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NOTICE

The project which is the subject of this report was approved by the Governing
Board of the National Research Council, acting in behalf of the National Academy
of Sciences. Such approval reflects the Board's judgment that the project is of
national importance and appropriate with respect to both the purposes and resources
of the National Research Council.

The members of the committee selected to undertake this project and prepare
this report were chosen for recognized scholarly competence and with due con-
sideration for the balance of disciplines appropriate to the committee. Responsi-
bility for the detailed aspects of this report rests with that committee.

Each report issuing from a study committee of the National Research Council
is reviewed by an independent group of qualified individuals according to procedures
established and monitored by the Report Review Committee of the National Academy
of Sciences. Distribution of the report is approved, by the President of the Academy,
upon satisfactory completion of the review process.

This study by the National Materials Advisory Board was conducted under Contract
No. DA49-083 OSA-3131 with the Department of Defense and NASA.

Members of the National Materials Advisory Board study groups serve as individuals
contributing their personal knowledge and judgments and not as representatives of
any organization in which they are employed or with which they may be associated.
The quantitative data published in this report are intended only to illustrate the

scope and substance of information considered in the study and should not be used
for any other purpose, such as in specifications or in design, unless so stated.

Requests for permission to reproduce this report in whole or in
part should be addressed to the National Materials Advisory Board.
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I. INTRODUCTION

The National Materials Advisory Board (NMAB) was asked by the Department
of Defense to conduct a workshop to identify technology gaps, problems, and
opportunities in the nondestructive evaluation of composites. A workshop
planning committee was organized to establish the program, suggest participants,
and provide a list of individuals to whom invitations would be sent. To conduct
the workshop the NMAB then established an ad hoc Committee on Nondestructive
Testing of Composites, each member of which presented a theme paper related
to the workshop which followed. The committee stayed on to write a series of
recommendations and were helped in this by the chairmen and co-chairmen of
the workshop sessions who summarized the discussion of their session.

The problems of inspecting advanced composites were placed in perspec-
tive by the presentations made by members of the NMAB ad hoc Committee on
Nondestructive Testing of Composites and these five talks comprise the bulk
of this report. The larger part of the workshop--discussion by the participants--
is summarized on the next few pages.

Based on the discussion, as reflected in the summary, four principal
recommendations--concerning flaw detection, measurement of strength,
standardization, and research--were derived by the Committee. They have
been stated simply; therefore, exceptions undoubtedly exist. It is believed,
however, that the recommendations are valid for the majority of typical appli-
cations and should be considered seriously by the Services in the planning of
their programs.

These recommendations and the workshop discussion summary were
written in a few hours immediately following the meeting with the belief that
prompt publication and fullness of recall would be preferable to elegance of

expression.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog.php?record_id=20202

Proceedings of the Workshop on Structural Composites and Nondestructive Evaluation
http://www.nap.edu/catalog.php?record_id=20202

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog.php?record_id=20202

Proceedings of the Workshop on Structural Composites and Nondestructive Evaluation
http://www.nap.edu/catalog.php?record_id=20202

II. RECOMMENDATIONS

FLAW DETECTION

1'

No additional work on improving the sensitivity of flaw detection in
composites should be supported until a need has been demonstrated.
However, work to automate, decrease inspection costs and establish
sensitivity should be undertaken. The critical flaw size in composites,
which is large compared to the critical flaw size in homogeneous
materials, should be established.

When the required resolution to discover discontinuities is known, the
cost and reliability of detection should be optimized. There are obvious
opportunities for automation, particularly on large production runs

such as bladps.

COMPOSITE STRENGTH

1.

Methods to predict the nominal (unflawed) strength of composites

and the interlaminar (cohesive) bond strength should be developed.
Such work should be carried out on materials in use today.

Concern regarding environmental influence on bond strength should be
recognized. Nondestructive evaluation methods should be developed to
predict the residual strength of composites in which environmental
exposures (to temperatures, cycling, moisture, etc.) have resulted

in the growth of flaws.

STANDARDIZATION AND DESIGN INFORMATION

1.
2.

Universally accepted reference standards are required.

The Advanced Composite Design Guide (3rd Edition, Jan. 1973)* should
be brought up to date.

There is need for standardization of interpretation of instrument output.

Signal processing techniques that could assist in this should be developed.

* Qualified requesters may obtain this 5-volume report from the Defense Docu-
mentation Center, order No.s AD916-679L, -680L, -681L, -682L, and -683L.
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D. RESEARCH ON COMPOSITE DEGRADATION
Failure mechanisms and strength degradation associated with impact, aging,
and fatigue effects should be studied utilizing nondestructive evaluation (NDE)

techniques as a research tool.
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III. WORKSHOP SUMMARY

A, NDE TODAY
1. Effectiveness of Current Technology

a. Present NDE methods have the necessary capability to detect
significant discrete discontinuities in structural composites.

b. Development efforts to increase defect detection sensitivity are
not especially important at this time since the critical flaw size
is generally large. Programs may be needed to establish and to
verify the tolerable sizes of flaws in various types of structures.

c. Techniques for the nondestructive determination of nominal
composite strength are not available. Similarly, it was
the consensus that it is not possible to measure the strength
of a bond by any NDT technique. Until modes of failure are
understood and characterized, it will not be possible to define
the adequacy of current NDE technology.

2. NDE Influence on Composite Design

a. Close communication is required between workers in stress
analysis, design, materials, and NDE. The influence of defects
on the modes of failure in composites need to be defined for the
specification of acceptance criteria.

b. Designers must be made aware of NDE limitations, capabilities,
and costs. Areas in complex structures not inspectable because
of geometrical constraints must be designed such as by incorporating

redundancy.

3. Quality Assurance and Process Control

a. Since current NDE technology cannot measure inherent composite
strength or localized bond strength, process control tests are

required to verify the effectiveness and consistency of the

Copyright © National Academy of Sciences. All rights reserved.
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manufacturing processes. Even with a well-defined process, it
is unrealistic to assume that human errors will not occur. There-
fore, the development of NDE test methods, particularly to establish
the intrinsic bulk strength of composites and the strength of bonds,
is needed.

b. The need for definition ‘and development of NDE standards for
composite configurations is significant, and these standards must
be relevant to practical applications. Universally accepted

standards are presently not available.

Additional Considerations
A handbook on the NDE of Composites, or an expansion and updating
of that portion of the Composites Design Guide, would be useful for

disseminating presently available information.

B. THE EFFECT OF FLAWS ON MATERIAL PERFORMANCE

1.

The Criticality of Flaws

In contrast to isotropic materials in which criticality of flaws is
principally governed by applied load and crack length, the criticality
of flaws in composites depends upon a large number of parameters.
These include complex loading conditions, lamination geometry,
orientation of flaw with respect to laminate, and flaw geometry itself.
In present applications, flaws that are easily detectable are relatively
stable and not describable by classical isotropic fracture mechanics
theory. On the other hand, specific combinations of lamination
geometry, crack orientation, and loading condition exist under which
certain flaws propagate catastrophically. These observations
emphasize the necessity of predicting the criticality of flaws in terms
of the variables listed above. Costs for implementing required critical
flaw programs may be quite high. New approaches are therefore

certainly required.
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2. Characterization of the Criticality of Flaws

The criticality of flaws in anisotropic composites can be characterized
by a suitable blending of strength theory with stress analysis of flaws.
Such an approach can both predict catastrophic crack propagation and
confirm the conditions for nonpropagation. Such mathematically
operational analysis can be used as feedback to structural design and
materials development. Extension of such an approach to establishing
the criticality of flaws under environmental and service conditions
should be explored in conjunction with definitive experimental verifi-
cations. Such information will be beneficial in determining whether
proof tests are required or whether proof testing actually will be

detrimental to service life of the structure.

3. Relaxation of Minimum Acceptable Flaw Size

Since the application of composites is in its infancy, there is a
tendency to impose overconservative minimum acceptable flaw size
requirements, which can have a detrimental effect on the general
acceptance and application of composites to engineering structures.
With a rational understanding of the quantitative parameters that
characterize the criticality of flaws, it is hoped that the minimum
flaw size requirement can be relaxed and also that the performance

confidence level can be defined.

C. COMPOSITE CHALLENGE FOR NDE

The following problem areas were identified:

1. Measurement of the intrinsic strength of composites.

2. Detection of poor (low strength) adhesive bond and interlaminar bonds.

3. Detection of low level (<2%) moisture absorption.

4. In-service monitoring of structural strength and quality, including moni-
toring of degradation of material and fiber-matrix debonding.

Copyright © National Academy of Sciences. All rights reserved.
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5. Generation of valid, universal reference standards.

6. Detection and evaluation of impact damage.

7. In-service inspection after exposure to environments not previously
encountered, for which no NDE standards nor experience exists.

8. Comprehensive summary of the state of the art of advanced composite

NDE.

Approaches to these problems arose spontaneously during the discussion.
While they should not be considered well thought out or all-inclusive, they
are presented below keyed to the identified problem areas:

1. Proof loading by using an electromagnetic field (problem area 2).

2. Spectral analysis and signal processing (problem areas 2 and 3).

3. Neutron gaging (problem area 3).

4, Acoustic emission, thermal emission (problem area 4).

5. Professional societies, industry, and government activities (problem
area 5).

6. Holographic interferometry, thermal emission (problem area 6).

7. Sonic scattering or attenuation (problem area 5).

8. Preparation of an NDE of composites handbook to supplement the Air
Force Design Guide (problem area 8).

9. Design for in-service inspection, e.g., incorporate reflective or

conductive layers (problem area 4).

In addition to the above, the communications situation between those in the
NDE (what can we detect) field and those in the structural design (what do we
have to detect) field was aired briefly, but no consensus as to its resolution

was achieved.

Copyright © National Academy of Sciences. All rights reserved.
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IV. PRESENTATIONS
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-10 - February 197

NONDESTRUCTIVE EVALUATION TODAY
FOR ADVANCED COMPOSITES

This Workshop has been designed to determine needed, new paths of development
for NDT in its application to advanced composites. Therefore, the present
situation of NDT applied to advanced composites should be reviewed.

From the quality assurance point of view, five major concerns are associated
with nondestructive testing:

1. It is used to screen parts; that is, to separate the bad from
the good. Many consider this usage to occur too late in the
process for best effectiveness.

2. No single method will accomplish the total inspection task.
Two, and sometimes three, techniques must be employed for a
given product.

3. Quality assurance is being continually pushed to obtain greater
sensitivity. The state-of-the-art is constantly being expanded
to new horizons, with attendant mounting expense.

4. Usually one of the methods employed is time-consuming, and time
represents money with the products that are being developed
today.

5. Management considers NDT an excessively expensive inspection
tool. The necessity for NDT is acknowledged, but there are
demands to reduce its costs.

The numerous available reports on NDT and advanced composites indicate that
practically all the known methods have been tried, at least in the labora-
tory, to determine their capabilities on the various advanced composites,
such as metal matrix and boron graphite resin laminates. Ultrasonics,
radiography (both X-ray and neutron), microwaves, holography, eddy current,
liquid crystals, penetrants, acoustic emission, and sonic vibration tech-
niques have been applied. All have shown success of varying degrees. As a
result, one must select the NDT methods to be used by considering the
engineering criteria and the capabilities of the particular method.

The most generally capable technique, with its various modes of operation,
is ultrasonics. Ultrasonics has been the workhorse for nondestructive
testing. Through-transmission, attenuation C-SCAN recording is probably
the most sensitive and reliable technique for detecting macro defects of
the delamination, inclusion, and void types, and for density evaluation.
Figure 1 shows a typical setup. The technique employs two transducers,
aligned one on each side of the part. One transducer sends the signal, and
the other receives it. Figure 2 is a typical recording of a defective area

Copyright © National Academy of Sciences. All rights reserved.
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with various levels of attenuation. The equipment's attenuator settings are
noted in decibels (db). This technique works well on thin parts--3 plies of
thickness of the metal matrix or resin laminates--and on parts of 235 plies
of the boron resin laminate-type structures, with sensitivities ranging

from 1/16-inch to 3/8-inch in diameter, respectively. However, it is expen-
sive and does not provide depth location. Pulse-echo is probably the most
popular technique of ultrasonics employed for defect detection. Figure 3
shows a typical pulse-echo setup. Pulse-echo ultrasonics uses a single
transducer to transmit the signal and receive reflected signals from the
part. The method is slightly less sensitive than through-transmission, and
does not have the same range of thickness, but it is less expensive. Other
ultrasonic methods such as shear wave, surface wave, and interval velocity
have been used with composites. These methods, apparently, have been employed
mainly in laboratory investigations for density and modulus measurements,
and have not seen real production use. Most ultrasonic methods require
liquid couplant. Water is the most common, which requires the parts to be
protected by sealing of their edges and, for some parts, a drying operation.

Radiography employs X-rays and neutrons. Figure 4 illustrates the differ-
ence between neutron radiographs and X-ray radiographs. Neutrons pass
readily through metallic objects but are attenuated by halogenated materials
such as the cigarettes in the cigarette case, whereas X-rays are attenuated
by the metallic portions of the case and not by the cigarettes themselves.
X-ray radiography is a well-established production technique and is used
primarily to detect broken and misaligned filaments and metallic inclusions.
However, because of the confusion factor caused by many filaments, this
application is limited to relatively thin parts, 8 to 10 plies maximum.
Radiography is also usable for sandwich structure to determine internal
damage or shifting of internal parts. Delaminations are sometimes detectable,
but not reliably. Neutron radiography has been hampered for production use
by the size, cost, and lack of portability of the equipment. The method is
as sensitive as X-ray radiography and has the same limitations. Gamma rays
have been used frequently in the laboratory to measure density and porosity
and filament volume, but production use has been very limited. A major dis-
advantage of radiography is the hazard to personnel.

Use of holography and 1liquid crystals on a production basis has been very
limited, probably because their detection capability 1is mainly for gross
defects near the surface. Each, however, has been the subject of consider-
able research and laboratory testing. Figure 5 shows the complexity of a
holographic setup with the laser beam and the optics required. 1In this
case, heat 1s applied to cause a thermal load which provides the distortion
necessary for holograms. Figure 6 is a typical hologram where the interfer-
ence fringes show a defective area.

Microwaves have been used in some production applications for thickness
measurements and void detection in plastic sandwich structures. They have

Copyright © National Academy of Sciences. All rights reserved.
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also been used for moisture detection. Only gross defects can be detected,
but laboratory work has indicated possible use for dielectric and density
measurements for boron resin composites.

Liquid penetrant, a common production technique, is very useful for finding
defects that reach the edge and would otherwise not be detected. Most of
the other techniques lose their sensitivity when approaching the edges.
Penetrants have particular use in locating damage around drilled holes;
however, if the repair technique to be used requires the use of resin, the
penetrant is a contaminant and, hence, cannot be employed.

Sonic, or vibrational, techniques have been used extensively in production

and in the field. These techniques are applicable for detecting gross
defects, voids, and disbonds--about 3/8-inch in diameter and larger. Some
techniques have the ability to detect far-side defects in sandwich structures.
Figure 7 shows a typical sonic system in use. Note that no liquid couplant

is required. Many of the sonic or vibrational techniques have this capa-
bility. Studies using vibrational techniques have shown the possibility of
measuring strength of certain resin systems. Part complexity still inhibits
development of a usable production system for measuring bond strength.

Eddy current methods have been little used in the composites field. Labora-
tory testing has shown certain boron and graphite matrix composites to be
possible candidates for eddy current applications. Eddy current will prob-
ably be more applicable to small parts or inspection of localized areas.
However, additional development is considered to be required.

Acoustic emission is still being investigated in the laboratory to determine
its test application. It appears that its greatest value will be for field
nondestructive testing, but work is needed to develop practical applications.

In summary, considerable nondestructive evaluation work has been accomplished
in the laboratory with advanced composites using the various aforementioned
NDT techniques. This work has been directed toward defining the detection
capabilities of the various techniques, as well as determining methods for
measuring strength and density. It must be kept in mind, however, that there
is a considerable difference between laboratory results and results in the
production shop or the field. A basic difference is the capabilities of the

personnel doing the work. Consideration for future effort possibly should
be given to:

1. The development of nondestructive testing techniques to be used
for process control, the goal being to prevent defects from

occurring or to detect them early enough in the process to enable
easy correction.

2. The need for standards, which is very noticeable. Processing
defects normally expected under production and field situations

Copyright © National Academy of Sciences. All rights reserved.
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should be developed into known standards that can be used to
control the various testing techniques being used by all
organizations.

The establishment and demonstration of production and field
procedures for the specific applications of those nondes-
tructive testing techniques considered the most promising.
Production and field personnel should be used in the demon-
stration.

The development of high-powered transducers to overcome losses
in the thicker laminates, and the development of dry couplant
media to eliminate the need for water and oil. Figure 8
illustrates an elastomer material used as a couplant in the
form of a tire on a roller probe. Figure 9 shows results
obtained with this material as a couplant.

The development of systems with rapid scanning capability to
speed up the inspection function. Perhaps a computer-
controlled dispositioning system is the answer. Figure 10
shows the use of a computer to record the complex ultrasonic
signals of a standard pulse-echo system. By use of the com-
puter, the recorded ultrasonic signal can be recalled and
analyzed, as shown by Figure 11.

Copyright © National Academy of Sciences. All rights reserved.
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COMPOSITE DESIGN AND NDE

This paper presents an assessment of the composite designer's needs with respect to
inspection and attempts to address the areas requiring further effort in NDE of compo-
sites, as well as to indicate areas that are well in hand. Subjects such as designing to
allow inspection and to accommodate available NDE are not addressed since the need for
such design approaches is obvious and primarily a matter of good design practice and
communication with inspection personnel. The author thus has little to suggest that
would be constructive in this area.

Three general areas of inspection requirements will be addressed:

1. Raw material and in process
2. As fabricated and
3. In service

Raw Material and In Process

A designer is interested in inspecting the raw material for a part and in inspecting the
fabrication process at intermediate points for two reasons. Firstly, as a matter of
economics, he would like to eliminate poor materials and poorly fabricated parts with

a minimum amount of value added. Secondly, given the present state-of-the-art for
inspecting completed articles the best available approach to insuring the quality of
completed articles is often tight acceptance and process control. The present inspection
capability appears reasonably adequate for the above needs. For most fibrous composites
we have acceptance testing which is adequate to confirm the quality of the raw materials.
Furthermore the normal '"do it like the planning' inspection is reasonably acceptable for
process control insofar as we understand the variables to control. As part of this process
control, standard practices utilize a significant number of process control specimens
which are destructively tested to confirm that the processing parameters used on the

part were appropriate. This use of process control specimens provides useful informa-
tion and serves as a good quality check as long as the specimens are themselves care-
fully designed. For example, a laminate that tapers from 100 plies at a root end
attachment point to a few plies at the outboard end may require several tab specimens

of different thicknesses for reasonable process verification since the different thick-
nesses respond differently to process variations.
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As Fabricated

Except for the economic issues addressed above the designer actually only requires
that the part as fabricated has the properties with which it was designed. Thus in the
case of composite laminates the designer needs to be able to confirm that the laminate
has the strength and stiffness represented by his allowables. He would like to be able
to confirm this directly by nondestructive evaluation of the fabricated laminate rather
than by total dependence on doing it right (I. E., good process control). Unfortunately
the present capability for NDE of composite laminates does not allow such a direct
determination of strength. We can find discontinuities in otherwise continuous media,
that is, we can find voids and delaminations. If the voids and/or delaminations are
large enough or numerous enough, that is, if the inspection reveals that the part is
"bad enough, " the part may be rejected since the voids and delaminations are an indica-
tion of poor processing. However, in many cases the voids or delaminations cannot be
shown to be harmfulby themselves and in other cases a badly processed laminate that
is understrength may not posses significant voids or delaminations. The techniques
we use depend upon finding an anomaly in the propagation of some elastic response.

If the medium remains continuous (does not have voids or delaminations) no apparent
anomaly is likely to be found. In light of the above observations it should be apparent
that a fruitful area for research is in the determination of low strength but fully bonded
laminates. This, of course, is the same problem which has plagued adhesively bonded
joints for many years. In this author's opinion, this area of research offers considerably
more promise than further attempts to improve our ability to discriminate smaller and
smaller voids and delaminations.

In Service

The designer's needs relative to in-service inspection is for some a way to confirm that
composite parts do not suffer significant degradation during their useful lifetime. In
this respect we have largely uncharted waters. Essentially our problem is that we
don't know what sort of degradation of strength reduction that we should inspect to find.
To clarify this view, I will discuss a few observations of composite behavior.

The fatigue behavior of advanced fibrous composites is quite unlike that of high strength
metals. In an unnotched condition, composites exhibit quite flat S-N curves with fatigue
lives of 107 cycles above 70% of static ultimate. When the same composites are fatigue
tested with holes or sharp notches they exhibit even less fatigue damage. In fact,
although the static strength may be reduced 20 to 40% with a notch, this strength is
usually maintained over 107 cycles. Furthermore, when a notched composite specimen
is fatigued a small number of cycles the residual strength of that specimen is increased
well above the static strength before fatigue (Reference 1).
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Many investigators have done research in the area of composite fracture during the

last few years. This research has shown that the fracture behavior of advanced fibrous
composites with holes and notches can be reasonably pr dicted using linear elastic
fracture mechanics. This research has been quite helpful in understanding the behavior
of these composites. However, it also seems it has intensified efforts to detect discrete
cracks or flaws within these composites so that critical cracks might be detected in-
service before a service failure. The author believes the results of the fracture
research should lead one in a different direction. As an example, K. for a [0+45/90] s
Boron/Epoxy laminate has been represented as approximately 36,000 psi \/In

several researchers. Using a relatively high limit stress value for this laminate of
30,000 psi the critical through crack length at limit is approximately 0.9 inch. Such

a very large critical flaw size hardly makes one concerned about sophisticated detection
methods for discrete defects. If we add to this observation the observation cited above
concerning residual strengths (which implies a lack of crack growth but rather crack
"blunting'') one is led to the conclusion that critical discrete flaw detection is easy in
advanced fibrous composites, at least when using typical laminates and typical working
stresses, because composites are inherently fracture resistant.

One other conclusion that leads from the above observations is that a proof test of a
composite laminate can be a very effective screen since the proof test confirms that
the part can safely rake at least that much load and the fatigue life will be very large
at any smaller loads. The nearly perfect elastic behavior of composites also removes
any concern with high yield deformations and development of 'plastic hinges' during
high proof loadings.

The above discussion indicates that if a composite laminate is fabricated acceptably,
discrete damage in-service should not be a major detection problem. What then do

we need to inspect for? This question does not have a clear answer. That is, we do
not know of any specific degradation to expect in nominal strength (no discrete defects),
yet without an extensive experience base we cannot conclude positively that no degrada-
tion will occur. Consequently, an inspection method that could identify a degradation
in nominal strength would greatly enhance our confidence in applying these materials
for long-term applications. One near-term solution may be to monitor the strain
response of critical parts by built-in gages. It is unlikely that strength changes will
occur independently of stiffness changes. The alternative appears to be the develop-
ment of sufficient testing and in-service experience to provide confidence that such
nominal strength degradation will not occur.
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Applications

As a first example of the kind of inspection procedures deemed appropriate, Boron/
Aluminum tubes that will be utilized on the Space Shuttle Orbiter as compression
struts will be briefly described. These tubes are unidirectional B/Al tubes with
integrally diffusion bonded titanium end collars. After the tubes and end fittings are
fabricated the bolt attachment clevis is welded to the tubes collar. The quality con-
trol procedures that are planned for these tubes are as follows:

1. The material is being procured to specification minimums for strength
and stiffness which will be verified with load tests and a volume percent
determination.

2. In Process. Dimensional checks will be provided on both the tooling and
the parts. Inspection of the layup procedure is called out in the planning.
The titanium to titanium weld will be verified before and after setting up
the welding machine each day.

3. Proof Test. Each tube will be tested to 120% limit tension and compression
before being used. This proof test should be adequate to show the process
was performed essentially correctly. Having passed a proof test at 120%
of limit, fatigue results indicate a virtually infinite life time at limit
stresses and below, for the tube wall and diffusion bond.

4, In-Service Inspection. The only in-service inspection that should be required
for these tubes is an occasional visual examination. This inspection should
be adequate since the limit stresses to which the tubes are designed are
such that a notch or discrete defect that is large enough to lower the limit
properties on the tubes should be easily seen. The titanium end fittings
will need to be inspected carefully since they are designed conventionally.
The weld area, however, is very conservatively designed (45 KSI ultimate).

As another example, Convair has recently completed the design of a graphite/epoxy

wing box for our Model 200 Navy V/STOL aircraft. This airplane is a delta canard
configuration. The delta wing is naturally redundant and a relatively low stress level
design is inherent. The details of this design are reported in Reference 2. For the
present discussion, the conclusion of interest is that the limit tension stresses for the
optimized design are well below the 107 cycle run out strength of the material with a hole.
This sort of design in composites results in virtually no non-visual inspection required

in the field and in a virtually infinite life-time for the wing skins. Except for the elusive
problem of nominal strength degradation alluded to above, no future NDE procedures
appear needed for in-service inspection of such wing skins.
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Conclusions

Fibrous composite materials have a very good fatigue resistance and are inherently
resistant to discrete flaws. These observations lead one to conclude that we do not
need to dwell on the development of finer discrimination of discrete defects in these
laminates. On the other hand, composite laminates can have strengths significantly
below nominal without any observed discrete defects. We cannot at the present time
identify such off-normal laminates nondestructively. For both of these potential
applications of NDE (discrete defects and off-nominal strengths), we first need to
define what damage or degradation is, and then determine methods to find it.
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Quality assurance and prccess contrcl have i—oortant roles in the
production and use of s<tructurzl compcsites. The relative rewmess ¢f comosite
structures and lirited service esperierce as corared to retal structures
rakes the use of proven cuziity assurarce ard process contrcl procecdures

a necessity. Tris relps provide confiderce in the use of structural corposites.

2ETFIPTION OF COVFOSITE SivATURES

Tne gquality assurance and process control procecures ap;lied to
production structural corposites is ciscussed. McDonnell Aircraft Company
is rarufacturing co~posite stabilator and fin torcue boxes, and comoosite
ryccers for the F-15, These are all full depth noreycort structures with
borcrn/eposy skins. In addition, under Air Force contract, a corposite
static test wing is now being asserbled and a flight test corposite wing
is plarned.

Tne configurations of and materials used in the stabilator and fin torque
bores are shown in Figures 1 and 2. Both use boron/epoxy skins with titanium
frames, full depth aluminum honeycomb core, titanium spars, and fiberglass

closure ribs at the tips. In Figure 1, note the areas where the geometry

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog.php?record_id=20202

Proceedings of the Workshop on Structural Composites and Nondestructive Evaluation
http://www.nap.edu/catalog.php?record_id=20202

J.F. Cook

R.J. Roehrs
-31- NMAB - Dayton

February 1974

of the structure changes. Note the core splices and, in Section A-A, note
the titanium steps in the skin, the skin-to-spar joint and the foam adhesive
joint between the core and the spar. These changes in geometry are typical
of what is encountered in actual structures. Most effort on developing and/or
defining the capabilities of NDT methods fails to take into account such
areas of changing geometry. When actual structures are produced, it is found
that most discontinuities which need to be found with NDT occur in these
changing geometry areas. Therefore, NDT development work done on simple,
flat specimens is of little value when it comes to solving problems in NDT

of actual structures. Future investigations on NDT should be applied toward
providihg useful information for the NDT of production structures and must
take into account typical changing geometry areas.

The F-15 rudder assembly uses boron/epoxy skins reinforced with titanium
splice plates in the areas of the titanium hinge attachment. Full depth
aluminum honeycomb is used. Closures (ribs and spar) are fabricated from
fiberglass.

Figures 3 and 4 show the F-15 flight test composite wing. Note the
variety of geometries and materials in this structure such as the boron/
epoxy and aluminum honeycomb core skins and the graphite hats, tees, ribs,
and spars. The skins are fabricated in a single operation, cocurring the
boron/epoxy and boron/epoxy-to-core bonds in one operation. The graphite
parts are fabricated as details and then assembled to the rest of the struc-

ture. The hat and tee stiffeners are bonded to the skins.

DOCUMENTATION

In dealing with composites materials, it is important to initially

establish engineering requirements for quality assurance and process control.
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This is normally done as a cooperative effort by the structures, design,
and material and process engineering personnel. It is their responsibility
to define the quality assurance and process control requirements and issue
documents containing these requirements. Principal documents are material
specifications, process specifications, Engineering drawings, and detailed
written NDT procedures.

To provide the proper NDT input for inclusion in these documents, it

is necessary to perform a preliminary NDT analysis. This requires reviewing
the preliminary engineering drawings and specifications and defining special
equipnent requirements to insure that the equipment is available when it
is time to perform the test. It is also very important to design reference
standards that can be used for performing the specific inspection. And last,
but not least, this preliminary analysis should specify when to inspect
the part.

Material Specifications

Material specifications are used to control all of the basic materials
used to fabricate structural composite assemblies. Typical of materials
controlled are the boron/epdxy prepreg tape, the aluminum honeycomb core,
the titanium, and the adhesives.

The material specification will first define all the requirements the
material is to meet. For example, for boron/epoxy prepreg tape, the
minimum mechanical properties, the fiber and resin contents, and thickness
per cured ply are specified. Next, the material specification outlines
the qualification tests that a vendor must perform and submit the resultant
data in order for his material to be qualified for a given specification.

Often these tests will be run on several lots of material, and the data
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will be used as a basis for defining acceptance criteria for later vendor

batch certification tests and incoming inspection tests. Typical batch
certification tests that are specified for boron/epoxy prepreg tape include

the thickness per cured ply, the resin content, infrared analysis of the

resin, and determining the epoxide equivalent of the resin. Incoming inspection
tests specified include mechanical property tests and resin content tests.

The material specification then defines in detail all of the test methods
to be used for the qualification, vendor batch certification, and incoming
inspection tests. Finally, preparation for delivery, and storage requirements
are specified. For example, boron epoxy prepreg tape is required to be
stored at 0°F, and records are kept of time out of 0°F storage.

Process Specifications

Figure 5 outlines the contents of process specifications. Process
specifications are used to control both the fabrications and the NDT of
structural composite assemblies. .

The materials and solutions used in the process are specified and
controls for the solutions are given. For example, make up and control of
the titanium cleaning solution used for the titanium bonded to boron/epoxy
is specified. Personnel qualification requirements are given. Al1l bonding
personnel are qualified by training and written examinations. NDT personnel
are qualified in accordance with the guidelines of the American Society for
Nondestructive Testing recommended practice SNT-TC-1A and applicable supple-
ments. Requirements and controls for equipment, such as ovens and autoclaves
used in bonding and ultrasonic and radiographic NDT equipment, are specified.
Facility requirements are also included. For example there are bonding

room controls prohibiting any machining or operation of internal combustion
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engines in bonding areas. Close control of the Ti cleaning facility is
obtained by using a Ti cleaning facility exclusively for preparation for
bonding.

The process specifications include the general procedures to be used
for the fabrication and NDT of the composite structures. There will be
technical requirements such as the dimensional and physical properties
(verified by process control specimens) of the completed assembly. Figure 6
shows typical technical requirements from the specification for radiography
of composite structures. The maximum kV's as a function of thickness for
various materials are specified. It is important to keep the kV values
relatively low as shown in the figure in order to obtain maximum subject
contrast. It has been demonstrated that radiography properly applied at
lTow kV's will find many types of discontinuities in complex geometry areas
that are undetectable by other NDT methods.

In addition to procedures, there are defined in the NDT specifications
bases for evaluation of indications. What the inspector is to be looking
for is defined in detail. There are numerous types of discontinuities that
can be encountered and are covered with descriptions and acceptance criteria.
For example figures 7-10 show some of the discontinuities that can occur
in the core of a composite structure. There can be various degrees of
crushed, distorted, and condensed core. There can be blown core as shown in
Figure 9. This can occur when a bag bursts, causing a sudden rise in pressure
during the cure cycle. There can be discontinuities in the foam adhesive
at core splice joints. Figure 10 shows a section through a core splice joint
with a lack of adhesive in the center of the foam bond. Each type of core

discontinuity has a different structural significance; acceptance criteria
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must therefore be defined for each type.

Acceptance classes or grades are defined in the NDT process specifications
in order to assist the design or structures engineer in calling out the specific
acceptance criteria for a given part. This eliminates the need for drawing
the various flaws that can be tolerated on the drawing for each part. The
design or structures engineer need only reference the process specification
defined acceptance classes according to the requirements for each particular
part. The chart shown in Figure 11 has been developed to define acceptance
classes for unbonds and delaminaticns. The length and width of the unbonds
are related to the different acceptance classes. For example, any unbond
whose dimensions fall within the envelope defined by the class A line would
be acceptable to class A. Any unbond falling outside the envelope would
be rejectable.

The bases for evaluation of indications and the acceptance classes
were generated by coordination between NDT, Strength, and Design Engineering
personnel. It is important that tnese be defined in detail. If they are not,
it ends up that the NDT technician decides the acceptance criteria. Without
specific instructions, all he can do is guess at what is wanted. His choice
may not be compatible with the real Engineering requirements for the part,
and many types of discontinuities could be ignored.

In addition, the NDT process specifications require that detailed
written procedure be prepared for each part to be inspected. There are
such variations in part configurations that it would not be practicle to
cover in a general specification all of the details for every part. The
detailed procedures provide for consistent tests and help verify that the

specifications are understood and are being worked to. Quality Assurance
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or Engineering NDT personnel prepare the procedures which are then reviewed
for concurrence by the Quality Assurance Engineering staff. Typical informa-
tion included in procedures is shown in Figures 12 and 13, taken from
radiographic and ultrasonic inspection procedures for a composite tee stiffener.
The radiographic procedure gives details such as the source-to-film distance,
the kV's, ma's, expcosure times, and exposure directions. Note the angulated
exposures. This provides for coverage of the radius areas between the
vertical member and the flange of the tee. Angulated exposures are effective
on many different composite structural configurations. They can detect
many types of discontinuities which are missed by exposures with normal
(90°) beam direction.

Note in Figure 13 the ultrasonic procedure information such as the
scan planes, search units, and test methods (thru transmission or reflector
plate). The phenolic block is placed on the cap of the tee to prevent the
ultrasonic energy from "spilling" around the edge of the cap. Without
the phenolic block, even when using focussed search units with the focal
points located at the sound entry and exit surfaces of the part, the area
of the tee cap within 0.060 to 0.090 inch of the edge ends up a no test zone
because of the sound spillover. Since the solid cap area is only 0.170
inch wide, it is important to test the entire width. Use of the
phenolic block provides for this. Simple technique refinements such
as this provides for more effective inspections.

Engineering Drawings

In order to ensure that the part is inspected in the required areas, it
is the responsibility of the structural engineer to define the critical areas

and see that this information is placed on the drawing. He must also
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establish the maximum allowable flaw size and reference the applicable
acceptance classes. In addition, the Engineering drawing references

the applicable material and process specifications and often will include

a zoned sketch to indicate varying acceptance classes. A typical zoning

is shown in Figure 14 which indicates acceptance classes for a stub wing
skin. These classes are the classes defined in Figure 11. For this part,
the class A zones are boron/epoxy-to-titanium splice plate bonds; the class
B zones are solid boron/epoxy lands; the class C zones are boron/epoxy-to-
honeycomb core bonds, and the class D zone is the outboard solid boron/

epoxy area.

PRODUCTION PROCEDURES

Next to be described are the quality assurance and process control
procedures applied during the fabrication cycle used for the production
of the composite stabilator and fin torque boxes. The skin assemblies are
first fabricated, and then the completed skins are bonded to honeycomb core
and closure assemblies.

Figure 15 illustrates the various process control and NDT operations
applied during fabrication of the skins. First the titanium frame details
are cleaned in a facility used exclusively for preparation for -bonding.
Process control specimens (lap shear) are cleaned along with the parts.

In addition, the cleaned parts are checked for water break free surfaces.

The titanium is then spray coated with adhesive primer. The dried primer

thickness is checked to control the thickness in the 0.0001 to 0.0005 inch
range using a special eddy current procedure covered by an NDT process

specification. Since the dried primer is rough and has some resilency,
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multiple readings are taken and averaged and a spring loaded probe is used
to obtain constant probe pressure. The eddy current readings are correlated
to average thickness by set up on standards whose average thickness has been
determined from weight measurements and density data.
Visual inspections, using a back lighted table, are preformed during
the lay-up process to check for such things as excessive gaps or overlaps
between tapes. Visual inspections are also performed when the plys are put
into the skin assembly; orientation and fit-up is checked. The completed
lay-up is bagged and then leak checked. Curing in an autoclave follows.
Process control specimens are fabricated and cured right along with the part.
Double lap shear specimens represent the boron/epoxy-to-titanium bonds.
The boron/epoxy laminate properties are checked using sandwich beam specimens
to determine longitudinal and transverse tensile strengths at room temperature
and 350°F. In addition, one side of titanium lap shear finger panels, coated
with a layer of adhesive, are processed along with the skins to be used in
later process control tests to represent the titanium edges of the skins
which are coated with adhesive and then, in the next stage of assembly,
are bonded to the titanium spars. The completed skin is ultrasonically
inspected to check for possible delaminations in the boron/epoxy or unbonds
between the boron/epoxy and titanium. The immersion reflector plate C-scan
method is used. Figure 16 shows a schematic of this test set-up.
The stabilator and fin torque box assemblies are completed by bonding
the cured skins to aluminum honeycomb and titanium spar substructure assemblies.
Figure 17 illustrates the process. The titanium spars go through the cleaning

and priming operations with the same quality assurance and process control
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procedures used for the skin frame titanium. The assembly is first run
through a verifilm inspection to check for proper tooling and fit up.
The verifilm inspection consists of placing a plastic film (verifilm) in
the assembly in place of adhesive. The assembly is then bagged and heated
in an autoclave under pressure. The assembly is then taken apart and the
resultant verifilm shows the fit up of the details of the assembly.
Differences in fit up tolerance are indicated by changes in thickness of
the verifilm. Any areas requiring extra layers of adhesive are noted.
The details are then assembled with adnesive, bagged, leak checked, and then
cured. Process control specimens include double lap shear specimens to
represent the boron/epoxy-to-titanium bonds, single lap shear specimens
to represent the titanium-to-titanium bcnds, flatwise tension tests
to represent the skin-to-core bonds, and beam shear tests to represent
the foaming adhesive bonds within the core structure.
The completed assembly goes through ultrasonic and radiographic NDT.
The ultrasonic thru transmission test is applied to the skin-to-core bonds.
Focussed search units are used with the focal points located at the surfaces
of the part. "Squirters" are used for coupling. The results are C-scan
recorded. Double layer lead tape discs (3/8 inch diameter are applied to
the surface for use as standards. It has been found by correlation with
actual defects that when the instrument gain is set to print these to actual
size, unbonds will also be printed at actual size. The skin-to-spar bonds
and spar-to-core bonds are ultrasonically inspected using hand scanning.
Penetrant emulsifier is used as the couplant. The "damping" test is applied

to the skin-to-spar bonds. In this test, sound is sent through the bond
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and the operator damps the ringing signal of the cathode ray tube by apply-
ing his finger (couplant wetted) to the back surface of the bond. A ringing
test is applied to the spar-to-core bonds. In this test, unbonds (separation
of the foam adhesive from the spar) are indicated by an increase in ringing
signal on the cathode ray tube. Prior to the ultrasonic tests, all edges
of the part are sealed. This is to prevent couplant from flowing into any
possible unbond which may be open to an edge. It has been shown that
ultrasonic inspection will not detect unbonds or delaminations which are
filled with couplant.

Radiographic inspection is applied to check for discontinuities in the
core structure (for typical discontinuities, refer to Figures 7 through 10)
verify proper fit up of the skins, core, and spars, and check for possible
adhesive voids in the skin-to-spar bondlines. Radiographic exposure positions
are identical for all like parts. This is assured by preparing a Mylar
overlay which shows the locations of all films relative to the part. This
overlay is then used to layout the NDT for all articles of the part. The
layout of the ultrasonic standard discs and strips are also indicated on the
Mylar. In addition to their use as ultrasonic setup standards, these discs
and strips also aid in locating the radiographs to the part.

An additional part of the quality assurance and process control was
the destructive test of the first article torque box. Mechanical properties
were checked, the bond 1ine thicknesses were checked, and the effectiveness
of the NDT procedures was verified. In addition, selected areas from this

first article were cut up, retained, and used for NDT standards.

REVIEW AND ANALYSIS OF DISCREPANT PARTS

An important part of quality assurance and process control is the

Copyright © National Academy of Sciences. All rights reserved.
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review and analysis of discrepant parts. Discrepant parts are reviewed by
design, strength, and material and process engineering, manufacturing,

and quality assurance. Some of the parts are reworked, some are accepted
as is, others are scrapped. Those parts that are scrapped end up getting
into an NDT/DT (destructive test) correlation in order to determine if the
requirements that have been imposed are satisfactory or if the
requirements need to be changed. Drawings, manufacturing procedures, NDT
procedures, process specifications, or acceptance criteria may be revised
based on the NDT/DT correlation. This also provides an opportunity to
verify or revise the detailed procedures as a result of the destructive

analysis of parts.

NONDESTRUCTIVE INSPECTION

NDI (nondestructive in-field inspection) is required after the composite
structures are installed on aircraft and put into service. It is necessary
to identify the areas to be inspected, determine their accessibility and
availability, select and develop the NDI techniques, prepare detailed proce-
dures, perform the NDI, and report the results. NDI requirements and proce-
dures are established in a manner similar to that discussed for establishing

the NDT requirements and procedures.

Copyright © National Academy of Sciences. All rights reserved.
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SUMMARY

This discussion of quality assurance and process control of structural
composites has emphasized the procedures used on production composite aircraft
structures. The importance of establishing and documenting detailed pro-
cedures, requirements, and acceptance criteria is emphasized. This requires
close coordination of Design, Strength, Material and Process, and NDT Engineers,
and Quality Assurance personnel. The quality assurance and process control
procedures applied during the manufacturing cycle for empennage composite

torque boxes have been described. A combination of process control tests

and nondestructive tests helps provide reliable structural composites.

Copyright © National Academy of Sciences. All rights reserved.
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FIGURE 5
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FIGURE 8 GP74 0260 9
CORE DEFECTS
(Condensed Core)
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FIGURE 10
LACK OF FOAMING ADHESIVE IN CORE SPLICE JOINT
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EFFECT OF FLAWS ON

MATERIAL PERFORMANCE

Edward Wu
Washington University
St. Louis, Missouri

This paper had not been received by publication time.
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THE COMPOSITE CHALLENGE FOR NDE

Introduction

Let us consider briefly the materials challenge for Nondestructive Evaluation. As
indicated in Table I, the materials challenge for NDE can be considered from two
different viewpoints. We must first be able to find and characterize various defects
and flaws in a material. Secondly and perhaps more importantly, we must study the
effects of specific flaws on system and material performance. This second step
allows us to prescribe reasonable and reliable inspection specifications and standards.
This problem has confronted engineers and scientists for many years. Much work has
already been performed in the past that handles the various aspects of programmed
flaws on system performance. Only a few of these programs utilize various aspects
of nondestructive evaluation for defect growth characterization. In order to draw
proper conclusions on aspects of mechanics, design, and material research, accurate
and reliable quality control and nondestructive evaluation programs must be utilized.
NDE programs can be used to study defect growth characteristics in fatigue and
degradation problems, therefore providing the designer with useful materials and
systems design data for structures having a greater capability of resisting degradation
and fatigue.

Let us now consider specific problems associated with the Composite Materials
Challenge for NDE. Many aspects of the composite challenge have already been
considered in the earlier papers. Mr. Caustin discussed principles of several
nondestructive evaluation test procedures that are being used in inspection programs
today. Various material design considerations associated with nondestructive evalu-
ation were discussed by Jim Ashton. Jeff Cook presented various quality and process
control concepts that are required for the new advanced composite materials. The
effects of flaws in material performance and various concepts of fracture mechanics
were outlined in some detail by Ed Wu. All of these talks included topics that could
be considered in the Composite Challenge for NDE. As a result of many discussions
with engineers and scientists in both industry and the Department of Defense, I have
prepared an outline that depicts topics for consideration in the Composite Challenge
for NDE. These items, listed in Table II, are described briefly in the following
paragraphs.
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1. Specific Composite Material Problem Must be Solved with NDE.

Items that should be considered in the future are listed as items a, b, ¢, and d,

in Table Il. Void regions must be found and studied so that delamination growth
and crack initiation in these areas can be understood and handled properly from

a design standpoint. Void areas, and resin rich or poor areas are associated

with local volume fraction variations in the composite. It is also desirable to
develop procedures that could detect misaligned plies in a multi-layered composite.
The volume fraction and misaligned angle ply problem along with the material
characterization problem could be studied further if wave propagation fundamentals
were thoroughly understood. For example work by Smith [1] describes a procedure
for measuring wave speeds and elastic constant values in a composite. As shown
in Figure 1, the method relies on angle beam ultrasonic analysis, a problem of
some difficulty in theoretical wave propagation analysis. Some of the calculated
elastic constants are incorrect. The work by Rose and Deska [2], an early attempt
to understand the mode conversion problem in composite materials, describes the
wave profile analysis problem associated with composite structures. Further work
in data analysis and wave propagation is required before the ultrasonic procedure
achieves its fullest potential in solving basic problems in material and flaw charac-
terization analysis.

The item of flaw characterization has received much attention in the past. For example,
as indicated in the paper by Rose, Carson, and Leidel [ 3], signal shape and arrival
time analysis for flaw characterization is often used in flaw characterization schemes

as shown in Figure 2. A sample "C" scan result, taken from [3] is also shown in
Figure 3, along with a sample frequency analysis result in Figure 4. Each of these
methods is currently being used in flaw characterization analysis, but each is limited

by the tedious, time consuming chore of data acquisition and data analysis. Such

optical techniques as holographic interferometry are also being utilized in flaw
characterization work. A sample result, taken from [3], is shown in Figure 5. Advances
in the data handling problems are certainly necessary if reliable flaw characterization
procedures are to be developed.

II. Reliable Signal Analysis Techniques must be Developed for Composite Materials.

Items of concern related to this topic are listed in Table II. A new emerging industry,
information sciences, will play an important role in the development of reliable signal
processing systems. Such topics as pattern recognition and high speed data analysis
must be developed and applied to NDE. A technical philosophy on signal preprocessing
and processing is presented in a paper by Rose and Meyer [ 4], basic elements of which
are presented in a block diagram shown in Figure 6. A sample problem of the thought
processes that enter the signal processing problem area for measuring the thickness
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of thin films is presented in [5]. Suitable software routines, transducer selection
criteria, and the basic physics of nondestructive evaluation must be understood
before one can reliably generate suitable software routines for data analysis. For
example, the dependence on ultrasonic pulse shape is pointed out in [5]; this par-
ticular problem was neglected for many years in the past. The possibility of
developing automatic tuning and compensation networks for ultrasonic transducers
should also be considered. The problem of selecting suitable reference standards,
other than the classic flat bottom hole described by Ellerington [ 6], must be
approached.

III. The Effects of Flaws on Systems Performance can be Studied with NDE.

Several items associated with this topic are listed in Table II. NDE can be used to
study such problems as crack arrest mechanisms, critical crack sizes, resistance
to impact, etc. A sample result showing cracked fibers from a fatigue test, taken
from work by Owsten [7] is shown in Figure 7. NDE could show which cracks are
present initially as well as to describe the growth characteristics during a parti-
cular test. A paper by Rose and Shelton [ 8] describes several interesting facets
of radiography and ultrasonics as applied to the inspection and damage analysis of
composite materials,

The problem of adhesive bond inspection should also be studied from an NDE viewpoint.
A formidable list of several of the many variables in adhesive bond inspection, taken
from a paper by Rose and Meyer [9], are included in Table III. Rather than study the
effects of each one of the variables listed in the Table, it is proposed to study cor-
relation techniques between specific NDE parameters and the performance of the
adhesively bonded system.

IV. How can an Awareness of NDE Help the Designer and the Process Control and
Quality Control Engineers?

Several topics under this heading, most of which are self explanatory, are listed in
Table II. Educational programs by way of seminars and handbooks, group cooperation
in the problems of the designer and NDE inspection, and other problems of human
engineering must receive some attention.
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Concluding Remarks

Strides toward advancing the state of the art in composite materials inspection and
study with NDE have certainly been made during the past few years. In order to
achieve the best results, great efforts of cooperation and teamwork between the
material supplier, mechanics engineer, NDE engineer, physicist, the electrical
engineer and mathematician for their signal processing skills, and many other
people in different fields of study must be made. Careful planning, thinking and
program implementation is certainly needed.
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Table | - The Materials Challenge for NDE

A. Find and characterize the flaws

B. Study the effects of specific flaws on material performance.
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Table 11 - The Composite Challenge for Nondestructive Evaluation

I. Specific Composite Material Problems must be solved with NDE
a. Volume fraciion determination and evaluation of void content
b. Specific ply orientation, characterization and location
c. Material characterization and geometrical inspection
d. Flaw and crack characterization (shape, size, orientation, and location)

[1. Reliable Signal Analysis Techniques must be developed for composite
materials . . .
a. Arethe standard NDE methods suitable for inspecting composite
materials ? . .
1) Are suitable software routines for data analysis and .S|gnal
preprocessing available for effective digital and image signal
processing? . .

b. Should new NDE methods for inspecting composite materials be
developed? . . .

¢. Can the human engineering problems of signal interpretation,
procedure, and reference standard selection be solved?

I11. The effects of flaws on system performance can be studied with NDE
a. Environmental and fatigue effects

b. Impact damage analysis and new design considerations
¢. Fastening and joining techniques

IV. How can an awareness of NDE help the designer and the process control
and quality control engineers?
a. Accessibility; can it be improved?
b. difficulties attaining reliable NDE can be appreciated
¢. suitable joint designs for specific applications can be sele cted
d. proper material selection and ply orientation for impact resistance
*orenvironmental resistance, etc. can be made
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http://www.nap.edu/catalog.php?record_id=20202

Proceedings of the Workshop on Structural Composites and Nondestructive Evaluation
http://www.nap.edu/catalog.php?record_id=20202

- 68 -

Table 111 - Variables Affecting Adhesive Bond Strength.

Various processing parameters that affect the strength characteristics
of an adhesive bond include:

a) bondline thickness

b) Jjoint type and geometry

c) shear and tensile modulus of adhesive

d) composition of adhesive with respect to base and accelerator ratio
e) adhesive type

f) strain rate effects for loading

g) surface preparation and roughness

h) plastic and elastometric substrate qualities

i) humidity variation in manufacture

J) electrical and thermal properties of adhesive and adherend
k) interfacial resistance properties

1) substrate surface free energy

m) residual stress in the adhesive

n) contact angle of a liquid drop on the adherend surface

Several variables that affect the in-service performance characteristics
of an adhesive bond in addition to those presented above, are listed next:

a) aging

b) environmental degradation and corrosion

c) heat and moisture cycling

d) load fatigue

e) the cohesive or adhesive nature of failure
f) temperature

g) material handling problems

h) dynamic impact resistance

i) stress concentrators in the interface
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Fig. I'- Composite material property determination with ultrasonics
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(a) Plot showing back wall echo over the good area.
(b) Plot showing the defect echo over the flaw area.

Fig. 2 - Oscilloscope trace of a pulse echo ultrasonic,signal in the
glass-epoxy composite tube.
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e pr—— § e

Circumferential direction

Longitudinal direction

Fig. 3 - Sample C-scan of the glass-epoxy composite tube
(flaw indicated by the dark area).
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(a) Over the good area.

(b) Over the flaw area.
Fig. 4 - Spectral analysis comparisons of areas in the glass-epoxy

composite tube (band width 0 to 20 MHz with center frequency
of 10 MHz).
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(a) Over the good area.
(b) Over the flaw area.

Fig. 5 - Holographic fringe pattern for the glass-epoxy composite tube
subjected to i nternal pressure.
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Fig. 7 - Close-up of longitudinal section of CFRP showing fibres
cracked during a fatigue test
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APPENDIX A
WORKSHOP PROGRAM

February 13, 1974

PRESENTATIONS
9:00
GOAL OF THE WORKSHOP

Joseph R. Lane
Staff Metallurgist
National Materials Advisory Board
9:05
NDE TODAY
Edward Caustin, Director
Quality & Reliability Assurance, B-1 Division
Rockwell International Corporation
9:30
COMPOSITE DESIGN & NDE

James Ashton, Director

Structures & Design, Convair Aerospace
Division of General Dynamics Corporation
10:00

Coffee Break

10:30

QUALITY ASSURANCE & PROCESS CONTROL
Jeffrey F. Cook, Senior Engineer, NDT
McDonnell-Douglas Corporation
11:00

EFFECT OF FLAWS ON MATERIAL PERFORMANCE

Edward M. Wu, Professor
Washington University
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11:45
SUMMARY: THE COMPOSITE CHALLENGE FOR NDE

Joseph L. Rose
Assoc. Professor, Drexel University

12:00
Lunch

WORKSHOP SESSIONS

1:30
NONDESTRUCTIVE EVALUATION TODAY

Dana Moran
Battelle-Columbus Laboratories, Chairman

Harold Hatch
U.S. Army, Co-chairman

Effectiveness of current technology
NDE influence on composite design
Quality assurance and process control
- What do we want to measure
- Transition to plant use
- Reference standards and inspection specifications
3:00

Coffee Break

3:30
THE EFFECTS OF FLAWS ON MATERIAL PERFORMANCE

L. B. Pritchett
Boeing Company, Chairman

Robert L. Crane
AFML, Co-chairman

Correlative data: NDE/Properties/Service life
Critical flaw identification for fracture mechanics
Impact damage

5:00

Cash Bar - Conversation
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February 14, 1974

9:00
COMPOSITE CHALLENGE FOR NDE

Richard Chance
Grumman Aerospace Corporation, Chairman

S. Friedman
Naval Ship R&D Center, Co-chairman

Environmental and fatigue effects

In-service inspection

Joining and fastening

New problem areas

Design improvement through enhanced inspectability

New techniques
Signal analysis and presentation
10:00

Coffee Break

11:00
SUMMARY OF DISCUSSION

Joseph L. Rose
Workshop Chairman

12:00
ADJOURN
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APPENDIX B
WORKSHOP PARTICIPANTS
ADELMANN, Louis - Bell Helicopter Company, Ft. Worth, Texas

ALERS, George - Rockwell International Corporation, Thousand Oaks, Ca.
ANDERSON, R.T. - General Dynamics/Convair, San Diego, Ca.
ASHTON, James - General Dynamics/Convair, San Diego, Ca.

AVERY, John G. - Boeing Aerospace Company, Seattle, Washington
BEATTY, W.M. - General Dynamics/Convair, Ft. Worth, Texas

BETZ, Robert A. - Pratt & Whitney Aircraft, East Hartford, Conn.
BOISVERT, Bernard - SAAMA, Kelly Air Force Base, Texas

BOWLES, Kenneth - NASA-Lewis Research Center, Cleveland, Ohio
BUDNICK, Morris L. - U.S. Army Natick Laboratories, Natick, Mass.
CARSON, James - U.S. Air Force Academy, Colorado

CATALANO, Sam - U.S. Army Tank-Automotive Command, Warren, Mich.
CAUSTIN, Edward - Rockwell International Corporation, Los Angeles, Ca.
CHAMIS, C.C. - NASA-Lewis Research Center, Cleveland, Ohio
CHANCE, Richard - Grumman Aerospace Corp., Bethpage, N.Y.

CHANG, Francis H. - General Dynamics/Convair, San Diego, Ca.
CHWIRUT, Daniel J. - National Bureau of Standards, Washington, D. C.
CLEMENS, R.E. - Northrup Corporation, Hawthorne, Ca.

COLLINS, Richard - Grumman Aerospace Corp., Bethpage, N.Y.

COOK, Jeffrey F. - McDonnell-Douglas Corp., St. Louis, Mo.

CORNISH, Rodney - IIT Research Institute, Chicago, Ill.

CRANE, Robert L. - U.S. Air Force Materials Lab., WPAFB, Ohio
DARCY, George - U.S. Army Materials & Mechanics Res. Ctr., Watertown, Mass.
EDELSTEIN, Harold - Naval Ship R&D Center, Annapolis, Md.

EVERS, Ronald V. - Army Aviation Systems Command, St. Louis, Mo.
FETHEROFF, C.W. - TRW, Inc., Cleveland, Ohio

FRIEDMAN, Seymour - Naval Ship R&D Center, Annapolis, Md.
GARDNER, C. Gerald - Southwest Research Institute, San Antonio, Texas
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GIESKE, John - Sandia Laboratories, Albuquerque, N. M.

GUPTA, Y.P. - Advanced Technology Center, Inc., Dallas, Texas
HANBY, Kenneth R. - Battelle-Columbus Laboratories, Columbus, Ohio
HARRISON, Robert W. - General Electric Company, Cincinnati, Ohio
HARRY, Douglas R. - Naval Ship R&D Center, Bethesda, Md.

HART, Stephen D. - Naval Research Laboratory, Washington, D.C.
HATCH, Harold - Army Materials & Mechanics Research Center, Watertown, Mass.
HELLER, Robert A. - Virginia Polytechnic Institute, Blacksburg, Va.
HOFFMAN, Edward L. - NASA-Langley Research Center, Hampton, Va.
HOWELL, William E. - NASA-Langley Research Center, Hampton, Va.
IACOVELLI, C.J. - Boeing Vertol Company, Philadelphia, Pa.
KEBLER, Richard W. - Union Carbide Corporation, Indianapolis, Ind.
KOCZAK, Michael J. - Drexel University, Philadelphia, Pa.

KRASKA, I.R. - General American Transportation Corp., Niles, Ill.
KREIDER, Kenneth - National Bureau of Standards, Washington, D.C,
LAKE, W.W. - Army Aviation Systems Command, St. Louis, Mo.
LANE, Joseph R. - National Materials Advisory Board, Washington, D.C.
LARK, R.F. - NASA-Lewis Research Center, Cleveland, Ohio

LINZER, Melvin - National Bureau of Standards, Washington, D, C.
McCARTHY, John N. - TRW, Inc., Cleveland, Ohio

McCLANE, William - Army Aviation Systems Command, St. Louis, Mo.
McKEE, K.E. - IT Research Institute, Chicago, Ill.

MATZKANIN, George - Southwest Research Institute, San Antonio, Texas
MAZAK, Anthony J. - Alcoa Laboratories, Alcoa Center, Pa,

MEISTER, Robert P. - Battelle-Columbus Laboratories, Columbus, Ohio
MOORHEAD, Paul - NASA-Lewis Research Center, Cleveland, Ohio
MORAN, H. Dana - Battelle-Columbus Laboratories, Columbus, Ohio
NELSON, Paul T. - TRW Systems, Redondo Beach, Ca.

OAKS, Arthur - General Electric Company, Philadelphia, Pa.

PEARS, C.D. - Southern Research Institute, Birmingham, Ala.
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POMERANTZ, J. - Air Force Office of Scientific Research, Arlington, Va,
PRITCHETT, L.B. - Boeing Company, Seattle, Washington

RAMSEY, S. David Jr. - Stanford Research Institute, Menlo Park, Ca.
REIFSNIDER, Kenneth - Virginia Polytechnic Institute, Blacksburg, Va.

ROSE, Joseph L. - Drexel University, Philadelphia, Pa.

ROTH, Peter A. - Eastman Kodak Company, Rochester, N.Y.

ROWAND, Richard - Air Force Materials Laboratory, WPAFB, Ohio
ROYLANCE, David K. - Army Materials & Mechanics Res. Ctr., Watertown, Mass.
STENTON, Fred - Army Materials & Mechanics Res. Ctr., Watertown, Mass.
STINEBRING, Russell - General Electric Company, Philadelphia, Pa.
THOMSON, Robb M. - National Bureau of Standards, Washington, D.C.
THORP, John M. - Army Aviation Systems Command, St. Louis, Mo.

TOTH, Istvan J. - TRW Equipment, Cleveland, Ohio

VINSON, Jack R. - University of Delaware, Newark, Delaware

WALKER, William J. - Air Force Office of Scientific Research, Arlington, Va.
WU, Edward M. - Washington University, St. Louis, Mo.

ZURBRICK, John R. - General Electric Company, Cincinnati, Ohio
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