BTy nap ednlcatalog/SAR himl

We ship printed books within 1 business day; personal PDFs are available immediately.

Ada and Beyond: Software Policies for the
Department of Defense

AIM # BEYOND Committee on the Past and Present Contexts for the

Soliorare Policks Use of Ada in the Department of Defense, National
for Ll Dhepartmeni Research Council
of Delense ISBN: 0-309-58980-0, 116 pages, 8.5 x 11, (1997)
This PDF is available from the National Academies Press at:
http-/mnanw nap edu/catalog/5463 html

Visit the National Academies Press online, the authoritative source for all books
from the National Academy of Sciences, the National Academy of Engineering,
the Institute of Medicine, and the National Research Council:

e Download hundreds of free books in PDF

Read thousands of books online for free

Explore our innovative research tools — try the “Research Dashboard” now!
Sign up to be notified when new books are published

Purchase printed books and selected PDF files

Thank you for downloading this PDF. If you have comments, questions or
just want more information about the books published by the National
Academies Press, you may contact our customer service department toll-
free at 888-624-8373, visit us online, or send an email to
feedback@nap.edu.

This book plus thousands more are available at http://www.nap.edu.

Copyright © National Academy of Sciences. All rights reserved.

Unless otherwise indicated, all materials in this PDF File are copyrighted by the National
Academy of Sciences. Distribution, posting, or copying is strictly prohibited without

written permission of the National Academies Press. Request reprint permission for this book.

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

http://www.nap.edu/catalog/5463.html
http://www.nap.edu
http://www.nas.edu/nas
http://www.nae.edu
http://www.iom.edu
http://www.nationalacademies.org/nrc/
http://lab.nap.edu/nap-cgi/dashboard.cgi?isbn=0309068371&act=dashboard
http://www.nap.edu/agent.html
http://www.nap.edu
mailto:feedback@nap.edu
http://www.nap.edu
http://www.nap.edu/v3/makepage.phtml?val1=reprint
http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

he Department of Defense

Ada and Beyond

Software Policies for the Department of Defense

Committee on the Past and Present Contexts for the Use of Ada in the Department of Defense
Computer Science and Telecommunications Board
Commission on Physical Sciences, Mathematics, and Applications
National Research Council

NATIONAL ACADEMY PRESS
Washington, D.C. 1997

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
=
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
2
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
8
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
-
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0]

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

(0]

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
e

@®

(0]
e

)
X

©

o

=
o)
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
5
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
I
i=
e}
e
S
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

he Department of Defense

il

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose mem-
bers are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.
The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee con-
sisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and
engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of
the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific
and technical matters. Dr. Bruce Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel
organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National
Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineer-
ing programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers.
Dr. William A. Wulf is interim president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of
appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility
given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initia-
tive, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of sci-
ence and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance
with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of
Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering
communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce Alberts and Dr. William A.
Wulf are chairman and interim vice chairman, respectively, of the National Research Council.

Support for this project was provided by the Department of Defense (under contract number DASWO01-96-C0028). The views, options,
and findings contained in this report are those of the authors and should not be construed as an official Department of Defense position, pol-
icy, or decision, unless so designated by other official documentation.

Library of Congress Catalog Card Number 96-71960

International Standard Book Number 0-309-05597-0

Additional copies of this report are available from: National Academy Press 2101 Constitution Avenue, NW Box 285 Washington, DC
20055 800/624-6242 202/334-3313 (in the Washington Metropolitan Area) http://www.nap.edu

Copyright 1997 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

he Department of Defense

il

COMMITTEE ON THE PAST AND PRESENT CONTEXTS FOR THE USE OF ADA IN
THE DEPARTMENT OF DEFENSE

BARRY BOEHM, University of Southern California, Chair
THEODORE BAKER, Florida State University

WESLEY EMBRY, Silicon Graphics Inc.

JOSEPH FOX, Template Software

PAUL HILFINGER, University of California at Berkeley
MARETTA HOLDEN, Boeing Corporation

J. ELIOT B. MOSS, University of Massachusetts at Amherst
WALKER ROYCE, Rational Software Corporation
WILLIAM SCHERLIS, Carnegie Mellon University

S. TUCKER TAFT, Intermetrics Inc.

RAYFORD VAUGHN, Electronic Data Systems Corporation
ANTHONY WASSERMAN, Interactive Development Environments Inc.

Special Advisor

BARBARA LISKOV, Massachusetts Institute of Technology

Staff

PAUL D. SEMENZA, Study Director
GLORIA P. BEMAH, Administrative Assistant

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD

DAVID D. CLARK, Massachusetts Institute of Technology, Chair
FRANCES E. ALLEN, IBM T.J. Watson Research Center
JEFF DOZIER, University of California at Santa Barbara
SUSAN GRAHAM, University of California at Berkeley
JAMES GRAY, Microsoft Corporation

BARBARA GROSZ, Harvard University

PATRICK M. HANRAHAN, Stanford University

JUDITH HEMPEL, Modeling Simulations Inc.

DEBORAH A. JOSEPH, University of Wisconsin

BUTLER W. LAMPSON, Microsoft Corporation

EDWARD D. LAZOWSKA, University of Washington
BARBARA LISKOV, Massachusetts Institute of Technology
JOHN MAJOR, Motorola

ROBERT L. MARTIN, Lucent Technologies

DAVID G. MESSERSCHMITT, University of California at Berkeley
CHARLES L. SEITZ, Myricom Inc.

DONALD SIMBORG, KnowMed Systems

LESLIE L. VADASZ, Intel Corporation

MARJORY S. BLUMENTHAL, Director

HERBERT S. LIN, Senior Program Officer

PAUL D. SEMENZA, Program Officer

JERRY R. SHEEHAN, Program Officer

JEAN E. SMITH, Program Associate

JOHN M. GODFREY, Research Associate

LESLIE M. WADE, Research Assistant

GLORIA P. BEMAH, Administrative Assistant

GAIL E. PRITCHARD, Project Assistant

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

COMMISSION ON PHYSICAL SCIENCES, MATHEMATICS, AND APPLICATIONS

ROBERT J. HERMANN, United Technologies Corporation, Co-chair
W. CARL LINEBERGER, University of Colorado, Co-chair

PETER M. BANKS, Environmental Research Institute of Michigan
LAWRENCE D. BROWN, University of Pennsylvania

RONALD G. DOUGLAS, Texas A&M University

JOHN E. ESTES, University of California at Santa Barbara

L. LOUIS HEGEDUS, Elf Atochem North America Inc.

JOHN E. HOPCROFT, Cornell University

RHONDA J. HUGHES, Bryn Mawr College

SHIRLEY A.JACKSON, U.S. Nuclear Regulatory Commission
KENNETH H. KELLER, University of Minnesota

KENNETH I. KELLERMANN, National Radio Astronomy Observatory
MARGARET G. KIVELSON, University of California at Los Angeles
DANIEL KLEPPNER, Massachusetts Institute of Technology

JOHN KREICK, Sanders, a Lockheed Martin Company

MARSHA 1. LESTER, University of Pennsylvania

NICHOLAS P. SAMIOS, Brookhaven National Laboratory

L.E. SCRIVEN, University of Minnesota

SHMUEL WINOGRAD, IBM T.J. Watson Research Center
CHARLES A. ZRAKET, MITRE Corporation (retired)

NORMAN METZGER, Executive Director

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

vi

artment of Defense

"uolNQgu3Ie Joj UOISI9A SAlle}lIoyINe 8y} se uoleslignd siyj Jo uoisiaA juud
By} asn ases|d ‘papuasul Ajjejuapiodoe uaaq aAey Aew siouls olydesbodA} swos pue ‘paulelal aq jouued ‘Janamoy ‘Buipewsoy oiyoads-buiesadAy Jayio pue ‘sajhis Buipeay ‘syealq pJom ‘syibus| aul| {eulbuo ayy
0} anJ} ale syeaiq abed "sa|iy BupesadA} [euiblo ayj wouy jou ‘yooq Jaded [euiblio sy} wolj pajeald sy X Woly pasodwodal usaq sey dlom [eulblio ayy jo uonejuasaidal [eybip mau siy] 8l 4ad Sy} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

PREFACE vii

Preface

It is increasingly important for the Department of Defense (DOD) to implement effective information
systems policies and strategies, as future battles will be decided as much in "cyberspace” as in physical space. The
use of effective computer programming languages and more broadly, of software engineering technology and
policy designed for optimal support of DOD requirements is key to DOD's strategy of achieving information
dominance for warfighting. For the past two decades, DOD has used programming language policy as a vehicle
for obtaining cost-effective, high-performance information systems. However, the process of software
development has changed considerably during this period, as has the computer industry itself. These changes have
altered the environment in which DOD develops and produces information systems.

It is in this context that Assistant Secretary of Defense (Command, Control, Communications, and
Intelligence) Emmett Paige, Jr., requested that the National Research Council's Computer Science and
Telecommunications Board (CSTB) review DOD's current programming language policy. Convened by CSTB,
the Committee on the Past and Present Contexts for the Use of Ada in the Department of Defense was asked to:

Review DOD's original (mid-1970s) goals and strategy for the Ada program;

Compare and contrast the past and present environments for DOD software development; and

3. Consider alternatives and propose a refined set of goals, objectives, and approaches better suited to
meeting DOD's software needs in the face of ongoing technological change.

N =

Although the committee focused on programming language issues, it also considered them in the context of
software architectures, components, and life-cycle processes, consistent with the realization that successful
software engineering strategy involves several elements that are at least as important as the programming language
component.

Throughout its deliberations, the committee was sensitive to the fact that the issues surrounding Ada and DOD
programming language policy have been the source of vigorous debate among DOD

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

PREFACE viii

policymakers, program managers, government contractors, and the software community at large. Thus the
committee made a concerted effort to collect a variety of views, and it received numerous briefings, position
papers, and analyses from representatives of government agencies, as well as the defense, aerospace, and
commercial industries. The committee membership included many different organizational viewpoints and
personal experiences; as it reflected the larger community, so also did it engage in vigorous debate during its own
deliberations. In the process of reaching conclusions and formulating recommendations, however, the committee
agreed on the importance of DOD adopting software policies that better reflect ongoing significant changes in the
discipline of software engineering, while retaining the benefits of prior investment and policy decisions.

The committee also understood the desire on all sides to bring closure to a policy debate that has continued
for many years. Several briefings to the committee included requests that the committee not suggest further studies
on the topic. The committee found these requests compelling and has attempted to frame its recommendations so
that they can be acted on directly by DOD policymakers. Thus, for example, in addition to making
recommendations in the main text of the report concerning the appropriate scope of and criteria for DOD software
policy, the committee found it useful to propose a revised statement of the current policy as embodied in DOD
Directive 3405.1. The committee-modified form of the DOD-revised draft (May 15, 1996) of the directive is
offered in Appendix A for consideration as a template for further revision. The committee was aware that DOD
has been conducting an effort to revise this policy; indeed, the committee was provided copies of two different
draft revisions.

In addition to the individuals and organizations who participated in committee meetings and wrote position
papers for the study (listed in Appendix E), the committee would like to acknowledge the numerous anonymous
reviewers for their constructive comments on a draft version of this report. The committee would also like to
acknowledge the efforts of Assistant Secretary Paige and his staff, including Cynthia Rand and Connie Leonard,
for assisting the committee in locating individuals and materials to consult.

Finally, the committee would like to acknowledge the support provided by the Computer Science and
Telecommunications Board and staff. Several Board members took an active interest in the project and offered
numerous suggestions that helped to strengthen the report. The CSTB staff were instrumental in organizing the
committee meetings and coordinating briefings, reviews, and interactions with Board members. In particular,
CSTB's administrative assistant, Gloria Bemah, provided excellent administrative support, and its director,
Marjory Blumenthal, played a key role in overseeing the study on behalf of the CSTB. Susan Maurizi edited the
report under a compressed schedule, and Gail Pritchard and Jean Smith of CSTB assisted in production of the
final draft. Finally, Paul Semenza, the study director, worked closely with the committee in every phase of the
study.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

he Department of Defense

CONTENTS ix
Contents

EXECUTIVE SUMMARY 1

1 THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 7

Growth in the Commercial Software Industry, 8

Obstacles to Broad Adoption of Ada, 8

Low Commercial Awareness and Limited Sponsorship, 9

Limited Extent of Academic Instruction in Ada, 9

Limited Availability of Ada Tools and Compilers, 10

Assumption That Ada Has to Control Everything, 11

Need for Ada-compatible Application Programming Interfaces, 11

Labor Market Forces, 12

DOD Programming Language Policy, 12

Policy History, 12

Ada's Place in Current DOD Programming Language Policy, 14

Implementation of Policy on Waivers, 14

Importance of Appropriate Expertise, 15

Level of Applicability, 15

Implications, 15

DOD Investment Strategy, 16

Summary of Ada Trends, 16

Critical Questions, 17

Notes, 18

2 SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 19

Software Engineering Process and Architecture, 19

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

he Department of Defense

CONTENTS

Economics of Software Engineering,
Reducing the Complexity of Software Products,
Improving Software Processes,
Influence of Software Environments, Tools, and Languages on the Software Engineering
Process,
Technical Evaluation of Ada 95 and Other Third-Generation Programming Languages,
Available Comparisons of Ada 83 and Other Third-Generation Programming Languages,
Analyses of Language Features,
Comparisons of Empirical Data,
Anecdotal Experience from Projects,
The Need to Institute Collection of Data for Software Metrics,
Notes,

3 DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS

Policy Objectives and Criteria Relevant to Meeting Them,
Relating Criteria to Objectives,
Critical Criteria in DOD's Selection of a Programming Language,
Warfighting and Commercially Dominated Applications,
Ada Business-Case Analysis,
Criteria for Evaluation of Ada,
Conclusions,
Findings and Recommendations,
Ada Competitive Advantage,
Applicability of Policy to DOD Domains,
Scope of Policy,
Policy Implementation,
Investment in Ada,
Software Metrics Data,
Assessment of Policy Alternatives,
Conditions for Requiring Ada,
Ada Requirement,
Language Choice Process,
Investment in Ada Infrastructure,
Economic Analysis of Investment in Ada Infrastructure,
Notes,

4 IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY

Recommended Policy for Choice of Programming Language,

Goals of Software Development,

Guidelines for Choice of Programming Language,

Recommended Policy for Requiring the Use of the Ada Programming Language,
Software Engineering Plan Review Process,

Policy Framework,

Stakeholder Role,

Copyright © National Academy of Sciences. All rights reserved.

21
21
22
23

24
26
26
26
30
30
32

34
35
35
35
36
37
37
40
42
42
42
43
43
43
44
44
44
47
48
49
50
52

53
53
54
55
55
56
57
58

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

he Department of Defense

CONTENTS xi
Approval Authority and Milestones, 59
Submission of Software Engineering Plans, 59
Software Engineering Codes, 60

Notes, 61

5 IMPLEMENTATION OF RECOMMENDED STRATEGY FOR INVESTMENT IN ADA 62

Goals of the Investment Strategy, 62

Ada Investment Strategy, 63

Language Maintenance and Enhancement, 64

Support for Ada Compilers, Tools, and Application Programming Interfaces, 64

Curriculum Development, 66

Centralized Support Organization, 66

Detailed Plan for Investments in Ada Technology and Support, 66

Conclusion, 67

Notes, 68

BIBLIOGRAPHY 69

APPENDIXES

A DOD Draft Software Management Policy Directive with Further Modifications Suggested by 75
the Committee,

B Technical Descriptions of Ada and Other Third-Generation Programming Languages, 80

C Glossary, 88

D Detailed Comparisons of Ada and Other Third-Generation Programming Languages, 92

E Briefings and Position Papers Received by the Committee, 101

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

xii

artment of Defense

CONTENTS

"uolNQgu3Ie Joj UOISI9A SAlle}lIoyINe 8y} se uoleslignd siyj Jo uoisiaA juud
By} asn ases|d ‘papuasul Ajjejuapiodoe uaaq aAey Aew siouls olydesbodA} swos pue ‘paulelal aq jouued ‘Janamoy ‘Buipewsoy oiyoads-buiesadAy Jayio pue ‘sajhis Buipeay ‘syealq pJom ‘syibus| aul| {eulbuo ayy
0} anJ} ale syeaiq abed "sa|iy BupesadA} [euiblo ayj wouy jou ‘yooq Jaded [euiblio sy} wolj pajeald sy X Woly pasodwodal usaq sey dlom [eulblio ayy jo uonejuasaidal [eybip mau siy] 8l 4ad Sy} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

EXECUTIVE SUMMARY 1

Executive Summary

WHAT SHOULD THE DEPARTMENT OF DEFENSE DO ABOUT THE ADA PROGRAMMING
LANGUAGE?

Ada was developed in the 1970s by the Department of Defense (DOD) and adopted in some DOD programs
until its use was required for new software development in 1987. It has been employed as a tool for developing
quality software and as a DOD policy lever to encourage DOD organizations and programs to adopt modern
software engineering principles. Changes within DOD, the software engineering community, and the commercial
software industry have led DOD to reassess its programming language policy.

The Committee on the Past and Present Contexts for the Use of Ada in the Department of Defense was
created by the National Research Council's Computer Science and Telecommunications Board to review DOD's
programming language policy and the question of Ada's role in it. This study presents findings and
recommendations developed by the committee for DOD's consideration in efforts to revise its current policy.

The committee concluded that a vigorous Ada program would enhance the reliability and performance of
DOD warfighting systems, and it recommends that DOD continue the use and promotion of Ada in such systems.
However, the committee found significant problems with the two primary components of DOD's current strategy
for Ada. First, there are problems in the scope, design, and implementation of the current programming language
policy, which requires the use of Ada for all software to be maintained by DOD; the committee recommends
several modifications. Second, DOD's plan to discontinue investments in Ada technology and user-community
support by the end of 1997 will weaken the Ada infrastructure and work against any requirement for DOD systems
to use Ada in the future; given the large installed base of Ada code in warfighting systems, targeted investments in
Ada are justified.

In the course of this study, the committee also concluded that the currently available data on effects of
programming language on project outcomes are insufficient, on their own, to serve as a basis for strong
determinations of the impact of programming language choice on the outcome of DOD

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

EXECUTIVE SUMMARY 2

programs. Briefings received by the committee also highlighted the difficulty that DOD managers have in gaining
access to data that can support informed decisions. The committee did find that trends in the data, anecdotal
evidence, and expert judgment provided a basis for its finding that Ada provides benefits in warfighting systems.
However, based on its experience with the limitations of currently available data, the committee makes an
additional recommendation that DOD institute a corporate data collection effort and develop metrics as a sound
basis for evaluating software so as to guide future policy and management decisions.

CONTEXT AND TRENDS

DOD's policy preference for Ada had some merit a decade ago. Most software at the time was entirely
custom, and Ada had a good track record in delivering custom software with higher-quality and lower life-cycle
costs. However, a custom Ada solution is no longer the best approach in many application areas, due to the
following major trends:

* COTS as a source of information infrastructure for applications. Software solutions increasingly depend
on commercial off-the-shelf (COTS) software, which provides much of an application's information
infrastructure: operating system, database management, networking, user interface, and distributed
processing functions. Much of this software is written in programming languages other than Ada that
often do not have readily available interfaces to programs written in Ada. Developing these interfaces is
not a major technical problem, but, particularly in the area of commercial Internet applications, COTS
software is evolving rapidly, making it hard for Ada solutions to keep current.

* Product-line solutions and production factors. Software for many application areas is achieving
economies of scale through the development of product-line architectures, enabling software assets to be
reused across families of applications. These product-line solutions are driven by strongly coupled
"production factors," including software components, processes and methods, human resources, and
expertise in particular domains. In warfighting application areas such as weapon control and electronic
warfare, there is little commercial development, and DOD has established a strong community of
warfighting software developers whose production factors are oriented to Ada. However, for the
numerous DOD applications in which the market is dominated by commercial solutions, such as finance
and logistics, production factors have been built around programming languages other than Ada, putting
Ada solutions at a disadvantage.

Additional conditions that strongly influenced the committee's findings and recommendations include
the following:

* DOD emphasis on achieving information dominance. According to Secretary of Defense William Perry,
". .. our warfighting strategy sustains and builds on ... the application of information technology to gain
great military leverage to continue to give us [an] unfair competitive advantage" (Perry, 1996a). This
assertion highlights the importance of a capability for enhancing military competitive advantage as a
criterion for the choice of programming language.

* Large and increasing inventory of DOD Ada software. DOD now has over 50 million lines of operational
Ada weapon systems software, with a great deal more under development. Most of this software is in
critical warfighting application areas, and there are no quick and cheap ways to translate it into other
languages. DOD policies and investment strategies that weaken Ada support for this software are very
risky because of the role warfighting software plays in maintaining national security.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

EXECUTIVE SUMMARY 3

* Proliferation of programming languages has decreased, but polylingualism is here to stay. One goal of
developing Ada was to reduce the proliferation of programming languages used in DOD systems,
estimated to be approximately 450 in the 1970s. The number of languages used throughout DOD has
indeed decreased: the use of machine and assembly languages has diminished, and the number of third-
generation languages in use has been reduced. However, there has been a rapid increase in development
of fourth-generation languages by the commercial sector (there are now more than 100 different such
languages), and use of these languages by DOD is increasing. Thus, DOD cannot expect to avoid
polylingual software solutions. However, support for multilanguage applications has improved
significantly.

* Programming language choice is one of several key software engineering decisions. The requirement to
use Ada and the process for obtaining a waiver isolate programming language decisions from other key
software engineering decisions (e.g., choices of computer and software architectures, decisions about use
of COTS components, and milestone schedules). These decisions are also currently made at the system
level, rather than at the component or subsystem level. This arrangement creates an incentive for DOD
programs to make decisions that are not optimal for DOD as an organization. Future programming
language decisions need to be made as part of an integrated software engineering process.

FINDINGS AND RECOMMENDATIONS

The committee developed the following set of findings and recommendations for future DOD software policy
and strategy. The recommendations address the use of Ada in warfighting software, the application in which the
committee finds Ada to have demonstrated benefit; the proper scope and implementation of software policy;
investment in Ada; and collection of data as a basis for assessing the effectiveness of software and software
policy.

Ada Competitive Advantage

Finding. Ada gives DOD a competitive advantage in warfighting software applications, including weapon
control, electronic warfare, performance-critical surveillance, and battle management.

Recommendation. Continue vigorous promotion of Ada in warfighting application areas.

Rationale. Available project data and analyses of programming language features indicate that, compared
with other programming languages, Ada provides DOD with higher-quality warfighting software at a lower life-
cycle cost. DOD can increase its advantage by strengthening its Ada-based production factors (involving software
tools, technology, and personnel) for warfighting software (see Chapters 2 and 3).

Applicability of Policy to DOD Domains

Finding. DOD's current requirement for use of Ada is overly broad in its application to all DOD-maintained
software.

Recommendation. Focus the Ada requirement on warfighting applications, particularly critical, real-time
applications, in which Ada has demonstrated success. For commercially dominated applications, such as office and
management support, routine operations support, asset monitoring, logistics, and medicine, the option of using
Ada should be analyzed but should not be assumed to be preferable.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

EXECUTIVE SUMMARY 4

Rationale. For warfighting software, supporting Ada-based production factors (involving software tools,
technology, and personnel) gives DOD a competitive advantage. In this domain, eliminating the use of Ada would
both compromise this advantage and diminish the capabilities for maintaining DOD's existing 50 million lines of
Ada. In commercially dominated areas, pushing applications toward Ada would create a disadvantage for DOD
(see Chapters 2 and 3).

Scope of Policy

Finding. DOD's current requirement for use of Ada overemphasizes programming language considerations.

Recommendation. Broaden the current policy to integrate the choice of programming language with other
key software engineering concerns, such as software requirements, architecture, process, and quality factors.

Rationale. The current policy isolates the Ada requirement and the waiver process from other software
engineering decisions, causing programs to make premature or non-optimal decisions (see Chapter 1). DOD has
already taken steps to broaden the policy focus in its draft revision of its programming language policy, DOD
Directive 3405.1; this report recommends modifications to that draft policy (Appendix A).

Policy Implementation

Finding. DOD's current Ada requirement and the related waiver process have been weakly implemented.
Many programs have simply ignored the waiver process. Other programs make programming language decisions
at the system level, but often a mix of Ada and non-Ada subsystems is more appropriate (see Chapter 1).

Recommendation. Integrate the Ada decision process with an overall Software Engineering Plan Review
(SEPR) process. Passing such a review should be a requirement for entering the system acquisition Milestone I and
II reviews covered by DOD Instruction 5000.2. It should also be required for systems not covered in 5000.2, and
recommended by DOD for DOD-directed software development and maintenance of all kinds.

Rationale. The SEPR concept is based on the highly successful commercial architecture review board
practice. The SEPR process involves peer reviewing not only the software and system development plans, but also
the software and system architecture (building plan) and its ability to satisfy mission requirements, operational
concepts, conformance with architectural frameworks, and budget and schedule constraints; the process also
involves reviewing other key decisions such as choice of programming language (see Chapter 4).

Investment in Ada

Finding. For Ada to remain the strongest programming language for warfighting software, DOD must
provide technology and infrastructure support.

Recommendation. Invest in a significant level of support for Ada, or drop the Ada requirement. The strategy
developed by the committee recommends an investment level of approximately $15 million per year.

Rationale. With investment, DOD can create a significant Ada-based complex of production factors
(involving software tools, technology, and personnel) for warfighting application domains.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

EXECUTIVE SUMMARY 5

Without such support, Ada will become a second-tier, niche language such as Jovial or CMS-2 (see
Chapter 5).

Software Metrics Data

Finding. DOD's incomplete and incommensurable base of software metrics data weakens its ability to make
effective software policy, management, and technical decisions.

Recommendation. Establish a sustained commitment to collect and analyze consistent software metrics data.

Rationale. The five sets of findings and recommendations above are based on a mix of incomplete and
incommensurable data, anecdotal evidence, and expert judgment. For this study, the patterns of consistency in
these sources of evidence provide reasonable support for the results but not as much as could be provided by
quantitative analysis based on solid data. A few organizations within DOD have benefited significantly from
efforts to provide a sound basis for software metrics; a DOD-wide data collection effort would magnify the net
benefits (see Chapter 2).

WHAT THE DEPARTMENT OF DEFENSE SHOULD DO ABOUT ADA

In summary, the committee concluded the following regarding DOD and Ada:

1. DOD should continue to require Ada for its warfighting software and should drop the Ada
requirement for its other software.

2. DOD should provide roughly $15 million per year for Ada infrastructure support, or drop the
requirement to use Ada entirely.

3. DOD should make programming language decisions in the context of a Software Engineering Plan
Review process.

The rationale for the above statements is as follows:

1. In commercially dominated areas, although Ada may offer some advantages for custom software
development, the preponderance of existing commercial activity and solutions in other languages
counters these advantages, thereby shifting the business-case away from mandating Ada in these
areas.

2. In warfighting applications, Ada's technical capabilities for building real-time, high-assurance custom

software are generally superior to those of other programming languages. DOD's investments in Ada

to date have provided DOD systems with a competitive advantage in these areas.

The commercial marketplace alone will not sustain a robust Ada infrastructure.

4. A relatively modest ($15 million per year) DOD investment at the margin would be sufficient to
sustain a robust Ada infrastructure for warfighting applications.

5. DOD's inventory of more than 50 million lines of Ada warfighting software will become a liability
without a robust Ada infrastructure.

6. DOD's current Ada waiver procedure can be effectively replaced by adoption of the commercially
established practice of using architecture review boards, a process that can also strengthen DOD's
overall software engineering capability.

et

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

he Department of Defense

EXECUTIVE SUMMARY 6

ORGANIZATION OF THIS REPORT

Chapter 1 describes the past and present contexts for Ada and DOD software development and programming
language policy and points out problems with the current approach. Chapter 2 relates issues in decisions about
programming language to other software engineering decision issues and evaluates Ada's support for software
engineering processes. It also summarizes the results of comparing the relative cost-effectiveness of Ada and other
programming languages, based on analyses of language features and empirical data from software projects.

Chapter 3 presents a business-case analysis for the use of Ada within DOD, gives the committee's findings
and recommendations, and analyzes them along with alternatives.

The software policy recommended by the committee for DOD is elaborated in Chapter 4, which also provides
additional details on programming language selection criteria and explains the basic elements of the Software
Engineering Plan Review process recommended by the committee. Chapter 5 discusses the committee's
recommended strategy for investment in infrastructure for Ada.

Appendix A reproduces a draft revision of DOD Directive 3405.1 on programming language policy (DOD,
1987a), a document to which the committee has added further suggested modifications that reflect its
recommendations in this report. Appendix B presents detailed descriptions of Ada and other programming
languages; a glossary of terms used in the report is contained in Appendix C; Appendix D compares Ada's features
with those of other third-generation programming languages; and Appendix E lists briefings and position papers
received by the committee during the course of its study.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 7

1
The Changing Context for DOD Software Development

For nearly two decades, the Ada programming language has been a cornerstone of efforts by the Department
of Defense (DOD) to improve its software engineering practices. DOD created Ada in the 1970s to serve as a
department-wide standard that would satisfy its special requirements for embedded and mission-critical software,
and would also encourage good software engineering. Both the new language and the new software engineering
ideas associated with it met with some criticism, and both have evolved as a result. Today, Ada is the most
commonly used language for mission-critical defense software, which includes weapon systems and
performance-critical command, control, communications, and intelligence (CI) systems. DOD's inventory
contains nearly 50 million lines of Ada code in these applications (Hook et al., 1995). Given the long operational
life of such systems, DOD has made a significant investment in Ada technology. Ada is the second most
commonly used language (after Cobol) for DOD automated information systems, which include payroll and
logistics programs. The DOD inventory contains more than 8 million lines of Ada code in these applications
(Hook et al., 1995).

Hopes for broad commercial adoption of Ada have not been realized, however. Its commercial use has been
eclipsed by other languages, such as C, then C++, and, most recently, Java. DOD's inclusive approach in the
development of the language, as well as its promotional campaigns in support of Ada, do not appear to have been
successful in fostering adoption of the language beyond defense and other mission-critical applications.

During Ada's lifetime, DOD's position in the software market has shifted. Although DOD still has an
influence, its share of the market has diminished-not because DOD's need for software has decreased, but rather
because the size of the commercial software market has exploded, generating a corresponding increase in
investments in commercial software technology. DOD made significant investments to develop Ada (both Ada 83
and Ada 95)! and mandated its use on certain DOD projects. The DOD requirement to use Ada appears to have
been beneficial for custom software that has no commercial counterparts (e.g., weapon systems and performance-
critical C3I software). On the other hand, this policy has frequently been counterproductive in application areas
that have strong commercial support. In these areas, DOD's policy has inhibited DOD from taking advantage of
existing commercial infrastructure written in or for other languages.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 8

GROWTH IN THE COMMERCIAL SOFTWARE INDUSTRY

Commercial software includes a great deal of powerful infrastructure software such as development tools,
operating systems, database management systems, networking software, user interfaces, and transaction processing
programs. It also includes rich and growing sources of software for applications that are similar to some DOD
applications, such as management information systems; geographic information systems; and logistics, medical,
engineering and scientific, and office-support systems. With the exception of some aerospace, transportation, and
safety-critical applications software, little of this commercial software is written in Ada.

In the 1990s, the computing field has been transformed by technological advances, particularly in networking
and in low-cost personal computing with associated tools. While these advances have had relatively little impact
on traditional real-time embedded systems, they have completely altered the character of commercial information
systems and the processes used to develop them. Information systems are now commonly built with a two- or
three-level client-server architecture, and with a graphical user interface that is logically separated from
computational steps and from a relational database. Specialized tools and fourth-generation programming
languages (4GLs; see glossary, Appendix C) have been developed for building this class of applications. Such
tools and languages, exemplified by Visual Basic and PowerBuilder, are extremely efficient for building small and
medium sized applications, particularly where the demands for reliability and availability are less stringent than
those for real-time embedded systems. Similar tools are now becoming available for the deployment of
information systems across organizational intranets and the World Wide Web. Because in certain domains these
tools and languages operate at a higher-level than does any traditional programming language (including Ada),
they are often the most appropriate way to prototype and develop information systems. Finally, growth in
Internet-based software has increased the already rapid pace of product development in the commercial software
industry.

OBSTACLES TO BROAD ADOPTION OF ADA

One goal of the inclusive and extensive process undertaken to develop Ada was to create a language that
would be widely adopted by the software community, beyond DOD. Utilizing commercial technology has become
more important to DOD in recent years, as a combination of declining financial resources for DOD and great
strides in commercial developments across all areas of advanced technology has led to an increasing emphasis on
leveraging commercial technology in developing defense systems (DOD, 1994b, 1995b).

Ada has taken its place among the better known and widely used third-generation programming languages
(3GLs; see glossary, Appendix C); however, it has not become as popular as its proponents had hoped. One study
of programming language use estimated that Ada 83 applications constitute only 2 percent of all computer
applications in U.S. inventories, and slightly more than 3 percent of all function points (Jones, 1996b). Ada is used
primarily within the DOD community. Beyond that community, it has been adopted by some software developers
for the civilian market, especially where there is potential defense market cross-over or where there are similar
requirements, such as in commercial aviation, process control, and medical instrumentation.2 However, this
commercial use is a small fraction of the total commercial software market.

Another indicator of Ada's limited market penetration is the supply of and demand for Ada-trained
programmers. Jones (1996b) estimates that of the 1.92 million professional programmers in the United States,
90,000, or less than 5 percent, are Ada 83 programmers.® In an informal review of software engineering
employment opportunities advertised in two major newspapers, the committee noted that of more than 1,000
references made to individual programming languages and tools,* fewer

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 9

than 3 percent of the citations referred to Ada; in comparison, C and C++ each accounted for more than 23 percent
of the references. > While there are many ways to look at Ada's current market share, employment opportunities
and professional growth were recurring concerns expressed in many of the presentations made to the committee.

Given current conditions and probable trends, it is unlikely that the use of Ada, including the recent Ada 95
version, will grow significantly beyond the DOD-dominated and related commercial niche of high-assurance,
real-time systems where it is already strong. Some of the principal reasons for this conclusion are discussed in the
following sections.

Low Commercial Awareness and Limited Sponsorship

Ada has never attained the broad following associated with languages such as C++ and, most recently, Java.
Market research indicates that nearly all programming language decision makers in non-defense industries are
aware of Cobol, C, C++, Fortran, and Pascal, but only two-thirds are aware of Ada; only one-fifth are familiar with
Ada's characteristics (Telos, 1994).6

In decisions affecting adoption of programming languages, non-technical factors often dominate specific
technical features. These factors include the broad availability of inexpensive compilers and related tools for a
wide variety of computing environments, as well as the availability of texts and related training materials. In
addition, grass-roots advocacy by an enthusiastic group of early users, especially in educational and research
institutions, often has broad influence on adoption of programming languages. These advantages were largely
absent when Ada was introduced in 1980. In contrast, C++ and Java both have achieved widespread acceptance
and use. The strong military orientation of the publicity generated for Ada also may have served to alienate
significant portions of the academic and research communities.

Historically, DOD has been Ada's only sponsor, and Ada has been focused almost exclusively on the military
niche occupied by DOD and its contractors. In the past, Ada technology was subject to export control restrictions.
The development of tools and components funded by DOD was targeted to DOD organizations and defense
contractors. People and institutions outside DOD who were interested in Ada found it difficult to acquire
compilers and training resources.

Many technical organizations evaluated Ada and its associated tools in the mid-1980s and decided not to use
it. Most of those organizations have committed significant resources to other languages and technologies; thus they
are unwilling to reconsider Ada, even though Ada 95 is significantly different from Ada 83 and the tools are far
more advanced. Beyond the DOD-dominated niche, some organizations are unwilling to reconsider Ada because
they continue to view Ada as a language that is suitable only for military applications.

Recently, DOD's Ada Joint Program Office has begun to promote the academic use of Ada by awarding
educational grants and making lower-priced compilers available. While these activities have had an impact (see
the next section), by themselves they are unlikely to be enough to make Ada popular. They have not been matched
by development of infrastructure to make it attractive to the research community, where advanced software
development is carried out and graduate students are trained.

Limited Extent of Academic Instruction in Ada

The popularity of a programming language in the academic world and its use in industry are often linked.
Schools feel pressure to teach the languages that appear to be demanded most by the labor market. At the same
time, the adoption of computer languages in the classroom can lead to commercial use.” A manager who has been
exposed to a language in school is more likely to be confident about

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 10

trying it out, and even more confident if it is one that many recent graduates appear to know. University research
and development groups are also influential, since the advanced software concepts they develop tend to influence
the next generation of commercial products. A language that is widely taught is more likely to be widely adopted.

Ada has not been widely taught in colleges and universities, particularly compared with Pascal, C, and C++;
until recently, even the military academies taught programming in languages other than Ada. A survey of more
then 2,300 colleges and universities worldwide that have computer science curricula identified only 285
institutions that offer any courses in Ada; 237 of them are in the United States (IITRI, 1996), and they include
many small institutions, among them community colleges and technical institutes. Few of the leading computer
science programs in the United States, as ranked by the National Research Council's assessment of graduate
research programs (NRC, 1995), provide instruction in Ada: only 6 of the top 53 programs (and 1 of the top 10)
were identified by the 1996 survey as offering Ada courses.

However, the IIT Research Institute's 1996 survey of Ada instruction also found that in fewer than 3 years,
there was a 47 percent increase in institutions offering courses in Ada and a 43 percent increase in the number of
Ada courses offered (both measured worldwide). A survey of institutions adopting Ada as a foundation language
found that from 1993 to 1996 the number increased from 57 to 147 (Feldman, 1996).2 Yet the total is still
comparatively small, and it is unclear how long this trend might continue without the strong sponsorship provided
by DOD.

Limited Availability of Ada Tools and Compilers

Historically, compilers and other language-specific tools for Ada have been significantly more costly and
slower in coming to market than those for C and C++. Initially, this was a matter of technology. Since Ada
embodied new technology that provided technical challenges for compiler writers, production-quality Ada
compilers were not available for several years after Ada's official debut in 1980. When they became available, they
were large, slow, unreliable, and expensive. This slowed DOD contractors' transition to Ada from other languages
and soured some early users. Because C compilers are much easier to build and have a higher expected sales
volume, they have typically been the first available compilers for new microprocessors; C++ compilers have
usually followed, and Ada compilers have often been the last to be available. The problems with Ada compilers
also impeded the use of Ada in education. Thus, organizations seeking to adopt Ada faced near-term costs for new
tools, especially the high-priced compilers, in addition to the cost of training people in a language that was not
widely taught in academic institutions.

Currently, Ada compilers are comparable in quality to those of other 3GLs, and the increased hardware
resources needed to run popular software, such as Windows 95, make the requirements of Ada compilers appear
more modest. In addition, the availability of the GNU NYU Ada 95 Translator (GNAT) has reduced the cost and
improved the availability of Ada compilers. GNAT is a component of the GNU compiler suite, sharing code-
generation facilities with the GNU C and C++ compilers. The GNU C compiler is generally recognized as a high-
quality compiler. The GNU technology makes it comparatively easy to support new processors; therefore, the GNU
compiler is likely to be one of the first available when a new processor appears. A non-technical but important side
benefit is the association of GNAT with the Free Software Foundation, which should help GNAT to shed some of
Ada's military only stereotype. The entire GNU compiler suite is distributed widely over the Internet, without
charge, and is also distributed by some hardware vendors. In addition to the freely available GNAT, the main
compiler vendors (see below) also offer academic compilers to students at reduced prices.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 11

The market for Ada compilers and tools has been estimated at $200 million annually.” The modest size of this
market has resulted in significant consolidation of Ada compiler and tool vendors over the past few years.'” There
are now two dominant suppliers: Rational Software Corporation (which was formed by the merger of Rational
with Verdix, which had previously acquired Meridian) and Aonix (previously Thomson Software Products, which
acquired Alsys and Telesoft). In addition, there are several other vendors that focus mainly on niche markets.
These suppliers include the Texas Instruments unit that was previously Tartan, TLD, OC Systems, DDC-I, RR
Software, Intermetrics, Green Hills, ICC, and Ada Core Technologies (which was formed to support and
commercialize GNAT). Several of the vendors, including the two largest, have product-lines other than Ada. It is
not clear how this consolidation will affect the availability and price of commercial Ada compilers in the long-
term.

Assumption That Ada Has to Control Everything

Ada provides some services, such as input/output, multitasking, time keeping, and interrupt handling, that are
traditionally in the domain of an operating system. Early Ada implementations were designed with the assumption
that Ada was in complete control of the hardware, with no operating system, and that all the software on a machine
was written in Ada. This approach is effective for the programming of embedded systems, in which the
applications need to run without an operating system. Since Ada hides differences between operating systems,
these characteristics make applications more portable.

However, these features also mean that, when compared with a language in which services are obtained by
operating system calls, it is harder to write an Ada run-time system. It is also more difficult to port it to a new
operating system, although this cost can be balanced by the benefit of reduced effort in writing and porting Ada
application programs. In early Ada applications, when compiler vendors lacked expertise in real-time kernel
building, the run-time systems were a frequent cause of complaints related to the closed nature of the interface.
Developers of embedded systems applications wanted to have more direct control over the hardware resources.
Developers of conventional operating system applications were hampered by the lack of access to the full
operating system functionality, and by the incompatibility of libraries written in other languages with the Ada
run-time system. The situation has improved in recent years; Ada vendors have adopted a more "open systems"
approach in which the Ada run-time system is layered over a commercial real-time kernel or a traditional operating
system, and Ada 95 supports interfaces to other languages.

Need for Ada-compatible Application Programming Interfaces

An application programming interface (API) is a set of procedure and function specifications that provides
access to the capabilities of a reusable software component, such as an operating subsystem for "windows" or
network communications. The vendors of most commercial off-the-shelf (COTS) software components typically
provide a C language API. For the COTS component to be usable by an Ada application, an Ada-compatible API
must be provided; this does not mean, however, that the COTS product itself needs to be written in Ada (a
misconception that was evident in several presentations to the committee). A vendor-provided Ada API often lags
the C version by months or years (a very long time in the computer industry), and often costs more. An Ada
developer can create an interface to a C language API without vendor support, but doing so can require intimate
knowledge of the particular COTS product and/or the Ada language implementation. The earlier implementation
of non-Ada APIs, and greater vendor involvement, also have led to earlier standardization. Thus, the time delay
and extra cost or effort of obtaining an Ada API, and the delay in standardization, have become disincentives for

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 12

the use of Ada. An added disincentive is the challenge of keeping Ada APIs current with the frequent changes in
COTS product features.

Labor Market Forces

Software engineers are likely to be interested in enhancing skills that they expect to be most valuable in the
software engineering marketplace, which is now dominated by commercial opportunities. Thus, programmers have
moved quickly to learn Java and Hypertext Markup Language (HTML; used to develop pages for the World Wide
Web) because they see these as the next wave, which can carry them to new career opportunities. Similarly,
software engineers might avoid using Ada if they see it as limiting their careers. Given the cyclical nature of DOD
spending, recent downsizing, and layoffs, defense software engineers have reasons to consider preparing for a
move to the commercial sector. Even those who believe Ada is technically the best solution for a given program
may face conflicting incentives in choosing a programming language.

On the other hand, the committee heard testimony that, for developing the specialized software that is most
critical to the DOD mission, knowledge of the application domain is harder to obtain and more valuable than
knowledge of a particular programming language, or even of software engineering itself. Thus, software engineers
who have expertise in defense-oriented applications are likely to be in greater demand in that sector than in the
commercial marketplace, where their domain-specific skills would be less applicable. Likewise, employers in the
DOD sector are highly motivated to keep experienced engineers because of the expense of training new ones in the
relevant applications, as well as the cost and delay of obtaining a security clearance for a person entering from the
commercial market. These dynamics contribute to the separation of the military and commercial markets for
software engineers, which is similar to the separation of those same markets for aerospace engineers.

DOD PROGRAMMING LANGUAGE POLICY

Policy History

DOD's decision to design Ada as a new programming language for embedded applications was a reaction to
both the "software crisis" of the late 1960s and early 1970s and the advent of software engineering concepts. It
was also a response to the fact that each of the military services had developed separate programming languages
that each was planning to independently standardize, upgrade, and improve. Within DOD, software problems were
contributing to project cost overruns and lengthy delays in system deployment. From 1968 to 1973, the total cost
of DOD's computer systems increased by 51 percent, even though hardware costs were decreasing dramatically
(Fisher, 1976). While some have argued that this increase could be interpreted as the legitimate cost of obtaining
new functionality, at the time it was viewed as symptomatic of software development problems.

One visible aspect of DOD's software crisis was that systems were being developed in many different
programming languages for many different computers, diluting resources and increasing the cost and complexity
of maintenance. Many of the systems were written in assembly language for specialized, proprietary processors, or
written in programming languages unique to a particular project or contractor. There was never a thorough count
of the number of languages in use, but a widely cited estimate is "at least 450 general-purpose languages and
dialects" (Hook et al., 1995). The abundance of languages made it uneconomical to develop high-quality software
tools and was an obstacle to using programmers and software across projects. It was also a major source of post-
deployment problems in areas such as interoperability, operations, and maintenance, and it hindered effective
product-line

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

)

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

O

@®

c

(O]

[0}
o]

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

@

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

(O]
O
—

o

c

c

®

o

-

o

>

[

=

o
=

=)

c
=

@®

£

=

[}
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

(O]

Qo

>
=

o

(O]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 13

management. Maintenance of compilers, assemblers, linkers, and other tools for all these languages was a
significant burden, as were the hiring and training of programmers. In many cases, a system could be maintained
only by its original developer; such vendor "lock-in" added to maintenance expenses.

For these reasons, it appeared desirable for DOD to converge on a minimal set of programming languages.
Representatives of various DOD and allied defense organizations worked together to define the DOD
requirements for high-order languages. An early outcome was the release of DOD Directive 5000.29 (DOD,
1976). The directive required the use of an approved high-order language, unless another choice could be shown to
be more cost-effective, and it established a single point of control for each language. However, it was determined
that none of the existing languages met the requirements for embedded systems, which were estimated to
represent more than half of all DOD software costs in 1973 (Fisher, 1974).

DOD decided to design a new language that would serve as the single, common, high-order language. While
DOD had other software problems that went deeper than those associated with programming languages, it
appeared that programming language problems were amenable to a technical solution. Moreover, the conversion to a
new, common, high-order programming language was viewed by some as a vehicle for DOD-wide efforts to
improve software engineering. The new DOD language, which eventually became Ada, was intended to be a
modern programming language that would reflect the accumulated knowledge of programming language design
and provide the appropriate set of concepts and features for implementing embedded systems.

Representatives of key stakeholders, including organizations within DOD, its contractors, and many of the
world's software engineering and programming language experts, were involved in the identification of
requirements, the design and evaluation of the early prototype languages, and the refinement of the preliminary
Ada design. The end product, eventually named Ada 83, was officially released in 1980 and became a standard in
1983. It was recognized as a powerful, modern programming language that addressed DOD's stated requirements
for embedded systems. However, Ada's adoption within DOD and by its contractors did not proceed as quickly as
anticipated.

In 1983, Undersecretary of Defense Richard DeLauer established a policy mandating the use of Ada for all
new mission-critical applications. The policy specified a waiver process, whereby other DOD authorized
languages (CMS-2M/Y, Jovial J3/J73, Fortran, Cobol, TACPOL, SPL/1, and C/ATLAS) could also be used.
While the preferential treatment for Ada helped, Ada support software was not yet mature, and there were still
many contract awards across the services where Ada was not selected. As a result, systems developed in Ada
continued to be in the minority. That situation led to the establishment, in 1987, of the current policy, specified by
DOD Directive 3405.1 (DOD, 1987a), which prescribes the use of Ada for most DOD procurements and internal
developments. The original list of approved high-order languages was expanded to include Minimal BASIC and
Pascal.

The proliferation of programming languages within DOD systems, one of the original reasons for mandating
the use of Ada, appears to have diminished over time. Most new DOD software is written in Ada or one of a few
other languages. As of 1994, 79 percent of all DOD mission-critical software was written in 3GLs; of this code, 33
percent was written in Ada, 37 percent in the other approved high-order languages, 22 percent in C, and 3 percent
in C++ (Hook et al., 1995). It is difficult to tell how much of this consolidation of language use is a result of the
requirement to use DOD-approved languages, given that C-the second most widely used language in DOD-has
never been on DOD's list of approved languages. Certainly larger market and industry forces have also been at
work. For example, growing standardization in the computer industry has resulted in fewer new computer
architectures being introduced, particularly when compared with 20 years ago, resulting in fewer assembly
languages in use. Similarly, the rate of growth in new 3GLs has diminished since the 1970s and has been
overtaken by development of the infrastructure and culture needed to build software involving components in
different programming languages.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 14

However, the growth of 4GLs indicates a potential for a new proliferation of programming languages. For
example, one study lists 115 languages (out of a total of 455 currently active languages) that meet one definition
of a4GL, i.e., that the language requires 30 or fewer statements to encode one function point (Jones, 1996¢). 4GLs
typically are not intended to serve as general-purpose programming languages, but they may include a lower-level
sub-language that is more general and allows users to program functionality that is not built into the 4GL. Hook et
al. (1995) found that 4GLs are used increasingly for DOD automated information systems applications; the
committee also heard from DOD representatives that 4GLs increasingly are being used for rapid development
special applications. Thus, it appears that DOD will continue to operate in a "polylingual” world.'!

Ada's Place in Current DOD Programming Language Policy

DOD policy states that Ada is to be the "single, common, computer programming language for Defense
computer resources used in intelligence systems, for the command and control of military forces, or as an integral
part of a weapon system" (DOD, 1987a). The policy allows for the use of other, previously authorized languages
in deployment and maintenance, but not for redesign or addition of more than one-third of the software. Ada is to
be used "for all other applications, except when the use of another approved higher order language [HOL] is more
cost-effective over the application's life-cycle." It ranks as preferences (1) off-the-shelf applications packages and
advanced software technology, (2) Ada-based software and tools, and (3) approved standard HOLs. Exceptions are
allowed only by the granting of a waiver, which requires that the alternative language be more cost-effective and
that it be chosen from the list of DOD-approved languages. Neither Ada use nor a waiver is required for COTS or
contractor-maintained software developments or for vendor-provided updates.

Implementation of Policy on Waivers

Requests for waivers to develop systems in different languages are handled at a very high management
level-the offices of the Assistant Secretary (C3I) or the Service Acquisition Executives—and are reviewed
independently from the requesting program's other key decision milestones (such as the Defense Acquisition
Board and Major Automated Information Systems Review Council). In practice, such waivers have rarely been
requested. The committee was informed that 31 waivers had been granted since 1992 across the services (3 by the
Army, and 14 each by the Navy and the Air Force). Because most requests for a waiver have been granted, this
relatively small number of approved waivers suggests that only a very small percentage of the many projects that
did not use Ada actually submitted a waiver request.'?

Based on briefings and testimony to the committee and the information discussed above, the committee
concluded the following about the implementation and some of the effects of the Ada waiver policy:

1. Many projects have ignored or manipulated the policy on waivers, employing languages other than
Ada without the required waiver.

2. Many project managers fear that requesting a waiver will reflect badly on them; this has caused some
to employ Ada where it is not cost-effective.

3. The DOD and services' authorities generally have the capability to grant waivers that are justified,
given the small number of waiver requests.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 15

4. The granting authorities do not have the capability and expertise to evaluate the technical merits and
long-term consequences of the full number of Ada waiver requests that would be made if there were
full compliance with the policy.

In organizations with a high level of understanding of software, similar waiver processes can work reasonably
well. Waivers are requested by developers where they make sense; waivers are granted by managers where they
make sense; and the developers and managers know enough about software to reconcile differences of opinion on
what makes sense. One of the recurring themes in successful DOD projects using Ada was that Ada was selected
for appropriate technical and economic reasons. However, selection of Ada solely to satisfy DOD's overall policy
on programming languages has not been a guarantee of project success.

Importance of Appropriate Expertise

Custodians of mandates on software use who do not possess sufficient knowledge of software tend to rely too
much on narrow interpretation of the mandates, and DOD historically has not had a high level of software
expertise. The Defense Science Board found in 1987 that DOD lacked adequate career paths for software
professionals and had long ignored its software personnel problems (DOD, 1987b). Testimony heard by this
committee indicated that although the level of software training has increased, such problems persist. For
example, cutbacks in several DOD organizations in the early 1990s appear to have caused numerous software
experts to leave DOD for industry. The approach that the Defense Science Board recommended was, "Do not
believe DOD can solve its skilled personnel shortage; plan how best to live with it, and how to ameliorate it."

Level of Applicability

Another recurring issue and ambiguity in current DOD policy on programming languages is that it reflects a
system-level view of software that does not consider subsystems independently. For example, for a project with
three subsystems--(1) an operational flight program (all new software), (2) a simulator (based on an existing
simulator written in C), and (3) a ground-based test capability (combining new and legacy components in multiple
languages)--current DOD policy encourages project managers to either write all subsystems in Ada or apply for a
waiver for all subsystems. This approach leads to a simplistic choice between two options, neither of which is
optimal. A clear, more flexible policy is needed that allows project managers to optimize programming language
use at the subsystem and component level, without incurring a penalty of additional administrative overhead for
the division into components.

Implications

To be effective, DOD's policy requiring the use of Ada must include positive incentives for doing so, and it
must be implemented closer to the project level within DOD. The current policy fails on both accounts. It has often
had negative effects on DOD software engineering processes, in particular because DOD's policy on waivers for
use of alternative programming languages has been implemented unevenly by DOD staff who lack the necessary
technical knowledge, understanding of the relevant details of system design, or the motivation to consider long-
term and service-wide objectives. Many DOD personnel testified to the committee that waivers are perceived as
difficult to defend (even though

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 16

it appears that most requests are actually granted). This perception frequently has led to manipulation, bypassing,
or simply ignoring of the waiver process. Narrow interpretation of the policy has led to a number of poor decisions
to use Ada, even when other solutions offered significant improvements in capability. For example, certain
graphical user interface development tools have frequently not been used simply because they did not generate
Ada or were not written in Ada.

DOD INVESTMENT STRATEGY

DOD weapon systems programs and commercial organizations both understand that significant post-
development investments are needed to keep software systems functioning effectively. For example, Citibank
spends 80 percent of its software budget on sustaining and enhancing existing code.'? In the programming
language area, Eric Schmidt, chief technology officer at Sun Microsystems, has stated that "several years" lie
between Java and black ink (Aley, 1996). It is reasonable to assume that Ada 95 will also require ongoing
investment.

DOD has assigned the responsibility for sustaining Ada to the Defense Information Systems Agency (DISA),
under the Assistant Secretary of Defense (C3I). It is the committee's understanding that DISA's current plan is to
shrink the originally planned budget of $10 million in annual support for Ada 95 to nearly zero by the end of
1997. The committee does not believe that Ada 95 is an exception to the general rule that software requires
continuing investment to remain effective; briefings from DISA indicated that it has made an assumption to the
effect that "the language exists and is mature," meaning that the commercial sector will provide support. The
committee disagrees with this assessment.

The barriers to commercial adoption of Ada discussed above in this chapter are a significant concern, because
without support and promotion by critical customers such as DOD and the commercial safety-critical community,
there is a serious danger that the Ada tool and compiler industry will shrink to the point that it can no longer
provide widespread support to warfighting systems. This will ultimately increase DOD's costs, because it will have
to take over full maintenance and development for Ada tools. DOD may also have to use programming languages
that will result in more costly development and maintenance for its mission-critical systems. In addition to
increased cost, any decrease in quality or increase in schedule could threaten DOD's warfighting adaptability and
readiness.

DOD remains the key customer for Ada technology. Although Ada 83 is being used outside DOD for the
development of critical applications, the Ada tool and compiler market remains dependent on robust support from
DOD. Even the perception of DOD pulling away from its support for Ada could dramatically affect Ada vendors,
at a time when the industry is in the process of assimilating Ada 95. Uncertainty over DOD's programming
language policy and investment strategy is already affecting the ability to find capital to invest in Ada-related
development.

The most critical impact of not sustaining Ada is the consequent reduction in support for DOD's 50 million
existing lines of Ada mission-critical software. Without DOD support, Ada will begin to resemble other
unsupported DOD languages such as Jovial and CMS-2. Mission-critical programs relying on Ada code will be
forced to choose between spending time and money to keep their Ada support current and spending even greater
resources to convert their software to another language.

SUMMARY OF ADA TRENDS

Tables 1.1 and 1.2 summarize the differences between the past context (1970s and early 1980s) in which the
current Ada policy was developed, and the current environment. The change in context is sufficient to warrant a
restructuring of DOD's policy and strategy for Ada.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

THE CHANGING CONTEXT FOR DOD SOFTWARE DEVELOPMENT 17

Table 1.1 Past and Present Contexts for Ada: General

Past Present

Some chance for Ada to be a leading commercial language Virtually no chance for Ada to achieve a commercial lead,
except in niche areas

Some chance that Ada could drive other software practices Virtually no chance for Ada to become a driver of other
software practices

Fair chance that Ada could become the leading high- Ada generally considered the strongest (HA/RT) language
assurance, real-time (HA/RT) language in this area, but others widely used

New software mostly custom, requirements-driven New software mostly (non-Ada) COTS-driven

Table 1.2 Past and Present Contexts for Ada: Department of Defense

Past Present

DOD a dominant software player DOD a large software player

Secondary role in DOD for software Primary role: key to DOD goal of information dominance

No DOD Ada legacy code 50 million lines of DOD weapon systems Ada legacy code
DOD committed to major Ada development investment DOD preparing to drop its investment in sustaining Ada
CRITICAL QUESTIONS

The discussion above indicates that there are serious problems with DOD's current policy regarding Ada,
including the lack of guidance provided to DOD personnel and contractors for use of Ada, uneven implementation
of the waiver process, and unrealistic investment strategies. In the course of responding to its charge to recommend
ways for improving DOD software policies and strategies regarding Ada, the committee identified several critical
questions; they are summarized below and addressed in the remainder of this report.

* What is the relationship between programming languages and software engineering practices? As
embodied in DOD Directive 3405.1 (DOD, 1987a), DOD's current policy for software development is a
programming language policy. However, the choice of Ada as the programming language is insufficient
to ensure the development of high-quality, reliable software systems for defense missions. Chapter 2
addresses the importance of software engineering practices and their relationship to programming
languages, and points out connections that DOD policy should take into account; Chapter 4 discusses
implementation of a broader DOD software policy.

* Are there application areas where using Ada makes an appreciable positive difference? In application
areas where powerful non-Ada commercial software support is available, Ada is unlikely to be cost-
effective. However, for some DOD software applications, there are few commercial counterparts, and
Ada may have advantages. These issues are discussed in Chapters 2 and 3.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

he Department of Defense

NOTES 18

* If Ada is superior in some areas, is a policy requiring its use appropriate? This issue and a number of
other policy alternatives are discussed in Chapter 3.

* For whatever policy requirements are appropriate, can DOD establish a workable set of criteria and
processes for recognizing exceptions? These issues are discussed in Chapter 4 and are addressed in
committee-suggested modifications of a May 1996 DOD draft software management policy presented in
Appendix A.

» What specific investment strategies are needed to keep Ada strong? This issue is discussed in Chapter 5.

NOTES

1. The cost to DOD of developing Ada 95 has been estimated by the Ada 95 program manager, Christine Anderson, as being in the range
of $29 million to $35 million (personal communication, July 5, 1996). Ada 83 investments were likely much greater but are difficult to
quantify.

2. For descriptions of non-DOD projects using Ada, particularly in aerospace, transportation, and telecommunications, see "Ada Success
Stories," maintained by the Ada Information Clearinghouse, located on the World Wide Web at http://sw-eng.falls-church.va.us/AdalC/
usage.

3. If all programming activities are included (i.e., application-oriented programming by other professionals), the total number of
programmers increases to 3.45 million, less than 3 percent of which are Ada 83 programmers.

4. The newspapers were the April 21, 1996, edition of the Los Angeles Times and the March 24, 1996, edition of the Washington Post.

5. Other significant 3GLs were Cobol (11 percent) and Java (4 percent). Significant 4GLs were Visual Basic (13 percent), PowerBuilder
(10 percent), and FoxPro and Visual C++ (4 percent each).

6. The industry groups surveyed were automobile services, financial services, medical devices, and industrial machinery.

7. Exceptions to this generalization include Cobol, which was never a popular language in academia but is used widely in business and
defense applications, and Pascal, which was popular for many years in universities but not in industry.

8. "Foundation" is defined as one of the initial computing courses taken by students majoring in the field.
9. Bob Mathis, executive director, Ada Resource Association, personal communication, September 8, 1996.
10. The committee included representatives of two firms that sell Ada products: Rational and Intermetrics.

11. In a position paper to the committee, Victor Vyssotsky advocated stronger encouragement for programmers to learn numerous
languages (Vyssotsky, 1996).

12. As detailed above, only one-third of the 3GL code written for weapon systems is in Ada. Because any software produced since the
policy went into effect in 1987 (except for software not maintained or upgraded by DOD) would require a waiver, many more than a few
waivers each year should have been approved for weapon systems alone. In addition, the use of Ada for automated information systems in
DOD is even lower in relative and absolute terms.

13. Gerald Pasternack, Citibank, presentation to the committee, May 23, 1996, Washington, D.C.

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0]

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

(0]

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

2]

[®)]
=
e

@®

(0]
e

)
X

©

o

=
o)
e

=

o

=

)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

Qo
e
o
=]
=
=
)
2
©
(2]
X
©
)
2
Ie)
)
o))
©
o
o
Q
=
o))
C
£
Q
N
Q
o
>
2
©
£
2
=
o
)
e
=
€
o
2
&
-
o
c
2
o]
o
)
<
o
Q
®©
Q
©
£
2
=
o
)
<
=
£
o
o
=
O
Q
L
®©
)
I
)
0
Q
=
|
=
3
€
o
2
&
ko]
@
0
o
o
€
o
o
)
2
c
)
o)
e
o)
© .
< c
x~ 9
o =]
o
s 2
T =
£ 00
5 Ny
2358
o c
o i)
S 0©h
4=)
o >
c)
9 =
=
T o ©
- —
g ‘=
» e L
523
o o
— <
(0] -—
8
o258
2o 5
%9
2 ©
QO
L2 e
= =
[Q
[} K2
& — £
=
5£E%©
c
355
= 7]
= &a
=29
=
3 -—
o c
Ko =
< a

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 19

2
Software Engineering and the Role of Ada in DOD Systems

Recent progress in software engineering includes the development of models and technology to improve
software processes and architectures. This chapter highlights some of these approaches as a framework for crafting a
DOD software policy that is more broadly conceived than the current policy on programming languages, and as a
method of evaluating Ada's role in DOD systems. In addition to evaluating Ada's capability for supporting
software engineering processes, this chapter compares Ada with other third-generation programming languages
(3GLs). Technical comparisons between Ada and other languages can be made with greater confidence than can
quantifying the performance of programming languages. The committee found the quality of the data available for
such empirical analyses to be lacking; in addition to discussing these data limitations the committee thus suggests
ways to improve collection of and access to needed data. In the absence of data that are reliable enough to serve as a
basis for sound conclusions, the committee's findings are based on a combination of those data, technical
comparisons, anecdotal project experience, and, ultimately, on the deliberations of the committee and its expert
judgment.

SOFTWARE ENGINEERING PROCESS AND ARCHITECTURE

In the 1980s, when DOD's current programming language policy was first established, implementation of
such a policy was perceived to be the most straightforward approach to improving DOD's software engineering
capability. But in the past decade software engineering technology and practices have changed fundamentally.
Examples of important developments include advanced tools and techniques such as computer-automated software
engineering (CASE) tools, application generators, and object-oriented methods; process improvement, including
iterative/spiral development processes, the Software Engineering Institute's Capability Maturity Model, the Air
Force Software Development Capability Evaluation, and the ISO 9000 quality standard; product-line management
such as architecture-driven processes and components and common operating environments; and technology for

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 20

heterogeneous software, including Open Systems, Internet, and Common Object Request Broker Architecture
standards.

Reflecting these fundamental changes, a consistent theme emerged throughout the committee's deliberations
and in presentations from industry and DOD experts: programming language is important, but not as important as a
thorough understanding of application requirements, a mature software development process, and a good software
architecture. While understanding of requirements is certainly an important factor in project success, it represents a
largely language-independent aspect of software engineering and thus is not emphasized in the following
discussion. Process maturity and architecture quality, on the other hand, represent aspects of software engineering
that are influenced and supported by programming languages and the environments in which they are developed.
Furthermore, one very important aspect of "good" processes and architectures is their ability to accommodate
changes in requirements.!

While there is much debate over what constitutes an architecture,? the following observations are made to
summarize architecture's importance and its close linkage with modern software development processes:>

* Achieving a stable software architecture represents a significant project milestone at which the critical
decisions to make, buy, or reuse software should have been resolved. This milestone in a project's life-
cycle represents a transition from the exploratory stage (characterized by discovery and resolution of
numerous unknowns and sources of risk) of a project to the development phase (characterized by
management according to a particular development plan).*

* Architecture representations provide a basis for balancing the trade-offs between the problem space (i.e.,
requirements and constraints) and the solution space (i.e., the product design, implementation, and
quality).

» The software architecture and process provide the framework for most of the important (i.e., high-payoff
or high-risk) human communications among the analysis, design, implementation, and test activities.

* Poor architectures and immature processes often underlie many project failures. A mature process, an
understanding of the primary requirements, and a demonstrable architecture are important prerequisites
for predictable outcomes.

* Architecture development and process definition are the intellectual steps that map a problem to its
solution without violating existing constraints; these tasks require human innovation and cannot be
automated.

DOD's formulation of an improved policy regarding its use of the Ada programming language should take
into consideration the fundamental need for improved software architectures, more effective and mature
development processes, and increased process automation. Because DOD's requirements for quality—generally
high reliability, state-of-the-art performance, and maintainability by DOD personnel—usually cannot be
compromised, DOD software development projects often require increased funds and/or extended schedules. The
four subsections below describe process and architecture as elements fundamental to needed improvements in
software economics—it is this significance of architecture and process that motivates the committee's belief that
DOD should expand its software policy to encompass more than just a programming language policy. The
discussion below focuses on improving the cost-effectiveness of DOD software and achieving a better return on
investment (ROI); it is assumed that quality is held fixed at the levels necessary for DOD systems.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 21

Economics of Software Engineering

Most software development costs are a function of four basic parameters:

The size of the software end product in terms of human-generated source code and documentation;
The process employed to produce the software;

The environment and tools employed to produce the software; and

The expertise of the personnel involved, that is, the capability of the software developers.

b S

One very important aspect of software economics (as represented in today's software cost models) is that the
relationship between cost and size exhibits diseconomies of scale: the cost per unit of functionality increases with
software size. This relationship stems primarily from the complexity of managing interpersonal and inter team
communications; as the number of team members increases, the complications relating to the team members'
differing perspectives and backgrounds increase even more rapidly. Given the factors affecting software
development costs, economic leverage is best achieved by focusing on technologies that enable the following:’

1. Reducing the size or complexity (or improving the architecture) of what needs to be developed;
2. Improving the development process; and
3. Employing better environments and tools to automate the process.

Most software experts would distinguish among the above factors; they would also acknowledge significant
interrelationships. For example, tools enable reduction of the amount of source code and process improvements;
attempts to reduce size lead to process improvements; and improved processes drive tool requirements. These
interrelationships mean that even though programming languages do not directly affect project outcomes, they can
have significant indirect effects.

Reducing the Complexity of Software Products

In general, the most significant step toward reducing cost and improving ROI is to design an architecture that
achieves product requirements and quality goals with the minimum amount of human-generated source material.
This is the primary motivation behind development of high-order languages (e.g., Ada 83 and 95, C++, and
fourth-generation programming languages), use of automatic code generators (CASE tools and graphical user
interface builders), reuse of commercial off-the-shelf (COTS) software products (operating systems, "windowing"
environments, database management systems, "middleware," and networks), and reliance on object orientation
(encapsulation, abstraction, component reuse, and architecture frameworks).

Since the difference between large and small projects has a greater than linear impact on life-cycle cost, using
the highest-level language and appropriate COTS or non-developmental items can lower costs significantly,
especially in warfighting domains where large-scale systems are the norm. Furthermore, simpler is generally
better: reducing its size usually makes a program more understandable, easier to change, and more reliable. One
typical negative side effect is that higher-level abstractions tend to degrade performance—i.e., increase resource
consumption, whether in processor cycles, memory usage, or communications bandwidth. Fortunately, these
drawbacks have been greatly offset by improvements in hardware performance, compiler technology, and code
optimization (although much less so in embedded platforms). Ada, and particularly Ada 95, allows for reduction in
the source size of

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 22

software products through language features that support abstraction, object-oriented programming, and
component integration (e.g., of reusable components, COTS products, and legacy components). The language C++
provides similar advantages in the commercial market.

In numerous DOD domains, a common approach today is to maximize the use of COTS products.® While this
is certainly desirable as a means of reducing the overall amount of custom development, it has often not been a
"silver bullet" in practice. Table 2.1 identifies some of the advantages and disadvantages of employing COTS
products, compared to custom software, in DOD domains.

The advantages of using COTS rather than custom software are significant, but there are still application
areas (particularly in warfighting) in which the advantages of having control over reliability, performance, or rapid
enhancements provided by custom software are compelling. The disadvantages of COTS are not sufficient to
peremptorily drop that approach, but they point to areas in which architectural trade-off analysis and risk
management approaches will be needed.

Improving Software Processes

The importance of a mature software development process has been well established (CSTB, 1987; DOD,
1987b). Modern software development processes have moved away from the conventional waterfall model, in
which each stage of the development process depends on completion of the previous stage. While there are
variations, current concepts call for an initial version of a system to be constructed rapidly early in the
development process, with an emphasis on addressing the high-risk areas, stabilizing the basic architecture, and
refining the driving requirements (with extensive user input where possible). Development then proceeds as a
series of iterations ("spirals," "increments," "generations," "releases," and other terms have been used), building on
the core architecture until the desired level of functionality, performance, and robustness is achieved.

Software cost models, such as the COCOMO model (Boehm et al., 1996), have been updated to reflect the
use of modern software development processes and can be used to quantify the importance of process. The
parameters defining the effects of process on the cost and schedule estimates produced by COCOMO include the
following:

"nn "non

» Application familiarity--the developer's degree of domain experience;

* Process flexibility--the degree of contractual rigor, ceremony, and freedom of change inherent in the
project "contract," "vision," and "plan";

* Architecture definition and risk resolution-the degree of technical feasibility demonstrated prior to
commitment to full-scale production;

» Teamwork-the degree of cooperation and shared vision among stakeholders (buyers, developers, users,
and personnel responsible for verification, validation, and maintenance, among others); and

* Software process maturity-the maturity level of the development organization, as defined by the
Capability Maturity Model (Paulk et al., 1993).

Cost estimates produced by COCOMO 2.0 show that the difference between a good and bad process for a
large (300,000 lines of source code) program will often exceed a factor of 1.3 in the length of time it will take for a
team to develop a software product, a factor of 2 in cost, and a factor of 5 in quality (delivered defect rate).
Realization of this relationship has led to significant investments and advances in software process improvement
techniques over the past 10 years, exemplified by DOD investment in the Capability Maturity Model, developed
by the Software Engineering Institute at Carnegie Mellon University.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 23

Table 2.1 Advantages and Disadvantages of Commercial off-the-shelf (COTS) and Custom Software

Integration of COTS Custom Development

Advantages

* Predictable license costs * Complete freedom

* Broadly used, mature technologies e Smaller, often simpler

¢ Immediately available * Often better performance

¢ Dedicated support organization * Control of development and enhancement
* Hardware/software independence * Control of reliability trade-offs

¢ Rich functionality
¢ Frequent upgrades

Disadvantages

» Up-front license fees ¢ Development expensive, unpredictable
* Recurring maintenance fees * Availability date unpredictable

¢ Dependence on vendor ¢ Maintenance expensive

» Sacrifices in efficiency ¢ Portability often expensive

* Constraints on functionality * Drains expert resources

» Integration not always trivial

* No control over upgrades and maintenance

* Unnecessary features that consume extra resources
* Reliability often unknown or inadequate

* Scale difficult to change

¢ Incompatibilities among vendors

¢ Licensing and intellectual property issues
 Difficulties in testing and evaluation

Influence of Software Environments, Tools, and Languages on the Software Engineering
Process

The tools and environment employed in the software engineering process generally have a linear effect on the
productivity of the process. Compilers, editors, "debuggers,” configuration management tools, traceability tools,
quality assurance analysis tools, test tools, and user interfaces provide the foundation for carrying out the process
and maximizing automation. However, the maturity, availability, and performance of these tools-and their
procurement and maintenance costs-must be taken into account. Cost models indicate that tools and automation
generally enable cost savings ranging from 30 to 60 percent (see Box 3.2 in Chapter 3).

As mentioned above, environments and tools have indirect effects; however, they also enable certain
improvements in process and reductions in size that have much greater impacts. Thus, the view that the quality of
the software engineering process is independent of the programming language can be misleading. Language
standardization has led to tools for automated support of configuration control and increased automation of quality
assessment (through interface specification, compilation and consistency analysis, readability, and "inspection
automation"). These, in turn, have led to practical and significant process improvements, such as iterative
development, architecture-driven design, and automation of documentation (Royce, 1990). Furthermore,
languages like Ada 95 add object-oriented features, which have enhanced their versatility. Such features, in some
cases, allow Ada 95 programs to implement the same function as Ada 83 programs with a significant reduction in
the number of source

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 24

lines of code.” These improvements are not unique to Ada 95, but absent the technical features and automation
support that are standard in the Ada environment (compiler, library manager, and debugger), many of these
process improvements have been impractical for other languages.

Over the past 10 years, Ada 83 has supported the process and software engineering design goals described
above by enabling (1) integration of components (abstraction and encapsulation, language standardization,
separation of module specification from body, strong typing, and library management) that allow structured design
early in the life-cycle and incremental improvement of the breadth, depth, and performance of the evolving design
through multiple iterations; (2) reduction of rework via early definition and verification of architectural interfaces
prior to coding; (3) incorporation of configuration-management discipline, separate compilation, and interface and
implementation partitioning directly in the language, thus enabling environments that are much more controlled
and are instrumented for single and multiple team development and management of continuous change; and (4)
reliability features, allowing errors to be automatically identified earlier in the life-cycle by compile-time and
run-time consistency checks. Ada 95 further improves this language support.

The primary point of this section-that the software engineering community has benefited greatly from the use
of Ada, owing mostly to the language's support for the transition to development of better processes and better
architectures-was predicted by Fred Brooks a decade ago (Brooks, 1986):

I predict that a decade from now, when the effectiveness of Ada is assessed, it will be seen to have made a
substantial difference, but not because of any particular language feature, nor indeed of all of them combined.
Neither will the new Ada environments prove to be the cause of the improvements. Ada's greatest contribution will
be that switching to it occasioned training programmers in modern software design techniques.

It is from such a perspective that the committee analyzed the business-case for use of Ada (Chapter 3) and as a
result recommends a broader software engineering policy for DOD (Chapter 4).

TECHNICAL EVALUATION OF ADA 95 AND OTHER THIRD-GENERATION
PROGRAMMING LANGUAGES

This section provides a brief technical evaluation of the programming languages Ada 95, C, C++, and Java,
based on the summaries of language features given in Appendix B and focusing specifically on attributes related to
the development of real-time critical systems. The committee's evaluation led it to conclude that, for real-time
critical systems, Ada 95 is superior to the other languages, from a technical and software engineering standpoint.
It is important to recognize that some facets of this technical evaluation may change over the next several years as
the other languages, particularly Java, mature and evolve in response to applications with requirements for higher
integrity or real-time multimedia interaction, for example.

Criteria related to critical systems development fall into two sets of categories: (1) compile-time and run-time
checking to support encapsulation and safety, and (2) support for hard real-time systems.® Criteria related to
encapsulation and safety include:

* Support of user-defined abstractions and enforcement of modularity and information hiding;
* Compile-time enforcement of type distinctions;

* Run-time management of pointers, arrays, and variant structures; and

* Support for software fault tolerance and recovery.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 25

With respect to these criteria, Ada 95 and Java fare well. Ada 95 offers more support than does Java for
compile-time type distinctions by (1) employing generic templates, and (2) simplifying the expression of strong
type distinctions between otherwise structurally equivalent numeric, enumeration, array, and pointer types. Java
and Ada provide stronger enforcement of modularity and information hiding than do C and C++, because C and
C++ both provide "back doors" that allow external access to internal variables. Java and Ada also provide the
following safety features: (1) default "null" initialization of pointers, and run-time checks for null on all
dereferences of pointers; (2) run-time checks for out-of-bounds indexing into an array and attempts to select the
wrong variant from a subtype hierarchy; and (3) run-time exceptions indicating all failures of run-time checks,
allowing programmer-specified exception handlers to implement appropriate fault tolerance and recovery actions.
In C and C++, there are no checks to prevent the creation of dangling references to data structures, making the use
of pointers more error-prone.

Criteria related to real-time systems development include:

» Support for safe, static allocation of all run-time data structures;
* Predictability of constructs with respect to real-time deadlines; and
» Language support for real-time-oriented interactions between multiple threads of control.

With respect to these criteria, Ada 95 provides a number of advantages, including providing mechanisms for
statically preallocating data structures while still allowing safe and convenient manipulation of such structures
with pointers. In Java, all non-primitive data structures are allocated dynamically (on the "heap"), with the
attendant danger of run-time storage exhaustion and unpredictable storage allocation and reclamation times. Using
only "static" structures in Java could make this allocation predictable, but in many cases this restriction would
create additional problems.

Ada 95 provides data-oriented synchronization mechanisms that reduce overhead and minimize the potential
for high-priority threads being delayed indefinitely while waiting for release of resources held by lower-priority
threads (priority "inversion"). Java provides some multithreading primitives in the language and the standard
library, but the standard Java locking mechanism provides no standard support for limiting the amount of time a
high-priority thread will wait for a low-priority thread. The inter thread interaction model in Java is based on
explicit notification rather than state-oriented guards, increasing the likelihood of race conditions, which can lead
to uncertainty in data access. The C and C++ languages do not directly address multithreading and support for
real-time processing.

For critical real-time code, Ada 95 emerges as technically superior compared to Java, C, and C++. The Java
language has not yet been standardized and its design is still somewhat in flux, and it may evolve to provide
further support for critical and/or real-time systems. C, C++, and Ada can also be expected to continue to evolve,
albeit at a slower pace.

From a business-case standpoint it is too early for DOD to consider Java in this application domain. Java
might evolve into a language with strong real-time support capabilities, or it might not. For the foreseeable future,
Ada provides the strongest available support for high-assurance, real-time software development. As languages
develop attractive new capabilities, DOD should be prepared to periodically perform technical comparisons, such
as the one provided here and in Appendix B. But as discussed in Chapter 3, such a technical comparison is only
one part of the business-case associated with establishing a software management policy.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 26

AVAILABLE COMPARISONS OF ADA 83 AND OTHER THIRD-GENERATION
PROGRAMMING LANGUAGES

Over the past 5 years several studies have concluded that, for custom software development, Ada 83 is more
effective than its leading alternatives (Cobol, C, C++, Fortran, Jovial, and CMS2) in improving software
maintainability and reliability, improving overall life-cycle cost, and enabling management of the risks of large-
scale development (Mosemann, 1991; Masters, 1996). These studies are based on various mixes of expert opinion
and project results. The data supporting the conclusions are generally not normalized or controlled, and none of the
studies to date has been rigorously peer reviewed. This section summarizes the available information comparing
Ada 83 with other leading 3GLs. This information falls into three main categories:

1. Analyses of language features: comparisons of how the features of programming languages contribute
to such desired properties as reliability, maintainability, and efficient programming;

2. Comparisons of empirical data: comparisons based on data collected from completed projects in
various languages; and

3. Anecdotal experience from projects: qualitative responses to project outcomes.

Analyses of Language Features9

Analyses of language features have the advantage of being based on full and open examination of well-
defined language features. Their main disadvantage is that they are partial at best and are particularly weak in
assessing the complex trade-offs among language features accomplished in the course of actual projects.

The most thorough of these analyses can be found in a 1985 Federal Aviation Administration study (IBM,
1985) comparing Ada 83 with C, Pascal, Jovial, and Fortran, and in a 1991 Software Engineering Institute study
(Weiderman, 1991) covering Ada 83 and C++. Both studies used the same evaluation scales, covering the desired
properties of capability, efficiency, availability/reliability, maintainability/extensibility, life-cycle cost, and risk.
Figure 2.1 summarizes the results of these analyses, comparing Ada 83 and C (IBM, 1985) and Ada 83 and C++
(Weiderman, 1991) to the theoretical maximum score (higher numbers indicate better performance; the full
definitions of criteria and numerical results are provided in Appendix D). The differences in the ratings for Ada 83
in the 1985 and 1991 studies are probably good indicators of the variability attendant on evaluations of this
nature.'® Allowing for the range of variability, the most significant difference shown in Figure 2.1 is Ada 83's
much stronger rating in the availability/reliability area, corroborating the results of this committee's comparative
analysis in the preceding section ("Technical Evaluation of Ada 95 and Other Third-Generation Languages") and
in Appendix B.

Comparisons of Empirical Data

The major advantage of empirical project data is that the data represent the end results of projects and reflect
the various features of each language. The major disadvantage is that the varying conditions associated with
disparate projects make it difficult to assess sources of variability caused by differing definitions, assumptions, and
contexts. Moreover, many of the results come from proprietary (and thus unavailable) data on project productivity
and quality, such as those presented in Jones (1994) and Reifer (1996).!' The major source of empirical data and
information derived from them are summarized in Table 2.2 More details on the data are provided in Appendix D.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 27

Lte-cycie Cost

W Thestical Masimu Scome
OG-+ (SE)

WAda 13 (SE)

WAda B3 (FAR)

me (A

Mairsainaniey Eensibiy

Avaianisy Reianiny

Capabity

FIGURE 2.1 Comparisons of language features.
SOURCES: Software Engineering Institute (SEI) data from Weiderman (1991); Federal Aviation Administration
(FAA) data from IBM (1985).

One major problem with empirical data is that quantitative determination of important features such as cost
per source line of code (cost/SLOC) and defects per 1,000 source lines of code (defects/KSLOC) is confounded by
differences in the expressive power of a source line of code in different programming languages. One way of
normalizing is to look at source lines of code per function point (Jones, 1995). However, as shown in Table 2.3,
these ratios have wide variability. Lubashevsky (1996) reports variations in source lines of code per function point
exceeding factors of 2 for C and 6 for C++. Finally, there are differences in expressiveness for the same language
across different application domains.

Appendix D points out that the similarity in the data for C, Ada, and C++ in Jones (1994) relating to cost per
function point and defects per function point (see Table 2.2) appears simply to reflect Jones's (1995) mean values
of SLOC/function point for C, Ada, and C++. Thus, the Jones data appear to indicate that cost/SLOC and defects/
KSLOC show little variation across programming languages. While this conclusion is perhaps warranted for cost,
it is a conclusion at considerable variance with the data from other studies on defects/KSLOC.

The different cost/SLOC values given by Reifer (1996) appear to be overshadowed by potential differences in
the relative expressive power of a line of code in Ada, C, and C++. However, the lower number of defects/KSLOC
reported for Ada in Reifer (1996) is still significant, particularly with respect to embedded weapon systems
software.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

28

|22]
=
o
T
wn
%
A *9p09d JO soul| uey) Joyie ‘syutod UOHOUNY JO SULID) UT SAN[EA ,
= "(S661) 'Te 19 BIOSIEM (166T) Te 10 ALDIN 4
z *9P09 JO SaUI] 901008 0O0‘T :DOTSN v
<
ADn SUONELOIUNUILIOI],
5 yI'0 620 LI'0O ®BU O8I 996C 09L1 B/u Kuey 8 ON 5(F661 ‘sauof)
m =) swoIsAs uodeom
M 2 090 080 0¢0 ®H B/u SLI 0s1 e/u 06l 18 ON PapPaquIF (9661 “1oJ19Y)
23|
s & SWIAISAS UOTBULIOJUT
= m 00y 009 00¢ ®BM 194 194 0¢ B/u 06l 2 ON ArexuA (9661 “1oJ1oy)
.m M Surourduyg
Z e/u gu 0l'c 8% B/u B/U UBLIO Uey) Jomo[%0¥ £8 BPY 0clI Sl S9A a(S661 ‘v661 “THS-VSVYN)
=4
E S[00}
m gu 890 010 ®MU B/u ¢or 99 B/u [4 I S9K ‘sropidwio) (G661 “19[5197)
& ++D o) €8 BpY ueInIoq ++D o) €8 BpY uenioq
53|
M sy00lo1g s109fo1g (AIqe[IeAY urewo
W OIS Jod s10950Qq (9poo Jo oury 9o1nos 1od §) 150D [BI0], JO JqUINN BPY JO IoquInN sisATeuy ‘ejeq (Apmg)
I
2 eie(q reoundwy jo Arewwing :soendue] Jo suosuedwo)) ¢’z A[qel

"uonNguile Joj UOISIOA SAllejIoyIne 8y} se uoieoljgnd siy) Jo uoisiaa juud
8y} asn asea|d ‘palasul A|leluapiooe usaq aAey Aew siodls oiydelbodA) swos pue ‘paulelal 8q jouued ‘1anamoy ‘Buiiewol oloads-buijesadAy Jayjo pue ‘sajAis Buipeay ‘syealq piom ‘syibus) aul| ‘eulbuo ay)
0} anJ) aJe syealq abed "sa|i BumesadA) [euibluo ay) wouy Jou “Yooq Jaded [euiblo ay) woly pajeald saji JNX Wolj pasodwossl usaq sey yIom [eulbLio ay) Jo uonejussaidal [elBIp mau siy] 8| 4add Sy} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 29

Table 2.3 Source Lines of Code per Function Point

Language Low Mean High
Ada 83 60 71 80

C 60 128 170
C++ 30 53 125

SOURCE: Data from Jones (1995).

Two sources of data are particularly sound with respect to comparability of projects and availability of data and
analysis. The Zeigler (1995) study has the most thorough analysis of whether the differences in data on the cost and
number of defects for Ada and C could be caused by other factors. With respect to expressiveness of a line of code,
Zeigler analyzed lines of code per feature (LOC/feature) and found that Ada was about 16 percent more "verbose"
than C (109 LOC/feature for Ada, compared to 94 for C). Applying this correction to the data indicates that Ada
outperforms C on the basis of cost per feature by a factor of 1.37 and on the basis of defects per feature by a factor of
5.9.

Zeigler also analyzed the potential for confounding effects of relative software complexity, personnel
capability, and learning curve effects associated with C and Ada, and presents a good case that these factors did
not cause any significant bias. Zeigler thus provides a strong argument for Ada programs having had lower life-
cycle costs and fewer defects than C programs in the large (more than 1 million lines of both Ada and C) project in
compilers and tools that was the basis for his study. However, the Zeigler study is suggestive, rather than
definitive, about the applicability of this result to other domains and other teams (the development teams on the
projects studied were stable and composed of highly capable, seasoned personnel).

The NASA Software Engineering Laboratory (SEL) projects described by McGarry et al. (1994) also provide
some helpful comparative data but do not cover most DOD domains of interest. The SEL projects are highly
precedented, flight dynamics engineering applications that are not embedded and do not require real-time
functionality. SEL's analyses of Ada initially concluded that, owing to greater reuse, Ada projects enjoyed
significant cost and schedule reductions compared to those using Fortran. Subsequently, application of the Ada
object-oriented reuse approach in Fortran projects yielded comparable gains. Significantly, however, over the
period from 1988 to 1994, the rate of defects associated with Ada was less than half the level of defects seen with
Fortran.

A subsequent NASA-SEL study (Waligora et al., 1995) corroborated the reduction in defect rate with Ada,
and concluded that Ada development costs were 40 percent less than those of Fortran, for equivalent functionality.
This conclusion was based on analysis indicating that Ada's generic features achieved reuse with many fewer
statements than Fortran's repeated code.

Both the SEL and Zeigler analyses also concluded that programming languages were not the dominant factor
in influencing software productivity and quality. SEL found several other variables (object-oriented reuse, use of
Cleanroom techniques, code reading) to be more significant. Zeigler cites architecture and design, configuration
management, testing, process, programmer expertise, and management skills as more significant than the
particular programming language used.

In summary, based on analysis of available empirical data and comparisons of language features, a conclusion
that Ada is superior in ensuring availability, reliability, and fewer defects appears warranted. The evidence is not
strong enough to assert Ada's superiority with respect to cost, but when considered with other data (Appendix D),
and given the lack of solid evidence indicating less expensive custom software development in other languages, a
case can be made that using Ada provides cost savings in building custom software, particularly for real-time,
high-assurance warfighting applications.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 30

Anecdotal Experience from Projects

The current DOD base of experience with Ada is substantial. In DOD software inventories, Ada represents
about one-third of weapon systems code (Hook et al., 1995), representing more than 50 million source lines of
operational code in many of DOD's most crucial systems.

The Aerospace Industries Association (AIA) has stated that its member companies have all "... greatly
benefited from the software engineering support features of Ada, including reduced error rates," and notes that
Ada has had a "substantial positive impact" especially in "large, high visibility projects such as F22, BSY-2,
Boeing 777, and Peace Shield" (AIA, 1996). However, AIA also notes that "some [projects] have suffered because
Ada support tools were not robust nor available when needed, or because Ada presented interface difficulties in
heterogeneous environments" (AIA, 1996); AIA has advocated ending DOD's Ada mandate.

Representatives from the DOD services related to the committee numerous instances of success in Ada
projects that were delivered (to varying degrees) on budget, on schedule, and with satisfied users. Some of the
most compelling data in this regard, drawn from a broad range of projects, were provided by Robert Kent of the
Air Force Electronic Systems Center (ESC). According to Mr. Kent, ESC's experience is that "Ada projects have a
much higher success rate than non-Ada projects.” He substantiated this claim with several case studies indicating
that a substantial number of very large mission-critical applications (greater than I million source lines) have been
successfully delivered and maintained in Ada. While the financial success of Ada projects is not universal, some
of the results from the case studies indicate that a mature software organization will perform better with Ada than
with other languages.

Other case studies presented to the committee to illustrate successful Ada development include the following:

* Air Force: CCPDS-R, Cobra Dane System Modernization, REACT, STARS demonstration project,12
PRISM,;

* Navy: BSY-2, AEGIS; and

* Army: FAADC2I.

Ten years ago, it was very difficult to find a single software success story in any programming language.
Today, there are several, and most of the large-scale, successful DOD projects have employed Ada as one of the
technologies to support their efforts to improve both processes and architectures.

Successful Ada users outside DOD include DOE (AdaSAGE), NASA (Space Station program and Software
Engineering Laboratory), numerous international organizations (Transport Canada, Canadian Department of
National Defense, Celsius Tech, Eurocontrol, Australian Commonwealth, United Kingdom Ministry of Defense).
Commercial organizations have also utilized Ada in their products. A primary example is Boeing Corporation,
which, like DOD, sought a single, common programming language for its commercial mission-critical software
(Box 2.1).

Successful Ada users outside DOD include DOE (AdaSAGE), NASA (Space Station program and Software
Engineering Laboratory), numerous international organizations (Transport Canada, Canadian Department of
National Defense, Celsius Tech, Eurocontrol, Australian Commonwealth, United Kingdom Ministry of Defense).
Commercial organizations have also utilized Ada in their products. A primary example is Boeing Corporation,
which, like DOD, sought a single, common programming language for its commercial mission-critical software
(Box 2.1).

THE NEED TO INSTITUTE COLLECTION OF DATA FOR SOFTWARE METRICS

The committee searched for sources of data that could provide a strong scientific basis for concluding that
Ada is or is not a superior programming language in any given application domain. With respect to such
confirmatory data, the committee concluded the following:

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

partment of Defense

SOFTWARE ENGINEERING AND THE ROLE OF ADA IN DOD SYSTEMS 31

BOX 2.1 USE OF ADA ON BOEING COMMERCIAL AIRPLANES

Decision to use Ada. In the late 1970s, Boeing began to use airborne software on its 757 and 767
airplanes. Due to the state of practice, a large variety of languages and language processors were used, thus
making the application of standards difficult. In 1985, Boeing's commercial Airplane Group (BCAG) initiated a
program to solve the airborne software language problem. The first step in the initiative was to choose a
preferred language. The major elements of the criteria were support of structured programming practices,
high-order language, block structured language, portability, and understandability. Additionally goals included
the use of software engineering principles such as information hiding, abstract data types, and string type
checking; the ability to specify interfaces precisely; and the use of standardized fixed-point and floating-point
arithmetic. The evaluation process involved consulting with several key suppliers. The process resulted in the
selection of the Ada language.

Preparation to use Ada. BCAG relies on its suppliers to provide airborne software for its commercial
airplanes. Hence, preparation to use Ada had to be a joint program with its suppliers. The charter of the joint
program included evaluating compilers, preparing personnel to use Ada, and sharing of operational
experiences in the use of Ada. Several joint meetings were held over a period of years, and a newsletter was
published to share information and insights. Boeing also prepared guidelines to define a subset of Ada for
use in safety-critical applications. The guidelines benefited from input from the joint program and other
industry sources.

Experience with Ada. The use of Ada has significantly reduced the number of different programming
languages used on the Boeing 777. Ada was used on 60 percent of the systems on the 777 and represented
70 percent of the lines of code developed. No correlation was found between the language used and the
number of problems found on a system. The other principle language used in new development was C. The
richness and complexity of the Ada language helped knowledgeable users with mature tools achieve modest
gains in productivity. However, the complexity of the language caused problems for other users who had to
work through compiler problems. A key lesson was that the need for retraining was not adequately
understood.

Future plans for use of Ada. BCAG expects to continue its use of Ada for airborne application. A
standard language allows the use of tools to aid in the development of software that would be difficult or
impossible to implement in a multiple-language environment. The use of Ada in the future would be improved
by greater consistency among the available compilers.

SOURCE: Leonard L. Tripp, Boeing Commercial Airplane Group, personal communication, August 27,
1996.

* The data are uneven. The Ada community has collected a good deal of data on DOD's and other
organizations' experience with Ada, but comparable data are not available on DOD's experience with C,
C++, and other languages.

» The data are largely unavailable. The software data that have been collected are largely in proprietary
databases held by DOD contractors, consultants, or commercial cost-modeling or market analysis firms.

o o
= c
=
S o
E o
5
Lo
o @
Lo
< D
CDD‘
ot
8o
o 2
O =
Do
(2]
o c
BN >
9:
=3
20
%
8o
8 ©
o c
>0
=0
T 2
.EG>)
23
OC
>
2w
= E
E o
E L
< £
5 ©
€o
> O
T
o T
o o
5 a
Q >
©
Qo
= €
85
=2 O
OC
o ©
£ O
= 0
€ £
o ®
3
=9
kol
£ 2
©
8=
(OS]
=
[%2]
©
QL 0
L‘:;
= o
s >
X 2
£ O
o £
2
- o
o £
=
8 ®©
a £
=
6L
O o
-
c
8&
a &
8 £
<3
< »
e 8
z =
© o
£ 0
ko k=
60
©
o c
£ ©
=
[}
2o
c =
= 0
TS o
€ c
S £
% ®
i}
0 o
o <
C
— X
T ®©
5 2
5 O
=2
3 O
c =2
L2 4
=
)
a S
29
Lo
5 £
o .-
©
2 C
=)
55
e}
ao
< £

print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

NOTES 32

* The data lack common points of comparison and are incommensurable. Some of the data are known to
be inconsistent with respect to rules for counting lines of code, functionality, effort, and defects. Other
data are accumulated with no knowledge of their degree of consistency.

» The data are incomplete. Most of the data collected address quantities such as size, level of effort, and
number of defects, but do not take into account the environmental variables (e.g., cost drivers) associated
with the quantities measured. Also, it is unclear to what extent the data collected are fully representative
of project experience (e.g., perhaps only the good projects collect or report data).

» Data are collected but are not systematically organized. Many DOD organizations collect software data
for project monitoring and control, as well as environmental data such as those indicating process
maturity. But the data are not organized and stored in a repository that could facilitate analysis to support
DOD software engineering processand product-improvement efforts and policy analyses.

Most of the available data generally support the conclusion that Ada is preferable for DOD warfighting
applications, and the committee did not find any data to refute that conclusion. But for future policy analyses and
initiatives to improve DOD software engineering practices, a stronger base of DOD software metrics data that
describes project outcomes would more than repay the investment necessary to develop it. Without more reliable
data, decision making will have only a weak foundation.

On an individual project level, DOD has endorsed the concept of using metrics data to improve software
process management through its endorsement of the Software Engineering Institute's Capability Maturity Model,
which includes quantitative process management as a key process. Within DOD, several local efforts to collect and
analyze data for evaluating software add considerable value. Some good examples are the Air Force Cost Analysis
Agency, the Army Software Test and Evaluation Program, the Navy Undersea Warfare Center, and the Defense
Logistics Agency's Columbus, Ohio, facility. However, DOD is not applying this practice at a more strategic level
to improve its overall software cost-effectiveness and is missing a major opportunity to improve its software cost-
effectiveness. DOD should establish a sustained commitment to collect and analyze consistent software experience
data.

Foundations for such a program already exist. The Joint Logistics Commanders "Practical Software
Measurement” guidebook (DOD, 1996a) provides good case studies and guidelines for tailoring and focusing
measurement of software capabilities on activities that add value. The Software Engineering Institute's software
core metrics reports (Carleton et al., 1992) provide a foundation for collecting consistent data across projects and
organizations. NASA's Software Engineering Laboratory (McGarry et al., 1994) provides a good model. Also, a
good start toward a DOD software metrics initiative is represented by its National Software Data and Information
Repository; this effort needs some improvement and has languished due to lack of a sustained commitment.

As DOD's chief information officer, the Assistant Secretary of Defense (CI) is the logical focal point for
establishing and sustaining a DOD-wide software metrics initiative. The initiative would need a precise scope,
strong staffing, and focused management, but the examples above provide evidence that such investments can
generate significant positive results.

NOTES

1. Barry M. Horowitz, president of MITRE Corporation, has noted the following with respect to requirements and architecture: "Both
government and industry typically put almost all of their efforts into the initial performance and functionality of a program in spite of the
fact that these will change substantially over the life of the system. At the same time, there is a near-total lack of attention to an
architectural baseline that would form a stable foundation for incorporating the system's changing requirements" (Horowitz, 1991, p. 10).

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
L
o
>
2
5
o
2
©
2]
X
@
)
2
a
o
(o)
@
o
@
Qo
=
o
c
£
[0
®
o)
o
>
2
©
£
2
=
o
(o)
<
=]
£
o
2
E
=
o
c
N~
o
o)
a
=
[0
o
@
o
©
£
2
=
o
o)
<
=
£
o
2
&
o
9]
2
@
)
2
G
0
K
=
—
=
x
£
e
2
E
o
o)
®
o
o
£
o)
o
4]
2
c
[0
0]
Q
)
@
=
x
P
o
s
©
£
2
=
o
o
<
=]
=
o
o
kel
=
T
£
c
[0
®
)
2
o
o
2
©
=
2
S
2
@
c
B2}
=
'_
9
=
L
[a]
o
R
<
=]
=
5
o
a
<

[}
=
=
©
(2]
=}
©
(2]
©
o
o
o
9}
g
@
(2]
£
>
©
8
C
[}
S
Q
[&]
©
C
[}
o}
o)
[
>
®©
<
>
@©
IS
(2]
&2
S
2
£
5}
L
e
Q.
[0
o
(2]
o
o
>
2
®
IS
o
(2]
©
c
©
o
o}
£
©
3
15
2
©
feo)
=
o
o
C
o4
[&]
-
9
>
[
2
o
=
=)
c
£
©
£
£
S
Ne)
o
=
[8]
@
Q.
Q@
(®)]
£
=
=]
©
(2]
[}
Qo
>
2
=
[}
<
S
o
©
C
©
73
2
>
2
2]
[®)]
£
S
©
4}
e
%)
X
©
o
2
o)
°
2
)
s
%)
<
s
[®)]
c
@
[}
£
©
£
2
=
s}
®
<
s

o
iel
=
>3
2
=
5
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
©
I
i=
e}
e
S
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
k2]
e
=
=
s}
c
el
2]
o
[
>
-
c
=
S

he Department of Defense

NOTES

33

2. No technical standard exists for software architecture; however, the IEEE Software Engineering Standards Committee has created a
planning group to investigate the issue. See "Standards Annual Report-1996," located at http://www.computer.org/standard/anreport/
toc.htm.

3. Horowitz (1991) emphasizes the importance of architecture; more recently, a Defense Science Board Task Force emphasized the
importance of software architecture, and estimated that "a well-formulated architecture might reduce costs of changes/upgrades by
30-50%" (DOD, 1994a).

4. See the contents of the life-cycle architecture milestone and associated rationale in Boehm (1996).

5. While personnel capability and understanding of requirements are also important cost factors, these topics are excluded from the
discussion below because they are mostly language-independent variables.

6. This trend is driven by the dual use initiative within DOD (DOD, 1995b) and by legislative changes, namely the Federal Acquisition
Reform Act of 1996.

7. One source (Jones, 1995) found that the mean value of source code statements per function point is 71 for Ada 83 and 49 for Ada 95,
for a 30 percent reduction. The amount of empirical evidence is small, however.

8. Other sets of criteria would apply for other classes of applications.

9. No independent evaluations of language features were located by the committee, prompting the analysis presented above in the section
titled "Technical Evaluation of Ada 95 and Other Third-Generation Programming Languages" and in Appendix B of this report. Most
evaluations have been carried out by government agencies or at their direction.

10. Some of the differences in efficiency and risk ratings may be due to increased Ada maturity, but the decline in availability/reliability is

more likely due to differences in interpretation of the evaluation criteria.

11. Both of these authors are software consultants; Capers Jones is president of Software Productivity Research Inc., and Donald Reifer,
formerly director of DOD's Ada Joint Program Office, is with Reifer Consultants Inc.

12. See Frazier and Bailey (1996) for a recent discussion of STARS demonstration project outcomes.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 34

3

DOD Software Policy: Analysis and Recommendations

The kinds of software programs that DOD needs for weapons systems and those that commercial industry
creates for popular use often do not share the same basic requirements. DOD's requirements for high-assurance
which include reliability, availability, survivability, safety, and security are considerably more stringent, given the
national security stakes involved. DOD's requirements for performance-critical real-time embedded operation
continually stress the capabilities of available hardware and software technology. Its requirements for complex
integrated systems mean that weapon systems software must perform at a level higher than typical commercial
programs found at the same stage of development, and all of these requirements must be satisfied simultaneously.
In this regard, DOD (and its primary contractors) continues to be at the leading edge of the development of large-
scale software engineering technology. It is likely to remain in this position for many years to come, although an
increasing number of commercial software systems are comparable to those of DOD in size and required
robustness.

This chapter establishes a set of objectives and criteria for evaluating the cost-effectiveness of alternative
programming languages for support of DOD missions. It then presents a business-case analysis to evaluate Ada
against other programming languages (generally focusing on C and C++) with respect to these criteria. Drawing on
the technical and empirical evaluations reviewed in Chapter 2, this analysis is performed for (1) DOD warfighting
software with no direct commercial counterparts, and (2) commercially dominated applications that are commonly
used in all organizations. The analysis concludes that Ada can provide DOD with a considerable advantage in
DOD-dominated warfighting applications, but not in commercially dominated applications. It also concludes that
ensuring the Ada advantage for warfighting applications will require DOD investment to sustain a robust Ada
infrastructure, but that the benefits justify the investment.

The final sections of this chapter summarize the policy changes recommended by the committee on the basis
of this analysis, evaluate this policy with respect to possible alternative DOD policies on Ada, and present an
economic evaluation of the recommended investment strategy.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 35

POLICY OBJECTIVES AND CRITERIA RELEVANT TO MEETING THEM

Relating Criteria to Objectives

DOD increasingly is emphasizing the concept of "information dominance" as a key to military superiority
(Powell, 1992; DOD, 1996d). Secretary of Defense William Perry has stated that "...our warfighting strategy
sustains and builds ... on the application of information technology to gain great military leverage to continue to
give us [an] unfair competitive advantage" (Perry, 1996a).' Since software development is a fundamental aspect of
information technology, an appropriate objective for DOD software policy is to ensure that DOD software enables
systems that are superior to any that an adversary might develop, thus affording DOD a competitive advantage.

Achieving superiority in software and information technology for military purposes requires attention to
situation-dependent mixes of functionality and other attributes. In an electronic warfare countermeasure/counter-
countermeasure competition, rapid and reliable modification of software is a critical capability. To thwart
information system penetration, subversion, and threatened denial of service, computer security is paramount.
Performance is critical for processing of wideband sensor data. Safety is critical to controlling the course of
weapons. Interoperability is critical for joint operations. And for all DOD systems, DOD's budget limitations make
cost critical.

It would be convenient if these criteria could be combined into a single "DOD return on investment" index.
Alternative policies could then be evaluated definitively with respect to this composite criterion. However,
decades of policy analysis have led to the conclusion that such combined analyses are feasible only in the context
of particular military scenarios (Quade, 1964; Quade and Boucher, 1968). This creates two equally difficult
problems-aggregating the results from multiple scenarios, and evaluating the relevance of the scenarios in a rapidly
changing world.

Given this situation, a useful approach is to identify the critical criteria most relevant to DOD's achieving
information dominance, to evaluate Ada and alternative programming languages with respect to these criteria, and
to base conclusions and recommendations on a judgment-based weighting of the criteria. Given the objective of
having superior software, such evaluation must consider the effect of DOD programming language choices both on
DOD itself and on its adversaries.

Critical Criteria in DOD's Selection of a Programming Language

As pointed out in "Economics of Software Engineering" in Chapter 2, software cost-modeling has shown that
the criteria of software functionality, cost, and speed of development can be related to other criteria that are more
closely coupled to choice of programming language. These determinants are software size, process, development
environment, and personnel. Additional criteria for assessing software quality that are crucial in supporting DOD's
critical missions and ability to respond rapidly to changes include high-assurance and real-time performance, a
set that covers reliability, security, safety, survivability, and real-time performance; and ease of change, a
capability that enables rapid-response to changes in threats, technology, or mission requirements.

Besides the individual production factors involving software tools, technology, and personnel, an even
stronger determinant of international competitive advantage in information dominance is the existence of a socio-
technical infrastructure, which couples the production factors with knowledge resources, marketing channels,
strategic partnerships, user groups, closely linked customer-supplier chains, and trends in domestic demand, thus
stimulating innovation and enabling rapid development of new software products. Porter's (1990) analysis of the
significance of a strong national socio-technical infrastructure in determining the competitive standing of an
industry or a service sector supports consideration of the socio-technical infrastructure's role in the warfighting
sector also.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 36

These seven criteria-software size, process, environment, personnel, high-assurance and real-time
performance, ease of change, and socio-technical infrastructure are used in the business-case analysis that follows.

Warfighting and Commercially Dominated Applications

The current socio-technical infrastructure is probably the main factor considered by many commercial firms
in choosing C or C++ as their primary programming language, even when they may have performed a technical
evaluation that indicated Ada was superior.> For example, the fact that much of the financial community's software
expertise, tooling, components, and middleware is oriented to C and C++ would generally be enough to lead some
firms to choose C or C++.> Conversely, this argument can be turned in favor of DOD's maintaining an Ada-based
competitive advantage in software for warfighting, a domain in which DOD of course plays the dominant role.

The term "warfighting" is used in the business-case analysis that follows to determine whether the use of Ada
would provide a clear advantage for DOD, when compared to the alternative of using (typically non-Ada)
commercial software solutions. This determination should be made at the subsystem level, in the context of
decisions to build or buy software for the system. For example, an integrated combat system such as AEGIS can
have "warfighting" weapon control subsystems for which a custom Ada solution is superior, and "non-
warfighting" data management and graphical user interface subsystems for which non-Ada commercial solutions
are superior.

Warfighting Applications

There are two primary criteria for determining whether a subsystem belongs in the "warfighting" category:

1. Relatively little commercial software and expertise is available for implementing the desired
functions. For example, even though intelligence analysis is involved in warfighting, many of its
functions (database update, query and visualization, report generation) can be readily satisfied via
non-warfighting commercial software.

2. The application requires software quality attribute levels higher than those supportable by commercial
software. For many warfighting functions, these involve real-time performance, reliability, and
survivability, particularly in high-stress, crisis-mode situations in which DOD information processing
functions may be under attack.

The application domains for warfighting software include, but are not necessarily limited to, the following
areas. Also mentioned are related support services and capabilities that are nevertheless outside the very
specialized domain of warfighting.

» Weapon control includes weapon sensor processing; guidance, navigation, and control; and combat-
oriented weapon delivery platform control. Included also are special weapon delivery platform operator
devices such as heads-up displays. Weapon control does not include administrative functions and "hotel
services" for large weapon delivery platforms such as aircraft carriers, or support subsystems performing
mainstream data management, networking, and graphical user interface functions.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 37

» FElectronic warfare depends on software involved in rapid-response electronic detection, identification,
discrimination, tracking, platform-based communication, and associated countermeasure and counter-
countermeasure applications. It does not include software for support subsystems performing mainstream
data management, networking, and graphical user interface functions.

» Wideband real-time surveillance includes processing of hard or soft real-time images and data from
infrared, radar, or other sensors. It does not include off-line query and analysis of surveillance archives,
or support subsystems performing mainstream data management, networking, and graphical user interface
functions.

* Battle management and battlefield communication includes hard or soft real-time weapons allocation,
targeting, control, coordination, damage assessment, and associated battlefield communications requiring
such special capabilities as spread spectrum, anti-jamming, and frequency hopping. It does not include
off-line monitoring, update, query, and analysis of battle asset status, or off-battlefield communications.
Thus, the range of "warfighting command, control, and communications (C3I) applications" is narrower
than previous categorizations such as "C>I" or "mission-critical.”

In addition to the non-warfighting, more generic applications mentioned above, warfighting also does not
include testing, simulation, training, off-line analysis, maintenance, and diagnostics. Software for such
applications might well be implemented in Ada, but other languages may be better choices in some situations.

Commercially Dominated Applications

Commercially dominated applications include office and management support, routine operations support,
asset status monitoring, logistics, medicine, and non-battlefield communications processing.

ADA BUSINESS-CASE ANALYSIS

Table 3.1 summarizes the results of the committee's business-case analysis for DOD use of Ada versus other
third-generation programming languages (3GLs) for both warfighting and commercially dominated applications.
Evaluation of Ada with respect to software size, process, development environment, personnel, high-assurance and
real-time performance, ease of change, and socio-technical infrastructure is presented below.

Criteria for Evaluation of Ada

Software Size

The critical portions of warfighting applications are largely custom software, or components reused from
previous defense applications. Reducing the size of these applications involves capitalizing on the existing
applications software base. The largest fraction of this software base (approximately one-third) is in Ada, giving an
appreciable (but not overwhelming) advantage to Ada. Furthermore, dropping Ada would leave DOD with a large
body (approximately 50 million source lines) of Ada code to reengineer.

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
=]
£
o
2
E
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
=
£
S
2
E
o
@
i)
©
o
2
G
»
K
=S
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
=]
b
s}
o
el
=
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
<
=
L
[a]
o
R
<
=]
=
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
=

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
E=]

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
8
i=
e}
e
=
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS

38

Table 3.1 Ada Business-Case Analysis Summary

Criterion Warfighting Applications Commercially Dominated Applications

Size
Critical portions largely custom, or ¢ Predominantly commercial off-the-shelf
DOD-managed reuse (COTS)-based solutions; much less
Some Ada advantage due to existing programming than with custom solutions
DOD Ada investments e COTS largely non-Ada, with many
Dropping Ada would leave large volatile interfaces; a considerable
existing DOD Ada software base disadvantage for Ada
unsupported

Process .
Some Ada advantage: early ¢ Ada advantage for custom software is
verification of architecture interface less applicable for COTS; some Ada
obviates need for rework disadvantage in COTS-based rapid

development processes

Environment DOD investment required for Ada ¢ Non-Ada tools and techniques much
parity in general tools stronger than Ada counterparts
DOD investment creates some Ada
advantage in high-assurance, real-time
tools

Personnel

High- assurance and real-time
performance

Ease of change

Socio-technical infrastructure

DOD has dominant position in Ada/
applications skill base, which requires
some investment to sustain

Expensive for adversaries to create
comparable Ada/applications skill base
Non-Ada/applications skill base
achievable, but with initial cost, lower
competitive advantage

Ada superior; attributes are success- ®
critical

Ada somewhat superior, more so for
high-assurance changes

Existing DOD Ada-based .
infrastructure stronger than
alternatives; requires some investment
to sustain

Expensive for adversaries to match and
sustain comparable infrastructure

Non-Ada/applications skill base much
stronger than Ada counterpart

Ada superiority diluted by COTS;
attributes are less success-critical

Ada somewhat superior for custom
software but at a disadvantage for
COTS-based applications (see "Size"
above)

Existing C/C++ -based infrastructure
much stronger than Ada-based
infrastructure

In commercially dominated applications, software size can be significantly reduced by the use of commercial
off-the-shelf (COTS) software and fourth-generation programming languages (4GLs). Given that most of these
applications are developed in C and C++, and given current and likely future COTS volatility, it will generally be
harder for DOD to use Ada, as compared to C and C++, to develop and sustain non-COTS portions of the

software.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 39

Process

As discussed in "Influence of Software Environments, Tools, and Languages on the Software Engineering
Process" in Chapter 2, Ada enables the definition and verification of architectural interfaces early in the
development process. This capability reduces a major source of rework, giving Ada another appreciable, but not
overwhelming, advantage in the largely custom warfighting sector.

The more COTS-intensive, commercially dominated applications would not benefit much from Ada-based
early interface checking (absent a significant investment in sustaining Ada interface specifications for each
evolving COTS product). Further, COTS-based rapid development processes based on early availability of C and
C++ interfaces would leave Ada at some disadvantage.

Environment

In warfighting applications, investment in very high-assurance, real-time Ada software tools has been
beneficial to DOD. Without continued investment, however, Ada tools will not be robust in either warfighting or
commercial applications. The predominance of C and C++ tools in such areas as mainstream databases and
graphical user interfaces places Ada at a significant disadvantage.

For all applications, the large commercial marketplace will continue to stimulate development of a large
selection of general software tools (e.g., smart editors, "debuggers," static and dynamic analyzers, and tools for
configuration management, quality assurance, and testing), more frequently supporting C and C++ than Ada. Ada
parity for general tools would require additional DOD investment.

Personnel

For development of software for warfighting, DOD has in place an established group of experts who
understand the existing base of Ada warfighting software and can expeditiously extend it. Some DOD investment
in Ada-based education and training is necessary to sustain the current skill base and to add new personnel, but
this investment is minor compared to the investment an adversary would need to make to compete across the board
with DOD in warfighting software (either by building an Ada skill base or developing a comparable warfighting
applications software base in another language). Competing in warfighting niches (e.g., information warfare and
security) would still be feasible for adversaries, independent of the choice of programming language. Although
DOD could retrain its warfighting software programmers to use C and C++, thus avoiding the need for education
in more specialized programming languages, such an approach would require a considerable time delay as well as
investment for retraining the existing Ada applications skill base, and it would eliminate the competitive advantage
currently enabled by the Ada applications skill base.

Because commercially dominated applications software is written mostly in C, C++, and other non-Ada
languages such as Cobol, Java, and 4GLs, DOD use of Ada in this sector would forego the advantages of relying
on the base of commercial skills.

High Assurance and Real-Time Performance

As described in Appendix B and summarized in the Chapter 2 section titled "Technical Evaluation of Ada 95
and Other Third-Generation Programming Languages,” Ada provides a significant technical advantage for
achieving high-assurance and real-time performance, two attributes that are critical to DOD's competitive
advantage for many warfighting applications.

In commercially dominated applications, levels of assurance that can be provided by COTS represent the
standard. Complementing COTS-based capabilities with those provided by Ada would not

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 40

improve much on COTS levels of assurance and real-time performance, which in general are sufficient for all but a
small fraction of commercially dominated applications.

Ease of Change

As described in Appendix B and summarized in the Chapter 2 section "Technical Evaluation of Ada 95 and
Other Third-Generation Programming Languages," Ada's encapsulation, type checking, "generics," and other
capabilities facilitate changes in software and lead to lower maintenance costs for custom software. With Ada,
high levels of assurance can be sustained for modified software, a distinct advantage for warfighting applications.

As discussed for the criterion of software size, requiring the use of Ada for COTS-dominated commercial
applications would be a disadvantage because of the need to adapt to frequent COTS changes.

Socio-Technical Infrastructure

DOD has developed a strong base of aerospace contractors and subcontractors who have in common a
familiarity with both Ada and warfighting applications, enabling them to quickly combine in various ways to
address new needs for and opportunities in warfighting software. No DOD adversary has a comparable range of
capabilities or is likely to make the major investment required to generate and sustain such capabilities. Thus,
although a moderate DOD investment is required to sustain Ada-based warfighting software, the competitive
advantage gained in warfighting applications makes it more than worthwhile.

On the other hand, for commercially dominated applications, the pervasiveness of C and C++ in the socio-
technical infrastructure places Ada at a major disadvantage.

Conclusions

In weighing the factors discussed above and listed in Table 3.1, the most compelling points for Ada's use for
warfighting applications are the strong competitive advantages accruing to DOD in the areas of personnel, high-
assurance and real-time performance, and socio-technical infrastructure. Evaluation of Ada with respect to
software size, process, development environment, and ease of change does not produce a sufficient rationale for
requiring Ada's use. With respect to these criteria, Ada offers some moderate advantages, but, in some cases (e.g.,
for general software tools), DOD investment is required just to achieve parity between Ada and other available
programming languages.

Based on the points above, there is sufficient justification to continue the requirement to use Ada in
warfighting applications if DOD also commits to the associated necessary investment in sustaining the
infrastructure for Ada. The committee believes that an appropriate level of investment is roughly $15 million per
year (detailed in Chapter 5); the economic analysis presented at the end of this chapter indicates that this level of
investment is justified.

Considering that programming languages are the materials out of which software is built, this investment
strategy is a familiar one for DOD. It is analogous to investing in and encouraging the use of high-performance
physical materials that provide DOD with competitive advantages for its weapon systems (see Box 3.1). However,
this observation is not meant to imply that Ada technology should be put on the Militarily Critical Technologies
List and be subject to embargo; rather, DOD can gain an advantage by sustaining its Ada capability for warfighting
systems.

Consideration of the factors listed in Table 3.1 for commercially dominated applications leads to the
conclusion that a DOD requirement for Ada-based software in commercially dominated applications

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
=]
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
2]
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
(2]
Q2
=
4
=
X
€
S
2
E
e
o}
[2]
o
ot
£
e}
o
9}
2
c
@
o}
Q
2]
©
<
X
s
<}
=
©
£
2
=
e}
©
=
=]
b
s}
o
9
S
©
3
c
o}
2]
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
>
o
e
<

o
<
=
o
(2]
=)
o
(2]
v
Q2
o
o
o)
T
@
(2]
R =
>
©
8
C
[0
R
[
o)
®©
C
@
9]
o
o
>
®
<
>
®
IS
(2]
&2
o
2
£
o
Q
<
S
©
&
o)
o)
Q
>
2
o)
IS
o
(2]
e
c
®
o
@
£
®
3
©
2
o
o
=
o
o
C
IS
o
i,
9]
>
o
2
S
<
=)
c
£
©
£
£
<)
o
o
=
[
@
o
Q@
o
c
£
=
[
(]
o)
o
>
2
-
@
<
=
S
©
C
®
5
Q2
>
=
[2]
o
£
S
@
o)
<
“
X
[
o
2
e
o
2
S
s
=
<
s
S
c
Q@
o
£
©
£
2
=
S
o)
<
s

c
o
2
>
o]
=
=
©
o
(@]
.
c
e
7]
<4
(]
>
(]
>
=
©
i)
=
o
<
=
=]
©
(0]
c
=
7]
©
c
e
=
®©
Q
o]
>
Q
%]
<
=
u—
(@]
c
o
7]
<4
(]
>
-
c
=
o

rtment of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS

41

BOX 3.1 ADA 95 AS A DOD MATERIALS INVESTMENT

Suppose that DOD has been developing a new generation of materials for high-performance weapon
systems. These materials have four main characteristics:

1. They are based on proven cost-effective development and performance with a previous generation of
materials.

2. Their use requires special manufacturing and maintenance expertise. DOD and its supplier community
have the largest source of such expertise, including tooling and components.

3. They provide the potential for DOD to create and maintain systems that will significantly outperform
adersaries' weapon systems.

4. They require a continuing investment in materials research and development and in manufacturing
technology of less than 0.1 percent of the cost of the weapon systems in which they will be deployed.

When such materials are physical materials that contribute to low-observable, high-strength, or high-
temperature performance, DOD routinely makes such investments. The same rationale can be applied to
investment in weapon systems software, in which programming languages operate as the counterpart of
physical materials. Each programming language contributes to varying extents to a warfighting application's
malleability, ability to withstand stress, and suitability for various operational environments.

For embedded weapon systems, the rationale for investment outlined above applies well to Ada 95,
which has characteristics analogous to those described for new materials above.

1. Several studies (see Chapter 2) have indicated that Ada 83 (the previous programming "material") has
enabled more cost-effective development and maintenance of embedded weapon systems software
than have other languages.

2. The DOD software community has by far the largest source of people capable of programming in Ada
83, particularly for embedded weapon systems, and DOD's strongest embedded weapon systems
software tools and components are based on Ada 83.

3. Ada 95 incorporates a decade of experience in ways that improve on Ada 83's capability to address
real-time, distributed, and object-oriented systems.

4. Ada 83's capabilities and Ada 95's potential are products of a continuing DOD investment of more
than $10 million annually for the past decade. A comparable investment is necessary to provide DOD
with the continuing improvements in Ada 95 tools, components, infrastructure, and education required
to keep DOD well ahead of any other nation's ability to produce or modify embedded weapon systems
software.

If DOD chooses to implement its future embedded weapon systems software in other programming
languages such as C or C++, it can still produce good systems. However, such systems would provide
lower-levels of assurance than those produced with Ada 95. Also, choosing another programming language
would require a large DOD investment in moving its weapon system software components, manufacturing
expertise, and maintenance expertise from Ada to C or C++. A further result of such a transition would be to
make DOD's weapon system software components and expertise easier for adversaries to assimilate.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 42

If any adversary chose to build its embedded weapon systems software using C or C++ and commercial
off-the-shelf (COTS) components, it would have some advantages in tooling and a large labor pool to draw
from. However, it would have several formidable problems in competing with DOD's weapon systems
software. Chief among these problems are the amount of new C and C++ software (a large fraction of 50
million lines) that would need to be developed to replace the current inventory of Ada code; the need to
retrain the labor force in weapon systems applications; the mismatch between COTS software (e.g.,
"windows") and real-time, high-assurance requirements; and the need to match DOD's expertise in such
areas as reuse (via Ada's package specifications and generics), sensor-based control algorithms and data
structures in Ada, and Ada's real-time scheduling capability.

is not justified. For custom 3GL software in this sector, Ada is a strong candidate and should be considered in
programming language decisions. However, it should not be necessary to provide extra justification for the use of
languages other than Ada.

FINDINGS AND RECOMMENDATIONS

Based on its assessment of today's environment for software development and its evaluation of DOD's
current programming language policy (Chapter 1), its examination of trends in software engineering and
comparison of various programming languages (Chapter 2), and the results of its business-case analysis to evaluate
Ada in two software application domains (the first two sections of this chapter), the committee developed the
following set of findings and recommendations for DOD. The recommendations address the use of Ada in
warfighting software, the application in which the committee finds Ada to have demonstrated benefit; the proper
scope and implementation of DOD software policy; investment in Ada; and collection of data as a basis for
assessing the effectiveness of software and software policy.

Ada Competitive Advantage

Finding. Ada gives DOD a competitive advantage in warfighting software applications, including weapon
control, electronic warfare, performance-critical surveillance, and battle management.

Recommendation. Continue vigorous promotion of Ada in warfighting application areas.

Rationale. Available project data and analyses of programming language features indicate that, compared
with other programming languages, Ada provides DOD with higher-quality warfighting software at a lower life-
cycle cost. DOD can increase its advantage by strengthening its Ada-based production factors (involving software
tools, technology, and personnel) for warfighting software (see Chapters 2 and 3).

Applicability of Policy to DOD Domains

Finding. DOD's current requirement for use of Ada is overly broad in its application to all DOD-maintained
software.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 43

Recommendation. Focus the Ada requirement on warfighting applications, particularly in critical, real-time
applications, in which Ada has demonstrated success. For commercially dominated applications, such as office and
management support, routine operations support, asset monitoring, logistics, and medicine, the option of using
Ada should be analyzed but should not be assumed to be preferable.

Rationale. For warfighting software, supporting Ada-based production factors (involving software tools,
technology, and personnel) gives DOD a competitive advantage. In this domain, eliminating the use of Ada would
both compromise this advantage and diminish the capabilities for maintaining DOD's existing 50 million lines of
Ada. In commercially dominated areas, pushing applications toward Ada would create a disadvantage for DOD
(see Chapters 2 and 3).

Scope of Policy

Finding. DOD's current requirement for use of Ada overemphasizes programming language considerations.

Recommendation. Broaden the current policy to integrate the choice of programming language with other
key software engineering concerns, such as software requirements, architecture, process, and quality factors.

Rationale. The current policy isolates the Ada requirement and the waiver process from other software
engineering decisions, causing programs to make premature or non-optimal decisions (see Chapter 1). DOD has
already taken steps to broaden the policy focus in its draft revision of its programming language policy, DOD
Directive 3405.1; this report recommends modifications to that draft policy (Appendix A).

Policy Implementation

Finding. DOD's current Ada requirement and the related waiver process have been weakly implemented.
Many programs have simply ignored the waiver process. Other programs make programming language decisions
at the system level, but often a mix of Ada and non-Ada subsystems is more appropriate (see Chapter 1).

Recommendation. Integrate the Ada decision process with an overall Software Engineering Plan Review
(SEPR) process. Passing such a review should be a requirement for entering the system acquisition Milestone I and
II reviews covered by DOD Instruction 5000.2. It should also be required for systems not covered in 5000.2, and
recommended for DOD-directed software development and maintenance of all kinds.

Rationale. The SEPR concept is based on the highly successful commercial architecture review board
practice. The SEPR process involves peer reviewing not only the software and system development plans, but also
the software and system architecture (building plan) and its ability to satisfy mission requirements, operational
concepts, conformance with architectural frameworks, and budget and schedule constraints; the process also
involves reviewing other key decisions such as choice of programming language (see Chapter 4).

Investment in Ada

Finding. For Ada to remain the strongest programming language for warfighting software, DOD must
provide technology and infrastructure support.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 44

Recommendation. Invest in a significant level of support for Ada, or drop the Ada requirement. The strategy
developed by the committee recommends an investment level of approximately $15 million per year.

Rationale. With investment, DOD can create a significant Ada-based complex of production factors
(involving software tools, technology, and personnel) for warfighting application domains. Without such support,
Ada will become a second-tier, niche language such as Jovial or CMS-2 (see Chapter 5).

Software Metrics Data

Finding. DOD's incomplete and incommensurable base of software metrics data weakens its ability to make
effective software policy, management, and technical decisions.

Recommendation. Establish a sustained commitment to collect and analyze consistent software metrics data.

Rationale. The five sets of findings and recommendations above are based on a mix of incomplete and
incommensurable data, anecdotal evidence, and expert judgment. For this study, the patterns of consistency in
these sources of evidence provide reasonable support for the results but not as much as could be provided by
quantitative analysis based on solid data. A few organizations within DOD have benefited significantly from
efforts to provide a sound basis for software metrics; a DOD-wide data collection effort would magnify the net
benefits (see Chapter 2).

ASSESSMENT OF POLICY ALTERNATIVES

Table 3.2 summarizes current DOD policy, the committee's recommended alternatives to the policy currently
in force, and other programming language policy alternatives suggested to or considered by the committee. The
subsections that follow in the text summarize the committee's rationale for preferring these recommended actions
over the alternatives.

Conditions for Requiring Ada

There are five conditions to be examined in determining whether a software development is subject to the
Ada requirement. The following subsections describe the approach to defining these conditions. The committee
recommends that all of these conditions be met in order for Ada to be required.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 45

Table 3.2 Policy Alternatives Recommended by the Committee and Alternatives Considered

Committee

Policy Item Current Policy Recommendation Alternatives Considered

CONDITIONS FOR REQUIRING ADA

Application domain All DOD software Application subsystem isinthe ¢ None
systems; all sectors warfighting sector

e Other subsets

Maintenance DOD-directed Same as current policy e All DOD software
maintenance

¢ Only DOD-performed

maintenance
Level of applicability ~ Entire system Subsystem is critical or is larger ~ * Other size, criticality
than 10 KLOC criteria
Existing solutions Consider COTS, NDIs No better COTS, NDI, or 4GL ¢ Require COTS, NDIs,
4GLs solution exists 4GLs
Other languages No life-cycle cost - Same as current policy ¢ Require another language
effectiveness justification (C, C++, Java)

for use of another language

¢ Require object-oriented

solutions
ADA REQUIREMENT
System coverage Entire system; 100% Ada 95% or more of subsystem in e Other percentages
code Ada
LANGUAGE CHOICE PROCESS
Exceptions Waiver-based; Part of Software Engineering ¢ Tied to different software
independent of other Plan Review process engineering reviews
software engineering
reviews
Approval SAEs or ASD (C3I) Approval delegated through e ASD (C3I) only

SAEs to appropriate level;
periodically reviewed by ASD

(€D
¢ Delegated to project

manager's superior;
periodically reviewed by
SAEs, ASD (C3I)

INVESTMENT IN ADA INFRASTRUCTURE

Level $10 M in FY94; $0 M in $15 M/year e $2 M/year (barely

FY98 sustaining)

e $30 M/year (major
initiative)

NOTE: ASD (C3I), Assistant Secretary of Defense (Command, Control, Communications, and Intelligence); COTS, commercial off-the-
shelf; 4GL, fourth-generation programming language; KLOC, 1,000 lines of code; NDIs, non-developmental items; SAE, Service
Acquisition Executive.

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 46

Application Subsystem Is in the Warfighting Sector

Current DOD policy requires that Ada be used for all applications (subject to a waiver process and the criteria
in Table 3.2). The committee recommends requiring Ada only for subsystems in DOD-dominated warfighting
applications, as defined above in this chapter. For other DOD applications, Ada should be considered as a
candidate but should not be required. The focus on subsystems makes it possible to separate the weapon control
aspects of a system, which should be written in Ada, from other aspects of the system, which may be written in
Ada, but need not be. An aircraft carrier is a good example of such a system.

As discussed above, in non-warfighting applications, the rapid pace of non-Ada commercial software
solutions shifts the business-case away from Ada. For warfighting applications, a focused Ada strategy can
generate a differential that enables DOD to develop and adapt software more readily than its adversaries.

The primary alternative to be considered is to not impose any requirement. Advocates of this approach (AIA,
1996) argue that developers of warfighting software can choose a programming language by analyzing trade-offs,
in the same way that they make decisions about other non-developmental items (NDIs), such as commercial
hardware and COTS software. The committee recognizes that many DOD and contractor organizations can make
good technical choices when given the freedom to do so. However, the uneven distribution of software expertise
across the DOD acquisition system could lead to some poor results, therefore leaving DOD worse off under an
open policy than it would be under a requirement to use Ada in specific critical applications.

The primary problem with leaving programming language selection to developers is that DOD acquisitions
still are done largely one system at a time, rather than according to a product-line approach. Currently the focus in
source selection is the cost of developing individual systems, and less attention is paid to important factors, such
as assurance and adaptability, that are difficult to quantify. Such an approach can frequently lead to situations in
which bidders can propose cheap but fragile solutions (e.g., using immature commercial-grade non-Ada process
control software). DOD's program management staff often does not have sufficient software expertise (see
Chapter 1) to be able to disqualify such inadequate solutions. The net result for DOD warfighting software then
becomes a mix of strong and weak Ada and non-Ada solutions, and a socio-technical infrastructure characterized
by increasing problems with proliferation of programming languages. Requiring Ada in warfighting applications is
not a panacea, but it should lead to better-performing systems for DOD.

Other possible policy alternatives could require that Ada be used for other subsets of DOD software, such as
all software maintained by DOD personnel. In this particular case, Ada's use would be required for a great deal of
financial and other commercially dominated software, which the committee's business-case analysis indicates
would not be a cost-effective approach for DOD. The committee was unable to identify other subsets in which
mandating use of Ada would match the cost-effectiveness of requiring its use in warfighting applications.*

Maintenance Is Directed by DOD

DOD's current requirement for use of Ada excludes software that is embedded in a warfighting system
component (e.g., an altimeter) purchased as a supplier-maintained commercial item. In such cases, DOD can
frequently capitalize on dual-use (commercial and military) products as it does on COTS software. The committee
recommends maintaining this aspect of the policy. The alternative of requiring Ada for all software in DOD
warfighting systems is less cost-effective because it cuts off the opportunity to use many of these dual-use
components. Another alternative, requiring use of Ada only for DOD-performed rather than DOD-directed
maintenance (i.e., maintenance performed by DOD as well as by its contractors) would invite proliferation of
programming languages in DOD's contractor-maintained

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 47

warfighting software inventory, with the same consequent relative weakening of DOD's position discussed in the
previous subsection.

Subsystem Is Critical or Larger Than 10, 000 Lines of Code

The committee concluded that DOD's current policy of requiring waivers for use of non-Ada software for
small, non-critical subsystems can cause bureaucratic delays that add little value. DOD should consider alternative
size and criticality criteria. In suggesting alternatives, the committee focused on the objective of keeping the policy
simple. The metric of 10,000 lines of code is based solely on engineering judgment: the committee's consensus
was that 3,000 lines was too low and 30,000 lines was too high. "Critical" should be interpreted as key to mission
success.

No Better COTS, NDI, or 4GL Solution Exists

As discussed in Chapter 1, the current DOD policy establishing Ada's precedence over COTS, NDI, and 4GL
solutions has led to a number of bureaucratic delays or incorrect choices of an Ada solution over a more cost-
effective COTS solution.

In addition to its recommended alternative, another alternative considered by the committee was to require
the use of COTS, NDI, and 4GL solutions. As discussed in Chapter 2, these solutions can have many drawbacks
for DOD and other systems, and requiring their use would push many DOD systems into adopting less cost-
effective solutions.

No Life-cycle Cost-effectiveness Consideration Justifies Use of Another Language

This criterion for required use of Ada is identical to DOD's current policy. As recommended below,
embedding of the Ada waiver process within the SEPR process (Chapter 4) should make justifications for use of
non-Ada software both sounder and less onerous.

Alternatives suggested to the committee were to require the use of other programming languages (e.g., C, C
++, or Java) or to require the use of object-oriented approaches. The comparisons of language features in Chapter 2
and the business-case analysis presented above in this chapter do not support a recommendation for requiring
other languages. With respect to object-oriented techniques, the committee's assessment was that these are not
well enough defined or sufficiently mature to support a requirement for use.

Ada Requirement

If all of the above criteria hold for a given software development, the committee's recommendation is that the
requirement to use Ada should hold. The following subsection analyzes the appropriate coverage of the
requirement.

95 Percent or More of the Subsystem 's Warfighting Software Is to Be Written in Ada

The current DOD policy calls for the entire system to be developed in Ada. The committee recommends only
that at least 95 percent of the applicable subsystem use Ada. Again, the intent of this recommendation is to avoid
bureaucratic delays in cases involving small amounts of non-Ada "glue code" or performance enhancements, and
95 percent is again based on engineering judgment. The committee believes that 90 percent is too low and 98
percent too high. As with the criterion for subsystem size above, the scope of this requirement could be subject to
some manipulation by program

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 48

desire to evade the requirements. However, the committee concluded that coupling the Ada waiver process with
the SEPR process detailed in Chapter 4 would eliminate most of the gamesmanship in a cost-effective manner.

Language Choice Process

The following subsections recommend alternative approaches to implementation and approval of the
language choice process.

Replace the Waiver Approval Process with Other DOD Software Reviews

The current DOD Ada waiver approval process is disconnected from other reviews of a project, causing extra
work and out-of-context decisions (see Chapter 1). As discussed in Chapter 4, embedding the waiver process
within the SEPR process should make it sounder and less onerous.

Requests for waivers could also be considered at other review and approval milestones. The committee's
recommendation associates the SEPR reviews with the Major Automated Information Systems Review Council
(MAISRC) reviews at Milestones I and II, but recommends that the SEPR reviews for major weapon systems be
completed as prerequisites to the counterpart Defense Acquisition Board (DAB) Milestone I and II reviews (see
Figure 3.1). The SEPR reviews could be embedded within the DAB reviews, but experience to date indicates that
software issues have had little visibility in many previous DAB reviews. The SEPR reviews and programming
language decisions could also be handled in conjunction with source selection, but source selection may occur
either too early or too late to allow effective consideration of waiver requests, depending on the relative timing of
source selection and DAB/MAISRC milestone reviews. Basing a SEPR review on a 60-day proposal effort could
also make it too superficial and vulnerable to manipulation. On the other hand, requiring an SEPR review for
source selection would likely stimulate better proposals.

Reconsider the Level at Which Waivers Can Be Approved

The current DOD waiver policy requires Service Acquisition Executive (SAE) approval for service level
waivers and Assistant Secretary of Defense (C>I) approval for waivers in joint programs. As discussed in Chapter 1,
this requirement for approval at extremely high levels has induced considerable avoidance of the waiver process
(sometimes leading to inappropriate use of Ada, sometimes simply to disregarding of the requirement). The
committee recommends that SAE-level approval via the SEPR process be required only for major system
acquisition, and that authority for granting waivers be delegated, as part of the SEPR process, to the equivalent of a
product-line manager (a Program Executive Officer for families of warfighting systems; a base commander for
base-specific systems). This approach would make the reviews and waiver process more mission-relevant.
Periodic reviews by SAEs and the Assistant Secretary of Defense (C?I) to assess the effectiveness of the SEPR and
Ada waiver process would ensure their long-range effectiveness without involving top executives regularly in
low-level system decisions.

Waiver approval at levels even higher than the current level (e.g., that of the Assistant Secretary of Defense
(C3D) for every project) could also be considered but would exacerbate the current problems of critical-path delays
and avoidance of the waiver process. Delegation of authority for approval to even lower-levels (e.g., the project
manager's direct superior) could also be considered, but in many cases managers at such levels do not have
sufficient visibility or responsibility across product-line objectives to make appropriate decisions affecting long-
range product-line effectiveness.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 49
Wi Milestone | Milestone Il
‘eapon

Systems A A

(DAB) _ a

SEPR | SEPR Il
Concept Program Definition : Engineering and
Exploration : and Risk Reduction ¢ Manufacturing
Phase Phase i Development Phase

I : Mlleslufnal Milestc;nell
nformation " i

Systems A A
(MAISRC)

SEPR | SEPR Il

FIGURE 3.1 Integration Software Plan Review (SEPR) process with Defense Acquisition Board (DAB) and Major
Automated Information Systems Review Council (MAISRC) milestones for weapon and information systems.

Investment in Ada Infrastructure

The current DOD strategy is to reduce investment in Ada from a $10 million annual budget in Fiscal Year
1994 to essentially zero in Fiscal Year 1998. Other programming languages that DOD uses but provides little or no
support for include Jovial and CMS-2; at this level of investment, bindings, runtime systems, language features,
and tools are kept current only by projects using the language. This level is inadequate to keep a programming
language up to date and serves as a major disincentive for projects to continue to use the language. Thus, DOD's
planned zeroing out of investment in Ada is incompatible with any DOD requirement to use Ada.

Chapter 5 identifies a set of investments that are necessary to provide DOD with a competitive advantage in
warfighting software, and indicates that its magnitude is roughly $15 million per year. The economic analysis in
the following section indicates that the resulting cost savings justify this level of investment.

An alternative policy would be to attempt to sustain Ada at a considerably lower-level, on the order of $2
million annually. This level would be enough to enable DOD to keep its current 50 million lines of Ada from
becoming hopelessly obsolete, but not enough to keep new programs from deciding that Ada would require too
much extra investment to justify its use. Another alternative would be a major initiative level of investment, at
roughly $30 million per year. This was the level recommended by the 1991 DOD software technology strategy for a
3-year period (DOD, 1991). It included such additions as a demonstration/validation phase for Ada 95, a major
suite of tools for re-engineering legacy software into Ada, and investment in beyond-Ada 95 programming
language research. Since 1991, the primary window of opportunity for an Ada 95 demonstration/validation phase
has passed; programming language research is now being pursued in general by the National Science Foundation
and in particular by the Defense Advanced Research Projects Agency's Dynamic Object-Oriented Language
initiative. Given this situation, a strategy of investment at the margin in such areas as re-engineering tools and
real-time,

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS 50

high-assurance tools at the $15 million annual level appears more cost-effective than a major initiative, and can be
justified given the large installed base of Ada warfighting software.

ECONOMIC ANALYSIS OF INVESTMENT IN ADA INFRASTRUCTURE

Given the fragility of the underlying data, a complex economic analysis attempting to establish the optimal
investment in Ada infrastructure is not justified. Instead, a simple analysis is presented to estimate how the
recommended $15 million level of investment will affect Ada tool capability, tool experience, and language
capability (see Box 3.2). The simplifying assumptions, all made on the conservative side, are as follows:

1. Only the annual maintenance of the 50 million lines of Ada code in existing weapon systems software
is considered. This assumption is conservative because it does not consider developing and sustaining
current and future Ada systems.

2. Only 8 percent of the software will be changed per year. This assumption is conservative with respect
to the average rate of change of 11 percent per year for embedded control software and 20 percent per
year for human-machine interactive software in the COCOMO database (Boehm, 1981).

3. The cost per changed line of code is only $40. This assumption is conservative with respect to general
estimates that changing weapon systems software costs at least $75 per line of code.

4. Only the effects of investment on Ada tool capability and Ada language and tool experience are
considered. This assumption is conservative with respect to other cost effects due to process, reuse,
and size improvements (separate vs. common development of infrastructure software).

5. The presence versus the absence of an investment program for Ada will affect improvement in tool
capability and language and tool experience by one cost model rating level (see Box 3.2 for details).
This assumption is conservative with respect to the relative effects on other languages that are not
supported by such investment, such as Jovial and CMS-2.

6. The effect of increasing tool capability and language and tool experience one rating level is an 8
percent improvement. This assumption is conservative with respect to most estimates generated by
software cost models, which indicate that the improvement per rating level for these variables
averages 10 to 12 percent (see Box 3.2).

Given these assumptions, an estimate of the annual cost of sustaining the 50 million lines of code (50
MLOC) of existing DOD weapon systems software in Ada is

(50 MLOC) (0.08/year) ($40/LOC) = $160 million/year.

With a one-level improvement in tool capability and language and tool experience, the estimated annual cost
of sustaining existing DOD weapon systems software in Ada is

($160 million/year) (0.92) (0.92) = $135 million/year.

Thus, a conservative estimate of the annual maintenance cost savings resulting from a one-level improvement
in capability is $25 million per year, considerably more than the annual investment in Ada of $15 million per year
that would be required to achieve the improvement in rating level.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

DOD SOFTWARE POLICY: ANALYSIS AND RECOMMENDATIONS

epartment of Defense

BOX 3.2 SOFTWARE COST MODELS AND THE EFFECTS OF INVESTMENT

As discussed in Chapter 2, most current models for estimating software costs have input parameters or
cost drivers reflecting the product's size and the project's personnel, development environment, and process
characteristics. The personnel and environment cost drivers generally take the form of multipliers affecting
the estimated cost. For example, the COCOMO 2.0 TOOL model rates cost drivers for tools and
corresponding cost multipliers as shown in the following table.

Relative Estimated Cost for Various Levels
of Tool Support

Support Level TOOL Rating Level Cost Multiplier

Very Low Edit, code "debugging" tools 1.20

Low Simple front-end, back-end CASE; little 1.10
integration

Nominal Basic life-cycle tools; moderately integrated 1.00

High Strong, mature life-cycle tools; moderately 0.88
integrated

Very High Strong, mature, proactive life-cycle tools; 0.75

well integrated with processes reuse

The stronger the project's tool support, the lower its estimated cost. The estimated cost of a project with
low tool support (simple front-end and back-end computer-automated software engineering (CASE) tools with
little integration) is 10 percent higher than the estimated cost of a project with nominal tool support (basic
life-cycle tools with moderate integration). The values in the table are based on a mix of several
organizations' experience and calibration to project data. COCOMO 2.0 is currently calibrated with data from
65 projects, for which the calibrated cost estimates are within 25 percent of the actual cost 60 percent of the
time.

The corresponding rating scale and cost multipliers by the COCOMO 2.0 LTEX (language and tool
experience) model are shown immediately below.

Relative Estimated cost of Various Levels of Support for Programming
Language and Tool Experience

Support Level LTEX Rating? Cost Multiplier
Very Low 2 months or less 1.24
Low 6 months 1.11
Nominal 1 year 1.00
High 3 years 0.90
Very High 6 years 0.82

* LTEX: Language and tool experience

Copyright © National Academy of Sciences. All rights reserved.

51

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
=]
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
2]
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
(2]
Q2
=
4
=
X
€
S
2
E
e
o}
[2]
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
X
s
<}
=
©
£
2
=
e}
©
=
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
>
o
e
<

o
<
=
o
(2]
=)
o
(2]
v
Q2
o
o
o)
T
@
(2]
R =
>
©
8
C
[0
R
[
o)
®©
C
@
9]
o
o
>
®
<
>
®
IS
(2]
&2
o
2
£
o
Q
<
S
©
&
o)
o)
Q
>
2
o)
IS
o
(2]
e
c
®
5
@
£
®
3
©
2
o
o
=
o
o
C
IS
o
-
9]
>
o
2
S
<
=)
c
£
©
£
£
<)
Ne)
o
=
[
@
o
Q@
o
c
£
=
[
(]
o)
o
>
2
-
@
<
=
S
©
C
®
5
Q2
>
=
[2]
o
£
S
@
o)
<
“
X
[
o
2
e
o
2
S
s
=
<
s
S
c
Q@
o
£
©
£
2
=
S
o)
<
s

o
o
=
>3
o]
=
=
©
-
o
u
o
e
2]
o
]
>
o
>
=
©
-
=
]
=
=
>
©
(]
°
=
2]
©
c
el
=
®©
Q
o]
>3
Q
(2]
=
=
y—
o
o
o
2]
o
]
>
——
[
=
o

Department of Defense

NOTES

52

The use of calendar time as a basis for evaluating experience has both the advantage and disadvantage
of being simple. The estimated cost of a project using personnel with low (median of 6 months) language and
tool experience is 11 percent higher than the cost of using personnel with a nominal (median of 1 year) level
of experience.

Other models estimate similar costs. For example, the Jensen-SEER model (Jensen and Lucas, 1983)
and the Softcost-R model! have cost drivers comparable to the COCOMO TOOL and LTEX cost driver, with
cost differentials in the range of 10 to 12 percent per rating level. Checkpoint has a "CASE tools" cost driver,
with cost differentials varying from 10 to 15 percent per rating level, depending on interactions with other
cost drivers covering staffing, methods, and language level (Jones, 1996d).

A recent sample of 25 Ada projects from the Air Force Cost Analysis Agency indicates an average TOOL
rating for the level of tool support of "nominal" and an average LTEX rating for the level of language and tool
experience support of "high." As discussed in Chapter 5, the committee's recommended strategy for DOD's
investment in Ada tools is to invest at the margin with tool suppliers to develop tools with clear benefits that
otherwise would not be built. With this investment, the level of Ada tool support likely would increase by one
TOOL rating level over the next 5 years. Without this investment, the level of Ada tool support would likely
decrease with respect to the pace of surrounding technology. Thus, it is reasonable to assume that the net
effect of the Ada investment would be an improvement of one-level on the TOOL rating scale, and a
corresponding 8 percent cost reduction.

Another effect of the committee's recommended Ada investment strategy, discussed in Chapter 5, would
be to stimulate education and training in Ada, again via collaborative investments with suppliers at the
margin. Without this investment, it will be much harder 5 years from now to find sources of qualified Ada
personnel, and the likely net effect will be a one-level decrease in the average LTEX rating for Ada projects.
With the Ada investment, the likely effect will be an increase in the average rating. Thus, a conservative
assessment of the net effect of the committee's recommended Ada investment would be an increase of
one-level on the LTEX rating scale, and a corresponding 8 percent cost reduction.

! D.J. Reifer, personal communication to B. Boehm, August 1996.

NOTES

1. See also Perry (1996b).

2. This process is illustrated by the experience of Xerox as described in Weiderman (1991). Xerox's Digital Systems Department evaluated
Ada, C++, and two other languages for use in large, real-time, embedded systems software, and concluded that Ada was superior in terms
of language features, implementation, and cost. In practice, however, the bulk of Xerox's embedded systems software continues to be
developed in C and C++.

3. For example, Gerald Pasternack of Citicorp testified to the committee about low awareness of and a low supply of Ada programmers in
the New York financial market.

4. The committee heard from several DOD representatives that measures to reform acquisition emphasize performance requirements over
military specifications. This trend can be interpreted as supporting the option of having no requirement to use Ada.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
2
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 53

4

Implementation of Recommended DOD Software Policy

The committee's recommendations for DOD's software policy address two broad objectives. The first part of
this chapter describes appropriate principles for selection of a programming language, and Appendix A contains
the committee's proposed modifications to a revised version of DOD Directive 3405.1 (DOD, 1987a), which was
in the process of being redrafted during the course of this study. The second component of the committee's
recommendations concerns the Software Engineering Plan Review, which is proposed as a method for
implementing DOD's software policy and is described in the second part of this chapter.

RECOMMENDED POLICY FOR CHOICE OF PROGRAMMING LANGUAGE1

The committee recommends that DOD approach programming language policy at three levels of precedence.
The overall goal is to achieve the best combination of costs and benefits (each interpreted quite broadly, as
explained below); a number of principles for acquisition of software follow from and are subordinate to this
overriding goal. The second level of precedence interprets those principles as they apply to the choice of a
programming language (at any level of programming). The third level specifies circumstances under which Ada is
required for software development using a third-generation programming language (3GL).

This hierarchy expresses goals for software acquisition that are broader than the choice of programming
language alone, clarifying the importance of many other decisions (such as decisions about whether to make, buy,
or, build components; design of the development process; and necessary skills) required to achieve DOD's goals.

The focus is on operational software. It does not apply to software developed, acquired, or used by DOD
research and development activities, funded by 6.1, 6.2, and 6.3a appropriations. However, research and
development software efforts likely to lead to new DOD operational capabilities should include plans for the
transition of such software to meet operational software policy requirements (these plans are described under
"Approval Authority and Milestones" in the next section).

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 54

Goals of Software Development

High-quality, low-cost, and timely delivery are the primary goals for software development. Here, "quality"
and "cost" are interpreted broadly. Quality includes, but is not necessarily limited to, functionality, fitness for a
purpose, assurance (including reliability, survivability, availability, safety, and information security), efficiency,
ease of use, interoperability, future adaptability (including extensibility, maintainability, portability, scalability,
and compliance with standards), and development of DOD's software expertise. Cost includes, but is not limited
to, full life-cycle monetary costs (i.e., both shortand long-term costs) and the extent of use of other scarce
resources such as expert personnel. Cost also includes assessment of program risk and monetary and non-monetary
consequences of system failure. Timely delivery, or schedule, is listed as a third goal because it is difficult to
classify as either a quality or cost factor. These overriding goals are reflected in the following statements, which
the committee believes should serve as guidance for DOD software development.

1. Projects will specify and prioritize quality, cost, and schedule goals, and will analyze trade-offs and
the business-case for particular decisions. Failure to articulate and prioritize project requirements
appropriately, and to analyze them in the context of their impacts on cost and schedule, commonly
leads to project failure or inappropriate acquisition decisions. It is not reasonable for DOD to specify a
single prioritization of goals, because the importance and relevance of different factors vary widely.
However, projects should conduct an analysis and defend it in the review process. Requirements
should not be overstated, an approach that often has the effect of ruling out simpler, more cost-
effective solutions.

2. Projects will not develop new software unless quality, cost, and schedule goals cannot be met with
non-developmental items (NDIs). Developing and maintaining new software within projects tend to be
more expensive than reusing suitable existing software.

3. Commercial items are preferred over other non-developmental items if they meet quality, cost, and
schedule constraints. True commercial items will spread the costs of maintenance and improvement
over a larger base, leading to cost savings. Issues such as possible "lock-in" to a single source should
be considered as constraints to achieving desirable qualities such as adaptability and portability.

4. Software development will emphasize good software engineering practice, including the application
of management techniques, methodologies, support tools, metrics, and appropriate programming
languages. Good practices provide better quality at lower cost, regardless of which programming
language is used. Good practices also tend to improve timeliness and reduce risk.

5. Software developers should be chosen based on their experience, a criterion that includes, but is not
limited to, successful past performance; experience in the software domain or product-line; use of
appropriate management techniques, methodologies, support tools, and metrics; and mature software
engineering capability and expertise.

6. Projects will, when possible, exploit and/or contribute to open system architectures and common
product-lines, frameworks, and libraries. Investment in commonality, where feasible, increases
portability and opportunities for reuse, and reduces cost.

7. Projects will avoid developing project-specific tools and technologies unless the cost, schedule, and/
or quality advantage can be defended. Such development is expensive and is seldom justified.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 55

Guidelines for Choice of Programming Language

1. Projects will use the highest-level language that meets quality, cost, and schedule constraints for each
software component. Other things being equal, higher-level languages increase productivity and
reduce cost. Specifically, 3GLs (high-order languages) are generally preferable to machine or
assembly language; further, fourth-generation programming languages (4GLs), program generators,
graphical user interface builders, and database query languages, such as Structured Query Language
(SQL), are generally preferable to 3GLs. Modification of the lower-level language output from a
higher-level language processor should be considered as programming at the lower-level; that is,
components written in a language should be maintained in that language, and the output of a language
processor should be changed only in exceptional cases.

2. Standardized and non-proprietary languages are preferred. Using standardized languages increases
the portability of code and programmers, and diminishes the possibility of "lock-in" to a single
source. This principle applies at all language levels. Thus standard SQL is preferable to a proprietary
database query language. In some cases, unusual or "niche" languages are the best choice; however,
these choices need to be defended.

3. Projects should not develop new languages, and language processors for them, except for domain-
specific languages that provide directives for application generators. Such development is costly, in
both the short and long-term, and should require unusual justification.

4. All relevant quality, cost, and schedule factors should be considered in the choice of programming
language for each component.

Applying these four principles, it is reasonable, for example, to use small "shell" scripts to "glue" together
system components, rather than writing them in Ada or some other high-order language; however, large and
complex shell scripts may violate the principles by being difficult to maintain. Likewise, large packages of
spreadsheet macros, or other code written in (more or less) proprietary 4GLs, need to be considered carefully. The
key is to ensure that decisions are made carefully, weighing all relevant economic and engineering cost, quality,
and schedule factors. These requirements lead to the following recommended policy for the use of Ada.

Recommended Policy for Requiring the Use of the Ada Programming Language

The committee believes that Ada should be presumed to be the best choice, and thus should be used for
software development, for subsystems of DOD's operational software systems that meet all of the following
criteria:

1. The subsystem is in a warfighting software application area as defined in Chapter 3. While Ada may
still be a good choice for other systems, DOD policy should require that Ada be used only in areas
where it has clear advantages and is most likely to maximize DOD's competitive position relative to
that of its adversaries.

2. DOD will direct the maintenance of the software. If a vendor is serving a broader customer
community, then maintenance costs are spread over a larger base and are thus of less concern. If DOD
directs the maintenance, whether or not the maintenance is performed by DOD personnel or a vendor,
then DOD must cover the life-cycle cost, and Ada is assumed to be more cost-effective over an entire
life-cycle.

3. The software subsystem is large, more than 10,000 lines of code, or the subsystem is critical. Small
and non-critical subsystems, as a rule, incur lower development and maintenance costs, and thus

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 56

are not worth the cost of oversight. Such systems tend to be simpler and the choice of programming
language is less critical. However, the choice is more important for critical components.

4. There is no better COTS, NDI, or 4GL software solution. If existing software or higher-level language
solutions are suitable, new development solely to promote Ada should not be required.

5. There is no life-cycle cost-effectiveness justification for using another programming language.

6. New software is being developed or an existing subsystem is being re-engineered; a re-engineering is a
modification substantial enough that rewriting the subsystem would be cost-effective. For systems
meeting criteria 1 through 5, Ada is generally superior to other high-order languages, and conversion
over time should be encouraged.

For systems that meet all of the above criteria, Ada (preferably Ada 95) must be used for the preponderance
(95 percent) of new or modified software subsystems or components; up to 5 percent may be written in other
languages to facilitate component integration and other functions.

Projects that meet all of the criteria except number I above must analyze Ada as an alternative. As explained
in Chapter 2, Ada is generally preferred for custom software because, compared with other 3GLs, it encourages
better software development practices, has better error checking and recovery capacity, has better support in
certain domains, is standardized and has a validation facility, contributes to commonality, and leads to high-quality
at lower life-cycle cost.

SOFTWARE ENGINEERING PLAN REVIEW PROCESS

The committee recommends that DOD broaden its current policy on programming language to include a
range of software engineering factors that have a greater overall influence on software capability than does choice
of a particular language alone. This section addresses how policy guidance regarding these factors, as described in
Chapter 2, can be translated into operational decisions in systems development. The principal mechanism is the
Software Engineering Plan Review (SEPR).

The committee explored a number of approaches for integrating selection of a programming language with
related review and approval processes for software engineering decisions. One approach was to integrate the
programming language selection process with a Capability Maturity Model assessment (Paulk et al., 1993), but
this type of assessment focuses more on organizational process maturity than on specific technical decisions made
by a particular project. Another approach was to add review of programming language and software engineering
decisions to the Defense Acquisition Board (DAB) and Major Automated Information Systems Review Council
(MAISRC) Milestones I and II review processes (as defined by DOD Directive 5000.2-R (DOD, 1996c)). Key
software decisions are generally covered well in MAISRC reviews but often fall below the threshold of visibility
in DAB reviews, which cover most DOD-dominated software application areas.

The committee determined that the DOD's best alternative to these two approaches was to require passage of a
focused SEPR as a part of a major system's DAB or MAISRC Milestone I and II reviews. SEPRs used in
commercial practice have proven to be highly effective for reviewing software and system requirements, plans,
architectural decisions, and programming language decisions at life-cycle points similar to DAB and MAISRC
Milestones I and II. For example, the SEPR concept has been used successfully in large technology-dependent
commercial and government organizations, including AT&T and Lucent Technologies (architecture review board
(AT&T, 1993)), Citibank (building permit system), NASA (architecture reviews), and others.?

The SEPR process is intended to provide a forum for the following activities:

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 57
1. Involvement of stakeholders in key software engineering decisions,
2. Contributions of peers and experts to key software engineering decisions,
3. Stimulating commonality of process and architectural elements where appropriate, and
4. Establishing accountability of a senior acquisition official for major software engineering decisions

throughout the life-cycles of related systems.

The SEPR process is intended to help program managers (and possibly contractors) achieve a best-practices
level of decision making for the software engineering associated with major systems, as well as to assure
consideration of organizational and life-cycle factors. Implementation details are established not by senior
officials, but rather by product-line stakeholders and expert peers, who have an incentive to minimize unnecessary
bureaucracy and documentation. The principal policy elements for systems subject to DAB and MAISRC reviews
are the following:

1. Authority for approving software engineering plans resides in the office of the Assistant Secretary of
Defense (C*I) and in the Service Acquisition Executives (SAEs) and their Software Executive
Officials (SEOs).

2. SEPRs are conducted by Software Engineering Plan Review Boards (SEPRBs) at key points in the
engineering process and are conducted by peers and representatives of key stakeholders. These
reviews are typically managed at the Program Executive Officer (PEO) level.

3. Software engineering plans, focusing on major software engineering process, technology, and
architecture decisions, are submitted by program managers in preparation for the SEPR process.

4. The Office of the Assistant Secretary of Defense (C3I) periodically reviews the effectiveness of the
DOD services' and DOD components' implementation of the SEPR process.

The SEPR process has three elements: (1) a policy framework established for major software engineering
decisions and for SEPRs; (2) involvement in the review by peers as well as the principal stakeholders in system
design; and (3) software engineering common practices, SEPR evaluation criteria, and SEPR process policies
developed at the service and command levels (these would be specific to each service, and possibly to PEOs who
could, for example, require conformance to particular architectural frameworks for a class of systems (e.g., a
particular level of a common operating environment). These three elements are detailed below.

Policy Framework

The purpose of the SEPR process is to embody institutional and long-term interests in requirements for
formulation, development, and post-deployment that might otherwise be neglected or compromised in favor of
short-term goals. Such short-term expedients could arise as undesired results of incentives created in the
acquisition process or for other reasons.

Early decisions concerning design, process, and other software engineering factors can have a significant
influence on overall life-cycle cost and risk, and on the potential for product-line commonality and
interoperability. For example, the following questions arise:

* What is the necessary level of maintainability (e.g., ongoing improvements in performance and quality,
and evolution of computational infrastructure), and how will it be achieved?

* What is the necessary level of interoperability (e.g., within product-lines, with related DOD systems, and
with related systems controlled by allies and in coalition forces), and how will it be achieved?

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 58

* What is the necessary level of trustworthiness (inluding reliability, fault tolerance, and survivability), and
how will it be achieved?

* What are the likely future needs (e.g., new and changed requirements anticipated), and how will they be
accommodated?

* What are the likely technology constraints, and what plans have been developed for inserting new
technology?

Stakeholder Role

The committee recommends that the SAEs be in charge of carrying out the SEPR process at the DOD service
level. The SAEs would establish milestones for the SEPR process, appoint expert reviewers and stakeholder
representatives, and establish criteria for evaluation. The SAEs and their associated SEOs would be responsible
for implementing these functions, although this responsibility could be delegated as detailed below. The
appropriate counterparts in other DOD components would have corresponding responsibilities.

The most important element is participation in the SEPR by peer software managers experienced in the
application area, as well as by key stakeholders as either advocates or reviewers. Because the SEPRB's staffing
from stakeholder organizations can vary considerably among systems, SEPRB representation is divided into
mandatory and discretionary categories. The SAE must appoint representatives from mandatory stakeholders, but
can include discretionary stakeholders as appropriate to the software engineering plan to be reviewed.

For systems subject to Milestone Decision Authority (MDA) at the service level or in the Office of the
Secretary of Defense, the mandatory list of stakeholders and peer reviewers includes the following:

1. The PEOs (senior product-line officials) responsible for both development and post-deployment
support for the candidate system and closely related systems;

2. Management and technical officials responsible for maintenance of the systems being specified or

developed;

Representatives from user organizations, as appropriate;

Peer program managers with related software engineering management experience; and

5. Program managers for the system being specified, developed, or re-engineered (stakeholders, but
reviews rather than reviewers).

> w

The discretionary list of stakeholders depends on the characteristics of the system being developed, but could
include the following:

1. Program managers for development and support of critical related systems that must interoperate with
or are otherwise closely affected by the system under review;

2. Representatives of the DOD community who have specific technical expertise and cognizance of
emerging technologies;

3. Representatives of other program executive offices, program offices, or other components that are
responsible for key common architectural frameworks; and

4. Representation, where appropriate, from the Office of the Secretary of Defense or the Joint Chiefs of
Staff.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 59

Approval Authority and Milestones

For systems subject to MDA, approval authority for the process resides with the Assistant Secretary of
Defense (C3I) or the SAE, depending on the class of system. The direct management of the SEPR process would
be carried out by the SAEs and their associated SEOs, with possible delegation to the PEO level. But the actual
approval authority should not be delegated beyond the SAE. The Assistant Secretary of Defense (C3I) would
monitor the review process.

When significant deviations are needed from DOD's stated policy and principles, direct approval of the
Assistant Secretary of Defense (C3I) may be required; this should be determined when approval authority is
delegated to the SAEs. It is the intent of these recommendations, however, that policy be framed with sufficient
flexibility and outlook to the future that such deviations are not required in the ordinary conduct of business. It is
also the intent that implementation be delegated to a level sufficient to ensure in depth review of software
engineering decisions. SEPRs are ongoing processes, with specific approvals pertinent to specific milestones.
SEPRs must be linked, at a minimum, to DAB and MAISRC Milestones I and II.

Many smaller systems are subject to DOD software engineering policy, but not to MDA. For these systems,
approval authority resides with the SAE, but there is flexibility with respect to delegation and the need for formal
SEPRs. Normally, the SAE can delegate approval authority to a PEO or, for very small systems, to a major
command. In the latter case, approval can be granted for a family of related small systems as a result of a software
engineering plan for a single product-line. But the committee suggests that for non-MDA systems, the decision to
conduct a formal SEPR process (or some more expedient process) be required for warfighting software, and be a
recommended practice at the discretion of the approval authority for other software.

Given that the Director of Defense Research and Engineering (DDR&E) is responsible for advanced (6.3a)
research, the committee recommends that the DDR&E establish a software engineering review process that
addresses issues pertinent to the efficient transition of software technologies associated with major 6.3a
demonstration programs, including plans to modify prototype 6.3a software to conform to the committee's
recommended policy on selection of programming language, as appropriate. The review criteria, which would be
at the discretion of the DDR&E, would not need to use the SEPR process, thus enabling the DDR&E to manage
the trade-off between efficient transitions, on the one hand, and responsiveness and flexibility of research
programs to the emergence of new technologies and concepts, on the other.

Submission of Software Engineering Plans

As envisioned by the committee, the SEPR process requires program managers responsible for MDA system
specification, development, and major re-engineering efforts to submit a software engineering plan, preceded by a
request to the SAE to convene a SEPRB. The SAE, considering the recommendations of the program manager and
the cognizant PEO, would then select stakeholder organizations, which appoint representatives. For smaller
systems, the SAE and PEO roles are further delegated, as indicated above.

It is the committee's intent that the approval authority would work with the SEPRB and the program manager
to develop a software engineering plan suitable for the project and in conformance with all DOD policies. No entry
into the DAB Milestone I and II reviews could be initiated without concurrence of the approval authority. Criteria
used for evaluation of the software engineering plan should be defined by the approval authority.

The software engineering plan should be a simple document® and should cover areas relevant to the decision
process, including the following:

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

IMPLEMENTATION OF RECOMMENDED DOD SOFTWARE POLICY 60

» The system's scope and concept of operation;

* The key system and software requirements, including stakeholder needs;

» The key elements of the system and software architecture, including programming language decisions;

* The system and software life-cycle plans, including increments, budgets, and schedules; and

* A rationale demonstrating that the software can be developed within the budget and schedule specified in
the life-cycle plan, can satisfy the requirements and key stakeholder needs, and can successfully support
the concept of operation.

The SEPR approval authority, in consultation with PEO and program manager representatives, would develop
specific criteria to be reviewed. The criteria for review could include, for example:

» System structural architecture, partitioning the system into components;

» Differentiation of key architecture requirements from secondary features and capabilities;

* Nature and extent of compliance of the architectural plan with related open-architecture and DOD
framework common interfaces;

* Definition of increments and completion criteria (e.g., design to cost);

* Cost and risk management;

» Risk management plan designed into early releases;

* Metrics for indicating progress and measuring completion of milestones;

* Major milestone content, evaluation criteria, and demonstration scenarios; and

* Basis for decisions to make, buy, or reuse components (see below).

For each subsystem or component in the system, the following areas should be addressed:

* Availability of COTS products, non-developmental items, and other existing or reusable components;

* Appropriateness of new development;

* Appropriateness of new development for reuse (capitalization) in related systems;

* Potential for reuse or insertion into other related systems-incentives can be established by additional
resources provided by the PEO;

* Use of tooling and generators for development, and status of the tooling and generators;

* Degree of compliance with related interface or framework standards;

* Maintenance responsibility (government, contractor, or commercial); and

» Choice of programming language, subject to the recommended policy in Appendix A.

Software Engineering Codes

As experience is gained, SAEs, PEOs, and other stakeholders will develop service-specific or domain-
specific refinements of the review criteria listed in the previous section. For example, a service may designate
conformance with a common architectural framework as a review item. These refinements may attain the status of
software engineering "codes" (analogous to building codes) particular to a service or PEO product-line. These
would serve as "best-practices" documents that would necessarily evolve over time, according to requirements and
technology developments. They would also enable program managers to develop expectations concerning the
SEPR process on the basis of their conformance with such codes.

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

Qo
e
o
=]
=
=
)
2
©
(2]
X
©
)
2
o
)
o))
©
o
o
Q
&=
o))
C
£
Q
N
Q
o
>
=
®©
£
2
=
o
)
L
=
€
o
2
=
-
o
c
X
o]
o
o
<
o
Q
®©
Q
©
£
2
=
o
)
<
=
£
o
o
=
o
Q
L
®©
)
I
)
0
Q
=
-
=
x
€
o
2
&
°
@
0
o
o
€
o
o
)
2
c
)
o)
o
o)
© .
< c
x~ §e]
= =
o =]
£83
— =
S8
25 5
= [
o c
o §e]
s 0B
o~
682
c
sz
T o
= —
%
» e L
o35
Q. @®©
o o
— o
(0] -—
8
53
2T 5
B9
2 ©
RS
L ol
P =
~ Q
[} 5]
= =
=
K E©
c
o558
= 7}
c &a
=)
562
o c
o] =
< a

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

O
2
(0]
>
2
E
0]
o
©
(2]
X
©
(O]
o
Q0
(0]
(o))
©
o
»
o
2
()]
C
=)
[0}
%]
(]
o
>
Z
T
<
o
2
o
(0]
e
<
£
(@]
<)
£
=
o
c
<
o
o
Q0
c
]
Q.
®
o
©
£
o
2
(@]
(0]
e
£
£
o
S
£
ke
(]
2
®©
(0]
o
o
(2]
o
2
-
=
<
£
[e]
<
£
©
Q
%]
o
Q.
£
(o]
[&]
(0]
e
c
[0}
(]
Q0
2]
©
e
x
=
o
2
©
£
o
2
(o]
(0]
e
£
bt
(@]
c
S
2
©
ko
c
[0}
%]
(0]
o
(o8
]
g}
I
=
o
©
z
(0]
c
@
o
'_
s
2
[T
[a]
o
@
<
<
=
>
o
Q
<

[}
=
=
©
(2]
]
©
(2]
©
o
o
o
9}
g
@
(2]
£
>
©
I
c
[}
S
Q
[&]
©
c
[}
o}
el
[
>
®©
e
>
@©
IS
2]
&2
S
2
£
5}
L
e
Q.
©
o
o)
o
o
>
2
©
£
o
2]
©
c
©
o
o}
£
©
3
15
2
©
el
=
o
c
c
o4
o
-
9
>
[
2
o
=
=)
c
£
©
£
£
S
L
o
=
[8]
@
Q.
Q@
o
c
£
©
(2]
[}
o
>
2
=
[}
e
=
o
©
c
©
73
2
>
2
2]
[®)]
£
S
©
[}
e
%)
X
©
o
2
o)
°
2
)
E
%)
K =
=
=)
c
@
[}
£
©
£
2
=
s}
©
e
=

c
iel
=

=]
o
=
&=

©
=
Rel

c
el

2]

2

[

>

()
=
=

©
I
=

e}
K=
S

>

®©
©
=
£

2]

©

c

s}
2

©
L
Qo

]

o
k2]
e
S
=

o

c
el

2]

2

[

>
-

c
=

S

e Department of Defense

NOTES 61

NOTES

1. This section and Appendix A present similar material in different formats. Appendix A was prepared by the committee to serve as a
proposed revision to DOD Directive 3405.1 (DOD, 1987a); this section discusses the principles and rationale underlying the committee's
suggested changes to that policy document.

2. The committee recommends using the term "software engineering plan reviews" rather than "architecture reviews" to emphasize the
importance of integrating plans for products (i.e., architecture or building plan) with plans for process (e.g., increments, milestones,
budgets).

3. The life-cycle objectives and life-cycle architecture milestones introduced in Boehm (1996) provide guidelines for the level of detail of a
software engineering plan desired at DAB and MAISRC Milestones I and II.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED STRATEGY FOR INVESTMENT IN ADA 62

5

Implementation of Recommended Strategy for Investment in
Ada

This chapter describes the committee's recommended $15 million annual investment strategy for Ada in the
context of the focus on use of Ada for DOD's warfighting software. The components of the strategy are
maintaining and enhancing the Ada 95 language; ensuring support for Ada's compilers, tools, and application
programming interfaces (APIs) for warfighting systems; stimulating Ada education and curriculum development;
and providing support for a centralized source of Ada information and expertise within DOD. The chapter
concludes by providing a detailed plan and funding breakdown for the recommended investments in Ada.

GOALS OF THE INVESTMENT STRATEGY

It is important to state explicitly what the goals of the proposed investment and procurement strategy for Ada
are, and what they are not. Using Ada benefits DOD mainly because of the language's orientation toward
reliability. Ada's features are designed to maximize the chance that a coding error will be detected at compile-
time, and failing that, at run-time. As illustrated in "Technical Evaluation of Ada 95 and Other Third-Generation
Programming Languages" in Chapter 2, Ada is ahead of languages such as C and C++ in that it provides strong
support for compile-time and run-time consistency checking. Although other languages may approach Ada in their
ability to check reliability and consistency, no other third-generation programming language (3GL) has achieved
comparably widespread use for critical (high-assurance, and often real-time) systems.

The first goal is to ensure that Ada tools for critical warfighting software development are superior to those
in other languages. This is at the heart of the strategy to keep Ada competitively superior for the development of
warfighting software systems. It involves a proactive strategy of seeking out and expediting (via complementary
funding) development of such tools for the commercial marketplace.

The second goal is to ensure that robust Ada compilers and associated tools for host and target computers
used in DOD's warfighting systems remain available and reasonable in cost. It is not a goal

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED STRATEGY FOR INVESTMENT IN ADA 63

to make Ada compilers as inexpensive or ubiquitous as C compilers. The strategy recognizes that a compiler for a
reliability-oriented language like Ada, with large numbers of compile-time and run-time consistency checks, will
inevitably be larger and more expensive to develop and maintain than other 3GL compilers. A reasonable target
would be for a production-quality Ada compiler to be available at a price comparable to the cost of a production-
quality C compiler, plus additional production-quality third-party compile-time and run-time checking tools for C
(for example, a "lint"-like tool and a "purify"-like tool). The strategy also recognizes that any compiler for an
embedded system with associated robust cross"debugging" support and integration with an appropriate real-time
executive will be more expensive than a personal computer (PC) native compiler. It is not expected that Ada
cross-compilers will ever match the price of off-the-shelf PC native compilers.

For similar reasons, it is not a goal that Ada become the predominant programming language for commercial
programming. For critical systems programming, Ada already has a significant market share. Nevertheless, this is a
relatively small marketplace, and DOD is a major player, meaning that it will have to continue to invest in the
market for tools that support the development of critical systems.

The third goal is to ensure that an Ada-compatible interface is readily available for all off-the-shelf software
components used in DOD's warfighting systems. Such systems include relevant database management systems,
operating systems, real-time executives, and networking packages. It is not a goal that such components
necessarily be written in Ada.

The fourth goal is that more educational institutions provide exposure to Ada concepts in the context of a
software engineering curriculum, particularly in courses covering critical systems development. It is not a goal
that Ada become the predominant teaching language (though Ada has advantages for teaching because of its
readability and consistency checking). Rather, the goal is to increase the exposure to and use of Ada in the
educational environment, thereby increasing the pool of programmers familiar with Ada and reducing the ultimate
training costs for DOD's contractor community.

A related goal is to increase the use of Ada in software engineering research, which will enhance the Ada
technology base for warfighting systems, as well as increase exposure to and understanding of Ada in the
academic and research communities. It is not suggested that all DOD-sponsored research use Ada or that all DOD
research prototypes be written in Ada. Rather, it is recommended that critical systems software research emphasize
Ada's use, that more research programs include Ada in the set of languages they consider, and that an increased
number of advanced technology tools support Ada in addition to other languages that are supported.

The final goal relates to centralized support and infrastructure for DOD 's use of Ada. DOD can continue to
benefit from using Ada for its critical systems, but the benefits will be offset by other cost increases if each project
needs to maintain its own support infrastructure for Ada. By continuing to support a centralized organization like
the Ada Joint Program Office, even if its mission is redirected toward ongoing support rather than product
development, DOD can achieve economies of scale. It is not suggested that such an organization directly support
the development of new Ada compilers. Rather, it is emphasized that a centralized organization is necessary to
provide expertise, resource directories (such as the World Wide Web site supported by the Ada Joint Program
Office), technology management, and technology transition.

ADA INVESTMENT STRATEGY

DOD can benefit from providing ongoing support for Ada technology by building on its significant
investment in Ada 83, and the Ada 95 revision. In addition, DOD should use its leverage as a large customer for
commercial hardware and software products to expand the availability of commercial tools and components that
support Ada, which would help the Ada market become more self-sustaining.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED STRATEGY FOR INVESTMENT IN ADA 64

Continued investment by DOD is required in the following areas:

1. Supporting the continued maintenance of the Ada 95 language, and the enhancement of Ada-related
secondary standards in areas relevant to defense systems;

2. Ensuring that, for all DOD warfighting systems, hardware has robust Ada compiler and tool support,
commercial off-the-shelf (COTS) software has Ada-compatible APIs, and Ada tools for critical
warfighting software are superior to those in other languages;

3. Providing support for the continued development of curricula related to Ada and software engineering
in the nation's colleges and universities, particularly in the area of critical systems; and

4. Funding a centralized DOD source of information and expertise on Ada and related software
engineering technologies.

Each area is discussed in more detail below.

Language Maintenance and Enhancement

The Ada 95 standard requires ongoing support. Parts of the standard require interpretation, implying the need
for a group of experts to meet periodically to resolve these issues. Any large software system will develop
unanticipated requirements for improvement as its use becomes widespread, and Ada 95 is no exception. In
addition, advanced areas such as security, distribution, or persistence require ongoing development of "secondary"”
standards and accompanying validation test suites to systematize the best way to use Ada in these areas. For Ada,
there is an International Organization for Standardization working group (ISO WG9), which has a number of
"rapporteur" groups that coordinate these maintenance and secondary standardization tasks. Funding of these
groups is essential to make their activities effective and timely, and DOD must provide some of the critical funding
to keep these groups active. Even in the area of compiler validation, where the Commerce Department's National
Institute of Standards and Technology is now providing a nominal level of support, DOD may find it necessary to
provide funding to ensure that its high-priority needs are met in a timely manner.

Support for Ada Compilers, Tools, and Application Programming Interfaces

Ada 95 is a technically successful revision of Ada 83. Like all standards, however, it needs "champions" for
its adoption, since there are always costs involved in adopting a standard or revision. Now that the Ada 95 revision
is complete, the user and supplier communities must be given incentives to adopt the standard. Although DOD is
no longer a dominant player in the software market, it is still a large customer, and arguably the primary customer
for critical systems. Any major customer can establish incentives to motivate its suppliers to support a preferred
standard; in order for DOD to play this role for its critical warfighting systems, it must emphasize the importance
of providing support for Ada compilers and tools, and for Ada APIs for warfighting software applications. DOD
should similarly use its market power to make it possible to tailor a warfighting system to operate efficiently in
Ada, even if the original system was built largely using COTS components or non-Ada technologies. This means
that DOD should require that all components included in DOD warfighting software have a demonstrable, full-
function, Ada-callable interface. For example, all operating systems used in DOD warfighting systems should
include an Ada-callable interface, sufficient for exercising all capabilities of the operating system necessary for
warfighting systems. The Ada-callable interface must be kept up to date by the operating system supplier; in order
for a capability to be considered acceptable for delivery, it

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED STRATEGY FOR INVESTMENT IN ADA 65

must be accessible via Ada. Similarly, a hardware device that is controlled by software should be delivered with a
demonstrable Ada-callable interface before it is accepted for a DOD warfighting system.

Another incentive to encourage use of Ada is to ensure that all computers used for developing DOD
warfighting software include an Ada compiler at a price and quality comparable to those of other compilers. The
criteria for choosing a computer for hosting software development should include the availability, price, and
quality of the Ada compiler. This will help to ensure that hardware vendors wishing to sell in the DOD warfighting
systems marketplace make certain that there is a high-quality, reasonably priced Ada compiler on their platform.
Warfighting systems procurements should stipulate that Ada compilers be available at the same time the
equipment is available, rather than months or years later. This approach will ensure that Ada development remains
viable on hardware platforms relevant to DOD.

For Ada to be a viable option for a given system, appropriate Ada compilers and associated tools must be
available for the relevant host and target hardware. In the mid 1980s, most hardware vendors made an effort to
ensure that an Ada compiler and associated tools existed for their hardware. Recently, however, the burden seems
to have shifted from the hardware vendors to the individual system development contractors. The linkage between
purchasing hardware and compiler availability seems to have been lost.

In addition to robust support for compilers, Ada-compatible APIs to relevant COTS software components are
also important to make the use of Ada cost-effective. As in the hardware area, the linkage between selling software
components to DOD and providing appropriate Ada support seems to have been lost. For example, rather than
requiring that database management systems for warfighting software systems come with an Ada-compatible
interface, the burden seems to have shifted to individual contractors to acquire or develop such interfaces. Because
COTS software products are being continually enhanced, this approach is even less satisfactory than in the
hardware area.

Providing multilingual interfaces to COTS software products is now done as a matter of course. As with
hardware, software vendors who wish to compete for DOD warfighting systems business should recognize that
including Ada among the languages supported is a normal cost of doing business. The cost of including an Ada-
compatible interface is relatively small. With the advent of multilingual interface standards such as CORBA IDL,!
this proposed requirement becomes even more practical. On the other hand, when the burden of providing an
Ada-compatible interface is left to individual contractors, the cost is greater, particularly given the need to keep up
with ongoing enhancements.

DOD should re-create this linkage between robust Ada compiler and tool support and the choice of hardware.
Hardware vendors who wish to compete for DOD warfighting systems procurements should see the provision of
appropriate Ada support as a requirement, in the same way that hardware vendors have recognized the need to
provide a POSIX-compliant” operating system to satisfy DOD's open systems requirements.

As defined in Chapter 2, "warfighting systems" are the high-assurance, performance-critical portions of
systems for weapon control, electronic warfare, wideband real-time surveillance, real-time battle management, and
special battlefield communications. The Ada support requirements recommended above apply only to hardware
and software vendors choosing to support such systems. Examples of Ada tools that support critical warfighting
software engineering include Ada-oriented tools for real-time and fault-tolerant software; tools for software
reliability, availability, survivability, security, and safety assurance; tools to facilitate effective use of Ada 95's
new, object-oriented, real-time, and distributed system capabilities for warfighting systems; and Ada-oriented
tools for special warfighting applications domains (e.g., real-time distributed avionics systems test, debugging, and
performance tuning).

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED STRATEGY FOR INVESTMENT IN ADA 66

Curriculum Development

For the past several years, the Ada Joint Program Office has provided support for the development of Ada-
based curriculums at a number of U.S. colleges and universities. This has contributed to the growing number of
colleges and universities that include Ada and software engineering in their computer science programs. As
discussed in Chapter 1, the number of courses in Ada and in software engineering has increased recently, but there
are still many colleges and universities that provide little or no exposure to the kinds of software challenges faced
in the development of complex critical systems. One of the frequent concerns of defense contractors has been the
availability of well-trained software engineers. Since DOD's investments in Ada curriculum development seem to
have assisted in such training, the grants for this purpose should continue. An effort to distribute the grants
geographically is advisable, to ensure that Ada instruction is available in areas where DOD warfighting systems
are developed.

In addition to supporting Ada-related curriculum development, DOD should ensure that some portion of its
software research budget is focused on enhancing the Ada technology base. A growing number of tools and
techniques are being investigated in the research community for enhancing the productivity and quality of software
development. Whether these tools are actually written in Ada is not particularly relevant to DOD. What is
relevant, however, is whether these tools can be used to support systems with components written in Ada. With the
availability of the GNAT compiler in source code (for details, see Chapter 1), there are fewer obstacles to the use
of Ada as a vehicle for research in programming languages and programming support tools.

In keeping with the competitive strategy recommended in earlier chapters, this investment package should
place a high-priority on Ada-based research and curriculum development for software needs in warfighting
application domains (e.g., for real-time, high-assurance software).

Centralized Support Organization

In testimony provided to the committee, the importance of a centralized organization to support Ada and
related software engineering technologies was repeatedly stressed. The Ada Joint Program Office has served this
function over the past decade. While it is not the role of this committee to recommend the disposition of this
function, it may be appropriate to consider transferring executive responsibility to a higher-level organization with
cognizance over warfighting software, such as the Office of the Assistant Secretary of Defense (C3I) or the
Undersecretary of Defense (Acquisition and Technology). With regard to choosing a support organization, it is
worth noting that Ada is one of several software technologies important to defense systems. Thus, combining
support for Ada with support for other important software technologies might save resources and provide better
service overall.

DETAILED PLAN FOR INVESTMENTS IN ADA TECHNOLOGY AND SUPPORT

Chapter 3 presented the argument that if Ada 95 is well supported, it could create a significant warfighting
competitive advantage for DOD. The committee recommends the following investment strategy to help bring this
about. The overall $15 million annual budget needed for ongoing enhancement of Ada-related technology, and
ongoing support for the effective use of Ada within the DOD community, can be divided into two major areas. The
first is for funding contracts with organizations outside DOD. The second area is for funding the ongoing activities
of a centralized support organization within DOD oriented toward programming languages.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

IMPLEMENTATION OF RECOMMENDED STRATEGY FOR INVESTMENT IN ADA 67

The total annual budget of $11.5 million for contracts should be allocated as follows:

» Education contracts for Ada and software engineering curriculum development:
$1.5 million, based on approximately 20 awards at $75,000 each;
* Application programming interface binding development and maintenance:
$1.0 million, based on approximately 5 awards at $200,000 each;
* Expert consultation to support language maintenance and evolution:
$0.6 million, based on approximately 15 part-time experts at $40,000 each;
* Maintenance and enhancement of validation suites:
$0.4 million, based on approximately 2 awards at $200,000 each; and
* Development of warfighting-critical tools and technology:
$8.0 million, based on approximately 15 fully funded academic/research-oriented awards averaging
$200,000 each, and 20 co-funded industry/development-oriented awards averaging $250,000 in DOD
funds each.

The annual budget of $3.5 million for a centralized support organization should be distributed as follows:

* Compliance monitoring to identify gaps in technology that are hindering compliance and to identify
possible remedies:
$0.5 million;
* Support of an information clearinghouse and a World Wide Web home page:
$1.0 million;
* Development of DOD-oriented education and training materials, Ada 83/Ada 95 transition support and
tools, and technology insertion:
$1.0 million; and
* Metrics on programming language usage, cost-effectiveness, performance, and defect rates; collection,
analysis, and dispersal of the information:
$1.0 million.

As stated above, it is important to emphasize that these are not one-time investments, but rather continuing
investments to maintain and enhance the effectiveness of Ada for DOD. It is also important to recognize that this
$15 million annual DOD investment is designed to expedite desired capabilities by leveraging the existing $200
million annual Ada market. It does not represent the entire investment required for Ada support.

CONCLUSION

If DOD continues to specify Ada as the preferred programming language—for any application domains—it is
essential that it make investments such as those outlined in this chapter. The only other sources of Ada support are
individual projects, and burdening them would be inefficient, duplicative, and a major disincentive for projects to
use Ada. From a vendor's standpoint, it would put Ada into the same narrow niche as Jovial, which has very little
support for compilers, tools, bindings, and run-time applications.

Furthermore, failure to make the relatively modest level of investment described above would imperil the
existing body of Ada code for DOD's weapon systems. Independent of the question of future systems
development, the legacy of developed Ada code requires a robust development community. The

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

O
2
(0]
>
2
E
0]
o
©
(2]
X
©
(O]
o
Q0
(0]
(o))
©
o
»
o
2
()]
C
=
[0}
%]
(]
o
>
Z
T
<
o
2
o
(0]
e
<
£
(@]
<)
£
=
o
c
<
o
o
Q0
c
]
Q.
®
o
©
£
o
2
(@]
(0]
e
£
£
o
S
£
ke
(]
2
®©
(0]
o
o
(2]
o
2
-
=
<
£
[e]
<
£
©
Q
%]
o
Q.
£
(o]
[&]
(0]
e
c
[0}
(]
Q0
2]
©
e
x
=
o
2
©
£
o
2
(o]
(0]
e
£
bt
(@]
c
S
2
©
ko
c
[0}
%]
(0]
o
(o8
]
g}
I
=
o
©
z
(0]
c
@
o
'_
s
2
[T
[a]
o
@
<
<
=
>
o
Q
<

[}
=
=
©
(2]
]
©
(2]
©
o
o
o
9}
g
@
(2]
£
>
©
8
c
[}
S
Q
[&]
©
c
[}
o}
el
[
>
®©
e
>
@©
IS
2]
&2
S
2
£
5}
L
e
Q.
©
o
o)
o
o
>
2
©
£
o
2]
©
c
©
o
o}
£
©
3
15
2
©
el
=
o
c
c
o4
o
-
9
>
[
2
o
=
=)
c
£
©
£
£
S
Ne)
o
=
[8]
@
Q.
Q@
o
c
£
©
(2]
[}
o
>
2
=
[}
e
S
o
©
c
©
73
2
>
2
2]
[®)]
£
S
©
[}
e
%)
X
©
o
2
o)
°
2
)
E
%)
K =
S
=)
c
@
[}
£
©
£
2
=
s}
©
e
s

c
iel
=

=]
o
=
&=

©
=
Rel

c
el

2]

2

[

>

()
=
=

©
I
=

e}
K=
S

>

®©
©
=
£

2]

©

c

s}
2

©
L
Qo

]

o
k2]
e
=
=

o

c
el

2]

2

[

>
-

c
=

S

e Department of Defense

NOTES 68

economic analysis presented in Chapter 3 shows that the cost savings from maintaining this legacy code alone are
sufficient to justify the recommended $15 million annual investment in Ada. But even further, as discussed in the
business-case analysis, the investment provides DOD with a key competitive advantage in warfighting software to
more completely achieve its objective of military information dominance.

NOTES

1. Common object request broker architecture interface definition language.

2. Portable Open Systems Interface.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
=
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
2
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
8
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
-
=1
o
kel
<

[}
=
=
©
(2]
=}
©
(2]
©
o
o
o
9}
g
@
(2]
£
>
©
8
C
[}
S
Q
[&]
©
C
[}
o}
o)
[
>
®©
<
>
@©
IS
(2]
&2
S
2
£
5}
L
e
Q.
[0
o
(2]
o
o
>
2
®
IS
o
(2]
©
c
©
o
o}
£
©
3
15
2
©
feo)
=
o
o
C
o4
[&]
-
9
>
[
2
o
=
=)
c
£
©
£
£
S
Ne)
o
=
[8]
@
Q.
Q@
(®)]
£
=
=]
©
(2]
[}
Qo
>
2
=
[}
<
S
o
©
C
©
7
2
>
2
2]
[®)]
£
S
©
4}
e
%)
X
©
o
2
o)
°
2
)
s
%)
<
s
[®)]
c
@
[}
£
©
£
2
=
s}
®
<
s

o
iel
=
>3
2
=
5
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
I
i=
e}
e
S
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=
=
s}
c
el
2]
o
[
>
-
c
=
S

he Department of Defense

BIBLIOGRAPHY 69

Bibliography

Aerospace Industries Association (AIA). 1996. "AIA Position Statement on Ada." Unpublished manuscript. AIA, Washington, D.C., July 12.

Aley, James. 1996. "Give It Away and Get Rich." Fortune, June 10, p. 98.

AT&T. 1993. "Best Current Practices: Software Architecture Validation." AT&T, Murray Hill, N.J.

Boehm, Barry. 1981. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, N.J.

Boehm, Barry, and W.E. Royce. 1988. "TRW IOC Ada COCOMO: Definition and Refinements." Proceedings of the 4* COCOMO Users
Group, Pittsburgh, Pa., November.

Boehm, Barry. 1996. "Anchoring the Software Process." IEEE Software, Vol. 13, No. 4, July, pp. 73-82.

Boehm, Barry, et al. 1996. "The COCOMO 2.0 Software Cost Estimation Model: A Status Report." American Programmer, Vol. 9, No. 7,
July, pp. 2-17.

Booch, Grady. 1987. Software Engineering with Ada, Third Edition, Chapter 3: "The History of Ada's Development." Benjamin/Cummings,
Menlo Park, Calif.

Brooks, Jr., Frederick P. 1986. "No Silver Bullet-Essence and Accidents of Software Engineering." Information Processing 86, pp. 1069-1076.
(Reprinted in /EEE Computer Magazine, April 1987.)

Brown, Norm. 1996. "Industrial Strength Management Strategies." IEEE Software, Vol. 13, No. 4, July, pp. 94103.

Carleton, Anita D., et al. 1992. "Defining and Using Software Measures." Software Engineering Institute Technical Reports, CMU-SEI-
TR-11, 19-23. Software Engineering Institute, Pittsburgh, Pa.

Computer Science and Telecommunications Board (CSTB). 1989. Scaling Up: A Research Agenda for Software Engineering. National
Academy Press, Washington, D.C.

CTA. 1991. "Survey and Analysis of Productivity and Cost Data on Ada and C++ Software Development Programs." CTA Incorporated,
Burlington, Mass., June 26.

Department of Defense (DOD). 1976. Directive 5000.29, "Management of Computer Resources in Major Defense Systems." April 26.

Department of Defense (DOD). 1987a. Directive 3405.1, "Computer Programming Language Policy." April 2.

Department of Defense (DOD). 1987b. "Military Software." Defense Science Board Task Force on Military Software (Frederick P. Brooks,
Jr., Chair), Office of the Under Secretary of Defense for Acquisition, DOD, Washington, D.C., September.

Department of Defense (DOD). 1991. "Draft DOD Software Technology Strategy." Director of Defense Research and Engineering, DOD,
Washington, D.C., December.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
=
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
2
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
8
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
-
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0]

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

(0]

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
e

@®

(0]
e

)
X

©

o

=
o)
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
5
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
I
i=
e}
e
S
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

he Department of Defense

BIBLIOGRAPHY 70

Department of Defense (DOD). 1992. "Delegations of Authority and Clarifying Guidance on Waivers from the Use of the Ada Programming
Language." April 17.

Department of Defense (DOD). 1994a. "Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially."
DOD, Washington, D.C., June.

Department of Defense (DOD). 1994b. "Specifications and Standards: A New Way of Doing Business." June 29.

Department of Defense (DOD). 1995a. "New World Vistas: Air and Space Power for the 21 Century. Information Technology Volume." Air
Force Scientific Advisory Board, Washington D.C.

Department of Defense (DOD). 1995b. "Dual Use Technology: A Defense Strategy for Affordable, Leading-Edge Technology." Under
Secretary of Defense for Acquisition and Technology, DOD, Washington, D.C., February.

Department of Defense (DOD). 1995¢. "ARPA Software Review Panel-Final Report." DOD, Washington, D.C., October.

Department of Defense (DOD). 1996a. "Practical Software Measurement Version 2.1." Joint Logistics Commanders, Joint Group on Systems
Engineering, DOD, Washington, D.C., March 27.

Department of Defense (DOD). 1996b. Directive 5000.1, "Defense Acquisition." February 21.

Department of Defense (DOD). 1996¢. Regulation 5000.2-R, "Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and
Major Automated Information System (MAIS) Acquisition Programs." March 15.

Department of Defense (DOD). 1996d. "Joint Warfighting Science and Technology Plan." Office of the Secretary of Defense, DOD,
Washington, D.C., May.

Druffel, Larry. 1993. "Ada Position Paper." Unpublished manuscript, December 1.

Emery, James C., and Martin J. McCaffrey. 1991. "Ada and Management Information Systems: Policy Issues Concerning Programming
Language Options for the Department of Defense." Naval Postgraduate School, Monterey, Calif., June.

Emery, James C., and Dani Zweig. 1993. "The Use of Ada for the Implementation of Automated Information Systems Within the Department
of Defense." Naval Postgraduate School, Monterey, Calif., December 28.

Feigenbaum, Edward. 1996. "The Ada Mandate." Unpublished manuscript, Chief Scientist, U.S. Air Force.

Feldman, Michael B. 1996. "Ada as a Foundation Programming Language." Available on-line at http://www.seas.gwu.edu/faculty/mfeldman/
CS 1-2.html#2.

Fisher, D.A. 1976. "A Common Programming Language for the Department of Defense-Background and Technical Requirements." Report
P-1991. Institute for Defense Analyses, p. 6. (Cited by G. Booch in Software Engineering with Ada, Third Edition, 1987, p. 9.)

Fisher, David. 1974. "Automatic Data Processing Costs in the Defense Department." IDA Paper P-1046. Institute for Defense Analyses,
Alexandria, Va., October.

Frazier, Thomas P., and John W. Bailey. 1996. "The Costs and Benefits of Domain-Oriented Software Reuse: Evidence from the STARS
Demonstration Projects." IDA Paper P-3191. Institute for Defense Analyses, Alexandria, Va., June.

General Accounting Office. 1989. "Programming Language: Status, Costs, and Issues Associated with Defense's Implementation of Ada."
GAO/IMTEC-89-9. General Accounting Office, Washington, D.C., March.

General Accounting Office. 1991. "Programming Language: Defense Policies and Plans for Implementing Ada." GAO/IMTEC-91-70BR.
General Accounting Office, Washington, D.C., September.

General Accounting Office. 1993. "Software Reuse: Major Issues Need to Be Resolved Before Benefits Can Be Achieved." GAO/
IMTEC-93-16. General Accounting Office, Washington, D.C., January.

Giallombardo, Robert J. 1992. "Effort and Schedule Estimating Models for Ada Software Development." MTR 11303. MITRE Corporation,
Bedford, Mass., May.

Hook, Audrey A., et al. 1991. "Availability of Ada and C++ Compilers, Tools, Education and Training." IDA Paper P-2601. Institute for
Defense Analyses, Alexandria, Va., June 12.

Hook, Audrey A., et al. 1995. "A Survey of Computer Programming Languages Currently Used in the Department of Defense." IDA Paper
P-3054. Institute for Defense Analyses, Alexandria, Va., January.

Horowitz, Barry. 1991. "The Importance of Architecture in DOD Software." M91-35. MITRE Corporation, Bedford, Mass., July.

IBM Federal Systems Division. 1985. "Language Selection Analysis Report." FAA-85-S-0874. Prepared for the Federal Aviation
Administration, Gaithersburg, Md., May.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
=
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
2
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
8
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
-
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0]

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

(0]

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
e

@®

(0]
e

)
X

©

o

=
o)
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
5
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
I
i=
e}
e
S
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

he Department of Defense

BIBLIOGRAPHY 71

IIT Research Institute (IITRI). 1996. "Catalog of Resources for Education in Ada and Software Engineering, Version 8.0." Prepared for the
Ada Joint Program Office, Arlington, Va., January.

Jensen, L.W., and S. Lucas. 1983. "Sensitivity Analysis of the Jensen Software Model." Hughes Aircraft Co., Los Angeles, Calif.

Jones, Capers. 1994. "The Economics of Object Oriented Software." American Programmer, Vol. 7, No. 10, October, pp. 28-35.

Jones, Capers. 1995. "Backfiring: Converting Lines of Code to Function Points." Computer, Vol. 28, No. 11, November, pp. 87-88.

Jones, Capers. 1996a. "Estimating and Measuring Object-Oriented Software." Unpublished manuscript, February 1.

Jones, Capers. 1996b. "The Economic Impact of the Year 2000 Software Problem in the United States-Version 2." Software Productivity
Research Inc., Burlington, Mass., February 22.

Jones, Capers. 1996c¢. "Programming Languages Table, Version 8.2." Software Productivity Research Inc., available on-line at http:/
www.spr.com/library/langtbl.html.

Jones, Capers. 1996d. "Using Function Points to Evaluate CASE Tools, Version 4." Software Productivity Research Inc., Burlington, Mass.,
August 6.

Landry, Huet C. 1996. "Comments on Ada Mandate." Unpublished manuscript, Defense Information Systems Agency/JEBEB, Software
Engineering Standards.

Lawlis, Patricia K. 1996. "Guidelines for Choosing a Computer Language: Support for the Visionary Organization." C.J. Kemp Systems Inc.,
March.

Lubashevsky. 1996. ""Backfire' Will BACKFIRE." Measure Up. Software Productivity Solutions Inc., Indiatlantic, Fla., January, pp. 1-6.

Maranzano, Joe. 1995. "System Architecture Validation Review Findings." AT&T Software Technology Center, April.

Masters, Michael W. 1996. "Programming Languages and Life-Cycle Cost." Naval Surface Weapons Center, Dahlgren, Va., March 18.

McGarry, Frank, et al., 1994. "Software Process Improvement in the NASA Software Engineering Laboratory." CMU SEI-94-TR-22. Software
Engineering Institute, Pittsburgh, Pa., December.

Mosemann, Lloyd K. 1991. "Ada and C++: A Business-Case Analysis." Deputy Assistant Secretary of the Air Force, Washington, D.C., July
9.

National Academy of Engineering. 1996. Defense Software Research, Development and Demonstration: Capitalizing on Continued Growth in
Private-Sector Investment. National Academy Press, Washington, D.C., March.

National Research Council. 1995. Research-Doctorate Programs in the United States: Continuity and Change. National Academy Press,
Washington, D.C.

Paulk, Mark C., et al. 1993. "Capability Maturity Model for Software, Version 1.1." CMU/SEI-93-TR-24. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., February.

Perry, William. 1996a. "National Academy of Engineering, Bueche Prize Acceptance Address.
Engineering, Washington, D.C., October 2.

Perry, William. 1996b. "Defense in an Age of Hope." Foreign Affairs, November-December, pp. 64-79. Porter, Michael E. 1990. The
Competitive Advantage of Nations. The Free Press, New York. Powell, Colin. 1992. "C*1 for the Warrior." DOD Joint Chiefs of
Staff, Washington, D.C., June 12.

Quade, E.S., ed. 1964. Analysis for Military Decisions. Rand McNally, Chicago. Quade, E.S., and Boucher, W.I., eds. 1968. Systems Analysis
and Policy Planning: Applications in Defense. American Elsevier, New York.

Reifer, Donald J. 1996. "Quantifying the Debate: Ada Versus C++." Crosstalk: The Journal of Defense Software Engineering. Hill AFB, Utah,
July.

Riehle, Richard. 1996. "Ada: An Update." Object Magazine, June, pp. 50-52.

Royce, Walker. 1990. "TRW's Ada Process Model for Incremental Development of Large Software Systems." Proceedings ICSE 12, IEEE/
ACM, March, pp. 2-11.

Shaw, Mary, and David Garlan. 1996. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall, Englewood Cliffs, N.J.

Telos Corporation. 1994. "Ada Marketing Communications Study Precampaign Survey." Telos Corporation, May.

Tokar, Joyce. 1996. "Ada 95: The Language for the '90s and Beyond." Object Magazine, June, pp. 53-56.

[

Transcript. National Academy of

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

he Department of Defense

BIBLIOGRAPHY 72

TRW. 1991. "Ada and C++: A Life-cycle Cost Analysis." TRW Inc., Redondo Beach, Calif., June 1.

TRW. 1991. "Case Study: Ada and C++ Cost Comparison for CCPDS-R." TRW Inc., Redondo Beach, Calif., June 1.

U.S. Army. 1992. "Implementation of the Ada Programming Language." HQDA LTR 25-92-1. September 18.

U.S. Army. 1994. "Change to HQDA Letter 25-92-1, Implementation of the Ada Programming Language." HQDA LTR 25-94-1. July 17.

U.S. Army. 1995. "Change to HQDA Letter 25-94-1, Implementation of the Ada Programming Language." HQDA LTR 25-95-1. July 17.

U.S. Navy. 1994. "Ada Programming Language Policy," SECNAVINST 5234.2A. April 28.

U.S. Navy. 1994. "Ada Implementation Guide," 2 Vol. Naval Information Systems Management Center, April.

Vyssotsky, Victor. 1996. "Whither Ada?" Unpublished manuscript, May 12.

Waligora, Sharon, John Baily, and Mike Stark. 1995. "Impact of Ada and Object-Oriented Design in the Flight Dynamics Division at Goddard
Space Flight Center." NASA-SEL Report, SEL-95-001. Goddard Space Flight Center, March.

Weiderman, Nelson. 1991. "A Comparison of Ada 83 and C++." SEI-91-SR-4. Software Engineering Institute, Pittsburgh, Pa., June.

Zeigler, Stephen F. 1995. "Comparing Development Costs of C and Ada." Rational Software Corporation, Santa Clara, Calif., March 30.

[}
=
=
©
(2]
]
©
(2]
©
o
o
o
9}
g
@
(2]
£
>
©
8
C
[}
S
Q
[&]
©
C
[}
o}
o)
[
>
®©
<
>
@©
IS
(2]
&2
S
2
£
5}
L
e
Q.
[0
o
(2]
o
o
>
2
®
IS
o
(2]
©
c
©
o
o}
£
©
3
15
2
©
feo)
=
o
o
C
o4
[&]
-
9
>
[
2
o
=
=)
c
£
©
£
£
S
Ne)
o
=
[8]
@
Q.
Q@
(®)]
£
=
=]
©
(2]
[}
Qo
>
2
=
[}
<
S
o
©
C
©
73
2
>
2
2]
[®)]
£
S
©
4}
e
%)
X
©
o
2
o)
°
2
)
E
%)
<
s
[®)]
c
@
[}
£
©
£
2
=
s}
®
<
s

Qo
e
o
=]
=
=
)
2
©
(2]
X
©
)
2
Ie)
)
o))
©
o
o
Q
=
o))
C
£
Q
N
Q
o
>
2
©
£
2
=
o
)
e
=
€
o
2
&
-
o
c
2
o]
o
)
<
o
Q
®©
Q
©
£
2
=
o
)
<
=
£
o
o
=
O
Q
L
®©
)
I
)
0
Q
=
|
=
3
€
o
2
&
ko]
@
0
o
o
€
o
o
)
2
c
)
o)
e
o)
© .
< c
x~ 9
= =
223
2 2%
S5 ®
£ o
288
o c
o i)
S 0©h
4=)
o >
c)
9 =
=
S oo
9
S
0 e
523
o o
— <
(0] -—
8
o258
2o 5
23
2 ©
QO
L2 e
= =
[Q
[} K2
& — £
=
5£E%©
c
355
= 7]
= &a
=29
=
3 -—
o c
Ko =
< a

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

73

Appendixes

he Department of Defense

APPENDIXES

‘uoiNquile Jo} UOISIaA aAe)IoyINe ay) se uonedlgqnd siy} Jo uoisiaA juud
By} asn ases|d ‘papuasul Ajjejuapiodoe uaaq aAey Aew siouls olydesbodA} swos pue ‘paulelal aq jouued ‘Janamoy ‘Buipewsoy oiyoads-buiesadAy Jayio pue ‘sajhis Buipeay ‘syealq pJom ‘syibus| aul| {eulbuo ayy
0] anJ} aJe syealq abed "sa|i; BuiiasadA} jeuibLio ay) wouy Jou ‘ooq Jaded |euibLio ay} wolj pajeald saji JNX wolj pasodwodal usaq sey yJom [eulblio ay} jo uoneiuasaldal [eybip mau siy] :8J1 4ad SIU} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

74

artment of Defense

APPENDIXES

"uolNQgu3Ie Joj UOISI9A SAlle}lIoyINe 8y} se uoleslignd siyj Jo uoisiaA juud
By} asn ases|d ‘papuasul Ajjejuapiodoe uaaq aAey Aew siouls olydesbodA} swos pue ‘paulelal aq jouued ‘Janamoy ‘Buipewsoy oiyoads-buiesadAy Jayio pue ‘sajhis Buipeay ‘syealq pJom ‘syibus| aul| {eulbuo ayy
0} anJ} ale syeaiq abed "sa|iy BupesadA} [euiblo ayj wouy jou ‘yooq Jaded [euiblio sy} wolj pajeald sy X Woly pasodwodal usaq sey dlom [eulblio ayy jo uonejuasaidal [eybip mau siy] 8l 4ad Sy} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX A 75

Appendix A

DOD Draft Software Management Policy Directive with
Further Modifications Suggested by the Committee

INTRODUCTION

The Committee on the Review of the Past and Present Contexts for the Use of Ada in the Department of
Defense reviewed the DOD policy currently in use for programming language selection ("Computer Programming
Language Policy," DOD Directive 3405.1, dated April 2, 1987), as well as two different draft revisions of that
policy. This appendix contains the most recent draft (dated May 15, 1996) reviewed by the committee and
incorporates modifications suggested by the committee to make the directive consistent with the recommendations
presented in the main text of this report. Modifications are noted in italic font.

This modified draft directive is intended to serve as a "template” for development of the new DOD Directive
3405.1. The "enclosures” that are typically attached to DOD directives have been omitted for brevity. However, a
list of references follows the text of the draft directive, and technical terms are defined in Appendix C of this
report; both sets of documentation are suitable as enclosures for the revised formal DOD directive. The enclosure
titled "Ada Waiver Procedures" has been omitted from the template because the committee eliminated the waiver
process in its recommended policy. Other emendations of the draft text to condense wording or otherwise revise
original text are not strictly documented; comparison with the May 15, 1996, draft directive shows minor changes
not accommodated by the device of italicizing more substantial revisions.

PROPOSED TEMPLATE FOR DOD DIRECTIVE ON SOFTWARE MANAGEMENT

A. REISSUANCE AND PURPOSE
This Directive:

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

APPENDIX A 76

1. Updates and establishes policy for management of software developed, used, or maintained by, or for,
the Department of Defense (DOD).

2. Is used in software management decisions across a functional or mission area, domain, or product-
line. It contains broad software engineering and programming language policy that will be followed
by DOD.

3. Establishes the requirement for a Software Engineering Plan Review Board (SEPRB) by the Office of
the Secretary of Defense (OSD), the Military Departments (including the National Guard and Reserve
Components), and the DOD components.

4. Supersedes reference (a); cancels references (b) and (c); implements Federal Information Resource
Management Regulation (FIRMR) Subpart 201-24.201, Federal Software Exchange Program
(reference (d)); and supports DOD Directive 8000.1 (reference (e)) and DOD Directive 5000.1
(reference (f)) and DOD Instruction 5000.2 (reference (g)).

5. Authorizes publication of DOD Instruction 3405.1, "Software Management Implementation."

B. APPLICABILITY AND SCOPE
This Directive applies to:

1. The Office of the Secretary of Defense (OSD), the Military Departments (including the National
Guard and Reserve components), the Chairman of the Joint Chiefs of Staff and the Joint Staff, the
Unified Combatant Commands, the Inspector General of the Department of Defense, the Defense
Agencies, and the DOD Field Activities (hereafter referred to collectively as "the DOD
Components").

2. All software developed, acquired, or used by the DOD, including that managed in accordance with
DOD Directive 5000.1 (reference (f)).

3. DOD research and development activities funded by 6.4 and 6.5 appropriations as defined in Volume
2, DOD 7000.14-R, (reference (1)).

4. Software developed, acquired, or used by DOD research and development activities, and funded by
6.1, 6.2, and 6. 3a appropriations, is exempted from this directive.

C. DEFINITIONS

Committee note: Terms used in this directive and modifications to it are defined in Appendix C of this report,
and those definitions are suitable for inclusion as an enclosure in a new DOD directive.

D. POLICY

It is DOD policy to:

1. Perform trade-off and business-case analysis in the development and acquisition of affordable,
rapidly produced, high-quality software. Quality includes functionality, fitness for a purpose,
assurance (i.e., reliability, survivability, availability, safety, security), efficiency, ease of use,
interoperability, future adaptability (i.e., extensibility, maintainability, portability, and compliance
with standards), and the development of DOD software expertise. Cost includes full life-cycle cost,
consequence of system failure, impact on system operational costs, and use of other scarce resources
such as expert personnel.

2. Exploit and contribute to open standards-based technical architectures that support rapid, flexible,
and incremental software improvements, and that accommodate increasing reliance on the
commercial sector to satisfy evolving mission and functional requirements. Exploit and contribute to

)
<
=
)
2]
=]
)
2]
®
9
o
o]
Q
€
)
7]
£
>
©
8
C
o)
B
5]
o
®
C
)
)
o
)
>
®©
N
>
®©
€
w
14
<)
2
=
[5)
Q
=
S
©
Y
[o))
o)
Q
>
2
)
€
o
%)
he]
c
®
o
@
£
©
9
)
L
)
o)
o
o
C
c
®
o
-
)
>
)
2
<)
=
o
C
£
®©
IS
=
o
L
[9)
=
3]
@
o
@
o))
£
%c
88
o5
22
b=
o ®©
o
5 L
T C
c 9o
© »
4
)
3 >
>9
> 5
o))
£t
S O
=
)
S
£ ©
7R
X C
© =
O »
8 ®
c
2o
O +=
©
=0
®» o
£ S
D
c »n
3g
)
£0
. c
®© S
£
o O
= >
o E
Qo=
= a

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
E
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
i)
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
=
=1
o
kel
<

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

APPENDIX A 71

software architectures that serve as the basis for management and investment decisions for reuse
opportunities, interoperability requirements, and development or product-lines and product-line
components. Facilitate the reuse of software assets.

3. Define mission and functional requirements so that commercial and non-developmental items may be
used to fulfill such requirements. To the maximum extent practicable, modify requirements and
conduct market research and analysis, prior to commencing a development effort, to take advantage
of a commercial or non-developmental "best value" solution. Give preference to commercial off-the-
shelf (COTS) items first and non-developmental items (NDI) second when satisfying software asset
requirements.

4. Implement and continuously improve software process management and software engineering
disciplines. Use software engineering environments that facilitate software process management and
software engineering disciplines.

5. Employ software developers who possess mature software engineering capabilities. Software
developers should have a successful past performance record, experience in the software domain or
product-line, a mature software development process, and evidence of use and adequate staffing and
training in software methodologies, tools, and environments.

6. Use metrics when monitoring and managing production and delivery of software assets, evaluating
maintenance and management practices, implementing software architectures and product-lines, and
effecting continuous software process improvement.

7. Enforce compliance with contractual terms and conditions for use of software, including copyright and
license agreements. Centralize this function to the maximum extent practicable.

8. Use commercial fourth-generation programming languages (4GLs) where appropriate, when they
provide significant improvements in productivity, usability, maintainability, and portability. Selection
of 4GLs and associated tools must be based on established acceptance in the commercial marketplace
where benefits of the technology have been demonstrated. Any software code generated using a 4GL
must also be maintained in the 4GL.

9. Use the highest-level language meeting quality, cost, and scheduling constraints for each software
component. Principles for choice of this language are as follows:

a. Higher-level languages are generally preferable to lower-level languages.

b. Standardized and non-proprietary languages are preferred. Using standards increases portability of
code and programmers. Non-proprietary languages reduce the risk of vendor lock-in.

c. New languages must not be developed as part of a system development, except for domain-specific
languages providing directives for application generators.

d. Quality, time, and cost factors should be considered in selecting a language.

10. Use the Ada programming language (reference (i)) to develop software subsystems when all of the
following apply:

a. The application is in a warfighting application area (i.e., weapon control, electronic warfare,
wideband real-time surveillance, battle management, special battlefield communications).
Maintenance will be government-directed.

The expected size of the subsystem exceeds 10,000 lines of code, or the subsystem is critical.

There is no better COTS, NDI, 4GL, or higher-level solution consistent with quality and cost goals.
There is no life-cycle cost-effectiveness justification for using another programming language.

The code is new or re-engineered.

-0 a0 o

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

e}
i)
)
=1
=
=
o
2
©
(2]
x
©
O
ot
o
)
o)
©
o
»
Q
=
o
C
£
©
»
O
o
>
2
©
£
2
=
e}
[}
e
£
€
o
2
=
=
o
c
2
o
e}
ko)
C
@
Q
©
Q
©
£
2
c
e}
o}
<
=
£
o
o
=
o]
o}
2
©
i}
ot
o
»
Qo
=
—
=
x
€
o
2
=
e]
@
?
o
a
€
Q
o
o}
2
c
o}
o}
Q
»
© .
< c
x~ 9
e =
283
2>E
S5 ®
£ »
288
o c
o Ke]
S0
u)
o >
c o
K] =
=
T o ©
= —
% ‘=
» e L
523
o o
— <
(0] -—
S
o258
2o 5
B9
e ©
QO
L2 e
= =
[Q
[} 2
& — £
=
5£E%©
c
355
= 7]
z 2
=29
b
3 -—
o c
Ko =
< a

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

APPENDIX A 78

In cases meeting the above criteria, the required compliance level is set at 95% of the source lines
of code. Up to 5% of the code can be written in other languages to facilitate component integration.
11. When the application is in a non-warfighting application area (e.g., office and management support,
personnel, logistics, medicine, routine operations support), Ada will be analyzed as an option when
substantial 3GL development is to be performed. The analysis will be in accordance with the
principles set forth in D. 9 above.

E. RESPONSIBILITIES

1. The Under Secretary of Defense (Policy) shall ensure that requests from DOD Components for
guidance on international transfer or export of DOD software are processed and appropriate guidance
on such release is provided.

2. The Office of the Assistant Secretary of Defense (OASD) for C3I shall:

a. Provide policy, guidance, and oversight for the management of software consistent with applicable
directives, and may issue additional instructions related to implementation of this Directive.

b. Issue policies and guidance to implement DOD software reuse practices and the Federal Software
Exchange Program (reference (d)).

c. Direct DOD Components to establish programs, as appropriate, to enhance the software engineering
processes and the transition of technologies from commercial and research programs into applications
within weapon, automated information systems (AISs), and command and control systems.

d. Establish an OSD-level Software Engineering Plan Review (SEPR) process that will review all
software architecture plans for any acquisition subject to OSD milestone decision authority (MDA).
The purpose of this review will be to approve and certify the software engineering plans for the system
software prior to Milestone I and Il reviews. Certification indicates that the software plan conforms to
the policy and principles contained within this Directive. For these reviews, the acquisition program
shall establish a program-specific Software Engineering Plan Review Board (SEPRB). The SEPRB
will be composed of at least 5 members who are software experts, will include key system
stakeholders (e.g., users, maintainers, interoperation experts), and will be chaired by a representative
of the OASD (C3I).

e. Establish a process for periodic review of SEPRB reviews performed by DOD components.

f. Identify research and development requirements to the Director, Defense Research and Engineering,
for inclusion in research and development programs.

3. The Head of Each DOD Component shall:

a. Initiate appropriate strategies and actions to implement the policies in Section D within their areas of
responsibility.

b. Establish a component-level SEPR process that will review all software architecture plans for any
acquisition subject to component MDA. The purpose of this review will be to approve and certify the
plans for the system software prior to Milestone I and II reviews. Certification indicates that the
software plan conforms to the policy and principles contained within this Directive and applicable
component policies. For these reviews, the acquisition program shall establish a program-specific
SEPRB. The SEPRB will be composed of at least 5 members who are software experts, will include
key system stakeholders (e.g., users, maintainers, interoperation experts, program executive
officials), and will be chaired by a member appointed by the service or component acquisition
executive.

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

APPENDIX A 79

c. Establish and monitor a SEPR process for non-MDA DOD component-directed software, and as
appropriate for other DOD component software.

d. Delegate to appropriate subordinate organizations the authority to release software assets, as
appropriate, to the Federal Software Exchange Program (FSEP), reference (d), and for DOD reuse
purposes.

e. Specifically address investment strategies, including use of modern software technology and the
transition to newer technologies, in the DOD Component planning, programming, and budgeting
process.

F. EFFECTIVE DATE AND IMPLEMENTATION
This Directive is effective immediately.
G. REFERENCES:

(a) Department of Defense (DOD) Directive 3405.1, "Computer Programming Language Policy," April
2, 1987 (hereby canceled)

(b) Assistant Secretary of Defense for Command, Control, Communications and Intelligence (C3I)
Memorandum, "Delegation of Authority and Clarifying Guidance on Waivers from the Use of the
Ada Programming Language," April 17, 1992 (hereby canceled)

(c) DOD Instruction 7930.2, "ADP Software Exchange and Release," December 31, 1979 (hereby
canceled)

(d) Federal Information Management Regulation (FIRMR) Subpart 201-24.201, Federal Software
Exchange Program

(e) DOD Directive 8000.1, "Defense Information Management Program," October 27, 1992

(f) DOD Directive 5000.1, "Defense Acquisition," March 15, 1996

(g) DOD Instruction 5000.2, "Defense Acquisition Management Policies and Procedures," March 15,
1996

(h) DOD Directive TS-3600.1, "Information Warfare," December 21, 1992

(i) International Organization for Standardization (ISO/IEC 8652:1995), "Ada," February 15, 1995

(j) DOD Directive 5200.28, "Security Requirements for Automated Information Systems (AISs)," March
21, 1988

(k) DOD Regulation 5200.1-R, "Information Security Program Regulation," December 1987, authorized
by DOD Directive 5200.1, "DOD Information Security Program," June 7, 1982

(1) DOD 7000.14-R, "DOD Financial Management Regulation," Volume 2, "Budget Presentation and
Formulation," May 1994, authorized by DODI 7000.14, "DOD Financial Management Policy and
Procedures”

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to
print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 80

Appendix B

Technical Descriptions of Ada and Other Third-Generation
Programming Languages

This appendix gives technical and historical descriptions of Ada and the most often cited third-generation
programming languages (3GLs)-C and C++-and a new 3GL-Java-the focus of rapidly growing interest in the
programming community and a potential candidate for replacing C, C++, or Ada in certain application domains.
These descriptions are followed by a comparison of the languages in terms of their capability for ensuring high
reliability and for supporting the requirements of long-lived, embedded, real-time, and/or distributed systems.

Any software system can be implemented in essentially any reasonably complete programming language.
However, languages vary with respect to how effectively-in terms of cost, schedule, and level of risk-they support
the programming of a solution that successfully achieves the required functionality and quality. The descriptions
below are intended to clarify such variations among languages. In contrast to the approach taken in the section in
Chapter 2 titled "Software Engineering Process and Architecture," architecture, design, and development and
maintenance processes here are held fixed; for the purposes of the discussion in this appendix, the only
independent variable is programming language choice. As pointed out in Chapter 2, certain programming language
choices may enhance the development and maintenance process itself, but that interaction is ignored for the
purposes of this comparison.

ADA 83

Ada 83 was the result of a requirements-driven language design competition, beginning in 1975 with the first
"Strawman" requirements document, continuing through a series of requirements documents culminating in the
"Steelman" document, and resulting in a preliminary standard in 1980, an American National Standards Institute
(ANSI) standard in 1983, and an International Organization for

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 81

Standardization (ISO) endorsement of the ANSI standard in 1987. The actual design work was performed by a
design team, with review by a panel of experts and the interested public at large.

Major concerns in the design of Ada 83 were reliability, maintainability, human engineering, and efficiency.
Human engineering refers to choosing keywords, syntax, and semantics to maximize readability, while trying to
minimize "surprise” and error-prone constructs. For example, all control flow constructs have a distinct "end"
marker (e.g., "end if," "end loop"), and all program units allow the name of the unit to be repeated (and the
compile-time to be checked) at the end marker. Parameters may be specified as "in," "out," or "in out" to indicate
the direction of information flow upon subprogram call. Formal parameter names may be used at the call point to
identify unambiguously the association between formal and actual parameters.

Ada 83 supports strong type checking, extended to provide strong distinctions between otherwise structurally
equivalent numeric types, as well as between otherwise structurally equivalent array types and pointer types. Ada
83 is unusual in that it allows the programmer to distinguish two same-sized integer types as representing distinct
abstractions, and to specify that an array is meaningfully indexed by one, but not the other, or that a subprogram
can meaningfully be passed by one, but not the other. For example, the two integer type declarations

type Month_Number is range 1..12

and

type Hour_Number is range 1..12

introduce two distinct integer types, and the fact that they have identical ranges does not alter the fact that
they are distinguishable at compile-time when used as array indices, subprogram parameters, and record
components. The compiler will detect the use of a value of one type when the other is expected. Furthermore, a
change to one, such as switching Hour_Number to be range 0.23, does not have an unintended effect on some
other abstraction.

Ada 83 supports data abstraction, modularity, and information hiding through a module construct called a
"package" and through "private" types, types whose internal structure is hidden from code outside the defining
package. Objects, subprograms, and any other language entity may be declared in the private part or body of a
package, thereby hiding it from external access, and allowing revision during maintenance without disturbing
external clients of the package.

Program units may be separately compiled while preserving full compile-time consistency checking across
units. All program units may have a separate specification and body, allowing the physical configuration control
of interfaces to allow productive parallel development of large systems, and enabling interface integrity to be
verified before, rather than after, the code is developed.

Packages and subprograms may be defined as "generic" units, which are parameterized by types, objects, and
subprograms. Such generic units must be explicitly instantiated with appropriate actual parameters prior to use.
Like other units, generic units have a separate specification and body. When a generic unit is compiled, it is
checked for legality. Further checks are performed when the unit is instantiated.

Ada 83 defines a complete set of run-time consistency checks to enforce range constraints on numeric types,
index constraints on array types, and "discriminate" constraints on other composite types. In addition, all pointers
are default initialized to null, and checked for null prior to dereferencing. Ada 83 defines an ability to raise and
handle run-time exceptions. The predefined run-time checks all raise such run-time exceptions, allowing the
programmer to write fault-tolerant code that catches unanticipated software problems, and performs appropriate
recovery or disciplined shutdown actions.

Ada 83 includes a standard multithreading model, with a rendezvous construct to support inter threading
communication and synchronization. Explicit delays are supported, as is timed

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 82

rendezvous. Finally, Ada 83 includes constructs for explicit user control over representation of types, as well as a
"pack" directive to influence the compiler's selection of representation.

ADA 95

The current Ada standard, Ada 95, was developed between 1990 and 1995. As with Ada 83, the development
was performed by a language design team, and requirements and review were provided through an open forum. In
February 1995, the revised language was approved as an ISO standard, replacing the former edition of the
standard. The overall goal of the Ada 95 design process was to maintain the reliability, maintainability, human
engineering, and efficiency of Ada 83, while enhancing the flexibility and extensibility of the language, and the
programmer's control over storage management and synchronization.

Ada 95 generalized the type definition mechanisms of Ada 83 to allow a type to be defined as an "extension"
of another type, and to treat a type and all its extensions, direct and indirect, as a "derivation class" of types, with
"class-wide" operations and dynamically bound implementations of operations. Added to the existing support for
abstraction and modularity, type extension and dynamic binding give Ada 95 support for the object-oriented
programming paradigm.

Ada 95 also enhanced the multithreading model, by providing "protected objects" that allow the programming
of data-oriented synchronization mechanisms, without introducing additional threads.

Ada 95 added support for pointers to subprograms, as well as pointers to declared, as opposed to heap-
allocated, objects. All access types include an "accessibility" level, which is checked by the implementation,
generally at compile-time, to prevent the creation of dangling references.

The numeric model was enhanced with the addition of modular (unsigned, wraparound) integers with bit-wise
logical operators, and decimal fixed-point types, to support exact financial calculations.

The generic facility was enhanced to allow parameterization by packages that are instances of other generics,
so that layered generic abstractions may be defined. In addition, the generic "contract" model was strengthened so
that the legality of an instantiation is fully determined by the actual parameters and the generic specification,
allowing the body of the generic to be altered during maintenance without endangering the legality of existing
instantiations.

Where appropriate, additional run-time checks were defined in Ada 95 to support the enhanced features. In
particular, a conversion from a class-wide type to an extension of its root type involves a run-time check to ensure
that the conversion is meaningful, as does a conversion from an "anonymous" access type to a named access type
to prevent the creation of a dangling reference (based on the "accessibility" level mentioned above).

In addition to these syntactic and semantic enhancements to the language, a number of additional standard
packages, pragmas, and attributes are defined in "annexes" to the standard. Some of these packages, pragmas, and
attributes must be supported by all implementations, such as packages for string manipulation and random number
generation and pragmas for interfacing to other languages. Others are specifically designed to support particular
application domains, such as real-time, distributed systems, and safety/security-critical systems.

C

The C language was designed at Bell Laboratories in the early 1970s, as a successor to the language BCPL,
for the purpose of writing an operating system (Unix) and associated utilities for minicomputers. During the late
1970s, C and Unix were used widely in universities, and during the 1980s C emerged as the language of choice for
systems programming on minicomputers, workstations,

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 83

and personal computers. The ANSI standard for C was approved in 1989, and the ISO standard based on ANSI C
was approved in 1990.

C has a sparse syntax, with braces used for begin and end markers in all control flow, program unit, and type
declaration constructs. Single-character operators are provided for assignment, indirection, address-of, bit-wise
and, or, "xor," and not, and the usual arithmetic operations. Operators are also provided for pre- and post-
increment and decrement, operate-and-assign, and left- and right-shift.

Numeric data types are selected by names, such as "short int" or "long float." There is no capability to select a
numeric type by required range or precision, and there is no notion of implementation-enforced range constraint.
Enumeration data types are supported, but are implicitly convertible to and from integer types in any context.

Historically, interface definitions have not been necessary for C functions, with the default being that a
function returns an "int" and takes any number of parameters. ANSI C introduced the notion of a function
"prototype" to specify the function interface, and some implementations can be directed to require the presence of a
prototype for all functions.

All arrays are indexable by any integer or enumeration type; all arrays have a low bound of zero, and a high
bound of one less than the specified size. No bounds information is carried with array parameters, and no bounds
checking is defined by the language standard, although some tools exist that will check for out-of-bounds
references. Arrays are treated by the language as essentially constant valued pointers, and array indexing is defined
in terms of an indirection applied to the addition of a pointer and an integer index.

Strings in C are represented by a pointer to their first character, with a null character used by convention to
signify the end of the string. There is no language-defined checking for running off the end of a string.

Record-like "structs" are supported, but there is no language-defined data abstraction mechanism. Opaque,
incomplete pointer types can be used to provide some degree of data abstraction. A "union" construct allows the
creation of an undiscriminated union of types. There is no language-defined check for accessing the "wrong"
member of a union.

The "cast" construct may be used to explicitly convert between numeric types (although implicit conversion
is performed as part of a function call, and implicit widening is performed during arithmetic). The cast construct
may also be used to convert between pointer types, or between an integer and a pointer type. There is no
language-defined check associated with a cast.

No default initialization is defined by the standard for local variables; pointers, in particular, are not default
initialized. No null-checking is defined for pointer indirection.

There is no language-defined construct for raising and handling exceptions, although there are standard
functions for sending and handling "signals," which can be used to emulate exceptions in certain circumstances.

C provides some control over representation by the use of bit field indicators on "struct" components.
However, it does not define the ordering of bit fields within a word. Some implementations provide "pack"
pragmas or other means of providing more representation control.

There is no language-defined "module” construct other than a source file; objects and functions declared
"static" are local to the source file. Objects and functions not declared "static,” when defined at the top level, are
externally visible from any other file that includes an "extern" declaration for the entity. By convention, the
"extern" declarations for a source file, and associated type definitions, are usually grouped into a header file (".h"
file), which can be textually included ("#include") in any source file requiring access to the type, object, or
function.

C includes a standard preprocessor that supports textual include, conditional compilation, and parameterized
textual macros.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 84

The ANSI C standard includes a full set of library functions to support string manipulation (where a string is a
null-terminated array of characters), random number generation, and input/output, among others.

C++

The C++ language was first released in 1983 as an enhancement to C, with the major enhancement being the
addition of a "class" construct inspired by the same-named feature of the language Simula-67. The language was
initially defined by the implementation available from AT&T ("cfront") that translated C++ to C. Cfront, and
hence C++, went through several major updates that added features such as multiple inheritance, generic
templates, and exception handling. In the early 1990s, ANSI and ISO committees were formed to produce a
standard for the language. A few additional features, such as run-time type identification and "namespaces," have
been added during the standardization process. Approval of the ISO C++ standard is expected within the next
year.

C++ includes all the features of C, although some features are revised to be more strongly typed. For
example, enumeration types in C++ are implicitly convertible to integer types, but not implicitly convertible back.
Also, function prototypes are required for all C++ functions. C++ adds to C support for data abstraction, type
inheritance, and dynamic binding (virtual functions). Two kinds of multiple inheritance are supported: the default
inheritance replicates the fields if the same base class is inherited through multiple paths, and the virtual
inheritance shares fields if the same base class is inherited through multiple paths.

C++ also supports a generic template facility. No checking is defined for templates prior to instantiation;
there is no template "contract" model. Instantiation is implicit by referring to an instance via
"template_name8parameters>." Template functions are also supported; instantiation of a template function is
automatic at a call, with the template parameters determined implicitly by the types of the call parameters.

C++ supports "throw"ing and "catch"ing exceptions. Exceptions can be represented by objects of any type;
the "catch" is based on a type matching. The standard C++ library defines certain exception types, instances of
which are thrown when an allocator fails to allocate storage, or when other errors occur.

The array indexing and cast constructs inherited from C remain unchecked in C++. There are standard
templates for defining checked arrays and checked casts. Local pointers in C++ are not default initialized, and
there is no language-defined check for dereferencing a null pointer. "Smart pointer" abstractions can be developed
to check for null pointers, or to implement persistence or similar capabilities.

As in C, all numeric types are implicitly convertible on assignment and parameter passing, and implicitly
"widened" in calculations.

C++ supports information hiding through the notion of protected and private data and function members.
Private members are visible only inside a class (and to its "friends"). Protected members are visible inside all
descendants of a class. C++ supports a multilevel namespace though a "namespace" construct, which provides no
information hiding (there is no "private" part of a namespace) and is simply a hierarchical naming mechanism.

JAVA

Java was developed over the past 5 years at Sun Microsystems. It was originally called "Oak" and was
intended for use in small appliances, set-top boxes, and other embedded applications. In April

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 85

1995, a World Wide Web browser written in Java, called HotJava, was announced by Sun. HotJava had the ability
to download small programs written in Java over the Web and execute them in the context of a Hypertext Markup
Language (HTML) page being displayed by the Web browser. Since then, Sun's Java technology has been licensed
by essentially all other Web browser developers, including Netscape and Microsoft, and has achieved widespread
attention for its potential to provide many of the capabilities of client/server systems without many of the
attendant complexities.

Java is syntactically based on C++ but semantically is closer to Modula-3 or Ada 95. It provides modularity
through a combination of a "package" concept, which is a namespace with some information hiding associated
with it, and the "class" construct, which is modeled closely on the C++ (and Simula-67) class construct. To
support information hiding, methods (called "member functions" in C++) and data components may be marked as
public, protected, or private, much as in C++, but with the added notion that, by default, methods and data are
visible only to classes within the same package. Unlike C++, there is no textual "include" in Java; instead,
individual classes, or a whole package of classes, are explicitly imported using an "import" statement at the top of
the source file defining a class.

All code and objects in Java must be inside some class. The methods of a class are by default "virtual" in
Java; calls to such methods are "dynamically" bound. Methods may be explicitly specified as "static"; calls to such
methods are "statically" bound. The data components of a class are by default "per-instance,” as in C++. Data
components may be marked "static," which means that they are "statically" allocated and shared across the class,
rather than one per instance.

Java fully supports single inheritance between classes. By default a class inherits from the single "root" type
called "java.lang.Object." Alternatively, it may explicitly specify one parent class from which it inherits non-static
methods and data components. Java provides a limited kind of multiple inheritance through the concept of an
"interface" type: a list of methods that any "implementer" of the interface must provide. A class may specify any
number of interface types that it claims to "implement." The compiler verifies that the methods required by each
identified interface are present in the class. There is no separate specification for a class (other than that provided
by interface types it implements). There is no separate "prototype" for a method of a class. A tool may be used to
extract the documentation and specification for class.

Java has no direct support for enumeration types. Named integer constants may be used, but the compiler
provides implicit widening between integer types on assignment and parameter passing and allows any integer
type to index any array. Arrays in Java are indexed from zero, as in C and C++, but unlike C or C++, their
semantics are not defined in terms of pointer arithmetic. In fact, Java does not support pointer arithmetic. Arrays
are first class types, and carry a length at run-time against which all indexing is checked.

Pointers ("references") in Java are default initialized to null, and all pointer dereferences are checked for null.
Conversions between references are checked at run-time for meaningfulness.

Java has exceptions, much as in C++, except that it enforces compatibility and completeness of "throw"
signatures at compile-time (C++ enforces "throw" signatures at run-time). Failures of run-time checks, such as an
array-bounds check, or a null-pointer check, result in a "throw" of a predefined exception. Run-time error
exceptions do not need to be mentioned in a "throw" signature; other exceptions, including user-defined
exceptions, do need to be mentioned in the "throw" signature of a method if it is going to throw or propagate the
exception.

Java has no generic templates; the root type java.lang.Object can be used in some contexts to define
(heterogeneous) "generic" data structures. Proposals exist to add a parametric polymorphism facility to Java,
which could provide some of the added compile-time type checking associated with "homogeneous" data
structures provided by the generic template features of Ada and C++.

Java has largely the same control flow constructs as C++. As in C and C++, switch statements rely on a
programmer-inserted "break" to terminate a case. Java defines a special type "boolean" and requires a value of
boolean type in the expression of an "if," "while," or "for" test. There is no implicit

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 86

n_n

conversion to "boolean"; the relational operators return boolean, as do the logical operators. The operator "=" is
for assignment; "=="is for equality. A "break" or "continue" statement may have an identifier to identify the
particular construct being exited or continued, providing some additional flexibility and maintainability relative to
C and C++.

All class and array instances are allocated dynamically on a garbage collected heap. That is, there are no
"stack-resident" arrays or class instances. All implementations of Java provide a garbage collector. There are no
class instances "nested" inside other class instances, only references to dynamically allocated class instances. The
same goes for arrays.

There is no user control over representation of data objects. There is no user control over storage
management, other than a system method to force a garbage collection.

Java has a large standard library of classes and includes support for multithreading through a combination of a
standard thread class and the notion of "synchronized" methods.

DOMAIN-SPECIFIC COMPARISON

In comparing the features of Ada, C, C++, and Java, various principles underlying each language can be
identified.

With C, the underlying goal is to provide reasonable portability (certainly when compared with assembly
language) while giving the programmer full control of the machine. There is little attempt to provide strong
consistency checking at compile-time, and no notion whatsoever of run-time checking built into the language
(other than via use of the standard "assert" macro).

C++ provides more tools for defining abstractions, and increases the strength of the type checking on
enumeration types. However, the default run-time behavior in C++ is still inherited from C, which means no run-
time initialization or checking of pointers, no checking of array indexing, and no notion of range checking. The
default conversion syntax, the simple "cast" inherited from C, does no checking. The basic primitives of C++
remain unsafe, although there are additional mechanisms available for creating safe abstractions.

Java takes the route of strongly enforcing run-time consistency, with all the necessary checks to ensure that a
program does not corrupt data outside its prescribed space, including pointer initialization and null checking,
array-bounds checking, and conversion checks. However, at compile-time, Java has essentially gone one step
backward from C++ by dropping support for enumeration types, thereby eliminating an important source of
compile-time consistency checks. Java very successfully creates a language that prevents code from corrupting
data outside its purview, but it fails to provide tools for supporting thorough compile-time enforcement of interface
consistency.

A second area of concern with regard to use of Java for critical systems development is that it is inextricably
tied to a dynamic storage allocation model. Garbage collection is certainly less error-prone than is manual storage
reclamation, but any use of dynamic storage allocation opens up the possibility of eventual storage exhaustion, as
does dynamic stack extension. For an embedded or critical system, it is standard practice to require that all storage
be allocated statically (at link time), including the stacks for all threads of control; recursion is also disallowed.

In comparison to the above languages, Ada 83 and Ada 95 attempt to provide more features to make
compile-time consistency checking useful for finding mistakes, backed up by run-time consistency checks for
cases in which only a dynamic check is meaningful. As mentioned above, Ada is one of the few languages that
allows the programmer to create strong distinctions between structurally equivalent numeric, array, and pointer
types. These distinctions allow an Ada interface to capture more of the semantics, and allow the Ada compiler to
catch more mistakes in the use of an interface. The last decade has seen an explosion in the number of application
programming interfaces (APIs) used to build systems. Inappropriate uses of an API are among the most common
mistakes in such systems. By creating

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX B 87

stronger distinctions between numeric, enumeration, array, and pointer types, an Ada version of an API can reduce
the likelihood of inappropriate use, and identify more such errors at compile-time.

At run-time, Ada has pointer default initialization, pointer null checking, array bounds checking, with user
control over both the low and high bound, and conversion checking. In addition, Ada provides range checking,
variant record checking, and, in Ada 95, both compile-time and run-time checks designed to eliminate "dangling"
references associated with pointers to deallocated stack variables. This set of "dangling reference" checks
("accessibility checks") allows an embedded or critical program to avoid completely the use of dynamic storage
allocation, while still providing the convenience of using pointers.

Both Ada and Java have support for multithreaded applications as a standard, portable part of the language,
whereas C and C++ support multithreading generally through operating-system-dependent libraries. The Ada
multithreading support includes various real-time-oriented features, such as timed entry calls and selective accepts
with delay alternatives, whereas Java has only a basic timed "sleep" operation. To the basic Ada 83 multithreading
support, Ada 95 adds protected objects, which are designed to support real-time systems by reducing overhead,
minimizing "priority inversion," and generally improving predictability of thread synchronization. Java's
synchronized methods, with wait/notify operations, provide similar capability, although with less encapsulation of
the fields requiring synchronized access, a more race-prone "notification"-oriented synchronization model, and no
particular concern for priority inversion.

Although Ada is a general-purpose 3GL, it was designed with extra attention to the concerns of real-time,
embedded, and critical systems developers, namely very thorough consistency checking, mechanisms to support a
very "static" storage allocation model, and multithreading support with time and priority-cognizant constructs. As
such, at a technical level, it is a better fit to the needs of DOD critical and embedded systems development than are
the other languages in widespread commercial use. These reliability-oriented features of the Ada language make
development and maintenance more cost-effective, when cost to achieve the required level of quality and correct
functionality is included. Of course, there are other non-technical issues involved in language choice (as discussed
in Chapter 1), and other non-language issues involved in managing successful software development (discussed in
Chapter 2).

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
E
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
i)
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
8
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
=
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
e

@®

(0]
e

9
X

©

o

=
o)
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
8
i=
e}
e
=
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

Department of Defense

APPENDIX C 88

Appendix C

Application A set of procedure and function specifications providing access to the capabilities of a reusable

Programming software component, such as a "windowing" or network communication operating subsystem.

Interface (API)

Architecture. The structure of a system's components and connectors, their interrelationships, and the
principles and guidelines governing their design and evolution over time.

Automated A combination of computer hardware and computer software, data, and/or telecommunications
Information that performs functions such as collecting, processing, transmitting, and displaying information.
System (AIS). The function of such systems is primarily administrative. Excluded are computer resources, both

hardware and software, that are physically part of, dedicated to, or essential in real-time to the
mission performance of weapon systems; used for weapon system specialized training,
simulation, diagnostic testing and maintenance, or calibration; or used for research and
development of weapon systems.

Commercial Item. An item regularly used in the course of normal business operations for other than government
purposes that has been or will be sold or licensed to the general public, and that requires no
unique government-directed modifications or maintenance over its life-cycle to meet the needs
of the procuring agency.

Commercial Off- COTS software products are commercial items that have been sold, leased, or licensed in a

the-Shelf (COTS) quantity of at least 10 copies in the commercial marketplace, at an advertised price. COTS

Software. software products include a description or definition of the functions the software performs,
documented to good commercial standards, and a definition of the resources needed to run the
software.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX C

89

Domain.

Fourth-
Generation
Programming
Language (4GL).

Function Point.

Glue Code.

Government-
directed Software
Maintenance.

Non-
Developmental
Item (NDI).

Product Line.

Re-engineering.

Reuse.

Software Asset.

Software
Engineering
Environment.

Software
Maintenance.

Software Metrics.

Standards-based
Technical
Architecture.

Third-Generation

Programming
Language (3GL).

A distinct functional area that can be supported by a class of systems and assets with similar
requirements and capabilities.

A 4GL differs from a third-generation programming language (3GL) in that it removes the need
for a programmer to explicitly make many of the design decisions about data structures and
algorithms. 4GLs allow programmers to express instructions in terminology and at a level of
abstraction that are natural for communication between humans who are familiar with the
application domain. The programmer interaction may even be in a graphical, or menu-based,
form. 4GLs typically incorporate domain-specific knowledge and notation, and so are not
"general-purpose” in the sense that 3GLs are, although they may include a 3GL component that
permits general-purpose programming. 4GLs are associated with "frameworks," "templates,"
"automatic program generators," "middleware," and "graphical user interface builders." Some
examples of 4GLs are Visual Basic, PowerBuilder, Delphi, and SQL.

A measure of software functionality that is independent of differences in lines of code required
to implement a given function in different programming languages.

The relatively small parts of computer programs, or operating system "shell" scripts, that are
written to integrate non-developmental items into a larger system, without modification to the
components themselves.

Maintenance required for software changed in response to government specification or
direction. Government-directed maintenance may be done by the government or by a
commercial organization paid by the government. In contrast, with vendor-directed
maintenance, a vendor chooses which changes are made to the software, and when they will be
made.

Any software asset that is available in the commercial marketplace; or any software asset that is
available to the public for free use; or any previously developed software asset that is in use by a
department or agency of the United States, a state or local government, or a foreign government
with which the United States has a mutual defense cooperation agreement.

A set of similar products or a family of systems that share common architectures and satisfy the
mission requirements of one or more domains.

The process of examining and altering an existing system to reconstitute it in a new form. Re-
engineering may include reverse engineering, restructuring, re-documenting, forward
engineering, re-targeting, or translation.

The process of developing or updating a software-intensive system using existing software
assets.

Any software-related product of the software life-cycle.

The set of tools (including supporting hardware, software, and "firmware") used in the
production and maintenance of software throughout its life-cycle. Typical elements include
computer equipment, compilers, operating systems, "debuggers," simulators, emulators,
computer-aided software engineering tools, and database management systems.

Maintenance of software includes, but is not limited to, activities generally referred to as
enhancement, evolution, post-deployment software support, or error correction.

Quantitative values used to make an assessment of software condition, products, or processes.
Representative metrics are effort, schedule, cost, quality, size, and rework.

An architecture that defines the standards, services, topology, data definitions, and common
framework that enable systems developed to the architecture to interoperate.

Third-generation programming languages generally differ from second-generation languages in
being machine-independent, providing built in control structures, and supporting user definition
of abstractions, including subprograms and data types. They differ from fourth-generation
languages in continuing to require the programmer to deal explicitly with the design of data
structures and algorithms. Some examples of 3GLs are Ada, C, C++, Cobol, Fortran, Java,
Jovial, Pascal, and SmallTalk.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
2
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

APPENDIX C 90
Warfighting There are two primary criteria for determining whether a subsystem belongs in the "warfighting"
Software.

category: 1. Relatively little commercial software and expertise is available for implementing the
desired functions. For example, even though intelligence analysis is involved in warfighting,
many of its functions (database update, query and visualization, report generation) can be readily
satisfied via non-warfighting commercial software. 2. The application requires software quality
attribute levels higher than those supportable by commercial software. For many warfighting
functions, these involve real-time performance, reliability, and survivability, particularly in
high-stress, crisis-mode situations in which DOD information processing functions may be
under attack. The application domains for warfighting software include, but are not necessarily
limited to, the following areas: ®* Weapon control, which includes software involved in weapon
sensor processing; guidance, navigation, and control; combat-oriented weapon delivery platform
control; and software for special weapon delivery platform operator devices such as heads-up
displays. Weapon control does not include administrative functions and "hotel services" for large
weapon delivery platforms such as aircraft carriers, or support subsystems performing
mainstream data management, networking, and graphical user interface functions. ¢ Electronic
warfare, which includes software involved in rapid-response electronic detection, identification,
discrimination, tracking, platform-based communication, and associated countermeasure/
counter-countermeasure applications, but does not include support subsystems performing
mainstream data management, networking, and graphical user interface functions. * Wideband
real-time surveillance, which includes software involved in hard or soft real-time image,
infrared, radar, or other sensor processing, but does not include off-line query and analysis of
surveillance archives or support subsystems performing mainstream data management,
networking, and graphical user interface functions. ¢ Battle management and battlefield
communication, which includes hard or soft real-time weapons allocation, targeting, control,
coordination, damage assessment, and associated battlefield communications requiring such
special capabilities as spread spectrum, anti-jamming, and frequency

hopping, but does not include off-line monitoring, update, query, and analysis of battle asset
status, or off-battlefield communications. Thus, the range of"warfighting command, control, and
communications (C3I) applications” is narrower than previous categorizations such as "C3I" or
"mission-critical."

The scope of warfighting applications also does not include associated support software for test, simulation,
training, off-line analysis, maintenance, and diagnostics.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
2
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

APPENDIX D 91

Appendix D

Detailed Comparisons of Ada and Other Third-Generation
Programming Languages

This appendix presents details of studies, summarized in Chapter 2 in the sections titled "Analyses of
Language Features" and "Comparisons of Empirical Data," that have analyzed the technical features of
programming languages and have used empirical project data to compare languages' relative strength with respect
to desired characteristics. Given the unscientific nature of most of the data, no strong conclusions are warranted.
But in a general sense, most experience with Ada supports the conclusion that it benefits DOD warfighting
applications; few data were found to refute such a conclusion, although the absence of such data may reflect a lack
of any organized effort to promote the use of languages other than Ada in warfighting systems.

EVALUATIONS OF LANGUAGE FEATURES

A 1985 Federal Aviation Administration (FAA) study compared Ada with four other languages by
conducting expert evaluations based on 48 technical language features arranged in six categories, and combining
the evaluation results with the results of performance benchmark test results (IBM, 1985). A follow-on study was
conducted by the Software Engineering Institute (SEI) in 1991 using the same expert evaluation methodology as
the original study to compare Ada 83 with C++, but without the benchmark tests (Weiderman, 1991). The studies,
the results of which are presented in Table D.1, compared the languages against the maximum possible scores for
each of the six categories, which can be summarized as follows:

* Capability—facets of the implementation language relevant to programming or software engineering;
* Efficiency—factors relevant to optimization of generated code and run-time utilization of resources;

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
E
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
i)
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
=
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
8
i=
e}
e
=
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

Department of Defense

APPENDIX D 92

* Auvailability/Reliability—factors influencing day-to-day safety of operational systems;

* Maintainability/Extensibility—factors influencing long-term viability of operational systems;

* Life-cycle cost—elements of cost associated with or affected by the implementation language; and
* Risk—areas of uncertainty or concern associated with or affected by the implementation language.

Table D.1 Language Functionality Attributes

FAA/IBM Study SEI Study
Language Maximum Ada 83 C Pascal Jovial Fortran Ada C++
Attributes Score 83
Capability 16.7 16.1 9.6 10.4 7.6 39 15.3 11.3
Efficiency 16.4 8.0 11.8 10.8 11.0 11.1 10.7 10.9
Auvailability/ Reliability 22.6 21.5 11.6 14.5 15.6 10.3 19.1 12.6
Maintainability/ 17.4 14.0 10.2 12.2 6.8 8.3 13.6 11.4
Extensibility
Life-cycle cost 113 8.2 74 7.8 49 52 8.4 8.0
Risk 15.6 8.8 8.9 7.6 9.6 8.2 11.7 9.8
Total 100.0 76.6 59.5 63.3 55.5 47.0 78.8 64.0

SOURCES: Federal Aviation Administration (FAA)/IBM data from IBM (1985); Software Engineering Institute (SEI) data from Weiderman
(1991).

Ada scored the highest overall in both studies. It scored the highest in each individual category, except for
efficiency, where it was ranked last, and risk, where it was ranked first in the SEI study and third in the FAA
study.

PROJECT EVALUATION DATA

In comparisons of Ada with other programming languages in actual development projects, empirical data on
characteristics such as expressibility, maintainability, defect rates, reusability, and cost factors are of particular
interest. Since Ada has been used in relatively large programs, a larger proportion of data has been collected for
Ada than for contemporaneous commercial programming languages like C and C++.

Much of the data are subjective in nature, and care must be taken in drawing conclusions from such studies.
For instance, the data in Table D.2 are confounded by differences in the expressive power of a source line of code
in different programming languages. One way of normalizing uses tables of source lines of code per function
point (Jones, 1995). However, as shown in Table D.2, these ratios have wide variability. Lubashevsky (1996)
reports variations in source lines of code per function point exceeding factors of 2 for C and 6 for C++. Finally,
there are differences in expressiveness for the same language across different application domains.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
&
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

APPENDIX D 93

Table D.2 Source Lines of Code per Function Point

Language Low Mean High
Ada 83 60 71 80

C 60 128 170
C++ 30 53 125

SOURCE: Data from Jones (1995).

Open-Source Data

The Verdix Ada Development System (VADS) data (Zeigler, 1995) covers a period of approximately 10
years of development and enhancement of VADS compilers, debuggers, builder tools, and run-time support
systems using both C and Ada. Table D.3 summarizes the comparative C and Ada experience data over this
period.

Zeigler analyzed potential confounding effects of relative C and Ada software complexity, personnel
capability, and learning curve effects and found that these factors did not cause any significant bias. The study
thus provides a strong case that Ada was significantly better than C, in terms of both life-cycle cost and freedom
from defects, for this large (over 1 million lines of both Ada and C) project in the compiler and tools area.
However, the study can only be suggestive rather than definitive about the applicability of this result to other
domains and other teams (the Verdix teams were both composed of high-capability, low-turnover personnel).

Since 1976, NASA's Software Engineering Laboratory (SEL) has been carefully collecting software data on
non-embedded, non-real-time satellite flight dynamics software. Figure D.1 (McGarry et al., 1994) summarizes
SEL's history of development error rates over this period. The data show a significant general decrease in error
rates over the period, due to such techniques as code reading, systematic testing, and Cleanroom techniques. The
data from 1988 to 1994 also show significantly lower error rates for Ada than for Fortran, measured per 1,000
lines of delivered code, or KDLOC (an average of 2.1 defectssyKDLOC for Ada vs. 4.8 defects/KDLOC for
Fortran). SEL's analyses for Ada initially concluded that owing to reuse, Ada projects experienced significant cost
and schedule reductions compared to Fortran projects. Subsequently, however, the Ada object-oriented reuse
approach was applied to Fortran projects, resulting in comparable gains.

Proprietary Data

This section summarizes proprietary data from Reifer (1996) and Jones (1994) that compare Ada to other
programming languages with respect to cost, delivered defects, reliability, and productivity. Because the source
data and detailed analysis are unavailable, these results are difficult to assess.

Cost

Data on cost, reliability, and maintainability have been compiled in a proprietary database of outcomes of 190
software projects 3 years old or less (Reifer, 1996). These projects were written in Ada 83, Ada 95, C, C++, and
other third-generation programming languages (3GLs, such as Cobol or Fortran) and were compared to a norm for
each domain, drawn from a database of over 1,500 projects 7 years old or less.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
=]
£
o
2
E
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
=
£
S
2
E
o
@
i)
©
o
2
G
»
K
=S
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
=]
b
s}
o
el
=
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
<
=
L
[a]
o
R
<
=]
=
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
=

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
E=]

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
8
i=
e}
e
=
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

Department of Defense

APPENDIX D 94

Table D.3 Verdix Ada Development System Development Data

Characteristic C Ada Script Files Other Files Totals
Total lines 1,925,523 1,883,751 117,964 604,078 4,531,316
SLOC? 1,508,695 1,272,771 117,964 604,078 3,503,508
Files 6,057 9,385 2,815 3,653 21,910
Updates 47,775 34,516 12,963 12,189 107,443
New features 26,483 23,031 5,594 6,145 61,253
Fixes/feature .52 25 .82 17 41
Fixes/KSLOCP 9.21 4.59 39.02 1.75 7.25
Cost/SLOC $10.52 $6.62 $15.38 $3.72 $8.10
Defects/KSLOC .676 .096 n/a n/a .355

2 SLOC: Source lines of code.
b KSLOC: 1,000 SLOC.
SOURCE: Zeigler (1995).

Reifer's project cost data, shown in Table D.4, indicate that, in general, Ada, C, and C++ programs were less
expensive per delivered source line of code (SLOC) than other 3GL programs or the domain norm for military
applications, although C and C++ programs were less expensive than Ada programs in all military domains except
airborne and spaceborne weapons systems. In commercial domains, the development cost of C and C++ code was
again less than or equivalent to the cost of Ada, and Ada was roughly equivalent in cost to other 3GLs and the
domain norms. However, the wide variations in expressive power of a line of code in Ada, C, and C++ (see
Table D.2) tend to overshadow the cost/SLOC differences shown in Table D.4.

Another study used telecommunications systems to evaluate object-oriented programming languages (Jones,
1994). The study used as a baseline a private branch exchange switch software application of 1,500 function points
in size, compared across several telecommunications companies. Based on these data, Table D.5 shows the cost of
developing the project in different languages, in dollars per function point. The results indicate that, in this
domain, coding in C++ was less expensive than coding in Ada, while using C was more expensive.

Delivered Defects

Reifer's (1996) data, shown in Table D.6, indicate that in the 190 software projects represented, Ada code had
fewer delivered defects than C and C++ code, which, in turn, had fewer defects than other 3GLs. In command and
control and telecommunications applications, the difference between Ada and C/C++ was smaller than the
difference between C/C++ and other 3GLs and the norm. In commercial products, information systems, and
weapons systems, Ada code clearly had fewer defects than code in C, C++, and other 3GLs.

Based on Jones's (1994) data, Table D.7 indicates that, for telecommunications applications, the reliability in
delivered defects per function point was roughly equivalent for C++ and Ada, and higher for C code.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

95

1904

1988 1990

1992
000 delivered lines of code. (Reprinted by permission

from McGarry et al. (1994). Copyright 1994 by Carnegie Mellon University.)

i)

1980 1982 1984 1986
Project Midpoirt

1978

he Department of Defense

1976

16 -

FIGURE D.1 NASA-SEL development error rates. KDLOC: 1

APPENDIX D

"uonngule Joj UOISIOA aAllellIoyIne sy} se uoieoljgnd siy) Jo uoisiaa juud
8y} asn asea|d ‘palasul A|leluapiooe usaq aAey Aew siodls oiydelbodA) swos pue ‘paulelal 8q jouued ‘1anamoy ‘Buiiewol oloads-buijesadAy Jayjo pue ‘sajAis Buipeay ‘syealq piom ‘syibus) aul| ‘eulbuo ay)
0} anJ) aJe syealq abed "sa|i BumesadA) [euibluo ay) wouy Jou “Yooq Jaded [euiblo ay) woly pajeald saji JNX Wolj pasodwossl usaq sey yIom [eulbLio ay) Jo uonejussaidal [elBIp mau siy] 8| 4add Sy} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

Department of Defense

APPENDIX D 96

Table D.4 Cost Data by Language (dollars per delivered source line of code)

Application Domain Ada 83 Ada 95 C C++ 3GL Norm

Command & Control

Commercial 50 n/a 40 35 50 45
Military 75 n/a 75 70 100 80
Commercial Products 35 30 25 30 40 40

Information Systems

Commercial n/a n/a 25 25 30 30
Military 30 35 25 25 40 35
Telecommunications

Commercial 55 n/a 40 45 50 50
Military 60 n/a 50 50 90 75

Weapons Systems
Airborne & Spaceborne 150 n/a 175 n/a 250 200

Ground-based 80 n/a 65 50 100 75

SOURCE: Reprinted from Reifer (1996).

Table D.5 Telecommunications Project Costs by Language (dollars per function point)

Assembly C CHILL Pascal Ada 83 Ada 9X* C++ Smalltalk

Cost® 5,547 2,966 2,260 1,993 1,760 1,533 1,180 1,007

2 Ada 9X figure based on simulation.
b At a monthly salary rate of $10,000.
SOURCE: Data from Jones (1994).

The fairly consistent factor-of-10,000 relationship between the data on cost per function point shown in
Table D.5 and the data on defects per function point shown in Table D.7 suggests that Jones's cost and defect data
are highly correlated to some third factor. This third factor appears to be the mean SLOC/function point ratio from
Jones (1995), shown in Table D.2. Comparing these ratios across C, Ada, and C++ indicates that they are
approximately, although not exactly, equal, as shown in Table D.8.

Reliability

Data from Reifer (1996) in Table D.9 indicate that the incidence of failure for Ada programs was lower than
that with C, C++, and other 3GLs. The outcome of this reliability comparison is similar to the defect comparison;
Ada was superior to C and C++, which were better than other 3GLs.

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
e

@®

(0]
e

9
X

©

o

=
o)
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

e}
i)
)
=1
=
=
o
2
©
(2]
x
©
O
ot
o
)
o)
©
o
»
Q
=
o
C
£
©
»
O
o
>
2
©
£
2
=
e}
[}
e
£
€
o
2
=
=
o
c
2
o
e}
ko)
C
@
Q
©
Q
©
£
2
c
e}
o}
<
=
£
o
o
=
o]
o}
2
©
i}
ot
o
»
Qo
=
—
=
x
€
o
2
=
e]
@
?
o
a
€
Q
o
o}
2
c
o}
o}
Q
»
© .
< c
x~ 9
e =
283
2>E
S5 ®
£ »
288
o c
o Ke]
S0
u)
o >
c o
K] =
=
T o ©
- —
% ‘=
» e L
523
o o
— <
(0] -—
S
o258
2o 5
B9
e ©
QO
L2 e
= =
[Q
[} 2
& — £
=
5£E%©
c
355
= 7]
z 2
=29
b
3 -—
o c
Ko =
< a

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

he Department of Defense

APPENDIX D 97

Table D.6 Delivered Defect Data by Language (post-delivery errors per KSLOCa)

Application Domain Ada 83 Ada 95 C C++ 3GL Norm

Command & Control

Commercial 1.5 n/a 1.9 1.5 2.7 2.5
Military 0.7 n/a 1.0 1.2 2.3 2.0
Commercial Products 2.8 3.5 5.0 3.0 4.5 4.0

Information Systems

Commercial 4.0 n/a 7.0 5.1 7.0 7.0
Military 3.0 n/a 6.0 4.0 6.0 6.0
Telecommunications

Commercial 1.6 n/a 2.0 1.7 33 3.1
Military 1.0 n/a 1.5 1.2 2.7 25

Weapons Systems
Airborne & Spaceborne 0.3 n/a 0.8 0.6 1.0 1.0

Ground-based 0.5 n/a 0.8 0.7 1.0 1.0

a KSLOC: 1,000 source lines of code.
SOURCE: Reprinted from Reifer (1996).

Table D.7 Defects for Telecommunications Applications (delivered defects per function point)

Assembly C CHILL Pascal Ada 83 Ada 9X* C++ Smalltalk

Defects 0.52 0.29 0.23 0.20 0.17 0.15 0.14 0.13

2 Ada 9X figure based on simulation.
SOURCE: Data from Jones (1994).

Table D.8 Correlation in Function Point (FP) Measures

SLOC¥FP (Jones, 1995) Dollars/FP (Jones, 1994) Defects/FP (Jones, 1994)
C/Ada 1.80 1.69 1.71
C++/Ada 0.75 0.67 0.82

2 SLOC: Source lines of code.

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0]

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

(0]

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
e

@®

(0]
e

)
X

©

o

=
o)
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

Qo
e
o
=]
=
=
)
2
©
(2]
X
©
)
2
Ie)
)
o))
©
o
o
Q
=
o))
C
£
Q
N
Q
o
>
2
©
£
2
=
o
)
e
=
€
o
2
&
-
o
c
2
o]
o
)
<
o
Q
®©
Q
©
£
2
=
o
)
<
=
£
o
o
=
O
Q
L
®©
)
I
)
0
Q
=
|
=
3
€
o
2
&
ko]
@
0
o
o
€
o
o
)
2
c
)
o)
e
o)
© .
< c
x~ 9
o =]
o
s 2
T =
£ 00
5 Ny
2358
o c
o i)
S0
4=)
o >
c)
9 =
=
T o ©
- —
g ‘=
» e L
523
o o
— <
(0] -—
8
o258
2o 5
%9
2 ©
QO
L2 e
= =
[Q
[} K2
& — £
=
5£E%©
c
355
= 7]
= &a
=29
=
3 -—
o c
Ko =
< a

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
o
[}
(o)
©
o
»
Q2
=
o
c
£
o}
0
o}
o
>
2
©
£
2
=
(s}
©
-
=]
£
o
2
E
=
o
c
X
[}
o}
e
.
[}
o
©
o
©
£
2
=
(]
©
<
=
£
S
2
E
e
@
i)
©
o
2
G
»
Q2
=S
4
=
X
€
S
2
E
e
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
£
2
=
e}
©
<
=]
b
s}
o
9
S
©
3
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
i)
=
'_
o
=
L
)
o
0
°
=]
=
=1
o
Q9
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

(o]

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
ie)

@®

(0]
e

9
X

©

o

=
o]
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
)
=

>3
Ie!
=
=]

©
=

S
Rel

c
e

2]

o

[

>

[
=
=

T
8
=

e}
=
=

=1

®©

[}
°
=]

»

©

c

s}
2

©
S
o

>3

a

(2]
=
=
=

s}

c
e

2]

o

[

>
-

c
=

S

Department of Defense

APPENDIX D 98

Table D.9 Reliability Data by Language (weeks until next major repair incidence)

Application Domain Ada 83 Ada 95 C C++ 3GL Norm

Command & Control

Commercial 3.0 n/a 2.5 n/a 2.0 2.5
Military 4.0 n/a 3.0 n/a 2.0 2.5
Commercial Products 1.0 n/a 0.4 1.0 0.4 0.5

Information Systems

Commercial 1.0 n/a 0.5 0.6 04 0.5
Military 0.8 n/a 0.5 n/a 04 0.5
Telecommunications

Commercial 3.0 n/a 1.0 2.0 L5 1.8
Military 4.0 n/a 2.0 3.0 2.0 2.0

Weapons Systems
Airborne & Spaceborne 8.0 n/a 3.0 n/a 2.5 2.5

Ground-based 6.0 n/a 3.0 n/a 2.0 2.5

SOURCE: Reprinted from Reifer (1996).

Productivity

As described in Chapter 2 in the section titled "Software Engineering Process and Architecture,”" one of the
key relationships in software development productivity is the relationship of development effort to program size
that is, the value of the "process exponent." A MITRE study (Giallombardo, 1992) found substantial
improvements in productivity for large embedded military software developments provided by Ada compared with
other 3GLs. The study found that effort, as measured by staff-months required per 1,000 equivalent delivered
source instructions (KEDSI; which counts terminal semicolons rather than source lines of code), increased linearly
for the large Ada projects (process exponent close to 1). For large non-Ada projects, effort increased more than
linearly; the increase in effort was also greater than that predicted by the COCOMO model, which has a process
exponent of 1.2 for embedded or very large systems (Boehm and Royce, 1988). The differences were clearest for
system sizes greater than 100 KEDSI (which the MITRE study used as a definition of "large").

In a study of telecommunications applications, Jones (1994) compared the productivity of several 3GLs,
using function points per staff-month as the metric. The results, presented in Table D.10, indicate that, in this
domain, C++ developments had a higher productivity rate than those using Ada, while developments using C were
less productive than those using Ada.

Table D.10 Productivity for Telecommunications Projects by Language (function points per staff-month)

Assembly C CHILL Pascal Ada 83 Ada 9X* C++ Smalltalk

Productivity 1.80 3.37 4.42 5.01 5.68 6.52 8.47 9.99

2 Ada 9X figure based on simulation.
SOURCE: Data from Jones (1994).

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
L
o
>
2
5
o
2
©
2]
X
@
)
2
a
o
(o)
@
o
@
Qo
=
o
c
£
[0
®
o)
o
>
2
©
£
2
=
o
(o)
<
=]
£
o
2
E
=
o
c
N~
o
o)
a
=
[0
o
@
o
©
£
2
=
o
o)
<
=
£
o
2
&
o
9]
2
@
)
2
G
0
K
=
—
=
x
£
e
2
E
o
o)
®
o
o
£
o)
o
4]
2
c
[0
0]
Q
)
@
=
x
P
o
s
©
£
2
=
o
o
<
=]
=
o
o
kel
=
T
£
c
[0
®
)
2
o
o
2
©
=
2
S
2
@
c
B2}
=
'_
9
=
L
[a]
o
R
<
=]
=
5
o
a
<

(0]
=
=

(0]

%]

]

(0]

7]

[
o
o
o

0]
=

[0]

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

2

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

(0]

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

o
2o

>
=

2]

[®)]
=
e

@®

(0]
e

)
X

©

o

=
o)
e

=

o

=

)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
5
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
©
I
i=
e}
e
S
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
k2]
e
=
=
s}
c
el
2]
o
[
>
-
c
=
S

he Department of Defense

APPENDIX D 99

CONCLUSION

In summary, based on the results of currently available empirical data and feature analysis comparisons, a
conclusion that Ada is superior, with respect to availability/reliability and a lower incidence of defects, appears
warranted. The evidence is not strong enough to assert Ada's superiority in the cost area. However, there is some
positive evidence in the cost area, and when it is combined with the anecdotal conclusions favoring Ada (described
in "Anecdotal Experience from Projects" in Chapter 2) and the lack of solid evidence indicating less expensive
custom software development in other languages, a case can be made that using Ada provides cost savings in
building custom software, particularly for real-time, high-assurance warfighting applications.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

o
=)
o
S
=t
5
o
2
©
2]
X
©
o
2
S
[}
(o)
©
o
»
o
=
o
c
£
o}
0
o}
o
>
2
©
=
2
=
(s}
©
<
£
£
o
2
E
=
o
c
X
[}
o}
Q
.
[}
o
©
o
©
=
2
=
(]
©
<
S
£
S
2
E
o
@
i)
©
o
2
G
»
K
=
_
=
X
€
S
2
E
o
o}
7}
o
ot
£
e}
o
9}
2
c
@
o}
Q
»
©
<
x
s
<}
=
©
=
=
=
e}
©
<
£
b
s}
o
el
=
©
8
c
o}
N
o
2
S
o
2
©
=
2
kS
2
[}
c
k2
=
'_
Q
=
L
[a]
o
R
<
£
=
=1
o
kel
<

(0]
=
=

(0]

%]

=}

(0]

7]

[
o
o
o

0]
=

[0

%]
£
>
©
-

c

(0]
S

Q

[&]

@®

c

[0

[0}
o)

o

>

@®
=

>

@®

IS

(%]

o

o

=

=

(0]
Q
e

Q.

[0

g

(2]

o

o

>
=

(0]

IS

o

7]
©

c

@®@
o

(0]
=

©
-

(0]

=

[0
feo)
—

o

c

c

®

[&]

-

o

>

[

=

o
=

=)

c
=

@®

£

=

o
-
L
=

[8]

o

Q.

{

(®)]
£
=
=

[0

7]

[0

Qo

>
=

o

(0]
c
=]

o
©

c

[

)
2o

>
=

»

[®)]
=
e

@®

(0]
e

9
X

©

o

=
o)
e

=

o

=

%)
<
=

[®)]

c
o

(0]
=
©
£
2

=

o

(0]
c
=

o
iel
=
>3
2
=
=]
©
=
S
Rel
c
el
2]
o
[
>
[
=
=
T
8
i=
e}
e
=
=1
®©
[}
<
£
»
©
c
s}
9
©
L
a
>3
a
(2]
e
=]
=
s}
c
el
2]
o
[
>
-
c
=
S

Department of Defense

APPENDIX E 100

Appendix E

Briefings and Position Papers Received by the Committee

BRIEFINGS

Washington, D.C., April 10-12, 1996

1. "Charge to the Committee," Emmett Paige, Jr., Assistant Secretary of Defense (Command, Control,
Communications, and Intelligence), and Cynthia Rand, Principal Director for Information Management, Office of
the Assistant Secretary of Defense (Command, Control, Communications, and Intelligence).

2. "Ada Policy and Reality," Charles Engle, Director, Ada Joint Program Office.

3. "DOD Programming Language Policy," Linda Brown, Director, STARS Program, Defense Advanced
Research Projects Agency.

4. "Army Policy on Ada," Robert Schwenk, Office of the Director for Information Systems and Command,
Control, Communications, and Computers, Department of the Army.

5."Ada in Crisis: The Four Horsemen," Norman Brown, DOD Software Program Managers Network.

6. "Defense Research & Engineering Perspective," Anita Jones, Director, Defense Research & Engineering.

7. "Weapons Program Perspective," RADM K K. Paige, Technical Director, Navy AEGIS Program.

8. "Ada Policy: Viewpoint," Christine Anderson, Chief, Satellite Control & Simulation Division, Air Force
Phillips Laboratory.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to

the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the

print version of this publication as the authoritative version for attribution.

Department of Defense

APPENDIX E 101

9. "Briefing to NRC Ada Study Committee," Dennis Turner, Director, Software Engineering, Army
Communications Electronics Command.

10. "The Future of Ada," Robert Mathis, Executive Director, Ada Resource Association.

11. "Ada: A Navy Perspective," CDR Gary Evans, Naval Information Systems Management Center.

12. "ASC Perspective on Ada," Phil Babel, Air Force Aeronautical Systems Center.

13. "Joint Strike Fighter Presentation,” CAPT Jules Bartow, USAF, Joint Strike Fighter Program.

14. "Ada and F-22," COL Robert Lyons, USAF, Joint Strike Fighter Program.

Washington, D.C., May 21-23, 1996

1. "Perspectives on Ada," Jan Lodal, Principal Deputy Undersecretary of Defense (Policy).

2. "Transition of Software Projects from Advanced Development," Larry Lynn, Director, Defense Advanced
Research Projects Agency.

3. "Ada," Ike Nassi, Vice President, System Software Technologies, Apple Computer Inc.

4. "AJPO Rationale," RADM John Gauss, Commander, Joint Interoperability and Engineering Organization
and Deputy Director for Engineering and Interoperability, Defense Information Systems Agency.

5. "Ada Policy," Larry Druffel, South Carolina Research Authority, and John Goodenough, Software
Engineering Institute.

6. "Command and Control Product-Lines," and "Effect of Ada on MITRE Supported ESC Programs," Robert
Kent, Director, Software Center, USAF Electronic Systems Center, and Steve Schwarm, MITRE.

7. "Intentional Programming: Innovation in the Legacy Age," Charles Simonyi, Chief Architect, Microsoft
Research.

8. "Software at Citicorp," Gerald Pasternack, Citicorp.

POSITION PAPERS

1. "AIA Position Statement on Ada," Aerospace Industries Association, July 12, 1996.

2. "The Ada Mandate," Edward Feigenbaum, Chief Scientist, U.S. Air Force, 1996.

3. "Comments on Ada Mandate," Huet C. Landry, Defense Information Systems Agency/JEBEB, Software
Engineering Standards, 1996.

4. "Whither Ada?" Victor Vyssotsky, May 12, 1996.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/5463.html

