
FR
O

M
 T

H
E 

A
R
CH

IV
ES

Find Similar Titles More Information

Visit the National Academies Press online and register for...

Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National 
Academies Press.  Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy 
of Sciences. 

To request permission to reprint or otherwise distribute portions of this
publication contact our Customer Service Department at  800-624-6242.

Copyright © National Academy of Sciences. All rights reserved.

Instant access to free PDF downloads of titles from the

10% off print titles

Custom notification of new releases in your field of interest

Special offers and discounts

NATIONAL ACADEMY OF SCIENCES

NATIONAL ACADEMY OF ENGINEERING

INSTITUTE OF MEDICINE

NATIONAL RESEARCH COUNCIL

This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=19222

Pages
45

Size
5 x 9

ISBN
0309321328

Mathematical Sciences:  A Unifying and Dynamic 
Resource (1986) 

Panel on Mathematical Sciences; Board on 
Mathematical Sciences; Commission on Physical 
Sciences, Mathematics, and Resources; National 
Research Council 

http://www.nap.edu/catalog.php?record_id=19222
http://www.nap.edu/related.php?record_id=19222
http://www.nap.edu/catalog.php?record_id=19222
http://www.nas.edu/
http://www.nae.edu/
http://www.iom.edu/
http://www.iom.edu/


.: �.: �;:-: ;-,,_ �··: � � !'\ 'f' . . f� :'-� · . 
'(1,.�1. '--

State of the Art Re;�� : . : . 

Mathematical Sciences: -
A Unifying and Dynamic Resource 

Panel on Mathematical Sciences 

Board on Mathematical Sciences 

Commission on Physical Sciences, Mathematics, and Resources 

National Research Council 
II 

NATIONAL ACADEMY PRESS 

Washington, D.C. 

1986 

Order trom 
National Technical 
Information Service. 
Springfield, Va. 
22161 � 
Order No. fi<R·eyJ7S'\-

UBRARY 

Copyright © National Academy of Sciences. All rights reserved.

Mathematical Sciences:  A Unifying and Dynamic Resource
http://www.nap.edu/catalog.php?record_id=19222

http://www.nap.edu/catalog.php?record_id=19222


C......' I� 

� /., 
I Y/,3; 

/9 1'/ ,-,£:::' 

�I NOTICE: The project that is the subject of this report was approved 
by the Governing Board of the National Research Council, whose mem­
bers are drawn from the councils of the National Academy of Sciences, 
the National Academy of Engineering, and the Institute of Medicine. 
The members of the committee responsible for the report were chosen 
for their special competences and with regard for appropriate balance. 

This report has been reviewed by a group other than the authors 
according to procedures approved by a Report Review Committee con­
sisting of members of the National Academy of Sciences, the National 
Academy of Engineering, and the Institute of Medicine. 

The National Research Council was established by the National 
Academy of Sciences in 1986 to associate the broad community of science 
and technology with the Academy's purposes of furthering knowledge 
and of advising the federal government. The Council operates in ac­
cordance with general policies determined by the Academy under the 
authority of its congressional charter of 1863, which establishes the 
Academy as a private, nonprofit, self-governing membership corpora­
tion. The Council has become the principal operating agency of both 
the National Academy of Sciences and the National Academy of Engi­
neering in the conduct of their services to the government, the public and 
the scientific and engineering communities. It is administered jointly by 
both Academies and the Institute of Medicine. The National Academy 
of Engineering and the Institute of Medicine were established in 1964 
and 1970, respectively, under the charter of the National Academy of 
Sciences. 

This study by the Board on Mathematical Sciences was conducted 
under Contract No. DMS-8514639 with the National Science Founda­
tion. 

Copies available from: The Board on Mathematical Sciences, 2101 
Constitution Avenue, N.W., Washington, D.C. 20418. 

Printed in the United States of America. 

Cover: The cover picture is a computer-generated image of a new min­
imal surface, one of a family of surfaces discovered in 1984 by 
David Hoffman and William Meeks ill of the University of Mas­
sachusetts, Amherst. Computer graphics methods developed by 
James T. Hoffman (also at Massachusetts) were critical in ob­
taining qualitative clues to the behavior of these surfaces and 
their mathematical determination. 
(Copyright 1985, David Hoffman and James T. Hoffman) 
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PREFACE 

During the summer of 1985, a group of state-of-the-art reviews was 
initiated by the National Research Council (NRC) at the request of the 
National Science Foundation. The purpose of these reviews is to assess 

and monitor world trends, relative strengths, and competitiveness of 
the United States in rapidly evolving areas of science and technology. 
Particular emphasis is to be placed on developments that influence 
the rate at which these fields evolve. Three study areas-cell biology, 
pure and applied mathematics, and materials science-were chosen for 
review. 

The study on mathematics was conducted by the Panel on Math­
ematical Sciences under the auspices of the Board on Mathematical 
Sciences of the NRC's Commission on Physical Sciences, Mathematics, 
and Resources. The Panel has described major trends in modern math­
ematics and then illustrated them with a few "vignettes." Through this 
case-study approach, the Panel illustrates its assertions that we are in a 
dynamic period of mathematical discovery and that mathematics is the 
fundamental discipline of science and hence a critical U.S. resource. 

International competition and competitiveness are concepts that tra­
ditionally are alien to the study of mathematics, in fact, cooperation 
among individuals of different nations is a vital part of the pursuit of 
solutions to mathematical problems. Mathematics is intrinsically in­
ternational, with its own language cutting across barriers of geography 
and culture. Research and applications in engineering and the physical 
sciences and, more recently, in business and the social sciences rely 
increasingly on mathematics for their basic structure, for the modeling 
of phenomena, and as the basis of new computational directions. Math­
ematics is a major field of application of the recent powerful computer 
advances and is the fundamental discipline underpinning both the de­
velopment of the computer techniques themselves and the applications 
of these techniques in all fields. 

Mathematics has become, even more directly, the language and the 
foundation of science, technology, and social organization. Indeed, it is 

I 
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a fundamental driving force in the worldwide progress that is altering 
the economic, political, and social balance among nations. It is essential 
for the United States to maintain momentum in mathematics if we are 
to maintain our overall competitiveness in other areas. 

The National Research Council, the scientific community, and I are 
deeply indebted to the panel members, the many colleagues who assisted 
them, and the able and conscientious reviewers. Thanks also go to 
Patricia Kenschaft, a mathematician at Montclair State College, for 
her excellent mathematical editorial work. The chairman is especially 
grateful to the staff of the Board on Mathematical Sciences, which under 
the leadership of Frank L. Gilfeather provided throughout the project 
the support so essential to its successful completion . 

Those responsible for guiding science policy in the Congress and 
the Administration are the primary audience for this report. The 
report will be useful to other audiences, too: leaders of universities, 
the mathematical sciences research community, and also those who are 
inquisitive about the mathematical sciences, about its structure and its 
current directions. 

Phillip A. Griffiths, Chairman 
Panel on Mathematical Sciences 
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EXECUTIVE SUMMARY 

Trends 

This report emphasizes four major trends in the mathematical 
sciences: 

• Mathematical sciences research is strong worldwide, and the United 
States is maintaining the leading role. 

• Mathematics is unifying internally. 

• Applications of mathematics in both traditional and new areas are 
flourishing and involving more central areas of mathematics. 

• Mathematics is the driving force behind new areas of computational 
science and is in tum profoundly influenced by high-speed computing. 

These trends, which demonstrate the vitality of the mathematical 
sciences as well as the changing nature of this critical discipline are 
illustrated in a series of six vignettes given in Chapter 3. 

There are several corollaries of the trends, which are especially notable 
in view of the declining U.S. Ph.D. production in mathematical sciences, 
as seen in the table below. The expanding number and sophistication 
of tools needed for successful research as areas of mathematics become 
intertwined now require protracted study often beyond the Ph.D. degree. 
This corollary development is especially critical for those working at 
high levels of applications of mathematics. The difficulty in reaching 
mathematical research frontiers with the requisite deep, broad range of 
knowledge, without the opportunity for extended study, may partially 
explain the decreasing Ph.D. production. This decrease will continue if 
the potential talent does not feel that continuing, as well as entry level, 
research support will be available. 

Some of the vignettes point out that the number of young researchers 
is of 

·
great concern and that considerable talent must be imported to 

keep the United States in the forefront of mathematical research fields. 
With the continued resurgence of European mathematics, this cannot be 
a permanent solution to manpower shortages. While the United States 
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maintains leadership in most areas of mathematics, in some important 
fields new talent is only sparsely available. 

Ph.D. Production and Support 

These issues of manpower and infrastructure relate directly to how 
the United States stands in production of new Ph.D.s and in support of 
postdoctoral fellowships and graduate students in the sciences generally. 
The results as summarized below and reported in Chapter 4 (Table 1) 
are dramatic. 

Comparisons of Federal Support for Postdoctoral and 

Graduate Students in Three Fields of Science 

Mathematical 
Chemistry Physics Sciences 

1980 1984 1980 1984 1980 1984 

Annual Ph.D. Production 1538 1765 862 962 744 698 
Postdoctorals (P.D.) 

federally supported 2255 2473 1210 1150 57 132 
Graduate Students (G.S.) 

federally supported 3700 4118 2900 3348 200 411 
Ratio P.D./Ph.D. 1.47 1.40 1.40 1.20 0.08 0.19 
Ratio G.S./Ph.D. 2.41 2.33 3.36 3.48 0.27 0.59 

Sources: NRC Survey of Doctorate Recipients. 
Survey of Graduate Science and Engineering Students and 
Postdocs, NSF. 
Survey of Doctorate Recipients, NSF, unpublished, Table D-32. 

Challenges 

Continued concern should be expressed over the decline in the number 
of Ph.D.s in the mathematical sciences in the United States, and in 
view of the critical role of mathematics this trend must be reversed. 
It is essential that the long-range attractiveness of the field and the 
prospects for success within it be such as to attract able researchers. 
The competition for students among the various fields of science is 
keen, and it is critical that mathematics be able to provide sufficient 
inducements to candidates to maintain its vitality. The figures cited 
above for Ph.D. production reveal a precarious situation, and we believe 
that it may be worsening. In addition, if we are to assure the quality of 
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the mathematics enterprise in the United States, the opportunities for 
postdoctoral training must be significantly expanded. 

As we provide sufficient opportunities for young investigators and 
students, we must also maintain the strength and vitality of senior lead­
ership. That the United States maintains mathematical pre-eminence is 
due in part to the commitment and investment made in the past to an 
outstanding group of researchers. Unfortunately, this commitment has 
been considerably weakened over the past decade as was documented 
in the 1984 NRC report Renewing U.S. Mathematics: Critical Resource 
for the Future (National Academy Press, Washington, D.C., 1984). The 
challenge of current policy is to provide greater opportunities for the 
young while maintaining our current strength in leadership. The two 
goals are inextricably related. 

3 
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1. INTRODUCTION 

This expository report reviews world trends in mathematics and as­

sesses the position of American mathematics in the world mathematical 
community. It was written in response to a request from the National 
Science Foundation to the Board on Mathematical Sciences. Chapter 2 
delineates four current trends in the development of the mathematical 
sciences. Chapter 3 contains six short vignettes, illustrating some of 
the major efforts in current mathematical research. The topics of the 
vignettes are: 

• D-modules 

• Computational Complexity 

• Nonlinear Hyperbolic Conservation Laws 

• Yang-Mills Equations 

• Operator Algebras 

• Survival Analysis 

The vignettes substantiate the trends and illustrate the excitement 
and struggle of mathematical research, indicating more accurately than 
could any compilation of areas and results the emphasis and vitality of 
the discipline. Moreover, since specific research results are the substance 
of living mathematics, our general observations are made more mean­
ingful through the six vignettes. The report closes with a brief epilogue, 
which records the key recommendations of the NRC report Renewing 
U.S. Mathematics: Critical Resource for the Future and remarks on the. 
response to and impact of this important report. 
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2. TRENDS 

Mathematics is unifying, and it continues to be a dynamic resource in 
science. Of the many indications of this, the following are outstanding: 

• Difficult problems that have been unsolved for many years are 
now being solved with amazing frequency-a strong confirmation of the 
vitality of mathematics. 

• Mathematics is unifying internally. The division between pure and 
applied mathematics that developed in the first part of the twentieth 
century and allowed for the rapid development of new fields is now 
disappearing. Moveover, the distinctions between traditional areas of 
specialization have become blurred. 

• Traditional areas of applied mathematics are flourishing. Further, 

significant, deep interactions are occurring directly between core mathe­
matics and other fields, including the natural sciences, engineering, and 
the social sciences. Increasing interactions are occurring not only with 
the traditional areas of physics, chemistry, and engineering but also with 
newer fields such as molecular genetics, business, sociology, information 
sciences, and studies in policy analysis. 

• Mathematics is the underpinning of the revolutionary changes 
taking place in all scientific and engineering fields as a result of the 
advent of powerful computers. The development of scientific computing 
has not only highlighted a host of critical new mathematical problems 
it has introduced new tools for mathematicians. 

With the necessary support, mathematics will continue to flourish, 
to attract excellent minds, and in the coming years to produce much 
essential new mathematics on an international basis. The .role of any 
particular country in this development is hard to predict. Mathemat­
ical leadership will depend on many factors, primary among them the 
support that individual nations give to basic sciences in general and 
mathematical research in particular. 

5 
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Recent Breakthroughs 
Among recurring solutions to previously unsolved problems, several 

examples merit mentioning. One of them is the program to classify finite 
groups, which generated a long list of important new efforts. The recent 

solution of the deep Bieberbach Conjecture in classical function theory 
showed that the tenacity of a senior individual investigator is still a 

vital force in mathematics. Finally, the solution of Mordell's Conjecture 
places mathematicians on the threshold of proving the enticing Fermat's 
Last Theorem. 

Within all areas of mathematics a spectacular number of major but 
lesser known problems have been solved recently, including problems 
illustrated in the vignettes in Chapter 3. Further documentation is 
presented in the forthcoming report of the Board on Mathematical 
Sciences, Survey of U.S. Mathematical Sciences. 

Unity of Mathematics 

The unification that is taking place within mathematics is obvious 
to people in the field and will be apparent in the vignettes about D­
modules, computational complexity, the Yang-Mills equations, and oper­
ator algebras. Unification occurs when there is a confluence of seemingly 
independent phenomena, motivating cooperative study of the significant 
underlying patterns. One symptom of this accelerating unification is the 
increasing difficulty that agencies are having in assigning proposals to 
their discipline programs, which now substantially overlap. The trend 
burdens young investigators with a need to pursue increasingly broad 
training, as is noted in several of the vignettes. In mathematics it is 
becoming critical to lengthen the training period substantially. 

An example of this confluence of areas is the Korteweg-de Vries (KdV } 
equation ut + UUz + U:n:z = 0 [where u is an unknown function u(x, t) 
in one space dimension and time], which arises both as the simplest 
nonlinear dispersive equation in shallow-water wave theory and as the 
equation of isospectral evolution of the potential in the Schrodinger 
equation '1/Jzz + ( k2 - u )'1/J = 0 of quantum mechanics. The intensive 
study of the KdV equation during the past quarter century has affected 
many major areas of mathematics. For example, about a year ago a 
young Japanese mathematician, using a development in the study of 
KdV equations· initiated a decade ago by the Moscow school, solved a 
major problem in algebraic geometry that was first discussed more than 
a century ago by Riemann, a German:. 
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Mathematics and Other Sciences 

The symbiotic relationship between mathematics and its areas of 
application is ever deepening as more areas of science and engineer­
ing become almost indistinguishable from subareas of mathematics and 
this relationship is producing exciting and intriguing new mathematics. 
Cross-disciplinary collaboration between mathematicians and profes­
sionals in other fields is accelerating and deserves encouragement. An 
important number of interactions between mathematics and science and 
engineering are not exactly interdisciplinary, but might be more accu­
rately described as resonance phenomena in that advances in one field 
spur development in another. Examples of this important trend are 
described in the vignettes on Yang-Mills Equations and Operator Alge­
bras in Chapter 3. The broadening and deepening of these applications, 
as noted in the vignette on Nonlinear Hyperbolic Conservation Laws, 
create pressure for mathematicians to pursue significant postdoctoral 
study. An insightful and illuminating discussion of the interaction of 
mathematics with science and engineering is given in the 1984 NRC re­
port Computational Modeling and Mathematics Applied to the Physical 
Sciences (National Academy Press, Washington, D.C., 1984). 

New Opportunities 

The third trend includes the tendency for mathematics to be incorpo­
rated into the language not only of science and technology, as has been 
traditional, but also into new fields of social science. Mathematical mod­
els (descriptions of real-world events that use mathematical language) 
form the basis of econometrics and health policy analysis. The Survival 
Analysis vignette in Chapter 3 demonstrates this; it examines statistical 
and mathematical methods used to provide a realistic analysis for prob­
lems in medical research, reliability theory, actuarial computations, and 
demographic studies. Mathematical analyses contribute substantially 
to decisionS about economic and health policies, which in turn have 
enormous financial and social consequences. 

There is no longer any question as to whether mathematical analy­
sis will substantially influence discussions of public policy but only 
whether it will be used appropriately and effectively. It is essential 
that those making the decisions understand and influence the assump­
tions used to fonn the mathematical model and that mathematicians 
comprehend the applications sufficiently well that they address and 
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solve the correct problem. In fields where mathematical models are 
not subject to experimental verification-such as those with the most 
drastic consequences-it is especially essential that the mathematics be 
critically scrutinized. 

The Role of Computation 

Computational mathematics is an integral part of the mathematics 
discussed in the vignettes about complexity and nonlinear hyperbolic 
equations, and there are two important observations worthy of empha­
sis. First, computational methods pervade almost all aspects of science, 
and mathematics is the foundation of these methods. Today's complex 
problems, involving computational solutions, range from the design of 
computer architecture itself through the mathematical modeling of phys­
ical, chemical, biological, and engineering processes . Mathematics, the 
intellectual basis of computational science, has been and will continue to 
be the key to the dynamic revolution being created by the computer in 
science and engineering. Second, computational results provide insight 
for the development of mathematical theory. For example, the behavior 
of the solutions to the KdV equation mentioned above was first discov­
ered numerically. The mathematical theory, in turn, provides a deeper 
understanding of the models, revealing phenomena that enable people 
to analyze and test previous computational results and .conceive of new 
computations that will facilitate further theory. 

Core mathematics now consists of three basic operations-compu­
tation, abstraction, and generalization. Raw information leading to 
mathematical discovery comes from concrete examples, and it is in­
creasingly the role of computation to provide such examples, although 
they are frequently formulated mathematically. Abstraction � the pro­
cess of distilling the essential features from such examples. Number 
and space are, respectively, abstractions of the process of counting and 
of our experience in the physical world, and the mathematical idea of 
functions similarly abstracts human ideas of measurement and motion. 
In these contexts, ideas from one manifestation of the abstraction are 
often relevant in solving problems in seemingly dissimilar situations. 
Generalization uncovers hidden analogies between abstract patterns of 
mathematics and frequently extends the range of applicability of such 
patterns. 

Thus in the development of mathematics, periods of computation 
often alternate with periods of theorizing. During the former, new 
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raw data are generated and horizons expanded. Eventually there is a 
plethora of information in need of an intellectual framework on the basis 
of which masses of material can be comprehended simultaneously. AB 
reunification occurs, seemingly disparate examples are often revealed as 
different aspects of the same phenomenon. 

Computation, abstraction, and generalization need each other to be 
meaningful. Recent mathematics has focused more on concrete problems 
than on abstractions as it revels in the computing power suddenly 
available to it, and evidence of a new unification is now appearing. At 
the same time, our computing power has matured to the point where it 
can be an enormous asset in the investigation of the still more complex 
mathematical examples that will inevitably be suggested by pending 
research. A beautiful amplification of this theme on the development 
of mathematics is given by Arthur Jaffe in an Appendix to the NRC 
report, Renewing U.S. Mathematics: Critical Resource for the Future 
(National Academy Press, Washington, D.C., 1984) . 

A dramatic example of using the computer to gain valuable mathe­
matical insight can be seen on the cover of this report, which represents 
a problem in the geometry of surfaces of constant mean curvature, a 
subject with applications to mathematical physics, polymer chemistry, 
architecture, and other sciences. The existence of a new complete em­
bedded minimal surface with finite topology, the first to be found in 
more than 200 years, was established using computer-aided graphics. 
The complex representation of a potential example was analyzed by 
numerical approximation and three-dimensional computer graphics. An 
unexpected symmetry was revealed in the surface, which was shown to 
exist in the equations themselves. FUrther analysis using both tradi­
tional and computational methods established the existence of families 
of new examples as well as a rich new theory to explain their existence. 
The ability to create accurate computer images has greatly facilitated 
communication among scientists. The computer methods developed in 
this research are proving to be useful in solving problems in related 
mathematical subjects. 

Organization of Mathematics 

In addition to these four major directions in mathematics itself, what 
might be called "The Sociology of Mathematics" reveals how mathemat­
ics develops and accentuates the unification within mathematics and its 
growing interaction with other fields. More and more the mathematical 
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community is now organizing itself by areas of interest instead of fields 
of traditional study. For example, the Yang-Mills vignette describes how 
a variety of mathematicians educated in the disparate fields of topol­
ogy, algebra, differential geometry, algebraic geometry, several complex 
variables, and partial differential equations is cooperating to solve some 
exciting equations. 

It is well known that some areas of science have become "big science," 
where research is accomplished by teams frequently gathered around ma­
jor pieces of scientific equipment or laboratories. Each team consists 
of at least one senior scientist and many, sometimes a great many, ju­
nior investigators, working on related problems. Mathematicians are 
also often informally grouped around a common research interest such 
as Yang-Mills equations, operator algebras, or computational complex­
ity. However, such mathematical groups are usually geographically 
separated, and the analogue of access to a common major piece of 
scientific equipment is their ability to gather together for sustained pe­
riods of collaboration. Furthermore, mathematicians share the scientific 
community's needs for a means to prepare and motivate potential re­
searchers, from undergraduate through postdoctoral levels. InStitutes 
such as the two National Science Foundation Mathematical Sciences 
Institutes (Mathematical Sciences Research Institute and Institute for 
Mathematics and Its Analysis), as well as other institutes, including 
those supported by Department of Defense agencies and special year 
projects provide essential opportunities for mathematicians, undergrad­
uate and graduate students, and postgraduates to collaborate. 

The vignettes in Chapter 3 illustrate the general patterns discussed 
above. However, these can give but a small sample of the many endeav­
ors of the entire mathematical community. A more exhaustive, although 
still selective, survey of the mathematical sciences, Survey of U.S. Math­
ematical Sciences , is currently being prepared under the auspices of 
the NRC Board on Mathematical Sciences. Together these reports can 
provide only a glimpse of the scope of current mathematical research. 
Our choice of specific mathematical topics reflects our effort to select a 
representative sample of the entire mathematical enterprise. 

Language of Mathematics 

There is another significant challenge that we must face in our en­
deavor to explain mathematics to those without years of study in the 
field. At least three centuries ago, mathematics developed, a language 
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of its own, which has become thoroughly distinctive and international. 
Just as it takes years for an American or Japanese youngster, for exam­
ple, to become fluent in the spoken language of the other, any aspiring 
American or Japanese mathematician spends years studying the com­
mon language of mathematics. As a result, each can open the other's 
mathematics books and recognize the topic under discussion (even if 
totally ignorant of the other's verbal language). 

The complex and dynamic language of mathematics that has devel­
oped over the past three centuries brings great satisfaction in terms 
of international understanding for those who are fluent in it, but it 
presents substantial obstacles to those who have not spent years in its 
study. On the one hand, the history of mathematics is one of progres­
sively less translatability for nonmathematicians, while, on the other 
hand, the past few centuries have seen ever-broadening human intellec­
tual endeavors subsumed into the language and models of mathematics. 
Because of the language barrier between mathematicians and nonmath­
ematicians, the following vignettes cannot describe the technical essence 
of the fields discussed but will focus only on a field's development and 
interaction with others. 

U.S. Competitive Position 

We conclude with a few remarks about the competitive position of 
the United States with regard to the field of mathematics. First, we 
emphasize that international cooperation is a long-standing tradition 
in mathematics. When the vignettes use the words "a Soviet mathe­
matician" or "in the United States," it should be understood that the 
results being described often depend on a background developed by 
many investigators in diverse parts of the world. 

Although mathematicians, with their specialized international lan­
guage, view their community as an international one and think relatively 
little about the comparative ranking of national contributions to their 
discipline, the writers of this report believe that few would disagree 
that the United States was dominant mathematically in the decades 
following World War II. Just as mathematics has become the language 
of science, technology, and a widening circle of other fields, English has 
become the verbal language in which most mathematics is explained. 

When combined with a federal policy of auxiliary support, the unique 
American system of combining academic teaching and research at all 
levels has been a key to our strength. The United States remains 
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attractive to foreign mathematicians because of our relatively high 
employment opportunities and, more recently, our powerful, relatively 
accessible computers. We still have a favorable balance of trade from the 
wonderfully dynamic infusion of immigrants to American mathematics. 
However, Europe is regaining its former mathematical liveliness, now 
more on a continental than a national basis. Separately, the Soviet 
Union, despite its professional isolation and its loss of numerous superb 
mathematicians, continues its tradition of excellence. The strength of 
Japan's mathematical community is surging, and· there is little doubt 
that in time maJor mathematical activity will develop in China. 

It is still true that the United States is the world leader in mathe­
matics, but this is surely less so than it was ten or even five years ago. 
The enthusiastic mathematical activity in other countries has created 
a tendency toward parity among the maJor mathematical communities. 
The fact that half as many U.S. citizens received mathematical sciences 
Ph.D.s in 1985 as in 1973 bodes ill for our future ability to compete in 
the world mathematical community (see Table 1 in Chapter 4). Cer­
tain areas of mathematics are becoming dependent on foreign-trained 
researchers as noted, for example, in the vignette on Operator Algebras. 
It is certain that during the next decade much excellent mathematics 
will be created. The maJor questions are, where and by whom. 
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3. VIGNETTES 

D-Modulea 

Core mathematics is broadly divided into analysis, algebra, and 
geometry /topology, although all three subfields include extensive ap­
plied mathematics components. (Geometry and topology are not syn­
onymous, but each term is often used for areas in their broad confluence.) 
However, as the interplay of analysis, algebra, and geometry/topology 
becomes ever more complicated, even the division of core mathematics 
into subfields (not to mention its distinction from applied mathematics) 
seems artificial. Indeed, the essential unity of mathematics is vivid as 
we review some important recently discovered relationships among these 
traditional subfields. 

Algebraic geometry has been one of the most lively areas of research 
in algebra during recent decades. It is the study of geometric objects 
that are the loci of points satisfying polynomial equations in two or 
more variables, such as the familiar conics from classical geometry. 
Meanwhile, algebraic topology has become a leading area of geometry. 
Considerably more general geometric objects than loci of polynomial 
equations are studied in algebraic topology; in the 1950s and 1960s this 
was an especially active field and was discussed on a number of occasions 
in the popular scientific literature. 

Any geometric object has a group of symmetries. For example, a 
cube is invariant under a finite set of rotations. Similarly, a sphere 
is symmetric under (the infinite set of) all rotations and reflections 
around its center. A continuous symmetry group, such as the latter 
example, is called a Lie group. Lie groups can also be viewed as 
certain groups of matrices with their usual matrix multiplication .  This 
multiplication is not commutative; that is, in general XY 1: Y X. The 
set of derivatives along curves through the identity matrix of a particular 
Lie group can be viewed as an additive set of matrices and is called 
a Lie algebra. The theory of Lie groups and algebras, one of the 
great achievements of modern mathematics, originated from questions 
in differential equations, which has always been central in analysis. But 
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"group" and (of course) "algebra" are quintessentially algebraic notions. 
Thus Lie theory, based on geometric symmetries and increasingly useful 
for physicists, incorporates aspects of algebra, analysis, and geometry. 

Another place where these three fields meet is in D-modules, which 
have been developed recently in Japan. A module (with or without 
the D) is an algebraic structure consisting of a group such as a vector 
space whose elements can be multiplied by another set of mathematical 
objects such as matrices. D-modules are modules whose vectors can 
be multiplied by partial differential operators with analytic coefficients. 
One motivation for their study was to focus attention on the equations 
themselves rather than solutions to differential equations. They were 
investigated using methods of algebraic geometry invented in France in 
the early 1960s. 

The theory of D-modules is also related to the Riemann-Hilbert 
problem, posed in Germany around the turn of the century. Suppose we 
have a linear, homogeneous system of n first-order ordinary differential 
equations for n functions ft, ... , In of one complex variable z. It might 
be written !' = A/, where the coefficient A is an n by n matrix whose 
elements are analytic functions of z. In general the system will have 
n independent solutions (/u, . . . ,ftn), (ht, ... ,hn), ... , Unt, ... , Inn) 
such that each solution (gt, ... , gn) can be written uniquely as a linear 
combination gi = ctfti+c2hi+· · ·+cnfni for some constants Ct. ... , en. 
But there may be singularities, points at which one or more of the 
elements in A(z) tend to infinity or are otherwise irregular. Not only 
may solutions be undefined at the singularity, but when we follow a 
curve around the singularity, one solution may be transformed into a 
different one. Going around the given singularity (and no others) once 
in a clockwise direction has the effect of transforming a solution by 
multiplication by an invertable matrix, depending only on the system 
and not the path traversed. The Riemann-Hilbert problem, a question in 
analysis, was to show a converse for the theorem just presented-that for 
any admissible map from a set of singularities into invertible matrices 
there is a system of n differential equations, as described, such that 
encircling each singularity changes the solution by the corresponding 
matrix. The solution, now several decades old, has been extensively 
generalized. 

Mathematicians working in this country and France were investi­
gating ostensibly a quite different area--an area at the intersection of 
algebraic geometry and algebraic topology that focuses on the concept 
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of duality in geometry. In 1977 researchers in the United States con­
jectured the existence of a relation between this geometric theory and 
a fundamental problem from Lie groups. Their conjecture was then 
proved independently by two pairs of mathematicians, one in France 
and the other in the Soviet Union. Their proof surprised the mathemat­
ical world by using the generalized Riemann-Hilbert results, thus again 
linking algebra with geometry through differential equations. 

Papers about D-modules are impossible to classify into the three 
traditional fields of analysis, algebra, and geometry /topology, a problem 
for the editors of Mathematical Reviews. It also suggests how very 
tentative any division of mathematics into subfields may be. 

Computational Complexity 

An algorithm is a procedure for solving a given class of problems with 
a specified set of mathematical tools. In classical geometry the tools were 
straight edge and compass, and the ancient Greeks provided a simple 
algorithm for trisecting any segment using only these. Their extensive 
attempts to trisect a general angle were proved futile in the nineteenth 
century, when it was shown that there can be no such algorithm. 

H the tools in algebra are addition, multiplication, division, and tak­
ing radicals (square roots, cube roots, etc. ), then there is a familiar 
algorithm for solving any quadratic equation, ax2 + bx + c = 0. How­
ever, a question posed by Renaissance Italians was answered when it was 
proved by Abel, a Norwegian in the early nineteenth century, that there 
can be no such algorithm for solving equations of degree five or more. 
The tenth problem posed by Hilbert at the 1900 International Congress 
of Mathematicians asked whether there is an algorithm for deciding if a 
general polynomial equation, /(x�t . . .  , Xn ) = 0, with integer coefficients 
has a solution in the positive integers. In the 1960s a Soviet mathemati­
cian, strongly incorporating the work of two Americans, proved that 
there is no such algorithm. 

Such decision questions were formerly addressed primarily by logi­
cians, but computers have given new urgency to algorithmic questions. 
Computers after all operate with only a few primitive tools, and the 
programs which instruct them are essentially algorithms. For most 
problems that computers are asked to solve the existence of some alg<r 
rithm is usually evident; instead, the problem is to find algorithms that 
are efficient and reliable. The mathematical analysis of these practical 
considerations has spawned the field now called "complexity theory." 
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This field measures the complexity of an algorithm by the maximum 
number f(n) of basic steps that the algorithm needs to solve those cases 

of the problem requiring n digits in their statement. The theoretically 
tractable problems, called type P, are those for which there is an alg� 
rithm with f(n) growing no faster than some polynomial inn. There are 
adjustments to this assertion, most notably in the well-publicized linear 
programming problem discussed below, where the symplex algorithm, 
though exponentially long in the worst cases, is remarkably efficient in 
the vast majority of its application. 

Each generation of computer scientists has quickly encountered press­
ing problems that overwhelm available computational resources. Unable 
to obtain exact answers, they resort to simulation, approximation, and 
sampling, perhaps by using Monte Carlo techniques. Such approaches 
are not always appropriate, as when a massive computation is used to 
make a momentous yes/no decision. In the development of antiballistic 
missile software during the early 1960s scientists tried to cope with such 
situations by the simultaneous use of many processors in a multiproces­
sor environment. It was found that this could result in unpredictable 
and often serious deterioration in the performance of the system as 
a whole. This discovery generated a serious study of such anomalies. 
The resulting work in the mid-1960s provided rigorous bounds for these 
deleterious effects. Performance guarantees of this type, usually called 
"worst-case bounds," remain a major focus of algorithmic analysis. 

The fundamental class of NP-complete problems was defined in 1971 
independently by a Canadian and by a former Soviet citizen who now 
resides in the United States. This class includes thousands of basic com­
putational problems arising in computer science, mathematics, physics, 
biology, economics, business, and the social sciences. The NP-complete 
problems are of equivalent complexity in the sense that if one of them 
submits to an algorithm of polynomial complexity, then so can all the 
others. Proving the widespread conviction that no such algorithm exists 
(that P -:/:- NP) is considered the most fundamental of the open prob­
lems in theoretical computer science. It is known that any algorithm 
for solving an NP-complete problem can be modeled by an appropriate 
circuit. Until recently the only established lower bounds on circuits 
for NP-complete problems were linear; however, last year a Taiwanese 
mathematician now living in the United States made a dramatic break­
through by establishing the conjectured exponential lower bound, but 
under the assumption that the number of "levels" of the circuit is 

16 

Copyright © National Academy of Sciences. All rights reserved.

Mathematical Sciences:  A Unifying and Dynamic Resource
http://www.nap.edu/catalog.php?record_id=19222

http://www.nap.edu/catalog.php?record_id=19222


bounded. Since then a Swedish graduate student in the United States 
simplified and strengthened these arguments. Almost simultaneously, 
two Soviet mathematicians independently established an exponential 
lower bound assuming that the circuit is "monotone," a related but 
distinct development. This work has been extended by an Israeli doing 
postdoctoral work in the United States, and many complexity specialists 
now believe that the tools are finally becoming available to prove the 
corresponding results for unrestricted circuits, thereby finally settling 
this fundamental problem. 

As the difficulty of NP-complete problems was realized, attention 
shifted to other approaches. These included approximation algorithms, 
average-case instead of worst-case performance analysis, and randomized 
algorithms that give a confident guess rather than a firm answer. Timely 
examples of the latter are the twin problems of deciding if a large 
integer n is prime or, if it is not, of factoring n. One such algorithm 
randomly selects an integer k less than n, performs a simple test, and 
announces either that n is definitely composite or that the problem is 
still undecided. About three quarters of the possible k's will establish 
that a composite n is not prime. Thus, performing the test with 
100 independent k's that do not proven to be composite justifies the 
conclusion that n is prime with a mere one in 4100 chance of error. 

The study of primes has long been central to number theory, a field 
that has been pursued for its own splendid beauty but traditionally 
was considered to have few pragmatic consequences. Recent innovations 
in cryptography have completely reversed the latter perception. The 
security of important cryptosystems depends crucially on the belief that 
the problem of finding the prime factors of a random nuntber with a 
thousand decimal digits or more is, and will be for decades, a computa­
tionally infeasible problem. However faith in this belief is beginning to 
erode because of some recent unexpected advances in primality testing 
and factoring. Essentially overnight, a Dutch mathematician produced 
the currently best factoring algorithm by using the theory of elliptic 
curves from algebraic geometry, a field mentioned in the previous vi­
gnette. It is not yet clear whether this will lead to even more effective 
algorithms that will undermine the security of these cryptosystems. 

This vignette concludes with a discussion of linear programming (LP), 
a subject that occurs widely in discrete optimization. For example, a 
linear profit function, possibly depending on a large number of variables, 
is to be maximized in a region defined by linear constraints. This 

17 

Copyright © National Academy of Sciences. All rights reserved.

Mathematical Sciences:  A Unifying and Dynamic Resource
http://www.nap.edu/catalog.php?record_id=19222

http://www.nap.edu/catalog.php?record_id=19222


question is geometrically equivalent to finding the highest point in 
some high-dimensional convex solid or polyhedron in n-dimensional 
space, where n can be quite large. The importance of these problems, 
which have many applications in such varied areas as airline scheduling, 
meteorology, portfolio management, and telephone traffic routing, was 
first observed more than 40 years ago by Dantzig in the United States 
and Kantorovitch in the Soviet Union. Dantzig developed the very 
effective "simplex algorithm" for solving LP problems, which examines 
first one vertex and then another, moving along the outside edges of the 
high-dimensional polyhedron in such a way as to improve the function 
that is to be optimized at each step until the optimal vertex is reached. 
Even though these n-dimensional polyhedrons, which typically arise in 
practical problems, can have exponentially many vertices, over 40 years 
of experience with the simplex algorithm indicates that only rarely are 
more than 4n or 5n vertices tested before the optimum point is attained, 
despite the fact that pathological examples can be constructed that do 
indeed require that all vertices be tested. 

After the concept of NP-completeness was introduced in 1971, re­
searchers struggled without success to find either a polynomial-time 
algorithm for LP or a proof that it was NP-complete. In 1979 the 
polynomial "ellipsoid algorithm" was produced in the Soviet Union, but 
the bound on this method grows as n6, rendering it impractical for large 
problems, e.g., those having hundreds of thousands of variables. Sub­
sequently, however, the ellipsoid algorithm has had a significant impact 
in the theory of combinatorial optimization. 

In 1984 a young Indian mathematician in the United States made 
a striking breakthrough when he discovered an iterative method that 
plunges through the interior of the polyhedron, transforming it nonlin­
early at each step so as to stay as far as possible from the boundaries 
of the changing solid. The number of steps required by this method is 
on the order of n3·5, a significant improvement over the earlier n6, and 
a variety of applications have shown that when implemented cleverly, 
this algorithm seems to perform significantly faster than the simplex 
algorithm. 

Very recent efforts in understanding this new method indicate that 
an n-dimensional polyhedron can be equipped with a coordinate system 
that transforms its interior into a certain quasi-hyperbolic geometry so 
that the trajectories to the optimal vertex form geodesics in this space. 
Obviously, this area is extremely active worldwide, and much more work 
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is needed before a full understanding can be achieved. Nevertheless, it 
is already apparent that complexity theory addresses many practical 
problems and that sophisticated core mathematics, including algebraic 
geometry, number theory, and geometry, is vital to complexity theory. 

Nonlinear Hyperbolic Conservation Laws 

The development of both theory and numerical methods for solving 
nonlinear hyperbolic conservation laws (NLHCLs) has been an excit­
ing area of recent mathematical research. There are many applications 
of NLHCLs because they describe many important physical systems, 
including some in aerodynamics, meteorology, water waves, plasma 
physics, and combustion . In gas dynamics these are the laws of conser­
vation of mass, momentum, and energy. 

The major technical obstacle to both solving and analyzing these 
systems is the fact that their solutions are not smooth, that is, they 
do not have derivatives of all orders. Many standard approximation 
procedures require smoothness, and, furthennore, solutions tend to be 
unique only if certain physical constraints (called entropy conditions) are 
satisfied . Since there are other important equations in hydrodynamics, 
relativity, and optics that do not have smooth solutions, NLHCLs 
are providing a testing ground for innovations with potentially wide 
applicability. 

The first systematic computational attempts to solve NLHCLs, moti­
vated by problems of jet propulsion and in the Manhattan Project, were 
made in the United States during World War n. John von Neumann and 
others provided a clear formulation of the problem and introduced sev­
eral crucial ideas, in particular artificial viscosity (a justifiable technique 
for smoothing the problem) and a first analysis of stability. These ideas 
were greatly extended after the war and gave rise to an elega.ilt theory of 
weak solutions that treated the lack of smoothness without smoothing. 
In particular, the Lax-Wendroff scheme and its many variants yielded 
acceptable solutions for many practical problems. However, many other 
problems remained unsolved, and the theory was incomplete. 

In the 1950s the relevance of the Riemann problem, well known to 
chemists and engineers working with the Riemann shock tube, became 
fully recognized. The Riemann problem contains the pathology of the 
general NLHCL problem but is in a more tractable form. An American 
mathematician gave a mathematical analysis of the Riemann problem, 
and then a Russian mathematician incorporated the American's analysis 
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into a numerical construction that described the misbehavior of the 
solutions in a natural way. These developments led to a proof, developed 
in the United States, that solutions exist for on�dimensional NLHCLs 
subject to some technical restrictions. This result gave rise to practical 
algorithms that in turn generated sharper existence results. 

The Russian's construction has been generalized in several ways, and 
dramatic progress has arisen in the last three years from a combina­
tion of these ideas. In particular, reliable and efficient solutions of the 
equations of gas dynamics in any number of space dimensions are now 
available, and they reveal and explain intricate physical phenomena 
that previously had been only dimly comprehended. Examples include 
the disclosure of unexpected complexity in flows involving interacting 
discontinuities, the discovery of transition criteria from regular to Mach 
reflection for waves impinging on a surface, and the revelation of insta­
bility mechanisms for supersonic jets. Both theory and experiments in 
NLHCL have been aided by elaborate computations from experiments 
using new laser technologies. 

Recently, much computational activity has been directed toward 
solving systems of NLHCLs that are structurally more complex than 
those of gas dynamics, in particular those that arise in combustion theory 
or in the analysis of flow of porous media-a subject of great relevancy 
for oil recovery. New methodologies have appeared involving front 
tracking, mesh refinement, and piecewise parabolic approximations. 
Some of these are related to higher-order versions of the aforementioned 
Russian construction. 

Many important practical problems remain open. For example, there 
is as yet no reliable numerical method for solving the equations of 
combustion theory in more than one space dimension except in the 
low-Mach-number limit. The newer numerical methods are so complex 
that computer science questions regarding their implementation, sim­
ilar to those discussed in the previous vignette, have become crucial. 
Also, perturbations of NLHCLs, for example by boundary layers, are 
beginning to be considered. 

Why numerical methods fail and why they sometimes succeed so 
spectacularly are questions that have been stu<i;.ed successfully in r� 
cent years, especially through the r�examination of the precise role 
and possible forms of artificial viscosity. New theoretical tools for un­
derstanding practical algorithms and new ideas, such as the notion of 
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variation diminishing schemes, are producing a slow confluence of al­
gorithms rooted in disparate a priori notions of what is important for 
practical calculations. 

New techniques of functional analysis, in particular the compensated 
compactness method that originated in France, have given new impetus 
to existence theory, removing some of the earlier limitations. The 
compensated compactness analysis is significant to the broader context 
of homogenization and order/ disorder phenomena, two other areas in 
which the French have been involved. In addition, partial existence and 
stability results have appeared for nonsmooth solutions in more than 
one space dimension for both convex and nonconvex systems. 

The strong interaction between mathematics and practical applica­
tions in NLHCL is clear from this account. All the major advances in 
computation have been anchored in theoretical developments. Indeed, 
most of the more innovative practical algorithms are due to mathemati­
cians, and more mathematicians have been involved than is apparent. 
An explosion of knowledge could at this time be safely forecast if there 
were more high-caliber people active in the field. 

However, there are too few people with a combined understanding 
of the abstruse physical, mathematical, computer science, and related 
aspects of NLHCLs. Such an understanding requires a broad education 
in several fields that is not easily available in the United States. One 
explanation for the strong role played by Israelis in this field may be that 
in Israel many mathematicians are exposed to engineering problems and 
to programming during a lengthy military service. In other countries, 
such as Japan, China, the Soviet Union, and in much of Europe, most 
students complete algebra by the seventh grade and soon begin calcu­
lus, leaving time during secondary school for those with mathematical 
and technical talent to pursue advanced topics. Given that changes in 
precollegiate education will take a long time to evolve, the most imme­
diate solutions in the United States would seem to be an extension of 
the graduate student years through supporting young investigators with 
adequate postdoctoral fellowships and providing enrichment for talented 
undergraduate students. 

Yang-Mllls Equations 

In 1954, Yang in the United States and Mills in England con­
structed a nonlinear version of Maxwell's equations that incorporated a 
non-Abelian group, typically SU(2) , the group of two by two unitary 
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complex matrices with a determinant one. [SU{2) is a three-dimensional 
Lie group.] This was first conceived as a classical theory transplanted 
to Lorentz space-time; but when it is used in quantum theory, it is 
convenient to use Euclidean space-time. The theory has been incorp<r 
rated into nearly every model of particle physics since the construction 
in 1975 of instanton solutions and the more recent construction of 
multi-instanton solutions in four-dimensional space. Shortly thereafter, 
the Penrose twistor theory was shown to transform an apparently very 
messy nonlinear system of partial differential equations into an elegant 
problem in algebraic geometry. Then the equations themselves were 
noticed to be natural geometric objects. 

The Yang-Mills equations depict the curvatures {fields) of connections 
(potentials) as a principal bundle over a Riemannian manifold. By now, 
Yang-Mills theory is prominent in pure mathematics. It has already 
affected subjects as diverse as differential geometry, algebraic geometry, 
the topology of four-dimensional manifolds, the calculus of variations, 
nonlinear partial differential equations, index theory {or anomalies) ,  and 
even the representation of infinite-dimensional groups, and it remains 
fertile research ground. 

The extended impact of Yang-Mills theory does not yet involve the 
complete equations but concentrates on their role as nonlinear exten­
sions of Laplace's equations, which are well known to be fundamental to 
earlier mathematics, physics, and engineering. In two variables Laplace's 
equation is related to the Cauchy-Riemann equations, part of the foun­
dation of complex analysis. One form of the Yang-Mills equations, called 
the self-dual Yang-Mills equations {SDYM) , is a four-variable analogue 
of the Cauchy-Riemann equations. The instantons are solutions of these 
equations, and they appear to have properties nearly as basic as solutions 
of the Cauchy-Riemann equations. The SDYM equations are in turn 
important in algebra, geometry /topology, and analysis, respectively. 

At first glance, the SDYM equations seem absolutely intractable for 
writing explicit solutions. Even for SU{2) , a small essentially non­
Abelian Lie group, there are nine first-order equations with twelve 
unknown dependent variables as well as the four independent variables 
on the space. There are three extra degrees of freedom, due to gauge 
symmetries, so it is not surprising that insight from algebraic geometry 
had to precede progress in topology. The Penrose twistor methods 
were used to transform these equations in four-dimensional space to a 
problem concerning holomorphic bundles on a six-dimensional manifold. 
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These methods from algebraic geometry are surprisingly general and can 
lead in many directions, for example, toward Kac-Moody Lie algebras 
and models with loop groups. 

Learning about the structure of the space of instantons over four­
dimensional manifolds has generated profound insight into the topolog­
ical structure of general four-dimensional manifolds, demonstrating the 
fundamental value of an equation specific to a low dimension like four. 
This was helpful to physicists, who have since developed the fundamen­
tal intuition of instantons as solitons, the wavelike solutions of KdV and 
Sine-Gordon that superimpose nonlinearly. 

It is interesting to note that mathematicians had been able to deal 
with the structure of manifolds in dimensions two, three, five, and 
greater. The Cauchy-Riemann equations are used in two dimensions, 
geometric methods are employed in three, and mathematicians find 
five and more dimensions amenable to standard methods of algebraic 
topology. The gap of the fourth dimension appears to be filled by SDYM 
theory. 

In analysis, one of the key properties of Yang-Mills theory is its con­
formal invariance. Some of the basic equations about instantons can be 
formulated in the context of the calculus of variations. The conformal 
invariance of the theory implies that the variational problem does not 
satisfy the conditions that are required in order to use the method 
of direct steepest descent, so helpful in three-dimensional work. The 
attempt to understand the failure of the steepest descent method for 
the Yang-Mills problem has led to the development of new variational 
techniques, which are useful on a variety of problems. It is interesting, 
and possibly significant, that the three fundamental scale-invariant ge­
ometric problems coincide with three basic models of quantum fields: 
the Yamabe problem {phi-four theory) , harmonic maps (sigma models) , 
and the Yang-Mills equations. 

In any case, Yang-Mills theory is a beautiful example of the intense 
bonds between current theoretical physics and all subfields of core math­
ematics. Yang-Mills theory is a young discipline that will undoubtedly 
attract many more mathematicians in the near future. Its results to 
date are primarily due to the efforts of English, American, and Soviet 
researchers. Although Americans cannot claim to dominate the field, 
they have certainly contributed significantly to its development. The 
necessity of extremely broad training, mentioned in the final paragraph 
of the preceding vignette, also applies to successful research in this field. 
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Increasingly, postdoctoral or protracted study is necessary in order to 
become a successful researcher in many areas of mathematics. 

Operator Algebras 

The area of operator algebras is currently very active and provides 
another excellent example of unexpected interactions between areas of 
core mathematics and the natural sciences. Quantum physics originated 
the Heisenberg Uncertainty Principle, which forces consideration of 
quantities P and Q satisfying PQ - QP = h/21ri. It motivated a search 
for appropriate mathematical systems containing infinitely many such 
noncommuting variables. In the 1920s, M. H. Stone and J. von Neumann 
demonstrated that such systems require a general theory of algebras of 
operators on Hilbert spaces, generalizations of finite-dimensional vector 
spaces. These were studied extensively in the 1930s by F. Murray and 
von Neumann. 

The mathematics of operator algebras is characterized by a profound 
blend of noncommutative algebra and infinite-dimensional analysis. Al­
though operator algebras exhibit a very rich structure, no serious work 
following that of Murray and von Neumann appeared until after World 
War n. 

The simplest example of an operator algebra is the entire set of n by n 

dimensional matrices for a specific n. A general operator algebra is a 
subset of the bounded linear transformations on a (generally infinite­
dimensional) Hilbert space that is closed under addition, multiplication, 
an adjoint operation, and a suitable limiting process. H the system is 
closed only for the strongest limiting process, it is called a c· -algebra. 
If it also contains the most general limits, it is said to be a von Neumann 
algebra. The ·full algebras of all linear transformations on Hilbert ·spaces 
of arbitrary dimensions are the building blocks of the simplest operator 
algebras. However, consideration of proper subalgebras of the universal 
operator algebra over some Hilbert space reveals far more complex 
situations. This complexity can be slightly relieved and the study 
reduced to three basic types of von Neumann algebras simply called 
Types I, ll, and m. 

During the early postwar years, both American and French math­
ematicians made substantial progress in operator algebras, including 
some important applications to the theory of infinite-dimensional group 
representations. The French school became relatively inactive by the 
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early 1960s and re-emerged in the mid-1970s when a young mathe­
matician, subsequently a Fields Medalist, began working in the area. 
During the late 1950s and early 1960s, some Japanese mathematicians 
entered the field. Simultaneously, numerous theoretical physicists be­
came involved and provided valuable insights derived from their physical 
applications. It was shown that there exist infinitely many distinct Type 
II and Type ill factors. The latter, especially, remained mysterious be­
cause they did not possess the special functionals called traces that were 
so fundamental to studying the structure of the other two types. When 
it was discovered that the physically interesting algebras are of Type m 
and certain classes were explicitly parameterized by physicists, parts of 
the mystery began to unravel. 

Major international conferences began having a crucial influence on 
operator algebra theory in the mid-19608. In the late 1960s, a conference 
held in the United States removed a key obstacle to analyzing Type m 
factors by displaying results proved independently by a Japanese math­
ematician and some Dutch and German physicists. At a subsequent 
conference, the French Fields Medalist , then a student, was motivated 
to work on the subject. He opened entirely new vistas by investigations 
that combined algebra and analysis in new ways and led to the clas­
sification of the algebraic structure of Type m factors. In the 1970s, 
researchers turned toward the geometric aspects of the subject. A new 
extension theory of c• -algebras generated a successful synthesis of ge­
ometry and algebra, resulting in a unified view of features from these 
two subjects. At about the same time, the fundamental Atiyah-Singer 
Index Theorem was extended from locally trivial families to the more 
general foliations by using operator algebras. Additionally, a Soviet 
mathematician solved specific cases of a long-standing problem in differ­
ential topology concerning smooth deformations by developing powerful 
new techniques in c· -algebras. 

Recently, an American mathematician, born in New Zealand and 
educated in Switzerland, has found a totally unexpected connection 
between three apparently diverse fields-knot theory, the classification of 
subfactors of Type II factors, and the theory of Heeke algebras. This 
activity has occurred within the past two years, a catalyst being the 
fortuitous meeting of the Mathematical Science Research Institute at 
Berkeley in 1985, sponsored by the National Science Foundation, where 
experts in operator algebras were meeting concurrently with those in 
low-dimensional topology, the field that contains knot theory. The 
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excitement of the connection between von Neumann algebras and knot 
theory may be overshadowed by investigations of its utility to biologists 
in describing large-scale structures of DNA. A knot is a closed curve 
in three-space, and a link is a (possibly interlocking) system of knots. 
Although they can be surprisingly complicated, knots and links can be 
adequately represented by a projection onto the plane. Two relatively 
simple examples are: 

The knot 62 The link 6� 
(also called the Borromean rings) 

Although people probably have always used knots, the first known 
attempt to list and classify them mathematically (as opposed to me­
chanically) resulted from an erroneous hypothesis of Lord Kelvin in 
the late nineteenth century that atoms were knotted vortices in the 
ether. His vain hope of deriving the periodic table by classifying knots 
stimulated scientific advances entirely different from his vision-in the 
characteristic but unpredictable manner that pure research, stimulated 
by attractive ideas, often yields unanticipated harvests quite different 
from their original intent. 

Knot theory considers two knots or links to be the same if one 
may be deformed without crossing strings until it is identical to the 
other. It is exceedingly difficult {and obviously fundamental) to decide 
when two given links are the same. Trial and error methods are rarely 
satisfactory. One approach to classifying two mathematical entities in 
some class is to assign each entity in the class some mathematical label 
(called an invariant) that coincides on the two entities considered to 
be the same. Thus a search for appropriate invariants for links began. 
In the 1920s polynomial invariants were developed by studying the 
topology of the space remaining when the link is removed from ordinary 
three-space. The corresponding polynomial for the knot � above is 
1 - 3x + 3x2 - 3x3 + x4• 

Another approach to knots first studied in the 1920s was a mathe­
matical structure called the braid group. Braids can be spliced together 
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thus forming a group, however splicing the top of a braid to its bottom 
forms a knot or link, and indeed all knots and links may be so formed 
(in possibly many ways) . 

Braids and their invariants have rewarded investigators with consider­
able valuable insight over the years. However, their connection with op­
erator algebras remained unnoticed until the proof of a deep result about 
subfactors of Type II factors required an analysis of one representation 
of the braid group. Coincidentally, almost the same representation, aris­
ing from a special case of the Heeke algebras, had been discovered by 
mathematical physicists in the 1960s as they partially solved the Potts 
model of statistical mechanics. The connection with operator algebras 
generated a trace function for the braids that could be used to recover 
numerical information. The trace of a braid then provided a new (Lau­
rent) polynomial invariant for the associated knot or link. It was more 
sensitive than the earlier polynomial in that it separated knots that were 
previously indistinguishable. It could even distinguish knots from their 
mirror images. Computers can be used to compute this polynomial for 
many links. For the knot 62 , it is x-1  - 1 + 2x - 2x3 - 2x4 + x5 and , 
for the link 6� , it is -x-3 + 3x-2 - 2x- 1 + 4 - 2x + 3x2 - z3 . 

Both operator algebra and topology already have produced substan­
tial generalizations of this new invariant that have been used to solve 
many venerable problems of knot theory. Similar work is expected to 
shed new light soon on the Potts model, von Neumann algebras, knot 
theory, statistical mechanics, quantum physics, and possibly even basic 
structures of life via the DNA application. In any case, these develop­
ments emphasize again the eternity of a good mathematical result, the 
harmony of all mathematics, the unpredictable relationships between 
fields, and the many bridges across the humanly created gap between 
core mathematics and basic science. 
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At present, only a few institutions in the United States offer training 
in operator algebras. In this area, as with other areas of mathematics, 
the United States has become increasingly dependent on hiring foreign­
trained students and scientists. In addition, some related areas with 
potential for interaction with engineering have been underemphasized 
in the United States. This is an ideal time to put a greater effort into 
providing the correct conditions for new young researchers and strong 
leadership in the United States in the subject. 

Survival Analysis 

Since problems in collecting, analyzing, and interpreting data are 
universal, it is not surprising that people in many countries (including 
England, France, Scandinavia, the Soviet Union, and the United States) 
have made significant contributions both to statistics and

. 
also to prolr 

ability, the branch of core mathematics that has until recently provided 
the major theoretical support for statistics. Expansions in technology 
have both motivated and enabled the most striking progress in statistics 
during the past decade. Advances in instrumentation and communica­
tion have generated enormously complex sets of data, and the growth 
of computing power permits the collection and management of such 
data. The United States has been the unquestioned world leader in sta­
tistical computing, mainly because the availability and sophistication 
of its equipment has been unmatched elsewhere. A further discussion 
of these developments can be found in the NRC report Computational 
Modeling and Mathematics Applied to the Physical Sciences, and in the 
forthcoming NRC Board on Mathematical Sciences report, A Survey of 
U.S. Mathematical Sciences. 

However, other countries have made significant contributions; a no­
table example from England is David Cox's proportional hazards model 
for life history data. Life history analysis is a body of statistical tech­
niques useful in medical research, reliability theory, actuarial computa­
tions, and demographic studies. John Graunt initiated this field in 1662 
with his invention of life tables for analyzing English mortality data, but 
recent clinical studies are far more complex. Typically, these begin with 
patients who have an unpleasant disease (possibly at different stages) 
being assigned randomly to two or more . different treatments; they are 
then followed until they die or disappear or the study ends. Observers 
record variables, called covariates, that might affect the survival of the 
patients, including some that do not change, such as sex and age at 
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diagnosis, and some that do, such as blood pressure and glucose level. 
Statisticians use these observations to study the relationships between 
the covariates and the survival time of patients after contracting the dis­
ease, and especially the comparative merits of the treatments. One goal 
may be to predict the effect of different treatment on life expectancy 
of future sufferers of the disease, another may be to determine which 
factors prolong the patients' normal functioning as long as possible. 
Subtleties such as the role of the individuals who are still alive at the 
end of the study and those who withdraw or disappear complicate the 
analysis. 

One model for the life history of a patient (or piece of equipment) 
includes a vector Z(t) of covariates that vary (possibly randomly) with 
time, from zero, when the study begius, to the time T when the study 
is terminated, and a finite-valued process Y(t) designating the state of 
the dependent variable. These states might be "alive-and-functioning," 
"alive-not-functioning," "dead," or "lost." The treatments appear as 
coordinates of Z { t). Analysis of these models concentrates on the 
intensity of changes; these intensities correspond to a stochastic process 
J(t, Y<J , y) , where J(t, Y<J , y) dt represents the probability that Y changes 
from Yo to y between time t and t + dt assuming a past of Z ( t). The 
life histories of the n patients are regarded as a set of independent 
observations that can be used to estimate J. 

Until the early 1970s, research concentrated on the extremes of 
either relatively simple situations with few assumptions or vastly more 
complicated parametric models with heavy assumptions on J. An 
example of the former is the setting for the product limit estimator 
for the probability of surviving beyond time t, when no covariants are 
measured and only questions of life expectancy are of interest . The 
assumptions of the parametric models were found to be too unrealistic 
by experts in biostatistics. 

In 1973 Cox proposed his "proportional hazards model" for survival­
time data, basing his work in part on a model developed during the 
1960s at the National Cancer Institute. In this model 

J(t, Alive, Dead) = exp [8T Z(t) ]A(t) 

where A � 0 is a (nonrandom) function and 8 is a vector of unknown 
parameters. J(t, Alive, Dead) can be an essentially arbitrary function of 
Z(s), 0 :5 s :5 t. 

. 
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The attractive features of the Cox model are easily seen if we spe­
cialize to fixed covariates. The model permits an arbitrary lifetime 
distribution for a control population and postulates a linear approxima­
tion for the log of the ratio of intensities corresponding to two' different 
values of Z. The effects of the covariates can then be measured in terms 
of the components of 8. 

The inferential procedures proposed by Cox were quickly applied 
to heart transplant and other data by statisticians and biomedical 
scientists in the United States. Evidence of these applications appears 
in numerous citations of the model, mostly in the medical literature. 
Although the model seemed to give sensible answers in applications, its 
highly nonlinear nature and the complex probabilistic structure of the 
data prevented rigorous theoretical analysis for some time. 

The theory for the case of time-independent covariates was indepen­
dently developed in the United States and Denmark in the mid to late 
1970s, but these methods could not handle the much more difficult case 
of time-varying covariates. In 1975, the thesis of a Norwegian student 
studying in the United States with a United States statistician who 
emigrated from France sllowed how to attack the analytic problems in 
this area. He applied a multivariate counting process framework to both 
survival analysis models and more general life history models. Most sig­
nificantly, he exhibited applications to these models of the deep results 
in continuous time martingales and stochastic integrals, which were in­
troduced by researchers in Japan, the United States, and France. Then 
others, p,rimarily in The Netherlands, Norway, Denmark, England, and 
the United States, used these techniques to analyze the heuristic sug­
gestions of Cox and to devise and investigate new inferential procedures 
in more complicated life history models. Despite their flexibility, the 
Cox models are still burdened by the questionable assumption that the 
ratio of intensities for two individuals can be modeled parametrically. 
It is not clear that the counting process techniques will prove adequate 
for the analysis of the newer, more flexible, semiparametric models that 
have been proposed, but they should provide a good starting point. 

The analysis of life history data is a rapidly expanding field widely 
used in a variety of disciplines, including biomedical science, demog­
raphy, and sociology, fields that reciprocate by continually presenting 
statisticians with data for which previous methods are inadequate. Al­
though the interaction of theory and application and the international 
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nature of this work are hardly new features of statistics, they have 
become more prominent recently. 

The United States and England are the primary world centers of 
statistical activity. An important pattern in the field, which is illustrated 
here, is that foreign scientists and students come to study, lecture, and 
meet in the United States, and subsequently many of the best remain 
as citizens or permanent residents. 
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4. REVIEW OF THE DAVID REPORT 

The David Report, a several-year effort by a broad cross section 
of industry and university scientists, has considerably raised the con­
sciousness of the science community. The principal finding of this 1984 
National Research Council report, Renewing U.S. Mathematics: Critical 
Resource for the Future (National Academy Press, Washington, D.C. ,  
1984) , was that "federal support for mathematical research is markedly 
out of balance with support for related fields of science" The Panel on 
Mathematical Sciences believes that it is important to review the major 
findings, the subsequent support, and the effect of the critical David 
Report. 

The major findings were as follows: 

• Over a 15-year span from 1968 to 1982 constant dollar federal support 
of mathematics research dropped by over 33 percent . 

• During the same period, the number of people in the field doubled in 
size (the influx from the late 1960s). 

• The effects of the resulting paucity of funding are being severely 
felt at the research universities where almost all basic mathematical 
research is done. 

• Unless corrective action is taken, the health of the nation's mathe­
matical research effort, now still the strongest in the world, will be 
seriously weakened. 

• The central importance of mathematics to science and technology, 
hence to the economy and defense, makes its continued strength in 
the United States imperative. 

• To address this imbalance, basic needs by 1990 include substantial 
increases in support for graduate and postdoctoral students, in ad­
dition to establishing a greater base of support among young and 
senior researchers. 

Since the David Report appeared in 1984 it has received wide accep­
tance in the universities and at the federal policy level. The problem 
seems to be understood. Evidence of this includes: 
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• The National Science Board (representing all disciplines of science and 
engineering) passed a resolution ''that a concerted effort should be 
made by all funding agencies to increase support for the mathematical 
sciences for several years until a proper level of sustaining support 
has been achieved." 

• A subcommittee of the Department of Defense (DOD)-University 
Forum reported that there had been significant erosion in mathemat­
ics support, partially because the growth of computer science had 
masked the mathematics funding situation during the 1970s. 

• The University Research Initiative, part of the fiscal year 1986 DOD 
appropriation, states the critical need to address the imbalance that 
currently exists with respect to mathematics funding. 

Currently, the federal agencies primarily responsible for mathematics 
funding are making an effort to redress the problem. However, recent 
budget constraints severely threaten their efforts. The issue is how to 
reach this balance of resources between related fields in a climate of 
overall limited budget enhancements. The difficult burden falls on the 
agencies which must set priorities in funding research. 

Movement toward a proper level of sustaining support in the math­
ematical sciences for graduate and postdoctoral students, established 
investigators, and equipment is varied. The only real progress appears 
to be moderate increases in support for graduate and postdoctoral stu­
dents, while other investigator support appears static. Even graduate 
student support progress leaves the discipline in a vastly unfavorable 
position at a critical time, see Table 1 .  

The National Science Foundation continues to advocate for addi­
tional resources for the mathematical sciences, primarily with a signifi­
cant cross-disciplinary effort in computational science and engineering. 
A new mathematics program at Defense Advanced Research Projects 
Agency (DARPA) is potentially a bright spot. Without this new 
DARPA program, the current 1986 and 1987 budgets for mathemati­
cal sciences research at the DOD agencies would be severely depressed 
(Table 2). Even with these enhancements, if they remain, and the best 
intentions of the policy makers, the renewal of U.S. mathematics will 
require continued resolute effort. 
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TABLE I 

c:omp.rt.ons of Fedlnl Support tor P�DCtof .. 
and Gr-.... S1udenta In Three Fields of Science 

0 
chem-80 chem-84 phy-80 phy-84 

Chemistry 

1980 

University faculty and staff 

with primary or secondary 
activity in R&D 9800 

Annual Ph.D.  Production 

U . S .  citizens 1 1 69 

Total Ph.D.s 1 538 

Postdoctorals 

federally supported 2255 

Graduate Students 

federally supported 3700 

Ratio P.D.IPh .D.  1 .47 

Ratio G . S ./Ph .D.  2 . 4 1  

Sources: NRC Survey of Doctoral Recipients. 

1984 

9200 

1 332 

1 765 

2473 

4 1 1 8  

1 .40 

2.33 

Ph D  

Postdoc support. federal 

G S support. lederal 

math-80 math-84 

Mathematical 
Physics Sciences 

1 980  1 984  1 980  1 984  

9200 9200 7400 noo 

61 1 659 520 407 
862 962 744 698 

1 2 1 0  I I SO 51 1 32 

2900 3348 200 4 1 1 

1 .40 1 . 20 0.08 0. 1 9  

3 . 36 3 .48 0.27 0.59 

Survey of Graduate Science and Engineering Students and Postdocs, NSF. 
Survey of Doctorate Recipients, NSF, unpublished, Table D-32. 
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TABLE 2 

Federal Support of Basic Academic R8M8rch in Mathematical Sciences 

1 20 

1 10 

1 00  

90 

80 

70 

60 

50 

40 

30 

20 

10 

1982 1983 1984 1985 1 986 1987 

Fiscal Year 

Federal Support of Basic Academic Research in Mathematical Sciences (FY) 

82 83 84 85 863) 874) 

NSF 1 )  34.2 37 . 1  45 .6 52 .7 57.2 65 .5 

ooo2> 
(AFOSR, ARO, 
ONR, DARPA) 23.3 26.5 29 .9 32.3 42 .4 39.1  

Other2) 

(DOE, NASA, NIH) 4.3 4.8 4.9 5.5 5 .9 4.8 

Total 6 1 .8 68 .4 80.4 90.5 1 04.5 1 09.4 

I) OMS represents about 90%. 
2) This is based on estimates of the mathematics extramural component of some programs. 
3) These are pre Gramm-Rudman, SOl and University Research Initiative figures. Their 

eventual effects may cancel each other. 
4) The President's budget . Estimates of  ultimate program emphasis (see 2) and future effects 

of URI and SDI make these tentative, especially outside NSF. 
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