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Abstract

The remarkable mechanical properties and thermal stability of fibers fabricated from liquid crystalline
polymers (LCPs) have led to the use of these materials in structural applications where weight savings are
critical. Advances in processing of LCPs could permit the incorporation of these polymers into other than
uniaxial designs and extend their utility into new areas such as nonlinear optical devices. However, the unique
feature of LCPs—intrinsic orientational order—is itself problematic, and current understanding of processing
with control of orientation falls short of allowing manipulation of macroscopic orientation (except for the case of
uniaxial fibers). This report reviews the current and desirable characteristics of LCPs and identifies specific
problems and issues that must be addressed so that advances in the use of these unique polymers can be expedited.

ABSTRACT iii

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


ABSTRACT iv

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


Preface

The subject of liquid crystalline polymers (LCPs) transcends classical polymer chemistry and physics, and
it extends the conventional boundaries of rheology and processing. Properties of these new materials are, on the
one hand, reminiscent of amorphous metals, while simultaneously exhibiting attributes of organic single crystals.
In this report we attempt to evaluate the potential of LCPs in selected areas, pointing out obstacles to further
progress and suggesting where efforts in research and development might expedite LCP utilization in current and
new technologies.

Because the subject touches on a wide range of topics, we have attempted to make this report accessible by
adhering to a parallel presentation scheme. Thus, insofar as possible, the key chapters of the report are divided
into the following headings:

Macromolecular Design and Synthesis Understanding and Theory Processing Mechanical Properties Blends
and Composites Nonlinear Optical Properties

When useful, the headings are subdivided further into sections on lyotropic (solution processed) and
thermotropic (melt processed) LCPs. Occasionally, one of these sections may be partitioned into separate
subsections, e.g., mainchain and sidechain LCPs. We have also tabulated a glossary of abbreviations and
acronyms (Appendix B).

The report is intended to enable persons unfamiliar with the field to obtain a general appreciation of LCPs
in the context of conventional polymers (see Chapter 2, Background) and to proceed to contemporary issues
associated with specific topics (e.g., nonlinear optical characteristics of LCPs). We include an appendix
indicating approximate current federal funding levels for research on these new classes of polymers
(Appendix A).
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Executive Summary

The unique feature of liquid crystalline polymers (LCPs)—high local (microscopic) orientational order,
which is retained in the solid state—has significant implications in a range of DOD applications utilizing
polymers. The remarkable mechanical properties and thermal stability of fibers from precursor liquid crystalline
solutions (lyotropic spinning dopes) are the principal driving forces that launched these materials and encouraged
efforts to place LCPs in structural applications where weight savings are critical.

It would appear that advances in processing the lyotropic polymers could allow the incorporation of LCPs
into other than uniaxial designs—multiaxially oriented items. Moreover, novel processing might make
thermotropic LCPs eligible for critical structural applications. However, the unique feature of LCPs is itself
problematic—the current understanding of processing with control of orientation falls short of permitting
deliberate manipulation of macroscopic orientation (with the exception of uniaxial fibers). Even carefully
designed applications that exploit other features of liquid crystallinity (anisotropic thermal expansivity, transport
anisotropy, optical characteristics, etc.) will be retarded until there is an in-depth understanding of how
processing promotes morphology in conjunction with how molecular structure affects the mechanical and the
unusual physical properties of these new classes of polymers.

The principal conclusions of the committee are as follows:

•   New cost-effective synthetic efforts and stabilization techniques are required to manipulate and maintain
sequence distribution and thereby control polymer properties.

•   Theories of LCP behavior must address polymer flexibility to realistically predict blending, rheological,
and chain dynamical properties of ordered polymer phases.

•   Processing protocols must go beyond conventional methodologies, e.g., explore solid-state forming of
LCPs in efforts to achieve multiaxial order and obviate macroscopic heterogeneity.
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•   Compressive failure mechanisms must be understood in order to suggest solutions to current mechanical
limitations of LCP applications; simultaneously, new nonstructural applications of LCPs (e.g., as barrier
materials) should be explored.

•   LCPs may find extensive applicability in blends and composites. However, the roles of LCPs as the
dispersed phase or as the matrix phase, filler shape and adhesion (and self-adhesion) are complex and
poorly understood issues.

•   Lowering the cost of LCP in products through lower cost monomer, polymerization and fabrication
processes will catalyze the overall acceptance and range of applications of LCPs by the user community.

•   An interdisciplinary effort is required to exploit the anisotropy of LCPs in nonlinear optical applications.
•   The current annual Federal funding level for LCP research is almost $10 million.
•   LCPs and their unique advantages as structural polymers were discovered and developed in U.S.

industrial research laboratories in the 1960s and 1970s. A cursory glance at the following table suggests
that current research and manufacturing effort has now become worldwide.

Companies Engaged in LCP Development

United States 0:Western Europe 0:Japan

Allied-Signal Akzo Asahi

Amoco (Dartco) BASF Denki Kagaku

DuPont Bayer Idemitsu

Eastman DSM Kuraray

Hoechst Celanese Hoechst Mitsubishi Chemical

Monsanto1 ICI Mitsubishi Gas

Montedison Mitsui Toatsu

Rhône-Poulenc Nippon Petrochemical

Polyplastics

Sumitomo

Teijin

Toray

Toyobo

Unitika

1 Has stopped research
Source: Outlook for Advanced Engineering Materials: Plastics, Composites and Ceramics. November 1986, R861101. Cambridge, Mass.:
Arthur D. Little Decision Resources.
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Committee discussions frequently returned to economic and geopolitical topics, about which it was
collectively agreed that members were ill-equipped to make meaningful recommendations. Nevertheless, two of
these issues deserve attention:

•   There was a consensus that meaningful evaluation of new (and potential) LCP systems is severely
hampered by a limited number of facilities in the United States wherein intermediate-scale monomer
and polymer synthesis [between the lab-bench scale (~100 g) and pilot plant (100 to 1000 lb)] can be
carried out.

•   Although many companies are market developing LCPs, large volume use awaits lower cost polymers.

Therefore, LCPs are a fertile area warranting intensive study. The findings will have an impact on a wide
range of problems that include mechanical and optical properties of polymers. Moreover, it is anticipated that the
findings on LCPs will lead to a more comprehensive understanding of conventional polymers and their
fabrication techniques.
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1

Conclusions and Recommendations

The following are the major conclusions and recommendations. More detailed information can be found in
the following chapters of the report.

MACROMOLECULAR DESIGN AND SYNTHESIS.

Thermotropic LCPs (Mainchain)

Conclusions
• Among the serious molecular design issues affecting copolyester syntheses are the elucidation and control

of the mer sequence along the polymer backbone. Until these are accomplished, the structure-property
relationships associated with backbone sequence will be unclear and subsequent design of improved polymers
will be severely hampered. Future challenges facing widespread utilization of thermotropic LCPs are economic
in nature. It is necessary to develop higher-temperature properties utilizing lower-cost monomers, i.e., to develop
low-cost syntheses of key (naphthalene-and biphenyl-based) monomers or to develop new low-cost (aromatic)
monomers.

Recommendations

•   Develop new polyester polymerization techniques with the associated catalysts and transesterification
inhibitors that yield and maintain specific mer sequences.

•   Continue efforts to measure mer sequence distribution, e.g., by multinuclei NMR.
•   Develop high-temperature properties utilizing lower-cost aromatic monomers, e.g., hydroquinone.
•   Develop efficient direct coupling of simple monoaromatic functional molecules to prepare low-cost

biphenyl A-A and A–B monomers, e.g., A = -COOH, B = -OH.
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Thermotropic LCPs (Sidechain)

Conclusion
• Sidechain LCPs have great potential as functional polymers. Development of properties dependent on

noncentrosymmetric structures such as certain nonlinear optical effects, piezoelectricity, and pyroelectricity is
possible via selective chemistry. Ferroelectric behavior has been observed in smectic C sidechain LCPs. Since
surface-stabilized ferroelectric liquid crystals are in a sense “self-poling,” a combination of ferroelectric and, for
example, nonlinear optical properties in a single material would be attractive. In addition, sidechain LCPs as
elastomers and as high-performance coatings warrant more consideration.

Recommendations

•   Create opportunities that exploit novel functional sidechain LCPs via the interplay of function and
chemical structure in these anisotropic systems, particularly in areas where their structural anisotropy
and elastomeric and/or glassy mesophase formation can lead to new applications and enhanced
performance, e.g., optical storage and waveguide media.

•   Encourage design and synthesis of sidechain LCPs for nonlinear optical properties in integrated
programs of characterization and evaluation.

•   Develop synthesis of sidechain LCPs that exhibit novel properties such as ferroelectricity,
ferromagnetism, and elasticity.

•   Evaluate sidechain LCPs as coatings on substrates and as films for use as potential high-performance
materials.

Lyotropics

Conclusion
• Perhaps the biggest challenge in the future of advanced high-performance materials from lyotropic

polymers will be the development of low-cost synthetic routes to these more complex polymer precursors, and
subsequent facile polymerization schemes. Both factors are essential for a consistent and ample supply of
polymer from commercial sources. Reliable and reproducible supply is, in turn, a prerequisite for evaluating
processing procedures that are directed toward fabricating bulk sample alternatives to uniaxial materials.

Recommendations

•   Seek compositional modifications of aramid and benzobisoxazole (thiazole) polymers that enhance
solubility in innocuous solvents while maintaining properties of the polymers in the solid state.
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•   Pursue compositional concepts that lower rigid monomer costs and/or facilitate polymerization of rigid
rod polymers.

THEORETICAL UNDERSTANDING

Single Polymer Systems

Conclusion
• Rigid-rod theories have been extended to include the influence of macromolecular flexibility on the order

parameter and phase transitions in both lyotropic and thermotropic systems.
Recommendations

•   Test predictions with unequivocal data from polymer systems that conform to the theoretical
assumptions.

•   Extend the theories to deal with other, perhaps dominant features of LCPs, such as polydispersity, the
onset of gelation/aggregation, and macroscopic heterogeneities.

Blends

Conclusion
• Blends of LCPs with LCPs and of LCPs with flexible polymers are of potential importance. An adequate

theoretical framework of blends to guide experimental work is lacking. For example, the extent to which
miscibility would be enhanced or decreased because of differences in rigidity in the component chains is not
understood.

Recommendation
• Perform further theoretical and experimental investigations of phase equilibria of LCP-containing blends.

Dynamics

Conclusion
• Chain dynamics dominate both phase transitions and the development of structure during processing.

Although there has been progress on the theory of diffusion and rheology of rigid-rod polymers in dilute and
semidilute solutions, very little is known about these properties in liquid crystalline solutions and bulk polymers.
This lack of understanding of chain dynamics has an impact on processing and property issues, such as adhesion,
phase decomposition and nucleation, and orientation development in complex molded parts.
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Recommendations

•   Investigate intensively the dynamic behavior of the anisotropic phase.
•   Encourage theoretical studies of the rheology of LCPs.

PROCESSING

Lyotropics.

Conclusion
• The technology for the formation of highly oriented fibers from anisotropic polymers is well established,

but fabrication processes for biaxially oriented films and other multiaxially oriented shapes are still under
development. Process development appears to be feasible with existing commercial lyotropic LCPs (e.g.,
Kevlar®); these processes should carry over to new polymers with little modification.

Recommendation
• Continue process development (with better and more volatile solvents) for high-performance multiaxially

oriented shape formation using commercially available LCPs, including post forming and/or other modifications
for specific applications.

Thermotropics

Conclusion
• Melt spinning of highly oriented fibers is under commercial development by a number of companies.

However, such efforts in injection molding face problems because of the tendency to form highly oriented local
regions. This in turn leads to poor uniformity of macroscopic properties and weak weld lines. The current
meager understanding of melt flow precludes systematic advances in mold design to overcome these problems.
Solid-state processing is one area offering promise for overcoming the problems associated with flow-induced
anisotropy.

Recommendations

•   Increase effort to understand the flow of LCPs; place emphasis on efforts to overcome macroscopic
heterogeneity and on studies that yield sufficient background to design molds with mechanical solutions
to the weld line problem.

•   Encourage research on solid-phase processing.
•   Fund on a case-by-case basis specific fabrication processes to exploit unique properties, e.g., poling in

electro-optical applications.
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MECHANICAL PROPERTIES

Conclusions

•   The general consensus is that poor compressive strength of uniaxial LCP materials is a major limitation
in their utilization in structural materials. The situation is exacerbated by a poor understanding of how
the anisotropic strength (longitudinal covalent and lateral dispersion and/or hydrogen bonding)
manifests itself throughout the morphological hierarchy in the solid state—macromolecule to bundling
of fibrils. Efforts to fabricate stronger materials via cross-linking are inconclusive. As with conventional
composites, adhesion of LCP fibers to the matrix is problematic.

•   The influence of temperature on mechanical properties is more important in melt-processible LCPs than
in the case of the thermally stable lyotropic LCPs.

•   Since self-adhesion in LCPs is poor, the weld line problem in injection-molded parts is exaggerated and
may be insurmountable at the molecular level. This also manifests itself as a tendency for fibrillation in
uniaxial films and limits their usefulness; efforts to superimpose biaxial order on films are being
pursued. Advances could be expedited by pursuing film processing studies on readily available LCPs.

•   Environmental exposure, whether natural or application-imposed, can lead to deterioration of LCP-
based structures and articles. This concern is not fatal because adequate protection can be provided if
the need is recognized. For military materiel, the chemical warfare (CW) scenario is considered to be
part of the application-imposed environment and, although some LCPs exhibit excellent barrier
properties, exposure to CW liquids must be included in any screening protocol during materials
selection and qualification.

Recommendations (in addition to recommendations cited under Processing et al.)

•   Encourage research directed toward identifying the compressive failure mechanism in LCPs, in
particular delineating the level (microscopic versus macroscopic) at which the failure is initiated.

•   Screen LCP materials to establish resistance to natural and end-use environments that include exposure
to CW liquids.

•   Encourage the evaluation of diffusion and permeability in LCPs that may be utilized as barrier materials.
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BLENDS AND COMPOSITES

Conclusion
• The combination of LCPs with other materials to control the balance of properties and improve cost-

effectiveness is clearly an important technology area for increasing the overall utility of LCPs. The problems
inhibiting the rapid development of this technology are the same as those slowing LCP acceptance in other areas.
These include high property anisotropy in finished parts, poor compressive strength, and poor adhesion to
conventional and mesogenic materials. This is not in contradiction to the observations that fillers and blending
can mitigate many of these effects but, is rather an important hint into what the underlying controlling
parameters of the science must be. Hence, from both the scientific and technological points of view,
investigations of the behavior of LCPs in multicomponent systems should be strongly supported.

Recommendations

•   Investigate the effect of shape, surface chemistry and properties of filler particles, as well as processing
methods, on the orientation and properties of the LCP phase.

•   Understand and improve LCP adhesion to fillers, to conventional polymers, and to other LCPs.
•   Understand the dynamics and equilibrium of phase shapes, sizes, and properties of multicomponent

systems that include LCPs.

NONLINEAR OPTICAL PROPERTIES

Conclusion
• Liquid crystallinity in combination with the unique electronic properties that can be achieved in organic

molecular solids and polymers may lead to useful polymeric materials for second-and third-order nonlinear
optical applications. The advantageous property associated with liquid crystallinity is anisotropic order, which is
either essential to or enhances nonlinear coefficients and imparts stability to the critical orientation of
chromophores in the films. The complex issues associated with the range of properties that must be achieved will
require substantial interdisciplinary efforts.

Recommendations

•   Support initiatives aimed at understanding and achieving stable, uniform polar alignment in polymeric
materials for second-order nonlinear optical applications.
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•   Support polymeric design, synthesis, and processing studies aimed at the unique properties of
waveguide structures for third-order nonlinear optics.

•   Focus research support in polymer nonlinear optics on interdisciplinary programs where molecular and
polymer design and synthesis, waveguide design and fabrication, and physical characterization are
combined.

CONCLUSIONS AND RECOMMENDATIONS 11

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


CONCLUSIONS AND RECOMMENDATIONS 12

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


2

Background

Relatively unhindered rotation about the single bonds in the backbone of most macromolecules means that a
random trajectory for the polymer chain is the most common polymer conformation. Features of some special
monomers (resonance, stereochemistry, etc.), however, restrict internal degrees of freedom in the polymers such
that the mainchain is extended in space along an almost linear trajectory. Extended polymer chains or chain
segments can, through excluded volume interactions, lead to long-range orientational ordering of the
macromolecules—liquid crystallinity—in concentrated solution or in the melt. Liquid crystals (LCs), sometimes
also called mesophases, were first recognized in low-molar-mass compounds a century ago, and they enjoy
widespread technological applications because of their unique electro-optical properties. Low-molar-mass LCs
are highly anisotropic fluids that exist between the boundaries of the solid state and the conventional isotropic
liquid state and exhibit features of both states. In the case of macromolecules, orientational ordering of extended
polymer chains is sufficient to impart some crystal-like orientational ordering to their fluid phases—melts or
polymer solutions. Although this orientation is very subtle on a local scale (it is masked by the rapid and
complex molecular dynamics characteristic of all fluid phases), time-averaged attributes of these fluids are
anisotropic and therefore dramatically different from those same attributes in ordinary isotropic liquids.
Figure 2.1 exaggerates the differences between the melt of a conventional random coil polymer (top) and that of
a liquid crystalline polymer (LCP) (bottom) in order to pictorially show the long range order in a fluid phase of
the LCP. In LCP melts or solutions this average anisotropy has dramatic consequences. When macroscopic
uniform alignment of local directors exists, such fluids exhibit bulk anisotropic dielectric, magnetic, optical,
transport, etc., properties. Materials formed from polymers that are orientationally organized in the fluid state
retain this anisotropy in the solid state and frequently exhibit ultrahigh strength and stiffness (modulus) along the
machine direction (parallel to the extended chains) because the organization and conformational preferences of
the chain promote an extended-chain crystal habit. For these
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Figure 2.1
Schematic indication of the differences between an isotropic (top) and a liquid crystalline (bottom) polymer fluid.
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reasons, LCPs are being increasingly utilized in specialty and high-performance applications. Historical
reviews (Economy, 1989; Jackson, 1989; Samulski, 1985; and Dobb and McIntyre, 1984), general introductions
(Browstow, 1988; Chapoy, 1985; Finkelmann, 1987; and Samulski, 1982), and contemporary reviews of LCP
properties (Calundann et al., 1988; and G. E. Williams, 1987) abound.

LCs and LCPs may be divided into two broad categories, according to the principal means of achieving
fluidity. Lyotropic LCPs result from the action of a solvent and hence are multicomponent polymer solutions—
polymer plus solvent(s). Thermotropic LCPs are produced by heat and may be single (neat polymer) or
multicomponent melts.

Within each category, three distinctive supramolecular organizational or structural classes of LCs have been
identified: the nematic, smectic, and twisted nematic or cholesteric phases. Structural differentiation of these
phases is related to the packing aspect and dimensionality of the translational organization of the molecules. In
the examples of these phases we limit consideration to mainchain LCPs. Nematic LCs are distinguished by a
unique director (optic axis) in the fluid; the nematic director is established by the parallelism of the long axes of
molecules ([average] polymer chain axes). There is no translational order in this nominally uniaxial fluid
(Figure 2.2).

Chain parallelism also characterizes the smectic phase, but translational order is also present in the form of
long-range stratification normal to the chain axes (Figure 2.3). Mobility of the entire chain within the smectic
layers is possible, although this increased translational organization lowers chain mobility relative to nematic
phases. (In low-molar-mass LCs bulk fluidity in the smectic structure involves the layers gliding past one
another; such a transport mechanism would be sharply attenuated in polymeric analogs, wherein a single
semiflexible chain traverses more than one layer; smectics formed from rigid rod polymers with the layer
spacing equal to the rod length might exist.) (Wen et al., 1989) In nematic phases chain ends (defects) are
randomly distributed in the ordered fluid; there may be a tendency for such defects to segregate between layers
in smectic fluids composed of semiflexible chains. Cholesteric LCs are similar to nematics in organization, with
the additional feature of a cumulative twist between molecules, a result of the asymmetry of intermolecular
forces. This asymmetry is due to the presence of chiral centers in these mesogens. As a result, the local nematic
director twists into an inherently biaxial, helicoidal supramolecular structure (Figure 2.4). Although there is a
large number of applications of cholesterics in low-molar-mass LCs that exploit their optical properties
(temperature sensors, notch filters, etc.), there is little evidence of widespread use of this biaxial superstructure in
LCPs.
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Figure 2.2
An absence of translational order in the idealized nematic.

Figure 2.3
Smectic stratification (lateral registration) in a polymer mesophase.
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Figure 2.4
Helicoidal cholesteric structure in a mainchain LCP.
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MACROMOLECULAR DESIGN AND SYNTHESIS

Thermotropics

Mainchain (linear) LCPs are generally synthesized by condensation polymerization involving
transesterification (Jackson, 1989) (Figure 2.5). The growth step is an acidolysis reaction yielding an ester
connecting link accompanied by the loss of acetic acid. The polymerization is usually conducted in the melt,
although in some cases the use of an inert suspending medium is reported. The reaction in the melt is carried out
either to completion or first to low molecular-weight-oligomer followed by solid state polymerization to high
molecular weight. This general approach is employed for the important high-temperature all-aromatic polymers
such as Xydar® (Amoco), Vectra® (Hoechst-Celanese), Victrex® SRP (ICI), and presumably the recent
polymers announced by Du Pont and Granmont/Montedison.

Figure 2.5
Condensation polymerization involving acidolysis.

In one commercial case of an aliphatic-aromatic thermotropic LCP—the lower-use-temperature polymer
X7G (Eastman)—this condensation step is preceded by the reaction of acetoxybenzoic acid with poly(ethylene
terephthalate) (PET) in an acidolysis reaction in which the PET chain is cleaved. This results in one chain capped
with a carbophenyl carboxylic acid moiety and the other capped with an acetoxyphenyl moiety. This is then
followed by the acidolysis reaction of the acetoxy and carboxyl end groups, with loss of acetic acid accompanied
by other acidolysis reactions. This sequence in short rebuilds the molecular weight with accompanying insertion
of oxyphenylcarbonyl mer sequences.
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Typical copolyester LCPs are shown in Figure 2.6.

Figure 2.6
Representative potential thermotropic copolyesters.
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Lyotropics

The lyotropic LCPs are prepared by solution polycondensation (Figure 2.7). For many of the extended chain
polyamides, solution polymerization in amide solvents is the preferred method. For example, poly(p-phenylene
terephthalamide) is synthesized by reacting the appropriate aromatic diamine, p-phenylenediamine in this case,
with terephthaloyl chloride in an amphoteric solvent, such as N-methyl-2-pyrrolidone containing a solubility-
enhancing salt. Lyotropic LC polyamides, depending on their composition, may be spun directly from their
reaction media, or they may be isolated, redissolved, and spun from solutions containing strongly interacting
acids, such as sulfuric acid, oleum, etc. The use of a phosphorylation method for the preparation of aromatic
polyamides involves the direct condensation of aromatic amino acids or aromatic diamines with aromatic diacids
in the presence of an aryl phosphite and organic base. Typical unit structures that yield polyamide lyotropic
LCPs are shown in Figure 2.8.

Figure 2.7
Synthesis of polyarylamides.
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Figure 2.8
Lyotropic polyamide unit structures.

Poly(p-phenylene-2, 6-benzobisthiazole) (PBZT) (Figure 2.9) and poly(p-phenylene-2, 6-benzobisoxazole)
(PBO) were initially prepared at the Air Force Materials Laboratory at Wright-Patterson Air Force Base (see
Wolfe, 1988, for a review). PBZT was prepared by the reaction of 2, 5-diamino-1, 4-benzene-dithiol
dihydrochloride with terephthalic acid in polyphosphoric acid. PBO is similarly derived from 4, 6-diamino-1, 3-
benzenediol dihydrochloride. The procedure also works well for A-B type monomers, such as 3-amino-4-
mercaptobenzoic acid and 3-amino-4-hydroxybenzoic acids (Chow et al., 1989). The preparation of “molecular
complexes” from blends of polymers derived from A-A+B-B monomers and polymers derived from A-B types
has also been reported (Wolfe, 1988).
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Figure 2.9
Synthesis of PBX polymers.

Sidechain Thermotropic LCPs.

While most of the interest in LCPs is focused on mainchain polymers, an important class of LCPs contains
the mesogenic groups as an appendage (mesogenic core) on the polymer—sidechain LCPs (see Attard and
Williams, 1986, for a review). Synthetic routes to sidechain LCPs have traditionally involved polymerization of
a vinyl monomer (e.g., acrylate or methacrylate) under free radical conditions in solution (Figure 2.10). (The
only real difficulty with this reaction is encountered when radical reactive groups are located elsewhere in the
monomer.)

It is also possible to produce sidechain LCPs through polycondensation. For example, malonate monomers
can be converted to polyesters in a polyesterification reaction (Figure 2.11). This reaction is of special interest
for radical reactive groups such as nitroaromatics and stilbenes, which have application in nonlinear optics.
Polycondensation of combined sidechain and mainchain LCPs can also be utilized.
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Figure 2.10
Preparation of sidechain LCPs by free radical polymerization.

Figure 2.11
Preparation of sidechain LCPs by polyesterification.
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Reactions on preformed polymer chains allow derivatization of a reactive polymer by attachment of a
spacer and a mesogen (Figure 2.12).

Figure 2.12
Examples of preparation of sidechain LCPs by derivatization of preformed polymers.

Ringsdorf and co-workers have described a variety of sidechain LCPs (and combination polymers, i.e.,
sidechain/mainchain mesogens together) (Ringsdorf et al., 1989, and references cited therein.) Moreover, these
workers have considered oblate as well as prolate mesogenic cores. Thus far we have only considered the latter,
which form conventional calamitic phases. Oblate mesogenic cores, on the other hand, form columnar phases
wherein the columns may pack on a hexagonal lattice. Such lattice organizations are stabilized in the polymeric
forms of these oblate mesogens. These ordered arrays of columns present an interesting and unique state of order
in the LC and solid state of organic polymers.

Sidechain Lyotropic LCPs

For completeness we note that there are examples of sidechain lyotropic LCPs wherein the mesogenic unit
is amphiphilic (Finklemann, 1987). There are also recent proposed structures of combination LCPs that are
derivative of lyotropic (non-amphiphilic) rigid-rod polymers (Dowell, 1989).
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UNDERSTANDING AND THEORY

Order-Disorder Transitions in Polymer Fluids

For polymers, the influence of molecular anisometry on the propensity of mesophase formation has been
explained mainly on the basis of intermolecular and intersegmental repulsion—i.e., steric or excluded volume
effects (Flory, 1984; Matheson and Flory, 1981). For the case where no attractions are acting between chains and
where the chains are perfectly rigid rods, a statistical thermodynamical theory was formulated (Onsager, 1949;
Flory, 1956) more than 40 years ago that laid the foundation for much experimental work in lyotropic systems
and for more advanced theories. Today, this is known: For rigid noninteracting rod-like chains in solution, there
exists an isotropic phase at low concentrations and an anisotropic phase at high concentrations, with a
concentration range of stable biphasic equilibrium in between. The threshold volume fraction vp* for the
appearance of an anisotropic phase is approximated by

where x is the aspect ratio of the chain. (The aspect ratio is proportional to the molecular weight and can be
calculated from estimates of the bulk density and the length and orientation of the constitutional repeat unit. In
fact, it is the chain's persistence length that is relevant for the computation of x.) Interacting rigid rod-like chains
behave somewhat differently, but this difference becomes gradually insignificant with increasing molecular
weights (Flory and Ronca, 1979).

Semiflexible chains are highly extended molecules with significant flexibility that nevertheless impart,
unlike their flexible random coiling counterparts, the potential for the formation of anisotropic phases to their
solutions and melts. For polymers with a uniform (and small) degree of flexibility along the chain, the “worm-
like chain” model is appropriate; thermotropic and lyotropic systems can be interpreted with this model.
Polymers that consist of rigid segments joined by flexible spacers can be treated by appropriate modification of
the individual rigid rod molecule approach (Boehm et al., 1986), and, if the spacers are sufficiently flexible joints
and the rods sufficiently long, they behave roughly as if they were independent (Flory, 1984).

Mesomorphic Textures and Structures

Mainchain LCPs contain microstructures in their melts and solutions on both a micrometer and a
submicrometer scale. The most prominent feature, undoubtedly because it can be observed using optical
microscopy, is the micrometer-scale “domain-like” structure, which is a manifestation of high local molecular
orientation. These optically defined domains observed in LCPs are regions of nearly uniform director orientation.
The domain-like texture is unlikely to represent an equilibrium texture and is not predicted by any available
theory. The character of the submicrometer boundaries between these apparent domains has not been well
characterized; they may consist of strained nematic fluid with some disclinations (the analogue of dislocation
faults in a
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crystal; see, for example Thomas and Wood, 1986) or of more mobile fluid made up of chain ends or of isotropic
fluid of different composition from the bulk (or both) (Nicely et al., 1987; Amundson et al., 1987).

Heterogeneity on macroscopic levels is also observed. Lyotropic systems have a biphasic concentration
range leading to bulk separated isotropic and LC phases. Although most thermotropic melts that have been
studied appear to be uniformly mesogenic on all scales, there are exceptions. The copolyester of 60 mole percent
p-hydroxybenzoic acid and 40 mole percent poly(ethylene terephthalate) has been widely studied and is
multiphasic with an isotropic component of different composition from the mesophase. Terminology derived
from semi-crystalline polymers—degree of liquid crystallinity—is sometimes used to describe such
heterogeneity. However, this terminology is complicated. For example, some thermotropic melts that have been
characterized rheologically also appear to contain a small fraction of actual crystallites with dimensions of the
order of 100 Å at the temperatures at which processing is normally carried out (Amundson, 1989; Kalika et al.,
1990; Lin and Winter, 1988). These crystallites affect the flow, and they are one likely cause of the observed
sensitivity of melt rheology to thermal history. (Large thermal history effects on rheology may also be a
consequence of annealing textures [reorganization of domains] or, in some cases, chemical reaction occurring
during physical characterization, including decomposition, polymerization, and transesterification.)

Rheology

The flow of LCPs is affected by the textures described above in a variety of ways. Moreover, the flow itself
changes the microstructure. Nevertheless, idealized descriptions of (assumed) homogeneous mesophases are
useful to gain insights into flow behavior. Continuum theories of LC rheology developed for low-molar-mass
nematics relate the stress at a point to the deformation and director field and contain a description of the
dynamics of the director field in terms of the director, stress, and deformation field (Ericksen, 1977; Leslie, 1979).

Shear flow appears to have little effect on macroscopic director orientation, either experimentally or in the
context of continuum theories for anisotropic liquids, but flows with an elongational component are very
effective. This is the reason unidirectional orientation (fiber formation) is achieved easily in LCPs. Typical flow
in molds contains regions of extensional deformation (in the “fountain flow” near the moving front, for
example), so high degrees of orientation are achieved in some “skin” regions of a molded part. The high degree
of orientation translates into anisotropic mechanical properties. Flow in molding can lead to regions of rapid
change in macroscopic director orientation including high transverse orientation in the core (Field et al., 1988).
The effect can be analogous to layering of unidirectional sheets. Often the “self-adhesion” of these sheets is
poor, resulting in poor lateral strength (delamination).
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Theory

In molecules of low molar mass with mesogenic properties, the molecular anisometry must be appreciable;
this asymmetry of shape is a prerequisite for substances to exhibit liquid crystallinity and has been convincingly
interpreted (Flory, 1984; Chandrasekhar, 1977; and De Gennes, 1971). In addition, intermolecular attractions,
especially those strongly dependent on the mutual orientation of the molecules, play a role, but they usually
contribute less toward the development of a liquid crystalline phase.

Rod-like polymers, or chains with very limited flexibility and a more-or-less linear trajectory, pervade much
more of space than their flexible random trajectory counterparts; i.e., they have much larger radii of gyration.
The radius of gyration for a random coil with molecular weight M varies as M0.5 at the theta point and as M0.6 in
a good solvent; it is proportional to M for a rigid rod. As a result, rigid rod-like chains strongly interact with each
other at much lower concentrations than flexible polymers do. This is reflected in, for instance, by the large
dilute solution viscosity, the large relaxation times, and the small diffusion coefficients exhibited by rod-like
chains. Above a threshold concentration, the strong interactions produce a mutual orientation about a common
local director; this in turn allows for easy orientation of the rod-like molecules by external influences (e.g., an
electric or magnetic field, a shear field), which facilitate processing of such materials into products of well-
defined orientation—one of the prime attractions of LCPs. The physical and the transport property differences
between random coil and rigid rod polymers increase with increasing concentration, but so do the theoretical
difficulties associated with describing their behavior.

PROCESSING

Solid structures that benefit most from the rod-like molecular structure of LCPs are uniaxial. Easy
orientation in the flow field and resistance to chain folding on solidification lead to fibers with outstanding
tensile properties. LCP fibers have a very high specific strength and modulus. In addition, some of the LCP
fibers exhibit the outstanding temperature performance required for aerospace applications. In this section we
consider processing routes to solid LCPs via both thermotropic and lyotropic phases.

Thermotropic LCPs

The commercial utilization of thermotropic LCPs is a direct function of the ability to process these
polymers into cost-effective solid parts. Paramount for achieving this is the understanding and reduction to
practice of methods to control molecular orientation in three dimensions. Historically, orientation in polymers
has been introduced mechanically. Except for the production of uniaxial shapes with at least one thin dimension
(about 40 µm or less), orientation is difficult to control in LCPs. Injection molding, while successful in
producing useful and even unique parts, does not allow

BACKGROUND 27

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


exploitation of the LCP mechanical property potential. Weak weld lines permeate molded parts. They are due to
the lack of molecular mixing across flow-induced interfaces separating director fields with different relative
orientations. These “grain” or domain boundaries present a significant problem with complex molded shapes.
Orientation-inducing processing techniques other than mechanical (for example, the use of surface epitaxy,
electromagnetic fields, or “crystallization templates”) may prove to be effective new directions for the
production of LCP parts and devices with controlled orientation and stronger weld lines. The potential of new
approaches such as cold-forming processes (see Chapter 4) needs to be assessed both in terms of technical
feasibility and added manufacturing costs.

Lyotropic LCPs.

Although the formation of liquid crystalline solutions by extended-chain, rod-like polymers has been noted
in at least ten classes of polymers (Kwolek et al., 1987), only aramids and ordered aromatic heterocyclics have
been extensively examined with respect to LCP-induced, unique solid-state properties. Here we focus on these
two classes of polymers as fiber-and film-forming polymers. Kevlar® aramid polymer has been manufactured by
the Du Pont Company since the early 1970s (Kwolek, 1980), while rigid aromatic polybenzobisoxazoles (PBO)
and polybenzobisbisthiazoles (PBZT) are currently under consideration for commercialization.

Fibers

The ability of extended-chain, rod-like polymers to form lyotropic (nematic) mesophases under certain
conditions (molecular weight, solvent, concentration, and temperature) is critical to their processing into solid
parts. Uniaxial solid fibers dominate the commercial utilization of lyotropic LCPs. For example, spinning
lyotropic solutions can result in fibers with very high strength and very high modulus and with nearly perfect
orientation without subsequent mechanical processing, i.e., without stretching the extruded and solidified fibers.
With these otherwise intractable polymers, such fiber properties have not been achieved by other means.

Selection of a spinning method (dry, wet, or dry jet-wet) is determined primarily by the polymer-solvent
system and economic considerations. For example, Kevlar® aramid fiber utilizes a dry jet-wet spinning process.
The highly ordered nematic phase in a solution with greater than 18 weight percent of high-molecular-weight
poly-p-phenyleneterephthalamide (PPTA) in approximately 100 percent sulfuric acid is retained and perfected by
elongational forces in the air gap, and by further drawdown in the coagulating medium. The high (as-spun) chain
orientation is directly related to the high fiber tenacity (> 20 gpd) and high (approaching theoretical values after
heat treatment) modulus. Spinning conditions for lyotropic aramids and structure-property relationships of the
resulting fibers have been studied extensively and are described in patents and literature reviews (see, for
example, Schaefgen, 1983; Jaffe and Jones, 1985; Schaefgen et al., 1979; Prevorsek, 1982; Dobb, 1985; and
Kwolek et al., 1988). Subsequent heat treatment of
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these fibers under tension (but with practically no draw) at 150 to 550°C can result in further improvement of
tensile properties and orientation. The heat treatment response is dependent on the structure and molecular
orientation of the as-spun fibers and on the method of spinning. Since thermal polycondensation of aromatic
diamines and aromatic diacids is at best very slow, the increase in tenacity and modulus upon heat treatment is
attributed to increased orientation and crystallization of the polymer chains.

Similar findings apply to solid fibers fabricated from polymeric aromatic heterocycles. Since PBZT and
PBO are soluble only in strongly interacting acids, fiber formation involves removal of the acid solvent and rapid
coagulation of the polymer by a nonsolvent, such as water. As with Kevlar®, the optically anisotropic PBZT or
PBO-polyphosphoric acid solutions are dry jet-wet spun into fibers with ultrahigh tenacity and ultrahigh
modulus. Polymer preparation in polyphosphoric acid, spinning conditions, and fiber properties of these
extended-chain rigid heterocyclic polymers are described in a number of patents and literature reviews (Wolfe,
1988, and references cited therein). Heat treatment is similar to that of aramids except that the temperature range
is from 375 to 690°C. There is a wide range of properties, depending on processing conditions.

Films

The very limited published material on films from fabricated lyotropic polymers may indicate that wet
extrusion does not lend itself easily to film formation. Films produced from anisotropic PPTA-sulfuric acid
solutions (by wet or dry jet-wet extrusion with uniaxial drawdown) exhibit polymer orientation in the machine
direction and highly anisotropic mechanical properties. PPTA films produced with a lubricated conical mandrel
between the die and the coagulating bath exhibit equal biaxial orientation and balanced properties. Although heat
treatment at 350°C of the latter films results in a significant enhancement of tensile properties and a reduction in
voids, these improved properties are very inferior to those of the corresponding fiber (Bodhagi et al., 1984).
Flood and Fellers (1987) have used mandrels of conical, hyperbolic and ogival shapes to obtain a high degree of
biaxial chain orientation in PPTA films. Molecular orientation as well as mechanical properties were found to be
dependent on mandrel shape and presence. Tensile strength and Youngs modulus were on the order of 30 Kpsi
and 1 Mpsi (0.21 GPa and 6.9 GPa), respectively versus 400 Kpsi and 9 Mpsi (2.8 GPa and 62 GPa) for Kevlar®
29 fiber. Biaxial films appeared to be more homogeneous compared to uniaxially drawn films. Films prepared
from PBZT-polyphosphoric acid solutions by dry jet-wet extrusion also have high axial orientation and high
unidirectional properties (tensile strength and modulus of 1.5 and 240 GPa, respectively, after heat treatment) but
poor properties in the transverse direction (Feldman et al., 1985). Also, like other anisotropic films, they exhibit
axial splitting. More recently, biaxially oriented films of PBT have been prepared by the use of a specially
designed die that allows for biaxial orientation to occur during extrusion of the PBZT-polyphosphoric acid
solution (R. Lusignea, presentation to the committee).

BACKGROUND 29

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


Solid-State Forming

Novel processing of thermoplastics can be defined in many ways but for the purposes of this report will be
considered to mean any forming method conducted at temperatures at or below the melting point (solid-to-
mesomorphic transition) of the LCP. While such processes are widely used for many semicrystalline polymers,
they account for far less volume than traditional melt-processing. In the case of thermotropic LCPs, the sintering
process was one of the first to be applied to the hydroxybenzoic acid polymers introduced by the Carborundum
Company (Economy et al., 1970a and 1970b; Economy, 1989). However, the exploitation of these techniques
has not been noticeable against the rapid growth in, for example, the injection-molding area.

The explanation for this is probably not in the behavior of the LCP material itself, relative to random-coil,
semicrystalline polymers. However, relatively little information is available to support the hypothesis that the
LCPs can be solid-state formed with the same ease as conventional polymers. The empirical criterion of Aharoni
and Sibilia (1978) that a crystal-crystal transition must exist may not apply in the case of rigid rod molecules,
although such transitions are thought to be quite common (Field et al., 1988; Hsiao et al., 1988). It should be
noted that transitions that could lead to mobility in the crystals may be induced at high hydrostatic pressure; thus
some forming processes could succeed while others may fail. Table 2.1 illustrates the more common solid-state
forming methods (Shaw, 1980). It should be remembered, on scanning this table, that many commercial
fabrication processes involve two or more of these, either in sequence or, in effect, simultaneously. For example,
the combination of coining and extrusion will yield a decorated container in one step. Also, the mandrel
technique has been examined but the results have not been outstanding; modulus values are one to two orders of
magnitude below Kevlar® 29 (see previous section).

Many of the advantages of solid-state forming result from the avoidance of the penalties of heating a
polymer to a high temperature. These penalties include energy costs, time required for cooling, large volume
changes, and degradation. For many high-temperature LCPs, the latter may be the most compelling. In addition,
it is possible to introduce a high degree of orientation via solid-state forming, and thereby a substantial
improvement in strength. The high optical clarity of cold-formed semicrystalline polymers is often cited as an
advantage, but it is not known if this will prevail for LCPs.

MECHANICAL PROPERTIES

Solid State Morphology

The focus herein is on fibers because morphological data on more complex geometries are incomplete.
When one tries to analyze the molecular criteria for a perfectly aligned uniaxial system, it is not directly
applicable to fibers because of a fiber's fundamental morphological characteristics.
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TABLE 2.1 Cold-Forming Methods for Polymers

Process Typical Products Closest Simple Deformation Schematic

Cold drawing Fibers, tapes, rods Uniaxial extension

Bending Angles, channels Pure shear

Cold extrusion Rods, tapes Uniaxial extension

Hydrostatic extrusion Rods, tapes Uniaxial extension
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Process Typical Products Closest Simple Deformation Schematic

Rolling Sheet, tapes Pure shear

Deep drawing (draw forming
stamping)

Cups Pure shear

Upsetting (cold heating) Knobs, nails Compression

Matched-die forming (stamping) Various Pure shear

Coining Raised Letters
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Process Typical Products Closest Simple Deformation Schematic

Hydroforming Cups Biaxial extension

Rubber pad forming Cups

Stretch forming Cups Biaxial extension

Forging, cold molding
(compression molding)

Gear, pulleys

Conventional fibers derived from ordinary semicrystalline polymers are a complex aggregate of strong,
highly ordered microfibrils and macrofibrils that are usually separated by a weak boundary (Peterlin, 1979)
(Figure 2.13). Therefore, polymeric fibers tend to fibrillate or split into these subelements when bent. Although
there are many ways to produce fibers, the final products always exhibit a well-developed fibrillar substructure.
Moreover, this tendency toward fibrillation appears to be exacerbated in fiber derived from LCPs, even though
extended-chain crystal habits as opposed to thin lamellar crystallites (see inserts in Figure 2.13) prevail in these
new polymers (Sawyer and Jaffe, 1986).
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Figure 2.13
Hierarchical morphology in fibers.
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Since the interfibrillar domains are weaker than the fibrils, it is necessary to determine the consequences of
fibrillar structure and interfibrillar strength on tensile and compressive properties. An extreme case where the
interfibrillar domains are very weak and their volume fraction is approximately 0.25 illustrates the role of
interfibrillar strength in tension and compression. Note that, regardless of the lateral dimensions of the
microfibrils, the properties in tension would in this case amount to approximately 75 percent of the fibrillar
strength. The compressive strength, on the other hand, depends on the cross-sectional area of the microfibril and
approaches zero as the macrofibril gets thinner.

In tension, the most important factors controlling the strength are the strength of the weakest bond of the
molecule and its cross-sectional area. The stronger the individual polymer chain and the smaller its cross-
sectional area, the higher is the theoretical strength of the ensemble of perfectly aligned molecules. The
interactions between the molecules are of secondary importance and affect only the molecular weight
dependence of strength (Termonia and Smith, 1988; Prevorsek, 1988).

In compression, the key factors are the torsional and bending rigidity of the molecule and the interactions
between adjacent molecules (DeTeresa et al., 1985). The effect of the cross-sectional area in compression is
opposite to the effect in tension. Molecules with large cross-sectional areas usually offer a higher potential for
compressive strength. Consequently, a polymer molecule designed for optimal performance in tension will
generally exhibit low compressive strength, and vice versa.

When the molecular criteria are taken into consideration, the following ranking of fibers with respect to
their increasing compressive strength potential is obtained:

PE < Thermotropic polyesters < rigid rod polymers (PBZT, PBO) < aramids < PVA < carbon fibers
Note that polyethylene (PE), with the highest achieved strength in tension, is the lowest on this compressive

strength scale, and that the aramids are above thermotropic and rigid-rod polymers because of their proclivity for
interchain hydrogen bonding. Poly(vinyl alcohol) (PVA) fibers are a step beyond aramids because of the higher
hydrogen bond density. The compressive strength of carbon fibers is high because of their large cross-sectional
area and sheet-like structure of the macromolecule.

Very recent work on compressive strength of ultra-strong PE fibers and their composites, along with the
work on strain rate dependence of PE fiber properties raises the question whether the reported very low
compressive strength should be attributed to a specific PE fiber or whether it reflects a true inherent
characteristic of uniaxial fibrous PE.

The uncertainties exist for the following reasons:

1.  The commercially available ultra-strong PE fibers have irregular, frequently flattened cross-section
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2.  On a close inspection, these fibers already show before testing, some compressive damage (kink
bands), and

3.  Poor adhesion between the PE fiber and various rigid matrices.

The first two issues preclude a straightforward determination of the compressive strength for fibers, and the
latter from composites. It has been observed that even with the most effective treatments, the fracture path in PE
fiber composites never traverses the fibers as is the case in Kevlar® fiber composites, but follows the fiber-
matrix interface.

In addition, PE exhibits well known strain rate dependence of mechanical properties. While the creep
phenomena of PE were well researched and documented, the strain rate effects at very high rates of deformation
were discussed only very recently. Recent studies (Prevorsek, 1989) confirmed the expectation that compressive
and tensile properties of PE increased with increasing rate of deformation. This includes the compressive
strength and modulus that at the rate of ballistic events and high speed impact appear to exceed the properties of
aramids.

BLENDS AND COMPOSITES

The intimate mixing of two or more polymers to form a new material with a unique property set has
emerged as a desirable route to new product development. The resulting blend or alloy (the terms are usually
equivalent), if consisting of commercially available polymers, greatly reduces the time and costs associated with
new materials development while offering the possibility of a low-cost product with tailored properties and/or
improved processibility. Miscible (thermodynamically compatible) blends form a single homogeneous phase and
offer the potential for control of transition and processing temperatures. Properties tend to follow the “rule of
mixtures” but, synergies are not uncommon. One significant commercial example of a miscible polymer blend is
the polystyrene-poly(phenylene oxide) system developed by GE.

Phase-separated (thermodynamically incompatible) blends are much more common, with “rubber-
toughened” thermoplastics the most common and successful in this class of materials. Phase-separated blend
technology is an effective method for modifying a key resin property (most often toughness) while leaving the
majority of resin properties unchanged. The efficiency of property modification is a function of the nature of the
dispersion of one polymer in the other (size, geometry) and the degree of adhesion between the phases. If there is
sufficient interaction between the blended polymers to cause transition temperatures of the polyphasic system to
shift and/or the adhesion between the polymers to improve, the polymers are “partially compatible.” So-called
compatibilizing agents are third components, often of low molecular weight, added to immiscible blends to
augment dispersion of the included phase or adhesion between the phases. (Note the term “compatibilize” is
often loosely employed by technologists to denote “fine dispersion” of one polymer in another one brought about
by adding a third component.)
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Interpenetrating network (IPN) is the term used to define co-continuous phase morphology (often intimately
mixed thermosets). If a thermoset is cross-linked in the presence of a thermoplastic, the system is described as a
semi-IPN. If one phase orients during processing such that the matrix resin is reinforced, the system may be
described as an “in situ composite” or a “self-reinforcing polymer.” “Molecular composite” is the term used to
describe a molecular dispersion (ideally) of rigid rod polymers (e.g., PBZT) in a conventional polymer matrix
(Wang et al., 1988).

Molecular Composites

The concept of molecular composites may be appreciated in the evaluation by Flory of ternary systems
consisting of (a) the polymer rod (single macromolecule of the PBX type, aramids, copolyesters, etc.), (b) the
conventional (random coil) polymer, and (c) the solvent. The evaluation predicts that a critical region will exist
wherein there is a single isotropic phase consisting of rods randomly dispersed in the coils. this region is very
narrow in its stability boundaries, and the retention of this structure in the solid state depends on “beating the
kinetics.” Hence, if phase separation can be avoided on solidification, given the extraordinarily high mechanical
properties of the individual macromolecular rods, products (including fibers) with excellent tensile and
compressive properties should result (a significant fraction [1/3] of rods in such a solid is always in tension). If
the composite material could be fabricated into three-dimensional parts, these parts would likely possess the high
level of specific mechanical properties currently achievable with LCP-derived fibers and would be extremely
attractive for aerospace applications.

Many of the motivations for blending LCPs with conventional polymers or with other LCPs are the same
that generally make blending an attractive polymer modification option. These motivations include cost
reduction, property tailoring, accelerated new-product development, and improved processibility. (Improved
processibility focuses on utilizing the low viscosity of the LCP to improve the processibility of highly viscous
conventional resins.) The cost-reduction objective is to provide an LCP-like property set at appreciably less than
“pure” LCP property prices. Property tailoring is attractive from two points of view: First, with conventional
polymers, LCPs can function as a high-modulus fibrous (macroscopic) reinforcement, and, second, with other
LCPs or at relatively low levels of conventional polymer addition, the objective is to mitigate LCP problems
such as poor weld line strength or high anisotropy of properties. If a commercially useful family of LCP-
containing resins can be defined, the rapid increase of new LCP-containing products will naturally follow.
Finally, the blending of LCPs with other LCPs provides useful data for studying the nature of the structure,
morphology, and chain-to-chain interactions in these new LCP materials, while offering the opportunity of
improved property sets (DeMeusse and Jaffe, 1988).

BACKGROUND 37

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


ELECTRO-OPTICAL PROPERTIES

Herein the focus is on nonlinear optical (NLO) properties of organic systems involving LCPs. There are,
however, a number of recent phenomena (generally linear electro-optic) that employ conventional polymers or
LCPs together with low-molar-mass LCs. The latter (guest) is dispersed in the host polymer matrix as a
microemulsion and the director responds to an applied field thereby changing the refractive index difference
between the guest LC and polymer (LCP) host. The phenomena may be adapted to light attenuation and optical
switching (Doan et al., 1986; Drzaic, 1986). In the cases of NLO phenomena, readers may readily sense the
intensity of interest in organic polymeric systems, in general (Boyd, 1989), and in LCPs (Williams, 1987), in
particular.

Relevant aspects of second-and third-order NLO processes are reviewed here so that readers may consider
the potential of LCPs in this active research area, one that is anticipated to yield technologically important
advances in the future (Williams, 1987).

Second-Order NLO Processes.

There are basically two categories of second-order NLO processes: (a) the linear electro-optic or Pockels
effect and (b) parametric processes such as second-harmonic generation (SHG) and sum or difference frequency
generation. In the former a d.c. electric field is applied to a medium, which responds by altering its refractive
index in proportion to the applied field. In the latter the electric field associated with incident light produces
polarization components at other frequencies, which can act as a source of electromagnetic radiation at those
frequencies. For a material to exhibit significant second-order NLO responses it must have a
noncentrosymmetric structure. In the case of polymers this implies that a polar symmetry axis must be
introduced into a medium that would otherwise be nonpolar because of orientational averaging. Electric field
poling of thermoplastic polymers at elevated temperatures (above the glass transition temperature, Tg) leads to
the introduction of a polar axis (by biasing molecular dipoles in the direction of the applied field) (Meredith et
al., 1982; Le Barny et al., 1987; DeMartino, 1988). This induced polarity can be retained by cooling the polymer
to well below its Tg. The main advantage of introducing liquid crystallinity into polymers for second-order NLO
applications is the enhancement in the degree of polar molecular alignment it can provide; up to a factor of 5
under certain processing conditions. The origin of this enhancement is the effect of the local anisotropic potential
associated with the liquid crystalline director on the orientational distribution function of the nonlinear
chromophore. Enhanced alignment translates into up to a factor of 5 larger nonlinear coefficient, which in turn
can increase the efficiency of processes such as second-harmonic generation by over an order of magnitude. For
third-order NLO materials uniaxial alignment associated with the liquid crystalline director can have a similar
enhancement in the coefficient by removing the spatial averaging effects of an isotropic environment on the
direction of largest nonlinearity in the chromophore. For commercial applications the stability of retained
alignment is of primary concern since
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critical device characteristics are determined by the stability of parameters related to alignment. Liquid
crystallinity can assist in the retention of local alignment because of its highly anisotropic contribution to the
local orientational potential energy (D. J. Williams, 1987).

An alternative approach to inducing noncentrosymmetry might be to introduce chirality and the other
structural requirements of the ferroelectric smectic c* mesophase into a polymeric structure containing
chromophores capable of producing a nonlinear response (Goodby and Leslie, 1984). Because of its complexity,
this approach has not yet been fully examined or exploited, but it may be fruitful for achieving high degrees of
order with excellent stability.

Most devices designed to take advantage of the Pockels effect operate by retarding the phase of light
propagating through the medium with the field-induced refractive index change. One figure of merit (FOM)
quantifying the suitability of a material for a particular electro-optic or integrated optic application (Alferness,
1982) is

where X(2) is the first nonlinear coefficient, n the refractive index, and ε the dielectric constant of the electro-
optical material. This FOM determines the trade-off between the electric field and path length required to
achieve a particular degree of phase retardation. For very-high-speed devices where electric fields are applied via
microwave transmission lines, an additional factor emerges. Here the velocity of the microwave pulse Vm = C/
ε1/2 must match that of light, Ve = C/n, in the medium over the interaction length required for a given amount of
phase retardation to occur (DeMartino et al., 1987). From these considerations a large refractive index would
favor phase retardation. For high-bandwidth devices operating in the traveling wave mode, n2 approximately
equals ε of the electrodes at optical frequencies. For electro-optic materials such as LiNbO3, n2 and ε are very
different, so that velocity matching can only be achieved over short distances (Lytel et al., 1988). From a device
design point of view, if the phase retardation must be achieved over short distances, much higher voltages are
required. A thorough discussion of device-dependent requirements for electro-optic materials is beyond the
scope of this report, but a general list of requirements and desirable characteristics compared to the properties of
currently existing materials is presented in Chapter 3.

For second-harmonic generation, a separate FOM is required that leads to additional desirable material
characteristics. Consider the fraction of power converted to the harmonic frequency, P(2ω)/P(ω), over a certain
region in a crystal. It is proportional to the following factors:

Where n, µ, and ε are, respectively, the refractive index, dipole moment, and dielectric constant of the
nonlinear materials, and f(∆kL/2) is a phase mismatch factor that is periodic in character and whose amplitude is
reduced by increasing periodicity. The periodicity of this function is determined by
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the mismatch in momentum ∆k of the fundamental and harmonic waves. A FOM for harmonic conversion is
given by

Here it is clear that low-refractive-index materials have a considerable advantage relative to high-index
materials, and the quadratic dependence of power conversion efficiency on X(2) puts a tremendous premium on
that factor. The input power P(ω) and interaction length L are parameters to be played off against the material
FOM. Other factors such as birefringence and geometrical optical factors limit the length over which the
interaction can be maintained.

In waveguided structures designed for optimized propagation of fundamental and harmonic fields, the
dependence on interaction length L becomes quadratic, and optical fields can be propagated over long distances,
leading to high conversion efficiencies (Zyss and Chemla, 1987). Because of the lack of materials with suitable
properties, as well as processes to fabricate them into suitable waveguides, the potential technological
advantages of waveguide SHG have yet to be realized.

Third-Order NLO Processes

Third-order nonlinear processes arise from the nonlinearity in the polarization response of all dielectric
media, including conjugated organic systems. The π-electrons in conjugated organic systems, being loosely
bound, contribute much more strongly to the nonlinear response than the more tightly bound core electrons
(Rustagi and Ducuing, 1974). Third-order processes fall into two basic categories. The first is analogous to the
Pockels effect, where the refractive index change is quadratically dependent on the applied field, which can be at
d.c. or optical frequencies. This can lead to a variety of interesting effects that are manifested in various device
designs, including bistable switches, power limiters, and optically driven modulators (Stegeman et al., 1988).
The second category of processes involves the interaction of optical fields at different frequencies, where energy
can be exchanged between field components in a manner similar to second-order parametric processes. The
fields can all be at the same frequency (in contrast to second-order processes, where one of the fields must be at
the harmonic, sum, or difference frequency) or at different frequencies. Third-harmonic generation, degenerate
four-wave mixing, and real-time holography are examples of such effects (Shen, 1984). If one of the frequencies
or any combination of them matches a resonant process in the molecule or medium, large enhancements in
nonlinear response can be achieved. In this case dissipation of thermal energy and the temporal response of the
resonant process place constraints on the utility of the process. Momentum conservation must be maintained and
can be controlled by the interaction geometry.

There is no symmetry restriction for third-order processes, unlike the case for second-order processes, so
they are exhibited by all media. In conjugated polymers, where electron oscillations are much larger in the chain
direction than perpendicular to it, nonlinear responses are extremely large.
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Nonresonant third-order nonlinearities are larger in polymers such as polyacetylene (Sinclair et al., 1987),
polydiacetylene (Sauteret et al., 1976), and other conjugated polymers than in any other class of materials,
including inorganic semiconductors. The response parallel to the chain direction suggests that macroscopic
orientation of the polymer should result in a considerably larger response than in an isotropic system. The
enhancement factor can be shown to be a factor of five. Conjugated liquid crystalline mainchain polymers are
also known to exhibit high degrees of shear-induced uniaxial alignment, and the expected increases in nonlinear
coefficients in appropriate directions have been observed (Rao et al., 1986).

All optical signal processing applications based on third-order NLO fall into two basic categories: parallel
and serial. There are two approaches to parallel processing that enable the massive parallelism and
interconnectivity of optics to contribute to optical computing and information processing (Gibbs, 1986). The first
of these involves the use of simple spatial patterns combined with the switching behavior of nonlinear etalon
devices to perform computational functions; these devices are simply miniature resonant cavities where the
thickness, refractive index, and reflectivity of the internal surfaces are chosen to provide a destructive
interference condition and therefore low transmission through the device. The nonlinear contribution to the
refractive index of the medium, as illustrated by the equations below, causes the transmission characteristics to
be light-intensity-dependent and capable of exhibiting bistable behavior.

The second approach to parallel processing involves the formation of transient holograms generated by two
counter-propagating beams in a bulk nonlinear medium to alter the information content of a third beam
interacting with the grating thereby producing a new fourth beam. An example of information processing by this
method is associative memory (Yariv and Kwong, 1986). Here an optical mode of a resonator containing a
hologram with many messages and a nonlinear medium can selectively amplify a particular message, given only
partial information from an input beam. For these applications the primary requirement is for large X(3), where

in MKS units and

where n0 is the material refractive index, n2 is the light-intensity-dependent refractive index, and I is the
light intensity and α is the absorption coefficient. A large value of n2 maximizes the response of the material to
small amounts of energy. Because of the inherent parallelism, high degrees of information throughput are
generated, and response times in the nanosecond to millisecond time frame are useful.

Because of their extremely large resonant nonlinearities, GaAlAs multiple quantum wells and
photorefractive crystals such as BaTiO3 have a tremendous functional advantage for this class of applications.
Investigations of NLO
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properties of organic systems, being in a much earlier stage, have not yet demonstrated similar advantage.
Serial applications of third-order nonlinear optics involve the use of the intensity-dependent refractive index

in waveguided structures to perform rapid switching of bit streams between two or more optical channels. The
importance of such devices can be appreciated by realizing that optical fibers can be utilized to transmit
information at rates approaching 1 THz. This rate is beyond the capabilities of known light detectors and will
require all-optical signal processing before light signals are converted to electronic ones. In waveguides, long
interaction lengths can be used to generate phase retardations needed for switching applications so that the
premium for materials is put on the speed of the nonlinear response and the optical losses in the material caused
by linear optical processes. The decay times of nonlinear responses in semiconductors and quantum well
structures, as well as the response time in photorefractive materials, are in general too slow for this type of
application. Polymeric materials exhibiting extremely large nonlinearities (albeit much smaller than the resonant
nonlinear responses of the inorganic materials that makes them more suitable for parallel processing) may offer
the best hope for this important class of applications if additional gains can be made in their properties
(Stegeman et al., 1987).
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3

Properties of Liquid Crystalline Polymers: Current and
Desirable Characteristics

The properties of LCPs are dependent on their final physical forms and their modes of processing. This
chapter is divided into sections dealing with structural and functional properties. These are further partitioned
into subsections dealing with final forms (fibers, films, and processing), function (electro-optic), and stability of
LCPs.

STRUCTURAL PROPERTIES

Fibers

Conventional fibers are prepared either by extrusion of a polymer solution into an evaporating gaseous
stream (dry spinning) or into a precipitating liquid medium (wet spinning) or by extrusion of a molten polymer
into a cooler gaseous environment (melt spinning). (In wet spinning of lyotropic LCP solutions, the extruded
solution usually passes through an air (gas) gap before entering the coagulation bath.) The cross-section of the
spin line is attenuated during the spinning process and the molecular and/or supramolecular orientation in the
resulting morphological hierarchy in the filament (see Figure 2.13) is further increased by stretching (drawing) at
temperatures higher than the glass transition temperature. Ultimately the molecular orientation in microfibrils
composed of high molecular weight chains is responsible for the desirable unidirectional high tensile strengths
and moduli of fibers. Not only is it costly to achieve high orientation via the various spinning and processing
steps, but the extent of molecular orientation is severely limited by molecular entanglements and by premature
crystallization resulting in a morphology wherein conventional polymer chains have a more random conformation
—i.e., extensive chain folding and variably oriented chains between crystalline lamellae. Accordingly, even after
annealing to extend the crystal (para crystal) component, the classical hard fibers (e.g., nylons and polyesters)
exhibit tensile strengths that are limited by this basically two-phase (crystal + amorphous) morphology to values
on the order of 5 to 15 gpd (equivalent to about 400 to 1400 MPa) and tensile moduli on the order of 20 to 250
gpd (about 1.5 to 22 GPa).
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The LCPs, on the other hand, with their rigid, linear chains close-packed in the fluid nematic domains,
orient easily in the converging flow field of the spinneret and refine their parallel orientation in the extensional
flow field of the spin line, emerging in a highly oriented morphology (extended-chain crystal habit; see
Figure 2.13). The orientational relaxation times are so long in the melt that solid fibers are readily formed with
minimal departure of the molecular orientation from that in the fluid LC state. Annealing increases the already
high orientation, resulting in exceptionally high fiber tensile strengths and moduli. For example, Du Pont's
Kevlar® exhibits tensile strengths of 2.4 to 3 GPa and tensile moduli of about 65 to 145 GPa. Since Kevlar® is
the most prevalent fiber derived from an LCP, an extensive tabulation of its properties is given in Table 3.1.

The temperature stability of LCPs is dramatic and may be appreciated by comparisons with ultra-high
strength conventional polymers. In recent years, extremely large tensile values have been attained by “gel-
spinning” of polyethylene (PE), e.g., Spectra® (Allied-Signal). However, because of the inherent molecular
flexibility of PE (facile transitions among gauche and trans-isomers) and weak intermolecular dispersion forces,
its melting point is low (about 145°C). Present and potentially commercial LCP fibers by contrast exhibit
melting points that range from 280 to well over 400°C (decomposition). These high values are accompanied by
retention of useful mechanical properties at temperatures well above those demonstrated by gel-spun PE.
Table 3.2 summarizes the properties of a number of commercial and potentially commercial LCP fibers; selected
Kevlar® data and those of carbon and glass are included to facilitate comparisons.

In addition to high thermal stability, LCP fibers, in common with other organic materials, have low
densities relative to such inorganics as glass and metals. This translates into very favorable tensile strength-
stiffness-mass characteristics (Figure 3.1), particularly significant for composites and, in turn, for use in aircraft
and space applications. Note especially the very high specific strengths and specific moduli of the lyotropic rigid
rod LCPs such as PBZT and PBO fiber.

The very high orientations of the LCP (and gel-spun) fibers are accompanied by poor compressive strength.
To date, the only practical way to overcome this serious problem for composites has been to employ mixtures of
the LCP fibers with graphite fibers. (Dow has recently reported that a developmental PBO fiber may exhibit
better compressive strength (H. Ledbetter, presentation to the committee).
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TABLE 3.1 Properties of Kevlar® Aramid Fibers Derived from Lyotropic LCPs

Property Kevlar® 49 Kevlar® 149

Density 1.44g/cc (0.052 lb/in3) 1.47g/cc (0.053 lb/in3)

Processing Air-gap wet spinning and heat
treatment

Yarn tensile strength* 23 gpd (2.92 GPa) 420 × 103 psi 18 gpd (2.29 GPa) 340 × 103 psi

Yarn elongation 2.5% 1.45%

Yarn initial modulus 900 gpd (124 GPa) 16.5 × 106 psi 1110 gpd (141 GPa) 21 × 106 psi

Yarn secant modulus to 1% elongation 915 gpd (116 GPa) 1230 gpd (156 GPa)

Epoxy strand tensile strength** 525 × 103 psi (3.62 GPa) 500 × 103 psi (3.45 GPa)

Epoxy strand elongation 2.9% 1.9%

Epoxy strand modulus 18–19 × 106 psi (124–131 GPa) 25–26 × 106 psi (172–179 GPa)

Refractive index—

 Fiber axis 2.0

 Fiber axis 1.6

Equilibrium moisture regain (25°C, 65%
R.H.)

4.3% 1–1.5%

Yarn creep rate/log time change 0.020% (load 41$ ultimate T. Str.) 0.011% (load 58% ultimate T. Str.)

Fiber coefficient of thermal expansion
(longitudinal) m/m/°C

-4.25 × 10-6 -1.96 × 10-6
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Property Kevlar® 49 Kevlar® 149

Dielectric constant, K (Fabric/
Fiberite® 934 Epoxy Laminate)

4.14 at 106 Hz 3.90 at 106 Hz

Electron radiation (0–200 megarads) 100% of strength & modulus retained

Shrinkage (permanent) < 0.09% after 250°C exposure

Flammability Self-extinguishing

Limiting oxygen index 29

Thermal decomposition temperature
(TGA)

500°C (930°F)

Long-term use temperature in air 160°C (320°F)

Tensile properties at 180°C (355°F) > 80% of room temp. strength &
modulus retained

> 90% of modulus retained

Chemical resistance, bare yarns Resistant to most solvents and
chemicals but can be degraded by
strong acids, bases, and steam

More chemically resistant than
Kevlar® 49

Ultraviolet stability Degrades, but degree depends on
material thickness since Kevlar®
aramid is a strong absorber and is self-
screening. In composites, strength
loss not observed.
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Property Kevlar® 49 Kevlar® 149

Production plant capacity: Kevlar® in general:

Richmond, Virginia 45 million lb/yr

Maydown, Ireland 15 million lb/yr

* Yarn properties determined on 10'' twisted yarns (ASTM-D885).
** Strand properties determined on untwisted epoxy impregnated yarn (ASTM-D2343).
Source:

•   Chem. and Eng. News, July 11, 1988, p. 15.
•   Du Pont Data Manual for Kevlar® 49 Aramid, May 1986.
•   Du Pont Publication E-95612, 6/87, Kevlar® 149, Properties and Characteristics of Yarn and

Composites.
•   Riewald, P. G. 1988. Advanced Textile Materials Conference, Clemson University, Greenville, S.C.,

April 5–6.
•   Riewald, P. G., A. K. Dhingra, and T. S. Chern. 1987. ICCM and ECCM, Sixth International and

Second European Conference on Composite Materials, July 20–24, 1987, Vol. 5, pp. 5362–5370, F. L.
Matthews, N. C. R. Buskell, J. M. Hodgkinson, and J. Morton, eds. New York: Elsevier Applied Science.
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Figure 3.1
Specific tensile strength versus specific tensile modulus showing LCPs in context with other materials.
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Injection Molding

The properties of injection molded bars of commercially available melt-processible LCPs as reported in the
trade literature are given in Table 3.3. ICI's Victrex® SRP-1 is believed to be a copolymer of hydroquinone
(HQ), isophthalic acid (IA), and p-hydroxybenzoic acid (HBA). Hoechst-Celanese's Vectra® A series is a
copolymer of HBA and 6-hydroxy-2-naphthoic acid (HNA) (approximately 73/27 HBA/HNA); Victrex® SRP-2
is believed to be similar. Amoco Performance Plastic's Xydar® SRT-300 is a terpolymer of HBA, 4-4'-biphenol
(BP), and terephthalic acid (TA). Xydar® G-330 and Sumitomo's Ekonol® 6000 are similar and probably also
contain small amounts of IA; the former is glass filled. Other melt-processible polymers have been announced by
Du Pont and Granmont (Montedison); the latter is commercializing technology acquired from Owens-Corning
Fiberglas Corporation. The Eastman Chemicals copolymer based on PET and HBA, originally introduced as
X7G, is also available commercially in Japan. Other commercial announcements in Europe and Japan are
expected.

The various LCPs differ primarily in their high-temperature characteristics. Therefore, a tabulation on the
basis of temperature is useful (Table 3.4). Xydar® test pieces (based on SRT-300) demonstrate heat distortion
temperatures under load (264 psi) in the 300 to 355°C range. An Underwriters' Laboratory rating of 240°F for
continuous electrical service is reported, with excursions to over 600°F permitted. The polymer exhibits melting
points of 390 to 420°C and demonstrates excellent oxidative thermal stability at high temperatures. LCPs useful
in such high temperature ranges are known as Type III LCPs.

Type II LCPs demonstrate melting points some 100 to 150°C lower than Type III LCPs. This translates into
lower use-temperature ranges. The Vectra® and Victrex® SRP polymers fall into this category. Because of the
lower melting points, the Type II LCPs are processible at lower temperatures. This is appealing for
manufacturing molded parts that do not require the very-high-temperature properties associated with type III.

Type I LCP properties are dominated by low glass transition temperatures and little or no crystallinity, and
they demonstrate much lower use temperatures as a result. The X7G is such a polymer.

All commercial melt-processible LCPs demonstrate a number of common characteristics. Tensile and
flexural moduli of unfilled injection-molded test bars, at room temperature, are in the 1 to 3 Mpsi range. Such
moduli are characteristic of glass-filled semicrystalline polymers; hence, these LCPs are often described as “self-
reinforced” polymers. These high moduli decrease as the temperature is raised; the higher the melting point of
the polymer, the greater is the temperature range over which properties remain useful.
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TABLE 3.4 Classification of LCPs According to Thermal Behavior

Polymer Type Limited by

Xydar® (SRT-300) III Tm = 420°C

Vectra® II Tm = 280°C

X7G I Tg = 80–100°C

Both moduli and breaking strengths (10,000 to 40,000 psi) of bars depend on the gauge of the test specimen
as well as the LCP type. This gauge effect arises from a marked skin-core morphology, with more flow-direction
orientation located in the skin. Accordingly, the thinner the part, the greater the strength and modulus; the effect
is illustrated for Xydar® in Table 3.5.

TABLE 3.5 Effect of Gauge on Flexural Strength and Modulus (ASTM Test Bars)

Xydar® SRT-300 (Unfilled) Xydar® (50% Mineral)

Gauge (inches) Strength (103 psi) Modulus (106 psi) Strength (103 psi) Modulus (106 psi)

0.125 19.7 1.81 15.3 1.57

0.0625 23.8 1.98 17.1 1.78

0.0313 29.6 3.11 18.0 1.80

Source: Duska, J. 1986. Plastics Engineering (December).
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The combination of fountain flow (affecting the skin), complex flow in the core, and long relaxation times
results in properties that can be very different in the flow and cross-flow directions. Anisotropy is, of course,
responsible for the desirable strength and stiffness of fibers. In molded parts, however, it is usually undesirable.
Both this anisotropy and the skin-core effects might be considerably mitigated by proper choice and level of
fillers, resulting in more evenly distributed physical properties. However, the choice and compounding of fillers
into the various polymers is more an art than a science.

The LCP domain structure also results in very low viscosities and substantial shear-thinning. This viscosity
behavior is basically what distinguishes these materials from other filled high-performance polymers. Thus,
although some fiber reinforced non-LCP aromatic polymers may match many of the physical properties of LCPs,
the latter are preferred for filling long, thin mold sections. Such low viscosities also permit heavy filler loadings.
This not only helps to smooth out the uneven directional properties referred to above, but it can also lower the
cost of the relatively expensive base polymers. Indeed, thermotropic LCP manufacturers do not recommend neat
polymers (except for extrusion) but, rather prefer to develop compounded resins containing minerals—e.g., talc,
glass fibers, and carbon fibers. It should be noted that LCP viscosities are sensitive to thermal and shear
histories. It has been reported that processing temperatures can sometimes be reduced by first raising, then
lowering the temperature to the processing temperature. Similarly, “pre-shearing” may lower the viscosity.

The all-aromatic structures of Xydar® and Vectra® (and presumable Victrex® SRP) translates into high
resistance to burning. A particularly dramatic demonstration involved playing an intense 2000°F torch on a
plaque of Xydar® without burn-through and with minimum transfer of heat, under conditions that cut through a
similar size aluminum panel. Such behavior, coupled with very low smoke generation, points to utility in
military and commercial aircraft.

One should not overlook the excellent resistance of these polymers to most solvents. As with all polyesters,
they are subject to hydrolysis, but only under severe conditions. This much greater resistance to hydrolysis,
relative to such conventional polyesters as PET, is also a consequence of the rigid nature of the LCP molecular
structures and the accompanying highly oriented, dense skin. (This is related, no doubt, to the reported excellent
vapor barrier properties discussed below.) It appears that the higher the melting point of the LCP base polymer,
the greater is the resistance to solvents and chemical attack. For example, Xydar® SRT-300 is not affected by
pentafluorophenol, whereas Vectra® will dissolve or swell markedly.

Another important consequence of the high degree of molecular alignment is a very low linear coefficient of
thermal expansion in the direction of flow with values approaching those of ceramics. Related to this are very
low shrinkages on molding. Proper choice and levels of fillers even out properties and minimize warpage. The
low viscosities, coupled with the low shrinkages and in-plane coefficients of expansion, allow for the molding of
dimensionally stable, high-precision parts.
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High dielectric strengths make for excellent insulating properties. High-temperature resistance is required to
stand up to the demands of wave and vapor-phase soldering, IR reflow, and burn-in testing. These are
characteristic of aromatic LCPs, and consequently these polymers (usually with fillers) are prime candidates for
electrical and electronic applications, including electronic and optical connectors, chip carriers and sockets for
integrated circuit mounting and testing. The continuing advances in miniaturization and automation in
assembling electronic arrays will require new materials, and all indications are that there will be increased use of
LCPs in these future applications.

Finally, one area that is a significant problem in injection molding of LCPs is that of poor weld strength.
When two polymer flow fronts meet, the strength of the resulting joint is lower than that of the bulk. This results
from poor molecular interpenetration and incomplete entanglement of the molecules. In the case of the LCPs,
because of the rigidity of the molecules, the decrease in strength is particularly severe. Of the various stratagems
employed to compensate for this defect, the most promising approaches involve optimizing mold and gate
designs.

In summary, the LCP manufacturers encourage the use of their resins in electrical and electronic, aviation
and other transportation, chemical processing, fiber optics, and aerospace applications. Starting from a low
volume base, LCP consumption has been predicted to grow at least 15 to 20 percent a year, far outpacing the
growth rate of conventional engineering resins.

Extrusion

Extrusion as a mode of processing LCPs to produce film and sheet has not been exploited to any great
extent because of difficulties in producing uniform gauges and properties in practical widths. Markedly
unbalanced properties, i.e., weak transverse properties relative to the machine direction result from the high
orientation in the flow direction. The characteristically low elongation of LCP melts makes it difficult to draw
biaxial films or to blow films to the ratios required for useful balanced properties. Nonetheless, a few extrusion-
grade LCPs are offered, primarily among the Type II thermotropic polymers and recently films and sheets of
Vectra® have been introduced. PBZT films from lyotropic dopes with tensile strengths and moduli of 80 to 100
Kpsi (0.55 to 0.69 GPa) and 30 Mpsi (207 GPa), respectively, have been reported (R. Lusignea, presentation to
the committee).

There is significant motivation for the development of LCP in sheet form for thermoforming. The excellent
resistance to burning, when coupled with light weight and high stiffness, make LCPs potentially very attractive
for use in aircraft. Another incentive for developing LCP films lies in the increasingly attractive barrier
properties that are being uncovered. Table 3.6 lists some values for LCPs versus more conventional polymers.
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FUNCTIONAL PROPERTIES

Desirable Electro-Optical Properties.

There are several categories of second-and third-order nonlinear optical (NLO) processes that must be
considered to delineate desired properties and compare the potential advantages (or disadvantages) of LCPs
relative to alternative polymeric or inorganic materials. In some cases a clear advantage is perceived for the
organic and polymeric materials, whereas, for others, various classes of inorganic materials either suffice or are
superior. In general, liquid crystallinity provides anistropy in the medium that can lead to larger nonlinear
coefficients.

Table 3.7 lists general goals that are perceived to be important for electro-optical applications (Stegeman
and Lytel, 1989). For some applications active stabilization and feedback might be used where properties fall
short of requirements.

TABLE 3.7 Important Requirements for NLO Applications

<0.1% drift in X(2) and n for 5 to 10 years

Electro-optic coefficient equal to or greater than LiNbO3

Sufficient optical clarity for 0.1 to 0.5 db/cm attenuation at 0.85 µm, 1.3 µm, and 1.55 µm

Low dispersion in the optical and microwave regions

<0.1% variation in thickness

High thermal conductivity

For second-harmonic-generation applications, some additional requirements are needed; these are listed in
Table 3.8 (Stegeman and Lytel, 1989).

These requirements should be viewed as general and will vary for specific applications. They are biased
toward thin-film optical devices as opposed to bulk devices, for which many single-crystalline materials exist.
For serial processing of information, a premium is put on turn-off time (τ) of the nonlinear response for high
throughput, low absorption coefficient for low
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attenuation and thermal stability, and high nonlinear coefficient. A list of requirements that would permit
development of all-optical serial switching devices is given in Table 3.9 (Stegeman and Lytel, 1989).

TABLE 3.8 Requirements for SHG Applications

Low refractive index dispersion between ω and 2ω

X(2) > 10-7 esu/cm4

No 2-photon absorption

Low optical absorption at fundamental and harmonic frequencies

Photochemical stability

TABLE 3.9 Requirements for Optical Serial Switching Devices

n2 > 10-14 M2/W

High device throughput αL < 0.2 for 80% throughput (α is adsorption and scattering losses and L is interaction length) at
1.55 µm and α approximately 0.1

Low-temperature dependence of n and n2

± 100 A dimensional stability

Processible into waveguides

High damage threshold > 10 GW/cm2

n2 relaxation time < 10-12 sec

Figure of merit W = ∆nsat/αλ approximately 0.5 to 2.0 (device dependent), where ∆nsat is the saturation value of the
nonlinear refractive index, α is the absorption coefficient, and λ is the wavelength
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Currently Available Electro-Optical Properties

The predominantly used electro-optical material for integrated optics applications is LiNbO3. It has
excellent electro-optical properties and can be fabricated into high-quality waveguided devices with both active
and passive components for modulation, switching, and information-processing applications. Methods for
manufacturing, device engineering, and fabrication are mature. Excellent progress has been made in device
packaging and in hybrid technologies for electrically driving the devices. Another relatively new NLO material
that is both more efficient than LiNbO3 and is free from many of its deficiencies is potassium titanyl phosphate
(KTP) (Bierlein and Vanherzeele, 1989).

In spite of many years of effort, however, LiNbO3-based integrated optic technology has not become
widespread and pervasive. There are several reasons for this. First is the cost of manufacturing high-quality,
impurity-free substrates for processing into devices. Although device-grade material is readily available today,
impurity-controlled optical damage was a problem for many years. Second, the predominant waveguide
formation technology involves high-temperature diffusion of titanium into LiNbO3, and minor differences in one
of a number of processing parameters can have a major impact on device performance. Third, LiNbO3 is not
readily integrated with silicon-or GaAs-based technology. Because of the predominance of silicon in the
electronics industry and the promise of III-V compound semiconductors for performing both optical and
electronic functions, considerable attention may be shifting toward these technologies in the future. Even though
KTP appears to be an excellent NLO and electro-optical material it will continue to be incompatible with silicon
or GaAs unless progress is made in growing thin films of the material.

It is noteworthy that, with relatively modest research efforts, poled polymeric materials have been shown to
exhibit electro-optic coefficients similar to LiNbO3 with low losses of approximately 0.8 db/cm at 0.83 µm.
Polymers have a tremendous potential advantage relative to LiNbO3 in that they can be spin-coated or cast,
which significantly increases their chances of being compatible with integration on silicon and GaAs substrates.
Preliminary demonstrations of waveguide formation by poling with patterned electrodes look promising for
some types of devices, and GHz responses have been measured in traveling-wave devices (Carney and
Hutcheson, 1987). Reports of gradual deterioration of induced alignment have been a major source of concern
for poled polymers (Ye et al., 1988), as is transparency in the important 1.3 µm and 1.55 µm regions because of-
C-H vibrational overtones.

For second-harmonic-generation applications, the situation with respect to materials is much more complex.
The major drive for this technology, aside from spectroscopic applications, is the conversion of 825-nm output of
laser diodes to 412 nm for optical memory applications. Proton-diffused LiNbO3 waveguides have been shown
to convert significant amounts of 1060-nm light to 533 nm, but with very poor beam quality (see New Scientist,
1988). A variety of intracavity second-harmonic-generation and frequency mixing devices have been
demonstrated with miniature KTP crystals in conjunction with diode laser-pumped miniature Nd:YAG rods, and
these are now commercially available.
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Because of the superior properties of KTP, including a large X(2) of 3 × 10-8 esu, excellent transparency, and
linear optical properties, this material shows great promise for frequency doubling and mixing applications.
However, the low nonlinear coefficient requires high-power diode lasers (Risk et al., 1988).

Very little has been reported in the literature to date on poled polymers designed for harmonic generation to
412 nm. A major problem is the trade-off between transparency of a nonlinear chromophore in the visible region
of the spectrum and the magnitude of its nonlinear coefficient. A second problem is the nature of the X(2) tensor
for materials with electric field polar symmetry, which makes phase matching (matching the phase velocity of
fundamental and harmonic waves) difficult in bulk devices. Sophisticated waveguide structures using polymers
might permit this. The main reasons for considering polymeric materials for this class of applications are the
potential for high nonlinear coefficients, possibly an order of magnitude larger than KTP, and the potential for
integration with diode laser light sources.

In discussing material properties for third-order nonlinear effects, it is convenient to follow the distinction
made earlier between those used in devices for parallel processing and serial processing.

In parallel processing, two-dimensional arrays of pixel-like elements are likely to be switched between on
and off states in response to input and control optical signals. Various devices have been proposed and
investigated for this purpose, ranging from nonlinear Fabry-Perot cavities that act as bistable devices to thin-film
semiconductor heterostructure devices made of multiple quantum well (MQW) material. One example of the
latter is a self-electro-optic device (SEED) that acts as a light-triggered switch (Miller et al., 1984). Because
throughput through such devices is highly parallel, they are capable of handling large amounts of information. A
premium is put on optical power requirements in such devices, as opposed to the switching rate of the device. In
serial processing, bandwidth is determined by the number of switching operations per second. All optical devices
with subpicosecond response times have a clear advantage relative to electronic devices, whose response times
are several orders of magnitude longer for this type of application (Stegeman and Lytel, 1989).

The light-intensity-dependent refractive index n2, response time τ, absorption coefficient α, saturation value
of the refractive index ∆nsat, and FOM W = ∆nsat/αλ for a variety of materials are shown in Table 3.10
(Stegeman et al., 1987). Where NR appears in the table, the measurement was made under nominally
nonresonant conditions. This does not imply, however, that α is negligible. Values of ∆nsat were not reported for
a number of the polymers, but if one assumes they are similar to those for PTS away from and near resonance,
several observations can be made. First, n2 for GaAlAs MQW devices on resonance is extremely large relative to
PTS on resonance. The power per bit to switch a bistable device is 6 to 7 orders of magnitude less for the MQW
than for the polymer. Since the switching rate is adequate for highly parallel computational architectures, it is
clear that organic systems of the
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PTS type cannot compete for these applications. On the other hand, the dimensionless quantity W discounts the
power requirement for a switching operation and emphasizes throughput—i.e., the amount of refractive index
change that can be achieved relative to the amount of light dissipated in the material. It is independent of the
power and length of interaction required for switching. This parameter is much more applicable to the operation
of waveguided devices likely to be used in serial switching operations.

TABLE 3.10 NLO Materials Properties (Inorganic and Organic

Waveguide Material n2, M2/W T, sec α, cm-1 ∆nsat W

MQW-GaA1As

On resonance ~10-8 10-8 104 0.1 0.1

Off resonance ~10-12 10-8 30 ~2 × 10-3 ~0.9

CdSSe-doped glass ~10-14 10-11 ~3 5 × 10-5 ~0.3

PTS

On resonance 2 × 10-15 ~2 × 10-12 104 ~0.1 ~0.2

Off resonance 10-16 <0.03 × 10-12 102 >10-3 >0.15

Poly-4-BCMU 6.4 × 10-16 <10-13 NR

PBZT 10-17 <10-13 NR

Polythiophene 8.5 × 10-16 <10-12         6 × 103

Phthalocyanine 6.4 × 10-15 <10-12         6.9 × 104

SiO2 glass 10-20 <10-13 10-5 >10-7 >20

SiO2, Pb-doped 10-18

It is noteworthy that PTS is close in value to the MQW structures. Its response time is many orders of
magnitude shorter, making it much more suitable for high-speed applications. The value of W = 20 for glass is
impressive but misleading, since it reflects the extremely low α of glass. Extremely long path lengths and high
powers would be required to operate devices made from this material. The large nonresonant n2, combined with
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polymers for all optical serial switching operations. The second requirement for the class of devices listed in
Table 3.9 is critical for device operation and will be extremely difficult to achieve in polymeric materials. A
trade-off exists between this requirement and the magnitude of n2 as long as α is sufficiently small, i.e., less than
0.1. A gain of two orders of magnitude in nonresonant n 2 would result in a shorter interaction length and smaller
switching power and would ease the constraints on device design and motivate considerable device-related
research on such materials.

ENVIRONMENTAL STABILITY

The environmental stability and durability of LCP-derived structures, devices, and products is a broad and
complex subject, especially when certain factors unique to military materiel are considered. These environmental
factors fall into two major categories: those associated with the natural environment and those imposed by the
end use or application environment. In the former category, temperature and moisture are the most significant,
with UV radiation and environmental pollutants such as the oxides of sulfur and nitrogen sometimes playing a
role. In the latter, temperature may be a consideration, but application-specific factors such as operational fluids,
including fuels, lubricants, and de-icers, must also be considered. Of special concern to the military is the need to
withstand the effects of chemical warfare (CW) liquids for both short-and long-term exposures.

The nature of the application will dictate the degree to which environmental exposure is experienced. For
example, consider an LCP-based component in an optical computer operating in an air-conditioned, temperature-
controlled communications center, as contrasted with a Kevlar® aramid-based composite aircraft structural
element exposed to an entire spectrum of environments: from the tropics to the arctic, from ground level to
40,000 feet, etc. The standards for durability are clearly different for these two cases.

The chemical and physical nature of the polymer will also affect response to environmental exposure.
Polymers that contain hydrolytically susceptible linkages, such as polyesters and polyamides, are at greater risk
in hot and wet conditions, particularly in the presence of catalytic species such as acids or bases, than are
hydrocarbon or fluorocarbon polymers. Similarly, amorphous polymers are usually more prone to hydrolysis
than are semicrystalline or crystalline materials because of the reduced diffusion of water in the latter.

Resistance to CW liquids can be viewed as a specialized aspect of durability peculiar to military materiel.
Those liquids fall into two categories: chemical agents and decontaminants. For the toxic agents, the major
concern is that a material may absorb a quantity of the agent and, through diffusion, rerelease it at a time and
place such as a maintenance facility where its presence is not anticipated. The consequences for unprotected
personnel could be catastrophic.
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In the case of decontaminants, the issue is the degradation of physical and mechanical properties, both short-
and long-term. This is especially true for the most common decontaminant, DS-2, an extremely caustic mixture
of sodium hydroxide, diethylenetriamine, and methyl cellosolve. This aggressive fluid has already been shown to
attack a variety of organic materials. For instance, immersion in DS-2 leads to the complete dissolution of
polycarbonate (Lee and Vanselow, 1987), while a glass/polyester composite gained over 6 percent in weight
during extended exposure (Wentworth, 1986). In light of this, it seems likely that certain classes of LCPs, most
notably the thermotropic polyesters and the aramids, will be adversely affected by exposure to CW liquids.

Although environmental exposure, whether natural or applications-related, can lead to deterioration of LCP-
derived articles and structures, this fact should not be regarded as an indication that LCPs are unsuitable. It is
clear, however, that during the materials selection process careful consideration must be given to the range of
environments to which the item will be exposed and that the material must be evaluated for its response to that
range of environments. In some cases, such data may already exist in the literature. The environmental response
of Kevlar® aramid, for example, is well documented (Morgan and Allred, in press). Where appropriate, this
includes an assessment of the effect of CW liquids. Even in those cases where an unacceptable effect is
observed, it is likely that adequate protection, probably in the form of coatings, can be provided to reduce the
effect to acceptable levels. Indeed, there are reports that the thermotropic polyesters themselves exhibit
exceptional barrier properties (Chiou and Paul, 1987) and may be viable candidates as protective coatings in
their own right.
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4

Problems and Issues: Recommendations for Further Work

MACROMOLECULAR DESIGN AND SYNTHESIS

Sidechain LCPs

Although not suited for structural use, sidechain LCPs have potential as functional materials. The
anisotropic organization of pendant groups can be intimately related to function, as, for example, in the
nonphotobleachable colored film materials derived from cholesteric sidechain polymers (Shannon, 1984). In this
case and in general, mesomorphic structure is readily frozen into a glassy mesophase without crystallization as
the polymer is cooled below its glass transition temperature (Tg).

Retention of mesophase positional alignment and dipolar orientation upon electric field poling while
cooling below Tg can lead to bulk noncentrosymmetry in a mesomorphic system (Meredith et al., 1982).
Development of properties dependent on an acentric structure, such as certain NLO effects, piezoelectricity, and
pyroelectricity, is possible if the structural chemistry of the polymer is designed properly. To the degree an
anisotropic arrangement of functional species can contribute to enhancement of these effects, a mesogenic
polymer is advantageous.

Ferroelectric behavior has been observed for smectic C sidechain LCPs (Shibaev et al., 1984). Electro-
optical devices based on ferroelectric LCs are known (Clark and Lagerwall, 1984). Although usually slower in
response than low-molar-mass ferroelectric LCs, advantage can be taken of their polymeric nature. Since surface-
stabilized ferroelectric LCs are in a sense “self-poling,” a combination of ferroelectric and, for example, NLO
properties in a single material would be attractive.

Lightly cross-linked LCPs, to date primarily sidechain LCPs, can be elastomeric above Tg (Finkelmann et
al., 1981). These elastomers exhibit orientation of mesogenic pendant groups upon application of stress to the
network. LCP elastomers have been envisioned as optical waveguides and as
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selective barrier materials (membranes). In situ photopolymerization of sidechain LCPs in the mesophase has
been recently demonstrated and is perceived (Broer et al., 1988; Hoyle et al., 1988) as a processing option that
may lead to high-speed formation of LCP films and coatings. In addition, masking techniques used with in situ
photopolymerization are seen as potentially useful for integrated optics, displays, and optical information discs.
Laser-addressed smectic sidechain LCPs have been described for information-storage applications (Hopwood
and Coles, 1985).

Historically, the synthesis of sidechain LCPs has been primarily free-radical vinyl polymerization of
acrylate or methacrylate monomers. Recently, combined sidechain and mainchain LCPs have been described
(Reck and Ringsdorf, 1985) based on a polyester mainchain. There has been rapid development of synthetic
methodology toward introduction of new mainchains for sidechain LCPs including polysulfones (Braun et al.,
1987), polyesters (Griffin et al., 1988), and polyurethanes (Tanaka and Nakaya, 1988). Polysiloxanes
(Finkelmann and Rehage, 1980) and, more recently, polyphosphazenes (Singler et al., 1987) have been used for
reactions in which a mesogenic pendant group is grafted onto the polymer backbone. Sidechain LCPs from these
preformed polymers and from new polymer backbones offer interesting auxiliary properties, such as variability
in Tg, solubility, stability, etc. Hence, it is recommended that attention be paid to novel functional sidechain (and
mainchain) LCPs. Opportunities for exploiting the interplay of function and chemical structure in these
anisotropic systems should be taken where their structural anisotropy and glassy mesophase formation can lead
to enhanced performance.

Thermotropic LCPs

Among the serious structural issues arising in LCP polyester syntheses are the elucidation and control of the
mer sequence along the polymer backbones (Economy et al., 1989; Mühlebach et al., 1988). At best, one can
only see dyads via high-resolution NMR in the solid state or in solution (where soluble). These tend to confirm
X-ray studies, which conclude that the sequences are essentially random (in other than the trivial simple A-A B-
B case) (Blackwell and Biswas, 1986). Given the heterogeneous nature of polymerizations involving free
terephthalic acid as well as differences in condensation rates, blocky sequences would be anticipated in the
absence of extensive transesterification. Clearly, the latter is an important accompanying reaction as confirmed
recently (Economy et al., 1989; Jin 1989); controlled sequence distributions were shown to randomize rapidly by
interesterification on heating. To control the sequence distribution, new polymerization techniques and/or
catalysts and transesterification inhibitors will have to be developed, as well as improved methods to measure the
resulting distributions. Until these are accomplished, the structure-property relationships associated with
backbone sequence and subsequent design of possibly improved polymers will be severely hampered.
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Monomer Costs

The reason for the commercial and military importance of LCPs resides in their unique properties.
However, their commercial future and availability is intimately tied to lowering their cost. In turn, this is largely
determined by the cost of the monomers required for their manufacture. The LCPs that are most significant from
a commercial and/or military viewpoint are derived essentially from all-aromatic monomers.

The significant monomers for commercial and near-commercial thermotropic polyesters include A-B as
well as A-A and B-B types. The latter include the diols, such as 4,4'-biphenol (in Amoco's Xydar® and
Sumitomo's Ekonol®), hydroquinone (in ICI's SRP) and phenylhydroquinone (Du Pont), and the diacids,
including terephthalic and isophthalic acids. The significant A-B monomers are 4-hydroxybenzoic (in most
LCPs) and 6-hydroxy-2-naphthoic acids (in Hoechst-Celanese's Vectra®). Of the above, the lowest-cost
monomers are the diacids, at substantially less than $1.00/lb. Next in price are hydroquinone (potentially) and p-
hydroxybenzoic acid, at less than $2.00/lb. The most expensive of the thermotropic LCP monomers are 4,4'-
biphenol and 6-hydroxy-2-naphthoic acid, at somewhere between $3.00/lb and $10.00/lb. Phenylhydroquinone is
probably included in the latter range.

Of the lyotropic LCP monomers, terephthalic acid and its acid chloride (equivalent) are under $1.00/lb, p-
phenylenediamine is in the $2.00/lb range, the meta, para hybrid diamines are probably in the $2.00 to $5.00/lb
range, and far and away the most expensive of the monomers, by at least an order of magnitude, are the
multifunctional monomers required for the heterocyclic PBX LCPs.

Future Cost Challenges.

The cost challenges inherent in developing future thermotropic LCPs will be either (a) to develop higher-
temperature properties utilizing the lower-cost hydroquinone or (b) to develop low-cost syntheses for the higher-
temperature monomers or (c) to design and synthesize new low-cost aromatic monomers. An example of a very
significant breakthrough via the second approach would be a direct coupling of phenol to produce 4,4'-biphenol
in one step rather than via the existing processes, which either sulfonates the biphenyl followed by alkali fusion
or couples 2,6-di-t-butylphenol at the 4 position, to form the 3,3', 5,5'-tetra-t-butyl-4,4'-biphenol, and subsequent
dealkylation. It should be noted that direct coupling of phenol has been achieved biologically but with no
selectivity, all available carbon positions coupling at random. An example of the third approach would be a
similar one-step coupling of benzoic acid to yield the 4,4'-bibenzoic acid.

As for the lyotropics, the biggest challenge is the development of lower-cost routes to the benzobisthiazole
and benzobisoxazole polymers and by lower-cost routes to their multifunctional monomer precursors. Because of
the very high price and therefore limited availability of these monomers, any advances in synthetic approaches
would have a marked beneficial effect on their availability and on the future of the extremely high-performance
materials
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that can be made from them. Of considerable significance is the recent announcement by Dow that it is preparing
a benzobisoxazole polymer in pilot-plant quantities.

UNDERSTANDING AND THEORY

Semiflexible LCPs

Liquid crystal formation by semiflexible polymers has been modeled by extensions of the Onsager method
alluded to in Chapter 2. The relevant controlling parameter revealed by these theories (Doi and Edwards, 1986;
Odijk, 1986) is the ratio of the persistence length to diameter of the polymer chain. Little experimental
verification of these theories is yet in the literature. Dramatic predictions concerning the influence of
macromolecular flexibility on the order parameter and concentration regime of biphasic stability are contained in
these newer theories. These predictions should be tested with carefully obtained data on polymer systems that
conform to the assumptions of the developments.

No totally general models exist yet for the anticipation of liquid crystallinity of semiflexible polymers at all
concentrations. In particular, the thermotropic behavior is only poorly understood. The primary difficulty in
developing a comprehensive picture of the thermodynamic aspects of LCPs lies in the fact that a high degree of
coupling exists between all degrees of freedom in the system, internal and external to the polymer chains.
Contrary to the situation in polymer melts and in amorphous systems, where chains can assume all
conformations and the external constraints on a chain are essentially isotropic, in the liquid crystalline phase the
necessity for the macromolecule to conform to the anisotropic spatial requirements of its environment reduces
drastically its freedom in conformation (internal) and orientation (external). Chains in crystalline materials are
similarly restricted, of course, but there the reduction of fully developed degrees of freedom for the chain is so
drastic that in most cases only one conformation and one packing arrangement can exist; as a consequence, the
analysis of crystalline systems has been mastered decades ago, and very simple rules can be applied (e.g., Natta's
“equivalence principle,” which states that in a polymer crystal the chain conformation must be a repeated
sequence of local conformations). In liquid crystalline phases the molecules in a mesomorphic phase must adopt
orientations, configurations, and a “packing” arrangement compatible with the weak, but not insignificant,
constraints of symmetry and density of the mesophase. In consequence, both intra-and inter-molecular degrees of
freedom, static and dynamic, are highly coupled, between molecules as well as within individual chains. This
coupling is effective not only in thermotropic systems but also in lyotropic ones, as long as the concentration of
polymer exceeds a critical value.

PROBLEMS AND ISSUES: RECOMMENDATIONS FOR FURTHER WORK 74

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


Polydispersity and Blends of Polymers

If systems with more than one component are involved in phase equilibria, one can, in general, expect an
unequal distribution of the different species between the phases; LCPs are no exception. Three interesting
situations exist: polymers not uniform with respect to molecular weight, mixtures of flexible and rigid chains,
and LCP blends. To date, the first two situations have been addressed with some success:

•   As prepared most LCPs are not uniform with respect to molecular weight and therefore are
multicomponent systems; they may fractionate, especially in solution. The higher-average-molecular-
weight species are found in the anisotropic phase; the lower-average-molecular-weight species
accumulate in the isotropic phase. Computations have been performed for a variety of molecular weight
distributions (see Flory, 1984, and citations therein).

•   Mixtures of ideal random coils and rigid rods also fractionate strongly (Flory, 1984), even when the
chains are composed of “identical” segments and are of identical molecular weight. The rigid species
strongly prefer the anisotropic phase.

No theoretical treatment seems to have addressed the question of the blending of different mesogenic
polymers. If both types of chains are constitutionally uniform, of equal rigidity and sufficiently long, the
problem, to zeroth approximation, can be viewed in analogy to the blending of random coiling chains; in both
cases the configurational entropy of mixing is very small and the enthalpy of mixing determines if blending is
possible. One would therefore expect that LCPs mix only rarely. However, in flexible chains, miscibility can
often be achieved by blending copolymers, and there is no reason why similar effects cannot be exploited in
mesogenic polymers. The situation in LCPs is complicated, however, by the fact that the different species
probably would be of different rigidity (exhibit different persistence lengths); one might speculate that for this
reason blending would become even rarer than in flexible polymer mixtures, but only initial attempts at
theoretically illuminating the situation has been put forward to date (DeMeusse and Jaffe, 1988).

Thermodynamic treatments of polymer-polymer mixing and of polymer mesophase formation have been
treated by Flory (1986) and others (Flory and Ronca, 1979; Doi and Edwards, 1986; Odijk, 1986). The
application of these concepts to LCP-containing blends is just beginning to appear in the literature. There is no
reason to expect that these concepts will not provide an effective framework for understanding the phenomena
observed in LCP-based polymer mixing. Comparison of LCP behavior in blending with that of low-molecular-
weight LCs should also prove instructive. It is to be expected that miscibility between LCPs will be rare, as it is
with conventional polymers. In contrast, most low-molecular-weight LCs of a given type are miscible with each
other. The in-depth understanding of the physical chemistry of LCP blending will be an important cornerstone in
defining the ultimate utility of LCP blends and should be rigorously pursued.
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Dynamics

The dynamics of rigid rod systems have been investigated with intensity (Chandrasekhar, 1977; Doi and
Edwards, 1986), and quantitative results are available for moderately concentrated solutions (below the transition
to the nematic state). In the bulk, similar problems exist as for flexible chains. To date, only single polymer
systems with chains of uniform molecular weight and flexibility (usually stiff rods) have been addressed. The
following is known:

•   The rotational constant in dilute (isotropic) solution of rod-like polymers grows with chain length
approximately like Dr α ln(x)/x3. This is a very rapidly decreasing function of the aspect ratio x; long
rigid rods rotate very slowly.

•   In semidilute solutions (above the concentration where frequent intermolecular contacts occur, but still
in the isotropic regime) of rigidrod polymers, the rotational diffusion is attenuated by an additional
dependence of the approximate form x-2 with respect to the one in dilute solution.

•   In concentrated (i.e., anisotropic) solutions, and in the bulk phase, no rotational diffusion effectively
exists.

•   The translational diffusion coefficient parallel to the rod axis is roughly twice that perpendicular to that
axis in dilute (isotropic) solution. Both diffusion constants grow as D α ln(x)/x. This indicates a much
less rapid decline than in the case of the rotational diffusivity.

•   For semidilute (isotropic) solutions of rigid-rod polymers, the translational diffusion in the direction of
the rod is roughly that for the same rod in dilute solution, but translation perpendicular to the rod is
negligible.

•   Very little is known about translational diffusion in the anisotropic solutions and in the bulk phase.

Many other dynamic phenomena have been addressed; of particular interest are the viscosity of solutions as
a function of concentration (which follows the experimentally observed cusp curve) (Hermans, 1967) and the
degree of order as a function of the concentration and external fields in anisotropic phases. Little quantitative
information is available, however, in the latter cases.

Rheology

The anisotropic orientation in melt-processed molded parts cannot be predicted because a complete
continuum theory for LCP rheology is not available. The classical theory of nematic liquid rheology developed
by Leslie (1966, 1968) and Ericksen (1960, 1961) is inadequate for polymers because of the simplifying
assumptions in the derivation: The stress is
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assumed to be linear in the instantaneous rate of deformation, and the entropic free energy associated with local
director gradients, which leads to an elastic “Frank” stress, is assumed to be quadratic. The theory does not take
chain flexibility into account, and magnetic field experiments on thermotropic nematic melts (Moore and Denn,
1988) have indicated that there is creep in the Frank stress. The theory thus stands in relation to LCPs
(particularly lyotropic solutions of very rigid molecules) in much the same way as the Newtonian fluid to
conventional flexible polymers. Much can be gained by use of the Leslie-Ericksen theory, but results cannot be
expected to be quantitative and may even be incorrect in qualitative terms for flows well outside the applicable
range of the theory.

One important qualitative feature of LCP flow that does seem to be contained in the Leslie-Ericksen theory
because of the presence of the entropic Frank elastic stress is the tendency of the director sometimes to adopt an
orientation that is transverse to the plane of shear (Rey and Denn, 1989; Beris and Edwards, 1990). A continuum
theory of LCPs by Doi (1981) is incomplete in that it does not contain any elastic contribution to the stress
resulting from local director gradients; the Doi theory thus apparently cannot predict any phenomena associated
with rapid spatial changes in orientation, although an extension of the theory that includes director gradient, has
been reported (Beris and Edwards, 1990). Neither the Leslie-Ericksen nor the Doi theory has been applied to the
flow of fluids with domain-like textures; it is unlikely that the Doi theory in its present form can be applied here
because of the limitations already cited.

The rheological feature of LCPs that has been most exploited in applications other than fiber formation is
the very high degree of shear thinning at all deformation rates (see Kulichikhin, 1989, and Muir and Porter,
1989, for recent reviews). It is this property that makes thermotropic melts attractive for molding applications
with complex shapes and small passages. Qualitative models (Marrucci, 1984; Wissbrun, 1985) based on the
relative motion of domains predict shear thinning at low deformation rates, but no adequate theory exists here
either. It is possible that the presence of microcrystals in the melt is a factor in the shape of the flow curve, as
well as long transients that are observed under conditions of apparent thermal stability.

The self-organizing feature of LCPs is an asset or a liability, depending on the shaping flow of interest.
Predictive ability is lacking in any event, because the rheology is not understood in a fundamental way.
Simulations of flow and orientation distributions in complex parts are unlikely to be correct in the absence of an
adequate rheological theory, except in the case of a uniformly extensional flow of sufficient strength to effect
uniaxial orientation (in which case no theory is needed). Progress in melt fabrication of molded parts that exploit
the orientability of LCPs is unlikely until sufficient understanding of LCP behavior has been achieved to allow
the modeling of geometrical and filling schemes that will lead to orientation distributions that approximate
macroscopic isotropy and contain no rapid changes in orientation; the latter is particularly serious because of the
poor self-adhesion of rigid polymers. It is not obvious that these problems can be overcome by conventional melt
processing.
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Conclusions

•   Rigid rod theories are in reasonably good order; macromolecular flexibility is manageable.
•   There are deficiencies in theories regarding blends of LCPs and LCPs with flexible polymers, and

consequently there are no guidelines for experimental work in this area.
•   A lack of understanding of chain dynamics and rheology of LCPs is preventing solutions to processing

problems such as the weld line, adhesion, and orientation development in molds.

Recommendations

•   Theoretical modeling leading to predictable distinctions between conventional isotropic phases and LC
phases based on local primary and secondary chain structure is necessary to understand and develop
new LCPs; intensified research should be encouraged.

•   More interactive research among theoreticians and experimentalists on aspects of blending LCPs is
needed.

•   Theoretical studies of the fundamental dynamics and the rheology of LCPs should be encouraged, with
accompanying experimentation on the relation between rheology and microstructure for the
development and optimization of processing methods. The implications of available theories of LCP
rheology should continue to be explored, but processing conclusions need to be examined with care
because of the incompleteness of the existing theories.

PROCESSING

Lyotropic LCPs.

Lyotropic LCPs have been the subject of intensive investigations. Molecular composites—a molecular
dispersion of (lyotropic) rigid rod polymers in a (conventional) polymer matrix—have dominated the question of
processing rigid rod LCPs. This novel state of matter remains elusive, however. The intricacies of retaining
isolated rod-like molecules from dilute solution into the solid state are unknown, unpublished, proprietary, or a
combination of these. Coagulants are critical to forming the molecular composite; their effect on both polymers
needs to be addressed before fabricating and processing can be controlled.

Another problem lurking in the background concerns the retention of the level of molecular dispersion
during use of such composites.
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Aside from the intensive effort to fabricate molecular composites, there has been one more significant area
of activity in processing lyotropic LCPs (apart from fiber production). This concerns attempts to fabricate biaxial
structures—films—from PBX polymers. While there are reports of success at Foster-Miller using proprietary
schemes, this work has been limited for the most part to bench-top scales (R. Lusignea, private communication).
A major difficulty with evaluating the potential of this technology appears to be the severely limited availability
of the PBX polymers. Pilot plant scale-up will be necessary before a meaningful assessment of film production is
possible. However, it would appear that a viable interim solution could be explored—namely, investigating the
feasibility of fabricating biaxial structures with commercially available lyotropic LCPs such as Kevlar® aramid.
(See also the discussion of film formation in Chapter 2.)

Thermotropic LCPs

There are fundamental difficulties in traditional processing techniques (injection molding, extrusion,
rotational molding, etc.). This may be generally attributed to intrinsic problems associated with highly ordered
polymer melts. Self-adhesion in polymer melts, which is an important factor in the strength of parts that contain
weld lines, is governed by diffusion of chains across interfaces. The rigid molecules of LCPs must diffuse a
much greater distance to achieve adhesion than flexible polymers. It is for this reason that self-adhesion in LCPs
is poor, both at weld lines and in regions of rapid orientation change. The “weld line” problem may be
insurmountable at the molecular level for highly anisotropic melts and will require an engineering solution based
on mold design. Herein we focus on novel processing possibilities for thermotropic LCPs.

Solid-State Forming

In studies of the extrusion of powder preforms of Xydar® (a terpolymer of p-hydroxybenzoic acid,
terephthalic acid, and biphenol), workers at Alcoa found (Zaidi, 1988) that defect-free rods could be cold-
extruded from the preforms only if the preform was annealed properly, the die was designed with the correct
angle, and the temperature and rate of extrusion were held in the range that gives metal-like strain-hardening
flow characteristics. This suggests that the constitutive behavior of solid LCPs as a function of temperature and
pressure should be a critical area of research. It is also clear that the influence of pressure on solid-solid
transitions would be an important conjunctive area of research between chemical structure and novel processing.

The explanation for cold-forming-induced optical clarity is still an issue. Contributions resulting from the
small size of the crystalline domains in the formed material and the elimination of shrinkage voids have been
mentioned. In the case of the LCPs, there is some indication that cold-formed shapes may be free of the skin-
core effect and may enjoy outstanding machinability and wear characteristics relative to melt-formed material
(Zaidi, 1988).
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From a general point of view, solid-state forming does have its drawbacks. It often involves heavy,
unconventional equipment and may require very expensive tooling. The parts may exhibit poorer dimensional
stability than melt-formed ones, and extra allowance is often required for “spring-back” of the parts after
removal from the dies. The severe orientation introduced by some forming processes may result in the tendency
of the product to split—already a difficulty with LCPs. Because LCPs are relatively expensive polymers, the
savings in energy and cycle time associated with solid-state forming may not have a significant effect on the
overall cost of the part.

The use of powder preforms, which appears to be a way around the splitting problem, may hold little
promise for exploitation of the ultimate strength properties of LCPs. If this proves to be the case, the entire
combination—LCP fabricated with solid-state extrusion—becomes decidedly unattractive. Clearly, to accrue the
full advantages of the preform extrusion technology, the constitutive behavior of solid LCPs as a function of
temperature and pressure must be understood. In addition, the influence of pressure on solid-solid transitions
would be an important conjunctive area of research for developing the connections between chemical structure
and novel processing (Hsiao et al., 1988).

Conclusions

Lyotropics

An important objective of LCP processing technology is to develop strong materials for ultralight primary
structures that are difficult to detect by radar and can withstand elevated temperatures. In the case of composites,
the temperature resistance and tensile properties of fibers must also be combined with outstanding compressive
properties and adhesion in fabrication schemes. For the LCP fibers to be effective in high-performance structural
composites, they should also exhibit compressive strength that approaches the compressive properties of current
carbon fibers.

Uniaxial structures prepared from liquid crystalline precursors (melts or solutions) exhibit outstanding
tensile properties. For some time it was believed that the liquid crystalline state of the precursor during
processing (spinning) was essential for achieving the molecular alignments and the perfection of structure that
yield almost theoretical modulus and exceptional strengths—properties far above those of fibers produced from
isotropic melts or solutions (Economy et al., 1970; Aharoni and Sibilia, 1978). Later, it was shown that the
isotropic solutions of semirigid polymers produced at a low rate of elongational flow in the spin-way yield
relatively weak fibers as spun. At high rates of deformation, however, the semirigid polymers yield properties
close to those of aramids.

More recently, it was shown that even very flexible polymers, such as PE and PVA, can be converted into
exceptionally strong fibers without becoming obviously liquid crystalline during the process of converting the
isotropic solution into fiber. The quiescent liquid crystalline state is, therefore, beneficial for the preparation of
strong fibers without after drawing but it
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is not essential for all polymers. These observations must be borne in mind in assessing processing schemes and/
or potential polymers for novel applications.

Thermotropics

Solid-state forming of LCPs is an immature area. It can be anticipated that many of the advantages of solid-
state forming found with conventional semicrystalline polymers will accrue for LCPs. It is clear that there are
unanticipated, unique properties that can be obtained by solid-state forming of powder preforms, but the basic
science of this process as well as those using melt-formed preforms (e.g., sheets) needs to be investigated. The
practical outcome of funding in this area would be an increase in the availability of high-performance LCP
products for use in defense-related engineering projects. Not to be overlooked is the “knowledge” product: The
exploration of solid-state forming techniques could lead to information concerning important phenomena such as
the poor compressive strength of highly oriented LCPs.

Recommendations

•   Fabrication of biaxial film using readily available lyotropic LCPs should be investigated.
•   Other routes (nonmesomorphic gels) to high-modulus fibers should be explored.
•   Mold-design studies and experiments aimed at the weld line problem should be encouraged.
•   Solid-state forming of LCPs needs to be explored sufficiently to establish patterns allowing the

performance of these novel processes to be compared with the extensive body of information already
available for semicrystalline, random-coil polymers, as well as the definition of any advantages unique
to LCPs.

•   For electro-optical applications, electric poling and associated fabrication processes need further study.

MECHANICAL PROPERTIES

Tensile Properties

Remote from major transitions, axial properties of solid-state filaments formed from LCPs are excellent and
approach the theoretical limit in tensile modulus and exhibit extraordinary high tensile strength. Some typical
properties of commercial fibers were shown in Figure 3.1. Transverse
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properties, however, are poor, often 1 to 2 orders of magnitude lower than axial properties. This is inherent to
highly anisotropic materials with a hierarchical morphology (Figure 2.13), and lateral weakness is expected to
occur theoretically. These poor compressive properties (see, for example, Figure 4.1) limit the utility of LCPs in
materials applications.

Figure 4.1
Compressive strength versus torsion modulus for some rigid rod polymers.

The outstanding problem is this: Can compressive properties of LCPs be improved without sacrificing
desirable tensile properties? A major question in this regard is whether the fault is at the molecular or
morphological level. Contemporary thinking suggests problems at a macroscopic level, i.e., interfibrillar bonding
in the hierarchical fiber structures. This idea is reinforced because cross-linking (strengthening lateral
intermolecular interactions) has not relieved the problem of poor compressive strength. Conversely, it has been
argued by Jaffe and Yoon (1987) that essentially all of the mechanical properties of highly oriented LCPs can be
explained on the basis of molecular parameters and that morphological features play only a minor role. This is
probably not true in complex structures such as moldings and biaxial films. The issue remains to be resolved,
however.
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Cross-linking and blending of LCPs with random coil polymers (molecular composites) have been
considered the most promising approaches to enhancing the transverse properties and compressive strength of
LCP fibers. Cross-linking has been studied extensively with random coil fibers, such as nylons and poly(ethylene
terephthalate), but the results fall short of expectations because the small improvements (if any) in compressive
properties were offset by substantial losses in tensile properties. No successful composite technology based on
cross-linked fibers and no successful cross-linking of LCP fibers has been reported as yet. A recent study (Grubb
and Kearney, 1990) of the effect of formaldehyde cross-linking on properties of gel-drawn PVA offers a good
overview of problems associated with this type of modification of uniaxial structures. A large and probably
inevitable decrease in tensile modulus on cross-linking is particularly noteworthy. Unfortunately, the authors did
not include the data on strength that usually show a much larger decrease on cross-linking than modulus.

In principle, the solution of the compressive strength problem through development of molecular
composites appears to be very attractive. It must be noted, however, that authors invariably stress the
improvements with LCP-random coil blends, but do not address the problem of compressive strength. Since a
successful solution of this problem would be promptly revealed in technical or patent literature, it can be
assumed that, heretofore, blending of LCPs and random coil polymers has failed to produce significant
improvements in compressive strength. Consequently, we can speculate that poor adhesion between phases and
the relatively coarse dispersions achieved so far have prevented successful development of a LCP-based system
with a high compressive strength.

Thermal Behavior.

The temperature fall-off of properties exhibited in Figure 4.2 is often characteristic of solids derived from
thermotropic LCPs (see also Table 3.3). A substantial decrease in the tensile modulus is encountered between
room temperature and temperatures characteristic of the α-transition in a particular LCP. This behavior may
retard the utilization of LCP-based materials in cases where the LCP narrowly fulfills modulus criteria.
Improvements in this area often lead to thermally intractable polymers, which in turn fail processing requirements.

Weld Line

Injection molding of three-dimensional items runs into the “weld line problem.” Differently oriented
director fields in LCPs do not adhere well to themselves. Moreover, when neighboring macromolecular axes are
not parallel, interdiffusion is retarded. This fabrication problem, which is severe with thermotropic LCPs,
requires clever mold design to ensure intimate mixing of director fields.
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Figure 4.2
Temperature dependence of dynamic mechanical tensile data (10 Hz) for HBA-HNA copolymers (Davies and
Wood, 1988).

Conclusions

•   Compressive failure currently limits widespread use of LCPs. Failure mechanisms and consequently
potential solutions are not within reach.

•   Rapid deterioration of properties of LCPs with increasing temperature is another limitation that restricts
use of these materials.

•   Conventional molding techniques exaggerate the weld line problem in LCPs.

Recommendations

•   A significant research effort should focus on the compressive failure problem.
•   Experimental and theoretical work on mold designs should be initiated.
•   Thermal properties of LCPs require molecular design solutions, and associated exploratory syntheses

should be undertaken.
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BLENDS AND COMPOSITES

Combining LCPs with other materials to improve overall property balance, exploit unique LCP
performance, mitigate property deficiencies, and/or lower cost is an active and fruitful area of applied LCP
research that may be divided into four subareas:

•   Fillers for injection-molding resins
•   Continuous-fiber-reinforced composites
•   LCP-containing polymer blends
•   Molecular composites

Fillers

The major application of the commercial thermotropic copolyesters is as a high-performance injection-
molding resin. Fillers are employed in these systems to reduce overall part anisotropy, both in terms of flow
direction to cross-flow property balance and control of skin-core effects. Fillers are also useful in minimizing
part warpage and controlling the coefficient of thermal expansion. The fillers currently employed in LCP
moldings are the same as those used with other thermoplastic engineering resins. Optimization has been limited
to available materials, and little systematic research into optimizing filled LCPs can be found in the literature.
Investigations into the effects of filler surface characteristics and geometry on molded part performance may
prove a key to defining the limits to molded LCP part utility and should be encouraged.

Fiber-Reinforced Composites

The high-modulus, high-strength properties of LCP fibers have made them attractive candidates as
reinforcing fibers for composites. Both thermotropic and lyotropic LCP fibers have been evaluated as reinforcing
fibers, but published data for systems other than Kevlar® fiber are sparse. Typical data sets for LCP fibers may
be found in Chapter 3. Tables 4.1A and 4.1B show properties of Kevlar® and PBZT relative to graphite fibers in
epoxy composites.

The utility of LCP fibers in composites is limited by poor compressive properties and poor matrix adhesion.
The physical structure responsible for low compressive strength does, however, provide advantages in damage
tolerance and crash-worthiness. For example, para-aramid composites are metal-like in ductile energy absorption
and respond to compressive stress noncatastrophically, unlike carbon composites, which have a brittle or
catastrophic response (International Encyclopedia of Composites, 1989). The industry has recognized the
benefits of combining the inherent damage tolerance of the LCP fibers with the compressive properties of carbon
fiber in the form of hybrid composite structures.
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TABLE 4.1A Properties of Unidirectional Epoxy* Composite with 60% Fiber Loading, 0° Direction

Kevlar®

Property 149 Aramid 49 Aramid Thornel® 300 Graphite

Tensile Strength

MPa 1450 1500 1420

Kpsi 210 218 206

Tensile Modulus

GPa 107 79 133

Mpsi 15.6 11.5 19.3

% Conversion 99 99 97

Strain to Failure % 1.33 1.71 0.90

Compressive Strength

MPa 193 234 —

Kpsi 28 34 —

Compressive Modulus

GPa 73 66 —

Mpsi 10.6 9.5 —

Flexural Strength

MPa 634 655 1192

Kpsi 92 95 173

Flexural Modulus

GPa 79 67 116

Mpsi 11.5 9.7 16.8

Interlaminar Shear Strength

MPa 57 59 70

Kpsi 8.3 8.6 10.2

Thermal Expansion

Coefficient 10-6 m/m °C +0.37 -2.33 —

* Epon® 828 epoxy cured with NMA/BDMS, laboratory impregnated.
Source:

•   Riewald, P. G., A. K. Dhingra, and T. S. Chern. 1987. ICCM and ECCM, Sixth International and
second European Conference on Composite Materials, July 20–24, 1987. F. L. Matthews, N. C. R.
Buskell, J. M. Hodgkinson, and J. Morton, eds. 5:5362–5370. New York: Elsevier Applied Science.

•   Du Pont Company Publication. June 1987. Kevlar® 149, Properties and Characteristics of Yarn and
Composites. E-95612.
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TABLE 4.1B Properties of Unidirectional Epoxy Composite with 60% Fiber Loading*

Property H. T. PBZT** H.S. Graphite Kevlar®49

Tensile

Strength-MPa 1900 2100 1380

-Kpsi 270 300 200

Modulus-GPa 190 150 75.8

-Mpsi 28 21 11

Strain % 1.0 1.5 1.8

Poisson's Ratio 0.4 0.27 0.34

In-plane Shear Strength-MPa 35 69 —

-Kpsi 5 10 —

In-plane Shear Modulus-GPa 1.4 4.8 —

-Mpsi 0.2 0.7 —

Compressive

Strength-MPa 200 1400 275

-Kpsi 30 200 40

Modulus-GPa 190 125 75.8

-Mpsi 27 18 11

Strain % 0.12 1.1 0.4

Flexural

Strength-MPa 410 1600 —

-Kpsi 60 240 —

Modulus-GPa 140 120 —

-Mpsi 20 18 —

Short-Beam Shear

-MPa 31 110 —

-Kpsi 4.5 16 —

* Hercules 3501-6 epoxy, laboratory impregnated.
** Heat treated PBZT.
Source:

•   Uy, W. C. and J. F. Mommone. 1988. Canadian Textile J., pp. 54–63 (April).
•   Wolfe, J. F. 1988. Polybenzothiazoles and Polybenzoxazoles. Pp. 601–635, in Encyclopedia of Polymer

Science and Engineering, Vol.11, 2nd Ed. H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges,
and J. I. Kroschwitz, eds. New York: John Wiley and Sons.
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The thermotropic copolyesters have been included in some recent studies evaluating thermoplastic resins
for potential as thermoplastic matrices for continuous fiber reinforcement. Attractive features of the LCPs are
low viscosity, good thermal stability, and high tensile properties. Negative features are poor adhesion to
reinforcing fibers, property anisotropy, and poor compressive strength. Of these, the observation that the LCP
matrix tends to orient along the direction of the reinforcing fibers has been most significant in dampening
enthusiasm. One intriguing concept is the use of a LCP fiber to reinforce itself, almost as a macromolecular
composite.

Further expansion of LCP fibers into composites is dependent on improving adhesion, a successful
approach to the compressive strength problem, and demonstrated cost-effectiveness. Utility of the thermotropic
LCPs as matrices is most dependent on the development of effective methods of orientation control.

LCP-Containing Polymer Blends

The motivation for considering LCP-containing blends is discussed in Chapter 2. As of 1988, the open
literature dealing with LCP-containing polymer blends was sparse and difficult to search. Although it is beyond
the scope of this report to examine and review in detail, the patent literature is probably the richest source of
information. Useful reviews, however, are starting to appear (Browstow, 1988). Most of the LCP blend literature
is highly observational in nature, and the data, because of the heavy impact of specific processing regimes and
the use of difficult-to-obtain polymers, will be difficult to reproduce. Little attention has been given, for
example, to separating the effects of polymer degradation or modification (transesterification, etc.) from the
structures inherent in the blend. With the dearth of LCPs available worldwide, the number of LCPs blended with
other polymers is necessarily small.

Blends of LCP and Conventional Polymers

Most of the work to date and the area with the greatest potential for commercial exploitation involves the
blending of LCPs with conventional polymers. Although a few studies of solution blending with Kevlar® do
exist (Tekayanagi et al., 1980), most of the work has centered on melt-blending thermotropic copolyesters
(Vectra®, Xydar®) with engineering thermoplastics (PET, PEI, etc.). For convenience, this work may be
separated into three blend regions based on LCP content, as shown in Table 4.2.

The potential utility of LCPs as a processing aid for high-viscosity conventional polymers was rigorously
pursued by ICI in the early 1980s (Cogswell et al., 1983). Although the desired viscosity lowering appears to be
dominated by the ratio of the viscosities of the components of the mixture, LCPs are unique in possessing both
high molecular weight and low viscosity. Two modes of behavior have been observed: (a) blends with viscosity
that

PROBLEMS AND ISSUES: RECOMMENDATIONS FOR FURTHER WORK 88

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Liquid Crystalline Polymers 
http://www.nap.edu/catalog/1623.html

http://www.nap.edu/catalog/1623.html


follows “rule of mixtures” based on the components, and (b) blends with viscosity lower than either component.
This latter behavior is not understood. The use of LCPs as processing aids should be the easiest blend application
to exploit commercially and, ultimately, may serve to render very difficult-to-process thermoplastics useful in
common processes.

TABLE 4.2 LCP-Content Blending Regimes

Weight % LCP General Description Key References

0–15 Processing aid, viscosity reduction Cogswell et al., 1983.

15–85 Self-reinforcing resins Kiss, 1987; Weiss et al., 1987.

In situ composites

85–100 Modified LCP Patents

The most alluring blend regime to most researchers is the “in situ” composite where the LCP phase orients
during processing to reinforce the plastic part. The effectiveness of this process is a function of the orientation
imparted to the LCP in the chosen process. Published micrographs document morphologies ranging from spheres
to fibrils. No quantification of morphology or correlations with process conditions have been published.
Adhesion between the LCP and conventional polymer phases is clearly poor. During processing, stress transfer
appears to be through the tortuosity of the phases, but this important factor has not been evaluated in depth. One
consistent result in all studies is that the presence of an LCP phase renders the blend brittle (Kiss, 1987). This is
probably a consequence of the poor interphase adhesion and requires clarification. Blending is unlikely to solve
the weld line problem (Kiss, 1987). Mechanical properties of the blends, especially tensile modulus, follow
expectations consistent with simple composite concepts in the absence of adhesion between matrix and
reinforcement. For these blends to be useful commercially, the issues of adhesion and morphology control must
be resolved. In addition, LCP in this application is in direct competition with glass and other reinforcing fibers,
and hence the cost-effectiveness of the LCP approach must be established. Improved process equipment lifetime,
reduced weight, and improved processibility are the likely LCP advantages. Unexamined in the literature is the
degree to which nonstructural properties of LCP, i.e., very low gas permeability and high solvent resistance,
carry over into blends.
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It has been found that the presence of LCP may accelerate and presumably direct the crystallization of
conventional polymers (Joseph et al., 1983). Blending biphasic polymers, such as the PET-polyHBA
copolymers, may promote miscibility between the conventional phase of the biphasic polymer and another
miscible conventional polymer, such as X7-G with poly(butylene terephthalate). These phenomena may offer
direction in the search for useful compatibilizing agents for LCP-conventional polymer systems.

There are examples given in the literature (Froix, 1984) where the presence of small quantities of LCP
blended with a conventional polymer results in mechanical properties significantly better than either component.
No explanation for this observation has been advanced. The analogy of “introducing the lignin into a woody
morphology consisting only of fibrin” is appealing but is not consistent with emerging models of LCP structure
or LCP-conventional polymer interactions.

As sparse as the data set describing mainchain nematic LCP blends with conventional polymers is, it is rich
compared to the almost nonexistent data on the blending of other types of LCPs—sidechain polymers, flexible
spacer polymers, smectics, etc.

LCP-LCP Blends.

Researchers have studied blends of thermotropic copolyesters with other thermotropic copolyesters,
examining both blends of different copolymer ratios with identical chemistry (HBA-HNA type) and blends of
different chemistries. Recognizing that each copolymer may be viewed as a blend (chain-to-chain variations, mer
sequence variations), it was hypothesized that blending offered the means to “engineer the distribution.” Initial
results indicate that this is the case. Through such blending the behavior of both the mesophase and the solid
state can be systematically modified. For example, transition temperatures can be shifted and power law indices
of viscosity can be changed. These results also strongly imply that the “sequence matching” model of the
thermotropic copolyesters in the solid state is more likely correct than the other models suggested in the
literature (DeMeusse et al., 1988). Evidence was accumulated that LCP-LCP miscibility is not universal and that,
at least in the mesophase, the basic concepts are consistent with the observed physical chemistry. The importance
of this work is that it offers a direction for achieving sufficient insight into the nature of LCP structure-property
relationships to design more appropriate molecules for given end uses. Related work indicates that
transesterification may be responsible for some of these observations (J. Economy, private communication).
Careful evaluation of the data cannot rule out transesterification effects, but it strongly suggests that
transesterification is not causal in the observed behavior.

As in the case of LCP-conventional polymer blending, little information exists on the blending of LCPs of
different inherent chain architecture or mesophase symmetry. Recent publications show phase separation in
blends of sidechain nematics with other similar polymers or small-molecule analogues.
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It is now established that, in contrast to the behavior of low-molecular-weight LCs, LCPs are often
immiscible.

Investigations into the blending of LCPs with other polymers, conventional or LC, are in their infancy, and
little is understood in detail. The literature is sparse, highly observational in nature, and very difficult to
reproduce. Much of what is published is more an indication of what might be than an accurate data base from
which to draw conclusions. It is clear, however, that, until the adhesion of LCP to other polymers and the rules
controlling blend morphology are understood, the field will remain highly empirical and unlikely to yield many
commercial successes. Conversely, for all the reasons that polymer blending is an attractive route to modified
polymer products, blends containing LCPs are especially attractive. Systematic research to understand the
physical chemistry of LCP-containing blends is likely to produce results of both commercial and scientific
impact. This is true for LCP-conventional blends and all-LCP blend systems. Although initial work should focus
on the commercial nematic polymers, other symmetries and phases should not be ignored. The area of
compatibilizers (“molecular glue”) is another concept worthy of support because of the high payback potential.

Molecular Composites

To date it is unclear whether a true molecular composite utilizing a molecularly dispersed LCP has been
demonstrated, although materials possessing small agglomerations of rods (diameter of structure less than 50 Å)
have been produced with very high tensile properties. It is not yet established, however, if these materials offer
an advantage in tension. The concepts underlying molecular composite physics are consistent with the concepts
of miscible blends; the materials being produced, even at the very small sizes of rod structures observed, fit the
definitions associated with immiscible LCP-conventional polymer blends. Molecular composites can be treated
with the already established framework of polymer-polymer mixing and do not require new concepts for
accurate description. Success of molecular composites will be strongly linked to the economics of the processes
and materials employed. Research in this area should be supported until a meaningful evaluation of cost-
performance can be performed.

Conclusions

The combination of LCPs with other materials to control the balance of properties and improve cost-
effectiveness is clearly an important technology area for increasing the overall utility of LCPs. The problems
inhibiting the rapid development of this technology are the same as those slowing LCP acceptance in other areas,
namely:

•   High property anisotropy in finished parts,
•   Poor compressive strength,
•   Poor adhesion to conventional and mesogenic materials, and
•   High cost.
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This is not in contradiction to the observations that fillers and blending can mitigate many of these effects;
rather, it is an important hint into what the underlying controlling parameters of the science must be.

Recommendations

From both the scientific and technological points of view, studies of the behavior of LCPs in
multicomponent systems should be strongly supported. The following are specifically recommended:

•   Support research efforts to understand and exploit the combination of processing and fillers needed to
provide a range of properties from fully isotropic to anisotropic.

•   Establish research efforts to understand and improve LCP adhesion to common composite matrices,
fillers, and reinforcements, and other conventional and mesogenic polymers.

•   Establish systematic research efforts to understand and exploit the physical chemistry of LCP-
containing polymer blends.

NONLINEAR OPTICAL PROPERTIES

In spite of the obvious advantages of organic NLO materials, there are major obstacles for utilizing
polymers. In the case of second-order NLO applications, some obstacles are these:

•   The uncertainty with respect to thermal stability of electric field-induced ordering in harsh
environments, i.e., greater than 80°C.

•   The small published data base on NLO properties, physical properties, and processing conditions for
making active and passive structures in polymer films, and the sparse literature on second-order NLO
properties of LCPs.

•   The competitive advantage relative to LiNbO3.
•   The maturity of LiNbO3-based technology.
•   A lack of polymers designed specifically for SHG as well as device concepts and structures for utilizing

them.

Although considerable recent progress has been made in achieving high nonlinear coefficients, additional
work ranging from fundamental science to new materials development remains to be done if materials in this
category are to reach their technological potential.
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Liquid crystallinity has been shown to lead to enhanced alignment under certain poling conditions. The
utilization of extremely high poling fields on amorphous systems, where a substantial fraction of dielectric
saturation can be achieved, makes this less of a potential advantage. The anisotropic optical properties of LCPs
would also have to be made extremely uniform to avoid scattering losses in bulk or waveguide devices.

The main benefit of liquid crystallinity may be one of imparting thermal stability to systems once they are
poled. More esoteric applications might also exploit LCs. For example, the ferroelectric smectic C* phase, which
is inherently noncentrosymmetric, might exhibit high degrees of macroscopic alignment and the desirable
processing characteristics of a polymer. A polymeric system exhibiting this phase may require poling or other
treatments to exhibit alignment, but the phase is inherently bistable as opposed to metastable in the case of poled
thermoplastic. The smectic C* state combined with chromophore substituents designed for specific NLO
applications would be an extremely attractive materials option.

For third-order NLO materials, the obstacles for utilization are more formidable:

•   The state of understanding of third-order NLO properties based on the electronic structure of the
constituent molecular or polymeric species is at a more rudimentary level, and a considerable diversity
of opinion exists among scientists regarding the fundamental origin of nonlinear responses in these
materials.

•   Highly delocalized electronic structures are difficult to design into stable, easily processible polymeric
structures.

•   Approaches to increasing the nonresonant X(3) are unclear at this point.
•   The stringent linear optical properties, including optical uniformity, transparency, and low scattering

losses, combined with large X(3) required for device applications, have not yet been demonstrated, and
formidable obstacles associated with-C-H vibrational overtones in the 1.3-µm and 1.55-µm regions
remain to be addressed.

•   Practical polymer processing conditions for achieving high degrees of orientation to enhance X(3) in
formats suitable for waveguide formation have not yet been demonstrated.

Organic materials, because of their large nonresonant X(3) values, may constitute an enabling technology if
progress can be made in the areas listed above. Low-dimensional electronic structures tend to exhibit the large
values of X(3), since all of the oscillator strength is confined to one predominant direction in these materials. At
the macroscopic level, uniaxial orientation of a material with low-dimensional molecular constituents or chains
can increase X(3) by up to a factor of 5. Because of trade-off between n2 and α it will be important to achieve the
factor of 5 by processing and fabrication
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methods. Liquid crystallinity and other self-organizational influences and factors may offer routes to alignment,
optical uniformity, and stability.

Conclusions

•   Inorganic crystals and thin films have advantages for some NLO applications, by virtue either of their
function or the maturity of their technological position, but some may be displaced by organic
polymeric thin-film materials because of cost and performance advantages; other applications may be
made possible by the unique properties of organic and polymeric materials, assuming that fundamental
advances can be made.

•   For second-order NLO processes, poled LCPs containing chromophores with a large molecular
hyperpolarizability may offer advantages over amorphous polymers with respect to the degree and
stability of the induced second-order nonlinear coefficient at the expense of more complex linear optical
properties.

•   For third-order NLO processes, LCPs offer a route to achieving uniaxial alignment through processing
and the associated potential for a five-fold increase in nonlinear coefficient relative to an electronically
identical amorphous system, although considerable progress in fundamental understanding of
microscopic processes, materials design and synthesis, and processing will be required to take
advantage of this.

Recommendations

•   Research initiatives on organic and polymeric materials for second-order NLO addressing the issues of
stability and magnitude of alignment by electric field poling, spontaneous or self-alignment, physical
property studies, processing, and exploratory device utility should be supported. Priority should be
given to interdisciplinary program where molecular and polymer design and synthesis, NLO studies,
and polymer physical characterization can be combined.

•   Research initiatives aimed at improving the microscopic understanding of X(3) and testing models
through structure property investigations should be supported. Because of the rudimentary state of
theory, the data base of X(3) measurements on organic and polymeric structures should be expanded.
Synthesis and characterization of new polymeric systems with an emphasis on increasing X(3) and
achieving excellent linear optical properties including transparency at 0.85 µm, 1.3 µm, and 1.55 µm
should be supported. Processing studies aimed at the unique requirements of waveguide nonlinear
optics should be supported. Interdisciplinary studies of a fundamental nature as well as novel
exploratory approaches should be encouraged.
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Appendix A:

Federal Funding Levels and Sources for LCP Research

Source Amount in millions of dollars

FY88 FY89 FY90

Department of Defense

Defense Advanced Research Projects Agency 0.316 0.908 0.300

Air Force Office of Scientific Research 1.8 1.8 1.8

Wright-Patterson Research and Development Center 4.4 4.40 4.40

Department of the Army-MTL 0.285 0.225 0.225

Department of the Army-ARO 0.326 0.510 0.590

Office of Naval Research 0.285 0.273 0.235

Department of Energy 0.6 0.65 0.75

National Aeronautics and Space Administration 0.025 0.05 0.10

National Science Foundation

Polymers Program 0.6 0.6 0.7

MRL, MRG 1.1 1.1 1.1

Other 0.2 0.2 0.2

Totals 9.937 10.716 10.400
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Appendix B:

Glossary of Abbreviations.

ABPBO poly(2,5-benzoxazole)

AIBN azobisisobutyronitrile

BP biphenol

CW chemical warfare

DWA dynamic mechanical analysis

DS-2 a caustic mixture of chemicals used as a decontaminant

Ekonol® Sumitomo polyester

FOM figure of merit

gpd grams per denier

Granlar® Granmont/Montedison Polymer LCP

HBA hydroxybenzoic acid

HNA hydroxynaphthoic acid

HQ hydroquinone

IA isophthalic acid

ICI Imperial Chemical Industries

IPN interpenetrating network

Kevlar® Du Pont lyotropic aramid LCP (Kevlar® aramid fiber) (See PPTA)

KTP KTiOPO4 (potassium titanyl phosphate)

LC(s) liquid crystal(s)

LCP(s) liquid crystalline polymer(s)

MQW multiple quantum well

Nd:YAG neodymium yttrium aluminum garnet

NLO nonlinear optics or optical

NMR nuclear magnetic resonance
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NR nonresonant

NTP naphthalene containing thermotropic polyesters

PBO polybenzobisoxazole

PBZT polybenzobisthiazole

PBX PBO and PBZT

PE polyethylene

PEI polyetherimide

PET poly(ethylene terephthalate)

PPTA Poly-p-phenyleneterephthalamide

PTS poly(2,4-hexadiyn-1,6-diol-bis-p-toluene sulfonate)

PVA poly(vinyl alcohol)

SEED self-electro-optic device

SHG second-harmonic generation

SRP(ICI) ICI polyester LCP

TA terephthalic acid

Vectra® Hoechst-Celanese polyester LCP

Vectran HS® Hoechst-Celanese polyester LCP

Victrex® ICI Engineering polymer

X7G® Eastman polyester LCP

Xydar® Amoco polyester LCP
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