and watch the changes in atomic time-
scale. {Meither time-scale is more truc than the other—only
modern preillﬂ:ioe makes us think that atomic time is the
right one that flows at constant rate, )

Imagine, for example, that the relationship between the
two time-scales is an “exponential” one, such that, compared
with pendulum elocks, atomie clocks double their rate in a
trillion pendulum days. This is just one out of countless pos-
sible relationships—we choose it for a simple illustration. To
make the illustration still simpler, imagine that the sliding
scale connecting the two clock-schemes does not change
smoothly but in sudden jumps, thus: after each trillion days
by the pendulum clock, atomic clocks suddenly double their
rate—twice as many atomic ticks to the pendulum day as
there were before. (Such a scheme of jumps is hopelessly
unlikely. Caleulus offers to deal just as easily with a smooth,
exponential version, which might be true of nature.) Then for

each trillion days that we travel back into the past by pendu-
lum clock, we should find atomic clocks running only half as
fast—half as many atomic ticks to the pendulum day. Count-
ing back from the present, the first trillion days would be the
same on both time-scales: for the next trillion pendulum-
clock days the atomic clocks would run at half rate and
register only % trillion days; and so on. As we travel back
into the past in trillion-day periods by the pendulum clock,
the tall}r runs:

PENDULUM CLOCK: 1 trillion days + 1 trillion
+ 1 trillion 4 . ..

1 trillion days 4+ % trillion
+ 4 trillion 4 . ..

ATOMIC CLOCK:

The second series never adds to more than 2 trillion, but the
first mounts to infinity. So while we count back to a definite
beginning of time by atomic clocks (2 trillion days ago in
this example), the pendulum clock’s tally runs back from
now to minus inﬁnity.

In this example, if we measure time by radioactive changes
or by the Earth's spin (which defines the sidereal day), we
should find the Universe beginning some 2 trillion days ago,
but we could never get back to that beginning by counting
pendulum days or solar years.

Gugnt to wou by ne Mational Library of the
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PROBLEMS FOR CHAPTER 13

W 1. Mewton guessed ot universal, inverse-square-law gravi-
tation. We express his guess in the form F = G MM/
From his guess he deduced (predicted) the behavior of the
Moon, plonetary systems, tides, etc,

{a) Say whaot each letter in the relation above stands for
and give its proper units in the meter, kilogram, second
system. Copy the example, then proceed similarly for the
rest of the letters, (Exomple: "G is a universal constant,
the same for all attrocting bodies. It is measured in
newtons * meters®/kg™'")

(b} G is a universal constant measured by Covendish ond
others. If we use newtons for the force, ond kg for the
masses, and meters for the distance, G has the value
&.66 » 107 (or 0.00000000004448) newtons * meters®/
kg®. From this, moke a rough estimate of the mass of the
Earth as follows:

(il Using the relation above, with the volue of G above,
colculate the attroction of the Earth on o 0.40-kg
apple near the surfoce. (Assume the attroction is
the same as if Eorth’s mass were all at its center,
4000 miles from apple.) The radius of the Earth is
about 4000 miles or about &,.400,000 meters. Call
the mass of the Earth M kg.*

(i) Using your ordinary knowledge of physics, calculate
the weight of (= pull of the Earth on) the 0.40-kg
apple in newtons.

Lii) Assuming the answers to i) and i) are the some,
write on eguation and solve it for the mass of the
Earth. This will be in kilograms. Convert it to pounds,
then tans. (1 kg = 2.2 pounds)

* Since in stoge (i} you do not kneow the moss of the Earth, you
must coll it M in your answer to (i)

2. HOW BIG 15 GRAVITATIONAL ATTRACTION?

As an indication of the size of the Sun’s pull on the Earth,
carry out the following coleulations roughly. Suppose the
Sun’s grovitotional attraoction could be reploced by a steel
wire running from the Sun to the Earth, the wire's tension
holding the Earth in its orbit. Good steel hos o breaking
stress of 100 tons-weight per square inch,

{a) Calculate very roughly the cross-section area of the wire
which could just hold the Earth in its orbit.
{b) Caleulate very roughly the wire's diameter,

Data: G =67 x 107 newtons * meters'kg®
= 1.0 % 10-* poundals - feet”/pounds®
Distance of the Sun from Earth is 83 million miles.
Mass of the Sun: obout 2 3 107 tons
Mass of the Earth: 6.6 »x 10" tons.

3. HOW SMALL IS5 GRAVITATIONAL ATTRACTION?

Caolculate roughly the gravitational attraction between two
boys assumed spherical, one a 70-kilogram boy, the other a
90-kilogram boy, seated with their centers 0.80 meter apart.

4. OTHER FORCES: COMETS

Comets are probably collections of separate solid lumps,

dust, and gas.

{a} Explain why, if the motion is controlled by gravity, you
would expect to find the comet travelling as o whole
without chonging shape [(big lumps and little lumps
keeping pace together), aond not having a tail that lags
behind or swings away.

(b} What type of forces would be needed to “explain®™ the
behavior of comets’ tails? (State the essential charac-
teristic of these forces by describing their mathemati-
cal form rather than their physical nature.)

(e} Give clear reason for your answer to (b,

A COMMENT ON MEWTON'S PROOF OF
KEPLER'S LAW |—ELLIPTICAL OREITS

Here is o sketch to remind you that Mewton's proaf (in the

“black box below) is only a piece of grinding-round of
mathematical machinery, and not in itzelf a new piece of
scientific knowledge,

“BLACK BOX"

INPUT QUTPUT

QUESTION
What orbit must
a planet have? MATHEMATICAL
MACHIMERY
Just the gears AMSWER
ASSUMPTIONS ond levers of Orbit must be
Lows of Motion algebra pre== AN ELLIPSE with
) {or calculus)
| . .. motion continues . . SUN IN OME FOCLUS
Il F= Ma
I Action = Reoction
Gravitotion provides
inverse-square pull
F = GM:M./d"

fought to you by | The Mational Library of the Philippines

[mi

119 B

Download Date | 104



CHAPTER 14 - SCIENTIFIC THEORIES
AND SCIENTIFIC METHODS

B e o . T T R I T T T A o WL N L W T WL N T ICT W L T S e

“A time to look back on the way we have come, and forward to the summit whither our
way lies.”
—]J. H. Badley
The Fable of the Plogglies

“The prescientific picture is represented by a little story about the ‘plogglies.’

“According to this story, there were once two very perplexing mysteries, over which the
wisest men in the land had beat their heads and stroked their beards for years and
years. . . . Whenever anyone wanted to find a lead pencil he couldnt, and whenever
anyone wanted to sharpen a lead pencil the sharpener was sure to be filled with pencil
shavings.

“It was a most annoying state of affairs, and after sufficient public agitation a committee
of distinguished philosophers was appointed by the government to carry out a searching
investigation and, above all, to concoct a suitable explanation of the outrage. . . . Their
deliberations were carried out under very trying conditions, for the public, impatient
and distraught, was clamoring ever more loudly for results. Finally, after what seemed
to everyone to be a very long time, the committee appeared before the Chief of State
to deliver a truly brilliant explanation of the twin mysteries.

“It was quite simple, after all. Beneath the ground, so the theory went, live a great
number of little people. They are called plogglies. At night, when people are asleep, the
plogglies come into their houses. They scurry around and gather up all the lead pencils,
and then they scamper over to the pencil sharpener and grind them all up. And then
they go back into the ground.

“The great national unrest subsided. Obviously, this was a brilliant theory. With one

stroke it accounted for both mysteries.”

—Wendell Johnson

B T e T T T e T e T R T R T T A T T T S ST T S T e

By the eighteenth century, science was being
moulded into a body of experimental knowledge
connected by logical thought. Look at the ingre-
dients of this system that we call science.

Why do we call Newton’s work good theory and
the plogglies a bad theory? What makes good theory
good; and why do we put such trust in theory
today? We shall spend this chapter discussing such
questions,

We shall not give a compact definition of scientific
theory or scientific knowledge—that would make a
mockery of their varied nature and great impor-
tance. You need to develop an educated taste for
them as you do for good cooking; in a sense, scien-
tific theory is a form of intellectual cookery. All we
can do here is provide some general background
and vocabulary for your own thinking. This chapter

! From People in Quandaries (Harper and Brothers, New
York, 1048).

offers comments on the kind of theory developed
by Newton's day. In other books you will find
changes in the ways in which scientists construct
and use theories and value them—and trust them.
You would be well advised to read the present
chapter quickly, to watch its to-and-fro discussion
rather than to extract any final answers. Your view
of science must be of your own making.

VOCABULARY

Here is a dictionary of terms for use in your
thinlcing'.
Facts

Most physical scientists believe they are dealing
with a real external world—or at least they act as
if they believe that in building up their first scheme
of knowledge. Even if they have philosophic doubts,
they start with “sense impressions” or “pointer-
readings on instruments” as their facts of nature.
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We trust such facts because they are agreed on by
different, independent observers. In common life,
our facts may be vague—e.g, “Uncle George is
bad tempered.” In physical science Lhey are usuall}'
definite measurements, the results of experiment—
eg.:

the crystal has 8 faces,

this sheet of paper is 8.5 inches wide,

aluminum is 2.7 times as dense as water,

a freely falling stone gains 32 ft,/sec in each second,

orbit of Mars is twice as wide as orbit of Venus,

the gravitation constant is 6.6 » 10~ MKS units,

an atom is a few Hmes 10" metres wide.

To be completely clear and true, each of these needs
some commentary: definitions of terms, explanation
of accuracy, limitations of applicability; but among
scientific colleagues we usually leave these unsaid—
just as a family may agree that Uncle George is bad
tempered without worrying over accurate definitions
of temper. As the list progresses we get farther
and farther from direct sense-impressions, and our
“facts” are more and more dependent on our choice
of theory. When we get to the statement “the diame-
ter of a hydrogen atom is 10-° meter,” the “fact”
has little meaning unless we say what behavior of
atoms we are dealing with and even what theory
of atoms we are using to express the behavior.?

Nevertheless, we do have a vast supply of facts
that we trust as coming more or less directly from
experiment. They have the essential quality of the
Uniformity of Nature; they are the same on dif-
ferent days of the week and in different laboratories,
and they are the same for different observers. “Are
your results repeatable?” is one of the first questions
the research director asks the young enthusiast.

Laws

We trv to organize fac's into groups and extract
common pieces of behavior (e.g., all metals carry
electric currents easily; stretch of a spring varies as

load ). We eall the extracted statement or relation
a rule, a law, occasionally a principle. Thus a law is

* Measurements of an atom’s size by collisions will yield
different results if the collisions are made more violent, as
atoms then squash to smaller size. If the bombardment is
still more viclent, the estimate may be much different. And,
in all cases we have to make some theoretical assumptions
—which are necessarily indirect,

Consider the fable of the demon taflor. Wishing to esti-
mate the diameter of a man, he first runs a tape-measure
around the man's waist, pulls the tape away, reads the
man's circumference on it and divides by 3 (since 3 is near
enough to 3.14 for such a rough guess). But then, with
gruesome enthusiasm, he uses a thin steel wire instead, pulls
it taut around the man's abdomen, cutting him as in cutting
cheese. The wire ends encircling the man's spine, and the
result is a diameter of 3 inches or less,

a generalized record of nature, not a command that
compels nature. Some scientists go further and
idealize laws. They take each law to be simple
and exact; but then they gather a guide-book full
of real knowledge telling them just how nature fits
the ideal law and within what range, etc. This in-
visible guide-book is what distinguishes the ex-
perienced scientist from the amateur who only
knows the formal wording of the laws, It is no hand-
book of densities and log tables, but a very valuable
pocket bock of understanding—theory and experi-
mental knowledge combined.

When we are trying to extract a law, we usually
restrict our attention to particular aspects of na-
ture. When we are finding Hooke’s Law, our spring
may be twisting, the loads may be painted different
colors, the loads may even be evaporating; but we
ignore those distractions. Or our spring may be
growing hotter in an overheated laboratory; and
then we find the stretch changing less simply. Dis-
covering that temperature affects our measurements
we arrange to keep the temperature constant. ( This
is an important precaution when we investigate gas
expansion. Rough experiments suggest it is negligi-
ble for investigations with steel springs, but careful
measurements show that good spring balances
should be “compensated for temperature.”)

Most laws in physics state the relationship be-
tween measurements of two quantities. For example:

PRESSURE o 1/VOLUME

FORCE = M M., /d*

Almost all laws can be reworded with the word
“constant” as their essential characteristic:

TOTAL MOMENTUM remains constant in any col-

lision

PRESSURE * VOLUME — constant

F - d*/M M, = constant
We look for laws because we enjoy codifying these
regularities in the behavior of nature.

Concepts

In ordinary discussion, “concept” is a highbrow
word for an idea or a general notion. In discussing
science we shall give it several meanings.?

A. Minor Concepts

{i) Mathematical Concepts are useful tool-
ideas, such as: the idea of direct propor-
tionality or variation (e.g. sTRETCH =
Loan); the idea of a limit (e.g. pressure
at a point; speed as limit of As/At),

® This follows an excellent discussion by James B, Conant
in a report on “The Growth of the Experimental Sciences™

{Harvard, 1949). For more detailed discussion of the “tactics
and strategy of science,” see the same author’s On Under-
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(ii) Name Concepts: the ideas in some descrip-
tive names that help us to classify and dis-
cuss. We may name a group of materials
(e.g. metals) or a common property (e.g.
elasticity ),

(iii) Definition Concepts: the ideas that we in-
vent and define for our own laboratory use.
These may be manufactured from simple
measurements (e.g. pressure from force
and area; resultant of a set of forces;
acceleration = Av/At). Or they may de-
scribe some arrangement (e.g. constant
temperature; equilibrium of a set of
forees).

B. Major Concepts

(iv) Scientific Concepts: useful ideas developed
from experiment such as:

the resultant of a set of vectors treated
as things that add geometrically

heat as something that makes things
hotter

momentum as a useful quantity to keep
track of in collisions

a molecule as a basic particle.

(v) Conceptual Schemes: more general scien-
tific ideas that act as cores of thinking,
such as:

heat as a form of molecular motion

heat as a form of energy

the Copernican picture of the solar
system

Newton's Laws of Motion

the picture of the atmosphere as an
ocean of air surrounding the Earth

(vi) Grand Conceptual Schemes such as:

The whole Creek system for planetary
motions ete,

Newtonian gravitational theory

Conservation of Energy

Conservation of Momentum

Kinetic Theory of Gases

Speculative Ideas

Most scientific concepts arise from experiment,
or are vouched for by experiment to some extent.
Other parts of scientific thinking are pure specula-
tion, yet they may be helpful, and they are safe as
long as we remember their status. We might label
these speculative ideas. The crystal spheres were a

lative idea—invisible and quite uncheckable.
In fact, the Ptolemaic scheme was not ruined when
a comet was found to pass through the spheres: only
the spheres were smashed. In examining any con-
ceptual scheme, be careful to sort out its necessary
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concepts from the speculative ideas that accom-
panied its birth.

“Theory” and “Hypothesis”

Many scientists would call a grand conceptual
scheme a theory and they would say that a specu-
lative idea is much the same as a hypothesis. Both
these words have become vague in general use, and
almost confused with each other; so it might be bet-
ter to avoid using them. However, we shall use them
here; and you may profitably use them, distin-
guishing them as follows:

Hypotheses are single tentative guesses—good
hunches—assumed for use in devising theory or
planning experiment, intended to be given a direct
experimental test when possible,

Theories are schemes of thought with assumptions
chosen to fit experimental knowledge, containing
the speculative ideas and general treatment that
make them grand conceptual schemes.

THE BUILDING OF SCIENTIFIC
KNOWLEDGE

Our knowledge of nature is first gained by in-
duction, by extracting general rules from experi-
mental data, Then, when we trust our rule we
assume that nature will do the same thing next
time—we bet on the Uniformity of Nature. If you
look back on early astronomy {and on your own
early laboratory work) you will see that altnough
inductive knowledge is reasonably sure—e.g. plane-
tary paths, Hooke’s Law—it is not very fruitful in
explanations or predictions. For greater, more fruit-
ful knowledge we turn to deductive theory. There
we start with assumptions and rules—guessed at,
snatched from experiment, modelled by analogy, or
invented as speculative ideas—and we make pre-
dictions and explanations; we build a sense of
knowledge. But, to avoid the mistakes of the an-
cient philosophers, we must certainly test the pre-
dictions that emerge. We should also ask where the
rules for the theory’s starting point come from.

All through your study of science you should
watch for the assumptions that are built into theories
and check on their wisdom. Too many assumptions
may lead to too much magic. “Words and magic
were in the beginning one and the same thing.”
(Sigmund Freud, First Lecture.)

Look back on a simple question about demons.

Demons

Start a ball rolling along a table. How do you
know that it is friction that brings a rolling ball to
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a stop and not demons? Suppose you answer this,
while a neighbor, Faustus, argues for demons. The
discussion might run thus:

You, I don't believe in demons.

Favstus. I do.

You. Anyway, I don't see how demons can make
friction.

Favstus. They just stand in front of things and
push to stop them from moving.

You. I can't see any demons even on the roughest
table.

Faustus. They are too small, also transparent.

Y. But there is more friction on rough surfaces.

F. More demons.

Y. Oil helps.

F. 0il drowns demons.

Y. If I polish the table, there is less friction and
the ball rolls farther.

F. You are wiping the demons off; there are fewer
to push.

Y. A heavier ball experiences more friction.

F. More demons push it; and it crushes their bones
more.

Y. If I put a rough brick on the table I can push
against friction with more and more force, up to
a limit, and the block stays still, with friction just
balancing my push.

F. Of course, the demons push just hard enough to
stop you moving the brick; but there is a limit to
their strength beyond which they collapse.

Y. But when I push hard enough and get the brick
moving there is friction that drags the brick as it
moves along.

F. Yes, once they have collapsed the demons are
crushed by the brick. It is their crackling bones
that oppose the sliding.*

Y. I cannot feel them.

F. Rub your finger along the table.

Y. Friction follows definite laws. For example, ex-
periment shows that a brick sliding along the
table is dragged by friction with a force inde-
pendent of velocity.

F. Of course, same number of demons to crush,
however fast you run over them.

Y. If Islide a brick along the table again and again,
the friction is the same each time. Demons would
be crushed in the first trip.

4 1f Faustus has the equipment he should offer you a
microphone attached to a glass table, with connections to
an amplifier and loudspeaker. Then if you roll a steel ball
iﬂng the table you will indeed hear noises like crushing

MOns.

F. Yes, but they multiply incredibly fast.

Y. There are other laws of friction: for example,
the drag is proportional to the pressure holding
the surfaces together.

F. The demons live in the pores of the surface:
more pressure makes more of them rush out to
push and be crushed. Demons act in just the right
way to push and drag with the forces you find
in your experiments.

By this time, Faustus’ game is clear. Whatever
properties you ascribe to friction he will claim, in
some form, for demons. At first his demons appear
arbitrary and unreliable; but when you produce
regular laws of friction he produces a regular soci-
ology of demons. At that point there is a deadlock,
with demons and friction serving as alternative
names for a set of properties—and each debater is
back to his first remark.

You realize that friction has only served you as
a name: it has established no link with other proper-
ties of matter. Then, as a modern scientist, you start
speculating on the molecular or atomic cause of
friction, and experimenting to test your ideas. Solids
are strong; they hang together. Their component
atoms must attract with large forces at short dis-
tances. When solid surfaces slide or roll on each
other, small humps on one get within the range of
atomic attractions of local humps on the other and
they drag each other when the motion tries to sepa-
rate them, Friction, then, may be an atomic dragging,
which is likely to make one surface drag small pieces
off the other. That has been investigated experi-
mentally. After a copper block has been dragged
along a smooth steel table, microphotographs show
tiny copper whiskers torn off on to the steel. Also
chemical tests show that a little of each metal rubs
off on to the other®

At last you have a good case for friction: it is a
scientific name for some well-ordered behavior that
we can now link with other knowledge. It is atomic
or molecular dragging, caused by the same forces
that make wires strong and raindrops round. Its
mechanism can be demonstrated by photographs
and by chemical analysis. Its laws can even be pre-
dicted by applying our knowledge of elasticity to
the small irregularities of surfaces. Friction has
joined other phenomena in a general explanation.

*We can even show that when a copper block rubs on
another block of copper, tiny pieces of copper—invisibly
small—are exchanged between two blocks. No chemical
analysis could tell one block's copper from the other's; so
this interchange seems impossible to detect. Yet it is now
easily shown—and measured—by labelling one block with
radicactive copper.



And now we can state the full case against de-
mons: they are arbitrary, unreasonable, multitudi-
nous, and over-dressed. We need to imagine de-
mons with special properties to explain each
phenomenon in turn: therefore we need many
kinds, each with behaviors chosen to fit the facts.
We now prefer something more economical and
comfortable; a consistent body of knowledge, with
strong ties to experiment—and with cross checks
and interlinkages to assure us of validity—all ex-
pressed in as few general laws as possible. Even
where we meet new events that we cannot explain,
we would rather speculate cautiously than invent
a demon to calm some fear of mystery.

Good Theory

Now we can return to the contrast between
plogglies and Universal Gravitation. The plogglies
were specialized demons. The author of the fable,
a psychologist who offers it for therapeutic purposes,
discusses it as an example of prescientific or magical
theories that explain the working of nature by un-
predictable gods or demons. He states his overall
objection to the theory: “The only thing wrong with
it was that there aren’t any plogglies.” There many
modern physicists would disagree. They would not
mind the plogglies being a fiction (like any “model”
in science) but they would call the plogglies bad
theory because they are too expensive. The plogglies
were invented and endowed with two special be-
haviors to explain two sets of events, and they do
not explain anything else. They are an “ad hoc”
theory, a theory concocted just “for this purpose.”
There is nothing wicked about ad hoc theories—
they may even turn out to be true—but they are
weak, usually little more than narrow hypotheses
loaded with faith. Labelled merely “ad hoc assump-
tions” they may be useful signposts for honest specu-
lation. And when they lead to explanations of other
observed behavior we think better of them and
may promote them to a respectable title.

Then, as theory grows from a single speculative
guess to a general form of knowledge that fits many
observed effects we trust it more and more. We are
so pleased with its consistency and fruitfulness that
we say, “It can’t be wrong.” Look at Newton's gravi-
tational theory as an example of such a grand con-
ceptual scheme. Newton started with a number of
assumptions: vector properties of forces and mo-
tions; the behavior summed up in his Laws of
Motion; gravitational pulls proportional to inertial
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masses; inverse-square law; Euclidean geometry.
Some of these were extracted from experiment;
others were little more than definitions (Law I
defining “zero force”) and rules of procedure (Law
I11). But whatever their origin they were stated as
starting points for deductive theory. Then step by
step with clear reasoning he drew his “explanation”
of the solar system from them. We call this good
theory because it is economical. Starting from gen-
eral assumptions, Newton tied together in a single
scheme many things that had seemed disconnected:

Moon's circular motion |
:I:.sturtllaances of Moon's simple ALL
motion RELATED

planetary motions

(Kepler's Laws I, I1, T11) b"u:r':*’lf:
planetary perturbations s maﬁtatian
motion of comets & d
tides and @
bulge of the Earth E};ng

differences of gravity
precession of equinoxes

Deductive Theory and Scientific Knowledge.

The fanciful picture of Fig. 24-1 shows some of
the construction of good theory. Inductive gathering
of knowledge must come first. Then, when the time
is ripe, the theory may be brewed from a complex
mixture of ingredients. At early stages some of the
assumptions should be drawn off into preliminary
tests (as in Newton’s test of inverse-square gravity
with the Moon). At a later stage the predictions
yielded by the theory should be put to experimental
tests—as retrospective checks on the original as-
sumptions. We judge a theory not by how “right”
it is but by how helpful, how it suggests experiments
or promotes thought. To many a scientist, however,
the full value of a great theory is not just in fruitful
predictions but in a deep sense that it gives of sure-
ness of knowledge.

In a way the picture shows the making of scien-
tific knowledge rather than just of theory. It is ob-
viously a complex method that will take many forms.

“THE Scientific Method™

Now you can see why we say there is not one
single scientific method but many. Francis Bacon
(~ 1600) advocated a formal scientific procedure:

make observations and record the facts
perform many experiments and tabulate the results
extract rules and laws by induction
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and this earnest beginning was elaborated into
THE Scientific Method, advocated by some logical
enthusiasts even to this day:*

make observations and extract rules or laws

formulate a tentative hvpothesis (a guess, which
may be purely speculative)

deduce the consequences of the hyvpothesis com-
bined with known laws

devise experiments to test those consequences.

IF EXPERIMENT CONFIRMS
hypothesis, adopt the
hypothesis as true law;
and then proceed to frame
and test more hvpotheses.

| 1F EXPERDMENT REFUTES

| hvpothesis, look for
an alternative
hypothesis.

Real scientific enquiry is not so “scientifically logi-

cal” or so simple. (We do follow some such scheme
unconsciously, as James B. Conant points out, when
we look for a fault in our car lights, or when we deal
with water dripping from the ceiling of our apart-
ment—but we rightly say that our quick process of
guessing and looking is plain common sense. )

Scientific Methods

In the real development of science we approach
our problems and build our knowledge by many

& The same “scientific approach” is advocated by some ex-
perts in other fields—e.g. the social sciences. There it offers
useful guidance and criticism, but if enforced with blind en-
thusiasm it will pmbabéy restrict progress just as it would in
physics. Besides, how do we know that hlw-]:dge in other
fields can be made to erystallize in the form that bts ph}'ﬂ'ﬁ?




methods: sometimes we start by guessing freely;
sometimes we build a model for mathematical in-
vestigation, and then make experimental tests; some-
times we just gather experimental information, with
an eye open for the unexpected; sometimes we plan
and perform one great experiment and obtain an
important result directly or by statistical sorting of
a wealth of measurements. Sometimes a progressive
series of experiments carries us from stage to stage
of knowledge—the results of each experiment guid-
ing both our reasoning and our planning of the next
experiment. Sometimes we earry out a grand analy-
sis thinking from stage to stage with a gorgeous
mixture of information, rules, guesses, and logie,
with only an occasional experimental test. Yet ex-
periment is the ultimate touchstone throughout good
science, whether it comes at the beginning as a
gathering of empirical facts or at the end in the
final tests of a grand conceptual scheme.

How far scientists’ theoretical thinking will de-
velop at a given time depends on the state of knowl-
edge and interest—on whether the time is ripe.
When the general climate of opinion is ready for a
change of outlook or a new idea, a scientific sug-
gestion may take root where it might have starved
a century before; and this control of the advance
of understanding by the intellectual and social
climate is still true today.

When the time is ripe, the same problem is often
attacked by many scientists simultaneously and the
same solution may be discovered by several. Yet one
scientist may get the credit for reaping the harvest—
quite rightly if he is the only man with enough in-
sight or skill to carry the innovation through. In
Newton’s day new interest in motion, general think-
ing about the planets, Kepler's discoveries, new
studies of magnetism and its forces, . . . . . . and
new attitudes towards experimenting and scientific
knowledge, all made contributions of facts and at-
titudes and interests—the time was ripe for the
great development. Hooke, Wren, Halley, Huygens,
and others were all jumping to reach a unified theory
for celestial and earthly motions. Each sueceeded in
grasping some parts of the solution, but it was New-
ton who gave the complete solution in one grand
scheme, making “not a leap but a flight.”

Scientific Method: Sense of Certainty

Above all, most scientific knowledge—facts, con-
cepts, conceptual schemes—is built up by a criss-
cross process of investigation and reasoning from
several angles. We do not push straight ahead along
one narrow path of brilliant discovery—like a ro-
mantic story of making better toothpaste—but we
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investigate nature first along one line, then along
another; and then we make still another guess and
test it; and so on. As time goes on, we gather our
new concepts from several lines and check them
from different viewpoints; and our strong sense of
good knowledge is assured by the agreement from
different lines of inquiry.

The modern physics of atoms and nuclei is a
particularly good example. That region of study is
like a great central room with, say, seven closed
doors around it. Scientists looked in at one door,
and got a glimpse of micro-nature and its mysterious
ways. Then through another door: quite a different
view. Then through another—and then a comparing
of notes. ( For example, radioactivity gave one view;
electron streams quite another; and the photoelectric
effect raised new problems. X-rays gave still another
view; and presently some knowledge of X-rays
linked up with radioactivity and some with the
photoelectric effect, and in still another way X-rays
confirmed earlier measurements of atomic sizes.)
Finally by checks and comparisons between differ-
ent views a consistent scheme emerged, a picture
was formed, to describe micro-nature. We describe
that picture with everyday words from the large
“macro’ world around us (atoms are round, elec-
trons are small, X-rays travel like light ). So it is not
a true description—whatever true may mean—but
a “model” to enable us to describe our experience
of the micro-world in familiar terms. This scheme,
our model and its rules—our descriptive theory
—is still being modified and extended. If we
discover new experimental facts that fit, we enjoy
the confirmation. If new facts conflict with predic-
tions from our model, we modify the model—
changing as little as possible, from natural conser-
vatism. And if we discover new facts that go be-
yond the scope of our model we extend it. (When
we found that atoms are easily pierced by fast
alpha-particles, we stopped saying they are solid
round balls and described them as hollow round
balls.)

Our knowledge has grown already to be a com-
prehensive conceptual scheme that we trust because
it fits with our views through many doors. Though
we shall make many changes, though we may
change our whole scheme of thinking about atomic
physics, we already hold much knowledge with a
confidence that comes from its consistency with
every experimental aspect. To the outside critic
seeing us looking through a single door, the evi-
dence seems frail and the wealth of speculation too
great. But those who are building the knowledge
say, “We are sure we are on sound lines because if
we were seriously wrong some inconsistency would
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show up somewhere, some clash with at least one of
our experimental viewpoints—trouble will out.™
Building this sense of assurance is the essence of
scientific methods. Professor Ernest Nagel has sug-
gested that if there is a single scientific method it
lies in the way in which scientists check and coun-
tercheck their knowledge by experiment and reason-
ing from several angles, so that they feel that their
knowledge is warranted, that its validity is assured.

THE UNFINISHED PRODUCT—
UNDERSTANDING
Models

That is why science seems complicated to lean,
and even difficult to trust at first: we gain our knowl-
edge by repeated attacks from different angles and
we base our belief on the consistency of that knowl-
edge. We do not necessarily believe that the picture
of pature we thus form is the real world. Many
scientists say it is simply a model that works.

It is easy to see that our picture of atomic strue-
ture is only a model—the invisible atom described
in terms of large visible bullets and baseballs and
large forces that we can feel like weights and the
attraction of magnets. Yet it is uncomfortable to
realize that we do not know what an atom is “really
like,” and can only say that it “behaves as if. . . "
And vet, with the progress of invention, micro-
scope . . . electron microscope . . . fon microscope

..., you may decide that we can see real atoms
and not just a model of them—there is a photograph
of tungsten atoms at the end of this book. Yet all
such “seeing” of the micro-world, however clear its
results, is quite indirect: the images we obtain must
be interpreted in terms of the models that guided
our use of apparatus. In casual talk we gladly say,
“Now we know what the atoms are really like, how
they are arranged and how they move about™; but
in serious discussion, most scientists say, “We have
only shown that our model serves well, and we have
obtained some measurements of parts of our model.”
In a way, we use models in almost all our scientific
thinking: atoms, molecules, gravity, magnetic fields,
perfect springs, . . . Our models are what we use
to replace plogglies—economically.

Since theory is largely a reasoned model struc-
ture, based on some facts, we can always make
changes in it. Popular writers describe scientists as
gaily throwing away a theory when new discoveries
conflict with it; but in fact most scientists cling to
their old theory desperately. When scientists do
change their theory to fit increasing knowledge,
it is more often by progressive modification than by
a revolution.

“Crucial Experiments”
Sometimes rival theories lead to different predic-
tions so that a “crucial experiment™ can decide be-

T This is like our assurance of Bnances. It is easy to see
whether the accounts of a small store are correct, but the
financial statements of a big corporation are too complex for
an amateur to analyze. Yet we are confident that any major
financial wrongdaing, however well concealed, would show
up in the course of time. After many years of watching a
company's accounts without understanding them, most share-
holders maintain they are sure the company is sound, We
have long had that f)éeléng of warranty F@r Newton's gravi-
tational theory, and for some general principles such as the
Conservation of Energy.

® A fine example of a crucial experiment occurred in the
history of light. Two hundred years ago there were two views
of the nature of light: (A} the bullet theory advocated by
Newton, and (B) the wave theory ::]~e-'n&-!-::||:u.-lL-!Y by Hocke and
Huygens. Both accounted for the general behavior of light-
I':E'S, such as reflection and refraction, but refraction also
offered a crucial test.

When a slanting beam of light rays hits the surface of
a pool of water, the rays are bent to a steeper slant as they
enter the water. This bending of light at a boundary is called
refraction and it has been well known as a property of light
for thousands of years. Ptolemy gave an approximate law
for the amount of bending, and Willebrod Snell discovered
the exact law half a century before Newton wrote on optics.
Both the theories of light accounted for refraction and both

edicted the exact form of Snell's Law:

A) The bullets of light must be attracted by water as they
approach it [rather like a vapor molecule returning to

the liquid surface ). So their momentum is changed thus:

(i) wvertical component of momentum is increased (by
the action of the attractive force);

(i} horizontal component remains unchanged (sym-
ml:l‘.r}':l. The resultant momentum therefore runs
steeper in the water, showing the refraction of the
stream of bullets. The geometry predicts Snell’s ex-
perimental law. With this change of momentum,
the bullets must travel faster in water than in air,

(B) On wave theory, the advancing lines of erests must be
delayed when they meet the water, so that they are

slewed around and travel on through the water in a

steeper direction. This requires light-waves to travel

slower in water than in air.

A comparison of speeds of light in water and air would be
a crucial experiment to decide between the two theories. It
was not until 1850—a century and a half after Newton,
Hooke, and Huygens—that Foucault made the crucial ex-
periment. He showed that light moves slower in water than
in air. That settled the case against bullets—but only against
that particular model: bullets that have constant mass and
move with increased velocity, momentum, and energy in
water. Choose instead bullets that have the same energy in air
and water but change their mass on entering water, and you
can concoct a theory that predicts Snell’s Law and makes the
bullets move slower in water. In this case, the escape from
failure is easy though the product proves to be unruly; but
almost any theory can survive the condemnation of a
“crucial” test, at a cost of complicated improvements.
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tween them. Even then there is no absolute decision:
the defeated theory can usually be pushed and
twisted into a form that survives the test—just as
demons could always be endowed with extra prop-
erties. For example, Newton's demonstration of a
guinea and a feather falling freely in a vacuum
decides between two theories of ordinary fall:

(A) “All bodies fall with the same acceleration,
but for air resistance.”

(B) “Bodies have natural downward motions
proportional to their weights.”

Yet (B) can be polished up into agreement with the
experiment by blaming the vacuum pump instead
of thanking it: (B) “Bodies . . . weights; but vacuum
also exerts downward forces in inverse Pmpm'tinn."
(When a barometer is demonstrated, the story will
have to grow more fantastic still.)

Only in a few great cases does the decision seem
final: as in the choice, for the form in which light
carries energy, between smooth waves and compact
bullets (quanta). There, the photo-electric effect
decides resolutely in favor of quanta; or, again,
when experiments with the speed of light support
special Relativity, the decision seems certain. Yet
even in those great cases it is the weight of several
lines of evidence that decides rather than an in-
escapable proof by a single experiment.

Intellectual Satisfaction

Thus the test of good theory is not success vs.
failure but remains simplicity and economy vs. in-
creasing mmple:lit}r or clumsiness. The best theory
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is the one that is most fruitful, economical, compre-
hensive, and intellectually satisfying.

We expect a theory—or grand conceptual scheme
—to be fruitful in predictions and explanations,
while keeping its assumptions as few and as gen-
eral as possible.

Remember that a scientific “explanation” is neither
an ultimate “reason why” from some inspired source
nor a mere jumble of words describing observed
behavior in technical terms. It is a linking of the ob-
served behavior with some other well-known facts or
with more general knowledge derived from observa-
tion. The greater the number and variety of the facts
thus linked together the more satisfied we feel with
our theory. As confidence in it increases we “ex-
plain” some facts by linking them to speculative
guesses in our theory. Yet those guesses in turn are
linked to experimental knowledge in our structure
of theory; so it is much the same kind of “explain-
ing,” now vouched for by our belief in the validity
of our theory.

As we build our theoretical treatment, we start
with practical assumptions and simple concepls
closely related to experiment; then we devise more
general concepts to rule the simpler ones; and we
aim finally at deducing our whole picture of nature
from a few general concepts.

Above all, we value good theory for the sense of
intellectual satisfaction it gives us—our feeling of
confidence in our knowledge and pleasure in the
compact way we can express it. There is an art in
choosing theory so that it gives the strongest sense
of consistent knowledge, and that is what we mean
by understanding nature.

“If God were to hold out enclosed in His right hand all Truth, and in His left
hand just the ever-active search for Truth, though with the condition that I should
forever err therein, and should say to me: ‘Choosel” I should humbly take His
left hand and say: ‘Father! Give me this one; absolute Truth is for Thee alone.””

—G. E. Lessing, Eine Duplik (1778)




