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PREFACE il

Preface

Today's headlines are filled with reports of illiteracy, innumeracy, and
other signs of educational decay. Tomorrow's schools can be filled with
evidence of renaissance if we begin now to till the soil for effective education—
in mathematics, in science, and in all subjects. This volume offers five visions
of mathematics suitable for tomorrow's schools—visions rooted in imagination,
in mathematics, and in science. Ideas in this volume can provide fertile soil for
new approaches to tomorrow's numeracy.

Forces created by computers, applications, demographics, and schools
themselves are changing profoundly the way mathematics is practiced, the way
it is taught, and the way it is learned. Even as we work to make incremental
change in today's schools, we must think also about more significant change
that will be possible, indeed inevitable, in the future. For this reason the
Mathematical Sciences Education Board (MSEB) decided that one of today's
priorities is to stimulate imaginative thinking about tomorrow's curriculum.

In this volume readers will find a vision of the richness of mathematics
expressed through five vignettes that illustrate different possible strands of
school mathematics. These papers expand on the theme of mathematics as the
language and science of patterns and are introduced by a brief essay that
highlights interconnections and common ideas. The authors were asked to
explore ideas with deep roots in the mathematical sciences without concern for
limitations of present schools or curricula. They do, however, suggest through
numerous imaginative examples how
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PREFACE iv

mathematical ideas can be developed from informal childhood exploration
through formal school and college study.

The papers in this volume are intended as a vehicle to stimulate creative
approaches to mathematics curricula in the next century. The volume itself is
part of a national dialogue on mathematics education stimulated by a series of
recent publications:

e Everybody Counts: A Report to the Nation on the Future of
Mathematics Education

* Curriculum and Evaluation Standards for School Mathematics

* Science for All Americans

* Reshaping School Mathematics: A Philosophy and Framework for
Curriculum

Taken together these publications provide a consistent and urgent vision
that should help the United States restore excellence to mathematics education.

Although five examples are presented in this volume, they are certainly not
the only five possibilities. Appropriate curricula for the twenty-first century will
necessarily involve a wide variety of strands, reflecting both the broad spectrum
of mathematical sciences and the individual choices of local school districts.
We offer these themes not as definitive recommendations for curricula but as
samples of what is possible, to stimulate development of new and imaginative
programs that reflect the vitality and uses of mathematics.

Although each essay in this volume is the work of one author, each has
benefited enormously from advice and critique provided by many advisers.
Overall, the volume was developed under the auspices of the 1989 MSEB
Curriculum Committee chaired by Henry O. Pollak, retired assistant vice
president of Bell Communications Research. Other members of this Advisory
Committee included Wade Ellis, Jr. of West Valley College; Andrew M.
Gleason of Harvard University; Martin D. Kruskal of Princeton University;
Leslie Paoletti of Choate Rosemary Hall; Anthony Ralston of the State
University of New York at Buffalo; Isadore Singer of the Massachusetts
Institute of Technology; and Zalman Usiskin of the University of Chicago.
These individuals deserve much of the credit for helping shape the volume at its
inception and for keeping it on track.

Seven "Sounding Boards" were established by the MSEB to review drafts
of the essays as the volume progressed—one for the overview paper, one for
each main essay, and one to examine the links with science. For "Pattern" the
Sounding Board consisted of Isadore Singer and Zal Usiskin; for "Dimension,"
David Masunaga of the Iolani School
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in Honolulu and Jean Taylor of Rutgers University; for "Quantity," Harvey
Keynes of the University of Minnesota and Alan Tucker of the State University
of New York at Stony Brook; for "Uncertainty," James Landwehr of AT&T
Bell Laboratories and James Swift of Nanaimo Senior Secondary School in
British Columbia; for "Shape," Branko Griinbaum of the University of
Washington and Paula Fitzmaurice of Victor J. Andrew High School in Tinley
Park, Illinois; and for "Change," Robert Devaney of Boston University and
Leslie Paoletti. The Scientific Sounding Board which reviewed the entire
volume consisted of William O. Baker, retired chairman of Bell Laboratories;
Maurice Fox, professor of biology at MIT; and Gerard Debreau, professor of
economics at the University of California at Berkeley.

Many improvements in this volume are due directly to the hard work and
good ideas of these distinguished Sounding Board reviewers. To be fair to them,
however, it is important to acknowledge that the authors did not always heed
the advice proffered by their reviewers; so while we are genuinely grateful for
their assistance, full responsibility for the points of view expressed in this
volume rests with the authors.

Publication of this volume completes the first phase in the work of the
MSEB to express to the nation a new vision of mathematics education, of how a
centuries-old curriculum can evolve to meet the challenges of the next
millennium. Right from the beginning of MSEB in 1985, former MSEB Chair
Shirley Hill of the University of Missouri at Kansas City took up the difficult
challenge of forcing mathematicians and mathematics educators to think
together about possible new strands for the mathematics curriculum. She
challenged all of us on the MSEB to seek out ideas that may be more
appropriate to our computer age than the arithmetic-bound structures that we
have inherited from previous generations for whom calculation was the primary
purpose of mathematics. This volume is the direct result of Shirley's persistence
in emphasizing the importance of rooting curricular reform in the emerging
practice of mathematics.

Coordination and production details have been ably managed by the
MSEB staff led first by Marcia Sward and now by Kenneth Hoffman. Special
thanks are due Linda Rosen, who shepherded with unfailing good humor all
technical aspects of production from the initial planning meetings to final
details of artwork, copy editing, and production. Thanks also are due Jana
Godsey whose tenacity and patience were invaluable in collecting the many
illustrations for the volume. Much of the computer-generated artwork was
provided by Thomas Banchoff and David Moore, with special support from
Davide Cervone, a graduate student at Brown University. Finally, throughout
the many drafts of the
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PREFACE

LYNN ARTHUR STEEN, EDITOR

ST. OLAF COLLEGE

different essays, Mary Kay Peterson managed with efficiency all the TEX
typing and corrections necessary to enable the final text to be produced by

direct electronic means.
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PATTERN 1

Pattern

Lynn Arthur Steen

"He just saw further than the rest of us." The subject of this remark,
cyberneticist Norbert Wiener, is one of many exceptional scientists who broke
the bonds of tradition to create entirely new domains for mathematicians to
explore. Seeing and revealing hidden patterns are what mathematicians do best.
Each major discovery opens new areas rich with potential for further
exploration. In the last century alone, the number of mathematical disciplines
has grown at an exponential rate; examples include the ideas of Georg Cantor
on transfinite sets, Sonja Kovalevsky on differential equations, Alan Turing on
computability, Emmy Noether on abstract algebra, and, most recently, Benoit
Mandelbrot on fractals.

To the public these new domains of mathematics are ferra incognita.
Mathematics, in the common lay view, is a static discipline based on formulas
taught in the school subjects of arithmetic, geometry, algebra, and calculus. But
outside public view, mathematics continues to grow at a rapid rate, spreading
into new fields and spawning new applications. The guide to this growth is not
calculation and formulas but an open-ended search for pattern.

Mathematics has traditionally been described as the science of number and
shape. The school emphasis on arithmetic and geometry is deeply rooted in this
centuries-old perspective. But as the territory explored by mathematicians has
expanded—into group theory and statistics, into optimization and control theory
—the historic boundaries of mathematics have all but disappeared. So have the
boundaries of its
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PATTERN 2

applications: no longer just the language of physics and engineering,
mathematics is now an essential tool for banking, manufacturing, social science,
and medicine. When viewed in this broader context, we see that mathematics is
not just about number and shape but about pattern and order of all sorts.
Number and shape—arithmetic and geometry—are but two of many media in
which mathematicians work. Active mathematicians seek patterns wherever
they arise.

Thanks to computer graphics, much of the mathematician's search for
patterns is now guided by what one can really see with the eye, whereas
nineteenth-century mathematical giants like Gauss and Poincaré had to depend
more on seeing with their mind's eye. "I see" has always had two distinct
meanings: to perceive with the eye and to understand with the mind. For
centuries the mind has dominated the eye in the hierarchy of mathematical
practice; today the balance is being restored as mathematicians find new ways
to see patterns, both with the eye and with the mind.

Change in the practice of mathematics forces re-examination of
mathematics education. Not just computers, but also new applications and new
theories have expanded significantly the role of mathematics in science,
business, and technology. Students who will live and work using computers as a
routine tool need to learn a different mathematics than their forefathers.
Standard school practice, rooted in traditions that are several centuries old,
simply cannot prepare students adequately for the mathematical needs of the
twenty-first century.

Shortcomings in the present record of mathematical education also provide
strong forces for change. Indeed, since new developments build on fundamental
principles, it is plausible, as many observers often suggest, that one should
focus first on restoring strength to time-honored fundamentals before
embarking on reforms based on changes in the contemporary practice of
mathematics. Public support for strong basic curricula reinforces the wisdom of
the past—that traditional school mathematics, if carefully taught and well
learned, provides sound preparation both for the world of work and for
advanced study in mathematically based fields.

The key issue for mathematics education is not whether to teach
fundamentals but which fundamentals to teach and how to teach them. Changes
in the practice of mathematics do alter the balance of priorities among the many
topics that are important for numeracy. Changes in society, in technology, in
schools—among others—will have great impact on what will be possible in
school mathematics in the next century. All of these changes will affect the
fundamentals of school mathematics.

To develop effective new mathematics curricula, one must attempt to
foresee the mathematical needs of tomorrow's students. It is the
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present and future practice of mathematics—at work, in science, in research—
that should shape education in mathematics. To prepare effective mathematics
curricula for the future, we must look to patterns in the mathematics of today to
project, as best we can, just what is and what is not truly fundamental.

not from the

FUNDAMENTAL MATHEMATICS

School tradition has it that arithmetic, measurement, algebra, and a
smattering of geometry represent the fundamentals of mathematics. But there is
much more to the root system of mathematics—deep ideas that nourish the
growing branches of mathematics. One can think of specific mathematical
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structures:

* Numbers

* Algorithms
* Ratios

or attributes:
* Linear

* Periodic

* Symmetric
* Continuous
or actions:

* Represent
* Control

* Prove

* Discover

* Apply

or abstractions:
* Symbols

* Infinity

* Optimization
* Logic

or attitudes:
* Wonder

* Meaning
or behaviors:
* Motion

* Chaos

* Resonance
* [teration
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* Shapes
¢ Functions
* Data

* Random

* Maximum

* Approximate
* Smooth

* Model

* Experiment
¢ Classify

* Visualize

* Compute

* Equivalence
¢ Change
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* Recursion

* Beauty
* Reality

« Stability

* Convergence
* Bifurcation

* Oscillation
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PATTERN 4

or dichotomies:

* Discrete vs. continuous

* Finite vs. infinite

* Algorithmic vs. existential
* Stochastic vs. deterministic
» Exact vs. approximate

These diverse perspectives illustrate the complexity of structures that
support mathematics. From each perspective one can identify various strands
that have within them the power to develop a significant mathematical idea
from informal intuitions of early childhood all the way through school and
college and on into scientific or mathematical research. A sound education in
the mathematical sciences requires encounter with virtually all of these very
different perspectives and ideas.

Traditional school mathematics picks very few strands (e.g., arithmetic,
geometry, algebra) and arranges them horizontally to form the curriculum: first
arithmetic, then simple algebra, then geometry, then more algebra, and finally—
as if it were the epitome of mathematical knowledge—calculus. This layer-cake
approach to mathematics education effectively prevents informal development
of intuition along the multiple roots of mathematics. Moreover, it reinforces the
tendency to design each course primarily to meet the prerequisites of the next
course, making the study of mathematics largely an exercise in delayed
gratification. To help students see clearly into their own mathematical futures,
we need to construct curricula with greater vertical continuity, to connect the
roots of mathematics to the branches of mathematics in the educational
experience of children.

School mathematics is often viewed as a pipeline for human resources that
flows from childhood experiences to scientific careers. The layers in the
mathematics curriculum correspond to increasingly constricted sections of pipe
through which all students must pass if they are to progress in their
mathematical and scientific education. Any impediment to learning, of which
there are many, restricts the flow in the entire pipeline. Like cholesterol in the
blood, mathematics can clog the educational arteries of the nation.

In contrast, if mathematics curricula featured multiple parallel strands,
each grounded in appropriate childhood experiences, the flow of human
resources would more resemble the movement of nutrients in the roots of a
mighty tree—or the rushing flow of water from a vast watershed—than the
increasingly constricted confines of a narrowing artery or pipeline. Different
aspects of mathematical experience will attract children of different interests
and talents, each nurtured by challenging ideas that stimulate imagination and
promote exploration. The collective
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PATTERN 5

effect will be to develop among children diverse mathematical insight in many
different roots of mathematics.

FIVE SAMPLES

This volume offers five examples of the developmental power of deep
mathematical ideas: dimension, quantity, uncertainty, shape, and change. Each
chapter explores a rich variety of patterns that can be introduced to children at
various stages of school, especially at the youngest ages when unfettered
curiosity remains high. Those who develop curricula will find in these essays
many valuable new options for school mathematics. Those who help determine
education policy will see in these essays examples of new standards for
excellence. And everyone who is a parent will find in these essays numerous
examples of important and effective mathematics that could excite the
imagination of their children.

Each chapter is written by a distinguished scholar who explains in
everyday language how fundamental ideas with deep roots in the mathematical
sciences could blossom in schools of the future. Although not constrained by
particular details of present curricula, each essay is faithful to the development
of mathematical ideas from childhood to adulthood. In expressing these very
different strands of mathematical thought, the authors illustrate ideals of how
mathematical ideas should be developed in children.

In contrast to much present school mathematics, these strands are alive
with action: pouring water to compare volumes, playing with pendulums to
explore dynamics, counting candy colors to grasp variation, building
kaleidoscopes to explore symmetry. Much mathematics can be learned
informally by such activities long before children reach the point of
understanding algebraic formulas. Early experiences with such patterns as
volume, similarity, size, and randomness prepare students both for scientific
investigations and for more formal and logically precise mathematics. Then
when a careful demonstration emerges in class some years later, a student who
has benefited from substantial early informal mathematical experiences can say
with honest pleasure "Now I see why that's true."

CONNECTIONS

The essays in this volume are written by five different authors on five
distinct topics. Despite differences in topic, style, and approach, these essays
have in common the lineage of mathematics: each is connected in myriad ways
to the family of mathematical sciences. Thus it should
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come as no surprise that the essays themselves are replete with
interconnections, both in deep structure and even in particular illustrations.
Some examples:

Measurement is an idea treated repeatedly in these essays. Experience with
geometric quantities (length, area, volume), with arithmetic quantities (size,
order, labels), with random variation (spinners, coin tosses, SAT scores), and
with dynamic variables (discrete, continuous, chaotic) all pose special
challenges to answer a very child-like question: "How big is it?" One sees from
many examples that this question is fundamental: it is at once simple yet subtle,
elementary yet difficult. Students who grow up recognizing the complexity of
measurement may be less likely to accept unquestioningly many of the common
misuses of numbers and statistics. Learning how to measure is the beginning of
numeracy.

Symmetry is another deep idea of mathematics that turns up over and over
again, both in these essays and in all parts of mathematics. Sometimes it is the
symmetry of the whole, such as the hypercube (a four-dimensional cube),
whose symmetries are so numerous that it is hard to count them all. (But with
proper guidance, young children using a simple pea-and-toothpick model can
do it.) Other times it is the symmetry of the parts, as in the growth of natural
objects from repetitive patterns of molecules or cells. In still other cases it is
symmetry broken, as in the buckling of a cylindrical beam or the growth of a
fertilized egg to a (slightly) asymmetrical adult animal. Unlike measurement,
symmetry is seldom studied much in school at any level, yet it is equally
fundamental as a model for explaining features of such diverse phenomena as
the basic forces of nature, the structure of crystals, and the growth of organisms.
Learning to recognize symmetry trains the mathematical eye.

Visualization recurs in many examples in this volume and is one of the
most rapidly growing areas of mathematical and scientific research. The first
step in data analysis is the visual display of data to search for hidden patterns.
Graphs of various types provide visual display of relations and functions; they
are widely used throughout science and industry to portray the behavior of one
variable (e.g., sales) that is a function of another (e.g., advertising). For
centuries artists and map makers have used geometric devices such as
projection to represent three-dimensional scenes on a two-dimensional canvas
or sheet of paper. Now computer graphics automate these processes and let us
explore as well the projections of shapes in higher-dimensional space. Learning
to visualize mathematical patterns enlists the gift of sight as an invaluable ally
in mathematical education.
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Algorithms are recipes for computation that occur in every corner of
mathematics. A common iterative procedure for projecting population growth
reveals how simple orderly events can lead to a variety of behaviors—
explosion, decay, repetition, chaos. Exploration of combinatorial patterns in
geometric forms enables students to project geometric structures in higher
dimensions where they cannot build real models. Even common elementary
school algorithms for arithmetic take on a new dimension when viewed from
the perspective of contemporary mathematics: rather than stressing the mastery
of specific algorithms—which are now carried out principally by calculators or
computers—school mathematics can instead emphasize more fundamental
attributes of algorithms (e.g., speed, efficiency, sensitivity) that are essential for
intelligent use of mathematics in the computer age. Learning to think
algorithmically builds contemporary mathematical literacy.

Many other connective themes recur in this volume, including linkages of
mathematics with science, classification as a tool for understanding, inference
from axioms and data, and—most importantly—the role of exploration in the
process of learning mathematics. Connections give mathematics power and help
determine what is fundamental. Pedagogically, connections permit insight
developed in one strand to infuse into others. Multiple strands linked by strong
interconnections can develop mathematical power in students with a wide
variety of enthusiasms and abilities.

GAINING PERSPECTIVE

Newton credited his extraordinary foresight in the development of calculus
to the accumulated work of his predecessors: "If I have seen further it is by
standing on the shoulders of giants." Those who develop mathematics curricula
for the twenty-first century will need similar foresight.

Not since the time of Newton has mathematics changed as much as it has
in recent years. Motivated in large part by the introduction of computers, the
nature and practice of mathematics have been fundamentally transformed by
new concepts, tools, applications, and methods. Like the telescope of Galileo's
era that enabled the Newtonian revolution, today's computer challenges
traditional views and forces re-examination of deeply held values. As it did
three centuries ago in the transition from Euclidean proofs to Newtonian
analysis, mathematics once again is undergoing a fundamental reorientation of
procedural paradigms.

Examples of fundamental change abound in the research literature of
mathematics and in practical applications of mathematical methods. Many are
given in the essays in this volume:
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* Uncertainty is not haphazard, since regularity eventually emerges.

* Deterministic phenomena often exhibit random behavior.

* Dimensionality is not just a property of space but also a means of
ordering knowledge.

» Repetition can be the source of accuracy, symmetry, or chaos.

* Visual representation yields insights that often remain hidden from
strictly analytic approaches.

» Diverse patterns of change exhibit significant underlying regularity.

By examining many different strands of mathematics, we gain perspective
on common features and dominant ideas. Recurring concepts (e.g., number,
function, algorithm) call attention to what one must know in order to
understand mathematics; common actions (e.g., represent, discover, prove)
reveal skills that one must develop in order to do mathematics. Together,
concepts and actions are the nouns and verbs of the language of mathematics.

What humans do with the language of mathematics is to describe patterns.
Mathematics is an exploratory science that seeks to understand every kind of
pattern—patterns that occur in nature, patterns invented by the human mind,
and even patterns created by other patterns. To grow mathematically, children
must be exposed to a rich variety of patterns appropriate to their own lives
through which they can see variety, regularity, and interconnections.

The essays in this volume provide five extended case studies that
exemplify how this can be done. Other authors could just as easily have
described five or ten different examples. The books and articles listed below are
replete with additional examples of rich mathematical ideas. What matters in
the study of mathematics is not so much which particular strands one explores,
but the presence in these strands of significant examples of sufficient variety
and depth to reveal patterns. By encouraging students to explore patterns that
have proven their power and significance, we offer them broad shoulders from
which they will see farther than we can.
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Dimension

Thomas F. Banchoff

INTRODUCTION

One hundred and fifty years ago, Friedrich Froebel (Figure 1), the inventor
of the term "kindergarten," devised a set of "gifts" to introduce children to
notions of geometry in several different dimensions. His philosophy was clear:
if children could be stimulated to observe geometric objects from the earliest
stage of their education, these ideas would come back to them again and again
during the course of their schooling, deepening with each new level of
sophistication. The rudimentary appreciation of shapes and forms at the nursery
school level would become more refined as students developed new skills in
arithmetic and measurement and later in more formal algebra and geometry.

In order to capture the imaginations of his young students, Froebel
presented them with a sequence of wooden objects for their play in the
Children's Garden. Only later would the lessons of that directed set of play
experiences be turned into concepts and even later formalized into mathematical
expressions. The important thing was to introduce students to forms that they
could apprehend and to encourage them to observe and recognize those forms in
all of their experiences. In this way they could foster the facility of
visualization, so important in applying mathematics to both scientific and
artistic pursuits.

Froebel began with objects from the most concrete part of mathematics:
balls, cubes, and cylinders. He proceeded to a higher level of abstraction by
presenting the children with trays covered by patterns of
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tiles. Then he moved further into abstraction by introducing collections of sticks
of varying lengths, to be placed in designs that would ultimately be related to
number patterns.

Figure 1. Friedrich Froebel, inventor of kindergarten, used geometric objects to
stimulate children's imaginations.

We can recognize some of Froebel's legacy in materials that we find in
today's kindergarten classrooms. There we still have blocks for stacking and
tiles for creating patterns on tabletops. Too often, however, these "toys" are left
behind when children progress into the serious world of elementary school. A
great many rods are used for arithmetic exercises, but a student is lucky to see
anything two-dimensional between kindergarten and junior high school. At that
time there might be a brief mention of area of plane figures, often merely as an
illustration of formulas for measurement. Then the student must wait until high
school before any further thought is given to the world of plane geometry.

Two generations ago the hardy souls who made it through the year of
formal geometry were permitted to re-enter the third dimension in a still more
formalized semester of solid geometry. Then curricula changed.
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Three-dimensional topics (along with all of analytic geometry) were
supposed to be incorporated into a single geometry curriculum. All too often the
solid geometry components were treated merely as supplementary topics for the
interested student who had a bit of leisure time. Needless to say, solid geometry
quickly evaporated from the standard course in geometry. In the present-day
rush to prepare students for calculus before they go off to college, we are
systematically shortchanging them by ignoring the most practical and useful of
all geometry—the geometry of our own dimension. We now have a special
opportunity to bring the appreciation of different dimensions back into focus.

The Dimensional Ladder

Although our world is three-dimensional, most of our media, as it happens,
are two-dimensional: blackboards, books, movies, television, and computer
screens. We all invest a great deal of effort learning how to interpret such planar
visual information, often in order to help us deal with situations in three
dimensions. To live in a three-dimensional world, we do have to know how two-
dimensional shapes interact: their behavior provides a necessary prelude to
understand fully our own dimension.

As it happens, we gain a good deal of insight by investigating the geometry
of an even lower dimension—the line—where number and geometry intermix
in the most intimate and powerful way. The geometry of the number line
translates beautifully into plane geometry, both in its classical form and in the
analytic geometry of number pairs. The momentum that we gain in moving
from the first to the second dimension can carry us into our home dimension
with renewed insight. The dimensional analogy is a very powerful tool.

Here is an exciting theme that is worth recognizing and passing on to our
students: the momentum that brings us from one to two and up into three
dimensions does not stop there! The invitation is clear: there are other
dimensions waiting to be explored. Mathematics is the key to the elevator that
makes them accessible.

The fourth dimension, in particular, is one of our nearest neighbors. Just as
we learn a good deal about our own language and culture by studying the
language and culture of other countries, so we can begin to appreciate new
things about our own "real" world by seeing structures that carry forward to the
fourth dimension. Although we cannot explore higher dimensions physically,
they are accessible to our minds and, thanks to modern technology, more and
more to our vision as well.
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Research into language acquisition indicates that, although any infant is
capable of learning any language, a child will rather quickly settle into the
sound patterns of its own particular language, effectively blocking development
of other possibilities. If a child is not introduced early to other languages, he or
she will experience much more difficulty in learning a second tongue. Might the
same be true with respect to mathematical perceptions? If we wait until students
have developed a great deal of arithmetic sophistication (and a great many
misconceptions) before we encourage them to think about solid objects and the
interaction between different dimensions, we may be depriving them of the
chance to appreciate the full power and scope of geometry.

Giving Geometrical Gifts

Objects should always be nearby. Awareness of space and volume should
be a continuing part of mathematical experience in school at all levels.
Refinements such as measuring quantities and relating them with formulas will
come in good time. But they should come well after the time when a child first
becomes aware of different dimensions of measurement. Too often, the first
time a student is encouraged to think about what volume means is the same day
that he or she is given a formula for the volume of a sphere or a cone. To
encourage fluency in the language of geometry, we need a good deal more "pre-
geometry" throughout the school experience, and that should include "pre-solid"
as well as "pre-plane" geometry.

Froebel and his colleagues created geometrical gifts from materials
available to them, primarily wood, paper, and clay. Today we have the means to
improve on the gifts in many ways—with plastic and Velcro, with tape and
magnets, not to mention with the powerful computer graphics. The educator's
term "manipulatives"—classroom materials—takes on new meaning when we
can put in front of a young student a tool to manipulate not only simple forms
but also the very geometry of higher-dimensional space. If we care about
educating our children toward the perception of space, we should create truly
stimulating manipulatives—geometrical gifts for our day.

MEASURING VOLUMES

Many students never learn about volumes because they do not make it past
plane geometry. Those who do often reach calculus by a head-long rush that
leaves little or no time for the kind of geometrical thinking on which calculus
thrives. Calculus is not the time when students should be doing their first
serious thinking about geometry. Rather it should be
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the culmination of years of consideration of increasingly sophisticated
geometrical topics. When a student finally sees the full justification of the
formula for the volume of a cone or a sphere, it should be a peak experience,
fulfilling a promise implicit in all the experiences he or she has had with cones
and spheres all the way through school, beginning in kindergarten.

U MM

Figure 2. Water in a cylinder exactly fills three cones whose base and height
are identical to the base and height of the cylinder.

Froebel's young students spent a great deal of time pouring water and
sifting sand. Differently shaped containers held different amounts, so a student
would gradually learn common relationships without even thinking of writing
them down. For example, how many conical cups can be filled from the water
in a cylindrical cup with the same height and the same base? With a rack of
such cups (Figure 2), any student can perform the experiment. The cylinder fills
three cups.

We can test this over and over again with different heights and different
circular tops. Only later, after the student is familiar with the language of
fractions, need this relationship be stated in terms of one volume being one-
third of another. Still later, that relationship can be expressed by a formula: the
volume of the cone is one-third the area of the base multiplied by the height.

By this time that relationship should already have been observed in other
shapes. Three square-based pyramids can be filled with the sand from one
square prism of the same base and height (Figure 3). Even if the base is
irregular, this relationship is true. We don't even have to have the center of the
cone over the center of the base, assuming that the base even has a center! All
this understanding can take place before the student has even seen a fraction, let

alone a number like 7.
Sy Dy s
f /] J‘

Figure 3. Water in a prism exactly fills three pyramids whose base and height
match those of the prism. This relation holds even for prisms and cones with
irregular bases and can be discovered by young children just by pouring water
or sand.
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]

Figure 4. Pouring water can also verify Archimedes' theorem: the volume of
three spheres equals the volume of two cylinders whose radius and height
match those of the spheres.

A bit more subtle and even more impressive is the relationship that was
symbolized on the gravestone of Archimedes: if a ball fits precisely inside a
circular cylinder, then the volume of the ball is two-thirds the volume of the
cylinder. To illustrate this we can show that three spheres can be filled with the
water from two cylinders that encase the spheres (Figure 4). Volumes of
irregularly shaped objects can be found by seeing how much water they
displace when they are completely submerged. This leads naturally to the notion
of density, as a weight-to-volume ratio.

The notion of area can be introduced by working with volumes. By using a
collection of shallow pans, all of the same height, children can compare their
volumes and relate them to the areas of their bases. The height dimension is
"washed out" if it is the same in all cases. In this way it is easy for children to
see that the area of a right triangle is half the area of the associated rectangle
and that the area of a scalene triangle is half the area of three different
associated parallelograms (Figure 5).

Figure 5. By pouring water into shallow pans, children can readily compare the
areas of different geometric figures.

b

Figure 6. Four right triangles in a square frame reveal a proof of the
Pythagorean theorem: the square on the hypotenuse equals the sum of the
squares on the legs of the right triangle.
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We can work as well with tiles of uniform thickness, as Froebel did in his
kindergarten gifts in the last century. The relation between the area of a
parallelogram and the area of a rectangle can be appreciated at a very early
stage by students who actually manipulate physical objects. It isn't necessary to
wait until students have learned about square roots before they can see an
illustration of the Pythagorean theorem (Figure 6). Children who play with
geometric puzzles that illustrate decompositions will find it much easier later on
to appreciate formal results.

Decomposition Models

One of the most beautiful results that can be illustrated by blocks is the fact
that a cube can be decomposed into three identical pieces meeting along a
diagonal of the cube (Figure 8), just as a square is decomposed into two
congruent triangles by a diagonal line (Figure 7).

y
s 7 4

Figure 7. The diagonal subdivision of a square into two congruent triangles
serves as a prelude to a similar decomposition in three dimensions.

Figure 8. The diagonal decomposition of a cube into congruent pyramids can
be illustrated by blocks built from corresponding templates.
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Figure 9. The diagonal decomposition of a rectangular solid yields three
pyramids of different shapes but the same volume.

Decomposition models illustrate deeper ideas than do comparisons of
volumes since they not only demonstrate relationships but also show why these
relationships hold. Students should eventually come to see that all geometric
relationships are based on reasons.

This particular decomposition property of the cube can be a bit misleading
because it doesn't quite work for other rectangular solids. Although a diagonal
always decomposes a rectangle into two congruent triangles, the diagonal
decomposition of a rectangular solid will usually not produce three congruent
pyramids (Figure 9). The three pyramidal parts will all have the same volume
but not the same shape. This can be seen by pouring sand into plastic pyramid
containers, but greater insight comes from a different model—playing cards.

Think of a pyramid constructed of thick rectangular cards stacked above
the base. If we double the thickness of each card in the stack, then the base stays
the same while both the height and the weight of the stack (and therefore its
volume) also double. If we keep the width and the thickness of each card the
same and double the length, then the volume also doubles. Doubling any single
dimension causes the volume to double: in general, multiplying a single
dimension by any number will multiply the entire volume by that same number.

This procedure enables us to obtain the volume of any pyramid formed by
a diagonal decomposition of a rectangular solid—that is, of any pyramid with a
rectangular base whose top vertex is directly over a corner of the base. Further
work with pyramid-shaped blocks will quickly show that any pyramid with a
rectangular base can be built up from pyramids of this special type, all with the
same height. Taken together, these demonstrations show why, in general, the
volume of a pyramid with a rectangular base is one-third the volume of the right
rectangular prism with the same base and height.

Experiments with stacks of cards or thin rods can lead easily to a powerful
idea known to mathematicians as Cavalieri's principle for shear transformations.
First observe how the same set of rods that fills a parallelogram will also fill a
rectangle with the same base and height. Hence
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their areas must be equal (Figure 10). The same principle works in space as well
as in the plane. The same pack of cards that fills a straight box can fill a slanted
box with the same base and height. Similarly, an off-center pyramid can be
approximated with the same collection of square cards that approximate a
centered one (Figure 11).

Figure 10. The same set of rods that forms a rectangle can also form a
parallelogram of the same dimensions. Hence the areas of the rectangle and the
parallelogram must be the same.

Students who explore models of pyramids with sets of blocks and stacks of
cards throughout their early school years are certainly more likely to understand
and appreciate the formal proofs presented for such theorems in calculus
classes; students who have never thought about properties of volumes until they
arise in calculus will not get nearly as much out of their experience. We now
spend a great deal of effort getting

Figure 11. The same set of cards that forms an off-centered pyramid can be
rearranged to form a centered pyramid of the same base, height, and volume.
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students ready for the algebraic techniques needed for advanced mathematics.
We should be just as concerned for their geometric preparation as well.

Pyramid Problems

Many children are fascinated by the great pyramids of Cheops. These only
surviving wonders of the ancient world were mathematical challenges to their
creators, and they remain challenging today. School study of the monuments of
ancient Egypt can be a source of mathematics problems of all sorts, from the
most elementary considerations of shadows to the most sophisticated
achievement of early mensuration—the volume formula for the frustum of a
truncated pyramid.

Children can decide how to make models of the pyramids. A pile of dry
sand or wet sand on a square base provides one example. Models in clay
provide another. Students can experiment with different sizes of triangles to see
what shapes of pyramids result.

Other monuments of different shapes provide similar exercises in
measurement and challenges for construction. What about the burial mounds of
American Indians or other cone-shaped structures? What about Mayan
pyramids, with their step-like structure? What about Babylonian ziggerats, or
pagodas? Each structure provides distinctive features that lead to interesting
mathematical questions, which the students themselves can formulate and
explore.

A key mathematical notion that arises naturally in the study of monuments
is similarity, expressed both algebraically in ratio or proportion and
geometrically in shadows and scale diagrams. Consider the following story:

My friend Ambrose sent a snapshot of his trip to Egypt. He is standing next to
an obelisk and I can see that his shadow is about one-fourth as long as the
shadow of the obelisk. That's a pretty big column, over 24 feet high. I know
that because my friend is 6 feet tall. There is a pyramid in the picture too. I can
see that its shadow is falling just past the edge of the base. What additional
information would I need in order to figure out how high the pyramid is? How
can I measure the angle that the slanting side of the pyramid makes with the
ground?

Such questions can be discussed at an informal level long before the
students deal with triangles formally in geometry and trigonometry.

Thinking about the pyramids can show how problems in different
dimensions can illuminate each other. Using the principle of similarity, students
can easily calculate the volume of an incomplete pyramid (Figure 12), one of
the most important problems in Egyptian mathematics.
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Figure 12. An incomplete (or truncated) pyramid poses a challenge to find its
volume.

Figure 13. By thinking of a trapezoid as an incomplete triangle, we can find a
way to calculate its area that can also be used in three dimensions to find the
volume of an incomplete pyramid.

Begin with the analogous problem in the plane: the trapezoid viewed as an
incomplete triangle (Figure 13). We know the quantities a, b, and &, and we
want to find the area. Assuming that the trapezoid is not a parallelogram, we
can complete the figure to a triangle with height that we call x. By observing
that the large and small triangles are similar, we see that x/a = (x + h)/b. Hence
bx = ax + ah, so x = ha/(b - a) and x + h = hb/(b - a). We then get the familiar
formula for area of the trapezoid in a new way, as the difference of the areas of
two triangles:

(1/2)(x + h)b - (1/2)xa
= (1/2)hb? [(b - a) - (1/2)ha*|(b - a)
= (1/2)h(b* - a®)/(b - a)
= (1/2Yh(b + a).

The same method enables one to calculate the volume of the incomplete
pyramid (Figure 14). We are given the height & of part of the pyramid and the
side lengths a and b of the top and bottom squares. If the height of the large
pyramid is (x + &), then its total volume will be (1/3)(x + h)b?, while the volume
of the small pyramid is (1/3)xa>.
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Figure 14. By completing the incomplete pyramid, its volume can be
calculated as the difference of the volumes of two similar pyramids.

By similar triangles, x/a = (x + h)/b. So, as in the planar case, x = ha/(b - a)
and x + h = hb/(b - a). Therefore the volume of the incomplete pyramid is

(1/3)(x + h)b? = (1/3)xa’
= (1/3)hb3 /(b - a) - (1/3)ha’/(b - a)
= (1/3)h(b* - @®)/(b - a)
= (1/3)h{b* + ab + a?).

This formula, which was detailed in a papyrus from 1800 B.C., represents
a high point in the geometry of the ancient world. It can be appreciated by any
student who reaches the level of first-year algebra. Truly enterprising students
can conjecture the formula for the volume of an incomplete pyramid in the
fourth dimension or in higher dimensions.

Cylinders and Discs

The volume of water in a circular cylinder is a little more than three-
quarters of the volume of the rectangular box in which the cylinder just fits
(Figure 15). If we pour the water from the cylinder into box-shaped containers
of the same height, with square base whose side equals the radius of the
cylinder, then we can fill three such boxes and still have some water left over.
Experiments with different cylinders and related boxes will quickly show that
this pattern works for cylinders of any radius or height. The same ratio, of
course, relates the area of a circle to its circumscribing square. Because children
can measure poured quantities more easily than painted areas, it may be easier
for them to grasp this fundamental ratio first in terms of volume and then
subsequently in terms of area.
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Figure 15. A set of cups containing a circular cylinder matched to four
rectangular boxes of the same height whose bases form a square that encloses
the circular base can be used to show that the volume of the cylinder is just a
little bit more than the volume of three of the boxes. Hence the area of the
circular base is just a bit more than three-quarters of the area of the
corresponding square.

The idea of perimeter can be introduced by using a string or a belt,
unmarked at first. The distance around a square tile is four times the length of
the side of the tile, regardless of the size of the tile. If one circular disc has a
radius twice that of another, then a string around the larger will fit twice around
the smaller. A string around a disc will go around a square with sides equal to
the radius about one and one-half times. The crucial fact that the ratio of the
circumference of the disc to the perimeter of the square is the same as the ratio
of the volume of the cylinder to the volume of the surrounding box would be
established only much later. But the fundamental idea that there is a fixed ratio
between the perimeter of the disc and the perimeter of a square is something
that every child should appreciate, long before any mention of the mysterious
number 7.

The relation between the area and circumference of a circle can be easily
seen by cutting a circle like a pie and reassembling the pieces into a nearly
rectangular shape. The area of a disc turns out to be equal to the area of a
rectangle-like region with one side equal to the radius and the other equal to
half the circumference (Figure 16). Subdividing the disc into more slices would
make the correspondence even more exact. (Much later students will appreciate
the limit concept hidden in this demonstration.) Unfortunately, there seems to
be no such nice correspondence between the volume of a sphere and the volume
of a rectangular box.
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Figure 16. By slicing a circle into thin pie-shaped pieces and reassembling
them into a rectangular-shaped region, children can readily see that the area of
a circle is the radius (the height of the reassembled rectangle) times half of the
circumference (the width of the rectangle).

VISUALIZING DIMENSIONS

Children in Froebel's kindergarten played with cubes and with subdivided
cubes, squares and subdivided squares, and rods and subdivided rods
(Figure 17). Eight small cubes fit together to form a large cube, twice as long,
twice as wide, and twice as high. Four square tiles fit together to form a large
square, twice as long and twice as wide. Two thin rods form a rod twice as long
as the original.

Children at all levels can explore similar exercises. Here is a small
cardboard box filled with sand, wrapped in paper, and tied with string. Here is
another box—twice as long, twice as wide, and twice as high. How much more
string do we need to tie it, or paper to cover it, or sand to fill it? It isn't
necessary to have the ability to measure length or area or volume in order to
experiment and find the answers: twice as much string, four times as many
sheets of paper, eight times as much sand.

&

Figure 17. Nested cubes, squares, and rods illustrate the fundamental property
of doubling factors: they represent the power of 2, depending on dimension.
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These perceptions about changes of scale can take place even before the
child has much experience with multiplication, and they can reinforce
understanding of arithmetic processes.

Growth Factors

Children who first encounter changes of scale in the lower grades will
recognize much later, when they learn about exponential notation, that doubling
the size in dimension three leads to an increase in the volume of a factor of 23,
whereas doubling the size of a two-dimensional square increases its area by 22.
Whatever it might mean to have a box in four dimensions, exponents make very
clear a pattern of doubling that predicts its size will increase by 24,

Each dimension, therefore, corresponds to its own growth exponent. A
surprising fact is that there are geometric objects whose growth exponents are
not whole numbers. These strange objects, which have a kind of "fractional
dimension," are examples of a fascinating collection of geometric patterns
known as "fractals." Since the creation of fractals usually requires a process that
is applied an infinite number of times, it is only with the advent of modern
computer graphics that it has been possible to carry out the experiments
necessary to explore them effectively.

One of the earliest examples of a fractal was invented long before
computers by the Polish mathematician Waclaw* Sierpinski*. The first step in
creating Sierpinski's* figure is to remove a small triangle from the middle of a
large one. The second step is the same as the first: remove the middle of each of
the remaining triangles. Repeat this over and over again to obtain what is
known as the "Sierpinski gasket" (Figure 18).

What's remarkable about Sierpinski's gasket is that doubling its size
produces a figure that is composed of three copies of the original figure. This is
very strange, because our experiments with tiles and cubes show that doubling
factors are always powers of 2: if we double the size of something of dimension
one, we get two copies of the original, whereas if we double the size of
something of dimension two, we get four copies of the original. The Sierpinski
gasket, therefore, must have a dimension somewhere between one and two—
hence a fractional dimension. (Specifically, its dimension is the number d with
the property that 2¢ = 3; this number d is the logarithm of three to the base two,
namely 1.5849. .. .)

Fractals can be used to motivate a large number of mathematical
discussions. Since they arise as a result of an infinite process, they can be
discussed in relation to geometric series or repeating decimals. The unusual
doubling properties of fractals give a geometric interpretation
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for the logarithm to base two. Other fractal processes lead to figures like the
Mandelbrot set, including some of the most striking examples of mathematical
art.
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Figure 18. This infinitely punctured triangle, known as Sierpinski's* gasket,
comprises three half-size copies of itself—not two or four as one would expect
if its dimension were one or two. Hence it has a fractional dimension in
between one and two.

A ¥

Rates and Averages

One of the most important skills we can give our students is the ability to
interpret data geometrically. The geometry of area and volume can help
students understand concepts like rates, accumulations, and average value. Here
are three simple examples that illustrate this point:

* A driver travels at 40 miles per hour for 1 hour, then at 46 miles per
hour for 2 hours. How far does she travel, and what was her average
speed?
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* A designer makes $40,000 a year for 1 year and then $46,000 for the
next 2 years. What were his total earnings for that period, and what
was his average salary?

* A fish tank is filled to a depth of 40 centimeters and two identical tanks
are filled to a depth of 46 centimeters. What is the average depth of the
water in the tanks?
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Figure 19. A bar graph geometrizes data from three similar problems and
shows visually how the average corresponds to the height of a single rectangle
with the same base and the same total area.

All of these problems involve the same calculation, and all can be
illustrated on the same diagram (Figure 19). In each case the total accumulation
can be interpreted geometrically as the area of three rectangles. The average
will be the height of a single rectangle with the same base and the same total
area. It is also possible to graph the accumulation in a way that indicates exactly
how many miles had been covered (or how much money had been earned) by a
given time (Figure 20).

i3, 132
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Figure 20. A linear graph displays the accumulation from three problems,
indicating total miles covered or dollars earned. The relation between the
corresponding bar and linear graphs is a precursor to calculus.
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Each bar graph representation of rates (which mathematicians call a step
function) leads to an accumulation graph formed from straight lines (i.e., a
polygonal function). The process of finding the rate from the accumulation
leads ultimately to the differential calculus, and finding accumulations from
rates leads to the integral calculus. Although it is certainly not necessary for
students to realize this connection as they develop their understanding of speeds
and distances or salaries and earnings, every student can benefit from this type
of mathematical experience both as preparation for calculus and as preparation
for life.

Drawing Cubes

All children in Froebel's kindergarten practiced drawing. They played with
drawing on one level while they learned on another. They learned to observe
spheres, cylinders, and cubes; ultimately they learned to draw what they saw. In
our day there is not as much emphasis on drawing, so we miss opportunities to
develop the ability of our students to visualize geometrical relationships.

The most common way of representing a cube in most books is to draw a
square, then translate it along an oblique axis (usually at a 45° inclination) and
then to connect corresponding points (Figure 21). Although this is a perfectly
valid representation of the structure of a transparent cube, no view of a cube
actually looks like this image. Whenever we look at a cube, if one face appears
as a square, then we must be looking directly toward that face; in this case the
opposite face will be directly behind the face we see and not off to the side as it
is in the traditional drawing. This is true whether we use a straight-down
"orthographic" projection or foreshortening (Figure 22), where the back face
appears smaller than the front.

Another popular method of drawing uses "isometric projection,” which
expresses three edges of a cube as segments of equal length

Figure 21. The typical representation of a cube as two identical squares with
edges connected is quite unreal since no cube can ever appear just this way.
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meeting at 120° angles (Figure 23). This method has the disadvantage that two
vertices of the cube are represented by the same point.
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Figure 22. Two correct views of a cube are given by the "orthographic"
projection (looking straight down) on the left or a foreshortened projection (on
the right).

Figure 23. The symmetric "isometric" view of a cube, both solid and
transparent, arise by looking at one corner at a 45° angle. Then the opposite
corner lies directly behind the front corner, so only seven vertices are
distinguished in this view.

Figure 24. Two views of a cube in general position: orthographic (on the left)
and one-point perspective (on the right).

If we wish a more general image of a cube, we must draw each face as a
non-square parallelogram (using a straight-on projection) or as a trapezoid (if
we use one-point perspective) (Figure 24). The straight-on (or orthographic)
projection is particularly easy to draw since the picture of a cube is completely
determined once the position of the edges at one
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corner is specified. In an orthographic projection, parallel edges of the cube
appear as parallel edges in the image, so we can easily complete the picture
once we know the position of the three edges at any corner (Figure 25).

- O

Figure 25. In an orthographic drawing, parallel lines in the cube are rendered
as parallel lines on the page. Here the full orthographic view of a cube is
determined by the orientation of the three edges at any corner.

Once we know how to represent a three-dimensional object on a two-
dimensional page or computer graphics screen, we can go on to a much more
complicated exercise, that of drawing a four-dimensional analogue of a cube,
called a hypercube or tesseract. Many students encounter the idea of a four-
dimensional cube in science fiction or fantasy literature, such as Robert
Heinlein's story . . . and He Built a Crooked House'® or Madeleine L'Engle's A
Wrinkle in Time'* or Edwin Abbott Abbott's Flatland.

- &

Figure 26. By adding a fourth direction to the traditional three-line corner that
represents three-dimensional space, we lay a foundation for drawing four-
dimensional objects. It shows the direction in which to move a cube to form a
four-dimensional hypercube.
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Usually a hypercube is constructed by moving an ordinary cube in a
direction perpendicular to our space. Although we cannot actually achieve such
a motion, we can still draw a picture of what such a construction would look
like when the image is projected to a plane (Figure 26). We first draw the cube
determined by three of the edges, then move a copy of the cube along the fourth
direction and connect corresponding points.

The same procedure enables us to design a three-dimensional model of a
four-dimensional cube, using sticks attached by clay balls (as suggested in the
last century by Froebel) or more modern materials like drinking straws threaded
together with yarn, or some standard building sets. Once again, the full image of
a straight-on projection is determined as soon as we specify the four edges
coming out of a point (Figure 27).

Just as a foreshortened view of a cube looks like a square within a square
with corresponding corners connected, so the analogous foreshortened view of a
hypercube looks like a "cube within a cube" with corresponding corners
connected (Figure 28).

5

Figure 27. The completed hypercube formed by connecting corresponding
vertices on two copies of a cube.

Figure 28. A foreshortened view of a hypercube, imagined as a cube within a
cube with corresponding corners connected.
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Figure 29. By rotating a sphere on which an equator has been drawn, it is easy
to see that the images of a circle are always some type of ellipse.

=AY

Figure 30. To draw cylinders and cones, one begins with an ellipse that
represents a suitable perspective as the circular base.

A cube looks different from different perspectives. A sphere on the other
hand always looks like a disc. Any way we look at it, it looks the same. If we
mark an equator, then various views give images that are ellipses in different
positions (Figure 29). Students also need to be aware of the basic principles of
drawing these fundamental forms. It is a fact that a circle always looks like an
ellipse, including the extreme case where the ellipse is still a circle or where it
degenerates into a doubly covered straight-line segment. Observing this fact
makes it easier to draw convincing cylinders and cones (Figure 30).

Modern computers are fast enough to produce a sequence of images
showing different views of a rotating cube or hypercube, giving the illusion of a
three-dimensional object. This process is very familiar to today's students who
have grown up with computer-animated special effects and television
commercials. We can make use of this experience to give students new
appreciation for mathematical forms. As interactive programs become more
widely available, students of all ages can have unprecedented opportunities,
never before possible, to manipulate and explore geometric forms in three and
higher dimensions.

COORDINATES IN DIFFERENT DIMENSIONS

One of the most important insights we can transmit to students at all levels
is the utility of coordinate descriptions both to specify locations and to give
instructions. Examples of coordinates can be made available at every stage of a
child's development. There is no best way to develop
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understanding of different coordinate dimensions. You don't have to learn the
first dimension completely before going into the second and then the third (and
beyond). The invitation to examine coordinates from a dimensional standpoint
is available at all times: we only have to make students aware of what they are
seeing. Although experiences of different dimensions are always present, it is
useful for our present analysis to separate phenomena according to the number
of coordinates needed to locate a position or give an instruction.

Number Lines and Circles

Even at a very early age children can understand the significance of
addresses. Anyone can appreciate the ordinary algorithm used for finding a
specific location in terms of its street address: first go to the street, then find the
number of some building. If it happens to be the one you are looking for, you
are done. If not, go to a nearby building and check its number. If it is closer to
the one you want, keep going in that direction. If it is farther away, go in the
other direction. Stop when you get to the number you want.

Discussion of even this simple algorithm illustrates a number of important
topics. We identify a location by a specific number, and we move along a one-
dimensional path, in one direction or another, to get from one position to
another. After the basic procedure is understood one can add refinements such
as whether the address is on the even or odd side of the street. Estimating the
distance one has to travel in order to get from one location to another is another
refinement, leading to the geometric interpretation of subtraction as well as to
the notion of absolute value.

Early exercises can take place on a number line with positive addresses or
on real streets in a scavenger number hunt. Later the same notions can be used
for scales with negative values, like temperature, where the vertical orientation
of the thermometer emphasizes the directionality. "What happens when the
temperature goes from 65 degrees to 40 degrees?" "It goes down by 25
degrees." Such observations can take place far in advance of introducing signed
numbers.

Many cities use directional addresses in their street plan (e.g., in New York
City there is both a West and an East 42nd Street). In this case the algorithm to
find a building from knowledge of its address is slightly different but still easy
enough to discuss at an elementary school level. The distance between two
addresses on the same side is determined as usual, while the distance between
two locations on different sides is the sum of their addresses. No memorization
is required for such a statement! Signed numbers do not have to be mysterious.
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A similar one-dimensional algorithm works in setting a clock, whether it is
analogue or digital, depending on whether or not one can go backward as well
as forward. Setting a watch is slightly different from finding a street address,
even on a curving road that does not come back on itself. On a circular drive,
however, the problem of locating a specific address is analogous to the problem
of setting a watch: you can go in either direction and ultimately arrive at your
destination. Of course one direction might be much easier than the other.

The problem of deciding on a strategy for locating an address on a circular
drive is a good example of the kind of multistep problems that students should
learn to attack. In this example, as in many others, there is no single answer—
there are several strategies that will achieve the same result. The person facing
the situation must decide first what the choices are and then what might be the
advantages of each. The aim of minimizing effort is very easy to understand,
easier than minimizing cost measured in money or some other quantity.

One-dimensional examples require just one number to locate any point.
Directions for moving from one position to another are also one-dimensional:
"Go three houses to the right" or "Go around counterclockwise five spaces" or
"Go halfway around the circle to the opposite point." This last sort of
instruction depends on the size of the circle and can form the beginning of an
appreciation of angular measure.

Setting a clock, whether analogue or digital, provides an excellent example
of "wrap-around." This phenomenon can also be viewed on a linear scale, for
example, on the selector of many car radios. In many analogue devices the
moving indicator stops at the extreme left or extreme right, while in the digital
versions the indicator simply goes from the top value to the bottom. Finding a
particular radio station then presents two different sorts of problems depending
on the nature of the radio selector.

The dimensionality of gauges is an important concept that arises over and
over again in mathematics as well as science. As students become more
sophisticated in the kinds of numbers they use, they can introduce fractions or
decimals into number lines and number circles. Locating a telephone pole along
a road in a rural area requires a different kind of address, using fractions or real
numbers representing actual distances. The numbers become more complicated,
but the procedures remain the same.

Locating objects or addresses in a one-dimensional world can be
accomplished efficiently by the bisection algorithm (or the variation of it that
divides each interval decimally), a procedure with almost universal significance
that is related, for example, to the informal technique used to find phone
numbers. First you make a guess to divide your problem
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into two parts—by opening the phone book or by picking a number. Then you
compare your guess with what you want and make a new guess that is in
whichever part (above or below your first guess) that contains what it is that
you are looking for.

A similar scheme can be used to find the "address" of the length of the
diagonal of a square without requiring a calculator with a square root key.
Finding the decimal equivalent of a fraction can be viewed as a more
sophisticated version of the one-dimensional address problem. If we want to
find 3/17, we can multiply different decimals by 17 to see if the product is
bigger or smaller than 3. All decimals get put into one category or the other: it
never comes out even. For 3/16 on the other hand one decimal does come out
even, so there is a fixed location on the decimal line for the solution to this
problem.

Lengths and Perimeters

The fundamental geometry problem for one-dimensional phenomena is the
determination of distance along a path. Key examples include calculation or
comparison of perimeters of curves and polygons. There is one geometric
number—n—that all students should learn to understand.

Despite its universal significance, most people do not know how to answer
when you ask what & is. Most lay persons respond with a numerical estimate,
3.1416 or 22/7, without knowing in either case whether this approximation is
too large or too small. Mathematicians will give a definition in terms of a
geometric property, usually something like "the ratio of the circumference of a
circle to its diameter” or "the ratio of the area of a disc to the area of a square
with side equal to the radius." The fact that these two ratios are the same is, of
course, a major theorem of mathematics. One can get a tremendous amount of
mileage out of a continuing discussion of the estimation of © from the first time
a kindergarten student realizes that the belt around a can reaches a little more
than three times across the top, to second-semester calculus where one studies
integrals for arc length.

Finding the circumference of a circle is a one-dimensional problem, so its
answer should have a representative on the number line. But where is it? How
can we determine whether or not a given number is less than this length or
greater? Comparisons with the circumference of circumscribed and inscribed
polygons is an effective strategy for dealing with these questions. Although
such comparisons cannot determine m exactly, they can convincingly show
whether 22/7 is slightly above or slightly below =.
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Certain counting games are especially important for developing in children
facility in the arithmetic of algebraic quantities. Students can choose instruction
cards saying "move forward two spaces" or "back three" (F2 or B3), and they
can follow the instructions with counters. Then they can be asked to trade two
cards for a single card that accomplishes the same effect. By considering double
or triple jumps, they gain experience with the idea of multiplying a signed
number by a positive integer. The variations in the game are manifold. The
operation of taking up three B4 cards from one's hand is the same as taking up
one B12; putting down three B4 cards is the same as taking up one F12. One
might introduce a symbolism: P3B4 = "Put down three B4 cards," which is the
same as T3F4 = "Take up three F4 cards." Similarly, PB5S = TF5 and PF2 =
TB2, yielding a complete algebra of transactions.

The pedagogical trouble with signed numbers is that we use them both for
locations and for operations. The rule that "the product of two negative numbers
is positive" is one of the earliest stumbling blocks that convince many students
that mathematics means memorizing, not reasoning. Appropriate experience
with counting games can restore intuition to the rules of negative numbers.
Board games help students appreciate the value of scoring, first with simple
addition (especially where movement depends on the throw of a pair of dice)
and later in more complicated games where the score can be positive or
negative. Scoring experiences are generally one-dimensional.

Planes and Surfaces

Children should become skilled in both following and giving directions.
Any child should learn how to direct a person from one part of the school to
another and perhaps to describe the neighborhood of the school. Although the
algorithm for getting from one street address to another in an actual town might
be quite complicated, an ideal town has a simpler structure. We can imagine a
sequence of imaginary towns with different dimensional properties—a frontier
town all stretched out along a single street or a village laid out on a rectangular
plot. A model village could stimulate a good deal of the discussion, while a grid
on which children could design their own town would allow for more variation.

No matter what the streets are named, we can still give directions on a grid
by saying: "Go right two blocks, then turn left and go three blocks." For persons
with a clear orientation, the instructions can be varied: "Go east two blocks,
then north three blocks." The first instruction depends on the direction that the
person is facing, and the second does not.
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If the map of a village is hanging on a wall, we can use the natural
coordinate directions: "Go right two blocks and up three." Certain pairs of
instructions can then be combined: "Go left two, then up three" and "Go left
three and down five" combine to give "Go left five and down two." By playing
this game with cards, we can easily introduce the operation of adding ordered
pairs and even of multiplying numbered pairs by positive integers. If we
introduce "put" and "take" operations, we can extend the one-dimensional
algebra of signed numbers to an algebra of two-dimensional quantities.

Notice that this algebra of instructions does not require the use of
coordinates in the plane. The exercise carries additional value when addresses
are given in terms of street numbers or compass directions. For one thing, this
avoids the complications caused by negative numbers. To go from E3N4 to
E7N2 requires a move of E4S2. The correspondence between this
commonsense approach and the algebraic statement (7, 2) - (3, 4) = (4, - 2) is
something that can come much later in a student's mathematical development.
There are a great many people who are confused by negative numbers. They
shouldn't be.

"Taxicab geometry" provides an effective variation on the use of
directional instructions. Students play the role of dispatchers, telling cabbies
how to get from one location to another. "Just go three streets north and two
avenues west" would be such a direction. The efficiency of the instructions—
and the profit of the cab company—depends on many factors such as one-way
streets, accidents, and traffic jams. One can easily imagine a board game that
would model realistic city traffic and get students used to the idea of a two-
coordinate instruction set.

The surface of the earth is another familiar example of a two-dimensional
object. Even though it exists in three-dimensional space, we need only two
numbers, latitude and longitude, to specify any location. A dispatcher of ships
can give instructions to go 10 miles due east and then 5 miles due north. On the
surface of the earth—but not on a flat plane—the order of these operations
makes a difference: going 5 miles due north and then 10 miles due east can put
a ship at a different position! The extent of this difference is an intrinsic
indicator of curvature.

In teaching geometry we should not ignore the interactive video game.
Today's students take for granted the fact that we can manipulate images on a
two-dimensional screen by pushing buttons, turning dials, or twisting joysticks.
Programs like LOGO offer students experience in giving simple geometric
instructions to move points and objects around on a screen. This gives
mathematics teachers a chance to introduce any number of important concepts,
including repeated operations to form regular or star polygons and recursive
processes for drawing fractal objects or space-filling curves.
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Many video games employ wraparound, which introduces interesting ideas
in different two-dimensional geometries. Frequently when a point is guided off
the left side of a computer screen, it appears at the same height on the right side.
This is analogous to the phenomenon on the digital radio dial, which just as
well might be thought of as operating on a circle. A segment with its endpoints
identified can be treated as a circle. Analogously, if we think of the points on
the left side of a computer screen as identified with the corresponding points on
the right side, then we are dealing not with a flat rectangle but rather with a
cylinder.

But even more can happen. It is often the case that when a point moves off
the top of the screen, it reappears at the corresponding position on the bottom,
so we get a cylinder with its top and bottom identified. This gives a figure like
an inner tube, which mathematicians call a forus. The geometry of a torus is in
some ways like that of the plane, but in other ways it is very different. In the
plane any polygon that does not intersect itself divides the plane into two
pieces. But if we take a closed polygon that goes around the top of the torus, it
does not separate the torus into two pieces: its inside is the same as its outside.
Related to this phenomenon is the fact that on a torus we can find two closed
curves that cross at exactly one point (Figure 31), whereas if two closed curves
in the plane cross (not just touch), they must intersect in

Figure 31. A torus, the mathematical name for a doughnut-shaped surface, is a
two-dimensional surface in which two closed curves can intersect in just one
point and in which a closed curve need not separate its inside from its outside.
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an even number of points. An unusual object in many ways, the torus is ideal
for keeping track of pairs of numbers from circles.

Three-Dimensional Space

It is a short step from two to three dimensions. From the two-dimensional
village layout, we can move to the model of a city, where we have a height for
each location as well as a position on the grid. We can augment taxicab
geometry with elevator geometry. We specify a position by three numbers, for
example, E3N4U9, referring to the ninth floor of a building at location E3N4.
We can then determine an algorithm for getting from this location to E7N2US5.
Note that in this particular geometry it makes a big difference in what directions
one moves. The usual algorithm would be D9E4S2US. Beginning with D4 gets
you to the right level but in the wrong building! The situation would be
different for a game played on a jungle gym, with instructions to move from
one position to another by going a certain distance left or right, forward or back,
up or down. In this case we can carry out the instructions in any order.

Another three-dimensional geometry arises if we want to specify the
position of an airplane, giving its longitude, latitude, and altitude. Once again, it
makes a difference in which order we give the numbers that indicate a given
location or the directions for getting from one point to another.

Higher-Dimensional Spaces

The intuitions that students accumulate in dealing with coordinate pairs in
the plane and coordinate triples in three-dimensional space lead naturally to
coordinate geometry in higher dimensions. A thorough understanding of two
and three dimensions provides an important foundation for the powerful
generalizations of vector and matrix algebra in science and engineering, in
economics and social science, and especially in computer science and graphics.
We illustrate this progression with two examples.

The vertices of a square can be given by four points (0,0), (1,0), (1,1), and
(0,1). To obtain the vertices of a cube, we can take the points of a square with
zero in the third coordinate and then move the square one unit in the third
direction to obtain four more vertices, with a 1 in the last coordinate:

(0,0,0), (1,0,0), (1,1,0), (0,1,0),

(0,0,1), (1,0,1), (L, 1,1}, (0,1,1).
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Figure 32. Generalizing the Pythagorean theorem to three dimensions by
applying it to two different triangles found in a rectangular box.

Thus we can describe either the square or the cube as having vertices that
are either O or 1 in each coordinate.

The procedure generalizes automatically: to obtain the vertices of a
hypercube, we start with the eight vertices of a cube and put O in the final
coordinate and then "move the cube in a fourth direction" to obtain eight more
points with 1 the last coordinate:

(0,0,0,0), (1,0,0,0}, (1,1,0,0), (0,1,0,0),
(0,0,1,0), (1,0,1,0), (1,1,1,0), (0,1,1,0),
(0,0,0,1), (1,0,0,1}, (1,1,0,1), (0,1,0,1),
(0,0,1,1), (1,0,1,1), (1,1,1,1), (0,1,1,1).

We thus obtain the sixteen vertices of a hypercube, with 0 or 1 in each of
four coordinates. It is this sort of representation that is ideal for communicating
with a computer.

A second topic that generalizes in a very nice way is the Pythagorean
theorem. If we think of this theorem as a way of calculating the length of the
diagonal of a rectangle with given sides, then the extension to three dimensions
is immediate: given a solid bounded by rectangular sides, we first apply the
theorem to one side and then apply it to a rectangle built over the first diagonal
(Figure 32). We easily get €? = ¢Z + d*> = ¢® + (a®> + b?), so the length of the
diagonal of a rectangular prism with sides a, b, and ¢ is va*+B +¢¥ | The
pattern is established, and the distance formula in four-dimensional space
follows almost immediately. Students can then calculate the lengths of
diagonals of the hypercube with the 0-1 coordinates. It turns out that the length
of the major
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diagonal of a four-dimensional cube—say from (0,0,0,0) to (1,1,1,1)—is
v'4 = 2, which is twice the length of a side.

CONFIGURATION SPACES

The coordinate descriptions that are so useful in giving locations and
direction in familiar spaces of one, two, and three dimensions work equally well
for phenomena whose specification requires more than three numbers.
Exploratory data analysis, a statistical technique for dealing with these
representations, is one of the most important applications of dimensions in
current research. The ability to visualize and interpret multidimensional data
sets may be one of the best gifts we can present our students in this modern age.

Some of the most useful and interesting examples of higher-dimensional
phenomena occur as configuration spaces—collections of geometric objects
representing certain structures or motions in the natural world. The most
familiar spaces are the one-dimensional collection of points on a line, the two-
dimensional collection of points in a plane, and the three-dimensional collection
of points in space. But we can also consider the collection of lines in the plane,
the collection of planes in space, the collection of all possible circles in a plane,
or the collection of spheres in space. We illustrate this process by presenting
several examples of phenomena that lead to higher-dimensional configuration
spaces.

Consider the following (slightly unrealistic) situation: The lighting director
of our local theater has to arrange a set of lights over the stage so as to
illuminate certain parts of the floor at certain times. Sometimes the size of a
spot is supposed to change during the course of a performance. Sometimes one
colored circle is supposed to be contained in another. How can she keep track of
all the circles of light and then design lighting directions so that an assistant can
carry them out?

In this particular theater the lights all have the same form. A single bulb is
suspended from a wire hanging down from the ceiling, and a conical shade
directs the light out in a beam that meets the floor in a disc of light. The sides of
the shade come down at a 45° angle, so the radius of the disc is equal to the
height of the bulb above the floor (Figure 33). This makes it easy for the
director to specify the location of any light, since she can indicate the position
of the center of the disc using the same coordinates that the director of the play
uses to give her instructions. That uses two coordinates, but the lighting director
needs another number to represent the radius of the disc. She could, as an
alternative, specify the height of the bulb above the floor, since in this idealized
situation these two numbers are the same. Hence any particular disc can be
represented by three coordinates, the first two
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being the location of the center and the third giving the radius (or, in our special
case, the height).

Figure 33. A spotlight with a shade set at a 45° angle will illuminate a spot on
the floor of a stage whose radius equals the height of the light above the stage.

In this way we see that the collection of discs in the plane is three-
dimensional; this collection is an example of a configuration space, each disc
representing one element in the configuration of spotlights. To exploit the three-
dimensionality as a bookkeeping device, the director can record the position of
each light by giving three coordinates: for example, (6, 8, 5) refers to the light
with center at the (6, 8) position on the floor and a radius (or height) of 5.

To call this a space indicates something more than convenience of
recording. It is a signal that the arithmetic of the coordinates reflects properties
of the geometry of lights. For example, a spotlight with coordinates (6, 8, 5)
stays on the stage, while the light (6, 4, 5) shines off the front of the stage. It is
easy to determine a rule to tell when a light stays away from the front rim of the
stage, namely that the second coordinate be larger than the third.

More complex problems facing the lighting director can also be solved by
referring to the coordinates. For example, when will one spot be entirely
separate from another? In words, this happens when the distance between the
points in the plane given by the first two coordinates is greater than the sum of
the third coordinates. In symbols, the condition is expressed by
VX=Xl H(y—yEsrer

In this configuration space the three coordinates do not play the same sorts
of roles; so even though the geometry of the configuration space is three-
dimensional, it treats the last coordinate differently from the first two. It is not
identical to the usual geometry of ordinary three-space, where the Pythagorean
theorem treats all coordinates the same way. An important aspect of
configuration spaces are the special symmetries they possess.
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The Fourth Dimension

Sooner or later everyone hears that time is the fourth dimension. That idea,
however, limits the idea of dimensionality. Already in the last century writers
realized that there are many situations in which time can be viewed as a fourth
dimension, but by no means does it demand any special role as the fourth
dimension. When physicists, especially relativity physicists, specify an event by
giving three space coordinates and one time coordinate, they are using a four-
dimensional configuration space. This space has its own geometry that is not
the same as the geometry of four-dimensional Euclidean space, where distance
is given by the generalized Pythagorean theorem. In the theory of relativity the
distance between two events is given by the expression

VE =X 4y =y 4 (z - 22— (- 1)1,

where time is measured in special units related to the speed of light.

The three-dimensional configuration space of spotlights provides a useful
analogy for a four-dimensional space used in molecular modeling. The atoms
that make up a molecule can be represented by small spheres of different radii.
The description of a particular molecule, like the description of stage lighting,
consists of a list of spheres of different sizes in different positions. Each sphere
requires three coordinates to specify its center and one coordinate for the radius.
Thus the configuration space of atoms is four-dimensional, and a molecule is a
collection of such atoms arranged in a particular formation.

Using the language of the configuration space, we can describe a molecule
to a computer and ask it to display different views. If we ask the computer to
check that two atoms do not intersect, this involves an algebraic condition in
four coordinates, namely

1

(x=xVP+y-yP+(z-2"=(r+FPE =0

The geometry of this configuration space is much closer to that of
relativity theory than it is to ordinary Euclidean four-dimensional geometry.
Interestingly it is this sort of question—avoiding intersections—that appears in
the science of robotics, using large numbers of coordinates to keep track of
objects moving through configuration spaces of high dimension.

Suppose each light on our sample stage possesses a rheostat that can
control the current—hence the brightness—of the spot. If we add brightness to
the coordinates of the spotlight, then the configuration
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space will be four-dimensional. If we want to encode the color of each spotlight
as well, then the dimensionality jumps again. The specification of color requires
three more coordinates representing either hue, saturation, and value or the
relative amounts of red, yellow, and blue (for pigments) or red, green, and blue
(for lights). So the lighting director will now have seven coordinates for each
spotlight: two for floor position, one for radius, one for brightness, and three for
color. Thus even a simple example can lead to a configuration space of high
dimensionality.

Relativity physics began by considering four-dimensional collections, with
three dimensions for space and one for time. Recently modern physics has
become much more complicated. Some current models keep track of seven
dimensions that act like space and four that act like time, to give an 11-
dimensional configuration space. Another important model uses a configuration
space with 26 dimensions. In each case the choice of the model depends to
some degree on the kinds of mathematics that apply in these dimensions, as an
aid to keeping track of the complex interrelationships among events in these
high-dimensional spaces.

Statics and Dynamics

Here's yet another type of configuration space, set up by a simple story.
For the school sculpture show two students want to decorate the back wall of
the hall with a pattern of plastic strings. They decide to stretch them from the
left-hand edge of the wall down to the floor. By trial and error the week before
the show, they come up with a pleasing design, using more than twenty strings.
They can't leave them up until the show so they have to find a way of recording
the positions so they can put them up again later. How many numbers do they
need to specify the position of each string? What is the dimensionality of the
collection of strings?

It is easy to see that the dimensionality of this configuration space is two: it
takes just two marks to locate a given string, one along the floor and one up the
left edge of the wall, and each of these locations can be specified by a single
number. The pair of numbers (4, 3), for example, could represent the string that
goes from the point four feet over on the floor to the point three feet up on the
wall edge (Figure 34). The collection of pairs, one pair for each string, tells the
positions of all strings. It is even possible to record these ordered pairs in a
specific sequence so the students will know which order to follow when they
replace them.

In a way this coding is like the old game of "connect the dots" where a
polygon is determined by a sequence of ordered pairs, so by connecting
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the dots in order we draw the polygon. In our sculpture story the basic elements
are not points but segments: by forming the sequence of string segments, we re-
create the wall sculpture.

(1.5
(2, 4)
i3, 3)
4,2y
i3 1

Figure 34. A configuration space of two dimensions can represent the positions
of strings that run from the floor to locations on the left edge of the wall.

If we increase the dimensionality of the configuration space, we can allow
the bottom of the string to be placed anywhere on the floor, with the top still
somewhere on the left edge of the wall. We still need one number for the
height, but now the record will have to include two numbers for the floor
coordinates. The collection of segments would then be three-dimensional,
yielding greater possibilities of more interesting sculptures.

By allowing the strings to start anywhere on the vertical wall and end up
anywhere on the floor, we would have a realization of a four-dimensional
system. Simple algebra would then enable one to predict, for example, whether
or not two strings are going to intersect. When we are laying strings along a
wall, it is commonplace for them to intersect. Such intersections are rare if we
are in a three-dimensional collection and rarer still for the four-dimensional
system of segments in space. It is also interesting to look for configurations of
segments that correspond to familiar configurations in ordinary space. What
collection of segments in a two-dimensional configuration space corresponds to
a line joining two points? What segments in a three-dimensional collection
correspond to a coordinate plane in three-space? Questions such as these can
yield striking and unpredictable visual effects in the string sculpture.

The dimensionality of a configuration space becomes especially important
when we consider dynamic problems. When a point is moving on a line, we can
describe its state at any given time by giving two numbers, one for its position
and a second for its velocity. The state space is therefore two-dimensional, and
a point moving according to a given physical law, like a ball bobbing up and
down on a spring, will describe a curve in that state space. Similarly a point
moving in a circle, like a
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swinging pendulum, will have a two-dimensional state space giving its angular
position and angular velocity.

The state space of a point moving in a plane will be four-dimensional, with
two points for location and another two for velocity. Scientists analyzing the
motion of a satellite have to work in a six-dimensional state space, with three
coordinates for position and three for velocity. The laws of physics will restrict
the actual states of a system to some lower-dimensional space. Indeed, scientists
devote a good deal of effort to analyzing the shapes of these spaces. For
example, the motion of two pendulums corresponds to a curve on a torus in four-
dimensional space. The study of such high-dimensional dynamical systems is
an extremely important subject in modern applied mathematics.

SLICING IN DIFFERENT DIMENSIONS

When Froebel presented his geometric gifts, he did not want them to
appear static. One of the first gifts was a display of three basic forms suspended
by strings in various ways (Figure 35). As the objects rotated,

Figure 35. Froebel's kindergarten included basic shapes that could be hung
from eyelets at different positions, then viewed from different perspectives to
see various cross-sectional shapes.
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children could observe them from different views and ultimately come to an
appreciation of their symmetries and structures.

Figure 36. The central diagonal cross section of a cube turns out to be a regular
hexagon whose six edges cut off triangles on each of the six faces of the cube.

In the model devised by Froebel, the sphere, the cylinder, and the cube all
had eyelets attached so that they could be suspended in different ways. Because
of its symmetry, the sphere had only one eyelet. The cylinder had three: one in
the center of an end disc, one in the center of a side, and one on the rim. The
cube also had three: one in the center of a face, one in the center of an edge, and
one at a vertex.

The various views of these rotating objects lead to one of the most
intriguing exercises in understanding forms in space, namely the determination
of cross-sectional slices. One way to visualize this without actually applying a
knife to a real model is to imagine what would happen if we gradually
submerged the block in water. How will the shape of the water level change?

The exercise that is most difficult for students is to visualize the shape of
the "equator”" of a cube suspended from a vertex. A student who has looked
carefully at a real cube will have a much better chance of figuring out that the
answer is a hexagon (Figure 36). This fact can be demonstrated nicely by
stretching a rubber band around a cube. A cardboard model for the pieces of
this decomposition of a cube can be made by cutting corners from three squares
and placing them on the sides of a regular hexagon (Figure 37).

A transparent plastic cube half filled with a colored fluid can be
manipulated to show the various slices through the center. If the cube is exactly
half full, the shape of the liquid's surface will always be a central slice—that is,
a slice through the center—regardless of the cube's orientation. It is a good
challenge to then ask students to figure out which position of the cube produces
the central slice with the greatest area. (It is not the hexagonal slice!)

Already in the last century when Milton Bradley took up the manufacture
of Froebel's kindergarten materials in the United States, he
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included in one of his sets another figure—a cone. The conic sections are
phenomena that can be seen and appreciated long before students are introduced
to analytic geometry. Once again, a transparent cone partially filled with liquid
can illustrate the changing conic sections as the object rotates.

Figure 37. By folding this template into a solid figure, one gets half of a cube
sliced on the central diagonal. Two such solids can be reassembled to form the
cube by placing the hexagon faces together.

Figure 38. As the central slice of a six-sided cube yields a regular six-sided
polygon, so the central slice of a four-sided tetrahedron yields a regular four-
sided polygon—that is, a square. The template on the right provides the means
for constructing half of a tetrahedron; two such pieces make an excellent
geometric puzzle.
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Figure 39. Appearances can be deceiving: the direction of the arrowheads
changes the apparent length of the lines without changing their actual length.

The investigation of slices of polyhedral objects leads to an interesting
puzzle. If we slice a triangular pyramid by a plane parallel to one of its faces,
we get a series of triangles. If we slice by planes parallel to one of the edges, we
get rectangles, and in the central position, a square (Figure 38). Students can
make cardboard polyhedral models of the two pieces of this decomposition by
cutting and folding an appropriate pattern. Many people find it very difficult to
put these two identical pieces together to form a triangular pyramid. The
difficulty seems to be a three-dimensional analogue of the optical illusion that
makes two lines of equal length seem different if we put arrows on the ends
(Figure 39).

Visitors from Higher Dimensions

Over one-hundred years ago Edwin Abbott Abbott used slicing to illustrate
the dimensional analogy in his classic satire Flatland.! It is a great exercise to
try to take on the viewpoint of A Square, living in a two-dimensional universe,
especially when he is visited by a sphere from a higher dimension. The
frustrated attempts of the sphere to teach A Square about the third dimension
give wonderful insights into the challenges of communication and visualization
in geometry. (Early parts of Flatland may be difficult for some students, and
some of the social satire may be skipped over at first reading. Abbott was an
active education reformer and worker for equality who was satirizing the
narrow-minded attitudes of Victorian England with respect to class society and
particularly with respect to women. Only at the end does A Square begin to gain
a more enlightened view of his society.)

What would happen if we were visited by a sphere from a dimension
higher than our own? Instead of growing and changing circles in a plane, we
would see growing and changing spheres in space. We would be inclined to
interpret such an event as the inflation and deflation of a balloon, but the point
of the exercise is that such a phenomenon could be interpreted equally well as
the slices of a hypersphere penetrating our three-dimensional universe.

If A Square were visited by a cube from the third dimension, he would see
a variety of polygons, depending on the position of the cube
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as it passed different water levels. What would be the analogous three-
dimensional slices of a four-dimensional hypercube? This is one place where
computer graphics can be of great help (as in the film The Hypercube:
Projections and Slicing).

Slicing techniques are important in many modern scientific applications,
especially since the development of computer graphics. X-ray tomography uses
computer graphics in the reconstruction of three-dimensional objects from
planar sections. Topographers and geologists construct and analyze contour
maps showing the elevations of different configurations above and below the
surface of the earth. Similar slicing methods are used by biologists, while
researchers in materials science use computer graphics to show the parts of a
three-dimensional surface with a given temperature or density. Exploratory data
analysis uses techniques of projections and slicing to investigate high-
dimensional data sets from social sciences as well as from the physical and
biological sciences.

Students of calculus will appreciate the power of slicing techniques—for
example, in relating the volume of a surface of revolution to the changing areas
of its circular cross sections or in finding the contour lines on the surface of a
graph in three-space. Long before students are introduced to the notions of
critical point theory, they can already understand and appreciate slicing
phenomena that relate different dimensions. What happens if we slice a
doughnut or a bagel in different directions? It is easy to carry out the actual
experiments and see that there are positions where the slice yields a pair of
circles. Less obvious is the slice that consists of two interlocked circles. Again,
a good way to see this would be to experiment with a transparent inner tube
filled halfway with colored liquid. Geometry can be a surprising observational
science.

COUNTING COMBINATIONS

Many combinatorial and algebraic questions arise in the investigation of
geometric figures; these can be introduced at different educational levels, right
up to the frontiers of research. How many edges does a triangular pyramid
have? We can follow Froebel's suggestion and make a model out of toothpicks
and peas, then count the edges. Or we can simply draw a picture of the object
(Figure 40) and count the six edges.

The procedure for drawing such a diagram suggests an algorithm for
determining the number of edges. Start with a point, then choose a distinct point
and draw the one edge connecting it to the one we already had. Now choose a
new point and connect it to the previous two points to get two more, for a total
of three. (We have to be careful not to
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choose the new point on the line containing a previous edge.) Next choose a
new point not lying on any of the three lines determined by the edges already
constructed, and then connect this new point to the previous three. This yields
three new edges, for a total of six.

Figure 40. The tetrahedron—the simplest regular polyhedra—has four
triangular faces, six edges, and four vertices.

Figure 41. By adding one new point with line-segment connections to each

previous vertex, one can construct in sequence the complete graphs on 1, 2, 3,
4,5, 6, ...points.

We can repeat this process to draw the figure—called a complete graph —
determined by five points (Figure 41). First choose a point not on any of the six
lines containing previously constructed edges, and then connect it to the
previous four points to obtain four new edges—for a total of 10. A similar
construction can produce the complete graph on six points and more if so
desired.

What is the pattern that emerges from this procedure? It becomes apparent
if we arrange the results in a table:

Number of points: 1 2 3 4 5 6
Number of edges: 0 1 3 6 10 15

In each case the number of edges is the number of pairs of points, which
leads directly to the study of combinations. Based on the sequence of
construction, it is easy to see that the number of edges at stage n is the sum of
all numbers less than n. For example, the number of edges formed by six points
isl+2+3+4+5 =15. Some students may know the formula n(n + 1)/2 for
the sum of the first n integers, perhaps in conjunction with the famous story of
the young Gauss who used this formula to add up all the numbers from 1 to
100. Another type of pattern is revealed by the table—that the number of edges
at any stage is the total of the previous number of edges and the previous
number of vertices.
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Figure 42. A display of different triangles determined by complete graphs
shows that every subset of three vertices determines a triangle. Hence counting
triangles is equivalent to counting triples of vertices.

Counting Triangles

Spatial perception tests often ask students to extract a simple figure from a
complicated one. Counting edges is one of the simplest of such tasks. Next in
difficulty would be counting the number of distinct triangles (Figure 42). By
marking each triangle we can extend our table to include the new information:

Number of points: 1 2 3 4 5 6
Number of edges: 0 1 3 6 10 15
Number of triangles: 0 0 1 4 10 ?

To fill in the missing value we can reason from patterns, many of which
are just like those that relate edges to points. Since there are as many triangles
as there are distinct triples of vertices, the total number of triangles is just the
combinations of a certain number of objects taken three at a time. Alternatively,
as before, we can use a recursion relationship: the number of triangles at any
stage is the sum of the previous number of triangles and the previous number of
edges. The latter is the easiest to calculate: it shows that the number of triangles
that can be formed from 6 points is 20. [In general the number for n points is n
(n-1Dn-2)6.]

Students who have studied some algebra will be able to relate these
numbers to the binomial coefficients:
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la+b) =a+b

(a+b)* =a*+2ab+ b

(a+b)?=a+3a*h + 3ab® + H

(a+ 0 =a*+ da’b + 6a’b? + dab® + b*

(a+b)* =a* + 5a*h + 10a*h? + 10a*h* + S5ab* + b°

fa+8)° =a®+6a*b+ 15a*h* + 20a°b* + 1540 + 6ab* + b*

Removing the literal factors leaves a shifted version of Pascal's triangle:

I 1

1 2 1

13 31

1 4 6 4 |

1 5 I 1w 51

I 6 15 20 15 6 1

The fourth row, for example, gives in succession for n = 0, 1, 2, 3, and 4
the numbers of objects with n vertices formed from the four points: dots, lines,
triangles in the middle, with the empty set and the whole set at the ends (where
n=0and n=4).

Observant students may see another important pattern—that the sum of
any row is a power of 2. There is a sophisticated way of stating this observation:
the sum of the numbers of simplices of different dimensions in an n-simplex—
including the whole object and the empty simplex—is 2"!. This same
relationship can be observed by setting both ¢ = 1 and b = 1 in the table of
binomial expansions or by relating the binomial coefficients to the
combinations of n + 1 elements taken k + 1 at a time. The total number of
possible combinations is then 2m+l - the total number of subsets chosen from
among n + 1 elements. This basic counting argument can motivate many topics
in elementary probability.

Counting Squares and Cubes

Similar observations emerge if students investigate the numbers of
vertices, edges, and faces of cubes and hypercubes in various dimensions. Just
as there is a hierarchy of subsimplices within each simplex, there is an
analogous sequence of squares and cubes within each n-dimensional cube. A 3-
cube has 8 vertices, 12 edges, and 6 squares, as can be verified by an actual
count. A square, or 2-cube, has 4 vertices, 4 edges, and 1 square. A 1-cube is a
segment with 2 vertices and 1 edge,
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and a O-cube is point with 1 vertex. This data can form the beginning of another
table:

Z

Z

Figure 43. Framework for hypercube: two cubes with joined edges yield 16
vertices and 32 edges.

Figure 44. Shading helps identify two horizontal groups of four parallel
squares in the hypercube. There are six such groups in all, three associated
with the original cube and its displaced copy and three associated with the
edges that join the two cubes.

DIMENSION:  0-cubes 1- 2-cubes 3-cubes 4-cubes
(points) cubes (squares) (cubes) (hypercubes)
Vertices (lines) Faces Cubes 4-Cubes

Edges

Point: 1 0 0 0 0

Line: 2 1 0 0 0

Square: 4 4 1 0 0

Cube: 8 12 6 1 0

Hypercube: 16 ? ? ? 1

When we try to fill in the missing numbers for a hypercube, the process
becomes a bit more difficult. We know how to generate a hypercube—move an
ordinary cube in a direction perpendicular to itself. As the cube moves, the 8
vertices trace out 8 parallel edges. This yields 12 edges on the original cube, 12
on the displaced cube, and 8 new edges traced by the movement for a total of 32
edges on the hypercube (Figure 43).

Counting squares presents more of a problem, but a version of the same
method can be used to solve it. First observe that there are 6 squares on the
original cube and 6 on the displaced one. To these 12 we must add the squares
traced out by the edges of the moving cube.
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Figure 45. A group of four vertical squares in a hypercube determined by the
horizontal displacement of the original cube. These squares are easier to see
when background lines are removed, as in the lower figure.

It helps to group edges and squares in parallel bundles. The edges in the
hypercube come in four groups of 8 parallel edges. Similarly the squares can be
classified in four groups of 4 parallel squares, one such square through each
vertex. Two horizontal groups are rather easy to see (Figure 44); another group
of four vertical faces become clearer when we remove some of the extraneous
lines (Figure 45).

Student teams can easily identify the remaining three groups of four
squares. It is easier to do this when the four squares do not overlap and
relatively more difficult when the overlap is large. The entire set consists of 24
squares.

Grouping edges or faces is particularly effective when an object possesses
a great deal of symmetry, as does the hypercube. We can study the relation
between symmetry and grouping by looking at different dimensions.
Symmetries of a cube, a square, or a segment arise by permuting the edges at
each vertex in different ways and by moving each vertex to another position.
The collection of all symmetries of the cube or hypercube is an important
example of a group, an algebraic structure that reflects geometric properties.
The symmetry group of a cube is the collection of permutations of its vertices
that preserve its structure. The attempt to codify the relation of permutations to
symmetries of algebraic and geometric structures provided considerable
impetus for the development of modern algebra during the past two centuries.
Even now symmetry groups continue to fuel theoretical work in atomic physics.
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The crucial observation about the hypercube is that it is so highly
symmetric that every point looks like every other point: if we know what
happens at one vertex, we know what happens at all vertices. For example, at
each of the 16 vertices of the hypercube there are 4 edges, for a total of 64. But
this process counts each edge twice, so the actual number of edges is half of 64,
or 32.

At each vertex there are a certain number of square faces. How many? As
many as there are ways to choose two edges from among the four edges that
meet at the vertex. Once we have chosen one edge from among the four, there
remain three possibilities for the second; together, these yield 12 pairs. As
before, each pair of edges appears twice in this list, once in each order. So these
12 pairs yield 6 different squares at each vertex. All 16 vertices together then
yield 96 squares. But each square is counted four times, once for each of its
vertices. Hence the true total is 96/4 = 24 squares in a hypercube. This
reasoning confirms the direct count of six groups of four squares that we saw in
drawings of the hypercube, but it is reached by a method that would work even
if applied to a five-dimensional cube.

Seeking Patterns

Advanced students can express these results in a general formula. Let []
(k, n) denote the number of k-cubes in an n-cube. To calculate [] (k, n) we
begin, as before, by counting how many k-cubes there are at each vertex. Each k-
cube is determined by a subset of k distinct edges from among the n edges
emanating from each vertex. Therefore the number of k-cubes at each vertex is

Clhon} = (7)) = m R = &) , the combination of n things taken k at a

time. Since there are C(k, n) k- cubes at each of the 2" vertices, the total number
of k-cubes appears to be 2"C(k, n). But in this count each k-cube is counted 2%
times, so we divide by that number to get the final formula: O & n) =20k
(k, n).

Remembering the pattern of powers of 2 that come from the sums of rows
in the simplex table, we naturally seek a similar pattern for cubes. In this case
the entries in each row add up to a power of 3:

DIMENSION:  0-cubes 1- 2-cubes 3-cubes 4-cubes
(points) cubes (squares) (cubes) (hypercubes)
(lines)
Vertices Edges Faces Cubes 4- Sum
Cubes
Point: 1 0 0 0 0 1
Line: 2 1 0 0 0 3
Square: 4 4 1 0 0 9
Cube: 8 12 6 1 0 27
Hypercube: 16 32 24 8 1 81
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hypercubes) into three equal parts yields 3, 9, 27, or 81 similar small objects

Figure 46. Subdivision of the sides of segments, squares, and cubes (and even
always a power of 3.
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There are several ways to react to this observation. We can generate an
additional row of the table to gain some additional information, but the
conjecture is fairly firmly established with the five completed rows. We can
observe that each entry is the sum of twice the entry directly above it plus the
entry to the left of that one, so the sum of entries in one row is three times the
sum of entries in the previous row—an argument that can easily be translated
into a formal proof by mathematical induction. We may also use the explicit
formula for the number of k-cubes in an n-cube, to sum a typical row:

o, +oil,n+ - +0in - 1,m)+0{nn)
4 Ol e C(2,m)2" 4 4+ Cln = 1,n)2 4 C(n, n)
(24 1)" = 3",

All these approaches help explain why the rows sum to power of 3. But
perhaps the most satisfying observation that justifies this fact is that we may
divide the sides of an n-cube into three equal parts whose projections divide the
entire cube into 3" small cubes (Figure 46). The result is a small cube coming
from each vertex of the original cube, one from each edge, one from each two-
dimensional face, and so on. The final small cube is in the center. Thus the total
number of small n-cubes, which is 3", is equal to the sum of the number of -
cubes in the n-cube—since there is one small n-cube for each point, edge, face,
3-cube, etc.

One of Friedrich Froebel's kindergarten gifts was a cube subdivided into
27 small cubes. He would have liked this final demonstration.
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Quantity

James T. Fey

One of the principal factors in human intellectual development is our
desire to make sense of the physical and biological worlds in which we live. We
search historical records for clues that explain our present condition, and we
devise theories that might predict the future. In nearly every description of the
past or forecast of the future, prominent factors include quantitative attributes:
length, area, and volume of rivers, land masses, and oceans; temperature,
humidity, and pressure of our atmosphere; populations, distributions, and
growth rates of species; motions of projectiles, tides, and planets; revenues,
costs, and profits of economic activity; rhythms, intensity, and frequency of
sounds, light, and earthquakes.

Perceptive observers have noted that patterns in objects can be modeled by
numbers in ways that aid reasoning. It may be an exaggeration to say, as Lord
Kelvin once claimed:*

When you can measure what you are speaking about and express it in numbers,
you know something about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind.

But it is not an exaggeration to say that the number systems of
mathematics are indispensable tools for making sense of the world in which we
live.

The human fascination with numbers is also reflected in countless
examples of whimsical or superstitious numerology. From the Greek
Pythagoreans to Martin Gardner's fictional Dr. Matrix,' people have
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found meaning—both sublime and sinister—in numerical values attached to
letters, words, names, places, and dates. The endless variety of patterns in
numbers has piqued the mathematical curiosity in millions of professional and
amateur mathematicians of all ages. Unfortunately, those same patterns have
served as the basis of various pseudoscientific enterprises—from astrology to
numerology.

QUANTITY IN SCHOOL MATHEMATICS

Given the fundamental role of quantitative reasoning in applications of
mathematics as well as the innate human attraction to numbers, it is not
surprising that number concepts and skills form the core of school mathematics.
In the earliest grades all children start on a mathematical path designed to
develop computational procedures of arithmetic together with corresponding
conceptual understanding that is required to solve quantitative problems and
make informed decisions. Children learn many ways to describe quantitative
data and relationships using numerical, graphic, and symbolic representations;
to plan arithmetic and algebraic operations and to execute those plans using
effective procedures; and to interpret quantitative information, to draw
inferences, and to test the conclusions for reasonableness.

The skills required for these tasks are contained in the arithmetic of various
number systems and in the generalizations of arithmetic reasoning to
elementary algebra. The public recognizes these number systems by their
common names (whole numbers, fractions, decimals); mathematicians use more
formal terms (integers, rationals, real numbers). Regardless of their names,
these number systems are well-known parts of mathematics and have been
taught in school for centuries. Experienced teachers have devised countless
clever strategies for developing student skill in solving traditional problem
types. So it is entirely reasonable to ask, "What can be new and exciting about
teaching quantitative reasoning?" Surprisingly, the answer ought to be, "Just
about everything!"

Influence of Technology

School arithmetic and algebra have always been dominated by the goal of
training students to manipulate numerical and algebraic symbols. The purpose
of all this manipulation is to answer arithmetic problems or solve algebraic
equations. The core of elementary and middle school mathematics features
addition, subtraction, multiplication, and division of whole numbers and
fractions; the core of secondary school
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mathematics covers similar operations on polynomial, rational, and exponential
expressions.

Figure 1. Hand-held calculators can now display graphs of all functions
ordinarily studied in school mathematics. Some can even perform most
common types of symbolic manipulation to simplify and solve equations.

In the past, proficiency with these routine manipulative skills has been a
prerequisite for effective use of mathematics. However, the emergence of
inexpensive electronic calculators and computers has changed that condition
forever. It is now about 15 years since the technology of transistors, printed
circuits, and silicon chips first made hand-held calculators available on the mass
consumer market. Rapid progress in electronics has now produced solar-
powered scientific calculators that perform arithmetic on numbers that can be
entered and displayed in decimal, common fraction, or exponential form. Many
calculators also have single-button subroutines for evaluating elementary
functions and performing common statistical calculations. Programmable
calculators offer more powerful capabilities, including graphing, symbolic
manipulation, and matrix operations (see Figure 1). Each of these mathematical
procedures is available in more powerful and sophisticated form through
programs that run on desktop computers now widely available in schools.

The computational capabilities of machines—both existing and envisioned
—suggest some exciting curricular possibilities. Elementary
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school students can now deal with realistic numerical data—very large and very
small numbers in decimal and fractional form—without prerequisite mastery of
the intricate computational algorithms for operations on those numbers. Middle
school students can deal with questions about variables, functions, and relations
expressed in algebraic language long before they master the rules for
manipulating those expressions. In the world outside of school, almost everyone
relies on calculators and computers for fast and accurate computation. But
school curricula have yet to change significantly in response to these new
conditions.

Calculators and computers are also having a profound effect on the nature
of mathematics itself. With access to those tools, mathematicians can search for
patterns in much the way that scientists explore results from experiments with
systematically manipulated variables. The experimental mathematician can test
special cases on a computer in a small fraction of the time required by "paper-
and-pencil” algorithms. In many cases these calculations could not be done at
all by traditional means, and the patterns that emerge would never have been
seen. The experimental data of mathematics can be sorted, analyzed, and
displayed graphically to reveal both regularities and variations. The ultimate
standard for verification remains formal proof by reasoning from axiomatic
foundations. However, calculators and computers have created a new balance
between theorem-finding and theorem-proving.

Use of calculators and computers for mathematical work has also led to a
dramatic increase in interest in algorithmic methods and results. Many of the
deepest and most beautiful results of mathematics are those that guarantee the
existence of numbers with interesting properties or solutions to important
equations, yet those same theorems and their proofs quite often give no clue as
to how one might effectively construct the promised object. Mathematical
contemporaries of Euclid could prove that there is no largest prime number and
that any natural number whatever can be factored uniquely into a product of
primes. But mathematicians working today still devote great energy to practical
and theoretical problems posed by the need to construct large primes and to find
the promised factorizations of large composite numbers. The search for
effective and efficient algorithms that will guide computer procedures has
become a central aspect of both pure and applied mathematical research in our
technology-intensive world.
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Influence of Applications

A second fundamental change affecting school curricula is the extension of
quantitative methods to nearly every aspect of contemporary personal and
professional life. Although numbers have always been useful, their uses have
been rather predictable and limited to well-defined familiar problems. Today,
quantitative literacy requires an ability to interpret numbers used to describe
random as well as deterministic phenomena, to reason with complex sets of
interrelated variables, and to devise and interpret critically methods for
quantifying phenomena where no standard models exist. Examples are all
around us:

* U.S. census figures are used to describe our current population and to
apportion resources to various social programs. How can the
population and its characteristics best be counted?

» Several hurricanes strike Central and North America each fall. How
can the "size" of each be measured in the most meaningful way?

* The consumer price index is used to calculate cost-of-living increases
in Social Security payments and a number of other salary scales. How
can inflation best be measured?

» Players on football teams in different conferences are often compared
statistically to see who is best, in part to determine fair compensation.
What data should be used to rank the quarterbacks most accurately?

* Banks, credit card companies, and airline and hotel reservation systems
process billions of financial transactions daily, using national
communication networks that are protected against errors and
unauthorized intrusion. How can secure systems be devised and used
intelligently?

Each of these problems and many others of similar complexity and
significance require the ability to organize, manipulate, and interpret
quantitative information. Skill in traditional written algorithms for arithmetic
and algebra or in solution of traditional "types" of word problems is not only
insufficient preparation for those tasks, it is largely irrelevant.

Quantitatively literate young people need a flexible ability to identify
critical relations in novel situations, to express these relations in effective
symbolic form, to use computing tools to process information, and to interpret
the results of those calculations. The underlying mathematical ideas used in this
modeling often extend beyond numbers and fractions to matrices, linear
algebra, and the arithmetic of congruence classes. The useful computational
tools extend beyond hand-held calculators to spreadsheets, data bases, and
dynamic simulations.
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Influence of Psychological Research

Another recent change in conditions for teaching about quantity in school
mathematics is the emergence of an extensive body of research on human
cognition. While there is a long history of research on mathematics teaching
and learning from a psychological perspective, the past thirty years has seen an
unprecedented search to identify the ways that young people develop
understanding of number systems and their application. As a consequence,
researchers are acquiring rich insight into the interplay between human
cognitive development and the concepts, principles, and skills that we want
young people to learn. This research shows real potential for informing
decisions about design of curricula and instructional approaches in school
mathematics.

FUNDAMENTAL CONCEPTS

The convergence of rapidly escalating demands for social and scientific
application of quantitative skills with powerful new technologies that support
those skills has prompted reconsideration of goals for school mathematics. To
paraphrase the title of a 1982 report of the Conference Board of the
Mathematical Sciences,?’ we are still asking, "What quantitative abilities will be
fundamental in the future of mathematics?" Despite extensive professional
debate over the past decade, there is as yet no consensus on a prudent course of
change, and most evidence suggests that schools have not moved toward any
radical change.

In a mature branch of mathematics such as number theory, analysis, or
algebra, many fundamental concepts and operations can be presented in a
coherent system of abstract ideas—a few definitions and axioms from which
every other fact and principle follow logically. But this rigorous, efficient
organization of contemporary mathematics is only the final product of an
historical process in which fundamental ideas were used informally long before
they become formal definitions and theorems. Furthermore, practical working
knowledge requires more than an ability to recite or derive formal principles. It
requires the ability to recognize quantitative relationships in a broad range of
concrete situations as well as the technical skills to represent and reason about
those relationships.

In thinking about school mathematics many mathematicians and teachers
have argued that the best guide is a curriculum that retraces the meandering
historical path by which numerical techniques have developed. Others suggest
that we should capitalize on structural insights that have emerged at the end of
that path, to provide for children a more efficient way to develop number
concepts and techniques. There is little
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research evidence to suggest the right choice among these options, but it seems
safe to say that quantitative understanding requires grasp of insights provided
by each perspective. It seems important to convey to students, as quickly as
possible, effective modern techniques for representing and reasoning about
numerical data. But that instruction will undoubtedly be more successful if it is
informed by understanding of the roots of numerical techniques in human
experience and the path by which ideas and skills have evolved over time.
Students must efficiently learn concepts, techniques, structural properties, and
uses of the number systems>? but with an honest portrayal of the many informal
and halting ways that new mathematical ideas and methods actually develop.

Numbers and Operations

In searching for a framework of fundamental number concepts to be
developed in school mathematics, it is helpful to begin with a simple question:
How are numbers used? In common sources such as daily newspapers,
cookbooks, instruction manuals, or household budgets, one will find a long list
of situations in which numbers play a vital role. Furthermore, skill in
quantitative reasoning is a critical prerequisite for success in any scientific,
technical, or business occupation, and the list of ways that numbers are used in
those fields is both long and diverse.

Designers of curricula are understandably frustrated by the challenge of
selecting material that will prepare students for all problem-solving situations
they might reasonably face outside school. However, a search for common
features in quantitative reasoning tasks shows that they can be grouped into a
few categories. One common analysis of number uses shows that every example
involves one of three basic tasks:

1. MEASURING. To use operations of arithmetic to reason about size
—to answer questions like "How many?" or "How much?"

2. ORDERING. To use numbers to indicate position in a sequence
with the relations of "greater than" or "less than."

3. CODING. To provide identifying labels for objects in a collection.

Ilustrations of these different tasks abound in ordinary life. Here are some
particular examples:”-3?

» Standard measurement tasks involving concepts such as length, area,
volume, mass, and time all employ numbers to indicate size. The
operations of addition, subtraction, multiplication, and division
correspond directly to operations such as joining, comparing, or
partitioning of objects that numbers measure. Other important concepts
such as velocity, acceleration, and density
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also use numbers to indicate size, but they are usually derived by
operations on basic number measurements.

* As customers enter a store they are often assigned numbers to indicate
the order in which they will be served. Customers who enter early will
have lower numbers than those who enter later—the order of arrival
corresponds to the order of service numbers. In this case positive
whole numbers are used to indicate order. It makes no sense to add or
multiply service numbers, although subtraction might help to estimate
expected waiting time.

* The teams in any athletic league are commonly listed in the order of
their competitive standing, from first through last. However, without
further information, those rankings tell little about the distance
between teams in that order.

* In analyzing games of chance each possible outcome is assigned a
number between 0 and 1 as its probability. Event A being more likely
than event B corresponds to the probability p(A) being greater than the
probability p(B). Furthermore, if A and B are disjoint, p(A = B) should
equal p(A) + p(B). In this situation the assignment indicates a measure
of likelihood. But those measures are then used to order events by
likelihood. The operation of union for disjoint events corresponds to
the addition of rational numbers.

e The uniforms of athletic teams generally have numbers for each
individual player. While the numbers sometimes indicate an assigned
position, arithmetic operations or relations involving those numbers
seldom give any significant information. These numbers are used
solely as labels.

This taxonomy of uses of numbers might seem too obvious to mention.
But it offers the first step toward a framework for organizing the profusion of
quantitative reasoning tasks into manageable families—a way to find significant
themes among the details of number concepts, skills, and applications. With
suitable refinement the taxonomy can help reveal to both teachers and students
the experiential root meaning of numbers, to focus instruction on the forest as
well as the trees.

For just that purpose Usiskin and Bell>} have proposed a more detailed
analysis of fundamental kinds of number uses. They suggest six different uses
of single numbers:

* Counts for discrete collections (populations);

* Measures for continuous quantities (time, length, mass);

» Ratio comparisons (discounts, probabilities, map scales);
* Locations (temperature, time line, test scores);

* Codes (highway, telephone, product model numbers); and
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 Derived formula constants (7 in A = wr2).

A parallel taxonomy suggests ways that operations on numbers can be
matched to operations on objects that numbers describe:

* Addition models putting together or shifting;

* Subtraction models take-away, comparison, shift, or recovering an
addend;

* Multiplication models size change, acting across, or use of a rate
factor; and

* Division models ratios, rates, rate division, size change division, or
recovering a factor.

While mathematicians and teachers might question the meaning of these
categories and debate their completeness or independence, it seems certain that
attention to such analyses will help focus instruction on the fundamental task of
preparing students to use numbers effectively to solve problems. Examples of
the different ways that numbers are used highlight the essential components in
any quantitative reasoning task. In simplest form, quantitative reasoning
involves phenomena, a number system, and a correspondence between
phenomena and numbers that preserves essential structure. Each object is
assigned a number in such a way that "similar" objects have "similar" numbers
and relations among objects corresponding to relations in the number system.
To understand this modeling process students need extensive experience with
the structural properties of various kinds of number systems.

While students must certainly acquire comfortable skill in dealing with
many specific uses of numbers, they also need to acquire a broader perspective
on properties that number uses have in common. There is clear evidence from
research in mathematics education that understanding fundamental structural
properties of a mathematical system facilitates retention of the system and
application to new situations. School mathematics should, therefore, emphasize
the ways that different types of number systems serve as models of measuring,
ordering, and coding, together with the ways that standard operations model
fundamental actions in quantitative situations.

Variables and Relations

Elementary uses of numbers focus on descriptions and inferences
concerning specific quantitative facts—the cost of 5 candy bars priced at 50¢
apiece, the area of a field that is 50 feet long and 30 feet wide, or the average
speed of a car that travels 300 miles in 5 hours. Mastery of concepts required by
such tasks is certainly a central and formidable task
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of school mathematics. However, for quantitative reasoning to yield results with
greater power than unadorned number facts, it is essential that such reasoning
be firmly rooted in general patterns of numbers and related computations.

The typical pattern is a relation among two or more varying quantities. For
example,

* As time passes, the depth of water in a tidal pool increases and
decreases in a periodic pattern.

* As bank savings rates increase, the interest earned on a fixed monthly
deposit also increases.

» If a sequence of squares have sides 1, 2, 3, 4, 5, . . ., the areas of those
squares are 1, 4,9, 16, 25,. . ..

* For any rectangle of base b and height 4, the perimeter p is 2b + 2h.

The key mathematical ideas required to reason about such patterns are the
core concepts of elementary algebra: variables, functions, relations, equations,
inequalities, and rates of change. In school mathematics today students spend a
great deal of time working with variables as letter names for unknown numbers
and with equations or inequalities that place conditions on those numbers.
Algebra instruction focuses on formal procedures for transforming symbolic
expressions and solving equations to find the hidden value of the variable.

But those skills are only a small part of the power that algebra provides. In
each of the examples above, and in countless other similar problems, the
conceptual heart of the matter is understanding relations among several
quantities whose values change. The notion of variable that students must
understand is not simply "a letter standing for a number” or "an unknown value
in an equation." It must also include thinking about variables as measurable
quantities that change as the situations in which they occur change.

Variables are not usually significant by themselves, but only in relation to
other variables. In most realistic applications of algebra the fundamental
reasoning task is not to find a value of x that satisfies one particular condition,
but to analyze the relation between x and y "for all x." The most useful algebraic
idea for thinking about relations of this sort is the concept of function.

To develop understanding required for effective application of algebra,
students need to encounter and analyze a wide variety of situations structured
by relations among variables. They need comfortable understanding of
relational phrases such as "y depends on x," "y is a function of x," or "change in
x causes change in y." It is helpful if they
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a Durect Variation b Inverse Variation
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d Converging Variation
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Figure 2. The behavior of fundamental types of relations among variables can
be seen most readily from typical graphs. Graphs (a) and (b) illustrate direct
and inverse relations, (c) and (d) show accelerated and converging variation,
and (e) and (f) illustrate cyclic and stepped variation. Virtually all variation
actually observed is a combination of these basic types.
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develop a repertoire of criteria for characterizing and sorting, by structure,
the relations they encounter. For instance, the report Science for All Americans
of the American Association for the Advancement of Science! suggests that
students should be sensitive to at least the following kinds of relations among
variables (see Figure 2):
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¢ Direct and inverse variation—as one variable increases, another also
increases (or decreases) at a similar rate.

* Accelerated variation—as one variable increases uniformly, a second
increases at an increasing rate.

* Converging variation—as one variable increases without limit, another
approaches some limiting value.

* Cyclical variation—as one variable increases uniformly, the other
increases and decreases in some repeating cycle.

» Stepped variation—as one variable increases, another changes in jumps.

The idea behind learning properties of whole families of relations is typical
of all mathematics: recognition of structural similarities in apparently different
situations allows application of successful reasoning methods to new problems.
With the focus of algebra directed at variables and functions, equations and
inequalities can be used to represent specific conditions:

 [f the height of a projectile is a function of its time in flight with rule A
(f) = - 161 + 881, the equation - 16¢> + 88 = 0 asks when the projectile
is at ground level (see Figure 3).

» If the population of a country (in millions) is a function of time with
rule p(r) = 120(2°93%), the inequality 120(2°%3") < 200 asks when the
population will stay below 200 million (see Figure 4).

Of course, thinking about quantitative relations as functions encourages
reasoning that extends beyond familiar equation-based questions to notions of
rates of change, maxima and minima, and overall trends.

Figure 3. The standard parabolic trajectory becomes visible in a graph of the
height of a projectile as a function of its time in flight.
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Figure 4. The common exponential curve represents the equation that describes
the growth of a country's population.

While these questions are not generally considered central to school
algebra, there can be no doubt that they are important considerations in any
situation that algebraic expressions model.

PROCEDURES

The first step in effective problem solving is to analyze the problem to
identify number concepts that match problem conditions. But that is only part of
the modeling phase of solving problems—the conceptual description of what is
known. Problem solving also requires inference of new information that gives
new insight. In mathematics that inference invariably relies on systematic
techniques for representing and manipulating information and, in quantitative
problems, on procedures for calculating results. Recent analyses of mathematics
pedagogy describe this kind of knowledge as procedural knowledge, in contrast
to the conceptual knowledge required to identify fundamental ideas.!*
Procedural knowledge includes techniques required to represent information
and to execute operations that yield solutions to specific numerical problems.

Numerical Representation

Formal mathematics is a subject that deals with mental constructs that are
abstracted from patterns in objects. But mathematicians have also devoted a
great deal of energy to find ways of representing ideas in concrete form. Their
goal is a system of symbols that convey mathematical information effectively in
unambiguous and compact form.

Representation of ideas serves as an aid to memory and as a medium for
communication. In mathematics the representations become objects of study
themselves—sources of new abstractions that, surprisingly often, serve as
useful models of unanticipated patterns in concrete situations.
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The fundamental idea that enables efficient representation of numbers is
the place value system of numeration. Every whole number has a unique
representation in the standard base 10 numeration system, and rational numbers
can be expressed using decimal fractions or as quotients of whole numbers.
These customary systems are sometimes replaced by place value systems with
different bases, especially in cases where the alternative base has obvious
advantages for a particular purpose.

While the place value system is taken for granted today, in thinking about
mathematics teaching it is worth remembering that the evolution of such a
powerful representation scheme took a very long time. There are signs in the
record of early Mesopotamian mathematics that a base 60 numeration system,
using few number symbols, was understood and used. However, the place value
concept eluded Greek mathematicians in their golden era. It was not until Hindu
mathematicians of the eighth century saw how to use O (zero) as a place holder
that the foundation of place value notation was secured.

The second major task in representing numerical information is to express
relationships that are true for all numbers, for many numbers, or for certain
unknown numbers. The fundamental mathematical concepts involved are
variables, functions, and relations. We now routinely use letters to name
variables and to write rules for functions and relations. But again, it is worth
recalling that the historical development of contemporary algebraic notation is a
long story—testimony to the fact that the use of literal variables with algebraic
syntax such as y = x> - 4(x + 2)! is anything but obvious.

Graphical Representation

While traditional place value numerals and algebraic expressions are the
most important symbolic forms for recording quantitative information, many
other representational forms are in common use. The most popular are those
that identify numbers with points in a geometric line or pairs of numbers with
points in the plane.

For example, conditions on variables such as |x - 2| < 3 are quite common
in algebra and its applications. The solutions can be given in a similar symbolic
form, but it has become almost as common to display the results on a number
line graph (Figure 5). Although this representation is certainly not as compact
or computationally useful as the symbolic version, it conveys quickly a total
picture of the quantitative condition.

The use of visual representation to display a relation among quantitative
variables is especially effective when one variable is a function
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of another. Here's a common example: The position of a piston with 4-inch
stroke in an engine running at 3000 rpm is given by the function y = 2 sin
(100mtt), where ¢ is time measured in seconds. The pattern of piston positions is
well displayed by a function graph (Figure 6). Like the number line graph, this
visual image of a relation between two variables is not particularly effective as
a computational aid, but it does convey the significant periodic pattern in piston
motion in a way that is far less apparent from the symbolic form.

Figure 5. Intervals portrayed on a number line provide an effective picture of
the points that satisfy | x - 2| < 3.

The use of number lines and coordinate graphs is a very familiar
mathematical technique. However, the advent of graphing calculators and
computer software has made a dramatic impact on the ease of producing graphs
and thus on their usefulness. It is now possible to produce graphs quickly and
accurately both from formulas and numerical data drawn from scientific
experiments or from large data bases that computers have made accessible. As a
result, graphic displays are becoming common and increasingly sophisticated.
Thus it is important for mathematics students to become adept at interpreting
graphic representations intelligently and to understand the connections among
symbolic, graphic, and numerical forms of the same ideas.

There has been great optimism about the potential payoff of using these
linked multiple representations as an aid in teaching. However, early
experiments have revealed the fact that the messages provided by graphs are not
grasped by young learners as easily as might be expected, while the effects of
scale and the limited viewing window inherent in computer displays create
surprising perceptual misconceptions.

Figure 6. The motion of a piston is pictured by a sine graph, which conveys
certain kinds of information more effectively than standard algebraic formulas.
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Computer Representation

Cartesian graphs of numerical and algebraic patterns are only the most
familiar strategies in an impressive array of visual representations for
quantitative data. The burgeoning theory of graphs and networks includes many
new techniques for representing situations with interacting quantitative and
spatial structure. In some cases, network diagrams are used to display
quantitative information like the costs of shipping foods or laying utility lines
along various possible paths. In others, numerical representations such as
matrices are used to organize and display geometric information like the
number of possible paths between nodes of a graph. The field of exploratory
data analysis includes many other new and effective techniques for representing
numerical information in ways that convey meaning quickly, concisely, and
effectively. The use of computers to produce those displays is becoming
standard practice in all areas of applied mathematics.

One of the principal reasons for using compact symbolic forms to express
relations among quantitative variables is the marvelous economy of capturing
the full pattern of many numbers or n-tuples with a single symbolic sentence.
However the abstraction required to reduce collections of data to symbolic rules
also makes the information in those data less accessible to many potential users.
Fortunately, computer tools also make display and reasoning with large data
sets easy.

For example, the difference equation y,,; = 1.01y, - 445, where y, = 5000,
describes the balance of a $5000 loan at 12% interest that is being paid back in
monthly payments of $445. For most people the

Payment Interest Principal Balance
$5000.00
$445.00 $50.00 $395.00 $4605.00
$445.00 $46.05 $398.95 $4206.05
$445.00 $42.06 $402.94 $3803.11
$445.00 $38.03 $406.97 $3396.14
$445.00 $33.96 $411.04 $2985.10
$445.00 $29.85 $415.15 $2569.95
$445.00 $25.70 $419.30 $2150.65
$445.00 $21.51 $423.49 $1727.16
$445.00 $17.27 $427.73 $1299.43
$445.00 $12.99 $432.01 $867.43
$445.00 $8.67 $436.33 $431.10
$445.00 $4.31 $440.69 ($9.59)

Figure 7. Spreadsheet representation of the balance of a $5000 loan at 12%
interest that is being paid back in monthly payments of $445.
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actual pattern in the dollar value of that loan and the distribution of payments to
principal and interest is more informatively displayed in a simple spreadsheet
such as that shown in Figure 7.

Of course, construction of this spreadsheet requires some ability to express
relations in the symbolic form that has become standard with spreadsheets. In
this case the formulas repeat with changing indices as follows:

Payment Interest Principal Balance
=5000.00

=445 =0.01*D2 =A3-B3 =D2-C3

=A3 =0.01*D3 = A4-B4 =D3-C4

Computer-generated numerical representations of algebraic expressions are
proving to be a very useful tool in practical problem solving. For instance, to
prepare the previous example, we calculated the appropriate monthly payment
by experimental successive approximation, not by using the more conventional
formula. But these representations also serve as a bridge from the concrete
world of arithmetic reasoning to the more abstract world of algebra and
statements that begin "for all x. . . ." Furthermore, the web of related
representations comes full circle when computer curve-fitting tools are used to
find symbolic rules that fit patterns in collections of numerical data.

Algorithms

The second major aspect of procedural knowledge consists of techniques
commonly referred to as algorithms for using mathematical information to
solve problems. An algorithm is a "precisely-defined sequence of rules telling
how to produce specified output information from given input information in a
finite number of steps."??

Developing student skill in execution of mathematical algorithms has
always dominated school curricula at both elementary and secondary levels.
The most prominent algorithms have been procedures for adding, subtracting,
multiplying, and dividing whole numbers, common fractions, and decimals,
along with the parallel operations on polynomial and rational expressions in
algebra. But those are only the most basic and familiar among a vast library of
routine mathematical tools. Euclid's algorithm, for example, is only one of
several common methods for finding the greatest common divisor of two
integers; the Sieve of Eratosthenes is only one of many algorithms for
identifying prime numbers; the quadratic formula is one of many algorithms for
solving quadratic equations; and there are dozens of algorithms for solving
systems of linear equations and inequalities.
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Design and application of algorithms are obviously at the heart of
mathematics. The power of mathematics comes from the way that its abstract
ideas can be applied to solve problems in contexts with no surface similarities.
The algorithms of arithmetic and algebra that are used in business and
economics are the same as those used in physics and engineering. At the same
time the context-independent nature of mathematical algorithms makes them
easily programmed for computer execution. This fact has major implications for
school curricula: any specific algorithm that is of such fundamental importance
and broad applicability to merit inclusion in elementary or secondary school
will certainly have been programmed and made available in standard calculator
and computer software. Inexpensive calculators can perform most numerical,
symbolic, and graphic algorithms that are taught in school. Thus, current
technology seriously undermines any argument that students must develop
proficiency in executing any particular algorithm because they will need that
skill later in life.

At the same time that learning of specific algorithms has diminished in
importance for school mathematics, it has become far more important for
everyone doing quantitative work to have general understanding of the
algorithmic point of view.>?32° To be an intelligent user of computer-based
algorithms, it is useful to understand such attributes as accuracy, economy, and
robustness as well as fundamental mathematical concepts like induction and
recursion that are too little appreciated in traditional curricula. In short, the
algorithmic aspect of mathematics takes on a very different appearance when
calculators and computers take over routine systematic procedures. This new
condition requires fundamental reconsideration of goals for quantitative study
in school mathematics.

Conceptual and Procedural Knowledge

Calculators and computers have clearly taken over routine aspects of both
representation and manipulation of quantitative information—the two key
components of procedural knowledge. The task of translating these new
conditions into new goals for curricula poses a critical psychological question
concerning the interplay between conceptual and procedural knowledge. Many
mathematics educators worry that extensive use of calculator and computer
tools, with corresponding de-emphasis of training in skills, will undermine
development of conceptual understanding, proficiency in solving problems, and
ability to learn new advanced mathematics.

The interaction of understanding and skill in mathematics has been studied
and debated intensely for many years but with renewed enthusiasm in the past
decade. A recent meta-analysis of over 70 research
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studies'? concluded that wise use of calculators can enhance student conceptual
understanding, problem solving, and attitudes toward mathematics without
apparent harm to acquisition of traditional skills. More limited research in
algebra suggests similar conclusions. While there is a great deal of work in
progress on this issue, the principal reported results are from Demana and
Leitzel 8

However, in almost all of those experiments the calculator or computer
was used to complement instruction in traditional arithmetic and algebraic
skills. What remains an open and very important problem is to determine the
consequences of more daring experiments in which students are taught to rely
more heavily on technological help with arithmetic and symbolic manipulation.
It seems safe to say that the debate over proper consideration of conceptual and
procedural knowledge will continue for some time. It is certainly the central
issue raised by the impact of technology in school mathematics.

Number Sense

While there is considerable debate concerning the risks and benefits of
shifting attention in school mathematics from traditional skills to concepts and
problem solving, there is no disagreement about the importance of developing
student achievement in a variety of informal aspects of quantitative reasoning,
to develop what might be called number sense. Even if machines take over the
bulk of computation, it remains important for users of those machines to plan
correct operations and to interpret results intelligently. Planning calculations
requires sound understanding of the meanings of operations—of the
characteristics of actions that correspond to various arithmetic operations.
Interpretation of results requires judgment about the likelihood that the machine
output is correct or that an error may have been made in data entry, choice of
operations, or machine performance. (Development of number sense is
discussed in detail in the February 1989 issue of The Arithmetic Teacher,
especially in the article by Howden.'%)

There are two fundamental kinds of skill required to test numerical results
for reasonableness. First is a broad knowledge of quantities in the real world: Is
the population of the United States closer to 20 million, 200 million, or 2
billion? Is the speed of an airplane closer to 100, 1000, or 10,000 kilometers per
hour? What are approximate percent rates for a sales tax, a car loan, the tip at a
restaurant, or success of a major league baseball hitter? While this sort of
information isn't part of formal mathematics, it is an invaluable backdrop for
judgment of arithmetic applied to real problems.

The second component of computational number sense is the ability to
make quick order-of-magnitude approximations. As an electronic
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calculator produces an exact answer, it is important for users to check that the
displayed results are "in the right ball park." This means, for instance,
determining by quick rounding and mental arithmetic that 345 + 257 + 1254 is
approximately 1850 or that 85 x 2583 is approximately 200,000. Skillful mental
calculation of this sort is not achieved by extensive training in mental execution
of traditional written algorithms, but in flexible application of place value
understanding and single-digit arithmetic—a very different agenda than the
goals of traditional school arithmetic. Since there has been considerable
attention given to informal arithmetic and computational estimation over the
past decade, there now are clear goals, creative curriculum materials, and
effective teaching suggestions for this important but long-neglected topic.

Symbol Sense

There is almost certainly a comparable informal skill required to deal
effectively with symbolic expressions and algebraic operations—to cultivate
student symbol sense—but ideas and instructional materials in this area are not
as fully developed. A reasonable set of goals for teaching symbol sense would
include at least the following basic themes:

» Ability to scan an algebraic expression to make rough estimates of the
patterns that would emerge in numeric or graphic representation. For
example, given fix) = 50*2%, a student with symbol sense could sketch
the graph of this function and realize that function values will be
positive and monotonically increasing—with small values of f(x) for
negative x and rapidly increasing values for positive x.

* Ability to make informed comparisons of orders of magnitude for
functions with rules of the form n, n2 n3, .. ., and k". This skill, a
bridge between number and symbol sense, plays an important role in
judging the computational complexity of algorithms for mathematical
and information-processing tasks that are at the heart of computer
science.

* Ability to scan a table of function values or a graph or to interpret
verbally stated conditions, to identify the likely form of an algebraic
rule that expresses the appropriate pattern. For example, given the
following table, a student with symbol sense could predict that the rule
for the best-fitting function is likely to be of the form fix ) = mx + b
with m approximately 15 and b about 500:

Sales X 0 10 20 30 40 50
Costs Sfx) 510 675 825 960 1100 1240
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* Ability to inspect algebraic operations and predict the form of the
result or, as in arithmetic estimation, to inspect the result and judge the
likelihood that it has been performed correctly. For instance, a student
should realize almost without thinking that the product of linear and
quadratic polynomials will be a cubic polynomial.

» Ability to determine which of several equivalent forms might be most
appropriate for answering particular questions. For instance, good
symbol sense should allow students to realize that the factored form of
a polynomial readily yields information about its zeroes but makes
very difficult calculation of derivatives or integrals.

Promising work from current projects shows how numerical and graphic
computer tools can be used effectively to build student intuition about algebraic
symbolic forms. Nevertheless, the development of more general symbol sense
remains an important research task on the path to new approaches for
developing conceptual and procedural knowledge of quantity.

NUMBER SYSTEMS

For a great many students mathematics is a vast, loosely connected
collection of facts, procedures, and routine word problems. However, it is
important to remember that the unique power of mathematical concepts depends
on abstract meaning, which lies at the heart of any specific embodiment.
Learning the fundamentals of any branch of mathematics should include
recognition of those deep structural principles that determine the relations
among its concepts and methods. For number systems a rather small collection
of big and powerful ideas determine the structure of each system. When one
steps back from specific details, it becomes clear that a few central principles
govern all algebraic and topological properties of numbers. These principles can
be used to derive all specific facts of various number systems and to guide the
match between formal systems and significant quantitative problems.

In the historical development of number systems, the progression began
with the natural numbers. Extensions over many centuries added fractions, then
negative numbers, and, finally, a rigorous characterization of real numbers.
From a perspective near the end of the twentieth century it is possible to
organize all those structures from the top down:
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* The real number system R is the only complete ordered field.

* The rational number system Q is the smallest subfield of R.

* The integer number system [ is the smallest ring in R that includes the
multiplicative identity.

e The natural number system N is the smallest subset of R that includes
the multiplicative identity and is closed under addition.

In the terse form that is characteristic of formal mathematics, these four
statements contain a great deal of information about structure. They imply that
each number system is a set with two binary operations and a binary order
relation; that the operations are commutative and associative; that multiplication
distributes over addition; that there are two identity elements, one for addition
and the other for multiplication; and that the operations interact with the order
relation in familiar ways.

There are, however, other important properties of the individual number
systems that are not so apparent from such minimalist characterizations. There
are significant differences in the algebraic and topological properties of the
various systems, differences that make each of special interest from both pure
and applied perspectives. Analysis of those differences, in progression from the
simplest to the most subtle, helps develop student insight into the nature of
numbers and number systems. While students should emerge from school
mathematics with rich conceptual and procedural knowledge, it is also
important that they have some sense of the theoretical principles that provide
logical coherence to number systems.

Natural Numbers and Integers

The fundamental additive, multiplicative, and order structures of the
natural numbers and integers are based on several simple but powerful
principles. First is the principle of finite induction:

If M is a set of natural numbers that contains 1, and if M contains the number k
+ 1 whenever it contains the number k, then M contains all the natural numbers.

This property implies that the natural numbers (and their extension to all
integers) form a discrete set, a sequence of equally spaced elements with no
number between any integer k and its successor k + 1. They provide a set of tags
for ordering stages in any process that can be viewed as occurring in a sequence
of discrete steps.

The finite induction principle is used to define concepts with integer
parameters, like x", and to prove propositions that involve all natural
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numbers. For example, to prove that | +3+5+...+(2n-1)= n? for all n, one
depends on the principle of finite induction:

1. Let M be the set of numbers for which the equation is true. Since 1
=12, we know that 1 ¢ M.

2. Now suppose that ke M. Then 1 +3 +5+ ...+ k- 1) =k~ Tt
followsthat 1 +3+54 ...+ Qk- D+ Qk+ D)=k +2k+1=(k
+ 1)% so the equation is also true for k + 1. Hence k + 1 also
belongs to M.

3. It follows from the principle of finite induction that M contains all
the natural numbers, so the formula must be true for all n.

The method of proof by mathematical induction is used throughout
mathematics, providing special power in combinatorial propositions like the
binomial theorem. It has become particularly important as a proof technique in
computer science, where discrete algorithmic processes are the central objects
of study.

While natural numbers and integers share the discrete order structure
implied by the principle of induction, there is one critical difference between
the two systems—the existence of additive inverses for integers: for every
integer a there is an integer -a such that a + -a = 0. This makes the integers into
an additive group, implies that subtraction is defined for all ordered pairs of
integers, and shows that every equation of the form a + x = b has a unique
solution in .

Although the additive structures of N and I are extremely regular and easy
to work with, multiplication and division of natural numbers and integers hold
much more interesting challenges. Since the integers contain no multiplicative
inverses (except the trivial cases of 1 and - 1), division is a restricted operation
in N and /, and many equations of the form ax = b have no integer solutions.
Furthermore, there is no simple pattern suggesting which multiplication
equations (or related divisions) are solvable. The integer 24 is divisible by 2, 3,
4, 6, 8, and 12, but its neighbor 23 has no proper factors and 25 has only one
proper factor. A set of 24 objects can be partitioned into equal subsets in six
different ways, but a set of 23 cannot be partitioned in any such way.

Multiplication and division of integers are governed by two principal
properties. The fundamental theorem of arithmetic guarantees that any positive
integer can be written as a product of prime factors in exactly one way. The
division algorithm guarantees that for any positive integers a and b there are
unique integers g and r such that a = bg + r with 0 < r < b. These two principles
are of enormous practical and theoretical significance in the theory of numbers
and, in more general form, in algebra.
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The first—the prime factorization theorem—is one of many similar results
in mathematics showing how complex expressions can be studied effectively
when they are written as a combination of irreducible factors. These
applications range from the mundane task of finding least common multiples or
greatest common factors to the parallel fundamental theorem of polynomial
algebra which assures that any polynomial with complex coefficients can be
written as a product of linear factors (from which the zeroes can be easily
obtained).

The division algorithm is, of course, basic to the familiar procedure for
long division of natural numbers and decimals as well as to the parallel factor
theorem of polynomial algebra. It provides the essential concept for developing
the arithmetic of congruences: For any integers a and b, a = b (mod m) if and
only if a = mk + b for some k. The finite cyclic groups and fields that arise from
this theory have proven useful in dramatic ways as models for discrete
phenomena, including increasingly important applications in computer science,
in cryptography, and in transmission and storage of business and governmental
information.

Rational Numbers

The smallest number system that includes elements representing each
possible division of integers a/b (for nonzero b) is, of course, the rational
number system Q. Mathematicians call Q a field, a term used to describe other
structures with similar number-like properties. In Q every nonzero element has
a multiplicative inverse, and every linear equation of the form rx + s = ¢ has a
unique solution for rational r, s, and ¢ (for nonzero r). However, this algebraic
power is gained at the expense of simplicity.

The standard ordering of rational numbers makes them a dense set—
between any two rational numbers there is a third rational number. In particular,
there are positive rational numbers as small as one might wish. On the other
hand, for any rational numbers a and b, there is an integer n such that na > b;
this property makes the rational numbers into an Archimedean ordered field.
While the operations and ordering of rational numbers are significantly more
complex than integers, the density and Archimedean properties of Q combine to
lay the groundwork for precision in measurement, guaranteeing that a unit of
any desired refinement can be used to cover a length of any finite extent.

Real Numbers

The natural numbers, integers, and rational numbers provide formal
systems to model the structures of many practical quantitative reasoning tasks.
But unresolved questions raised as long as 2000 years
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ago make it quite clear that the rational numbers are not the last word in number
systems. The proof that there is no rational number whose square is 2 (or 3, or
5, or any other integer that is not a perfect square) reveals an algebraic
incompleteness in the rational number system (see Figure 8). When numbers are
used as measures of geometric figures, the Pythagorean theorem shows that
there are line segments with no rational measures. There are "holes" (although
not very big holes) in a number line that has only rational coordinate points.

Figure 8. The position on a rational number line corresponding to the length of
the hypotenuse of a right triangle with legs of length 1 has a hole, since there is
no rational number equal to /5 .

The rational numbers can be extended in a variety of ways to include
elements that fill some of these holes and that fulfill specific algebraic or
geometric needs. The extension , for
instance, is an ordered field, under a suitable definition of addition,
multiplication, and inverses. However, the only complete ordered field—one
that fills all the holes—is the real number system R. It is an ordered field in
which every nonempty subset that is bounded from above has a least upper
bound in R. A key theorem of number systems, one that establishes a distinctive
role for R, is that any such complete ordered field must be isomorphic to R.

Since the real numbers seem only to fill "infinitesimal" holes on the
rational number line, several other differences between the two number fields
are genuinely surprising. First, while every rational number is the solution of a
simple equation ax = b where a and b are integers, there are transcendental real
numbers (like e and m) that are not solutions of any such polynomial equation.
Furthermore, while the rational numbers can be placed in one-to-one
correspondence with the natural numbers and are thus countably infinite (a
surprising result that was not comfortably understood until early in this
century), this is not true for the real numbers. In fact, the transcendental
numbers alone are more numerous than the algebraic numbers—those that arise
as solutions to rational algebraic equations. While this last result was proven at
least 100 years ago through very clever reasoning with transfinite cardinal
numbers, there are still subtle outstanding questions about the character of
specific real numbers.

The real numbers provide a significant step in the development of
quantitative concepts and methods in another fundamental sense. While the
natural numbers, integers, and rational numbers are each infinite sets
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of numbers, their primary use is to count, order, and compare finite sets of
discrete objects. The real numbers provide the essential mathematical tool to
describe and reason about infinite and infinitesimal processes. They alone
support rigorous development of the concepts of limit and continuity; they
provide the bridge to analysis of motion and change.

Complex Numbers

The extension from rational to real numbers enables solution of many
simple and significant algebraic equations. But it leaves an equally significant
collection of algebraic equations still unsolvable. Simple polynomial equations
like x>+ 1 = 0 or x> + x + 1 = 0 have no real roots. The number system required
to give meaningful solutions to these equations, and to all polynomial equations
in general, is the complex numbers C. The complex numbers constitute the
smallest possible field extension of the real numbers that contains an element i
with square equal to - 1, the required root of x> + 1 = 0. Remarkably, the
extension to deal with this single equation provides solutions to all other
polynomial equations and opens a rich structure of mathematical properties and
applications.

Every complex number can be expressed in the form a + bi, where a and b
are real numbers. Thus the complex numbers are determined by ordered pairs of
real numbers. While the real numbers can be ordered in one-to-one
correspondence with the points of a line, the complex numbers correspond to
points of a two-dimensional plane and are not linearly ordered. This loss of
simple order might seem to promise a much more complicated life in C than in
the real numbers or their subsets. However, it brings along benefits as well. The
correspondence between complex numbers and points in the plane opens a
powerful connection between the arithmetic and algebra of C and the geometry
of shapes and transformations in the plane (see Figure 9).

The complex numbers include some numbers originally described as
"imaginary” by mathematicians who could not admit the possibility of a
negative square. Nevertheless, they have proven useful as models of many very
real physical phenomena, from the flow of alternating

Al | A=-l+d
| S B=4-i

A+Bs 343

Figure 9. Points in the plane correspond to complex numbers, with addition of
vectors in the plane reflecting addition of complex numbers. Multiplication is
more complicated—the magnitudes of the vectors multiply as expected, but the
angles add.
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electrical current to the flow of air over an airplane wing. They also settle a
fundamental algebraic question of pure mathematics: every polynomial of
degree n has exactly n linear factors. Thus every polynomial equation has at
least one and at most n distinct complex roots.

New Number Systems

Our sketch of fundamental principles of number systems covers very
familiar ground. When mathematicians of the late nineteenth century showed
that the real number system is the unique complete ordered field, following
earlier proofs by Gauss and others that the complex number system is
algebraically closed, it seemed that the story of number systems was complete.
While that is, in some sense, an accurate statement, the development of new
number systems is by no means finished.

For example, since their invention in the mid-nineteenth century, the
algebra of matrices has become an invaluable tool for reasoning about complex
numerical data. A matrix is a kind of super-number; within certain families of
matrices, the operations of addition and multiplication have algebraic properties
very similar to those of the real numbers. The most prominent exception is the
fact that matrix multiplication is noncommutative—a fact that has many
important consequences in the theory of linear algebra. Matrices are particularly
useful for describing complex sets of quantitative data such as those that
computers routinely manage.

The application of computing to quantitative reasoning has stimulated
development of mathematical systems in another direction of both practical and
theoretical interest. Despite their seemingly endless memory and instantaneous
speed, computers work not with the familiar number systems such as I, Q, or R,
but in finite approximations of those systems whose faithfulness is limited by
the ability of computer languages to represent numbers with only a finite
number of positional places. These "truncated" models of number systems do
not obey the conventional structural properties of numbers (such as associativity
of addition). Thus it seems important that students extend their study to include
the structural properties of those finite systems that underlie so much of their
actual quantitative work.

The discovery of number-like mathematical systems like matrices that fail
to obey structural properties that our naive intuition tells us are true was a
dramatic step in the development of modern mathematics. Contemporary
algebra originated in an attempt to provide a theory to explain the structural
properties of various number systems. In the last 150 years algebra has
generated a rich array of abstract theories that spring from study of structure
inherent in various operations and
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relations on sets. Mathematicians have shown that generalization of number
systems can provide a stimulating intellectual playground. But they have also
shown that this abstract mathematical realm frequently has impressive practical
applications. Although groups, rings, fields, lattices, boolean algebras, monoids,
and Turing machines were created primarily as abstract possibilities, they are
now used routinely as tools for research on fundamental problems of computing
and information sciences.

During the middle of this century, mathematics was strongly influenced by
interest in exploring generalizations of number systems. In 1973 Garrett
Birkhoff®> wrote that, "by 1960 most younger mathematicians had come to
believe that all mathematics should be developed axiomatically from the
notions of set and function." Furthermore, he and MacLane, "wrote another
*Algebra' which went further in the direction of abstraction, by organizing much
of pure algebra around the central concepts of morphism, category, and
“universality'." Innovative school mathematics programs of the 1960s explored
the possibilities of organizing curricula around similar abstract structural
concepts.

Fashions change, in mathematics as well as in design of human artifacts.
Today the abstract axiomatic point of view seems much less promising as a
guide to either mathematics research or education. Nonetheless, there are
central principles that lie at the heart of number systems and algebra. They
provide coherent organization for what can be an impenetrable maze of specific
facts and techniques, and this organization is as useful for students as for
practicing mathematicians. Thus it seems wise for curriculum planners to
identify and build from such principles as they plan school curricula.

APPLICATIONS

School mathematics must develop in students an understanding of basic
principles, proficiency in techniques, and facility in reasoning. But the ultimate
test of school mathematics is whether it enables students to apply their
knowledge to solve important quantitative problems. The ability to solve
problems is not only the most important goal of school mathematics but also the
most difficult educational task.

The term "word problem" strikes terror in the hearts of mathematics
students of all ages. The key first step in effective work on problems is to
identify in problem situations concepts that are structurally similar to those of
number systems. Traditional approaches to this task can be sorted into two
broad classes. The pragmatic approach helps students cope with a variety of
classical (and nearly routine) problem types. The aim is to provide students with
strategic guidelines for
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each problem type—a special chart for organizing information about time/rate/
distance problems, a dictionary for translating key quantitative words into
symbolic expressions, and so on. The more ambitious approach attempts to train
students to use generic high-level strategies (or heuristics) that apply to
problems in many different areas.

It seems fair to say that neither approach is demonstrably effective in
providing students with confident and transferable modeling and problem-
solving skills. The (unfortunately) popular "key words" approach fails because
the flexible, versatile, and often ambiguous structure of ordinary language
cannot be translated into mathematical statements by any dependable algorithm.
At the other extreme, while students can learn generic high-level heuristics
suggested by Pdlya and others, it has proven very difficult to develop their
facility in the kind of metacognitive monitoring of thought that is required to
deploy those heuristics effectively in specific situations. Recent work to
develop a metacognitive perspective on problem-solving strategies shows
promising but not yet definitive results.”

Modeling

While the search continues for effective new strategies to teach problem
solving, there is an equally significant change emerging in thinking about the
nature of quantitative problems themselves. In many contemporary applications
of mathematics one thinks less about solving specific well-defined problems
and concentrates instead on constructing and analyzing mathematical models of
the problem setting. The classical quantitative problems of school mathematics
usually include numerical information and a single question that can be
answered by a numerical calculation or by solving an equation. Outside school,
problem situations generally have missing or extraneous information as well as
many ill-defined questions.

In a mathematical modeling approach, the first step is to identify relevant
variables. The next is to describe, in suitable formal language, relations that
represent cause-and-effect connections among those variables. Specific
questions can then be posed in terms of input or output values or global
properties of the modeling relations. Finally, computer tools can be used to
answer those questions by numerical, graphic, or symbol methods.

Measurement

The most common sources of numerical variables are measurements. Thus
the theory and technique of measurement play important roles in
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quantitative literacy. Like the arithmetic of number systems, measurement feels
like a familiar and well-known facet of school mathematics—hardly in need of
new thinking. However, this critical interface between mathematics and its
applications is not a remarkably successful topic in the curriculum.

The prototypical measurement tasks in school mathematics are finding
length, area, and volume of geometric figures. It seems fair to say that for most
students learning about measurement includes brief exposure to a few standard
units for length and then practice in use of formulas for perimeter, area, and
volume based on those length units. Area is [length x width] or [(1/2) x base x
height] or [r x r?], volume is [length x width x height] or [r x r* x h], and so
on. Most exercises become arithmetic practice in the formula of the lesson at
hand.

Students exposed to this formal approach to measurement generally form
limited and very rigid conceptions of length, area, and volume. Confusion of
area and perimeter is a depressingly common error on student assessments. The
common "rule" followed by unthinking students, regardless of any wording in
the problem statement, is that if there are two numbers attached to sides of a
pictured rectangle one multiplies them; if there are numbers on each side of a
rectangle, one adds them.

The emphasis on formulas also leaves students ill prepared to deal
intelligently with the approximate nature of real measurements, the cumulative
effects of errors in combinations of measurements, and the generalization to
irregular shapes that occur in so many practical applications or to the curves and
surfaces that are fundamental in calculus. Furthermore, few students realize or
take advantage of structural similarities that underlie most applications of
measurement.

At the heart of any measurement process is a mapping that assigns
numbers to objects. The mapping assigns measure 1 to some designated unit.
Other objects are then covered by copies of the unit. The choice of unit element
is arbitrary, but once the choice is made, it provides the standard by which all
others are measured. Thus every measurement consists of a unit and a number—
the number of whole and partial copies of the unit needed to exactly cover the
measured object. The mathematics student who understands this principle—as a
general property of many important measurements—has acquired productive
insight into the connection between real situations and quantitative models.

The unit and covering properties of measurement explain quite clearly just
what is being indicated by any particular measurement; moreover, the
attachment of units to measurements can be exploited to guide formal reasoning
about scientific principles. In many sciences quantitative reasoning is guided by
a well-defined algebra of quantities commonly
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called "dimensional analysis." In this method each arithmetic operation is
performed not only on numbers but on the units as well. If the end result is a
number whose units are appropriate for the problem, the dimensional analysis
lends support to the appropriateness of the operations that have been performed.
While this attention to units as well as numbers in measurement is not as
common in mathematics as in science, it has strong supporters among those
who have been concerned with helping students make the connection between
formal mathematics and its applications.'8-2131

The theory and practice of measuring quantitative concepts in the physical
world have a long history in mathematics and its teaching. However, just as
many classical mathematical methods have been generalized and applied in new
domains, measurement has been extended to important uses throughout the
social sciences. While the basic idea is the same—assigning numbers to objects
or events—these new measures often obey structural properties that are very
different from the measures of length, area, and volume.

Political scientists and sociologists have designed a variety of measures of
influence or power in social situations. Economists have devised measures of
costs and benefits to quantify options in decision making. Psychologists and
educators use a vast array of measures to describe aptitudes and achievements
of individuals. Statisticians measure probable cause-and-effect relations among
many different kinds of stochastic variables. In each case, numbers, operations,
and relations are used to model significant structural properties of situations.
Sometimes classical principles and concepts are directly applicable. But it is
increasingly common that effective quantitative reasoning in the social and
human sciences requires understanding of aspects of number that permit
flexible construction of new responses to new situations.

GOALS

Without question the most important goal of school mathematics is to
develop students' ability to reason intelligently with quantitative information.
The mathematical concepts, techniques, and principles that model quantitative
aspects of experience are provided by structures of number systems, algebra,
and measurement that have long been the heart of school curricula. However,
the emergence of electronic calculators and computers as powerful tools for
representing and manipulating quantitative information has challenged
traditional priorities for instruction in those subjects. It no longer makes sense
to devote large portions of the school curriculum to training students in
arithmetic or algebraic algorithms that can be performed quickly and accurately
by
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low-cost and convenient calculators. The availability of powerful aids to
computation has also led to a dramatic increase in the range of situations to
which quantitative reasoning is being applied. Thus school mathematics must
prepare students to use their knowledge of number, algebra, and measurement
in flexible and creative ways—not only in routine, predictable calculations.

To prepare students for the challenge of quantitative reasoning in the
modern world, school mathematics must develop students' abilities to

* Understand fundamental properties of number systems and the match
between those mathematical systems and real-life situations in which
they are embodied.

» Describe and interpret quantitative structures using symbolic, verbal,
and graphic representations.

* Perform both exact and approximate calculations involving arithmetic
and algebraic ideas by various appropriate methods—mental
operations, paper-and-pencil techniques, calculators, or computers.

* Apply numerical and algebraic expertise to solve both routine and
original quantitative problems.

The school experience likely to develop these general skills and
understandings must be rich in opportunities to explore interesting and
important quantitative situations as well as in the structures that illuminate
mathematical ideas embodied in specific settings.
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Uncertainty

David S. Moore

INTRODUCTION

"Uncertainty" is intended to suggest two related topics: data and chance.
Neither is a topic within mathematics; they are both, however, phenomena that
are the subject of mathematical study. Roughly speaking, statistics and
probability are the mathematical fields that deal with data and chance,
respectively.

Recent recommendations concerning school curricula are unanimous in
suggesting that statistics and probability should occupy a much more prominent
place than has been the case in the past.'>!* However, because of the emphasis
that these recommendations place on data analysis, it is easy to view statistics in
particular as a collection of specific skills (or even as a bag of tricks). The task
of this essay is not to urge attention to data and chance in the school curriculum—
they are already attracting attention—but to develop this strand of mathematical
ideas in a way that makes clear the overall themes and strategies within which
individual topics find their natural place.

Any discussion that is intended to influence teaching should reflect the
experience of teachers and students. Suggestions for curriculum reform
detached from that experience offer utopian hopes that are disappointed in
practice. Statistics in the schools is not utopian; new material presently being
tested is practically useful and aids rather than displaces development of
number concepts and skills. Nonetheless, it is easy in our enthusiasm to
overlook practical problems and to urge the teaching
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of subject matter that is unrealistic in quantity or level. It is important to call
attention to the difficulties and potential false steps, as well as to the
advantages, in using data and chance in the teaching of mathematics. In writing
this essay I have tried to err in the practical rather than the utopian direction.

Data

Interest in teaching statistics is certainly due in part to recognition of the
place that working with data plays in everyday life and in many occupations. It
is increasingly common to teach mathematical topics that are of direct use,
rather than to select topics simply because they lead to later topics in
mathematics. Statistics is such a topic.

News reports present national economic and social statistics, opinion polls,
medical data from both epidemiological studies and clinical trials, and business
and financial data. Many citizens must deal with data in more detail on the job.
Farmers and agribusiness use crop forecasts and the results of agricultural field
trials. Engineers are concerned with data on product performance, quality, and
reliability. Manufacturing workers are increasingly asked to record and act on
data for process control. The health sciences struggle with data on cost and
effectiveness as well as with data from medical research. Business runs on data
of every variety: costs, profits, sales projections, market research, and much
more. There are compelling practical reasons to learn statistics.

As these examples suggest, data are not merely numbers, but numbers with
a context. The number 10.3 in the absence of a context carries no information;
that the birth weight of a baby is 10.3 pounds enables us to comment on the
healthy size of the child. That is, data engage our knowledge of their context so
that we can understand and interpret, rather than simply carry out arithmetical
operations.

There are, therefore, strong pedagogical as well as practical reasons to
teach statistics in the schools. Statistics combines computational activity in a
meaningful setting with the exercise of judgment in choosing methods and
interpreting results. Statistics in the early grades is taught not primarily for its
own sake, but because it is an effective way to develop quantitative
understanding and to apply arithmetic and graphing to problem solving.

Teachers who understand that data are numbers in a context will always
provide an appropriate context when posing problems for students. Calculating
the mean of five numbers is an exercise in arithmetic, not statistics. Calculating
the mean price of a popular music tape at five retail outlets is statistics,
particularly when combined with a look at the spread in the prices and a
comparison with the price of other types of music.
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It is essential that the practical and pedagogical advantages of working
with data not succumb to an exclusive emphasis on teaching operations.
Teachers and developers of curriculum material must exercise imagination in
providing data that are meaningful to students. In the upper grades, data from
other academic subjects (such as science) can be used, although students rarely
connect such data with their everyday life. In the lower grades, data produced
by the students themselves are best. Students can produce data in many ways,
such as questioning the class ("How many children live in your house?") or by
asking each student to measure, count, or estimate some quantity.

The additional effort required to provide data rather than simply numbers
should be taken into account when planning instruction. Good data are not just
an attractive feature for motivating students; they are essential to the nature of
statistics. Yet it is important that the effort required to produce data not
overshadow the mathematical ideas taught and learned.

In particular, attempts to produce good data on important issues outside
school are always much more difficult than is at first apparent. Unpleasant
experiences with time-consuming and confusing attempts to produce data may
well discourage teachers from teaching statistics. The difficulties associated
with data production activities form the first of several potential barriers to
effective reform. Curriculum materials must provide both interesting data and
practical, tested suggestions for production of data by students. Over time,
teachers can collect and share data sets that pertain to their community and
school. Computers are an ideal means of storing and sharing data.

Chance

Some phenomena have predictable outcomes: drop a coin from a known
height and the time it takes to fall can be predicted from basic physics. Except
for a rather small measurement error, the outcome is certain. If we toss the coin,
on the other hand, we cannot predict whether it will show heads or tails. The
outcome is uncertain. Yet coin tossing is not haphazard. If we make a large
number of tosses, the proportion of heads will be very close to one-half. This
long-term regularity is not just a theoretical construct but an observed fact:

¢ The French naturalist Buffon (1707-1788) tossed a coin 4040 times.
Result: 2048 heads, a proportion of 2048/4040 = 0.5069 of heads.

* Around 1900 the English statistician Karl Pearson heroically tossed a
coin 24,000 times. Result: 12,012 heads, a proportion of 0.5005.
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* The English mathematician John Kerrich, while imprisoned by the
Germans during World War II, tossed a coin 10,000 times. Result:
5067 heads, a proportion of 0.5067.

Phenomena having uncertain individual outcomes but a regular pattern of
outcomes in many repetitions are called random. "Random" is not a synonym
for "haphazard" but a description of a kind of order different from the
deterministic one that is popularly associated with science and mathematics.
Probability is the branch of mathematics that describes randomness.

The experience of children in and out of school provides less contact with
randomness than with data. For example, students do not meet areas of science
in which random behavior appears (such as genetics and quantum theory) until
secondary school and then only if they elect solid science courses. Uncertainty
is of course a pervasive aspect of all human experience; it is the order in
uncertainty that is hard to observe in casual settings. Even state lotteries,
although familiar to many students, give little experience with the orderly
aspect of randomness because of their emphasis on extremely unlikely large
prizes. These well-publicized games of chance use actual physical
randomization but appear to make people rich haphazardly.

Psychologists have shown that our intuition of chance profoundly
contradicts the laws of probability that describe actual random behavior. This
incorrect understanding is very difficult to correct by formal instruction.
Attempts to teach probability and statistical inference without adequate intuitive
preparation are a second major pitfall in introducing data and chance into school
curricula.

Even at the college level many students fail to understand probability and
inference because of misconceptions that are not removed by study of formal
rules. The conflict between probability theory and students' view of the world is
due at least in part to students' limited contact with randomness. We must
therefore prepare the way for the study of chance by providing experience with
random behavior early in the mathematics curriculum. Fortunately, the study of
data provides a natural setting for such experience. The priority of data analysis
over formal probability and inference is an important principle for instruction in
uncertainty.

Artificial chance devices (coins, dice, spinners) can be used to produce
data in the classroom with the intent of applying data analysis skills to discover
the orderly nature of these devices. Uncertainty also appears in data from
sources other than chance devices. Repeated measurements of the same quantity
(made by several students, for example) yield varying results. Natural variation
appears in the heights, reading scores, or incomes of a group of people. It is
perhaps surprising that
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the patterns of variation in careful measurements or in data on many individuals
can be described by the same mathematics that describes the outcomes of
chance devices.

Experience with variation in data is a first step toward recognizing the
connection between statistics and probability. At a later stage the role of
deliberate randomization in statistical designs for producing data strengthens
this connection. Finally, formal statistical inference uses the language and facts
of probability to express the confidence we can have in conclusions drawn from
data.

Although the usefulness in everyday life of an understanding of
randomness is less obvious than the necessity of dealing with data, practical
arguments for teaching about chance are not absent. One goal of instruction
about probability is to help students understand that chance variation rather than
deterministic causation explains many aspects of the world.

Suppose that a basketball player over a long season has made 70% of her free
throws. At the end of a tournament game she attempts five free throws and
makes only two. "Nervousness," say the fans. But this causal explanation need
not be correct. A player having a probability of 0.7 of making each shot has a
probability of about 0.16 of missing three or more of five shots. Such a
performance can easily be simply chance variation.

Some understanding of probability enables us to consider the role of
chance rather than seek a specific cause, oftentimes spurious, for every
occurrence.

Calculators and Computers

While the advent of fast, easily accessible computing has had an impact on
mathematics as a whole, it has revolutionized the practice of statistics. An
obvious effect of the revolution is that more complex analyses on larger sets of
data are now easy. But the computing revolution has also brought about
changes in the nature of statistical practice. In the past statisticians conducted
straightforward but computationally tedious analyses based on a specific
mathematical model in order to draw conclusions from data. Instruction in
statistics showed a corresponding emphasis on learning to carry out lengthy
calculations.

Now the paradigm statistical analysis is a dialogue between model and
data. The data are allowed to criticize or even falsify the original model.
Diagnostic methods to aid this process are a major field of research in statistics.
All are computationally intensive, and the most widely adopted make heavy use
of graphic display. In addition,
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freedom from the limits once imposed by hand calculation has led to new
methods for inference from even quite small data sets.? This changing nature of
statistics is readily reflected in instructional styles, especially in increased
emphasis on graphical methods and informal data analysis.

The influence of computers has led to some soul searching among
mathematicians, some of whom question the nature of a proof based on a
computer search of possible cases too numerous for human scrutiny. At a more
elementary level, both teachers and parents ask whether early use of calculators
will impede understanding of numbers and arithmetic operations. Statisticians,
on the other hand, have welcomed calculators and computers as a liberating
force. Calculating sums of squares by hand does not increase understanding; it
merely numbs the mind. In these circumstances it is natural for a statistician to
urge the use of calculators and computers in instruction about data at all levels.

College teaching of statistics already makes universal use of calculators
and wide use of statistical software on computers. (There is, of course, a
continuum rather than a disjunction between calculators and computers as
technology continues its advance.) Here is a typical exercise from basic
statistics, reconsidered in the light of easy computing.

Figure 1 presents a scatterplot of data on the age at which each of a group of
children spoke their first word and their later scores on a test of mental ability.
Does age at first word help us predict the later test score?

Once upon a time a student would be asked to plot the data and then
calculate the least squares regression line (the solid line in Figure 1) together
with the correlation coefficient r = -0.640. Perhaps the plot would be omitted to
save time. Most students would require at least 15 minutes for this exercise with
a basic calculator. Only a sadist would ask much more of them.

But it is apparent that the data include two outliers, labeled as cases 18 and
19 in the plot. How do these cases influence the regression analysis? An
interactive software package of the kind that is widely available on all varieties
of computers provides immediate answers, which can be visually displayed if
the computer has graphics capabilities. Case 19, although far from the
regression line, does not have a large influence on the position of the line or the
value of the correlation r. Case 18, on the other hand, is highly influential.
Removing this point moves the regression line to the dashed line in the figure
and reduces the correlation to r = -0.335, about half its original value. Thus the
evidence that age at first word predicts later ability scores is much weaker if
case 18 is
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dropped. (These data are discussed in detail in Examples 3.10 and 3.14 of
Moore;'3 most of the figures in this essay are drawn from that text.)
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Figure 1. Data on the age at which each of 21 children first spoke (horizontal
scale) and their Gesell Adaptive Score, the result of an aptitude test taken at a
later age. Case 18 is particularly influential in the sense that deleting this point
substantially moves the regression line and changes the value of numerical
measures such as the correlation.

Automating the calculations preserves our energy for a discussion of the
data. It is natural for the discussion to take the form of group problem solving:
"Is anything unusual? Outlying points. How important are they? Let's try doing
the analysis again without them." We are then encouraged to seek additional
information about the context of the data—to ask, for example, if the child of
case 18 is so slow to begin talking as to be out of place in a study of normal
child development. The example also leads us to ask what makes an observation
influential, a question that leads to new and important subject matter in statistics.

Automated calculation allows students to concentrate on other aspects of
problem solving: planning an appropriate analysis, interpreting the results in
their context, and asking new mathematical questions suggested by an exercise.
But it is also true that automated calculation can hide the nature of the work that
is carried out and impede judgment about whether the work was appropriate to
this specific problem. Too often, students believe that computers simply inform
us about the truth, as in the Star Wars movies.

In a classroom exercise on sampling,'® students were asked to record the
colors of a large sample of M&M candies and to compare the
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results with computer-produced samples from a uniform distribution of the
same colors. The distribution of colors in the candies was far from uniform. The
purpose of the exercise was to demonstrate from the comparison that the candy
colors were not, in fact, uniformly distributed. Yet ". . . some students simply
believed that the computer model was correct because it was on the computer,
even though they had entered the population model themselves."

Overoptimism about the effectiveness of computers is a major potential
pitfall in teaching statistics, as is insufficient planning to integrate calculators
and computers into the curriculum. Graduated use of calculators and computers
is essential if students are to gain their advantages without coming to believe in
a "magic box."

Basic arithmetic skills are needed for mental arithmetic and estimation,
which are important in checking automated calculations. Four-function
calculators preserve control over the order of operations, which must be
requested one by one, while automating only the algorithms. A child must
understand, for example, the distinction between divisor and dividend in order
to use a calculator for long division. A child must know that one finds a mean
by adding the observations and dividing by their number in order to compute X
with a basic calculator. Children can therefore begin to use calculators in their
study of data as soon as the operations are understood. Later, a calculator that
will compute the sample mean and standard deviation directly from keyed-in
data can be used to bypass routine algorithms already mastered.

At a more advanced level, some histograms should be made by hand
before turning to attractive software that chooses groups and creates histograms
directly from the raw data. Perhaps most importantly, experience with physical
chance devices and physical simulations such as drawing colored beads from a
box should precede computer simulations. "Microworlds" need have no
connection with reality, yet students tend to believe that the computer presents
reality. A carefully graduated transition from physical to digital is very
important. The practice of graduated use is easiest when calculators and
computers are part of the normal classroom environment to be used as needed,
not reserved for special projects or upper grades.

From Data to Inference

There are several organizing principles that help us see the mathematical
study of data and chance as a coherent whole. One such principle is the
progression of ideas from data analysis to data production to probability to
inference. The discussion in this essay is organized in these same stages:
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» Data analysis, which involves organizing, describing, and summarizing
data.

* Producing data, usually to answer specific questions about some larger
population.

* Probability, the mathematical description of randomness.

* Inference, the drawing of conclusions from data.

This progression of topics represents both the logical development of the
field and the level of difficulty of the concepts. It therefore gives the general
order in which statistical topics should appear in the school curriculum. Of
course, the latter three headings will appear informally from the beginning in
the context of data analysis. Experience in producing data—in particular,
experience with chance outcomes—can begin in the earliest grades. Similarly,
informal conclusions based on data should be encouraged from an early stage.

The main drawback to this outline is that it does not emphasize that
probability is important in its own right, not merely as a part of statistics. Both
the concept of probability and basic mathematical facts about probability can be
introduced in elementary school as soon as fractions are understood. There is,
however, a natural place for probability in the progression of statistical ideas.
Statistical designs for producing data are characterized by the deliberate use of
chance in random sampling and randomized comparative experiments. Here is
an opportunity to provide more experience with randomness and to advance to a
study of random variation in numerical summaries (such as the mean of several
observations). Both physical random selection and simulation can be used.

On the other hand, formal statistical inference requires some understanding
of probability. Therefore it makes sense that the section on probability be
between those on producing data and inference. Because of the great conceptual
difficulties that students encounter in probability and in probability-based
inference, formal mathematical treatment of these subjects should probably be
an elective rather than a core course in secondary school.

DATA ANALYSIS

Data analysis is descriptive statistics reborn, with new methods, greater
emphasis on graphics, and a consistent philosophy due to John Tukey.
(Volumes 3 and 4 of Tukey's Collected Works contain his writings in this area.®
A reviewer recommends paper 12 in Volume 4 as a good starting point.) The
essence of data analysis is to "let the
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data speak" by looking for patterns in data without at first considering whether
the data are representative of some larger universe.

Inspection of data often uncovers unexpected features. If the data were
produced to answer a specific question—this is the setting in which such
traditional methods as confidence intervals and significance tests are best justified
—the unusual features may lead us to reconsider the analysis we had planned.
Careful data analysis therefore precedes formal inference in good statistical
practice.

In other cases we do not have specific questions in mind and want to allow
the data to suggest conclusions that we can seek to confirm by further study.
We then speak of "exploratory data analysis," on the analogy of an explorer
entering unknown lands.

The best-known contributions of data analysis are new methods for
displaying data, such as stemplots and boxplots (or stem-and-leaf plots and box-
and-whisker plots if you prefer longer terms). From these examples it is easy to
see data analysis as a collection of clever tools and miss the organizing
principles. Both analyses of complex data sets and the order of instruction about
data can usefully be guided by three simple principles:

1. Move from simple to complex, from examining a single variable to
relations between two variables and connections among many
variables.

2. When examining data, look first for an overall pattern and then for
marked deviations from that pattern.

3. Move from graphic display to numerical measures of specific
aspects of the data to compact mathematical models for the overall
pattern.

Displaying Data

The first and third principles suggest that learning about data starts with
displaying the distribution of a single variable. Most such data are either counts—
that is how qualitative variables such as color become numerical—or
measurements with units. Specific methods for data display can advance in
parallel with the development of early quantitative concepts. "How many of
each color in a bag of M&Ms?" can be determined by counting and displayed
with stacks of colored blocks.

Later a stemplot of two-digit numbers can reinforce the distinction
between the 10's and the 1's place in whole numbers. A stemplot of two-digit
data lists each 10's digit as a "stem" and records the observations by placing
their 1's digits as "leaves" on the appropriate stem. Here, for example, is a
stemplot of the number of home runs Babe Ruth hit in each of his years with the
Yankees.
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Still later we come to histograms. To construct histograms of data with
more than a few values requires an understanding of "betweenness" and the
ability to group numbers, as well as skill in making and using scales on graphs.

Choice among the available variations on stemplots and histograms
requires more judgment as the numbers making up the data become less simple.
Stemplots of numbers with several digits often require rounding or truncation,
for example. Grouping numbers with several decimal places into classes for a
histogram requires a clear understanding of order for decimal numbers. Careful
planning is important to avoid inadvertently presenting students with tasks that
go beyond their number skills. But it is also clear that data analysis in the
elementary grades can reinforce important concepts and skills from the existing
mathematics curriculum by applying them in interesting settings.

When we have constructed a display, we must interpret it and
communicate our understanding to others. Children are not naturally able to
"read" data any more than they are born able to read words. They must be
taught both the strategy of looking at data and specific features to be aware of.
The strategy is expressed in the second principle: look for pattern, then for
deviations. The specific features change as we advance through the stages
mentioned in the first principle. An example will illustrate the process in the
case of single-variable data.

In 1961 Yankee outfielder Roger Maris broke Babe Ruth's record of 60 home
runs in a single season. Here is a back-to-back comparison of yearly home runs
hit by Ruth (on the left) and by Maris during their years with the Yankees:

RUTH MARIS
0 8
1 346

52 2 368

54 3 39

9766611 4

944 5

0 6 1

The overall shape of Ruth's distribution is roughly symmetric. The center
is at about 46 home runs, in the sense that he hit more than 46
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half the time and fewer half the time. There are no strong deviations from the
overall pattern. In particular, Ruth's famous 60 home runs in 1927 do not stand
out from the other values; it is Babe's best effort but not unusual in the context
of his career.

In contrast, Maris's record of 61 homers in 1961 is an outlier that falls
clearly outside his overall pattern. That overall pattern (excluding the outlier) is
again roughly symmetric and is centered at about 23. The different locations of
the two distributions show Ruth's general superiority as a home-run hitter.

To see the overall pattern of the distribution of a single variable, we learn
to look for symmetry or skewness, for single or multiple peaks, for the center
and the degree of spread about the center. Important deviations from a regular
pattern include gaps and outliers. Notice that while constructing the display is
an operation to be learned, interpretation requires judgment.

No distribution of real data has the perfect mirror symmetry of some
mathematical shapes. Not all distributions are well described as either
symmetric or skewed. Too much emphasis on classifying what we see will
frustrate both teachers and students. Learn to observe marked features, not to
debate unclear features. Note also that looking at data naturally leads to
attempts to interpret what we see, as when we noticed that Ruth's 60 was not an
unusual performance for him, while Maris's 61 was an outstanding achievement
far beyond his usual level.

Interpreting the overall shape of a distribution is an important part of
learning to look at data. The histogram in Figure 2 displays student-collected
data on the lengths of words in Popular Science magazine. The
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Figure 2. Student-collected data on the length of words in Popular Science
magazine reveal a skewed distribution since shorter words are more common
than longer ones.
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distribution is right skewed because there are many two- to five-letter words
and fewer long words. (The usual statistical terminology takes the direction of
the skewness to be the direction of the longer tail, not the direction in which
most observations are concentrated.)
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Figure 3. Data on the mean verbal SAT score by state reveal a double peak that
reflects two different test-taking traditions: in some states most college-bound
students take the SAT, whereas in other states only a few do—since the
majority take the ACT exam.

The histogram in Figure 3 shows the mean score by state on the verbal part
of the Scholastic Aptitude Test (SAT). This distribution is double peaked. The
peak near 425 represents states in which most college-bound students take the
SAT; the higher-valued peak represents states in which most students take the
American College Testing (ACT) examination and only students applying to
selective colleges take the SAT.

Numerical Description

Already in examining the Ruth and Maris home-run data we saw that
calculation can help us describe data. By simple counting ("half more and half
less") we can give numbers that make more exact the difference in centers that
we see in the stemplots. The natural progression of mathematical tools is
expressed in the third organizing principle: graphics to numerical measures to
mathematical models.

In the case of the distribution of values of a single variable, the basic
aspects to be described numerically are the center (or location ) and the spread
(or dispersion) of the distribution. (The older term "central tendency," which is
both longer and less clear than "center" or "location," is rarely used by
statisticians and should be abandoned.) There are two common sets of
descriptive measures for location and spread: the median with the quartiles (or
perhaps other percentiles) and the mean with
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the standard deviation. Percentiles require only counting and an understanding
of simple fractions (1/4, 1/2, 3/4 for median and quartiles). The mean is the
arithmetic average. So the mean, median, quartiles, and smallest and largest
values can be introduced as students develop basic arithmetic skills. These
simple measures form a helpful descriptive vocabulary.

Experience with the connection between the shape of displayed data and
numerical measures strengthens number sense. Although both the displays and
the measures seem elementary, the amount of mathematical understanding
required to use them effectively (as opposed to simply calculating the measures)
should not be underestimated. In one field test of new teaching material, for
example, neither students nor the teacher could believe that adding observations
to the right end of a particular distribution with many tied observations in the
center left the median unchanged.!® Hands-on experience with many sets of
data, including attempts to estimate measures by looking at the display and
discussing results, helps students construct their own understanding of such
apparently simple operations as counting halfway up the ordered list (the
median) and averaging all the values (the mean).

Numerical description of a distribution by the median, quartiles, and
extreme observations leads to a new graphic display, the boxplot. An example
shows how useful this device can be. U.S. Department of Agriculture
regulations group hot dogs into three types: beef, meat, and poultry. Do these
types differ in the number of calories they contain? In Figure 4 three boxplots
display the distribution of calories per hot dog
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Figure 4. Three boxplots display visually the median, quartiles, and extremes
of calories provided by various brands of hot dogs belonging to three standard
types: beef, meat, poultry. One can easily see that poultry hot dogs as a group
contain fewer calories per hot dog.
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among brands of the three types. The box ends mark the quartiles, the line
within the box is the median, and the whiskers extend to the smallest and largest
individual observations. We see that beef and meat hot dogs are similar but that
poultry hot dogs as a group show considerably fewer calories per hot dog.

Mathematical Models

In this brief discussion of single-variable data, we have not yet mentioned
either the standard deviation or the final stage in the progression from graphical
display to numerical description to mathematical model. The standard deviation
has several disadvantages for data description. It is unpleasant to calculate with
a basic calculator, is very sensitive to a few extreme values, and is difficult to
motivate clearly. (The mean—or median—of the absolute deviations of the
observations from their mean is preferable on all three counts.)

Yet the standard deviation is very important in statistics, mainly because it
is the natural measure of spread for normal distributions. Normal curves provide
an example of a compact mathematical description of the overall pattern of a
distribution of data. They are mathematical idealizations that do not catch the
irregularity of real data or deviations such as outliers. Normal curves are, for
example, perfectly symmetric.

Most curriculum materials intended for general students stop short of
presenting normal distributions. This is true, for example, of the Quantitative
Literacy series”!%!1.15 developed jointly by the American Statistical Association
and the National Council of Teachers of Mathematics. One reason may be the
traditional view of normal and other distributions as probability distributions, to
be developed only after considerable study of probability. But it is not
necessary to introduce formal probability to suggest that the heights of a large
group of people of similar age and sex are roughly normal or that the stopping
point of a spinner is roughly uniform over a circle.

Figure 5 shows a histogram of the Iowa Test vocabulary scores of all 947
seventh-grade students in Gary, Indiana, with the normal curve that
approximately describes the distribution of scores. It shows quite clearly how a
normal curve provides an idealized mathematical model for certain distributions
of data.

Moving from particular observations to an idealized description of "all
observations" is a substantial abstraction. The use of a mathematical model such
as a normal or uniform distribution to formulate this abstraction is a substantial
step toward understanding the power of mathematics. Computer simulation is
quite helpful at this point.
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Figure 5. A histogram of vocabulary scores of nearly 1000 seventh-grade
students shows close adherence to the idealized distribution of the bell-shaped
normal curve.

Students can formulate a "population model" on the basis of their
experience with data, enter their model into the computer, and simulate
observations from the population. Comparing simulated data to the model
provides more experience with probability and randomness. The basic
properties of normal curves, the idea of standardizing observations to the scale
of standard deviation units about the mean, and the use of the standard normal
table to calculate relative frequencies can be developed in the setting of models
for regular patterns in data.

Although distributions in the mathematical sense complete the progression
of descriptive methods for single-variable data, they must appear rather late
even when it is understood that distributions can appear before a full
introduction to probability. Meanwhile, experience with several-variable data
would have been advancing as students develop the necessary mathematical
concepts and skills. The beginning study of two-variable data comes later than
examination of a single variable, in accordance with our first principle, but
usable mathematical models are more accessible in the two-variable case.

The basic graph for two-variable data is the scatterplot, which provides a
setting for understanding coordinates in the plane. Clusters (female and male
students?) and outliers in a scatterplot provoke discussion. The simplest overall
pattern is a linear trend. The mathematical model that gives a simple description
of a linear pattern is a straight line with its equation. Numerical measures
include measures
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of the center and spread of each variable separately, the slope of a fitted line as
a description of linear relationship, and perhaps the correlation coefficient as a
measure of the strength of linear association.

The correlation coefficient, like the standard deviation, is tied to traditional
statistical models and methods whose advantages, while real, are not clear until
a quite advanced stage of study. The correlation coefficient is closely related to
least squares regression; that is, correlation measures the strength of a specific
kind of straight-line association. Just as the standard deviation should be
delayed until normal distributions give it a context, correlation and least squares
regression need not make their appearance until secondary school students
undertake a substantial study of statistics for its own sake.

Much of data analysis, while useful in its own right, can be taught from
early elementary school through the first years of secondary school as part of
the general effort to develop quantitative skills and reasoning. In this setting,
straight lines can be fit by eye or by simple methods that are computationally
easier than least squares and more resistant to extreme observations. The
Quantitative Literacy material'® offers a clear explanation of such methods for
use in the middle grades.

Other aspects of several variable data deserve priority over correlation and
least squares regression. These include the distinction between explanatory and
response variables, the relation of association to causation, and the effects of
unmeasured "lurking variables" on an observed association. These ideas are
subtle but not computational; they are best grasped by guided experience with
and discussion about actual data, using a variety of display and computational
methods; and they are closely related to an understanding of the kinds of
explanations offered by the natural and social sciences.

In teaching data analysis in a general school curriculum, topics should be
chosen not for their importance in the discipline of statistics but for their
immediate relevance to students, their usefulness in strengthening general
quantitative understanding, and their contribution to developing reasoning about
uncertain data. Statistics is important in its own right—more important than
calculus in most occupations—and that importance should be reflected in a
substantial elective course in the upper secondary years that includes more
advanced data analysis as well as data production, probability, and inference.

PRODUCING DATA

Good data are as much a product of intelligent human effort as are
compact disc players and hybrid corn. There are several reasons why producing
data is an important part of teaching about data and chance.
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Data analysis is most effectively carried out on data with which we are
intimately familiar, for familiarity suggests both expected features to look for
and explanations for unexpected features. Statistical designs for producing data
to answer specific questions are the conceptual bridge linking data analysis to
classical probability-based inference. And there is no better cure for the extreme
attitudes—either unwarranted cynicism or misplaced trust—with which
statistical evidence is often greeted than experience that begins with a question
and ends with answers based on data that we ourselves have produced.

Data used in the teaching of statistics come from several sources. Much of
it is provided data, numbers simply provided by the teacher or the text. With
concerted effort to choose data on topics within students' experience or interests
and to provide appropriate background information, provided data can offer a
good setting for interpretation and discussion as well as for building skills.
Provided data are more useful with older children who have the wider
knowledge and experience to understand the context of the data. Interesting
information that students could not produce themselves can be put before the
class, and the time and effort saved can be well used. Government data on
nearby towns or neighborhoods, for example, often show patterns in population,
housing, income, and health that are informative and surprising.

A second category, class data, is collected in the classroom and is relevant
primarily to students in the class without raising the question of whether
conclusions about some larger population are warranted. Class data provide a
natural setting for teaching data analysis, which has a similar restriction on the
scope of its conclusions. Simple questions are a beginning: "How many
children live in your house?" "How much money do you have in your pocket?"
The first question produces whole number data, the second two-place decimals.
Planning the production of data involves thinking ahead to the analysis that will
be called for, a reminder as relevant to professionals armed with software as to
teachers attentive to whether their students should face counts or decimals.
Measurements can also produce class data: with a tape measure, find the
shoulder width and armspan of all the students, then make a scatterplot and
study the relationship revealed.

Experiments are a third source of data. Experimentation is active data
production. Observation, whether questioning or measuring, seeks to collect
data without changing the people or things observed. In an experiment we
actually apply some stimulus in order to observe the response. The distinction
between explanatory and response variables—an essential part of causal
explanations—is clearest in the setting of an experiment. The experiments most
familiar in basic science, unlike
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the questions or measurements that produce class data, do invite conclusions
that apply to the world at large. When students heat a closed volume of air and
watch a balloon expand, they are asked to understand not just the behavior of
the one balloon but also the effect of heat on gases in general. This rather large
conceptual leap is often left implicit.

Moving from class data to statistically designed samples has the great
advantage of making explicit the transition from data about this one class to
data that represent a larger population. How to sample is a topic within
statistics, with implications far broader than merely generating attractive data
for analysis. Statistics also has much to say about how to experiment, although
the advice is not relevant to most experiments in basic science. The design of
samples and of experiments is a major topic in the systematic study of data
production. But another topic comes first, both logically and in classroom
experience: asking questions and measuring to produce class data both raise the
issue of measurement.

Measurement

To measure a characteristic means to represent it by a number. This basic
notion already introduces an abstraction. Thinking about measurement leads at
length to a mature grasp of why some numbers are informative and others are
irrelevant or nonsensical. First, what is a valid (appropriate or meaningful) way
to measure a particular characteristic? Begin with tangible physical
characteristics. Length is easy—we agree that a ruler will do it. Area is harder,
because we have no device that we can "put beside" the many shapes possible
in two dimensions as we put a ruler beside any length. We must concern
ourselves with understanding the characteristic to be measured, with devising a
satisfactory instrument, and with the units that result and their relations to other
units. Even for physical measurements the study of these questions extends
throughout the school years both in mathematics and in science.

But the validity of physical measurements is simple compared with the
measurement problems of the social and behavioral sciences. What is a good
way to measure how rich a family is or the friendliness of a fellow student?
What do the Towa Tests or the ACT and SAT college entrance examinations
really measure? A detailed examination of such questions would lead too far
afield. But students should be encouraged always to ask whether data are in fact
valid for the proposed use. Drivers over 65 years of age are involved in more
fatal accidents than drivers aged 16 and 17. So teens aren't so risky after all? No—
there are many more drivers over 65. The rate rather than the count of accidents
is the
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appropriate measurement, and the fatal accident rate for teens is about three
times that for the elderly.

The second major aspect of the quality of measurements, after validity, is
accuracy. A measuring process may show systematic error, or bias, as when a
scale always reads 3 pounds low. Bias is a straightforward idea only when the
"true value" that measurement should yield is clearly understood. Possible bias
in SAT scores is a continuing source of intense debate, since no "correct” value
is available for comparison. As usual, physical measurement is much more
straightforward than behavioral or social measurement.

A measuring process also shows variation; that is, repeated measurements
of the same quantity do not give identical results. The variations in common
instruments such as bathroom scales and tape measures are small relative to the
desired accuracy, so we are accustomed to ignoring variation in measurement.
Activities that demonstrate measurement variation are needed. Requiring
students to interpolate between scale markings when measuring length or
weight, or to estimate a length or count by eye, provides a set of varying
measurements whose distribution can be displayed and discussed with the tools
of data analysis. Bias is described by the center of the distribution of
measurements and variation by the spread.

Measurement activities followed by discussion of the data they produce
increase students' sensitivity to the issue of the quality of measurements. Here is
an example from a college class.

The instructor asked each student to measure and record his or her pulse rate
(heartbeats per minute) on a piece of paper. A stemplot of the collected data
showed an outlier that almost certainly resulted from a gross error, though no
one would admit having recorded a seated pulse rate of 180. The stemplot also
showed a suspicious concentration of pulse rates ending in 0. Questioning
revealed that several students had learned in aerobics classes to count beats for
6 seconds and multiply by 10. This led to a discussion of the measurement
methods used. Most students had counted beats for 60 seconds. The class
decided that this is more accurate than the aerobics class method, but it suffers
from partial beats at the beginning and end of the 60-second period. Someone
suggested timing exactly 50 beats with a stopwatch and calculating beats per
minute from this time. This was accepted as a more accurate practical
measurement method.
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Statistical Designs

Design of sample surveys and experiments is a core topic in statistics and a
major transition in concepts. Data analysis emphasizes understanding the
specific data at hand. Now the data are regarded as representing a larger
population. It is the population we seek to understand. Students do not find this
added abstraction easy to assimilate. They persist, for example, in trying to
explain variable results when an experimental task is carried out by several
students in terms of individual characteristics of Sarah, Matthew, and Ruth. The
"sampling" point of view regards these students as representative of a large
population of students. We are no longer interested in individual features that
may explain the performance of Sarah, Matthew, and Ruth.

The transition from data analysis to inference follows a parallel path in
mathematical abstraction. The sample mean X is no longer just a single number,
a measure of location for these data. It is a realization of a random variable to
be considered against the background of the distribution of the random variable;
it must be viewed against what would happen if we repeated the data production
process many times. The difficulty of these new ideas cannot be disguised.

Fortunately, the intimate connection of designed data production with the
ideas of probability and the logic of inference need not appear at once. There is
much valuable insight into data to be gained first. It is very important, for
example, to recognize unrepresentative data. Anecdotal evidence based on a
few individual cases known to us influences our thinking in ways that cannot
withstand examination and therefore must be examined. Individual cases catch
our attention because they are unusual in some way or because they occur in our
immediate environment. Examples and discussion will show that there is no
reason to expect these cases to be in any way typical.

Improper sampling methods, especially voluntary response samples in
which the respondents choose themselves, are also fair game. Here is an
example:

Advice columnist Ann Landers conducts a voluntary response survey every
few years by asking her readers to respond to a provocative question. The
results are always good for news articles and radio interviews that publicize
her column. Her first survey is the most instructive because a comparison is
available. In 1975 Ann Landers asked "If you had it to do over again, would
you have children?" Almost 70% of the nearly 10,000 respondents said "no."
Many accompanied their responses by heart-rending tales of the cruelties
inflicted on them by their
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children. It is the nature of voluntary response to attract people with strong
feelings, especially negative feelings, about the issue in question. A nationwide
random sample commissioned in reaction to the attention paid to Ann
Landers's results found that 91% of parents would have children again.

Voluntary response can easily produce 70% "no" when the truth is 90%
yes." Such data carry no useful information about anyone except the people
who stepped forward. Yet the news media not only report voluntary response
data as if they described a general population, they also operate call-in and
write-in polls that produce more such data. Alert students will easily find
examples. Discussion of anecdotal evidence and voluntary response makes clear
the need for a systematic method for selecting samples.

The statistician's recommended method is to let impersonal chance select
the sample. Random sampling eliminates the biases of personal choice, whether
by the sampler or by the respondents. The deliberate use of chance is the most
important statistical principle for producing data. It seems at first unnatural to
abandon human judgment, but chance appears less outrageous when set against
anecdotal evidence and voluntary response. The use of chance is illustrated by
simple random samples, which give all possible samples of the stated size the
same chance to be the sample actually chosen.

Simple random samples are easy to experience in the classroom, first by
drawing names from a hat or varicolored beads from a sampling bowl. Use of a
random number table follows, and finally computer simulation. Do recall the
warning that too rapid introduction of the computer will obscure the nature of
random selection. The more elaborate random sampling designs used in
national sample surveys need not appear in introductory instruction.

The simplest randomized comparative experiments are closely related to
simple random samples. Once again the need for good design can be made
apparent by discussion of some uncontrolled or unrandomized experiments.
Here is an example:

"

A political scientist interested in the effectiveness of propaganda in changing
opinions conducted an experiment with student subjects. The students took a
test of their attitude toward Germany, then read German propaganda regularly
for several months, after which their attitude was again measured. The year
was 1940. Between test and retest, Germany invaded and conquered Holland
and France. The students' attitude toward Germany changed drastically, but we
shall never know how much of this change was due to reading German
propaganda.
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The design of this experiment had a form familiar in laboratory
experiments in the natural sciences:

Observation —» Treatment —» Observation

Outside the controlled environment of the laboratory, experiments with
such simple designs often fail to yield useful data. The effect of the treatment
cannot be distinguished from the effect of external variables, though not all
such disturbances are as dramatic as the fall of France.

Statistically designed experiments involve two basic principles:
comparison (or control) and randomization. The simplest randomized
comparative design compares two treatments, one of which may simply be a
control treatment such as not reading propaganda. Here is the design in outline:

Group 1 —= Treatment 1 —» Observation

Random
Allocation

Group 2 — Treatment 2 —= Observation

The random allocation assigns a simple random sample of the subjects to
Treatment 1; the remaining subjects receive Treatment 2. Randomization
assures that there is no bias in assigning subjects to treatments. The groups are
therefore similar (on the average) before the treatments are imposed.
Comparison assures that outside forces act equally on both groups. If care is
taken to treat all subjects similarly except for the experimental treatments, any
systematic difference in response must reflect the effect of the treatments. The
logic of comparative randomized experiments allows conclusions about causation
—the response is not just associated with the treatment but is actually caused by
it.

As in the case of sampling, more elaborate designs are common in practice
but need not appear in beginning instruction. Classroom experience with
randomization is easy and valuable. Consider, for example, tokens such as
gumdrop figures that represent subjects to be assigned to two competing
treatments for severe headaches. Students carry out the random assignment.
Some of the tokens bear a mark on the bottom, invisible when the
randomization is done. These subjects, unknown to the experimenters, have a
brain tumor that will render any treatment ineffective. How evenly did
randomization divide these subjects between the two groups? Do the
randomization repeatedly and display the distribution of counts. Repeated
randomization provides experience with random variation that leads toward
probability and inference.
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Some Cautions

With the fundamentals of both data analysis and data production in hand,
older students can contemplate serious statistical studies. Examples from recent
curriculum projects include a sample of student opinion about the selections
served in the school cafeteria; a sample of vehicles at a local intersection,
classified by type and home county as revealed by the license plate; and an
experiment on the effect of distance and angle on success in shooting a nerf
basketball. The design of such studies provides valuable experience in applying
statistical ideas. Analysis of real data to arrive at solid conclusions is satisfying.
But the practical problems of producing the data must be anticipated and kept
within acceptable limits.

Here is an excerpt from a report of a careful study! of new statistics
material for secondary schools. Some of the data production activities were
quite elaborate, including both the road traffic survey and the nerf basketball
experiment. Their experience is cautionary.

Our field test experiences have convinced us that data collection is an
important component of statistics education for at least two reasons. First,
learning how to design and conduct data collection activities (e.g., determining
independent and dependent variables and sample size) is fundamental to
statistics. Second, data collection is a motivating experience that makes
statistical analysis more meaningful and interesting to students.

Our experiences also convinced us, however, that data collection can present
some formidable challenges in the classroom. For example, our field test
teachers report that they spent an inordinate amount of class time collecting
data as opposed to exploring and analyzing data, only to find that students' data
was incomplete or inaccurate. These challenges proved to be so disruptive to
academic progress that the teachers grew reluctant to conduct statistical
investigations that depended on data collection.

PROBABILITY

Chance variation can be investigated empirically, applying the tools of
data analysis to display the regularity in random outcomes. Probability gives a
body of mathematics that describes chance in much more detail than
observation can hope to discover. Probability theory is an impressive
demonstration of the power of mathematics to deduce extensive and unexpected
results from simple assumptions.

Coin tossing, for example, is described simply as a sequence of
independent trials each yielding a head with probability 1/2. From this
unassuming foundation follow such beautiful results as the law of the iterated
logarithm, which gives a precise boundary for the fluctuations in the count of
heads as tossing continues. The distribution of the count
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of heads after n tosses of a fair coin has a mean of n/2, which when plotted
against n appears as a straight line (see Figure 6). The standard deviation of the
count of heads in n tosses is (J.5.,/n . The law of the iterated logarithm says
that fluctuations in the count of heads extend /2loglogn standard deviations
on either side of the mean. The count of heads plotted against n will approach
within any given distance of this boundary infinitely often as tossing continues,
but will cross it only finitely often. Data analysis, even aided by computer
simulation, could never discover the law of the iterated logarithm.

a0 =

Al =

COUNT OF HEADS

MNUMBER OF TOS5ES

Figure 6. The law of the iterated logarithm describes the region of fluctuations
in coin tossing: the center line is the mean n/2, bounded on either side by

curves whose distance from the center line is * V2 loglogn -

As with other beautiful and useful areas of mathematics, probability has in
practice only a limited place in even secondary school instruction. Because the
fundamentals of probability are mathematically rather simple, it is easy to
overlook the extent to which the concepts of probability conflict with intuitive
ideas that are firmly set and difficult to dislodge by the time students reach
secondary school. Misconceptions often persist even when students can answer
typical test questions correctly. The conceptual difficulty of probability ideas is
affirmed by both the experience of teachers and by research.>>!
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Guided experience with randomness in earlier years is an important
prerequisite to successful teaching of formal probability. It is no accident that
mathematical probability originated in the study of games of chance, one of the
few settings in which simple random phenomena are observed often enough to
display clear long-term patterns. Teaching can attempt to recapitulate this
historical development by recording data from chance devices and later from
random sampling and computer simulations. But no matter whether such
experience occurs early or late in a student's development, it takes significant
time to gain appropriate insight into the behavior of random events.

Basics

The first steps toward mathematical probability take place in the context of
data from chance devices in the early grades. Learn to look at the overall pattern
and not attempt a causal explanation of each outcome ("She didn't push the
spinner very hard"). This abstraction is made easier because looking for the
overall pattern of data is one of the core strategies of data analysis.

Next recognize that, although counts of outcomes increase with added
trials, the proportions (or relative frequencies) of trials on which each outcome
occurs stabilize in the long run. Probabilities are the mathematical idealization
of these stable long-term relative frequencies. As students learn the
mathematics of proportions, study of probability can begin with assignments of
probabilities to finite sets of outcomes and comparison of observed proportions
to these probabilities.

Comparison of outcomes to probabilities can be frustrating if not carefully
planned. Computer simulation is very helpful in providing the large number of
trials required if observed relative frequencies are to be reliably close to
probabilities. In short sequences of trials, the deviations of observed results
from probabilities will often seem large to students. Psychologists?® have noted
our tendency to believe that the regularity described by probability applies even
to short sequences of random outcomes. This belief in an incorrect "law of
small numbers" explains the behavior of gamblers who see a run of winning
throws with dice as evidence that the player is "hot," a causal explanation
offered because we greatly underestimate the probability of runs in random
sequences.

Ask several people to write down a sequence of heads and tails that imitates 10
tosses of a balanced coin. How long was the longest run of consecutive heads
or consecutive tails? Most people will write a sequence with no runs of more
than two consecutive heads or tails. But in fact the probability of a run
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of three or more heads in 10 independent tosses of a fair coin is 0.508, and the
probability of either a run of at least three heads or a run of at least three tails is
greater than 0.8.

Probability calculations involving runs are quite difficult—this is a good
area for computer simulation. The runs of consecutive heads or consecutive tails
that appear in real coin tossing (and are predicted by probability theory) seem
surprising to us. Since we don't expect to see long runs, we may conclude that
the coin tosses are not independent or that some influence is disturbing the
random behavior of the coin.

The same misconception appears on the basketball court. If a player makes
several consecutive shots, both fans and teammates believe that he or she has a
"hot hand" and is more likely to make the next shot. Yet examination of
shooting data?? shows that runs of baskets made or missed are no more frequent
than would be expected in a sequence of independent random trials. Shooting a
basketball is like throwing dice, though of course the probability of making a
shot varies from player to player. As these examples suggest, even the idea of
probability as long-term relative frequency is quite sophisticated and needs
careful empirical backing.

Somewhat later a thorough understanding of proportions motivates the
mathematical model for probability: a sample space (set of all possible
outcomes) and an assignment of probability satisfying a few basic laws or
axioms that include the addition rule P(A or B) = P(A) + P(B) for disjoint
events. Further additive laws for simple combinations of events can be derived
from these or, more simply, motivated directly from the behavior of
proportions. These additive laws are the mathematical content of elementary
probability.

At this point in the development of mathematical probability, let us pause
for some nonnumerical exercises that apply probability laws along with another
aspect of mathematical thinking that is not natural in students: careful and literal
reading of logical statements. Psychologists studying probability concepts offer
many exercises that reveal misconceptions and can help to correct them. For
example, Tversky and Kahneman?' presented college students with a
personality sketch of a young woman and then asked which of these statements
was more probable:

e Linda is a bank teller.
¢ Linda is a bank teller and is active in the feminist movement.

About 85% of the students chose the second statement, even though this
event is a subset of the first. This error persisted despite various attempts at
alternative presentations that might make the issue more transparent. The
subjects had not studied probability. "Only" 36% of
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social science graduate students with several statistics courses to their credit
gave the wrong answer in a similar trial. There is thus some hope that study
helps us recognize the relevance of mathematical facts about probability in
everyday thinking. Nisbett et al.!” report before-and-after comparisons that
provide stronger evidence of the effect of formal study. Emphasis on the
conceptual and qualitative aspects of probabilistic thinking, both prior to and in
company with study of the mathematics of probability, is most worthwhile.

Further Study

The development of substantial applicable skills, as opposed to a basic
conceptual grasp of probability, requires more detailed study. At this point we
leave the core domain of mathematical concepts to which all students should be
exposed. There are several logical paths into intermediate probability. The
choice of material will depend, for example, on whether probability will be
pursued as an important topic in its own right or whether it is intended primarily
to lead to statistical inference.

First, a negative recommendation: do not dwell on combinatorial methods
for calculating probabilities in finite sample spaces. Combinatorics is a different
—and harder—subject than probability. Students at all levels find combinatorial
problems confusing and difficult. The study of combinatorics does not advance
a conceptual understanding of chance and yields less return than other topics in
developing the ability to use probability modeling. In most cases all but the
simplest counting problems should be avoided.

A more fruitful step forward from the basics of probability is to consider
conditional probability, independence, and multiplication rules. Knowledge of
the occurrence of an event A often modifies the probability assigned to another
event B. For example, knowing that a randomly selected university professor is
female reduces the probability that the professor's field is mathematics. The
conditional probability of B given A, denoted by P(B|A), need not be equal to P
(B); if the two are equal, events A and B are independent. These notions involve
both new ideas and basic skills that are invaluable in constructing probability
models in the natural and social sciences.

It is quite possible to present the idea of independence and the
multiplication rule P(A and B) = P(A)P(B) for independent events with little if
any attention to conditional probability in general. This path is attractive if the
goal is to reach statistical inference most efficiently and also avoids the
considerable conceptual difficulties associated with conditional probability. The
binomial distributions for the count of successes in a fixed number of
independent trials are quickly within reach,
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as are other interesting applications such as reliability of complex systems.

If conditional probability is avoided, stress the qualitative meaning of
independence and the danger of casually assuming that independence holds.
The essay by Kruskal® contains examples and reflections on the casual
assumption of independence, with emphasis on "independent" testimony to
alleged miracles. Topics related to independence, to binomial distributions, and
to the multiplication rule for independent events should be staples of upper-
grade secondary mathematics.

A careful study of conditional probability is attractive when the goal is to
enable students to construct and use mathematical descriptions of processes at a
moderately advanced level. Modeling of multistage processes that are not
deterministic requires conditional probabilities. To give only a single example,
the issue of false positives in testing for rare conditions applies conditional
probability to questions as current as testing for drugs, the use of lie detectors,
and screening for AIDS antibodies. Here is an example based on a recent
report,® where a detailed statistical analysis can be found:

The ELISA test was introduced in the mid-1980s to screen donated blood for
the presence of AIDS antibodies. When antibodies are present, ELISA is
positive with a probability of about 0.98; when the blood tested is not
contaminated with antibodies, the test gives a positive result with a probability
of about 0.07. These numbers are conditional probabilities. If one in a
thousand of the units of blood screened by ELISA contain AIDS antibodies,
then 98.6% of all positive responses will be false positives.

The calculation of the prevalence of false positives among ELISA blood
screening tests for AIDS antibodies can be carried out with a simple tree
diagram such as that displayed in Figure 7. Students armed with an
understanding of conditional probability and tree diagrams can easily program
computer simulation of processes too complex to study analytically.

Conditional probability brings a new set of conceptual difficulties that, like
those in the early study of probability, can be easily and unwisely overlooked if
instruction is overly directed at teaching definitions and rules. Students find the
distinctions among P(A|B), P(B|A), and P(A and B) hard to grasp. Display a
photograph of an attractive and well-dressed woman and ask the probability that
she is a fashion model. The answers show that the question is interpreted as
asking the conditional probability that a woman known to be a fashion model is
attractive and well dressed. That is, respondents confuse P(A|B) and P(B|A).
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Figure 7. The calculation of false positives in the ELISA test for AIDS
antibodies can be carried out in a tree diagram in which the appropriate

conditional probabilities are multiplied along each branch.

Qualitative exercises in identifying the information A that is known and the
event B whose probability is wanted are an essential preliminary to formal work

with P(BJA).

Transition to Inference

Random sampling and experimental randomization provide experience

with randomness that motivates not only the study of probability
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but also the reasoning of probability-based inference. Repeated sampling or
repeated experimental randomization clearly produces variable results. This
variation is random in the technical sense, rather than haphazard, because the
design uses an explicit chance mechanism. So an opinion poll's conclusion that
61% of all American adults want a national health insurance system requires a
margin of error that reflects the probable degree of random variation in similar
sample surveys. Similarly, the conclusion that a new medical treatment
outperforms a standard treatment can be sustained only if the margin of
superiority exceeds the probable random variation in similar experiments.

The random outcomes observed from data production are statistics such as
sample proportions and sample means. Sample statistics are random variables
(random phenomena having numerical values). The regular long-term behavior
of such statistics in repeated sampling or repeated experimental randomization
is described by a sampling distribution. It is usual to view sampling
distributions as probability distributions of random variables. Random
variables, their distributions, and their moments make up another block of
material in intermediate probability.

Proportions involve the distribution of a count, which is binomial under
slightly idealized assumptions. Sample means have a normal distribution if the
population distribution is normal. General rules for manipulating means and
variances of random variables apply to sample proportions and means. In
particular, the standard deviations of sample proportions and means both
decrease at the rate | II.I'\;"H as the sample size n increases, a fact that leads to an
understanding of the advantages of larger samples.

What happens as the number n of observations grows without bound? The
major limit theorems of probability address this question. The law of large
numbers says that sample proportions and means approach (in various senses)
the corresponding proportions and means in the underlying population. The
central limit theorem says that both proportions and means become
approximately normally distributed as the sample size grows.

Figure 8 illustrates the central limit theorem in graphical form. It begins
with the distribution of a single observation that is right skewed and far from
normal. Distributions of this form are often used to describe the lifetime in
service of parts that do not wear out. The mean of this particular distribution is
1. The other curves in the figure show the distribution of the mean X of samples
of size 2 and of size 10 drawn from the original distribution. The characteristic
normal shape is already starting to emerge when only 10 observations are
averaged. A computer simulation could show the effect even more dramatically.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/1532.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

o Numeracy

UNCERTAINTY 126

Figure 8. The central limit theorem in action: the distribution of means of
samples drawn from a skewed distribution (a) displays a progression toward
the normal distribution as the sample size increases from 2 (b) to 10 (c).

This is a substantial body of material that is quite forbidding if formally
presented. Traditional college instruction in statistics insists that a substantial
dose of probability—at least topics on independence and on random variables—
precede the study of inference. Some understanding of independence and of
distributions with their means and standard deviations is certainly needed. But
the degree of mathematical formalism with which these topics are traditionally
taught is generally unnecessary at the college level and out of the question in
secondary school. Both the length and the difficulty of the path to statistics via
formal probability argue against this traditional approach. As Garfield and
Ahlgren conclude,’

. . . Teaching a conceptual grasp of probability still appears to be a very
difficult task, fraught with ambiguity and illusion. Accordingly, we make the
pragmatic recommendation for two research efforts that would proceed in
parallel: one that continues to explore means to induce valid conceptions of
probability, and one that explores how useful ideas of statistical inference can
be taught independently of technically correct probability.

Fortunately, the empirical emphasis of data analysis, developed gradually
beginning in the early grades, offers a setting for teaching both basic probability
and elementary inference. Simulation, first physical and then using software,
can demonstrate the essential concepts of probability and is particularly suited
to displaying sampling distributions. Only quite informal probability is needed
to think about sampling distributions. As the earlier discussion of normal
distributions indicated, data description provides an adequate context for
distributions as idealized mathematical models for variation. The core
mathematics curriculum taught to all students should include data analysis and
an empirical introduction to only basic probability concepts and laws at about
the level of the Quantitative Literacy material.'?
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INFERENCE

Statistics is concerned with the gathering, organization, and analysis of
data and with inferences from data to the underlying reality. "Inference from
data to reality" is a knotty topic indeed, with much room for disagreements of a
philosophical nature. It is not surprising that statisticians disagree on the most
fruitful approach to inference. Barnett’ gives a comparative overview of the
competing positions.

Bayesian or Classical?

The most important philosophical divide separates Bayesian inference
from classical inference. Some understanding of the distinction is essential to
wise curriculum decisions. The question of inference in simplest form is how to
draw conclusions about a population parameter on the basis of statistics
calculated from a sample. A parameter is a number that describes the
population, such as the mean height p of all American women age 18 to 22. A
relevant statistic in this case is the sample mean height ¥ of a random sample of
young women. For purposes of inference we imagine how X would vary in
repeated samples from the same population. The sampling distribution of the
statistic describes this variation. The sampling distribution reflects the
underlying parameter—in this case p is the mean of the distribution of X. It is
because the sampling distribution depends on the unknown parameter that the
statistic carries information about the parameter.

Classical inference is rooted in the concept of probability as long-term
regularity and in the corresponding idea that the conclusions of inference are
expressed in terms of what would happen in repeated data production. To say
that we are "95% confident that p lies between 64.5 and 64.7 inches" is
shorthand for "We got this interval by a method that is correct in 95% of all
possible samples." Probability statements in classical inference apply to the
method rather than to the specific conclusion at hand—indeed, probability
statements about a specific conclusion make no sense because the population
parameter is fixed, though unknown.

The Bayesian approach wishes to bring prior information about the value
of the parameter into play. This is done by regarding the parameter p as a
random quantity with a known probability distribution that expresses our
imprecise information about its value. The mean height p of all American
young women is not random in the traditional sense. But it is uncertain. I am
quite sure that u lies between 54 inches and 72 inches, and I think it more likely
that p lies near the center of this range. My subjective assessment of uncertainty
can be expressed in a probability distribution for p.
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In the Bayesian view the concept of probability is expanded to include
such personal or subjective probabilities. What is new here is not the
mathematics, which remains the same, but the interpretation of probability as
representing a subjective assessment of uncertainty rather than a long-run
relative frequency. The sampling distribution of the statistic X is now
understood to state conditional probabilities of the values of X given a value for
u. A calculation then combines the prior information with the observed data to
obtain the conditional distribution of p given the data. (The discrete form of this
calculation uses a simple result about conditional probabilities known as Bayes'
theorem, from which the Bayesian school takes its name.) The conclusions of
inference are expressed in terms of probability statements about the unknown
parameter itself: the probability is 95% that the true mean lies between 64.5 and
64.7 inches.

The Bayesian conclusion is certainly easier to grasp than the classical
statement. Moreover, prior information is important in many problems.
Statisticians generally agree that Bayesian methods should be used when the
prior probability distribution of the parameter is known. What is disputed is
whether usable prior distributions are always available, as Bayesians contend.
Non-Bayesian statisticians do not think that my subjective assessment is always
useful information and so are not willing to make general use of subjective prior
distributions. The apparently clear conclusion of a Bayesian analysis can
depend strongly on assumptions about the prior distribution that cannot be
checked from the data.

For introductory instruction about inference, Bayesian methods have
several disadvantages. They require a firm grasp of conditional probability.
Indeed, students must understand the distinction between the conditional
distribution of the statistic given the parameter and the conditional distribution
of the parameter given the actually observed value of the statistic. This is fatally
subtle. The subjective interpretation of probability is quite natural, but it diverts
attention from randomness and chance as observed phenomena in the world
whose patterns can be described mathematically. An understanding of the
behavior of random phenomena is an important goal of teaching about data and
chance; probability understood as personal assessment of uncertainty is at best
irrelevant to achieving this goal. The line from data analysis through
randomized designs for data production and probability to inference is clearer
when classical inference is the goal.

Two types of inference, confidence intervals and significance tests, figure
in introductory instruction in classical statistical inference. The reasoning
behind both types of inference can be introduced informally in discussions
about data. Formal treatment and specific methods should
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be reserved for upper-grade secondary courses in probability and statistics, and
no attempt should be made to present more than a few specific procedures.
Particularly in the case of significance tests, a formal approach obscures the
reasoning to such an extent that it may be better to avoid hypotheses and test
statistics altogether.

Confidence Intervals

The reasoning behind confidence statements is relatively straightforward.
What is more, news reports of opinion polls and their margins of error provide a
steady supply of examples for discussion. How is it that a sample of only 1500
people can accurately represent the opinion of 185 million American adults?
Random sampling provides a part of the explanation; sampling distributions
provide the rest, and confidence intervals explain what the margin of error
means.

Confidence statements can be introduced after students have some
experience with stimulation of sampling distributions. The distinction between
population and sample, the idea of random sampling, and the notion of a
sampling distribution are fundamental to inference. Simulation allows the
gradual introduction of confidence intervals during the exploration of sampling
and sampling distributions. The ideas of confidence intervals can be taught via
graphical display of simulated samples.! A more formal approach requires
familiarity with normal distributions.

Suppose that in a large county 30% of high school students drive cars to
school. Asking a simple random sample of 250 students whether they drove to
school today produces 250 independent observations, each with probability 0.3
of being "yes." The proportion f of "yes" responses in the sample varies from
sample to sample. Simulate (say) 1000 samples and display the sampling
distribution of § . It is approximately normal, with mean 0.3 and standard
deviation 0.029. Repeated simulations of samples of various sizes from this
population demonstrate that the center of the sampling distribution remains at
0.3 and that the spread is controlled by the size of the sample. In large samples
(about 1000 or so) the values of the sample statistic f are tightly concentrated
around the population parameter p = 0.3. Students can see empirically that
samples of this size allow good guesses about the entire population.

But just how good are guesses based on a sample? We can quantify the
answer by describing how the statistic f varies in repeated sampling. It is a
basic fact of normal distributions that about 95% of all observations lie within
two standard deviations on either side of the mean. So in repeated sampling,
95% of all samples of 250 students give a sample
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proportion £ within about 0.06 of the true proportion 0.3 who drive to school.
The simulation shows that this is so.

Now suppose that a sample of 250 students in another large county finds
105 who drive to school. We guess that the true proportion p of all students in
this county who drive to school is close to B =105/250 = 0.42. If (as is true)
the variability is about the same as in the county we simulated, P lies within
+0.06 of p in 95% of all samples. We say we are 95% confident that the
unknown population proportion p lies in the interval 0.42 + 0.06. More
generally, the interval B +0.06 is a 95% confidence interval for the unknown p.

Figure 9 illustrates the behavior of a confidence interval in repeated
samples. As repeated samples of size 250 are drawn, some of the intervals b+
0.06 cover the true proportion of p, while others do not. But in the long run,
95% of all samples produce an interval covering the true p. That is, the
probability that the random interval B +0.06 contains p is 0.95. As is generally
the case in classical inference, this probability refers to the performance of the
method in an indefinitely large number of repeated samples.

The first portion of the argument above belongs to the study of sampling
and simulation and is essentially an empirical demonstration of the surprising
trustworthiness of samples that seem small relative to the size of the population.
The facts that emerge from such sampling demonstrations are much more
important than the formal dress we give them in the second stage of the
argument. The second stage belongs to a more advanced study of inference. The
qualitative conclusion that most sample results lie close to the truth is made
quantitative by giving an interval and a level of confidence. The nature of this
conclusion and its limitations both need emphasis.

What are the grounds of our confidence statement? There are only two
possibilities.

1. The interval 0.42 + 0.06 contains the true population proportion p.
Our simple random sample was one of the few samples for which
£ is not within 0.06 points of the true p. Only 5% of all samples
give such inaccurate results.

We cannot know whether our sample is one of the 95% for which the
interval catches p or one of the unlucky 5%. The statement that we are 95%
confident that the unknown p lies in 0.42 + 0.06 is shorthand for "We got these
numbers by a method that gives correct results 95% of the time."

As for the limitations on this reasoning, remember that the margin of error
in a confidence interval includes only random sampling error.
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Figure 9. The behavior of a confidence interval in repeated samples from the
same population. The normal curve is the sampling distribution of the sample
provortion # centered at the population proportion p. The dots are the values
of ¥ from 25 samples, with the confidence interval indicated by arrows on
either side. In the long run 95% of these intervals will contain p.

In practice there are other sources of error that are not accounted for. For
example, national opinion polls are usually conducted by telephone using
equipment that dials residential telephone numbers at random. Telephone
surveys omit households without phones. Moreover, pollsters often find that as
many as 70% of the persons who answer the phone are women. Men will be
underrepresented in the sample unless steps are taken to contact males. These
facts of real statistical life introduce some bias into opinion polls and other
sample surveys.

Significance Tests

The purpose of a confidence interval is to estimate a population parameter
and to accompany the estimate with an indication of the uncertainty due to
chance variation in the data. Significance tests do not
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provide an estimate of an unknown parameter, but only an assessment of
whether an effect or difference is present in the population. The mere
recognition that such an assessment is needed, that not all observed outcomes
signify a real underlying cause, already shows statistical sophistication. Judges
of science fair displays who talk to the able students who have prepared them
find that any effect in the desired direction, however small, is regarded as
convincing. The role of chance variation is not recognized.

Statistical significance is a way of answering the question "Is the observed
effect larger than can reasonably be attributed to chance alone?" Here is the
reasoning of significance tests presented informally in the setting of an
important example:

During the Vietnam era, Congress decided that young men should be chosen at
random for service in the army. The first draft lottery was held in 1970. Birth
dates were drawn in random order and men were drafted in the order in which
their birth dates were selected. After the drawing, news organizations claimed
that men born late in the year were more likely to get low draft numbers and so
to be inducted. Data analysis (Figure 10) does suggest an association between
birth date and draft number. A statistic that measures the strength of the
association between draft number (1 to 366) and birth date (1 to 366 beginning
with January 1) is the correlation coefficient. In fact, » = -0.226 for the 1970
lottery. Is this good evidence that the lottery was not truly random?

A significance test approaches the issue by asking a probability question:
Suppose for the sake of argument that the lottery were truly random; what is the
probability that a random lottery would produce an r at least as far from O as the
observed r = -0.226? Answer: The probability that a random lottery will
produce an r this far from O is less than 0.001. Conclusion: Since an r as far
from O as that observed in 1970 would almost never occur in a random lottery,
we have strong evidence that the 1970 lottery was not random.

Figure 10 displays the scatterplot of draft numbers assigned to each birth
date by the 1970 draft lottery. It is difficult to see any systematic association
between birth date and lottery number in the scatterplot. Clever graphics can
emphasize the association, as in the figure. But a probability calculation is
needed to learn whether the observed association is larger than can reasonably
be attributed to chance alone.

In a random assignment of draft numbers to birth dates, we would expect
the correlation to be close to 0. The observed correlation for the
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1970 lottery was r = -0.226, showing that men born later in the year tended to
get lower draft numbers. Common sense alone cannot decide if » = -0.226
means that the lottery was not random. After all, the correlation in a random
lottery will almost never be exactly 0. Perhaps that r = -0.226 is within the
range of values that could plausibly occur due to chance variation alone.

400

DRAFT SELECTION NUMBER

BIRTH DATES FROM START OF YEAR

Figure 10. Data from the 1970 draft lottery reveal a slight negative correlation,
with birth dates near the end of the year most likely to have low draft numbers.
The trend can be seen more readily by plotting the median draft numbers for
each month. The plot of monthly medians connected by line segments to
display the trend, called a median trace, is a common tool used to highlight
patterns in scatterplots of a response variable against an explanatory variable.

To resolve this uncertainty we compare the observed -0.226 to a reference
distribution, the sampling distribution of r in a truly random lottery. We find
that a truly random lottery would almost never produce an r as far from zero as
the r observed in 1970. The probability calculation tells us what common sense
could not—that » = -0.226 is a large effect, a surprising effect in a random
lottery. This convinces us that the 1970 lottery was biased. Investigation
disclosed that the capsules containing the birth dates had been filled a month at
a time and not adequately mixed. Later dates remained near the top and tended
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to be drawn earlier. (Fienberg* gives more detail about the 1970 draft lottery,
including extensive statistical analysis of the outcome.)

Questions like "Is this a large outcome?" or "Is this a surprising result?"
come up often in analyzing data. It is quite natural to give an answer by
comparing the individual outcome to a reference distribution, as we informally
compare the birth weight of a child to the distribution of birth weights of all
children. Students should certainly be encouraged to recognize the role of
chance variation and to assess "significance" informally by comparing an
individual outcome to a suitable reference distribution. If probability and
computer simulation are being developed, the comparison can be put in the
language of probability and sampling distributions. But formal "tests of
hypotheses" need not appear in the school curriculum.

There are several reasons for this. The mechanics of stating hypotheses,
calculating a test statistic, and comparing with tabled values effectively conceal
the reasoning of significance tests. The reasoning itself is somewhat difficult
and full of subtleties. Effective examples of the use of significance tests are
more removed from everyday experience than opinion polls and similar
examples of confidence statements. An understanding of data and chance, and
the development of quantitative reasoning in general, is better served by
concluding the study of statistics in the schools with probability, sampling
distributions, confidence intervals, and a continuing emphasis on using these
tools in reasoning about uncertain data.

STATISTICAL THINKING

Statistics and probability are the sciences that deal with uncertainty, with
variation in natural and man-made processes of every kind. As such they are
more than simply a part of the mathematics curriculum, although they fit well in
that setting. Probability is a field within mathematics. Statistics, like physics or
economics, is an independent discipline that makes heavy and essential use of
mathematics.

Statistics has some claim to being a fundamental method of inquiry, a
general way of thinking that is more important than any of the specific facts or
techniques that make up the discipline. If the purpose of education is to develop
broad intellectual skills, statistics merits an essential place in teaching and
learning. Education should introduce students to literary and historical methods;
to the political and social analysis of human societies; to the probing of nature
by experimental science; and to the power of abstraction and deduction in
mathematics. Reasoning from uncertain empirical data is a similarly powerful
and pervasive intellectual method.
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This is not to say that detailed instruction in specific statistical methods for
their own sake should be prominent in the school curriculum. Indeed, they
should not. But statistical thinking, broadly understood, should be part of the
mental equipment of every educated person. We can summarize the core
elements of statistical thinking as follows:

1.

The omnipresence of variation in processes. Individuals are
variable; repeated measurements on the same individual are
variable. The domain of a strict determinism in nature and in
human affairs is quite circumscribed.

The need for data about processes. Statistics is steadfastly
empirical rather than speculative. Looking at the data has first
priority.

The design of data production with variation in mind. Aware of
sources of uncontrolled variation, we avoid self-selected samples
and insist on comparison in experimental studies. And we introduce
planned variation into data production by use of randomization.

The quantification of variation. Random variation is described
mathematically by probability.

The explanation of variation. Statistical analysis seeks the
systematic effects behind the random variability of individuals and
measurements.

Statistical thinking is not recondite or removed from everyday experience.
But it will not be developed in children if it is not present in the curriculum.
Students who begin their education with spelling and multiplication expect the
world to be deterministic; they learn quickly to expect one answer to be right
and others wrong, at least when the answers take numerical form. Variation is
unexpected and uncomfortable. Listen to Arthur Nielsen'® describing the
experience of his market research firm with sophisticated marketing managers:

. .. Too many business people assign equal validity to all numbers printed on
paper. They accept numbers as representing Truth and find it difficult to work
with the concept of probability. They do not see a number as a kind of
shorthand for a range that describes our actual knowledge of the underlying
condition. For example, the Nielsen Company supplies to manufacturers
estimates of sales through retail stores. . . . I once decided that we would draw
all charts to show a probable range around the number reported; for example,
sales are either up 3 percent or down 3 percent or somewhere in between. This
turned out to be one of my dumber ideas. Our clients just couldn't work with
this type of uncertainty. They act as if the number reported is gospel.

The ability to deal intelligently with variation and uncertainty is the goal of
instruction about data and chance. There is some evidence that instruction
actually improves this ability. Nisbett et al.!” describe
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research on teaching various kinds of reasoning. They note that instruction in
probability and statistics increases the willingness to consider chance variation
even when the instruction is of a traditional kind that makes no attempt to apply
probabilistic reasoning in unstructured settings. Here is a typical example:

[Subjects were asked] to explain why a traveling saleswoman is typically
disappointed on repeat visits to a restaurant where she experienced a truly
outstanding meal on her first visit. Subjects who had no background in
statistics almost always answered this problem with exclusively nonstatistical,
causal answers such as "maybe the chefs change a lot" or "her expectations
were so high that the food couldn't live up to them." Subjects who had taken
one statistics course gave answers that included statistical considerations, such
as "very few restaurants have only excellent meals, odds are she was just lucky
the first time," about 20 percent of the time.

Nisbett and his colleagues find it striking that instruction of a quite abstract
kind does have an effect on thinking about everyday occurrences. The effect is
stronger when instruction points out the applicability of statistical ideas in
everyday life, as school instruction should certainly do. This is evidence that we
are in fact dealing with a fundamental and generally applicable intellectual skill.
Nisbett also reports research showing that training in deterministic disciplines,
even at the graduate level, does not similarly improve everyday statistical
reasoning. This is evidence that we are dealing with an independent intellectual
method.

Why teach about data and chance? Statistics and probability are useful in
practice. Data analysis in particular helps the learning of basic mathematics.
But, most important, it is because statistical thinking is an independent and
fundamental intellectual method that it deserves attention in the school
curriculum.
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Shape

Marjorie Senechal

INTRODUCTION

We encounter patterns all the time, every day: in the spoken and written
word, in musical forms and video images, in ornamental design and natural
geometry, in traffic patterns, and in objects we build. Our ability to recognize,
interpret, and create patterns is the key to dealing with the world around us.

Shapes are patterns. Some shapes are visual, evident to everyone: houses,
snowflakes, cloverleafs, knots, crystals, shadows, plants. Others, like eight-
dimensional kaleidoscopes or four-dimensional manifolds, are highly abstract
and accessible to very few.

"The increasing popularity of puzzles and games based on the interplay of
shapes and positions illustrates the attraction that geometric forms and their
relations hold for many people," observed geometer Branko Griinbaum.
"Patterns are evident in the simple repetition of a sound, a motion, or a
geometric figure, as in the intricate assemblies of molecules into crystals, of
cells into higher forms of life, or in countless other examples of organizational
hierarchies. Geometric patterns can serve as relatively simple models of many
kinds of phenomena, and their study is possible and desirable at all levels."

But despite their fundamental importance, students learn very little about
shapes in school. The study of shape has historically been subsumed under
geometry (literally "earth measurement"), which for a long time has been
dominated by postulates, axioms, and theorems of Euclid.
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Just as Shakespeare is not sufficient for literature and Copernicus is not
sufficient for astronomy, so Euclid is not sufficient for geometry. Like scholars
in all times and places, Euclid wrote about the concepts of geometry that he
knew and that he could treat with the methods available to him. Thus he did not
write about the geometry of maps, networks, or flexible forms, all of which are
of central importance today.

Shape is a vital, growing, and fascinating theme in mathematics with deep
ties to classical geometry but goes far beyond it in content, meaning, and
method. Properly developed, the study of shape can form a central component
of mathematics education, a component that draws on and contributes to not
only mathematics but also the sciences and the arts.

Like many other important concepts, "shape" is an undefinable term. We
cannot say precisely what "shape" means, partly because new kinds of shapes
are always being discovered. We assume we know what shapes are, more or
less: we know one when we see one, whether we see it with our eyes or in our
imaginations.

But we know much more than this. We know that shapes may be alike in
some ways and different in others. A football is not a basketball, but both are
smooth closed surfaces; a triangle is not a square, but both are polygons. We
know that shapes may have different properties: a triangle made of straws is
rigid, but a square made of straws is not. We know that shapes can change and
yet be in some way the same: our shadows are always our shadows, even
though they change in size and contour throughout the day.

In the study of shape, our goals are not so very different from those of the
ancient Greek philosophers: to discover similarities and differences among
objects, to analyze the components of form, and to recognize shapes in different
representations. Classification, analysis, and representation are our three
principal tools. Of course, these tools are closely interrelated, so distinctions
among them are to some extent artificial. Is symmetry a tool for classifying
patterns or a tool for analyzing them? In fact, it is both. Nevertheless, it is
helpful to discuss each of these tools separately.

CLASSIFICATION

One of the great achievements of ancient mathematics was the discovery
that there are exactly five convex, three-dimensional shapes whose surfaces are
composed of regular polygons, with the same number of polygons meeting at
each corner. These shapes, known as the regular polyhedra, are shown in
Figure 1. This discovery so excited the imagination of the ancients that Plato
made these shapes the cornerstone of his theory of matter (see his dialogue
Timaeus), and Euclid devoted
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much of Book XIII of his Elements to their construction. They have lost none of
their fascination today.

SO PG

Figure 1. The five regular polyhedra. Each is composed of a single type of
regular polygon, with the same number of polygons meeting at each corner.
The tetrahedron, octahedron, and icosahedron are made of triangles, the cube is
made of squares, and the dodecahedron is made of pentagons.

It is easy today to underestimate the significance of the discovery of the
regular polyhedra. In its time it was a major feat of mathematical imagination.
In the first place, in order to count the number of objects of a certain kind you
have to be aware that they are "of a certain kind." That is, you must recognize
that these objects have properties that distinguish them from other objects and
be able to characterize their distinguishing features in an unambiguous way.
Second, you must be able to use these criteria to find out precisely which
objects satisfy them. No one knows just how the ancients made their discovery,
but it is easy for young children today, especially if they have regular polygons
to play with, to convince themselves that the list of regular polyhedra is
complete (Figure 2).

The key ingredients of mathematical classification were already in use
thousands of years ago: characterizing a class of objects and enumerating the
objects in that class. What has changed throughout the centuries, and will
continue to change, are the kinds of characterizations that seem important to us
and the methods that we use for enumeration. Figure 3 shows several classes of
objects that can be grouped together from a mathematical point of view.
Examples such as these can stimulate student discussion: What properties
characterize each class? Are there different ways to classify these objects? What
other objects belong to these classes? We mention here a few of the
classification schemes that have proved effective in many applications.

Congruence and Similarity.

Two objects are congruent if they are exactly alike down to the last detail,
except for their position in space. Cans of tomato soup (of the same brand) in a
grocery store, square tiles on a floor, and hexagons in a quilt pattern are all
familiar examples of congruent figures. Two objects are similar if they differ
only in position and scale. Similarity seems to be a very fundamental concept.
Preschoolers understand that miniature animals, doll clothes, and play houses
are all small versions of familiar things. The fact that even such young children
know what these tiny objects are supposed to represent
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shows that they intuitively understand change of scale. Building and taking
apart scale models of towers, bridges, houses, shapes of any kind give the child—
of any age—a firm grasp of this idea.

& 5
1

;

Figure 2. There are only five regular polyhedra because there are only five
arrangements of congruent, regular polygons about a point that can be folded
up to make a convex polygonal vertex. Here we see the five arrangements,
together with their completion as patterns that can be folded up to make the
entire polyhedron.

Symmetry and Self-Similarity.

A square is symmetrical: if you rotate it 90°, 180°, 270°, or 360° about its
center, it appears unchanged. Also, it has four lines of mirror symmetry across
which you can reflect it onto itself (Figure 4). It is easy to think of other objects
that have the same symmetries, or self-congruences, as the square: the Red
Cross symbol, a bracelet with four equally spaced beads, a circle of four
dancers, and a four-leaf clover (without its stem) are a few examples. Symmetry
classifies objects according to the arrangement of their constituent parts.
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Figure 3. Examples of solid objects grouped into useful classes. What do the
shapes in each class have in common?

This can be rather subtle; for example, the two polyhedra in Figure 3b have
the same symmetries.

Just as congruence leads to symmetry (which is just another name for self-
congruence), so similarity extends naturally to self-similarity. "The basic fact of
aesthetic experience,” according to art historian E.H. Gombrich,’ "is that delight
lies somewhere between boredom and confusion." Perhaps this is one of the
reasons why fractals and other self-similar figures are generating so much
excitement.

"Beauty is truth, truth beauty," wrote the poet John Keats. Self-similarity
has recently been recognized as a profound concept in nature. The awarding of
a Nobel prize for the formulation of "renormalization groups" and the current
worldwide cross-disciplinary interest in chaos theory indicate the profound
implications of similarity and scale for science and mathematics. The study of
scaling has stimulated (and been stimulated by) the study of fractals and other
self-similar geometrical forms.

Combinatorial Properties.

Congruence and similarity are metric concepts: they can be altered by
changing lengths or angles. But some other

Figure 4. If a square is rotated 90°, 180°, 270°, or 360° about its center, it
appears unchanged. Also, it has four lines of mirror symmetry across which
you can reflect it onto itself.
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properties of shapes remain intact under such transformations. For example, the
numbers of edges and vertices of a polygon are not altered if we stretch or bend
the polygon. Thus the three hexagons of Figure 7 are all hexagons, even though
they are neither congruent nor similar: a hexagon is any closed loop made of six
line segments. Being a hexagon is a combinatorial property of a polygon.
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Figure 5. In torus tic-tac-toe the opposite sides of the board are identified—that

is, considered to be the same. It is as if the board were rolled into a cylinder,

which was then bent around to form an inner-tube shape that mathematicians

call a torus. Can you tell which of these positions are equivalent in the torus-

shaped game?

Roughly speaking, the combinatorial properties of a shape are the things
we can count and the way they are fitted together. Thus from the combinatorial
point of view, the shapes in Figure 3a are equivalent, since each has 6 faces, 8
vertices, and 12 edges connected to each other in the same way. Network
problems often involve combinatorial problems. For example, if we want to
design a linking system for the computers in a building, we are concerned first
with finding the possible arrangements of links and nodes that can provide the
connections we want, and only then need we consider how long the cables will
have to be.

Topology.

Topological equivalence is even more general than combinatorial
equivalence. From the standpoint of topology, all polygons are loops and all
convex polyhedra are alike. Piaget argued that topological concepts occur prior
to metric ones in child development; a child may recognize a loop before
distinguishing among kinds of loops, such as circles and triangles. Being a loop,
as opposed to a knot, is a topological property of shape.

Topology in school is often described as "rubber sheet geometry." It yields
many excellent examples that can enlarge a child's concept of the flexibility of
shape. In rubber sheet geometry, the shapes of Figure 3c are indistinguishable
because each can be deformed into the other. Knots, of the boy and girl scout
variety, are an excellent subject for hands-on study.!? Children can learn to play
tic-tac-toe on a torus and
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other delightful games that require geometrical mental gymnastics (Figure 5).

With complexity of structure, topological classification necessarily
becomes more sophisticated. Here computer visualization can be a useful tool.
Older students can appreciate the concept of orientation, which characterizes
the difference between a cylinder and a Mobius band (orientable and non-
orientable), and the concept of genus, which characterizes the topological
difference between a sphere and a torus (genus zero and genus one).
Understanding such concepts enriches greatly the study of science and design as
well as mathematics.

Naming

Shapes need names. One of the most fundamental uses of language is to
assign names to things. Naming is a primitive concept that is echoed in our
myths as well as in many contemporary religious practices. Naming is the first
step toward knowing, whether it is the name of a person or the name of a shape.
We cannot think about shapes (or anything else for that matter) or explain our
ideas to others if we do not use names. Learning technical names is sometimes
disparaged as a rote activity, but such objections miss the point. Technical
names are usually not arbitrary; they encode the conceptual framework in which
we organize the things we are naming.

For example, in English-speaking countries, last names indicate the family
and first names designate an individual in a family. Thus Mary Jones is a person
named Mary who is a member of the Jones family. The names of shapes serve
similar functions: a tetrahedron is a member of the polyhedron family, a
representative of the subfamily of those polyhedra that have four faces (see
Figure 6). When we use the word
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Figure 6. Mary Jones is a member of the Jones family, and the tetrahedron is a
member of the polyhedron family.
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"tetrahedron" to name a shape, we are at the same time locating it in its family
tree and describing it in a meaningful way.

Although classification requires precision, there is no single "right" way to
classify shapes. Shapes are classified into families and subfamilies in many
different ways, depending on the properties that interest us. For example, the
discovery that the orbits of the planets around the sun are ellipses, and not
circles, revolutionized the study of astronomy; from this standpoint circles and
ellipses are completely different. But one of the great achievements of the
ancients was the discovery that both circles and ellipses are conic sections and
in that sense are the same.

From the point of view of topology, the distinction between shapes that
enclose regions, like balls, and shapes that have holes in them, like bagels, is
fundamental; within these broad classes, all shapes are alike. But a football
player would not be happy with a basketball as a substitute, nor would a
basketball player be willing to make do with a baseball, because the individual
kinds of balls have crucially different properties. As another example of cross-
classification, architects know that it is important to build houses that are
sturdy, not houses that might collapse. This concern transcends other ways that
houses are commonly classified, such as large and small, single story or
multistory, rectangular, or dome-like.

Classification skills develop gradually. Very young children learn to
recognize a great many shapes without being formally taught. Their world is
literally made of shapes: shapes that hold things, such as bowls and bags and
baskets; shapes to play with, such as balls and puzzles and blocks; shapes to
use, such as chairs and spoons and beds. Thousands of shapes are part of
children's lives. Later, in school, children learn

Figure 7. Three hexagons that are important in chemistry. The planar hexagon
(a) occurs in benzene (see also Figure 30 below). The hexagons in (b) and (c)
are intended to be nonplanar; both are conformations of cyclohexane.
Hexagons made out of flexible straws can easily assume any of these shapes.
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names for some of them, such as circles, spheres, polygons, and some simple
polyhedra.

Figure 8. Four natural spirals: (a) leaves of the sago palm, (b) horns of a
mountain sheep, (c) glycerin mixed with food coloring and ink, (d) the
chambered nautilus. The common shape suggests a common creative
mechanism, despite the striking differences in material, scale, and natural
forces.

Alas, in our schools identification and classification of shapes usually stop
just at the point where they can begin to be really interesting—where they begin
to explore structures in three-dimensional space. How many people realize that
even polygons that are not flat can be interesting and important? Many
molecules have polygonal shapes, but often these polygons are crumpled and
their conformations are the key to their chemical properties (Figure 7). Besides
finite polygons and polygons whose edges don't cross, there are zig-zag, star,
and helical polygons. By broadening the definition of polygon to include any
closed loop, we may also study knots. In addition to their obvious practical
importance for tying things, knots enter into the design of networks such as
cloverleafs and are helpful in understanding the structure of some biological
molecules. Soap bubbles, soap films, and froths are also endless sources of
fascinating geometrical principles.

The study of polyhedra can be extended from simple shapes that are easy
to construct to others, such as star polyhedra, that are more complex. Equally
important are patterns, such as tilings of the plane, that are beautiful as well as
useful. The helix and the spiral are fundamental
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to biology and astronomy as well as to mathematics. But even today, when
"double helix" has become almost a household phrase, few people realize that
there is a fundamental difference between a helix, which twists around an axis
at a constant distance from it, and a spiral (Figure 8). Most so-called spiral
staircases are really helical, for obvious practical reasons. Imagine what we
would be like if our DNA wound itself in spirals, or what the universe would be
like if galactic spirals were helices!

ANALYSIS

In order to interpret and create patterns in today's image-packed world, it is
not enough just to recognize similarities and differences; we also need to
analyze them. This leads us to investigate the way that large shapes are built of
smaller ones and to recognize patterns and their properties.

When children make shapes out of blocks or Legos, they often imitate the
diverse compositions that they see around them (Figure 9). Nature too creates
patterns. Like man-made patterns, natural patterns appear at many levels: atoms
are organized into molecules, while molecules are organized into crystals and
cells, which in turn are often the subunits of still higher-level organization.

When we examine patterns carefully, we find that the same forms and
arrangements appear over and over again, even when the objects

Figure 9. Many shapes are built from smaller ones. The reinforcing beams in a
bridge illustrate how repeated patterns are used in engineering and
architecture, as in nature, to form a whole out of parts.
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involved are very different.'® This is not just a coincidence. The geometry of
most patterns is governed by a very few basic principles of formation, growth,
and development. For example, in his fascinating book Patterns in Nature,?°
Peter Stevens discusses several ways in which natural patterns are generated,
such as stress, branching, meandering, partitioning, close packing, and cracking.
The results of these modes of formation are remarkably similar, despite the
variety of materials on which they operate (see Figure 8).

Figure 10. Young children can investigate the ways in which polygons can be
fitted together to tile a plane surface.

Important aspects of pattern formation can be grasped by exploring the
ways in which copies of objects can be packed together. Students quickly
discover that there are only a very few ways to do this. This fundamental
property of shape can be studied at many levels. For example, it can be studied
intuitively and "hands-on" when the objects being packed are circles or easy-to-
construct polygons such as triangles, quadrilaterals, and hexagons (Figure 10).
Older children can experiment with less regular forms and discover some
surprising things, such as the fact that any quadrilateral, even one that is not
convex, will tile the plane (Figure 11). (This is a surprising but very simple
consequence of the fact that the sum of the measures of the angles of a
quadrilateral is 360°.) High school students can study deeper properties of
sphere packing and tilings, such as their symmetry and how they can be
generated. (Griinbaum and Shephard's Tilings and Patterns'® is the definitive
resource for material on tilings.)
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Figure 11. Any quadrilateral will tile the plane, because the sum of the
measures of its angles is 360°, which is the same as the total number of degrees
around each vertex. So four copies of a quadrilateral arranged around a point
with each angle used once will fit just perfectly.

Discovering Symmetry

One of the most striking things about patterns of many kinds is their
symmetry, and this symmetry is an important tool in their analysis. A pattern is
something that repeats in some sense; symmetry is the concept that makes that
sense precise.

The study of symmetry begins by decomposing figures into congruent
parts. Although some shapes do not at first appear to be made of smaller parts,
it is often helpful to think of them as if they were. For example, mirror lines
divide a square into eight congruent sectors, which the symmetries of the square
permute. This decomposition helps us study the way symmetries work. In
particular, it reveals that symmetry is self-congruence. It is this self-congruence
that we consider beautiful and that makes symmetry a meaningful organizing
principle in the analysis of structure.

Young children learn quite easily to recognize symmetry, not only in
squares and butterflies, but also in animals, flowers, household utensils, toys,
buildings, and arrays of every kind. Symmetry can be found almost everywhere.
Older children can get great pleasure, and gain great insight, by creating
symmetrical patterns and discovering the rules that govern them.

One of the most interesting but underappreciated techniques for exploring
patterns is paper folding. We are all familiar with the pretty
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patterns that result when folded paper is cut and then unfolded. The snowflakes,
chains of dolls, and other repeating patterns that appear are not created by
magic but are simple consequences of the geometry of reflection. Many
geometrical constructions, and even aspects of number theory (some of them
decidedly nontrivial), can be represented by unfolded designs. Conversely,
many interesting three-dimensional shapes can be created by folding paper: the
polyhedral nets of Figure 2 are one example; origami puzzles are another. Paper-
folding problems stimulate the geometrical imagination in many ways.

Mirror Geometry

Mirrors can be used to study the principles of reflection. In particular,
building a kaleidoscope is an excellent way to discover how reflections interact
to generate the orderly arrangements that we call kaleidoscopic patterns. The
kaleidoscope is much more than a toy: it is a lesson in mirror geometry. Even
one mirror has much to teach us: adults as well as children are challenged by
the "mirror cards" used in elementary school classes. The kaleidoscope is more
complex, but it too is based on the principles of reflection in a mirror.

To explore the operation of a simple kaleidoscope, you just need two
rectangular pocket mirrors and some tiny colored objects—bits of plastic or
glass will do very well. Tape the two mirrors together along one edge, with their
reflecting surfaces facing each other. Place the objects on a table, between the
standing mirrors (Figure 12). If you look in the mirrors you will see the objects
repeated in a delightful pattern. A little experimentation will show that some
angles produce lovelier configurations than others. Only certain angles produce,
in the words of the kaleidoscope's inventor, Sir David Brewster, "a perfect
whole"—a finite number of identical regions arranged in a circular pattern. By
playing with the mirrors, it is not difficult for children to discover which angles
produce this perfect kaleidoscopic image. By doing so they will have learned an
important lesson in the modern study of shape.

Reflections generate patterns with a finite number of subunits, patterns that
have rotational as well as mirror symmetry. The rotations and reflections can be
performed one after the other, always leaving the "perfect whole" apparently
unchanged. Formally, such a system of motions is known as a symmetry group.
Many properties of shapes can be analyzed by studying their symmetry groups;
indeed, for more than a century this strategy has been a guiding principle in the
study of geometry. By using a kaleidoscope, students can understand this
fundamental idea by direct experience without making a lengthy detour through
the formal and abstract algebraic language in which it is usually expressed.
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Figure 12. The principle of the kaleidoscope is discovered by playing with two
hinged pocket mirrors. The objects appear repeated in infinitely varied
patterns, but as the angle between the mirrors is changed, some patterns reveal
greater symmetry (and beauty) than others.

Figure 13. A pyrite crystal. The lines on the cube's faces indicate that the
crystal's internal structure lacks some of the symmetries of the cube.
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Figure 14. A cubic kaleidoscope can be made by placing mirrors or reflecting
mylar on the inside of three sides of one of the tetrahedral sectors into which
the cube is divided by its mirror planes (a). The net for these three walls is
shown in (b); it consists of half a square and a rectangle whose base is the
length of the square's edge and whose height is the length of the square's
diagonal. Cut along the dotted lines, and then tape the edges o and B together
(c). With the cut end down and parallel to a table, look at a piece of newspaper
or other decorated material through the tetrahedron. You will see a decorated
cube! By moving the tetrahedron along the plane surface, you will see a
changing pattern on the cube.

The symmetry of three-dimensional figures appears to be more intricate,
but actually the principles are the same as in the two-dimensional case. For
example, the symmetry of the cube includes reflections in two kinds of mirror
planes and rotations about three kinds of axes. Younger students can learn a
great deal about the symmetry of the cube by trying to decorate it in ways
consistent with its symmetry. Older students can be challenged by the task of
changing this symmetry by decoration.

Such decorations appear in nature, where they provide clues to the
structure of hidden patterns. For example, the pyrite crystal in Figure 13 appears
at first glance to be an ordinary cube, but closer inspection reveals striations on
the cube's faces. These striations are consistent with some, but not all, of the
symmetries of the cube. The reason for the striations, it turns out, is that the
arrangement of atoms inside the crystal is less symmetrical than its external
cubic form suggests. Consequently, the pyrite crystal is a cube with texture, or a
decorated cube.

One of the more exciting and instructive exercises for older students is to
make a cubic kaleidoscope. The cube is divided by its mirror planes into 48
congruent tetrahedra. If a model of one of these tetrahedra is lined with mirrors
or some reflecting paper such as mylar, with the triangle belonging to the cube
space removed and the opposite vertex snipped off, an entire cube is generated
by the reflections. Reflecting mylar pasted onto cardboard or heavy paper will
work well; only three of the four tetrahedral walls should be constructed so that
you will be able to see inside. Figure 14 shows how to construct such a
kaleidoscope. '8

Using Symmetry

If all we learn about symmetry is to identify it, we miss the whole point.
Symmetry is an effect, not a cause.'” Why are so many natural structures
symmetrical? For example, what atomic forces ensure that
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the arrangements in crystals will be orderly? Although these are profound and
largely unsolved problems, a good working answer was given over thirty years
ago by James Watson and Francis Crick in describing their discovery of the
structure of DNA:??

Figure 15. Semiregular polyhedra are formed by using several kinds of regular
polygons as faces, with the same arrangement at each vertex and all vertices
interchangeable by symmetry operations.

Wherever, on the molecular level, a structure of a definite size and shape has to
be built up from smaller units . . . the packing arrangements are likely to be
repeated again and again and hence sub-units are likely to be related by
symmetry elements.

In other words, nature builds modular structures that organize themselves
according to certain rules. Repetition of the rules tends to lead to arrangements
of modules that we call symmetrical.

Polyhedra provide a wealth of excellent examples of arrangements that are
repeated again and again. When you build a cube with cardboard squares by
attaching three squares to each corner, you are constructing a shape that
satisfies a certain packing arrangement: it must be made of congruent regular
polygons, and it must have the same number
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at each corner. By generalizing this construction to other polygons, we obtain
the five regular polyhedra (Figure 1). The arrangements can be further
generalized to include the semiregular polyhedra (Figure 15), in which more
than one kind of regular polygon can be used, and the convex deltahedra
(Figure 16), all of whose faces are equilateral triangles but whose vertex
arrangements need not all be the same.'”

Figure 16. Convex deltahedra are formed from equilateral triangles arranged
with differing types of vertex arrangements: three, four, or five triangles may
be joined at a vertex.

The cover design for the biological journal Virology contains an
icosahedron. The story of the discovery of icosahedral symmetry in viruses and
the ongoing efforts of scientists to link that symmetry to their subunit structures
is very instructive.!” Viruses are tiny capsules that contain an infective agent.
The capsule is composed of protein sub-units that group together to form a
closed shell. Watson and Crick realized, in the course of early X-ray
investigations into virus structure, that the shells of many viruses had
polyhedral or helical forms. Subsequent studies showed that the polyhedra were
often icosahedra, and this suggested many attractive models for the arrangement
of the protein subunits. But more recently these models have been found to be
incorrect. The connection between packing arrangements and overall symmetry
in viruses remains an unsolved problem. Problems such as these lead also to
new developments in mathematics: they force mathematicians to rethink their
definitions and to broaden the scope of their investigations.

Lattices

From earliest times the beautiful shapes that we call crystals have been a
source of wonder and admiration. Why do they have polyhedral forms when
most other natural structures do not? Quartz crystals were the first to be studied;
at first they were thought to be pieces of permanently frozen ice. (It is
instructive that our word "crystal" comes from the Greek word k pig treddog,
which means ice.) By the seventeenth century, scientists began to suspect that
the shapes of crystals reflected an orderly, patterned, internal structure. Long
before the development of modern atomic theory it was suggested that crystals
are made of stacks of tiny spheres that represented the basic particles of the
structure, whatever those might be. Later the particles were represented as tiny
bricks (Figure 17). Sphere packings and bricks (not necessarily rectangular) are
still important models for crystal structure.
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Figure 17. An 1822 concept of crystal structure in which various crystal shapes
are imagined as being built from tiny rectangular bricks.

Whether we use spheres or bricks, the important idea is that of an orderly
array. Let us explore this a little further. A one-dimensional lattice is a set of
points equally spaced along a line. (Although we can draw only part of the set,
we assume that it goes on forever.) All one-dimensional lattices are essentially
alike, differing only in the spacing between points. But there are two basic
kinds of two-dimensional lattices: one in which the points of the rows lie
directly above one another, the other in which they are shifted horizontally (see
Figure 18). Each point of a lattice "occupies" a certain portion of the plane, the
region nearer to it than to any of the other lattice points. These regions, called
Dirichlet domains, display the symmetry of the lattice in a corresponding brick
model. The Dirichlet domains in two dimensions—the bricks—are always
quadrilaterals or hexagons; within each lattice the regions about each of the
points are congruent.

Lattices describe the underlying symmetries of patterns. Draw a one-
dimensional lattice on two or three different sheets of tracing paper, and
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use them to create two-dimensional lattices. You will quickly discover that you
can change the symmetry of the lattice by shifting the relative positions of the
rows: you can check the symmetry by recalculating the Dirichlet domains. No
matter what you do, the symmetry will always be of one of the five types shown
in Figure 18. It is an important fact that every two-dimensional repeating
pattern, whether it is an arrangement of points or ellipses or polygons, a
wallpaper pattern, or an Escher-like tiling of the plane, can be interpreted as a
decoration of the Dirichlet domains associated with a lattice that belongs to one
of these five symmetry types.

Figure 18. The symmetry of two-dimensional lattices is displayed by their
Dirichlet domains, polygons centered at each lattice point which enclose the
region of the plane closer to the enclosed lattice point than to any other. These
polygons may be quadrilateral or hexagonal; for a given lattice they are all
congruent.

This simple observation raises a wealth of interesting questions. What kind
of packing arrangements can we create if we replace the points by other shapes?
What shapes can be fitted together without gaps to form orderly patterns? What
do we mean by orderly? What are the possible ways to extend arrays to three
dimensions? It turns out that there are only a small number of solutions to
problems such as these, which explains why the same patterns reappear so often
in crystal structures, trusses, biological tissues, honeycombs, wallpaper, textiles,
and tiled floors.

Three-dimensional lattices have been used by mathematicians and
scientists, beginning in the nineteenth century, to try to explain the
arrangements of atoms in crystals. In three dimensions there are 14 symmetry
types of lattices and 5 combinatorial types of Dirichlet domains (see Figure 19).

It is difficult to overestimate the importance of play with cubes and other
blocks. Even one year olds enjoy building taller and taller towers and watching
them fall down. Later, children use blocks to build
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houses, courtyards, and other structures. Young children are likely to have
trouble building octahedra, but they can use small cubes to build larger cubes.
The smallest composite cube is made up of 8 smaller ones; the next larger is
made up of 27; by guessing how this series continues the child gains some
understanding of volume. Older children—of any age—can also learn a lot from

‘25..
‘ % \ng

Figure 19. There are five combinatorial types of Dirichlet domains for three-
dimensional lattices. These five shapes are much less well known than the
Platonic solids but are at least as important!

Cubes are the prototypical three-dimensional tile, and many structures,
both mathematical and real, are based on it. It is worthwhile to try to build
polyhedra out of cubes. For example, try building a regular octahedron by
sticking sugar cubes together with glue. The larger you make your sugar
octahedron (if it isn't too messy), the closer the stepped faces approximate
smooth ones. Building polyhedra from cubes is thus a sophisticated lesson in
volume measurement. It is instructive that H.S.M. Coxeter, in his classic work
Regular Polytopes,® refers to the cube of any dimension as the "measure
polytope." (The word "polytope" refers to the higher-dimensional analogues of
polygons and polyhedra.)

Dissection

An important problem in many fields is how to divide a region into
compartments of various shapes. An architect or designer partitions the interior
of a building into rooms to serve certain purposes. We all fret over the most
efficient way to pack a suitcase or the trunk of a car. A complex living object,
such as a plant or a human being, has grown from a single cell that, in the early
stages of growth, divided into "daughter" cells that grew and divided again. The
study of how dividing cells organize themselves into tissues and then into
organs is
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one of the most exciting frontiers of biology. Some of the issues relate to the
geometry of dissection, compartmentalization, and subdivision.

There are many interesting mathematical problems dealing with dissection.
One of the most famous theorems in this field says that any polygon can be
divided into a finite number of pieces and reassembled to form a congruent
copy of any other polygon of the same area. Elementary school children enjoy
the challenge of creating shapes with tangrams or other polygonal tiles; imagine
the many challenging problems and puzzles that could be devised for older
children related to this dissection theorem. More advanced students can
discover that the analogous theorem for polyhedra is false; this is another
fascinating and important result.

Another intriguing dissection problem is the creation of "rep-tiles," tiles
that can be fitted together to form replicas of themselves (Figure 20).
Alternatively, we can create such tiles by subdividing one into smaller
congruent copies of itself. To create a tiling by rep-tiles, think of the daughter
tiles growing to the size of the original one and then subdividing again.
Repeating this process over and over again, we create a tiling that is self-similar
in a certain sense; many of these tilings have no lattice structure. Is the tiling of
Figure 20 lattice or nonlattice?
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Figure 20. "Rep-tiles" are tiles that can be fitted together to form replicas of
themselves. They build tilings that are self-similar and that, like this one, may
have no lattice structure. Such tilings are of great interest today because they
share many strange properties with some newly discovered crystalline materials.
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(This is not easy to answer!) Tilings without lattices are of great interest
today among mathematicians and solid-state scientists because they share many
strange properties with some recently discovered crystalline materials called
quasicrystals.

Combinatorial Tools

Combinatorial properties of patterns are also very important because they
provide clues to what is possible and what is not. For example, suppose we
want to build a tetrahedron—that is, a polyhedron with four faces. How should
we start? Before cutting out polygons and trying to tape them together, let's
reason out the possibilities. In the first place, all the polygons will have to be
triangles, because as we build we will start with one polygon and attach another
to each edge. If our first polygon had more than three edges, we would run out
of polygons, since we only have four. So to build a tetrahedron we attach a
triangle to each edge of our first triangle (Figure 2a), and then to make a closed
polyhedron we must fold up the configuration so that the other triangles meet in
a point. This means that the edges of the polyhedron must form a network of
four triangles.

We can go on from here to discuss properties (e.g., congruence) these
triangles might have, but it is important to note that we have already made an
important discovery: every tetrahedron is a combinatorial network of four
triangles. Similar reasoning shows that there are two combinatorial types of
pentahedra, polyhedra with five faces (you can find them in Figure 6). There are
exactly seven types of hexahedra (Figure 21), including, of course, the cube. It
is a challenge for students to discover why there are no more.

A7
v 7

Figure 21. There are seven combinatorial types of hexahedra. Try to visualize
them as three-dimensional polyhedra!
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The combinatorial properties of shapes are sometimes more fundamental
than their metric properties. If we try to build a convex polyhedron out of
hexagons, we will never succeed: such polyhedra are combinatorially
impossible. It's better to know this in advance! A few years ago a "World Sports
Day" poster featured a giant soccer ball that appeared to be made entirely of
hexagons. The designer did not realize that she had drawn an impossible figure!

The fundamental theorem of combinatorial theory for polyhedra is Euler's
Theorem, which is valid for every convex polyhedron (and some others): the
sum of the number of faces plus the number of vertices is equal to the number
of edges plus two. This can be written succinctly as

F+V=E+2

where F is the number of faces (or cells) of the network, V is the number
of vertices, and E is the number of edges. (It is easy to verify this equation with
the networks in Figures 1, 6, 19, and 27). Euler's Theorem is easy to discover
(with guidance), easy to teach, and, for more advanced students, not difficult to
use. The theorem and its many corollaries and generalizations are important
tools for enumerating the combinatorial properties of objects.

REPRESENTATION

A third important tool in the study of shape is representation. In everyday
life as well as in science, mathematics, and art, we deal not only with shapes
themselves but also with many kinds of representations of shapes—models,
photographs, drawings. The tools of representation include the ability to
understand scale models; to read maps; to understand shadows, sections, and
projections; to reconstruct shapes from their images; to draw accurately; and to
use computer graphics. The underlying issue is the same in each case—to
determine the relation between a shape and its image or between different
images of the same shape.

Models

The simplest representation of a shape is a model of it, built to an
appropriate scale. A spherical globe is a model of the earth, or of the moon, or
of any planet. A globe is not an exact replica of the earth, but an approximate
one that displays certain features of the earth quite well. It is approximate
because it is perfectly round, which the earth is not. Besides, it is constructed on
such a small scale that even our largest cities appear as tiny dots. But every
child growing up in this
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Figure 22. Mapmakers use many different methods of projecting the globe to
create flat maps. The choice of projection determines many of the map's
features.
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space age understands that the globe is a model of the earth. Most models
are approximate in the sense that they ignore some details in order to present
key features more vividly. Making a model entails making a selection of which
features are to be emphasized; this point merits classroom discussion.

Maps

Interesting questions about the relation between shape and image arise, for
example, in the study of maps. Why do we use both globes and flat maps? The
answer is simple: they are useful for different purposes. Although a globe and a
flat map represent the same thing, namely the earth, they display its properties
very differently.

Flat maps can represent small regions of the earth quite well, since part of
the surface of a spherical object can be closely approximated by a plane. But the
representation gets worse and worse as you try to increase the area represented
by the map. The relation between globes and flat maps leads quickly to very
fundamental geometrical questions. You can't make a sphere by folding up a
sheet of paper, so to make a flat map, you have to project the globe in some
way. Mapmakers use several different projection methods (Figure 22). Thus a
map of the earth is an approximation of a spherical surface, an approximation
that gets worse and worse as the portion of the globe being mapped is increased.
Every flat map necessarily distorts angles, areas, or both. Like a mathematician
considering more general kinds of maps, every mapmaker must compromise by
deciding which features of representation are most important for particular
purposes.

Shadows and Lenses

Shadows, perhaps the most familiar examples of images, are nevertheless
rather subtle because they distort contour as well as size. The interesting
question is to determine what sorts of distortions can occur, and why.

Young children can learn a great deal by observing their own shadows. To
create a shadow, you need a light source (if you are outdoors, it is the sun), an
object (you), and a screen (the ground or a wall). The shadow is your projection
onto the screen, and what that projection looks like depends on the positions of
the light, the object, and the screen. Older students can experiment, varying the
positions of the light, the screen, and the object that blocks the light to produce
the shadow. From this they can discover which properties of shapes are
preserved and which
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are lost under this kind of projection. For example, all the conic sections can be
created as projected shadows of a circle (Figure 23).

Figure 23. A parabola, an ellipse, and a hyperbola as shadows cast by a circle
on screens in different positions.

At a more advanced level we can think of shadows as maps in which only
the outline of the map is retained. From this perspective the principal difference
between a map of the earth and your shadow on the wall is the object being
mapped.

Lenses, too, distort shape but in more predictable ways. Eyeglasses, slide
projectors, telescopes, microscopes, and cameras are only a few of the tools
through which lenses enter our lives. Indeed, lenses in our eyes provide our
only access to visual images. The study of lenses involves many principles of
geometry that can be taught at every level from kindergarten through high
school and beyond.

Drawing

In every culture and in every era artists have grappled with the problem of
representing three-dimensional shapes on two-dimensional surfaces. The
solutions they have found are, in many cases, the same as those of the
mapmaker. For example, in Figure 24 the artist is literally making a map of the
shape he sees before him. The device he is using is easy to make and can be
used in the classroom with good results. Perspective drawing is another
example of mapping.

Before the camera became available to everyone, drawing was widely
taught. Today very few people know how to draw accurately, and,
consequently, they no longer notice things as carefully as they once did. A few
years ago there was great embarrassment (or should have been) when Branko
Griinbaum discovered that the icosahedral logo of the
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Mathematical Association of America, which appeared on all of its
publications, was inaccurately drawn (Figure 25); this error had escaped
detection for several years even though it was seen regularly by thousands of
mathematicians. If visual illiteracy is so widespread even among professional
mathematicians, future generations run the risk of really believing that they live
in an Escher-like impossible world (Figure 26)!

Figure 24. Albrecht Durer's sketch of an artist making a map of the shape he
sees before him.

In his article on the misdrawn icosahedron Griinbaum'! presented a small
sample of his collection of badly drawn textbook figures (see Figure 27).
Looking at them with a trained eye is enough to make one laugh or cringe (or
both). But how many of us could do better? Indeed, how many teachers of
mathematics can even draw a respectable cube? These gaffes presumably would
not have occurred were authors and graphic artists more familiar with the
principles and practice of perspective and projection. For many years technical
drawing has been relegated to courses in the fine and industrial arts when, in
fact, they are essential for all students.

Figure 25. The icosahedral logos of the Mathematical Association of America:
the old one is badly drawn; the new one is accurate. The error escaped
detection for many years. Can you tell which is which? (Hint: In drawing a
projection of a three-dimensional figure on a plane, parallel lines should stay
parallel or else intersect in a single point.)
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Figure 26. Belvedere, by M.C. Escher, provides a visual commentary on the
subtleties of representing a three-dimensional scene on a two-dimensional
piece of paper. Copyright 1958 M.C. Escher Foundation, Baarn, Holland. All
rights reserved.

Image Reconstruction

If the artist's problem is to represent a three-dimensional shape on a flat
surface, the viewer's problem is to recognize what shape the image is supposed
to represent. A visit to an art gallery is an exercise in image reconstruction. So
is the physician's task of reading an X-ray or a space scientist's task of
interpreting photographs of the surface of Mars.
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Figure 27. Some badly drawn figures, all taken from published books dealing
with geometry and related subjects.

The painting, the X-ray, and the photograph are maps of shapes, which we
need to be able to read "in reverse." This subject, closely related to the problem
of visualization, is of great importance in the study of shape, but it has not been
organized in a way that can be used in school. Here is a challenge: to bring to
students of mathematics the wealth of material related to shadows, cross
sections, and projections. In addition to ideas now taught in art classes and in
the industrial arts, students could learn about criteria for deciding whether a
projection is properly drawn (i.e., whether a diagram is in fact a projection of a
three-dimensional form). They could learn the principles of the stereoscope and
why stereoscopic pairs appear three-dimensional to us. They could also learn to
deduce symmetry and topological properties of a three-dimensional shape from
its two-dimensional representation. A discussion of optical illusions and
"impossible" figures can lead to many important insights. Those familiar with
the combinatorial properties of polyhedra can study their representation through
planar graphs and can try their skill at reconstructing corresponding three-
dimensional forms.

Computer Graphics

The computer is not a substitute for real three-dimensional models. Images
on the computer screen, even the so-called 3-D images, are meaningful only if
the viewer has extensive prior experience with three-dimensional structures. On
the other hand, computer graphics can be fascinating to students and can
generate strong interest in the study of shape. Good software can thus be
invaluable in the study of shape and should be used when appropriate.
Moreover, every person should know something of the geometry that underlies
computer graphics—above all, coordinate geometry—in order to use graphics
packages intelligently and critically.

In summary, the creation of images and the reconstruction of shapes from
their images is central to the study of shape. All of the many
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facets of representation can be organized under the concept of mappings. "Real"
maps are only one example; shadows, sections, images seen through lenses,
images produced by projection, images produced by reflection, and images
rendered by the graphic or photographic artist are others. As increasingly
detailed images of the very large, the very small, and the formerly hidden are
made visible by modern technology, the need to understand this broadened
concept of mapping becomes increasingly urgent.

Mapping is a major theme of contemporary mathematics because it
provides a useful and illuminating way to organize relations among shapes and
patterns (including very abstract ones). It also helps us to make our
classification systems precise. Congruence and similarity can be described in
the language of maps. For example, the shapes in Figure 3a can be transformed
into one another by a mapping that preserves their combinatorial structure; the
shapes in Figure 3b are related because they have the same set of symmetries
(which are mappings of the objects on to themselves); the shapes of Figure 3c
can be transformed into one another by a mapping that is a continuous
deformation.

VISUALIZATION

Visualization is a broad subject with implications for many aspects of our
lives. It is centrally important to all of mathematics and has been so throughout
history. Mathematics made a great advance with the invention of numerals,
which are visual representations of numbers. Certainly one of the major
mathematical achievements of the last several hundred years was the
development of analytic geometry, which enabled us to combine visual and
formal mathematical thought.

Obviously, visualization is very important in the study of shape. But it is
also important for all of mathematics. To study change, we need to see it; to
study data, we examine various graphical representations. We try to grasp the
concept of higher dimension by drawing pictures and by making models. Even
the properties of numbers can be illuminated by visual representation—that is
what the number line is for. But it is not true that we instinctively know how to
"see" any more than we instinctively know how to swim. Visualization is a tool
that must be cultivated for careful and intelligent use.

It may be helpful to retell a very old story about Galileo's discovery of
mountains and craters on the moon, a discovery that helped to change forever
the way we view the universe and our place in it. "Following Aristotle,
Europeans of the Middle Ages and the Renaissance believed that the moon was
a perfect sphere, the prototypical shape not only of the visible planets and stars
but of the entire universe," explains the art historian Samuel Edgerton.®
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The problem, thus, was not to determine its shape, which all accepted, but to
explain the mottled appearance of its surface, that "strange spottednesse,” as
Harriot called it. Some ancient authorities had explained the spots by arguing
that the lunar surface was like a gigantic mirror reflecting the lands and seas of
the earth. Others had claimed that the moon was composed of transparent
substance with some internal denser matters giving off varying amounts of light.

Galileo found another explanation:®

I have been led to the opinion and conviction that the surface of the moon is
not smooth, uniform, and precisely spherical as a great number of philosophers
believe it (and the other heavenly bodies) to be, but is uneven, rough, and full
of cavities and prominences, being not unlike the face of the earth, relieved by
chains of mountains and deep valleys.

Thomas Harriot was an English astronomer who had also been looking
through a telescope at the moon at the same time that Galileo made his
discoveries. Harriot's sketches show, however, that the "strange spottednesse”
did not look like mountains and valleys to him (Figure 28).

How could it happen that Harriot and Galileo, looking at the same object
through comparable telescopes, did not "see" the same thing? True, Galileo was
the greater genius, but this fact alone is not very illuminating. Edgerton suggests
a more persuasive reason: Galileo was a trained artist, skilled in the use of
perspective and chiaroscuro, the rendering of light and shadow. Thus "Galileo
did indeed have the right theoretical framework for solving the riddle of the
moon's “strange spottednesse." Unlike Harriot, he brought to his telescope a
special “beholder's share' (as E.H. Gombrich would say); that is, an eyesight
educated to “see' the unsmooth sphere of the moon illuminated by the sun's
raking light."

Figure 28. Harriot's and Galileo's sketches of the lunar surface.
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Figure 29. The benzene ring was made visible on the atomic scale for the first
time in 1988. This image was produced by a scanning tunneling microscope.
An educated eye can see the triangular patterns of electrons connecting pairs of
the six carbon atoms in each ring.

"Galileo's telescopic discoveries opened the eyes of Europeans
everywhere," continues Edgerton. And, as his notebooks show, "even Harriot
“saw' shaded craters once he was aware of the Florentine's observations."

Today, we all see mountains and valleys when we look at the moon. But
would we see them if we didn't already know what we were supposed to see?
And what do we "see" when we look at the images presented to us by modern
technology? The educated "beholder's share" is just as essential today as it was
in Galileo's time. "Whether the object is a virus seen through an electron
microscope, a distant galaxy explored by radio telescope, or a fetus observed in
the womb by means of ultrasound, theoretical assumptions have to be made
before the raw data can be translated into an image," writes Hans Christian von
Baeyer in a recent issue of The Sciences.?

Von Baeyer goes on to point out that this translation must be done by the
educated eye as well as by the internal workings of the computer. A case in
point is the first atomic-scale image of the "hexagonal" benzene rings, which
was produced for the first time in 1988 (Figure 29). Can you see the hexagons?
Or do you see some lumpy donuts? Or spherical triangles? Scientists were able
to find the triangular traces of the hexagonal structure because they already
knew that they were there.

Rudolf Arnheim stressed the importance of visualization in science in his
aptly titled Visual Thinking:'
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The lack of visual training in the sciences and technology on the one hand and
the artist's neglect of, or even contempt for, the beautiful and vital task of
making the world of facts visible to the enquiring mind, strikes me, by the
way, as a much more serious ailment of our civilization than the "cultural
divide" to which C.P. Snow drew so much public attention some time ago. He
complained that scientists do not read good literature and writers know nothing
about science. Perhaps this is so, but the complaint is superficial. . . . Snow's
suggestion that "the clashing point" of science and art "ought to produce
creative chances" seems to ignore the fundamental kinship of the two.

Like the weather, everyone talks about visualization, but no one does much
about it. Visualization is not a simple matter: it is a deep subject, properly the
domain of physiology and psychology and still not well understood.
Nonetheless, it is easy to teach shape as an important first step in developing
powers of visualization. The simplest way to teach students to visualize is to
provide them with a rich background of hands-on experience with shapes of
many kinds. A serious study of image reconstruction would also be a step in the
right direction.

CURRICULAR ISSUES

Students should learn to recognize the patterns of shape, to understand the
principles that govern their construction, and to be able to move easily back and
forth between shapes and their images. Although the study of shape seems to
fall between the cracks of traditional subjects, the new Curriculum and
Evaluation Standards for School Mathematics" of the National Council of
Teachers of Mathematics reflect an emerging consensus that this situation must
be improved.

The study of shape must be more than the sum of its parts; an integrated
view of shape can help accentuate the whole subject. One possible approach is
illustrated by the chart in Figure 30.

Forging Connections

Rethinking the subject as a whole provides us with an opportunity to forge
substantive connections between the study of shape and the role of shape in the
real world. We can take seriously Arnheim's plea for integrating art and science.
We can also reduce the mystery of some of our contemporary technology. The
principles of the electron microscope, the radio telescope, and ultrasound are
not wholly beyond the scope of the K-12 curriculum; high school students can,
if we wish, learn the foundation necessary to understand the action of these and
other modern imaging techniques.

Indeed a focus on shape makes many aspects of modern technology much
more accessible than is commonly supposed. Here are just three
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Figure 30. An arrangement of topics related to shape that provides structure
and coherence to what might otherwise appear as an arbitrary collection of

quite disparate topics.
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examples of important shapes whose key features could easily be taught in
our schools.

Figure 31. The structure of crystalline silicon. It is made entirely of zig-zag
hexagons. This is also the structure of diamond (with carbon atoms at these
positions instead of silicon).

The silicon chip, which has transformed the industrialized world in just a
few decades, is based on a structure that is a carrier of incredibly miniaturized
circuits. Although the circuits themselves are complex, the crystal structure of
the silicon that houses them is a simple modular structure.

For example, crystalline silicon is built of linked zig-zag hexagonal rings
(Figure 31), which are easy to make and instructive to study. In the silicon
structure the rings are linked to form cage-like polyhedra. Elementary school
children can learn to build and identify these substructures, middle school
children can learn to put them together, and high school children can study the
relation between the silicon structure and the properties that make it so useful.

The CAT scan and other forms of computer-assisted image reconstruction
have revolutionized medical diagnosis in recent years. While diagnosis by X-
ray is an exercise in reading shadows, diagnosis by CAT scan is an exercise in
reconstructing images from their cross sections. Like the circuitry on a silicon
chip, the image reconstruction used in this technology is a complex process, but
the simplest geometrical principles that underlie it are easily understood.

Here again we find that the same geometric principles are central to many
fields. For example, the construction of shapes from sections and shadows has
been the task of architects and builders for centuries. While it is not feasible to
bring a CAT scan machine or a construction site into the classroom, many
projects suitable for school can help students understand the relation between
shadow or cross section and shape.

Snowflakes, especially the feathery ones, are enchanting. Children often
learn to make paper snowflakes in school, an exercise that can easily
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be extended to a study of their symmetry. The hexagonal symmetry of the
snowflake provides an introduction to the symmetry of polygons; it is an ideal
subject for the elementary classroom.

Figure 32. Branched snowflakes reveal the familiar hexagonal symmetry of ice
crystals repeated fractal-like at every scale.

But the snowflake has much more to teach us. In the first place a
snowflake looks like a pattern we might see in a kaleidoscope, and so it is. This
suggests a study of the kaleidoscope, which, as we have seen, is an application
of the principles of mirror geometry. These same reflection principles undergird
contemporary technology: one need only think of the reflection beams of
burglar alarms and lasers or of radar and sonar. Middle school children can
easily understand and appreciate such applications. At the high school level the
emergence of hexagonal symmetry from aggregates of water molecules can be
explored and so can the crystals' dendritic growth, or branching.

The branching of the snowflake is as characteristic as its symmetry and is
equally significant in the study of shape. First, corners of the snowflake sprout
beyond a hexagonal "core." Then these branches themselves sprout branches,
the branches of the branches branch, and so forth (Figure 32). The result is a
structure in which a certain feature—branching—is increasingly repeated on a
smaller and smaller scale. If this process could be repeated indefinitely, the
result would be a self-similar structure; indeed, the snowflake is a fractal at an
early stage of its development.
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Geometry

The role of geometry is a perennial issue in mathematics education at all
levels from elementary school to graduate school. For many years geometry has
been the problem child of the mathematics curriculum. A glance through the
National Council of Teachers of Mathematics' 1987 Yearbook Learning and
Teaching Geometry'* suggests some of the many questions involved. The
problem with geometry is due in part to lack of agreement on what geometry is
and why we should study it. Do we study it to learn disciplined thought? To
prepare students for other subjects? Or is it because there is important content in
the subject itself?

Most high school geometry texts do point out examples of geometric forms
in nature, science, technology, and art, although none of these connections is
ever explored in any depth. The synthesis of method and content is usually
unsuccessful. Our geometry courses are uneasy compromises between many
important but very different goals: teaching deductive reasoning, proving
theorems of Euclid, introducing problem solving, teaching visualization, and
preparing the students for calculus. The continuing debate indicates that none of
these goals is particularly well served in the present situation.

In almost all of these debates the teaching of geometry is defended on the
grounds that it serves external purposes, rather than on the importance of the
subject in its own right. For example, a recent article on similarity’ justifies the
teaching of similarity with the following rationale:

Similarity ideas are included in many parts of the school curriculum. Some
models for rational number concepts are based on similarity; thus, part of the
students' difficulties with rationals may stem from problems with similarity
ideas. Ratio and proportion are part of the school curriculum from at least the
seventh grade on, and they present many difficulties to the student.
Standardized tests include many proportion word problems. Verbal analogies
(abiic:d) form parts of many intelligence tests. Similar geometric shapes
would seem to provide a helpful mental image for other types of proportion
analogy situations.

All of these reasons are valid ones, but there is a striking omission: the
principal reason for teaching similarity ought surely to be that it is of profound
importance in understanding shape.

Meanwhile, outside the halls of education, the computer revolution is
rapidly changing the world in which we live. These changes are placing new
demands on the curriculum, demands that are just beginning to be heard in the
schools. The revolution in the study of shape and form made possible by the
computer suggests that what we need is not just a better compromise for
geometry, but a new and coherent mathematics curriculum that integrates shape
into the entire course of study.
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Is Euclid to stay or go? This is not a useful question. We need to ask
instead what we want our students to know and why. Euclid realized that
careful reasoning about shape requires careful statements of definitions and
assumptions and very careful argument. In order to analyze shapes, students
must know how to measure lengths, areas, and volumes as well as planar and
dihedral angles. They need to know properties of parallel and perpendicular
lines, basic angle theorems, and fundamental properties of figures. Moreover,
they need to know how, with ruler and compass, to construct such standard
figures as equilateral triangles, regular hexagons, and squares.

The study of shape therefore overlaps the traditional geometry curriculum,
but it cannot be subsumed under it as a brief module or extracurricular activity.
The shapes that students need to understand today, and the things that they need
to be able to do with them, are too vast a subject for that. Moreover, there is
considerable difference of emphasis and purpose.

Traditional geometry shares more than just historical roots with classical
civilization. Its role in school in some respects is analogous to the curricular
issues of classical versus modern languages. A student who studies Latin or
Greek learns rigorous thought and some important history and also acquires the
basis for many modern languages, including our own. Modern, spoken
languages, on the other hand, are less rigorous yet more fluid. They are the
living flexible languages that people actually use in everyday life. Ideally,
students should learn both classical and modern languages, although few have
the time or opportunity for both. A watered-down Latin course enlivened with
examples of cognate words in Italian, Spanish, or French is not the solution to
the problem.

All of the virtues of Latin and Greek are shared by classical Euclidean
geometry. For over 2000 years Euclid's Elements has served not only as the
cornerstone of geometry but also as the very model of mathematical reasoning.
Deductive reasoning from axioms has been very fruitful, not only for
mathematics but also for science and philosophy. For example, it was questions
raised by Euclid's axioms—rather than observation of the real world—that led
to the discovery of non-Euclidean geometry, which subsequently became the
central tool in studying the large-scale structure of the universe. Classical
geometry has not lost its value, but other needs require that we also introduce
the mathematical counterpart of modern language courses into our curriculum.

Studying Shape

Shape is a subject that cuts across many parts of mathematics and science.
It offers a rich variety of possibilities for imaginative, exploratory
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instruction—from building models to using computers, from observation to
experiment, from manipulation to calculation. Shape holds extraordinary
potential for enhancing the quality of mathematics instruction, in several
different ways.

The Study of Shape is Interdisciplinary.

As we have already noted, many subjects in which shape plays a role are
not usually thought of as mathematics in a narrow or restricted sense. For
example, problems of size and scale do not belong exclusively to mathematics.
They lead to all sorts of questions that send us to the library or to colleagues in
other departments. Could there ever have been giants? Could there be people as
small as mice? Our myths show that these questions are older than our recorded
history. The answers are not straightforward applications of similarity. A giant
could not be supported by his legs if they were exactly similar to our legs;
instead, the bone mass has to be increased disproportionately. This complication
makes the study of biological scale more fascinating than it would be if the
answers were simple.

Perspective is taught in art classes; geometrical optics is a branch of
physics; similarity and other transformations are central concepts of biology;
chemists build polygons and polyhedra to model the structure of molecules.
Even within mathematics, shape is interdisciplinary: it requires visual and
computational skills, logical thought, and many other tools. Teaching shape in a
coherent, meaningful way can stimulate close cooperation among teachers of
many subjects.

The study of shape suggests projects cutting across several subjects. For
example, the study of similarity can be nicely complemented by a study of
lenses, requiring an excursion into physics. Even the names associated with
many of the laws of geometric optics (e.g., Fermat's principle) stand as
testimony to the fact that today's disciplinary borders have not always been so
high. It is precisely because we find the same shapes everywhere that we need
to study them—as part of mathematics in many different contexts.

The Study of Shape is a Laboratory Subject.

All of us, children and adults, learn about shapes by making them and
studying models (Figure 33). As an ancient proverb says, "I hear and I forget; I
see and I remember; I do and I understand."

If we wish to build a shape—a cube, a scale-model house, or a spiky star
polyhedron—we have to be able to cut out and assemble pieces of the correct
sizes. This is one of the reasons that basic geometry (angle measurement,
parallel lines, and so forth) remains indispensable.
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Figure 33. The eminent geometer H.S.M. Coxeter studying a model. Coxeter
has devoted his life to discovering patterns in shapes.

Building models, in this very concrete sense, is one of the best ways to
unify theory and practice.

Hands-on experimentation is essential. For example, when we make a cube
with our own hands, we gain much more insight into its metric, combinatorial,
and stability properties than if we just look at one. If instead of cardboard
squares we make the cube from plastic straws stuck in balls of putty or in
marshmallows, the cube will wobble. Though less elegant, the wobbly cube is
not a "bad" model. On the contrary, it is a useful one because it teaches
something about rigidity and flexibility. It also teaches something about the
shapes into which the cube can be transformed while maintaining its
combinatorial structure.

Everyone seems to agree that models and "manipulatives" are valuable
tools in the classroom. But too often one hears the lament that "if only models
were introduced early enough, we wouldn't have to use them later on." This
unfortunate attitude masks two implicit but very inaccurate assumptions. First,
that gross morphological shape is the main thing that we learn from models and
that it can all be learned in elementary school: if you've seen one cube (once),
you've seen them all. This, of course, is nonsense: the humble cube plays a key
role in the study of volume, congruence, symmetry, and modular structures.

The second assumption is that the main purpose in studying a model is to
develop our powers of abstract reasoning; here the model plays the
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role of training wheels on a bicycle. Certainly we want our students to
understand the sense in which a particular cube represents the general concept
of a cube. But even once this is understood, most of us still have a lot to learn
from real models.

Ideally, shape should be taught in a laboratory setting. At the very least,
every school should have a laboratory where students can explore shape. A
shape laboratory should include work tables, drawing and construction
equipment, three-dimensional models of many kinds, materials for building
them, and places to display them. If possible, it should include computers with
graphics capabilities. Textbooks should be supplemented with workbooks,
project material, and interactive computer graphics programs.

The Study of Shape is for Everyone.

It is often said that studying shape is ideal for slow learners. Certainly it is
true that students who have trouble with axioms and abstractions will find a
hands-on, problem-oriented shape curriculum less difficult and more
meaningful. The misconception lies on the other side of the coin—the
widespread belief that more advanced students do not need to study shape.

We do not have to look further than today's newspaper for evidence of the
folly of this belief. "Supercomputer Pictures Solve the Once Insoluble,"
proclaimed the headline of a recent article on the front page of the New York
Times. "

Scientists who are using the new supercomputer graphics say that by viewing
images instead of numbers, a fundamental change in the way researchers think
and work is occurring. "The human brain is the best pattern recognizer in
history," says Heinz-Karl Winkler, a Los Alamos National Laboratory
physicist. "We can use it to visually scan vast quantities of data. We can zero
in on a structure in an image and distinguish between important things and
unimportant things."

It is our best students, not our weakest ones, who will be using super-
computers to study the shape of data and scientific images. How will they know
how to distinguish important from unimportant things in a structure if they have
never studied structure at all?

The Study of Shape is Fun.

Students enjoy working with shape, as we all do. In teaching shape,
especially in a workshop setting, a teacher is unlikely to encounter the lack of
motivation or the resistance that sometimes arise in geometry courses.
Unfortunately, fun is suspect in some educational circles. One effective way to
answer questions about the educational value of exploring shape is to hold an
open house in the shape laboratory so that doubters can become converts by
getting involved with the material themselves.
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The Study of Shape is Open Ended.

In a time of rapid change the study of shape facilitates open-ended
strategies for learning. For example, computer graphics is revolutionizing the
study of shape. Just as the supercomputer is changing methods of research, so
ordinary computers are providing images that most of us could not imagine a
decade ago.

Many teachers say that computer software has completely changed the way
they teach. They no longer feel that they have to have all the answers; instead,
they become partners with the students in exploring the properties of shape.
These teachers are very enthusiastic about their new way of teaching. Both their
enthusiasm and the new "partnership pedagogy" can be encouraged by
imaginative curricula that embed exploration of shape throughout the entire
curriculum.

REFERENCES AND RECOMMENDED READING

1. Arnheim, R. Visual Thinking. Berkeley, CA: University of California Press, 1969.
. von Baeyer, H.C. "A dream come true." The Sciences (New York Academy of Sciences), (Jan.-
Feb. 1989), 6-8.

. Berger, Marcel. Geometry. New York, NY: Springer-Verlag, 1987.

. Coxeter, H.S.M. Introduction to Geometry. New York, NY: John Wiley & Sons, 1969.

. Coxeter, H.S.M. Regular Polytopes. New York, NY: Dover, 1973.

. Edgerton, Samuel Y., Jr. "Galileo, Florentine "Disegno,' and the “Strange Spottednesse' of the

Moon." Art Journal, 44 (1984), 225-232.

7. Friedlander, Alex and Lappan, Glenda. "Similarity: Investigations at the Middle Grade Level."
Learning and Teaching Geometry, K-12. Reston, VA: National Council of Teachers of
Mathematics, 1987, 136-143.

8. Galileo. Sidereus Nuncius (The Starry Messenger), 1610.

9. Gombrich, E.H. The Sense of Order. Ithaca, NY: Cornell University Press, 1979.

10. Griinbaum, Branko. and Shephard, G.S. Tilings and Patterns. New York, NY: W.H. Freeman,
1987.

11. Griinbaum, Branko. "Geometry strikes again." Mathematics Magazine, 58:1 (1985), 12-18.

12. Holden, Alan. Orderly Tangles. New York, NY: Columbia University Press, 1983.

13. Markoff, John. "Supercomputer pictures solve the once insoluble." The New York Times (Oct.
30, 1988), 1, 26.

14. National Council of Teachers of Mathematics. Learning and Teaching Geometry, K-12 . Reston,
VA: National Council of Teachers of Mathematics, 1987.

15. National Council of Teachers of Mathematics. Curriculum and Evaluation Standards for School
Mathematics. Reston, VA: National Council of Teachers of Mathematics, 1989.

16. Senechal, Marjorie and Fleck, George. Patterns of Symmetry. Amherst, MA: University of
Massachusetts Press, 1977.

17. Senechal, Marjorie and Fleck, George. Shaping Space: A Polyhedral Approach. Boston, MA:
Birkhauser, 1988.

18. Senechal, Marjorie and Fleck, George. The Workbook of Common Geometry. (In preparation)

19. Senechal, Marjorie. "Symmetry revisited." In Hargittai, Istvan (Ed.): Symmetry 1I. Elmsford,
NY: Pergamon Press, 1989.

[ ]

(o) IO I SOV

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/1532.html

— [
) 1)
= 3
g .
v
E o
o g
.. <
< =
= o
. &
)
<+ 8 T
5% £%
—5 =
28 vy
Y sz
g 22
32 =2
- .
3 % 3
K*m 25
=
S =
& 5
2e =z
: %
LMA |72
s w5
> J5 S=
g 28 8%
] I 23
o =< %Sz
1S D.,ﬂ m .
> g &y
2 2= =0 3
S SE £&
Mm 3 S,
. K =S
PO B¢
S s 8K
. 3
SOX v .2
N .l.CS
52 45%
29 ~
S is
rmPnR.
2L nT
PN SR .
SAZ Lo
STEES
~nEESTD
,m.mJ»J
EEPEY
Z )
m 532 =8
< nE =22
e S—= oo
n QA ad

"uonngule Joj UOISISA SAllejIoyINe 8y} se uoneolgnd siy} Jo uoisiaA juld ay) 8sn ases|d pauasul A|jejuspiooe usaq aaey Aew siolis olydelbodA) swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumniewloy oyoads-BuiesadAy Jayjo pue ‘sojAls Buipeay ‘syeaiq pisom ‘syibua)| aul| {jeulblio ay) 0} anly aie syeaiq abed ‘sa|i BuimesadAy jeulblo
a8y} wolj Jou ‘yooq Jaded [eulbLo 8y} wouy pajeald safi X Wody pasodwoosals usaq sey yiom [eulblio 8y} Jo uonejussaidal [e)bip mau siyl @ 4dd SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/1532.html

o Numeracy

182

SHAPE

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} se uonedlignd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sios oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumniewloy oyoads-BuiesadAy Jayjo pue ‘sojAls Buipeay ‘syeaiq pisom ‘syibua)| aul| {jeulblio ay) 0} anly aie syeaiq abed ‘sa|i BuimesadAy jeulblo
ay} wolj Jou ‘jooq Jaded [eulbluo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/1532.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

o Numeracy

CHANGE 183

Change

Ian Stewart

Every natural phenomenon, from the quantum vibrations of sub-atomic
particles to the universe itself, is a manifestation of change. Developing
organisms change as they grow. Populations of living creatures, from viruses to
whales, vary from day to day or from year to year. Our history, politics,
economics, and climate are subject to constant, and often baffling, changes.

Some changes are simple: the cycle of the seasons, the ebb and flow of the
tides. Others seem more complicated: economic recessions, outbreaks of
disease, the weather. All kinds of changes influence our lives.

It is of the greatest importance that we should understand and control the
changing world in which we live. To do this effectively we must become
sensitive to the patterns of change, including the discovery of hidden patterns in
events that at first sight appear patternless. To do this we need to:

* Represent changes in a comprehensible form,

* Understand the fundamental types of change,

* Recognize particular types of changes when they occur,
» Apply these techniques to the outside world, and

* Control a changing universe to our best advantage.

The most effective medium for performing these tasks is mathematics.
With mathematics we build model universes and take them apart to see how
they tick, we highlight their important structural features, and we perceive and
develop general principles. Mathematics is the ultimate
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in "technology transfer": patterns perceived in a single example can be applied
across the entire spectrum of science and business.

THE MATHEMATICS OF CHANGE

The traditional approach to the mathematics of change can be summed up
in one word: calculus. In calculus the changing system is modeled by a special
equation (technically, a differential equation) that describes the relation between
the rates of change of different variables. As much heavy machinery (both
theoretical and numerical) as is required is brought to bear in an effort to solve
the equation. Preparing students for the study of calculus has been the central
goal of school mathematics; setting up and solving the equations of calculus is
the lifeblood of traditional engineering mathematics.

Calculus remains an essential component of the mathematics of change.
Newer methods such as discrete mathematics and computation enhance rather
than replace calculus. But mathematics is itself subject to change. New
problems and new discoveries imply the need for a much more varied range of
mental equipment. Two important trends are worth mentioning: the use of
increasingly sophisticated approximate methods and exploitation of geometry
and computer graphics. The first has been made possible by the enormous
increase in computer power. Because computing is based on digital
manipulation, it requires an understanding of the discrete as well as the
continuous—and above all, of the relation between the two.

The second trend is a major triumph of mathematical imagination: the use
of visual imagery to condense a large quantity of information into a single
comprehensible picture. Computer graphics has led to the discovery that many
aspects of change are manifestations of a relatively small number of
fundamental geometric forms. Mathematicians are just beginning to understand
these basic building blocks of change and to analyze how they combine. The
methodology involved has a very different spirit from traditional modeling with
differential equations: it is more like chemistry than calculus, requiring careful
counterpoint between analysis and synthesis.

The graphical representation of various mathematical concepts arising in
the study of change has led to the discovery of a variety of intricate shapes, each
of which appears in many different dynamical situations and is thus a
"universal" object in the mathematics of change.!* Figure 1 portrays a number
of these shapes. They illustrate well the vast differences between today's visual
methods and the forms traditionally
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studied in geometry, such as triangles and parallelograms.!'” Geometry is now
organic and visual rather than limited and formal.

Figure 1. New scenery in the landscape of change: (a) period-doubling
cascade, (b) Lorenz attractor, (c) Ueda attractor, (d) Rossler attractor, (e) vague
attractor of Kolmogorov, (f) Mandelbrot set.

In consequence, there are very few branches of mathematics today that do
not have some bearing on change. In part this is because mathematics is a
highly integrated and interconnected structure. Furthermore, change is such a
complex and varied phenomenon that we need all the ideas we can muster to
handle it. To study change the scientist of the future will need to combine, in a
single integrated world view, aspects of traditional mathematics, modern
mathematics, experimentation, and computation. We will need scientists who
reach as readily for a pencil as for a computer terminal, who can draw crude but
informative sketches as readily as a computer graphic, and who think in pictures
as readily as in numbers or formulas. The entire point of view—the mental tool
kit—of the working scientist will be very different from what it was even a
decade ago.

The patterns of change in nature and in mathematics are unconstrained by
conventional categories of thought. In order to make progress we must respond
imaginatively and sensitively to new types of pattern. Our own patterns of
thought must themselves change.
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Variety of Styles

As the twentieth century draws to a close, a new style of mathematics is
emerging—a style whose characteristic is variety. Mathematics is once again
developing in close conjunction with its applications to science—physical,
biological, behavioral, and social. Much mathematics is inspired by computer or
laboratory experiments or by the forms of natural phenomena. Conversely,
mathematical ideas developed for their own sake, or in some distinct area of
application, are being transferred to other tasks and put to work.'%* This
variety is a strength of the new style of mathematics, and it should be
encouraged at all levels. Moreover, computers (especially computer graphics)
allow nonspecialists—from school children to managers, from school teachers
to scientists—to witness the beauty and complexity of mathematics and to put it
to work.>!7

The emergence of this new style of mathematics does not imply that the
traditional emphasis on precise formulation of concepts and rigorous logical
proof can be abandoned. On the contrary, they remain an essential component
of the mathematical endeavor. Rigor and precision are as essential to
mathematics as experiment is to the rest of science, and for much the same
reason: they provide firm reasons for believing that ideas and methods are
sound. They are part of the subject's internal checks and balances, a constant
safeguard against error. The training of professional mathematicians will
necessarily continue to require accurate logical thinking and a precise
understanding of the meaning of "proof." The use of computers as
"experimental tools" in mathematics can stimulate and motivate new ideas and
problems, but these experiments alone cannot provide understanding of why the
observed phenomena happen. Their role is to offer a degree of confidence that
certain phenomena do indeed occur.

In fact an important trend has become very noticeable, as experience in the
use of computers has developed. It is the disappearance of the dismissive
attitude, "Put it on the computer and that will answer all your questions." When
the answer to a problem is, say, a single number, such as the failure load of an
engineering structure, all of one's problems indeed do disappear once that
number is known. But today a typical computer-based investigation may
produce several hundred diagrams representing the behavior of the system
under various conditions. For example, think of the flow of air past a space
shuttle for different speeds, angles of attack, and atmospheric densities. Such a
catalogue, despite its apparently large size, is likely to be inadequate for
determining the behavior under all possible conditions. If the system involves
three adjustable parameters, as does the one just mentioned, and each can take
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up to ten values, then a total of a thousand combinations is possible. With four
such variables there are ten thousand, with six there are a million.

In practice, six is a small number of parameters: simple problems in
chemical engineering typically involve several dozen parameters and may
involve hundreds. It is pointless to produce a computerized catalogue of one
million diagrams, let alone a billion or a trillion. The fundamental question
—"What is really going on here?"—returns from computer science to the realm
of mathematics. Such questions require input from the human brain far more
than from the computer.

However, the role of the computer should not be underestimated. It is
becoming an ever more prevalent thinking aid. Computers cannot only generate
"results," but they can also be used to experiment at intermediate stages of
understanding, to test hypotheses and possible mechanisms. With appropriate
safeguards, computer calculations can actually produce rigorous proofs of
mathematical results. Such computer-aided proofs require very careful
construction and a great deal of human input to set them up: they are far from
routine and usually require specially constructed software and lengthy machine
time. More than anything else, they constitute a difficult specialist area of
mathematics. "Put it on the computer"” is no panacea.

Approaches to Teaching

For reasons of exposition only, rigorous proof does not feature
prominently in this essay. It is part of the mathematician's basic technique, and
it remains just as important as it ever was, but it holds much less interest for the
nonspecialist. Accordingly, its role has not been made explicit, although it
underpins everything discussed.

However, the fact that proof is important for the professional
mathematician does not imply that the teaching of mathematics to a given
audience must be limited to ideas whose proofs are accessible to that audience.
Such a limitation is likely to make mathematics dull, dry, and dreary, for many
of the most stimulating and exciting ideas depend upon highly complex theories
for their proofs. Many mathematical concepts can be grasped without being
exposed to their formal proofs. Using an idea is quite different from developing
it. It is possible to "explain" quite advanced concepts to children by means of
examples and experiments, even when a formal proof is too difficult.

For example, in the theory of chaos an important concept is that of
"sensitivity to initial conditions." If a system evolves from two very similar
initial states, the resulting motions can quickly become totally different. Given
access to suitable software, virtually anyone can
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appreciate this sensitive and paradoxical behavior in, say, the Lorenz attractor
(Figure 1b) merely by watching how two almost equal starting values move
apart and become independent. However, a rigorous proof that the Lorenz
system really does behave in the manner that computer experiments suggest is
not only beyond the capacities of the average person, it has not yet been
achieved by professional mathematicians and remains an active problem for
future research.

The breadth of viewpoint and range of skills demanded by today's
mathematics will be important, not just for mathematicians and scientists but for
people in all walks of life. Change affects us all. Managers, politicians, business
leaders, and other decision makers must cope with a changing world. They must
appreciate how subtle change is; they must unlearn outdated assumptions.

It is a tremendous challenge to devise methods of educating a generation of
such versatile people. Our aim here is to suggest ways to develop in children
some of the underlying ideas and to stimulate a new point of view. We must
advance beyond the traditional approach of arithmetic leading to algebra and
thence to calculus.

In the design of an effective new curriculum, one important component is
an understanding of the new viewpoints that are developing at the frontiers of
research. Yet the curriculum must be suitable for all children, not just for those
who will become research scientists. Nevertheless, new kinds of mathematics
that are evolving at the research level set the style for applications and
education in the future. Thus it is important for teachers and educators at all
levels to understand the general nature of these new methods and the kinds of
questions that they address.

Levels of Description

The mathematics of change can be viewed at many levels:

» The big picture: What are the possible types of change?

» Specific areas of mathematical technique: How are the equations solved?

* General areas of application: How does the size of an animal
population vary with time?

e Individual applications: Design a chemical reactor to produce
margarine.

* Simple theoretical examples: How does a pendulum oscillate?

Mathematicians operate on all of these levels because insights obtained at

one level are often transferred to other levels. In mathematical technology
transfer, patterns are not tied to any particular area of application.
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Simple theoretical examples are seldom of direct relevance to industrial
applications. For example, an analysis of pendulum dynamics is of no direct use
in the study of wing flutter in supersonic aircraft. In practical terms the
pendulum went out with the grandfather clock. But simple examples have their
uses: they prepare us for the complexities of real life. A pendulum makes many
important features of oscillation more accessible than would a realistic model of
a vibrating airplane wing.

To illustrate these themes we will use some specific questions that
exemplify the new style of mathematics. These questions have been chosen not
as specific goals in themselves, but because they motivate compelling
mathematical ideas:

* How do living populations change?
* Where do meteorites come from?
* Why are tigers striped?

Only the first of these questions appears to involve change. The others
seem to be about static phenomena.”’” Meteorites are just there—or not—at
random. A tiger is striped, a leopard is not, and never the twain shall meet. In
fact the questions are all about change of some kind. Do meteorites really
plunge into the earth's atmosphere "at random," or does something more
structured lie behind their appearance in the night sky? A mature striped tiger
does not just exist as a static object: it develops from a single (unstriped) cell.
Somewhere along the line of development the stripes first make their entrance.
Change is the common theme behind each of these varied questions.

POPULATION DYNAMICS

If we put a few rabbits on an uninhabited island, pretty soon there will be a
lot more rabbits. On the other hand, the growth cannot continue unchecked, or
soon there would be more rabbits than island. It follows that change in a
population is affected by both internal and external factors. How they combine
to influence changes in the population is a good example of mathematical
modeling that can be studied at many different levels.

Limits to Growth

We begin with the simplest case: a population consisting of a single
species with a constant (and therefore limited) food supply. Figure 2 shows
typical experimental data for growth of such a population. Its typical S-shaped
curve is characteristic of many growth phenomena.?’
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Size of Population

L

Time

Figure 2. Changes in the size of a yeast population growing in an environment
with a limited food supply.

Similar curves arise if we measure particular features of a single
developing organism—for example, the height or weight of a growing child.

It is common in many families to record the heights or weights of children
as they grow. These charts may be displayed on classroom walls for discussion
and comparison. The growth of young children in a single class over a period of
one or two years will illustrate linear growth. The heights on the chart, plotted
against time, will lie close to a straight line. However, the complete growth
record of a child from birth to adulthood exhibits the characteristic S shape.
Neither the initial phase nor the final phase is linear. Early on the growth is
approximately exponential; later it saturates as it approaches a constant value.

Children who have recorded growth curves can be introduced to the entire
S-shaped curve, either as an experimental observation or as a table of numbers.
A good exercise for children in middle school is to use evidence from several
childrens' growth curves together with data from their own childhood to project
their own adult heights. Later, as older students, they can learn how to represent
these curves with formulas. Children can be encouraged to analyze the main
features of this curve and to consider why the curve has them.

Suppose Alice is 1 foot tall at age O and 4 feet tall at age 8. If this growth
rate continues—3 feet every 8 years—how tall will she be at ages 16 or 24 or
327 (Answers: 7 feet, 10 feet, 13 feet.) Even young children can see that these
answers are not credible. What's wrong? The mathematics is fine, but the model—
linear growth—is inappropriate. Moral: When you use mathematics you have to
pick a sensible model and not just calculate numbers blindly.

Levels of Analysis

A study of population growth can be carried on at several levels—verbal,
numerical, graphical, dynamical—with the sophistication increasing as the
children become older. Verbal description of the yeast growth curve shows a
population that increases slowly at first but then grows exponentially. That is,
the breeding population increases by a
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constant factor in successive periods of time. However, when the population
becomes sufficiently large, the rate of growth slows down, eventually leveling
off at a steady maximum value.

This verbal model is purely descriptive. It is mute about why the
population levels off. The verbal description is helpful for general intuition but
useless for further analysis of behavior. Its principal role is to summarize
simply the pattern of growth.

To appreciate the effect of exponential growth—and to gain insight into
why such growth cannot continue unchecked—children can be told the famous
story about the emperor's reward. In a far country a person performed an
important task for the emperor, and she was asked to name her reward. The
reply was: "One grain of wheat on the first square of a chessboard, two on the
next, then four on the next, then eight, and so on, doubling each time." The
emperor was not very impressed . . . until he worked out how the numbers grew!

Children can do the same with a calculator or a computer. Younger
children can experience exponential phenomena without using large numbers
by folding a sheet of paper repeatedly in half. How many times can you manage
before you get stuck?

Data on weights of animals, wingspans of birds, girths of trees, numbers of
leaves on plants, etc., can be gathered (or presented) in the form of numerical
tables. Children can look for patterns in the numbers: Are they increasing?
Decreasing? Constant? They can calculate differences and ratios, make tables,
and look for patterns. Numerical tables lead naturally to graphical representation.

The growth curve provides a visual picture of the way in which the two
variables, population and time, are related. Such a graph, sometimes called a
time series, replaces numerical information by graphical: it is the simplest
example of the geometrization of change. The idea that numbers can be
represented by the positions of points, and changing numbers by curves, is the
basis of all geometric methods in the mathematics of change (see Figure 3).
Children need many opportunities to learn that in mathematics a picture is
indeed worth a thousand words.

For younger children experimental work is most appropriate. They can
count the number of eggs produced by ducks or chickens, measure the height of
a growing plant, measure the temperature each day at noon, record the position
of the moon in the sky. By graphing this data, children can search for patterns
of change and discuss possible causes.

Older children can be set more ambitious tasks: the water level in a pond,
the number of leaves on a bush, the movements of the stock market,
experiments from physics and chemistry laboratories. Using data from real
phenomena is an effective way to integrate mathematics into other school
subjects. Algebra students can also use mathematical
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processes and formulas to generate theoretical data, to look for patterns, and to
compare theory with reality.

Figure 3. Some of the many different types of change, together with their
typical time series.

Dynamical Systems

The next level of exploration is to model not the patterns in the numbers
but the process that gives rise to these patterns. In the traditional
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approach this idea leads to differential equations and thus requires calculus. But
another possibility—increasingly attractive in an age of computers—is to throw
off the chains of calculus and take seriously the fact that the number of
creatures in a population is discrete rather than continuous.

Imagine that time ¢ increases in discrete whole number steps, t = 1, 2,
3,. ... The value of the population p at time ¢ is written as p(#). Its next value p(¢
+ 1) can then be related to its current value p(¢) by a specific growth law. This
type of model is called a difference equation or a discrete system.”

In living populations, unchecked breeding at a constant rate m corresponds
to a law of the form p(¢ + 1) = mp(), leading to exponential growth: p(7) = p(0)
m', where p(O) is the initial population. The law of restrained growth, which
allows for limits imposed by lack of food or space, modifies this law by
subtracting a correction factor that reflects these limits:

plt+ 1) = mp(t) = n[p(0))*,

where m and n are constants that depend on the particular circumstances.
This equation, known as the Verhulst law (named after the nineteenth-century
French scientist P.F. Verhulst), is one of the most common algebraic models of
limited growth.

Students can study this equation with tools from simple algebra, both by
making tables and by simplifying the equation. The population level p(f) = m/n
is a cutoff level: once it is reached, the next value, p(t + 1), is 0, as are all
subsequent values. To study how the population compares with the cutoff level,
we can express p(f) as a proportion of m/n by changing the units of
measurement by letting p(#) = g(¢). (m/n). This leads to the equation

gt + 1) = mig(r) - g(t)*),

where g(t) expresses the population as a fraction of the cutoff level. Instead
of two parameters m and n, we now have just one parameter m, which makes
the mathematics much simpler. Because ¢(f) is a proportion of the cutoff
population, it will be some fraction between 0 and 1.

Difference equations such as the Verhulst law are ideal for computer
calculation, because they express a simple repetitive procedure for describing
the behavior at the next instant ¢ + 1 from the behavior now, at time ¢. With a
computer we can easily calculate solutions of the discrete Verhulst law without
knowing a formula for these solutions.
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(Indeed, there is no general formula for these solutions.) We can then
encapsulate the results in a single geometric object such as a time series graph.

This illustrates an important general principle: discrete mathematics is
often more accessible than continuous mathematics (calculus). The Verhulst
law can be introduced and studied through tables of values as soon as students
begin their study of algebra, usually four years before they are introduced to
calculus. However, it is also harder to derive the detailed mathematical structure
of discrete systems, and their treatment tends to be experimental or at least
computer based.

Numerical Experiments

The Verhulst law offers an excellent opportunity for numerical
experiments using only elementary arithmetic and calculators.>?* Even
elementary school children can follow the rules, years before they are
introduced to the formalism of algebra. The Verhulst law, whose algebraic form
is

plt + 1) = mlp(t) = p(t)*]

can easily be translated into a table or a spreadsheet for exploration for
various values of the parameter m. (Note that we are now using p to signify the
population proportion, which we previously called g, rather than the population
size.)

Start with some value of p(0), say 0.1, and calculate in turn p(1), p(2), p
(3),. . . . In words: new population equals old population minus the square of the
old population, multiplied by a constant.

For example, suppose m = 2. Then the successive values are

0.1, 0.18, 0.295, 0.416, 0.486, 0499, 0.5, 0.5

We see initial growth, settling down to a specific final level. This growth is
similar to the experimentally verified growth of yeast and other homogeneous
populations (see Figure 2). When m = 3 we get

0.1, 0.27, 0591, 0.725, 0598, 0721, 0.603, 0.717,

The values in this case appears to oscillate between about 0.6 and 0.7. (In
fact, this oscillation eventually dies out, but very slowly: it becomes more

A1 AANT 11 .

PV 01 036, 0922, 0.289, 0.821, 0.585, 0.970, 0.113,

Now we see no clear pattern at all! What has happened?

The Verhulst law leads to a rich range of behavior, including periodic
oscillations and apparently patternless, irregular behavior. The latter is known
as chaos. Here a simple experiment using a calculator brings
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quite young children to the frontiers of research. Indeed, this example can lead
to an enormous range of classroom activities: working out numerical values on
calculators, computers, or electronic spreadsheets; graphing the results; spotting
patterns; analyzing why they occur.

Traditionally, random-looking behavior is modeled by statistics, using
equations that incorporate explicit random terms. But there is no random term
in the Verhulst law: it is deterministic. This example shows, surprisingly, that
behavior predicted by a simple and explicit law can be highly irregular, even
random.

This paradoxical discovery is called deterministic chaos. Irregular
fluctuations may arise from nonrandom laws, making it possible to model many
irregular phenomena in a simple manner. It also demonstrates that simple
causes can produce complicated effects. It is one of the most exciting areas of
current mathematical research.>!1:24

The Irregular Fruit Fly

It is always possible that chaotic behavior could be just an artifact of the
model and not a phenomenon of nature. Perhaps. But natural populations do, in
fact, display irregular oscillatory behavior. Figure 4 shows experimental data on
a population of fruit flies kept in a closed container and fed a constant protein
diet."> When the population rises too high, there is too little food and the flies
are unable to breed properly. The population then drops until there is excess
food; then the flies breed unrestrictedly and the population shoots up again.

The main overall effect is an oscillation with a period of about 38 days.
However, as the time series shows, the way in which the population changes is
decidedly complex. Many of the peaks in the graph are double, being more M-
shaped than A-shaped. The height of the peak
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Figure 4. Variations in an experimental population of fruit flies show irregular
oscillatory behavior that is typical of deterministic chaos.
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varies: small, medium, large, in turn. After the first 450 days or so, the changes
become more and more irregular.

This graph illustrates an important question for mathematical modeling
and for the analysis of scientific data. Some of the observed changes are due to
the population dynamics of fruit flies. Others may be due to outside effects such
as contaminated food, disease, or—for all anyone knows—the tides or the
position of Mars in the sky. How can we tell which are which?

It would be easy to assume that the regular effects—the M-shaped peaks,
the modulation in their size—are unrelated to outside causes but that the
increasing irregularity after 450 days is due to something going wrong with an
outside cause. However, this assumption may be incorrect. Numerical
experiments with models similar to the Verhulst law show that simple
mathematical laws can produce both regular oscillations and irregular chaos,
just by making slight changes to a single parameter. In fact many aspects of the
fruit fly data, irregularities included, can be modeled by simple systems.

Children can be brought to understand the possibilities for complex
behavior in simple systems by performing numerical experiments, first with
calculators and later with computers. They can then search for patterns in
apparently irregular data. For example, given a time series generated by the
Verhulst law or related equations, they can plot p( + 1) against p(f) and observe
that all the points lie on a smooth curve. They can analyze the curve to
determine its geometric features; older children can seek an appropriate formula
and estimate the value of the growth rate parameter m.

More sophisticated versions of this geometric technique have been applied
to many sets of observational data, for example, to the apparently random
fluctuations that occur in the numbers of people suffering from a disease such
as measles. Often the experimental time series appear random. But graphical
analysis suggests that a simple process, resembling a difference equation,
underlies the apparent irregularities. In consequence it is often possible to set up
simple but realistic models that reproduce the patterns of change in these
systems.

Moving on to Calculus

Traditional analysis via calculus still has an important role to play in
modeling population growth. In this case it provides a formula rather than a
picture or a list of numbers. In the calculus-based model the value of p(f) need
not be a whole number, whereas a real population necessarily takes on whole
number values. The model is thus a continuous approximation to a discrete
phenomenon. This is a common
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technique and is often used when the maximum population size is fairly large.
Then the change caused by adding or removing a single individual is extremely
tiny, so that the possible range of sizes cannot easily be distinguished from a
continuous range. The resulting model is a differential equation, one of the key
concepts of higher mathematics.* A differential equation involves not just
variables such as the population p but also rates of change of variables. The rate
of change of a variable p with respect to time is traditionally denoted by dp/dt.

The simplest differential equation for populations is a law of uniform
growth dp/dt = mp. This states that the rate of change dp/dt of the population p
at a given moment ¢ is proportional to the population p at that same moment,
where the constant of proportionality is m. In other words, a larger population
produces proportionately more offspring than a smaller one. The solution to this
differential equation is p(f) = p(0)e™ for an initial value p(0) at ¢ = 0, which is
the continuous version of exponential growth. The population explodes,
unchecked.

In practice other factors must come into play to limit the growth. As with
the Verhulst law, we modify the equation by subtracting a term np* (where n is
a second constant):

dp/dt = mp - np?.

The point of this extra term is that when p is small, p? is negligible in
comparison, so that the correction term np* has little effect; in this case we
obtain (almost) exponential growth. However, as p becomes larger, the term -
np? begins to dominate the dynamics, substantially reducing the rate of growth.
Indeed when p reaches the value m/n, the rate of change of the population, dp/
dt, becomes zero. When this happens, no further growth takes place. So m/n
represents the maximum population. Using techniques of calculus, it is possible
to find a formula for the solution. The graph of this solution, known as the
logistic curve, has the same S-shape as the experimental data on yeast (Figure 2).

The rich variety of behavior—steady, periodic, chaotic—of the discrete
Verhulst law is absent from its continuous analog, which yields only a smooth S-
shaped curve. This shows in a particularly convincing manner that changing
from discrete models to continuous ones, or conversely, can lead to new
phenomena: it is not just a harmless trick. Examples such as these raise
important questions about the relation between continuous and discrete models,
relations worth exploring in mathematics classes at many school levels.

The continuous model permits experimental data to be fitted to a
theoretical curve, and this opens the way to prediction of future behavior. For
example, if a logistic curve is fitted to the population of the United States up to
1930, it predicts that by the year 2000 the population should
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level off at around 200 million. More accurate techniques give a projected
population for the year 2000 of 260 million, about 30% higher. So the
simplified approach does surprisingly well. Students armed with population
data (of an ecosystem, a nation, or the world) can try fitting the logistic curve to
this data to determine the constants m and n and to predict future trends.

METEORITES

The behavior of meteorites is a small part of the general problem of the
dynamics of celestial bodies—of moons, planets, stars, galaxies. The
regularities, or almost regularities, of the motions of the planets have
throughout history been a major motivation for the study of change. It is not just
a matter of fascination with the night sky: important down-to-earth problems
such as agriculture and navigation have at various times depended upon
knowledge of the movements of the stars and planets.

Astronomy is a rich area for finding good classroom activities about
change: the phases of the moon, the tides, the apparent motion of stars, the
changing seasons, earth satellites. Another possibility is to reconstruct Galileo's
experiments using balls on inclined slopes and deduce the law of motion in a
uniform gravitational field. Data gathered in such enterprises can fuel many rich
mathematical explorations.

Historically, our understanding of such matters went through several stages
—informal description, empirical models, geometrical models, dynamical models
—before culminating in the laws of motion discovered by Isaac Newton. But
these laws often lead to equations that are very hard to solve. They can be
solved exactly for a system of two bodies, where they predict elliptical orbits.
The problem of celestial motion for a system of three bodies has been notorious
for over two centuries for its apparent intractability. With modern computers we
can see why: even simplified versions—for example, where one body has
negligible mass—Ilead to complex and highly irregular behavior.

Computer packages now simulate planetary motion for systems of two,
three, or more bodies. Children as young as 11 or 12 can use these packages to
experiment with the behavior of the regular elliptical orbits of two-body
systems and the complicated behavior of three or more bodies. By using these
packages, they can gain more insight into the geometry of planetary motion
than Isaac Newton did in a lifetime of study.
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Stability

Modern understanding of planetary motion stems from work of the French
mathematician Henri Poincaré around the turn of the century.®?? In 1887 King
Oscar II of Sweden offered a prize of 2500 crowns for an answer to a
fundamental question in astronomy: Is the solar system stable? We see now that
Poincaré's response was a major turning point in the mathematical theory of
celestial change.

Scientists call a system stable if it does not change when perturbed by
small disturbances. It is unstable if small disturbances tend to become
magnified, leading to large changes in behavior. For example, a pin lying on its
side is stable, whereas a pin balanced on its tip is unstable since it will always
fall over (Figure 5).

Children can develop sound intuition about the notions of stable and
unstable systems, and indeed for the typical complexity of dynamical systems,
by exploring the behavior of various mechanical "executive toys"—multiple
pendulums, interacting magnets, gyroscopes. For example, consider a pendulum
with a magnetic bob, arranged to swing over the top of a second magnet. If the
two magnets have opposite polarity, then the pendulum is stable in its
downward position, attracted by the lower magnet. But if the polarities are the
same, and you try to hold the pendulum over the lower magnet, it tries to move
away. The downward position is now unstable—and the child can feel it!

Experiments of this type, usually carried out in a rather formal way, are
currently characteristic of physics classes. Less formal experiments should be
carried out in mathematics classes as well, as an integrated part of the
development of intuition for change and motion, for stability and chaos. At later
stages, after a child's intuition is better developed, such experiences can be
formalized with appropriate mathematical models.

-~ LS

Figure 5. Unstable and stable states of a pin: when balanced on its tip, any
wiggle will cause a pin to fall, whereas when resting on its side, small forces
produce only small changes in the position of the pin.
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Stability is an extremely important question. An airplane must not only fly,
but its flight must be stable, or it will drop out of the sky. When a car rounds a
corner it must not tip over on its side. The solar system is a very complicated
piece of dynamics. How do we know that the motion is stable? Will all the
planets continue to move in roughly their current orbits? Could Pluto crash into
the sun? Could the earth wander off into the cold of the outer planets? These are
very subtle problems whose answers are very difficult to discern.

Rubber Sheet Dynamics

Poincaré didn't solve King Oscar's problem: it was too hard. But he made
such a dent in it that he was awarded the prize anyway. To do it he invented a
new branch of mathematics now called fopology. Often characterized as "rubber
sheet geometry,” topology is more properly defined as the mathematics of
continuity, as the study of smooth, gradual changes, the science of the
unbroken.®!8 Discontinuities, in contrast, are sudden and dramatic—places
where a tiny change in cause produces an enormous change in effect.

The celestial motion of two bodies—a universe consisting only of the earth
and the sun, say—is periodic: it repeats over and over again, once every year.
(That is the definition of "year.") This periodic behavior immediately proves
that in such a solar system—containing only the earth and the sun—the earth
would not fall into the sun or wander off into the outer reaches of infinity; for if
it did, it would have to fall into the sun every year or wander off to infinity
every year. Those aren't things you can do more than once, and they didn't
happen last year, so they never will. In other words, periodicity gives a very
useful handle on stability. In our real universe bodies will disturb this simple
scenario; nevertheless, periodicity is still important.

Under gravity, two bodies behave simply: they both move in elliptical
orbits about their common center of gravity. Three bodies behave in an
unbelievably complicated manner, even if the problem is simplified by
assuming that one has a very small mass compared with the other two. More
than three bodies can lead to even worse behavior.

Juggling is an example of stable periodic motion. It is periodic because the
same actions are performed over and over again; and it must be stable since
otherwise it wouldn't work. Juggling two bodies is relatively simple; juggling
more quickly becomes very complicated. If one teaches children to juggle, they
will learn quickly about the complexity of dynamical systems. They can analyze
the periodic pattern of juggling motion. Why is juggling stable? What is the role
of hand-eye feedback?
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Figure 6. Poincaré's geometric approach to periodicity: if the state of a system
describes a closed loop in phase space, the system must be periodic and hence
stable.

Poincaré grappled with the existence of periodic solutions, and he found
that they could be detected by a topological method. Suppose that at some
particular instant of time the system is in some particular state and that at a
certain time later it is again in the identical state. Then it must repeat, over and
over again forever, the very motion that took it from that state back to itself.
Returning just once to a previous state, perfect in every detail, is the essence of
periodic motion.

Topology enters when this idea is made geometric.?* Imagine that the state
of the system is described by the coordinates of a point in some high-
dimensional space, which scientists call phase space. As the system changes,
this point will move, tracing out a curve in phase space. In order for the system
to return to its initial state, this curve must close up into a loop (Figure 6).
Stability of the system thus translates to "When does a curve form a closed
loop?" The question asks nothing about the shape or size or position of the loop,
merely that it be closed: it's a question for topology. Thus the existence of
periodic solutions depends on topological properties of the curve that represents
the changing state of the system in phase space.

Phase space is an abstract mathematical space with many dimensions that
represent all possible variables that govern the state of a system,

Figure 7. Example of a phase portrait in which different curves represent
possible evolution of a system under different initial conditions.
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which is itself represented as a single point in phase space. As the state changes,
this point moves, tracing out a curve, or flow line. The picture of how these
flow lines fit together is called the phase portrait of the system.' The flow is
typically indicated by curved lines, corresponding to the time evolution of the
coordinates of various initial points (see Figure 7). Arrows mark the direction of
motion of time.

Phase Portraits

Once children have grasped the concept of graphing the changes in a single
variable, they can be introduced to phase portraits. Instead of plotting the value
of a single variable against time, in a time series they can plot the sequence of
values of two different variables in two coordinate directions. Such exercises
will develop insight into the multidimensional geometry of change. For young
children these variables might be the height and weight of growing animals or
the temperature and rainfall per day. Older children could consider astronomical
phenomena such as the positions of the sun and moon, or measurements made
on an electronic circuit, or observations of a pendulum, or price movements of
two different exchange rates on the world currency market.

The oscillations of a simple pendulum provide a very illuminating example
of a phase portrait—but suitable in full detail only for more advanced students.
The traditional approach to the pendulum is to write down an approximate
equation whose solution is a sine curve. The approximation is necessary
because standard techniques of calculus cannot solve the true equation for an
exact model. The student does learn useful properties of the sine curve as well
as a formula for the period of a pendulum whose swings are small. However,
this traditional approach is in some respects unsatisfactory since the
approximations employed are rarely justified. It leaves the unwarranted
impression that lack of precision is acceptable in mathematics.

Instead, the law of conservation of energy can be applied to yield an exact
model for the motion of a pendulum. It leads to the equation

v=_0Cvk+2cosf,

where v is velocity, C and k are constants, and 0 is the angle that the
pendulum makes with the vertical. By sketching this family of curves, one in
effect draws the phase portrait (Figure 8). All of the motions of a real
pendulum, including large swings—even cases when it revolves like a propeller—
can be seen in this picture.?* With this alternate approach, students obtain
equally valid practice with the sine function, an accurate
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model, no approximations, and an important physical principle (conservation of
energy). Isn't that a better way to think about the pendulum?

Figure 8. Phase portrait of a pendulum in which all possible motions are visible.

Resonance

The dynamical equations for three bodies cannot be solved by a formula,
but they can be put on a computer and solved numerically. Such models provide
a good means of exploring the surprising effects of resonance on the motion of
dynamical systems. Resonance occurs when different periodic motions have
periods that are in some simple numerical relationship such as 1:1, 2:1, 3:2, and
so on. For example, Titan, a satellite of Saturn, has an orbital period that is
close to 4:3 resonance with that of another satellite, Hyperion. Specifically,
Hyperion takes 21.26 days to complete one orbit and Titan takes 15.94. The
ratio of these is 1.3337, convincingly close to the ratio 4:3.

Older children can use a computer package to simulate planetary
dynamics. They can study the motion of the moon or of a satellite in transit
from earth to moon. They can study the way in which Jupiter's satellites are
locked into resonant orbits. They can study the so-called Lagrange points,
where satellites (or space colonies) can remain in stable positions 60° ahead of
or behind the moon. This too is a kind of resonance.

Resonances are especially important in dynamics. They lead to a rich and
subtle geometry that is almost unbelievably complex. In Figure 9 the large
circles represent regular motion; secondary "islands" between the circles
represent resonances; tertiary islands signal more delicate multiple resonances.
The spaghetti-like crossings represent chaos. The structure repeats forever on
smaller and smaller scales.
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Figure 9. Fractal structure near a periodic orbit: islands signal resonances of
various orders, while tangles represent regions of chaos.

High school students can easily search astronomical tables to look for
evidence of resonances. This work involves plenty of practice with fractions,
decimals, calculators, and computers. It shows how simple mathematics can
produce deep insights to those who look at the world from a mathematical
perspective.

Resonances often generate chaos. Figure 9 has a particular disturbing
quality of self-similarity: each island has the same complexity, indeed the same
qualitative form, as the entire picture. This complicated self-similar structure is
not some mad mathematician's nightmare. It's what really happens.

The concept of self-similarity together with the associated ideas of fractal
geometry,'* can be made accessible to children around the age of twelve, maybe
younger. The topic can be introduced using natural examples: coastlines, leaves,
ferns, etc. Next, computer models of fractals such as the Cantor set and
snowflake and dragon curves can be drawn and their patterns analyzed.
Concepts of fractal structure and self-similarity can easily be developed from
these examples. Even young children can appreciate the idea of fractal
dimensions—which need not be whole numbers.
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Gaps and Clumps

Resonances feature prominently in another astronomical conundrum, the
gaps in the asteroid belt, which is directly related to our original question about
meteorites. Most asteroids circle between the orbits of Mars and Jupiter,
although a few come much closer to the sun. However, the asteroid orbits are
not spread uniformly between Mars and Jupiter. Their radii tend to cluster
around some values and stay away from others (Figure 10). Daniel Kirkwood,
an American astronomer who called attention to this lack of uniformity in about
1860, also noticed an intriguing feature of the most prominent gaps: if an
asteroid were to orbit the sun in one of these Kirkwood gaps, then its orbital
period would resonate with that of Jupiter. Conclusion: Resonance with Jupiter
somehow perturbs any bodies in such orbits, causing some kind of instability
that sweeps them away to distances at which resonance no longer occurs. The
special role of Jupiter is no surprise since it is so massive in comparison with
the other planets. The gaps are obvious in recent data, especially at resonances
2:1, 3:1, 4:1, 5:2, and 7:2. On the other hand, at the 3:2 resonance there is a
clump of asteroids, the Hilda group. So stability is not just a matter of
resonance: it depends on the type of resonance. The questions remain a subject
of intense investigation.

Recent computer calculations® show that an asteroid orbiting at a distance
that would suffer 3:1 resonance with Jupiter can either follow a roughly circular
path or a much longer and thinner elliptical path. If the orbit of an asteroid is
sufficiently elongated, it crosses the orbit of Mars. Every time it does so there is
a chance that the asteroid will come sufficiently close to Mars for its orbit to be
severely perturbed. It will eventually come too close and be sent off into some
totally different orbit. The 3:1 Kirkwood gap is there because Mars sweeps it
clean, rather than being due to some action of Jupiter. What Jupiter does is
create the resonance that causes the asteroid to become a Mars crosser; then
Mars kicks it away into the cold and dark. Jupiter creates the opening; Mars
scores.

The same mechanism that causes asteroids to be swept up by Mars can
also cause meteorites to reach the orbit of the earth. The 3:1 resonance

I
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Figure 10. Gaps and clumps in the distribution of asteroids reveal resonance
with the orbital period of Jupiter.
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with Jupiter thus appears to be responsible for transporting meteorites from the
asteroid belt into earth orbit, to burn up in our planet's atmosphere if they hit
it.?6 A cosmic football game, played among the asteroids by Mars and Jupiter,
determines whether or not floating cosmic rocks—and perhaps sometimes
mountains—will crash into the earth's atmosphere. It would be hard to find a
more dramatic example of the essential unity of the entire solar system or a
better example of the interconnectedness of change.

THE TIGER'S STRIPES

"What immortal hand or eye dare frame thy fearful symmetry?" said
William Blake, referring to the tiger. Although Blake wasn't using the word
"symmetry" in a technical sense, it turns out that the behavior of symmetric
systems has a distinct bearing on the striped nature of tigers.

Symmetry is basic to our scientific understanding of the universe.!> The
symmetries of crystals not only classify their shapes but also determine many of
their properties. Many natural forms—from starfish to raindrops, from viruses
to galaxies—have striking symmetries. Manmade objects also tend to be
symmetric: cylindrical pipes, circular plates, square boxes, spherical bowls,
hexagonal steel bars.

That symmetric causes have symmetric effects is a long-standard principle
in the folklore of mathematical physics. Pierre Curie made the case succinctly:®
"If certain causes produce certain effects, then the symmetries of the causes
reappear in the effects produced." The principle seems natural enough—but is it
true? The question is a subtle one involving not just the meaning of "symmetry"
but also that of "cause" and "effect.”

Recently scientists and mathematicians have become aware that, in an
important sense, Curie's statement is false. It is possible for a symmetric system
to behave in an asymmetric fashion. This phenomenon, known as symmetry
breaking, is an important mechanism underlying pattern formation in many
physical systems from astronomy to zoology. The mathematical theory of
symmetry breaking provides a powerful method for analyzing how symmetric
systems behave and applies across the entire range of scientific disciplines.'?

Curie Was Right . ..

At first glance, Curie's statement is "obviously" true. If a planet in the
shape of a perfect sphere acquires an ocean, that ocean will surely be of uniform
depth, hence itself a sphere. The spherical symmetry of the planet is reflected in
a corresponding spherical symmetry of its ocean.
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It would appear bizarre if, in the absence of any asymmetric cause, the
ocean should decide to bulge unevenly.

On the other hand, if the planet rotates—breaking the spherical symmetry
and replacing it by circular symmetry about the axis of rotation—then the ocean
will bulge at the equator, preserving the circular symmetry. Isn't that typical of
how symmetry behaves? Not always.

Curie Was Wrong . . .

Curie's principles may seem obvious, but they must be interpreted very
carefully indeed, for there are many symmetric systems whose behaviors are
less symmetric than the full system. For example, if a perfect cylinder, say a
tubular metal strut, is compressed by a sufficiently large force, it will buckle.”
The buckling is not a consequence of lack of symmetry caused by the force:
even if the force is directed perfectly along the axis of the tube, preserving the
rotational symmetry about that axis, the tube will still buckle. Buckled cylinders
cease to be cylindrical—that's what "buckle" means. Similarly, a computer
picture of a spherical shell buckled by a spherically symmetric compressive
force is shown in Figure 11: observe that the symmetry of the buckled state is
circular rather than spherical.

It is important to understand that the loss of symmetry in these systems is
not merely a consequence of small imperfections: asymmetric solutions will
exist even in an idealized perfectly symmetric mathematical system. Indeed,
such a "perfect" system largely controls how symmetries can break. However,
imperfections play an important role in selecting exactly where. For example,
when a perfect system such as the sphere in Figure 11 buckles, the axis of
circular symmetry can be

Figure 11. Symmetry-breaking buckling of a uniform spherical shell subjected
to uniform external pressure. The shell buckles in a cylindrically symmetric
fashion.
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any axis of the original sphere; for an imperfect system some axes will be
preferred, their positions being related to weaknesses in the spherical shell. The
general form of the buckled sphere, however, will be the same in both cases.

In this sense Curie's principles are perhaps valid for an actual physical
system (which is necessarily imperfect) but not for an idealized model. Rather
than attempting to resurrect Curie's principles in this fashion, however, it seems
preferable to understand the mechanism by which perfect idealized symmetric
systems produce behavior with less symmetry. This is called symmetry
breaking. It seems to be responsible for many types of pattern formation in
nature, and it has a very well defined mathematical structure that can be used to
understand such processes.

What causes the symmetry to break? The answer is that natural systems
must be stable. Curie was right in asserting that symmetric systems should have
symmetric states, but he failed to address their stability. If a symmetric state
becomes unstable, then the system will do something else—and that something
else cannot be symmetric.

How does the symmetry "get lost"? We answer this question by an
example. The catastrophe machine (Figure 12), invented for rather different
reasons by Christopher Zeman of Warwick University in 1969,!%2031 shows
that symmetry is not so much broken as spread around. Children can make one
and experiment with it.

The entire catastrophe machine has reflectional symmetry about the center
line. If you begin to stretch the free elastic, the system obey's Curie's principles
and stays symmetric; that is, the disk does not rotate (Figure 13a). But as you
stretch the elastic further, the disk suddenly begins to turn—maybe clockwise,
maybe counterclockwise (Figure 13b). Now the state of the system loses its
reflectional symmetry. The symmetry has broken, and Curie's principles have
failed.

Where has the missing symmetry gone? Hold the elastic steady and rotate
the disk to the symmetrically placed position on the other side (Figure 13c).
You will find that it remains there. Instead of a single symmetric state we have
two symmetrically related states.

This is a general feature of symmetry breaking. The system can exist in
several states, each obtainable from the others by one of the symmetries of the
full system. For example, the buckled spherical shell in Figure 11 breaks
symmetry from spherical to circular, and the circular symmetry occurs about
some particular axis, clearly visible in the picture. In the "perfect”" system any
axis is possible, but all buckled states have the identical shape, and they differ
only by motions of the sphere.

Children can explore symmetry breaking with simple experiments. They
can compress a plastic ruler to find out when and how it bends.
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Figure 12. A "catastrophe machine" can be constructed easily out of cardboard
and rubberbands. Attach a circular disk of thick cardboard, of radius 3
centimeters, to a board using a drawing pin and a paper washer. Fix another
drawing pin near the rim of the disk with its point upwards. To this pin attach
two elastic bands, of about 6 centimeters unstretched length. Fix one to a point
12 centimeters from the center of the disk, and leave the end of the other free
to move along the center line as shown, for example, by taping it to a pencil
that you can move by hand.

They can use a spring to hold a rod upright, with the lower end resting on a
table, then add weights to the top and watch it sway or buckle. They can make a
"bridge" from a flexible metal strip, put weights on top, and watch it collapse.

Older students can analyze the behavior of two rigid rods joined by a
springy hinge. These models lead naturally to more subtle questions relating
symmetry, stability, and continuous change. How does a rolling body move if
its center of gravity changes? How do ships capsize? The analysis of models of
such changes brings in a great deal of important
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geometry, for example, tangents and normals to a curve, centers of gravity, and
even coordinate transformations.
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Figure 13. When the rubber band is stretched, the symmetrical position of the
pin (a) becomes unstable. Two stable positions emerge on either side (b) and
(c), but neither of these has the symmetry of the original configuration. In this
case, as in many other examples in nature, instability break symmetry.

For a more homely example, consider the flow of water through a hose
with circular cross section. Imagine the hose suspended vertically, nozzle
downwards, with water flowing steadily through it. This system is circularly
symmetric about an axis running vertically along the center of the hose. And
indeed if the speed of the water is slow enough, the hose just remains in this
vertical position, retaining its circular symmetry.

However, if the faucet is turned on further, the hose will begin to wobble.
In fact there are two distinct kinds of wobble. In one it swings from side to side
like a pendulum. In the other it goes round and round, spraying water in a spiral.
Similar effects are often observed when children wash the family car. These
wobbles do not possess circular symmetry about a vertical axis: indeed, they
break it in two distinct ways. They also break a less obvious but very important
symmetry: symmetry in time. The original steady flow looks exactly the same
at all instants of time. The oscillating flows do not. The time symmetry is not
totally lost, however: both wobbles are periodic and hence look exactly the
same when viewed at times that are whole number multiples of the period. This
shows how the continuous temporal symmetry of a steady state breaks to give
the discrete symmetry of a periodic one.

Symmetry breaking is important in biology. When a spherically symmetric
frog egg develops, it splits into two cells and the spherical symmetry is broken.
At a later stage of development (Figure 14) a spherically symmetric mass of
cells, the blastula, forms; but this first develops
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Figure 14. Creation and destruction of symmetry in the development of a frog
embryo: spherical symmetry breaks, then is restored, then breaks again into

circular and then bilateral symmetry.
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a circular dent (gastrulation) with only circular symmetry and then a neural
fold, leading to mere bilateral symmetry.

Mathematically, the development of a circular dent during gastrulation is
directly analogous to the buckling of a spherical shell (Figure 11). This
demonstrates that symmetry-breaking phenomena in quite different physical
realizations can have the same underlying mathematical structure. The unifying
role of mathematics in science, one of its most striking and important features,
is clearly visible.

This leads directly to our motivating question: Why does a tiger, with its
roughly cylindrical symmetry, have stripes? Blake's immortal poem offers no
useful clue.

Turing's Tiger

The theory behind the tiger's stripes goes back to Alan Turing, more
famous as one of the father figures of modern computing. Turing knew that
chemical changes produce the variations in coloring. The chemical responsible
for the stripes need not be the actual coloring matter; it is more likely to be a
precursor, formed during relatively early stages of the tiger's development,
which later triggers a series of chemical changes to create the stripes. However,
the biological details—some of which remain controversial—are not important
here. Our aim is to illustrate some simple and general mathematical
mechanisms for pattern formation in a familiar context.

Turing wrote down equations for this kind of chemical change.?’ He
solved them numerically and then made pictures of the results. He used to
button-hole friends and show them his pictures. On some there were stripes, on
others irregular patches. "Don't these look just like the markings on cows?"
Turing would ask, in some excitement.

His calculations showed that patterns like stripes or spots can be created by
a mechanism of instability. Imagine a flat surface (mathematical tiger skin) that
contains a uniform distribution of some chemical. This would in the course of
time produce a tiger of uniform color, grayish brown all over, more like a
mountain lion. But the distribution of chemicals need not remain uniform: it can
change. There are two important types of change. Chemicals at a given place
react, and the reaction products diffuse from one place to another.

These two types of change compete. Reaction tries to alter the chemical
mix; diffusion tries to make it the same everywhere. The mathematics shows
that when different influences compete the result is often a compromise. Here
the simplest compromise is that the uniform distribution of chemicals begins to
form ripples. If instability occurs in only
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one direction, then the ripples only run one way and we see stripes. If a second
instability sets in along a perpendicular direction, then the stripes themselves
ripple along their length and break up into spots (Figure 15). Competing

chemical instabilities may well be the fundamental difference,
mathematical level, between tigers and leopards.

Figure 15. Competing chemical forces lead to instabilities. In (a), instability in
one direction leads to stripes; in (b), instability in a second direction breaks up
the stripes into spots.

Figure 16. Spiral scroll waves in a chemical reaction created by conflicting
roles of reaction (which changes the chemical mix) and diffusion (which
restores uniformity).

on a

Chemical reactions that can generate periodic patterns—spirals, target
patterns—can be demonstrated in any school chemistry laboratory (Figure 16).
The most famous one is the so-called Belousov-Zhabotinskii reaction.?!
Students can analyze these patterns to find their mathematical structure (e.g.,

what sort of spiral is it?). They can also use computer
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packages to solve reaction-diffusion equations on different shapes of regions
and see what kinds of patterns occur (Figure 17).

| ]
£ * x|
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-

Figure 17.
By using simple computer packages, children can explore reaction-diffusion in
regions of different shapes.

Figure 18. Computer models of patterns on animal skins show realistic-looking
results. They also show that long thin stripes usually break up into spots.

Patterns formed in the competition between reaction and diffusion provide
good examples of symmetry breaking. The initial uniform distribution of
chemicals has greater symmetry than do the stripes or spots or spirals.
Symmetry breaking is a very common source of natural
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patterns. And what else is the breaking of symmetry than a change in pattern?

Computer models of how pigmentation-controlling chemicals might
diffuse through the tiger's tail produce plausible markings (Figure 18). Long
thin stripes are less stable than short fat ones and prefer to break up into spots.'®
This mathematical result could help explain the common observation that a
spotted animal can have a striped tail, but a striped animal cannot have a spotted
tail.

IMPLICATIONS

Change is a phenomenon that has a direct impact on every human being. It
affects individual lives, national economies, and the future of the entire planet.
Until recently our understanding of change came mostly from the traditional
tools of calculus and its more advanced relatives and was confined to the
physical sciences, where accurate numerical measurements are possible.

Initially, computers served to extend the techniques of calculus, by making
it possible to solve more difficult equations. The term "number crunching"
captures the style. But today's computers do more than just crunch numbers. In
particular they can represent and manipulate data graphically. As a
complementary development, today's mathematics is also about far more than
just numbers. It deals in structural features, multidimensional spaces,
transformations, shapes, forms—in short, patterns.

When calculus was invented, it evolved hand in hand with geometry. Over
the centuries, geometric reasoning was replaced by more powerful—but less
informative—analytic techniques. The emphasis shifted to formulas. Now, as
we penetrate areas where formulas alone are inadequate, the emphasis is
shifting back to geometry—not to the stilted formal reasoning often associated
with the school treatment of geometry, but to the geometry of space and shape—
to the mathematics of the visual.

Many basic skills are involved, often as complementary pairs, to provide
two different ways to approach the same problems:

e numerical and visual,

* algebraic and geometric,

» formal and experimental,

e abstract and concrete,

* analytic and synthetic,

* algorithmic and existential,

* conceptual and computational.
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Mathematics, the science of patterns, is itself changing. For the sake of our
future we must harness mathematics to the patterns of change. And to do that
we must change the way that mathematics is taught, to create a new generation
able to perceive and manipulate new patterns.
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Index

A

Abbott, Edwin Abbott, 30, 49
Absolute value, 33
Accelerated variation, 72
Accumulations, 26, 27
Algebra, 1,3, 4,22,37,39,52, 62,65, 66,
70,72,73, 74,82, 84,87, 88
Algebraic expressions, 62, 64, 74,77, 80, 85,
86
Algorithms, 7, 8, 33, 36, 39, 64, 65, 77-78,
80, 83, 84, 89
application of, 78
bisection, 34
combination counting, 50
computer-based, 78
defined, 77
design of, 78
development in schools, 77
everyday, 33-35, 36, 39
"paper and pencil", 64
theme in mathematics, 7
Applications
algorithms, 78
measurement, 89
modeling, 89
quantification, 65
school mathematics, 88-91
Archimedes, 16, 84
Area, 12, 16, 17,24, 67
circle, 22, 23
and pi, 35
rectangle, 17
right triangle, 16

scalene triangle, 16
square, 35
Arnheim, Rudolph, 170-171
Astrology, 62
Astronomy, 198
Average value, 26, 27

Bayes' theorem, 128
Bayesian inference, 127, 128;
see also Classical inference, Inference
Belousov-Zhabotinskii reaction, 213
Bias, 131
in data 114
Binomial
coefficient, 52, 53
distributions, 122, 125
Biological instability, 212
Blastula cells, 210
Boxplots, see Displaying data

C
Calculators, 65, 99, 100

as complement, 78, 79

graphing, 75

influence of, 63, 64

in schools, 63
Calculus, 4,7, 13,14, 19, 28, 35, 50, 184,

215,216

and formulas, 196
Cantor set, 204
Cartesian graphs, 76
Catastrophe machine, 208
Causation, 111
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Cavalieri's principle, 18
Celestial body dynamics, 198
Center, 107, 111, 114
Central limit theorem, 125
Chance, 95, 97-99, 136;
see also Confidence Intervals, Inference, Out-
comes, Probability, Randomness, Signifi-
cance tests
Change
calculus and, 184
computer graphing of, 184
identifying patterns in, 183
implications, 215
in mathematical research, 7
mathematicians, 188
in mathematics, 2, 184-189
models in calculus, 184
natural, 183
planetary motion, 198-206
population, 189-198
representation of, 184
in school curriculum, 2, 188
teaching of, 187
universal concept, 189
Chaos theory, 143, 187
Cheops, pyramid of, 20
Circumference, 23, 35
Class data, 112
Classical inference 127;
see also Bayesian inference, Inference
Classification
development of skills, 146
in schools, 147
of shape, 147-148
Combinations, counting, 50, 51, 52-53
Combinatorial
networks, 160
properties, 143-144
tools for patterns, 160
Combinatorics, 122
Comparative randomized experiments, 117
Complete graph, 51
Complex numbers, 86-87
Computational machines, 63
Computers and computing
algorithms, 78
analysis, 186-187
animation, 32
as complement, 78, 79
coordinates and, 39
geometry in schools, 175
graphics, 2, 14, 30, 161, 167-168, 184-185
mathematics, 64
models, 89, 214-215, 216
new number systems, 87
reaction patterns, 213
representation, 76-77

shape simulation, 177
simulation of planets, 198
software, 75
statistical, 99, 100, 102
wraparound, 38
see also Calculators, Displaying data, Repre-
sentation, Visualization
Conceptual knowledge, 73, 78-79
Conditional probability, 122-124, 128
modeling, 123
see also Probability
Cones
drawing, 32
slicing, 48
volume of, 14, 15
Confidence
intervals, 129-131;
see also Bayesian inference, Classical infer-
ence, Inference, Significance tests
statements, 129, 130
Configuration spaces, 41-45
Conic sections, 48
Connections, in mathematics, 5-7
Conservation of energy, 203
Context, in statistics, 96, 101
Continuity, see Topology
Continuous approximation to discrete phenom-
ena, 194
Contour mapping, S0
Converging variation, 72
Convex deltahedra, 155
Coordinates, 32, 33, 36-45
descriptions, 41
dimension, 32
geometry, in higher dimensions, 39
graphs, 75
Correlation coefficient, 111
Counting games, 36
Coxeter, H.S.M., 158
Crick, Francis, 154, 155
Cross-sectional slices, determination of, 47
Crystals, 155-157
Cubes, 11,28, 29, 30, 31, 32, 40, 47,53, 178
counting of, 53-58
drawing, 28
in Froebel's kindergarten, 24
isometric projection, 28
learning tools, 157-158
orthographic projection, 28, 29
slicing, 47
Cubic kaleidoscope, 153
Curie, Pierre, 206, 207, 208
Curriculum, 77, 88, 92, 95, 136, 171-180
data, 96-97
design, 66
development, 66
future of, 66
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quantification skills, 62-65, 77-79, 92
see also Teaching
Cyclical variation, 72
Cylinders, 11
and discs, 22
drawing, 32
slicing, 47

D
Data, 95, 96-97, 98, 99, 100, 101, 103, 104

curriculum, 96-97
definition of, 96
experiment, 112
measurement, 113
numbers in context, 96
Data analysis, 102, 103-111, 115, 119, 126
teaching of, 112
Data bases, 65
Data production, 102, 103, 111-118, 135
Decomposition
models, 17-18, 47, 49
slicing, 46-50
Decorated cubes, 153
Density, 16
Deterministic
chaos, 195
phenomena, and change, 8;
see also Change
Diagnostic methods, 99
Difference equation (dynamic), 193, 196,
Differential equations, 105
Dimension, 11, 12, 13, 25, 30, 31, 32, 33,
36,37, 39-44, 49, 53, 58, 62,91
Dimensional analysis, 91
Dimensionality
and change, 8
configuration spaces, 44-46
dynamic events, 44-46
similarity, 20
Dimension, 11, 12, 13, 25, 30, 31, 32, 33,
36,37, 39-44, 49, 53, 58, 62,91
Direct and inverse variation, 72
Direction-giving
as part of learning, 36-37
Dirichlet domains, 156, 157
Discontinuities, 200
Discrete
mathematics, 184
system, dynamic 193
Displaying data, 27, 28, 104-105
boxplots, 104, 108
for children, 105
drawing, 164
graphic displays, 104
histograms, 104
mathematical models, 104
stemplots, 104
see also Computers and computing, Represen-
tation, Visualization
Dissection, 158-160

Distribution patterns, 105
DNA, 148, 154
Double helix, 148
Dr. Matrix, 61
Draft lottery (1970), 132-134
Drawing
cubes, 28
as representation of shape, 164-166
see also Cubes, Displaying data
Dynamical systems, 192-194

E

Earth, as two-dimensional surface, 37

Edgerton, Samuel, 168-170

Egyptian monuments, as geometrical examples,
20-21

Electron microscope, 171

Elements, 141, 176

Elevator geometry, 39

Equations, 70

Escher, M.C., 165

Euclid, 7,43, 64, 77, 139, 140-141, 175, 176

Euler's Theorem, 161

Evolution, of number system, 74, 81

Executive toys, 199

Experimentation, in place of proof, 185

Exploratory data analysis, 41, 76, 104

Exponential growth, 190, 191, 197

F

Fermat's principle, 179
Fields, 84
Flatland, 30, 49
Foreshortening
in cube drawing, 28, 31
see also Cubes
Four-dimensional cubes, 30;
see also Hypercube
Fourth dimension, 13, 23, 30
Fractals, 25-26, 143, 204
Froebel, Friedrich, 11-12, 14, 15, 17, 24, 28,
31, 46,47, 58
Fruit fly experiment, 195
Fundamental change, 7

G

Galileo, 7, 168, 169, 170, 198
Gauss, 2, 51, 87
Geometric gifts, Froebel's, 14, 46, 47, 58
Geometric
patterns, 139
preparation of students, 20
series, 25
Geometry, 1,2, 11, 12,13, 14, 17, 22, 25,
26, 32, 35, 37, 38, 39, 43, 50, 173
analytic, 13
and children, 11
implications of new approach, 215
plane, 12
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in schools, 174-176
solid, 12, 13
Globes, 161-163
Gombrich, E.H., 143, 169
Graphical representation, 74-75, 108, 109, 191
confidence intervals, 129
see also Computers and computing, Display-
ing data, Representation, Visualization
Greek mathematicians, 16, 64, 74, 140-141,
168, 175
Grouping, 55
Growth
exponential, 25, 190, 191, 197
factors, 25
linear, 190
model, 190
phenomena, and change, 190
Griinbaum and Shepherd, 149
Griinbaum, Branko, 139, 164, 165

H

Harriot, Thomas, 169

He Built a Crooked House, 30
Heinlein, Robert, 30

Helix, 147-148

Hexahedra, 160

Higher dimensional spaces, 39

Hindu mathematicians, 74

Hypercube, 30-31, 32, 40, 50, 53-56,
The Hypercube: Projections and Slicing, 50
Hyperion, 203

Hypersphere, 49

Hypothesis testing, 134

I

Icosahedron, 155, 164, 165
Image reconstruction, 166-167;
see also Representation, Symmetry, Topol-
ogy, Visualization,
Independent trials, 118, 119
Induction, see Mathematical induction, Natural
numbers and integers,
Principle of Finite Induction
Inequalities, 70
Inference, 98, 102, 103, 112, 122, 126,
127-134;
see also Chance, Confidence intervals, Signif-
icance tests
Instruction-giving, as part of learning, 36-37
Integers, see Natural numbers and integers
Isometric projection, for drawing cubes, 28;
see also Cubes, Foreshortening, Orthographic

projection
J
Jupiter, 201, 205, 206
K

Kaleidoscope, 5, 151

exploration of symmetry, 5
Kelvin, Lord, 61
Kindergarten, 11, 17, 24, 28,47, 58;
see also Froebel, Geometric gifts
Kirkwood gaps, 205
Knots, 144, 147
Kolmogorov vague attractor, 185

L

Lagrange points, 203
Language of mathematics, 8
Latitude, 37, 39
Lattice, 155-158
one-dimensional, 156
two-dimensional, 156-157
three-dimensional, 157-158
Law of Large Numbers, 125
Law of Motion, 198
Law of the Iterated Logarithm, 118
Learning and Teaching Geometry, 175
Least squares regression, 111
L'Engle, Madeleine, 30
Lenses, 163-164;
see also Representation
Levels of analysis, 190-192
Linear algebra, 62, 65;
see also Algebra, Algebraic expressions
Logistic curve, 198
LOGO, 37
Longitude, 37, 39
Lorenz attractor, 185, 188

M

Man-made patterns, 148
Mandelbrot set, 26, 185
Manipulatives, 14
Mapping, 168
of quantities, 90
Maps, 161, 162, 163;
see also Displaying data, Representation,
Visualization
Mars, 205, 206
Mathematical
abstractions, 3
actions, 3
attitudes, 3
attributes, 3
behaviors, 3
classification, 141
dichotomies, 4
induction, 82-84
modeling for change, 196
models, 109-111, 161-163, 178, 184, 196
strands, 4
structures, 3
Mathematics
comparison with linguistics, 14
curriculum, 62, 63, 65, 66, 77, 88,91-92,
95, 96-97, 136
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fundamentals of, 3
goals, 62, 91-92
importance of early learning, 14
informal arithmetic, 80
maintaining rigor of old style, 184
pattern and order, 1-2
as a pipeline, 4
public perception of, 1
and science, 184
statistics in schools, 95-96, 100
variety in new approach, 184
Mathematics of change, 184
levels of description, 188-189
Matrices, 63, 65, 87
Maxims and minims, 72
Mean, 96, 107, 110, 119, 125
Measurement
of dimensions, 14;
see also Dimension
as recurring theme in mathematics, 6;
see also Applications, Quantification
Measuring
quantitative concepts, 91;
see also Quantification
volumes, 14, 15, 16
Median, 107
Meteorites, 198
Mirror geometry, 151-153;
see also Geometry, Plane geometry, Solid
geometry
Mobius band, 145
Modeling, 69;
see also Conditional probability
Models, 109, 161-163, 178, 184;

see also Displaying data, Representation

N

Naming
importance of technical names, 145-146
of shapes, 145
see also Classification
Natural
numbers and integers, 82, 84;
see also Principle of Finite Induction
patterns, 148;
see also Patterns
Network problems and combinatorial proper-
ties, 143-144
Newton, Sir Isaac, 7, 198
Normal distribution, 109
Number
lines, 33-35
sense, 79-80, 108
theory, 66
use, 67, 68-69
Number systems, 61, 62, 81-88, 92
algebraic and topological properties, 81
evolution of, 74, 81
future of, 88
new, 87

Numerical
experimentation in change, 194-196
operations, 69
representation, 73;
see also Displaying data, Representation,
Visualization
Numerology, 62

o

Orbiting patterns, 198

Order, in numbers, 68

Organic geometry, 185;
see also Geometry, Visualization

Orientation of shape, 145

Origami, 151

Orthographic projection, 28, 29;
see also Cubes, Drawing, Foreshortening,

Isometric projection

Oscar 11, King of Sweden, 199, 200

Outcomes, 97, 98, 99, 120, 125;
see also Probability

OQutliers, 100, 106, 110

Overall trends, 72

P

Paper folding, as a learning tool, 150-151
Parallelograms, 16-17, 21
non-square, 29
Pascal's triangle, 53
Patterns
in change, 8, 183
in counting, 56
formation of, 149
identification of, 1
in mathematics, 8
modeled by numbers, 61
natural, 149
see also Connections, Mathematical, Mathe-
matics
Pendulums, 45
Pentahedra, 160
Perfect whole, 151
Period-doubling cascade, 185
Permutations, 55
Phase
portraits, multidimensional change, 202-203
space, 201-202
Pi, mathematical constant, 15, 23
definition of, 35
estimation of, 35-36
Piaget, 144
Place value, 74, 80
evolution of, 74
notation, 74
numerals, 74
Plane geometry, 12, 13, 14,
see also Geometry
Planes and surfaces, 36
Planetary motion, 198-206
Poincaré, Henri, 2, 199, 200-202
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2
g Polyhedra, 144, 145, 147, 151, 154, 155, R
- 158, 159, 160, 161, 173, 178 .
5 slicing of, 48 Radio telescope, 171

Polynomials, 63, 81, 84, 85, 86, 87; Random variables, 125, 126, 127;
see also Randomness

see also Number systems, Principle of Finite Randomness, 97, 98.99. 115, 116, 117, 120,

Pl téngsc?gg 124-127, 128, 129-134
b y lP S’ ! 106 in outcomes, 98, 120, 125
opular Science, in sampling, 115-117, 124-127, 129-134;

Population dynamics, 189-198
Predicting outcomes, 97, 98, 99;
see also Probability

see also Confidence intervals, Inference,
Outcomes, Probability, Significance tests,
Uncertainty

Pr{me7 factorlz.atllon theor;m, 84 . Rate, 26-28. 113
Principle of Finite Induction, 82, 83;
of change, 70, 72
see also Natural numbers and Integers, Num- .
. Ratio, 35, 203, 205
ber systems, Rational numbers, Real .
and proportion, 20, 22, 23
numbers

Rational numbers, 84, 85, 86

Real numbers, 84-85, 86

Recurring concepts, 8

conditional, 122-124, 128 Regular polyhedra, 154-155
. discovery of, 140

question, 132

uns. 120-121 see also Polyhedra

e
Problem solving, 99 groups,

Procedural knowledge, 73, 78-79 Rep -n.le.s, 159 8
Propertics Repetition, gnd change,
Representation, 62, 161-168
of number use, 69

) computer graphics, 167-168
of reflected shape, 151; drawing, 164-166

see also Shape, Symmetry
Provided data, 112;
see also Data

Probability, 68, 95, 98, 102, 103, 109, 110,
118-128, 132-136
basics, 120

image reconstruction, 166-167
lenses, 163-164
maps, 161-163

Pssﬁhgll‘l’ag;fiﬁcr;jgf‘?h; models, 109, 161-163, 178, 184
Pyramids, 15, 18, 19, 20,21, 50 of numerical ideas, 73

shadows, 163-164

slicing of, 48 see also Displaying data, Visualization

Pyrltech(s)trzlt;e d cubes Resonance, 203-204
see Rossler attractor, 185
Pythagorean theorem, 17, 40, 42, 43, 85 Rubber sheet
Pythagoreans, 61 dynamics, 200
Q geometry, 144
Quantification S
applications, 65 Sampling, 99, 115, 116, 124, 127, 130

attributes, 61

coding, 67

data and children, 62
everyday, 79

fundamental concepts, 66
information, 65
interpretation of, 62, 79-80
literacy, 65, 90

distributions, 125, 129

see also Probability, Randomness
Saturn, 203
Scale models, 161, 178
Scaling, 143
Scatterplot, 110, 132
Science for All Americans, 72
; The Sciences, 170
measuring, 14, 67 ; . .

. Scoring, as a learning aid, 36
ordering, 67
Self-congruence, see Symmetry

order of magnitude, 79 e
sveholo ic%ll research. 66 Self-similarity, 142-143, 202
psy 8 > in lattices, 159

reasoning, 62, 67, 92 . .
relationships, 66, 72 Semiregular polyhedra, 155;

school curricalum. 62-65. 77-79. 92 see also Polyhedra, Regular polyhedra
technology. 62 ? ? ? Shadow and scale diagrams, 20
&Y. Shadows, 163-164;

of variation, 135
Quartiles, 107
Quartz crystals, 155

see also Representation
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£8¢
© 9
E £ E Shape Stereoscope and stereoscopic pairs, 167
8= aims of study, 140 Strands, combining multiple, 7
e = © analysis, 148 Subjective probability, 128;
<3 k] applied to the real world, 171-173 see also Inference, Probability
8=z¢ classification, 140 Symbol sense, 80-81
‘S 2 '% in geometry curriculum, 175-176, 17 Symmetry 5, 6, 47, 55, 56, 142-143, 206-210
o gu 0 importance, 140 children and, 150, 174
S = o interdisciplinary nature, 177 in data, 108
5 & = as laboratory science, 177-179 discovering, 150-151
% § £ molecules, crystals, atoms, 148 lattices, 156, 157
s 0 E Op[f'lz-i:ndfg studi/;‘éBO packu}g altrflangerpents,t hlSS e 6
b= orbital patterns, recurring theme in mathematics,
E é 2 and pattern, curricular issues of, 171 relationships, 208
g ¢S patterns, 139 significance and use, 153-155
2 cgn 8 and preschool children, 141 through reflection, 151-153
- & 5 properties, 140, 146 see also Cubic kaleidoscope, Kaleidoscope
% § 5 protein subunits, 155 Symmetry breaking, 206, 208, 212,214, 215
o =8 viruses, 155 Symmetry group, 151
;’ 5 '%_ Shear tranigormations, using Cavalieri's princi- T
9 < ple, 18;
i g E see also Volume Taxicab geometry, 37, 39
S<% Sierpinski gasket, 25 Taxonomy of number use, 68;
x 4 5 Significance tests, 131-134 see also Number use
5§25 Silicon chip, 173 Teaching, 187-188
=59 Similarity, 20 formal proofs, 187
3 oE defined, 141 random events, 120
855§ geometry, 175 see also Curriculum
g3 2 in quantification, 69 Technology transfer, 184
8 < - see also Self-similarity Tesseract, 30;
o2 o Simplex, subsimplices, 53 see also Hypercube
S g o Simulation, 11, 102, 106, 123, 126, 129, Tetrahedra, 48, 16
9 s & 130, 134 T%lings and patterns, .l 1, 149
" g g computer,1 (1)(6)9 120, 125 Time, azi) gle fourth dimension, 43
T =z _. Skewness, Titan,
~ 438 Slicing 46-50; Topology, 144146, 200-202
g %, g see also Cones, Cubes, Polyhedra, Pyramids, Torus, 38-3299
- 5c Spheres Trapezoid,
_E %j = Solid ggometry, 12-13; aspincomplete triangle, 20-21
2L % see also Geometry, Plane geometry Triangles
° = g Spheres, 43, 49 counting, 52
2573 drawing, 32 similar, 20-21
55 © slicing, 47 Truncated pyramid, 20
c oo volume of, 14, 15 Tukey, John, 103
S<£ 3 Spiral, 147, 148 Turing's tiger stripes, 212
*2 o 0 Spread (dispersion), 107, 111, 114 U
s 3@ Squares, 40, 53-58
0= > Stable systems, 199, 208 Ueda attractor, 185
§ 2 £ Standard deviation, 108, 109, 110, 125 Ultrasound, 171
Z—ao see also Spread Uncertainty
£3F° Star Wars, 101 and change, 8
g g © Statics and dynamics, 44 everyday 98-99
0 E Statistical significance of, 135-136
2R designs, 112, 115-118 order in, 98
o5 inference, 103; variation as fundamental skill, 136
,—E 3 § see also Inference see also Chance, Inference, Outcomes, Proba-
s =S 5 significance, 132; ) bility, Randomness
= E’ IS see also Inference, Significance tests Uniform growth, 197
LDL £ 2 uncertainty, 133 v
agg Statistics, 95, 96,97, 99, 100, 111, 113, 126, ) )
2 % < 127,134, 135, 136 Var}ables and relations, 69, 70
58 Stepped variation, 72 Variance, 125
SEs
ER
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Variation, in process, 135
Verhulst law, 193-196
Vertices, 39
Video games as part of learning, 37
Visual
imaging of geometry, 184
representation, and change, 8
Visual Thinking, 170
Visualization, 6-7, 8, 168-171
computer-aided, 145
dimensions, 24
of geometric relationships, 28
in geometry, 49
importance of, 168
interdisciplinary nature of, 171
as interpretation, 170-171
in learning, 11
multidimensional data sets, 41
problems, 47
quantitative relationships, 74
recurring theme in mathematics, 6
Volume, 14-22, 26
Cavalieri's principle, 18
concept of, 14-16
cone, 14, 15
diagonal decomposition, 18
displacement, 16
in education, 14
incomplete/truncated pyramid, 20-21,
irregularly shaped objects, 16
pyramid, 15-16, 20, 21
shear transformation
sphere, 14, 15, 16
Voluntary response samples, 115, 116

W

Watson, James, 154, 155
Weiner, Norbert, 1
Wraparound, 34, 38

A Wrinkle in Time, 30

X

X-ray
investigations, 155, 173
tomography, 50

Z

Zeman, Christopher, 208
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