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PREFACE

The study of the passage of charged particles through matter was under way at
the beginning of this century and was advanced particularly by Lenard, Bragg and
Rutherford. It turned out to be a most effective tool for exploring the structure of
matter. By 1913, Bohr's theory of the slowing down of charged particles had given
a quantitative account of the essential features of the process, on the basis of
Rutherford's model. Quantum mechanics later confirmed most details of Bohr's
analysis and developed them further, particularly owing to Bethe's efforts.

After this initial burst of progress, the desire to acquire greater mastery of
the details of the penetration process and to calculate the parameters of the main
formulas from first principles have continued to attract attention. This attention
stems, in part, from the subsidiary but ever-present role of particle penetration in
most experiments of nuclear and high-energy physics as well as in radiation chemistry,
radiation biology, and certain aspects of solid-state physics. Experiments in these
fields require accurate reference data on particle penetration, and, conversely, they
feed back new informatjon on the penetration process itself. A recent example of this
feed-back is the discovery of difference in the penetration of particles of opposite
charge. 1 The continued attention given to the process also derives from the intrinsic
interest of the effect of the passage of particles upon atoms and atomic aggregates,
and of the cumulative effect that the many collisions have upon the particles them-
selves. The study of these complex processes in increasing depth and detail consti-
tutes a never-ending task.

The National Research Council Committee on Nuclear Science has long main-
tained a Subcommittee on the Penetration of Charged Particles in Matter. This Sub-
committee, which is responsible for following, and stimulating, progress in this
field, has operated slowly, at times through informal discussions among its members
and then through the organization of an international conference organized at Gatlin-
burg, Tenn., in 1958. 2 More recently the Subcommittee has stimulated the prepara-
tion of a series of ''state of the art' reports, which are presented in this volume.

A review of the subject of particle penetration has revealed that development
in this field has been much more rapid that this writer, at least, had anticipated.
Part of the activity has resulted from the very decision to undertake the review of
this process. Many new lines of advance have opened up in the last two years—as
this volume should convey—and they have not yet been brought to even momentary
conclusions. For this reason, no.serious attempt was made to give these reports
even a mildly uniform or editorially integrated character. The scope of the present
‘operation is limited severely by the extreme scarcity of persons who are prepared
to devote to the subject of particle penetration a major portion of their activity for
several years. Since only a small minority of the Subcommittee is so prepared, it
was deemed unrealistic to expect its members to provide a sustained effort for a

lgee p. 23 of Appendix A, and Phys. Rev. Letters, 11, 26 (1963).

2The Conference proceedings are available as NAS-NRC Publication 752, Nuclear
Science Series Report 29 (1960).
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time sufficient to bring currently open questions to a conclusion and to integrate their
several contributions adequately.

The Subcommittee met at Cornell University in June 1963 to review the mate-
rial prepared by its members and to arrange for the publication of this volume.
Actually, much of the material presented here has been developed, or at least re-
worked deeply, as a result of the Cornell meeting. Therefore, neither the whole
Subcommittee nor its Chairman, as an editor, has had adequate opportunity to examine
the reports in their final form. Here again, expeditiousness suggested that the re-
ports be circulated as they stand under the responsibility of their individual authors.

Part of the Subcommittee's effort has consisted in the preparation of two survey
articles that have been published in the Annual Review of Nuclear Science (vol. 13).
These articles, which serve as background to several of the present reports, are re-
printed here (as Appendixes A and B) with the permission of the publishers of the
Annual Review of Nuclear Science.

The subjects of the reports reflect to some extent the interests of the individual
authors rather than a preconceived organization plan. Their arrangement in the vol-
ume begins with a study by J. Lindhard (based on the Thomas-Fermi model) of the
role of similarity considerations in establishing over-all quantitative features of the
stopping-power process. This approach also yields basic elements of a theory of the
ion-atom collisions prevalent at low ion velocities. Both of the next two reports,
by H. Bichsel and by J. E. Turner, deal with the experimental verification of stopping-
power theory and with the determination of parameters of this theory from experi-
mental results. These reports are complementary inasmuch as Bichsel's focuses on
details of the analysis and significance of experimental data, whereas Turner's focuses
on the broader aspects of the relationship between experiment and theory and on the
role of various experiments in providing key items of information. Report No. 4, by
U. Fano and J. E. Turner, amplifies the treatment of shell corrections in Appendix A.
Report No. 5, by M. J. Berger and S. M. Seltzer, analyzes the effects of scattering
and of energy loss fluctuations on the penetration of protons and the resulting diffi-
culties in the interpretation of experiments.

The initial group of reports of general character is followed by five reports
that provide specific data on the penetration of charged particles, including extensive
tabulations and graphs. This second group of reports constitutes the core of the
volume for most of its intended users. The user who requires accuracy of the order
of 10 percent may generally draw information directly from the tables. However,
maximum utilization of the available accuracy, which generally approaches 1 percent,
requires an adequate understanding of relevant circumstances; reference to the
accompanying text is recommended for this purpose.

In Report No. 11, S. K. Allison contributes new experimental methods and
results. His report describes a technique for observing the slowing down of neutral
atoms and of ions while their charge state remains unchanged, and it presents re-
sults of such observations in hydrogen gas. The volume terminates with an outline
that lists currently unsolved problems.

At its Cornell meeting, the Subcommittee agreed to recommend the following
definitions and nomenclature for related concepts of particle range and of mean
excitation energy:

"Range' of a particle should indicate its "mean (rectified) path-
length'" from its relevant point of departure to the point where it comes
to rest; that is, where further displacement is not detectable.
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The term "c.s.d.a. range' is introduced to indicate the quantity
E

0 -
IO (dE/ds) 1dE, which represents the range in the continuous slowing
down approximation (see Appendix A, pp. 16 and 45).

"Projected range'' should indicate the mean depth of penetration
into a material; that is, the mean projection of a particle's path on its
direction of incidence on the material.

'""Mean excitation energy'' should indicate the quantity I of stopping-
power theory defined in terms of absorption frequencies E,/h and
oscillator strengths fy, by I = expZpfhlnEq. 3

"Adjusted mean excitation energy, " Ia4j. , should indicate the
quantity related to I but determined from experimental values of the
stopping power under the assumption that shell corrections vanish in
the high-energy limit (see Report No. 6).

Thanks are given to the various authors of this volume for their special efforts
to supply contributions on a tight schedule. Subcommittee members who have not
contributed reports have supported the preparation of this volume with information,
data, and valuable advice; among these, particular thanks are due Dr. R. L.
Platzman of the Argonne National Laboratory. Dr. J. E. Turner of the Oak Ridge
National Laboratory has devoted special efforts to the whole undertaking. Dr. L.
Slack, of the staff of the National Academy of Sciences—National Research Council,
has effectively undertaken the task of arranging for the publication of the volume.

The Subcommittee membership currently consists of S. K. Allison, Walter
Barkas, Martin J. Berger, H. A. Bethe, Hans Bichsel, U. Fano, R. L. Gluckstern,
William P. Jesse, Jens Lindhard, L. C. Northcliffe, Robert L.. Platzman, R. H.
Ritchie, R. M. Sternheimer, and James E. Turner.

U. Fano,
Subcommittee Chairman

Washington, D. C., January 1964

In this formula (as in Appendix A, pp. 14, 17, and 19) the f,, are normalized so that

Znfn = 1; an adjustment is required for the more common normalization Zpf, = Z.
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1. THOMAS-FERMI APPROACH AND SIMILARITY
IN ATOMIC COLLISIONS

Jens Lindhardl

Abstract

This paper concerns the significance of similarity in atomic
collisions and stopping problems. Similarity properties are primarily
connected with dynamic Thomas-Fermi treatments. The discussion
deals mainly with the basic physical picture, but not with details as
regards measurements and applications. Deviations from similarity
are treated, as well as possibilities of improving our incomplete
description of collision processes.

Collisions between ions and atoms are analyzed roughly, and
are divided into two major groups. One group relates to the quantal
perturbation case, where the phenomena may be described in terms
of properties of the medium only. This case is discussed in some
detail. Significant properties are, for example, dipole spectra of
atomic systems, behavior of stopping at lower velocities, and appli-
cability of free electron gas picture in atomic dynamics.

The second group of collisions relates to ions of relatively low
velocity, where collisions between ions and atoms may become nearly
elastic, the energy loss being largely kinetic energy of recoil atoms.
For such collisions, classical mechanics may be used; similarity
properties are based on this circumstance, and become different from
those of the first group. Inelastic effects are also of importance and
may be roughly estimated, as discussed briefly.

1. Introduction

In the theory of slowing-down of charged particles it has often turned out that
approximate results came out rather easily; yet, it could be exceedingly difficult to
obtain high accuracy. With one or two exceptions, attempts at precise calculations
in any specified case were hardly promising. Alternatively, it can be useful to
establish a simple comprehensive theoretical description.

It is clear, moreover, that, unlike chemical reactions, atomic collision
processes are quite violent disturbances of atoms, so that effects due to shell struc-
ture, chemical properties, etc., should normally be of minor importance. Thus,
it is indicated that Thomas-Fermi methods can be desirable in a study of ion-atom

1Imsstitute of Physics, University of Aarhus, Aarhus, Denmark.
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collisions. In a well-known paper by F. Bloch (3), the Thomas-Fermi approach to
atomic dynamics was studied for the first time.

This paper is mainly an attempt to present the case for the Thomas-Fermi
approach. The Thomas-Fermi approach, as used in the static atomic model (Ref.
27), is based on self-consistent potentials and on local connection between density and
zero-point energy of a degenerate electron gas. However, its most important conse-
quence is similarity in properties of atoms, all atoms being contained in one case.
The similarity is lost in more detailed descriptions, as in the Thomas-Fermi-Dirac
model or even the Hartree model. In comprehensive treatments of atomic phenomena
the property of similarity is the most important feature of the model. When mention-
ing the Thomas-Fermi approach, I therefore primarily mean an attempt to explore
similarity features as far as possible, rather than the actual approximation procedure
itself. In this sense, the Lenz-Jensen treatment may be superior to the normal
Thomas -Fermi treatment because it retains similarity and better describes the outer
parts of atoms.

One advantage of a similarity description is that it gives a standard with which
to compare experiments. It is important, of course, that this standard, considered
as a first approximation, is fairly accurate. It is also desirable that corrections for
individual deviations from similarity may be made when necessary (e.g., corrections
due to atomic shell structure). In fact, an approximation is well-defined only if
deviations from it can be accounted for. The description asked for is thus of the
type of similarity methods in other branches of physics, e.g., the van der Waals'
equation of state.

In the following discussion, collisions and stopping are treated for all kinds of
ions and at any velocity. It can hardly be expected that general similarity holds for
all such cases. Some type of simplification of the basic quantal treatment should be
permissible in order that similarity might apply. In point of fact, it turns out that,
for many purposes, stopping problems may be crudely divided into two simple cases.
One case is where quantal perturbation methods are applicable; the other is where
classical mechanics may be used. In both of these cases the resulting simplifications
turn out to permit similarity, though not of the same kind.

Connected to the Thomas-Fermi model is one feature that should be emphasized
here—the use of statistical methods. The system of electrons is compared to a gas
of free electrons, in some respect even with neglect of the variation in space of the
gas density. I believe that this gas picture is useful also when one goes beyond the
simple static Thomas-Fermi model. It makes possible calculations of numerous
collision effects in cases where other methods fail. The electron gas and its gener-
alization, the dielectric approach, is referred to repeatedly in the following discussion.

After a preliminary analysis of basic approximations in Section 2, the discus-
sion is divided into two parts. The first part is the perturbation approximation treated
in Section 3, and the second part concerns quasi-elastic collisions, discussed in Sec-
tion 4. In both cases, similarity properties and statistical methods are of importance.
Apart from similarity, there are several other questions at issue, in particular the
single-particle and dielectric approaches. These questions are connected to the
perturbation case in Section 3, where the accuracy attained is fairly high.

The entire discussion is meant partly as an account of results obtained and
partly as a program or framework for further research. I do not attempt to analyze
or discuss experimental results, but treat only their influence on the main ideas of
the present aspects of atomic collisions.
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Reference is made several times to the survey article by N. Bohr (1), whose
terminology is followed here to a large extent. The reader is also referred to the
other papers in this volume, in particular to the review by Fano relating to the
perturbation approximation in Section 3, and the experimental review by Northcliffe,
relating to Section 4.

2. Criteria for Basic Approximations

Instead of studying only the basic ion-atom collisions, it has been customary to
pay special attention to more indirect effects, such as the average energy loss per
cm by a swift ion, or its range. In the present treatment of atomic collisions, I shall
not discuss finer details of each collision. We need mainly such averages over cross
sections as are important in slowing-down. One important example is the stopping
cross section, S = dec, where T is the energy loss and do the differential cross
section.

There may be said to be two distinctly different mechanisms of slowing-down
for nonrelativistic particles—one being electronic stopping, i.e., energy loss spent
as excitation or ejection of atomic electrons, and the other nuclear stopping, by which
is meant the transfer of energy to translatory motion of an atom as a whole. The
former is an inelastic process, and the latter an elastic collision. As discussed
below, a closer scrutiny shows that this separation between two types of collisions is
usually a fairly good approximation, though not always a very accurate one.

There are essentially three important parameters in slowing-down, the velocity
v of the particle and the atomic numbers Z; of the particle and Z3 of substance. The
masses M; and M, are normally less significant parameters. M; usually enters in
a trivial way, and Mgy is often unimportant. Moreover, the masses are not independent
of the atomic numbers. If we study details of collision processes, further parameters
may enter, as, for example, the classical impact parameter or the exchange of mo-
mentum in a collision.

At high particle-velocities the energy loss is nearly exclusively electronic
stopping, and nuclear collisions are exceedingly rare. For the classification into
high and low velocities, we take as a starting point the simple analysis given by
N. Bohr (1). When a swift particle of velocity v and charge q; collides with another
one at rest and with charge gy, quantum mechanical perturbation methods may be used
if (according to Bohr)

29,43
R g ] , (2.1)

whereas a classical treatment would be proper when x>1.

For the many-particle collision problems occurring in penetration phenomena,
where, for example, two atomic nuclei and a number of electrons are involved, the
application of Equation 2.1 is not always immediately clear. One useful supplement
to Equation 2.1 is the result that the ion starts carrying electrons to an appreciable
extent when its velocity becomes v<vyZ{ 3, where vo = e?/h. Its average charge q;
will then actually be of order of (cf. Ref. 1)

q = Zie¥ey, (2.2)
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in not-too-close collisions. Zj is the atomic number of the incoming particle, and
v1~Z% 3 is an effective quantum number of electrons carried by the ion. This cor-
responds to the circumstance that the majority of the electrons attached to the ion
have orbital velocities ~vy = voz.fl3 . Already used here are Thomas-Fermi estimates
of effective quantum numbers and orbital velocities of electrons, though only in a
qualitative way.

Let us consider a collision between the ion and an electron at rest. It is ap-
parent from Equation 2. 2 that if the ion velocity exceeds

v22Zyivp, (2. 3a)

the charge becomes q; ~Ze, and the inequality (Eq. 2.1) is seen to be fulfilled, so
that quantal perturbation methods are valid. Then, quantities such as cross sections,
average stopping, etc., are nearly proportional to Z{, the square of the charge
number of the particle.

Perturbation methods hold more widely than is suggested by Condition 2. 3a.
The atomic electrons are not at rest, as supposed in Condition 2. 3a, but have orbital

velocities v; between Yo and szo; for the majority of the electrons vj is of order of

Vg = \.I'C'Z.g‘(3 . If now, for a collision with an atomic electron
ij,zzl‘\?o a (2.3b)

perturbation methods may be used for any ion velocity, v, since the relative velocity
in the collision remains large, independently of v. It may be noted that Conditions
2.3a and 2. 3b are the outcome of a single inequality involving an average relative
velocity of ion and electron, i.e., (v2+ \ri?)u2 R2Zyvg.

Quantities such as total stopping are obtained by summing over all electrons.
For such purposes, Condition 2. 3a is a more important restriction than Condition
2.3b. Indeed, at low ion velocities the atomic electrons no longer contribute nearly
equally to energy loss; each loosely bound electron contributes much more than a
strongly bound one. Therefore, the important vj elements in Condition 2. 3b are
small, and cannot be expected to change drastically the Condition 2. 3a.

As mentioned above, another characteristic velocity is v; = vq* Zfla. When
v is small compared to vy, the balance charge of the ion, given by Equation 2.2, is
small, and we are concerned with nearly neutral systems colliding with each other.
If v is lesg than vy, the electronic stopping must increase with v, since, e.g., in
the Bethe stopping formula S is proportional to (qflvz) times an increasing function
of v. On the other hand, if v is large compared to vy, the ion carries relatively few
electrons and q is fairly constant, so that the electronic stopping decreases with in-
creasing v. Maximum in stopping therefore occurs in the neighborhood of v;.

In any case v; gives a separation between high and low velocities, and is for
several purposes a more important criterion than Condition 2. 3a or Condition 2. 3b.
We therefore consider separately a low-velocity region

= 2/3
0 <v<v, =v,Z7 (2.4)
As we shall see, this velocity region is also the one in which quasi-elastic ion-atom
collisions of nearly classical type become important, and where electronic excitation
is simple but is not always tractable by quantal perturbation methods.
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If one of the above three inequalities (Conditions 2. 3a and 2. 3b and in Eq. 2.4)
holds, special simplifications appear. The fulfillment of either of the conditions
permits perturbation methods, as, in either, a perturbation treatment can be of
interest for all velocities v. However, since Equation 2. 4 indicates the velocities
v<vp may always require special approximations, we need investigate perturbation
for v>vq at least, i.e., protons with energies larger than 25 kev. If, as an auxiliary,

we study stopping by electron gases, or by one of the electrons bound in an atom, it
is proper to consider all velocities, i.e., also v<v,.

3. Perturbation Approximation

One result in the preceding section is that the perturbation approximation, at
any velocity of the penetrating particle, is an important staEdErd and must be investi-
gated. In this approximation, stopping is proportional to Zje”, the square of the
charge of the particle. The great simplification contained in the perturbation approxi=~
mation is that we are concerned with properties of the medium only, and, in fact,
linear properties. The number of significant parameters is reduced from threé to
two, v and Zzo

We apply, of course, the perturbation approximation primarily in the case of a
proton. Many authors have expressed misgivings about the simple theory of stopping
for protons with energies of several hundred kev or less, because of capture and loss
effects. Such misgivings are contrary to the spirit of the Thomas-Fermi description.
I return to the justification of the perturbation approximation for protons, with such
questions in view. Other questions of proton stopping are treated in the accompanying
article by Fano (2). In the remainder of this section the penetrating particle may be
imagined to be a proton, if any specification is desirable.

High Velocities (x>1)

When separating now into several velocity regions, we measure the particle
velocity in terms of critical velocities belonging to the medium. Since electronic

orbital velocities in atoms are ~vg = z% 3v0, we might at first demand that v is large

compared to vy, corresponding to the high-velocity region, but a better measure of

velocities is given in Equation 3.4. Relativistic corrections will not be included, al-
though most of these are quite simple (cf., e.g., Ref. 2). The omission is made for
simplicity, and also because the corrections are small except in extreme relativistic
cases. The customary stopping cross section per atom may be written as

_ 4nzget

e
sz

S Zy' L, (3.1)
where L is a function of two variables in the perturbation approximation; we write

L = L(v,Zg). In the region of high velocities, the dimensionless quantity L is
asymptotically connected to an average excitation potential I, as shown by Bethe (19),

2
L=logzml—v » Zg 1c»g1=‘*._:f0i log fiwy; (3.2)
1

where fg; are the dipole oscillator strengths of the transition frequencies wy; for the
atomic system.
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The Thomas-Fermi demand in this case is simple. In fact, the unit of time of
the Thomas-Fermi atom is proportional to Zél, and since an energy in a perturbation

treatment behaves as Planck's constant times a frequency, the energy I in Equation
3.2 must be given by Bloch's relation (3, 7),

I=IO‘Z2' (3.3)

where I, is a constant. This result gives a good approximation to experimental re-
sults for proton stopping, a sensible empirical estimate of Iy being ~10 ev. Thus,

while Equation 3.3 is a good approximation for high Z5 values, vis. Z9215, consid-
erable deviations remain in several substances. Some of these deviations clearly
are due to shell effects, but others are systematic, with the ratio IIZZ on the average

increasing with decreasing Z, and attaining values above 15 ev in the lightest substances.

Intermediate Velocities (x>1)

Before entering into these questions, we may consider the straightforward
Thomas-Fermi extension of Bloch's relations to somewhat lower, though still fairly
high, velocities. The logarithm in Equation 3.2, as well as the stopping cross sec-
tion (Eq. 3.1), are according to Equation 3. 3, functions of the variable x = vzlvo Zy.

Here x1/2 may be said to be the reduced velocity of a Thomas-Fermi similarity treat-
ment. At lower velocities, where the contributions to L are no longer of logarithmic
type, we may still tentatively introduce a standard similarity corresponding to x

(Ref. 7),

L=L{x), x= (3.4)

2 ,
Vo Z3

and can then discuss which kinds of deviations may occur. The achievement of
similarity is that the two variables in Equation 3.1 are reduced to one variable in
Equation 3. 4.

One application of Equation 3.4 consists in semi-empirical comparisons. By
means of Equation 3.1, and measurements of the stopping cross section S_,, empirical
values of L may be obtained. A plot of such values of L against x for measurements
in any substance is a convenient Thomas-Fermi comparison of the results. This
method of comparison may be expected to be sensible, at least at such relatively
large velocities where x is considerably larger than 1.

I return to deviations from Bloch's relation (Eq. 3.3). They afford an oppor-
tunity to discuss what is meant by a Thomas-Fermi treatment of atoms. The system-
atic increase of the ratio I/Z5 with decreasing Z3 has given rise to several sugges-
tions. On various grounds (e.g., Refs. 5,6,18) it has been suggested that the scaling
unit of the frequency spectrum is not proportional to Zg but that it increases more
slowly with Z5. In this connection, reference has been made to the variation of energy
with Z, in a Thomas-Fermi-Dirac model. It appears to me that these surmises are

not very promising.

What one needs is an approximate physical picture, primarily as regards the
dipole oscillator strength distribution for atoms and molecules. The following picture
is perhaps adequate. Complete validity of the Thomas-Fermi model means that the
density of oscillator strength is always g(w/Zywg), where wg is the Rydberg frequency.
Deviations from this density must occur in all atoms and molecules. One type of
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deviation should appear at frequencies of order of ZgwR; i.e., K-shell binding

energies. In most cases this deviation is hardly important because little oscillator
strength remains at such high frequencies. In the intermediate region, too, where

w~Zowp, deviations from the Thomas-Fermi spectrum must occur, connected to

inner electron shells; but these deviations also should be of less direct importance
than those at the lowest frequencies. In fact, the density of oscillator strength in-
creases for decreasing w, but there must be some kind of gap in the spectrum up to
a frequency of order of wp; i.e., for (wlzsz)'inl. This clear-cut departure from
Thomas-Fermi scaling of the spectrum is the more predominant the lower the atomic
number. Since the gap implies a shift (in the low-frequency region) of oscillator
strength density towards higher w-values, as compared to the Thomas-Fermi spec-
trum, it follows directly that I-values must increase above Bloch's result for de-
creasing atomic number. 2 As to chemical bindings, polarization in solids or phase
changes, the resulting effects on oscillator strength distribution ghould be confined

to quite low transition frequencies.

If the simple picture presented here is a fair approximation to distribution of
dipole oscillator strength, several important conclusions may be drawn from it. A
few conclusions of this type are discussed below. However, simplifications other
than those mentioned above will be made in order to arrive at some of the results.

The first conclusion is that curves of experimental L against x will, at high
values of x, be a set of rather closely lying and nearly parallel lines; separation be-
tween curves is caused primarily by deviations from Bloch's relation (Eq. 3. 3).
Although the curves do not vary exactly as const. + log x in the upper region, the
deviations from the logarithmic curve should remain comparatively small. In the
present formulation they are given by a Thomas-Fermi equivalent of K-, L-, M-, ...
shell corrections.

Next, we are interested in continuing the curve farther down, to velocities
where x < 1. The corrections to (Eq. 3.2) may be said to be of two kinds. First,
L is a sum of logarithmic terms corresponding to various transition frequencies;
none of these terms can be negative. This implies a cut-off, at least when the
arguments inside logarithms become less than 1, and therefore a positive correction
to L. Second, when 2mv2 is large compared to the transition energy fiw, there is a
downward correction, of the kind mentioned above. This may be called the asymptotic
correction.

We are thus confronted with three theoretical problems; Computations of I-
values, estimation of individual asymptotic corrections, and estimation of cut-off
corrections. Computation of I-values should be the simplest of these problems, yet
it is not readily solved because of the fact that direct theoretical computations have
not been made, except in atomic hydrogen and helium. For this reason alone, the
Bloch relation (Eq. 3. 3) is useful. The difficulties in estimating I is one of the

2The gap may be thought of as rather constant, and less dependent on atomic shells

than would appear from purely energetic considerations. Thus, in inert gases the
energy gap is large. In other gases the gap is small, but the dipole oscillator
strengths are pushed upwards in frequency. (The upward shift of the oscillator
strength is due to a polarization effect within the electron cloud; see p. 9). There-
fore, the net result for the total oscillator strength distribution is about the same
in these two cases.
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reasons why the original attempts at estimating the more involved inner shell
corrections may not give accurate results.

As I see it, previous estimates of I-values and corrections to Equation 3.2
were hampered mainly by disregard both of polarization effects within an atom as a
whole and of important corrections due to the less strongly bound electrons. Both of
these effects are included, to a considerable extent, in a Thomas-Fermi scheme and
may be estimated in various approximations within this scheme (e. g., the simple
compressible liquid of Bloch). Particularly concerning the question of polarization,
there have been differences of opinion in recent literature (cf. e.g., Ref. 12). I
return to polarization and correction effects below.

Low Velocities (x<1)

Let us consider the third type of quantities, the cut-off correction which appears
at low x-values. It is often maintained that for stopping in this region (i.e., protons
with energy below several hundred kev) systematics no longer prevail, particularly
because of capture and loss of electrons, and the associated energy transfers to elec-
trons and screening of the field around the proton. Since I argue the case for the
Thomas-Fermi description, let me discuss here the opposite point of view (Ref. 8)
where, e.g., screening effects are due to the medium only. It seems important to
check the degree of accuracy of the Thomas-Fermi perturbation treatment at low
velocities. If such treatment applies here with any accuracy at all, it should be more
accurate and better understood at high velocities.

For an approximate treatment at low velocities, two of the previous assumptions
are needed—one is the cut-off corresponding to L having no negative contributions,
and the other is that deviations from Thomas-Fermi spectrum g(w/Z,wp) occur only
below a certain frequency > WR in a manner characteristic of the atom in question.
At low velocities, high frequencies in the atom contribute little to stopping, because
of the cut-off effect. The increase in stopping (Eq. 3.1), therefore, is essentially of
Thomas-Fermi type, i.e., common to all atoms. Inthe L-curves there still remains
the effect giving deviations of the I-value from Bloch's relation. The spreading of
L-curves at low x-values should roughly be like that at high x-values in an absolute
measure, and therefore larger in a relative measure. Note that L-curves may
possibly cross each other, due to effects of successive inner atomic shells.

Maximum in stopping cross section, S, .., for protons occurs at widely differ-
ent energies, Ema.x' of order of 100 kev. The above considerations were utilized
tentatively, in order to derive from measured values of S,,5, and x, ., the correlated
I-value of the substance in question. This appears to give I-values in fair accord with
those found at high velocities. Furthermore, check of an approximate statistical
model of oscillator strength is obtained (Ref. 8).

The question may be asked why it should be at all possible to look apart from
electron capture, loss, and screening; i.e., why the proton may be treated in the
perturbation approximation. In this connection the simplest case that can be studied
theoretically with considerable accuracy is that of a proton of arbitrary velocity in
an electron gas of comparatively high density. In this case the question of capture,
loss, and screening is solved automatically. Stopping is closely proportional to the
proton charge squared, and screening is nearly independent of the charge. In a dilute
electron gas with low kinetic energies of electrons, stopping effects are no longer
proportional to Zf at low velocities, but statistical methods of the Thomas-Fermi

type are still applicable.
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In a substance with Zg>1, the greater part of the atom corresponds to an
electron gas of comparatively high density, but a certain fraction corresponds to a
gas of relatively low density. To a large extent, stopping of protons by atoms is
therefore within the perturbation approximation; but at quite low velocities (v<vp),
where loosely bound electrons give large stopping contributions, the approximation
fails. In any case, the stopping effect remains little influenced by differences in
capture and loss phenomena. ~

For a-particles the situation is, of course, different, since screening effects
occur at considerably higher velocities. Directly, a-particles are of little use in the
analysis of linear properties of matter. Instead, a-particles and the heavier ions
mentioned in Section 4 may (e. g., by Thomas-Fermi scaling) serve to estimate
deviations from stopping being proportional to Z2 in the case of protons (cf. also Eq.
4.12). In this connection, the highly interesting problem of stopping of negative
heavy particles at low velocities should be mentioned. As to intermediate velocities
(v~20v0) it has been suggested by Barkas et al. (24) that there is a large difference
between ranges for negative and positive baryons.

Comparison with Electron Gas

A useful example seems to be the stopping of charged particles in a free electron
gas, where relatively high accuracy is possible and important theoretical features are
illustrated. The linear dynamic properties of the electron gas are contained in the
dielectric constants €l(k, w) and €tr(k, w), which depend on wave number and frequency
of the field. In the first approximation the dynamics is equivalent to a dynamic self-
consistent perturbation treatment. A most conspicuous feature in such stopping
phenomena is the polarization effect. From the results for the free electron gas it
appears that polarization within an atom also is important (Ref. 7). The influence of
polarization on the levels of the static model may be disregarded in first approxima-
tion, but the dipole oscillator strengths of the various transitions are strongly affected.
The effect is most pronounced in an electron gas where all of the dipole oscillator
strength is pushed upwards and collected in the plasma frequency, wg, = (4mn e2/m)1/2,
This effect of polarization should remain appreciable in atomic systems.

In the absence of more precise calculations, a qualitative estimate of atomic
oscillator strength distribution in atomic systems has Eeen made by merely assuming
a local modified plasma frequency, y wgp., where x~21 . This assumption gives easy
estimates for both Thomas-Fermi and Hartree density distributions, and seems useful
for exploratory purposes at least (cf. Refs. 7,8, 2).

Other interesting results obtainable in an electron gas are summation rules as
expressed by the dielectric constant. Besides the familiar Bethe sum rule for gener-
alized oscillator strengths may be mentioned the equipartition rule, according to
which the stopping contribution from close collisions and from resonance collisions
are exactly equal (Ref. 16). This result implies that, for an electron gas, e.g., the
asymptotic corrections to Equation 3.2 are contributed equally from close collisions
and resonance collisions, so that only one of the two need be calculated. It turns out
that also in atoms the asymptotic shell corrections obey the equipartition rule, as far
as present computations go (cf. Refs. 2,25,26). Moreover, the electron gas picture
leads to asymptotic corrections in fair agreement with more direct calculations on
atoms. It therefore seems feasible, within a Thomas-Fermi description, to compute
the velocity-dependent corrections to the Bethe-Bloch formula (Eq. 3.2).
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4. Quasi-Elastic Collisions

In the perturbation case, the stopping cross section depends on two parameters,
v and Z,, but it depends on only one parameter if similarity applies. The present
case of low velocities is considerably more complicated. Not only is stopping initially
a function of at least three parameters (i.e., v, Zy and Zy), but there are two differ-
ent stopping mechanisms, electronic and nuclear stopping, with the latter, moreover,
leading to sizable fluctuation effects.

Both experimentally and theoretically there is a vast number of cases to be
investigated. The field is much less explored than is that of stopping of protons, and
the relative accuracy is less by perhaps an order of magnitude. Two major groups
of problems arise. One group concerns stopping and range problems, i.e., the fate
of the particle; the other group concerns radiation damage in the medium, i.e, the
fate of the substance. In the latter group of problems the competition between elec-
tronic and nuclear stopping is particularly important. From these brief comments
it would appear that similarity considerations, if applicable, can be of great value.

The perturbation case corresponds to high velocities. In the following is treated
velocities v less than the critical velocity vy (cf. Eq. 2.4). The electronic stopping
decreases when velocity is diminished, as mentioned in Section 2. The direct quasi-
elastic collisions between the ion and atoms, giving rise to atomic recoils, then become
of increasing significance in the energy loss of the ion, and they dominate completely
at quite low velocities (1). When treating the case vy — still from a Thomas-Fermi
similarity point of view—I therefore consider primarily the recoil of atoms, which
so far has been disregarded Since velocities are comparatively low, the ions are
nearly neutral, i.e., Z* IZ «1; as an extreme case it should be noted that nearly
neutral might correspond to, e.g., Z"{ ~15, for heavy ions. The simplest starting-
point for quasi-elastic collisions is that of very low velocities (v "’0) The phenom-
ena occurring here may be described as a neutralized heavy ion moving slowly past
an atom in a classical orbit determined by the repulsive force. This collision is not
completely elastic, and, in an approximately continuous way, energy is transferred
to atomic and ionic electrons.

I shall now attempt to indicate, in a tentative and simple way, how similarity
may be applicable in quasi-elastic collisions. The first question is a computation of
static ion-atom interactions on the basis of the Thomas-Fermi treatment of a cloud
of electrons belonging to two nuclei, Z; and Z,, at a distance R. The potential energy
must behave as Z Zze /R times a function of two variables, depending on R, Z, and
Zy, e.g., the two variables R/a and (Z,/Z,),

Z1Zoe
U=.J.ﬁie_.-u, (4.1)

where u = u(R/a, Z;/Zjy), and a = ag" 0. 8853(2%,3 + Z%B)"llz. In a comprehensive

description where similarity is used, it would be preferable to be able to express u

as a function of one variable only. In fact, Bohr (1) made an assumption of this kind
by putting u = exp {-R - 0.8853/a}. Estimates of actual potentials for various values
of (Zy /Zg) have been made by Firsov (15) and many others. It is apparent that, within
a fair approximation, one may assume u to be a function of one variable only, but the
exponential function in the Bohr potential decreases much too rapidly at large dis-
tances. The other natural choice,

u= ¢0(R,a) ’ (4.2)
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with ¢4 being the Fermi function (Ref. 27) belonging to the Thomas-Fermi atom,
turns out to be a good approximation.

So far, there is similarity in ion-atom interactions, the unit of length being a.
Then, Equation 4.1 implies that the unit of energy is lezezfa. With this in mind,

consider the possibility of similarity in ion-atom collisions. Let the atom be at rest
in the laboratory system, whereas the ion has the energy E. In the center-of-gravity
system the energy is E Mg/(M; + M), and when this is measured in reduced units a
dimensionless parameter
3M2
€=E - 3 (4. 3)

is obtained. Similarly, the impact parameter p is p/a in reduced units. Since the
reduced mass is My = My M, ,’(Ml + Mz) , we also have a unit of velocity, w, given by

_ 2Z1Zge2 \1/2
w —'—!ﬁ;.— (4-4)

By means of reduced energy, €, reduced length, £ = R/a, and reduced time, T =t w/a,
one is able to solve all scattering problems by solving one case, for arbitrary € and
£. Thus

do = wa2 f(¢, sin? .g)da : (4.5)

This description may be carried a little further. Consider possible generaliza-
tions of the static force. The velocity-dependent forces are due to irreversible
excitation of the electron clouds of the colliding systems. Let v(R) be the rela-
tive velocity of the heavy centers at the distance of separation R. The excita-
tions depend on a competition between v(R) and the electron velocities ~v022’3,
i.e., on the dimensionless variable V(R)fvoz 3. The force is then expected

to be of type of

- zl2282

K _z_k_R, _m_"(m (4.6)
R (a Voz )

Here, the function tends to 1 for R/a—0. Consider scattering when Equation
4.6 applies. Similarity between two collisions demands also that the new
collision variable v(R)Ivozz 3 {s the same in the two collisions. The demand
would appear to be in contradiction to Equation 4.4. Only if \ = (wlvoz2i3) is
a constant, similarity can be obtained in the present case tou. This holds
quite well, because for the stable isotopes A; = 22".1 i A2 ¥ 2Z,, and for most

values of Z; and Zy the constancy of )\ is remarkable. One clear exception

occurs when either the atom or the ion is a proton, because ) then increases
by a factor of 212, Still, since the dependence on the last variable in Equation
4.6 is not a strong one, and since in most collisions deflection angles § are
small, fixed values of € and p/a may be expected to imply corresponding
collisions, so that Equation 4.5 remains valid.

Even though the result (Eq. 4.5) is not particularly complicated, it is not easily
applicable to direct comparisons. It is possible to compute (from Eq. 4.5) averages
of powers of sin /2, and, although this is useful, one may obtain instead an important
simplification already in the differential cross section (Eq. 4.5). Consider, e.g.,
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the Rutherford scattering where fl€, sin? g)d0= Cdt/t2, so that f becomes a function

of one parameter only, viz.
t=e2sin2§ . (4.7)

In classical perturbation treatments too, where §<<1, do will for any potential be a
function of only €292I4~t , multiplied by #a2. For screened Coulomb fields, but not
generally for all types of interaction, the extrapolation where €262/4 from the per-
turbation results is replaced by t turns out to be quite accurate (Ref. 9), and compre-
hensive approximation procedures may be developed along these lines. In place of
Equation 4.5 we now get a much simpler result, conveniently written as

do = a2 - ﬁg f(tm) g (4.8)

The function f(y) is shown in Figure 1 as computed from the potential (Eq. 4.1 and
Eq. 4.2), using the extrapolated perturbation treatment. For Rutherford scattering
fly) = 1/(2y).

In analogy to Equation 4.5, the formula (Eq. 4. 8) may embrace both the elastic

case (Eq. 4.2) and the quasi-elastic case (Eq. 4.6), the latter when constancy of A
is fulfilled. We are normally concerned with an incoming ion of energy E colliding
with a free atom at rest. In this case, elastic collisions correspond to (T/Ty,) =
sin? 08/2, where T =yE=E" 4M; M, l(M1+M2)2 is the maximum energy transfer.
It may be noted that a useful simplification for explorator'{jfurposes is a power law
scattering, where f(y) in Equation 4. 8 is proportional to t1/2 -1 /s , corresponding
approximately to interaction potentials proportional to R™5.

For many purposes all inelastic effects (Refs. 10,11) from distant and not-so-
distant collisions may be summarily considered as a continuous slowing-down, given

= ZJ"* ZLuif %)
as /,nm Apmi | /,ﬂﬁm:
“ / \ \l
/ \\ \\
a3 / \‘.
i RN
P \
as o \'\\
N\
& NS

w3 103 0 w (% Esiny

Figure 1. Universal differential scattering cross section for elastic
nuclear collisions (Eq. 3.8) based on a Thomas-Fermi type potential.
At high values of t1/2 this cross section joins smoothly with the
Rutherford scattering cross section.
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by the electronic stopping cross section (Eq. 4.12). Besides electronic stopping
should then be considered separately elastic collisions as described by Equation 4.8
and as shown in Figure 1.

The above theoretical picture has similarity features that are contained in
corresponding colligions and also in the universal cross section (Eq. 4.8). Many of
its details may be checked. Theoretically, the present scattering method applied to
exponentially screened fields is in good agreement with accurate calculations by
Everhart, Stone, and Carbone (22). Experimentally, and a8 regards inelastic effects,
the studies of quasi-elastic collisions by Fedorenko (17) and by Everhart, et al. (23),
are in fair agreement with the present scattering method.

Ranges and Stopping Cross Sections

The similarity property of cross sections has interesting consequences. In the
case of the elastic collisions described by Equation 4. 8, the stopping cross section
becomes

Sy = | doT = nayE J'; dy f(y) . (4.9)
Therefore, the dimensionless quantity
2 M,
= RNMj 412 ———— 4.10
P 2 (1\;11 +M2) ! ( !

where R is distance along path, is the reduced path length as long as elastic collisions
dominate. From Equations 4.9 and 4.10 is obtained a reduced stopping cross section,

- 2
gs=8+« N- (Ml + Mz)l(zlzzdme a Ml) 5

where the part due to nuclear collisions, s, = antt), is a function of € only (cf. Fig.

2). Thus, the three variables in the stopping cross section have been reduced to one,
and it becomes possible to make simple comparisons between theory and experiments
on slowing-down and ranges (Ref. 10). By means of the cross section (Eq. 4.8),

range quantities other than the mean path range may be studied, as well as fluctuations
in range. It should be mentioned that, also Equation 4.5, without the simplification
(Eq. 4.8), implies that 8p becomes a function of € only, as in Equation 4.9.

If electronic stopping is proportional to velocity (cf. Eq. 4.12), it will be of
type of
s.=k- ell2, (4.11)
where k is independent of velocity but may depend on Z, and Z,. Therefore, Equation
4.11 contains one variable besides €. It so happens that in many cases k has approxi-
mately the same value, ~0.15 (cf. Fig. 2). On the basis of Equations 4.8 and 4. 11,
a comprehensive description of stopping has been attempted (Ref. 10) in the velocity
region v<v1 given by Equation 2.4, or €<¢ ~103. With recent measurements, com-
parison may be made both for low € -values, €<1, where nuclear stopping dominates,
and for high € -values, €>1, where Equation 4.11 or 4.12 may be studied. Further
application of Equations 4.8 and 4.11 has been made in the studies of the division of

energy between electrons and recoil atoms, which is important in damage effects by
particle radiations (Ref. 11).
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Figure 2. Theoretical nuclear stopping cross sections in
p - €variables. The abscissa is €1/2; i.e., proportional
to v. The fulldrawn curve is s (€), computed from
Figure 1. The dot-and-dash line is 8¢ for k = 0.15.

A rough estimate of electronic stopping at low velocities, where Equation 2. 4
applies, is given in References 7 and 9. It appears that adiabatic arguments, sug-
gesting vanishing electronic stopping by atoms for v<vg (Refs. 1,21), are hardly
applicable. In fact, comparisons either with motions through gases and liquids, or
with electron scattering by screened Coulomb fields, indicate that electronic stopping
is proportional to ion velocity, and that supposed differences between freely moving
metallic electrons and more strongly bound ones should not exist. This is clearly
indicated in the quasi-elastic collisions, where the motion may be quite slow, but
the electron clouds are forced through each other, and the kinetic energy is ample
for the production of electron excitations.

The calculation of electronic stopping is complicated by the occurrence of
excitation in close collisions as well as in distant ones, and by the circumstance that
loosely bound electrons contribute relatively more to the stopping than do the strongly
bound ones. Semiclassical Thomas-Fermi reasoning would lead to a stopping behav-
ing as Z5/3 times a function of v/ vozm. More accurate studies of stopping for ions
of low velocity in free electron gases have been made (Refs. 13,16). They may be
used in estimating the contributions from electrons of different binding for various
values of Z; and Z,. In this way a simplified comprehensive formula of Thomas-
Fermi type was obtained (Ref. 9),

Z4Z
= 2 142 v
Se e eeaﬂ'e ao ;E » (4- 12)
where gemz”ﬂ. The formula seems to be in fair accordance with observations (Ref.

29). Of course, there are fluctuations about the average smooth dependence on
atomic number, and these are due to shell effects of the ion (cf. Ref. 28). It may
be noted that, e.g., for protons, Equation 4.12 is not proportional to Zf , and thus
does not correspond to the perturbation case.
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2. A CRITICAL REVIEW OF EXPERIMENTAL
STOPPING POWER AND RANGE DATA

H. Bichsell

Abstract

Of the many experimental data available, a few have been
selected as being eapecially comprehensive or accurate for an evalua-
tion in terms of the Bethe theory. The choice has been restricted to
data pertaining to the penetration of hydrogen and helium ions. The
discrepancies found in the experimental data discourage reliance on
a gingle data point for the determination of the parameters necessary
for the theory (e. g., the I-value) and also make it appear highly de-
girable to encourage further intensive experimental study of the
charged particle interaction.

A short discussion is given of the theory, including some com-
ments about the shell corrections. This discussion is followed by
detailed discussion of several experiments and a detailed treatment
of aluminum and copper data.

1. Introduction

It is the purpose of this paper to extract from the vast amount of information
available in the field of stopping power and range data some of the most reliable
experiments and to determine whether it is possible to give a consistent evaluation
of these measurements in terms of the complete Bethe theory.

In some instances it is possible to intercompare experimental data directly
(see "Comparison with Range Data'' in Section 4; Section 5; and ''Stopping Power at
High Energies' in Section 6), but mostly it is necessary to extract a set of parame-
ters occurring in the theory (I-value, shell corrections) and to compare the sets
obtained in different experiments.

No low velocity data are considered because charge exchange effects become
important (roughly below 0.5 Mev for protons, below 2 Mev for alphas).

In this report I have tried to treat the data in such a way as to obtain a quantity
which is approximately constant (see, for example, "Preliminary Analysis" in Section
4). Obviously, the quantity gex / £th as a function of particle energy would be ap-
proximately unity (eex represents an experimental stopping-power result, §;;, the
stopping power computed from the Bethe theory). If this ratio is not constant, de-
viations can be caused by (a) accidental errors in the measurements, (b) systematic
errors in the measurements, and (c) systematic errors of the theory.

lPhysics Department, University of Southern California, Los Angeles.
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In general, no attempt was made to discuss the error evaluation given by an
author (for example, no thought has been given to the claims for the accuracy of a
given foil thickness determination; it will be remembered that considerable discrep-
ancies occurred for commercial and evaporated gold foils), but it will be quite easy
to see whether the quoted accuracy is in agreement with the actual facts.

For charged particles (charge z, velocity 8 = v/c) with negligible charge-
exchange effects, the complete theoretical expression will be found in Reference 1.
For the analysis of experimental data, the stopping power £ in an element (Z, A) can
conveniently be written in the form (Ref. 2)

£ = - dE/pdx =(z2Z/A) + K(8)[{(8) - In1-(£C,/2)]
K(B) = 4 e* Ny/mc2p2 (1)
£(8) = 1n [2mc2B2/(1 -B2)] -p2

where I is the average excitation energy of the stopping atoms, and C; represents the
shell corrections. In this report, the shell corrections are computed as nonvanishing
for B— 1, so that the I-values obtained are the "optical I." In Reference 2 the C; are
assumed to vanish for §— 1. This expression is valid for protons of energies above
0.5 Mev and below about 1000 Mev. Density corrections are neglected. In this paper,
I is defined as constant (see first part of Section 2 for a different approach).

If an experimental test of the theory is desired, the following points have to be
congidered: (a) the velocity dependences K(B8) and f(8) will have to be tested; (b) ex-
perimental and theoretical values of I will have to be compared; (c) the importance
of the shell corrections will have to be investigated; and (d) the correctness of the
factor z2Z /A will have to be established. Each point is considered in turn:

(a) Both K(8) and f(8) are well-defined and well-known functions of the
velocity. Until a complete theory of the shell corrections is developed,
it is sensible to include deviations of K(8) and f(8) from their mathemati-
cal form as part of the shell corrections.

(b) Very few theoretical I-values are known (H, He, etc., Ref. 26), and the
agreement between theory and experiment is within the estimated errors,
which are at least 5 percent. For most other elements it will be neces-
sary to use experimentally determined I-values. These values will be
strongly influenced by the magnitudes of the shell corrections, especially
at low energies. General theoretical guidelines for the dependence of 1
on Z are available (Bloch theory, I = kZ, or Jensen theory, see Sec. 3 of
Ref. 1), but experimental data are necessary to find the constants of these
expressions.

(c) Only K- and L-shell corrections have been computed theoretically. Un-
fortunately, owing to departures of the atomic field from the Coulomb law,
these corrections are most unreliable for the light elements, where they
could be tested most accurately. The work for aluminum (Ref. 3 and
Sec. 7 of this report) seems to indicate that the theory is essentially
correct. For the heavier elements (Z > 20), the higher shell corrections
become quite important at moderate energies (1 to 20 Mev for protons),
amounting to several percent in the stopping power. No theory is availa-
ble at present and it has to be understood that a whole function of the
velocity is thus not known.
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(d) The ratio Z/A represents the number of electrons in the material per
unit chemical atomic weight and thus is not subject to appreciable error.

The charge state represented by z of the incident particle is discussed in the
papers by Northcliffe and Allison (see Reports 8 and 11 and Appendix B). The pres-
ent paper is mainly concerned with protons above 0.5 Mev, and discussion for
charge-state effects is therefore unnecessary.

2. General Comments on Shell Corrections

The shell-correction term in Equation 1 can be merged with In I by introducing
a gingle energy-dependent parameter I' defined by:

InlI’=1nl+ (zc,/z) . (2)

Instead of having as an unknown function the shell corrections, we will have the un-
known function 1'(8). An approach of this type, being investigated by G. F. Williamson
at the University of Washington, is presented in References 5 and 14,

The fundamental hope would be that 1’(8) can be represented by a reasonably
simple function of 8 and Z, It would appear, though, that difficulties will be ex-
perienced by any theory that will not take into account the systematic trends in the
behavior of electron shells for different atoms. The change in such quantities as
the ionization potential of individual shells shows a different Z dependence for each
shell; and, while the exact correlation between the magnitude of shell corrections
and the ionization potentials of electron shells may not be clear, it appears unlikely
that the shell corrections will show a simple behavior if the ionization potentials
do not.

To this author it appears to be more desirable to introduce shell corrections
explicitly. As mentioned above, this is possible for the inner two shells with the
theory developed by Walske (Ref. 4). For the outer shells, no theory is available,
and a first approach would be to measure the stopping power for many elements over
a large range of velocities and extract the shell corrections as the difference between
experimental and theoretical values without higher shell corrections. This has been
done for copper (Ref. 5). At present there are not enough experimental data availa-
ble to allow this approach to be carried out very dependably for the heavier elements
(Ag, Au).

In a second approach, also used in Reference 5, it is assumed that the higher
shell corrections have approximately the same velocity dependence as the L-shell
correction. 2 While this may be expected to be reasonably successful for the velocity
range where Cj is positive, it may be a fairly bad approximation for smaller veloci-
ties. An additional difficulty appears, in that presumably it will be necessary to
introduce a separate correction for each subshell, so that up to ten C; may be neces-
sary. Since for each Cj two parameters will be required for the scaling, this ap-
proach could lose significance just as well as the first approach. It appears possible
to reduce the number of parameters used through the arguments presented in
Reference 5.

21t has lately come to my attention that a similar scaling procedure has been used
(upon Bethe's suggestion) by Hirschfelder and Magee (Phys. Rev. 73, 207, 1948),
using Bg.


http://www.nap.edu/catalog.php?record_id=20066

20

On the whole, the situation is very unsatisfactory. New measurements are a
very definite necessity, and further semitheoretical speculation with present data
seems to be rather hopeless. For any satisfactory discussion of stopping power to
an accuracy of 1 percent or better, the shell corrections are absolutely essential,
and at present it appears that they will have to be approached from the experimental
side, especially for the low energies.

The theoretical approach presented in Report No. 4 of this publication eventually
may provide theoretical guidance. :

3. Treatment of Experimental Data

Classification

It will be reasonable to classify experimental measurements according to the
following parameters: (a) atomic number of stopping material, (b) energy of incident
particle, (c) charge of incident particle, and (d) type of measurement (range, stop-
ping power, fractional energy loss in thick absorbers, with various ways of deter-
mining left-over energy). While measurements are available for many combinations
of these parameters, very few data overlap within the possible range of the parame-
ters in such a way as to allow consistency checks.

The analysis is made difficult by the range of quoted experimental errors (from
0.1 to 10 percent), and by the fact that (as will be shown) errors have not been esti-
mated accurately by many authors. Both underestimates and overestimates of
errors occur.

A practice convenient for an over-all representation of data is the use of

logarithmic plots, but this practice is quite unsuitable for a careful analysis of data
because it will tend to cover up discrepancies rather than to point them out.

Reduction of Original Data

Experimental data usually cover a certain range of one or two of the experi-
mental parameters mentioned above. For example, the measurements by MacKenzie
and his collaborators at University of California, Los Angeles (U.C. L. A. ), measure
the stopping power for many different elements, but for fixed particle charge and
energy. Nielsen, on the other hand, measures the energy dependence of £ for six
different elements and two different particles.

As a preliminary step of analysis, the raw data of certain sets of experiments
have been reduced so as to eliminate the influence of physical factors that are either
constant in the whole set or theoretically well known; for example, Equation 4 (in
Sec. 4) replaces measured stopping-power values £exp with values X of a more
nearly energy-independent variable,

Adjustment of Parameters and Errors of Fitting

Equation 1 contains the parameter I and other parameters that help specify the
dependence of the shell corrections C; upon the properties of the incident particle
and the stopping material. The following sections make repeated reference to analy-
sis of experimental data directed simultaneously to the determination of these
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parameters and to estimating the accuracy of this determination and, more generally,
the over-all agreement of the theory with the experimental results. To this end the
following procedure was generally employed.

) Call ré};’p the result of a certain measurement, of stopping power or range, and
T &1 the corresponding theoretical expression which is a function of I and of other
parameters. Some of these parameters, like the particle velocity g;, are regarded
as known with gufficient accuracy, the others are still undetermined. Construct, for
a set of n such results, the expression

() _ (i)
565 LE’_‘PT.)L‘{‘_ 2, (3)
i 'reJlrp

The expression implies that one attributes to each experimental result a statistical
weight proportional to llfe;':p

For the given set of experimental results ‘ré;}p , S is a known mathematical
function of I and of the other parameters ) ;, A2, ... to be adjusted. This function
is then calculated by a computer program which locates the parameter values that
yield a minimum

Su,ll,xz,...)=smm. (3a)

The set of parameter values (I, A, ... ) obtained by solving this equation is adopted
as the "best fit'" solution extracted from the given set of experimental data.

An estimate of the errors of these values —due to the occurrence of accidental
experimental errors only—is obtained as follows: The error Al of I is obtained by
finding on the computer the value I + Al such that

S(I+AI, X1,A2,--- ) =S, (1+1/n) , (3b)

where n is the number of experimental measurements in the set. If n>10, the factor
for Spin is chosen to be 1.10. In Equation 3b the best-fit value of the other parame-
ters \1, ... (if any) is utilized. The errors A\, ... are obtained by the same pro-
cedure. This procedure implies several approximations which are fairly realistic in
the present application. The chief assumption is that the 7}’ depend on I and on each
of the other parameters (if any) through separate additive terms, which are independ-
ent of the index i, i.e., which are constant for the whole set of measurements under
consideration. This assumption is clearly valid for I if the quantities 7 have been
suitably reduced in advance, and in particular if they are values of the variable X
defined by Equation 4 (in Sec. 4). Another assumption is that the number of experi-
ments in the set, n, is sufficiently large to be properly entered in Equation 3b instead
of n-y where y is the number of parameters I, A1sAgs e fitted by Equation 3a.

4, Evaluation of Nielsen's Data

Preliminary Analysis

Nielsen's measurements of stopping power of protons and deuterons in beryl-
lium, aluminum, nickel, copper, silver, and gold cover the energy range from about
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1 Mev to about 4.5 Mev (Ref. 6). This energy range is not sufficient to give infor-
mation about I and the shell corrections separately, but valuable information can
nevertheless be obtained.

Under the circumstances, it is appropriate to compute the quantity
X=1(g) - (A/Z) " (§exp/K(@)). (4)

A typical plot of X versus particle energy is given for silver in Figure 1. The values
for deuterons are plotted together with the proton data. It is immediately obvious that
X is not a constant (in fact, X is just the energy dependent In 1’ of Williamson's repre-
sentation and a measurement of the quantity InI + L‘Cil Z of Eq. 1). The order of mag-
nitude of the accidental errors in the measurement is indicated by the scatter of the
points about a smooth curve. Of course, any systematic errors in the measurement
could not be discerned in this representation. (However, errors in the energy deter-
mination or other systematic errors might be responsible for the dip of the two deu-
teron values at about 4. 4 Mev, indicated by the dotted line; but similar deviations do
not appear for the other elements. Here it is obvious why it would be valuable to

have independent overlapping data. )

To obtain an index of the accidental errors of the data, a "theoretical' value
of ¢ was obtained from

& = (Z/A) K@) - [£(0)-X] , (4a)

where X represents tfe value of X for the smooth curve fitted visually to the points.
The fractional root mean square deviation of { was then computed and found to be

0. 8 percent in the case of silver. For nickel, the result was 1. 4 percent, and for
aluminum, 0.7 percent. It thus appears that the statistical uncertainties in these
measurements are somewhat smaller than estimated by Nielsen (1 to 3 percent).

A Protons
© Deuterons

B T 7 T T ©
2 3 & 8B €,

g (mev)

Figure 1. Nielsen's low-energy stopping-power data for silver. The
quantity X is defined in Equation 4. The smooth curve is fitted
visually.
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It must be pointed out once more that no systematic errors are included in the
above numbers; also, it has been assumed that equal weight can be given to each point.

Comparison with Range Data

Experimental range data for particle energies and materials comparable to
those in Nielsen's experiment have been obtained at Rice Institute (Ref. 7). The
absolute experimental accuracy was estimated by the authors to be about 0.5 per-
cent (including estimates of systematic errors), while internal consistency observa-
tions indicate accidental errors of about 0. 2 percent for aluminum, less than 0. 5
percent for nickel, and about 0. 1 percent for silver. The experimental ranges were
corrected for multiple scattering. Since range differences AR are compared with the
integrated reciprocal stopping-power values (the theoretical c. s.d. a. range),

E
p
AR=R(Ep)-R(2Mev)= [ 1/¢dE , (5)
2Mev

where £ represents the smoothed Nielsen data, several of the difficulties of range
measurements thus are eliminated or reduced (e. g. , correction for final energy of
proton, exact magnitude of multiple-scattering correction for the end of the range,
asymmetry of distribution function).

In Table 1, the fractional differences between experimental range differences
and the integrated stopping-power values are given. While the agreement for the two
types of measurements is good for aluminum and nickel, the differences for silver
are larger than the experimental errors.

TABLE 1

Comparison of Experimental Range Differences with Computed
Differences Obtained from Nielsen's Stopping-Power Data

-EP
Mev Al Ni Ag
2 0 0 0 Normalization
3 -0.1% 0. 2% 1. 35%
& -0. 4% 0. 1% 1. 47%
5 -0, 3% 0. 5% 1. 7%

Use of Higher Shell Corrections

In an earlier paper (Ref. 5), it has been speculated that it should be possible
to approximate the exact higher shell corrections by scaling the L-shell correction
of Walske (Ref. 4). For nickel, for example, which has only a few electrons in the
M-shell, an approximation with only one additional function should give satisfactory
results. For gold, on the other hand, it may be necessary to use three or more
functions, one or two for the M-shell, one or two for the N-shell, etc.
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In a plot of shell corrections versus the squared velocity 32 of the incident
particle, let us call the scaling factor for the abascissa V, the one for the ordinate A
(this corresponds to the factors 1/A1, B3, etc., in Reference 5, but is not identical
with them). A computer program has been written which computes the quantity S
defined in Equation 3 as a function of V, A, and the I-value. The smallest value of
S for the Nielsen data is found, and the corresponding theoretical table is produced.

The result for nickel is the following: 1= 307.5ev; V= 6.0; and A = 1,2, This
is in close agreement with the evaluation presented in Reference 5 for copper. It is
noteworthy that the k = I/Z = 11. 0 ev value obtained in this way is rather close to the
value k = 11. 2 ev obtained at high energies for copper (where the influence of the M-
shell correction is quite small).

A similar evaluation for silver, using only one scaled L-shell correction
(rather than 3 or 4 as was done in Ref, 5) gives 1 = 447, 5ev, V= 5.6, A=3.0. It
would appear that this approach is not too suitable for gilver; in particular, the I-
value is quite different from the high-energy value (presumably around 470 ev). In
addition, the decrease in the I-value could be partly overcome by an increase in A.
Anyway, the whole procedure has limited significance for silver because the experi-
mental data only cover a small velocity range, and no separate fitting for the M-shell
and N-shell has been carried out.

The two evaluations based on visual fitting of X and on scaling of shell correc-
tions are compared in Table 2. It is seen that the agreement between the two ap-
proaches is excellent. Extrapolation of the values of X beyond the measured energy
range would be inaccurate; e. g. , notice the disagreements at 1 Mev and 5 Mev in
Table 2. This also points out that any experimental approach to the determination
of higher shell corrections requires very extensive measurements. On the other
hand, the method using shell corrections would be expected to extrapolate quite well.

TABLE 2

Comparison of Stopping Power (in Mev/g cm~2) Computed from
Bethe Theory, Using a Two-Parameter Function for Cpp (or Cy, for
Aluminum) with the Smoothed Experimental Function (X) of Figure 1.

Al Ni Ag

x (CpL) X (Cm) X) Cym)
..EP Mev Mev Mev Mev Mev Mev
1 172. 4 171.9 126. 8 127.5 93.7 93.3
1.5 133.3 132. 4 100. 8 100. 6 74.8 74.9
2 109, 9 109.5 84.6 84.8 64. 0 64.1
2.5 94,2 94,0 73.5 73. 7 56. 4 56. 6
3 82.8 82. 7 65. 4 65. 7 50. 7 50.9
3.5 74,2 74. 1 59.3 59.5 46. 4 46, 3
4 67. 4 67.3 54. 4 54. 4 42,9 42. 6
4.5 62,0 61.8 50.5 50. 3 40.0 39. 6
S 57.4 57.2 47. 4 46. 8 37.5 37.0
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5. Ewvaluation of MacKenzie's Data

Three sets of measurements are available from MacKenzie's work (Ref. 8):
for proton energies of about 12, 20, and 29 Mev. The stopping-power ratio S, = 5’§A1
is given for many elements. The computed quantity

Y =£(8) - S (£(8) - In 163 - (Ck +Cp)a;/13) - InZ (6)

ghould be almost a constant (it corresponds to the logarithm of the Bloch constant k,
added to the shell corrections ECiI Z of each element).

The intercomparison between elements at different energies could be affected
by errors in the assumed I-value and shell corrections for aluminum. The possible
influence of these numbers can be seen in the following tabulation:

Ep f£(8) (Ck +CL)/13 £(8) - In 163 - (Cg + Cyp)/13
12,0 10. 153 0. 068 4, 991
19. 8 10. 641 0. 046 5.501
28.7 11. 000 0. 033 5. 873

The shell corrections for aluminum amount to only about 1 percent, and any inaccuracy
will therefore not influence the intercomparision very much.

In Figure 2 the results are plotted, and, for comparison, the experiment by
Bakker and Segre (9) is included. The scatter of the Burkig and MacKenzie data ap-
proximates the error estimates of these authors and is far lower than that of the
other authors.

One could, of course, regard the fluctuations in the figure as the expression
of true fluctuations in atomic properties. This would seem an extreme point of view,
but at present there is inadequate evidence to dismiss it altogether.

¢ Nokono, 29 Mev (USC) & Teosdale, 12 Mev
O Bakker, 340 Mev (UCRL) O Burkig, 20 Mev
L . o
a&
Y 08
o
o
o
1 L L
80 L 1] 90

Figure 2, Evaluation of the relative stopping power for elements of
atomic number Z, Plotted is the quantity Y defined in Equation 6,
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A systematic dependence of Y on Z seems to exist for the light elements, since
e’ increases from about 10 to about 12. 2 as Z increases from 20 to 27.

The results do not resolve any dependence of the shell corrections on energy
between 10 and 30 Mev. For silver, the total shell corrections used in Reference 5
are 0,20, 0.15, and 0. 13 for 12, 20, and 29 Mev, respectively. If k = 10. 0 ev were
used, the "experimental" shell corrections C, for silver would be

Ce=Y-In10=Y- 2,303 ,

giving the result 0. 162, 0. 137, and 0. 194 for the three energies. Since the quoted
experimental error amounts to an error of about £0. 015 in Y, the agreement is
satisfactory only for the 20-Mev measurement.

The values of Y at 300 Mev lie very decidedly below those obtained at lower
energies, indicating a considerable reduction in the shell corrections with increasing
energy. The shell correction for silver at 300 Mev is smaller than at the lower
energies by a factor of 5 or 10, The spread between the points for silver and tin
would indicate an accuracy of about £1/2 percent in the measurements of S, at 300
Mev.

6. Copper

Stopping Power at High Energies

In keeping with the general idea of this paper, to present data in a way which
points up their inherent inconsistency, with minimum reference to theory, the
stopping-power measurements for protons in copper at high energies (above 100
Mev) are given in Figure 3. The measured ratio of stopping power for copper and
aluminum is plotted (Refs. 14-16) as a function of proton energy. It is unfortunate
that the discrepancies amount to several times the quoted errors. For comparison,
the corresponding ratio for theoretical values is given as a solid line., For aluminum,
an I-value of 163 ev is chosen; for copper, I = 326 ev.

It should be pointed out that Reference 14 gives absolute values of stopping
power for copper, and the I-values presented there (at 650 Mev, 1= 300 £ 12 ev for
Cu, and I = 136 £ 8 ev for Al) are therefore absolute.

Further comments are given in the conclusion of this section.

It has been noticed (in Ref. 16) that there is a discrepancy between the '"total
range' m¥asurements and the ''difference' measurements of this experiment. Con-
sult Table 5 of Reference 16, where the theoretical value of the ratio of stopping
powers (using the I-value found from the range measurement) is about 1 percent
smaller than the experimental value.

Ranges

Since quite a few range measurements are available, including several absolute
values, it may be appropriate to use for this problem the approach using the full
Bethe theory. It is assumed that the aluminum range curve is correct, and relative
total range measurements (Refs. 16,17) are converted into absolute ranges. It
should be pointed out that in Reference 17 a discrepancy exists in the table entry of
75. 8 mg em™~2 for copper and 65. 8 mg cm~2 for aluminum (the same numbers appear
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Figure 3. Relative stopping power for high-energy protons in copper and
aluminum. The theoretical values are computed with I=163 for Alumi-
num and I=326 ev for copper.

in the Russian original). This value will be disregarded for the present purposes.
Not considering any other results, the I-value and the two parameters for the M-ghell
correction are allowed considerable leeway for the computation of S. The minimum
appears for I = 326 ev with an uncertainty of about 3 ev, with 1/V=7x1, A=1,3 %
0.4. For these parameters, Sy, i, = 5. 46 x 10~4, which gives an average standard
error of +0. 6 percent for the individual measurements. The comparison of experi-
mental and theoretical best-fit data is given in Table 3. It will be noticed that the
over-all accuracy is influenced considerably by the measurements at 150 and 200
Mev,

The measurements by Bloembergen (Ref. 18) corrected for multiple scatter-
ing —using the same scaling factors for Cy; as above—give a best fit for I = 349 £ 5 ev
(accidental error only!). The average error for each measurement is 0, 7 percent.
A systematic deviation seems to exist: the eight measurements between 76 and 102
Mev are all larger than the theoretical values (by ~ 0. 4 percent on the average); the
seven measurements from 44 to 73 Mev and from 108 to 114 Mev are smaller than
theoretical values for I = 3498 ev. This is a rather marginal effect, of course.

If the data are compared with a theoretical curve with I = 330 ev, the experimen-
tal ranges are on the average larger than the theoretical ones by 1. 2 percent.

This deviation lies somewhat outside of the quoted experimental error.

These data are very insensitive to the choice of V and A,
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TABLE 3

Comparison of Experimental and Theoretical
Proton Ranges in Copper (I = 326 ev)

Rth"Rexp
Ep Rexp Rtn Rexp
Mev (g cm=2) (g cm~2) (%)
2 0. 0164 - -
3 0. 0308 0. 03084 0.1
4 0. 0486 0. 04873 0.3
5 0. 0698 0. 06987 0.1
6 0. 0937 0. 0941 0.4
7 0. 1207 0. 1213 0.5
10 0. 2200 0. 2201 0.0
18 0.5995 0. 5985 -0.2
148. 6 23.8 23.53 -1.1
190, 1 36.4 35. 178 -1, 7
279. 9 68. 6 68. 22 -0.6
340 93. 4 93. 61 0.2
4173.3 157. 9 157. 9 0
658 258. 3 259.7 0.6
663 263.0 262, 6 -0.1
750 313. 66 314.3 0.2

Low-Energy Stopping Power

For the measurements between 0.5 and 4. 5 Mev (Refs. 20, 6) and at 12, 20,
and 29 Mev, a least-squares fit has been made. The minimum S appears for I =
320+2ev, 1/V=7.0+£0.7, A=1.3 + 0.1, It is to be expected that A (the ampli-
tude of the M-shell correction) will be determined quite accurately; on the other
hand, the dependence on V is rather insensitive.

Here, Spjn = 6.7 x 1074, g= 0.5 percent. A secondary minimum appears at
I1=2310, 1/V~6.1, A~1.5. Here, S=10.6x 10-4,

For the 31 stopping-power values (raw data) of Nielsen (6), the smallest S is
obtained for I =310 ev, 1/V=6,0, A=1,5, and S = 4, 46 x 10~3 for an average error
per measurement g = +1. 2 percent, with no systematic deviations apparent. For
1/V=170,A=1,3, andI =320 ev, avalueS = 4,85 x 10-3 is obtained; thus, the fit
is almost as good.

Conclusion

Stopping-power results below 30 Mev and ranges at all energies (with exception
of those of Ref. 18) give I-values separated by approximately the arithmetic sum of
their accidental errors.

On the whole, the situation is rather unsatisfactory. The Dubna report (Ref. 14)
does not describe well enough the method used for one to judge its merits. If the
errors quoted are taken at face value, the discrepancy between the Dubna and the
Berkeley measurements is considerable.
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It appears that an I-value of 326 ev will be most satisfactory at this moment.
This approximately splits the difference between the high-energy stopping-power data.
It is not satisfactory for the stopping power from 0.5 to 4.5 Mev (systematically off
by about 0. 8 percent), but it works out all right for the stopping power at 20 and 29
Mev (+0. 4 percent), and for most of the ranges discussed.

7. Aluminum

Range Measurements

Above a proton energy of 1. 4 Mev, the experimental information about stopping
power and ranges for aluminum is fairly satisfactory. The range measurements be-
tween 3 and 18 Mev are quite accurate (Ref, 3) and allow the determination of the I-
value with reasonable accuracy. The values below 3 Mev have not been used for the
present calculation; their inaccuracy may be slightly larger, and the uncertainty in
the L-ghell correction would increase the uncertainty in I.

The least-gsquares fit gives I = 163. 2 ev with a statistical error of +0. 7 ev. The
average accidental error of each measurement amounts to 0. 2 percent. This is in
close agreement with the result of Reference 3. The ranges are given in Table 4.

The range data by Bloembergen and Van Heerden (18) would yield Sp,;, for I =
166 ev, with an accidental error of about +3 ev. The average error g per data point
is about 0. 86 percent. For I = 163 ev, o = 0. 91 percent, the results are given in
Table 5.

The alpha particle measurements in aluminum at Yale (Ref. 13) give an error
of about +0. 8 percent for each data point and agree with the computed curve for 1 =
163 ev to within 0. 3 percent on the average, but no S analysis has been made so far.

The difference between the computed value corresponding to Table 4 and the
single range measurement at U.C. L. A. (Ref. 19) amounts to 0. 7 percent and is at
least twice the sum of quoted errors. The measurements of currents of this work
could conceivably cause some error, otherwise the discrepancy is unexplained.

The measurement by Simmons (23) is about 0.5 + 0. 5 percent lower than the
entry in the present table. No check has been made for the underlying assumptions
in Reference 23.

TABLE 4

Proton Ranges in Aluminum for 3 to 18 Mev, I = 163. 2 ev

Ep Rexp R A
Mev (g cm™=2) (g cm~2) (%)
3. 062 0. 02296 ., 02289 -0. 3
4, 023 0. 03590 . 03590 .
5. 038 0. 05254 . 05236 -0.3
5. 504 0. 06076 . 06081 +0. 1
6. 150 0. 0733 . 07345 +0, 2

11. 820 0. 22712 . 22704 -0, 03
14, 971 0. 34376 . 34350 -0, 08

17. 836 0.46844 . 46756 -0.19
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TABLE 5

Proton Ranges in Aluminum (Bloembergen Data), I = 163 ev

Ep Rexp Rin A
Mev (g cm~2) (g cm=2) (%)
34, 96 1, 547 1, 543 -0.3
37.16 1. 757 1,720 -2.1
39, 66 1. 928 1,931 0.2
42,57 2,198 2,191 -0.3
44, 86 2, 402 2, 405 0.1
47. 67 2, 634 2. 680 1.7
52. 08 3. 189 3. 137 -1.6
52, 33 3. 188 3. 164 -0, 8
56. 68 3. 687 3. 647 -1,1
56, 96 3. 784 3. 679 -0.7
61.79 4, 258 4, 252 -0.1
62,10 4,280 4,290 0.2
65,78 4, 7156 4, 753 =0. 1
66. 10 4,786 4, 794 0.2
72, 94 5,773 5. 709 -1.1
73. 05 5.714 5. 724 0.2
75. 70 6. 141 6. 098 -0.7
75. 84 6, 078 6.118 0.7

The range at 340 Mev measured in Berkeley (Ref. 15) is smaller by about 1. 15
percent than the computed value for I = 163 ev. Unpublished estimates of diffraction
(or shadow) scattering indicate that this effect has reduced the experimental range by
approximately 0.5 + 0. 25 percent. If this correction were applied, the difference
(0. 65 percent) would be only slightly larger than the experimental error (0.5 percent
or maybe somewhat more). Further accurate, absolute measurements at high ener-
gies evidently would be desirable.

The very small I-value for aluminum obtained at Dubna (Ref. 14) is related to

the small I-value for copper, and it appears preferable to neglect this result at this
time.

Stopping-Power Measurements

The measurement of absolute stopping power for protons of 17. 8 Mev at
U.C. L. A. (Ref. 21) gives an I-value of 163 ev, with a fairly small error (unpublished
evaluation by H. Bichsel). The measurements for the other elements of this refer-
ence seem to be unreliable.

The only other set of measurements with fairly good accuracy is found in
Reference 6, for protons between 1. 4 and 4.5 Mev. While the table for aluminum
presented in Allison's summary article (Ref. 24) agrees with the data of Reference
6 to within about +2 percent, the situation at lower energies is described aptly by
Whaling (Ref. 20, p. 197): "The experimental values are in poor agreement and do
not fix the position of the curve.'" Whaling also omits a set of data lying 15 percent
below his adopted curve. This makes a comparison with Bethe's theory difficult.
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The Shell Corrections

While Walske's K-shell corrections presumably are reliable, his L-ghell cor-
rections are not valid for Z < 30, and thus would not apply for aluminum. An attempt
has nevertheless been made to scale the L-shell correction given by Walske for Z = 30
to the use for aluminum. It is expected that the maximum for Cj, occurs for a proton
energy between 0. 25 and 0. 5 Mev. Since there are essentially two sets of data for
this energy range (Refs. 22, 24), differing by about 20 percent, it is quite impossible
to determine Cy, experimentally. For the measurements above 1. 4 Mev, any change
in the energy-scaling parameter for Cy, can be compensated by a corresponding change
in the scale of magnitude of C;. A satisfactory fit to the Nielsen data can be obtained
by using an unchanged energy scale for Cy,, i.e., by setting Z = 13 in the computation
of 01, (the Walske parameter) and reducing Cy, by 30 percent. This fit is shown in
Table 6.

TABLE 6

Nielsen's Stopping-Power Data for Aluminum. I= 163 ev,
Stopping Power in Mev g-1 cm?

E A
_Mlg)v Eexp_ €th (%)
1, 487 134, 2 134. 0 -0.2
1,596 127. 9 128. 1 0.1
1. 610 127. 3 127. 3 0.0
1. 689 123.3 123. 3 0.0
1,697 122. 8 122. 9 0.1
1,913 112, 5 113. 2 0.7
1,922 112, 9 112, 9 0.0
1, 990 110. 9 110. 3 -0. 6
2, 032 108, 2 108. 7 0.5
2, 052 107, 8 108. 0 0.2
2,161 103. 2 104. 2 1.0
2,173 103. 2 103. 8 0.6
2,473 95.1 94, 96 -0.1
2, 495 95.8 94, 38 -1.5
2.524 93.0 93. 62 0.7
3. 017 82.6 82, 56 -0.1
3. 024 82.1 82, 42 0.4
3. 043 82.3 82, 05 -0.3
3. 547 73.8 73.52 -0.4
3.574 72.9 73.13 0.3
3.587 72,3 72. 93 0.9
4, 142 66, 2 65, 70 -0.8
4, 150 65, 7 65. 60 -0.1
4,175 66. 0 65. 32 -1.0
4, 187 64. 4 65. 18 1.2
4,188 65. 4 65. 17 -0.4
4, 436 63.0 62. 48 -0.8
4,508 61.6 61. 74 0.2



http://www.nap.edu/catalog.php?record_id=20066

32

Conclusion

While the I-value for aluminum would appear to be reasonably close to 163 ev
at the moment, it is by no means certain that it will not change again. Three ap-
proaches are possible to obtain a more definite result:

(a) Measure stopping power or range differences at fairly large energies
(protons between 100 and 1000 Mev) with an absolute accuracy of about
0. 1 percent, and for many different energies.

(b) Measure the stopping power below 1. 4 Mev absolutely with an accuracy
of 1 percent or better, or measure relative stopping power below 2.5
Mev with the same accuracy.

(c) Measure range differences (or stopping power) with very high accuracy
at intermediate energies.

8. Measurements with Tritons below 3 Mev

Range-difference measurements with tritons of energy 2. 736 Mev, using thin
foils to reduce the particle energy and detecting the reduced energy with a silicon
detector, have been made at Oak Ridge (Ref. 25). For nitrogen, air, aluminum,
argon, and nickel, the results of a least-squares analysis, according to Equation 3,
are presented in Table 7. The average accidental error g¢= /STn of each of n data
points is given. A secomd analysis using the best values 1’ for I obtained in other
measurements (Secs. 7, 9) has been made. The error ¢’ obtained is much larger,
and it would appear that considerable systematic errors are present (poasible sources
of systematic errors might be surface effects on the aluminum foil, details of self-
absorption in the source foil, etc. ). The present analysis was made with the points
of Figure 3 of Reference 25.h Measurements for energies below 1, 4 Mev were not
evaluated because of charge-state effects, but they might supply useful information
in this connection,

TABLE 7

Least-Squares Fits for Triton Measurements.
1’ is the Best Value for I Found in Other Measurements.

Element I(ev) o(%) 1'(ev) o' (%)
No 90 +0. 36 78 +2, 3
Air 94 ' +0. 4 84 +2.0
Al 155 £0, 2 163 +0. 9
Ar 212 +0. 3 184 +3.5
Ni 310 10, 4 307.5 +1.0
Kr 380 0. 3 360 ~ 4]

3I.am grateful to Dr. Bishop for supplying me with the raw data of Figure 3 of his
paper.
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9. Measurements in Gases

Measurements with Natural Alpha Particles

The experimental data used for this evaluation are shown in Tables 8 and 9.
While the range measurements are fairly old (Ref. 10), the energy determinations
are recent (Ref. 11). In an analysis of both alpha and proton data it was found that
a small L-shell correction has to be introduced (Ref. 12). One can write approxi-
mately Cy, = 2.5 x 10‘4152 for nitrogen, oxygen, and air. For the K-shell, the full
value given by Walske has been used. For nitrogen and oxygen, the comparison of
experimental and theoretical data for the best fit is given in Table 8. It is seen that
the accidental errors are very small for nitrogen, while they are slightly larger for
oxygen. The experimental accuracy is quoted to be around 0. 1 percent.

TABLE 8

Ranges in mg em=2 of Alpha Particles in Nitrogen and Oxygen

Eq Ny Oz
Mev Rth Rth
Rexp (1=76. 8 ev) % Rexp  (1=99) %
5. 305 4,58 4.580 « 4. 90 4. 900 -
6. 062 5. 64 5. 636 -0.07 6. 05 6. 033 -0. 28
7. 687 8.23 8. 232 +0. 03 8. 83 8. 812 -0. 20
8. 785 10. 23 10. 231 +0. 01 10.92  10.948 +0. 26

The associated errors from statistics for the I-value for nitrogen and oxygen
are +0, 2 ev and %1, 2 ev, respectively. It will be noticed that the theoretical ranges
were normalized at E, = 5. 305 Mev, so charge-state effects should have very little
influence. There is a discrepancy between the k-values (I/Z ratios) for nitrogen and
oxygen: 11,0 ev and 12, 4 ev. It is not clear whether this is a true difference or
whether it is due to systematic errors.

For air, a total of 17 experimental range values are available. The best fit is
obtained for 1 = 84. 0 ev with g = 1,35 x 10"3, and the estimated statistical error for
I is about %0, 25 ev. The data used are given in Table 9.

The value for Z used in the calculation for air is 7. 22, according to Bethe's
suggestion, and the atomic mass A = 14, 485. It should be pointed out that the com-
bination of theoretical stopping power obtained here for nitrogen, oxygen, and argon
is larger by about 0. 5 percent than the stopping power for air. No obvious explanation
comes to mind.

Measurements at Yale

Differential range measurements with accelerated helium ions of energies up
to about 44 Mev were made by Martin and Northcliffe (13). For nitrogen, the best
I-value was 77. 7 ev, with an error of about +0, 5 ev. This is in good agreement with
the data for natural alphas.
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TABLE 9

Ranges of Natural Alpha Particles in Air

Ey Re Ry, (1=84. 0 ev)
Mev (01:3 th (cm) %
5. 305 3. 842 3. 842 -
5. 482 4,051 4, 042 -0, 23
5. 996 4, 657 4, 646 -0.23
6. 062 4,730 4,727 -0. 06
6. 278 4, 984 4, 995 +0. 22
6.278 5, 004 4, 995 -0. 18
6. 622 5. 429 5. 435 +0. 10
6. 775 5. 638 5, 636 -0. 04
6,818 5, 692 5,693 +0. 01
7. 384 6. 457 6. 468 +0. 17
7.687 6. 907 6. 802 -0. 08
8,277 7.792 7.781 -0. 14
8,785 . 8.570 8.574 +0, 05
9, 065 9. 040 9. 027 -0, 14
9, 492 9, 724 9, 737 +0, 13
10, 506 11.51 11,517 +0, 06
10. 543 11. 58 11, 584 +0. 04

For argon, the best fit was obtained for I = 183 ev £ 2 ev, using both CK and
C1.. This compares well with the natural alphas, where I = 185 ev, using the Walske
theoretical values of CL.

Stopping-Power Measurements for Protons

Except for one measurement (Ref. 27) at about 4. 5 Mev, all data are obtained
for energies below 1 Mev. Also, the errors given by the authors are usually quite
large, so that the following determination of I-values, etc., is not very reliable.
While the I-value for argon for the alpha particles was about 184 ev, the best fit for
the protons appears at 205 ev, and for the triton data from Oak Ridge a value some-~
what above 210 ev is required (see Section 8).

For protons in nitrogen, the best fit is obtained for I = 92 ev, which is substan-
tially higher than the value for alphas.

It thus appears that there is a fairly large inconsistency between measurements
for protons and alpha particles, and the usual conclusion is reached—more measure-
ments will have to be made, if definite information is desired.

10, Conclusion

Of all the experimental data that have come to my attention, only those dis-
cusgsed in the preceding sections have been analyzed completely. The remaining data
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have been examined sufficiently to indicate the absence of major disagreements (other
than those discussed in this report) and to indicate little prospect of obtaining a better
determination of I and of the shell corrections.

While it appears on the whole that the Bethe theory describes the stopping phe-
nomena satisfactorily, it must also be understood that only for aluminum is it possible
to give information with an accuracy of about one-half of 1 percent. For all other
elements the accuracy is not much better than 5 percent except in some isolated
regions, Uncertainties are encountered both for the I-values and for the shell
corrections.

To obtain stopping power and range energy information with an accuracy of 1
percent or better, it will be necessary to obtain accurate measurements over an ex-
tended energy region for several different elements. It is hoped that neighboring
elements will show I-values and shell corrections which vary smoothly with Z (or at
least the observed electron excitation potentials). This is by no means certain; for
example, the ratio of stopping power of copper and nickel below 1 Mev changes con-
giderably. For the light elements (Z < 36) it should be possible to obtain a fairly
good understanding of the behavior of the stopping power once the I-values are
determined well. The scaling procedure used to obtain M-shell corrections seems
to work satisfactorily, even though it would be desirable to have a more reliable
check for krypton (see Fig. 5 of Ref. 5). It is not even clear whether any reliable
information is available about the I-value of krypton. It appears undesirable to
determine the I-value of a material based on one measurement at a single energy.
Also, the discrepancy between the I-values obtained for some gases for protons
(stopping power with only fair accuracy) and alphas (ranges with good accuracy) is
rather discouraging.

For the heavier elements, it will be necessary to obtain extensive, accurate
information for a better understanding of the shell corrections. I believe that for
gold (or another element with Z > 70) it will be necessary to rnake measurements
over an energy range of 1 to 30 Mev (the Nielsen measurements cover some of this);
and for the medium-weight elements (Z ~ 50), measurements from 1 to 15 Mev will
be necessary. For these elements it would also be desirable to have absolute meas-
urements at many energies with protons between 50 and 200 Mev in order to be able
to determine the I-values. The hope is that the higher shell corrections in this energy
region could be represented by

P
T C;=K./p2,
i=M

" so that only two parameters would have to be determined (the I-value and Kc).

There are so many free parameters in the theory that many measurements are

required to determine all of them reliably. This is, of course, the reason why our
present knowledge is rather unsatisfactory.
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12. Appendix

The parameters determined in this report are influenced by the values of the
fundamental atomic constants. It may be of interest to note that the famous value
1= 80.5 ev for air apparently was computed with e = 4,77 - 10~10 egu, so that the
present-day value of 84 ev shows a change mainly for this reason. For the computer
program used for the evaluations of this report, the following values of basic con-
stants were used (mainly from Cohen et al., Rev. Mod. Phys. 27, 363, 1955):

Electron radius e4/m2c4 = r% = 17.94030 - 1026 ¢m?2
Avogadro's number Ng = 6. 02486 - 1023 g/mole
Electron mass mg= 0.510976 Mev

Proton mass M = 938.213 Mev

Deuteron mass 1875, 496 Mev

Triton mass 2808. 7T Mev

Alpha mass 3721, 147 Mev

The following is a list of the atomic weights used:

Element Z A
Beryllium 4 9. 013
Nitrogen 7 14, 008
Air 7.22 14, 485
Oxygen 8 16, 000
Aluminum 13 26, 98
Argon 18 39, 944
Nickel 28 58. 71
Copper 29 63. 54
Silver 47 107, 880
Gold 79 197. 0
Lead 82 2017, 21
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3. ON THE EXPERIMENTAL VERIFICATION AND DETERMINATION
OF PARAMETERS OF STOPPING-POWER THEORY

J. E. Turnerl

Abstract

Stopping power and range measurements are reviewed from the
standpoint of general verification of stopping-power theory and the deter-
mination of the parameters of the theory. Certain experiments stand
out in this respect in providing coverage of a wide range of chemical
elements and/or incident particle energies. Experiments are analyzed
on the basis of information they furnish, particularly with respect to
mean excitation energies, I, and shell corrections. The value I =
163%1 ev for aluminum appears to be well established in the literature,
and is taken as an anchor point in the analysis of data. In general,
high-energy experiments (e. g., with protons of several hundred Mev)
furnish direct information about mean excitation energies. Experiments
at lower energies provide information on the variation of shell correc-
tions with incident particle energy and with atomic number. The infor-
mation provided collectively by the experiments discussed is displayed
in summary form.

1. General Considerations

Understanding of the passage of charged particles through matter is based on
the theory presented in Appendix A of this volume. The theory can be tested experi-
mentally, in principle, by direct measurement of the rate of energy loss and range
that it predicts in specific cases. In practice, however, only a relatively small
number of physical systems are amenable to exact or nearly exact theoretical treat-
ment in terms of universal constants, even within the bounds of the theory itself,
and practical considerations limit the number of materials with which experimental
work is feasible. As a consequence of this situation, whereas the theory as a whole
rests on a firm experimental basis, verification of details and determination of the
parameters of the theory are by no means exhaustive.

It is the purpose of this report to review in a general way the over-all picture
with respect to the experimental information now available on stopping power. More
detailed analyses of data for various stopping materials, with respect to energy and
charge of incident particle and the kinds of measurements available, are given in the
reports of Bichsel (Report No. 2) and Northcliffe (Report No. 8, and Appendix B) in
this volume. The present report complements that of Bichsel in regarding the data
from the general point of view of verification of the theory and determination of
parameters. The important questions of consistency of the data and best numerical
values available are treated in Bichsel's report. For other detailed reviews the
reader is referred to References 10 and 17.

10ak Ridge National Laboratory, Oak Ridge, Tenn.
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In the literature experimental values are reported for stopping power, range,
and /or mean excitation energies. For a given stopping material these quantities are
related by theory, so that values reported for one quantity can generally be expressed
alternatively in terms of values for the others. 2 In cases in which mean excitation
energies, I, are reported, it should be noted that the quantity I defined by Equation
34 of Appendix A is not determined directly by measurement.3 Where an experi-
mental value of I is reported, the value has been inferred from measurements of
stopping power and/or range. In order to obtain I from these measurements one has
to evaluate all quantities, except I, that appear in Equation 38 of Appendix A. The
main uncertainty in doing this usually lies in the evaluation of the shell-correction
term, C/Z. The significance of this evaluation is discussed more fully with respect
to specific experiments in the following pages.

2. Data for the Chemical Elements

For the lighest elements, theory and experiment are in agreement. The data
reported in Table 1 of Appendix A show that, to within experimental uncertainties
(which are of the order of 5-10 percent), calculated and observed mean excitation
energies for hydrogen, helium, lithium, and beryllium#4 are the same. Calculations
of mean excitation energies for more complex stopping materials are in progress at
the present time (Ref. 13).

Measurements are available for most light elements in pure form or in com-
pounds. The mean excifation energies for the light elements depend upon the state
of chemical combination of the atom.9 It is notable that, except for the work of
Thompson (16), systematic stopping-power measurements, at least at high energies,
do not appear to have been made on light atoms in various states of chemical binding.
Thompson reported proton stopping-power measurements made with hydrogen, carbon,
nitrogen, oxygen, and chlorine in compounds. With the exception of chlorine, the
mean excitation energies reported for these elements showed a wide variation (for
example, over 20 percent in the case of nitrogen), which was attributed to different
chemical binding of the atom in different molecules. Presumably for chlorine and
heavier elements chemical binding effects are negligible. Thompson's measurements
are now over a decade old and could be profitably repeated and extended.

Extensive stopping-power measurements have been carried out with aluminum.
Probably the most reliable value of the mean excitation energy for an element with
an atomic number greater than 10 is that for aluminum. Shell corrections for that
element are not large, and their contribution to stopping power can be estimated with
sufficient dccuracy. The value I = 163£1 ev for aluminum is well established through

2Th& reader is cautioned, however; that there is nonuniformity in the literature with
respect to both terminology and the handling of the theory itself. For example, some
authors treat the mean excitation energy, I, as an energy-dependent parameter of
the theory rather than as the constant defined by Equation 34 in Appendix A.

3See Report No. 6 of this volume for a more detailed discussion of this point.

4In the case of Be, however, reported I-values range from 56 ev (Ref. 11) to 64 ev
(Ref. 7).

9See Report No. 6.
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many measurements appearing in the literature (Ref. 4). Support of this value also
comes from the bulk of the evidence summarized in Reference 10, showing that the
average of the absolute measurements cited there yields I = 163 ev. 6

Next to aluminum, the most extensively investigated heavier element is copper,
but at present there is uncertainty about the exact value of the mean excitation energy
of this element. The two most important recent experiments with copper are those
of Barkas and von Friesen (2) and of Zrelov and Stoletov (18). These investigators
report, respectively, the values I = 323 evand I = 305 ev. In a plot of the ratio of
mean excitation energy and atomic number as a function of the latter, 7 these experi-
mental values are seen to lie on either side of the line describing the general trend
of the elements. This suggests that the actual value for copper is probably close to
the average of 323 and 305, i.e., close to 314 ev.

Less extensive data exist for many other elements throughout the periodic table.
Stopping-power measurements have been made for a number of elements relative to
aluminum and copper. Much of the data is summarized and evaluated in the reviews
already cited (Refs. 5,10,12,17).

3. Data for Other Materials

Stopping-power measurements have been made with a large number of com-
pounds and mixtures. The most extensively studied substances other than pure ele-
ments are air and emulsion. The National Bureau of Standards Handbook 79 (Ref. 10)
adopts a value of 85 ev for the mean excitation energy for air, which is in essential
agreement with Brolley and Ribe's proton stopping-power measurements (Ref. 6) and
with the result I = 84 ev of Bichsel's analysis of alpha particle range data (Ref. 5).
The value 84-85 ev is also compatible with an estimation (Ref. 10) based on the
weighted average of Thompson's I-values for nitrogen and oxygen. However, this
value does not appear to be in good agreement with other proton data. As discussed
in Report No. 2, the I-values for nitrogen and argon determined from available proton
measurements at energies below that of the Brolley-Ribe experiment are some 10
percent larger than the I-values obtained from the alpha particle data. These dis-
crepancies are unexplained at the present time.

From range measurements with protons, Barkas and von Friesen (2) reported
the experimental value 328 ev for the mean excitation energy of photographic emulsion.
From the chemical composition given for the emulsion used, and from the I-values
of the individual elements, one would expect on the basis of the Bragg rule that the
mean excitation energy for emulsion would be very close to 300 ev. This discrepancy
is also unexplained at the present time.

4. Key Experiments

From the wealth of information available, certain experiments play a key
role from the standpoint of the verification of stopping-power theory itself and the

6Low values for Al (I = 13648 ev) and for Cu (300+12 ev) were reported from high-
energy measurements at Dubna. Bichsel has analyzed these results in comparison
with independent experiments in Report No. 2 of this volume. His analysis suggests
that the Dubna values not be accepted at face value without further evaluation of the
experimental method.

7See Figure 1 in Report No. 6 of this volume.
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determination of parameters of the theory. Estimates of shell corrections over a
wide range of energies for a number of elements are shown in Figure 6 of Appendix
A. From these curves and the error bars shown (corresponding to 1 percent uncer-
tainty in the stopping power) one sees that shell corrections are not very significant
for the light elements at high energies, but that this is not the case for heavy ele-
ments. For example, with protons in aluminum, Figure 6 in Appendix A shows that,
above about 15 Mev, shell corrections contribute less than 1 percent to stopping
power. For protons in lead, on the other hand, the corresponding energy is about
320 Mev. In the following pages, experiments will be considered on the basis of the
knowledge they provide about stopping power and, more particularly, on the basis
of the information they provide specifically about I and about shell corrections.

Thompson (16) measured the stopping power for protons with a mean energy of
270 Mev in hydrogen, carbon, nitrogen, oxygen, and chlorine relative to copper.
With reference to what has just been said, the shell corrections for these elements
for 270 Mev protons have a negligible effect on stopping power, so that Thompson's
measuréments represent a direct determination of I. In making relative stopping-
power measurements, part of a standard absorber, say copper, is replaced by a
thickness of the substance under investigation that gives the same amount of slowing
down in a given incident particle energy range as the removed copper. From Equa-
tion 38 in Appendix A, with negligible shell corrections and density effect, one can
express the stopping power per electron, ¢, of a substance in the form

- _1 dE\ _ _
€= N—z(a‘s') fiv) (F(v) - In1} ,

where f and F are the known functions of the incident particle speed v given by Equa-
tion 38 in Appendix A. Measurement of the thickness of a substance equivalent to a
given thickness of copper at a given incident particle speed yields directly the ratio

of the stopping power per electron in the material relative to that in copper at the
given speed. Using the subscripts 1 and 0 to denote, respectively, the material under
investigation and the copper or other standard absorber, one can write for this ratio

(1 _ HV) - l.l')Il
€p Fv) - 11'110

Determining €, / €y experimentally thus provides a value of I} in terms of the mean
excitation energy I, of the standard substance.

Probably the most significant result of Thompson's work, as already noted, is
the recognition of the variation in values of I found for a given element in different
chemical compounds. Some absolute values of I and ranges of variation reported by
Thompson are shown in Figure 1 of Report No. 6. The values shown there have been
adjusted from Thompson's data to give a mean excitation energy for copper of 314 ev,
rather than the value I, = 279 ev used by Thompson for this element.

The light elements have also been studied systematically by Brolley and Ribe
(6). In these experiments protons and deuterons of a single low velocity were used,
and stopping powers of a number of elements and compounds and of air were obtained.
Specifically, Brolley and Ribe measured the stopping powers of hydrogen, air, and
and krypton for 4.43 Mev protons (averaged between 5.0 Mev and 3.8 Mev). With
8.86 Mev deuterons they also measured the stopping power of a number of gases (Hjy,
He, Ng, Oy, Ne, Ar, Kr, Xe, CHy and COy) relative to that of air. Several of the
Brolley-Ribe I-values are shown in Figure 1 of Report No. 6. Taken collectively,
the data show consistent trends from substance to substance and represent a base
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point for systematic studies of stopping power among the light elements. Since there
is no variation in the incident particle energies in the Brolley-Ribe measurements,
they do not give any information on the variation of shell corrections, C/Z, with
particle energy. However, with the knowledge of I obtained from high-energy meas-
urements, such as those of Thompson (16) and of Bakker and Segr'é (1), the Brolley-
Ribe data do show the absolute contribution of shell corrections to the stopping power
at 1 proton energy for the light elements. This is discussed below in connection with
other data relevant to shell corrections.

Bakker and Segre (1) measured stopping powers relative to copper for protons
with a mean energy of 300 Mev in a number of elements spread throughout the periodic
system (H, Li, Be, C, Al, Fe, Cu, Ag, Sn, W, Pb, and U). Some of their data, re-
normalized to give the value I = 163 ev for aluminum, discussed above, are also shown
in Figure 1 of Report No. 6. Figure 6 of Appendix A indicates that for tungsten, lead,
and uranium the shell corrections for 300 Mev protons amount to 1 percent or more
of the stopping power. Therefore, the Bakker and Segré experiments furnish direct
determinations of the mean excitation energies I for the lighter elements in the series
(through Sn). For the heavier elements, tungsten, lead, and uranium, the Bakker-
Segré data can be used directly to obtain the adjusted mean excitation energy, ST
under the approximation that the residual part of C/Z for protons at an energy of
300 Mev is negligible. (Report No. 6.)

Since the measurements of Bakker and Segré encompass the entire periodic
system, they also furnish a rather complete picture of the adjusted mean excitation
energies, I,4;, as a function of atomic number Z. In the experimental arrangement
of Bakker and Segré a copper absorber was used as a standard to bring incident pro-
tons to rest. The incident proton energy was about 340 Mev, and approximately
94 gm/cm2 of copper absorber was needed to stop the protons. In the experiments,
approximately the first 30 gm/cm2 of the copper absorber was replaced by the mate-
rial being investigated, through which the incident protons then slowed down from
340 Mev to about 265 Mev. Since most of the range is covered while the proton energy
is still high, and since the materials being investigated were substituted in the first
portion of the proton range, the ratio of I-values from the Bakker-Segré experiments
should not depend much on the actual absolute range determinations ‘made in copper.
The dependence of I,3; on Z as demonstrated by the Bakker-Segre data is evident from
Figure 1 in Report No. 6.

Another set of measurements made with elements spread throughout a wide
portion of the periodic table is that of Zrelov and Stoletov (18). Range measurements
were made with 660 Mev protons in copper, and stopping-power measurements rela-
tive to copper were carried out for hydrogen, beryllium, carbon, iron, cadmium,
and tungsten. These measurements, like those of Bakker and Segre, give direct
information on Iadj'

The same is true of the measurements of Barkas and von Friesen (2) with 750
Mev protons. These authors measured the stopping powers of aluminum, lead, and
uranium and photographic emulsion relative to copper in the energy ranges 750-600
Mev, 600-450 Mev, and 450-300 Mev.? They also made range determinations in the

8As shown in Figure 2 of Report No. 2, the scatter of the Bakker-Segré data tends
to indicate that the error estimated by the authors may be too small.

9Quesl:ions of the internal consistency of the data in different energy ranges are
discussed by Bichsel (5).
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substances mentioned, and thereby determined the mean excitation energies for
copper, lead, uranium and emulsion, assuming the value I = 163 ev for aluminum.
Some of the results are shown in Figure 1 of Report No. 6. As already mentioned,
there is a discrepancy between the value of I thus determined for emulsion and the
value that one expects from the given chemical composition of the emulsion.

In the experiments discussed until now—with the exception of the measurements
of Brolley and Ribe at one value of energy—shell corrections have not played a major
role in the interpretation of results. We next consider experimental information
available for protons at lower energies in materials of medium and high Z, where
shell corrections are large. Several extensive series of measurements have been
made. At fixed values of proton energy there are, in addition to the Brolley and
Ribe data (Ref. 6) for the light elements, the measurements of Sachs and Richardson
(15) and of Burkig and MacKenzie (7) that include heavier elements. Sachs and
Richardson made absolute measurements of the stopping power for 17.8 Mev protons
(with energy losses in the range ~.15 Mev to ~2 Mev for foils of various thicknesses)
in aluminum, nickel, copper, rhodium, silver, cadmium, tin, tantalum, tungsten,
and gold. Burkig and MacKenzie measured the stopping power of 23 elements (from
Be through Th) relative to aluminum for 19.8 Mev protons. The three sets of meas-
urements (Refs. 6,15, 7) provide stopping-power measurements at proton energies
of 4.45 Mev, 18 Mev, and 19. 8 Mev.

Bichsel, Mozley, and Aron (3) made range measurements of 6 to 18 Mev pro-
tons in beryllium, aluminum, copper, silver, and gold. Since the theoretical expres-
sion for stopping power, Equation 38 of Appendix A, is not valid down to arbitrarily
small energies, one usually expresses the range of a proton of energy E in the form

E .
R(E) = Ry(E) + j'Eé (g_) 'aE .

Here E( is a value of energy large enough to satisfy the conditions under which the
theory is applicable. Rq(E() is an experimentally determined value of the range at
Ep, and plays the role of a constant of integration. The range expressed by the above
equation is the c.s.d.a. (continuous slowing down approximation) range as defined in
connection with Equation 39 of Appendix A.

If one wishes to study the quantity InI + C/Z from range measurements, then
the above expression for R(E) implies that a minimum of two range measurements
(one at E; and one at E>E() are required in order that the constant of integration

Ro(Eg) can be evaluated. In practice, a series of range measurements is made in an
energy interval, as in the Bichsel, Mozley, and Aron work. With I as an adjustable
parameter and with estimated values of C/Z as a function of energy, range-energy
relations are calculated and normalized to give the observed range Rg(E() at one
energy. The particular range-energy relation that best fits all of the observed ranges
in the experiment is selected, and this determines I. This procedure for determining
I is dependent on knowing C/Z as a function of energy.

Alternatively, one can handle the data in the following way to extract informa-
tion on shell corrections. The range-energy curves can be differentiated to obtain
the stopping power as a function of energy. One can then calculate the quantity
I{v,Z) (defined by Equation 53a in Appendix A) as a function of energy and write

% + Inl = In2mv2 - L(v,2) .
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One obtains in this way an experimental curve for C/Z + Inl as a function of energy.
Since I is independent of energy, this curve shows the variation of C/Z as a function
of energy and also gives the absolute value of C/Z to the extent that I is known, e.g.,
from high-energy data. Thus the low-energy experiments for a range of energies
give directly the variation of C/Z with energy.

Other experiments at low energies have been conducted by Nielsen (11) and by
Rybakov (14). Nielsen measured stopping power for protons and deuterons in the
energy range from 1.5 Mev to 4.5 Mev in beryllium, aluminum, nickel, copper,
silver, and gold. Rybakov measured proton ranges at several energies between 1
and 7.3 Mev in aluminum, iron, copper, molybdenum, cadmium, tin, tantalum, and
lead. These two sets of data show the variation of C/Z with bombarding particle
energy and also the variation of C/Z with Z at fixed energy.

The most recent stopping-power measurements are those of Nakano, MacKenzie,
and Bichsel (9). In these experiments the stopping power for protons of average
energy 28. 7 Mev (over an energy loss interval of ~2 Mev) was measured relative to
aluminum in beryllium, titanium, vanadium, cobalt, nickel, copper, silver, tantalum,
tungsten, iridium, and gold. The data show relative stopping powers as a function of
Z and furnish an additional set of stopping-power values for a number of elements at
one proton energy.

The data cited abeve have been tabulated in Figure 1 with respect to atomic
number, energy, and energy-interval represented by the measurements. Experiments
at a single energy are indicated by the smaller rectangles, and the other studies by
the larger rectangles. The dashed line represents the approximate locus of points
at which the total shell correction contributes about 1 percent to stopping power for
various atomic numbers. The location of this line has been estimated directly from
the curves in Figure 6 of Appendix A. Taken collectively, the data represent meas-
urements for a large number of the chemical elements, some measurements being
available in three decades of incident particle energy. From Figure 6 in Appendix A,
it can be seen that, except for the lightest elements, the measurements tabulated in
Figure 1 give data for many elements over ranges of energy in which shell corrections
vary from their maximum values to close to their limiting values at § = 1. From
these data our understanding of stopping power is verified in large measure. This
understanding takes the form of knowledge of (1) the actual numerical values of the
parameters of the theory and (2) the variation of these parameters with incident
particle energy and with atomic number.
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4, CONTRIBUTIONS TO THE THEORY
OF SHELL CORRECTIONS

U. Fanol and J. E. Turner?

Abstract

Sum rules pertaining to the inelastic form factor F,(q) are calcu-
lated and applied to the evaluation of shell corrections to the stopping-
power formula, to order 1/v4 in the velocity of the incident particle.
Details are given pertaining to the evaluation of the shell corrections
in the paper reproduced as Appendix A to this volume. Comments are
presented regarding the possible generality of a Lindhard-Winther
equipartition rule.

1, Introduction

This report complements the treatment of shell corrections given in Section 4
of the article reproduced as Appendix A of this volume. The following topics are
developed further: (a)the low-Q approximation is improved by working out the ex-
pansion into powers of 1/v2 in greater detail and calculating explicitly the contribu-
tion of electron correlations to the coefficient K,; (b) the high-Q approximation is
improved by obtaining the relevant expansion into powers of 1/v2 (this expansion is
shown to coincide with the low-Q expansion to order (1/v2)2, except for possible
electron correlation effects that have not been calculated, and the result confirms a
surmise introduced in Appendix A); (c) some comments are made on the possible
generality of an equipartition sum rule developed recently by Lindhard and
Winther (1);3 (d) the numerical evaluation of the shell corrections in the high-energy
limit, which have been utilized in Appendix A and in Report No. 6, are described in
some detail. None of these four topics has been developed as far as one would wish
but it seems desirable to present the matters as they stand.

2. Sum Rules over Inelastic Form Factors

Equations 56 and 57 of Appendix A* reduce the calculation of the low-Q contri-
bution to the stopping power, to order (1/v2)2, to the calculation of the sums

Sp=ZnEn" |Fy (ﬂ)lz (1)

forr=1, 3, and 5. Here, as in Appendix A, the Zn extends over all excited and

1National Bureau of Standards, Washington, D. C.
20ak Ridge National Laboratory, Oak Ridge, Tenn.
3We are greatly indebted to Prof. Lindhard for early communication of his results,

4Henceforth in this paper the numbers for equations, references, and figures, pre-
ceded by the letter A refer to equations, references, and figures in Appendix A.
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ionized stationary states of a material, and E;, is the energy level of each of these
states measured from the energy of the ground state 0. Moreover, according to
Equation Al17, F,(g) is the matrix element

Z
Fn@)=2"120|z;4;@ ] 0, @)
with
Aj() = explig - r; /) (3)

where r; indicates the position of the j-th electron, and a limiting process for Z = =,
in the sense of Equation A41, is implied where relevant. Averaging of Equation 1
over the direction of g is also implied, in keeping with the assumed isotropy of the
ground state of the material.

The expression | Fn(g)l 2 in Equation 1 represents the probability of eventual
excitation of a system to its n-th state as a result of the momentary absorption of the
momentum g by one of its particles. Therefore, S, represents the r-th moment of
the absorbed energy averaged over the probability distribution | Fn(g)l 2, The quan-
tities Sy are of importance in a variety of problems and therefore deserve some
general study. An effort in this direction has been undertaken in the past by Placzek
in connection with neutron scattering (Ref. A95). A nonrelativistic approximation
will be used, as in the relevant part of Appendix A. The odd moments of the energy
distribution, represented by odd values of r in Equation 1, exhibit simple features
which will be emphasized here. This section deals with the calculation of the S,.
The application to the calculation of the low-Q contribution to the stopping power will
be described in the next section.

The calculation of the S, is straightforward in principle but meets a practical
difficulty in the occurrence of a large number of terms, except for r = 1 or 2, Most
of these terms can be shown to vanigh, but a considerable advantage accrues from
arranging the calculation so as to minimize the number of separate terms to be con-
sidered and to facilitate the identification of the terms that vanish., These considera-
tions guided the selection of the procedure adopted here, which makes use of a
moment generating function G. The same procedure serves also for the calculation
of the high-Q contribution in Section 4.

The quantity (Eq. 1) has the alternative form

r xE
Sp = i(ﬁd;) Tpe © IFn(ﬂ”zi
(4)
d r
| () o]
1 (dx ) 'g x=0 .
From the definitions of Equations 2 and 3 and the definition of E, we have
xE
G(x,q9) = EnZj,j2 1 0]Aa* (@) n)e "(alA;@|0)
= 271z, ;20| As* @) n) (n] eXHas(g)exH | 0) 5)

1 r
—8.x
Ez'rl ¥
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where H indicates the Hamiltonian of the material

P'z 1#]
= Lj3m * Ty, UWry-By D+ 32 Vir-xiD)

H-=
(6)
PN LUEE o
B EJ 2m EJ,N RN 2 i B
Here m is the electron mass, p; = mgj is the momentum of the j-th electron,
rj- |) its potential energy due to the attraction by a nucleus at Ry, and
- ) the potential energy of two electrons due to their repulsion. The com-

pleteness of the set of states n, as represented by the closure rule En|n) (n| =1 can
now be utilized to yield

G(x,g) = 271z, j(0] A;(g)* X A(q) € XH|0) . (7)

Thus we have to evaluate the mean value of a somewhat complex operator for the
ground state of the material, without explicit reference to its excited states.

The operator can be simplified by utilizing the commutation rule, which follows
from Equations 6 and 3:

1
[H,Ay@)] =35 (g vjA;@+A;j(glg- vy
= A@Q+g- vy .

(8)

where Q= qzl 2m. From Equation 8 there follows in turn
exp (xH)A; (@) = A, @exp[x(H+Q+g- v;)] , (9)
so that
Glx,)= 271 Z; ;(0] A; (@)*Ay(g) XHT Q2 e ~¥H) ) (10)

The factors exp(xH) and exp(-xH) do not quite cancel out because H does not commute
with vj, but Feynman's operator calculus (Ref. 2) shows that one can write

exp [I(H+Q"'g‘3j)] exp(-xH) = exp I: [Q"'g,'!j(x')] dx’ , (11)
where

vylx) = e“Hy_j e XH - gj+[H,ng x+-% [H([ H,ler]x2+ R (12)

The notatzon utilized in Equation 11 implies that in any product of operators
_J(x v _j(x i these Operators are ordered from left to right in the order of
increasing values of x', B wme o Equation 10 now becomes

G(x,g) = z71g; (0] Ay(g)* A;(q) exp {_I'Ox [Q+g- xj(x')]dx‘}IO) A (13)
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and one can proceed to expand the exponential into powers of x, so that the coefficient
of each term will represent one of the 5., according to Equation 5. 5

The exponential operator (Eq. 11) is in fact defined by its expansion

exp %x[Q+9-x;‘(='>ldx'= 1+ [ ax'[Q+g-yjx')] +
(14)
+J‘0"dx’j"dx [Q+g v N[Q+q vy’ +.... .

Substitution of the definition (Eq. 12) of Vi (x) into Equation 14 enables one to carry
out the multiple integrations over x', x''... so that Equation 14 takes the form

exp [ [Q+gy; &)]ax' = 2, % ;) @)xT . (14a)
Further substitution into Equation 13 and comparison with Equation 5 yields then
Sr= 215,500 A1(@)* Aji@H; (P ()] 0) . (15)

We are left at this point with the tasks of calculating the Hj(r)(g) explicitly for r= 1,
3, and 5, and then of calculating the mean values (0|A-*AjHj‘P’ |0) .

To express the H (r) conveniently, we introduce for an arbitrary operator O
the notation

= [H,0] = -ih dO/dt . (16)

We obtain, then, from Equations 12, 14, and 14a

(0)
Hy

(2)
Hy

(1) = a
1, HJ Q+g !j

g v+ @+g-yy)?

HJ(S) = g.v’_' e [g.vj" (Q+g.v)+2(Q+g.!J)9-.!'] +(Q+£.!)3 =

Hj(4) =q-v!" +3(g- v )2+g 'Q+g-vj+ 3@Q+a: v a VJ
+g 23 Q +a-x,->2+2(Q+s*ﬁ’i'!j(Q’fs-!j’*3(Q+9-!j’21".’5+ Q+g-yy?

Hj(5) = g.!;"' +9.x§" (Qi-g;!j)'i"l(Q‘l‘go!j)_g.!;”+49.!;' g.!j’+ﬁg.!5 g.!j”

+ S'Xj" (Q+9°.!j)2 +3(Q +9-!j)g._v_5' (Q-I-g.!j)-l- G(Q+g-!j)2g.!5'

+ 3(9.!; )2 (Q-I- g'!J)+ 4(1.!5 (Q+9'3])9'!§ + B(Q'FS.EJ)(S.!; ’21-9.!; (Q+S'zj)3

+ 2(Q+5.!j)g.!j" Q *'51‘21)2* 3(Q+9.!j)21.ﬁ Q+g-yj+4@Q+ 3'!;')33'!{
+Q*+g-yyh . (17)

SIt might be of great advantage to express Equation 13 as an exponential function of
matrix elements rather than as the matrix element of an exponential operator;
i. e, , to delay the expansion into powers of x until the mean value over the ground
state has been taken.
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Calculation of S

To calculate the mean values of the quantities A;*A Hj(r) in Equation 15, begin-
ning with r = 1, we start by symmetrizing them. From til'le commutation rule (Eq. 8)
and from the fact that A; and vj commute for i # j it follows that

* _ 1 # *

Ai(g) AJ(S) Q+ q- EJ) = Q513 +§ (g !inAj'l'AiAjS' !]) . (18)
The operator ArAj = exp[ -ig- (r; - rj)/ &) is not Hermitian but can be expanded into a
power series of Hermitian time-even operators [q- (r; - Ej”n' Therefore, the second
term on the right in Equation 18 can be expanded into a series of symmetric terms,

9-vilg- (cy-rn+ [g- (x;- )l g vj , (19)
each of which is Hermitian and time-odd and has, therefore, mean value zero, pro-
vided only that the ground state is stationary and isotropic. This term drops out,

then, and we obtain the well-known result (Eq. A27)

$,=Q . (20)

Calculation of S3

The last term of H,(3) in Equation 17 is found (by repeated application of
Equation 18) to contribut®

* 3 = 3 ev.)e
(0]A; A;@Q*g-yj) |0)=[Q%+3Q(0](q y;) | 0)] 8jj - (21)
As noted above, we must still average over the direction of g. This averaging yields

2_2

((S'Ejlz)q=—q V. 4

" %Q 2mv, (22)

1
3 J J

80 that

(0] A;*A{Q+g-v;)3| 00 = [Q%+ Q% 2m (v® 155 . (23)

To evaluate the contribution of the first two terms of H.(3) a symmetrization procedure

is required. Considering that lrj'commutes with both Ai* and Aj, we have

AfAslg vi +9-v'Q+g v;)*+2Q+q-vyg-y]]
1 E ’ ' 1 * 7
3 * ’ 1, * 7
t3 [g-_v_Jf A{"Aj(Q t9-vj) A AQ+g- vyl vy ] + 3544 Aj[g-gj.g-gjl '
where [B,C] = BC-CB.

The first term on the right in Equation 24 reduces to Hermitian time-odd operators
so that its contribution vanishes. Application of Equation 18 to the third term on the
right of Equation 24 splits it into a term 3Qq" v Gig which vanishes upon averaging

over the direction of g, and another term wh:ichJ reduces again to Hermitian time-odd
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terms and thus yields no contribution. The second term on the right in Equation 24
can be transformed as follows

SLAMALg-v] 1 = 3 (A]A[H,g-v/]]

1 ¢
='%[A1*Aj(2Q+ﬂ'!j‘9,'ﬁ). g'gj'] (25)
=-%A{"Aj[(g'gj-g-gi).g-gj'] .

Of the two terms on the right in Equation 25, the first one cancels the last term of
Equation 24, so that the second one alone is left to contribute to the mean value of
Equation 24. This mean value is, then,

% (O]Af (g)Aj(g)Eg'zi.g'gj'] |o) . (26)

To calculate [g-v;,g° v ] explicitly, set yy- (ﬁlim)_!j » where ¥ indicates the
gradient operator, and apply ii:quations 16 and 6. This gives

" 2
[q'v;.9-¥5] = % 9+ 90 ¥ {8, v u(lmc- Bal ) 204 V (e n)} i

2 L¥]
= T3 (@9 {oNUU RN+ S, Vil - x Doy - Vil -x | X2- 050},

taking into account that g *+ ¥.q !j U=0fori#jandthatV \J’(l;j 'Eil )=
-v V(| rj- Eil ). Upon introduction of the Coulomb form of the potentials, as given in
Eqi:a.tion 6, Equation 27 becomes

2,2 L#
[ENZN 6‘3] '_RN)" EL G(E_J = 54)3 61]

2¢2 L#j 3lq-(r;-rp)%-q? |r,-ry|2
h% q° (xj-r)l®-q° |r;-xy
+8(r, -r,)(1-8,)0 + z = 8;
L - 613} =z | ERAE i
3[1'(r--r-)]2-q2 |r;-r;|2
= ), sl =] =i :
I_rj'_rils (l-ﬁij)} . (28)

Notice that the contribution of the first brace on the right in Equation 28 is independent
of the direction of q, and that of the second brace depends on the Legendre polynominal
Py of the angle between q and another vector; the separation into two such terms holds

for any central potential Taw.

Upon multiplication of [q- vi.q v ] by A{"A , to calculate Equation 26, the
factor A{*A. reduces to unity when multiplied by bjij or by 8(r. - r;), that is, by each
term on the right in Equation 28 except the last oné. The next-to-last term of
Equation 28 vanishes when averaged over the direction of q. The second and third
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terms on the right in Equation 28 cancel later, upon summation over i and j. Thus,
one finds the average value

z-1g; J2<w|¢a (@A4(g)g-vi.q vyl 0Ny

4mh2e2
3m

=Q z-1 BinZy (0]8(x;- Ry) |0) - (29)

0 .

a2 - i “(ri-r;) |30q-(r; - ri)1%-q? | r; - r;|2
s f |-zl §
The averaging process over the direction of § in the last term of Equation 29 is

equivalent to the calculation of the coefficient of Py (cos6) in the Legendre expansion
of exp(izcos@); one can write

%I" 8in6d0 exp(izcosb) 3(zcos)? 22, . 2 g (z) , (30)
A 5 15
where
ia(z) _ /._’L_. - 2
(z) = =15 Jg /2(z) = 1+ 0(z%) (30a)
g1z 22/15 2,9 Y5/2 i z a

reduces to unity at z = 0. Application of Equation 30 reduces Equation 29 to

-131 i3 ((0|A A [_q _1,9, v; ]lo» -

Q““‘ G InZy (08¢, Rl 0) + @2 15 I (I];.—_T'gz(qlg—f—])l )

where Z~ IEj has been suppressed in consideration that all electrons are identical.

Finally, S3 is obtained by combining Equations 23 and 31 in accordance with
Equations 15 and 17. The index j can now be dropped, with the understanding that
all quantities refer to an average electron under consideration, and that Z; excludes
this electron from the sum over i. We also indicate the mean values over the ground
state by ( )g instead of (0|..|0). Thus, one finds

2

Sg = Q3 + Q%2m (V2>0 *Q

(32)

4 7 ez
+Q2E<Bi Ir-ril gz(qIE'Ei“fl))o .
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Calculation of Sg

This calculation should proceed by analogy with the calculation of S,, but it
involves a larger number of terms, some of which are more complicated than those
treated above. We have calculated only a selection of terms that appear most im-
portant for our immediate application. In the first place, the application of Section
3 requires only terms of S which are proportional to Q3. Secondly, the effect of
electron-electron correlations on Sg will be disregarded as negligibly small; notice
that the corresponding effect on S3 will be seen in Section 3 to be even smaller than
had been anticipated in Appendix A. To disregard electron-electron correlations 3ne
cancels not only all terms of Equation 15 with i # j but also all contributions to Hj'(5
which arise explicitly from the interaction potential V(| ry- Eil ).

Because Ai*A- reduces to unity, irrespective of q, for i = j, we can drop all
terms of Hj(s) in Equation 17 of other than third degree in Q, that is, with factors
Qaqbwith a+b/2#3. The residual terms, arising from the last five terms of Hj(s),
are

(H_(5)) = 10Q2 (q°vig-v,+ 2g'ng'vf)+ 5Q(g'v,)4
1 it sl SRt i .
(33)
= 15Q% (a-v;a- vj*a- vja- v;) +5Q%g - v;.9- v) +5Q(g- v)%.
The first term on the right in Equation 33 is Hermitian and time-odd; hence its con-
tribution vanishes. The contribution of the second term is proportional to the first
term on the right in Equation 29 when electron-electron correlations are disregarded.
The third term reduces, upon averaging over the direction of g, to Q34m2vj4.

Thus, one finds, with the notation of Equation 32,

(Se) = @3 {4m2 (v4) +10M TrnZn (8(r - Ry)) (34)
5~Q3 no corr R - ? L NN SN0 -

3. Shell Corrections for Low-Q Collisions

The treatment of shell corrections on page 35 of Appendix A separates these
corrections into two contributions, called C 1 and C,. These contributions correspond
respectively, though somewhat loosely, to collisions with low momentum and energy
transfer and to collisions with high momentum and energy transfer. Equation A56
expresses C, as

E.l..= o) % L [ d rfn(Q)] Enzr (35)
Z 2 n =lr!r er Q=0 (2mv2)r
where
B, 2
Q= [F@l® (36)

v is the velocity of the incident particle, and the Z{!) is limited to states with
E_X<mv®.
n~
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However, it is understood, according to Walske's original analysis (Ref. A134),
that this restriction to L, may be removed if it is simultaneously agreed to discard
terms of Equation 35 with r > 2. Therefore we take

Cy 12 1 1 [ d \r 2r ]
Z Enrr-l rir  (amy2)’ (dQ) By 1,@Q - g (37)

According to the definitions (Eq. 36 and Eq. 1), the Z,E,?T £, (Q) in Equation 37
is just Spr+1/Q, so that

C; 12 1 1 [ d \' S2r+1 ]
k) ~§zr=1 TIr  (2my2)T (dQ) Q . (38)
Q=0

The operator indicated by the brackets of Equation 38 selects the terms of degree
r+1 in the expansion of 52r+1 into powers of Q. For r=1, a full expression of 53 is
given by Equation 32, For r=2, the relevant term of the expansion of Sy is given by
Equation 34, except for effects of electron-electron correlations. Substitution of
these formulas into Equation 38 yields

4
Cq 1 2M(V2>0 "‘1_5' E{(Ezllg“ﬁl)g

— N —

Z 2 2mv2
2, 4 2.2 (39)
4m*® (v )0 + (40mh“e“/3m) ENZN (G(E“En))o
+ .
2(2mv?2)2

(Notice that the factor gy in the last term of Equation 32 reduces to unity in the present
application. )

This result coincides with Equations A58, A58a, and A58b with the understand-
ing that the ''correlation terms," which are merely indicated in Equation A58a, are
explicitly represented by (2/15)2’,‘; (e2/|x- £1| Yo in Equation 39, and those indicated
in Equation A58b are still missing in Equation 39. The term (4/15)Z%e2/|r-1'|), is
clearly much smaller than 2m(v2), as expected; its influence will be calculated below.

For the purpose of evaluating the mean valies of the properties of atomic
electrons in Equation 39, let us introduce the symbols.

2
T = Ej ;..L = kinetic energy of all electrons in the system.
m
_ ~ - nuclear attraction energy of all electrons in
= z:.‘i.NU(]EJ' EN“ the system.
o E#j e? _ mutual repulsion energy of all electrons in
2 “L] |rj-rjl the system.

density at R of all electrons in the system
p(R)= !Jj(G(_I_‘j- 3_))033 = expressed in electrons per cubic Bohr
radius a.
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r = total binding energy of all electrons in the
B = -[{T) +(U)+ V)] o iy

(Rydberg) binding energy of electron in

H atom.

n

Ry = #i2/2ma2=e?/2a
Equation 39 can now be written

1
(T + 35 (Vg (T2), + (10n/3)Ry2INZN p(RY)

A . 40
1 mv2 (mv2)2 wr
The virial theorem
1
(T)g= -5 (U +(V)g) =B (41)

can be utilized to express (T)g and (V)g in terms of B and (U),, which are more
easily evaluated. Thereby, Equation 40 becomes

13B - (U)o (T2)y + (10m/3)Ry2ZnZp(Ry)

c ~
1
15mv2 (nw2 )2

(42)

Values of B, obtained in various ways, are tabulated (Ref. A52, p. 183) for a
number of atoms throughout the periodic system. The "empirical" data in this table
are approximated rather closely by

Bemp ~Z% 4 Ry . (43)
The Thomas-Fermi model, in its basic form, yields, instead,

Byp~1.5427/3Ry . (43a)

The value of {(U)g is calculated, for a single atom, by integrating the product of
-Ze2/r and of the electron density p(r) over the whole atomic volume. A calcula-
tion by J. W. Cooper for aluminum, argon, silver, and copper, utilizing a Hartree -
Fock p yields values fitted by

(U)o gp ~-2-4 2%-% Ry . (44)
The Thomas-Fermi model yields, instead,

(U)o pp~-3.322"/3 Ry . (44a)

Notice that, according to these results, 13B - (U), differs by <3 percent from the
corresponding ''no correlation' expression 15B. As noted in Appendix A, page 36,
successive shells of an atom contributed comparable amounts to B and (U)O .

On the other hand, the quantities (Tz)o and p(Ry) in the second term of Equa-
tion 42 depend primarily on the contribution of K-ghell electrons. For the H atom
(T2) amounts to 5 Ry2. For the hydrogenic 4approximation of a gingle K electron,
the contribution increases in proportion to Z*; when screening is considered, the
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contribution increases in proportion to (Z-0. 3)%, Thus, the whole K-shell contributes

(T?)gg ~ 10(z-0.3)% Ry2 . (45)

With regard to the electron density at the nucleus of a single atom (R = 0), the
screened hydrogenic approximation yields for the K-shell contribution

[p( 0)1K=% (z-0.3)3 . (46)

Hartree data for argon agree with this value very well, and they show that outer shells
contribute an additional 10 percent, approximately. Assuming that the outer electron
contribution to be added to Equation 45 is also of the same order, it is suggested that
calculation of the second term of Equation 42 utilizing Equations 45 and 46 with a 10-
percent allowance for other shells will be correct to within a few percent.

4, Expansion of the High-Q Contribution into Powers of 1/v2

In this section we replace the treatment of Section 2. 7 of Appendix A by a more-
accurate though nonrelativistic procedure. This procedure is designed to calculate
the contribution to stopping power from the region (Q,En)‘"Qmax, including correc-
tions whose need is pointed out at the beginning of Section 4 of Appendix A but which
have been taken into account previously only for atomic H (Ref. A134) and for an
electron gas (Ref. 1).

We start then from the nonrelativistic approximation (Eq. Al6a) to the inelastic
cross section and replace the expression (Eq. A37) of the high-Q contribution to the
stopping power by

@ _ 2"2234 ® 4 2
IQz TpEq do, St(qv-Ey ) = —y z {'22 a% ToEq | F (@) *Stqv-E ) . (47)

In this formula the integration over Q has been extended to its actual limit Q ==, and
the step function has been introduced in the integrand to specify that the integration
over Q and sum over n extend only over combinations of these variables that fulfill the
condition of Equation A18 (The step function St(x) equals 1 for positive x, and 0 for
negative &; since Q=q%/2m, St(qv-E,) vanishes when Equation A18 is violated.) The
upper limit Q44 to the integral in Equation A37 served to fulfill Equation A18 ap-
proximately. The lower limit to the integral, Qg, is the same as in Equation A37,

We utilize here the integral representation

St(x) = 5 .r‘::L dy E:-’f (48)
and wish to calculate the expresaion
Ep | Fy(@)|2 sttqv-Ey) = grr [54€ ay EL g e Von g | p(q)|?
o+ e¥Yav 4 (49)
Zﬂi'r 1w+¢ dy =5 (-E)G(-y.g.)
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to be entered in Equation 47, The function G in this formula is the same as defined
by Equations 4 and 5 in Section 2.

In section 2, the expansion of G(x,q) into powers of x has been relevant. How-
ever, this expansion is seen (for example, from Eq. 13 and Eq. 14) to involve simul-
taneously an expansion into powers of q and Q. These quantities are large in the
high-Q range, with which we are concerned. Therefore, a modified expansion should
be sought which is appropriate to our problem.

Notice that the operator on the right side of Equation 13 contains a factor
expf’[: Qdx’ = exp(Qx), which is actually a number rather than an operator and can be
factored out of the mean value operation. Since, in our range of interest, Q is of the
order of qv > q*v. (v is the incident particle's velocity and v; an atomic electron
velocity), the factor exp(Qx) contains that part of the dependence of G on x which is
not suitably expanded into powers of x. Accordingly we define, with analogy to
Equations 13, 1l4a, 15, and 4,

Glx,g) = exp(-Qx) G(x,g) = 2 1Z; ; (0|A* (@)A;(glexp on g-v;lx")dx’|0)

(50)

= Er ;.]:T xI'Z~ lzi,j (OIAi* (Q)AJ(Q)}_H(I')(H)I 0) = b 5 ;}!_ xF Sr :

where each of the operators H.(r) is to be obtained from the corresponding H(r) in
Equation 17 by deleting the texgms that contain Q explicitly. It will be verified later
that the expansion utilized here reduces eventually to an expansion into powers of

VJ-IV.

We substitute now in Equation 49
- 1 =
G(-y.g) = e YRE, = (-y)°' S, (51)
and, more specifically,

_._d_ - = e ¥Q -_L(;IE_
S 6ty.9=eYRQz (- 2B 5

yQ r

o (52)

=eyQQgE, [L¥T . Cyr-1] S

r r! (r-1)! QF

Since Q > Q, > 0, we can replace y as an independent variable by

w=yQ . (53)
We shall also set, where suitable,
2 2
u= 2mv i Q = 3_.. = 2mv . (54)
q 2m ul


http://www.nap.edu/catalog.php?record_id=20066

61

Equation 49 yields, then,

é— T.E, | Fo@)|2 Stqv-E,) = Tpf, (Q) Stiqv-Ep)
(55)

@ w(u-1) W) (-w)r-118
=L‘Fi ‘dwg___zr (-w)F | (-w) Sr
2mi “-imte w r! (r-1)! Qr
The integration over w reduces now to application of Equation 48 and of the
related formula

-1 r ool |
ji::‘( dw-—-—-ew‘: b =(a‘§1—) St(u-1)=(a%) 6-1)=8r"Vw-1),  (56)
=1

with the result

Eeann |F,(a)|2 Stlqv-E ) = T 1, (Q) Stlqv-E )
(57)

. & : . :
= St(u-1) (SO +-E§)+ [Br=1( 1)F 8(r-1) - N+ZT - ((:3:)! 6(1'-2)(11-1)]5:—'; >

Substitution into Equation 47, taking into account Equation 54 and, in particular,
dQ/Q = -2du/u, yields now

.I‘ = 2'lrzzt=.-4 - 2mv? J-vaz _cQ_

L _E_do. Stlgv-E,) = Z4 SAln
n=n 90 SHqQV-En — 0 Q Q Qz

el r-2\ S
-2[(Er=1 ;17 (c%) * T rx::%_f)_' (Eda) ) uer]u=1 .

We proceed now to the evaluation of the coefficients S (defined by Equation 50),
takmg into account that they appear in Equation 58 in the combmatmn S /Qr and that
q=2mvand Q= 2mv2 atu = 1. For simplicity, we disregard here again the effects
of electron-electron correlation, as we did in the evaluation of Sg in Section 2. In
the present instance correlation effects should be particularly small because the large
value of q causes the producta*A (_g)A i(q) = explig (rjr; ;//f] to oscillate very rapidly.
We set, then, i =], that is, AjA;=1, so that

(58)

5, =271 (o|ﬁj(1"(_q) o) . (59)

and agree to disregard all effects of electron-electron interaction.

Terms of H; ‘r)(g) of order s in q will yield, upon division by QF and setting
q = 2mv, contribultzons to S_./QF of order 2r-s in 1/v. We are interested here in
calculating to order 1/v* and shall accordingly consider only terms of order s 22r-4,
We obtain, then, from Equation 17,
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ﬁj(o) =1 , I-—IJ(I’ =g°V. » T{J(Z) = g.!j"q- (Q.Y.J)z s
U8 e S goiol wew daivae e S Da - vo V3 2r-5
H; 3@y g vteva-vi)+olgrvgyy 1+ v)" + 0e™ ) (60)

B® = @yt 0?5, B = 0@ forr 25

The process of averaging over the direction of q, discussed in Section 2, cancels the
contributions of Hj(1), of the q-gg term of _ﬁj(z , and of the (g'gj)3 term of Hj(3). The
first term of I-_Ij(a) has mean value zero becau:f it is Hermitian and time-odd (see
Sec. 2). The mean _value of the remainder of Hj(3) is given by Equation 29, with i = j;
the mean values of ijz) and H;(4) are elementary. After averaging over the direction
of g we obtain, in the notation of Equation 32,

So=1, 51=0, 5/@=2m (AylQ .,
(61)
S3/Q% = (47h%%/3mQ%) Ty Zy (6(r-Ry)g » 5,/Q% = 4m2 (vi)/5Q2 .

Upon substitution of Equation 61 in Equation 58, the residual operations over u
are straightforward and yield our final result, in the notation of Equation 40

Jr:;a " DE, do,Stlqv-E_)

(62)
_amafe? ) 2mv 1 (T)o +(1‘2)0 +(10n/3)Ry*EnZy p (Ry) "
= _2 n ——ae 2 2 2""2 .
mv qz myv (mv®)

This formula should be compared with the complete stopping-power formula (Eq. A38)
and with the expression (Eq. 40) of the low-Q contribution to the shell correction C.
The comparison shows that the square bracket represents a high-Q contribution to the
shell correction which is identical with the low-Q contribution to order 1/v*, to within
the correlation term (1/15) (V)g whose counterpart in Equation 62 has not been
evaluated. The approximate equality of the high- and low-Q contributions which has
thus been established confirms the surmise made on page 37 of Appendix A,

However, the treatment developed in this section for the high-Q contributions
does not follow exactly the same line as that presented on pages 31 and 35 of Appendix
A, which underlies the low-Q calculation of Section 3. It is likely, but has not been
demonstrated, that the two treatments are in fact consistent and their results com-
parable to the stated order of accuracy. A new unified treatment of the low- and high-
Q contributions to shell corrections would be desirable. Such a treatment might
perhaps start from Equation 47 with its lower integration limit set at @ = 0, and then
utilize Equation 49 with alternative expansions of G(x,q) appropriate to different
ranges of Q.

5. Comments on Equipartition Sum Rules

A curious aspect of stopping-power theory—which is still ill-understood and
somewhat ill-defined but has attracted renewed attention in recent months—appears
from the following remarks:

(a) In Bohr's initial theory of the energy loss (Ref. A25, and pp. 4,8 of
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Appendix A), where collisions are classified according to the impact
parameter b, values of b larger and smaller than the atomic radius
contributes equal aggregate amounts to the stopping power.

(b) In Bethe's theory the equivalent statement is that the leading term
In[ (2mv2)2/12] in the center braces of Equation A38 arises in equal

portions from I dQ/Q and Iqm“ dQ/Q .

m

(c) The energy-loss contribution of transverse excitations, which arises
only from values of Q and E_ near the limit Q = Qq,j, (see Appendix A,
fig. 2 on p. 10), stems in equal amounts from low-Q and high-Q collisions
as noted in Section 2. 8 of Appendix A. The intermediate range of Q does
not contribute an appreciable amount of transverse excitations because
energy and momentum cannot be conserved in this range at Q ~ Qg ;, (see
Appendix A, Sec. 2.4). However, the density effect appears to destroy
the equality of low-Q and high-Q contributions because it reduces only
the probability of low-Q transverse collisions.

(d) The stopping-power's variation, as a function of the incident particle's
velocity, arises from the factor 1/v2 in Equation A38 and from the factor
in the braces. The latter variation stems from the shift of the line
Q = Qmin» Which limits the values of Q and E,, consistent with energy
conservation. Since this line intersects the dotted area of Figure A2 in
two separate regions, of low Q and high Q, two separate contributions
to the variations of stopping power can be distinguished here rather
clearly. As noted above (in Sec. 4), these two contributions are equal,
at least.to within electron correlation effects that have not been analyzed
completely and to order (1/v2)2,

(e) Lindhard and Winther (1) have recently studied in detail the stopping power
of an electron gas. In this model, the region of Q and E,, consistent with
momentum conservation has a sharp limit on the low-Q side, in contrast
to the general case shown in Figure A2 where the dotted area fades out.
This limit crosses the energy conservation limit Q =Qmin at two exactly
defined points, and thus distinguishes low-Q and high-Q contributions
sharply, provided only that the particle velocity is sufficiently high. The
two contributions to the variations of stopping power are shown to be
exactly equal, irrespective of any expansion into powers of 1/ 2,

The preceding remarks and special results might have a common origin in a
single general equipartition theorem. It would, of course, be of interest, particularly
for the shell-correction problem, to establish such a theorem. The theorem should
define a line in the (Q,E,) plane of Figure A2, or in an equivalent representation, such
that the two regions of the plane on either side of the line contribute equally to the
stopping power. Insofar as there exists an "empty crescent"” in the map of Figure
A2~—that is, insofar as there is an intermediate range of values of Q for which momen-
tum conservation restricts the possible values of E;, more stringently than energy
conservation—it is sufficient to state that the desired line crosses the line Q = Qmin
somewhere within the empty crescent. Items (d) and (e) above involve such a state-
ment. However, one should like to define the line more precisely and independently
of the existence of an approximately empty crescent.

The following remark, which originates from Reference 1, is also of interest.
Energy conservation requires the projection of the momentum transfer g along the
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direction of the incident particle to equal E,/v. With reference to the angle ¢
between q and this direction (see Fig. Al), the condition is

E_ =qv cos} . (63)

The line Q = Quj, in Figure A2, which sets the energy conservation limit to the
integration over E,, and Q, represents Equation 63 for $ = 0 and a given v, but a
whole family of nonintersecting lines can be considered in the (Q,E) or equwa.lent
representations, which correspond to alternative values of the parameter veos.

For a given v, the points on one such line correspond to momentum transfers g with
a constant obliquity ¥ and with different magnitudes q. Any of these lines that inter-
sects the empty crescent contains two separate classes of points, with large q

(i.e., large Q) and small g. The high-q collisions yield (for )<45°) ejected electrons
which are faster than the incident particle. On the contrary, the low-q collisions yield
excitations with properties nearly independent of q and, therefore, with very small
group velocity, much lower than the velocity v of the incident particle. Thus a
criterion might be sought for classifying high-q and low-q excitations depending on
whether their group velocity is higher than v. An equipartition theorem could then
perhaps state that for each direction of g equal amounts of energy are spent in pro-
ducing excitations that propagate ahead of the incident particle and in excitations

that trail it.

However, the concept of excitation velocity does not appear to have been estab-
lished in general. In the electron gas model of Reference 1, the final state of each
excitation process, and therefore its energy E , is identified by the momentum trans-
fer g and by the statement that either it is a state of collective excitation or that it re-
moves an electron of given momentum from the initial ground state. This special
circumstance permits the definition of the group velocity 3Enlaq, in that it specifies
which characteristics of the excitation are kept constant in the operation 3/3q. The
same circumstance plays an important role in the proof of the equipartition theorem
for the electron gas, so that the proof does not apply immediately in its absence.

The following energy-momentum relationship for the excitations of a material,
which relates to the basic sum rule

E, | Fp@|2/Q=Z,f, @=1 (64)

equivalent to Equation 20, might conceivably lead to a suitable definition of excitation
velocity. Consider for each value of Q an excitation energy E such that

E_<E
£ Q=g , 0<g<l. (65)

Equation 65 defines a set of curves
g(Enl Q) = E (q;En) = const. (66)

in the (E_, Q) or in the (q,E,)) representation. The slope of the curve that passes
through a given point (q,En)r:

(i‘.E_’n_) _ . /3 (613
d riS g 2
9 7 constant g 3g/3E,
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defines a velocity pertaining to an excitation with the given values of E,, and q. For
high-Q collisions all the curves of Equation 66 lie in a narrow bundle along the line
E, = Q of Figure A2, and the value of Equation 67 coincides with the velocity of the
ejected electron. For low-Q collisions, the curves of Equation 66 tend to become
vertical in the representation of Figure A2, and horizontal in a (q,E,) plot, so that
the value of Equation 67 vanishes.® Through each point, (q,E_) or (En, Q), one can
draw one line of the family of curves for Equation 66 and one fine of the family of
curves for Equation 63 with the appropriate value of v cos. One might then classify
a collision with given (q,E,) as a low-q or high-q collision depending on whether the
velocity (Eq. 67) is lower or higher than v cosy. Each line of Equation 63, E, = qv cosd,
should have a point at which it is tangent to one of the lines of Equation 66; this point
might conceivably be significant for equipartition.

6. Discussion of Numerical Values

The relationship of the foregoing theoretical developments to the employment
of actual numerical values for shell corrections elsewhere in these reports (notably
in Reports 2, 6, 7 and in Appendix A) is next considered. Although the shell correc-
tions may be based on different points of departure for different purposes, the numeri-
cal values arrived at are in essential agreement throughout these reports within the
ranges of applicability stated by the authors.

Estimates of the high-energy limiting values of the total shell corrections based
on the expressions developed in this report are given in Table 1, where relevant quan-
tities from Section 3 are evaluated for the determination of C; by means of Equation
42, including correlation terms to order llvz. A 10-percent addition to the K-shell
contribution to the coefficient 1/1.1'4 was also made. From the result of Section 4, the
total atomic shell correction C due to both the high-Q and low-@Q contributions was
taken simply to be C ~2C;. The resulting numerical values for C/Z at 8 = 1 are
given in the last column of Table 1. It was found that the final values of C/Z were
essentially the same, whether the Hartree-Fock or the Thomas-Fermi model estima-
tions from Section 3 were employed for the coefficient of 1/ v2. The values of C/Z
from Table 1 are just the high-energy limiting values of the proton shell-correction
curves constructed as described in Section 4.5 of Appendix A and shown in Figure AS6.
As discussed in Appendix A, these curves were drawn to represent smoothed stopping-
power results obtained by Bichsel. (These results were based on a scaling procedure
for representing shell corrections akin to that described in Report No. 2 except that
C vanished for g = 1 and I 4; was used in it instead of I. The values in Table 1 are
also the ones utilized in Report No. 6). Therefore, this report, Appendix A, and
Report No. 6 employ a unified treatment of shell corrections to be used in conjunction
with the méan excitation energy I. Report No. 2 is also consistent with these reports,
whereas Bichsel's earlier work utilized a different procedure, as noted above.

With respect to the numerical consistency of the shell corrections in the above-
mentioned reports and in Report No. 7, the following is the situation. For computa-
tional purposes, the formula shown as Equation 16 in Report No. 7 was used to obtain
shell corrections for the tables presented there. The velocity parameter was re-
stricted to values n > 0. 13 when this formula was applied. This corresponds to a
proton energy > 8 Mev. The authors of Report No. 7 state that checks were made,

E5Figure A2 fails to show that the upper edge of the shaded area bends downward on
the left side of the graph since Ep never vanishes for quantum systems. In the low-
energy discrete portion of the excitation spectrum, the shaded area breaks into a
number of near-vertical strips corresponding to discrete levels.
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TABLE 1

Estimated Shell Corrections for =1

- - 2, 10 c
B Wgern: SVl P = zLp(0)] Z)p=1
(Ry) (Ry) (Ry) (Ry?) (Ry2)
Element Z (Eq. 42) (Eq. 44) (Eq. 44a) (Eq. 45) (Eq. 46)
Be 4  27.8 66. 7 84. 6 1.85x103 1, 35x103 . 000
Al 13 4,72x102 1,13x103 1,32x103 2,59x105 1. 78x10° . 002
Ar 18 1,01x108 2,42x103 2, 82x103 9, 85x10° 6. 67x10° . 003
Cu 29 3,20x103 7.68x103 8,50x103 6.81x106 4,56x106 . 007
Ag 47 1,01x104 2,42x104 2,63x104 4, 77x107 3.20x107 .014
Pb 82 3.88x10% 9,31x10%4 9.60x10%4 4,52x108 2, 98x108 . 039
U 92 5,20x104 1.25%x105 1.29x105 7.16x108 4, 74x108 . 051

and that good numerical agreement was found between their results and results
obtained by Bichsel using the scaling procedure described in Report No. 2. In
Report No. 7, the shell corrections are regarded as becoming vanishingly small in
the high-energy limit, 8 = 1. As discussed in Report No. 6, it is threfore appro-
priate to use the adjusted mean excitation energy, Iadj' with these shell corrections.

Figure 1. Comparison of shell corrections. The solid
curves are taken from Figure A6 and the dashed curves
were calculated from Equation 16 in Report No. 7 of the
present volume.
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Based on these considerations, then, a final appraisal of the consistency of
numerical shell corrections used in the various reports of this volume can be made
by comparing numerical values obtained from Equation 16 in Report No. 7 with the
curves in Figure A6, This has been done, and the results are shown in Figure 1 for
aluminum, silver, and lead. The solid curves were taken directly from Figure A6
and the dashed lines show the corresponding curves as calculated from the formula
in Report No. 7. For each element the range of x corresponding ton > 0. 13 is
indicated. It is seen that the two sets of curves agree numerically to well within
1 percent of the total stopping power (the amount indicated by the error bars) in
the regions n > 0. 13, except in the case of lead when 7 gets close to the limiting
value 0, 13. There, the discrepancy is of the order of 1 percent where it is largest.
Except perhaps for details of structure of this kind, the various shell-correction
estimations in the reports in this volume should make very little numerical difference
in stopping-power and range calculations.
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5. MULTIPLE-SCATTERING CORRECTIONS FOR
PROTON RANGE MEASUREMENTS!

Martin J. Berger? and Stephen M. Seltzer?

Abstract

Three approximate methods are described that may be used to
calculate differential and integral distributions of projected range,
median ranges, and curves of ionization versus depth (Bragg curves)
for protons traversing thick absorbers. One of the methods is based
on the application of a multiple-scattering detour distribution ob-
tained by Yang; the second method is due to Bichsel and Uehling; and
the third makes use of random sampling. Two types of statistical
fluctuations are taken into account: energy loss straggling in col-
lisions with atomic electrons, and the "wiggliness' of the track
(detours) due to multiple Coulomb scattering by atoms. All three
methods were used to extract the values of the proton c.s.d.a.
range, r, and of the mean excitation energy, Iyq;, of the medium
from Bragg curves in lead and copper measured loy Mather and Segre
and by Zrelov and Stoletov. They give results for r and Iadj that are
in good agreement with each other, but do not account entirely for
shape of the measured Bragg curves.

1. Introduction

The analysis of proton range measurements requires corrections which take
into account energy loss straggling as well as deviations of the proton tracks from a
straight-line path due to multiple Coulomb scattering. These corrections, although
relatively small, are significant if one wants to extract accurate values of the mean
excitation energy of the medium from range measurements.

The purpose of this report is to discuss and compare a few methods of correc-
tion that have been proposed, including those of Mather and Segre (1) and of Bichsel
and Uehling (2), the application of a multiple-scattering detour distribution of Yang (3),
and Monte Carlo calculations of Barkas and von Friesen (4) and of Berger (5). The
theoretical background for the topics treated here is discussed by U. Fano in Appendix
A of this volume under the headings "Energy Straggling' and ""Multiple Scattering
Effects on Penetration. "

Range measurements have been made in a variety of experimental arrangements;
here we shall consider only the schematic, and somewhat oversimplified, situation
sketched in Figure 1. A beam of monoenergetic particles of energy T is incident

ISupported by the National Aeronautics and Space Administration under contract R-80
with the National Bureau of Standards.

2'.IT*Ta.tiorm.l Bureau of Standards, Washington, D. C.
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INCIDENT

PROTON

BEAM DETECTOR

Figure 1. Assumed source-target-detector
configuration for range measurements.

perpendicularly, in the z-direction, on a slab of thickness z. In a "poor geometry"
experiment, the slab is unbounded in the x- and y-directions. In "good geometry" it
is laterally bounded, which reduces the magnitude of the multiple-scattering correc-
tions but complicates their evaluation. A proton detector is placed immediately
behind the slab and is assumed to be characterized by a response R(T, 8) to individual
protons emerging from the exit face of the slab with energy T and obliquity 6.

Let J(z,T,8)sin6d6dT represent the probability that a proton is transmitted
through the slab and emerges through the exit face with an energy between T and T+dT
and with an obliquity between 0 and 8+df. The reading of the detector as a function
of slab thicknegs, to be denoted by Q(z), is given by

TO w/2
Qz) =Q, [y dT [, sin6d6J(z, T, O)R(T, ), (1)

where Qo is a normalization constant which depends on the source strength and, at
sufficiently high energies, also on the possible loss of protons from the beam due to
nuclear interactions. For convenience, it will be assumed that Q(z) is normalized

so that its maximum value is unity, and QO will be omitted from subsequent equations.

We shall have occasion to consider two types of detectors with the following
response functions:

(a) Proton counter (e.g., a Faraday cup) that measures the current of protons
across the exit face of the target slab. The response of such a device is
independent of the proton energy and direction, © so that

R(T,8)=1. (2)

The corresponding detector reading, to be denoted as Qygr(z), is called the
integral distribution of projected range because it is proportional to the
number of protons that penetrate to a depth greater than z.

—
In an actual experimental situation there may be a limitation on the proton energies
and obliquities which the detector will accept; this complication is disregarded in
our schematization.
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(b) Ionization chamber. The response of such an ingtrument is proportional
to the stopping power of the gas in the chamber and to the pathlength in the
chamber which is, in turn, inversely proportional to cos@. 4

Thus,

RIT,0) = - = [j—f-rr)] . (3)

p gas cos@

The corresponding detector reading, to be denoted as QgRr(z), is usually
called a curve of ionization versus depth or Bragg ionization curve.

2. Statement of the Problem

Let us suppose, for a moment, that the protons travel in a straight line within
the target and that their energy loss at each point on their track is equal to the mean
loss corresponding to their instantaneous energy. In this case, the integral distribu-
tion of projected range would be a step function,

{1 ZS<r
Qplz) =
IR 0 z>r , (4)
where
T
0
- dT
r-—j'o ———lg(T) (5)
-pdx

is the mean range in the continuous-slowing-down approximation (the c.s.d.a. range
defined in the preface to this volume). From the location of the step of an experimental
integral range curve one could immediately deduce the c.s.d.a. range and, from the
latter, the mean excitation energy of the medium. Because of energy loss fluctuations
and multiple -scattering detours, some protons will travel farther, others less far,
than the c.s.d.a. range, so that the integral range distribution does not have the
shape of an abrupt step but is rounded off. To extract from an experimental range
distribution the value of the c.s.d.a. range one must therefore establish a parametric
relation of some kind between the shape of QIR(z) and the value of r, taking into ac-
count the proton energy and the characteristics of the medium. 5 For example, one
may calculate, as a function of r, the median projected range, 6 i.e., the target
thickness zj/g such that Qyr(zy/3) = 0.5 (50 percent transmission). Analogous criteria
have been developed relating the c.s.d.a. range to the shape of Bragg ionization
curves, which will be discussed in Section 7.

The evaluation of QIR(z) or QBR(Z) requires the calculation of the transmitted
proton current J(z, T, 8). This is a difficult problem of transport theory which so far

4Again, this is true only for a limited range of exit obliquities.

5It is also possible to relate the shape of QIR(Z) directly to the value of the mean
excitation energy, avoiding the use of the c.s.d.a. range as auxiliary variable.

6'I‘he concept of the median projected range is useful only when the loss of protons
from the beam due to nuclear interactions is insignificant.
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has been solved only in various approximations. An exact solution is difficult to
obtain for several reasons. The problem involves at least three independent variables
(position, direction, energy), none of which can be suppressed; the underlying single-
scattering cross sections have very strong peaks corresponding to the small deflec-
tions or energy losses; one must calculate penetration to very great depths, under
conditions where the use of simplified cross sections or other approximations have
serious consequences.

Approximate solutions can be obtained through the use of results for restricted
problems combined in a suitable manner. The combination can be done either ana-
lytically, or numerically by random sampling. In the analytical approach, energy
loss fluctuations are taken into account indirectly through the use of a probability
distribution for pathlengths which relates the actual pathlength to the c.s.d. a. range.
This distribution is then folded into a conditional probability distribution which de-
scribes multiple -scattering detours (shortening of the projected range) for a particle
with given pathlength. The multiple-scattering detours can be readily calculated only
in the continuous-slowing-down approximation, and the use of the convolution implies
that the small correlation between energy loss (or pathlength) fluctuations and multiple -
scattering detours is not taken into account. '

In the Monte Carlo approach a random-walk model is employed in which each
step of the walk takes into account the effects of many successive single-scattering
events. The transition probabilities for the random walk are derived from the appro-
priate transport-theoretic results (pathlength distribution, multiple deflections). The
grouping of single-scattering events into steps of an artificial random walk is made
necessary by their enormous number, which makes direct analog computation too
expensive. The grouping introduces a certain systematic error which is superimposed
on the statistical error. The Monte Carlo calculation is more laborious and gives
less insight into the problem than analytical approximations, but is capable, with
sufficient effort, of giving more accurate results. Moreover, the Monte Carlo method
is the only one now available which can be used to treat laterally bounded targets for
which the sideways escape of protons is important.

3. Outline of Analytical Approximation Scheme

We may assume as known, and shall describe below in more detail, the following
probability distributions:?

G(s)ds = probability that a proton with initial energy T will have traveled
a pathlength between s and s+ds when it has been slowed down to
a stop. G{s) is determined by energy-loss fluctuations.

F(z;s)dz = conditional probability that a proton with initial energy T, and
pathlength 8 will come to rest at a depth between z and z+dz.
F(z;s) is determined by detours resulting from multiple Coulomb
scattering. In principle, the detours depend on the detailed his-
tory of the proton. In practice, one is limited to computing them
in the continuous-slowing-down approximation.

7Theae distributions pertain to protons slowing down in an unbounded homogeneous

medium. The multiple-scattering angular deflections are usually small enough so
that one can disregard the probability that the proton direction will be completely
revergsed. Therefore, one need not distinguish between a slab of finite thickness
and an unbounded medium.
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The convolution of these two distributions yields the probability
H(z)dz = I:G(S)F(Z;B)dsdz (6)

that a proton with initial energy TO will come to rest at a depth between z and z+dz.
The integral distribution of projected range is then given by

Qg(z) = [ H(z')dz" . (7

This equation states that the proton current through the exit face of a slab of thickness
z is proportional to the fraction of the protons which, in an unbounded medium, would
have come to a stop at depths z’ >z. This relation holds only if the protons move in
the direction of increasing z along their entire track, never suffering a reversal of
direction.

The Bragg ionization curve can similarly be expressed as
Qpg(z) = [, Hz )1R* (', 2)dz" . (8)
For a proton that eventually comes to a stop at a depth z’ >z, we do not know the
energy and direction that it had when crossing the exit plane at z. As will be shown
below, it is possible to make an estimate of these quantities adequate for the analysis

of Bragg ioniz‘?.tion curves. We shall denote the response function based on such an
estimate as R (z’, z).

4, Pathlength Distribution

The pathlength distribution is approximately Gaussian,

A -1)2
G(e) = =t e(8-D)?/20° (9)
Jem o
with a mean r equal to the c.s.d. a. range defined by Equation 5 and a variance
o2 =0.1570 2 [10 1-1126" 1ot (T)]‘3 KdT (10)
: A “pdx

(1-82) (1+2p01 -g2)-1/2]

Z, A and p are the atomic number, atomic weight, and density of the medium, fBc is
the proton velocity, and m/M the ratio of the electron mass to the proton mass; r and
o are in units of g cm™~2, - L 4% (1) in Mev/g cm™2 (see also p. 42 of Appendix A of

this volume). K is a correction factor taking into account the binding of the atomic
electrons and is important only at low energies. The most comprehensive evaluation
of 0 has been made by Sternheimer (6), who tabulated the so-called percentage range
straggling

p=1002 (11)
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for beryllium, carbon, aluminum, copper, lead, and air (assuming mean excitation
energies8 Iadj = 64, 78, 166, 371, 1071, and 94 ev, respectively) at energies between

2 and 105 Mev. At constant energy, p is almost independent of Z, showing only a very

small increase from beryllium to lead, and can be considered a function of loglag;
only. Table 1 gives p-values taken directly from Sternheimer for beryllium and

TABLE 1

Percentage Range-straggling Parameter p for Protons
(according to Sternheimer)

T Be C Al Cu Sn Pb
Iadj = Iag5 = Iagj = Iagj = Iagj lagj =
(Mev) 64ev 78ev 163ev 3l4ev 516ev 826ev
1000 0.879 0.886 0.921 0.956 0.988 1.025
800 0.897 0.904 0.943 0.980 1.015 1.055
600 0.924 0.932 0.974 1.016 1.055 1.099
500 0.942 0.952 0.996 1.039 1.080 1.129
400 0.966 0.976 1.023 1.071 1.116 1.187
350 0.980 0.991 1.040 1.089 1.136 1.190
300 0.997 1.009 1.060 1.111 1.161 1.218
250 1.017 1.029 1.084 1.139 1.191 1.251
200 1.041 1.054 1.112 1.172 1.229 1.293
160 1.065 1.078 1.140 1.205 1.267 1.334
140 1.078 1.093 1.157 1.225 1.288 1.358
120 1.094 1.109 1.178 1.250 1.316 1.388
100 1.112 1.128 1.201 1.278 1.347 1.420
80 1.135 1.152 1.231 1.315 1.389 1.4863
70 1.149 1.1686 1.249 1.338 1.415 1.492
60 1.165 1.183 1.271 1.364 1.445 1.527
50 1.183 1.203 1.297 1.397 1.483 1.570
40 1.206 1.230 1.330 1.437 1.531 1.623
30 1.238 1.263 1.377 1.493 1.592 1.689
25 1.259 1.285 1.408 1.529 1.630 1.728
20 1.286 1.315 1.450 1.575 1.6877 1.774
15 1.322 1.357 1.507 1.634 1.731 1.819
10 1.382 1.424 1.597 1.717 1.815 1.923
8 1.419 1.466 1.649 1.751 1.845 1.977
6 1.469 1.526 1.720 1.842 1.949 2.087

! 1.550 1.631 1.814 1.984 2.123 2.257

2 1.704 1.867 1.968 2.219 2.436 2.602

811'1 accordance with the definition adopted by the Subcommittee (see preface and

Paper No. 6 of this volume), we shall use the symbol I,4; in place of the customary

I to indicate the mean excitation energy derived from experimental data on the as-
sumption that shell corrections vanish in the high-energy limit.
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aluminum, and p-values for copper, tin, and lead, adjusted to 314, 516 and 826 ev,
respectively, by interpolation with respect to logladj. Table 2 gives selected values
of the correction factor K used by Sternheimer.

TABLE 2

Binding-effect Correction Factor K in Formula for g2
(according to Sternheimer)

T Be Al Pb
(Mev)

1 1.37

2 1.24 1.33

5 1.12 137 1.31

10 1.07 1.19 1.22

50 1.02 1.08 1.19
100 1.04 1.16
200 1.11

A more accurate pathlength distribution derived by Lewis (7) is expressed as
the product of a Gaussian times a correction factor L (%}. The latter is evaluated

as an Edgeworth series consisting of Hermite polynomials Hn(B—;-I—') accompanied by

coefficients which depend on the cumulants (certain combination of moments) of the
pathlength distribution. The Lewis distribution is no longer symmetric; the most
probable value of the pathlength is longer than the mean value. Lewis also found that
the mean pathlength is slightly shorter than the c.s.d.a. range. The range, the dif-
ference being negligibly small for protons, however; for example, it amounts to only
0. 02 percent for 340-Mev protons in lead.

The distribution of pathlengths which protons travel as their energy falls from
Tg to T¢ # 0 may also be of interest. In the Gaussian approximation, one must use a

mean value r{Tg, Tg) = r{T)-r{T) and a variance 0%(Tg, Tg) = 0%(T()-0%(T¢). The

cumulants which enter into the Lewis correction factor can similarly be obtained by
taking the difference of the cumulants evaluated for energies T and Ty.

Table 3 shows L (?) for lead, T = 340 Mev and various final energies Tg
between 339 Mev and 1 Mev. It can be seen that only for very small (T-Tg)-differ-

ences is there a significant departure from a Gaussian distribution. Table 4 shows
; 8 (%) for Tp = 340 Mev and Ty = 339 Mev, as function of the atomic number of

the medium.

91t would have been desirable to recompute p, using a more recent stopping-power
table (Paper No. 7 of this volume). Because of the deadline for this publication,
we were unable to do this and to adjust the remaining calculations in this paper
accordingly.
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TABLE 3

Lewis Correction Factor L(%E) for Pathlength Distribution in Lead,

as Function of the Final Energy Ty, for an Initial Energy T = 340 Mev

s-r Tt (Mev)

o 339 338 336 332 324 308 276 1
-1.0 0.75 0.83 0. 88 0.91 0.93 0.95 0.97 0.98
-0.8 0.76 0.83 0.88 0.91 0.94 0.95 0.97 0.98
-0.6 0.78 0.84 0. 89 0.92 0.94 0.96 0.97 0.98
-0.4 0.80 0.86 0.91 0.94 0.96 0.97 0.98 0.99
-0.2 0.84 0.90 0.94 0.96 0.97 0.98 0.99 0.99

0.0 0.89 0.95 0.97 0.99 0.99 1.00 1.00 1.00

0.2 0.98 1.01 1.02 1.02 1.02 1.01 1.01 1.01

0.4 1.10 1.09 1.07 1.05 1.04 1.03 1.02 1.01

0.6 1.25 1.1 1.12 1.08 1.06 1.04 1.03 1.02

0.8 1.40 1425 1.16 1.10 1.07 1.05 1.03 1.02

1.0 1.52 1.31 1.19 1.13 1.08 1.06 1.04 1.02

TABLE 4
Lewis Correction Factor L(§é£) for Pathlength Distribution for
Different Media. Tg = 340 Mev, Ty = 339 Mev
C Al Cu Ag Pb
8-r Iadj = Iadj = Iadj = Iagj = Iadj =
o 78. dev 163ev 3l4ev 487ev 826ev

-1.0 0.59 0. 64 0.68 0.71 0.75

-0.8 0.62 0.66 0.70 0.73 0.76

-0.6 0.66 0.70 0.73 0.75 0.178

-0.4 0.7 0.74 0.76 0.78 0. 80

-0.2 0.77 0.79 0.81 0.82 0.84

0.0 0.86 0.87 0.88 0.89 0.89
0.2 0.99 0.99 0.99 0.98 0.98
0.4 1.19 1.16 1.14 1.12 1.10
0.6 1.42 1.37 1.32 1.29 1.25
0.8 1.67 1.58 1.51 1.46 1.40
1.0 1.85 1.75 1.66 1. 60 1.52

5. Multiple Scattering Detours

Theory of Yang

Yang (3) has given a prescription for calculating the joint distribution of the
depth of penetration z and of the multiple -scattering deflection @ for a charged
particle that has traveled a pathlength s. He explicitly evaluated the distribution of
z for two cases: integrating over all possible values of 8, and for 8 = 0°. The first
of these distributions will be used here.
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Yang's derivation is based on an approximate form of the transport equation
which makes use of the small-angle approximation and leads to a Gaussian distribution
of multiple-scattering deflections instead of the more exact Moliére distribution when
all other variables are integrated out. The energy loss of the particle along its track
is disregarded. At first sight, these restrictive assumptions would seem to preclude
the use of Yang's distribution in the present problem. However, Monte Carlo calcu-
lations for protons, which will be described below, indicate that the applicability of
the Yang distribution can be greatly extended, at least approximately, by the following
adjustment: the one parameter that occurs in the distribution (the average difference
(s-z) between pathlength and depth of penetration) is to be calculated with the use of
rigorous transport theory, without resort to the small-angle approximation, and with
inclusion of energy loss according to the continuous-slowing-down approximation.

The Yang distribution is expressed in terms of the scaled variable

8-2

v=2 — (12)
and has the form
F(z;s8)dz = Y(v)dv
2m-1/2y-3/2 [exp(-1/v)-3 exp(-9/v)] , v<2
Y(v) = (13)
{.exp(-ﬂzv/m) , v>2 .,
The percentage detour factor

is shown in Figure 2 for beryllium, aluminum, copper, and lead as function of the
initial proton energy T;. These results are obtained by the transport calculation
outlined in Section 8, which uses as input the Rutherford single-scattering cross

1
] 100 1000
T, Mev

Figure 2. Ratio of percentage detour parameter, D, to the atomic
number of the medium.
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section modified for screening according to the prescription of Moliére. The calcula-
tion is expected to be quite accurate at high energies, but there is some doubt whether
the screening corrections are adequate for protons with energies as low as a few Mev.

Barkas (Paper No. 7 of this volume) has measured percentage detour factors
in photographic emulsion and has then derived corresponding factors for other mate-
rials, assuming that the quantity (1-n)(X,/s)D is independent of the material (Xj =
radiation length, n a parameter that is close to 0. 683 for all substances except those
of lowest atomic number). Table 5 shows that Barkas' scaling procedure yields
values of D, at energies between 1 and 8 Mev, which are somewhat lower than the
calculated values, the discrepancies being greatest for low-Z materials.

TABLE 5

Comparison of Percentage Detour Factors D Obtained by Calculation
and by the Scaling of Experimental Emulsion Data

T Pb Sn Cu Al
(Mev) Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal.
1 7.2 7.6 3.9 4.6 2.0 2.5 0.7 0.9
2 5.9 6.2 3.1 3.6 1.6 1.9 0.6 0.7
3 5.2 5.4 2.7 3.1 1.4 1.6 0.5 0.6
4 4.7 5.0 2.5 2.8 1.3 1.5 0.5 0.6
5 4.4 4.6 2.3 2.6 1.2 1.4 0.4 0.5
6 4.2 4.4 2.2 2.5 p 5% | 1.3 0.4 0.5
7 4.0 4.2 2.1 2.3 1.0 1.2 0.4 0.5
8 3.8 4.0 2.0 2.3 1.0 1.2 0.4 0.5

Theory of Bichsel and Uehling

Bichsel and Uehling (2) based their considerations on the use of the angular
multiple-scattering distributions of Moliére (8),

fp(6, B)8de=6d6 {2exp(-62) + f(1)/B + 2)/B2 + ...} , (15)

where

8= 6/x./B

and where © is the deflection angle. 10 Bilchsel and Uehling start by assuming
"smoothed-out" trajectories, along which the scaled Moliére scattering angle 6 is
constant. The difference between pathlength and depth of penetration, in the small-
angle approximation, is then expressed as

sz = § [50%s’ =5 [§0°xc? Bds (16)

10rhe functions £(1) and £(2) have been tabulated by Moliére (8), Bethe (9), and

Scott (10). The prescription of Moliére for evaluating X o and B, with energy loss
accounted for in the continuous-slowing-down approximation, is summarized in
Section 8.


http://www.nap.edu/catalog.php?record_id=20066

79

For a smoothed-out trajectory, s-z is then proportional to 92, the proportionality
constant being

ABU‘!’IOSXCZBdB" (17)

With this assumption, the distribution of s-z can be immediately derived from the
Moliére distribution, and is found to be

F{z;s)dz = -ﬂ fM(/-;: B) (18)
4/‘2-’_

withv=2 g-z
KBU

Bichsel and Uehling attempted to account for the difference between actual
proton paths and smoothed-out paths by a "'wiggliness correction' based on the use
of results in the paper of Yang. They estimate that s-z should, on the average, be
increased by an additional amount 135 ABU due to the wiggliness of the track. They
then suggest that when folding the distribution F into the pathlength distribution G,
this correction can be taken into account by using an F as calculated for a smoothed-
out path but changing the mean of G from r to r - 125. ABU and its variance from

02 to o2 + (-12-5 ABI.'T) . This procedure is expected to be reasonably accurate because

the required percentage change in mean and variance is usually rather small. Bichsel
(private communication) suggested that even when the distribution F is of interest
rather than its convolution with G, the same procedure can still be followed, the fold-
ing in this case being done with a Gaussian with mean r - 1-2-5 ABU and variance

2
(ﬁ ABU)z . The peak of the distribution then occurs no longer at z = 8 but, more
correctly, at a value of z slightly smaller than 8 (see Fig. 5).

Monte Carlo Detour Calculations

Barkas and von Friesen (4) made range measurements on 750-Mev protons,
using a thin target rod with a 1" x 1" cross section in order to minimize the required
multiple-scattering corrections, and carried out parallel Monte Carlo calculations.
The protons were assumed to be incident along the axis of the rod. The entire track-
length was divided into 102 intervals of gradually decreasing size, and the angular
and lateral multiple -scattering deflections in each successive interval were sampled
from a bivariate Gaussian distribution (Ref. 11). In this manner, tracks were followed
until the proton escaped from the rod. The following information was extracted from
the sampled tracks: (a) the escape of protons through the lateral surfaces of the rod,
as a function of the depth of penetration; (b) the detour distribution for protons that
passed through the entire length of the rod and emerged with an obliquity 6<45° with
respect to the rod axis.

Berger (5) calculated detour distributions for 338.5-Mev protons in lead and
copper targets assumed laterally unbounded. The proton track-length (assumed equal
to the c.s.d. a. range) was divided into 30 intervals, and the multiple-scattering de-
flection in each interval was sampled from the Moliére distribution. The displace-
ment in the z-direction in a section of path of length As is given by &z = u, A ¢ +
uyAn + uzA(, where u is the direction of motion at the beginning of the section, and

where A¢, Ay, and A{ are the displacements expressed in a Cartesian coordinate
system whose [-axis coincides with u. In Berger's calculation, since u, and uy are
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usually much smaller than u,, the lateral multiple-scattering deflections were dis-
regarded (A£ = An = 0) and Al was calculated in three different approximations. In

Model 1 the ratio ﬁ was set equal to unity, in Model 2 equal to (1-cosw)/2, and in

Model 3 equal to l—gosw. Models 1 and 3 would seem to bracket the correct value,
and Model 2 may come closest to representing the actual situation. The model error
could be reduced by a subdivision of the proton track into more intervals or by an ap-
plication of the Yang detour distribution within each interval. The effect of disregard-
ing the lateral multiple-scattering deflections, A{ and An, should be examined more
carefully.

ComEarisons

In Figure 3, detour distributions for 338.5-Mev protons in lead and copper are
shown as determined (a) with the use of the Yang distribution and the percentage
detour factor D, and (b) by the Monte Carlo method. Both calculations pertain to

0.7 | [ I T I 1 |

06 — =

05— =

04— / Pb-338.5 Mev -

O'I_j

100 L2
Figure 3(a). Lead (Iadj = 826 ev)
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Figure 3(b). Copper (Iadj = 314 ev)

Figure 3(a) and (b). Detour distribution for protons slowed down from 338.5 Mev to
2 Mev. Solid curve obtained with the Yang distribution and the detour parameter
D. Histograms are based on 5000 Monte Carlo histories (Models 1, 2, and 3 as
indicated; arrowheads indicate statistical error).

protons slowed down to an energy of 2 Mev in a slab that is laterally unbounded. The
agreement between the two methods is fairly good. However, the Monte Carlo dis-
tribution has a higher peak, corresponding to small detours, and a lower tail. The
origin of this discrepancy is not entirely clear to us. The application of the Yang
distribution, derived originally in a one-velocity, small-angle, diffusion-type approxi-
mation, is obviously an oversimplification in the present instance. Not only is there
a drastic energy change from 338.5 to 2 Mev, but the associated angular multiple -
scattering deflections, as shown in Figure 4, are not very small. Also, the Monte
Carlo results, based on 5000 histories, are subject to considerable statistical fluctua-
tions, particularly in the tail of the distributions corresponding to large detours.
However, neither statistical errors nor systematic errors due to the uncertainty as

to the Monte Carlo model that should be used seem to us large enough to account for
the discrepancy with respect to the Yang distribution.

Figure 5 compares the Yang detour distribution for 338. 5-Mev proton in lead
with the corresponding result of the theory of Bichsel and Uehling. There is fairly
good agreement provided the "wiggliness correction" is applied to the distribution
for smoothed-out tracks.
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Figure 4. Angular distribution of protons slowed down from
338.5 Mev to 2 Mev in lead or copper, based on 5000
Monte Carlo histories. @ is the obliquity with respect to
the initial direction of motion.
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Figure 5. Comparison of the Yang and Bichsel-Uehling detour distributions for pro-
tons slowed down in lead from 338.5 to 2 Mev. The dotted curve is the Bichsel-
Uehling result without the "wiggliness correction. "

Figure 6 shows the Monte Carlo results of Barkas and von Friesen for 750-Mev
protons in lead and copper rods. For comparison, corresponding detour distributions
for laterally unbounded targets are also shown (based on the Yang distribution). The
ratio of the areas under the distributions for good and poor geometry represents the
loas of protons through side-walls of the rod.

From the available evidence, we would conclude that the various calculational
techniques provide reasonable approximations for the detour distribution. In Sec-
tion 7 it will further be shown that the degree of approximation is adequate for the
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Figure 6(b). Copper

Figure 6. Detour distributions for 750-Mev protons. The histograms represent the
Monte Carlo results of Barkas and von Friesen for an absorber rod witha 1" x1"
cross section. The curves were calculated according to Yang for a laterally
unbounded absorber: (A) with a detour factor corresponding to the approximation
of Barkas and von Friesen, and (B) with a detour factor according to the prescrip-
tion in Section 8 (Egs. 40-44).
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determination of mean excitation energies from range measurements. If exact
detour distributions are considered to be of interest by themselves, further work is
required. 11

6. Differential and lntegral Range Distributions

In this section it will be convenient to use instead of z the scaled variable
gu BT (19)
and the corresponding distribution of projected range,
h(x)dx = H(z)dz . (20)

By folding the pathlength distribution (Eq. 9) into the Yang detour distribution (Eq. 13),
one finds that

1 @
hy(x) = J-?'_"-IO exp [—(-Yét— + x)sz] Y(v)dv (21)
with
¢=48-2) _D (22)
o P

The distribution hy,(x) thus depends only on a single parameter t, which expresses
the relative importance of multiple-scattering detours and pathlength straggling. In
first approximation, t is proportional to the atomic number Z of the medium. In
Figure 7, the ratio t/Z is plotted versus energy for beryllium, aluminum, copper,
and lead.

hY(x) =‘{r_§ Ioz exp [—(-‘; +x)212] v 32 [exp(-1/v) - 3exp(-9/v)] dv

_ b2-4ac

+$e z [1-&(7'?;)] (23)

where:

a= tziﬂ
b= (t% +tx + 12/8)/4
¢=(t+x)2/2 + n2/8
® (u) = ‘75’- J};‘ e’yzdy (error integral)

The integral distribution of projected range,

Q) (0 = [“hy (x')ax’ , (24)

115 manuscript by L. V. Spencer (private communication) lays out the general
framework for an accurate analytical calculation. See earlier work by Spencer
and Coyne (12).
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Figure 7. Ratio of characteristic parameter, t, of projected range
distribution to the atomic number of medium.

has been obtained through numerical integration and is presented in Table 6 for a
set of t-values sufficient to describe protons with energies between 1 and 1000 Mev
in all substances.

In some experiments, the median projected range is measured; i.e., the
target thickness z; /2 such that 50 percent of the incident protons are transmitted.

Let X1 /2 be the corresponding scaled median thickness. Then

212 =T O X5 , (25)
and
1""21’2= A xl,z .
100 2= p ( T) (26)

Thus, the percent deviation of the median range from the c.s.d.a. range is equal to
the percentage detour factor D multiplied by an additional correction factor (— xuz).
T

Values of xy/9 and(xlﬂ) as functions of t are given in Table 7.
t

The use of the Bichsel-Uehling detour distribution results in a differential
range distribution

hgy(x) =Q1?j;exp [(-"it—«» x)zl2] fm(/g!- B) dv , (27)

with f,. given by Equation 15. In this case there are two parameters which charac-
terize the distribution: the variable B of the Moliére theory, and the ratio

t=$ : (28)
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TABLE 6

Integral Distribution of Projected Range, QIR(x)

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
6.0 1.0000 1.0000 .9983 .9872 .9620 .9255 . 8825
5.0 1.0000 . 9999 .9943 .9708 .9295 . 8780 . 8227
4.0 1.0000 . 9987 .9804 .9335 . 8694 . 8003 . 7326
3.0 .9987 .9873 . 9341 . 8498 . 7593 . 6743 . 5984
2.5 . 9938 . 9654 . 8826 . 7773 . 8761 .5872 .5112
2.0 .9773 . 9167 . 7995 . 6773 .5714 . 4839 . 4121
1.5 . 9332 . 8254 .6789 . 5504 . 4489 . 3697 . 3075
1.0 . 8413 . 6842 .5264 . 4071 . 3202 . 2560 .2074
0.5 . 6915 . 5060 . 3627 . 2672 . 2025 .1569 .1238
0.0 . 5000 . 3245 . 2165 .1520 .1109 . 0833 . 0639
0.5 . 3085 .1762 .1097 .0734 . 0516 .0376 . 0281
1.0 .1587 .0795 . 0463 . 0296 . 0201 .0142 .0103
1.5 . 0668 . 0294 .0161 . 0098 . 0064 . 0044 .0031
2.0 . 0228 . 0088 . 0045 . 0027 .0017 . 0011 . 0008
2.5 . 0062 . 0021 . 0010 . 0006 . 0004 . 0002 . 0002
3.0 .0014 . 0004 . 0002 . 0001 . 0001 . 0000 . 0000
TABLE 7

Scaled Median Range x; /5 and Correction Factor (xllz)for
t
Computing Percentage Deviation of Median from c.s.d.a. Range

t X1 /2 xlmft
0.0 0.0 -1.0
0.1 -0.09988 -0.9988
0.15 -0.1495 -0.9965
0.2 -0.1987 -0.9936
0.3 -0.2959 -0.9862
0.4 -0. 3910 -0.9774
0.5 -0.4839 -0.9677
0.6 -0.5747 -0.9578
0.8 -0. 7504 -0.9380
1.0 -0.9194 -0.9194
1.2 -1.083 -0.9025
1.5 -1.321 -0. 8803
2.0 -1.702 -0. 8511
2.5 -2.074 -0. 8295
3.0 -2.440 -0.8135
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(If the "wiggliness correction" is applied, ¢ must be replaced by [ o2 +(1—25- ABujz]lm ).
The integral range distribution obtained from Equation 27 by numerical integration
has been tabulated (Ref. 2) for B=10and £=1/t=0.0, 0.69, 1.20, 2.0, and 4.0.
The percentage deviation of the median projected range from the c.s.d.a. range has
been presented by Bichsel (13) for gold, silver, nickel, and aluminum in the form of
graphs covering energies between 1 and 1000 Mev.

7. Analysis of Bragg Ionization Curves

We now turn to the evaluation of the Bragg ionization curve,

Qpr(z) = [, _ h(x')R* (x',x)dx’, (29)
T

obtained with an ionization chamber. As pointed out in Section 1, the value of Q is
proportional to a constant factor which represents the fraction of the protons that
have not been scattered out of the beam by large angular deflections due to nuclear
interactions. This reduction factor need not be known for the determination of the
c.s.d.a. range or mean excitation energy. It is sufficient to know the shape of the
Bragg curve; that is, the relative variations of @, near the end of the range. The
evaluation of Equation 29 requires a choice of a differential range distribution and
an estimate of the detector response.

Procedure of Mather and Segré

The procedure adopted by Mather and Segre in the analysis of their data was
particularly simple and turng out to be quite adequate for the determination of the
mean excitation energy. Only in regard to predicting the shape of the Bragg curve
is it inferior to the other more elaborate procedures discussed below. Mather and
Segré assumed, in effect, that the detour distribution is given as a delta function,

F(z;s) = 6 (z-8+ Ay ) . (30)

where AMS is the shortening of the projected range compared to the pathlength due
to multiple-scattering detours. For AMS they derived the simple appmximati0n12

Apyg =T 'E'tizﬁ)- (Z = atomic number) . (31)

The corresponding differential range distribution is

2
hygs (%) =7;—1r e~(x+1t)%/2 (32)

witht = AMSIU'

Mather and Segré further assumed that the response of their argon-filled
ionization chamber could be represented with sufficient accuracy by

12This result is somewhat smaller than the detour predicted by Equations 40-44 of

Section 8. Concerning the nature of the Mather-Segré approximation, see also
page 47 of Appendix A of this volume.
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R*(z',z) = const - (z'-2)"0-46 , (33)

The resulting Bragg curve, normalized to unit peak height, is shown in Table 8.

TABLE 8

Bragg Ionization Curve Computed According
to the Prescription of Mather and Segre

z-(r-Ams) QR
[
-4.0 0.552
-3.5 0.592
-3.0 0.647
-2.5 0. 1721
-2.0 0.817
-1.5 0.923
-1.0 0.995
-0.5 0.970
0.0 0.819
0.5 0.578
1.0 0.333
1.5 0.155
2.0 0.057
2.5 0.017
3.0 0.004

Estimate of the Detector Response

When evaluating Equation 29 with the use of the differential range distributions
hy(x) and h gy(x), we have made a c::ude estimate of R* (z’, z), corresponding
essentially to that of Mather and Segre, as well as a more elaborate estimate, ac-
cording to the following procedure:

Crude Estimate:

a. Assume that the residual c.s.d.a. range of the proton, upon leaving

the target, is equal to r, = z'-z.

b. Determine the corresponding proton energy T( rz) by interpolation in
a range-energy table.

c. Determine - % g%— (T) in argon by interpolation in a stopping-power
table.

d. Let R¥(z',z)= - %%(T) .

More Elaborate Estimate:

1. Carry out steps, a, b, and c as in the crude estimate.
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2. Estimate the proton direction at the time of emergence from the
target, using a mean obliquity cosine (r:.oselT(J - T ) calculated
according to Equations 40-44 of Section 8.

3. Make an improved estimate of the residual range, r, = (z'-2)/{cos8).

4. With this improved value of r,, repeat steps 1 and 2 and obtain
-1dE
new values of T, {cos@) and s (T).

5. Make an improved response estimate R*(z’,z) = - 1dE (T)/{cos@) .
If the change in R* is sufficiently small (less than, psa§, 0.5 per-
cent), the calculation is finished; if it is not, iterate the procedure
until convergence is achieved.

The difference between Bragg curves calculated with the crude estimate and with the

more elaborate estimate of the detector response serves to indicate the error inherent
in such estimates.

Monte Carlo Calculation of Bragg Ionization Curves

A very simple elaboration is needed of the procedures indicated in Section 5
(under "Monte Carlo Detour Calculations'). Instead of pre-selecting for each proton
track a set of pathlength intervals, one divides the energy history of the proton into
intervals and samples the pathlength in each interval. Once this is done, the re-
mainder of the calculation of trajectories proceeds as in the calculation of path
detours. There i8 no difficulty in estimating the detector response because the
energy and direction of the proton are known at all times.

In a calculation of this type by Berger (5), the energy region between 338.5 and
2 Mev was divided into 30 intervals of gradually decreasing size, and the pathlength
in each interval was sampled from a Gaussian distribution with mean r{T’) - r(T"')
and variance o{T’) - o{T'’), T’ and T’ being the energies at the beginning and the
end of the interval. This was an approximation. However, the departure of the
actual distribution from a Gaussian, as predicted by the Lewis theory, amounts only
to a few percent (see, e.g., Table 3). Moreover, the Bragg curve needs to be
evaluated only for large z, so that the cumulative pathlength of the protons is long
enough for the Gaussian approximation to be very close.

Determination of the Ra.nge and Mean Excitation Ener&

The required analysis is as follows:
1. a. Assume a value for the mean excitation energy, say lgdj'

b. Determine the corresponding values of the c.s.d.a. range and
pathlength straggling parameters, rg and 0.

c. Evaluate the parameter t with the use of the chosen multiple -
scattering theory.

d. Compute the theoretical Bragg curve QBR(z), either analytically
or by a Monte Carlo calculation, and normalize it so that its
peak value is unity.
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4

e. Find the ordinate P of the theoretical curve corresponding to
a depth equal to the assumed c.s.d.a. range r.

2. a. Normalize the experimental Bragg curve so that its peak value
is unity.

b. Determine the depth on the experimental curve for which the
ordinate has the value P. This depth is an estimate of the
experimental c.s.d.a. range r.

c. With the use of a range-energy table, determine the corre-
sponding experimental value of the mean excitation energy, Ia.dj‘

3. In principle, it i8 necessary to repeat the entire procedure with a
new theoretical Bragg curve corresponding to I,4:. However, the
value of P is very insensitive to the value of the rgxean excitation
energy, so that with any reasonably close initial value Igdj no new
calculation is required.

The analysis according to Mather and Segré is simpler, requiring only the
determination (from the normalized experimental Bragg curve) of the absorber thick-
ness at which the ordinate has fallen to a value to 82 percent of the peak value. As
can be seen from Table 8, this thickness provides an estimate of the experimental
c.8.d.a. range minus the projected range shortening, r - Apq-

Table 9 compares values of the mean excitation energy derived by various
methods!3 from ionization curves in lead and copper measured by Mather and Segré
(1)14 and by Zrelov and Stoletov (14). The following points emerge: (1) There ap-
pears to be no significant difference between the Iadj-values derived by the different
methods. The differences in I 4: from one run of an experiment to another are
greater than those due to the use of different methods of analysis. (2) The values of
Iaq;i for lead in Table 9 are systematically lower than those deduced by the experi-
menters in their original publications. This is due to the use of a new range-energy
table based on improved estimates of shell corrections (Report No. 7 of this volume).

Shape of the Bragg Ionization Curve near the End of the Range

Mather and Segreé pointed out that their experimental Bragg curves agreed with
the curves predicted by their simple analysis only in the region beyond the peak but
not in the region preceding it (see Fig. 9a). They thought that nuclear interactions
were the most likely cause for this discrepancy. Later Bichsel (15) examined this
question and pointed out that on the basis of his multiple-scattering corrections, and
assuming plausible values for the relevant parameters, he could account very well
for the shape of the Mather-Segré curve for 340-Mev protons in lead without having
to invoke the effect of nuclear interactions. We have once more looked at this ques-
tion and have reached the conclusion that there are aspects to it which are not fully
explained.

13The values in Table 9 were obtained with "elaborate" estimates of the detector re-
sponse. However, the use of "crude' estimates would have changed the ladj-valuea
by at most one or two units in the third significant figure.

14W’e are indebted to Dr. R. Mather for placing at our disposal detailed experimental

data not given explicitly in his paper.
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TABLE 9

C.s.d.a. Ranges and Corresponding Mean Excitation Energies Obtained
by the Methods Indicated in Section 7 (p. 88). The Experimental Value
of r is that Absorber Thickness to the Right of the Maximum at which the
Normalized Bragg Curve has Fallen to a Value P. Values of Iadj in
Parentheses are Those Deduced by the Experimenters in their Original
Publications with the Use of Older Range-energy Tables

r I..4:
ad
Source of data Method of analysis P (glcmzl (ev
Mather and Segre:
Pb - 338.5 Mev Yang 0. 320 123.12 756
Bichsel-Uehling 0.385 122. 85 747
Monte Carlo #1 0. 320 123.12 756
Monte Carlo #2 0.290 123.25 760
Monte Carlo #3 0.252 123.42 766
Mather and Segre 0.82 122.76 744(793)
Pb - 339. 7 Mev Yang 0. 320 124.61 782
Mather and Segre 0.82 124. 37 774(829)
Cu - 337.9 Mev Yang 0.543 92.05 314
Mather and Segreé 0.82 91.84 309(312)
Cu - 338.5 Mev Yang 0.543 92. 04 308
Monte Carlo #1 0.535 92.03 308
Monte Carlo #2 0.517 92.07 308
Monte Carlo #3 0.497 92.11 309
Mather and Segre 0.82 91.177 302(304)
Cu - 339.7 Mev Yang 0.543 92.98 317
Mather and Segreé 0. 82 92. 69 310(313)
Zrelov and Stoletov:
Cu - 658 Mev Yang 0.551 258. 54 317
Monte Carlo #1 0.558 258. 49 317
Monte Carlo #2 0.530 258. 70 319
Monte Carlo #3 0.512 258.83 320
Mather and Segré 0.82 257.6 309(305)

To begin with, we compare (in Figs. 8a-8c), the Bragg curves resulting from
use of the Yang distribution, the Bichsel-Uehling theory, and Monte Carlo calculations
(based on Iz4i = 826 ev for lead and 314 ev for copper). At 338.5 Mev and 658.0 Mev
for copper, tilere is good agreement. At 338.5 Mev in lead, there are noticeable
differences; in particular, the Monte Carlo results in the region preceding the peak
are somewhat lower than the other two curves.

In making comparisons with experiment in regard to curve shape, we have
from the start eliminated possible discrepancies due to a different value of the
c.s.d.a. range. For each method, we recalculated the theoretical curves with
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Figure 8. Theoretical Bragg ionization curves near the end of the proton
range, derived with the use of the Yang distribution (Y), from the
Bichsel-Uehling theory (B-U), and by the Monte Carlo method (MC).
(a) 338.5-Mev protons in lead (Ia.dj= 826 ev): solid curve, Y; dotted
curve, B-U; points, MC (Model 2)." (b) 338.5-Mev protons in copper

(Iadj =314 ev): solid curve, Y; points, MC (Model 2).
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Figure 8. Theoretical Bragg ionization curves near the end
of the proton range, derived with the use of the Yang
distribution (Y), from the Bichsel-Uehling theory (B-U),
and by the Monte Carlo method (MC). (c) 658-Mev
protons in copper uadj = 314 ev): solid curve, Y;
points, MC (Model 2).

exactly those values of r and I,4; which had been obtained from the analysis of the
experimental data described in élection 7 (under "Determination of the Range and
Mean Excitation Energy'") and summarized in Table 9. The subsequent comparison
(Fig. 9a) with the lead data of Mather and Segré indicates that there is good agree-
ment with the Yang and Bichsel-Uehling curves everywhere, and that to the left of
the peak the Monte Carlo curve still lies a little below the experimental curve. For
copper (Figs. 9b and 9c), the situation is worse. All three theoretical predictions,
to the left of the peak, are below the Mather-Segreé points at 338.5 Mev and the
Zrelov-Stoletov points at 658 Mev, for which the discrepancies are much greater.

There are at least two ways of accounting for the discrepancies between the
predicted and observed curve shapes:

(1) By subtracting the calculated from the experimental Bragg curves, one
obtains residual curves that have themselves the shape of términal
sections of Bragg curves for protons with energies lower than the nominal
source energy. This suggests the possibility that the incident proton
beam in the Mather-Segré and Zrelov-Stoletov experiments may have
had a more complicated structure than expected. Some plausibility is
given to this suggestion by the finding of Barkas and von Friesen that the
nominal 750-Mev proton beam in their experiment contained an admixture
of protons with a 10-percent lower mean range.

(2) The second possible explanation is the shortening of the projected range
by nuclear interactions involving small deflections and energy losses.
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Figure 9. .Comparison of theoretical and experimental Bragg ionization
curves near the end of the proton range. (a) Comparison with the
experimental data of Mather and Segré for 338.5-Mev protons in
lead: Y, Yang, Igqi = 756 ev, t = 1. 66; B-U, Bichsel-Uehling,

Iadj = 747 ev; M-S, Mather-Segré (theoretical), Igq; = 744 ev;

Cj Monte Carlo, Model 2, Ig4; = 760 ev. (b) Comparison with
the experimental data of Mather and Segré for 338.5-Mev protons
in copper: Y, Yang, Ig4q; = 308 ev, t=0.60; Y , Yang, Is.dj = 308 ev,
t* =1. 2; MC, Monte Carlo, Model 2, Iz4; = 308 ev; dotted curve,
difference between Yang curves with t* =1.2 and t = 0. 60.
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Figure 9(c)

Figure 9. Comparison of theoretical and experimental Bragg
ionization curves near the end of the proton range. (c)
Comparison with the experimental data of Zrelov and
Stoletov for 658-Mev protons in copper: Y, Yang, Iaclj =
317 ev, t=0.61; Y*, Yang, Ipq; = 317 ev, t* = 2.5;

MC, Monte Carlo, Model 2, Ig4; = 319 ev; dotted curve,
difference between Yang curves with t* = 2.5 and t = 0. 61.

We have found that, when the Yang distribution is used, the replacement
of the parameter t by a quantity t* >t is sufficient to produce theoretical
Bragg curves in copper that are in very close agreement with experi-
ment. The corresponding shortening of the mean projected range,

(t* -t)o, is equal to 0.6 g cm~2 at 338.5 Mev and to 4.9 g cm~2 at 658
Mev. No attempt as yet has been made to account for such effects on

the basis of nuclear theory. To judge from the available data on nuclear
energy levels the probability of small nuclear excitations would be much
greater for copper than for lead, which is consistent with the observed
multiple-scattering effects.

8. Appendix

Evaluation of the Bichsel-Uehling Detour Parameter

The quantity Agyy, defined by Equation 17, must be evaluated according to the

theory of Moliére, taking into account energy loss in the continuous slowing-down
approximation. For convenient reference we list here the final form of the equations
after insertion of numerical values for the various constants. The various symbols
have the following meaning: T = kinetic energy in units of the rest mass; fc = proton
velocity; Z, A = atomic number and weight of the medium.
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2 2

2 _ -7 Z T+1

X, =1.783x 10 A [m (34)
2 a1 2% z_\?

X,“=2.017x 10 TT+2) 1.13+3.78(1—37,'§) (35)
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Xcz = IT xé (T 1 dE  p¢ (88

I

] To .2 2
log X'az =(1 /xcz) j'T xé (T') log Sy I_:El(-;—r) (37)
i
2
eB_ X (38)
1.167 x ;2
T
0 T!
bpy=3 o X2 (TOBIT) o—— (glem?) . (39)
Transport-Theoretical Evaluation of the Detour Factor
The percentage detour factor is given by
D =100 rT0 {; (cogp|T-T")} —9T (40)
r 0 .1dE (T '
pdx

where (cosGITo-'T> is the mean obliquity cosine of a proton which started out in the
z-direction with energy T, and has been slowed down to energy T. It has been shown
by Lewis (16) and Spencer (17) that

TO '
(cos8| Ty~T) =exp ) - [ c(r) 3L (, (41)
° * SYLNE
b dx
where
c(T) = m:jg sin 6d6 o(6, T) (1-cos#) , (42)

and where N is the number of atoms per unit volume and o(8, T) the single-scattering
cross section for a proton of energy T.

Following Spencer, we have used for o0, T) the Rutherford cross section
modified to take into account screening. Then
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’
where Xe

No(6,T) = 5 x (43)

‘2 1 ,
Cc
(;cos 0+ Xaz )2

2 and xaz are defined by Equations 34 and 35. When this cross section is

substituted into Equation 42, the result is

10

5.

6.

7-

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

1.2 4 1
o(T) =1 Slog (1 + ) - 1 (44)
2 Xc xa'§ 1—"‘-—§+ L
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6. VALUES OF I AND Iadj SUGGESTED BY THE SUBCOMMITTEE

J. E. Turner!

Abstract

Values of I/Z and Iadj /Z are suggested for the chemical elements
in the form of graphs representing these quantities as functions of Z.

The quantity I, the mean excitation energy, that enters the theoretical expres-
sion for stopping power is a well-defined parameter of the theory. The definition of
I for a material is given by Equation 34 in Appendix A: Inl = E fplnE,. 2 From its

definition, I depends only upon the ground- and excited-state wave functions of a
stopping material, and hence is a property of that material, independent of the energy
and other characteristice of an incident particle. The determination of I from its
definition for a given material presents serious difficulties, since the oscillator
strengths fn are generally not well known in the range of the most important excita-
tion energies E,|. Theoretical values of I have been calculated only for the elements
through beryllium, although calculations for more complicated systems are in prog-
ress at the present time (R. L. Platzman, private communication). For a general
discussion of I and matters related to its determination the reader is referred to
Section 3 of Appendix A.

In practice, I is determined empirically from stopping power and/or range
measurements. To do this one has to evaluate all of the terms in Equation 38 of
Appendix A except I, which is thereby determined. Except at very high energies
(e.g., ~1 Gev for protons), the density effect term § is either negligible or else it
can be estimated with relatively good accuracy. Therefore, if the incident particle
energy and stopping power have been determined in an experiment, then the quantity
Inl + C/Z can be evaluated to within the experimental uncertainties of the experiment.
To determine I itself, an estimate must be made of C/Z, and this introduces further
uncertainties unless this quantity is small. In addition, since only the logarithm of I
enters the theory directly, a small uncertainty in stopping power introduces a rela-
tively large uncertainty in I. As a result of these circumstances, precise values of
I for most of the chemical elements cannot be given at the present time.

In many applications one needs the value of I for a material through which
charged particles pass. Accordingly, the Subcommittee considered it desirable to
recommend a "best" set of I values for the chemical elements, insofar as the present
uncertainties just described would allow. Such a set is presented in summary form
in Figure 1, which has been constructed on the basis of numerous discussions and
recommendations from individual Subcommittee members. Because of the present
state of the art, such a figure is necessarily tentative and uncertain in many respects.
It should be made clear that compromises have been made in a number of places in
the figure in order to try to make it reflect as accurately as possible the general
consensus of the Subcommittee.

10ak Ridge National Laboratory, Oak Ridge, Tenn.
zFor the meaning of f,, and E_ see pp. 17 and 19 of Appendix A.
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Figure 1. Values of I/Z and I,4:/Z in electron-volts for various atomic numbers Z,
showing selected experimental points. For Z 2 13 (Al) it is suggested that the
smooth curves be used to obtain I/Z and Ig4i/Z. For Z <13 one can use experi-
mental values where given or use the dashed curve to estimate I/Z. The region
of low Z is populated with scattered experimental points, presumably reflecting
the dependence of 1/Z on the state of chemical combination of an element, as well
as experimental uncertainties. The values of I/Z in this figure can be used with
the shell-correction curves of Figure 6 in Appendix A of this volume.

The Value I = 163 ev for aluminum is probably reliable to within +1 ev, 3 and
this value was made an anchor point of the figure. For elements heavier than alumi-
num, it was felt that present knowledge warrants drawing the solid curve in the figure
for I/Z as a function of Z. The extent of uncertainties introduced by doing this is
indicated by the scatter of the selected data shown for Z > 13. For the elements
lighter than aluminum, experiment shows a variation in the value of I found for a given
element, depending on the chemical state of the element in a stopping material.4 To
represent the situation for the light elements, the dashed curve was drawn to indicate
only a very general trend for elements below aluminum. The reported variation of
1/Z due to different chemical binding is shown for carbon, nitrogen, and oxygen.

Some experimental values of I/Z for other light elements are also shown.

3St-:e Reports No. 2 and No. 3 in this volume.
4See Section 3 in Appendix A; also, Report No. 3 in this volume.
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In addition to the mean excitation energy, I, values of a related quantity called
the adjusted mean excitation energy, I_.., are also shown in the figure.5 This quantity
is determined from experimental measuilementa under the assumption that shell cor-
rections vanish when the speed of the incident particle approaches the speed of light
(8 ~+1). Since, as mentioned above, stopping-power measurements determine directly
Inl + C/Z, it follows that the relationship between Iadj and I is given by

Inlggj = Inl + () L (1)
or
Iad] = IBXD(CIZ)ﬂ=1 s (2)

where (CIZ)ﬂ=1 is the high-energy limit of the shell-correction term. 8 In the litera-

ture, high-energy measurements are frequently analyzed with the assumption that
C/Z -0 as g =1, in which case the quantity here called Iaqj is given.

Although I and Io4; differ conceptually, the difference in their numerical values
is of little practical importance except for the heaviest elements. Table 1 summarizes
the actual extent of differences. The numbers in the table were calculated from
Equatmn 1, utilizing for C/Z the first two terms of the series expansion in powers of
IIB developed and evaluated as described in Section 6 of Report No. 4, and the value
of Iaq; as determined from the figure. Since the shell-correction curves in Figure 6
of Appendix A are adjusted to give this high-energy limit, it is appropriate to use
these curves with the value of I from the graph shown here.

TABLE 1

Values of Ia.dj' I, and Al = Iadj - I, in electron volts,
for several elements

Element y/ Iagj (CI'Z_)E=i 1 Al
Be 4 60 . 000 60 0
Al 13 163 . 002 163 0
Ar 18 210 .003 210 0
Cu 29 314 . 007 312 2
Ag 47 487 .014 480 7
Pb 82 827 .039 796 31
0) 92 822 . 051 877 45

Particular thanks are due Dr. R. M. Sternheimer for making available to the
Subcommittee the results of many of his own analyses and for providing valuable
suggestions during the development of the final form of the figure.

S5See preface of this volume for the background of the terminology concerning I and
Iadj used in these reports.

sSee Section 6 of Paper No. 4.
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7. TABLES OF ENERGY LOSSES AND RANGES OF
HEAVY CHARGED PARTICLES

Walter H. Barkasl and Martin J. Berger?

Abstract

Two-variable proton stopping-power and range tables are given as
functions of the particle energy T and of the mean excitation energy Iadj
of the medium, for 160 values of T between 1 and 5000 Mev, and for 36
values of I_ ;. These tables can be applied to any medium with specified
mean excitation energy. By simple scaling, they can also be applied to
other heavy particles with mass and charge different from that of the
proton. The tabulated values below 8 Mev are based on experimental
stopping-power and range data as summarized by a 9-parameter least-
squares range formula. Above 8 Mev they are based on the Bethe
stopping-power theory, except for the shell corrections which are cal-
culated by an empirical formula in the variables T and I, 4; derived from
the analysis of experimental data. The two-variable tables do not in-
clude the density effect correction which begins to be appreciable when
the kinetic energy of the particle is approximately equal to the rest mass.
Stopping-power and range tables which include the density effect correc-
tion are given for protons, kaons, pions, and muons, for 36 elements
and compounds.

1. Introduction

In this paper we tabulate stopping powers and particle ranges. Making use of
the available empirical data we first express the electronic stopping power as a univer-
sal function of two variables, particle energy and mean excitation energy. With these
variables we are able to systematize the calculation of ranges in all materials. The
work is further generalized so as to apply to all charged particles.

When the particle velocity exceeds about 0. 87c, the density of the stopping
material becomes an additional parameter affecting the stopping power, so that the
two-variable tables then apply only for stopping materials at low densities. More-
over, the ranges in this energy interval may greatly exceed the geometrical free
path for nuclear interaction, and become largely meaningless except for muons.
For selected materials, stopping-power and range tables are given which take the
density effect into account. Some of the tables were prepared not only for protons
but also for various kinds of mesons for which the density effect, at a given kinetic
energy, is more important. If a need should arise for data pertaining to materials
not included here, our computer program (IBM 7094) is available to prepare other
tables similar to those in the present report.

11 awrence Radiation Laboratory, University of California, Berkeley.
2National Bureau of Standards, Washington, D. C.; work supported by National
Aeronautics and Space Administration under Contract R-80.
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The tables throughout most of the energy range are reliable to about 1 percent.
In the few-Mev region, however, the stopping power becomes increasingly sensitive
to the assumed mean excitation energy and there is also a lack of reliable theory, at
least for the heavy elements.

The very low velocity region (8 <0. 05) is not a part of this report but is treated
in the review articles of Allison and Warshaw (1), Whaling (2), and Northcliffe (3).

2. Assumptions from Theory

We assume that the mean energy loss per unit pathlength . of a particle heavy
compared with an electron and of unit positive charge, can be calculated from the
expression

21'rnr02mc2 2me?

_ 2 -2g2 . 2C _

L= 32 In 2 n wmax 28 Z 6| . (1)
When the moving particle is a positive point-charge of magnitude, ze, its

2

average rate of energy loss, -(%)» is assumed to be equal to z“t, T being its

kinetic energy and ds an element of path. In Equation 1, r_ = ezf(mcz) cm, and n is
the number of electrons per cm? per unit of path (expressed usually in em or in
g/cm?). We also express pathlengths in units of electrons/cm2.

The particle velocity in units of the velocity of light is symbolized by 8, and

7n'e 31(1-52)1’2. The quantity

W = 2mc2nlz!2 ()
1+2r(1+92) %+ r2

is the maximum energy that can be transferred to a stationary unbound electron by
the moving particle when the electron-to-particle mass ratio is r. For particles
heavier than electrons this expression for Wy, is approximated by 2mc2n2. In
fact, when the particle momentum is so great that this approximation fails, the
moving particle also probably cannot be treated as a point-charge. An electro-
magnetic form-factor for the particle then also ought to be introduced (Ref. 4).

The mean excitation energy, I, is an atomic parameter, namely the logarith-
mic average over the excitation energies weighted by the oscillator strengths (Ref. 5).
With few exceptions, the oscillator strengths are not known with sufficient accuracy
to calculate I-values, and they must be determined by stopping-power or range
measurements.

The shell-correction3 term, c , is required when the velocities of atomic
electrons are not small compared with the particle velocity. It has in the past been
assumed to vanish in the limit p = ». Stopping-power experiments at high energies
have been used to determine I, the only remaining parameter. Recently Fano (5) has

3We are somewhat unsystematic in this paper and use the expressions "shell cor-
rection' and "tight-binding correction" to denote the same concept. In Ref. 5, the
expression "inner shell correction' is used.
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studied shell corrections in more detail in the high energy limit, and has pointed out
that c has a finite but small value when n = =, It is therefore convenient to introduce
adjusted quantities Igq; and cadj such that

o Cadj (3)
i+ 7z =lnlaj* —z

and to require that Caqj = 0 as the particle velocity approached that of light. Then

in a large energy-interval where the particle velocity is well above that of the most
tightly bound electron, C,4; may be neglected. At lower velocities C,. is the opera-
tionally defined quantity replacing C while I,4; replaces I so as to mainfain Equation

1 exact.

In Equation 1 the density-correction term of Sternheimer (6) is, as usual,
symbolized by 8. It is assumed that for a mixture of elements with mean excitation
energies I, Iy, ..., Iy the effective mean excitation energy I is given by

k
1nI=E ailnli ’ (4)
1

where a. is the fraction of the electron population belonging to the ith element. This
equation is based on additivity of stopping effects—a rule that is reliable for physical
mixtures but accurate to no better than a few percent for compounds. The mean ex-
citation energy of a compound is best found from measurements made on it. Averages
similar to Equation 4 can be made for the shell corrections and for the density effect.

Attempts to describe the stopping power of matter at low velocities have been
made by Bohr (7), Lindhard and Scharff (8), and others; however, the accuracy re-
quired for energy determination from range measurements has not been achieved by
pure theory, and this remains the most challenging problem of current stopping-
power theory. The work of Walske (9) on C, in which he extends the usefulness of
Equation 1 to lower velocities by estimating the effect of the K and L electronic shells,
is deemed to be most useful in a practical sense. Because at low particle velocities
the shell corrections become large, and for heavy elements relativistic effects and
higher shell corrections not included in Walske's calculations are present, it is
probably unwise to depend on them at low velocities. We use empirical data in this
region, demanding, however, that such data be smooth with respect to both particle
energy and mean excitation energy. The fundamental assumption of smoothness in
Iagj is discussed below. At high velocities we use the asymptotic form of Walske's
corrections.

The energy loss of heavy particles by radiation and the energy transmitted in
collisions—elastic and inelastic—to nuclei is omitted from consideration. Neglect
of energy loss in elastic collisions with nuclei is generally justified except for parti-
cles penetrating a stopping material of low atomic number (Ref. 7). Inelastic colli-
sions are excluded in our definition of range (see Sec. 3).

3. Definition of Range

Although the "range' as a loose concept of the distance a particle goes in being

brought to rest is rather generally understood, its precise definition requires some
care, and it cannot be made with complete satisfaction.
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On the one hand, the range of a heavy particle is only well-defined when it is
determined solely by energy loss to electrons, because this loss is never very large
in a single collision. In the measurement of the range, then, particles that have
suffered catastrophic energy losses to nuclei must be excluded, and secondary parti-
cles that are products of such nuclear interactions also must be eliminated. Practi-
cally, the effects of nuclear interactions can be largely avoided in ""good geometry"
experiments, although some remaining corrections may need to be applied. On the
other hand, a theoretical egtimate of the distance that a charged particle of energy
T goes in coming to rest is most simply carried out by the integration

To ar\
R, = [ /4T dT . (5)
0 J;-, <ds

Here <%3T->' found from Equation 1, is the mean energy loss to electrons per unit

pathlength. The particle is brought to rest, however, by a series of electron colli-
sions, each of finite energy transfer. When a detailed analysis of this process is
made, Equation 5 is found to underestimate the range. The average pathlength R of
the particle is given by R = Ry (1 + €). At low energies, €~ 2r/B. Here B is the
bracketed quantity in Equation 1 evaluated at T = T, and r is the mass ratio defined
above (Refs. 10,11). The correction is most important for the lightest particles, but
seldom exceeds 0. 001. The stochastic nature of the process leads to a dispersion of
the energy losses experienced in traversing an absorber, and is the cause of ''range
straggling. " Ry, then, is not the range but rather a quantity, differing but little from
it, which we shall call the c.s.d. a. (continuous slowing down approximation) range.
The tables of this report are based on this definition, but we also define the range,
R(Tg) of a particle with initial energy T, as the average length of the paths of many
such particles which are brought to rest without experiencing nuclear interactions.

Often a median range, Ry, has been defined as the thickness of material
through which one-half of the incident monoenergetic charged particles are trans-
mitted. We do not adopt this range definition for the following reasons:

(a)  Our range R is the one more closely related to the quantity R, calculated
from stopping theory.

(b) This median range depends not only on interactions with electrons but
also on multiple-scattering detours due to nuclear interactions, both
elastic and inelastic. These multiple-scattering effects are sensitive
to the arrangement of source and detector, and the correction is peculiar
to that geometry.

(¢) The median range is defined with respect to a transmission curve. At
high energies, however, the range becomes greater than the mean free
path for nuclear interaction, and the median range then measures a
nuclear attenuation distance.

When the path of the particle in the stopping material is not visible, the effects
of scattering and nuclear interactions require difficult corrections. In such visual
instruments as bubble and cloud chambers, as well as in emulsion, the whole parti-
cle path is seen. Such visual ranges are distinctly better than the nonvisual ones.

In emulsion, for example, the range-straggling curve is obtained without scattering
error, and formulas for scattering effects can be checked experimentally. The gas
of the cloud chamber can bring to rest only quite slow particles, however, while low
energies cannot be measured in a bubble chamber because the bubble size then may
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be comparable to the range. An uncertainty regarding the liquid density may also exist
under the thermodynamic conditions of bubble-track formation. Nevertheless, bubble-
chamber ranges are potentially of great value; in this report range and stopping-power
data for bubble-chamber liquids are given in Printout Table IV. 4

4. Scaling of the Range

It is convenient to separate the range-energy problem into two parts: (a) Given
four of the five quantities —energy, mass, charge, range, and mean excitation energy—
find the fifth; and (b) for a specified material, calculate the mean excitation energy from
the material's physical and chemical state. It was found possible to carry out part (a)
provided certain approximations were made. Part (b) is not treated here, but it is the
subject of accompanying reports.

Ranges most frequently are tabulated for protons, but when both range and energy
are normalized by the appropriate mass ratio, the range-energy relation is the same
for all heavy singly-charged positive particles provided that the weak mass-dependence
of the energy-loss rate is neglected. We find the ranges of muons, pions, kaons, and
hyperons in this way. Ranges of heavy hydrogen nuclei, multiply-charged nuclei, and
hypernuclei can also be considered within the scope of this report. Many range-energy
relationships, therefore, correspond to each stopping material. We encompass them
all by writing, for each particle range, R(8), its relation to the ideal proton range:

R(8) = zﬂz A(8) + B,(8)] . (6)

(An "ideal" proton is a particle of protonic mass and charge which does not capture
electrons or interact strongly with nuclei.) In Equation 6, M and z are the particle
mass and charge in units of the proton. The quantity A(8) is the range of the ideal
proton as a function of its velocity 8. The term B, is added to evaluate the range
extension caused by the capture of electrons by a positive particle of charge ze. The
expression A + B, is the range of a real proton. Practically, it is hardly distinguish-
able from A.

If the particle charge is negative, and the velocity is not very high, there is
evidence (Ref. 12) that its energy-loss rate is lower than that of a positive particle.
While more study of this effect will be necessary for its full evaluation, its influence
can be included formally in Equation 6 by introducing a range extension B_;.

We evaluate B, for multiply-charged ions as follows (Refs. 13,4):

Br/z \2 dx
B,(8) -IO [(z*) ] B 98 . )

where z%e is the charge effective for energy loss of an ion of atomic number z. Stated
otherwise, z* is equal to J/t, where & is the rate of energy loss of the ion and ( is
the rate of energy loss of an ideal proton at the same velocity. There is considerable

41h this paper, text tables bear Arabic numerals and the printout tables bear Roman
numerals.
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evidence (Ref. 14) that in high-density materials, and at not too low velocities, z* is
almost independent of the material. We take an approximate result from the emulsion
measurements (Ref. 4)

z

2
[(%) -1}31.3:‘10'5 25/3/g7/3 for%@ <2, (8)

together with a simple low-velocity proton range-energy relation,

10/3
Am (111 +1.34 14.5/8) 28777 g/em? . (9)

From these formulas we obtain an estimate of the range extension in a material of
mean excitation energy Ip4j, atomic weight A, and atomic number Z. It is found to
be proportional to 8:

By (Igj.B) ~ (48.0 + 5.8 Ipg*/8) 2 x 105 25/3 g g/em? (10)

This rather crude formula approximates the range extension for g <2z/137. For
B > 22z/137 the ion is completely stripped of electrons and the range extension becomes
an additive constant of rhagnitude:

B, (Iaqj)~ (7.0 + 0.85 Igq;®/®) 2 1076 28/3 g/cm? (z positive) . (11)

B_; (asymptotic) in emulsion is at least 35 x10-4 % g/cm?2 (Ref. 12).

More experimental study of the range extension, B,, especially for heavy-
element absorbers and for very heavy ions would be desirable, of course. The above
formulas are based largely on emulsion data for a few ions of light elements. When
the ion is of high atomic number, a finite pathlength may be traversed before the ion
attaing an equilibrium charge. Then B, and R will depend also on the initial charge-
state of the ion.

An estimate of the reliability of Equation 6 could reasonably be demanded.
Experimentally the mass dependence has been tested for muons, pions, kaons, protons,
zt hyperons, deuterons, and tritons, as well as hydrogen-3 and hydrogen-4 hyper-
fragments (Refs. 13-21). The mass dependence of Equation 6 at nonrelativistic ve-
locities appears to be reliable to about one part in 1000, but it is not thought to be
exact. According to Equation 2, particle mass enters when the electron mass is not
strictly negligible compared with it. Especially for mesons, a small effect of the
electron/particle mass ratio, r, remains. Effects of the particle/nucleus mass ratio
also exist. Checks that have been made used emulsion as the stopping material and did
not adequately test the form of Equation 6 for a stopping material of such light atoms
as hydrogen. Here a mass-dependent contribution to the stopping is expected (Ref. 4).

Although electron ranges are not a part of this paper (they are treated separately
in Paper No. 10), it is of interest to observe that emulsion ranges of electrons with
tens and hundreds of kev energy seem to be found as well from Equation 6 as from
formulas specifically developed for electrons, but the large scattering, straggling,
and radiation energy-loss of electrons reduces the usefulness of electron range data.
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In view of the tests cited, the dependence at moderate energies of the range on
neglected particle structure-characteristics (form factors) also cannot be more than
a few tenths of a percent.

The influences mentioned are all small, so that we shall assume that the pur-
pose of our work will have been served when the range A of an ideal proton as a
function of particle velocity, 8, is known. For other positive particles, the quantity
M/z2 is given in Table 1.

TABLE 1

The Quantity M/z2 for Particles of One and Two Units of Charge

Particle z M/z2
et +1 0. 00054463
pt +1 0.11261
" +1 0. 14878
Kt +1 0.5264
p +1 1. 0000
st +1 1.2677
d +1 1. 99901
t +1 2. 99372

He3 +2 0. 74829
Het +2 0. 99315
He® +2 1.4935
3
AH +1 3.1877
AH? +1 4. 1802
AHe? 2 1. 0449
AHe® +2 1.2896
7
AHe +2 1. 7899

5. Sources and Use of Experimental Data

In order to prepare this report, it was needed to know quite well the mean ex-
citation energy and low-energy ranges for only certain key elements. For these,
empirical data were available, but more and better information would have been very
useful. The final tables, however, are insensitive to errors in the estimated mean
excitation energies except at low energies.

The available compilation of information includes the following items. Early
measurements were reviewed in the report titled, ''Index and Annotated Bibliography
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of Range and Stopping Cross-Section Data'' by Brown and Jarmie (22). This work
contains a comprehensive bibliography of early measurements. The low-energy
region was thoroughly reviewed most recently by Whaling (2). The previous review
by Allison and Warshaw (1), however, remains valuable for stopping-power informa-
tion. Heavy ion data are reviewed by Northcliffe (3) and by Allison (23) as part of the
current work. The National Bureau of Standards Handbook No. 79 contains useful
information, and many references. R. M. Sternheimer's (24) review of energy-loss
formulas, I-values, and ionization-loss experiments is relevant to all these problems.
Bethe and Ashkin's (25) and Uehling's (26, 27) works and the accompanying article
(Appendix A) by Fano summarize the useful theory. The older work of Bohr (7) as
well as the work of Lindhard and Scharff (8) and of Brandt (28) contribute to the theory
but these works are not immediately useful for accurate range calculations.

For the present report we have referred to the following experimental data: (a)
measurements quoted in the review articles cited above; (b) the range measurements
by Zrelov and Stoletov (30); (c) corrected relative range measurements by Rybakov
(31); (d) energy loss and range measurements made in emulsion, aluminum, copper,
lead, and uranium by Barkas, et al. (32-34); and (e) the measurements by MacKenzie
and his collaborators (35) and those by Nielsen (36). Important aid in this task was
obtained from the measurements and extensive calculations of Bichsel (37), based in
part on his own work and on the theoretical work of Walske (9). Earlier, Sternheimer
(38, 39) calculated proton ranges in several elements and also gave an interpolation
prescription based on the smoothness as a function of Z of the electronic stopping
cross section.

For particle velocities comparable to or higher than that of the K electrons of
the stopping material, Cg4; is small and may be estimated from theory. The mean
excitation energy can be determined then by measuring L and solving Equation 1 for
Iadj» With it one is able to make limited extrapolations and to interpolate energy-loss
rates by means of the theory. At lower velocities more reliance must be placed on
the correction for tight binding, and the resulting value of Iaqj is less reliable. The
difficulty is aggravated as the atomic number rises because the shell corrections
become larger.

In the intermediate-velocity region, one observes deviations from Equation 1
if Cadj is set equal to zero. The theory here can act as a guide; one demands that
the deviation be a smooth function of velocity (Ref. 34). Since the calculations of
Cadj are inadequate for heavy elements, at the lower energies only empirical data
seem reliable. Improved efficiency is believed to have been attained in the utiliza-
tion of such measurements in the present paper. The observations, of course,
are the anchor points of the theoretical calculations. It has been usual to demand
that the measurements define a smooth range-energy curve for a given stopping
material. Now it is further assumed that, with certain reservations, the range
measured in electrons per cm? is also a smooth function of mean excitation energy
for each proton energy. An effort has been made to fit, with theoretical interpolation,
a smooth surface to the two-parameter range data. The requirement of smoothness
in both parameters is a powerful means for resolving inconsistencies in empirical
data.

In order rationally to employ smoothness of energy-loss rate with I4;, the basis
for and limitations of such a postulate must be discussed. First, one notes that when
the ranges (in electrons per cm®) for a series of similar elements at a given energy
are graphed as a function of Z, they define a smooth curve. Thus, for example, the
ranges at 8 Mev given by Whaling (2) for the noble gases behave in this way. A series
of metals (Be, Al, Cu, Ag, Au, Pb, and U) is found to define a smooth locus somewhat
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below that of the noble gases. The effective mean excitation energy of typical metals
is perhaps 6 percent less than one would predict from their atomic numbers on using
the noble gas curve. On correctly choosing lgg; .-values and replotting the data as a
function of I 4;, one finds that the curves a].moat coincide. Were Cad , which depends
on Z, strictly a function of I,4;, the curves would coincide. Conceptually the shell
corrections could be extended io the valence and conduction electrons. Then it is
maintained that C adj would be closely a function only of I adj and 7).

Thompson (29) first detected apparent differences in stopping powers that de-
pend on molecular binding in a series of selected materials. There is known to be a
dependence of the mean excitation energy on the average electron density in the stop-
ping material, as predicted by Lindhard and Scharff (8). If the electron density in a
series of elements were not to increase smoothly with increasing atomic number, one
could not expect a amooth variation of stopping power per electron with Z. Burkig
and MacKenzie (35) observed deviations from a smooth dependence on atomic number
of electronic stopping power in a systematic study of many elements. The elements
calcium, titanium, vanadium, and thorium, as well as the noble gases appear to be
anomalous.

Chemical binding effects are limited primarily to light elements and low parti-
cle energies. The valence electronsa in these cases constitute a large fraction of all
those participating in the stopping. In the light elements, tight-binding corrections
are small, so that the atopping behavior of a compound of such elements is almost
entirely determined by the mean excitation energy even if, for a given element, it
varies from compound to compound.

When Igq; is determined by the high-velocity stopping behavior of the material,
the rates of energy loas calculated from Equation 1 for high velocities are exact by
definition. In order to express L everywhere as a function of I34j and n, C_4; must
remain expressible as a function of them, even at low velocities where Cgq4 Igecomea
more than a mere correction. As indicated above, such an expression of d]adj is only
approximate. Nevertheless, when the correct mean excitation energy for an element
is used, the error introduced on expressing the shell correction as a function of Iad
and 7 is, at worst, that arising from the use of a shell correction that is more ap-
propriate for a neighboring element—an error of second order.

For a composite material the use of the same value of Iad in the shell-correction
formula as that derived from the high-velocity energy-loss rate also is justified only
as an approximation. Such materials as animal tissue or hydrocarbons are chiefly
composed of light elements for which the shell corrections are small in any case.

The most extreme example of practical importance is nuclear research emulsion,
which consists of crystals of heavy elements embedded in a light-element matrix.
The range curve here corresponds well to no single mean excitation energy at all
velocities (Ref. 4). A simpler way to treat this case is to note that the range, R, in
an n-component material is found with good accuracy from the formula (Ref. 4)

Z £;/R; . (12)

i=1

Here R1 is the calculated range in the ith component and, if the ranges are expressed
in g/ cm? , fj is the fraction by weight of that constituent of the stopping material.
This formula while not rigorously derivable, is very accurate, and integration is
avoided.
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At low velocities our data are entirely empirical, but have been subjected to a
systematic smoothing. The requirement that the stopping power be a function of both
variables, Iaqj and 7, tends to make every point on the range or stopping-power sur-
face depend on all the data used to construct the surface. The smoothing procedure
made use of the experimental values of the stopping power as well as of the range.

Shell corrections for media of low atomic number, at energies below 8 Mev,
were estimated using the nomogram of Fano's article (Fig. 6 of Appendix A), which,
in turn, is based on the analysis of the available experimental data. These estimates
were adjusted to be consistent with our shell corrections (Eq. 16) at 8 Mev. The
magnitude of these shell corrections is small, so that even our necessarily rather
rough estimates are adequate. Inserting the shell corrections into the stopping-power
formula, ranges were then calculated numerically for hydrogen, beryllium, and
aluminum, assuming the ranges at 1 Mev to be those given in Whaling's (2) compila-
tion of experimental data. The calculated ranges agree well with those of Whaling at
2, 3,..8 Mev, and the latter were used in the subsequent analysis. The range data
of Rybakov (31) for iron, copper, tin, and lead, smoothed in energy and corrected
for multiple scattering as described in Section 7, were used to obtain, by interpolation,
range values at 1, 2,..8 Mev.

The entire body of range data for energies 1= T <9 Mev was summarized by the
formula

2 2
log\ = 103% +E E &mn (logladj)m (logr)™ , (13)
n=0 m=0

the coefficients a,,  being obtained by a least-squares analysis (A\in g em-2). To
provide a smooth transition to energies above 8 Mev, the input data were enlarged to
include not only the Whaling and Rybakov ranges but also ranges at 9 Mev. The latter
were derived from an incremental range calculation based on stopping-power theory.
Table 2 gives the input data for the least-squares analysis. The assignment of Iadj'
values to particular elements agrees with the recommendations of the subcommittee |
(Paper No. 6). Table 3 contains the least-squares coefficients, and Table 4 the

percentage deviations between the fitted and input ranges. The root-mean square |
error of the fit is 2 percent.

TABLE 2

Ranges (mg/cm?2), Multiplied by %. That Were Used as Input
Data to Produce the Least-Squares Formula (Eq. 13)

Proton Hy Be Al Fe Cu Sn Pb
Energy Iad j= Iad j= Iad j= Iad j= Iad j= Iad j= Iad j=
Mev 19 ev 60 ev 163 ev 285 ev 314 ev 516 ev 826 ev
1 0. 830 1.290 1. 870 2.700 2,793 3.791 4,749
2 2. 840 3.920 5.400 6. 843 7. 166 8. 846 12, 27
3 5. 900 7.780 10. 46 13. 27 13. 83 16, 43 22, 36
4 9. 930 12. 79 16. 80 20, 95 21,91 26,12 34. 43
) 14. 90 18. 90 24,60 29.79 31.95 37.49 48. 28
6 20, 717 25.70 33.73 40,50 43, 36 50.55 63. 32
7 27.53 33.79 44, 09 52, 14 55.68 65.29 79. 94
8 35. 16 42, 88 55.41 66.11 69.37 81.30 98, 14
9 43.38 53.14 67.99 80.57 84. 23 98. 55 118. 4
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TABLE 3
Coefficients ap,, in Equation 13

n
m 0 1 2

0 -7.5265 x 10-1 2.5398 -2.4598 x 10-1

1 7.3736 x 10-2 -3.1200 x 10-1 1. 1548 x 10-1

2 4. 0556 x 10-2 1. 8664 x 10-2 -9.9661 x 10-3
TABLE 4

Percentage Deviation of Ranges Computed with Equation 13
from the Input Ranges in Table 2

Proton Hgy Be Al Fe Cu Sn Pb
Energy Iadj= Iadj= Iadj= i~ adj™ Iaq;= Iaq5=
Mev 19 ev 60y 163 ev 285ev 314ev 5lfev 82
1 0.2 2.5 5.1 -3.3 1.5 -4.3 1.4
2 1.2 -1.6 2.4 3.1 3.0 6.7 -0.5
3 0.9 2.0 0.5 3.0 1.1 4.5 2.5
4 0.7 2.1 0.4 1.0 1.8 2.2 2.9
5 0.4 2.0 -0.2 0.3 2.9 1.3 2.7
6 0.2 -0.3 -0.4 0.1 -3.1 0.8 el
7 -0.1 0.1 -0.2 1.1 -2.0 0.5 0.3
8 -0.3 0.5 0.6 0.5 1.1 0.8 0.7
9 0.1 0.6 1.2 1.3 0.0 1.5 1.0

From Equation 13 one can derive, by differentiation, a stopping-power formula,

-1
g_ =% { 2 2 nappn (log Iad;;)m (log )" } (14)

As a final check, the stopping-power values computed according to Equation 14
were compared with the compilation of experimental values by Bichsel (37). Asshown
in Table 5, the agreement is generally close, although occasional discrepancies up to
4 percent occur. This is not incompatible with the experimental errors.

6. The Tight-Binding Corrections

The quantity C in Equation 1 is the sum of corrections for each electron shell
of the atom. Thus

C=CK+CL+CM+.CIIO

The variations of Ck and Cy, with velocity and atomic number have been calculated
(Ref. 9). Each is large and negative at very low velocities, but, as the velocity
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TABLE 5

Proton Stopping Power (Mev/g cm-2). L.SQ., Derived from the
Least-Squares Formula (Eq. 14). B, Experimental
Values Compiled by Bichsel (37)

Proton =1 Be, 1_4:=60 ev Al, I_..=163
Energy Ha, Iad] 9ev adj adj ev
(Mev) L. SQ. B L.SQ. B L.SQ. B
1 669 676 2235 220 170 173
2 385 393 1385 137 112 110. 7
3 278 282 102 101 85.9 83.2
4 220 222 81.5 81 68. 7 67.6
5 183 184 67.9 67 57.8 57.3
6 158 158 58.3 58 49.9 50.0
Proton = = =
Energy Cu, Iadj 314 ev Sn, Iadj 516 ev Pb, Iadj 826 ev
(Mev) L.SQ. B L.SQ. B L.SQ. B
1 121 121 817.5 89 63.6 63
2 82.9 80 61.8 61 46.3 44.5
3 64.2 62 48. 7 48 37.2 36.5
& 52.7 51 40.6 40 31.5 31.8
5 44.8 44 34.9 35 27.4 27.9
6 39.1 39 30.7 31 24.3 25.0

increases, the sign of every C changes. Each passes through a maximum and subse-
quently falls. Each Cgqj should approach zero as q-z for large 7. At reasonably high
velocities, the velocity Jependence for each element is expressible in the same form
as Walske's asymptotic expressions:

B9

CadJ also varies rapidly with Iggj. At a particular value of g, the form A(n)
B(f;}ladJ is capable of fitting the data to its present accuracy.

Bichsel (37) has extended the work of Walske semi-empirically. He makes
allowance for the numbers and binding energies of electrons in each subshell of the
atom. The form of C,q4; for each higher shell was assumed to be obtainable by scaling
the correction that Wals;i(e calculated for the L shell. When applied to all the shells of
such heavy elements as lead and uranium, the corrections were successful in predict-
ing the measured ranges and energy losses at both high and low velocities. At the
same time, each Iad' remained constant at a value close to that found by Barkas and
von Friesen. Bichseél's procedure is completely numerical, however, and must be
carried out in detail for each stopping material.

We have thought it better to express Cad analytically. As mentioned above, it
was also considered wiser not to attempt to carry the calculations down to very low
velocities. For g < 0. 13 it was necessary only to smooth the empirical ranges (ex-
pressed in electrons per square centimeter) as functions of Iadj and of n separately.
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Then, by trial, the data were expressed in a semi-empirical formula. Above n = 0. 13,
the shell-correction term was assumed to have the dependence on 9 and Ia4j given
above. The available information then was used to determine the coefficients in the
formula (which is not valid for g < 0. 13)

Cadj(T.m) = (0.422377n°2 + 0. 0304043 7~4 - 0. 00038106 ~6) 106 134;

(16)
+(3.8580199-2 - 0.1667989n% + 0. 00157955 n-6) 10-9 lﬁdj

These coefficients doubtless can be improved, and the functional form can be refined
as more reliable data become available. A great advantage of such an expression is
that it provides an analytic energy-loss formula for all materials applicable over a
wide range of velocities. It also summarizes the bulk of what is known about the
energy losses of fast particles in matter. Expression 16 is consistent, within the
limits of experimental error, with the shell corrections used by other authors in this
volume (see Fig. 1 in Paper No. 4).

The shell correction enters the stopping-power formula not as Caqj but as
CadJIZ. To establish the necessary relation between Tadj and Z, we have used the
expressions

L]

Iagj/z = 12+ 7/Zev , Iagj < 163 ev (17a)

lagj/Z = 9.76 +58.82°1-19ev | I4;2163ev. (17b)
The assumed straight-line relationship for small values of Ia.d is an oversimplifica-
tion that is permissible because the shell corrections are qu1te small. The relation
(Eq. 17b), due to Sternheimer (private communication), yields mean excitation ener-
gies of 163 ev, 314 ev and 826 ev for aluminum, copper, and lead, respectively, and
has been recommended by the subcommittee as ''best smooth curve" (see Paper No.
6 of this volume).

7. Multiple-Scattering Corrections

The definition of the range given in Section 3 of this paper prescribes in effect
how its measurement is to be carried out. The experimental technique must be such
as to insure that the true rectified pathlength has been determined, and that nuclear
interactions do not influence the results of the measurement. Difficult problems in
the interpretation of incorrectly performed measurements may arise in separating
the effects of energy loss to electrons, nuclear influences, and the effects of scatter-
ing on the range and on the range-straggling. One may attempt to correct the meas-
urements if the geometry of the experimental arrangement is known. This topic is
treated more extensively in Paper No. 5 in this volume.

Here we discuss a simple correction procedure that often may be satisfactory.
It is noted first that scattering corrections can be measured in emulsion because the
whole particle trajectory can be seen. Any desired range-distribution function can be
obtained by measurements on randomly sampled tracks. In addition, we know—from
Rossi (42), for example —that in any material the increment of the mean-square angle
of multiple scattering, multiplied by the radiation length and d1vided by the increment
in pathlength, has the same magnitude, approximately (21. 2 Ipﬁ) for a singly-
charged particle of momentum p and velocity 8. In this expression p8 is measured
in Mev/c. To apply this rule, of course, account must be taken of the fact that pg
falls as the particle loses energy.
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Suppose the particle starts parallel to the x-axis from an origin of rectangular
coordinates x, y, and z in the stopping material. Then if 8 is the instantaneous angle
between the x-axis and the particle direction and ds is an element of its path we define

s
Sp = _[0 ds cos 6 , (18)

where S is the distance traversed by the particle in being brought to rest at a depth of
penetration, S,. We call the average value of Sp the projected range, R,. The ex-
pectation value of S is the range, R; S is a random variable of variance &(R).

For making the multiple-scattering correction, suppose the quantity to be
evaluated is AR=R - Rp. Itis

AR = IOR (1 -cosB)ds= -;—I: (82)ds . (19)

The fractional correction, &R/R, therefore, is one-half of the mean-square scattering
angle.

The scattering in emulsion is well known empirically. We note that one can
compensate for the use of the small-angle approximation by measuring AR on tracks
in emulsion, and thus one can replace the number 21,2 Mev/c by an empirically
determined quantity, k. Then

2

dce?) 1 (z_k) . (20)

where X is the radiation length in the stopping material. Measurements (Ref. 4)
made on tracks of protons and muons indicate, moreover, that the best value to use
for k is about 19, 7 Mev/c, if the radiation length is taken to be 2. 91 cm. This evalu-
ation should be studied more exhaustively, but for the present purpose of making a
small correction, such an estimate nevertheless may be accurate enough. To carry
out the calculation of (§2), we first write pg as a function of distance s along the
average trajectory. In the low-energy region this is

pg = aM1-n z2n (R-g)n ,

where, to good approximation, a is a constant determined by I,4:, and n is close to
0. 63 for all materials except those of lowest atomic number (for which the correction
is small). Now, from Equations 16 and 15 we find that the expression (l-n)XoAR/Rz
at a given energy is independent of the material. Since n varies very little,
(Xo/RNAR/R) also will not vary much from one material to another.

The statistical variable S, has a skewed distribution, especially in stopping
materials of high atomic number. Its expectation value or mean, , is smaller than
the median range R, defined in Section 3. Some experimenters, notably Rybakov (31),
whose data we use, compared median ranges in various metals with the median range
in aluminum. The correction, which is evaluated by Berger (41) is somewhat less
than AR. In Table 6 we list the percentage corrections we applied to Rybakov's
ranges.
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TABLE 6
100(R-R
Percent Range Corrections for Scattering, _(R_m)
Proton
Energy
(Mev) Emulsion Al Fe Cu Cd Sn Pb

1 2. 07 0. 72 1.55 1,80 3.18 3. 36 5. 96
2 1.67 0.59 1,26 1.48 2.65 2.76 4,92
3 1.47 0.52 1,10 1.32 2.32 2.43 4,34
4 1.34 0. 47 1,01 1.18 2.12 2,22 3.98
5 1.24 0.43 0.93 1,10 2.00 2.07 3.73
6 1,18 0.41 0. 88 1,03 1.88 1, 96 3.54
7 1.11 0.39 0. 85 0. 99 1,79 1.87 3.37
8 1,07 0.37 0,81 0, 94 1.72 1,79 3.23

8. The Two-Variable Stopping Power and Range_Tabless

Method of Presentation

The proton stopping power (Mev/g cm-2) divided by Z/A and the proton range
(g cm-2) multiplied by Z/A are given as functions of the proton kinetic energy T(Mev)
and the mean excitation energy Io4; (ev) in Printout Tables I and II. The advantages
of this method of presentation are as follows:

(1)

(2)

(3)

(4)

(5)

Through elimination of the factors Z/A, i.e., through the use of electrons
per cm? as unit of distance, the main dependence of stopping power and
range on the nature of the medium has been removed. The residual de-
pendence is in the mean excitation energy; only interpolation in Iqj is
necessary for application to any particular substance.

A close grid in Iaqj is provided, so that linear interpolation is adequate.
This makes it easy to estimate the range or stopping-power uncertainty
caused by a known uncertainty in Iaqj, or vice versa.

The tables will retain their validity and usefulness even when, as seems
probable, the preferred Ia4j-values for various materials will undergo
changes in the future.

The uniform method of presentation permits easy detection of measure-
ment errors, or of anomalies that may have significance.

Because of the scaling properties of stopping power and range for parti-
cles with different mass and charge, even a single measurement of range
or stopping power in a material of unknown stopping behavior can be used
to obtain range-energy curves for all types of particles.

Method of Computation

For proton kinetic energies below 7. 9 Mev, the stopping power was evaluated
with the use of the empirical formula (Eq. 14). Above 8.1 Mev it was evaluated

SWithout the density-effect correction.
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theoretically according to Equation 1, with shell corrections given by Equations 16
and 17 and with the density effect disregarded. Between 7.9 and 8.1 Mev, the arith-
metic average of the results of the two procedures was used.

The calculation of the c.s.d.a. range was made from the integral

Ar) =g + _l':lth ; (21)

Here )\ is an empirical range given by Equation 13 and corresponding to kinetic
energy T1 = 1 Mev. The upper limit 7 = 938. 213 [(1 -32)'”2 -1] Mev is the proton
kinetic energy corresponding to velocity g = n/(1 + 52)1/2,

Units

The units of stopping power in Printout Table I are Mev per 6. 0249 x 1023
(Avogadro's number6) of electrons cm-2. The units of range in Printout Table II are
6. 0249 x 1023 electrons cm-2. For any particular material, the stopping power is
readilgr converted to Mev/g cm-2 through multiplication by Z/A, and the range to
gem-4 through multiplication bg A/Z. To obtain the range in cm, one must further
divide by the density p in g cm-3. The quantity A/Z is given in Table 7 for various
materials. To apply Printout Tables I and II for a particle of mass M and charge z
in units of the proton, the energies in the left-most column must be multiplied by M,
and the ranges (after adding B, if necessary) by M/z2. This factor is given in Table 1.

Significant Figures

The stopping power and range are given to five figures, whereas the physical
input data and method of calculation are such that, at most, three figures are signifi-
cant. The other two figures are included to allow differencing of the tabulated data.
Such differencing is required when one is interpolating with respect to Iagj- It may
also be required for the computation of partial ranges between two given energies.

Sample computations, which are summarized in Table 8, indicate that with
linear interpolation in ladj or T one can achieve at least three-figure accuracy.

Application to Particular Materials

The ¢hoice of the value of the mean excitation energy Ig4; is at the reader's dis -
cretion. Some suggested Igqj-values are listed in Table 7. They are not definitive but
are based on the present, tentative consensus of the subcommittee (see Report No. 6
of this volume). For Z 2 13 they are based on the semiempirical formula (Eq. 17b).

For compounds and mixtures, provided one assumes that the contribution of vari-
ous constituents is additive (Bragg's rule), one must replace Z/A by an average value

I
<£‘)'E Ea b (22)

6']."he use of this value for Avogadro's number implies that atomic weights must be
expressed according to the old mass scale in which the atomic weight of 016 ig ex-
actly 16, rather than according to the new scale in which the atomic weight of cl2
is exactly 12,
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TABLE 7

A/Z and an Estimate of la.dj for Some Elemental Absorbers

Element Iadj(ev) Alz
1H 19 1. 0080
4Be 60 2.2533

1341 163 2. 0754
2¢Fe 285 2. 1481
2gNi 304 2. 0961
29Cu 314 2.1910
47Ag 487 2.2953
505n 516 2. 3740
74W 748 2.4854
18Pt 787 2.5029
798U 797 2.4937
g2Pb 826 2.5270
g3Bi 835 2.5181

92U 923 2.5877

where ZilAi corresponds to the i'th constituent with partial density p; (Ep; = p). The

i
corresponding average value of the mean excitation energy is, according to Equation 4,

Z -1 1 %
log (ladj) =( 7 3 ;‘: A pi log Ing; ; - (23)

It should be recalled that one must expect departures from additivity due to
chemical binding effects, particularly for media of low average atomic number. It
is therefore preferable, if pogsible, to use a value of “adj) derived directly, by
experiment or calculation, for the substance in question.

The use of Printout Tables I and II for mixtures and compounds introduces a
small error in regard to shell corrections. In effect, one first selects a value of
{laq;) and then, by implication, uses an average atomic number (Z) given by
Equation 17, whereas the correct method of averaging is

Ci
-0 1sin g

The error is largest for substances in which both high-Z and low-Z components are
present. For example, for photographic emulsion, the maximum error in the proton
stopping power occurs at ~ 20 Mev (0. 6 percent too high) and the maximum error in
the range at ~ 30 Mev (0.5 percent too low).
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TABLE 8a

Accuracy of Interpolation in Printout Tables I and II.
Linear Interpolation with Respect to Mean Excitation Energy I54;:
(Hp0, from 60 and 70 to 65.1 ev; Cu, from 300 and 320 to 314 ev;
Pb, from 800 and 850 to 826 ev).

Stoppi.n_g Power, Mevlg cm-2 Range, cm'2
Medium (Mev) Interpolated Direct Interpolated Direct
H20 10 46. 812 46. 796 0.11827 0.11830
100 7.4245 7.4215 7.5664 7.5687
1000 2.2452 2. 2445 320. 36 320. 44
Cu 10 27.317 27.315 2.1819 2.1820
100 4, 8845 4, 8839 11,791 11,772
1000 1.5573 1.5572 468. 40 468. 41
Pb 10 17.501 17,497 0. 35605 0. 35607
100 3.5318 3.5315 16. 821 16. 821
1000 1. 1956 1. 1955 618. 98 618. 99
TABLE 8b
Accuracy of Interpolation in Printout Tables I and II.
Linear Interpolation with Respect to Proton Energy T,
from 320 and 330 to 324 Mev.
Stopping Power (Mev/g cm=-2) Range (g cm-2)
A Z
X — X —
I_,.(ev) Z A
adj Interpolated Direct Interpolated Direct
60 6.2364 6.2356 31.574 31.571
300 5.1276 5.1270 38. 996 38.993
800 4.4354 4.4349 45. 954 45.950

Approximation Formula

The stopping power is available in terms of a formula (Eqs. 1, 16, and 17). It
is convenient also to have an analytical representation for the range which precludes
the necessity of always having to rely on a large table of numbers. We have not made
an exhaustive search for an optimum formula, but have found it convenient to repre-
sent the proton range between 7 Mev and 1200 Mev by the following expression:

3
log A = log % + i ® mn (log Ig4)™ (log 7)° (25)
n=0 m=0
where )\ is measured in g cm=2, The coefficients in this expression, given in Table 9
were obtained through a least-squares adjustment based on 600 range values (at 30
energies and 20 values of Iaqj). The root mean square percentage deviation between
the input data and fitted values at these 600 points is 0. 6 percent. The worst error
occursg for T = 7 Mev, and Ia.dj = 15 ev, and it amounts to 2. 8 percent, but in most
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TABLE 9

Coefficients @y, in Equation 25

n
m 0 1 2 3

0 -8. 0155 1. 8371 4.5233 x 10-2 -5,9898 x 10-3
1 3.6916 x 10-1 -1.4520 x 10-2 -9.5873 x 10°%  .5.2315 x 10~4
2 -1, 4307 x 10-2 -3.0142 x 10-2 7.1303 x 10-3 -3.3802 x 10°4
3 3.4718 x 10-3 2.3603 x 10-3 -6. 8538 x 10-4 3. 9405 x 10-5

regions of the table the error is much smaller than 1 percent. It is interesting to note
that if one differentiates Equation 25 to obtain an analytical expression for the stopping
power analogous to Equation 14, the resulting root mean square percentage error is
still only 1. 3 percent.

The 12,960 numbers contained in Printout Tables I and II have also been com-

pressed into a deck of 648 binary IBM-cards, copies of which can be made available
to interested parties.

9. Density Effect

The density effect, i.e., the reduction of the ionization loss due to the polariza-
tion of the medium, has been systematically evaluated by Sternheimer (6) for many
elements and compounds, and we shall use his results. Sternheimer expresses the
density effect correction § (which enters into Equation 1 for the stopping power) as a
function of the particle velocity with the use of the semi-empirical formula

0 X < XO
6(n) = log 2 + 6g + 61 (Xl-x)62 Xo<X<Xy (26)
log 'nz +6p Xz2X,

where X = (log 10e) log n = 0. 43429 log 7.

The quantities 6g, 61, 62, Xp and X3 depend on the characteristics of the medium. 7
Sternheimer made, at different times (1952, 1956), two evaluations of these parameters
for various media, using different values of the mean excitation energy I. Neither of

7In Sternheimer's notation, 60, 61 and §2 are called C, a, and m. The parameter

60 is given by 8o = -2 log (I/hvp) - 1 where vp = c(nroln)uz is the plasma fre-
quency of the medium. In addition to his published values, Sternheimer has com-
municated additional parameter values for Cu and Pb to U. Fano (letter, May 2, 1962)
which we have also used; these values are:

I 6o 6, 6o Xo X1
Cu 323 ev -4,43 0. 109 3.39 0.2 3.0
Pb 826 ev -6.21 0. 355 2,64 0.4 3.0
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his two I-values coincides in general to the Igqj-value adopted in the present work.
Following his euggesuon we have xfade the appropriate adjustment through logarith-
mic interpolation. Let 6(1) and 6(2) denote the density effect corrections for a given
medium and energy, evaluated with mean excitation energies Iy and Iy. The desired
value, corresponding to mean excitation energy Iadj is obtained as

§=0a 6(1) + (1 - a’ﬁ(z} 5
27)
with a = log (I3/1aq;)/ log (I3/13) .

Sternheimer's density-effect parameters for gases pertain to normal pressure.
To obtain § for any other pressure, one must ingert into Equation 26 the argument

nVP instead of n, where P is the pressure in atmospheres.

The percentage reductions of the stopping power and increases of the range
caused by the density effect are indicated in Table 10 for protons, kaons, pions, and
muonsg in beryllium, copper, and lead.

10. Stopping Powers and Ranges for Protons and
Mesons in Selected Materials

Printout Tables Illa-d contain stopping powers and ranges for protons, kaons,
pions, and muons in 27 substances. Density-effect corrections are included. The
assumed values of I 4; are in agreement with the recommendations of the Subcom-
mittee (see Report No. 6 in this volume). For mixtures and compounds, an average
value of Ia.d was computed according to Equation 23, and shell corrections were
averaged according to Equation 24, Meson stopping powers were obtained by scaling
proton stopping powers. Meson ranges were obtained by numerical integration, using
a base point at 1 Mev calculated by scaling the corresponding proton range. The
accuracy of the computed stopping powers and ranges is expected to be of the order
of 1 percent. Five significant figures are given in Printout Table III in order to
facilitate interpolation.

There are a number of substances of intereat for which the density-effect cor-
rection has not yet been evaluated. In the absence of such a correction, the universal
Printout Tables I and II are adequate. Nevertheless, we have thought it useful to
present (in Printout Table IV) proton stopping powers and ranges of nine substances
of complicated composition, at energies up to 1000 Mev. With this limitation, the
lack of density-effect correction will introduce only a very small error, as indicated
in Table 10.
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TABLE 10a

Percent Reduction of Stopping Power Due to Density Effect
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PRINTOUT TABLE 1

TWO-VARIABLE STOPPING-POWER TABLE

Calculated stopping power, L, as a function of the pro-
ton kinetic energy T and the mean excitation energy
Igdj» (Because of typographical limitations, Igqj is
indicated as I in the table headings. The units oi Ia.dj
are ev.) The entries, when multiplied by Z/A, give
the stopping power in units of Mev/g cm-2, Powers
of ten are indicated by the symbol E; thus 1.2345E 02
means 1.2345 x 102, Since energy/mass is a function
only of the velocity, the column labeled energy is also
to be interpreted as the particle kinetic energy divided
by the mass in.units of the proton mass. More fig-
ures are tabulated than are significant in order to
facilitate interpolation.
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3.0899E
2.95T1E
2.8366E
2.T7268E
2.6262E
2.5338¢E
2. 4406E
2.389TE

2.1960€
2.0495E
1.9241E
1.8155€
1.T206E
1. 6368E
1.5624C
1.495TE
1.435T7€
L.3816E

1.3320¢
1.2868C
1.2454C
1.2073¢
1.1T20€
1+ 1394F
1.1090€
L.0808€
L-0544¢
1.0297E

1.0065E
9.8468€
9-6415E
9.44T9E
9.2650€
9.0918¢€
B8.927TE
8.T720C
8.6240E
8.4832€

8.2211¢
T.9822E
T.T636E
T.5629E
T.3779
T.20T0E
T.0485E
6.9013E
6. TEALE
6.6380E

6.5162C
6.4C39E
6.2984C
6.1991E
6. 1056E
6.0173C
5.9339€
5.8549¢
3.T801E
S.TO91E

I= 60.0

5.0483¢€
3.1279¢
2+3045E
1.B344E
1.5268E
1.3087E
L« 1453E
1.0215%€
9.3193¢
8.5526E

T«3T95E
6.505T€
S.8344E
5.2994E
4.8623€
4.4980E
4.1895E
3.9246E
3.6945E
3.4926E

3.3141E
3. 1549
3.0121E
2.8832€
2 T662E
2.6595E
2.5819E
2.4T21E
2.3893E
2.3128E

2. 1438E
2-0012E
1.8792¢€
1.7736E
1.6812€
1.5996E
1.52T1€E
1.4622€
L.4037E
1.3508E

1.3026€
1.2586E
l.2182¢
1.1810E
L« 146TE
Ll 1148E
1.0852E
1.05TTE
1.0319€
l.0078¢€

9.4518E
9.6371E
9.4309t
9.2499¢E
9.0T14E
8.9024€
B8.T422€
8.5902€
8.4457E
8.3082L

8.0524C
T.8191E
T.605TE
T-4097E
T.2291¢€
T.0621E
6.90T3¢E
6.7635E
6. 6295€
6.5044E

6.38TAE
6.2T7T6E
6. LT4SE
6.UTTHE
5.9862¢
5.9000€
5.8185€
5.T4L4E
5.6683E
$.5989¢E

I= 70.0

4.8112¢
3.0088E
2.2245€
1.TT35E
L.4TT1E
1.2664E
1.1082E
9.9029€
9.0560E
8.3193€

T.1813E
6.3392€
5.6807F
5.1698E
4. T456E
4.39108
4. 0919€
3.8343€
3.6105E
3.4141E

3.2403E
3.0893€
2.94862€
2.8205€
2.TOGSE
2.6026E
2.350T4E
2.4198E
2.3391€
2.2643E

2.0995E
1.9604E
1.08413€
1.T381E
lL.64T8C
1.3681€
1.4973€
l.4338¢
1.3766E
1.3249C

1.2778E
L. 234TE
1.1952¢
1.1588€
1.1252¢
L.U941E
1.0651E
1.0381E
1.0129¢
9.8932€

9.6TLTE
9.46350
9.26T4F
9.0824E
8.90T6E
B8.7421C
8.5853¢
B.4364E
B8.2949€
B.1603E

T.9097€
T.6812€
T«4T21E
T.2801€
T.1031E
6.9396€
6. TBTIE
6.64TOE
6.5157€
6.3931E

6.2TB4E
6.1T09€E
6.0699¢
5« 9T4BE
5.8853E
5.8008€
5.T209€
56453
5.%737E
5.5057¢€

4.6064E 02
2.9039€ 02
2.1937€ 02
1.T196E 02
1.4334E 02
1.2293€ 02

8.1162€ 01

T.0122€ 01
6.1944E 01
5.5620€ 01
5.05T2E 01
4.6441E 01
4.2994€ 01
4.00TLE 01
3. 7559 01
3.5376E 01
3.3459E 01

3. 1T62E 01
3.0248E 01
2.8889E 01
2. T682E 01
2.6548E 01
2.5%532€ 01
2.4601E 01
2.3TASE 01
2.2955E 01
2.2223E 01

2.0611€ 01
1.9249€ 01
1.8083€ 01
1.TOT3IE 01
1.56189E 01
1.5400E 01
1.4T14E 01
1.4092€ 01
1.3532€ o1
1.3024c 01

1.25962€ 01
1.2140€ 01
1. 1753 01
1.1396E 01
1.1066E 01
1.0761E 01
1.0477€ 01
1-0212€ 0L
9.9645E 00
9.7329€ 0C

9.51%6E 0C
9.3113E OC
9.1189€ OU
8.9373 00
B.T&3T7E 00
8.6033c 00
8.4493E 00
8.3031E 00
B.1642€ 00
8.0321F 0OC

T.T860E OC
T«561TE 00
T«3364E 0C
T.16T8E 0C
6.9940€ 00U
6.8334F 00
6.6845c 00
6.5460E 0L
6.4171C 00
6.2967C 00

6.1840€ 00
6.0TB4E 0C
5.9T92E 0C
5.8858C 00
3.7979€ 00
5.7148 00
5.06304€ 00
5.5621€E 00
5.4918E 00
5.425%0¢ 00
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HEV

410.0
420.0
430.0
440.0
450.0
460.0
470.0
480.0
490.0
500.0

510.0
520.0
530.0
540.0
550.0
560.0
570.0
580.0
590.0
600.0

610.0
620.0
630.0
640.0
650.0
660.0
670.0
680.0
690.0
700.0

710.0
T720.0
730.0
T740.0
750.0
760.0
710.0
780.0
790.0
800.0

810.0
820.0
830.0
840.0
850.0
860.0
870.0
880.0
890.0
900.0

910.0
920.0
930.0
940.0
95%0.0
960.0
970.0
980.0
990.0
1000.0

1100.0
1200.0
1300.0
1400.0
1500.0
1600.0
1800.0
2000.0
2200.0
2400.0

2600.0
2800.0
3000.0
3200.0
3400.0
3600.0
3800.0
4000.0
4500.0
50000

I= 15.0

6.3390E
6.2851E
6.2148E
6. 1478E
6.0839€
6.0229€
5.9646E
5.9089E
5.0955E
5.8044E

5.T7555E
5.TOBSE
5.6634E
5.6201E
5.5785€
5.5385€
5.5000€
S5.4629¢E
S5.4272€
S.3928E

5.3596E
5.3276E
5.2968E
5.26TOE
S.2382€
5.2103E
5. 1834E
5. 1574E
5.1323¢€
S.1079E

5.0843¢
5.0815E
5.0394E
5.0179€
4.99T1E
4.97T0E
4.95T4E
4.9385E
4.9201E
4.9022€

4.8849E
4.8680E
4.0518E
4.8357E
4.8203¢
4.8053E
4.T906E
4. TT6SE
4.T626E
4.T492€

4.T3S1E
4,7233¢
4.T109E
4,6989E
4.68T1E
4.6TS6E
4.60645E
4.6536E
4.8430E
4.632TE

4.5426E
4.4T20E
4.4162E
4.3T19E
4.3366E
4.3084E
4.2683¢
4.2438E
4,2)01€
4.2239€

4.2231E
4.2264E
4.2323€
4.2408E
4.2507E
4.2618€
4.2T37E
4.2863E
4.3195€
4.35%3T7E

oo
00
00
00
00
00
00
00
00

00"

1= 17.5

6.26T2E
6. 1946E
6.1254E
6. 0596E
5.9968€
5.9368¢
5.879SE
5.8247€
5.7722€
$5.7220€

5.6TI9E
5.6277€
5.5834E
5.5408E
5.4999€
5.4606E
5.4227¢
5.3863L
5.3512¢
5.3174€

5.2848E
5.2534E
5.2230€
5. 193TE
5.16%4E
S.1381E
S.1118E
5.0861E
5.0614E
5.0374k

S5.0143E
4.9918E
4.9TOLE
4 .9490E
4.9286E
4.9088E
4.8896E
4.8TLOE
4.8529E
4.8354E

4.8184E
4.8018E
4.TO8STE
4.TTOLE
4. T549€E
4.T402E
4.T2S8E
4.TL19E
4.6983E
4.6031E

4.6T23E
4,6598E
4.64T6E
4.6358E
4.6242E
4.6130E
4.6020E
4.59914E
4.5810€
4.5TO9E

4.4025E
4.4134E
4.3588E
4.3155€
4.2010E
4.2536E
4.214TE
4.1911€
4. 1TB1E
4.1723€

4. 1722€
4.1758€
4.1823€
4. 1909¢€
4.2010E
4.2123E
4.2244E
4.2372€
4.2TOTE
4.3051E

6. 18T6E
6.1161E
6,0480E
5.9831E
$.9212€
5.8622E
5.8057E
5. TS1TE
5. TOO1E
5.6506E

5.6032€
5.5577e
5.3140€
5.4T21E
5.4318E
3.3931€
5.3538E
5.3199€E
3.2834E
5.2521¢

5.2200E
5.1890€
5. 1591€
5.1303€
5. 1024E
5.075%E
5.0495E
5.0243E
5. 0000E
4. 9T64L

4. 9536E
4.9315€
4.9101€
4.8894E
4.8693E
4. 8498E
4.8309E
4.8126E
4. T948E
4. TTTSE

4. T6OTE
4. TA4SE
4.T2B6E
4. TLI3E
4.6983E
4,68308E
4.6697E
4.6560E
4. 6426E
4,6297€

4.61TOE
4.6047E
4.35928€
4.5011E
4.3697E
4.5587E
4.34T9E
4.953T4E
4.5272E
4.3173E

4.4305E
4.3626E
4.3090E
4.2666E
4.2329E
4.2061E
4. LOB2E
4. 1494E
4.1330€
4. 1279€

4.1201E
4.1320E
4.1388E
& L4THE
4. 1580E
4. 1695€
4.1818€
he 1946E
4. 2204E
4.2630E

STOPPING POWER

5.9461E
S.8778E
5.8129€
5. T510E
5.6919€
5.6356E
5.5817E
3.5302€
5.4809¢
5.4338E

5.3885E
5.3451E
5.3035€
5.2635E
5.2251€
5.1882€
5.1526E
5. 1184E
5.C855¢L
5.0537E

5.0231E
4.9938E
4.9651E
4.93T6E
4.9111€
4.8854E
4.B606E
4.836TE
4.8135E
4.T910E

4.T693E
4. T4B3E
4.T2T9€
4.TOB2E
4.6891E
4.6TOSE
4.6525E
4.6351E
4.6182E
4.601TE

4.5858E
4.5T03E
4.3553€
4.540TE
4.5265€
4.5127€
4.4993E
4.4862E
4.4TI6E
4.4612E

4.4492E
4.4375E
4.4262E
4.4151E
4.4044E
4.3939E
4.3837E
4.3T3TE
4.3640E
4.3546E

4.2T24E
4.2083E
4. 1579€
4.1101€E
4.0867E
4.0618E
4.0271E
4.006TE
3.9962¢€
3.9927E

3.9941€
3.9991E
4.0068E
4.0163E
4.0273€
4.9393¢
4.0521E
4.0654E
4.1000E
4.1353€

0

00
00
00
00
0o
00
oo
00
00
00

I= 40.

5.TT4TE
5.7088E
5.6460E
5.5862€
5.5292€
5.4 T4BE
5.4228¢E
5.3730¢
5.3253€
5.27T99€

5.2362E
5. 1943E
5.1541€
5.1155€
5.07B4E
5.042TE
5.0084E
&, 9TS4E
4.9436E
4.9130€

4.08834E
4.8550E
4.827SE
4.8009E
4. TT53E
4.T506€
4.T26TE
4. TOISE
4.6812¢€
4.63593E

4.6386E
4.6183E
4.5986€
4.5T96E
4.5612¢€
4.5433C
4.5260C
4.5092E€
4.4929
4.4TTOE

4.461TE
4.446TE
4.4323€
4.4182€
4.4043E
4,3912¢
4.3T83E
4.3638E
4.3536€
4.301TE

4.3302€
4.3189¢
4.3080€
4, 29T4E
4.28T0E
4.2T89€E
4.26T1E
4.259T6E
4.2402€
4.2392¢

4.1603E
4.0989€
4.0507E
4.0128€
3.9829€
3.9594E
3.926%9t
3.9083€
3.8992¢€
3.897E

3.8990E
3.9048E
3.9131€
3.9232€
3.9346E
3.94TOE
3.9601€E
3.9737€
4.0090E
4.084TE

I= 50.

S.6417E
5.57T8E
5.5168E
S.4584C
5.4030E
5.3501€
5.2995C
5.2511€
5.2048¢
5.18605%€

5.1180E
$.07T3E
3.0382€
5.0007E
4.9646E
4.9300E
4.8966F
4,8645%E
4.8336E
4.8038E

4.TTS1E
4. TATAE
4.T207E
4. 6949E
4.6TO0E
4.6460€
h.B22TE
4.6002€
4.5T85E
4.537SE

4.53T1E
4.51T4E
4. 4984E
4.4T99€
4.4620E
4.4444E
4.4278E
4.4115€
4.3954E
4.3803€

4. 3654E
4.3509E
4.3368E
4.3232€
4.3099€
4.29T70€
4.2845€E
4.2723¢
4.2605€
4.2490E

4.23TBE
4.2269E
4.2163E
4+2060E
4. 1960E
4.1862€
4. LTHTE
4. 16TAE
4. 1504E
4.1496E

4.0733€
4.0140E
3.9675E
3.9311E
3.9025€
3.8800E
3.B493E
3.8320€
3.8239E
3.8223€

3.8253€
3.8316E
3. 8404E
3.8509E
3.062TE
3.BTS4E
3. B888E
3.9026E
3.9383¢
3.9T44E

00
00
00
00
00
00
00
00
00
00

I= &0.0

5.5331€E
3.4TOAE
$.4108E
5.3540E
5.2998¢
5.2481E
5.1987E
5. 1515E
5.1063E
5.U630€E

5.0215€
4.901TE
4.9435¢€
4.9069E
4.8716E
4.8378E
4.B052E
4. TTI9E
4.TAITE
4. T146E

4.6866E
4.6593€
4.6334E
4.6083E
4.5840E
4.5605E
4.53T8E
4.51399E
4,4948E
4.4TALE

4.4543E
4.4350€
4. 4164E
4.3984E
4.3809€
4.3640E
4.34T6E
4.3317€
4.3162¢€
4,3012€

4.204TE
4.2T26E
4.2589E
4.2456E
4.2326E
4.2201E
4.2079E
4.1960E
4. 1845
4.1732€

4.1623E
4.1517E
4.1414E
A.1314E
4.1216E
4. 1121E
4.1028E
4.0938¢
4.0850€
4.0T65E

4.0022€
3.9446E
3.8996€
3. 8643E
3.836TE
3.8152E
3.7858¢
3.T696E
3.T624E
3.T615E

3.T651E
3.TTI9E
3.T810E
3.7919¢
3.8039€
3.816%
3.8305€
3.8445€
3.8808E
3.9189E

I= T0.0

S.4412E
5.3798¢
5.3214€
5.2657¢€
5.2126€
S.1619€
S.1135E
5.0672€
5.0229€
4.9805E

4.9399€
4.9009€
4.8635E
4.82T5E
4.T7930E
4.T398E
4.T279E
4.6972€
4. 566THE
4.6391E

4.61LTE
4.58%2€
4.5597¢
4.5350E
4.5112E
4.4802E
4.4680E
428445
4.4237E
4.4036E

4.3842€
4. 36594E
4.34T2E
4.3295E
4.3124¢
4.2958E
4.2798E
4,20642€
4.2491E
4.2344E

4.2202€
4.2064E
4.1929€
4. 1T99E
4. 16T3E
4.1550E
4.1431E
4. 1314E
4.1202€
4.1092€

4.0985€¢
4,08082E
4.0781E
4.0683E
4.0587E
4.0494E
4.0004E
4.0316E
4.0230€
4.0146E

3.9421€
3.8859E
3.0421E
3.8079€
3.T8LLE
3.7603¢
3.7322€
3.T169€
3.TI04E
3.T101E

3.TIALE
3.T213€
3.T308E
3.T4L9E
3.7543€
3.T6TAL
3.T812€
3. TIS4E
3.8318E
3.8684E

120

I= 80.0

5.3616E
5.3013E
5.2439E€
5.1892€
5.137T1E
5.0873E
5.039TE
4. 994 2E
4.9507E
4,9091€

4.8691E
4.08308€
4. T941E
4.T508E
4.T249€
4.6923E
4.6610E
4,6308E
4.6018E
4.57)8E

4.3468E
4.5208E
4.495TE
4.4T15E
4.4402E
4.4256E
4.4038€
4,3027E
4.3623€
4.3426E

4.3238€
4.3050€E
4.2871E
4.2698€
4,2530E
4.2368E
4.2210€
4.2057€
4. 1909
4. LT65E

4.1625€
4. 1490€
4.1358€
4.1231E
4.1107E
4.0986E
4.0869€
4.0735€E
4. 0645E
4.03537€

4.0433€
4.0331€
4.0232€
4.0138E
4.0042E
3.9951€
3.9863E
3.97T6€E
3.9692€
3.9610E

3.8901E
3.8351E
3. T924E
3.T590€
3.7330€
3.T1208E
3.6837E
3.6T12¢€
3.66%54E
3.6655E

3.6TO0E
3.07T6E
3.6873E
3.698TE
3.T112€
3. T246E
3.T385€
3.7528E
3. T89%E
3.8283E

00
00
00
00
oo
oc
[+1¢]
o0
00
00

oc
00
00
00
00
00
00
0o
ou
00
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Olﬂﬂ‘.ﬂ’\lun

12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0

32.0
34.0
36.0
38.0
40.0
42.0
44.0
46.0
48.0
50.0

55.0
60.0
63.0
70.0
75.0
80.0

100.0

105.0
110.0
115.0
120.0
123.0
130.0
135.0
140.0
145.0
150.0

155.0
160.0
165.0
170.0
175.0
180.0
185.0
190.0
195.0
200.0

210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
300.

310.0
320.0
330.0
340.0
350.0
360.0
370.0
380.0
390.0
400.0

I= %0.0

4.4266E

T.9363E

6.8625E
6.0662E
5.4499E
4.9575E
4.5%543E
4.217TE
3.9321¢€
3.6866E
J.4TILE
3.28%6E

3.1193€
2.9T14E
2.8383E
2.TI82E
2.6091E
2.5095E
2.4183F
2.3344E
2.25T0€
2.18%3E

2.0272€
1.8937€
1.T792€
1.6801E
1.5933E
1.516TE
1.4485E
1.3874E
1.3324E
1.2826E

1.23T2E
1.195T€
1.1577€E
1.1226E
1.0902€
1.0602E
1.0323€
1.0062E
9.8192¢
9.5915€

9.37T7T8E
9.17TT0E
B.98TTE
8.8092E
B.6404E
B.4807E
8.3293E
B8.18%96E
B.0489E
T.9189€

T-6T69E
T.4562E
T.2943E
T.0688E
6.8978E
6.TI9TE
6.9932€
6.45T0E
6-3301€
6.2116E

6.1007E
5.9968E
5.8991€
5.8073€
5.7207€
5.6390E
3.5618BE
5.4887E
5.4195E
5.3538€E

02
02
02
02
02
02
02
o1
ol
1%

I= 100.0

4.2670E
2.T7258€
2.0328E
1.6278E
1.3591E
1.1668E
1.0218€
9.1791E
8.4303E
T.TT45€

6.7280E
5.9511E
5.3492E
4.8680E
4.4T37E
4. L444E
3.8648€
3.6284F
3.4152€
3.2315€

3.0687E
2.9235€
2.7930E
2.6751E
2.5680E
2.4TOAE
2.3809E
2.2905€E
2.2225€E
2.1521€

1.9968E
1.8656E
1.7532€
1.6558€
1.5704E
1.4931E
1.4280€
1.3680E
1.3139E
1.2648E

1.2202¢€
1-17T94E
1.1419€
1. 10T4E
1.0735E
1.0460€
1.0185€
9.9285€
9.6891€
P 4649E

9. 2545E
9.0567E
8.B8TO&E
B8.6946E
8.5284E
B8.37L0€
8.2219€
8.0803E
T« 945TE
T.8177€

T.5T93€
T.3619E
T.1629€
6.9801€
6.8116E
6.65%59€
6.5115%€
6.3TT3E
6.2522€
6.1354E

6.0262E
$.9237E
5.8275E
5.T3T0E
5.6517E
5.5T12E
5.4951E
5.4230E
5.3548E
5.2900€

3.9939E
2.5790E
1.9326E
1.5518E
1.2979€
1. 1154¢
9. TT55E
8.B086E
8. 1370€
T 4929

6.4938E
5. T306E
5. 1T40€
4. T122€
4.3335¢
4. 0169€
3. TATOE
3.5163E
3.3147¢
3.137SE

2. 9804E

2.0945E

1. 9441E
1.8170E
1.T080E
1.6135E
1.5308E
1-45T&E
1.3926E
1. 3343
1.2817€
1.2341E

1.190TE
1.1510€
L. L146E
1.0811E
1.0501E
1.0213€
9. 9459E
9. 696TE
9. 4638€E
9. 245TE

9.0410E
8, B4835E
8.08TLE
B.4960E
B8.3342E
8.1811E
8.03%9€
T.0981E
T.T6T0E
T.6423E

T.4102€
T 1983E
7.0046E
6.8266E
6.6625€E
6.5107E
6.3T00E
6.2393E
6. LLTSE
6.0036€E

5.8972E
5. T973E
5. T036E
5. 6153E
5.5322€
5.453T€
5. 3795€
5.3093E
5.2428E
S.1T9TE

STOPPING POMER

I= 140.

3.T6T2E
2.4548E
L.84T3E
1.48TL1E
1.2459€
1.07T20E
9.4033E
B8.4956E
T.8700E
T.25280E

6.2941E
5.5798E
S.0246€
4.5796€
4.2142€
3.9083€
3.6403E
3.4243€
3.2292¢
3.05T6E

2.9054E

2.0456E

1.8994E
1.TISTE
1.669TE
L-STTTE
L.49TLE
L. 4299€
1.3625€
1.3087¢
1. 2544
1.2080€

1. 185TE
1.1270€
1.0915€
1.0588E
1.0285E
1.0008€
9.T436E
9.5003€

9.2730E 00

9.0600E

B8.8601E
B8.6722E
B.4951E
B8.3279€
8.1699¢E
8.0203E
T«BTB5E
T.T438E
T.6138E
T« 4939E

T.26T0E
T7.0601€
6.8TOTE
6.696TE
6.5362€
6.3879E
6.2504E
6.1225¢
6.0034E
5.8921E

5.7880E
5.6904E
5.5987E
5.5124E
S.4311€
543543
5.2818E
5.2132€
S.1481E
5.0864E

I= 160.

3.5TA3E
2.3475€
1. TTISE
1.4310€
1.2008€
1.0345E
9.0830€
B.2246E
T.6368E
T-0432€

6.1198E
5.4308E
4.8943E
4.4638E
4.1100€
3.8136E
3.5814E
3.3441E
3.1546E
2.9879E

2.8400E
2.TOTSE
2.58%0€
2.4815€
2.303TE
2.2943E
2.2126E
2.1372€
2.0673E
2.00308

1.8603¢
1.T399%€
1.63648
L. 5400E
L.4679€
1.3983€
1.3384€
1.2808E
1.23078
1.1853¢

1.1440€
1.1062E
1.CTL4E
1.0394E
1.0098k
9.8234E
9.56081E
9.3300E
9.10T4E
8.8989€

8.T032E
8.5192€
8.3438E
8.1821€
8.0273E
T.8808E
T.T419E
T.56100E
T«4B46E
T.3652E

T.1429€
6.9402E
6. T546E
6.5840E
6.4268E
6.2014E
6. 1466E
6.0213€
5.9045€
5. T954E

5.6934E
5.5977€
5.5078E
5.4232€
5.3435F
5.2682€
5.1971€
5.12980
5.0660E
5.0055€

3.4074E
2.2%35E
1.TOBSE
1.3816E
1.1613E
1.0016¢&
B.8024E
T.9887E
T.4343E
6.8610E

5.9679€
5.3003€
4.T802E
4.3623E
4.01086€
3.T304E
3.4851€
3.273%5€
3.0890¢
2.9268E

2. TB24AE
2.6536E
2.53T6E
2.432TE
2.3373€
2.2%02¢
2.1T02€
2.0966E
2.0285€
1.9653¢

1.8262€
1.T082€
1.60T0E
1.5191E
1.4421E
1.3T40E
1.3133¢
1-2589E
1.2099¢€
L. 1654E

1. 1248E
1.0878E
1.053TE
1.0223E
9.9329€
9.6636E
9.4132€
9.179TE
8.9613€
B8.7568€E

8.%5648C
B8.3842€
B8.2141E
B8.0534E
T.9016E
T.T5T8E
T.6214E
T.4919E
T.3688¢L
T.2516E

T.0334E
6.8344E
6.6521E
6.484TE
6.3302€
6.1875E
6.0551¢
5.9320¢€
5.8173€
S.T101E

5.6099E
5.5159€
5.4276€
S5.3445E
5.2661F
s.192c
5.1224E
5.0962E
4. 9936E
4.9341E

I= 200.

3.2609E
2.1T01E
1.6505E
1.3376E
1.1260€
9.T2)TE
8.5534E
T.TT85E
T.2527€
6.69T4E

S.0314E
5.1832E
4.67T6L
4.2T10E
3.9363E
3.6556E
3. 4104E
3.2101€
3.0300E
2.8T14E

2.TYOTE
2.6048E
2.4915¢€
2.3889E
2.29%6E
2.2104E
2.1322E
2.0601E
L.9935E
1.9318E

L. T954E
1.6T98E
1.5806E
1.4945E
1.4190€
1.3522€
1.2927€
1.2393E
1.1911€
1.1475€

1.1077E
1.0T3E
1.0378E
1.007T0€
9.T850E
9.5205E
9.2T44E
9.0450E
8.8305E
8.6295E

B.4408E
B8.2634E
8.0961E
T7.9382€
T.T889E
Tb4THE
T.5135€
T.3862€E
T.2632€
T« 1499€

6.9354E
6.T3I96E
6.5604E
6.3957€
6.243BE
6.1034E
5.9731k
5.8520€
5.T3I92E
5.06338E

5.5351€E
S.4427E
5.3558€
5.2740E
5.1970¢€
5.1242€
5.0535€E
4. 9904E
4.9288€
4+8TO3E

I= 220.

3.1308¢
2.0953¢
1.5984E
1.2980E
1.0943€
9.4607E
8.3300€
7.3886E
T.0872€
6.5485E

5.TOTOE
5.0764E€
4.5040€
4. 1878E
3.8814E
3.58TAE
3.353%9¢
3.15%23E
2.9763E
2.8212€

2.6835E
2.5604€
2.4495E
2.3491E
2.25T7€
2.1742€
2.09T6E
2.02T0E
L.961TE
1.9012€

1.T6TAE
1. 6540
1.5567€
1.4T21E
1.3980€
1.3324E
1.2739€
1.2215E
1.1741E
1.1312€

1.0921E
1-0563€
1.0234E
9.9313€
9.6%08€
9.3907E
9.1487E
8.9229€
8.TL119€
B.5141E

8.3285E
B.1538E
T.9892E
T.8338E
T.6869€
T.54TTE
T413T7€
T.2904k
T.1TL3E
T.0578E

6.8466E
6.6538E
6.4TT3E
6.3151E
6. 1635E
6.0272€
5.8909¢
5. TT96E
5.668%E
5.564TE

5.4675E
5.3T64E
5.2908E
5.2102e
3.1343E
5.062TE
4.9949E
4.9308E
4.8701E
4.8124E

I= 240.0

3.0140€
2.0276€
L«5512€
1.2621E
1.0655E
9.2224€
B.1277E
T.4156E
6.93%54E
6.411TE

5.5927¢
4.9782¢E
4.4980¢
4.1113E
3. T92%E
3.524TE
3. 2964E
3.0991E
2.9269E
2. TT51€

2.6402€
2.5195E
2. 4109
2.312%
2.2229€
2. 1410E
2.0658E
1.9965E
1+9325€
1.8731E

LTALTE
1.6304E
1.334TE
1.4516E
1.3787€
1.3142€
1.256TE
1.2051€
1. 1586€
1.1 164E

1.0779€
L.0426E
1.0103€
9.0042€
9.52081€F
9. 27T19€
9.0336E
8.BL12E
8.6034E
B.4086E

8.2257¢€
B8.0536E
T.8914€
T.T3I83E
T.5935E
T. 4564E
T.3263E
T.2028E
T.08%4E
6.9736E

6. T653E
6. 5T34E
6.4014E
6.2814F
6.0940E
5. 95T6E
3.8311€
5.T135E
5.6039E
3.5015€

3.4037E
5.31%58€
5. 2314E
5.1519€
5.07T1E
5.0064€
4. 93I96E
4. BTHAE
4.8165E
4. T596E
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EMERGY
MEY

1= %0.0

5.2914E
5.2320€
S 1755E
5.1217€
5.0T04E
5.0214E
4.9T4AGE
4,9298¢
4.88T0E
4.0460E

4.808TE
4.T690E
4.T329E
4.6982E
4.6648E
4.6328E
4.6019€
4.5T22E
4.5437E
4.5161E

4.4896E
4.4640E
4.4394E
4.4155€
4,3926E
4.3T03E
4.3489€
4.3282€
4.3081E
4.2807E

4.2699E
4.,2518E
4.2342€
4.2172E
4.2006E
4.184ATE
4.1692€
4.1541E
4. 1396E
§.1254€

4. 1117€
4.0984E
4,0855E
4.0729¢
4.060TE
4.0489E
4.03TAE
4.0262€
4.0153E
4.0048E

3.9945E€
3.9845E
3.9T48E
3.9654E
3.9562E
3.9472€
3.9305¢
3.9301E
3.9218E
3.9138E

3.8441E

3.6263E

3.6311E
3.630%
3.6490E
3.6606E
3.6T733E
3.6868E
3.TOO9E
3.T193€
3.7522¢
3.7892¢

8888888888 888822838328 882882883888 28888388388 85383838388 8888388858 2858888888 2888888838

i= 100.0

S$.22085E
5.1T00E
S. 1144
5.0613€
5.0107€
4.9625€
4.9163E
4.8722€
4,.8300E
4.TB98E

4.TS09E
4.T138E
4.6T81E
4.06439E
4.6111E
4.5T793E
4.5491E
4.5198E
4.491TE
4. 4646E

4.4384E
4.41328
4.3889%€
4.3655E
4.3428E
4.3209€E
4.2998E
4. 2THE
4.2596E
4.2405E

4.2220E
4.2041E
4. 1868E
4.1TO0E
4.1538E
4.1380€
4.1228E
4.1080€
4.0938E
4.07T97E

4.0662€
4.0531€
4.0404E
4.0280€
4.0160E
4. 0044E
3.9931€E
3.9821€
3.9T714E
3.9610E

3.9509€
3.9411E
3.9313E
3.9222€
3.9132€
3.9044E
3.8958E
3.8875E
3.8794E
3.8715€

3.8031€E
3.7502€
3.TO92E
3.6TTIE
3.6525E
3.6334F
3.6080€
3.5949€
3.5901E
3.5911€

3.5963E
3.6044E
3.614TE
3.6264E
3.86393€
3.6530F
3.6672E
3.6817E
3.T108E
3.7560€

I= 120.0

S.1198E
5.0628E
5.008%E
4.9368E
4.9075€
4.0604E
4.8135E
4. TT25€
4. T314E
4. 6920E

4.65943E
4.6181E
4.5834E
4.3500E
4.5180E
4.4872€
4.45T6E
4.4291E
4.401TE
4.3733E

4. M9BE
4.3253E
4.3016E
4.2T88E
4. 254TE
4. 2354E
4.2148E
4. 1949E
4. 175TE
4.15T1E

4. 1391€
4. 121T7E
4+ 1048E
4.0885E
4.0727¢
4.05T4E
4.0425E
4.0201E
4.0142€
4.0006E

3.9875€
3. 9T48E
3.9624E
3. 9504E
3.938TE
3.9274E
3.9164E
3.9057€
3.89%3E
3.8852E

3. 0734E
3.B658E
3. B8566E
3.84T5€
3.8388E
3.8302€
3.8219€
3.8138E
3. B040E
3.T983¢

3.7T320€
3.6808E
3.6412¢€
3. 6105€
3.586TE
3.5685E
3.5445E
3.5325€
3.5286E
3.5303E

3.5360E
3. 544 6E
3.55%3E
3.56T4E
3. 5806E
3.95945E
3.6089E
3. 6236E
3.6611E
3.6986E

STOPPING POWER

I= 140.0

5.0278E
4. 9T20E
4.9189E
4.8684E
4.8202€
4. TT42€
4.7302€
4.6882E
4.64T9€
4.6094E

4.5725E
4.5372¢
4.5032¢
4.4 TOSE
4.4393E
4.4092€
4.3803E
4.3324E
4.3256€
4. 2998E

4.2T49€
4.2%09E
4.2278E
4.2054E€
4.1839E
4.1631E
4. 1430E
4.123%¢€
4.104TE
4.0866E

4.0690F
4.0520€
4.0355€
4.0196€
4.0041E
3.9892E
3.974TE
3.9608E

3.94T0E 00

3.920%9€
3.9085E
3.8964E
3.884TE
3.8733E
3.0623E
3.0515€
3.8411E
3.8310E
3.8211E

3.011%€
3.8022¢
3.7932€
3. TBAAE
3. TT58E
3.T6T5E
3. 7994
3.7515€
3.T439E
3.TINGE

3.6T18E
3.6222€
3.5837E
3.5540€
3.5311€
3.5136E
3.4909E
3.4T9TE
3.4T65E
3.4T09E

3.4851E
JAILE
3.50%51€
3.5175E
3.530%
3.5450€
3.5596E
3.5T4SE
3.6123€
3.6500E

8888838882

888838888388

I= 160.0

4.9480¢€
4.8933E
$.8413E
4.TI18E
4. T445E
4.6994E
4.6563E
4.6151E
4.5T756E
4.5379€

4.5017E
4.486TOE
4.433TE
4.4018E
4.3711E
4.3416E
4.3132€
4.2859€
4.2997E
§.2344E

4.2100E
4.1865€
4. 1638E
4.1419E
4.1208€
4. 1004E
4.080TE
4.0616E
4.0432E
4.0254E

4.0082E
3.9916€
3.9754E
3.9598E
3.944TE
3.9300€
3.9158€
3.9021E
3.8887E
3.8758¢

3.8633E
3.8511E
3.8393E
3.B278E
3.B167E
3.80%8E
3. T953E
3.T851E
3.T152€
3.T658E

3.T7962¢€
3.TATIE
3.7383E
3.7297€
3.T7213E
3.TI32E
3.T7053¢€
3.69T6E
3.6901E
3.6828E

3.6198E
3.5713€
3.5340E
3.5051€
3.4830E
3.4661E
J.4444E
3.4341E
3.4315€
3.4363E

3.4410E
3.4503E
3.4616E
3.4T42E
3.48T78E
3.5021€
3.5169€
3.5319€
3.5700€
3.6079€

§88888 8888888885

8888

888838838888

8388838828

8883888 8288822888

888

1= 180.0

4.BTTTE
4.8240E
4.TT29E
4.T242E
4.6TTTE
4.6334E
4.5911€
4. 9506€
4.5118E
4.4T48L

4.4392E
4.4052€
4.3725E
4.3411€
4.3109¢€
4.2820E
4.2541E
4.2273E
4,2015€E
4.1766E

4.1527€
4.1296E
4.1073E
4.0858E
4,0651¢
4.0451E
4.0257E

4.00T1E 0O

3.9890E
3.9715€

3.9546€
3.930836
3.9224E
3.9071E
3.8923€
3.0TTSE

3.B3TAE
3.8247€

3.8124E
3.8004€
3.T808E
3. TTTSE
3.TOLTE
3.T561€
3.TASBE
3.T358E
3.7281E
3. TL66E

3.TOT4E
3.6985¢
3.6899E
3.6814E
3.6T32E
3.66%3E
3.85T5€
3.6500€
3.6426E
3.6395E€

3.5T38E
3.5265€
3.4900E
3.4620€
3. 4405€
3.4242C
3.4034E
3.393T€
3.3917E
3.39350E

3.4020€
3.4117E
3.4232€
3.4381E
3.4499E
3. 4643E
3.4TI2E
3. 4944
3.532TE
3.5708E

I= 200.0

4.B14TE
4.TH19E
4.T116E
4.663TE
4.6180C
4. 5T4AE
4.5327E
4. 4929E
4<4548E
4.41083€

4.3833¢
4.3498E
4.3176E
4.2868E
4.25T1E
4.2286E
4.2012€
4.1T48E
4. 1494E
4.12%0E

4.1014€
4.078TE
4,0568E
%.035TE
4.0153E
3.99%6E
3.9766E
3.9582E
3.9405E
3.9233€

3.906TE
3.8906E
3.8750E
3.8500€
3. 8454
3.8312E
3.B176E
3.8043E
3.7914¢€
3.TT89E

3.7669€
3.7551€
3.T43TE
3.7327€
3.7220€
3.7115¢
3.T014E
3.6916E
3.6821E
3.6728€

3.6638E
3.6550€
3.6465E
3.6383E
3.6302€
3.6226€
J.6148E
3.60T4E
3.6002€
3.5932€

3.532TE
3. 4804E
3.450TE
3.4234E
3.4025€
3.3867¢€
3.364TE
3.357T€
3.3562E
3.3599€

3.3672€
3.ITT1E
3.380%9C
3.4019€
3.4139E
3.4305E
3. 4455€
3.4608E
3. 4994E
3.53T6E

I= 220.0

4. T5TTE
4.TO3TE
4.6561E
4.6089E
%.5639E
4.5209€
4.4T99€
4,4406E
4.4031E
4.36T1E

4.332Te
4.2997E
4.2680E
4.23T6E
4.2084E
4.1803E
4.1533C
4.1273€
4.1023E
4.0T83E

4.0551E
4.0327E
4.0111E
3.9903E
3.9T7T02€
3.9308E
3.9321E
3.9140€
3.0945€
3.87T96F

3.8633E
3.84TAE
3.8321€
3.B173E
3.8029€
3.T890E
3.TT96E
3.T625C
3.T498E
3.TIT6E

3.T257E
3.TI41E
3.T029€
3.6920€
3.6815E
3.6T12€
3.6613E
3.6516E
3.6423€
3.6331C

3.6243E
3.6157€E
3.60T3E
3.5992E
3.5913€
3.5B36E
3.5761€
3.56089E
3.5618¢
3.5549E

3.4955€
3.4501E
3.4152€
3.3804E
3.3681E
3.3%27€
3.3335¢
3.3251E
3.3240€
3.3281E

3.3357€
3 3459E
3.3578¢
3.3711€
3.3832€
3.3999E
3.4151E
3. 4304E
3.4692€
3.5076E
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I= 240.0

4.TOSGE
4.6%43E
4. 6054E
4.5509E
4.5145€
4.4T21E

* §.4316E

4.3929E
4.3539€
4.3204€

4.2845E
4.2539€
4.2227€
4.192TE
4.1639E
4.1362€
4, 1096E
4.0840€
4.0593¢
4.0356E

4.0127€
3.9906E
3.9694E
3.9489€
3.9291€
3.9100€
3.8915¢
3.BTITE
3.8564E
3.839TE

3.8236E
3.8080E
3.T929¢€
3.7783¢
3.T642€
3.7505¢€
3.7372¢
3.T243€
3.TII9E
3.6998E

3.6800E
3. 6TeTE
3.6658E
3.6549E
3. 6845
3.6345E
3.624TE
3.6151E
3.6059€
3.5969E

3.5882€
3.5T98€
3.5T1%€E
3.5635€
3.9557E
3.5402€
3.5408E
3.533TE
3.5267E
3.5199€

3.4616E
3.4169E
3.3827E
3.3565E
3.3386TE
3.3218€
3.3032¢
3.2953€
3.294TE
3.2990E

3.3069E
3.31T3E
3.329%E
3. 3429
3.3572€
3.3720€
3.3872E
3.402TE
3. 4416EC
3.4802€
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ENERGY
KEV

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0

32.0
34,0
36.0
38.0
40.0
42.0
44.0
46.0
48.0
50.0

535.0
60,0
653.0
T0.0
75.0
80.0
as.0
90.0
95.0
100.0

105.0
110.0
115.0
120.0
125.0
130.0
135.0
140.0
145.0
150.0

155.0
160.0
165.0
170.0
175.0
180.0
185.0
190.0
195.0
200.0

210.0
220.0
230.0
240.0
250.0
260.0
270.0
200.0
290.0
300.0

310.0
320.0
330.0
340.0
350.0
360.0
370.0
380.0
390.0
400.0

I= 260.0

2.9086E
1.9660E
1.35081€
1.2292€
1.0392€
9.004TE
T.9431E
T.2568E
6.T930E
6.2853E

5.4870E
4.8B73E
4.4183E
4,0403E
3.7285€
3.46066E
3.2430E
3.0499€
2.8811E
2.TI24E

2.6001€
2.4818E
2.3751E
2.2T86E
2.1906E
2.1102€
2.0364E
1.9884E
1.9054E
1.84T1E

1.T1B0E
1.6085€
1.5145€
1.4327TE
1.38610E
1.2975€
1.2409E
1.1901E
1.1442E
1.1026E

1.084TE
1.0300€
9.9811€
9.6BT0E
9.4149E
9. 1624E
B8.92T4E
8.TOB3E
8.5033E
8.3113€

8.1309E
T.9612E
T«8013E
T.6503€
T7.5073E
T.3722€
T« 2440E
T«1221€
T.0063E
6.8960E

6.6905E
6.5031E
6.3314E
6.1T36E
6.0201E
5.0935E
5.T606E
5.6525E
5.5643¢
5.4433E

5.3407E
5.2600¢
S.1T6TE
5.0983E
5.0244E
4.9546€
4.888TE
4.8263E
4.T6TIE
4.TLL0E

I= 280.0

2.8125E
1.9096E
1.4685€
1.1990€
1.0150E
8.B047E
T« TTIGE
T.1102€
6.6845E
6. 16TSE

9.3885€
4,8025€E
4.3439E
3.9TALE
3.6689E
3.4123€
3.1933¢
3.003%9
2.8384E
2.6925€

2.5627E
2.44065E
2.3418E
2.2470E
2.1606E
2.0816¢
2,0090€
1.9421E
1.8803E
1.8229¢€

1.6959€
1.5882€
L. 4956E
1.4151€
1. 3444E
1.2819€
1.2261E
1.1T81E
1.1309€
1.0899€

1.0925E
1.0183E
9.8683E
9.5T82€
9.3098E
9.0607E
8.8289E
8.6127€
8.4105€
B8.2210€

8.0430E
T.8755E
TTITTE
T.5686E
T.427TE
T.2942E
T« 16T5E
T.0473E
6.9329€
6.8240E

6.6211E
6.4361E
6.2665E
6.1107E
5. 96869E
5.8340€
5.T10TE
5.5961€E
5.4892E
5.30894E

5.2959E
5,2003E
5.1260E
5.0485€
4.9755€
4.90686E
4.8415€E
4. TT9BE
4.T214E
4. 6660E

o2
02
02
02
o2
o1
o1
o1
o1
o1

ol
o1
01
o1
o0l
o1
o1
o1
ol
ol

I= 300.0

2. T246E
1.8575€
1.4319€
1.1711E
9.9270E
B8.6199€
T.61T2€
6. 9T40E
6, 5425E
6.0576E

5.2962E
4.T231E
4.2T42E
3.9120€
3. 6129
3.3614E
3. 1466E
2.9608E
2. T9B4E
2.6551E

2.5276E
2.4135E
24 3106E
2.21TAE
2. 1324€
2.0547TE
1.9834E
1.91T6E
1.856TE
1.8002€

1.6752€
1.5691€
1.4TT9E
1.3986E
1.3290E
1. 2673
1. 2123E
1.1630E
1. 1184E
1.0780E

1.0411E
1.0073€
9. T629E
9.4T64E
9.211TE
8.9638E
8.7370E
8.9%5235¢€
8.3238¢E
B.136TE

T+ 9609
To T956E
T.63I9TE
T-4925E
7.3532E
T.2213E
T.0963E
6. 9TTAE
6.B645E
6. T569€E

6. 9564E
6.3T36E
6.2060E
6.0520€
S.9100€
5. TT8LE
5.6567E
5.5434E
S.4378E
5.3391€

5. 2468E
5. 1601E
5.0788E
$.0022€
4.9300E
4.08619C
4. T973E
4. TIGSE
4.6TOBE
4.6240E

STOPPING POMER

1= 320.0

2.643TE
1.B094E
1.3979E
1. 1452€
9.T195¢€
B.4483E
T.4T20€
5.8469E
6.4281E
5.9543€

5.2095E
4.6483E
4.2005E
3.0534E
3.3601E
3.3133€
3.1025€
2.9201E
2. T608E
2.6198E

2.4945E
2.3823E
2.2812€
2. 1894E
2.1059€
2.0295E
1.9592¢€
L.BI4AE
1.8345E
L. TTR9E

1.6557E
1.5512€
1.4613E
1.30831E
1.3145E
1.2537E
1.1994E
1.1507€
1. 106TE
1.0668E

1.0304E
9. 9T04E
9.6640E
9.3812€
9.1196E
B.BT4TE
8.6507E
B8.4398E
B.2425€
B.0STTE

T.B840E
T.T206E
T«5665E
T«4210€
T.2034E
T.1531EC
T0294E
6.9120E
6.8003E
6.6939

5. 4958E
6.3150E
6.1493E
5.9970E
5.8566E
5.T26TE
5.6061E
S.4941E
5.3896€
5.2920€

5.2007E
5.1150€
5.0345E
4. 9588E
4.08T4E
4.B200€
4. T563E
4.6960E
4.6389E
4.5984TE

I= 340.0

2.5688E
1. T6AE
1.36463E
1.1211E
9.5260E
B.2884E
T.3367TE
6.7279
6.3202
5.857

5.12T6E
4.5T7SE
4. 14062E
3.7980E
3.5101E
3.2678E
3.0608¢
2.8816E
2.T248E
2.5864F

2.4632€
2.3528€
2.2533€
2. 1630E
2.0808E
2.0055E
1. 9364E
1.87T25€
1.8135E
1.TS8TE

1.6373E
1.5343E
L.445TE
1.3685E
1.3008E
1.2407E
1.1872E
1.1391E
1.0957€
1.0562E

1.0203€
9.873%E
9.5T07€
9.2914C
9.0328E
8.7928E
B8.5694E
B8.3610E

B8.1660C 00

T.9832¢E

T.B115E
T.6500€
T49T6E
T.3538E
T.21TTE
T.0888E
6.9665E
6.8504E
6.T3I99E
6.0634TE

6.4387E
6.2599E
6.0960E
5.9433E
5.8064E

S.6TT8E 00

3.5586E
S5.44TTE
5.3443E
5.247TE

5.1573€
5.0726€
4.9929E
4.9180E
4.84T3E
4.T806E
4. TIT6E
4. 65T9E
4. 6014E
4.54TTE

2.4346E
1.6838E
1.3091€
1.07TT2E
9. 1T4BE
T.9901E
T.0913E
6.5105E
6.1218E
5.6TT6E

4.9762€
4.4465E
4.0308€
3.6949E
3.4172€
3.1832€
2.9832€E
2.B099E
2.6503E
2.3243E

2.4050E
2.2980E
2.201%€
2.1140€
2.0342€
1.98611E
1.8940E
1.8320€
1. TT48E
1.T213E

1.6033E
1.5030€
1.4166E
1.3415E
1.2734E
1.2169E
1+ 1646E
L 1LTTE
1.0753E
1.0368E

1.0016E
9.6946E
9.3907E
9.12%6€
B.8728E
8.63B1E
B8.4196E
8.2157€
B8.0249E
T-8460E

T.6T80E
T.5199E
T-3T07E
T.2299E
T.0967E
6. 9TOAE
6.8507E
6.T369E
6.6287E
6.5257E

6.3337E
6. 1504F
5.9978E
5.8502¢€
5.T140€
5.5880E
5.4T11E
5.3624E
5.2610C
5. 1663E

5.0777€
4,994 5€
4.9164E
4.8429F
4.TT36E
4.T082€
4.8464E
4.5879E
4.5324E
4.4798E

1= 420.0

2-3172E
1.612%E
1.2584E
1.0384E
B8.8634E
T-TAOTE
6.8738E
6.3160E
5.942TE
5.5154E

4.838TE
4.32T0E
3.9253E
3.6007€
3.3321€
3.105TE
2.9121E
2. TAA2E
2.5973€
2.4674E

2.3517E
2.24T9E€
2. 1542E
2.0691E
L.9916E
1.9205€
1.85%2E
1. T949E
1.7390€
1.68T1E

1.5722€
Lo ATAAE
1.3902€
1.3168E
1.2523E
1.1952€
l.1441E
1.0982E
1.0548E
1.0191€

9.84T3E
9.5323¢
9.242TE
8.9753E
8.72T8€E
B8.497T9E
8.2038E
8.0840E
T«89T1E
T-T218E

T<55T1E
T.4021E
T.2%559€
T« 1178E
6.9872E
6.8634E
6.T&59E
6.6343E
6.5202€
6.42T1E

6.2307E
6.066TE
5.9092€
5.T642E
5.6305€
5.5068E
$5.3921E
5.28%3F
5.1858¢€
5.0928E

5.0098E
4.9241E
4.84TAE
4.TTS2E
4.7072€
4.6429€
4.5822¢€
4.524TE
4.4TO2E
4.4185E

I= 480.

2.2134€
1.5409€
1.2131€
1.0038¢
8. 5044
T.5101E
b.6T0E
6. 1404
5. TT9TE
5.3675€

4.T12T€E
4.2170€
3.8279€
3.5134E
3.2532¢
3.033%9€
2.8401E
2.6834E
2.5408E
2.8147E

2.3023E
2.2014E
2. 1103E
2.0276E
1.9%521€
1.8830¢
1.8194E
1.TS06E
1.TOG2E
1.6556E

1.5435€
1.44B1E
1.3638¢
1.2942€
1.2311€
1.1752€
1.1252€
1.0803E
1.0398€
1.0029€

9.6921E
9.383%€
9.0998E
8.8376E
8.5949E
8.3694E
8.1595€
T.9635€
T-T801E
T.6081E

T« 4465E
T« 2944E
T« 1509E
T.0193€
6.88T0E
6.T655€
6.6502€
6.5408E
6.4363E
6.33T0E

6.1520E
5.9830E
3.8282E
5.6858E
5. 5%44E
5.4328€
5.3200€
5.2150E
5.11T2E
5.0258E

4.9402€
4.8599€
4. TBASE
4.T135€
4.6466F
4.3834E
4.5237€
4.40T1E
4.4135€
4.3627E

02
0z
0z
02
o1
o0
o1
o1
o1
o1

I= 500.0

2.1208E
1.4918E
1.1722¢
9.7222€
B8-3322E
T.3018€
6.5030€
5.9806E
$.6303E
5.2316E

4.5962E
4. 1149E
3.7372€
3.4321E
3.1796E
2.9686TE
2. TBASE
2.6264E
2.4879E
2.36%4E

2.2561E
2. 1580E
2.0693E
1.9888E
1. 9153
L. B4T9E
1.T859E
1.T287E
1.6T36E
1.6262E

1.5168E
1.4236E
1. 3432E
1.2T31E
1. 2114E
1.1567€
1. 10T8E
1.0638BE
1.0240€
9.87085E

9.5484E
9.2458E
8.9673E
B.TLO2E
B8.4T20€
8.2507€
8.0446E
T1.8522E
T-6T721E
T.5032€

To IGA4E
T« L949E
T-0539€
6.9207E
6. TIATE
6.6752€
6.5619E
6.4541E
6.351TE
6.2540E

6.0T21E
5.9059E
5.T536E
5.6135E
5. 4042E
5. 364BE
5.2538E
5. 1504E
5.0541€
4,964 1E

4.8799¢E
4.8009€E
4. T266E
4.656TE
4.5909€E
4.5287€
4.4699E
4.4142E
4.3614E
4.3114E

02
02
02
o1
o1
o1
01
o1
o1
o1
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ENERGY
MEY

410.0
420.0
430.0
440.0
430.0
460.0
470.0
480.0
490.0
500.0

510.0
520.0
$30.0
540.0
550.0
560.0
570.0
580.0
590.0
600.0

610.0
$20.0
630.0

I= 260.

4.65TTE
4. 60T0€E
4.5508E
4.5128€
4.4690E
4.42T2€
4.3872€
4.3490E
4.3125%€
4.2T715€

4.2439€
4.2118€
4.1009¢
4.1513€
4.1229€
4.0996E
4.0693E
4.0440E
4.0197E
3.9963E

3.973TE
3.9519E
3.93108
3.9107€
3.8912¢
3.80723€
3.8541E
3.8385E
3.8195E
3.8031E

3.7872€
3.TT1RE
3.T569€
3. T425€
3.720%¢8
3.T1508
3.T019€
3.6092€
3.6T69€
3.6630€

3.6534E
3.6422E
3.6313€
3.6208€
3.6105€
3.6006E
3.5909€
3.5816E
3.5725€
3.5636E

3.5530€
3.546TE
3.5306E
3.5307€
3.5230€
3.5156€
3.3083&
3.5013€
3.4944E
3.4878E

3.4303E
3.3864E
3.3529¢€
3.3272¢
3.3078¢E
3.2933€
3.2753€
3.2679¢
3.26ToE
3.2723¢€

3.2805€
3.2911€
3.3034€
3.3170€
3.3314€
3.3463€
3.3616E
3.3772€
3.4163E
3.4549E

8888582838 8888883888

3882828888 8888888338

[-X-1-]
-2-1-]

g88s

I= 280.

4.6133€
4.5632€
4.51%6E
4,4T02€
4.4269E
4.3055E
4.3461E
4.3083E
4.2T22E
4. 2376

4.2045E
4.1T728E
4. 1423E
4.1131E
4.0050€
4.0580€
4.0330€
4.0071E
3.9830€
3.9599E

3.9376E
3.9161E
3.08954E
3.8734€
3.8961E
3.8375E
3.8195E
3.8021E
3.7853E
3.T691€

3.7534E
3.7382E
3.T235€
3.T092€
3.6955E
3,6821E
3.6692€

"3.0656TE

3. 6445E
3.6328E

3.6214E
3.6103E
3.5996€
3.5892E
3.5T790€
3.5692€
3.959T¢
3.5505E
3.5415€
3.5328€

3.5243E
3.5161E
3.5081E
3.5003¢
3.4927E
3.4834E
3.4702€
3.4T13E
3. 4648E
3.4580E

3.4014E
3.3582€
3.3252¢
3.3000€
3.2810€
3.2649E
3.2493E
3.2425€
3.2626E
3.24TE

3.2560€
3.2668E
3.2793E
3.2930€
3.3075€
3.322%€
3.3379E
3.3534€
3.3928¢
3.4316E

L]

83888288 5888888838

[-X-]
oo

1= 300.0

4.5719€
4.5224E
4.4T53E
4.4306€
4.3876E
$.3467E
4.3077E
4. 2T04E
4-234TE
4.200%¢€

4.16T8E
4o L364E
4. 1063E
4. 0TTAE
4. 0496
4.0229€
3.9973¢€
3.9726€
3. 9409
3.9260F

3.903%€
3.8827€
3.8622€
3.8425€
3.8234E
3.8050€
3.7872E
3.TTOLE
3.7535¢€
3. TITAE

3.T21%9€
3. TOG%E
3. 6924
3.6T83E
3.66ATE
3.6515E
3.6388¢
3. 62864E
3. 6144E
3.6028€

3,5915E
3.5806E
3.5700E
3.5597E
3.5497TE
3, 5400€
3.5306E
3.5215€
3.5126€
3, 5040E

3.4957E
3.4875E
3.4796E
3.4T20E
3.4645E
3.4573E
3.4502€
3. 4434E
3.4367E
3.4302€

3. ITAGE
3.3319€
3.2994E
3. 2T4TE
3.2561E
3.2423E
3. 2254E
3.2189E
3.2193E
3.2246E

3.2332¢
3.2441E
3.2%88E
3.2706¢&
3.2852€
3.3004€
3.3199€
3.3318€
3.3T10€
3. 4099E

STOPPING POMER

I= 320.0

4.5332€
4.4042E
4. 43T6E
4,3932€
4.3508E
4.3104E
4.2T18€E
4. 2349
4. 1996E
4. 1658

4. 1334E
4. 1024E
4, 0T28E
4.0440€
4.0165E
3.9901€
3.9648E
3.9404E
3.9169E
3.8943E

3.8725€
3.8515E
3.8312¢
3.B11TE
3.7928E
3, TTAGE
3.73570€
3.TAOLE
3.T23TE
3,TOT8E

3.6925E
3.6TT6E
3.6633E
3.6494E
3.63%9€
3.6229€
3.6103E
3.5980E
3.5862E
3.5TATE

3.5636E
3.5528E
3.5423E
3.9321€
3.5223€
3.5127€
3.5034E
3.4944E
3.4856E
3.4TTLE

3.4689€
3.4609E
3.4531€
3.4455€
3.4301E
3.4310E
3.4240E
3.4172€
3.4107€
3.4043E

3.3492E
3.3073€
3.2734€
3.2511€
3.2328E
3.2193€
3.2030€
3.1968€
3.1975€
3.2030€

3.2118€
3.2230€
3.2358E
3.249TE
3.2644E
3.2797€
3.2952€
3.3110€
3.3505E
3.3895€

88388888 8888888888 38833338888

I= 340.

4,496TE
4.4403E
4.4021E
4.3582E
4.3163€
4.2T63E
4.2301E
4. 201 6E
4. 1666E
4.1332€

4.1011E
4. 0T04E
4.0409€E
$.0126E
3.90%4E
3.9993E
3.9342€
3.9101€
3. 0B0ME
3. BOALE

3.0429¢
3.8221E
3.8020€
3.7827¢€
3.T6ALE
3. T4SLE
3.T287€
3.T119€
3.69%56E
3.6799E

3.6648E
3.6301€E
3.63%59E
3.6222E
3.6088E
3.5960€
3.5835E
3.5T14E
3.559T€
3.5483E

3.5373€
3.3266E
3.5163€
3.5062€E
3.4965€
3.4870E
3.4TT8E
3. 4689€
3.4603E
3.4519E

3.443T7E
3.4358E
3.4281E
3.4206E
3.4133E
3.4062€
3.39%E
3.3927€
3.3862€
3.3T99€

3.3255€
3.2842E
3.2527€
3.2280E
3.2109€
3.1977€
3.1818E
3.1T61E
3.17TLE
3.1828E

3.1918E
3,2031E
3.2160€
3.2301E
3.2449E
3.2602€
3.2758E
3.2917€
3.3313€
3.3T04E

88388 3883833333 8383883388 2833838888

-3-1-X-1
-X-X-T-3

00

I= 380.0

4.4298E
4.3823¢
4.33T0E
4.2939€
4.2528E
4,2138E
$.1T61LE
4.1403E€
4.1060€E
4.0732¢

4.0417E
4.0116E
3.9827¢€
3.9550€
3.9283E
3.9027€
3.8781E
3.8544E
3.B318E
3.8097€

3.T885E
3.T681E
3.TAB5E
3.T295E
3.TLL3E
3.6938E
3.6T66E
3.6801E
3.6442E
3.6208€

3.61406
3.5998E
3.5857¢€
3.5722€
3.5592¢

3.4999E

3.4891E

00
00
00
1]
oo
[:1]
00
00
00
oo

888

8383383833 8388883888 383388828

3.4786E 00

3. 4685E
3.458TE
3.4491E
3.4399€
3.4309€
3.42228
3.4137E
3.4055€

3.3975E
3.3897E
3.3822€
3.3T74%9E
3.3678E
3.3609E
3.3542€
3. I4THE
3.3413E
3.3351E

3.2820€
3.2418E
3.2112€
3.1880E
3.1T0TE
3.1580E
3.1431E
3.1380E
3.1395€
3. 14STE

3.15%0E
3. 1666E
3.1798E
3. 1940E
3.2090E
3.2245E
3.2403E
3.2562€
3.2961E
3.33%4E

I= 420.

$.3694E
4.3227¢
4.2T83E
4.2359€
4. 1956
4.1570E
4.1202€
4.0050E
4.0513E
4.0191E

3.98828
3.9586E
3.9302€
3.9030€
3.8768E
3.851TE
3.8275E
3.8042E
3.TB19E
3.T603E

3.T395E
3.T195E
3.T002E
3.6816E
3.663TE
3.6484E
3.6296E
3.6135E
3.9979E
3.5820¢

3.5682E
3.5541€
3.5404E
3.5272€
3.5144€
3.5020€
3.4900E
3.4TB4AE
3.46T2E
3.4563€

3. 445TE
3.4354E
3.4255€
3.4138E
3.4065E
3.39TAE
3.3086E
3.3801€
3.37T18E
3.3637E

3.3559¢
3.3483€
3.3409E
3.3337€
3.3268E
3.3200€
3.3134E
3.3070€
3.3008E
3.2948E

3.2429E
3.2038E
3.1738E
3.1513¢
3.1345¢
3.1223€
3.1082E
3.1037E
3.105TE
3.1122€

3.1219€
3.1338€
3. 14TLE
3. 1618E
3.1T6TE
3. 1924E
3.2003E
3.2243E
3. 2644E
3.3038E

88888238333 23838388388 3838333833 3833883338 3888833388

I= 460.0

h.3144E
4.2685E
4.2248E
4.1831E
4. 1434E
4. 1055€
4.0693E
4.034TE
4.0018E
3.9699€

3.9395E
3.9104€
3.8825€
3.855T€
3.08299€
3.80%2¢
3.TB14E
3.TS86E
3.T7366E
3.TISAE

3.6950€
3.6753€
3.6563E
3.6380E
3.0204E

3.5710€
3.9537¢
3.5409¢

3.5265E
3.5126€
3.4992€
3.40862€
3.ATITE
3.4615€
3. H49TE
3.4383E
3.4273E
3.4186E

3.4082€
3.3961E
3.3863E
3.3769E
3.36TTE
3.33588¢
3.3%01€
3.3417€
3.3336E
3.3257€

3.3180€
3.3106E
3.3033€
3.2963¢
3.2095E
3.2028E
3.2THAE
3.2701€
3.2640€
3.2501E

3.20T3E
3.1688E
3.1397¢
3. 1179
3.1016E
3.0899€
3.0T64E
3.0725€
3.0750€
3.0819E

3.0918E
3. 1039
3.11TSE
3.1321€
3. 1ATAE
3.1831E
3.1791E
3.1953E
3.2356E
3.2751€

8388833888 33832388

88888888 2888838885

88888883838 833883883

88888888388

I= 500

4.2638E
4.2186E
4.1 TS6E
4.1346€
4.093SE
4.0582¢€
4.022%5€
3.9805¢
3.9559E
3.924TE

3.89%8E
3.8661E
3.8308E
3.8122€
3. TOG%E
3.T626E
3.7T391E
3.T166€
3.86950E
3.6T41E

3.6540E
3.634ATE
3.6160E
3.9980E
3.5808€
3.563%
3.94T7E
3.5321€
3.51T0E
3.5024€

3.4883E
3. 4T46E
3.4614¢
3.4407€
3.4363E
3.4243E
3.4127¢
3.4015€
3.3907¢
3.3801€E

3.3699E
3.3600E
3.3504E
3.3411E
3.3321€
3.3233¢
3.3148E
3. 3066E
3.2906E
3.2908E

3.2833€
3.2T60E
3.2689%
3.2619E
3.2552€
3.2487E
3.2424E
3.2362€E
3.2303€E
3.2245E

3.1748E
3.1369E
3.1085€
3.0872€
3.0715E
3.0601E
3.0673E
3.0439€
3.0468E
3.0540E

3.0642E
3. 0T85€
3.0903€
3.1051€
3.1205€
3. 1364E
3.1525€
3. 1687
3.2092¢€
3,2489€

133

«0
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ENERGY
MEV

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

12.0
14.0
16.0
18.0
20.0
22.0
24.0
26,0
28.0
30.0

32.0

34.0
36.0

42.0

140.0
145.0
150.0

155.0
160.0
1869.0
170.0
175.0
180.0
18%5.0
190.0
195.0
200.0

210.0
220.0
230.0
240.0
250.0
260.0
270.0
200.0
290.0
300.0

310.0
320.0
330.0
340.0
350.0
3560.0
370.0
380.0
390.0
400.0

1= 550.0

2.0178E
1.4279¢
1.1263E
9.3688€
B.0484E
T.066%9E
6.3048E
S T994E
5.4601E
5.0762¢

4.4619E
3.99456
3.6317€
3.3371E
3.0935€
2.0802E
2.T123¢
2.5598E
2.4260E
2.307TTE

2.2020€
2.1072€
2.0214€
1.9435¢
1.8723E
1.8070€
1.T469E
1.69148
1.6398E
1.5920€

1.4857¢
1.3951E
1.3169E
1.2486E
1.1085¢
1s1352€
1.0873€

L]

B.B143E
8.56308
8.3301€
8.113T7E
T.9120€
T.T238E
T.547SE
T.3821E

T.2267€
T.0803E

6.9423E 00
6.8118E 00

6.6803E
6.5T13E
6.4602E
535408
6.2542€
6.1583E

5.9801E
5.8172¢€
5. 64TBE
5.5304E
5.4036E

4.8106E
4.T331E
4.6602€
4,9916€
4.526%
4.4659E
4.4081E
4. 3535€
4.3017€
4.2526E

888883

8888888888 83883883838

1.9265E
1.3TORE
1.08352€
9.0519E
T.T935E
6.8560E
6.126TE
5.63358E
5.3054E
4.9345€

4.3384E
3.806TE
3.5333¢E
3.2403E
3.0129¢€
2.0145€
2. 6446E
2.49T2E
2.3679E
2.2533€

2.1513€
2.0393E
1.9765%€
1.9010E
1.8320€
1.TGBTE
1.T1048
1.86563E
1.8065E
1.5599¢€

1.4566E
1.3685E
1.2923¢
1.2298€

1.16T3E

1.1152€
1.0687€
1.0268E
9.0803E
9.5434E

9.2202E
8.9390€
8.6T28E
8.4268E
8.1909E
T.98T0E
T.T896E
T.6051E
T-4323E
T.2T04E

T.1101E
6.9T4TE
6.8393E
6.TL14E
6.5903E
6. 4T55E
6.3665€
6.2630E
6. 1644E
$.0T06E

5.8955€

02
oz
o2
o1
o1
ol
o1
o1

5.7356E 00

5.50890E
5.4541E
5.3296E
S5.2143€
5.1074E
5.0079€
4.9130€
4.8203E

4. T4TI1E
4.6TO09E
4.5993E
4.5318E
4.4683E
4.4083E
4.3515E
4.2978E
%.2469E
4. 1906E

888 88888

00
00

00

I= 850.0

1. 8449E
1.3195¢€
1.0481E
8.T7652E
T.5627E
6+ 6650E
5. 9655¢
5.4869E
5. 1642€
4. BOABE

4.2238€
3.T842E
3. 4409E
3.1646E
2.936TE
2. THARE
2.5805E
2.4300€
2.3129E
2.2022€

2.1033E
2.0144E
1.93408
1.8608€
1.T939€
1.T325€
1.6T59€
1.623%€
1.5T49E
1.529T€

1. 4292
1. I434E
1.2693€
1. 2045
1. 1473
1.0965E
1.0510€
1.0101E
9.T301E
9.3927€

9.0044E
B8.8014E
8.5407E
B8.2999E
8.0766E
T.B8690E
T-6T55€
T49%TE
T«3294E
T.1865E

T«01TLE
6. 0THAE
b. T438E
6.56180€
8.4992E
6.3065E
6.2796E
6. 1779
6.0812E
5. 9090€

5.81T0€
5.6599€
5.5199€
5.3833E
5.2610E
5. 14TTE
5.0425E
4. 944 TE
4. B534E
4, T602€

4.6803E
4.6133E
4.5429€
4,4THOE
4.4141E
4.3351€
4.2992E
4.24064E
4. 1963E
4. 1408

STOPPING POMER

I= 700.0

1.77138
1.2729€
1.0144E
8.5041E
T.3523€
6.4900E
S.01083E
5.3508E
5.0349E
4,6849E

4. 11TLE
3.687TE
3.3535€
3.0832E
2.0642€
2.6T8AE
2. 3194E
2.3814E
2. 2004E
2.1%33E

2.0575€
1. 9TL4E
1. 0934E
1.8225€
1. TSTeE
1.6980E
1.6431E
1.9922E
1.5450E
1.5010€

1.4033€
1.3197¢
L. 24T4E
1.1842€
1o 1284
1.07T80E
1.0344E
9.9437E
9.5010E
9.230%9€

8, 9490E
8,6T19
B8.4166E
B8.1806E
T«9617E
T.TS82E
T.5605E
T«3911E
T.22%0E
T.0691E

6.9225€
6. TB4AE
6. 6540
6.5307€
6.4140€
6.3033€
6. 1983E
6. 0984E
6.0033E
5.9127€

S.TA3TE
5.50893E
S.A44TTE
5.3173E
S.1970E
$.0855E
4.9821E
4.8858E
4.7960E
4.TI21E

4.6335€
4.5598€E
4.4904E
4.4252E€
4.3636E
4.3055€
4.2%08E
4.1986E
4.1493E
4, 1025€

8888888888 888

8888888

888

8888888888 8888888883

I= 750.0

1.TOASE
1. 2304
9.8333¢E
B.2648E
T.1593E
6.3310€
5.60833E
5.2238E
4.9160€
4.5T43E

4.01T1E
3.5965€
3.2T03E
3.0093E
2. THBE
2.614TE
2.4607E
2.3272€
2.2100€
2. 1063E

2.0135¢
1.9301E
1.8545E
1.T8%8E
1.7228E
1.6650€
1.6118E
1.5622€
1.5163€
L. 4T36E

1.3THSE
1.2971E
1.2266E
1.1650E
1< 1105€
1.0620E
1.0186E
9.T945E
9.4397E
9.1165€

8.8209E
B.5494E
8.2992€
B8.06T8E
T.8532€
T.6536E
T+ 46TAE
T« 2934E
T.1304E
8.9TT3E

6.8333E
6.69THE
6.5695E
6.4484E
6.3338E
6.2250€
6.121TE
6.0235€
3.9301E
5.8410€

5.6 TABE
5.5229€
5.3836E
5.2533E

02
02
ol
o1
o1
o1
o1
o1
o1
o1

o1
o1
o1
ol
(1]}
o1
o1
o1
ol
o1

ol
o1
o1
o1
o1
ol
ol
ol
o1
o1

00

S5.1369€ 00

5.0272¢
4.9254E
4. B8304E
4.TA22E
4.6596E

4.5822€
4.5096E
$.4413E
4.37T0E
4.31064E
4.2991E
4,2050E
4.1538E
4.1092€
4.0591E

8383388888

1= 800.0

1.6436E
1.1915€
9.5515€
8.0444E
6.9814E
6.1035€
5.5587E
5.1106€
4,.8066E
4.4TLBE

3.9231€
3.5099€
3.1908E
2.9365€E
2.T281E
2.9533€
2.4041E
2.2TABE
2. 1614E
2.0609€

1.9711E
1.8902€
1.8170E
1.T503€
1.6893E
1.6331E
1.5813€
1.5333E
L. 4888E
1.44T2E

1.3546E
1.2TS4E
1.2067E
1.1465E
1.0933€
1.0460€
1.0035¢€
9.6521E
9.3048E
B8.9884E

8.6908E
B8.4328E
B.1873E
T.9606E
T.TS01E
T.5542E
T«3TISE
T.2006E
T.0405€
6.8902E

6.T4BBE
6.56194E
6.4896E
&.3T05E
6.25T8E
6.1509¢
6.0493E
3.9528E
3.8608E
5.TT32€

5.609T€
5.4602€
S.3231E
5. 1968E
5.0802€
4.9722E
4,8T720E
4. TT84E
4.6915E
4.6101E

4.5339E
4.4623E
4.3950E
4.3317€
4.2T19E
4.215%€
4.1622€
4.1117E
4.0638E
4.0183E

o2
02
ol
o1
o1
01
01
o1
o1
ol

1= 850.0

L.587TE
1.1556€
9.2092€
T+8405E
6.8166E
6.0488E
5.4432€
5.0042€
4. TOS8E
4.3Te8E

3.0344E
3.4273E
3.1145¢€
2.8663E
2.68635E
2.4938€
2.3492€
2.2239€
2.1141E
2.0168E

19299
L.8516E
1.T806E

1.4217€E

1.3316E
12544 E
1.1073E
1.1287E
1.07868E
1.0305E
9.8902E
9.5156E
9. 1TS6E
B.0863TE

8.5820E
8.3212€
8.080TE
T.B581E
T.6516E
T.4593E
T«2T99E
T.1122€
6, 9549E
6.80T2E

6. 6682E
6.5372E
6.4135E
6.2964E
6.1856E
6.0804E
5.9805€
5.8855E
5. 7950E
5.T08BE

5.5479€
5.4007€
5.265TE
S.1414E
5.0263E
4.9201€
4.8213E
4.T294E
4.6435€
4.5633E

4.4881E
4.41THE
4.3512€
4,2008€
4.2299E
4.1T43¢k
4.121T€
4.0TL9E
4.024bE
3.9798E

I= 900.0

1.5362E
1.1223
9.0458€
T.6509E
6.68633E
5.9196E
5.335TE
4.9056€
4.612T€
4,2001E

3.7505€
3.3402€
3.0409E
2.T903E
2.5008E
2.4360E
2.2957¢
2. L THAE
2.0601E
1.9739€

1.8897TE
1.8139E
1.T452E
1.6825E
1.6251E
1.57T23E
1.5235€
1.4T02E
1.43862€
1.3969E

1.3093E
1.2341€
1.1689E
l.1118E
1.0609€
1.015TE
9.7506E
9.3840E
9.0512€
B.TATTE

B:469TE
8.2140E
T.9782E
T.T598E
T«53T1E
T+3684E
T«1923E
T.0275E
6.8730E
6. T278E

6.5912E
6.4624E
6.3407E
6.2256E
64 1166E
6-0131E
5.9148E
5.8213€
5.7323€
S5.64T4E

5.4890E
5.3441E
S5.2111E
5.0886E
4,9T54E
4.8TOSE
4.TTI2E
4,6825E
4,3979€
4.5188E

K.444TE
4.3T51E
4,3097E
4.2481E
4.1900E
4.1351E
4.0832E
4.0341E
3.9875E
3.9433E

o1

888888838 82888882888 88388

8888388388 88

88

oo
00

888

a8

I= 950.

1.4805€
1.0914E
8.8191E
T4TALE
6.5201E
5. B00BE
5.2352€
4.0141E
4.5209€
4. 2058E

3.6T10€
3.2723€
2.9697E
2.T322€
2.339TE
2.3T95€
2.2435E€
2.1260E
2.0230€
1.9319€

1.8504E
1. 7771
1.TI05E
L. 6498E
1.5942€
1.5430E
1.495TE
L.451TE
1.4109€
1.3727€

1.2876€
Le 2144E
1.1508€E
1.0949E
1.04%4E
1.0012€
9.6194E
9.256TE
8.9310E
8.633TE

8.3613E
8.1107E
T.8T93E
T-6631E
T« 4662E
T«2809€
T.1079€¢
6.9460E
6. T942E
6.6316E

6.5173E
6. 3906E
6.2T09€
6. 15TTE
6.0504E
5.9486E
5.8519¢t
5.T598€
5.6T22E
5.5886E

5.4326E
5.20898E
5.1588E
5.0381E
4.9265€
4.8232€
4. T272E
4.63T8E
§.5544E
4.4T63E

4.4032E
4.3346€
4.2TOLE
4.2093E
4.1520€
4,.0978E
4.0460E
3.9981E
3.9522¢€
3.9005¢
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ENERGY

MEV

410.0
420.0
430.0
440.0
450.0
460.0
470.0
480.0
490.0
500.0

510.0
$20.0
530.0
540.0

1= 550.0

4.2099E
4.1615E
4. 1192¢€
4.0T90E
4.0406€
4.0039€
3.9689E
3.9355€
3.9035€
3.8728E

3.0435€
3.8133€
3.T804E
3.T625€
3.T376E
3.T137E
3.6907€
3.6686E
3.6473E
3.026%E

3.607T1E
3.5881E
3.5698E
3.5522€
3.53351E
3.5187E
3.5028€
3.4875E
3.4T26E
3.4583¢

3.4445E
3.4311E
3.41826
3.,4056E
3.393%E
3,3818E
3.3704E
3.3594E
3.3487E
3.3384E

3.3284E
3.3187E
3.3093E
3.3002€
3.2913¢
3.2828E
3.2TAAE
3.20064E
3.2505€
3.250%E

3.2435E
3.2364E
3.2294E
3.2226€
3.2161E
3.2097€
3.2035€
3.1975€
3.1916€
3.1859E

3.13T2E
3.1005€
3.0T28E
3.0522€
3.0370€
3.0281€
3.0141E
3.0112€
3.0146E
3.02228

3.0327€
3.0452E
3.0592€
3.0742€
3.0897€
3.1057€
3.1220€
3.1383E
3. 1790€
3.2108E

00

00
00

88888 3888388388 8883888383

88888833838 33383883888 83883

I= 600.0

4.152TE
4.1091€
4.06THE
4.0280E
3.9903€
3.9542€
3.9198E
3.8870E
3.8355€
3.82%4€

3. T965E
3.7689E
3.7423¢
3.T169E
3,6924E
3.6689E
3.6464F
3.6246E
3.603TE
3.5036E

3.5642E
3.9456E
3.5276E
3.5102¢
3.4935€
3.4TT3E
3.461TE
3.4466F
3.4321E
3.41008

3.4044E
3.3913E
3.3T788E
3.3683E
3. 3544€
3.3428E
3.3317€
3.3209E
3.3104E
3.3003E

3.2905€
3.2809€
3.2TLTE
3.2628E
3.2541E
3.2457E
3.2373E
3.2296€
3.2219€
3.2144E

3.2072€
3.2001€
3.1933E
3.1867E
3.1803E
3. 1T40E
3.16T9E
3.1620€
3.1563€
3.1507E

3.1031E

3.0672E 00

3.0402€
3.0202E
3.0035€
2. 9950E
2.963TE
2.9814E
2.9851€
2.9931€

3.0039¢
3.0167E
3.0308€E
3.0459€
3.0817E
3.07TRE
3.0941E
3.1105€
3.1514E
3.1914E

8883888388 888888

I= 6350.0

4.1037€
4. 0607€
4.0199€
3.9809E
3.9438E
3. 9084E
3.0745€
3.B422€
3.8112¢
3. T8L6E

3.7532€
3. T260E
3. 6999
3.6T4BE
3.6508E
3.627TE
3. 6094E
3.5841€E
3.5635E
3.5437€

3.5247E
3.5083E
3.4886E
3.4T15E
3.4351E
3.4392¢
3.4238€
3.4090E
3.394TE
3.3809E

3.36TSE
3.3548€
3.3421E
3.3300€
3.3183€E
3.30TOE
3. 2960
3.2854E
3.2751E
3.2631€

3.2555E
3.2461E
3.23T1E
3.2283€
3.2197E
3.2115€
3.2034E
3.195TE
3.1881E
3.1808E

3.1737€
3. 1668E
3.1601E
3. 1536E
3. 14T3E
3.1411E
3.1352€
3. 1294E
3.1238E
3.1183E

3.0T16E
3.0365E
3.0102€
2.9907€
2.9T64E
2. 9684E
2.9557E
2.9539E
2.9380E
2. 9663E

2.9TTAE
2. 9904E
3.0047E
3.0200E
3.0338E
3.0521E
3.0685E
3.0830E
3. 1260E
3.1661E

STOPPING POWER

I= T00.0

4.0380E
4.0197E
3.9795E
3.9372¢€
3.9008E
3.045TE
3.8324E
3.8005€
3. TT00E
3.T409E

3.T129E
3.6881E
3.06604E
3.6358E
3.6121E
3.5893¢E
3.56T4E
3.54864E
3.5262€
3.5067€

3.4879€
3. 4698E
3.4524E
3.4356E
3. 4194E
3.4038E
3.3807E
3.3T41E
3.3600E
3. 3404E

3.3332€
3.3205€
3.3082€
3.2963E
3.2848€
3.27T3TE
3.2629€
3. 7524E
3.2423E
3.2325€

3.2230¢€
3.2138E
3.2049€
3.1963E
3.1879¢
3.1798E
3.1T19€
3. 1642€
3.1568E
3.1496€

3.1426E
3.1358E
3.1293€
3.1229€
3.1167E
3.1107€
3.1048E
3,0991€
3.0936E
3.0883E

3.0424E
3.0080E
2.9824E
2.9633E
2. 9495
2.9399E
2.9298E
2.9284E
2.9330€
2.941%€

2.9528€
2. 9660E
2.9805€
2.9959E
3.0119€E
3.0282€
3.0448E
3.0613€
3.1026E
3.1428E

00
oo
oo
00
00
00
00
00
00
00

00
00
00

8888888

(1]
00

83888

83838

I= 750.0

4.0153E
3.9737€
3.9340€
3.8963E
3.8602E
3.8298€
3.7930€
3.T616E
3.T316E
3.T028€

3.6753€

3.6489E 00

3.6236E
3.5993E
3.57%9€
3.5938€
3.9320€
3.5112¢€
3.4913E
3.4721E

3,4536E
3.4398¢
3.4106E
3.4021€
3.3861E
3.370T€
3.3558E
3.3415E
3.32T6E
3.3142€

3.3012€
3.20887€
3.2T66E
3.2649E
3.2536E
3.26426€
3.2320E
3.2217€
3.2117€
3.2021€

3.1927€
3.1837€E
3.1 TA%E
3. 1664
3.1%02E
3.1302€
3.1424E
3.1349E
3. 12T4E
3.1203%€

3.1137E
3.1070€
3.1005€
3.0942E
3.0881E
3.0822€
3.0765€
3.0T0%
3.06395E
3.0602€

3.0152¢€
2.9815E
2.9584E
2.9379€
2.9245€
2.9151E
2.9056E
2.904TE
2.9096E
2.9184E

2.9299€
2.9433E
2.9580E
2.9735E
2.9896E
3.0061E
3.0227€
3.0393¢
3.0807E
3.1210€

88328833 88883528888 8888338888 888

88

8888888888

8888888888 2888888888

3.9752€
3.9341E
3.0930E
3.085T8E
3.8223€
3.TBB4E
3.7560E
3.7251€
3.6954€
3.06TLE

3.639%€E
3.6139E
3.5890E
3.5650E
3.5420€
3.5199€
3.4986E
3.4782E
3.4306E
3.4396E

3.4214E
3.4038E
3.3869E
3.3T06E
3.3549E
3.339TE
3.3250€
3.3109€
3.2972€
3.2840E

3.2T12€
3.2509%
3.24T0€
3.23%4E
3.2242€
3.2134€
3.,2030E
3.1929E
3.1831E
3.1736E

3. L644E
3.1554E
3. 1468E
3.1384E
3.1303€
3.1224E
3.1148E
3.10T4E
3.1002€
3.0933E

3.0865E
3.0799€
3.0736E
3.04TAE
3.0614E
3,0958E
3.0499E
3.0444E
3.0391€
3.0339€

2.989TE
2,9586TE
2.9321€
2.9140€
2.9010E
2,0920E
2.8830¢E
2.8825E
2.88TTE
2.80968E

2.9085E
2.9221E
2.9369E
2.9526E
2.96088E
2.90%53E
3.0020€
3.01B7E
3.0602E
3.1007E

I= 850.0

3.9372E
3.8960E
3.8%82E
3.821%€
3.TB4SE
3.7530€
3. T211E

3.2555E

3.2430€
3.2308E
3.2190€
3.207TE
3.1966E
3.1860E
3.175T7E
3.165TE
3.1560€
3. 146TE

3.1376€
3.1288E
3.1203€
3.1121€
3.1041€
3.0943E
3.0888E
3.0815€
3.0744E
3.06T6E

3.0609E
3.0545€
3.0682€
3.0421€
3.0362€
3.0305¢
3.024%9€
3.0195€
3.0143€
3.0092€

2.965TE
2.9333¢€
2.9092€
2.B914E
2.8T89E
2.8TO3E
2.8618€
2.8616E
2.86T2€
2.8765€

2.8884E
2.9021€
2.9171E
2.9329€
2.9492E
2.9658E
2.9826¢
2.9994E
3.0410E
3.0815E

8838883833

8888888888 38388888388

88888

I= 900.0

3.9013E
3.0613E
3.8233E
3.T8T1E
3. 7525E
3.T195€
3.6000E
3.657T9€
3.6290€
3.6013%€

3.5730€
3.5497E
3.5254E
3.5021€
3.479TE
3.4582€
3.43T3€
3.41T6E
3.3905¢€
3.3801€

3.3623E
3.3452¢€
3.3288¢
3.312%
3.2976E
3.2828E
3.2680E
3.2548E
3.2415€
3.2206E

3.2162¢
3.2042€
3.1926E
3. 1014E
3.1T08E
3.1601E
3.1499¢€
3.1400€
3.1305€
3.1213E

3.1124E
3.1037€
3.0953€
3.08T2E
3.0793€E
3.07LTE
3.0642€
3.05T1E
3.0501€
3.0433E

3.0368E
3.0304€
3.0242E
3.0183¢€
3.0124€
3.00468E
3.0013€
2.9960E
2.9909€
2.9858€E

2.9431E

2.0573E

2.8694E
2.8833E
2.B904E
2.9143E
2.9307E
2.94T4E
2.9642€
2.9811E
3.0229€
3.0635E

2 28322832383 8338888383 23282333338 88888538388 83353833382 8838838888 888838833888

135

I= 950.0

3.86T1E
3.82T6E
3.T901E
3. T543E
3, T7202€
3.868T6E
3.6565€
3,6268E
3.5983E

3.5T1L1E.

3.5450€
3.5200E
3.4960E
3. 4TI0E
3.4509¢
3.4297¢
3.4093E
3. 3896E
3.3707€
3.33526E

3.3351€
3.3102E
3.3019€
3.2863E
3.2TILE
3.2566E
3.2425E
3.2209€
3.2158E
3.2031E

3. 1909€
3.1790€
3.16T6E
3.1565€
3.1458E
3. 1354E
3.1294E
3.115TE
3.1063E
3.09T2€

3.0884E
3.0798E
3.0TL6E
3.0636E
3.0958E
3.0483€
3. 0409
3.0339E
3.027T0€
3.0203€

3.0139
3.0076E
3.0015€E
2.9956E
2.9899€
2.9843E
2.9T90E
2.97T3TE
2. 9686E
2.9637€

2.9216E
2.8904E
2.86T2E
2.8504E
2.8384E
2.8303E
2.8227E
2.8233E
2.8294E
2.8392E€

2.8515€
2.8655E
2.8807E
2.896TE
2.9132€
2.9300E
2. 9469E
2.9638E
3.0057E
3. 0404

00
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PRINTOUT TABLE II

TWO-VARIABLE RANGE TABLE

lalculated range, A, as a function of the proton kinetic
energy T and the mean excitation energy I 4:- (Be-
cause of typographical limitations, Ig4; is in&icated as
I in the table headings. The units of Iadj are ev.) The
entries, when multiplied by A/Z, give the range in
units of g cm™“. Powers of ten are indicated by the
symbol E; thus 1.2345E-02 means 1.2345 x 10-2,

Since energy/mass is a function only of the velocity,
the column labeled energy is also to be interpreted

as the particle kinetic energy divided by the mass in
units of the proton mass. The range is then given by
Equation 6, More figures are tabulated than are sig-
nificant in order to facilitate interpolation and differenc-
ing. Example of use: Suppose it is required to find the
energy of a He3 beam which has a range of 300 gmlcm2
in iron (Igdj = 285 ev). On dividing by A/Z (=2, 1481),
from Table 9, this range is 139. 66 (Z /A)g/cmz. Then,
using Equation 6, we find A + By = 186. 64 (Z/A)g/cm?,
Now B3 is found from Equation 11 to be only 0. 0003 in
these units so that A = 186.64 (Z/A)g/cm2. From
Table 8 we find T = 915 Mev. Then using Printout
Table I, T =Mr = 4. (0. 74829)915 = 2738 Mev.
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EMERGY
REV

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0

32.0
34.0
36.0
38.0

42.0
44,0
46.0
48.0
50.0

55.0
60.0
65.0
T70.0
75.0
80.0
85.0
90.0
95.0
100.0

10%.0
110.0
115.0
120.0
12%.0
130.0
135.0
140.0
145.0
150.0

155.0
160.0
165.0
170.0
175.0
180.0
185.0
190.0
195.0
200.0

210.0
220.0
230.0
240.0
250.0
260.0
270.0
200.0
290.0
300.0

310.0
320.0
330.0
340.0
3%0.0
360.0
370.0
380.0
390.0
400.0

I= 15.0

T T449E-04
2.TABLE~0D
5.T500E-03
9.6951E-03
1.4529€-02
2.0210E-02
2.6TOGE-D2
3.3995E-02
4.2198E-02
5.1218E-02

T-1642E-02
9.51726-02
1.21T4E-0L
1.512TE-01
1.8372E-01
2.1903E-01
2.5T1TE-01
2.9608E-01
3.4173E-01
3.880TE-01

4.3TO8E-O1
4.8873E~-01
5.429TE-0L
5.9978E-0L
6.5913E-01
7.2100E-01
T.0534E-01
8.5215€6-01
9.2139E-01
9.9304E-01

1.1825E 00
1.3066E 00
1.6049E 00
1.83T0€ 00
2.0828E 00
2.3419E 00
2.6140€ 00
2.8989€ 00
3.1964E 00
3.%061E 00

3.82T9E 00
4.1615E 00
4.5067E 00
4.8633E 00
5.2311€ 00
5.6099€ 00
5.9995€ 00
6.,3997E 00
6.8103E 00
T.2312€ 00

T.6622E 00
8.10%E 00
8.9536E 00
9.0138E 00
9.,4835E 00
9.9623E 00
1.0450€ 01
1.094T7E 01
1.145%3€ 01
1.1968E 01

1.3022€ 01
1.4110E 01
1.5230€ 01
1.6381E 01
1.7362€ 01
1.877IE 01
2.0012E 01
2.1279€ 01
2.2572E 01
2.3892E 0)

2.923TE 01
2.660TE 01
2.8000E 01
2.9417E 01
3.0857E 01
3.2318E 01
3.3801E 01
3.530%€ 01
3.6829€ 01
3.8373E 01

I= 17.3

8.1110E-04
2.82T8E-03
5.8785E~03
9.8060£-03
1.4800E~02
2.0585E-02
2.T212€-02
3.4664E-02
4.3049E~-02
5.2260€~02

T.3132E-02
9.T156E-02
1.242TE-01
1.5440E~-01
1.8750E-01
2.2351E-01
2.6239€-01
3.0409E~-01
3.485TE-O1
3.9%79€-01

4.45T73E-01
4.9833E-01
5.5358E~-01
6.1144E-01
6.T188E-01
T«348T7E-01
8.0038E-01
8.6839E-01
9.3887E-01

1.0118€

1. 204TE
1.4123E
1.6343E
1.8TOSE
2.1205€
2.3840€
2.6607E
2.9504E
3.2528E
3.96TTE

3.8948E
4.2339€
4.5048E
4.9472€
5.3210E
5.T039€E
6.1018E
6.5085E
6.925TE
T7.3%33€

T«T911E
8.2390€
8.56968E
9.1642€
9.6413E
1.0128€
1.0623E
1.1128E
1. 1642E
1.2164E

1.3235€
1.4340E
1.54TTE
1. 6646E
1.TB4SE
1.90T4E
2.0332¢
2.1618E
2.2931E
2.42T1E

2.96)6E
2.TO26E
2.B441E
2.9879E
3. 1340€
3.2823E
3.4328E
3.9894E
3.T400E
3.896TE

00

I= 20.0

B8.4953E-04
2.9036E-03
6.0033€-03
1.0073€-02
1.%068E-02
2.0950€-02
2.TT00E-02
3.9302E-02
4.3095E-02
5.3253€-02

T.4313E-02
9.8984E-02
1.2659€-01
1.5726€-01
1.9094E-01
2.2758E-01
2.6T13E-01
3.09%4E~01
3. 54TTE-01
4.0278E-01

4.5354E-01
5.0T02E-01
S.631TE-01
6.2196E-01
6.8338E-01
T-4TITE-O1L
8. 1393E-01
8.8302€-01
9. 5461E-01
1.0287E 00

1.224%€ 00
1.4354E 00
1.660BE 00
1.9006€E 00
2.1543E 00
2.4218E 00
2.TO286E 00
2.9966E 00
3.3034E 00
3.6229€ 00

3.9548E 00
4.2988E 00
4,654TE 00
5.0224E 00
S.4015€ 00
5.T919€ 00
6. 1934E 00
6.60%8E 00
T.0289E€ 00
T.4625€ 00

T7.9065E 00
8.3606E 00
B8.8248E 00
9.2987E 00
9.T824E 00
1.0276E 01
1.0778E 01
1.1290E 01
1.1810€ 01
1.2340€ 01

1.3426E 01
1.4545E 01
1.5698€ 01
1.6882€ 01
1. 8098 01
1.9343€ 01
2.0618E 01
2.1921€ 01
2.3252E 01
2.4609E 01

2.5992E 01
2. TADLE 01
2.8034E 01
3,0290F 01
3.1T7T0€ 01
3,327 01
3.4T9TE 01
3.6343E 01
3. 7910 01
3.949TE 01

RANGE

I= 30.0

9.6783E~04
3.1804E-03
6.4686E-03
1.07T72E-02
1.605TE-D2
2.2301E~-02
2.9488E-02
3. T611E-02
4.6T15€E-02
5.670TE-02

T.9278E-02
1.0522€-01
1.3444E-01
1.6689E-01
2.0248E-01
2.4118E-01
2.8289-01
3.27T626-01
3.7530E-01
4.2%88E-01

4. TINNE-OL
5.3562E-01
5.94T1E-01
6.5655E-01
T«2113E-01
T.8841E~-01

9.3094E-01

1.0061E
1.0839€

1.2895€
1.5107€
1. TAT2E
1.9985€
2.2645E
2.5446E
2.8387E
3.14465E
3. 46TTE
3.8020€

4. 1492E
4.50%91E
4.8813E
5.2697¢E
5.6620F
6.0701E
6. 489 TE
6.9206E
T+3626€
T.8156E

B8.2793E
B8.T753%E
9.2382€
9. T330E
1.0238E
1.0733€E
1.127TE
1.1811E
1.2354E
1.2907€

1. 4040E
1.5207E
1.6409E
1. TOA4E
1.8911E
2.0210€
2.1538€
2.2896E
2.4202€
2.569TE

2. T13TE
2.8605€
3.0097E
3.1614E
3.3155€
3.4TL9€E
3.6308E
3. T916E
3.9546E
4.1198E

o0
00

I= 40.

1.0738E~03
3.42%97€~03
6.8072E-03
1.1405E-02
1.6950E-02
2.3508E-02
3.1068E-02
3.9624E-02
4.9170E~02
5.9633E-02

B8.3243E-02
1.1034E-01
1.4085€E-01
1.T468E~01
2.1177E-01
2.5206E-01
2.9550E-01
3.4203E-01
3.9161E-01
4.4420E-01

4.9975E-01
5.5822E-01
6. 1958E-01
6.8380E-01
7.5083E-01
8.2085E-01
8.9322€~01
9.6852E-01

1.0485E
1.1272¢€

1.3403€
1.5695E
1.B145E
2.0TATE
23500
2.6400E
2.9443E
3.2627€
3.5949E
3.9407E

4.2996E
4.6T16E
5.0563E
5.4536E
5.08631E
6.2847E
6. TLO2E
T.1633E
T.6198E
8.0873E

8.5663€
9.0%60E
9.5563E
1.0067E
1.0588€
1.1119€
1.1661E
1.2212€
1.2772E
1.3343E

1.4511€
1.5715€
1.6995E
1.8229€
1.9535€
2.0BTAE
2.2243E
2.3643E
2.5072€
2.6529E

2.8014E
2.9526E
3.1063€
3.2626E
3.4214E
3.5825€
3. T4 60E
3.9117€
4.0797E
4.249TE

I=  S0.

0

1. 1694E-03
3.6491E-03
T«2T10E-03
1.1983€E-02
1. 7TT68E~02
2.460TE-02
3.249%E-02
%.1430E-02
5.1352E~-02
6.2215E-02

8.6T03E-02
1.14T8E-0O1
1.4636E-01
1.8136E-01
2.19T1E-0L
2.56134E-01
3.0620E-01
3.5425€E-01
4.0542€~-01
4.59TE-0L

5. 169TE-0]
5.7726E-01
6.4052E-01
7.06T1E-O1
T7.7578E-0L
B8.47T1E-01
9.2246E-01

1.0000E
1.0803E
1. 1634E

1.3827€
L«6186E
1.8TOSE
2.1382€
2.4212€
2.T193€E
3.0320€
3.3592€
3.T005E
4.0556E

4.4243E
4.8063E
5.2013€
5.6092€
6,0298E
6.4623€
6.9072€
T+3639E
T.8323E
B8.3123E

8.8035€
9.3058E
9.8190€
1.0343E
1.087TE
1.1422E
1.1977€
L.2542E
1.3117E
1.3702E

1.4899E
1.6134€
1. T40SE
1.8710E
2.0049E
2.1420€
2.2824E
2.4257€
2.5T21€
2.T214€

2.8733E
3.0283€
3.1858¢
3.3458E
3.5084€
3.6TIAE
3.840TE
4,0104E
4.1823€
4.3564E

00
00
00

I= &0.

0

1.25736-03
3.8563E-03
T-.6280E-03
1.2525€-02
1.8%526E~02
2.5622E-02
3.3808E-02
4.3002€6-02
5.33356-02
6.4350E-02

8.9811E-02
1.1873€~-01
1.5127€-01
1.8728E~01
2.2672E~01
2.6953E-01
3.19563E-01
3.6499E-01
4.1734E-01
4.T7324€-01

5.3205€-01
5.9392E-01
6.5802E-01
T.26T1E-0L
T.9755E~-01
8.7130E-01
9.4T94E-01

1.027T4E
1.109TE
L. 194BE

1.4196€
l.68612E
1.9191E
2.1932€
2.4829E
2.T879E
3.1079€
3. 4426
3.TITE
4. 1549E

4.5319E
4.9225E
3.3264E
5.T433E
6. 1730E
6.6153E
T.0699E
T.536TE
8.0153E
8.5057E

9.0075E
9.5206C
1.0045E
1.0580€
1.1126E
1. 1682E
1.2249€
1.2826E
1.3413E
1.4010E

1.5233E
1.6493E
1. 7T790€
1.9123€
2.0489E
2.1889E
2.3321€
2.4TBAE
2.6278E
2.T7801E

249332€
3.0932€
3.2538E
3.41T0E€
3.50828E
3.7511€E
3.