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Preface

This book has its roots in the report of the Committee on Developments
in the Science of Learning, How People Learn: Brain, Mind, Experience and
School (National Research Council, 1999, National Academy Press). That
report presented an illuminating review of research in a variety of fields that
has advanced understanding of human learning. The report also made an
important attempt to draw from that body of knowledge implications for
teaching. A follow-on study by a second committee explored what research
and development would need to be done, and how it would need to be
communicated, to be especially useful to teachers, principals, superinten-
dents, and policy makers: How People Learn: Bridging Research and Prac-
tice (National Research Council, 1999). These two individual reports were
combined to produce an expanded edition of How People Learn (National
Research Council, 2000). We refer to this volume as HPL.

The next step in the work on how people learn was to provide ex-
amples of how the principles and findings on learning can be used to guide
the teaching of a set of topics that commonly appear in the K-12 curriculum.
The work focused on three subject areas— history, mathematics, and sci-
ence—and resulted in the book How Students Learn: History, Mathematics,
and Science in the Classroom. Each area was treated at three levels: elemen-
tary, middle, and high school.

This volume includes the subset of chapters from that book focused on
mathematics, along with the introduction and concluding chapter of the
larger volume. The full set of chapters can be found on the enclosed CD.

Distinguished researchers who have extensive experience in teaching
or in partnering with teachers were invited to contribute the chapters. The
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viii PREFACE

committee shaped the goals for the volume, and commented—sometimes
extensively—on the draft chapters as they were written and revised. The
principles of HPL are embedded in each chapter, though there are differ-
ences from one chapter to the next in how explicitly they are discussed.

Taking this next step to elaborate the HPL principles in context poses a
potential problem that we wish to address at the outset. The meaning and
relevance of the principles for classroom teaching can be made clearer with
specific examples. At the same time, however, many of the specifics of a
particular example could be replaced with others that are also consistent
with the HPL principles. In looking at a single example, it can be difficult to
distinguish what is necessary to effective teaching from what is effective but
easily replaced. With this in mind, it is critical that the teaching and learning
examples in each chapter be seen as illustrative, not as blueprints for the
“right” way to teach.

We can imagine, by analogy, that engineering students will better grasp
the relationship between the laws of physics and the construction of effec-
tive supports for a bridge if they see some examples of well-designed bridges,
accompanied by explanations for the choices of the critical design features.
The challenging engineering task of crossing the entrance of the San Fran-
cisco Bay, for example, may bring the relationship between physical laws,
physical constraints, and engineering solutions into clear and meaningful
focus. But there are some design elements of the Golden Gate Bridge that
could be replaced with others that serve the same end, and people may well
differ on which among a set of good designs creates the most appealing
bridge.

 To say that the Golden Gate Bridge is a good example of a suspension
bridge does not mean it is the only, or the best possible, design for a
suspension bridge. If one has many successful suspension bridges to com-
pare, the design features that are required for success, and those that are
replaceable, become more apparent. And the requirements that are uni-
form across contexts, and the requirements that change with context, are
more easily revealed.

The chapters in this volume highlight different approaches to address-
ing the same fundamental principles of learning. It would be ideal to be able
to provide two or more “HPL compatible” approaches to teaching the same
topic. However, we cannot provide that level of specific variability in this
volume. We encourage readers to look at chapters in other disciplines as
well in order to see more clearly the common features across chapters, and
the variation in approach among the chapters.

This volume could not have come to life without the help and dedica-
tion of many people, and we are grateful to them. First and foremost, the
committee acknowledges the contributions of Robbie Case, who was to
have contributed to the mathematics chapters in this volume. Robbie was at
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the height of a very productive career when his life came to an unexpected
end in May 2000. Robbie combined the very best in disciplinary research
and attention to the incorporation of research findings into classroom tools
to support teaching and learning. In this respect, he was a model for re-
searchers interested in supporting improved educational practice. The math-
ematics chapters in this volume are marked by Robbie Case’s influence.

 The financial support of our sponsors, the U.S. Department of Educa-
tion and the President’s Circle of the National Academy of Sciences, was
essential. We appreciate both their support and their patience during the
unexpectedly long period required to shape and produce so extensive a
volume with so many different contributors. Our thanks to C. Kent McGuire,
former assistant secretary of the Office of Education Research and Improve-
ment for providing the initial grant for this project, and to his successor and
now director of the National Institute for Education Sciences, Grover J.
Whitehurst; thanks are due as well to Patricia O’Connell Ross, Jill Edwards
Staton, Michael Kestner, and Linda Jones at the Department of Education for
working with us throughout, and providing the time required to produce a
quality product.

This report is a somewhat unusual undertaking for the National Re-
search Council in that the committee members did not author the report
chapters, but served as advisers to the chapter authors. The contributions of
committee members were extraordinary. In a first meeting the committee
and chapter authors worked together to plan the volume. The committee
then read each draft chapter, and provided extensive, and remarkably pro-
ductive, feedback to chapter authors. As drafts were revised, committee
members reviewed them again, pointing out concerns and proposing poten-
tial solutions. Their generosity and their commitment to the goal of this
project are noteworthy.

Alexandra Wigdor, director of the Division on Education, Labor, and
Human Performance when this project was begun, provided ongoing guid-
ance and experienced assistance with revisions. Rona Brière brought her
special skills in editing the entire volume. Our thanks go to Allison E. Shoup,
who was senior project assistant, supporting the project through much of its
life; to Susan R. McCutchen, who prepared the manuscript for review; to
Claudia Sauls and Candice Crawford, who prepared the final manuscript;
and to Deborah Johnson, Sandra Smotherman, and Elizabeth B. Townsend,
who willingly provided additional support when needed. Kirsten Sampson
Snyder handled the report review process, and Yvonne Wise handled report
production—both challenging tasks for a report of this size and complexity.
We are grateful for their help.

This report has been reviewed in draft form by individuals chosen for
their diverse perspectives and technical expertise, in accordance with proce-
dures approved by the National Research Council’s Report Review Commit-
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tee. The purpose of this independent review is to provide candid and critical
comments that will assist the institution in making its published report as
sound as possible and to ensure that the report meets institutional standards
for objectivity, evidence, and responsiveness to the study charge. The re-
view comments and draft manuscript remain confidential to protect the in-
tegrity of the deliberative process. We thank the following individuals for
their review of this report: Jo Boaler, Mathematics Education, School of Edu-
cation, Stanford University; Miriam L. Clifford, Mathematics Department, Carroll
College, Waukesha, Wisconsin; O.L. Davis, Curriculum and Instruction, The
University of Texas at Austin; Patricia B. Dodge, Science Teacher, Essex
Middle School, Essex Junction, Vermont; Carol T. Hines, History Teacher,
Darrel C. Swope Middle School, Reno, Nevada; Janis Lariviere, UTeach—
Science and Mathematics Teacher Preparation, The University of Texas at
Austin; Gaea Leinhardt, Learning Research and Development Center and
School of Education, University of Pittsburgh; Alan M. Lesgold, Office of the
Provost, University of Pittsburgh; Marcia C. Linn, Education in Mathematics,
Science, and Technology, University of California, Berkeley; Kathleen Metz,
Cognition and Development, Graduate School of Education, University of
California, Berkeley; Thomas Romberg, National Center for Research in Math-
ematics and Science Education, University of Wisconsin–Madison; and Peter
Seixas, Centre for the Study of Historical Consciousness, University of British
Columbia.

Although the reviewers listed above have provided many constructive
comments and suggestions, they did not see the final draft of the report
before its release. The review of this report was overseen by Alan M. Lesgold,
University of Pittsburgh. Appointed by the National Research Council, he
was responsible for making certain that an independent examination of this
report was carried out in accordance with institutional procedures and that
all review comments were carefully considered. Responsibility for the final
content of this report rests entirely with the authors, the committee, and the
institution.

John D. Bransford, Chair
M. Suzanne Donovan, Study Director
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INTRODUCTION 1

1

Introduction
M. Suzanne Donovan and John D. Bransford

More than any other species, people are designed to be flexible learners
and, from infancy, are active agents in acquiring knowledge and skills. People
can invent, record, accumulate, and pass on organized bodies of knowledge
that help them understand, shape, exploit, and ornament their environment.
Much that each human being knows about the world is acquired informally,
but mastery of the accumulated knowledge of generations requires inten-
tional learning, often accomplished in a formal educational setting.

Decades of work in the cognitive and developmental sciences has pro-
vided the foundation for an emerging science of learning. This foundation
offers conceptions of learning processes and the development of competent
performance that can help teachers support their students in the acquisition
of knowledge that is the province of formal education. The research litera-
ture was synthesized in the National Research Council report How People
Learn: Brain, Mind, Experience, and School.1  In this volume, we focus on
three fundamental and well-established principles of learning that are high-
lighted in How People Learn and are particularly important for teachers to
understand and be able to incorporate in their teaching:

1. Students come to the classroom with preconceptions about how the
world works. If their initial understanding is not engaged, they may fail to
grasp the new concepts and information, or they may learn them for pur-
poses of a test but revert to their preconceptions outside the classroom.

2. To develop competence in an area of inquiry, students must (a) have
a deep foundation of factual knowledge, (b) understand facts and ideas in
the context of a conceptual framework, and (c) organize knowledge in ways
that facilitate retrieval and application.

How Students Learn: Mathematics in the Classroom
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2 HOW STUDENTS LEARN

3. A “metacognitive” approach to instruction can help students learn to
take control of their own learning by defining learning goals and monitoring
their progress in achieving them.

A FISH STORY
The images from a children’s story, Fish Is Fish,2  help convey the es-

sence of the above principles. In the story, a young fish is very curious about
the world outside the water. His good friend the frog, on returning from the
land, tells the fish about it excitedly:

“I have been about the world—hopping here and there,”
said the frog, “and I have seen extraordinary things.”
“Like what?” asked the fish.
“Birds,” said the frog mysteriously. “Birds!” And he told the
fish about the birds, who had wings, and two legs, and
many, many colors. As the frog talked, his friend saw the
birds fly through his mind like large feathered fish.

The frog continues with descriptions of cows, which the fish imagines
as black-and-white spotted fish with horns and udders, and humans, which
the fish imagines as fish walking upright and dressed in clothing. Illustra-
tions below from Leo Lionni’s Fish Is Fish © 1970.  Copyright renewed 1998
by Leo Lionni. Used by permission of Random House Children’s Books, a
division of Random House, Inc.
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4 HOW STUDENTS LEARN

Principle #1: Engaging Prior Understandings

What Lionni’s story captures so effectively is a fundamental insight about
learning: new understandings are constructed on a foundation of existing
understandings and experiences. With research techniques that permit the
study of learning in infancy and tools that allow for observation of activity in
the brain, we understand as never before how actively humans engage in
learning from the earliest days of life (see Box 1-1). The understandings
children carry with them into the classroom, even before the start of formal
schooling, will shape significantly how they make sense of what they are

Research studies have demonstrated that infants as young as 3 to 4 months of
age develop understandings and expectations about the physical world. For ex-
ample, they understand that objects need support to prevent them from falling to
the ground, that stationary objects may be displaced when they come into contact
with moving objects, and that objects at rest must be propelled into motion.3

In research by Needham and Baillargeon,4 infants were shown a table on which
a box rested. A gloved hand reached out from a window beside the table and
placed another box in one of two locations: on top of the first box (the possible
event), and beyond the box—creating the impression that the box was suspended
in midair. In this and similar studies, infants look reliably longer at the impossible
events, suggesting an awareness and a set of expectations regarding what is and
is not physically possible.

SOURCE:  Needham  and Baillargeon (1993).  Reprinted with permission from
Elsevier.

BOX 1-1 The Development of Physical Concepts in Infancy
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INTRODUCTION 5

taught. Just as the fish constructed an image of a human as a modified fish,
children use what they know to shape their new understandings.

While prior learning is a powerful support for further learning, it can
also lead to the development of conceptions that can act as barriers to learn-
ing. For example, when told that the earth is round, children may look to
reconcile this information with their experience with balls. It seems obvious
that one would fall off a round object. Researchers have found that some
children solve the paradox by envisioning the earth as a pancake, a “round”
shape with a surface on which people could walk without falling off.6

How People Learn summarizes a number of studies demonstrating the
active, preconception-driven learning that is evident in humans from infancy
through adulthood.7  Preconceptions developed from everyday experiences
are often difficult for teachers to change because they generally work well
enough in day-to-day contexts. But they can impose serious constraints on
understanding formal disciplines. College physics students who do well on
classroom exams on the laws of motion, for example, often revert to their
untrained, erroneous models outside the classroom. When they are con-
fronted with tasks that require putting their knowledge to use, they fail to
take momentum into account, just as do elementary students who have had
no physics training (see Box 1-2). If students’ preconceptions are not ad-
dressed directly, they often memorize content (e.g., formulas in physics), yet
still use their experience-based preconceptions to act in the world.

Andrea DiSessa5 conducted a study in which he compared the performance of
college physics students at a top technological university with that of elementary
schoolchildren on a task involving momentum. He instructed both sets of students
to play a computerized game that required them to direct a simulated object (a
dynaturtle) so that it would hit a target, and to do so with minimum speed at im-
pact. Participants were introduced to the game and given a hands-on trial that al-
lowed them to apply a few taps with a wooden mallet to a ball on a table before
they began.

DiSessa found that both groups of students failed miserably at the task. De-
spite their training, college physics majors—just like the elementary school chil-
dren—applied the force when the object was just below the target, failing to take
momentum into account. Further investigation with one college student revealed
that she knew the relevant physical properties and formulas and would have per-
formed well on a written exam. Yet in the context of the game, she fell back on her
untrained conceptions of how the physical world works.

BOX 1-2  Misconceptions About Momentum
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6 HOW STUDENTS LEARN

Principle #2: The Essential Role of Factual Knowledge
and Conceptual Frameworks in Understanding

The Fish Is Fish story also draws attention to the kinds of knowledge,
factual and conceptual, needed to support learning with understanding. The
frog in the story provides information to the fish about humans, birds, and
cows that is accurate and relevant, yet clearly insufficient. Feathers, legs,
udders, and sport coats are surface features that distinguish each species.
But if the fish (endowed now with human thinking capacity) is to under-
stand how the land species are different from fish and different from each
other, these surface features will not be of much help. Some additional,
critical concepts are needed—for example, the concept of adaptation. Spe-
cies that move through the medium of air rather than water have a different
mobility challenge. And species that are warm-blooded, unlike those that
are cold-blooded, must maintain their body temperature. It will take more
explaining of course, but if the fish is to see a bird as something other than
a fish with feathers and wings and a human as something other than an
upright fish with clothing, then feathers and clothing must be seen as adap-
tations that help solve the problem of maintaining body temperature, and
upright posture and wings must be seen as different solutions to the prob-
lem of mobility outside water.

Conceptual information such as a theory of adaptation represents a kind
of knowledge that is unlikely to be induced from everyday experiences. It
typically takes generations of inquiry to develop this sort of knowledge, and
people usually need some help (e.g., interactions with “knowledgeable oth-
ers”) to grasp such organizing concepts.8

Lionni’s fish, not understanding the described features of the land ani-
mals as adaptations to a terrestrial environment, leaps from the water to
experience life on land for himself. Since he can neither breathe nor maneu-
ver on land, the fish must be saved by the amphibious frog. The point is well
illustrated: learning with understanding affects our ability to apply what is
learned (see Box 1-3).

This concept of learning with understanding has two parts: (1) factual
knowledge (e.g., about characteristics of different species) must be placed
in a conceptual framework (about adaptation) to be well understood; and
(2) concepts are given meaning by multiple representations that are rich in
factual detail. Competent performance is built on neither factual nor concep-
tual understanding alone; the concepts take on meaning in the knowledge-
rich contexts in which they are applied. In the context of Lionni’s story, the
general concept of adaptation can be clarified when placed in the context of
the specific features of humans, cows, and birds that make the abstract
concept of adaptation meaningful.
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This essential link between the factual knowledge base and a concep-
tual framework can help illuminate a persistent debate in education: whether
we need to emphasize “big ideas” more and facts less, or are producing
graduates with a factual knowledge base that is unacceptably thin. While
these concerns appear to be at odds, knowledge of facts and knowledge of
important organizing ideas are mutually supportive. Studies of experts and
novices—in chess, engineering, and many other domains—demonstrate that
experts know considerably more relevant detail than novices in tasks within
their domain and have better memory for these details (see Box 1-4). But the
reason they remember more is that what novices see as separate pieces of
information, experts see as organized sets of ideas.

Engineering experts, for example, can look briefly at a complex mass of
circuitry and recognize it as an amplifier, and so can reproduce many of its
circuits from memory using that one idea. Novices see each circuit sepa-
rately, and thus remember far fewer in total. Important concepts, such as
that of an amplifier, structure both what experts notice and what they are
able to store in memory. Using concepts to organize information stored in
memory allows for much more effective retrieval and application. Thus, the
issue is not whether to emphasize facts or “big ideas” (conceptual knowl-
edge); both are needed. Memory of factual knowledge is enhanced by con-
ceptual knowledge, and conceptual knowledge is clarified as it is used to
help organize constellations of important details. Teaching for understand-
ing, then, requires that the core concepts such as adaptation that organize
the knowledge of experts also organize instruction. This does not mean that
that factual knowledge now typically taught, such as the characteristics of
fish, birds, and mammals, must be replaced. Rather, that factual information
is given new meaning and a new organization in memory because those
features are seen as adaptive characteristics.

In one of the most famous early studies comparing the effects of “learning a proce-
dure” with “learning with understanding,” two groups of children practiced throw-
ing darts at a target underwater.9  One group received an explanation of refraction of
light, which causes the apparent location of the target to be deceptive. The other
group only practiced dart throwing, without the explanation. Both groups did equally
well on the practice task, which involved a target 12 inches under water. But the
group that had been instructed about the abstract principle did much better when
they had to transfer to a situation in which the target was under only 4 inches of
water. Because they understood what they were doing, the group that had received
instruction about the refraction of light could adjust their behavior to the new task.

BOX 1-3 Learning with Understanding Supports Knowledge
Use in New Situations
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8 HOW STUDENTS LEARN

BOX 1-4 Experts Remember Considerably More Relevant Detail Than
Novices in Tasks Within Their Domain
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In one study, a chess master, a Class A player (good but not a master),
and a novice were given 5 seconds to view a chess board position from
the middle of a chess game (see below).

After 5 seconds the board was covered, and each participant at-
tempted to reconstruct the board position on another board. This proce-
dure was repeated for multiple trials until everyone received a perfect
score. On the first trial, the master player correctly placed many more
pieces than the Class A player, who in turn placed more than the novice:
16, 8, and 4, respectively. (See data graphed below.)

However, these results occurred only when the chess pieces were
arranged in configurations that conformed to meaningful games of chess.
When chess pieces were randomized and presented for 5 seconds, the
recall of the chess master and Class A player was the same as that of the
novice—they all placed 2 to 3 positions correctly. The apparent difference
in memory capacity is due to a difference in pattern recognition. What the
expert can remember as a single meaningful pattern, novices must re-
member as separate, unrelated items.
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10 HOW STUDENTS LEARN

Principle #3: The Importance of Self-Monitoring

Hero though he is for saving the fish’s life, the frog in Lionni’s story gets
poor marks as a teacher. But the burden of learning does not fall on the
teacher alone. Even the best instructional efforts can be successful only if the
student can make use of the opportunity to learn. Helping students become
effective learners is at the heart of the third key principle: a “metacognitive”
or self-monitoring approach can help students develop the ability to take
control of their own learning, consciously define learning goals, and moni-
tor their progress in achieving them. Some teachers introduce the idea of
metacognition to their students by saying, “You are the owners and opera-
tors of your own brain, but it came without an instruction book. We need to
learn how we learn.”

“Meta” is a prefix that can mean after, along with, or beyond. In the
psychological literature, “metacognition” is used to refer to people’s knowl-
edge about themselves as information processors. This includes knowledge
about what we need to do in order to learn and remember information (e.g.,
most adults know that they need to rehearse an unfamiliar phone number to
keep it active in short-term memory while they walk across the room to dial
the phone). And it includes the ability to monitor our current understanding
to make sure we understand (see Box 1-5). Other examples include moni-
toring the degree to which we have been helpful to a group working on a
project.10

BOX 1-5 Metacognitive Monitoring: An Example

Read the following passage from a literary critic, and pay attention to the strategies you
use to comprehend:

If a serious literary critic were to write a favorable, full-length review of How Could I Tell
Mother She Frightened My Boyfriends Away, Grace Plumbuster’s new story, his startled read-
ers would assume that he had gone mad, or that Grace Plumbuster was his editor’s wife.

Most good readers have to back up several times in order to grasp the meaning of
this passage. In contrast, poor readers tend to simply read it all the way through without
pausing and asking if the passage makes sense. Needless to say, when asked to para-
phrase the passage they fall short.

SOURCE: Whimbey and Whimbey (1975, p. 42).

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


INTRODUCTION 11

In Lionni’s story, the fish accepted the information about life on land
rather passively. Had he been monitoring his understanding and actively
comparing it with what he already knew, he might have noted that putting
on a hat and jacket would be rather uncomfortable for a fish and would slow
his swimming in the worst way. Had he been more engaged in figuring out
what the frog meant, he might have asked why humans would make them-
selves uncomfortable and compromise their mobility. A good answer to his
questions might have set the stage for learning about differences between
humans and fish, and ultimately about the notion of adaptation. The con-
cept of metacognition includes an awareness of the need to ask how new
knowledge relates to or challenges what one already knows—questions that
stimulate additional inquiry that helps guide further learning.11

The early work on metacognition was conducted with young children
in laboratory contexts.12  In studies of “metamemory,” for example, young
children might be shown a series of pictures (e.g., drum, tree, cup) and
asked to remember them after 15 seconds of delay (with the pictures no
longer visible). Adults who receive this task spontaneously rehearse during
the 15-second interval. Many of the children did not. When they were ex-
plicitly told to rehearse, they would do so, and their memory was very good.
But when the children took part in subsequent trials and were not reminded
to rehearse, many failed to rehearse even though they were highly moti-
vated to perform well in the memory test. These findings suggest that the
children had not made the “metamemory” connection between their re-
hearsal strategies and their short-term memory abilities.13

Over time, research on metacognition (of which metamemory is consid-
ered a subset) moved from laboratory settings to the classroom. One of the
most striking applications of a metacognitive approach to instruction was
pioneered by Palincsar and Brown in the context of “reciprocal teaching.”14

Middle school students worked in groups (guided by a teacher) to help one
another learn to read with understanding. A key to achieving this goal in-
volves the ability to monitor one’s ongoing comprehension and to initiate
strategies such as rereading or asking questions when one’s comprehension
falters. (Box 1-5 illustrates this point.) When implemented appropriately,
reciprocal teaching has been shown to have strong effects on improving
students’ abilities to read with understanding in order to learn.

Appropriate kinds of self-monitoring and reflection have been demon-
strated to support learning with understanding in a variety of areas. In one
study,15  for example, students who were directed to engage in self-explana-
tion as they solved mathematics problems developed deeper conceptual
understanding than did students who solved those same problems but did
not engage in self-explanation. This was true even though the common time
limitation on both groups meant that the self-explaining students solved
fewer problems in total.
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12 HOW STUDENTS LEARN

Helping students become more metacognitive about their own thinking
and learning is closely tied to teaching practices that emphasize self-assess-
ment. The early work of Thorndike16 demonstrated that feedback is impor-
tant for learning. However, there is a difference between responding to
feedback that someone else provides and actively seeking feedback in order
to assess one’s current levels of thinking and understanding. Providing sup-
port for self-assessment is an important component of effective teaching.
This can include giving students opportunities to test their ideas by building
things and seeing whether they work, performing experiments that seek to
falsify hypotheses, and so forth. Support for self-assessment is also provided
by opportunities for discussion where teachers and students can express
different views and explore which ones appear to make the most sense.
Such questioning models the kind of dialogue that effective learners inter-
nalize. Helping students explicitly understand that a major purpose of these
activities is to support metacognitive learning is an important component of
successful teaching strategies.17

Supporting students to become aware of and engaged in their own
learning will serve them well in all learning endeavors. To be optimally
effective, however, some metacognitive strategies need to be taught in the
context of individual subject areas. For example, guiding one’s learning in a
particular subject area requires awareness of the disciplinary standards for
knowing. To illustrate, asking the question “What is the evidence for this
claim?” is relevant whether one is studying history, science, or mathematics.
However, what counts as evidence often differs. In mathematics, for ex-
ample, formal proof is very important. In science, formal proofs are used
when possible, but empirical observations and experimental data also play a
major role. In history, multiple sources of evidence are sought and attention
to the perspective from which an author writes and to the purpose of the
writing is particularly important. Overall, knowledge of the discipline one is
studying affects people’s abilities to monitor their own understanding and
evaluate others’ claims effectively.

LEARNING ENVIRONMENTS AND THE DESIGN
OF INSTRUCTION

The key principles of learning discussed above can be organized into a
framework for thinking about teaching, learning, and the design of class-
room and school environments. In How People Learn, four design character-
istics are described that can be used as lenses to evaluate the effectiveness of
teaching and learning environments. These lenses are not themselves re-
search findings; rather, they are implications drawn from the research base:
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• The learner-centered lens encourages attention to preconceptions,
and begins instruction with what students think and know.

• The knowledge-centered lens focuses on what is to be taught, why it
is taught, and what mastery looks like.

• The assessment-centered lens emphasizes the need to provide fre-
quent opportunities to make students’ thinking and learning visible as a
guide for both the teacher and the student in learning and instruction.

•  The community-centered lens encourages a culture of questioning,
respect, and risk taking.

These aspects of the classroom environment are illustrated in Figure 1-1
and are discussed below.

Community

Learner
centered

Assessment
centered

Knowledge
centered

FIGURE 1-1 Perspectives on learning environments.
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14 HOW STUDENTS LEARN

Learner-Centered Classroom Environments

Instruction must begin with close attention to students’ ideas, knowl-
edge, skills, and attitudes, which provide the foundation on which new
learning builds. Sometimes, as in the case of Lionni’s fish, learners’ existing
ideas lead to misconceptions. More important, however, those existing con-
ceptions can also provide a path to new understandings. Lionni’s fish mis-
takenly projects the model of a fish onto humans, birds, and cows. But the
fish does know a lot about being a fish, and that experience can provide a
starting point for understanding adaptation. How do the scales and fins of a
fish help it survive? How would clothing and feathers affect a fish? The fish’s
existing knowledge and experience provide a route to understanding adap-
tation in other species. Similarly, the ideas and experiences of students pro-
vide a route to new understandings both about and beyond their experi-
ence.

Sometimes the experiences relevant to teaching would appear to be
similar for all students: the ways in which forces act on a falling ball or
feather, for example. But students in any classroom are likely to differ in
how much they have been encouraged to observe, think about, or talk
about a falling ball or feather. Differences may be larger still when the sub-
ject is a social rather than a natural phenomenon because the experiences
themselves, as well as norms regarding reflection, expression, and interac-
tion, differ for children from different families, communities, and cultures.
Finally, students’ expectations regarding their own performances, including
what it means to be intelligent, can differ in ways that affect their persistence
in and engagement with learning.

Being learner-centered, then, involves paying attention to students’ back-
grounds and cultural values, as well as to their abilities. To build effectively
on what learners bring to the classroom, teachers must pay close attention
to individual students’ starting points and to their progress on learning
tasks. They must present students with “just-manageable difficulties”—chal-
lenging enough to maintain engagement and yet not so challenging as to
lead to discouragement. They must find the strengths that will help students
connect with the information being taught. Unless these connections are
made explicitly, they often remain inert and so do not support subsequent
learning.

Knowledge-Centered Classroom Environments

While the learner-centered aspects of the classroom environment focus
on the student as the starting point, the knowledge-centered aspects focus
on what is taught (subject matter), why it is taught (understanding), how
the knowledge should be organized to support the development of exper-
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tise (curriculum), and what competence or mastery looks like (learning
goals). Several important questions arise when one adopts the knowledge-
centered lens:

• What is it important for students to know and be able to do?
• What are the core concepts that organize our understanding of this

subject matter, and what concrete cases and detailed knowledge will allow
students to master those concepts effectively?

• How will we know when students achieve mastery?18 This question
overlaps the knowledge-centered and assessment-centered lenses.

An important point that emerges from the expert–novice literature is
the need to emphasize connected knowledge that is organized around the
foundational ideas of a discipline. Research on expertise shows that it is
the organization of knowledge that underlies experts’ abilities to under-
stand and solve problems.19  Bruner, one of the founding fathers of the
new science of learning, has long argued the importance of this insight to
education:20

The curriculum of a subject should be determined by the most fundamental
understanding that can be achieved of the underlying principles that give
structure to a subject. Teaching specific topics or skills without making
clear their context in the broader fundamental structure of a field of knowl-
edge is uneconomical. . . . An understanding of fundamental principles and
ideas appears to be the main road to adequate transfer of training. To
understand something as a specific instance of a more general case—which
is what understanding a more fundamental structure means—is to have
learned not only a specific thing but also a model for understanding other
things like it that one may encounter.

Knowledge-centered and learner-centered environments intersect when
educators take seriously the idea that students must be supported to de-
velop expertise over time; it is not sufficient to simply provide them with
expert models and expect them to learn. For example, intentionally organiz-
ing subject matter to allow students to follow a path of “progressive differen-
tiation” (e.g., from qualitative understanding to more precise quantitative
understanding of a particular phenomenon) involves a simultaneous focus
on the structure of the knowledge to be mastered and the learning process
of students.21

In a comparative study of the teaching of mathematics in China and the
United States, Ma sought to understand why Chinese students outperform
students from the United States in elementary mathematics, even though
teachers in China often have less formal education. What she documents is
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16 HOW STUDENTS LEARN

that Chinese teachers are far more likely to identify core mathematical con-
cepts (such as decomposing a number in subtraction with regrouping), to
plan instruction to support mastery of the skills and knowledge required for
conceptual understanding, and to use those concepts to develop clear con-
nections across topics (see Box 1-6).

If identifying a set of “enduring connected ideas” is critical to effective
educational design, it is a task not just for teachers, but also for the develop-
ers of curricula, text books, and other instructional materials; universities
and other teacher preparation institutions; and the public and private groups
involved in developing subject matter standards for students and their teach-
ers. There is some good work already in place, but much more needs to be
done. Indeed, an American Association for the Advancement of Science
review of middle school and high school science textbooks found that al-
though a great deal of detailed and sophisticated material was presented,
very little attention was given to the concepts that support an understanding
of the discipline.22

The four mathematics chapters in this volume describe core ideas in
teaching about whole number, rational number, and functions that support
conceptual understanding and that connect the particular topic to the larger
discipline. Because textbooks sometimes focus primarily on methods of prob-
lem solving and neglect organizing principles, creating a knowledge-cen-
tered classroom will often require that a teacher go beyond the textbook to
help students see a structure to the knowledge, mainly by introducing them
to essential concepts. These chapters provide examples of how this might
be done.

Assessment-Centered Classroom Environments

Formative assessments—ongoing assessments designed to make students’
thinking visible to both teachers and students—are essential. Assessments
are a central feature of both a learner-centered and a knowledge-centered
classroom. They permit the teacher to grasp students’ preconceptions, which
is critical to working with and building on those notions. Once the knowl-
edge to be learned is well defined, assessment is required to monitor stu-
dent progress (in mastering concepts as well as factual information), to un-
derstand where students are in the developmental path from informal to
formal thinking, and to design instruction that is responsive to student progress.

An important feature of the assessment-centered classroom is assess-
ment that supports learning by providing students with opportunities to
revise and improve their thinking.23  Such assessments help students see
their own progress over time and point to problems that need to be ad-
dressed in instruction. They may be quite informal. A physics teacher, for
example, reports showing students who are about to study structure a video
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clip of a bridge collapsing. He asks his students why they think the bridge
collapsed. In giving their answers, the students reveal their preconceptions
about structure. Differences in their answers provide puzzles that engage
the students in self-questioning. As the students study structure, they can
mark their changing understanding against their initial beliefs. Assessment in
this sense provides a starting point for additional instruction rather than a
summative ending. Formative assessments are often referred to as “class-
room-based assessments” because, as compared with standardized assess-
ments, they are most likely to occur in the context of the classrooms. How-
ever, many classroom-based assessments are summative rather than formative
(they are used to provide grades at the end of a unit with no opportunities to
revise). In addition, one can use standardized assessments in a formative
manner (e.g., to help teachers identify areas where students need special
help).

Ultimately, students need to develop metacognitive abilities—the habits
of mind necessary to assess their own progress—rather than relying solely
on external indicators. A number of studies show that achievement improves
when students are encouraged to assess their own contributions and work.24

It is also important to help students assess the kinds of strategies they are
using to learn and solve problems. For example, in quantitative courses such
as physics, many students simply focus on formulas and fail to think first
about the problem to be solved and its relation to key ideas in the discipline
(e.g., Newton’s second law). When students are helped to do the latter, their
performance on new problems greatly improves.25

The classroom interactions described in the following chapters provide
many examples of formative assessment in action, though these interactions
are often not referred to as assessments. Early activities or problems given to
students are designed to make student thinking public and, therefore, ob-
servable by teachers. Work in groups and class discussions provide students
with the opportunity to ask each other questions and revise their own think-
ing. In some cases, the formative assessments are formal, but even when
informal the teaching described in the chapters involves frequent opportuni-
ties for both teachers and students to assess understanding and its progress
over time.

Community-Centered Classroom Environments

A community-centered approach requires the development of norms
for the classroom and school, as well as connections to the outside world,
that support core learning values. Learning is influenced in fundamental
ways by the context in which it takes place. Every community, including
classrooms and schools, operates with a set of norms, a culture—explicit or
implicit—that influences interactions among individuals. This culture, in turn,
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BOX 1-6 Organizing Knowledge Around Core Concepts: Subtraction with
Regrouping26

A study by Ma27  compares the knowledge of elementary mathematics of teachers in the
United States and in China. She gives the teachers the following scenario (p. 1):

Look at these questions (52 – 25; 91 – 79 etc.). How would you approach
these problems if you were teaching second grade? What would you say
pupils would need to understand or be able to do before they could start
learning subtraction with regrouping?

The responses of teachers were wide-ranging, reflecting very different levels of un-
derstanding of the core mathematical concepts. Some teachers focused on the need for
students to learn the procedure for subtraction with regrouping (p. 2):

Whereas there is a number like 21 – 9, they would need to know that you
cannot subtract 9 from 1, then in turn you have to borrow a 10 from the
tens space, and when you borrow that 1, it equals 10, you cross out the 2
that you had, you turn it into a 10, you now have 11 – 9, you do that
subtraction problem then you have the 1 left and you bring it down.

Some teachers in both the United States and China saw the knowledge to be mas-
tered as procedural, though the proportion who held this view was considerably higher in
the United States. Many teachers in both countries believed students needed a concep-
tual understanding, but within this group there were considerable differences. Some
teachers wanted children to think through what they were doing, while others wanted
them to understand core mathematical concepts. The difference can be seen in the two
explanations below.

They have to understand what the number 64 means. . . . I would show
that the number 64, and the number 5 tens and 14 ones, equal the 64. I
would try to draw the comparison between that because when you are
doing regrouping it is not so much knowing the facts, it is the regrouping
part that has to be understood. The regrouping right from the beginning.

This explanation is more conceptual than the first and helps students think more
deeply about the subtraction problem. But it does not make clear to students the more
fundamental concept of the place value system that allows the subtraction problems to
be connected to other areas of mathematics. In the place value system, numbers are
“composed” of tens. Students already have been taught to compose tens as 10 ones,
and hundreds as 10 tens. A Chinese teacher explains as follows (p. 11):

What is the rate for composing a higher value unit? The answer is simple:
10. Ask students how many ones there are in a 10, or ask them what the
rate for composing a higher value unit is, their answers will be the same:
10. However, the effect of the two questions on their learning is not the
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same. When you remind students that 1 ten equals 10 ones, you tell them
the fact that is used in the procedure. And, this somehow confines them to
the fact. When you require them to think about the rate for composing a
higher value unit, you lead them to a theory that explains the fact as well
as the procedure. Such an understanding is more powerful than a specific
fact. It can be applied to more situations. Once they realize that the rate of
composing a higher value unit, 10 is the reason why we decompose a ten
into 10 ones, they will apply it to other situations. You don’t need to
remind them again that 1 hundred equals 10 tens when in the future they
learn subtraction with three-digit numbers. They will be able to figure it
out on their own.

Emphasizing core concepts does not imply less of an emphasis on mastery of pro-
cedures or algorithms. Rather, it suggests that procedural knowledge and skills be orga-
nized around core concepts. Ma describes those Chinese teachers who emphasize core
concepts as seeing the knowledge in “packages” in which the concepts and skills are
related. While the packages differed somewhat from teacher to teacher, the knowledge
“pieces” to be included were the same. She illustrates a knowledge package for sub-
traction with regrouping, which is reproduced below (p. 19).

The two shaded elements in the knowledge package are considered critical. “Addi-
tion and subtraction within 20” is seen as the ability that anchors more complex problem
solving with larger numbers. That ability is viewed as both conceptual and procedural.
“Composing and decomposing a higher value unit” is the core concept that ties this set
of problems to the mathematics students have done in the past and to all other areas of
mathematics they will learn in the future.

Subtraction
with regrouping of large

numbers

The composition of

numbers within 100

Subtractions with regrouping of

numbers between 20 and 100

Subtraction without

regrouping

The rate of composing

a higher value unit

Addition and subtraction

within 20

Addition without carrying

Composing and decomposing

a higher value unit

Addition and subtraction

within 10
The composition of 10

Addition and subtraction

as inverse operations

SOURCE:  Ma (1999).  Illustration reprinted with permission of Lawrence Erlbaum Associates.
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mediates learning. The principles of How People Learn have important im-
plications for classroom culture. Consider the finding that new learning builds
on existing conceptions, for example. If classroom norms encourage and
reward students only for being “right,” we would expect students to hesitate
when asked to reveal their unschooled thinking. And yet revealing precon-
ceptions and changing ideas in the course of instruction is a critical compo-
nent of effective learning and responsive teaching. A focus on student think-
ing requires classroom norms that encourage the expression of ideas (tentative
and certain, partially and fully formed), as well as risk taking. It requires that
mistakes be viewed not as revelations of inadequacy, but as helpful contri-
butions in the search for understanding.28

Similarly, effective approaches to teaching metacognitive strategies rely
on initial teacher modeling of the monitoring process, with a gradual shift to
students. Through asking questions of other students, skills at monitoring
understanding are honed, and through answering the questions of fellow
students, understanding of what one has communicated effectively is strength-
ened. To those ends, classroom norms that encourage questioning and al-
low students to try the role of the questioner (sometimes reserved for teach-
ers) are important.

While the chapters in this volume make few direct references to learn-
ing communities, they are filled with descriptions of interactions revealing
classroom cultures that support learning with understanding. In these class-
rooms, students are encouraged to question; there is much discussion among
students who work to solve problems in groups. Teachers ask many probing
questions, and incorrect or naïve answers to questions are explored with
interest, as are different strategies for analyzing a problem and reaching a
solution.

PUTTING THE PRINCIPLES TO WORK IN THE
CLASSROOM

Although the key findings from the research literature reviewed above
have clear implications for practice, they are not at a level of specificity that
would allow them to be immediately useful to teachers. While teachers may
fully grasp the importance of working with students’ prior conceptions, they
need to know the typical conceptions of students with respect to the topic
about to be taught. For example, it may help mathematics teachers to know
that students harbor misconceptions that can be problematic, but those teach-
ers will be in a much better position to teach a unit on rational number if
they know specifically what misconceptions students typically exhibit.

Moreover, while teachers may be fully convinced that knowledge should
be organized around important concepts, the concepts that help organize
their particular topic may not be at all clear. History teachers may know that
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they are to teach certain eras, for example, but they often have little support
in identifying core concepts that will allow students to understand the era
more deeply than would be required to reproduce a set of facts. To make
this observation is in no way to fault teachers. Indeed, as the group involved
in this project engaged in the discussion, drafting, and review of various
chapters of this volume, it became clear that the relevant core concepts in
specific areas are not always obvious, transparent, or uncontested.

Finally, approaches to supporting metacognition can be quite difficult to
carry out in classroom contexts. Some approaches to instruction reduce
metacognition to its simplest form, such as making note of the subtitles in a
text and what they signal about what is to come, or rereading for meaning.
The more challenging tasks of metacognition are difficult to reduce to an
instructional recipe: to help students develop the habits of mind to reflect
spontaneously on their own thinking and problem solving, to encourage
them to activate relevant background knowledge and monitor their under-
standing, and to support them in trying the lens through which those in a
particular discipline view the world. The teacher–student interactions de-
scribed in the chapters of this volume and the discipline-specific examples
of supporting students in monitoring their thinking give texture to the in-
structional challenge that a list of metacognitive strategies could not.

INTENT AND ORGANIZATION OF THIS VOLUME
In the preface, we note that this volume is intended to take the work of

How People Learn a next step in specificity: to provide examples of how its
principles and findings might be incorporated in the teaching of a set of
topics that frequently appear in the K–12 curriculum. The goal is to provide
for teachers what we have argued above is critical to effective learning—the
application of concepts (about learning) in enough different, concrete con-
texts to give them deeper meaning.

To this end, we invited contributions from researchers with extensive
experience in teaching or partnering with teachers, whose work incorpo-
rates the ideas highlighted in How People Learn. The chapter authors were
given leeway in the extent to which the three learning principles and the
four classroom characteristics described above were treated explicitly or
implicitly. Most of the authors chose to emphasize the three learning prin-
ciples explicitly as they described their lessons and findings. The four design
characteristics of the How People Learn framework (Figure 1-2) are implicitly
represented in the activities sketched in each of the chapters but often not
discussed explicitly. Interested readers can map these discussions to the
How People Learn framework if they desire.

While we began with a common description of our goal, we had no
common model from which to work. One can point to excellent research
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papers on principles of learning, but the chapters in this volume are far
more focused on teaching a particular topic. There are also examples of
excellent curricula, but the goal of these chapters is to give far more atten-
tion to the principles of learning and their incorporation into teaching than
is typical of curriculum materials. Thus the authors were charting new terri-
tory as they undertook this task, and each found a somewhat different path.

This volume includes four mathematics chapters. Chapter 2 presents an
introduction to the principles as they apply to mathematics. It focuses on the
changes in expectations for mathematics performance as we move into the
twenty-first century and what those changes mean for instruction—particu-
larly at the elementary level. This chapter, then, is part introduction and part
elementary mathematics. The three chapters that follow treat important top-
ics at the three different grade levels: whole number in elementary school
(Chapter 3), rational number in middle school (Chapter 4), and functions in
high school (Chapter 5).

The major focus of the volume is student learning. It is clear that suc-
cessful and sustainable changes in educational practice also require learning
by others, including teachers, principals, superintendents, parents, and com-
munity members. For the present volume, however, student learning is the
focus, and issues of adult learning are left for others to take up.

The willingness of the chapter authors to accept this task represents an
outstanding contribution to the field. First, all the authors devoted consider-
able time to this effort—more than any of them had anticipated initially.
Second, they did so knowing that some readers will disagree with virtually
every teaching decision discussed in these chapters. But by making their
thinking visible and inviting discussion, they are helping the field progress
as a whole. The examples discussed in this volume are not offered as “the”
way to teach, but as approaches to instruction that in some important re-
spects are designed to incorporate the principles of learning highlighted in
How People Learn and that can serve as valuable examples for further dis-
cussion.

In 1960, Nobel laureate Richard Feynman, who was well known as an
extraordinary teacher, delivered a series of lectures in introductory physics
that were recorded and preserved. Feynman’s focus was on the fundamental
principles of physics, not the fundamental principles of learning. But his
lessons apply nonetheless. He emphasized how little the fundamental prin-
ciples of physics “as we now understand them” tell us about the complexity
of the world despite the enormous importance of the insights they offer.
Feynman offered an effective analogy for the relationship between under-
standing general principles identified through scientific efforts and under-
standing the far more complex set of behaviors for which those principles
provide only a broad set of constraints:29
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We can imagine that this complicated array of moving things which consti-
tutes “the world” is something like a great chess game being played by the
gods, and we are observers of the game. We do not know what the rules of
the game are; all we are allowed to do is to watch the playing. Of course,
if we watch long enough, we may eventually catch on to a few of the rules.
The rules of the game are what we mean by fundamental physics. Even if
we knew every rule, however, we might not be able to understand why a
particular move is made in the game, merely because it is too complicated
and our minds are limited. If you play chess you must know that it is easy
to learn all the rules, and yet it is often very hard to select the best move or
to understand why a player moves as he does. . . . Aside from not knowing
all of the rules, what we really can explain in terms of those rules is very
limited, because almost all situations are so enormously complicated that
we cannot follow the plays of the game using the rules, much less tell what
is going to happen next. (p. 24)

The individual chapters in this volume might be viewed as presentations
of the strategies taken by individuals (or teams) who understand the rules of
the teaching and learning “game” as we now understand them. Feynman’s
metaphor is helpful in two respects. First, what each chapter offers goes well
beyond the science of learning and relies on creativity in strategy develop-
ment. And yet what we know from research thus far is critical in defining the
constraints on strategy development. Second, what we expect to learn from
a well-played game (in this case, what we expect to learn from well-concep-
tualized instruction) is not how to reproduce it. Rather, we look for insights
about playing/teaching well that can be brought to one’s own game. Even if
we could replicate every move, this would be of little help. In an actual
game, the best move must be identified in response to another party’s move.
In just such a fashion, a teacher’s “game” must respond to the rather unpre-
dictable “moves” of the students in the classroom whose learning is the
target.

This, then, is not a “how to” book, but a discussion of strategies that
incorporate the rules of the game as we currently understand them. The
science of learning is a young, emerging one. We expect our understanding
to evolve as we design new learning opportunities and observe the out-
comes, as we study learning among children in different contexts and from
different backgrounds, and as emerging research techniques and opportuni-
ties provide new insights. These chapters, then, might best be viewed as
part of a conversation begun some years ago with the first How People Learn
volume. By clarifying ideas through a set of rich examples, we hope to
encourage the continuation of a productive dialogue well into the future.
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5
Mathematical Understanding:

An Introduction
Karen C. Fuson, Mindy Kalchman, and John D. Bransford

For many people, free association with the word “mathematics” would
produce strong, negative images. Gary Larson published a cartoon entitled
“Hell’s Library” that consisted of nothing but book after book of math word
problems. Many students—and teachers—resonate strongly with this cartoon’s
message. It is not just funny to them; it is true.

Why are associations with mathematics so negative for so many people?
If we look through the lens of How People Learn, we see a subject that is
rarely taught in a way that makes use of the three principles that are the
focus of this volume. Instead of connecting with, building on, and refining
the mathematical understandings, intuitions, and resourcefulness that stu-
dents bring to the classroom (Principle 1), mathematics instruction often
overrides students’ reasoning processes, replacing them with a set of rules
and procedures that disconnects problem solving from meaning making.
Instead of organizing the skills and competences required to do mathemat-
ics fluently around a set of core mathematical concepts (Principle 2), those
skills and competencies are often themselves the center, and sometimes the
whole, of instruction. And precisely because the acquisition of procedural
knowledge is often divorced from meaning making, students do not use
metacognitive strategies (Principle 3) when they engage in solving math-
ematics problems. Box 5-1 provides a vignette involving a student who gives
an answer to a problem that is quite obviously impossible. When quizzed,
he can see that his answer does not make sense, but he does not consider it
wrong because he believes he followed the rule. Not only did he neglect to
use metacognitive strategies to monitor whether his answer made sense, but
he believes that sense making is irrelevant.
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One boy, quite a good student, was working on the problem, “If you have 6 jugs,
and you want to put 2/3 of a pint of lemonade into each jug, how much lemonade
will you need?” His answer was 18 pints. I said, “How much in each jug?” “Two-
thirds of a pint.” I said, “Is that more or less that a pint?” “Less.” I said, “How
many jugs are there?” “Six.” I said, “But that [the answer of 18 pints] doesn’t
make any sense.” He shrugged his shoulders and said, “Well, that’s the way the
system worked out.” Holt argues: “He has long since quit expecting school to
make sense. They tell you these facts and rules, and your job is to put them down
on paper the way they tell you. Never mind whether they mean anything or not.”1

BOX 5-1 Computation Without Comprehension: An Observation by
John Holt

A recent report of the National Research Council,2  Adding It Up, reviews
a broad research base on the teaching and learning of elementary school
mathematics. The report argues for an instructional goal of “mathematical
proficiency,” a much broader outcome than mastery of procedures. The
report argues that five intertwining strands constitute mathematical profi-
ciency:

1. Conceptual understanding—comprehension of mathematical con-
cepts, operations, and relations

2. Procedural fluency—skill in carrying out procedures flexibly, accu-
rately, efficiently, and appropriately

3. Strategic competence—ability to formulate, represent, and solve math-
ematical problems

4. Adaptive reasoning—capacity for logical thought, reflection, expla-
nation, and justification

5. Productive disposition—habitual inclination to see mathematics as
sensible, useful, and worthwhile, coupled with a belief in diligence and
one’s own efficacy

These strands map directly to the principles of How People Learn. Prin-
ciple 2 argues for a foundation of factual knowledge (procedural fluency),
tied to a conceptual framework (conceptual understanding), and organized
in a way to facilitate retrieval and problem solving (strategic competence).
Metacognition and adaptive reasoning both describe the phenomenon of
ongoing sense making, reflection, and explanation to oneself and others.
And, as we argue below, the preconceptions students bring to the study of
mathematics affect more than their understanding and problem solving; those
preconceptions also play a major role in whether students have a productive
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disposition toward mathematics, as do, of course, their experiences in learn-
ing mathematics.

The chapters that follow on whole number, rational number, and func-
tions look at the principles of How People Learn as they apply to those
specific domains. In this introduction, we explore how those principles ap-
ply to the subject of mathematics more generally. We draw on examples
from the Children’s Math World project, a decade-long research project in
urban and suburban English-speaking and Spanish-speaking classrooms.3

PRINCIPLE #1: TEACHERS MUST ENGAGE
STUDENTS’ PRECONCEPTIONS

At a very early age, children begin to demonstrate an awareness of
number.4 As with language, that awareness appears to be universal in nor-
mally developing children, though the rate of development varies at least in
part because of environmental influences.5

But it is not only the awareness of quantity that develops without formal
training. Both children and adults engage in mathematical problem solving,
developing untrained strategies to do so successfully when formal experi-
ences are not provided. For example, it was found that Brazilian street chil-
dren could perform mathematics when making sales in the street, but were
unable to answer similar problems presented in a school context.6  Likewise,
a study of housewives in California uncovered an ability to solve mathemati-
cal problems when comparison shopping, even though the women could
not solve problems presented abstractly in a classroom that required the
same mathematics.7 A similar result was found in a study of a group of
Weight Watchers, who used strategies for solving mathematical measure-
ment problems related to dieting that they could not solve when the prob-
lems were presented more abstractly.8 And men who successfully handi-
capped horse races could not apply the same skill to securities in the stock
market.9

These examples suggest that people possess resources in the form of
informal strategy development and mathematical reasoning that can serve as
a foundation for learning more abstract mathematics. But they also suggest
that the link is not automatic. If there is no bridge between informal and
formal mathematics, the two often remain disconnected.

The first principle of How People Learn emphasizes both the need to
build on existing knowledge and the need to engage students’ preconcep-
tions—particularly when they interfere with learning. In mathematics, cer-
tain preconceptions that are often fostered early on in school settings are in
fact counterproductive. Students who believe them can easily conclude that
the study of mathematics is “not for them” and should be avoided if at all
possible. We discuss these preconceptions below.
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Some Common Preconceptions About Mathematics

Preconception #1: Mathematics is about learning to compute.

Many of us who attended school in the United States had mathematics
instruction that focused primarily on computation, with little attention to
learning with understanding. To illustrate, try to answer the following ques-
tion:

What, approximately, is the sum of 8/9 plus 12/13?

Many people immediately try to find the lowest common denominator
for the two sets of fractions and then add them because that is the procedure
they learned in school. Finding the lowest common denominator is not easy
in this instance, and the problem seems difficult. A few people take a con-
ceptual rather than a procedural (computational) approach and realize that
8/9 is almost 1, and so is 12/13, so the approximate answer is a little less
than 2.

The point of this example is not that computation should not be taught
or is unimportant; indeed, it is very often critical to efficient problem solv-
ing. But if one believes that mathematics is about problem solving and that
computation is a tool for use to that end when it is helpful, then the above
problem is viewed not as a “request for a computation,” but as a problem to
be solved that may or may not require computation—and in this case, it
does not.

If one needs to find the exact answer to the above problem, computa-
tion is the way to go. But even in this case, conceptual understanding of the
nature of the problem remains central, providing a way to estimate the cor-
rectness of a computation. If an answer is computed that is more than 2 or
less than 1, it is obvious that some aspect of problem solving has gone awry.
If one believes that mathematics is about computation, however, then sense
making may never take place.

Preconception #2: Mathematics is about “following rules” to
guarantee correct answers.

Related to the conception of mathematics as computation is that of math-
ematics as a cut-and-dried discipline that specifies rules for finding the right
answers. Rule following is more general than performing specific computa-
tions. When students learn procedures for keeping track of and canceling
units, for example, or learn algebraic procedures for solving equations, many
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view use of these procedures only as following the rules. But the “rules”
should not be confused with the game itself.

The authors of the chapters in this part of the book provide important
suggestions about the much broader nature of mathematical proficiency and
about ways to make the involving nature of mathematical inquiry visible to
students. Groups such as the National Council of Teachers of Mathematics10

and the National Research Council11  have provided important guidelines for
the kinds of mathematics instruction that accord with what is currently known
about the principles of How People Learn. The authors of the following
chapters have paid careful attention to this work and illustrate some of its
important aspects.

In reality, mathematics is a constantly evolving field that is far from cut
and dried. It involves systematic pattern finding and continuing invention.
As a simple example, consider the selection of units that are relevant to
quantify an idea such as the fuel efficiency of a vehicle. If we choose miles
per gallon, a two-seater sports car will be more efficient than a large bus. If
we choose passenger miles per gallon, the bus will be more fuel efficient
(assuming it carries large numbers of passengers). Many disciplines make
progress by inventing new units and metrics that provide insights into previ-
ously invisible relationships.

Attention to the history of mathematics illustrates that what is taught at
one point in time as a set of procedures really was a set of clever inventions
designed to solve pervasive problems of everyday life. In Europe in the
Middle Ages, for example, people used calculating cloths marked with ver-
tical columns and carried out procedures with counters to perform calcula-
tions. Other cultures fastened their counters on a rod to make an abacus.
Both of these physical means were at least partially replaced by written
methods of calculating with numerals and more recently by methods that
involve pushing buttons on a calculator. If mathematics procedures are un-
derstood as inventions designed to make common problems more easily
solvable, and to facilitate communications involving quantity, those proce-
dures take on a new meaning. Different procedures can be compared for
their advantages and disadvantages. Such discussions in the classroom can
deepen students’ understanding and skill.

Preconception #3: Some people have the ability to “do math”
and some don’t.

This is a serious preconception that is widespread in the United States,
but not necessarily in other countries. It can easily become a self-fulfilling
prophesy. In many countries, the ability to “do math” is assumed to be
attributable to the amount of effort people put into learning it.12  Of course,
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some people in these countries do progress further than others, and some
appear to have an easier time learning mathematics than others. But effort is
still considered to be the key variable in success. In contrast, in the United
States we are more likely to assume that ability is much more important than
effort, and it is socially acceptable, and often even desirable, not to put forth
effort in learning mathematics. This difference is also related to cultural
differences in the value attributed to struggle. Teachers in some countries
believe it is desirable for students to struggle for a while with problems,
whereas teachers in the United States simplify things so that students need
not struggle at all.13

 This preconception likely shares a common root with the others. If
mathematics learning is not grounded in an understanding of the nature of
the problem to be solved and does not build on a student’s own reasoning
and strategy development, then solving problems successfully will depend
on the ability to recall memorized rules. If a student has not reviewed those
rules recently (as is the case when a summer has passed), they can easily be
forgotten. Without a conceptual understanding of the nature of problems
and strategies for solving them, failure to retrieve learned procedures can
leave a student completely at a loss.

Yet students can feel lost not only when they have forgotten, but also
when they fail to “get it” from the start. Many of the conventions of math-
ematics have been adopted for the convenience of communicating efficiently
in a shared language. If students learn to memorize procedures but do not
understand that the procedures are full of such conventions adopted for
efficiency, they can be baffled by things that are left unexplained. If students
never understand that x and y have no intrinsic meaning, but are conven-
tional notations for labeling unknowns, they will be baffled when a z ap-
pears. When an m precedes an x in the equation of a line, students may
wonder, Why m? Why not s for slope? If there is no m, then is there no slope?
To someone with a secure mathematics understanding, the missing m is
simply an unstated m = 1. But to a student who does not understand that the
point is to write the equation efficiently, the missing m can be baffling.
Unlike language learning, in which new expressions can often be figured
out because they are couched in meaningful contexts, there are few clues to
help a student who is lost in mathematics. Providing a secure conceptual
understanding of the mathematics enterprise that is linked to students’ sense-
making capacities is critical so that students can puzzle productively over
new material, identify the source of their confusion, and ask questions when
they do not understand.
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Engaging Students’ Preconceptions and Building on
Existing Knowledge

Engaging and building on student preconceptions, then, poses two in-
structional challenges. First, how can we teach mathematics so students come
to appreciate that it is not about computation and following rules, but about
solving important and relevant quantitative problems? This perspective in-
cludes an understanding that the rules for computation and solution are a
set of clever human inventions that in many cases allow us to solve complex
problems more easily, and to communicate about those problems with each
other effectively and efficiently. Second, how can we link formal mathemat-
ics training with students’ informal knowledge and problem-solving capaci-
ties?

Many recent research and curriculum development efforts, including
those of the authors of the chapters that follow, have addressed these ques-
tions. While there is surely no single best instructional approach, it is pos-
sible to identify certain features of instruction that support the above goals:

• Allowing students to use their own informal problem-solving strate-
gies, at least initially, and then guiding their mathematical thinking toward
more effective strategies and advanced understandings.

• Encouraging math talk so that students can clarify their strategies to
themselves and others, and compare the benefits and limitations of alternate
approaches.

• Designing instructional activities that can effectively bridge commonly
held conceptions and targeted mathematical understandings.

Allowing Multiple Strategies

To illustrate how instruction can be connected to students’ existing knowl-
edge, consider three subtraction methods encountered frequently in urban
second-grade classrooms involved in the Children’s Math Worlds Project (see
Box 5-2). Maria, Peter, and Manuel’s teacher has invited them to share their
methods for solving a problem, and each of them has displayed a different
method. Two of the methods are correct, and one is mostly correct but has
one error. What the teacher does depends on her conception of what math-
ematics is.

One approach is to show the students the “right” way to subtract and
have them and everyone else practice that procedure. A very different ap-
proach is to help students explore their methods and see what is easy and
difficult about each. If students are taught that for each kind of math situa-
tion or problem, there is one correct method that needs to be taught and
learned, the seeds of the disconnection between their reasoning and strat-
egy development and “doing math” are sown. An answer is either wrong or

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


224 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

BOX 5-2 Three Subtraction Methods

Maria’s add-equal- Peter’s ungrouping Manuel’s mixed
quantities method method method

        11     14           11       14
 1 2 14  1  2   4  1   2     4
– 15  6 –   5   6  –  1

 5     6

    6  8      6   8       5     8

right, and one does not need to look at wrong answers more deeply—one
needs to look at how to get the right answer. The problem is not that stu-
dents will fail to solve the problem accurately with this instructional ap-
proach; indeed, they may solve it more accurately. But when the nature of
the problem changes slightly, or students have not used the taught approach
for a while, they may feel completely lost when confronting a novel prob-
lem because the approach of developing strategies to grapple with a prob-
lem situation has been short-circuited.

If, on the other hand, students believe that for each kind of math situa-
tion or problem there can be several correct methods, their engagement in
strategy development is kept alive. This does not mean that all strategies are
equally good. But students can learn to evaluate different strategies for their
advantages and disadvantages. What is more, a wrong answer is usually
partially correct and reflects some understanding; finding the part that is
wrong and understanding why it is wrong can be a powerful aid to under-
standing and promotes metacognitive competencies. A vignette of students
engaged in the kind of mathematical reasoning that supports active strategy
development and evaluation appears in Box 5-3.

It can be initially unsettling for a teacher to open up the classroom to
calculation methods that are new to the teacher. But a teacher does not have
to understand a new method immediately or alone, as indicated in the de-
scription in the vignette of how the class together figured out over time how
Maria’s method worked (this method is commonly taught in Latin America
and Europe). Understanding a new method can be a worthwhile mathemati-
cal project for the class, and others can be involved in trying to figure out
why a method works. This illustrates one way in which a classroom commu-
nity can function. If one relates a calculation method to the quantities in-
volved, one can usually puzzle out what the method is and why it works.
This also demonstrates that not all mathematical issues are solved or under-
stood immediately; sometimes sustained work is necessary.
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BOX 5-3 Engaging Students’ Problem-Solving Strategies

The following example of a classroom discussion shows how second-
grade students can explain their methods rather than simply performing
steps in a memorized procedure. It also shows how to make student
thinking visible. After several months of teaching and learning, the stu-
dents reached the point illustrated below. The students’ methods are
shown in Box 5-2.

Teacher Maria, can you please explain to your friends
in the class how you  solved the problem?

Maria Six is bigger than 4, so I can’t subtract here
[pointing] in the ones.

So I have to get more ones. But I have to be
fair when I get more  ones, so I add ten to both
my numbers. I add a ten here in the top  of the
ones place [pointing] to change the 4 to a 14,
and I add a ten  here in the bottom in the tens
place, so I write another ten by
my 5.

So now I count up from 6 to 14, and I get 8
ones [demonstrating by  counting “6, 7, 8, 9,
10, 11, 12, 13, 14” while raising a finger for
each word from 7 to 14]. And I know my
doubles, so 6 plus 6 is 12, so I have 6 tens left.
[She thought, “1 + 5 = 6 tens and 6 + ? = 12
tens. Oh, I know 6 + 6 = 12, so my answer is 6
tens.”]

Jorge I don’t see the other 6 in your tens. I only see
one 6 in your  answer.

Maria The other 6 is from adding my 1 ten to the 5
tens to get 6 tens. I  didn’t write it down.

Andy But you’re changing the problem. How do you
get the right  answer?

Maria If I make both numbers bigger by the same
amount, the difference will stay the same.
Remember we looked at that on drawings last
week and on the meter stick.

Michelle Why did you count up?

Maria Counting down is too hard, and my mother
taught me to count up to subtract in first
grade.
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Teacher How many of you remember how confused we
were when we first saw Maria’s method last
week? Some of us could not figure out what
she was doing even though Elena and Juan
and Elba did it the same way. What did we do?

Rafael We made drawings with our ten-sticks and
dots to see what those numbers meant. And
we figured out they were both tens. Even
though the 5 looked like a 15, it was really just
6. And we went home to see if any of our
parents could explain it to us, but we had to
figure it out ourselves and it took us 2 days.

Teacher Yes, I was asking other teachers, too. We
worked on other methods too, but we kept
trying to understand what this method was
and why it worked. And Elena and Juan
decided it was clearer if they crossed out the 5
and wrote a 6, but Elba and Maria liked to do it
the way they learned at home. Any other
questions or comments for Maria? No? Ok,
Peter, can you explain your method?

Peter Yes, I like to ungroup my top number when I
don’t have enough to subtract everywhere. So
here I ungrouped 1 ten and gave it to the 4
ones to make 14 ones, so I had 1 ten left here.
So 6 up to 10 is 4 and 4 more up to 14 is 8, so
14 minus 6 is 8 ones. And 5 tens up to 11 tens
is 6 tens. So my answer is 68.

Carmen How did you know it was 11 tens?

Peter Because it is 1 hundred and 1 ten and that is 11
tens.

Carmen I don’t get it.

Peter Because 1 hundred is 10 tens.

Carmen Oh, so why didn’t you cross out the 1 hundred
and put it with the tens to make 11 tens like
Manuel?

Peter I don’t need to. I just know it is 11 tens by
looking at it.

Teacher Manuel, don’t erase your problem. I know you
think it is probably wrong because you got a
different answer, but remember how making a
mistake helps everyone learn—because other

BOX 5-3 Continued
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students make that same mistake and you
helped us talk about it. Do you want to draw a
picture and think about your method while we
do the next problem, or do you want someone
to help you?

Manuel Can Rafael help me?

Teacher Yes, but what kind of helping should Rafael
do?

Manuel He should just help me with what I need help
on and not do it for me.

Teacher Ok, Rafael, go up and help Manuel that way
while we go on to the next problem. I think it
would help you to draw quick-tens and ones to
see what your numbers mean. [These draw-
ings are explained later.] But leave your first
solution so we can all see where the problem
is. That helps us all get good at debugging—

finding our mistakes. Do we all make mis-
takes?

Class Yes.

Teacher Can we all get help from each other?

Class Yes.

Teacher So mistakes are just a part of learning. We
learn from our mistakes.  Manuel is going to
be brave and share his mistake with us so we
can all learn from it.

Manuel’s method combined Maria’s add-equal-quantities method,
which he had learned at home, and Peter’s ungrouping method, which he
had learned at school. It increases the ones once and decreases the tens
twice by subtracting a ten from the top number and adding a ten to the
bottom subtracted number. In the Children’s Math Worlds Project, we
rarely found children forming such a meaningless combination of meth-
ods if they understood tens and ones and had a method of drawing them
so they could think about the quantities in a problem (a point discussed
more later). Students who transferred into our classes did sometimes
initially use Manuel’s mixed approach. But students were eventually helped
to understand both the strengths and weaknesses of their existing meth-
ods and to find ways of improving their approaches.

SOURCE: Karen Fuson, Children’s Math Worlds Project.
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Encouraging Math Talk

One important way to make students’ thinking visible is through math
talk—talking about mathematical thinking. This technique may appear obvi-
ous, but it is quite different from simply giving lectures or assigning text-
book readings and then having students work in isolation on problem sets
or homework problems. Instead, students and teachers actively discuss how
they approached various problems and why. Such communication about
mathematical thinking can help everyone in the classroom understand a
given concept or method because it elucidates contrasting approaches, some
of which are wrong—but often for interesting reasons. Furthermore, com-
municating about one’s thinking is an important goal in itself that also facili-
tates other sorts of learning. In the lower grades, for example, such math
talk can provide initial experiences with mathematical justification that cul-
minate in later grades with more formal kinds of mathematical proof.

An emphasis on math talk is also important for helping teachers become
more learner focused and make stronger connections with each of their
students. When teachers adopt the role of learners who try to understand
their students’ methods (rather than just marking the students’ procedures
and answers as correct or incorrect), they frequently discover thinking that
can provide a springboard for further instruction, enabling them to extend
thinking more deeply or understand and correct errors. Note that, when
beginning to make student thinking visible, teachers must focus on the com-
munity-centered aspects of their instruction. Students need to feel comfort-
able expressing their ideas and revising their thinking when feedback sug-
gests the need to do so.

Math talk allows teachers to draw out and work with the preconcep-
tions students bring with them to the classroom and then helps students
learn how to do this sort of work for themselves and for others. We have
found that it is also helpful for students to make math drawings of their
thinking to help themselves in problem solving and to make their thinking
more visible (see Figure 5-1). Such drawings also support the classroom
math talk because they are a common visual referent for all participants.
Students need an effective bridge between their developing understandings
and formal mathematics. Teachers need to use carefully designed visual,
linguistic, and situational conceptual supports to help students connect their
experiences to formal mathematical words, notations, and methods.

The idea of conceptual support for math talk can be further clarified by
considering the language students used in the vignette in Box 5-3 when they
explained their different multidigit methods. For these explanations to be-
come meaningful in the classroom, it was crucially important that the stu-
dents explain their multidigit adding or subtracting methods using the mean-
ingful words in the middle pedagogical triangle of Figure 5-2 (e.g., “three

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


MATHEMATICAL UNDERSTANDING: AN INTRODUCTION 229

FIGURE 5-1

tens six ones”), as well as the usual math words (e.g., “thirty-six”). It is
through such extended connected explanations and use of the quantity words
“tens” and “ones” that the students in the Children’s Math Worlds Project
came to explain their methods. Their explanations did not begin that way,
and the students did not spontaneously use the meaningful language when
describing their methods. The teacher needed to model the language and
help students use it in their descriptions. More-advanced students also helped
less-advanced students learn by modeling, asking questions, and helping
others form more complete descriptions.

Initially in the Children’s Math Worlds Project, all students made con-
ceptual support drawings such as those in Figure 5-1. They explicitly linked
these drawings to their written methods during explanations. Such drawings
linked to the numerical methods facilitated understanding, accuracy, com-
munication, and helping. Students stopped making drawings when they were
no longer needed (this varied across students by months). Eventually, most
students applied numerical methods without drawings, but these numerical
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methods then carried for the members of the classroom the meanings from
the conceptual support drawings. If errors crept in, students were asked to
think about (or make) a drawing and most errors were then self-corrected.

Designing Bridging Instructional Activities

The first two features of instruction discussed above provide opportuni-
ties for students to use their own strategies and to make their thinking visible
so it can be built on, revised, and made more formal. This third strategy is
more proactive. Research has uncovered common student preconceptions
and points of difficulty with learning new mathematical concepts that can be
addressed preemptively with carefully designed instructional activities.

This kind of bridging activity is used in the Children’s Math Worlds
curriculum to help students relate their everyday, experiential, informal un-
derstanding of money to the formal school concepts of multidigit numbers.
Real-world money is confusing for many students (e.g., dimes are smaller
than pennies but are worth 10 times as much). Also, the formal school math
number words and notations are abstract and potentially misleading (e.g.,
36 looks like a 3 and a 6, not like 30 and 6) and need to be linked to visual
quantities of tens and ones to become meaningful. Fuson designed concep-
tual “supports” into the curriculum to bridge the two. The middle portion of
Figure 5-2 shows an example of the supports that were used to help stu-
dents build meaning. A teacher or curriculum designer can make a frame-
work like that of Figure 5-2 for any math domain by selecting those concep-
tual supports that will help students make links among the math words,
written notations, and quantities in that domain.

Identifying real-world contexts whose features help direct students’ at-
tention and thinking in mathematically productive ways is particularly help-
ful in building conceptual bridges between students’ informal experiences
and the new formal mathematics they are learning. Examples of such bridg-
ing contexts are a key feature of each of the three chapters that follow.

PRINCIPLE #2: UNDERSTANDING REQUIRES
FACTUAL KNOWLEDGE AND CONCEPTUAL
FRAMEWORKS

The second principle of How People Learn suggests the importance of
both conceptual understanding and procedural fluency, as well as an effec-
tive organization of knowledge—in this case one that facilitates strategy
development and adaptive reasoning. It would be difficult to name a disci-
pline in which the approach to achieving this goal is more hotly debated
than mathematics. Recognition of the weakness in the conceptual under-
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standing of students in the United States has resulted in increasing attention
to the problems involved in teaching mathematics as a set of procedural
competences.14 At the same time, students with too little knowledge of pro-
cedures do not become competent and efficient problem solvers. When in-
struction places too little emphasis on factual and procedural knowledge,
the problem is not solved; it is only changed. Both are clearly critical.

Equally important, procedural knowledge and conceptual understand-
ings must be closely linked. As the mathematics confronted by students
becomes more complex through the school years, new knowledge and com-
petencies require that those already mastered be brought to bear. Box 1-6 in
Chapter 1, for example, describes a set of links in procedural and conceptual
knowledge required to support the ability to do multidigit subtraction with
regrouping—a topic encountered relatively early in elementary school. By
the time a student begins algebra years later, the network of knowledge
must include many new concepts and procedures (including those for ratio-
nal number) that must be effectively linked and available to support new
algebraic understandings. The teacher’s challenge, then, is to help students
build and consolidate prerequisite competencies, understand new concepts
in depth, and organize both concepts and competencies in a network of
knowledge. Furthermore, teachers must provide sustained and then increas-
ingly spaced opportunities to consolidate new understandings and proce-
dures.

In mathematics, such networks of knowledge often are organized as
learning paths from informal concrete methods to abbreviated, more gen-
eral, and more abstract methods. Discussing multiple methods in the class-
room—drawing attention to why different methods work and to the relative
efficiency and reliability of each—can help provide a conceptual ladder that
helps students move in a connected way from where they are to a more
efficient and abstract approach. Students also can adopt or adapt an inter-
mediate method with which they might feel more comfortable. Teachers can
help students move at least to intermediate “good-enough” methods that
can be understood and explained. Box 5-4 describes such a learning path
for single-digit addition and subtraction that is seen worldwide. Teachers in
some countries support students in moving through this learning path.

Developing Mathematical Proficiency

Developing mathematical proficiency requires that students master both
the concepts and procedural skills needed to reason and solve problems
effectively in a particular domain. Deciding which advanced methods all
students should learn to attain proficiency is a policy matter involving judg-
ments about how to use scarce instructional time. For example, the level 2
counting-on methods in Box 5-4 may be considered “good-enough” meth-
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ods; they are general, rapid, and sufficiently accurate that valuable school
time might better be spent on topics other than mastery of the whole net-
work of knowledge required for carrying out the level 3 methods. Decisions
about which methods to teach must also take into account that some meth-
ods are clearer conceptually and procedurally than the multidigit methods
usually taught in the United States (see Box 5-5). The National Research
Council’s Adding It Up reviews these and other accessible algorithms in other
domains.

This view of mathematics as involving different methods does not imply
that a teacher or curriculum must teach multiple methods for every domain.
However, alternative methods will frequently arise in a classroom, either
because students bring them from home (e.g., Maria’s add-equal-quantities
subtraction method, widely taught in other countries) or because students
think differently about many mathematical problems. Frequently there are
viable alternative methods for solving a problem, and discussing the advan-
tages and disadvantages of each can facilitate flexibility and deep under-
standing of the mathematics involved. In some countries, teachers empha-
size multiple solution methods and purposely give students problems that
are conducive to such solutions, and students solve a problem in more than
one way.

However, the less-advanced students in a classroom also need to be
considered. It can be helpful for either a curriculum or teacher or such less-
advanced students to select an accessible method that can be understood
and is efficient enough for the future, and for these students to concentrate
on learning that method and being able to explain it. Teachers in some
countries do this while also facilitating problem solving with alternative
methods.

Overall, knowing about student learning paths and knowledge networks
helps teachers direct math talk along productive lines toward valued knowl-
edge networks. Research in mathematics learning has uncovered important
information on a number of typical learning paths and knowledge networks
involved in acquiring knowledge about a variety of concepts in mathematics
(see the next three chapters for examples).

Instruction to Support Mathematical Proficiency

To teach in a way that supports both conceptual understanding and
procedural fluency requires that the primary concepts underlying an area of
mathematics be clear to the teacher or become clear during the process of
teaching for mathematical proficiency. Because mathematics has tradition-
ally been taught with an emphasis on procedure, adults who were taught
this way may initially have difficulty identifying or using the core conceptual
understandings in a mathematics domain.
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Children around the world pass through three levels of increasing sophis-
tication in methods of single-digit addition and subtraction. The first level
is direct modeling by counting all of the objects at each step (counting all
or taking away). Students can be helped to move rapidly from this first
level to counting on, in which counting begins with one addend. For ex-
ample, 8 + 6 is not solved by counting from 1 to 14 (counting all), but by
counting on 6 from 8: counting 8, 9, 10, 11, 12, 13, 14 while keeping track
of the 6 counted on.

For subtraction, Children’s Math Worlds does what is common in
many countries: it helps students see subtraction as involving a mystery
addend. Students then solve a subtraction problem by counting on from
the known addend to the known total. Earlier we saw how Maria solved
14 - 6 by counting up from 6 to 14, raising 8 fingers while doing so to find
that 6 plus 8 more is 14. Many students in the United States instead
follow a learning path that moves from drawing little sticks or circles for
all of the objects and crossing some out (e.g., drawing 14 sticks, crossing
out 6, and counting the rest) to counting down (14, 13, 12, 11, 10, 9, 8, 7,
6). But counting down is difficult and error prone. When first or second
graders are helped to move to a different learning path that solves sub-
traction problems by forward methods, such as counting on or adding on
over 10 (see below), subtraction becomes as easy as addition. For many
students, this is very empowering.

The third level of single-digit addition and subtraction is exemplified
by Peter in the vignette in Box 5-2. At this level, students can chunk

BOX 5-4 A Learning Path from Children’s Math Worlds for
Single-Digit Addition and Subtraction

The approaches in the three chapters that follow identify the central
conceptual structures in several areas of mathematics. The areas of focus—
whole number, rational number, and functions—were identified by Case
and his colleagues as requiring major conceptual shifts. In the first, students
are required to master the concept of quantity; in the second, the concept of
proportion and relative number; and in the third, the concept of dependence
in quantitative relationships. Each of these understandings requires that a
supporting set of concepts and procedural abilities be put in place. The
extensive research done by Griffin and Case on whole number, by Case and
Moss on rational number, and by Case and Kalchman on functions provides
a strong foundation for identifying the major conceptual challenges students
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numbers and relate these chunks. The chunking enables them to carry
out make-a-ten methods: they give part of one number to the other num-
ber to make a ten. These methods are taught in many countries. They are
very helpful in multidigit addition and subtraction because a number found
in this way is already thought of as 1 ten and some ones. For example, for
8 + 6, 6 gives 2 to 8 to make 10, leaving 4 in the 6, so 10 + 4 = 14. Solving
14 – 8 is done similarly: with 8, how many make 10 (2), plus the 4 in 14,
so the answer is 6. These make-a-ten methods demonstrate the learning
paths and network of knowledge required for advanced solution meth-
ods. Children may also use a “doubles” strategy for some problems—
e.g., 7 + 6 = 6 + 6 + 1= 12 + 1 = 13—because the doubles (for example,
6 + 6 or 8 + 8) are easy to learn.

The make-a-ten methods illustrate the importance of a network of
knowledge. Students must master three kinds of knowledge to be able
to carry out a make-a-ten method fluently: they must (1) for each number
below 10, know how much more makes 10; (2) break up any number
below 10 into all possible pairs of parts (because 9 + 6 requires knowing
6 = 1 + 5, but 8 + 6 requires knowing 6 = 2 + 4, etc.); and (3) know 10 +
1 = 11, 10 + 2 = 12, 10 + 3 = 13, etc., rapidly without counting.

Note that particular methods may be more or less easy for learners
from different backgrounds. For example, the make-a-ten methods are
easier for East Asian students, whose language says, “Ten plus one is
ten one, ten plus two is ten two,” than for English-speaking students,
whose language says, “Ten plus one is eleven, ten plus two is twelve,
etc.”

face in mastering these areas. This research program traced developmental/
experiential changes in children’s thinking as they engaged with innovative
curriculum. In each area of focus, instructional approaches were developed
that enable teachers to help children move through learning paths in pro-
ductive ways. In doing so, teachers often find that they also build a more
extensive knowledge network.

As teachers guide a class through learning paths, a balance must be
maintained between learner-centered and knowledge-centered needs.
The learning path of the class must also continually relate to individual
learner knowledge. Box 5-6 outlines two frameworks that can facilitate
such balance.
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BOX 5-5 Accessible Algorithms

In over a decade of working with a range of urban and suburban classrooms in the
Children’s Math Worlds Project, we found that one multidigit addition method and
one multidigit subtraction method were accessible to all students. The students
easily learned, understood, and remembered these methods and learned to draw
quantities for and explain them. Both methods are modifications of the usual U.S.
methods. The addition method is the write-new-groups-below method, in which
the new 1 ten or 1 hundred, etc., is written below the column on the line rather
than above the column (see Jackie’s method in Figure 5-1). In the subtraction fix-
everything-first method, every column in the top number that needs ungrouping is
ungrouped (in any order), and then the subtracting in every column is done (in any
order). Because this method can be done from either direction and is only a minor
modification of the common U.S. methods, learning-disabled and special-needs
students find it especially accessible. Both of these methods stimulate productive
discussions in class because they are easily related to the usual U.S. methods that
are likely to be brought to class by other students.

PRINCIPLE #3: A METACOGNITIVE APPROACH
ENABLES STUDENT SELF-MONITORING

Learning about oneself as a learner, thinker, and problem solver is an
important aspect of metacognition (see Chapter 1). In the area of mathemat-
ics, as noted earlier, many people who take mathematics courses “learn” that
“they are not mathematical.” This is an unintended, highly unfortunate, con-
sequence of some approaches to teaching mathematics. It is a consequence
that can influence people for a lifetime because they continue to avoid
anything mathematical, which in turn ensures that their belief about being
“nonmathematical” is true.15

An article written in 1940 by Charles Gragg, entitled “Because Wisdom
Can’t be Told,” is relevant to issues of metacognition and mathematics learn-
ing. Gragg begins with the following quotation from Balzac:

So he had grown rich at last, and thought to transmit to his only son all the
cut-and-dried experience which he himself had purchased at the price of
his lost illusions; a noble last illusion of age.

Except for the part about growing rich, Balzac’s ideas fit many peoples’
experiences quite well. In our roles as parents, friends, supervisors, and
professional educators, we frequently attempt to prepare people for the
future by imparting the wisdom gleaned from our own experiences. Some-
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Eliciting and then building on and using students’ mathematical thinking can be
challenging. Yet recent research indicates that teachers can move their students
through increasingly productive levels of classroom discourse. Hufferd-Ackles and
colleagues16  describe four levels of a “math-talk learning community,” beginning
with a traditional, teacher-directed format in which the teacher asks short-answer
questions, and student responses are directed to the teacher. At the next level,
“getting started,” the teacher begins to pursue and assess students’ mathemati-
cal thinking, focusing less on answers alone. In response, students provide brief
descriptions of their thinking. The third level is called “building.” At this point the
teacher elicits and students respond with fuller descriptions of their thinking, and
multiple methods are volunteered. The teacher also facilitates student-to-student
talk about mathematics. The final level is “math-talk.” Here students share re-
sponsibility for discourse with the teacher, justifying their own ideas and asking
questions of and helping other students.

Key shifts in teacher practice that support a class moving through these lev-
els include asking questions that focus on mathematical thinking rather than just
on answers, probing extensively for student thinking, modeling and expanding on
explanations when necessary, fading physically from the center of the classroom
discourse (e.g., moving to the back of the classroom), and coaching students in
their participatory roles in the discourse (“Everyone have a thinker question ready.”).

Related research indicates that when building a successful classroom dis-
course community, it is important to balance the process of discourse, that is, the
ways in which student ideas are elicited, with the content of discourse, the sub-
stance of the ideas that are discussed. In other words, how does a teacher ensure
both that class discussions provide sufficient space for students to share their
ideas and that discussions are mathematically productive? Sherin17  describes one
model for doing so whereby class discussions begin with a focus on “idea genera-
tion,” in which many student ideas are solicited. Next, discussion moves into a
“comparison and evaluation” phase, in which the class looks more closely at the
ideas that have been raised, but no new ideas are raised.

The teacher then “filters” ideas for the class, highlighting a subset of ideas
for further pursuit. In this way, student ideas are valued throughout discussion,
but the teacher also plays a role in determining the extent to which specific math-
ematical ideas are considered in detail. A class may proceed through several cycles
of these three phases in a single discussion.

BOX 5-6 Supporting Student and Teacher Learning Through a
Classroom Discourse Community
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times our efforts are rewarded, but we are often less successful than we
would like to be, and we need to understand why.

The idea that “wisdom can’t be told” helps educators rethink the strat-
egy of simply telling students that some topic (e.g., mathematics) is impor-
tant, and they can master it if they try. There are important differences be-
tween simply being told something and being able to experience it for oneself.
Students’ experiences have strong effects on their beliefs about themselves,
as well as their abilities to remember information and use it spontaneously
to solve new problems.18  If their experiences in mathematics classes involve
primarily frustration and failure, simply telling them, “trust me, this will be
relevant someday” or “believe me, you have the ability to understand this” is
a weak intervention. On the other hand, helping students experience their
own abilities to find patterns and problems, invent solutions (even if they
are not quite as good as expert solutions), and contribute to and learn from
discussions with others provides the kinds of experiences that can help
them learn with understanding, as well as change their views about the
subject matter and themselves.19

However, research on metacognition suggests that an additional instruc-
tional step is needed for optimal learning—one that involves helping stu-
dents reflect on their experiences and begin to see their ideas as instances of
larger categories of ideas. For example, students might begin to see their
way of showing more ones when subtracting as one of several ways to
demonstrate this same important mathematical idea.

One other aspect of metacognition that is nicely illustrated in the con-
text of mathematics involves the claim made in Chapter 1 that metacognition
is not simply a knowledge-free ability, but requires relevant knowledge of
the topics at hand. At the beginning of this chapter, we noted that many
students approach problems such as adding fractions as purely computa-
tional (e.g., “What is the approximate sum of 8/9 plus 11/13?”). Ideally, we
also want students to monitor the accuracy of their problem solving, just as
we want them to monitor their understanding when reading about science,
history, or literature.

One way to monitor the accuracy of one’s computation is to go back
and recheck each of the steps. Another way is to estimate the answer and
see whether there is a discrepancy between one’s computations and the
estimate. However, the ability to estimate requires the kind of knowledge
that might be called “number sense.” For the above fraction problem, for
example, a person with number sense who computes an answer and sees
that it is greater than 2 knows that the computation is obviously wrong. But
it is “obvious” only if the person has learned ways to think about number
that go beyond the ability merely to count and compute.
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Instruction That Supports Metacognition

Much of what we have discussed with regard to making student think-
ing visible can be thought of as ongoing assessment of students. Such as-
sessment can include students so they become involved in thinking about
their own mathematical progress and that of their classmates. Such ongoing
assessment can then become internalized as metacognitive self-monitoring.
Classroom communication about students’ mathematical thinking greatly fa-
cilitates both teacher and student assessment of learning. Teachers and stu-
dents can see difficulties particular students are having and can help those
students by providing explanations. Teachers can discern primitive solution
methods that need to be advanced to more effective methods. They also can
see how students are advancing in their helping and explaining abilities and
plan how to foster continued learning in those areas.

Students can also learn some general problem-solving strategies, such
as “make a drawing of the situation” or “ask yourself questions” that apply to
many different kinds of problems. Drawings and questions are a means of
self-monitoring. They also can offer teachers windows into students’ think-
ing and thus provide information about how better to help students along a
learning path to efficient problem-solving methods.

An Emphasis on Debugging

Metacognitive functioning is also facilitated by shifting from a focus on
answers as just right or wrong to a more detailed focus on “debugging” a
wrong answer, that is, finding where the error is, why it is an error, and
correcting it. Of course, good teachers have always done this, but there are
now two special reasons for doing so. One is the usefulness of this approach
in complex problem solving, such as debugging computer programs. Tech-
nological advances mean that more adults will need to do more complex
problem solving and error identification throughout their lives, so debug-
ging—locating the source of an error—is a good general skill that can be
learned in the math classroom.

The second reason is based on considerable amount of research in the
past 30 years concerning student errors. Figure 5-3 illustrates two such typi-
cal kinds of errors in early and late school topics. The partial student knowl-
edge reflected in each error is described in the figure. One can also see how
a focus on understanding can help students debug their own errors. For
example, asking how much the little “1’s” really represent can help students
start to see their error in the top example and thus modify the parts of the
method that are wrong.
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This error reflects a wrong generalization from 2-digit problems:
where the little 1 is put above the left-most column. Left-most and
next-left are confused in this solution. Trying to understand the
meanings of the 1s as 1 ten and as 1 hundred can debug this error.
The student does know to add ones, to add tens, and to add
hundreds and does this correctly.

A common error among middle school students is to treat an exponent as a
coefficient or multiplier. Here, Graham has generated a table of values for the
function y = 2x + 1 rather than y = x2 + 1. This type of error has broad implications.
For example, it will be difficult for students to develop a good conceptual
understanding for functions and the ways in which their representations are inter-
connected because the graph of y = 2x + 1 is a straight line rather than the parabolic
curve of y = x2 + 1. He does know, however, how to make a table of values and to
graph resulting pairs of values. He also knows how to solve for y in an equation
given x.

268

+  156

514

Early Partial Knowledge

Later Partial Knowledge

FIGURE 5-3
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Internal and External Dialogue as Support for Metacognition

The research summarized in How People Learn and Adding It Up and
the professional experience summarized in the standards of the National
Council of Teachers of Mathematics all emphasize how important it is for
students to communicate about mathematics and for teachers to help them
learn to do so. Students can learn to reflect on and describe their mathemati-
cal thinking. They can learn to compare methods of solving a problem and
identify the advantages and disadvantages of each. Peers can learn to ask
thoughtful questions about other students’ thinking or help edit such state-
ments to clarify them. Students can learn to help each other, sometimes in
informal, spontaneous ways and sometimes in more organized, coaching-
partner situations. The vignette in Box 5-3 illustrates such communication
about mathematical thinking after it has been developed in a classroom.
Experience in the Children’s Math Worlds Project indicates that students
from all backgrounds can learn to think critically and ask thoughtful ques-
tions, reflect on and evaluate their own achievement, justify their points of
view, and understand the perspectives of others. Even first-grade students
can learn to interact in these ways.

Of course, teachers must help students learn to interact fruitfully. To this
end, teachers can model clear descriptions and supportive questioning or
helping techniques. In a classroom situation, some students may solve prob-
lems at the board while others solve them at their seats. Students can make
drawings or use notations to indicate how they thought about or solved a
problem. Selected students can then describe their solution methods, and
peers can ask questions to clarify and to give listeners a role. Sometimes,
pairs of students may explain their solutions, with the less-advanced partner
explaining first and the other partner then expanding and clarifying. Stu-
dents usually attend better if only two or three of their fellow students ex-
plain their solution method for a given problem. More students can solve at
the board, but the teacher can select the methods or the students for the
class to hear at that time. It is useful to vary the verbal level of such explain-
ers. Doing so assists all students in becoming better explainers by hearing
and helping classmates expand upon a range of explanations. The goal in all
of this discussion is to advance everyone’s thinking and monitoring of their
own understanding and that of other students rather than to conduct simple
turn taking, though of course over time, all students can have opportunities
to explain.

Seeking and Giving Help

Students must have enough confidence not only to engage with prob-
lems and try to solve them, but also to seek help when they are stuck. The
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dialogue that occurs in pair or class situations can help generate self-regulat-
ing speech that a student can produce while problem solving. Such helping
can also increase the metacognitive awareness of the helper as he or she
takes into consideration the thinking of the student being helped.

The Framework of How People Learn:
Seeking a Balanced Classroom Environment

The framework of How People Learn suggests that classroom environ-
ments should at the same time be learner-centered, knowledge-centered,
assessment-centered, and community-centered (see Chapter 1). These fea-
tures map easily to the preceding discussion of the three principles, as well
as to the chapters that follow. The instruction described is learner-centered
in that it draws out and builds on student thinking. It is also knowledge-
centered in that it focuses simultaneously on the conceptual understanding
and the procedural knowledge of a topic, which students must master to be
proficient, and the learning paths that can lead from existing to more ad-
vanced understanding. It is assessment-centered in that there are frequent
opportunities for students to reveal their thinking on a topic so the teacher
can shape instruction in response to their learning, and students can be
made aware of their own progress. And it is community-centered in that the
norms of the classroom community value student ideas, encourage produc-
tive interchange, and promote collaborative thinking.

Effective teaching and learning depend, however, on balance among
these features of the classroom environment. There must be continual con-
nections between the learner-centered focus on student knowledge and the
more formal knowledge networks that are the goals of teaching in a domain.
Traditional teaching has tended to emphasize the knowledge networks and
pay insufficient attention to conceptual supports and the need to build on
learner knowledge. Many students learn rote knowledge that cannot be
used adequately in solving problems. On the other hand, an overemphasis
on learner-centered teaching results in insufficient attention to connections
with valued knowledge networks, the crucially important guiding roles of
teachers and of learning accessible student methods, and the need to con-
solidate knowledge. Four such excesses are briefly discussed here.

First, some suggest that students must invent all their mathematical ideas
and that we should wait until they do so rather than teach ideas. This view,
of course, ignores the fact that all inventions are made within a supportive
culture and that providing appropriate supports can speed such inventions.
Too much focus on student-invented methods per se can hold students
back; those who use time-consuming methods that are not easily general-
ized need to be helped to move on to more rapid and generalizable “good-
enough” methods. A focus on sense making and understanding of the meth-
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ods that are used is the balanced focus, rather than an emphasis on whether
the method was invented by the student using it.

Second, classroom discussions may not be sufficiently guided by the
teacher through the learning path. Students may talk on and on, meandering
without much focus. Descriptions of student thinking may have a turn-tak-
ing, “every method is equally wonderful” flavor so that other students do not
listen carefully or ask questions, but passively await their turn to talk. Differ-
ent student methods may be described, but their advantages and disadvan-
tages, or at least their similar and different features, are not discussed. There
may be no building toward student-to-student talk, but everything said may
be directed toward the teacher.

Third, the use of real-world situations and conceptual supports may
consist more of a series of activities in which the mathematical ideas are not
sufficiently salient and not connected enough to the standard math notations
and vocabulary. The result may be a scattershot approach involving many
different activities rather than careful choices of core representations or bridg-
ing contexts that might guide students through a coherent learning path.

Fourth, learning may not be consolidated enough because of an exces-
sive focus on the initial learning activities. Time for consolidation of learn-
ing, with feedback loops should errors arise, is vital for mathematical flu-
ency.

The recent Third International Mathematics and Science Study showed
that teaching in the United States is still overwhelmingly traditional. How-
ever, the above caveats need to be kept in mind as teachers move forward in
implementing the principles of How People Learn.

NEXT STEPS
There are some curricula that implement, at least partially, the principles

of How People Learn. Even without extensive curricular support, however,
teachers can substantially improve their practice by understanding and us-
ing these principles. This is particularly true if they can examine their own
teaching practices, supported by a teaching–learning community of like-
minded colleagues. Such a community can help teachers create learning
paths for themselves that can move them from their present teaching prac-
tices to practices that conform more fully to the principles of How People
Learn and thereby create more effective classrooms. Two such teacher com-
munities, involving video clubs and lesson study, respectively, are summa-
rized in Boxes 5-7 and 5-8. A third approach to a teacher learning commu-
nity is to organize teacher discussions around issues that arise from teaching
a curriculum that supports conceptual approaches. Box 5-9 describes re-
search summarizing one productive focus for such discussions—the use of
openings in the curriculum where teachers can focus on student questions
or misunderstandings.
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BOX 5-7 Learning to Use Student Thinking in Teacher Video Clubs

Research indicates that teachers can develop their ability to attend to and interpret
student thinking not only in the midst of class discussions, but also outside of class
as they reflect on students’ ideas. One model for doing so is the use of video clubs
in which teachers meet together to watch and discuss video excerpts from their
classrooms.20  By providing teachers opportunities to examine student thinking with-
out the pressure of having to respond immediately, video clubs can help prompt
the development of new techniques for analyzing student thinking among teach-
ers—techniques that teachers can then bring back to their classrooms.

BOX 5-8 Lesson Study: Learning Together How to Build on Student
Knowledge

Lesson study is “a cycle in which teachers work together to consider their long-
term goals for students, bring those goals to life in actual ‘research lessons,’ and
collaboratively observe, discuss, and refine the lessons.”21  Lesson study has been
a major form of teacher professional development in Japan for many decades, and
in recent years has attracted the attention of U.S. teachers, school administrators,
and educational researchers.22  It is a simple idea. Teachers collaboratively plan a
lesson that is taught by one group member while others observe and carefully
collect data on student learning and behavior. The student data are then used to
reflect on the lesson and revise it as needed. Lesson study is a teacher-led process
in which teachers collaboratively identify a concept that is persistently difficult for
students, study the best available curriculum materials in order to rethink their
teaching of this topic, and plan and teach one or more “research lessons” that
enable them to see student reactions to their redesigned unit. Ideally, a lesson
study group allows teachers to share their expertise and knowledge, as well as
questions related to both teaching and subject matter. Lesson study groups may
also draw on knowledgeable outsiders as resources for content knowledge, group
facilitation, and so on.

NOTE: Resources, including a handbook, videotapes, listserve, and protocols for
teachers who wish to engage in lesson study, can be found at the websites of the
Lesson Study Research Group at Teachers College, Columbia University: (http://
www.tc.columbia.edu/lessonstudy/) and the Mills College Lesson Study Group
(www.lessonresearch.net). See also Lewis (2002).
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BOX 5-9 Teachers as Curriculum Designers: Using Openings in the
Curriculum to Determine Learning Paths

Even when using a prepared curriculum, teachers have an important role as cur-
riculum designers. In a study of two elementary teachers using a new textbook,
Remillard23  found that teachers made regular decisions about what parts of the
teacher’s guide to read, which suggestions to follow and to what ends, how to
structure students’ mathematical activities, and how to respond to students’ ques-
tions and ideas. The decisions teachers made had a substantial impact on the
curriculum experienced by students. In other words, written curriculum alone does
not determine students’ experiences in the classroom; this is the role of the teacher.

Remillard and Geist24  use the term “openings in the curriculum” to denote
those instances during instruction in which things do not go as described in the
preset curriculum. These openings are often prompted by students’ questions or
teachers’ observations about student understanding or misunderstanding. The
authors argue that teachers must navigate these openings by (1) carefully analyz-
ing student work and thinking, (2) weighing possible options for proceeding against
one’s goals for student learning, and (3) taking responsive action that is open to
ongoing examination and adjustment. They suggest that teaching with curriculum
guides can be improved as teachers recognize and embrace their role while navi-
gating openings in the curriculum to determine learning paths for students.

Similarly, Remillard25  found that teachers came to reflect on their beliefs and
understandings related to their teaching and its content while involved in the very
work of deciding what to do next by interpreting students’ understanding with
respect to their goals for the students and particular instructional tasks. Thus, some
of the most fruitful opportunities for teacher learning when using a new curriculum
occurred when teachers were engaged in the work of navigating openings in the
curriculum.

It will take work by teachers, administrators, researchers, parents, and
politicians to bring these new principles and goals to life in classrooms and
to create the circumstances in which this can happen. Nonetheless, there are
enough examples of the principles in action to offer a vision of the new
kinds of learning that can be accessible to all students and to all teachers.
Some materials to support teachers in these efforts do exist, and more are
being developed. Helpful examples of the three principles in action are
given in the chapters that follow. It is important to note, once again, that
other projects have generated examples that implement the principles of
How People Learn. Some of these examples can be found in the authors’
references to that research and in the suggested teacher reading list. All of
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this work indicates that we have begun the crucial journey into mathemati-
cal proficiency for all and that the principles of How People Learn can guide
us on this journey.
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6
Fostering the Development of

Whole-Number Sense:
Teaching Mathematics in the

Primary Grades
Sharon Griffin

After 15 years of inquiry into children’s understanding and learning of
whole numbers, I can sum up what I have learned very simply. To teach
math, you need to know three things. You need to know where you are
now (in terms of the knowledge children in your classroom have available
to build upon). You need to know where you want to go (in terms of the
knowledge you want all children in your classroom to acquire during the
school year). Finally, you need to know what is the best way to get there (in
terms of the learning opportunities you will provide to enable all children in
your class to achieve your stated objectives). Although this sounds simple,
each of these points is just the tip of a large iceberg. Each raises a question
(e.g., Where are we now?) that I have come to believe is crucial for the
design of effective mathematics instruction. Each also points to a body of
knowledge (the iceberg) to which teachers must have access in order to
answer that question. In this chapter, I explore each of these icebergs in turn
in the context of helping children in the primary grades learn more about
whole numbers.

Readers will recognize that the three things I believe teachers need to
know to teach mathematics effectively are similar in many respects to the
knowledge teachers need to implement the three How People Learn prin-
ciples (see Chapter 1) in their classrooms. This overlap should not be sur-
prising. Because teaching and learning are two sides of the same coin and
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because effective teaching is defined primarily in terms of the learning it
supports, we cannot talk about one without talking about the other. Thus
when I address each of the three questions raised above, I will at the same
time offer preschool and elementary mathematics teachers a set of resources
they can use to implement the three principles of How People Learn in their
classrooms and, in so doing, create classrooms that are student-centered,
knowledge-centered, community-centered, and assessment-centered.

Addressing the three principles of How People Learn while exploring
each question occurs quite naturally because the bodies of knowledge that
underlie effective mathematics teaching provide a rich set of resources that
teachers can use to implement these principles in their classrooms. Thus,
when I explore question 1 (Where are we now?) and describe the number
knowledge children typically have available to build upon at several specific
age levels, I provide a tool (the Number Knowledge test) and a set of ex-
amples of age-level thinking that teachers can use to enact Principle 1—
eliciting, building upon, and connecting student knowledge—in their class-
rooms. When I explore question 2 (Where do I want to go?) and describe
the knowledge networks that appear to be central to children’s mathematics
learning and achievement and the ways these networks are built in the
normal course of development, I provide a framework that teachers can use
to enact Principle 2—building learning paths and networks of knowledge—
in their classrooms. Finally, when I explore question 3 (What is the best way
to get there?) and describe elements of a mathematics program that has been
effective in helping children acquire whole-number sense, I provide a set of
learning tools, design principles, and examples of classroom practice that
teachers can use to enact Principle 3—building resourceful, self-regulating
mathematical thinkers and problem solvers—in their classrooms. Because
the questions I have raised are interrelated, as are the principles themselves,
teaching practices that may be effective in answering each question and in
promoting each principle are not limited to specific sections of this chapter,
but are noted throughout.

I have chosen to highlight the questions themselves in my introduction
to this chapter because it was this set of questions that motivated my inquiry
into children’s knowledge and learning in the first place. By asking this set
of questions every time I sat down to design a math lesson for young chil-
dren, I was able to push my thinking further and, over time, construct better
answers and better lessons. If each math teacher asks this set of questions
on a regular basis, each will be able to construct his or her own set of
answers for the questions, enrich our knowledge base, and improve math-
ematics teaching and learning for at least one group of children. By doing
so, each teacher will also embody the essence of what it means to be a
resourceful, self-regulating mathematics teacher. The questions themselves
are thus more important than the answers. But the reverse is also true:
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although good questions can generate good answers, rich answers can also
generate new and better questions.

I now turn to the answers I have found useful in my own work with
young children. By addressing question 2 (Where do I want to go?) first, I
hope to give readers a sense of the general direction in which we are head-
ing before I turn to question 1 (Where are we now?) and provide a detailed
description of the knowledge children generally have available to build upon
at each age level between 4 and 8. While individual children differ a great
deal in the rate at which they acquire number knowledge, teachers are
charged with teaching a class of students grouped by age. It is therefore
helpful in planning instruction to focus on the knowledge typical among
children of a particular age, with the understanding that there will be consid-
erable variation. In a subsequent section, I use what we have learned about
children’s typical age-level understandings to return to the issue of the knowl-
edge to be taught and to provide a more specific answer for question 2.

DECIDING WHAT KNOWLEDGE TO TEACH
All teachers are faced with a dizzying array of mathematics concepts

and skills they are expected to teach to groups of students who come to
their classrooms with differing levels of preparedness for learning. This is
true even at the preschool level. For each grade level, the knowledge to be
taught is prescribed in several documents—the national standards of the
National Council of Teachers of Mathematics (NCTM), state and district frame-
works, curriculum guides—that are not always or even often consistent.
Deciding what knowledge to teach to a class as a whole or to any individual
child in the class is no easy matter.

Many primary school teachers resolve this dilemma by selecting number
sense as the one set of understandings they want all students in their class-
rooms to acquire. This makes sense in many respects. In the NCTM stan-
dards, number sense is the major learning objective in the standard (num-
bers and operations) to which primary school teachers are expected to devote
the greatest amount of attention. Teachers also recognize that children’s
ability to handle problems in other areas (e.g., algebra, geometry, measure-
ment, and statistics) and to master the objectives listed for these standards is
highly dependent on number sense. Moreover, number sense is given a
privileged position on the report cards used in many schools, and teachers
are regularly required to evaluate the extent to which their students “demon-
strate number sense.” In one major respect, however, the choice of number
sense as an instructional objective is problematic. Although most teachers
and lay people alike can easily recognize number sense when they see it,
defining what it is and how it can be taught is much more difficult.
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Consider the responses two kindergarten children provide when asked
the following question from the Number Knowledge test (described in full
later in this chapter): “If you had four chocolates and someone gave you
three more, how many would you have altogether?”

Alex responds by scrunching up his brow momentarily and
saying, “seven.” When asked how he figured it out, he says,
“Well, ‘four’ and ‘four’ is ‘eight’ [displaying four fingers on
one hand and four on the other hand to demonstrate]. But
we only need three more [taking away one finger from one
hand to demonstrate]. So I went—‘seven,’ ‘eight.’ Seven is
one less than eight. So the answer is seven.”

Sean responds by putting up four fingers on one hand and
saying (under his breath), “Four. Then three more—‘five, six,
seven.’” In a normal tone of voice, Sean says “seven.”
When asked how he figured it out, Sean is able to articulate
his strategy, saying, “I started at four and counted—‘five,
six, seven’” (tapping the table three times as he counts up,
to indicate the quantity added to the initial set).

It will be obvious to all kindergarten teachers that the responses of both
children provide evidence of good number sense. The knowledge that lies
behind that sense may be much less apparent, however. What knowledge
do these children have that enables them to come up with the answer in the
first place and to demonstrate number sense in the process? Scholars have
studied children’s mathematical thinking and problem solving, tracing the
typical progression of understanding or developmental pathway for acquir-
ing number knowledge.1 This research suggests that the following under-
standings lie at the heart of the number sense that 5-year-olds such as Alex
and Sean are able to demonstrate on this problem: (1) they know the count-
ing sequence from “one” to “ten” and the position of each number word in
the sequence (e.g., that “five” comes after “four” and “seven” comes before
“eight”); (2) they know that “four” refers to a set of a particular size (e.g., it
has one fewer than a set of five and one more than a set of 3), and thus there
is no need to count up from “one” to get a sense of the size of this set; (3)
they know that the word “more” in the problem means that the set of four
chocolates will be increased by the precise amount (three chocolates) given
in the problem; (4) they know that each counting number up in the count-
ing sequence corresponds precisely to an increase of one unit in the size of
a set; and (5) it therefore makes sense to count on from “four” and to say the
next three numbers up in the sequence to figure out the answer (or, in
Alex’s case, to retrieve the sum of four plus four from memory, arrive at
“eight,” and move one number back in the sequence). This complex knowl-
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edge network—called a central conceptual structure for whole number—is
described in greater detail in a subsequent section.

The knowledge that Alex and Sean demonstrate is not limited to the
understandings enumerated above. It includes computational fluency (e.g.,
ease and proficiency in counting) and awareness of the language of quantity
(e.g., that “altogether” indicates the joining of two sets), which were ac-
quired earlier and provided a base on which the children’s current knowl-
edge was constructed. Sean and Alex also demonstrate impressive
metacognitive skills (e.g., an ability to reflect on their own reasoning and to
communicate it clearly in words) that not only provide evidence of number
sense, but also contributed to its development.

Finally, children who demonstrate this set of competencies also show
an ability to answer questions about the joining of two sets when the con-
texts vary considerably, as in the following problems: “If you take four steps
and then you take three more, how far have you gone?” and “If you wait
four hours and then you wait three more, how long have you waited?” In
both of these problems, the quantities are represented in very different ways
(as steps along a path, as positions on a dial), and the language used to
describe the sum (“How far?” “How long?”) differs from that used to describe
the sum of two groups of objects (“How many?”). The ability to apply num-
ber knowledge in a flexible fashion is another hallmark of number sense.

Each of the components of number sense mentioned thus far is de-
scribed in greater detail in a subsequent section of this chapter. For now it is
sufficient to point out that the network of knowledge the components repre-
sent—the central conceptual structure for whole number—has been found
to be central to children’s mathematics learning and achievement in at least
two ways. First, as mentioned above, it enables children to make sense of a
broad range of quantitative problems in a variety of contexts (see Box 6-1
for a discussion of research that supports this claim). Second, it provides the
base—the building block—on which children’s learning of more complex
number concepts, such as those involving double-digit numbers, is built
(see Box 6-2 for research support for this claim). Consequently, this network
of knowledge is an important set of understandings that should be taught. In
choosing number sense as a major learning goal, teachers demonstrate an
intuitive understanding of the essential role of this knowledge network and
the importance of teaching a core set of ideas that lie at the heart of learning
and competency in the discipline (learning principle 2). Having a more
explicit understanding of the factual, procedural, and conceptual under-
standings that are implicated and intertwined in this network will help teachers
realize this goal for more children in their classrooms.

Once children have consolidated the set of understandings just described
for the oral counting sequence from “one” to “ten,” they are ready to make
sense of written numbers (i.e., numerals). Now, when they are exposed to

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


262 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

A central conceptual structure is a powerful organizing knowledge net-
work that is extremely broad in its range of application and that plays a
central role in enabling individuals to master the problems that the domain
presents. The word “central” implies (1) that the structure is vital to suc-
cessful performance on a range of tasks, ones that often transcend indi-
vidual disciplinary boundaries; and (2) that future learning in these tasks is
dependent on the structure, which often forms the initial core around which
all subsequent learning is organized.

To test the first of these claims, Griffin and Case selected two groups
of kindergarten children who were at an age when children typically have
acquired the central conceptual structure for whole number, but had not
yet done so.2  All the children were attending schools in low-income, in-
ner-city communities. In the first part of the kindergarten year, all the chil-
dren were given a battery of developmental tests to assess their central
conceptual understanding of whole number (Number Knowledge test) and
their ability to solve problems in a range of other areas that incorporate
number knowledge, including scientific reasoning (Balance Beam test),
social reasoning (Birthday Party task), moral reasoning (Distributive Jus-
tice task), time telling (Time test), and money knowledge (Money test).
On this test administration, no child in either group passed the Number
Knowledge test, and fewer than 20 percent of the children passed any of
the remaining tests.

One group of children (the treatment group) was exposed to a math-
ematics program called Number Worlds that had been specifically designed
to teach the central conceptual structure for whole number. The second
group of children (a matched control group) received a variety of other
forms of mathematics instruction for the same time period (about 10
weeks). The performance of these two groups on the second administra-

BOX 6-1 The Central Conceptual Structure Hypothesis:
Support for the First Claim

the symbols that correspond to each number name and given opportunities
to connect name to symbol, they will bring all the knowledge of what that
name means with them, and it will accrue to the symbol. They will thus be
able to read and write number symbols with meaning. To build a learning
path that matches children’s observed progression of understanding, this
would be a reasonable next step for teachers to take. Finally, with experi-
ence in using this knowledge network, children eventually become capable
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tion of the same tests at the end of the kindergarten year is presented in
the following table. The treatment group—those exposed to the Number
Worlds curriculum—improved substantially in all test areas, far surpass-
ing the performance of the control group. Because no child in the treat-
ment group had received any training in any of the areas tested in this
battery besides number knowledge, the strong post-training performance
of the treatment group on these tasks can be attributed to the construc-
tion of the central conceptual structure for whole number, as demonstrated
in the children’s (post-training) performance on the Number Knowledge
test. Other factors that might have accounted for these findings, such as
more individual attention and/or instructional time given to the treatment
group, were carefully controlled in this study.

Percentages of Children Passing the Second Administration of

the Number Knowledge Test and Five Numerical Transfer Tests

________________________________________________________________________

Control Group Treatment Group
Testa  (N = 24)  (N = 23)
_________________________________________________________________________
Number Knowledge (5/6) 25 87
Balance Beam (2/2) 42 96
Birthday Party (2/2) 42 96
Distributive Justice (2/2) 37 87
Time Telling (4/5) 21 83
Money Knowledge (4/6) 17 43

 aNumber of items out of total used as the criterion for passing the test are
given in parentheses.

of applying their central conceptual understandings to two distinct quantita-
tive variables (e.g., tens and ones, hours and minutes, dollars and cents) and
of handling two quantitative variables in a coordinated fashion. This ability
permits them to solve problems involving double-digit numbers and place
value, for example, and introducing these concepts at this point in time
(sometime around grade 2) would be a reasonable next step for teachers to
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To test the second centrality claim—that future learning is dependent on the acqui-
sition of the central conceptual structure for whole number—Griffin and Case con-
ducted a follow-up study using the same sample of children as that in Box 6-1.3

Children in both the treatment and control groups had graduated to a variety of
first-grade classrooms in a number of different schools. Those who had remained
in the general geographic area were located 1 year later and given a range of as-
sessments to obtain measures of their mathematics learning and achievement in
grade 1. Their teachers, who were blind to the children’s status in the study, were
also asked to rate each child in their classroom on a number of variables.

The results, displayed in the following table, present an interesting portrait of
the importance of the central conceptual structure (assessed by performance at
the 6-year-old level of the Number Knowledge test) for children’s learning and
achievement in grade 1. Recall that 87 percent of the treatment group had passed
this level of the number knowledge test at the end of kindergarten compared with
25 percent of the control group. As the table indicates, most of the children in the
control group (83 percent) had acquired this knowledge by the end of grade 1, but
it appears to have been too late to enable many of them to master the grade 1
arithmetic tasks that require conceptual understanding (e.g., the Oral Arithmetic
test; the Word Problems; test and teacher ratings of number sense, number mean-
ings, and number use). On all of these measures, children who had acquired the
central conceptual structure before the start of the school year did significantly
better.

 On the more traditional measures of mathematics achievement (e.g., the
Written Arithmetic test and teacher ratings of addition and subtraction) that rely
more on procedural knowledge than conceptual understanding, the performance
of children in the control group was stronger. It was still inferior, however, in abso-
lute terms to the performance of children in the treatment group.

 Possibly the most interesting finding of all is the difference between the two
groups on tests that tap knowledge not typically taught until grade 2 (e.g., the 8-
year-old level of the Number Knowledge test and the 8-year-old level of the Word
Problems test). On both of these tests, a number of children in the treatment group
demonstrated that they had built upon their central conceptual structure for whole
number during their first-grade experience and were beginning to construct the
more elaborate understandings required to mentally solve double-digit arithmetic
problems. Few children in the control group demonstrated this level of learning.

BOX 6-2 The Central Conceptual Structure Hypothesis: Support for
the Second Claim
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Percentages of Children Passing the Number Knowledge

Test and Measures of Arithmetic Learning and

Achievement at the End of Grade 1

Control Treatment
Group Group Significance

Test (N = 12) (N= 11) of differencea

Number Knowledge Test
6-year-old level 83 100 ns
8-year-old level 0 18   a

Oral Arithmetic Test 33 82   a

Written Arithmetic Test 75 91  ns

Word Problems Test
6-year-old level 54 96   a

8-year-old level 13 46   a

Teacher Rating
Number sense 24 100   a

Number meaning 42 88   a

Number use 42 88   a

Addition 66 100  ns
Subtraction 66 100  ns

ns= not significant;  a = significant at the .01 level or better.
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take in building learning paths that are finely attuned to children’s observed
development of number knowledge.

In this brief example, several developmental principles that should be
considered in building learning paths and networks of knowledge (learning
principle 2) for the domain of whole numbers have come to light. They can
be summarized as follows:

• Build upon children’s current knowledge. This developmental prin-
ciple is so important that it was selected as the basis for one of the three
primary learning principles (principle 1) of How People Learn.

• Follow the natural developmental progression when selecting new
knowledge to be taught. By selecting learning objectives that are a natural
next step for children (as documented in cognitive developmental research
and described in subsequent sections of this chapter), the teacher will be
creating a learning path that is developmentally appropriate for children,
one that fits the progression of understanding as identified by researchers.
This in turn will make it easier for children to construct the knowledge
network that is expected for their age level and, subsequently, to construct
the higher-level knowledge networks that are typically built upon this base.

• Make sure children consolidate one level of understanding before
moving on to the next. For example, give them many opportunities to solve
oral problems with real quantities before expecting them to use formal sym-
bols.

• Give children many opportunities to use number concepts in a broad
range of contexts and to learn the language that is used in these contexts to
describe quantity.

I turn now to question 1 and, in describing the knowledge children
typically have available at several successive age levels, paint a portrait of
the knowledge construction process uncovered by research—the step-by-
step manner in which children construct knowledge of whole numbers
between the ages of 4 and 8 and the ways individual children navigate this
process as a result of their individual talent and experience. Although this is
the subject matter of cognitive developmental psychology, it is highly rel-
evant to teachers of young children who want to implement the develop-
mental principles just described in their classrooms. Because young chil-
dren do not reflect on their own thinking very often or very readily and
because they are not skilled in explaining their reasoning, it is difficult for a
teacher of young children to obtain a picture of the knowledge and thought
processes each child has available to build upon. The results of cognitive
developmental research and the tools that researchers use to elicit children’s
understandings can thus supplement teachers’ own knowledge and exper-
tise in important ways, and help teachers create learner-centered class-
rooms that build effectively on students’ current knowledge. Likewise, hav-
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ing a rich picture of the step-by step manner in which children typically
construct knowledge of whole numbers can help teachers create knowl-
edge-centered classrooms and learning pathways that fit children’s sponta-
neous development.

BUILDING ON CHILDREN’S CURRENT
UNDERSTANDINGS

What number knowledge do children have when they start preschool
around the age of 4? As every preschool teacher knows, the answer varies
widely from one child to the next. Although this variation does not disap-
pear as children progress through the primary grades, teachers are still re-
sponsible for teaching a whole classroom of children, as well as every child
within it, and for setting learning objectives for their grade level. It can be a
great help to teachers, therefore, to have some idea of the range of under-
standings they can expect for children at their grade level and, equally im-
portant, to be aware of the mistakes, misunderstandings, and partial under-
standings that are also typical for children at this age level.

To obtain a portrait of these age-level understandings, we can consider
the knowledge children typically demonstrate at each age level between
ages 4 and 8 when asked the series of oral questions provided on the Num-
ber Knowledge test (see Box 6-3). The test is included here for discussion
purposes, but teachers who wish to use it to determine their student’s cur-
rent level of understanding can do so.

Before we start, a few features of the Number Knowledge test deserve
mention. First, because this instrument has been called a test in the develop-
mental research literature, the name has been preserved in this chapter.
However, this instrument differs from school tests in many ways. It is admin-
istered individually, and the questions are presented orally. Although right
and wrong answers are noted, children’s reasoning is equally important, and
prompts to elicit this reasoning (e.g., How do you know? How did you
figure that out?) are always provided on a subset of items on the test, espe-
cially when children’s thinking and/or strategy use is not obvious when they
are solving the problems posed. For these reasons, the “test” is better thought
of as a tool or as a set of questions teachers can use to elicit children’s
conceptions about number and quantity and to gain a better understanding
of the strategies children have available to solve number problems. When
used at the beginning (and end) of the school year, it provides a good
picture of children’s entering (and exit) knowledge. It also provides a model
for the ongoing, formative assessments that are conducted throughout the
school year in assessment-centered classrooms.

 Second, as shown in Box 6-3, the test is divided into three levels, with
a preliminary (warm-up) question. The numbers associated with each level
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BOX 6-3 Number Knowledge Test

Preliminary

Let’s see if you can count from 1 to 10. Go ahead.

Level 0 (4-year-old level): Go to Level 1 if 3 or more correct.

 1. Can you count these chips and tell me how many there are? (Place 3
counting  chips in front of child in a row.)

2a. (Show stacks of chips, 5 vs. 2, same color.) Which pile has more?
2b. (Show stacks of chips, 3 vs. 7, same color.) Which pile has more?

3a. This time I’m going to ask you which pile has less.
(Show stacks of chips, 2 vs. 6, same color.) Which pile has less?

3b. (Show stacks of chips, 8 vs. 3, same color.) Which pile has less?

4. I’m going to show you some counting chips (Show a line of 3 red
and 4 yellow chips in a row, as follows: R Y R Y R Y Y). Count just the
yellow chips and tell me how many there are.

5. (Pick up all chips from the previous question.) Here are some more
counting chips (show mixed array [not in a row] of 7 yellow and 8 red
chips.)  Count just the red chips and tell me how many there are.

Level 1 (6-year-old level): Go to Level 2 if 5 or more correct.

1. If you had 4 chocolates and someone gave you 3 more, how many
 chocolates  would you have altogether?

2. What number comes right after 7?

3. What number comes two numbers after 7?

4a. Which is bigger: 5 or 4?
4b. Which is bigger: 7 or 9?

5a. This time, I’m going to ask you about smaller numbers.
Which is smaller: 8 or 6?

5b. Which is smaller: 5 or 7?

6a. Which number is closer to 5: 6 or 2? (Show visual array
after asking the question.)

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


FOSTERING THE DEVELOPMENT OF WHOLE-NUMBER SENSE 269

 6b. Which number is closer to 7: 4 or 9? (Show visual array after
asking the question.)

7. How much is 2 + 4? (OK to use fingers for counting.)

8. How much is 8 take away 6? (OK to use fingers for counting.)

9a. (Show visual array 8 5 2 6. Ask child to point to and name each
numeral.) When you are counting, which of these numbers do
you say first?

 9b. When you are counting, which of these numbers do you say
last?

Level 2 (8-year-old level): Go to Level 3 if 5 or more

correct.

1. What number comes 5 numbers after 49?

2. What number comes 4 numbers before 60?

3a. Which is bigger: 69 or 71?
3b. Which is bigger: 32 or 28?

4a. This time I’m going to ask you about smaller numbers.
Which is smaller: 27 or 32?

4b. Which is smaller: 51 or 39?

5a. Which number is closer to 21: 25 or 18? (Show visual
array after asking the question.)

5b. Which number is closer to 28: 31 or 24? (Show visual
array after asking the question.)

6. How many numbers are there in between 2 and 6?
(Accept either 3 or 4.)

7. How many numbers are there in between 7 and 9?
(Accept either 1 or 2.)

8. (Show visual array 12 54.) How much is 12 + 54?

9. (Show visual array 47 21.) How much is 47 take away 21?
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(0, 1, 2) are drawn from the cognitive developmental tradition and are meant
to suggest that the knowledge demonstrated at Level 0 is foundational for
the knowledge demonstrated at Level 1, which represents a new, higher-
order knowledge structure and a major reorganization of children’s thought.
The knowledge demonstrated at Level 2 represents an even more sophisti-
cated version of this knowledge structure. The ages associated with each
level of the test represent the midpoint in the 2-year age period during
which this knowledge is typically constructed and demonstrated. Thus, the
4-year-old level captures children’s thinking between the ages of 3 and 5
years, and the 6-year-old level captures children’s thinking between the ages
of 5 and 7 years. Finally, the age norms given in the test are the age ranges
within which children in developed societies (drawn primarily from middle-
income homes) typically pass that level of the test. But even when the norm
is accurate for a group of children, it is important to remember that the
knowledge possessed by individual children can differ by as much as 2
years (e.g., from knowledge typical of a 3- and a 5-year-old among the
group at age 4). The test thus provides a set of broad developmental mile-
stones for the majority of U.S. children, although the extent to which these
levels hold true for children from vastly different sociocultural groups re-
mains to be determined. (Directions for administering and scoring the test
are provided in Box 6-4.)

Understandings of 4-Year-Olds

By the age of 4 to 5, most children can accurately count a set of three
chips that are placed in front of them (Level 0, #1) and tell how many there
are. They typically do so by touching the chips in a systematic fashion,
usually proceeding from left to right; by saying “one,” “two,” “three” as they
do so; and by giving the last number said, “three,” as the answer. Fewer
children (but still the majority) can also solve the more challenging counting
problems at this level. They can count a set of four yellow chips that are
intermixed with three red chips in a row (Level 0, #4) by counting just the
yellow chips in the row or by physically moving the yellow chips into a
separate space to make counting easier, and tell you how many there are.
They can also count a set of eight red chips that are intermixed with seven
white chips in a randomly distributed array (Level 0, #5), using one of the
strategies just mentioned. Children who are successful with these items have
learned to isolate the partial set to be counted, either mentally or physically,
and to count items in this set in a systematic fashion, making sure that they
know which chip they counted first and that they touch each chip only once
when counting.

Children who are unsuccessful often fail to count systematically. They
say the counting words and touch the chips, but these strategies are not
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Administration: The Number Knowledge test is an oral test. It is administered
individually, and it requires an oral response. Paper and pencil are not permitted.
Use of a follow-up question — “How did you figure that out?”— for Questions 1,
3, and 7 at Level 1 and Questions 1, 2, and 8 at Level 2 provides additional insight
into children’s reasoning and strategy use.

Scoring: One point is assigned for each item passed at Levels 0, 1, and 2. For all
two-part items, both (a) and (b) must be passed to earn a point.

Props Needed: For Level 0: 12 red and 8 yellow counting chips, at least 1/8” thick
(other contrasting colors can be substituted). For Levels 1 and 2: visual displays
(see samples below). Each image should be at least twice the size of the samples
shown here.

BOX 6-4 Directions for Administering and Scoring the Number
Knowledge Test
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aligned, so they say more words than chips touched or skip some chips
while counting, or (particularly on item #5) forget which chip they started
with and count one or more chips twice. Children who make these errors
are demonstrating some knowledge of counting. They are typically able to
say the string of counting words in the correct sequence, and they know
what must be done to figure out the answer to the question (e.g., touch the
objects present while saying the words). What they do not yet understand is
that the chips must be touched in a certain order and manner to coincide
precisely with their recitation of the counting words. An even less sophisti-
cated response is given by children who have not yet learned to say the
counting words in the correct sequence and who may count the four red
chips in item #4 by saying, “one,” “two,” “five,” seven.”

By the age of 4, most children can also compare two stacks of chips that
differ in height in obvious, perceptually salient ways (Level 0, #2 and #3)
and tell which pile has more or less. Children who can do this can solve the
same problem when the question is phrased “Which pile is bigger (or
smaller)?” and can solve similar problems involving comparisons of length
(when the chips are aligned along a table) and of weight (when the chips
are placed on a balance scale), provided the differences between the sets
are visually obvious. Children who fail these items often look genuinely
puzzled by the question, and either sit quietly waiting for further instruction
or start to play with the chips by taking the stacks apart and moving the
chips about. It appears that the words “more–less” (or “bigger–smaller,”
“longer–shorter,” “heavier–lighter”) and the comparison process that under-
lies them have no meaning for these children, and they are uncertain how to
respond.

Although most children of this age can handle these quantity compari-
sons easily, they fail to achieve more than a chance rate of success when the
differences between the sets are not visually obvious, and counting is re-
quired to determine which set has more or less. Although 4-year-olds have
acquired some fairly sophisticated counting skills (as suggested above), they
tend not to use counting to make quantity judgments, instead relying almost
exclusively on visual cues in answering this sort of question.

If 4-year-olds can do these things, what might that suggest about what
they know? Using this test and other performance assessments, researchers
have constructed hypotheses about children’s knowledge, which can be
summarized as follows. By the age of 4, most children have constructed an
initial counting schema (i.e., a well-organized knowledge network) that en-
ables them to count verbally from one to five, use the one-to-one correspon-
dence rule, and use the cardinality rule.4  By the same age, most have also
constructed an initial quantity schema that gives them an intuitive under-
standing of relative amount (they can compare two groups of objects that
differ in size and tell which has a lot or a little) and of the transformations
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that change this amount (they know that one group will get bigger or smaller
if objects are added to it or taken away). Most preschoolers can also use
words to talk about these quantity relations and transformations.5  As sug-
gested earlier, however, most preschoolers do not use these schemas in a
coordinated or integrated fashion.6 It is as if they were stored in separate
files in children’s minds.

Understandings of 5-Year-Olds

A major change takes place for children when they can begin to solve
problems involving small (single-digit) numbers and quantities without hav-
ing real objects available to count. For the typical child this happens some
time during the kindergarten year, between ages 5 and 6. With this change,
children behave as if they are using a “mental counting line” inside their
heads and/or their fingers to keep track of how many items they have counted.
When asked how many chocolates they would have if they had four and
someone gave them three more (Level 1, #1), the majority of children aged
5 to 6 can figure out the answer. The most advanced children will say that
they just knew the answer was seven because four and three makes seven.
More typically, children in this age range will use their fingers and one of
three counting strategies to solve the problem. They may use the count-on
strategy (the most sophisticated counting strategy) by starting their count at
“four,” often holding up four fingers to represent the first set, and then
counting on “five,” “six,” “seven,” often putting up three additional fingers to
represent the second set. Alternatively, they may use the less sophisticated
count-up-from-one strategy by starting their count at “one,” putting up four
fingers in sequence as they count up to four (to mark off the first set), and
then continuing to count up to seven as they raise three additional fingers
(to mark off the second set). Children who are unsure of this strategy will
use it to put up seven fingers, counting as they do so, and will then use their
noses or nods of their heads to count the fingers they have raised and thus
determine that the answer to the question is seven.

Although it may take children 1 or 2 years to move from the least to the
most sophisticated of these strategies, children using these approaches are
in all cases demonstrating their awareness that the counting numbers refer
to real-world quantities and can be used, in the absence of countable ob-
jects, to solve simple addition problems involving the joining of two sets.
Children who respond to the same question by saying “I don’t know” or by
taking a wild guess and saying “one hundred” appear to lack this awareness.
In between these two extremes are children who make a common error and
say the answer is “five,” thus demonstrating some understanding of addition
(i.e., that the answer must be larger than four) but an incomplete under-
standing of how to use counting numbers to find the answer.
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Kindergarten children use the same range of strategies to figure out
what number comes two numbers after seven (Level 1, #3). Some use the
count-on strategy to solve this problem and say, “seven [pause], eight, nine.
The answer is nine.” Others count up from one to get the same answer. Two
common errors that children make on this problem shed light on what suc-
cessful children appear to know about the number sequence. The first error
involves starting at seven, saying two counting words—“seven, eight”—and
explaining that eight is the answer. The second error is to say that the an-
swer is “eight and nine” and to repeat this answer when prompted with the
question, “Well, which is it—eight or nine?” Both of these answers show an
understanding of the order of counting words but a weak (or incomplete)
understanding of the position of each word in the number sequence and
what position entails in terms of quantity. Finally, children who say “I don’t
know” to this question appear to lack either sufficient knowledge of the
counting sequence or sufficient understanding of the term “after” to even
attempt the problem.

At this age level, children are also able to tell which of two single-digit
numbers is bigger or smaller (Level 1, #4 and #5). This is a large leap from
the previous (4-year-old) level, at which children could compare quantities
that were physically present as long as the differences between them were
visible to the naked eye. This new competence implies the presence of a
sophisticated set of understandings. Children who are successful with these
items appear to know (1) that numbers indicate quantity and therefore (2)
that numbers themselves have magnitude, (3) that the word “bigger” or
“more” is sensible in this context, (4) that the numbers seven and nine
occupy fixed positions in the counting sequence, (5) that seven comes be-
fore nine when one is counting up, (6) that numbers that come later in the
sequence—are higher up—indicate larger quantities, and (7) that nine is
therefore bigger (or more) than seven. Children who lack these understand-
ings typically guess hesitantly. (Note that because children can get the right
answer to these questions 50 percent of the time by guessing, they must
pass both parts of each question to receive credit for these items on the test.)

Understandings of 6-Year-Olds

The last three items on Level 1 of the test are typically not passed until
children are 6 years old, in first grade, and have had the benefit of some
formal schooling. The addition problem “How much is two plus four?” and
the subtraction problem “How much is eight take away six?” are particularly
challenging because they are stated formally, in a decontextualized fashion,
and because the quantity to be added or subtracted is larger than three,
making it difficult for children to easily count up or back a few numbers to
figure out the answer. The most sophisticated response children provide to
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the addition question is to count on from the largest addend (intuitively
using the commutative principle) and to say “four [pause], five, six.” Al-
though many children use this strategy, many others start with the first
addend in the stated problem (two); they then have the cumbersome job of
counting on four more, making sure they count correctly at the same time
they are keeping track of how many they have counted. It is not surprising
that this strategy results in more errors in counting than does the first strat-
egy.

Although some children make wild guesses in response to these ques-
tions, two other examples of a partial understanding are provided more
frequently when children say, after pausing to think, that the answer is “five.”
Although five appears to be a favorite number for many children, regardless
of the context, it is also a reasonable answer for both of these questions. If it
reflects an awareness that the answer to the addition problem must be big-
ger than four (the largest addend), and the answer to the subtraction prob-
lem must be smaller than eight (the first subtrahend), it suggests a partial
understanding of addition and subtraction.

The final item at Level 1 (#9) presents children with a conflicting cue
(i.e., four numerals presented in a random order—8, 5, 6, 2) and gives them
a chance to show just how solid their understanding of the counting se-
quence is: “When you’re counting, which of these numbers do you say first
(and last)?” Children can easily solve this problem if their experience with
counting is extensive and their knowledge solid. If this is not the case, they
are easily confused and give the first (or last) numeral listed in the display as
their answer. As with all other items at this level of the test, the majority
(about 60 percent) of children in developed societies acquire the knowledge
needed for success sometime between the ages of 5 and 7.

Again we can ask what knowledge undergirds these performances. Schol-
ars hypothesize that, around the age of 5 to 6, as children’s knowledge of
counting and quantity becomes more elaborate and differentiated it also
gradually becomes more integrated, eventually merging in a single knowl-
edge network termed here as a central conceptual structure for whole num-
ber, or a mental counting line structure.7  This structure is illustrated in Fig-
ure 6-1. The figure can be thought of as a blueprint showing the important
pieces of knowledge children have acquired (depicted by words or pictures
in the figure) and the ways these pieces of knowledge are interrelated (de-
picted by arrows in the figure).

The top row of the figure illustrates children’s knowledge of the count-
ing words and suggests that they can not only say those words in sequence,
but also understand the position of each word in the sequence and tell what
number comes next, after, or before any number from one to ten. The sec-
ond row shows that children know they touch each object once and only
once when counting. The third row shows that children know the precise
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FIGURE 6-1 Mental counting line structure—a blueprint showing the important pieces of
knowledge children have acquired (words or pictures) and the ways these pieces are interrelated
(arrows).

finger patterns associated with each counting word; as indicated by the
horizontal and vertical arrows that connect finger displays to each other and
to the counting words, they also know that the finger display contains one
more finger each time they count up by one and contains one less finger
each time they count down by one. The fourth row suggests that children
have acquired similar understandings with respect to objects (and other real-
world quantities). The fifth row is connected to all the others with dotted
lines to show that children acquire knowledge of the numerals that are
associated with each counting word somewhat later, and this knowledge is
not a vital component of the central conceptual structure. What is vital,
however, are the brackets that contain the first four rows and connect the
knowledge indicated within them (i.e., knowledge of counting) to several
words used to make quantity judgments. These connectors show that chil-
dren at this age can use their knowledge of counting to make precise judg-
ments about relative amount.

With this higher-order knowledge structure, children come to realize
that a question about addition or subtraction can be answered, in the ab-
sence of any concrete set of objects, simply by counting forward or back-
ward along the counting string. They also come to realize that a simple
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verbal statement about a transformation, such as “I have four things, and
then I get three more,” has an automatic entailment with regard to quantity.
One does not even need to see the objects involved or know anything else
about them. These simple understandings actually mark a major revolution
in children’s understanding, which changes the world of formal mathemat-
ics from something that can occur only “out there” to something that can
occur inside their own heads and under their own control. As this change
takes place, children begin to use their counting skills in a wide range of
other contexts. In effect, children realize that counting is something one can
do to determine the relative value of two objects on a wide variety of dimen-
sions (e.g., width, height, weight, musical tonality).8

Around age 6 to 7, supported by their entry into formal schooling, chil-
dren typically learn the written numerals (though this is taught to some
children earlier). When this new understanding is linked to their central
conceptual understanding of number, children understand that the numerals
are symbols for number words, both as ordered “counting tags” and as
indicators of set size (i.e., numerical cardinality).

Understandings of 7-Year-Olds

Around the age of 7 to 8, in grade 2, children are able to solve the same
sorts of problems they could solve previously for single-digit numbers, but
for double-digits numbers. When asked what number comes five numbers
after forty-nine (Level 2, #1) or four numbers before sixty (Level 2, #2), the
majority of second graders can figure out the answer. They do so by count-
ing up from forty-nine (or down from sixty), often subvocally and, less
frequently than at the previous stage, using their fingers to keep track of
how many they have counted up (or down). When children make errors on
these problems, they demonstrate the same sorts of partial understandings
that were described earlier. That is, they may show a strong partial under-
standing of double-digit numbers by making a counting error (e.g., counting
the number from which they start as the first number added or subtracted),
or a weak understanding by saying, “I don’t know. That’s a big number. I
haven’t learned them yet.” Between these two extremes are children who
know intuitively that the answer to each problem must be in the fifties but
are unsure how to count up or down.

At this age level, children can also tell which of two double-digit num-
bers is bigger or smaller (Level 2, #3 and #4). To do so, they must recognize
that numbers in the tens place of each problem (e.g., sixty-nine versus sev-
enty-one) have a much greater value than numbers in the ones place, and
thus outweigh the value of even big numbers such as nine that occur in the
units position. In short, children who succeed on these items recognize that
any number in the seventies is automatically bigger than any number in the
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sixties “because you have to go through all the numbers in the sixties before
you even hit seventy.” A common error children make—which reveals an
absence of this awareness—is to choose consistently on the basis of the
value of the unit digits and to say, for example, that sixty-nine is bigger than
seventy-one because nine is larger than one.

Finally, typically toward the end of this age period, children are able to
figure out how many whole numbers are in between two and six (Level 2,
#7) and in between seven and nine (Level 2, #8). These are complex single-
digit problems that require the use of two mental counting lines, one with
the numbers involved in the problem and one with the numbers involved in
the solution. Children who are successful with the first item often start the
solution process by looking fixedly ahead and saying “two” [pause] “six,” as
if they were looking at an imaginary counting line and marking the numbers
two and six on this line. They then proceed to count the numbers in be-
tween by nodding their heads; saying “three,” “four,” “five” (sometimes us-
ing their fingers to keep track of the second number line, in which “three” is
one, “four” is two, and “five” is three); and providing “three” as the answer.
This behavior suggests they are using one mental counting line as an opera-
tor to count the numbers on a second mental number line that shows the
beginning and end points of the count. By contrast, children who are unsuc-
cessful with this item often give “five” as the answer and explain this answer
by saying that five is in between two and six. Although this answer demon-
strates an understanding of the order of numbers in the counting sequence,
it completely ignores the part of the question that asks, “How many num-
bers are there in between?” Other children look stunned when this question
is posed, as if it is not a meaningful thing to ask, and respond “I don’t
know,” suggesting that they have not yet come to understand that numbers
have a fixed position in the counting sequence and can themselves be counted.

Understandings of 8-Year-Olds

The last two items at Level 2 are more complex than the previous items,
and they are frequently not solved until children are 8 years old. Children
succeed on the problem “How much is 12 plus 54?” most easily by reducing
one of these numbers to a benchmark value, carrying the amount that was
taken away in their heads, adding the new values, and then adding on the
amount that was carried (e.g., “ten and fifty-four is sixty-four; add two; the
answer is sixty-six”). Use of this strategy implies a good understanding of
the additive composition of double-digit numbers and of the value of using
benchmark numbers to make addition and subtraction easier.

Other children solve these problems more laboriously, with less sophis-
ticated strategies. Some count on from fifty-four by ones until they have
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marked twelve fingers, essentially ignoring the base-ten value of these num-
bers and treating them as units. Others try to line the numbers up in their
heads into the typical vertical format used on worksheets in the classroom.
They then add the numbers in the ones column—“two and four is six”—and
the numbers in the tens column—“five and one is six”—and, with much
mental effort, say that the answer is sixty-six. Children using this solution
strategy are essentially performing two single-digit addition operations in
succession and are not demonstrating a good understanding of the base-ten
features of double-digit numbers. As with all the other test problems, there
are always some children who take a wild guess and produce an answer that
is not even in the ballpark or who look puzzled and say, more or less
forlornly, “I don’t know. I haven’t learned that yet.”

Again we can ask what knowledge underlies these performances. Re-
searchers have suggested that, around the age of 7 to 8 years, children’s
central conceptual understandings become more elaborate and more differ-
entiated, permitting them to represent two distinct quantitative dimensions,
such as tens and ones, in a coordinated fashion. With this new structure,
called a bidimensional central conceptual structure for number, children are
able to understand place value (e.g., represent the tens dimension and the
ones dimension in the base-ten number system and work with these dimen-
sions in a coordinated fashion). They are also able to solve problems involv-
ing two quantitative dimensions across multiple contexts, including time
(hours and minutes), money (dollars and cents), and math class (tens and
ones).9

ACKNOWLEDGING TEACHERS’ CONCEPTIONS
AND PARTIAL UNDERSTANDINGS

As illustrated in the foregoing discussion, the questions included on the
Number Knowledge test can provide a rich picture of the number under-
standings, partial understandings, and problem-solving strategies that chil-
dren in several age groups bring to instruction.

The test can serve another function as well, however, which is worth
discussing in the present context: it can provide an opportunity for teachers
to examine their own mathematical knowledge and to consider whether any
of the partial understandings children demonstrate are ones they share as
well. My own understanding of number has grown considerably over the
past several years as a result of using this test with hundreds of children,
listening to what they say, and examining how their explanations and un-
derstandings change as they grow older. Three insights in particular have
influenced my teaching.

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


280 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

Insight #1: Math Is Not About Numbers, but About
Quantity

It is easy to endorse the myth that math is about numbers because
numbers, after all, are everywhere in math. What my work with children has
taught me is that math is about quantity, and numbers express those quan-
tities. As the age-level descriptions of children’s understandings suggest,
numbers acquire meaning for children when they recognize that each num-
ber refers to a particular quantity (which may be represented in a variety of
different ways) and when they realize that numbers provide a means of
describing quantity and quantity transformations more precisely than is pos-
sible using everyday language such as “lots,” “little,” or “more.” This realiza-
tion—that numbers are tools that can be used to describe, predict, and ex-
plain real-world quantities and quantity transactions—gives children a
tremendous boost in mastering and using the number system. To help chil-
dren construct this understanding, therefore, it is crucial to introduce num-
bers to children in the context of the quantities (e.g., objects, pictures of
objects) and quantity representations (e.g., dot set patterns, number lines,
thermometers, bar graphs, dials) that will give these numbers meaning as
quantities.

Insight #2: Counting Words Is the Crucial Link
Between the World of Quantity and the World of
Formal Symbols

Numbers are expressed in our culture in two quite different ways: orally,
as a set of counting words, and graphically, as a set of formal symbols.
Because children start using the counting words so early—learning to say
“one–two–three” almost as soon as they learn to talk—it may be tempting to
think that they should abandon this early form of expression when they start
their formal schooling and learn to use the graphic symbol system instead.
But children have spent most of their preschool years using the counting
words in the context of their real-world exploration and ever so slowly
building up a network of meaning for each word. Why should they be
deprived of this rich conceptual network when they start their school-based
math instruction and be required, instead, to deal with a set of symbols that
have no inherent meaning? Mathematics instruction that takes advantage of
this prior knowledge and experience—rather than denying it or presenting
math as distinct from these everyday experiences—is bound to be more
accessible to children.

In my own work, I have found that the key to helping children acquire
meanings for symbols is providing opportunities for them to connect the
symbol system to the (more familiar) counting words. This is best accom-
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plished when children have previously acquired a solid set of connections
between the counting words themselves and the quantities to which they
refer. Many third graders are still constructing this latter understanding (e.g.,
acquiring an awareness of the links between double-digit counting numbers
and the quantities to which they refer). Thus, to enable children to use their
current understandings to build new ones, it is crucial that they have ample
opportunities to use the oral language system to make sense of quantitative
problems and that they be introduced to the graphic equivalents of that
system in this familiar context.

Insight #3: Acquiring an Understanding of Number Is a
Lengthy, Step-by-Step Process

I used to think (or at least I liked to believe) that if I designed an
especially elegant lesson that made the concept I was attempting to teach
transparent for children, I could produce an “aha” experience and enable
the children to grasp a connection that was previously unavailable to them.
I now realize that this goal (or wish) is not only unrealistic, but also unob-
tainable if the concept to be learned is not within reach of the child’s current
level of understanding. As the earlier age-level descriptions of children’s
understanding suggest, the acquisition of number knowledge is, by its very
nature, a step-by-step process, with each new understanding building sys-
tematically and incrementally on previous understandings. Although I still
believe in the value of carefully designed, elegant lessons, my goals, while
still ambitious, are more limited. Now, I hope that a lesson or series of
lessons will enable a child to move up one level at a time in his or her
understanding, to deepen and consolidate each new understanding before
moving on to the next, and to gradually construct a set of understandings
that are more sophisticated and “higher-level” than the ones available at the
start. I now recognize that such a process takes time and that each child may
move through the process at his or her own pace.

REVISITING QUESTION 2: DEFINING THE
KNOWLEDGE THAT SHOULD BE TAUGHT

Now that we have a better idea of the knowledge children have avail-
able to work with at several age levels and the manner in which this knowl-
edge is constructed, it is possible to paint a more specific portrait of the
knowledge that should be taught in school, at each grade level from pre-
school through second grade, to ensure that each child acquires a well-
developed whole-number sense. As suggested previously, the knowledge
taught to each child should be based, at least in part, on his or her existing
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understandings (Principle 1). However, because teachers are required to
teach whole classrooms of children (as well as individuals), they need a set
of general learning objectives for each grade level that will be appropriate
for the range of children involved. Two sets of objectives are paramount for
this purpose. The first is to ensure that all children in the class attain the
developmental milestones—the central conceptual structures for whole num-
ber—described earlier; the second is to ensure that all children become
familiar with the major ways in which number and quantity are represented
and talked about so they can recognize and make sense of number prob-
lems they encounter across contexts.

The framework presented in the previous section leads to a clear set of
learning goals for each grade level from prekindergarten through grade 2
that are within reach of the majority of children at that level and that teach-
ers can use to “teach” the developmental milestones (i.e., to ensure that
children who have not yet acquired these central conceptual understandings
have an opportunity to do so). Using this framework, it can be suggested
that a major goal for the preschool year is to ensure that children acquire a
well-developed counting schema and a well-developed quantity schema. A
major goal for the kindergarten year is to ensure that children acquire a well-
consolidated central conceptual structure for single-digit numbers. A major
goal for first grade is to help children link this structure to the formal symbol
system and to construct the more elaborated knowledge network this en-
tails. Finally, a major goal for second grade is to help children acquire the
bidimensional central conceptual structure for double-digit numbers that
underlies a solid understanding of the base-ten system.

These grade-level goals (see Box 6-5) not only specify knowledge net-
works to be taught at specific grade levels to foster the development of
whole-number sense, but also form a “number sense” learning pathway—a
sequence of learning objectives teachers can use to individualize instruction
for children who are progressing at a rate that is faster or slower than that of
the rest of the class. The second body of knowledge to be taught—knowl-
edge of the major ways number and quantity are represented and talked
about—can be defined most clearly in the context of the tools developed to
teach it, as discussed in the following section.

HOW CAN THIS KNOWLEDGE BE TAUGHT?:
THE CASE OF NUMBER WORLDS

During the past two decades, several innovative programs and approaches
to mathematics teaching have been developed to teach whole-number con-
cepts and to put the principles of How People Learn into curricular action.10

The program described here—Number Worlds—was designed specifically
to teach the knowledge described above. It is also the one with which I am
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most familiar. As codeveloper of this program, I was involved in its incep-
tion in 1988 under the name Rightstart. In the ensuing years, I have contin-
ued to participate in the program’s development, revising it annually to
achieve a better fit with teachers’ needs and learning goals, conducting pro-
gram evaluations to assess its effects on children’s learning and achieve-
ment, and ultimately producing the expanded set of prekindergarten–grade
2 programs now called Number Worlds.11  Like the other programs and ap-
proaches referred to above, Number Worlds was designed specifically to (1)
build on children’s existing understandings (learning principle 1), (2) help
children construct new knowledge, both factual and conceptual, that is or-
ganized so as to facilitate retrieval and application (learning principle 2),
and (3) require and teach metacognitive strategies (learning principle 3).
Like each of the other programs and approaches referred to above, Number
Worlds provides a distinctive way of thinking about mathematics and math-
ematics teaching.

To maximize opportunities for all children to achieve the knowledge
objectives of the Number Worlds program, a set of design principles drawn
from the How People Learn research base was adopted and used to create
each of the more than 200 activities included in the program. The principles
that are most relevant to the present discussion are listed below. In the
ensuing discussion, each design principle is described more fully and illus-
trated with one or more activities from the Number Worlds program:

1. Activities should expose children to the major ways number is repre-
sented and talked about in developed societies.

2. Activities should provide opportunities to link the “world of quantity”
with the “world of counting numbers” and the “world of formal symbols.”

3. Activities should provide visual and spatial analogs of number repre-
sentations that children can actively explore in a hands-on fashion.

4. Activities should be affectively engaging and capture children’s imagi-
nation so knowledge constructed is embedded not only in their minds, but
also in their hopes, fears, and passions.

5. Activities should provide opportunities for children to acquire com-
putational fluency as well as conceptual understanding.

6. Activities should encourage or require the use of metacognitive pro-
cesses (e.g., problem solving, communication, reasoning) that will facilitate
knowledge construction.

Design Principle 1: Exposing Children to Major Forms
of Number Representation

Number is represented in our culture in five major ways: through ob-
jects, dot set patterns, segments on a line, segments on a scale (or bar graph),
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and segments or points on a dial. Children who are familiar with these forms
of representation and the language used to talk about number in these con-
texts have a much easier time making sense of the number problems they
encounter inside and outside of school. The Number Worlds program pro-
vides one example of how these forms of representation can be taught. In so
doing, it illustrates what a knowledge-centered classroom might look like in
the area of elementary mathematics.

At each grade level in this program, children explore five different lands.
Learning activities developed for each land share a particular form of num-
ber representation while simultaneously addressing specific knowledge goals
(i.e., the developmental milestones) for each grade level. The five forms of
representation and the lands in which they appear are illustrated in Figure
6-2. As the figure suggests, the first land to which children are exposed is
Object Land, where numbers are represented by the bundling of several

BOX 6-5 Learning Goals for Prekindergarten Through Grade 2

Knowledge Networks Examples of Specific
That All Children Competencies within

Grade Level Should Acquire Each Networka

Prekindergarten  Initial counting schema Can count verbally from one
to five (or ten).

Can use the one-to one
correspondence rule.

Knows the cardinal value of
each number.

Initial quantity schema Understands relative amount
(a lot–a little).

Knows that an amount gets
bigger if objects added and
smaller if objects taken away.

Kindergarten Central conceptual Knows the relative value of
structure for numbers.
single-digit numbers Knows that set size increases

by one with each counting
number up in the sequence.
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Can use the counting numbers
alone to solve addition and
subtraction problems.

Grade 1 Central conceptual Knows the symbols
structure linked to associated with each
formal symbol system number word and the names

and symbols for addition,
subtraction, and equality.

Grade 2 Central conceptual Understands place value
structure for (e.g., a two in the ones
double-digit numbers place means two and a two

in the tens place means 20);
can solve double-digit
addition and subtraction
problems mentally.

a Additional, more concrete, examples of the sorts of problems children can solve when
they have acquired each knowledge network can be found in the Number Knowledge Test
(Box 6-1). See the 4-year-old level items for the prekindergarten network; the 6-year-old level
items (1 through 6) for the kindergarten network; the remaining 6-year-old level items for the
grade 1 network; and the 8-year-old level items for the grade 2 network.

objects, such as pennies or fingers, into groups. This is the first way in which
numbers were represented historically and the first that children learn natu-
rally.12  In Object Land, children first work with real objects (e.g., “How
many crackers will you have left after you eat one? After you eat one more?”)
and then move on to working with pictures of objects (e.g., “Are there
enough hats so that each clown will have one? How many more do you
need? How do you know?”).

The second land to which children are introduced is Picture Land, where
numbers are represented as stylized, semiabstract dot set patterns that are
equivalent to mathematical sets. These patterns provide a link between the
world of movable objects and the world of abstract symbols. Unlike the real
objects they represent, dot set pictures cannot be placed physically in one-
to-one correspondence for easier comparison. Instead, a child must make a
mental correspondence between two sets, for example by noticing that the
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pattern for five is the same as that for four, except that the five pattern has
one extra dot in the center. As children engage in Picture Land activities
(e.g., by playing an assortment of card and dice games similar in format to
War, Fish, and Concentration), they gradually come to think of these pat-
terns as forming the same sort of ordered series as do the number words
themselves. Numerals, another way of representing numbers, are also part
of Picture Land, and are used extensively in the activity props that are pro-
vided at all grade levels and, by the children themselves, in the upper levels
of the program. Tally marks are used as well in this land to record and
compare quantities.

A third way to represent numbers is as segments along a line—for ex-
ample, the lines that are found on board games such as Chutes and Ladders.
The language that is used for numbers in this context is the language of
distance. In Line Land, children come to understand (by playing games on a
Human Game Mat and on an assortment of smaller number line game boards)
that a number such as “four” can refer not only to a particular place on a
line, but also to a number of moves along the line. One can talk about going
four numbers forward from the number four on one’s fourth turn. Perhaps
the most important transition that children must make as they move from the
world of small countable objects to that of abstract numbers and numerical
operations is to treat the physical addition or subtraction of objects as equiva-
lent to movement forward or backward along a line. All children eventually
make this correspondence; until they do, however, they are unable to move
from physical to mental operations with any insight.

Yet another way to represent numbers is with bar graphs and scales,
such as thermometers. In Sky Land (a name chosen as a child-friendly sub-
stitute for the word “scale,” as in “reach for the sky”), this sort of representa-
tion is always used in a vertical direction, such that bigger numbers are
higher up. These forms of representation make a convenient context for
introducing children to the use of numbers as a measure, as a way to keep
track of continuous quantity in standard units. Systems for measuring con-
tinuous quantity have the same long history as do systems for enumerating
discrete objects, and it is important to develop children’s intuitions for the
properties of the former systems from the outset.13

Dials are the final representation of number included in Number Worlds.
Sundials and clocks are more sophisticated ways of representing numbers
since they incorporate the cyclic quality—a path that repeats itself—pos-
sessed by certain real-world dimensions, such as time and the natural rhythm
of the seasons. In Circle Land, children develop spatial intuitions (e.g., by
playing games on a skating rink configuration that requires them to chart
progress within and across revolutions to determine a winner) that become
the foundation for understanding many concepts in mathematics dealing
with circular motion (e.g., pie charts, time, and number bases).
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Although the five forms of number representation have been introduced
in a fixed order here, from easiest to most difficult, an important goal of the
Number Worlds program is to help children appreciate the equivalence of
these forms of representation and of the language used to talk about num-
ber in these contexts. To this end, children are encouraged to explore all
lands and all number representations early in the school year by beginning
with activities in each land that target lower-level knowledge objectives (la-
beled Level 1 activities) and by proceeding throughout the year to activities
in each land that target higher-level knowledge objectives (labeled Level 3
activities). By moving back and forth across lands throughout the year, chil-
dren gradually come to appreciate, for example, that “nine” is bigger than
“seven” by a precise amount and that this difference holds whether these
numbers are represented as groups of objects, as positions along a path, or
as points on a scale. They also come to appreciate that this difference is the
same whether it is talked about as “more” in one context, as “farther along”
in another, or as “higher up” in a third. For adults, these various manifesta-
tions of the whole-number counting system are easily seen to be equivalent.
To very young children, they are quite different, so different that they might
appear to be from different “worlds.” Helping children construct an orga-
nized knowledge network in which these ideas are interconnected (learning
principle 2) is thus a major goal of Number Worlds.

Design Principle 2: Providing Opportunities to Link the
“World of Quantity” with the “World of Counting
Numbers” and the “World of Formal Symbols”

Although every activity created for the Number Worlds program pro-
vides opportunities to link the “world of quantity” with the “world of count-
ing numbers” and the “world of formal symbols”—or to link two of these
worlds—the three activities described in this section illustrate this principle
nicely, at the simplest level. Readers should note that the remaining design
principles are also illustrated in these examples, but to preserve the focus
are not highlighted in this section.

Plus Pup

Plus Pup is an Object Land activity that is used in both the preschool
and kindergarten programs to provide opportunities for children to (1) count
a set of objects and identify how many there are, and (2) recognize that
when one object is added, the size of the set is increased by one (see Figure
6-3). To play this game, the teacher and children put a certain number of
cookies into a lunch bag to bring to school, carefully counting the cookies as
they do so, and being sure they remember how many cookies they placed
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inside the bag. Next, the teacher (or a child volunteer) takes a little walk (as
if going to school) and encounters Plus Pup along the way (by picking up
the Plus Pup card). As the icon on the card suggests, Plus Pup gives the
cookie carrier one more cookie. The bag is opened up slightly to receive a
real cookie and is then promptly closed. The challenge children confront is
this: How many cookies are in the bag now? How can we figure this out?

If the teacher is patient and allows children to explore these questions
as genuine problems, a range of solution strategies are often provided as
children play and replay the game with different quantities of cookies. The
first and most obvious solution children suggest (and implement) is to open
the bag, take the cookies out, and count them. This provides opportunities
for the teacher to draw children’s attention to the quantity transaction that
has occurred to produce this amount. For example, the teacher may say,
“We have five cookies now. How do we know how many Plus Pup gave us?
How can we figure this out?” If no answers are forthcoming, the teacher can
prompt the children by asking, “Does anyone remember how many cookies
we had at the start?”—thus leading them to make sense of the quantity
transaction that has occurred (i.e., the initial amount, the amount added, the
end total) by describing the entire process in their own words.

As children replay this game, they gradually come to realize that they
can use the counting numbers themselves, with or without their fingers, to
solve this sort of problem, and that dumping the cookies out of the bag to
count them is unnecessary. When children begin to offer this solution strat-
egy, the teacher can shift the focus of her questions to ask, “Who can predict
how many cookies are in the bag now? How do you know?” After predic-
tions and explanations (or proofs) have been offered, the children can be
allowed to examine the contents of the bag “to confirm or verify their pre-

FIGURE 6-3 Plus Pup—an Object Land activity used to
provide opportunities for children to understand addition
problems.
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dictions.” Although preschoolers are often unfamiliar with these scientific
terms when first introduced, it is not long before they understand the mean-
ing of the terms in this context and use these words themselves, feeling very
pleased with the air of sophistication this language bestows on their own
mathematical activity. By encouraging problem solving and communication,
this activity, like all activities in the program, makes children’s thinking vis-
ible, and in so doing provides the basis for ongoing assessment that is the
hallmark of assessment-centered classrooms.

The rationale that was created for this activity is as follows: “In this
activity, a giving pup icon is used to give children a meaningful mental
image of the addition operation. This image will serve as a conceptual bridge
and help children build strong connections between an increase in quantity
in the real world and the +1 symbol that describes this increase in the world
of formal mathematics” (Object Land: Lesson #7). Although children are not
expected to make explicit use of the +1 symbol in either the preschool or
kindergarten program, it is available for those who are ready to take advan-
tage of it. To our delight, children who have been exposed to this activity in
their preschool or kindergarten year spontaneously remember Plus Pup when
they encounter more complex addition problems later on, providing evi-
dence they have indeed internalized the set of connections (among name,
icon, and formal symbol) to which they were exposed earlier and are able to
use this knowledge network to help them make sense of novel addition
problems.

Minus Mouse

Once children have become familiar with Plus Pup and what Plus Pup
does, they are introduced to Minus Mouse (see Figure 6-4). The format of

FIGURE 6-4 Minus Mouse—an Object Land activity used
to provide opportunities for children to understand
subtraction problems.
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this activity is identical to that of the former except, of course, that whereas
Plus Pup will add one cookie to the bag, Minus Mouse will take one away.
The challenge children are asked to deal with in this activity is this: “How
many cookies will we have left?” How can we figure this out? The similarly
in format between these two activities and the repetition that results proves
not to be the deterrent to children that adults might expect. Most young
children prefer the comfort of the familiar to the excitement of the novel.
Indeed, they appear to thrive on the opportunities this similarity provides
for them to anticipate what might happen and, with confidence, make pre-
dictions about those outcomes.

Plus Pup Meets Minus Mouse

Once children have become familiar with Minus Mouse and reasonably
adept at solving the problems this activity presents for a range of single-digit
quantities, the teacher makes the problem more complex by including both
Plus Pup and Minus Mouse in the same activity. This time, when the cookie
carrier walks to school, he or she draws a card from a face-down pack and
either Plus Pup or Minus Mouse will surface. The challenge this time is to
interpret the icon with its associated symbol, to determine the action that
should be performed (adding one more cookie to the bag or taking one
away), and to figure out how to solve the problem of how many cookies are
in the bag now and how we can figure this out. Children who have become
reasonably competent at counting on (from the initial amount) to solve Plus
Pup problems and counting back (from the initial amount) to solve Minus
Mouse problems will now have to employ these strategies in a much more
flexible fashion. They will also have to pay much closer attention to the
meaning of the icon and its associated symbol and what this entails in terms
of the quantity transaction to be performed. Both of these challenges pose
bigger problems for children than adults might expect; thus, by providing
opportunities for children to confront and resolve these challenges, this ac-
tivity scaffolds the development of whole-number sense.

All three of the above activities can provide multiple opportunities for
teachers to assess each child’s current level of understanding as reflected in
the solutions constructed (or not constructed) for each of the problems posed,
the explanations provided, and the strategies employed (e.g., emptying the
cookies out of the bag to determine how many or using the counting num-
bers instead, with or without fingers, to solve the problem). These informal
assessments, in turn, can help teachers determine the quantity of cookies
that would provide an appropriate starting place for the next round of each
activity and the sorts of questions that should be posed to individual chil-
dren to help them advance their knowledge. By using assessment in this
formative fashion—to create learning opportunities that are finely attuned to

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


292 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

children’s current understandings and that help them construct new knowl-
edge at the next level up—teachers are creating classrooms that are, at one
and the same time, learner-centered, knowledge-centered, and assessment-
centered.

Design Principle 3: Providing Visual and Spatial Analogs
of Number Representations That Children Can Actively
Explore in a Hands-On Fashion

Because the central conceptual understandings that the program was
designed to teach involve the coordination of spatial and numeric concepts,
it was deemed important to provide several opportunities for children to
explore the number system in a variety of spatial contexts, to scaffold this
coordination. The spatial contexts that were created for the Number Worlds
program often take the form of game boards on which number is depicted
as a position on a line, scale, or dial and on which quantity is depicted as
segments on these line, scale, and dial representations. By using a pawn to
represent “self” as player and by moving through these contexts to solve
problems posed by the game, children gain a vivid sense of the relationship
between movement along a line, scale, or dial and increases and decreases
in quantity. This experience is illustrated in the following activities.

The Skating Party Game

This game is played in Circle Land at the kindergarten level. It was
designed to help children realize that a dial (or a circular path) is another
device for representing quantity, and that the same relationships that apply
between numbers and movement on a number line apply also to numbers
and movement in this context (see Figure 6-5). In this game, a dial is repre-
sented as a circular path. By including 10 segments on this path, numbered
0 to 9, this prop provides opportunities for children to acquire an intuitive
understanding of the cyclical nature of the base-ten number system. This
understanding is explicitly fostered and built upon in activities children en-
counter later on, at higher levels of the program. The explicit learning objec-
tives that were developed for the Skating Party game are as follows: (1)
identify or compute set size, and associate set size with a position on a dial
(i.e., a circular path); (2) associate increasing a quantity with moving around
a dial; and (3) compare positions on a dial to identify which have more, less,
or the same amount, and use this knowledge to solve a problem.

These objectives are achieved as children engage in game play and
respond to questions that are posed by the teacher (or by a child serving as
group leader). With four children sharing one game board, children start

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


FOSTERING THE DEVELOPMENT OF WHOLE-NUMBER SENSE 293

game play by placing their pawns at the starting gate. They then take turns
rolling a die, counting the dots, and moving their pawns that many spaces
around the dial. Each time they complete a revolution around the dial, they
collect an Award card. At the end of the game, children count and compare
their Award cards, and the child with the most cards is the first winner,
followed by the child with the second most, who is the second winner, and
so on. In one variation of this game, the Award cards collected by each
group of four children are computed and compared, and a group winner is
declared.

Questions are posed at several points in game play, and the sorts of
questions that are put to individual children are most productive if they are
finely tuned to each child’s current level of understanding (learning prin-
ciple 1). For example, when all children have their pawns on the board, they
can be asked, “Who is farther around? Who has gone the least distance?
How much farther do you need to go to win an Award card?” These ques-
tions are always followed by “How do you know?” or “How did you figure
that out?” Plenty of time needs to be allowed for children to come up with
answers that make sense to them and for them to share their answers with
each other. When children are counting their Award cards, they can be
asked, “How many times did you go around the rink? Who has the most
Award cards? How come that child went around the rink more times than
this child if everyone had the same number of turns?” The last question is the
most challenging of this set, and beginning players often attribute going

FIGURE 6-5  Skating Party game board—a
Circle Land activity used to provide a hands-on
representation for children to explore the
relationship between movement and increases
and decreases in quantity.
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around the rink more times to skating faster (rather than to rolling a lot of
high numbers).

Eventually children will make this connection, and they can be encour-
aged to do so by being asked to pay close attention to movement around the
rink the next time they play. For example, the teacher might say, “Did that
child really skate faster? Let’s watch next time we play and see.” In encour-
aging children to construct their own answers to the question by reflecting
on their own activity, teachers are encouraging the use of metacognitive
processes and allowing children to take charge of their own learning (learn-
ing principle 3).

In a follow-up activity, the teacher adds another level of complexity to
this game by providing an illustrated set of skating cards that show either
“+1, You skate well”; “–1, You stumbled”; or “0,” blank symbol and image
(see Figures 6-6a and 6-6b). In this version of the game, children play as
before, but in addition, they draw a skating card from the face-down deck
after every turn and follow the instructions on the card to move one space
forward or backward around the rink, or to stay where they are. This ver-
sion of the game provides opportunities for children to meet an additional
learning objective—identifying how many there will be if a set is increased
or decreased by one (or by two in a challenge activity). This objective, in
turn, is met most easily if the teacher scaffolds children’s learning by pro-
viding opportunities for them to talk about the quantity transactions they
are performing. For example, when a child draws a card, the teacher can
ask, “Where are you now? What does that card tell you to do? How far
around the rink will you be after you do that? Is that closer to the finish line

FIGURE 6-6 An illustrated set of skating cards used in the Circle Land Skating Party game.
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or farther away from it? How do you know?” By answering and discussing
these questions and by confirming or disconfirming their thoughts and pre-
dictions with real actions, children gradually build up a solid intuitive un-
derstanding of the links among the world of quantity (in spatial contexts),
the world of counting numbers, and the world of formal symbols.

Rosemary’s Magic Shoes

This game provides an illustration of a spatial context developed for
Line Land in the second-grade program to help children build an under-
standing of the base-ten number system. The prop itself—the Neighborhood
Number Line—comprises 10 blocks of houses, each containing 10 houses
that attach with Velcro to create a linear neighborhood of 100 houses that is
15 feet long when fully assembled (see Figure 6-7). This prop is used exten-
sively in the first-grade program as well, to teach several concepts implicit in
the 1–100 number sequence. The character created for this game, a profes-
sional monster-tracker called Rosemary, has a pair of magic shoes that al-
lows her to leap over 10 houses in a single bound. For Rosemary’s shoes to
work, however, she first must tell them how many times to jump 10 houses
and how many times to walk past 1 house.

To play this game, children take turns picking a number tile that indi-
cates a house where the presence of a monster has been suspected. Using
Rosemary’s magic shoes, they then move to the house as quickly and effi-
ciently as possible; check for monsters (by drawing a card from a face-down
deck that indicates the monsters’ presence or absence); and, if indicated,
place a sticker on the house to show that it is a “monster-free zone.” In later

FIGURE 6-7 Neighborhood Number Line game board—used to help children understand the
base-ten number system.
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versions of this game, children are required to keep a written record of
Rosemary’s movements, using the formal symbol system to do so. In all
versions of this game, they are required to watch each player carefully to see
if the oral directions given (e.g., “Magic shoes, jump over 5 blocks and walk
to the eighth house”) were followed precisely, to consider whether other
ways of getting to the same house (#58) might have been more efficient, and
to share their thinking with the class.

With exposure to this game, children gradually come to realize that
they can leap over 10 houses (i.e., count up or down by tens) from any
number in the sequence, not just from the decade markers (e.g., 10, 20, 30).
They also come to realize that they need not always move in a forward
direction (e.g., count up) to reach a particular number, that it might be
more efficient to move to the closest tens marker and go back a few steps
(e.g., jump over 6 blocks and walk back two steps to get to house #58).
With these realizations and opportunities to put them into practice, children
gain fluency in computing the distance between any two numbers in the 1-
100 sequence and in moving fluently from one location (or number) to the
next, using benchmark values to do so. They also gain an appreciation of
the relative value of numbers in this sequence (e.g., that 92 is a long way
away from 9) and can recognize immediately that the sum of 9 + 2 could
not possibly be 92, an error that is not uncommon for this age group. The
knowledge gains that have just been described—the acquisition of proce-
dural fluency, factual knowledge, and conceptual understanding—appear
to be greatly facilitated by the provision of spatial analogs of the number
system that children can actively explore in a hands-on fashion (design
principle 3 as set forth in this chapter), coupled with opportunities to ex-
plain their thinking, to communicate with their peers, and to reflect on their
own activity (learning principle 3).

Design Principle 4: Engaging Children’s Emotions and
Capturing Their Imagination So Knowledge Constructed
Is Embedded Not Only in Their Minds, but Also in Their
Hopes, Fears, and Passions

Each of the activities described thus far has been engaging for children
and has captured their imagination. The one described in this section possi-
bly achieves this purpose to a greater extent than most others. It also pro-
vides an example of how the Number Worlds program addresses a major
learning goal for first grade: helping children link their central conceptual
structure for whole number to the formal symbol system.
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Dragon Quest

Dragon Quest was developed for Picture Land in the first-grade pro-
gram (see Figure 6-8). Although the game is played on a line and children
can use objects to solve the problems posed by the game, the major repre-
sentation of number that children must work with in this game to achieve
the game’s goals are numerals and operation signs. For this reason, this
game is classified as a Picture Land activity. Children are introduced to Phase
1 of this activity by being told a story about a fire-breathing dragon that has
been terrorizing the village where the children live. The children playing the
game are heroes who have been chosen to seek out the dragon and put out
his fire. To extinguish this dragon’s fire (as opposed to that of other, more
powerful dragons they will encounter in later phases), a hero will need at
least 10 pails of water. If a hero enters the dragon’s area with less than 10
pails of water, he or she will become the dragon’s prisoner and can be
rescued only by one of the other players.

To play the game, children take turns rolling a die and moving their
playing piece along the colored game board. If they land on a well pile
(indicated by a star), they can pick a card from the face-down deck of cards
that illustrate, with images and symbols (e.g., + 4), a certain number of pails
of water. Children are encouraged to add up their pails of water as they
receive them and are allowed to use a variety of strategies to do so, ranging
from mental math (which is encouraged) to the use of tokens to keep track
of the quantity accumulated. The first child to reach the dragon’s lair with at
least 10 pails of water can put out the dragon’s fire and free any teammates
who have become prisoners.

Needless to say, this game is successful in capturing children’s imagina-
tion and inducing them to engage in the increasing series of challenges
posed by later versions. As they do so, most children acquire increasingly
sophisticated number competencies. For example, they become capable of
performing a series of successive addition and subtraction operations in

FIGURE 6-8 Dragon Quest game
board—a Picture Land activity that
uses numerals and operation signs
to achieve the game’s goals.
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their heads when spill cards (e.g., – 4) are added to the set of cards in the
well pile. When they encounter more-powerful dragons whose fire can be
extinguished only with 20 buckets of water, they become capable of per-
forming these operations with larger sets of numbers and with higher num-
bers. When they are required to submit formal proof to the mayor of the
village that they have amassed sufficient pails of water to put out the dragon’s
fire before they are allowed to do so, they become capable of writing a
series of formal expressions to record the number of pails received and
spilled over the course of the game. In such contexts, children have ample
opportunity to use the formal symbol system in increasingly efficient ways
to make sense of quantitative problems they encounter in the course of their
own activity.

Design Principle 5: Providing Opportunities for
Children to Acquire Computational Fluency As Well As
Conceptual Understanding

Although opportunities to acquire computational fluency as well as con-
ceptual understanding are built into every Number Worlds activity, compu-
tational fluency is given special attention in the activities developed for the
Warm-Up period of each lesson. In the prekindergarten and kindergarten
programs, these activities typically take the form of count-up and count-
down games that are played in each land, with a prop appropriate for that
land. This makes it possible for children to acquire fluency in counting and,
at the same time, to acquire a conceptual understanding of the changes in
quantity that are associated with each successive number up (or down) in
the counting sequence. This is illustrated in an activity, developed for Sky
Land, that is always introduced after children have become reasonably flu-
ent in the count-up activity that uses the same prop.

Sky Land Blastoff

In this activity, children view a large, specially designed thermometer
with a moveable red ribbon that is set to 5 (or 10, 15, or 20, depending on
children’s competence) (see Figure 6-9). Children pretend to be on a rocket
ship and count down while the teacher (or a child volunteer) moves the red
ribbon on the thermometer to correspond with each number counted. When
the counting reaches “1,” all the children jump up and call “Blastoff!” The
sequence of counting is repeated if a counting mistake is made or if anyone
jumps up too soon or too late. The rationale that motivated this activity is as
follows: “Seeing the level of red liquid in a thermometer drop while count-
ing down will give children a good foundation for subtraction by allowing
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them to see that a quantity decreases in scale height with each successive
number down in the sequence. This will also lay a foundation for measure-
ment” (Sky Land: Activity #2).

This activity is repeated frequently over the course of the school year,
with the starting point being adjusted over time to accommodate children’s
growing ability. Children benefit immensely from opportunities to perform
(or lead) the count-down themselves and/or to move the thermometer rib-
bon while another child (or the rest of the class) does the counting. When
children become reasonably fluent in basic counting and in serial counting
(i.e., children take turns saying the next number down), the teacher adds a
level of complexity by asking them to predict where the ribbon will be if it
is on 12, for example, and they count down (or up) two numbers, or if it is
on 12 and the temperature drops (or rises) by 2 degrees. Another form of
complexity is added over the course of the school year when children are
asked to demonstrate another way (e.g., finger displays, position on a hu-
man game mat) to represent the quantity depicted on the thermometer and
the way this quantity changes as they count down. By systematically increas-
ing the complexity of these activities, teachers expose children to a learning
path that is finely attuned to their growing understanding (learning principle
1) and that allows them to gradually construct an important network of
conceptual and procedural knowledge (learning principle 2).

In the programs for first and second grade, higher-level computation
skills (e.g., fluent use of strategies and procedures to solve mental arithmetic

FIGURE 6-9 A specially designed thermometer for the Sky Land Blastoff
activity—to provide an understanding of the changes in quantity
associated with each successive number (up) or down in the counting
sequence.
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problems) are fostered in the Warm-Up activities. In Guess My Number, for
example, the teacher or a child picks a number card and, keeping it hidden,
generates two clues that the rest of the class can use to guess the number
(e.g., it is bigger than 25 and smaller than 29). Guessers are allowed to ask
one question, if needed, to refine their prediction (e.g., “Is it an odd num-
ber?” “Is it closer to 25 or to 29?”).

Generating good clues is, of course, more difficult than solving the prob-
lem because doing so requires a refined sense of the neighborhood of num-
bers surrounding the target number, as well as their relationship to this
number. In spite of the challenges involved, children derive sufficient enjoy-
ment from this activity to persevere through the early stages and to acquire
a more refined number sense, as well as greater computational fluency, in
the process. In one lovely example, a first-grade student provided the fol-
lowing clues for the number he had drawn: “It is bigger than 8 and it is 1
more than 90 smaller than 100.” The children in the class were stymied by
these clues until the teacher unwittingly exclaimed, “Oh, I see, you’re using
the neighborhood number line,” at which point all children followed suit,
counted down 9 blocks of houses, and arrived at a correct prediction, “9.”

Design Principle 6: Encouraging the Use of
Metacognitive Processes (e.g., Problem Solving,
Communication, Reasoning) That Will Facilitate
Knowledge Construction

In addition to opportunities for problem solving, communication, and
reasoning that are built into the activities themselves (as illustrated in the
examples provided in this chapter), three additional supports for these pro-
cesses are included in the Number Worlds program. The first is a set of
question cards developed for specific stages of each small-group game. The
questions (e.g., “How many buckets of water do you have now?”) were
designed to draw children’s attention to the quantity displays they create
during game play (e.g., buckets of water collected and spilled) and the
changes in quantity they enact (e.g., collecting four more buckets), and to
prompt them to think about these quantities and describe them, performing
any computations necessary to answer the question. Follow-up questions
that are also included (e.g., “How did you figure that out?”) prompt children
to reflect on their own reasoning and to put it into words, using the lan-
guage of mathematics to do so. Although the question cards are typically
used by the teacher (or a teacher’s aide) at first, children can gradually take
over this function and, in the process, take greater control over their own
learning (learning principle 3). This transition is facilitated by giving one
child in the group the official role of Question Poser each time the game is
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played. By giving children important roles in the learning process (e.g.,
Question-Poser, Facilitator, Discussion Leader, Reporter) and by allowing
them to be teachers as well as learners, teachers can create the sort of com-
munity-centered classroom that is described in Chapters 1 and 5.

The second support is a set of dialogue prompts included in the teacher’s
guide, which provides a more general set of questions (e.g., “Who has gone
the farthest? How do you know?”) than those provided with the game. Al-
though both sets of questions are highly useful in prompting children to use
metacognitive processes to make mathematical sense of their own activity,
they provide no guidance on how a teacher should respond to the answers
children provide. Scaffolding good math talk is still a significant challenge
for most primary and elementary teachers. Having a better understanding of
the sorts of answers children give at different age levels, as well as increased
opportunities to listen to children explain their thinking, can be helpful in
building the expertise and experience needed for the exceedingly difficult
task of constructing follow-up questions for children’s answers that will push
their mathematical thinking to higher levels.

The third support for metacognitive processes that is built into the Num-
ber Worlds program is a Wrap-Up period that is provided at the end of each
lesson. In Wrap-Up, the child who has been assigned the role of Reporter for
the small-group problem-solving portion of the lesson (e.g., game play)
describes the mathematical activity his or her group did that day and what
they learned. The Reporter then takes questions from the rest of the class,
and any member of the Reporter’s team can assist in providing answers. It is
during this portion of the lesson that the most significant learning occurs
because children have an opportunity to reflect on aspects of the number
system they may have noticed during game play, explain these concepts to
their peers, and acquire a more explicit understanding of the concepts in the
process. Over time, Wrap-Up comes to occupy as much time in the math
lesson as all the preceding activities (i.e., the Warm-Up activities and small-
group problem-solving activities) put together.

With practice in using this format, teachers become increasingly skilled
at asking good questions to get the conversation going and, immediately
thereafter, at taking a back seat in the discussion so that children have
ample opportunity to provide the richest answers they are capable of gen-
erating at that point in time. (Some wonderful examples of skilled teachers
asking good questions in elementary mathematics classrooms are available
in the video and CD-ROM products of the Institute for Learning
[www.institutefor learning.org].) This takes patience, a willingness to turn
control of the discussion over to the children, and faith that they have
something important to say. Even at the kindergarten level, children appear
to be better equipped to rise to this challenge than many teachers, who,
having been taught that they should assume the leadership role in the class,
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often feel that they should dominate the discussion. Teachers who can rise
to this challenge have found that their faith is amply rewarded by the so-
phistication of the explanations children provide, even at the kindergarten
level; by the opportunities this occasion provides for assessing children’s
growth and current understandings; and by the learning and achievement
gains children demonstrate on standard measures.

WHAT SORTS OF LEARNING DOES THIS
APPROACH MAKE POSSIBLE?

The Number Worlds program was developed to address three major
learning goals: to enable children to acquire (1) conceptual knowledge of
number as well as procedural knowledge (e.g., computational fluency); (2)
number sense (e.g., an ability to use benchmark values, an ability to solve
problems in a range of contexts); and (3) an interest in and positive attitude
toward mathematics. Program evaluation for the most part has focused on
assessing the extent to which children who have been exposed to the pro-
gram have been able to demonstrate gains on any of these fronts. The re-
sults of several evaluation studies are summarized below.

The Number Worlds program has now been tried in several different
communities in Canada and in the United States. For research purposes, the
groups of students followed have always been drawn from schools serving
low-income, predominantly inner-city communities. This decision was based
on the assumption that if the program works for children known to be at risk
for school failure, there is a good chance that it will work as well, or even
better, for those from more affluent communities. Several different forms of
evaluation have been conducted.

In the first form of evaluation, children who had participated in the
kindergarten level of the program (formerly called Rightstart) were com-
pared with matched controls who had taken part in a math readiness pro-
gram of a different sort. On tests of mathematical knowledge, on a set of
more general developmental measures, and on a set of experimental mea-
sures of learning potential, children who had participated in the Number
Worlds program consistently outperformed those in the control groups (see
Box 6-1 for findings from one of these studies).14  In a second type of evalu-
ation, children who had taken part in the kindergarten level of the program
(and who had graduated into a variety of more traditional first-grade class-
rooms) were followed up 1 year later and evaluated on an assortment of
mathematical and scientific tests, using a double-blind procedure. Once again,
those who had participated in the Number Worlds program in kindergarten
were found to be superior on virtually all measures, including teacher evalu-
ations of “general number sense” (see Box 6-2).15
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The expansion of the Number Worlds program to include curricula for
first and second grades permitted a third form of evaluation—a longitudinal
study in which children were tracked over a 3-year period. At the beginning
of the study and the end of each year, children who had participated in the
Number Worlds program were compared with two other groups: (1) a sec-
ond low-socioeconomic-status group that had originally been tested as hav-
ing superior achievement in mathematics, and (2) a mixed-socioeconomic-
status (largely middle-class) group that had also demonstrated a higher level
of performance at the outset and attended an acclaimed magnet school with
a special mathematics coordinator and an enriched mathematics program.
These three groups are represented in the figure of Box 6-6, and the differ-
ences between the magnet school students and the students in the low-
socioeconomic-status groups can be seen in the different start positions of
the lines on the graph. Over the course of this study, which extended from
the beginning of kindergarten to the end of second grade, children who had
taken part in the Number Worlds program caught up with, and gradually
outstripped, the magnet school group on the major measure used through-
out this study—the Number Knowledge test (see Box 6-6). On this measure,
as well as on a variety of other mathematics tests (e.g., measures of number
sense), the Number Worlds group outperformed the second low-socioeco-
nomic-status group from the end of kindergarten onward. On tests of proce-
dural knowledge administered at the end of first grade, they also compared
very favorably with groups from China and Japan that were tested on the
same measures.16

 These findings provide clear evidence that a program based on the
principles of How People Learn (i.e., the Number Worlds program) works for
the population of children most in need of effective school-based instruc-
tion—those living in poverty. In a variety of studies, the program enabled
children from diverse cultural backgrounds to start their formal learning of
arithmetic on an equal footing with their more-advantaged peers. It also
enabled them to keep pace with their more-advantaged peers (and even
outperform them on some measures) as they progressed through the first
few years of formal schooling and to acquire the higher-level mathematics
concepts that are central for continued progress in this area. In addition to
the mathematics learning and achievement demonstrated in these studies,
two other findings are worthy of note: both teachers and children who have
used the Number Worlds program consistently report a positive attitude to-
ward the teaching and learning of math. For teachers, this often represents a
dramatic change in attitude. Math is now seen as fun, as well as useful, and
both teachers and children are eager to do more of it.

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


304 HOW STUDENTS LEARN: MATHEMATICS IN THE CLASSROOM

BOX 6-6 Comparing Number Worlds and Control Group Outcomes

As the figure below shows, the magnet school group began kindergarten with
substantially higher scores on the Number Knowledge test than those of children
in the Number Worlds and control groups. The gap indicated a developmental lag
that exceeded one year, and for many children in the Number Worlds group was
closer to 2 years. By the end of the kindergarten year, however, the Number
Worlds children had narrowed this gap to a small fraction of its initial size. By the
end of the second grade, the Number Worlds children actually outperformed the
magnet school group. In contrast, the initial gap between the control group
and the magnet school group did not narrow over time. The control group chil-
dren did make steady progress over the 3 years; however, they were never able
to catch up.

Number Worlds

Control

Magnet School

Mean developmental level scores on Number Knowledge test at four time periods.
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SUMMARY AND CONCLUSION
It was suggested at the beginning of this chapter that the teaching of

whole-number concepts could be improved if each math teacher asked three
questions on a regular basis: (1) Where am I now? (in terms of the knowl-
edge children in their classrooms have available to build upon); (2) Where
do I want to go? (in terms of the knowledge they want all children in their
classrooms to acquire during the school year); and (3) What is the best way
to get there? (in terms of the learning opportunities they will provide to
enable all children in their class to reach the chosen objectives). The chal-
lenges these questions pose for primary and elementary teachers who have
not been exposed in their professional training to the knowledge base needed
to construct good answers were also acknowledged. Exposing teachers to
this knowledge base is a major goal of the present volume. In this chapter, I
have attempted to show how the three learning principles that lie at the
heart of this knowledge base—and that are closely linked to the three ques-
tions posed above—can be used to improve the teaching and learning of
whole numbers.

To illustrate learning Principle 1 (eliciting and building upon student
knowledge), I have drawn from the cognitive developmental literature and
described the number knowledge children typically demonstrate at each age
level between ages 4 and 8 when asked a series of questions on an assess-
ment tool—the Number Knowledge Test—that was created to elicit this knowl-
edge. To address learning Principle 2 (building learning paths and networks
of knowledge), I have again used the cognitive developmental literature to
identify knowledge networks that lie at the heart of number sense (and that
should be taught) and to suggest learning paths that are consistent with the
goals for mathematics education provided in the NCTM standards.17  To illus-
trate learning Principle 3 (building resourceful, self-regulating mathematics
thinkers and problem solvers), I have drawn from a mathematics program
called Number Worlds that was specifically developed to teach the knowl-
edge networks identified for Principle 2 and that relied heavily on the find-
ings of How People Learn to achieve this goal. Other programs that have also
been developed to teach number sense and to put the principles of How
People Learn into action have been noted in this chapter, and teachers are
encouraged to explore these resources to obtain a richer picture of how
Principle 3 can be realized in mathematics classrooms.

In closing, I would like to acknowledge that it is not an easy task to
develop a practice that embodies the three learning principles outlined herein.
Doing so requires continuous effort over a long period of time, and even
when this task has been accomplished, teaching in the manner described in
this chapter is hard work. Teachers can take comfort in the fact the these
efforts will pay off in terms of children’s mathematics learning and achieve-
ment; in the positive attitude toward mathematics that students will acquire
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and carry with them throughout their lives; and in the sense of accomplish-
ment a teacher can derive from the fruits of these efforts. The well-deserved
professional pride that this can engender, as well as the accomplishments of
children themselves, will provide ample rewards for these efforts.
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7
Pipes, Tubes, and Beakers:

New Approaches to Teaching the
Rational-Number System

Joan Moss

Poor Sally. Her anger and frustration with fractions are palpable. And
they no doubt reflect the feelings and experiences of many students. As
mathematics education researchers and teachers can attest, students are of-
ten vocal in their expression of dislike of fractions and other representations
of rational numbers (percents and decimals). In fact, the rational-number
system poses problems not only for youngsters, but for many adults as well.1

In a recent study, masters students enrolled in an elementary teacher-train-
ing program were interviewed to determine their knowledge and under-
standing of basic rational-number concepts. While some students were con-
fident and produced correct answers and explanations, the majority had
difficulty with the topic. On attempting to perform an operation involving
fractions, one student, whose sentiments were echoed by many, remarked,
“Oh fractions! I know there are lots of rules but I can’t remember any of
them and I never understood them to start with.”2

PEANUTS reprinted by permission of United Feature Syndicate, Inc.
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We know from extensive research that many people—adults, students,
even teachers—find the rational-number system to be very difficult.3  Intro-
duced in early elementary school, this number system requires that students
reformulate their concept of number in a major way. They must go beyond
whole-number ideas, in which a number expresses a fixed quantity, to un-
derstand numbers that are expressed in relationship to other numbers. These
new proportional relationships are grounded in multiplicative reasoning that
is quite different from the additive reasoning that characterizes whole num-
bers (see Box 7-1).4  While some students make the transition smoothly, the
majority, like Sally, become frustrated and disenchanted with mathematics.5

Why is this transition so problematic?
A cursory look at some typical student misunderstandings illuminates

the kinds of problems students have with rational numbers. The culprit ap-
pears to be the continued use of whole-number reasoning in situations where
it does not apply. When asked which number is larger, 0.059 or 0.2, a major-
ity of middle school students assert that 0.059 is bigger, arguing that the
number 59 is bigger than the number 2.6  Similarly, faulty whole-number
reasoning causes students to maintain, for example, that the fraction 1/8 is
larger than 1/6 because, as they say, “8 is a bigger number than 6.”7  Not
surprisingly, students struggle with calculations as well. When asked to find
the sum of 1/2 and 1/3, the majority of fourth and sixth graders give the
answer 2/5. Even after a number of years working with fractions, some
eighth graders make the same error, illustrating that they still mistakenly
count the numerator and denominator as separate numbers to find a sum.8

Clearly whole-number reasoning is very resilient.
Decimal operations are also challenging.9  In a recent survey, research-

ers found that 68 percent of sixth graders and 51 percent of fifth and seventh
graders asserted that the answer to the addition problem 4 + .3 was .7.10  This
example also illustrates that students often treat decimal numbers as whole
numbers and, as in this case, do not recognize that the sum they propose as
a solution to the problem is smaller than one of the addends.

The introduction of rational numbers constitutes a major stumbling block
in children’s mathematical development.11  It marks the time when many
students face the new and disheartening realization that they no longer un-
derstand what is going on in their mathematics classes.12  This failure is a
cause for concern. Rational-number concepts underpin many topics in ad-
vanced mathematics and carry significant academic consequences.13  Stu-
dents cannot succeed in algebra if they do not understand rational numbers.
But rational numbers also pervade our daily lives.14  We need to be able to
understand them to follow recipes, calculate discounts and miles per gallon,
exchange money, assess the most economical size of products, read maps,
interpret scale drawings, prepare budgets, invest our savings, read financial
statements, and examine campaign promises. Thus we need to be able to
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BOX 7-1 Additive and Multiplicative Reasoning

Lamon,15  whose work on proportional reasoning and rational number has made a
great contribution to our understanding of students’ learning, elucidates the dis-
tinction between relative and absolute reasoning. She asks the learner to con-
sider the growth of two fictitious snakes: String Bean, who is 4 feet long when
the story begins, and Slim, who is 5 feet long. She tells us that after 5 years, both
snakes have grown. String Bean has grown from 4 to 7 feet, and Slim has grown
from 5 to 8 feet (see the figure below). She asks us to compare the growth of
these two snakes and to answer the question, “Who grew more?”

Lamon suggests that there are two answers. First, if we consider absolute
growth, both snakes grew 3 feet, so both grew the same amount. The second
answer deals with relative growth; from this perspective, String Bean grew the
most because he grew 3/4 of his length, while Slim grew only 3/5 of his length. If
we compare the two fractions, 3/4 is greater than 3/5, and so we conclude that
String Bean has grown proportionally more than Slim.

Lamon asks us to note that while the first answer, about the absolute differ-
ence, involves addition, the second answer, about the relative difference, is solved
through multiplication. In this way she shows that absolute thinking is additive,
while relative thinking is multiplicative.
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understand rational numbers not only for academic success, but also in our
lives as family members, workers, and citizens.

Do the principles of learning highlighted in this book help illuminate
the widespread problems observed as students grapple with rational num-
ber? Can they point to more effective approaches to teaching rational num-
ber? We believe the answer to both these questions is “yes.” In the first
section below we consider each of the three principles of How Students
Learn, beginning with principle 2—the organization of a knowledge net-
work that emphasizes core concepts, procedural knowledge, and their con-
nections. We then turn to principle 1—engaging student preconceptions and
building on existing understandings. Finally we consider metacognitive in-
struction as emphasized in principle 3.

The second section focuses on instruction in rational number. It begins
with a description of frequently used instructional approaches and the ways
in which they diverge from the above three principles. We then describe an
experimental approach to teaching rational number that has proven to be
successful in helping students in fourth, fifth, and sixth grades understand
the interconnections of the number system and become adept at moving
among and operating with the various representations of rational number.
Through a description of lessons in which the students engaged and proto-
cols taken from the research classrooms, we set out the salient features of
the instructional approach that played a role in shaping a learning-centered
classroom environment. We illustrate how in this environment, a focus on
the interconnections among decimals, fractions, and percents fosters stu-
dents’ ability to make informed decisions on how to operate effectively with
rational numbers. We also provide emerging evidence of the effectiveness of
the instructional approach. The intent is not to promote our particular cur-
riculum, but rather to illustrate the ways in which it incorporates the prin-
ciples of How People Learn, and the observed changes in student under-
standing and competence with rational numbers that result.

RATIONAL-NUMBER LEARNING AND THE
PRINCIPLES OF HOW PEOPLE LEARN

The Knowledge Network: New Concepts of Numbers and
New Applications (Principle 2)

What are the core ideas that define the domain of rational numbers?
What are the new understandings that students will have to construct? How
does a beginning student come to understand rational numbers?

Let us look through the eyes of a young student who is just beginning to
learn about rational number. Until this point, all of her formal instruction in
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arithmetic has centered on learning the whole-number system. If her learn-
ing has gone well, she can solve arithmetic problems competently and easily
makes connections between the mathematics she is learning and experi-
ences of her daily life. But in this next phase of her learning, the introduc-
tion of rational number, there will be many new and intertwined concepts,
new facts, new symbols that she will have to learn and understand—a new
knowledge network, if you will. Because much of this new learning is based
on multiplicative instead of whole-number relations, acquiring an under-
standing of this new knowledge network may be challenging, despite her
success thus far in mathematics. As with whole-number arithmetic, this do-
main connects to everyday life. But unlike whole numbers, in which the
operations for the most part appear straightforward, the operations involved
in the learning of rational numbers may appear to be less intuitive, at odds
with earlier understandings (e.g., that multiplication always makes things
bigger), and hence more difficult to learn.

New Symbols, New Meanings, New Representations

One of the first challenges facing our young student is that a particular
rational number can take many forms. Until now her experience with sym-
bols and their referents has been much simpler. A number—for example,
four—is represented exclusively by one numeral, 4. Now the student will
need to learn that a rational number can be expressed in different ways—as
a decimal, fraction, and percent. To further complicate matters, she will have
to learn that a rational-number quantity can be represented by an infinite
number of equivalent common and decimal fractions. Thus a rational num-
ber such as one-fourth can be written as 1/4, 2/8, 3/12, 4/16, 0.25, 0.250, and
so on.

Not only does the learning of rational number entail the mastery of
these forms and of the new symbol systems that are implied, but the learner
is also required to move among these various forms flexibly and efficiently.16

Unfortunately, this flow between representations does not come easily.17  In
fact, even mature students are often challenged when they try to understand
the relations among the representations.18 To illustrate how difficult translat-
ing between fractions and decimals can be, I offer two examples taken from
our research.

In a recent series of studies, we interviewed fourth, sixth, and eighth
graders on a number of items that probed for rational-number understand-
ing. One of the questions we asked was how the students would express the
quantity 1/8 as a decimal. This question proved to be very challenging for
many, and although the students’ ability increased with age and experience,
more than half of the sixth and eighth graders we surveyed asserted that as
a decimal, 1/8 would be 0.8 (rather than the correct answer, 0.125).
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In the next example, an excerpt taken from an interview conducted as
part of a pretest, Wyatt, a traditionally trained fifth-grade student, discussed
ordering a series of rational numbers presented to him in mixed representa-
tions.

Interviewer Here are 3 numbers: 2/3, 0.5, and 3/4. Could
you please put these numbers in order from
smallest to largest?

Wyatt Well, to start with, I think that the decimal 0.5
is bigger than the fractions because it’s a
decimal, so it’s just bigger, because fractions
are really small things.

The response that 1/8 would equal 0.8 should be familiar to many who
have taught decimals and fractions. As research points out, students have a
difficult time understanding the quantities involved in rational number and
thus do not appear to realize the unreasonableness of their assertion.19  As
for Wyatt’s assertion in the excerpt above that decimals and fractions cannot
be compared, this answer is representative of the reasoning of the majority
of the students in this class before instruction. Moreover, it reflects more
general research findings.20  Since most traditional instruction in rational num-
ber presents decimals, fractions, and percents separately and often as dis-
tinct topics, it is not surprising that students find this task confusing. Indeed,
the notion that a single quantity can have many representations is a major
departure from students’ previous experience with whole numbers; it is a
difficult set of understandings for them to acquire and problem-laden for
many.21

But this is not the only divergence from the familiar one-to-one corre-
spondence of symbol to referent that our new learner will encounter. An-
other new and difficult idea that challenges the relatively simple referent-to-
symbol relation is that in the domain of rational number, a single rational
number can have several conceptually distinct meanings, referred to
as “subconstructs.” Now our young student may well become completely
confused.

The Subconstructs or the Many Personalities of Rational Number

What is meant by conceptually distinct meanings? As an illustration,
consider the simple fraction 3/4. One meaning of this fraction is as a part–
whole relation in which 3/4 describes 3 of 4 equal-size shares. A second
interpretation of the fraction 3/4 is one that is referred to as the quotient
interpretation. Here the fraction implies division, as in 4 children sharing 3
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pies. As a ratio, 3/4 might mean there are, for example, 3 red cars for every
4 green cars (this is not to be confused with the part–whole interpretation
that 3/7 of the cars are red). Rational numbers can also indicate a measure.
Here rational number is a fixed quantity, most frequently accompanied by a
number line, that identifies a situation in which the fraction 1/4 is used
repeatedly to determine a distance (e.g., 3/4 of an inch = 1/4, 1/4, 1/4).
Finally, there is the interpretation of rational number as a multiplicative
operator, behaving as an operation that reduces or enlarges the size of an-
other quantity (e.g., the page has been reduced to 3/4 its original size).

The necessity of coordinating these different interpretations requires a
deep understanding of the concepts and interrelationships among them. On
the one hand, a student must think of rational numbers as a division of two
whole numbers (quotient interpretation); on the other, she must also come
to know these two numbers as an entity, a single quantity (measure), often
to be used in another operation. These different interpretations, generally
referred to as the “subconstructs” of rational number, have been analyzed
extensively22  and are a very important part of the knowledge network that
the learner will construct for rational number.

Reconceptualizing the Unit and Operations

While acquiring a knowledge network for rational-number understand-
ing means that new forms of representation must be learned (e.g., decimals,
fractions) and different interpretations coordinated, the learner will encoun-
ter many other new ideas—ideas that also depart from whole numbers. She
will have to come to understand that rational numbers are “dense”—mean-
ing that between any two rationals we can find an infinity of other numbers.
In the whole-number domain, number is discrete rather than continuous,
and the main operation is counting. This is a very big change indeed.23

Another difficult new set of understandings concerns the fundamental
change that students will encounter in the nature of the unit. In whole num-
bers, the unit is always explicit (6 refers to 6 units). In rational numbers, on
the other hand, the unit is often implied. But it is the unstated unit that gives
meaning to the represented quantities, operations, and the solutions. Con-
sider the student trying to interpret what is meant by the task of multiplying,
for example, 1/2 times 1/8. If the student recognizes that the “1/8” in the
problem refers to 1/8 of one whole, she may reason correctly that half of the
quantity 1/8 is 1/16. However since the 1 is not stated but implied, our
young student may err and, thinking the unit is 8, consider the answer to be
1/4 (since 4 is one-half of 8)—a response given by 75 percent of traditionally
instructed fourth and sixth graders students in our research projects.
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New Conceptualizations: Understanding Numbers As
Multiplicative Relations

Clearly the transition to learning rational numbers is challenging. Funda-
mentally, students must construct new meanings for numbers and opera-
tions. Development of the network of understandings for rational numbers
requires a core conceptual shift: numbers must be understood in multiplica-
tive relationship.

As a final illustration, I offer one more example of this basic shift. Again,
consider the quantity 3/4 from our new learner’s perspective. All of our
student’s prior learning will lead her to conclude that the 3 and 4 in 3/4 are
two separate numbers that define separate quantities. Her knowledge of
whole numbers will provide an additive understanding. Thus she will know
that 3 and 4 are contiguous on the number line and have a difference of 1.
But to interpret 3/4 as a rational number instead of considering these two
numbers to be independent, as many students mistakenly continue to do,24

our student must come to understand this fraction as a new kind of quantity
that is defined multiplicatively by the relative amount conveyed by the sym-
bols. Suddenly numbers are no longer simple. When placed in the context
of a fraction, 3 and 4 become a quantity between 0 and 1. Obvious to adults,
this numerical metamorphosis can be confusing to children.

How can children learn to make the transition to the complex world of
rational numbers in which the numbers 3 and 4 exist in a relationship and
are less than 1? Clearly, instruction will need to support a major conceptual
change. Looking at students’ prior conceptions and relevant understandings
can provide footholds to support that conceptual change.25

Students’ Errors and Misconceptions Based on
Previous Learning (Principle 1)

As the above examples suggest, students come to the classroom with
conceptions of numbers grounded in their whole-number learning that lead
them astray in the world of rational numbers. If instruction is to change
those conceptions, it is important to understand thoroughly how students
reason as they puzzle through rational-number problems. Below I present
verbatim interviews that are representative of faulty understandings held by
many students.

In the following excerpt, we return to our fifth grader, Wyatt. His task
was to order a series of rational numbers in mixed representations. Recall
his earlier comments that these representations could not be compared.
Now as the interview continues, he is trying to compare the fractions 2/3
and 3/4. The interview proceeds:

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


NEW APPROACHES TO TEACHIING THE RATIONAL-NUMBER SYSTEM 317

Interviewer What about 2/3 and 3/4? Which of those is
bigger?

Wyatt Well, I guess that they are both the same size
because they both have one piece missing.

Interviewer I am not sure I understand what you mean
when you say that there is one piece missing.

Wyatt I’ll show you. [Wyatt draws two uneven circles,
roughly partitions the first in four parts, and
then proceeds to shade three parts. Next he
divides the second circle into three parts and
shades two of them (see Figure 7-1). O.K., here
is 3/4 and 2/3. You see they both have one part
missing. [He points to the unshaded sections
in both circular regions.] You see one part is
left out, so they are both the same.

FIGURE 7-1

Wyatt’s response is typical in asserting that 2/3 and 3/4 must be the
same size. Clearly he has not grasped the multiplicative relations involved in
rational numbers, but makes his comparisons based on operations from his
whole-number knowledge. When he asserts that 2/3 and 3/4 are the same
size because there is “one piece missing,” Wyatt is considering the differ-
ence of 1 in additive terms rather than considering the multiplicative rela-
tions that underlie these numbers.

Additive reasoning is also at the basis of students’ incorrect answers on
many other kinds of rational-number tasks. Mark, a sixth grader, is working
on a scaling problem in which he is attempting to figure out how the length
and width of an enlarged rectangle are related to the measurements of a
smaller, original rectangle. His challenge is to come up with a proportional
relation and, in effect, solve a “missing-term problem” with the following
relations: 8 is to 6 as 12 is to what number?

Interviewer I have two pictures of rectangles here (see
Figure 7-2). They are exactly the same shape,
but one of them is bigger than the other. I
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made this second one bigger by taking a
picture of the first one and then enlarging it
just a bit. As you can see, the length of the first
rectangle is 8 cm and the width is 6 cm.
Unfortunately, we know only the length of the
second one. That is 12 cm. Can you please tell
me what you think the width is?

Mark Well, if the first one (rectangle) is 8 cm and 6
cm, then the next one is 12 cm and 10 cm.
Because in the 8 and 6 one (rectangle) you
subtract 2 from the 8 (to get the difference of
the width and the length). So in the bigger
rectangle you have to subtract 2 from the 12.
So that’s 10. So the width of the big rectangle
is 10.

Mark’s error in choosing 10 instead of the correct answer of 9 is cer-
tainly representative of students in his age group—in fact, many adults use
the same kind of faulty reasoning.26  Mark clearly attempts to assess the
relations, but he uses an additive strategy to come up with a difference of 2.
To answer this problem correctly, Mark must consider the multiplicative
relations involved (the rectangle was enlarged so that the proportional rela-
tionship between the dimensions remains constant)—a challenge that eludes
many.

It is this multiplicative perspective that is difficult for students to adopt
in working with rational numbers. The misconception that Mark, the sixth
grader, displays in asserting that the height of the newly sized rectangle is 10
cm instead of the correct answer of 9 cm shows this failure clearly. Wyatt

6 cm

8 cm

12 cm

? cm

FIGURE 7-2
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certainly was not able to look at the relative amount in trying to distinguish
between the quantities 2/3 and 3/4. Rather, he reasoned in absolute terms
about the circles, that “. . . both have one piece missing.”

Metacognition and Rational Number (Principle 3)

A metacognitive approach to instruction helps students monitor their
understanding and take control of their own learning.27  The complexity of
rational number—the different meanings and representations, the challenges
of comparing quantities across the very different representations, the un-
stated unit—all mean that students must be actively engaged in sense mak-
ing to solve problems competently.28  We know, however, that most middle
school children do not create appropriate meanings for fractions, decimals,
and percents; rather, they rely on memorized rules for symbol manipulation.

The student errors cited at the beginning of this chapter indicate not
only the students’ lack of understanding of rational number, but also their
failure to monitor their operations and judge the reasonableness of their
responses.29  If classroom teaching does not support students in developing
metacognitive skills—for example, by encouraging them to explain their
reasoning to their classmates and to compare interpretations, strategies, and
solutions—the consequences can be serious. Student can stop expecting
math to make sense. Indeed for many students, rational number marks the
point at which they draw this conclusion.

INSTRUCTION IN RATIONAL NUMBER
Why does instruction so often fail to change students’ whole-number

conceptions? Analyses of commonly used textbooks suggest that the prin-
ciples of How People Learn are routinely violated. First, it has been noted
that—in contrast to units on whole-number learning—topics in rational num-
ber are typically covered quickly and superficially. Yet the major conceptual
shift required will take time for students to master thoroughly. Within the
allotted time, too little is devoted to teaching the conceptual meaning of
rational number, while procedures for manipulating rational numbers re-
ceive greater emphasis.30  While procedural competence is certainly impor-
tant, it must be anchored by conceptual understanding. For a great many
students, it is not.

Other aspects of the knowledge network are shortchanged as well, in-
cluding the presentation and teaching of the notation system for decimals,
fractions, and percents. Textbooks typically treat the notation system as some-
thing that is obvious and transparent and can simply be given by definition
at a lesson’s outset. Further, operations tend to be taught in isolation and
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divorced from meaning. Virtually no time is spent in relating the various
representations—decimals, fractions, percents—to each other.31

While these are all significant problems and oversights, however, there
are more basic problems with traditional instruction. The central problem
with most textbook instruction, many researchers agree,32  is the failure of
textbooks to provide a grounding for the major conceptual shift to multipli-
cative reasoning that is essential to mastering rational number. To support
this claim, let us look at how rational number is typically introduced in
traditional practice.

Pie Charts and a Part–Whole Interpretation of
Rational Numbers

Most of us learned fractions with the model of a pie chart, and for many
people, fractions remain inextricably linked to a picture of a partly shaded
shape. Instruction traditionally begins with the presentation of pictures of
circles (pies) and rectangles (cakes) that are partitioned and partially shaded.
First, students are asked to count the number of parts in the whole shape
and then the number of parts shaded. They then use these counts as the
basis for naming and symbolically representing fractions. They learn that the
top number, the numerator, always indicates how many pieces are shaded
and that the bottom number, the denominator, always tells how many pieces
there are in all. Next, using these same sorts of pictures (see Figure 7-3),
instruction continues with simple addition and subtraction operations: “Two
shaded 1/4 pieces (the bottom half of the circle) + 1 shaded 1/4 piece (the
top left piece of the circle) = 3 shaded 1/4 pieces or 3/4.”

From a psychological perspective, this introduction is sound because it
is based on students’ present knowledge and aligned with their experiences
both in and out of school. We know that students’ formal mathematics pro-
grams have been based on counting, and that from everyday experience,
students know about cutting equal pieces of pies and cakes. Thus, the act of
assessing partitioned regions is well within their experience.

From a mathematical point of view, the rationale for this introduction is

FIGURE 7-3
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also clear. Mathematically, this approach promotes an understanding of one
particular aspect of rational number—the way rational numbers indicate
parts of a whole. This part–whole subconstruct is one of the basic interpre-
tations of rational numbers.

However, this introduction is grounded in additive thinking. It rein-
forces the very concept that students must change to master rational num-
ber. Children tend to treat the individual parts that result from a partition as
discrete objects. The four pieces into which a pie is cut are just four pieces.
Although the representation does have the potential to bring out the multi-
plicative relations inherent in the numbers—considering the shaded parts in
relation to the whole—this is not what students naturally extract from the
situations presented given their strong preconceptions regarding additive
relationships.33

Recall that Wyatt, the fifth grader, asserted that 2/3 and 3/4 were the
“same sized” number, supporting his erroneous claim with reference to pie
charts. He explained that the picture showed they were both missing one
piece. His lack of focus on the different relations that are implied in these
two fractions is evident from his interpretation.

Alternative Instructional Approaches: Ratio and Sharing

For some time now, researchers have wondered whether alternative
instructional approaches can help students overcome this misunderstand-
ing. As Kieren34  points out, “. . . rather than relying on children’s well devel-
oped additive instincts we must find the intuitions and schemes that go
beyond those that support counting. Whole number understandings are care-
fully built over a number of years; now we must consider how rational
number understanding develops and is fostered.”

But what would such instruction look like? Over the last several years, a
number of innovative approaches have been developed that highlight the
multiplicative relations involved, a few of which are highlighted here. Kieren35

has developed a program for teaching fractions that is based on the multipli-
cative operations of splitting. As part of his approach he used paper folding
rather than pie charts as its primary problem situation. In this approach,
both the operator and measure subconstructs are highlighted. Confrey’s36 3-
year developmental curriculum uses a number of contexts for ratio, includ-
ing cooking, shadows, gears, and ramps.37 Streefland’s38 approach to teach-
ing fractions is also driven by an emphasis on ratio. His basic image is of
equal shares and quotients. In his procedure for teaching fractions, children
are presented with realistic situations in which they are asked to share a
quantity of something, such as chocolate bars or pancakes (e.g., five chil-
dren sharing two bars). To represent these situations, children use a notation
system that they devise themselves, which emphasizes proportional rather
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than additive relations. Mack’s39 approach is to engage the students in part–
whole activities as a starting point, and to ground these concepts in realistic
situations in which students are pressed to consider the multiplicative rela-
tions. Finally, Lamon40 has devised programs that address each of the
subconstructs separately. All of these programs and others developed by the
Rational Number Project have demonstrated a significant impact on the par-
ticipating students.

Below I present a different approach to teaching rational number that I
developed with my colleague Robbie Case. Our approach, shown through
controlled experimental trials to be effective in helping students in the fourth,
fifth, and sixth grades41  gain a strong initial grounding in the number system,
also highlights multiplicative understanding, with an additional focus on the
interrelations among fractions, decimals, and percents.42  While there is no
one best method or best set of learning activities for rational number,43  our
approach provides an opportunity to describe how instruction in rational
number can be built around the principles of How People Learn that are the
theme of this volume.

First, as will be elaborated, our curriculum is based on our analyses of
students’ prior understandings (Principle 1). Our instructional strategy is to
help students to further develop these informal understandings and then
integrate them into a developmentally sequenced set of activities designed
to help them develop a network of concepts and relations for rational num-
bers (Principle 2). Finally, as will be illustrated throughout our accounts of
the lessons, a central feature of this program is the fostering of a metacognitive
approach to rational number (Principle 3). By providing students with an
understanding of the interconnections among decimals, fractions, and per-
cents, our curriculum helps them develop the ability to make informed deci-
sions on how best to operate with rational numbers.

Pipes, Tubes, and Beakers: A New Approach to
Rational-Number Learning

Percents as a Starting Point

In our curriculum, rather than teaching fractions and decimals first, we
introduce percents—which we believe to be a “privileged” proportion in
that it only involves fractions of the base 100.44  We do this through students’
everyday understandings. We situate the initial learning of percent in linear
measurement contexts, in which students are challenged to consider the
relative lengths of different quantities. As will be shown below, our initial
activities direct students’ attention to ideas of relative amount and propor-
tion from the very beginning of their learning of rational number. For ex-
ample, we use beakers of water: “If I fill this beaker 50 percent full, approxi-
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mately where will the line be? Now fill this bigger beaker 50 percent full. Do
you notice that although they are both 50 percent full, there is more water in
this bigger one?” These ideas of percents and proportion serve as an anchor-
ing concept for the subsequent learning of decimals and fractions, and then
for an overall understanding of the number system as a whole.

Starting Point: Visual Proportional Estimation and
Halving and Doubling

Our starting point in developing our curriculum was to consider stu-
dents’ informal knowledge and the intuitions they have developed that could
serve as a foundation. (As has been shown many times in this chapter,
students have previous understandings and knowledge of mathematics that
are not productive for rational-number understanding.) To this end, we high-
lighted two kinds of understandings that students have generally developed
by this age. One is an ability to estimate proportions visually such as halves;45

the other is an ability to work with successive halving46  (see Box 7-2).

BOX 7-2 Students’ Informal Knowledge
Proportional Understandings

While we know that formal proportional reasoning is slow to develop47  it has none-
theless been shown that children from a very early age have a strong propensity
for making proportional evaluations that are nonnumerical and based on perceptual
cues. For example, young children have little difficulty perceiving narrow, upright
containers in proportional terms. Although they can see which of two such contain-
ers has more liquid in it in absolute terms, they can also see which has more in
proportional terms. That is to say, they can see which one is fuller.48

Halving and Doubling

The ability to do repeated halving is evident is students’ reasoning at this age. As
Confrey and Kieren49  point out, halving and doubling have their roots in a primitive
scheme that they call splitting. Splitting, they assert, is based on actions that are
purely multiplicative in nature and are separate from those of additive structures
and counting. Whereas in counting the actions are joining, annexing, and remov-
ing, in splitting the primitive action is creating simultaneous multiple versions of an
original by dividing symmetrically, growing, magnifying, and folding.
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Although one of these sets of understandings—proportional estimation—
is primarily visual and nonnumerical, while the other, halving and doubling,
is numeric, both have their grounding in multiplicative operations. It was
our proposal that if we could help students merge these separate kinds of
multiplicative understandings, we would allow them to construct a core
conceptual grounding for rational numbers.50

Our strategy from the beginning was to develop what we called a “bridg-
ing context”51  to help students first access and then integrate their knowl-
edge of visual proportions and their flexibility in working with halving
numbers. The context we chose was to have students work with percents
and linear measurement. As will be elaborated below, students were en-
gaged from the start of the instructional sequence in estimating propor-
tional relations based on length and in using their knowledge of halving to
compute simple percent quantities. In our view, the percent and measure-
ment context allowed students to access these initial kinds of understand-
ings and then integrate them in a natural fashion. We regarded the integra-
tion of initial intuitions and knowledge as a foundation for rational-number
learning.

Why Percent As a Starting Point?

While we found that starting with percent was useful for highlighting
proportionally, we also recognized that it was a significant departure from
traditional practice. Percent, known as the most difficult representation for
students, is usually introduced only after fractions and decimals. Several
considerations, however, led to this decision. First, with percents students
are always working with the denominator of 100. We therefore postpone the
problems that arise when students must compare or manipulate ratios with
different denominators. This allows students to concentrate on developing
their own procedures for comparison and calculation rather than requiring
them to struggle to master a complex set of algorithms or procedures for
working with different denominators.

Second, a further simplification at this beginning stage of learning is that
all percentages have a corresponding decimal or fractional equivalent that
can be relatively easy to determine (e.g., 40 percent = 0.40 or 0.4 = 40/100 or
4/10 or 2/5). By introducing percents first, we allow children to make their
preliminary conversions among the different rational-number representa-
tions in a direct and intuitive fashion while developing a general under-
standing of how the three representations are related.

Finally, children know a good deal about percents from their everyday
experiences.52  By beginning with percents rather than fractions or decimals,
we are able to capitalize on children’s preexisting knowledge of the mean-
ings of these numbers and the contexts in which they are important.53
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Curriculum Overview

The curriculum is divided into roughly three parts. First the students are
introduced to a single form of rational number—percent—using concrete
props that highlight linear measurement. After students have spent time
working with percents in many contexts, we present our next form of ratio-
nal number, the two-place decimal. We do this in the context of percent,
illustrating that a two-place decimal number is like the percent of the way
between two whole numbers. Finally, our focus turns to activities that pro-
mote comparing and ordering rational numbers and moving among deci-
mals and percents. Fractions are also taught at this stage in relation to per-
cents and decimals.54  The sections that follow provide details of many of the
activities we devised and include accounts of how fourth, fifth, and sixth
graders from our research classrooms worked through these activities. These
lessons are described in a fair amount of detail so that interested teachers
can try some of these activities with their own students. I also include these
details to illustrate the strategies that were used to foster students’ pride and
investment in and willingness to monitor their work.

Lessons Part 1: Introduction to Percents

Percents in Everyday Life

Imagine a typical fourth-, fifth-, or sixth-grade class, in which the stu-
dents have received no formal instruction in percent. Thus each time we
implemented our curriculum, we began the lessons with discussions that
probed the students’ everyday knowledge of this topic. These questions
generated a great number of responses in each of our research classrooms.
Not only were the students able to volunteer a number of different contexts
in which percents appear (e.g., siblings’ school marks, price reductions in
stores, and taxes on restaurant bills), but they also had a strong qualitative
understanding of what different numerical values “mean.” For example, stu-
dents commented that 100 percent means “everything,” 99 percent means
“almost everything,” 50 percent means “exactly half,” and 1 percent means
“almost nothing.” As one student remarked, “You know if you are on a diet
you should drink 1 percent milk instead of 4 percent milk.”

Pipes and Tubes: A Representation for Fullness

To further explore students’ intuitions and informal understandings, we
presented them with a set of props specifically designed for the lessons. The
set included a series of black drainage pipes (of varying heights) with white
venting tubes55  on the outside that could be raised or lowered, simulating
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the action of water filling them to different levels (see Figures 7-4a and
7-4b). To discover more about the students’ understanding of percents and
proportion, we asked them to consider how they would use these props to
teach percent to a younger child. Again the students were full of ideas, many
of which are central to the knowledge network for rational number.

First students demonstrated their understanding of the unit whole, as
mentioned earlier, a concept that is often elusive in traditional instruction:
“Each of these pipes is 100 percent.” They also demonstrated understanding
of the part–whole construct: “If you raise the tube up here [pointing to three-
quarters of the length of the pipe], then the part that is covered is 75 percent,
and the part that is left over is 25 percent.” Students also naturally displayed
their sense of rational number as operator: “This is 50 percent of the tube,
and if we cut it in half again it is 25 percent.” In addition, students demon-
strated insights for proportions: “50 percent on this bigger pipe is bigger
than 50 percent on this little pipe, but they’re both still 50 percent.” The idea
of rational number as a measure was also embedded in the students’ reason-
ing! “I know this is about 75 percent covered, because this first bit is 25
percent, and if you move the 25 percent piece along the tube three times,
you get 75 percent.” Clearly, they had strong intuitions about the general
properties and interpretations of rational numbers in their informal under-
standings of percent.

We also were interested to see whether the use of these props could
generate ideas about another difficult concept—the elusive idea of percents
greater than 100.56  Sam, an eager student, attempted to demonstrate this to
his classmates. He first held up a tall pipe (80 cm): “We know that this whole
pipe is 100 percent.” Next, he picked up a second, shorter pipe (20 cm) and
stood it beside the taller one, estimating that it was about 25 percent of the
taller pipe. To confirm this conjecture, he moved the smaller pipe along the
taller one, noting that it fit exactly four times. “Okay,” he declared, “this is
definitely 25 percent of the longer pipe. So, if you join the two [pipes] to-
gether like this [laying both pipes on the ground and placing the shorter one
end to end with the larger], this new pipe is 125 percent of the first one.”

Percents on Number Lines: More Estimation

In addition to drainage pipes, we included activities with laminated,
meter-long number lines calibrated in centimeters to provide students with
another way of visualizing percent (see Figures 7-5a and 7-5b). For example,
we incorporated exercises in which children went on “percent walks.” Here
the number lines, which came to be known as “sidewalks,” were lined up
end to end on the classroom floor with small gaps between them. Students
challenged each other to walk a given distance (e.g., “Can you please walk
70 percent of the first sidewalk? Now, how about 3 whole sidewalks and 65
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FIGURE 7-4a

FIGURE 7-4b
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FIGURE 7-5a

FIGURE 7-5b
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percent of the fourth?”). The number-line activities were used to consolidate
percent understandings and to extend the linear measurement context.

Computing with Percent

Next we introduced beakers of water with varying degrees of fullness
(see Figures 7-6a and 7-6b). In keeping with the previous lessons, the stu-
dents used percent terminology to estimate the “fullness” of these contain-
ers: “Approximately what percent of this beaker do you think is full?” or
“How high will the liquid rise when it is 25 percent full?” As it turned out, the
children’s natural tendency when confronted with fullness problems was to
use a repeated halving strategy. That is, they determined where a line repre-
senting 50 percent would go on the cylinder, then 25 percent, then 12 1/2
percent, and so on. These activities with fullness estimates led naturally to a
focus on computation and measurement. For example, if it was discovered
on measuring a beaker that it was 8 cm tall, then 4 cm from the bottom was
the 50 percent point, and 2 cm was the 25 percent point. The halving strat-
egies exemplified in these calculations became the basis for the computa-
tions the students tackled next.

Invented Procedures

Despite the move to calculating, the children were not given any stan-
dard rules to perform these operations, and so they naturally employed a
series of strategies of their own invention using halves, quarters, and eighths
as benchmarks to guide their calculations. For example, to calculate 75 per-
cent of the length of a 60 cm desktop, the students typically considered this
task in a series of steps: Step 1, find half, and then build up as necessary (50
percent of 60 = 30); Step 2, use a halving strategy to find 25 percent of 60,
and if 50 percent of 60 = 30, then 25 percent of 60 = 15); and Step 3, sum the
parts (30 + 15 = 45).

String Challenges: Guessing Mystery Objects

String measurement activities also proved to be an excellent way of
considering percent quantities and calculating percentages using benchmarks.
A string challenge that became a regular feature of classroom life was what
we called “The Mystery Object Challenge.” In this activity, which often started
the lessons, the teacher held up a piece of string that was cut to the percent
of the length of a certain object in the room. The routine went something
like this:
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FIGURE 7-6a

FIGURE 7-6b
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Teacher I have here a length of string that is 25 percent
of the height of a mystery object in the class-
room. Any ideas as to what the mystery object
might be?

Student I think that it is the desktop or maybe the
poster on the wall.

Teacher How did you figure that out?

Student Well, I just imagined moving the string along
the desk four times and I think it works. [The
student, then, carefully moving the string
along the desk, was able to confirm her
assertion.]

Since these kinds of challenges were so popular with the children, we
went on to invite pairs of students to find their own mystery object to chal-
lenge their classmates. Students went around the room, measured their cho-
sen object, and then cut a piece of string to a percent of the total. As a
culminating activity, the students made what they called “percent families”
of strings using the length of their mystery object as a base. Each pair of
children was given a large piece of cardboard on which they pasted lengths
of string to represent the benchmarks of 100 percent, 50 percent, 25 percent,
75 percent, and 12 1/2 percent of the height of the object. These activities
provided opportunities for calculating percents (e.g., if the object was 70 cm
long, students would have to calculate and then measure and cut strings of
50 percent lengths, or 35 cm; of 25 percent lengths, or 17.5 cm; of 75 percent
lengths, or 52.5 cm; etc.). Furthermore, the visual displays thus produced
proved helpful in reinforcing the idea of proportion for the students. As
students often remarked, “Our string lengths are different even though all of
our percents are the same.”

Summary of Lessons Part 1

The first phase of the lessons began with estimations and then calcula-
tions of percent quantities. These initial activities were all presented in the
context of linear measurement of our specially designed pipes and tubes,
beakers of water, string, and number lines. Students were not given formal
instruction in specific calculating procedures; rather, they naturally employed
procedures of their own that involved percent benchmarks and repeated
halving. While percent was the only form of rational number that we offi-
cially introduced at this point, students often referred to fractions when
working on these initial activities. At the beginning, all of the children natu-
rally used the term “one-half” interchangeably with “fifty percent,” and most
knew that 25 percent (the next split) could be expressed as “one-quarter.”
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We also told them that the 12 1/2 percent split was called “one-eighth” and
showed them the fraction symbol 1/8.

Although the props were enjoyable to the students, they also served an
important function. The activities consistently helped students integrate their
sense of visual proportion with their ability to do repeated halving. Our goal
in all of these initial activities was to create situations in which these two
kinds of informal understandings could become linked and serve as a foun-
dation for the students’ further learning of this number system.

Lessons Part 2: Introduction of Decimals

While the first phase of the lessons was designed to extend and elabo-
rate students’ knowledge of percent, the next phase moved the students to a
new developmental level. At this point in our instructional program, we
introduced students to a new form of rational number—the two-place deci-
mal. The initial decimal lessons also had a strong focus on measurement and
proportion.

Research has confirmed that a solid conceptual grounding in decimal
numbers is difficult for students to achieve.57  The similarities between the
symbol systems for decimals and whole numbers lead to a number of mis-
conceptions and error types.58  Grasping the proportional nature of decimals
is particularly challenging. In our program, we made a direct link from per-
cents—which by now the students thought of in proportional terms—to
decimals. In fact, we told the students that since they were now “percent
experts,” they could become “decimal experts.” What we did with the stu-
dents at this point was show that a two-place decimal number represents a
percentage of the way between two adjacent whole numbers. In this way of
thinking, a decimal represents an intermediate distance between two num-
bers (e.g., 5.25 is a distance that is 25 percent of the way between 5 and 6).

Decimals and Stopwatches

To begin the lessons in decimals, the students were given LCD stop-
watches with screens that displayed seconds and hundredths of seconds
(the latter indicated by two small digits to the right of the numbers; see
Figure 7-7). The students were asked to consider what the two “small num-
bers” might mean and how these small numbers related to the bigger num-
bers to the left (seconds). After experimenting with the stopwatches, the
children noted that there were 100 of these small time units in 1 second.
With this observation, they made the connection to percents: “It’s like they
are percents of a second.” After considerable discussion of what to name
these small time intervals (e.g., some suggested that they were millisec-
onds), the students came to refer to these hundredths of seconds as
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“centiseconds,” a quantity they understood to be the percentage of time that
had passed between any 2 whole seconds. We continued our work with
decimals and stopwatches, with a focus on ordering numbers.

Magnitude and Order in Decimal Numbers

To illuminate the difficult concepts of magnitude and order (recall Wyatt’s
assertion that 2/3 = 3/4 and others’ comments that 0.2 is smaller than 0.059),
we devised many activities to help the students work with ordering deci-
mals. The first of these activities was the “Stop-Start Challenge.” In this exer-
cise, students attempted to start and stop the watch as quickly as possible,
several times in succession. After discussion, they learned to record their
times as decimals. So, for example, 20 centiseconds was written as .20, 9
centiseconds as 0.09, and so on. Next, the students compared their personal
quickest reaction time with that of their classmates, then ordered the times
from quickest to slowest. In this exercise, the students could learn from their
experience of trying to get the quickest time that, for example, 0.09 is a
smaller number than .10 and eventually realize that .09 is smaller than .1.
Another stopwatch game designed to actively engage students in issues of
magnitude was “Stop the Watch Between”: “Can you stop the watch be-
tween 0.45 and 0.50?” We also explored decimals through the laminated

FIGURE 7-7
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number lines, whereby students were asked to indicate parts of 100 using
decimal representations: “Please put a mark where 0.09 is on this number
line.”

Summary of Lessons Part 2

In this second level of the instructional program, the students were in-
troduced to decimals for the first time. Students worked on many activities
that helped them first understand how decimals and percents are related
and then learn how to represent decimals symbolically. As the decimal les-
sons proceeded, we moved on to activities designed to help students to
consider and reflect on magnitude. Thus the final activities included situa-
tions in which students engaged in comparing and ordering decimals. This
level of the program was the first step in students’ learning to translate
among the representations of rational number and gain fluency with differ-
ent kinds of operations.

Lessons Part 3: Fractions and Mixed Representations of
Rational Numbers

Fractions First: Equivalencies

As noted earlier, although the curriculum began with percents as the
initial representation of rational numbers, we found that the students made
many references to fractions. Now, at this final level of the program, our
goal was to give students a chance to work with fractions more formally and
then provide them with opportunities to translate flexibly among fractions,
decimals, and percents. In a first series of activities, students worked on
tasks in which they were asked to represent a fraction in as many ways as
they could. Thus, for example, if their assignment was to show 3/4, students
typically responded by presenting fraction equivalencies, such as 6/8 and
75/100. Students were also asked to compose “word problems” that incor-
porated fractions and were in turn given to their classmates to solve. An-
other activity that students enjoyed a great deal was challenging others to
find the answers to equations of their own invention with questions such as
“How much more to make one whole? (for example, 1/8 + 1/2 + 1/16 + 1/4
+ ? = 1),” or “Is the following equation true or false? (1/4 + 1/8 + 5/10 + 1/8
= 1).” The reasoning of a fifth grader as he attempted to answer this question
is typical of the reasoning of many of his classmates: “Well, 5/10 is 1/2. If
you add 1/4 that makes three-quarters, so you need another quarter to make
a whole and you have two-eighths, so it does equal one whole and so it is
true!”
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While students initially used fractions in these equations, they soon in-
corporated the other representations in challenges they composed. For ex-
ample, one student posed the following question: “Here is my equation: 1/
8 + 12.5 percent + 1/4 + .25 percent + ? = 1. How much more to make one
whole?” To discover the missing quantity, the students’ reasoning (anchored
in percents and decimals) sounded something like this: “Well 12 1/2 (1/8)
and 12 1/2 is 25 percent and another 25 percent (1/4) makes 50 percent and
another .25 makes 75 percent so you would need another 25 percent to
make a whole.”

Crack the Code

The students carried out further work on conversions with the LCD
stopwatches used earlier in the program. In a favorite game called “Crack
the Code,” students moved between representations of rational numbers as
they were challenged to stop the watch at the decimal equivalent of differ-
ent fractions and percents. For example, given a relatively simple secret
code, e.g., 2/5, students stopped the watch at close to 40 centiseconds or
0.40 seconds as possible. Similarly with slightly more complex secret codes,
such as “1/4 + 10 percent,” students had to stop the watch at .35 seconds.
This allowed them to increase their understanding of the possibility of fluid
movement between representations.

Card Games

In one set of lessons, I gave the students a set of specially designed
cards depicting various representations of fractions, decimals, and percents
(e.g., there was a 3/8 card, a card with .375, and a card that read 37 1/2
percent). The students used the cards to design games that challenged their
classmates to make comparisons among and between representations.

In the first game, the leader dealt the cards to the students, who in turn
placed one card from their hand face up on the classroom floor. The chal-
lenge was to place the cards in order of increasing quantity. Students who
disagreed with the placement of a particular card challenged the student
who had gone before. This led to a great deal of debate. Sarah, for instance,
had a card on which was written 5/9. This was a fraction that the students
had not previously encountered in their lessons, and Sarah was not sure
where to place it. Finally, she put the 5/9 card before a card on which was
50 percent, thus revealing that she thought that 5/9 was less than 50 percent.
“That can’t be right,” asserted Jules. “In order to get 1/2 (50 percent) you
would have to have 4 point 5 ninths and that is less than 5/9 so, 5/9 is larger
than 1/2.” The game ended when the children reached consensus and the
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teacher confirmed that all of the cards had been ordered correctly. The cards
took up the entire length of the classroom by the time every student had
placed his or her cards on the floor!

A second card game employing the same deck of cards, invented by a
pair of students, had as its goal not only the comparison of decimals, frac-
tions, and percents in mixed representations, but also the addition and sub-
traction of the differences between these numbers. This game again used
the LCD stopwatches introduced earlier in the lessons. The two students
who invented the game, Claire and Maggie, based it on the popular card
game War. The students dealt the whole deck into two “hands,” then simul-
taneously turned over the top card. The winner’s score is increased by the
difference in value of the two cards. In one turn, for example, Maggie’s card
had .20 written on it and Clare’s had 1/8. What happened next is transcribed
from the videotape of their play:

Claire OK, now we have to figure out who has more.

Maggie I do. ‘Cause you only have 121/2 percent [one-
eighth] but I have 20 percent. So mine is more.

Claire Yeah, you’re right; Ok I have to write down
your score. . . . Hum . . .

So that’s 20 percent take away 121/2 percent so
that’s 7 1/2 [percent]. [Claire then took a pencil,
and finding Maggie’s place in the score
column, wrote .075.]

At this point in the lessons, most of the students were comfortable think-
ing about percents, decimals, and fractions together. In fact, they assumed a
shorthand way of speaking about quantities as they translated from fraction
to percent. To illustrate this, I present a short excerpt from a conversation
held by a visiting teacher who had watched the game the two girls had
started and asked them to explain their reasoning.

Teacher I was interested to know how you figured out
which of the numbers is more, .20 or one-
eighth. First of all, how did you know that one-
eighth is equal to 12 1/2 percent?

Maggie Ok, it is like this. One-eighth is half of one-
fourth, and one-fourth is 25 percent. So, half of
that is 12 1/2 percent.

Teacher Well, you certainly know percents very well.
But what about decimals? Do you know what
12 1/2 percent is as a decimal?
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Claire: You see, 12 1/2 percent is like point 12 and a
half and that’s the same as point 12 point 5,
because the point five is like half.

Maggie: Yeah, but in decimals you have to say it’s really
point 125.

Summary of Lessons Part 3

In the third part of the curriculum, we focused primarily on students’
uses of mixed representations. We began with some formal activities with
fractions and equivalencies, including tasks in which students had to work
with and devise lengthy equations. We also had the students make up their
own games and challenges to help them gain more practice in this kind of
flexible movement from one operation to another. One of our primary goals
here was to provide students with habits of mind regarding multiple repre-
sentations that will be with them throughout their learning and lay the foun-
dations for their ability to solve mathematical problems.

Results from Our Studies

To date, variations of our curriculum have been implemented and as-
sessed in four experimental classrooms. From the very first lessons, students
demonstrated and used their everyday knowledge of percents and worked
successfully with percents in situations that called on their understanding of
proportion. Our particular format also allowed students to express their in-
formal knowledge of other concepts and meanings that are central to ratio-
nal number understanding. Recall that when working with the pipes and
tubes and the beakers of water, students successfully incorporated ideas of
the rational-number subconstructs of measure, operator, and ratio. What
was also evident was that they had a strong understanding of the unit whole
and its transformations. Similarly, when decimals were introduced in the
context of stopwatches, the students readily made sense of this new repre-
sentation and were able to perform a variety of computations. Finally, by the
end of the experimental sessions, the students had learned a flexible ap-
proach to translating among the representations of rational numbers using
familiar benchmarks and halving and doubling as a vehicle of movement.

While the class as a whole appeared to be engaged and motivated by
the lessons, we needed to look at the improvement made by individual
students at the end of the experimental intervention. We were also inter-
ested to see how the performance of students in the experimental group
compared with that of students who had traditional classroom instruction.
To these ends, we assessed the experimental students on a variety of tasks
before and after the course of instruction and administered these same tasks
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to students from classrooms in which textbook instruction had been pro-
vided.59

Briefly, we found that students in the experimental group had improved
significantly.60  Further, the scores that they obtained after instruction were
often higher than those of children who had received instruction in conven-
tional classrooms and who were many years older. Not only were students
in the experimental classrooms able to answer more questions than did the
“textbook” students, but the quality of their answers was better. Specifically,
the experimental group made more frequent reference to proportional con-
cepts in justifying their answers than did the students in the nonexperimental
group. What follows are some examples of changes in students’ reasoning
following participation in the experimental program, consisting of selections
from interviews that were conducted following the conclusion of the experi-
mental classes.

Children’s Thinking After Instruction

Let us return to the question posed to Wyatt at the start of the program
(and excerpted at the beginning of this chapter) and look at the responses of
two students, Julie and Andy, whose reasoning was typical of that of the
other students at the end of the program.

Interviewer Here are three numbers: 2/3, 0.5, and 3/4.
Could you please put these numbers in order
from smallest to largest?

Julie Well, let’s see. Point 5 is the smallest because
3/4 is 75 percent. I am not exactly sure what 2/3
is as a percent but it is definitely more than a
half. Can I use this paper to try it out? [Julie
took two pieces of paper. Holding them
horizontally, she first folded one in four equal
parts and then pointed to three sections,
remarking that this was 3/4. Next she folded
the second sheet in three pieces and then lined
the two pages up together to compare the
differences between the 2/3 and 3/4]. So 3/4 is
the biggest.

Andy responded to this same question differently.

Andy It’s easy: .5 is 50 percent and 2/3 is 66 percent,
and so it goes first .5 then 2/3 and then 3/4
cause that’s 75 percent.
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As can be seen, both Andy and Julie correctly ordered the numbers
using their knowledge of percent as a basis for their reasoning. Andy, a
high-achieving student, simply converted these quantities to percents. Julie,
identified as a lower achiever, used paper folding as a way of finding the
bigger fraction. Both used multiplicative solutions, one concrete and one
abstract.

Another example taken from posttest interviews illustrates not only the
students’ understanding of order and magnitude, but also their understand-
ing of the density property of rational numbers—that there is an infinite
number of numbers between any two rational numbers.

Interviewer Can any fractions fit between one-fourth and
two-fourths? And if so, can you name one?

Maggie Well, I know that one-quarter is 25 percent and
so two quarters is a half, so that’s 50 percent.
So, there’s tons of numbers between them like
40 percent. So that would be 40/100.

Jed One-quarter is the same as 2/8 and 2/4 is the
same as 4/8, so the answer is three-eighths.

The above answers are in sharp contrast to those of children before our
instruction or those from traditional classrooms, the majority of whom claimed
no numbers could come between 1/4 and 2/4.

In a final example, students were asked to compute a percent of a given
quantity—65 percent of 160. Although this type of computation was per-
formed regularly in our classrooms, 65 percent of 160 was a significantly
more difficult calculation than those the students had typically encountered
in their lessons. Furthermore, this item required that students work with 10
percent as well as with the familiar benchmarks (25 percent, 50 percent, 75
percent, and 12 1/2 percent) that served as a basis for most of their class-
room work. Despite these differences, students found ways to solve this
difficult problem.

Interviewer What is 65 percent of 160?

Sascha Okay, 50 percent of 160 is 80. Half of 80 is 40,
so that is 25 percent. So if you add 80 and 40
you get 120. But that (120) is too much be-
cause that’s 75 percent. So you need to minus
10 percent (of 160) and that’s 16. So, 120 take
away 16 is 104.

Neelam The answer is 104. First I did 50 percent, which
was 80.
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Then I did 10 percent of 160, which is 16. Then
I did 5 percent, which was 8. I added them [16
+ 8] to get 24, and added that to 80 to get 104.

For anyone who has seen a colleague pause when asked to compute a
percentage, as one must, say, to calculate a tip, the ease with which these
students worked through these problems is striking.

Knowledge Network

These are only a few examples from the posttest interviews that illus-
trate the kinds of new understandings and interconnections students had
been able to develop through their participation in the curriculum. Overall,
our analyses of the children’s thinking revealed that students had gained (1)
an overall understanding of the number system, as illustrated by their ability
to use the representations of decimals, fractions, and percents interchange-
ably; (2) an appreciation of the magnitude of rational numbers, as seen in
their ability to compare and order numbers within this system; (3) an under-
standing of the proportional- and ratio-based constructs of this domain, which
underpins their facility with equivalencies; (4) an understanding of percent
as an operator, as is evident in their ability to invent a variety of solution
strategies for calculating with these numbers; and (5) general confidence
and fluency in their ability to think about the domain using the benchmark
values they had learned, which is a hallmark of number sense.

Our research is still in an early stage. We will continue to pursue many
questions, including the potential limitations of successive halving as a way
of operating with rational numbers, downplaying of the important under-
standings associated with the quotient subconstruct, as well as a limited
view of fractions. Furthermore, we need to learn more about how students
who have been introduced to rational numbers in this way will proceed with
their ongoing learning of mathematics.

While we acknowledge that these questions have not yet been answered,
we believe certain elements of our program contributed to the students’
learning, elements that may have implications for other rational-number
curricula. First, our program began with percents, thus permitting children
to take advantage of their qualitative understanding of proportions and com-
bine that understanding with their knowledge of the numbers from 1 to 100,
while avoiding (or at least postponing) the problems presented by fractions.
Second, we used linear measurement as a way of promoting the multiplica-
tive ideas of relative quantities and fullness. Finally, our program empha-
sized benchmark values—of halves, quarters, eighths, etc.—for moving among
equivalencies of percents, decimals, and fractions, which allowed students
to be flexible and develop confidence in relying on their own procedures
for problem solving.
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CONCLUSION: HOW STUDENTS LEARN
RATIONAL NUMBER

Principle #1: Prior Understandings

For years mathematics researchers have focused their attention on un-
derstanding the complexities of this number system and how to facilitate
students’ learning of the system. One well-established insight is that rational-
number teaching focused on pie charts and part–whole understandings rein-
forces the primary problem students confront in learning rational number:
the dominance of whole-number reasoning. One response is to place the
multiplicative ideas of relative quantity, ratio, and proportion at the center of
instruction.

However, our curriculum also builds on our theory and research find-
ings pointing to the knowledge students typically bring to the study of ratio-
nal number that can serve as a foundation for conceptual change. Two
separate kinds of understandings that 10-year-olds typically possess have a
multiplicative orientation. One of these is visual proportional estimation; for
children, this understanding usually functions independently of numbers, at
least initially. The second important kind of understanding is the numerical
procedure for repeated halving. By strengthening and merging these two
understandings, students can build a solid foundation for working flexibly
with rational numbers.

Our initial instructional activities are designed to elicit these informal
understandings and to provide instructional contexts that bring them to-
gether. We believe this coordination produces a new interlinked structure
that serves both as foundation for the initial learning of rational number and
subsequently as the basis on which to build a networked understanding of
this domain.

Principle #2: Network of Concepts

At the beginning of this chapter, I outlined the complex set of core
concepts, representations, and operations students need to acquire to gain
an initial grounding in the rational-number system. As indicated above, the
central conceptual challenge for students is to master proportion, a concept
grounded in multiplicative reasoning. Our instructional strategy was to de-
sign a learning sequence that allowed students to first work with percents
and proportion in linear measurement and next work with decimals and
fractions. Extensive practice is incorporated to assure that students become
fluent in translating between different forms of rational number. Our inten-
tion was to create a percent measurement structure that would become a
central network to which all subsequent mathematical learning could be
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linked. This design is significantly different from traditional instruction in
rational number, in which topics are taught separately.

Principle #3: Metacognition

In this chapter, I have not made detailed reference to students’ develop-
ing metacognition. Yet the fostering of metacognition is in fact central to our
curriculum. First, as the reader may have noted, we regularly engaged the
students in whole-group discussions in which they were asked to explain
their reasoning and share invented procedures with their classmates. We
also designed the lessons so that students worked in small groups to col-
laborate in solving problems and constructing materials; we thereby pro-
vided students with a forum to express and refine their developing under-
standings. There were also many opportunities for students to consider how
they would teach rational number to others, either younger students or their
own classmates, by designing their own games and producing teaching plans
for how these new concepts could be taught. In all these ways, we allowed
students to reflect on their own learning and to consider what it meant for
them and others to develop an understanding of rational number. Finally,
we fostered metacognition in our program through the overall design and
goals of the experimental curriculum, with its focus on interconnections and
multiple representations. This focus, I believe, provided students with an
overview of the number system as a whole and thus allowed them to make
informed decisions on how best to operate with rational numbers.

Final Words

I conclude this chapter with an interchange, recorded verbatim, be-
tween a fourth-grade student and a researcher. Zach, the fourth grader, was
being interviewed by the researcher as part of a posttest assessment. The
conversation began when Zach had completed two pages of the six-page
posttest and remarked to the interviewer, “I have just done 1/3 of the test;...that
is 33.3 percent.” When he finished the third page, he noted, “Now I have
finished 1/2 or 50 percent of the test.” On completing the fourth page he
remarked, “Okay, so I have now done 2/3 of the test, which is the same as
66 percent.” When he had completed the penultimate page, he wondered
out loud what the equivalent percentage was for 5/6: “Okay, let’s see; it has
got to be over 66.6 percent and it is also more than 75 percent. I’d say that
it is about 80 percent....No, wait; it can’t be 80 percent because that is 4/5
and this [5/6] is more than 4/5. It is 1/2 plus 1/3…so it is 50 percent plus 33.3
percent, 83.3 percent. So I am 83.3 percent finished.”

This exchange illustrates the kind of metacognitive capability that our
curriculum is intended to develop. First, Zach posed his own questions,
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unprompted. Further, he did not expect that the question had to be an-
swered by the teacher. Rather, he was confident that he had the tools, ideas,
and concepts that would help him navigate his way to the answer. We also
see that Zach rigorously assessed the reasonableness of his answers and that
he used his knowledge of translating among the various representations to
help him solve the problem. I conclude with this charming vignette as an
illustration of the potential support our curriculum appears to offer to stu-
dents beginning their learning of rational number.

Students then go on to learn algorithms that allow them to calculate a
number like 83.3 percent from 5/

6
 efficiently. But the foundation in math-

ematical reasoning that students like Zach possess allow them to use those
algorithms with understanding to solve problems when an algorithm has
been forgotten and to double check their answers using multiple methods.
The confidence created when a student’s mathematical reasoning is secure
bodes well for future mathematics learning.
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8

Teaching and Learning Functions
Mindy Kalchman and Kenneth R. Koedinger

This chapter focuses on teaching and learning mathematical functions.1

Functions are all around us, though students do not always realize this. For
example, a functional relationship between quantities is at play when we
are paying for gasoline by the gallon or fruit by the pound. We need func-
tions for financial plans so we can calculate such things as accrued income
and interest. Functions are important as well to interpretations of local and
world demographics and population growth, which are critical for economic
planning and development. Functions are even found in such familiar set-
tings as baseball statistics and metric conversions.

Algebraic tools allow us to express these functional relationships very
efficiently; find the value of one thing (such as the gas price) when we know
the value of the other (the number of gallons); and display a relationship
visually in a way that allows us to quickly grasp the direction, magnitude,
and rate of change in one variable over a range of values of the other. For
simple problems such as determining gas prices, students’ existing knowl-
edge of multiplication will usually allow them to calculate the cost for a
specific amount of gas once they know the price per gallon (say, $2) with no
problem. Students know that 2 gallons cost $4, 3 gallons cost $6, 4 gallons
cost $8, and so on. While we can list each set of values, it is very efficient to
say that for all values in gallons (which we call x by convention), the total
cost (which we call y by convention), is equal to 2x. Writing y = 2x is a
simple way of saying a great deal.

As functional relationships become more complex, as in the growth of a
population or the accumulation of interest over time, solutions are not so
easily calculated because the base changes each period. In these situations,
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algebraic tools allow highly complex problems to be solved and displayed
in a way that provides a powerful image of change over time.

Many students would be more than a little surprised at this description.
Few students view algebra as a powerful toolkit that allows them to solve
complex problems much more easily. Rather, they regard the algebra itself
as the problem, and the toolkit as hopelessly complex. This result is not
surprising given that algebra is often taught in ways that violate all three
principles of learning set forth in How People Learn and highlighted in this
volume.

The first principle suggests the importance of building new knowledge
on the foundation of students’ existing knowledge and understanding. Be-
cause students have many encounters with functional relationships in their
everyday lives, they bring a great deal of relevant knowledge to the class-
room. That knowledge can help students reason carefully through algebra
problems. Box 8-1 suggests that a problem described in its everyday mani-
festation can be solved by many more students than the same problem
presented only as a mathematical equation. Yet if the existing mathematics
understandings students bring to the classroom are not linked to formal
algebra learning, they will not be available to support new learning.

The second principle of How People Learn argues that students need a
strong conceptual understanding of function as well as procedural fluency.
The new and very central concept introduced with functions is that of a
dependent relationship: the value of one thing depends on, is determined
by, or is a function of another. The kinds of problems we are dealing with
no longer are focused on determining a specific value (the cost of 5 gallons
of gas). They are now focused on the rule or expression that tells us how
one thing (cost) is related to another (amount of gas). A “function” is for-
mally defined in mathematics as “a set of ordered pairs of numbers (x, y)
such that to each value of the first variable (x) there corresponds a unique
value of the second variable (y).”2  Such a definition, while true, does not
signal to students that they are beginning to learn about a new class of
problems in which the value of one thing is determined by the value of
another, and the rule that tells them how they are related.

Within mathematics education, function has come to have a broader
interpretation that refers not only to the formal definition, but also to the
multiple ways in which functions can be written and described.3  Common
ways of describing functions include tables, graphs, algebraic symbols, words,
and problem situations. Each of these representations describes how the
value of one variable is determined by the value of another. For instance, in
a verbal problem situation such as “you get two dollars for every kilometer
you walk in a walkathon,” the dollars earned depend on, are determined by,
or are a function of the distance walked. Conceptually, students need to
understand that these are different ways of describing the same relationship.

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


TEACHING AND LEARNING FUNCTIONS 353

Good instruction is not just about developing students’ facility with per-
forming various procedures, such as finding the value of y given x or creat-
ing a graph given an equation. Instruction should also help students de-
velop a conceptual understanding of function, the ability to represent a
function in a variety of ways, and fluency in moving among multiple repre-
sentations of functions. The slope of the line as represented in an equation,
for example, should have a “meaning” in the verbal description of the rela-
tionship between two variables, as well as a visual representation on a graph.

The third principle of How People Learn suggests the importance of
students’ engaging in metacognitive processes, monitoring their understand-
ing as they go. Because mathematical relationships are generalized in alge-
bra, students must operate at a higher level of abstraction than is typical of
the mathematics they have generally encountered previously. At all levels of
mathematics, students need to be engaged in monitoring their problem solv-
ing and reflecting on their solutions and strategies. But the metacognitive
engagement is particularly important as mathematics becomes more abstract,
because students will have few clues even when a solution has gone terribly
awry if they are not actively engaged in sense making.

When students’ conceptual understanding and metacognitive monitor-
ing are weak, their efforts to solve even fairly simple algebra problems can,
and often do, fail. Consider the problem in Figure 8-1a. How might students
approach and respond to this problem? What graph-reading and table-build-
ing skills are required? Are such skills sufficient for a correct solution? If
students lack a conceptual understanding of linear function, what errors
might they make? Figure 8-1b shows an example student solution.

What skills does this student exhibit? What does this student understand
and not understand about functions? This student has shown that he knows
how to construct a table of values and knows how to record in that table
coordinate points he has determined to be on the graph. He also clearly
recalls that an algorithm for finding the slope of the function is dividing the
change in y(∆y) by the change in x(∆x). There are, however, significant
problems with this solution that reveal this student’s weak conceptual un-
derstanding of functions.

Problem: Make a table of values that would produce the function
seen on page 356.

First, and most superficially, the student (likely carelessly) mislabeled
the coordinate for the y-intercept (0, 3) rather than (0, –3). This led him to
make an error in calculating ∆y by subtracting 0 from 3 rather than from –3.
In so doing, he arrived at a value for the slope of the function that was
negative—an impossible solution given that the graph is of an increasing
linear function. This slip, by itself, is of less concern than the fact that the
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BOX 8-1 Linking Formal Mathematical Understanding to Informal
Reasoning

Which of these problems is most difficult for a beginning algebra
student?

Story Problem

When Ted got home from his waiter job, he multiplied his hourly wage by
the 6 hours he worked that day. Then he added the $66 he made in tips
and found he had earned $81.90. How much does Ted make per hour?

Word Problem

Starting with some number, if I multiply it by 6 and then add 66, I get 81.9.
What number did I start with?

Equation

Solve for x:
x * 6 + 66 = 81.90

Most teachers and researchers predict that students will have more diffi-
culty correctly solving the story or word problem than the equation.4  They
might explain this expectation by saying that a student needs to read the
verbal problems (story and word) and then translate them into the equa-
tion. In fact, research investigating urban high school students’ perfor-
mance on such problems found that on average, they scored 66 percent
on the story problem, 62 percent on the word problem, and only 43 per-
cent on the equation.5  In other words, students were more likely to solve
the verbal problems correctly than the equation. Investigating students’
written work helps explain why.

Students often solved the verbal problems without using the equa-
tion. For instance, some students used a generate-and-test strategy: They
estimated a value for the hourly rate (e.g., $4/hour), computed the corre-
sponding pay (e.g., $90), compared it against the given value ($81.90),
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and repeated as needed. Other students used a more efficient unwind or
working backwards strategy. They started with the final value of 81.9 and
subtracted 66 to undo the last step of adding 66. Then they took the
resulting 15.9 and divided by 6 to undo the first step of multiplying by 6.
These strategies made the verbal problems easier than expected. But
why were the equations difficult for students? Although experts in alge-
bra may believe no reading is involved in equation solving, students do in
fact need to learn how to read equations. The majority of student errors
on equations can be attributed to difficulties in correctly comprehending
the meaning of the equation.6  In the above equation, for example, many
students added 6 and 66, but no student did so on the verbal problems.

Besides providing some insight into how students think about alge-
braic problem solving, these studies illustrate how experts in an area such
as algebra may have an “expert blind spot” for learning challenges begin-
ners may experience. An expert blind spot occurs when someone skilled
in an area overestimates the ease of learning its formalisms or jargon and
underestimates learners’ informal understanding of its key ideas. As a
result, too little attention is paid to linking formal mathematical under-
standing to informal reasoning. Looking closely at students’ work, the
strategies they employ, and the errors they make, and even comparing
their performance on similar kinds of problems, are some of the ways we
can get past such blind spots and our natural tendency to think students
think as we do.

Such studies of student thinking contributed to the creation of a tech-
nology-enhanced algebra course, originally Pump Algebra Tutor and now
Cognitive Tutor Algebra.7  That course includes an intelligent tutor that
provides students with individualized assistance as they use multiple rep-
resentations (words, tables, graphs, and equations) to analyze real-world
problem situations. Numerous classroom studies have shown that this
course significantly improves student achievement relative to alternative
algebra courses (see www.carnegielearning.com/research). The course,
which was based on basic research on learning science, is now in use in
over 1,500 schools.
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FIGURE 8-1

a

b

student did not recognize the inconsistency between the positive slope of
the line and the negative slope in the equation. Even good mathematicians
could make such a mistake, but they would likely monitor their work as they
went along or reflect on the plausibility of the answer and detect the incon-
sistency. This student could have caught and corrected his error had he
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acquired both fluency in interpreting the slope of a function from its equa-
tion (i.e., to see that it represents a decreasing function) and a reflective
strategy for comparing features of different representations.

A second, more fundamental error in the student’s solution was that the
table of values does not represent a linear function. That is, there is not a
constant change in y for every unit change in x. The first three coordinates in
the student’s table were linear, but he then recorded (2.5, 0) as the fourth
coordinate pair rather than (3, 0), which would have made the function
linear. He appears to have estimated and recorded coordinate points by
visually reading them off the graph without regard for whether the final
table embodied linearity. Furthermore, the student did not realize that the

equation he produced, y x= –

.
–

3

2 5
3 , translates not only into a decreasing line,

but also into a table of numbers that decreases by 
–

.

3

2 5
for every positive unit

change in x.
At a surface level, this student’s solution reflects some weaknesses in

procedural knowledge, namely, getting the sign wrong on the y-intercept
and imprecisely reading x-y coordinates off the graph. More important, how-
ever, these surface errors reflect a deeper weakness in the student’s concep-
tual understanding of function. The student either did not have or did not
apply knowledge for interpreting key features (e.g., increasing or decreas-
ing) of different function representations (e.g., graph, equation, table) and
for using strategies for checking the consistency of these interpretations (e.g.,
all should be increasing). In general, the student’s work on this problem
reflects an incomplete conceptual framework for linear functions, one that
does not provide a solid foundation for fluid and flexible movement among
a function’s representations.

This student’s work is representative of the difficulties many secondary-
level students have with such a problem after completing a traditional text-
book unit on functions. In a study of learning and teaching functions, about
25 percent of students taking ninth- and eleventh-grade advanced math-
ematics courses made errors of this type—that is, providing a table of values
that does not reflect a constant slope—following instruction on functions.8

This performance contrasts with that of ninth- and eleventh-grade math-
ematics students who solved this same problem after receiving instruction
based on the curriculum described in this chapter. This group of students
had an 88 percent success rate on the problem. Because these students had
developed a deeper understanding of the concept of function, they knew
that the y-values in a table must change by the same amount for every unit
change in x for the function to be linear. The example in Figure 8-1c shows
such thinking.
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Problem: Make a table of values that would produce the function
seen above.

This student identified a possible y-intercept based on a reasonable
scale for the y-axis. She then labeled the x- and y-axes, from which she
determined coordinate pairs from the graph and recorded them in a table of
values. She determined and recorded values that show a constant increase
in y for every positive unit change in x. She also derived an equation for the
function that not only corresponds to both the graph and the table, but also
represents a linear relationship between x and y.

How might one teach to achieve this kind of understanding? The
goal of this chapter is to illustrate approaches to teaching functions that
foster deep understanding and mathematical fluency. We emphasize the
importance of designing thoughtful instructional approaches and curricula

FIGURE 8-1

c
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that reflect the principles of How People Learn (as outlined in Chapter 1), as
well as recent research on what it means to learn and understand functions
in particular. We first describe our approach to addressing each of the three
principles. We then provide three sample lessons that emphasize those prin-
ciples in sequence. We hope that these examples provide interesting activi-
ties to try with students. More important, these activities incorporate impor-
tant discoveries about student learning that teachers can use to design other
instructional activities to achieve the same goals.

ADDRESSING THE THREE PRINCIPLES

Principle #1: Building on Prior Knowledge

Principle 1 emphasizes the importance of students and teachers con-
tinually making links between students’ experiences outside the mathemat-
ics classroom and their school learning experiences. The understandings
students bring to the classroom can be viewed in two ways: as their every-
day, informal, experiential, out-of-school knowledge, and as their school-
based or “instructional” knowledge. In the instructional approach illustrated
here, students are introduced to function and its multiple representations by
having their prior experiences and knowledge engaged in the context of a
walkathon. This particular context was chosen because (1) students are fa-
miliar with money and distance as variable quantities, (2) they understand
the contingency relationship between the variables, and (3) they are inter-
ested in and motivated by the rate at which money is earned.

The use of a powerful instructional context, which we call a “bridging
context,” is crucial here. We use this term because the context serves to
bridge students’ numeric (equations) and spatial (graphic) understandings
and to link their everyday experiences to lessons in the mathematics class-
room. Following is an example of a classroom interaction that occurred
during students’ first lesson on functions, showing how use of the walkathon
context as an introduction to functions in multiple forms—real-world situa-
tion (walkathon), table, graph, verbal (“$1.00 for each kilometer”), situation-
specific symbols ($ = 1 * km), and generic symbolic (y = x * 1)—accom-
plishes these bridging goals. Figures 8-2a through 8-2c show changes in the
whiteboard as the lesson proceeded.

Teacher What we’re looking at is, we’re looking at what
we do to numbers, to one set of numbers, to
get other numbers. . . . So how many of you
have done something like a walkathon? A
readathon? A swimathon? A bikeathon?
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[Students raise their hands or nod.] So most of
you…So I would say “Hi Tom [talking to a
student in class], I’m going to raise money for
such and such a charity and I’m going to walk
ten kilometers.”

Tom  OK.

Teacher Say you’re gonna sponsor me one dollar for
every kilometer that I walk. So that’s sort of the
first way that we can think about a function. It’s
a rule. One dollar for every kilometer walked.
So you have one dollar for each kilometer
[writing “$1.00 for each kilometer” on the
board while saying it]. So then what I do is I
need to calculate how much money I’m gonna
earn. And I have to start somewhere. So at
zero kilometers how much money do I have
Tom? How much are you gonna pay me if I
collapse at the starting line? [Fills in the
number 0 in the left-hand column of a table
labeled “km”; the right-hand column is labeled
“$”.]

Tom  None.

Teacher So Tom, I managed to walk one kilometer
[putting a “1” in the “km” column of the table
of values below the “0”]. . . .

Tom  One dollar.

Teacher One dollar [moving to the graph]. So I’m going
to go over one kilometer and up one dollar
[see Figure 8-2a].

FIGURE 8-2a Graphing a point from the
table: “Over by one kilometer and up by one
dollar.” The teacher uses everyday English
(“up by”) and maintains connection with the
situation by incorporating the units “kilometer”
and “dollar.”
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[Students continue to provide the dollar
amounts for each of the successive kilometer
values. Simple as it is, students are encour-
aged to describe the computation—”I multiply
two kilometers by one to get two dollars.” The
teacher fills in the table and graphs each
coordinate pair. [The board is now as shown in
Figure 8-2b.]

Teacher Now, what I want you to try and do, first I want
you to look at this [pointing to the table that
goes from x = 0 to x = 10 for y = x] and tell me
what’s happening here.

Melissa You, like, earn one dollar every time you go up.
Like it gets bigger by one every time.

Teacher So every time you walk one kilometer you get
one more dollar, right? [Makes “> 1” marks
between successive “$” values in the table—
see Figure 8-2c.] And if you look on the graph,
every time I walk one kilometer I get one more
dollar. [Makes “step” marks on the graph.] So
now I want to come up with an equation, I
want to come up with some way of using this
symbol [pointing to the “km” header in the
left-hand column of the table] and this symbol
[pointing to the “$” header in the right-hand
column of the table] to say the same thing, that
for every kilometer I walk, let’s put it this way,
the money I earn is gonna be equal to one
times the number of kilometers I walk. Some-
one want to try that?

FIGURE 8-2b The teacher and
students construct the table and
graph point by point, and a line
is then drawn.
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Alana Um, kilometers times one equals money. [The
teacher writes “km x 1 = $” and “y = x * 1”;
see Figure 8-2c.]

Teacher So this equation, this table, and this graph are
all the same function. They all mean the same
thing. They all mean that you’re multiplying
each of these numbers (pointing to the values
along the x-axis of the graph) by one to get
new numbers.

Another way of building on students’ prior knowledge is to engage
everyday experiential knowledge. Students frequently know things through
experience that they have not been taught explicitly. They can often solve
problems in ways we do not teach them or expect if, and this is an important
qualification, the problems are described using words, drawings, or nota-
tions they understand. For example, the topic of slope is typically reserved
for ninth-grade mathematics, and is a part of students’ introduction to rela-
tions and functions in general and to linear functions in particular. It is
generally defined as the ratio of vertical distance to horizontal distance, or
“rise to run.” The rise is the change in the vertical distance, and the run is the

change in the horizontal distance so that slope
rise
run

= . Once the equation for a

straight line, y = mx + b , has been introduced, m is defined as the slope of

that line and is calculated using the formula m
y y

x x
= 2 1

2 1

–

– .

For students to understand slope in these definitional and symbolic ways,
they must already have in place a great deal of formal knowledge, including

FIGURE 8-2c The teacher highlights the “up by” amount in the table (“>1” marks), graph (over
and up “step” marks), and symbolic equation (pointing at “*1”).
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the meaning of ratio, coordinate graphing, variables, and subscripts, and
such skills as solving equations in two variables and combining arithmetic
operations. Knowing algorithms for finding the slope of a function, how-
ever, does not ensure that the general meaning of slope will be understood.
As illustrated in Figure 8-1a, a student can know the algorithm for finding
the slope, but not understand that the slope of a line characterizes its relative
steepness on a graph and tells something about the rate of change in covarying,
dependent quantities.

We have found that younger students have intuitive and experiential
understandings of slope that can be used to underpin the formal learning
that involves conventional notations, algorithms, and definitions. To illus-
trate, we gave a class of fifth and sixth graders the following situation:

Jane is in a walkathon. A rule or “function” tells us how much Jane will earn
depending on how many kilometers she walks. We don’t know what the
function is. It is a mystery. We do know that if Jane walks 1 kilometer she
will earn 4 dollars and if she walks 3 kilometers she will earn 8 dollars.

Students were asked to figure out the slope of the function that tells how
much Jane will earn. Half of the students were provided with the formal rise-
over-run ratio definition of slope; the other half were given a definition of
slope that reflected more familiar, student language, being told that the slope
of a function is the amount by which the answer goes up for every change
of one in the start value.

We found that many of these younger students were able to describe
informally the slope of the function given in the story problem by figuring
out how much Jane’s earnings go up by for every kilometer she walks. They
noticed that when Jane walks three kilometers instead of one, she earns four
more dollars; thus she earns two more dollars for every extra kilometer she
walks. In this way, these prealgebra students identified the slope of the
mystery function as 2 without receiving instruction on formal definitions or
procedures. In contrast, students who were given the textbook definition of
slope were not able to determine the slope in this example.

Our point is not that all problems should be phrased in “student lan-
guage.” It is important for students to learn formal mathematics terminology
and abstract algebraic symbolism. Our point, instead, is that using student
language is one way of first assessing what knowledge students are bringing
to a particular topic at hand, and then linking to and building on what they
already know to guide them toward a deeper understanding of formal math-
ematical terms, algorithms, and symbols.

In sum, students’ prior knowledge acts as a building block for the devel-
opment of more sophisticated ways of thinking mathematically. In some
cases, we may underestimate the knowledge and skills students bring to the
learning of functions. Topics and activities we presume to be challenging
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and difficult for students may in fact have intuitive or experiential underpin-
nings, and it is important to discover these and use them for formalizing
students’ thinking.

Principle #2: Building Conceptual Understanding,
Procedural Fluency, and Connected Knowledge

The focus of Principle 2 is on simultaneously developing conceptual
understanding and procedural fluency, and helping students connect and
organize knowledge in its various forms. Students can develop surface facil-
ity with the notations, words, and methods of a domain of study (e.g., func-
tions) without having a foundation of understanding. For students to under-
stand such mathematical formalisms, we must help them connect these
formalisms with other forms of knowledge, including everyday experience,
concrete examples, and visual representations. Such connections form a
conceptual framework that holds mathematical knowledge together and fa-
cilitates its retrieval and application.

As described previously, we want students to understand the core con-
cept of a fuctional relationship: that the value of one variable is dependent
on the value of another. And we want them to understand that the relation-
ship between two variables can be expressed in a variety of ways—in words,
equations, graphs, tables—all of which have the same meaning or use the
same “rule” for the relationship. Ultimately, we want students’ conceptual
understanding to be sufficiently secure, and their facility with representing
functions in a variety of ways and solving for unknown variables sufficiently
fluid, that they can tackle sophisticated problems with confidence. To this
end, we need an instructional plan that deliberately builds and secures that
knowledge. Good teaching requires not only a solid understanding of the
content domain, but also specific knowledge of student development of
these conceptual understandings and procedural competencies. The devel-
opmental model of function learning that provides the foundation for our
instructional approach encompasses four levels—0 to 3—as summarized in
Table 8-1. Each level describes what students can typically do at a given
developmental stage. The instructional program is then designed to build
those competences.

Level 0

Level 0 characterizes the kinds of numeric/symbolic and spatial under-
standings students typically bring to learning functions. Initially, the numeric
and spatial understandings are separate. The initial numeric understanding
is one whereby students can iteratively compute within a single string of
whole numbers. That is, given a string of positive, whole numbers such as 0,
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TABLE 8-1  A Developmental Model for Learning Functions

Level General Description Example Tasks and Understandings

0 Students have separate numeric and
spatial understandings.

• Initial numeric understanding: Extend the pattern
students iteratively compute (e.g., 3, 7, 11, 15, ___, ____, ____.
“add 4”) within a string of positive
whole numbers.

• Initial spatial understanding: students Notice in a bar graph of yearly
represent the relative sizes of population figures that each bar is
quantities as bars on a graph and taller than the previous bar.
perceive patterns of qualitative
changes in amount by a left-to-right
visual scan of the graph, but cannot
quantify those changes.

1 Spatial and numeric understandings
are elaborated and integrated,
forming a central conceptual structure.

• Elaboration of numeric understanding: Multiply each number in the sequence
— Iteratively apply a single operation 0, 1, 2, … by 2 to get a set of pairs:

to, rather than within, a string of 0-0, 1-2, 2-4, ….
numbers to generate a second Generalize the pattern and express it
string of numbers. as y = 2x.

— Construct an algebraic expression
for this repeated operation. Notice that a graph of daily plant

• Elaboration of spatial understanding: growth must leave spaces for
— Use continuous quantities along unmeasured Saturday and Sunday

the horizontal axis. values.
— Perceive emergent properties,

such as linear or increasing, in the For every 1 km, a constant “up by” $2
shape of the line drawn between in both the y-column of a table and
points. the y-axis in a graph generates a

• Integration of elaborated linear pattern (spatial) with a slope of
understandings:  2 (numeric). y = 2x can be read

Continued
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— See the relationship between the from, or produced in, both a table
differences in the y-column in a and a graph.
table and the size of the step from
one point to the next in the
associated graph.

• Interpret algebraic representations
both numerically and spatially.

2 • Elaborate initial integrated numeric Look at the function below. Could it
and spatial understandings to create represent y = x – 10? Why or why
more sophisticated variations. not?

• Integrate understanding of y = x and
y = x + b to form a mental structure
for linear functions.

• Integrate rational numbers and
negative integers.

• Form mental structures for other If you think it could not, sketch what
families of functions, such as you think it looks like.
y = xn + b.

3 • Integrate variant (e.g., linear and At what points would the function
nonlinear) structures developed at y = 10x – x2 cross the x axis?
level 2 to create higher-order Please show all of your work.
structures for understanding more-
complex functions, such as
polynomials and exponential and
reciprocal functions.

• Elaborate understanding of graphs
and negative integers to differentiate
the four quadrants of the Cartesian plane.

• Understand the relationship of these
quadrants to each other.

TABLE 8-1  Continued

Level General Description Example Tasks and Understandings
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2, 4, 6, 8, …, students are able to see the pattern of adding 2 to each succes-
sive number. The initial spatial understanding is one whereby students can
represent the relative sizes of quantities as bars on a graph. Students can
easily see differences in the sizes of bars (how tall they are) and can use this
spatial information to draw inferences about associated quantities. Students
can read bar graphs that, for instance, show daily measurements of the
growth of a plant in the classroom. They can see that each bar is taller than
the previous one, that the plant is taller on Friday than on Thursday, but
cannot easily quantify those changes.

Level 1

At level 1, students begin to elaborate and integrate their initial numeric
and spatial understandings of functions. They elaborate their numeric un-
derstanding in two steps. First, whereas students at level 0 can extend a
single sequence of numbers such as 0, 2, 4, 6, …, at level 1 they can operate
on one sequence of numbers to produce a second sequence. For example,
students can multiply each number in the sequence 0, 1, 2, 3, … by 2 and
form the resulting pairs of values: 0-0, 1-2, 2-4, 3-6, …. Students learn to
record these pairs of values in a table and to construct an algebraic equation
for this repeated operation by generalizing the pattern into an equation such
as y = 2x.

Students’ spatial understanding is also improving. They come to under-
stand that maintaining equal distances between values on the x-axis is criti-
cal to having a meaningful graph of a function. They also progress from
understanding graphs with verbal or categorical values along the x-axis,
such as cities (with their populations on the y-axis), to understanding graphs
with quantitative values along the x-axis, such as time quantified as days
(with the height of a plant on each successive day on the y-axis). The ex-
ample of graphing plant growth is an interesting one because it is an activity
at the cusp of this transition. Students initially view values on the x-axis as
categorical, not sequenced (so that Thursday, Friday, Monday is okay). Later
they come to view these values as quantitative, in a sequence with a fixed
distance between the values (such that Thursday, Friday, Monday is not
okay because Saturday and Sunday must be accounted for).

Without being able to view the x-axis as quantitative, students cannot
see graphs as representing the relationship between two changing quanti-
ties. Drawing a line to join the points provides a visual representation of the
relationship between the quantities. The line offers a way of packaging key
properties of the function or pattern of change that can be perceived quickly
and easily. For example, students can see how much earnings change per
kilometer by looking at the steepness of the line.
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As their initial numeric and spatial understandings are elaborated, stu-
dents at level 1 also begin to connect, or integrate, these understandings.
They make connections between tables and graphs of x-y pairs, using one
representation to generate inferences that can be checked by the other. The
overall pattern of a function can be understood both in the size of the
increments in the y-column of the table and in the steepness of the line
moving from one point to another in the graph. The constant “up-by” 1
seen, for example, in Figure 8-2c in the right-hand column of a table is the
same as the constant “up-by” 1 in a line of a graph (see the same figure). As
these views become integrated, students develop a deeper and more flex-
ible understanding of functions, in this case, a linear pattern with a rise of 1.
With this new integrated mental structure for functions, students can sup-
port numeric and spatial understandings of algebraic representations such
as y = 1x.

Grasping why and how the line on a graph maps onto the relationship
described in a word problem or an equation is a core conceptual under-
standing. If students’ understanding is only procedural, they will not be well
prepared for the next level (see Box 8-2). To ensure that students master the
concepts at this level, complex content is avoided. Students are not required
to operate with negative or rational numbers or carry out more than one
operation in a single function (such as multiplying x by any value and add-
ing or subtracting a constant, as in the general y = mx + b form). Such
limiting of these complicating factors is intended to minimize loads on pro-
cessing and working memory, thus enabling students to focus on the es-
sence of the integration of numeric and spatial understandings of function.
Students learn more complex content during levels 2 and 3.

Level 2

As students progress to level 2, they begin to elaborate their initial inte-
grated numeric and spatial understandings. In doing so, they begin to com-
bine operations and develop fluency with functions in the form y = mx + b,
where m and b can be positive or negative rational numbers. They also
work with y = xn + b, where n is a positive whole number, and b is any
positive or negative rational number. For a full elaboration to occur, it is
necessary for students to understand integers and rational numbers and have
facility in computing with both of these number systems. Finally, students
differentiate families of functions to see differences in the shapes and char-
acteristics of linear, quadratic, and cubic functions.
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Level 3

At level 3, students learn how linear and nonlinear terms can be related
and understand the properties and behaviors of the resulting entities by
analyzing these relations. To achieve this understanding, students must have
well-constructed and differentiated models of different sorts of functions,
such as quadratics in the form y = ax2 + bx + c or y = a(x – p)2 + q;
polynomials; and reciprocal, exponential, and growth functions. They must
also have the necessary facility with computational, algebraic, and graphing
operations to interrelate the numeric/symbolic and spatial representations of
these complex functions. Furthermore, students must elaborate their under-
standing of graphs so they differentiate the four quadrants of the Cartesian
plane, understand the relationship of these quadrants to each other, and
relate these quadrants to negative numbers.

Recall Figure 8-1a and the difficulties the student had in producing a
table of values for an increasing linear function with a negative y-intercept.
This student did not recognize, or at least did not acknowledge, why it is
impossible for the given function to have a negative slope and to have a
table of values without a constant rate of change. These are the sorts of
problems that occur when students experience instruction that fails to pro-
mote the development of a sound conceptual framework for functions. Now
consider the solution to the problem in Box 8-3, in which a student intro-
duces a table (without prompting) to help solve a problem about interpret-
ing a graph in terms of an equation.

This student exhibited an integrated concept of function. He generated
a response that showed consistency between the spatial (graph) and
numeric (table and equation) representations of the function. He explained
why the function has a slope of –2 as per its numeric (tabular) and
spatial (graphic) representations and correctly symbolized that rationale in
the equation.

Such integration can be supported in the classroom. For example, through-
out the walkathon classroom exchange reported earlier, the teacher is mov-
ing fluidly and rapidly between numeric and spatial representations of a
function (the table and equation and the graph, respectively). Such move-
ment helps students simultaneously build understandings of each of these
representations in isolation, and of the integrated nature of the representa-
tions in particular and the concept in general. This integration helps students
begin to understand and organize their knowledge in ways that facilitate the
retrieval and application of relevant mathematical concepts and procedures.

If students’ numeric and spatial understandings are not integrated,
they may not notice when a conclusion drawn from one understanding is
inconsistent with a conclusion drawn from another. The inconsistencies
found in the student’s work in Figure 8-1a illustrate such a lack of reflective
recognition.
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BOX 8-2 The Devil’s in the Details: The 3-Slot Schema for Graphing
a Line

What students glean from instruction is often very different from what
we as teachers intend. This observation is nicely illustrated by the re-
search of Schoenfeld and colleagues.9  They detail the surprising misun-
derstandings of a 16-year old advanced algebra student who is grappling
with conceptual questions about equations and graphs of linear functions.

Most standard algebra instruction is intended to guide students to-
ward developing what Schoenfeld and colleagues10  call the “2-slot
schema” for understanding and graphing an equation for a line. This
schema says that knowing the slope of a line and its y-intercept enables
one to obtain a complete description of the line, both graphically and
algebraically. Call the line L; let its slope be m and its y-intercept b. Alge-
braically, the line L has equation y = mx + b if and only if the line has slope
m and y-intercept b. Graphically, the line L passes through the point (0, b)
and rises m units vertically for each unit it traverses horizontally.

The student in Schoenfeld’s study, called IN, was relatively sophisti-
cated in understanding aspects of the above schema. However, IN’s knowl-
edge was not fully integrated, and she exhibited a surprising misunder-
standing. She initially believed that three quantities must be known to
graph an equation of a line: (1) slope, (2) y-intercept, and (3) x-intercept.
After having solved the equation 2 = 4x + 1 to get x = 1/4, she was asked
to the graph the function 4x + 1 on the right side of this equation. She
responded as follows: “the slope, which is 4, . . . the y-intercept, which is
1,…and…the x-intercept, which is 1/4, so we’ve found everything.” Note
that IN said that to find “everything,” she needed the slope, y-intercept,
and x-intercept. In other words, she appeared to have a 3-slot schema for
understanding and graphing a linear equation instead of the 2-slot schema
described above.

Clearly this student had received extensive instruction in linear func-
tions. For instance, in an earlier exchange, when asked for an equation of

Principle #3: Building Resourceful, Self-Regulating
Problem Solvers

As discussed above, teaching aimed at developing robust and fluent
mathematical knowledge of functions should build on students’ existing real-
world and school knowledge (Principle 1) and should integrate procedural
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a straight line, she immediately said, “y = mx + b.” However, IN lacked a
well-integrated understanding of the relationships between the features
of the equation and graphical forms of a line. Schoenfeld and colleagues11

explain:
When a person knowledgeable about the domain determines that

the slope of a particular line is some value (say, 1. . .) and that its intercept
is some other value (say, 3), then the job is done. The equation of the line
must be y = (1)x + 3. IN had no such procedure. Although she believed
that the slope, x-intercept, and y-intercept were all important (and she
could read the values of the slope and y-intercept off equations of the
form y = mx + b), she did not have a stable procedure for determining the
values of those entities from a graph and did not know what to do with
the values when she had them.

As other researchers have shown,12  learners often struggle to tell
the difference between the surface features of a subject, which are easy
to see but can be misleading, and the deep features, which are difficult to
see but are needed for understanding and accurate performance. In this
case, three “entities” or aspects of the graph of a line stood out when IN
looked at a graph: namely, where it crossed the x-axis, where it crossed
the y-axis, and the steepness of the line. All three are important, but IN
had the surface understanding that all three are necessary. She appeared
to lack the deeper understanding that only two of these three are needed
to draw a line. She did not understand how using the y-intercept and
slope, in particular, facilitate an efficient graphing strategy because they
can be read immediately off the standard form of an equation.

Schoenfeld and colleagues’ fine-grained analysis of learning nicely
illustrates how subtle and easily overlooked misconceptions can be—even
among our best students.13

skill and conceptual understanding (Principle 2). However, instruction should
assist students not only in thinking with mathematical procedures and con-
cepts, but also in thinking about procedures and concepts and in reflecting
on and articulating their own thinking and learning. This kind of thinking
about thinking, or metacognition, is the focus of Principle 3. Encouraging
students to reflect on and communicate their ideas about functions supports
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BOX 8-3 An Integrated Understanding of Functions

them in making the connections among representations that are necessary
for flexible, fluent, and reliable performance.

A particularly important type of metacognitive thinking in mathematics
is coordinating conclusions drawn from alternative mathematical represen-
tations or strategies. Teachers will recognize one form of such coordination
in the well-known recommendation that students solve problems in more
than one way (e.g., add up and add down) to check whether the same
answer is found. A more subtle form of such coordination was exemplified
in the earlier discussion of desired student performance on the assessment
item shown in Figure 8-1a. In this example, good metacognitive thinking
was not about checking the consistency of numeric answers obtained using
different strategies, but about checking the consistency of verbal interpreta-
tions (e.g., increasing vs. decreasing) of different representations. In other
words, we want to encourage students to think about problems not only in
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multiple ways (strategies), but also with multiple tools (representations),
and to draw conclusions that are not only quantitative (numeric answers),
but also qualitative (verbal interpretations).

Supporting metacognitive thinking and attitudes goes beyond reflection
and coordination of alternative mathematical representations and strategies.
It includes creating a classroom atmosphere in which students feel comfort-
able to explore, experiment, and take risks in problem solving and learning.
It also includes helping students develop a tolerance for the difficulties math-
ematics sometimes presents and a will to persevere when, for example, they
are unable to detect the pattern in the table of values that identifies the
relationship between x and y in a particular function. Yet another type of
instructional support for metacognitive thinking involves helping students
become better help seekers. Students need to learn to recognize when they
have reached the limits of their understanding and to know how to obtain
the support they need, including asking the teacher or a fellow student;
consulting reference materials; and using such tools as computer software,
the Internet, or a graphing calculator.

TEACHING FUNCTIONS FOR UNDERSTANDING
Good teaching requires more than knowledge of the content to be taught

and of a developmental model for how students acquire an understanding
of that content. It also requires a set of instructional strategies for moving
students along that developmental pathway and for addressing the obstacles
and opportunities that appear most frequently along the way. Below we
describe a unit of instruction, based on the developmental model described
above, that has been shown experimentally to be more effective than tradi-
tional instruction in increasing understanding of functions for eighth and
tenth graders.14  In fact, sixth-grade students taught with this instructional
approach were more successful on a functions test than eighth and tenth
graders who had learned functions through conventional instruction. At the
secondary level, tenth graders learning with this approach demonstrated a
deeper understanding of complex nonlinear functions. For instance, they
performed significantly better on a test item requiring them to draw a “quali-
tative” graph (no scale on the axes) of the function y = x3 in relation to a
given graph of y = x4.

Curriculum for Moving Students Through the Model

This section summarizes the key features and activities of a curriculum
that was developed for moving students through the four-level learning se-
quence described above. We believe such theory-based instruction encour-
ages students (1) to build on and apply their prior knowledge (Principle 1),
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(2) to construct an integrated conceptual framework for understanding func-
tions (principle 2), and (3) to apply metacognitive skills to their learning
(principle 3). An overview of this curriculum is presented in Table 8-2, fol-
lowed by a more detailed description. Example lessons are provided in the
next section.

The curricular sequence we suggest has been used effectively with stu-
dents in sixth, eighth, tenth, and eleventh grades. Because timetables and
scheduling vary from school to school and from grade to grade, the amount
of material per lesson will also vary depending on the available class time.
This unit requires approximately 650 minutes of class time to complete. We
recommend that it be taught as a whole and in the sequence suggested,
even if students are in an upper secondary-level grade and require the more
advanced level 3 material. We emphasize implementing the full sequence of
topics because the concepts addressed in the level 3 material are supported
by a deep and flexible understanding of the ideas found in the level 1 and 2
material, an understanding that is often insufficiently developed in earlier
grades. Students in the senior grades will likely move more quickly through
the beginning part of the unit than will junior students, and the extra time
allotted for the unit can then be used for working through more-advanced
ideas that are likely beyond younger students’ capabilities.

The instructional approach we are suggesting is different from some
more traditional approaches in many ways. First, the latter approaches often
use different contexts or situations for introducing the individual topics within
the domain, rather than the single bridging context of the walkathon we use.
Within one curriculum, for example, the gradient of a hill may be used for
introducing slope, and fixed cost in production may be used for introducing
y-intercept. Mixing contexts can make understanding y = mx + b as an
integrated concept more difficult than is the case if slope and y-intercept are
introduced within the same context.

The use of multiple representations is another significant feature of the
suggested curriculum, one that again distinguishes it from more traditional
approaches. In many traditional approaches, instruction may be focused on
a single representation (e.g., equation or graph) for weeks before multiple
representations are related. In our curricular approach, tables, graphs, equa-
tions, and verbal rules are copresented within seconds, and students are
encouraged to see them as equivalent representations of the same math-
ematical relationship. Emphasis is placed on moving among these represen-
tations and on working to understand how they relate to each other.

Our approach also engages students in the construction of functional
notation, and thus helps them build notations and meanings for such con-
structs as slope and y-intercept into equations. This approach contrasts with
many existing curricula, which give students the formal notation and then
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focus on introducing them to procedures for finding, for example, the slope
of a linear function or the vertex of a quadratic function. Over the course of
our instruction, students progressively formalize their own initial notations
until those notations correspond with conventional general equations, such
as y = mx + b or y = ax2 + bx + c.

Finally, the kinds of follow-up activities we suggest may differ from
those of more traditional approaches. We suggest activities that allow stu-
dents to remain situated in the context of instruction for the first part of the
unit (that is, related to a walkathon) until they are confident and competent
with the concepts on a more abstract basis. Then, when students move to
the computer environment, they engage in activities in which no new con-
cepts are introduced at first. Rather, students have time to consolidate the
individual concepts addressed in the first part of the unit, and then move on
to more challenging activities that advance their thinking and understanding
in the domain. These more challenging activities involve the addition of new
features to familiar structures. For example, the left-hand quadrants of the
Cartesian plane are eventually included in activities, and linear terms are
added to y = x2 + b to generate equations in the form y = ax2 + bx + c.
Students also give presentations on a particular kind of function (e.g., linear,
quadratic, reciprocal, cubic) to their classmates. In these presentations, stu-
dents share their understanding of and expertise in key characteristics and
behaviors of these functions.

Example Lessons

In the following sections, we elaborate on three specific lessons that
highlight the role of the three principles of How People Learn in the curricu-
lum described in Table 8-2. Although we do not provide a complete descrip-
tion of these lessons, the example activities should be sufficient to suggest
how the lessons might be used in other classrooms. The three lessons and
their companion activities illustrate the principles of How People Learn in
three key topic areas: slope, y-intercept, and quadratic functions. Example
lesson 1, “Learning Slope,” illustrates principle 1, building on students’ prior
knowledge. Example lesson 2, “Learning y-intercept,” illustrates principle 2,
connecting students’ factual/procedural and conceptual knowledge. Example
lesson 3, “Operating on y = x2,” illustrates principle 3, fostering reflective
thinking or metacognition in students. Although each of the selected lessons
is used to highlight one of the principles in particular, the reader should
keep in mind that all three principles interact simultaneously throughout
each lesson.
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TABLE 8-2 Suggested Curricular Sequence

Topic Description Activities

Level 1
Introduction The walkathon bridging context Student partners each invent at

is introduced. Students record least two of their own
in tables the money earned for sponsorship arrangements, for
each kilometer walked and plot which their partner constructs
each pair of values for a variety tables, graphs, and equations.
of rules. Using kilometers and
dollars, an equation is
constructed based on the rule
of sponsorship.

Slope Slope is introduced as the Students are asked to find the
constant numeric up-by (or slope of several different
down-by) amount between functions expressed in tables,
successive dollar values in a graphs, and equations.
table or a graph. It is a relative
measure of the steepness of a
function. It is the amount by
which each kilometer (x – value)
is multiplied.

y-Intercept y-Intercept is introduced as the Students invent two linear
“starter offer,” that is, a fixed functions that allow them to earn
starting bonus students receive exactly $153.00 after walking 10
before the walkathon begins. It kilometers. Students record the
affects only the vertical starting slope and y-intercept of each
point of the numeric sequence function and explain how the
and graph. It does not affect the y-intercept of each function can
steepness or shape of the line. be found in its table, graph, and

equation.
Curving Nonlinear functions are introduced Students are asked to decide which
functions as those having up-by amounts of four functions expressed in

that increase (or decrease) after tables are nonlinear and to explain
each kilometer walked. They are their reasoning. They are also
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derived by multiplying the asked to write an equation for and
kilometers (x) by itself at least . to sketch and label the graph of
once The more times x is each function. Students are
multiplied by itself, the greater asked to come up with a curved-
is the difference between line function for earning $153.00
dollar values and thus the over 10 kilometers.
steeper the curve.

Levels 2 and 3
Computer Level 2 students use spreadsheet Students change the steepness,
activities technology and prepared files y-intercept, and direction of y = x

and activity sheets to consolidate and y = x2 to make the function
and extend the understandings go through preplotted points.
they constructed about slope, They record the numeric,
y-intercept, and linearity in the algebraic, and graphic effects of
first part of the curriculum. Level their changes. They also invent
3 extensions include working in functions with specific
all four quadrants to transform attributes, such as parallel to
quadratic and cubic functions y = 4x and a y-intercept below
and to explore the properties, the x-axis, or an inverted parabola
behaviors, and characteristics of that is compressed and in the
exponential, reciprocal, and other lower left-hand quadrant.
polynomial functions.

Presentations Groups of students investigate Groups of students use computer-
and then prepare a presentation generated output of graphs,
about a particular type of function. equations, and tables to illustrate
Presentations stimulate a particular type of function’s
discussion and summarizing of general properties and behaviors.
key concepts and serve as a Students give presentations
partial teacher assessment for about their function and share
evaluating students’ post- their expertise with classmates.
instruction understanding about
functions.

TABLE 8-2 Continued

Topic Description Activities
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Example Lesson 1: Learning Slope

The classroom interaction recounted below took place during students’
first lesson on slope. The students had already worked through the con-
struction of representations for the introductory rule of the walkathon—
earning one dollar for every kilometer walked. In this interaction we can see
how Katya quickly grasps the idea of slope as relative steepness, as defined
by the variable relationship between two quantities (distance walked and
money earned in this case):

Teacher I want to think of a way, let’s see, Katya, how
might you sponsor me that would make a line
that is steeper than this [y = x is already drawn
on graph, as in Figure 8-2b]?

Katya Steeper? Alright . . . every kilometer you walk
you get two dollars.

Teacher Two dollars. So let’s try that. So at zero
kilometers how much am I going to have?

Katya At zero kilometers you’ll have zero.

Teacher At one?

Katya You’ll have two.

Teacher And what happens at ten?

Katya At ten you’ll have twenty.

Teacher So Katya, what have you done each time?

Katya: I’ve just multiplied by two.

Teacher You’ve multiplied each one of these [pointing
to the numbers in the left column of the table]
by two, right? Zero times two, one times two
[moving finger back and forth between
columns]. If I graph that, where’s it going to
start, Katya?

Katya It’s going to start at zero.

Teacher So at zero kilometers, zero money. At one?

Katya At one it’s going to go to two.

Teacher At two it’s going to go to?

Katya Four.

Teacher Over two up to four. At three?

Katya It’s going to go to six.

Teacher What do you see on the graph? What do you
see happening?
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Katya It’s going higher. It’s steeper than the other
one.

Teacher So it’s steeper and it’s going up by how much?

Katya Two.

Teacher So Katya, since this is your function, what
would the equation for this function be?

Katya Kilometers times two equals money.

Teacher That’s absolutely right. And what do you notice
about these values [pointing to dollar values in
the table and making “>“ marks between
successive values]?

Katya They’re going up by 2.

The Lesson. The lesson on slope is the second lesson suggested in the
overall sequence of instruction, after the walkathon has been introduced. It
requires about two class periods, or 90 minutes. We introduce slope as the
constant numeric up-by amount that is found between successive y-values
for every unit change in x. This up-by amount can be seen in a function’s
table or its graph. The up-by terminology was invented by students who
were asked to describe the meaning of slope using their own words. When
introducing this up-by idea to students, we suggest beginning with the graph
and the table for the rule of earning one dollar for every kilometer walked ($
= 1 x km) and having students see that in each of these representations, the
dollar amount goes up by one for each kilometer walked. To show this on
the graph, the teacher may draw a staircase-like path from point to point
that goes over one and then up one (see Figure 8-2c). In the table, a third
column may be created to show the constant up-by difference between
successive y-values, as also illustrated in Figure 8-2c. We then suggest draw-
ing students’ attention to the facts that this up-by amount corresponds to the
mathematical concept of slope and that slope is a relative measure of a
function’s steepness. That is, the greater the up-by amount, the steeper is the
function. From this point on, y = x (y = 1 • x with a slope of 1) may be
employed as a landmark function for students to use in qualitative reason-
ing, by comparison, about the slopes (and later the y-intercepts) of other
functions. Conceptual landmarks are crucial tools to support learners in making
sense of, catching, and correcting their own and others’ errors.

After having created tables and graphs for the one dollar per kilometer
context, we challenge students such as Katya to provide sponsorship rules
(or functions) having slopes that are steeper and less steep than y = x. To
facilitate the comparison of graphs of functions with different slopes, we
encourage students to plot functions on the same set of axes. Before each
rule is graphed, we ask the students to predict the steepness of the line
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relative to y = x. We also have them invent other rules and make tables and
graphs for those rules. These explorations in multiple contexts and repre-
sentations develop students’ deeper understanding of slope. After all, the
essence of understanding is being able to apply a concept flexibly in differ-
ent contexts and with different representations. After having worked with
functions having varying degrees of steepness, we ask the students to sum-
marize their findings about slope and to explain that steeper lines are the
result of functions having bigger up-by amounts.

In our instruction, we do not provide students at the outset with an
algorithm for finding the slope of a function. However, we do suggest that
students be asked for their ideas about how the steepness, or slope, of a
function can be quantified—that is, represented as a number—and how
they can obtain that number from any of the representations of a function
they have seen. This is illustrated by the following teacher–student exchange
from a ninth-grade class:

Teacher This line [pointing to a graph of y = x] has a
certain steepness to it. . . . If you had to give a
number to this steepness, what would you
give it? Look at these numbers (pointing to the
corresponding table of values).

Aaron One.

Teacher Why one?

Aaron ‘Cause they all go up by one.

Introducing and working with functions having negative slopes is also
important to show that the way the students have been constructing slope as
the up-by amount is applicable to all straight-line functions, whether they
increase or decrease. We generally introduce negative values along the y-
axis by asking students to think about how the negative values along the y-
axis can be used. One situation we employ is from the perspective of the
donor or sponsor, who loses money as the participant walks. In our experi-
ence, students generally recognize that these lines have a down-by amount
when a fixed amount of money is given away for each kilometer walked.

Summary of Principle #1 in the Context of Learning Slope. We have
used a lesson on slope to illustrate how students’ initial knowledge of a
topic can be used for building formal or conventional mathematical knowl-
edge and notation structures. In this case, we draw on three sorts of prior
knowledge. First, students’ prior knowledge of familiar situations such as
earning money in a walkathon can be used to elicit and extend the students’
informal, intuitive ideas about a difficult topic such as slope. Second, stu-
dents’ prior knowledge of natural language, such as “up-by,” can be used to
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build a sound foundation of understanding for explaining and working with
more formal concepts and procedures, such as finding slope from a graph.
Third, prior knowledge with respect to initial numeric and spatial under-
standings can be integrated through instruction to help students construct a
conceptual understanding of slope within a broader framework for under-
standing functions in general.

Example Lesson 2: Learning y-Intercept

This example lesson focuses on learning and teaching y-intercept. It
illustrates the effect of theory-based instructional design in connecting stu-
dents’ factual/procedural and conceptual knowledge (principle 2).

A commonly taught procedure for finding the y-intercept of a function is
to substitute x = 0 into the function’s equation, with the result being the y-
intercept. Instead of starting by formally introducing this method, this lesson
begins by having students explore situations in which a nonzero starting
amount is used. This approach appears to do a better job of helping students
learn the formal procedure in the context of a robust conceptual under-
standing.

The Lesson. The lesson on y-intercept follows that on slope in the overall
curricular sequence. Two class periods of about 90 minutes are suggested
for working with y-intercept. We introduce the y-intercept by suggesting the
idea of a starting bonus or an initial amount of money that may be contrib-
uted before the walkathon even begins. Students have termed this starting
amount the “starter offer” or “starter upper.” These phrases have repeatedly
been shown to be simple for students to understand first in the walkathon
context and then in more abstract situations.

We again begin this lesson with a sponsorship arrangement of earning
one dollar for every kilometer walked. We then have students graph this
function, construct a table of values, and write a symbolic representation
for the function. We then tell students they will be given a five-dollar starter
offer just for participating in the walkathon. That is, before they have walked
at all, they will already have earned five dollars. In addition to this starting
bonus, they will still be earning one dollar for every kilometer walked.
Students are then asked to construct a table for this function and to calcu-
late how much money they will have earned at zero kilometers, one kilo-
meter, two kilometers, and so on. After the table has been constructed,
students are asked to graph the function and to make an equation for it.
Having students verbally describe the relationship between the kilometers
and dollars helps them formulate an equation. For example, a student might
say, “I think it would be five plus the kilometers equals money.” That de-
scription could then be translated into the situation-specific symbolic ex-
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pression 5 + km = $, and that expression, in turn, formalized into the gen-
eral expression, y = x + 5.

As the lesson proceeds, we suggest other rules whereby students earn
one dollar per kilometer but have different starter offer amounts, such as
two dollars, ten dollars, and three and a half dollars. We ask the students first
to predict where on a graph each new function will be relative to the first
example given (y = x + 5) and then to construct tables, graphs, and equa-
tions for each new function. Students are asked to describe any patterns or
salient characteristics they see in this group of functions. What we want
students to see, both literally and figuratively, is that all of the functions are
parallel, with a slope of 1, but their starting point on the graph changes in
accordance with the starting bonus offered. Furthermore, the distance be-
tween points on any two graphs is equal to the difference in starting bo-
nuses. For example, the functions 5 + km = $ and 10 + km = $ are five units
apart at every point along the line of each function. Likewise, in examining
the tables for each of the functions, we want students to see that all of the
functions go up by one (accounting for the parallel lines), but the first value
in the dollar column of each of the tables is equal to the starting bonus. We
then connect the “starting points” of the graphs and tables with the structure
of the equations to show that the starting bonus is indeed added to each x-
value.

Emphasizing that the only effect of changing the starter offer is a vertical
shift in a function is crucial because a number of researchers have found that
students regularly confuse the values for slope and y-intercept in equations.
That is, in an equation such as y = 2x + 7, many students are unsure of which
“number” is the y-intercept and which is the slope. Initially, students of all
ages and grades in our program often predict that changing the starter offer
will also change the steepness (slope) of a function. However, working
through many examples for which the amount earned per kilometer (the
slope) is held constant will help students see, in context, that changing the
starting bonus does not affect the amount being earned per kilometer, which
is how the steepness or slope of the function is determined. Ultimately, by
establishing the meaning of y-intercept in the context of the walkathon and
by applying that meaning to the different representations of a function, the
confusion of slope and y-intercept is significantly minimized for students.

Negative y-intercepts are introduced using the idea of debt. In this case,
students have to pay off a starter offer amount. For example, a student in
one of our studies suggested that if she owed ten dollars on her credit card
and paid off one dollar every time she walked a kilometer, she would have
to start at minus ten dollars. Then after one kilometer, she would pay off one
dollar and still be nine dollars in debt, then eight, then seven, etc. Students
can construct tables, graphs, and equations for such situations that they
invent and perhaps share with a partner or the class. The writing of the
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equations for these functions may take different forms at first. Many students
choose to adhere to the notion that the starter offer is “added” in the equa-
tion. Thus an equation for a function such as that described above would
look like $ = 1 • km + –10. While students are consolidating the concept of
y-intercept and distinguishing it from slope, we recommend that they be
allowed to write equations in this way. An alternative, more conventional
format may be suggested by repeating the function and writing it in conven-
tional notation alongside the student-constructed expression. Again, we stress
the importance of students’ developing a conceptual framework for these
difficult concepts, which can be formalized over time once the ideas are
firmly in place.

Following is a short classroom exchange between a teacher and a stu-
dent. The context of earning five dollars per day for a paper route had
already been developed by the teacher for an earlier teaching example. The
teacher continued with this context in introducing linear functions with nega-
tive y-intercepts and positive slopes.

Teacher We owe 90 dollars, so think of it as a negative
amount we have and over time we’re coming
up toward zero. We’re coming toward breaking
even; towards no longer being in debt. So
every day that goes 5 dollars toward zero
[referring to and constructing both a graph and
a table]. So up by 5, up by 5, up by 5, and so
on. What are these differences [referring to the
y values in the table]?

Justin Positive 5.

Teacher Ya, we’re going up by 5 so as we go across 1
we go up by 5.

In the lessons on nonlinear functions, the starter offer idea is also ap-
plied. Generally, students quickly see that including the starter offer in a
curved-line function has the same effect as it does on straight-line functions.
That is, the steepness of the line (or curve) is not altered by changing the
starter offer, only the place at which the function meets the vertical axis in a
graph. The result is that each point on the curve is shifted up (or down) by
the starter offer amount.

A suggested follow-up activity that addresses both slope and y-inter-
cept is to have students, either individually or in pairs, invent two functions
that will allow them to earn exactly $153 upon completing a ten-kilometer
walkathon. Both strategies must produce straight lines. We ask students to
construct tables, graphs, and equations to show their work, and also ask
them to identify the slope and y-intercept of each function. Individuals or
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pairs of students then show their functions to the whole group. Samples of
student work are shown in Box 8-4. We also challenge students to work
“backwards,” that is, to find what the starter offer would have to be if
the slope were 10, or what the slope would have to be if the starter offer
were 20.

Summary of Principle #2 in the Context of Learning y-Intercept. We
have used a lesson on y-intercept to illustrate how students connect their
factual/procedural and conceptual knowledge within the instructional bridging
context of a walkathon. The walkathon context is intended to help students
relate their new and existing knowledge within an organized conceptual
framework in ways that facilitate efficient retrieval of that knowledge. The
idea of a “starter offer” gives students a reasonably familiar situation that
provides a context for learning y-intercept—ordinarily a relatively abstract
and difficult mathematical topic that is often confused with slope in stu-
dents’ understanding of linear function. In our approach, students still learn
the notations, symbols, words, and methods necessary for identifying the y-
intercept of a function (linear or nonlinear). However, they acquire that
knowledge in context and initially without algorithms, and with a depth of
understanding and attribution of meaning that minimize the procedural and
conceptual difficulties many students experience with the topic.

Example Lesson 3: Operating on y = x2

After the first four lessons, which take place in the classroom, students
move to a computer environment where they work with spreadsheet tech-
nology to consolidate and apply the concepts introduced in the classroom
instruction and to extend their understandings to new situations. The par-
ticular lesson we use for illustrating principle 3, developing metacognitive
skills, is the fourth in the series of computer activities.

The Lesson. Pairs of students use prepared spreadsheet files to work with a
computer screen such as that seen in Figure 8-3. Students are asked to
change specific parameters in the function y = ax2 + b to move the graph
through preplotted colored points. The file is designed so the students can
change the value of just the exponent, the coefficient of x2, the y-intercept,
or any combination of these. With each change, the graph and table of
values change instantly and automatically to reflect the numeric (tabular)
and graphic (spatial) implications of that change. For example, students are
asked to describe and record what happens to the graph and the “Y” column
of the table of values when the exponent in y = x2 is changed to 3, to 4, and
then more generally to any number greater than 2. Students are then asked
to describe and record what happens to the curve when x2 is multiplied by
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BOX 8-4 Two Different Student Solutions to an Open-Ended Problem

a value larger than 1, smaller than 1 but greater than 0, and less than 0. They
are then asked to compare the tables and graphs for y = x2, y = 2 * x2, y = 3
* x2, y = 4 * x2, etc. and to describe in words what patterns they find. Finally,
students are asked to compare the table of values for y = 2 * x2 and y = -2 *
x2 and describe what they notice.
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FIGURE 8-3 Sample computer screen. In this configuration, students can change the value of
a, n, or b to effect immediate and automatic changes in the graph and the table. For example,
if students change the value of b, just the y-intercept of the curve will change. If students change
a or n to a positive value other than 1, the degree of steepness of the curve will change. If
students change the value of a to a negative value, the curve will come down. All graphic
patterns will be reflected in the table of values.

Students must employ effective metacognitive strategies to negotiate and
complete these computer activities. Opportunities for exploring, persever-
ing, and knowing when and how to obtain help are abundant. Metacognitive
activity is illustrated in the following situation, which has occurred among
students from middle school through high school who have worked through
these activities.

When students are asked to change the parameters of y = x2 to make it
curve down and go through a colored point that is in the lower right quad-
rant, their first intuition is often to make the exponent rather than the coef-
ficient negative. When they make that change, they are surprised to find that
the graph changes shape entirely and that a negative exponent will not
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satisfy their needs. By trying a number of other possible alterations (perse-
vering), some students discover that they need to change the coefficient of
x2 rather than the exponent to a negative number to make the function curve
down. It is then a matter of further exploration and discovery to find the
correct value that will make the graph pass through the point in question.
Some students, however, require support to discover this solution. Some try
to subtract a value from x2 but are then reminded by the result they see on
the computer screen that subtracting an amount from x2 causes a downward
vertical shift of the graph. Drawing students’ attention to earlier exercises in
which they multiplied the x in y = x by a negative number to make the
numeric pattern and the graph go down encourages them to apply that
same notion to y = x2. To follow up, we suggest emphasizing for students
the numeric pattern in the tables of values for decreasing curves to show
how the number pattern decreases with a negative coefficient but not with a
negative exponent.

Following is a typical exchange between the circulating teacher and a
pair of students struggling with flipping the function y = x2 (i.e., reflecting it
in the x-axis). This exchange illustrates the use of metacognitive prompting
to help students supervise their own learning by suggesting the coordina-
tion of conclusions drawn from one representation (e.g., slope in linear
functions) with those drawn from another (e.g., slope in power functions).

Teacher How did you make a straight line come down
or change direction?

John We used minus.

Teacher How did you use “minus”?

Pete Oh yeah, we times it by minus something.

Teacher So . . . how about here [pointing at the x2]?

John We could times it by minus 2 [typing in x2 • -2].
There! It worked.

Without metacognitive awareness and skills, students are at risk of miss-
ing important inconsistencies in their work and will not be in a position to
self-correct or to move on to more advanced problem solving. The example
shown earlier in Figure 8-1a involves a student not reflecting on the incon-
sistency between a negative slope in his equation and a positive slope in his
graph. Another sort of difficulty may arise when students attempt to apply
“rules” or algorithms they have been taught for simplifying a solution to a
situation that in fact does not warrant such simplification or efficiency.

For example, many high school mathematics students are taught that
“you only really need two points to graph a straight line” or “if you know
it’s a straight line, you only need two points.” The key phrase here is “if you
know it’s a straight line.” In our research, we have found students applying
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FIGURE 8-4

that two-point rule for graphing straight lines to the graphing of curved-line
functions. In the example shown in Figure 8-4, an eleventh-grade advanced
mathematics student who had been learning functions primarily from a
textbook unit decided to calculate and plot only two points of the function
y = x2 +1 and then to join them incorrectly with a straight line. This student
had just finished a unit that included transformations of quadratic functions
and thus presumably knew that y = x2 makes a parabola rather than a
straight line. What this student did not know to perform, or at least exer-
cise, was a metacognitive analysis of the problem that would have ruled out
the application of the two-points rule for graphing this particular function.

Summary of Principle #3 in the Context of Operating on y = x2. The
general metacognitive opportunities for the computer activities in our cur-
riculum are extensive. Students must develop and engage their skills involv-
ing prediction, error detection, and correction, as well as strategies for scien-
tific inquiry such as hypothesis generating and testing. For instance, because
there are innumerable combinations of y-intercept, coefficient, and expo-
nent that will move y = x2 through each of the colored points, students must
recognize and acknowledge alternative solution paths. Some students may
fixate on the steepness of the curve and get as close to the colored points as
possible by adjusting just the steepness of the curve (by changing either the
exponent or the coefficient of x2) and then changing the y-intercept. Others
may begin by selecting a manageable y-intercept and then adjust the steep-
ness of the curve by changing the exponent or the coefficient. Others may
use both strategies equally. Furthermore, students must constantly be pre-
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dicting the shapes and behaviors of the functions with which they are work-
ing and adjusting and readjusting their expectations with respect to the math-
ematical properties and characteristics of linear and nonlinear functions.

SUMMARY
Sometimes mathematics instruction can lead to what we refer to as “un-

grounded competence.” A student with ungrounded competence will dis-
play elements of sophisticated procedural or quantitative skills in some con-
texts, but in other contexts will make errors indicating a lack of conceptual
or qualitative understanding underpinning these skills. The student solution
shown earlier in Figure 8-1a illustrates such ungrounded competence. On
the one hand, the student displays elements of sophisticated skills, including
the slope formula and negative and fractional coefficients. On the other
hand, the student displays a lack of coordinated conceptual understanding
of linear functions and how they appear in graphical, tabular, and symbolic
representations. In particular, he does not appear to be able to extract quali-
tative features such as linearity and the sign of the slope and to check that all
three representations share these qualitative features.

The curricular approach described in this chapter is based on cognitive
principles and a detailed developmental model of student learning. It was
designed to produce grounded competence whereby students can reason
with and about multiple representations of mathematical functions flexibly
and fluently. Experimental studies have shown that this curriculum is effec-
tive in improving student learning beyond that achieved by the same teach-
ers using a more traditional curriculum. We hope that teachers will find the
principles, developmental model, and instructional examples provided here
useful in guiding their curriculum and teaching choices.

We have presented three example lessons that were designed within
one possible unifying context. Other lessons and contexts are possible and
desirable, but these three examples illustrate some key points. For instance,
students may learn more effectively when given a gradual introduction to
ideas. Our curriculum employs three strategies for creating such a gradual
introduction to ideas:

• Starting with a familiar context: Contexts that are familiar to students,
such as the walkathon, allow them to draw on prior knowledge to think
through a mathematical process or idea using a concrete example.

• Starting with simple content: To get at the essence of the idea while
avoiding other, distracting difficulties, our curriculum starts with mathemati-
cal content that is as simple as possible—the function “you get one dollar for
every kilometer you walk” (y = x).
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• Focusing on having students express concepts in their own language
before learning and using conventional terminology: To the extent that a
curriculum initially illustrates an idea in an unfamiliar context or with more-
complex content, students may be less likely to be able to construct or
invent their own language for the idea. Students may better understand and
explain new ideas when they progress from thinking about those ideas us-
ing their own invented or natural language to thinking about them using
formal conventional terms.

A risk of simplicity and familiarity is that students may not acquire the
full generality of relevant ideas and concepts. Our curriculum helps students
acquire correct generalizations by constructing multiple representations for
the same idea for the same problem at the same time. Students make com-
parisons and contrasts across representations. For example, they may com-
pare the functions y = .5x, y = 2x, and y = 10x in different representations
and consider how the change in slope looks in the graph and how the table
and symbolic formula change from function to function. We also emphasize
the use of multiple representations because it facilitates the necessary bridg-
ing between the spatial and numerical aspects of functions. Each representa-
tion has both spatial and numerical components, and students need experi-
ence with identifying and constructing how they are linked.

As illustrated earlier in Figure 8-1a, a curriculum that does not take this
multiple-representation approach can lead students to acquire shallow ideas
about functions, slope, and linearity. The student whose response is shown
in that figure had a superficial understanding of how tables and graphs are
linked: he could read off points from the graph, but he lacked a deep under-
standing of the relationship between tables and graphs and the underlying
idea of linearity. He did not see or “encode” the fact that because the graph
is linear, equal changes in x must yield equal changes in y, and the values in
the table must represent this critical characteristic of linearity.

The curriculum presented in this chapter attempts to focus limited in-
structional time on core conceptual understanding by using multiple repre-
sentations and generalizing from variations on just a few familiar contexts.
The goal is to develop robust, generalizable knowledge, and there may be
multiple pathways to this end. Because instructional time is limited, we de-
cided to experiment with a primary emphasis on a single simple, real-world
context for introducing function concepts instead of using multiple contexts
or a single complex context. This is not to say that students would not
benefit from a greater variety of contexts and some experience with rich,
complex, real-world contexts. Other contexts that are relevant to students’
current real-world experience could help them build further on prior knowl-
edge. Moreover, contexts that are relevant to students’ future real-world
experiences, such as fixed and variable costs of production, could help them
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in their later work life. Since our lessons can be accomplished in anywhere
from 3 to 6 weeks (650 minutes), there is sufficient time for other activities to
supplement and extend students’ experience.

In addition to providing a gradual introduction to complex ideas, a
key point illustrated by our lessons is that curriculum should be mathemati-
cally sound and targeted toward high standards. Although the lessons de-
scribed here start gradually, they quickly progress to the point at which
students work with and learn about sophisticated mathematical functions at
or beyond what is typical for their grade level. For instance, students progress
from functions such as y = x to y = 10 – .4x in their study of linear functions
across lessons 1 to 3, and from y = x2 to y = (x – 2)2 + 4 in their study of
nonlinear functions across lessons 4 to 8.

We do not mean to suggest that this is the only curriculum that promotes
a deep conceptual understanding of functions or that illustrates the prin-
ciples of How People Learn. Indeed, it has important similarities, as well as
differences, with other successful innovations in algebra instruction, such as
the Jasper Woodbury series and Cognitive Tutor Algebra (previously called
PUMP), both described in How People Learn. All of these programs build on
students’ prior knowledge by using problem situations and making connec-
tions among multiple representations of function. However, whereas the
Jasper Woodbury series emphasizes rich, complex, real-world contexts, the
approach described in this chapter keeps the context simple to help students
perceive and understand the richness and complexity of the underlying math-
ematical functions. And whereas Cognitive Tutor Algebra uses a wide variety
of real-world contexts and provides intelligent computer tutor support, the
approach described here uses spreadsheet technology and focuses on a
single context within which a wide variety of content is illustrated.

All of these curricula, however, stand in contrast to more traditional
textbook-based curricula, which have focused on developing the numeric/
symbolic and spatial aspects of functions in isolation and without particular
attention to the out-of-school knowledge that students bring to the class-
room. Furthermore, these traditional approaches do not endeavor to con-
nect the two sorts of understandings, which we have tried to show is an
essential part of building a conceptual framework that underpins students’
learning of functions and ultimately their learning in related areas.
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NOTES
1. The study of functions, as we define it here, overlaps substantially with the

topic of “algebra” traditionally taught in the United States in ninth grade, though
national and many state standards now recommend that aspects of algebra be
addressed in earlier grades (as is done in most other countries). Although
functions are a critical piece of algebra, other aspects of algebra, such as equa-
tion solving, are not addressed in this chapter.

2. Thomas, 1972, p. 17.
3. Goldenberg, 1995; Leinhardt et al., 1990; Romberg et al., 1993.
4. Nathan and Koedinger, 2000.
5. Koedinger and Nathan, 2004.
6. Koedinger and Nathan, 2004.
7. Koedinger et al., 1997.
8. Kalchman, 2001.
9. Schoenfeld et al., 1993.

10. Schoenfeld et al., 1987.
11. Schoenfeld et al., 1998, p. 81.
12. Chi et al., 1981.
13. Chi et al., 1981; Schoenfeld et al., 1993.
14. Kalchman, 2001.
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13

Pulling Threads
M. Suzanne Donovan and John D. Bransford

What ties the chapters of this volume together are the three principles
from How People Learn (set forth in Chapter 1) that each chapter takes as its
point of departure. The collection of chapters in a sense serves as a demon-
stration of the second principle: that a solid foundation of detailed knowl-
edge and clarity about the core concepts around which that knowledge is
organized are both required to support effective learning. The three prin-
ciples themselves are the core organizing concepts, and the chapter discus-
sions that place them in information-rich contexts give those concepts greater
meaning. After visiting multiple topics in history, math, and science, we are
now poised to use those discussions to explore further the three principles
of learning.

ENGAGING RESILIENT PRECONCEPTIONS
All of the chapters in this volume address common preconceptions that

students bring to the topic of focus. Principle one from How People Learn
suggests that those preconceptions must be engaged in the learning process,
and the chapters suggest strategies for doing so. Those strategies can be
grouped into three approaches that are likely to be applicable across a broad
range of topics.

1. Draw on knowledge and experiences that students commonly bring to the class-
room but are generally not activated with regard to the topic of study.
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This technique is employed by Lee, for example, in dealing with stu-
dents’ common conception that historical change happens as an event. He
points out that students bring to history class the everyday experience of
“nothing much happening” until an event changes things. Historians, on the
other hand, generally think of change in terms of the state of affairs. Change
in this sense may include, but is not equivalent to, the occurrence of events.
Yet students have many experiences in which things change gradually—
experiences in which “nothing happening” is, upon reflection, a
mischaracterization. Lee suggests, as an example, students might be asked
to “consider the change from a state of affairs in which a class does not trust
a teacher to one in which it does. There may be no event that could be
singled out as marking the change, just a long and gradual process.”

There are many such experiences on which a teacher could draw, such
as shifting alliances among friends or a gradual change in a sports team’s
status with an improvement in performance. Each of these experiences has
characteristics that support the desired conception of history. Events are
certainly not irrelevant. A teacher may do particular things that encourage
trust, such as going to bat for a student who is in a difficult situation or
postponing a quiz because students have two other tests on the same day.
Similarly, there may be an incident in a group that changes the dynamic,
such as a less popular member winning a valued prize or taking the blame
for an incident to prevent the whole group from being punished. But in
these contexts students can see, perhaps with some guided discussion, that
single events are rarely the sole explanation for the state of affairs.

It is often the case that students have experiences that can support the
conceptions we intend to teach, but instructional guidance is required to
bring these experiences to the fore. These might be thought of as “recessive”
experiences. In learning about rational number, for example, it is clear that
whole-number reasoning—the subject of study in earlier grades—is domi-
nant for most students (see Chapter 7). Yet students typically have experi-
ence with thinking about percents in the context of sale items in stores,
grades in school, or loading of programs on a computer. Moss’s approach to
teaching rational number as described in Chapter 7 uses that knowledge of
percents to which most students have easy access as an alternative path to
learning rational number. She brings students’ recessive understanding of
proportion in the context of reasoning about percents to the fore and strength-
ens their knowledge and skill by creating multiple contexts in which propor-
tional reasoning is employed (pipes and tubes, beakers, strings). As with
events in history, students do later work with fractions, and that work at
times presents them with problems that involve dividing a pizza or a pie into
discrete parts—a problem in which whole-number reasoning often domi-
nates. Because a facility with proportional reasoning is brought to bear,
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however, the division of a pie no longer leads students so easily into whole-
number traps.

Moss reinforces proportional reasoning by having students play games
in which fractions (such as 1/

4
) must be lined up in order of size with deci-

mals (such as .33) and percents (such as 40 percent). A theme that runs
throughout the chapters of this volume, in fact, is that students need many
opportunities to work with a new or recessive concept, especially when
doing so requires that powerful preconceptions be overturned or modified.

Bain, for example, writes about students’ tendency to see “history” and
“the past” as the same thing: “No one should think that merely pointing out
conceptual distinctions through a classroom activity equips students to make
consistent, regular, and independent use of these distinctions. Students’ hab-
its of seeing history and the past as the same do not disappear overnight.”
Bain’s equivalent of repeated comparisons of fractions, decimals, and per-
cents is the ever-present question regarding descriptions and materials: is
this “history-as-event”—the description of a past occurrence—or “history-as-
account”—an explanation of a past occurrence. Supporting conceptual change
in students requires repeated efforts to strengthen the new conception so
that it becomes dominant.

2. Provide opportunities for students to experience discrepant events that allow
them to come to terms with the shortcomings in their everyday models.

Relying on students’ existing knowledge and experiences can be diffi-
cult in some instances because everyday experiences provide little if any
opportunity to become familiar with the phenomenon of interest. This is
often true in science, for example, where the subject of study may require
specialized tools or controlled environmental conditions that students do
not commonly encounter.

In the study of gravity, for example, students do not come to the class-
room with experiences that easily support conceptual change because grav-
ity is a constant in their world. Moreover, experiences they have with other
forces often support misconceptions about gravity. For example, students
can experience variation in friction because most have opportunities to walk
or run an object over such surfaces as ice, polished wood, carpeting, and
gravel. Likewise, movement in water or heavy winds provide experiences
with resistance that many students can easily access. Minstrell found his
students believed that these forces with which they had experience explained
why they did not float off into space (see Chapter 11). Ideas about buoyancy
and air pressure, generally not covered in units on gravity, influenced these
students’ thinking about gravity. Television images of astronauts floating in
space reinforced for the students the idea that, without air to hold things
down, they would simply float off.
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Minstrell posed to his students a question that would draw out their
thinking. He showed them a large frame from which a spring scale hung and
placed an object on the scale that weighed 10 pounds. He then asked the
students to consider a situation in which a large glass dome would be placed
over the scale and all the air forced out with a vacuum pump. He asked the
students to predict (imprecisely) what would happen to the scale reading.
Half of Minstrell’s students predicted that the scale reading would drop to
zero without air; about a third thought there would be no effect at all on the
scale reading; and the remainder thought there would be a small change.
That students made a prediction and the predictions differed stimulated en-
gagement. When the experiment was carried out, the ideas of many students
were directly challenged by the results they observed.

In teaching evolution, Stewart and colleagues found that students’ ev-
eryday observations led them to underestimate the amount of variation in
common species. In such cases, student observations are not so much “wrong”
as they are insufficiently refined. Scientists are more aware of variation be-
cause they engage in careful measurement and attend to differences at a
level of detail not commonly noticed by the lay person. Stewart and col-
leagues had students count and sort sunflower seeds by their number of
stripes as an easy route to a discrepant event of sorts. The students discov-
ered there is far more variation among seeds than they had noticed. Unless
students understand this point, it will be difficult for them to grasp that
natural selection working on natural variation can support evolutionary
change.

While discrepant events are perhaps used most commonly in science,
Bain suggests they can be used productively in history as well (see Chapter
4). To dislodge the common belief that history is simply factual accounts of
events, Bain asked students to predict how people living in the colonies
(and later in the United States) would have marked the anniversary of
Columbus’s voyage 100 years after his landing in 1492 and then each hun-
dred years after that through 1992. Students wrote their predictions in jour-
nals and were then given historical information about the changing Columbian
story over the 500-year period. That information suggests that the first two
anniversaries were not really marked at all, that the view of Columbus’s
“discovery of the new world” as important had emerged by 1792 among
former colonists and new citizens of the United States, and that by 1992 the
Smithsonian museum was making no mention of “discovery” but referred to
its exhibit as the “Columbian Exchange.” If students regard history as the
reporting of facts, the question posed by Bain will lead them to think about
how people might have celebrated Columbus’s important discovery, and not
whether people would have considered the voyage a cause for celebration
at all. The discrepancy between students’ expectation regarding the answer
to the question and the historical accounts they are given in the classroom

How Students Learn: Mathematics in the Classroom

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11101


PULLING THREADS 573

lecture cannot help but jar the conception that history books simply report
events as they occurred in the past.

3. Provide students with narrative accounts of the discovery of (targeted) knowl-
edge or the development of (targeted) tools.

What we teach in schools draws on our cultural heritage—a heritage of
scientific discovery, mathematical invention, and historical reconstruction.
Narrative accounts of how this work was done provide a window into change
that can serve as a ready source of support for students who are being asked
to undergo that very change themselves. How is it that the earth was discov-
ered to be round when nothing we casually observe tells us that it is? What
is place value anyway? Is it, like the round earth, a natural phenomenon that
was discovered? Is it truth, like e = mc2, to be unlocked? There was a time, of
course, when everyday notions prevailed, or everyday problems required a
solution. If students can witness major changes through narrative, they will
be provided an opportunity to undergo conceptual change as well.

Stewart and colleagues describe the use of such an approach in teach-
ing about evolution (see Chapter 12). Darwin’s theory of natural selection
operating on random variation can be difficult for students to grasp. The
beliefs that all change represents an advance toward greater complexity and
sophistication and that changes happen in response to use (the giraffe’s
neck stretching because it reaches for high leaves, for example) are wide-
spread and resilient. And the scientific theory of evolution is challenged
today, as it was in Darwin’s time, by those who believe in intelligent de-
sign—that all organisms were made perfectly for their function by an intelli-
gent creator. To allow students to differentiate among these views and un-
derstand why Darwin’s theory is the one that is accepted scientifically, students
work with three opposing theories as they were developed, supported, and
argued in Darwin’s day: William Paley’s model of intelligent design, Jean
Baptiste de Lamarck’s model of acquired characteristics based on use, and
Darwin’s theory of natural selection. Students’ own preconceptions are gen-
erally represented somewhere in the three theories. By considering in some
depth the arguments made for each theory, the evidence that each theorist
relied upon to support his argument, and finally the course of events that led
to the scientific community’s eventually embracing Darwin’s theory, stu-
dents have an opportunity to see their own ideas argued, challenged, and
subjected to tests of evidence.

Every scientific theory has a history that can be used to the same end.
And every scientific theory was formulated by particular people in particular
circumstances. These people had hopes, fears, and passions that drove their
work. Sometimes students can understand theories more readily if they learn
about them in the context of those hopes, fears, and passions. A narrative
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that places theory in its human context need not sacrifice any of the techni-
cal material to be learned, but can make that material more engaging and
meaningful for students.

The principle, of course, does not apply only to science and is not
restricted to discovery. In mathematics, for example, while some patterns
and relationships were discovered, conventions that form our system of
counting were invented. As the mathematics chapters suggest, the use of
mathematics with understanding—the engagement with problem solving and
strategy use displayed by the best mathematics students—is undermined
when students think of math as a rigid application of given algorithms to
problems and look for surface hints as to which algorithm applies. If stu-
dents can see the nature of the problems that mathematical conventions
were designed to solve, their conceptions of what mathematics is can be
influenced productively.

Historical accounts of the development of mathematical conventions
may not always be available. For purposes of supporting conceptual change,
however, fictional story telling may do just as well as history. In Teaching as
Story Telling, Egan1  relates a tale that can support students’ understanding of
place value:

A king wanted to count his army. He had five clueless counse-
lors and one ingenious counselor. Each of the clueless five tried to
work out a way of counting the soldiers, but came up with meth-
ods that were hopeless. One, for example, tried using tally sticks to
make a count, but the soldiers kept moving around, and the count
was confused. The ingenious counselor told the king to have the
clueless counselors pick up ten pebbles each. He then had them
stand behind a table that was set up where the army was to march
past. In front of each clueless counselor a bowl was placed. The
army then began to march past the end of the table.

As each soldier went by, the first counselor put one pebble into
his bowl. Once he had put all ten pebbles into the bowl, he scooped
them up and then continued to put one pebble down for each sol-
dier marching by the table. He had a very busy afternoon, putting
down his pebbles one by one and then scooping them up when all
were in the bowl. Each time he scooped up the ten pebbles, the
clueless counselor to his left put one pebble into her bowl [gender
equity]. When her ten pebbles were in her bowl, she too scooped
them out again, and continued to put one back into the bowl each
time the clueless counselor to her right picked his up.

The clueless counselor to her left had to watch her through the
afternoon, and he put one pebble into his bowl each time she picked
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hers up. And so on for the remaining counselors. At the end of the
afternoon, the counselor on the far left had only one pebble in his
bowl, the next counselor had two, the next had seven, the next had
six and the counselor at the other end of the table, where the sol-
diers had marched by, had three pebbles in his bowl. So we know
that the army had 12,763 soldiers. The king was delighted that his
ingenious counselor had counted the whole army with just fifty
pebbles.2

When this story is used in elementary school classrooms, Egan encourages
the teacher to follow up by having the students count the class or some
other, more numerous objects using this method.

The story illustrates nicely for students how the place-value system al-
lows the complex problem of counting large numbers to be made simpler.
Place value is portrayed not as a truth but as an invention. Students can then
change the base from 10 to other numbers to appreciate that base 10 is not
a “truth” but a “choice.” This activity supports students in understanding that
what they are learning is designed to make number problems raised in the
course of human activity manageable.

That imaginative stories can, if effectively designed, support conceptual
change as well as historical accounts is worth noting for another reason: the
fact that an historical account is an account might be viewed as cause for
excluding it from a curriculum in which the nature of the account is not the
subject of study. Historical accounts of Galileo, Newton, or Darwin written
for elementary and secondary students can be contested. One would hope
that students who study history will come to understand these as accounts,
and that they will be presented to students as such. But the purpose of the
accounts, in this case, is to allow students to experience a time when ideas
that they themselves may hold were challenged and changed, and that pur-
pose can be served even if the accounts are somewhat simplified and their
contested aspects not treated fully.

ORGANIZING KNOWLEDGE AROUND
CORE CONCEPTS

In the Fish Is Fish story discussed in Chapter 1, we understand quite
easily that when the description of a human generates an image of an up-
right fish wearing clothing, there are some key missing concepts: adapta-
tion, warm-blooded versus cold-blooded species, and the difference in mo-
bility challenges in and out of water. How do we know which concepts are
“core?” Is it always obvious?

The work of the chapter authors, as well as the committee/author dis-
cussions that supported the volume’s development, provides numerous in-
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sights about the identification of core concepts. The first is observed most
explicitly in the work of Peter Lee (see Chapter 2): that two distinct types of
core concepts must be brought to the fore simultaneously. These are con-
cepts about the nature of the discipline (what it means to engage in doing
history, math, or science) and concepts that are central to the understanding
of the subject matter (exploration of the new world, mathematical functions,
or gravity). Lee refers to these as first-order (the discipline) and second-
order (the subject) concepts. And he demonstrates very persuasively in his
work that students bring preconceptions about the discipline that are just as
powerful and difficult to change as those they bring about the specific sub-
ject matter.

For teachers, knowing the core concepts of the discipline itself—the
standards of evidence, what constitutes proof and disproof, and modes of
reasoning and engaging in inquiry—is clearly required. This requirement is
undoubtedly at the root of arguments in support of teachers’ course work in
the discipline in which they will teach. But that course work will be a blunt
instrument if it focuses only on second-order knowledge (of subject) but not
on first-order knowledge (of the discipline). Clarity about the core concepts
of the discipline is required if students are to grasp what the discipline—
history, math, or science—is about.

For identifying both first- and second-order concepts, the obvious place
to turn initially is to those with deep expertise in the discipline. The con-
cepts that organize experts’ knowledge, structure what they see, and guide
their problem solving are clearly core. But in many cases, exploring expert
knowledge directly will not be sufficient. Often experts have such facility
with a concept that it does not even enter their consciousness. These “expert
blind spots” require that “knowledge packages”3 —sets of related concepts
and skills that support expert knowledge—become a matter for study.

A striking example can be found in Chapter 7 on elementary mathemat-
ics. For those with expertise in mathematics, there may appear to be no
“core concept” in whole-number counting because it is done so automati-
cally. How one first masters that ability may not be accessible to those who
did so long ago. Building on the work of numerous researchers on how
children come to acquire whole-number knowledge, Griffin and Case’s4

research conducted over many years suggests a core conceptual structure
that supports the development of the critical concept of quantity. Similar
work has been done by Moss and Case5  (on the core conceptual structure
for rational number) and by Kalchman, Moss, and Case6  (on the core con-
ceptual structure for functions). The work of Case and his colleagues sug-
gests the important role cognitive and developmental psychologists can play
in extending understanding of the network of concepts that are “core” and
might be framed in less detail by mathematicians (and other disciplinary
experts).
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The work of Stewart and his colleagues described in Chapter 12 is an-
other case in which observations of student efforts to learn help reshape
understanding of the package of related core concepts. The critical role of
natural selection in understanding evolution would certainly be identified as
a core concept by any expert in biology. But in the course of teaching about
natural selection, these researchers’ realization that students underestimated
the variation in populations led them to recognize the importance of this
concept that they had not previously identified as core. Again, experts in
evolutionary biology may not identify population variation as an important
concept because they understand and use the concept routinely—perhaps
without conscious attention to it. Knowledge gleaned from classroom teach-
ing, then, can be critical in defining the connected concepts that help sup-
port core understandings.

But just as concepts defined by disciplinary experts can be incomplete
without the study of student thinking and learning, so, too, the concepts as
defined by teachers can fall short if the mastery of disciplinary concepts is
shallow. Liping Ma’s study of teachers’ understanding of the mathematics of
subtraction with regrouping provides a compelling example. Some teachers
had little conceptual understanding, emphasizing procedure only. But as
Box 13-1 suggests, others attempted to provide conceptual understanding
without adequate mastery of the core concepts themselves. Ma’s work pro-
vides many examples (in the teaching of multidigit multiplication, division
of fractions, and calculation of perimeter and area) in which efforts to teach
for understanding without a solid grasp of disciplinary concepts falls short.

SUPPORTING METACOGNITION
A prominent feature of all of the chapters in this volume is the extent to

which the teaching described emphasizes the development of metacognitive
skills in students. Strengthening metacognitive skills, as discussed in Chapter
1, improves the performance of all students, but has a particularly large
impact on students who are lower-achieving.7

Perhaps the most striking consistency in pedagogical approach across
the chapters is the ample use of classroom discussion. At times students
discuss in small groups and at times as a whole class; at times the teacher
leads the discussion; and at times the students take responsibility for ques-
tioning. A primary goal of classroom discussion is that by observing and
engaging in questioning, students become better at monitoring and ques-
tioning their own thinking.

In Chapter 5 by Fuson, Kalchman, and Bransford, for example, students
solve problems on the board and then discuss alternative approaches to
solving the same problem. The classroom dialogue, reproduced in Box 13-2,
supports the kind of careful thinking about why a particular problem-solv-
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BOX 13-1 Conceptual Explanation Without Conceptual Understanding

Liping Ma explored approaches to teaching subtraction with regrouping (problems
like 52 – 25, in which subtraction of the 5 ones from the 2 ones requires that the
number be regrouped). She found that some teachers took a very procedural ap-
proach that emphasized the order of the steps, while others emphasized the con-
cept of composing a number (in this case into 5 tens and 2 ones) and decomposing
a number (into 4 tens and 12 ones). Between these two approaches, however,
were those of teachers whose intentions were to go beyond procedural teaching,
but who did not themselves fully grasp the concepts at issue. Ma8  describes one
such teacher as follows:

Tr. Barry, another experienced teacher in the procedurally directed
group, mentioned using manipulatives to get across the idea that
“you need to borrow something.” He said he would bring in quarters
and let students change a quarter into two dimes and one nickel: “a
good idea might be coins, using money because kids like money. . . .
The idea of taking a quarter even, and changing it to two dimes and
a nickel so you can borrow a dime, getting across that idea that you
need to borrow something.”

There are two difficulties with this idea. First of all, the mathemati-
cal problem in Tr. Barry’s representation was 25 – 10, which is not a
subtraction with regrouping. Second, Tr. Barry confused borrowing
in everyday life—borrowing a dime from a person who has a
quarter—with the “borrowing” process in subtraction with regroup-
ing—to regroup the minuend by rearranging within place values. In
fact, Tr. Barry’s manipulative would not convey any conceptual
understanding of the mathematical topic he was supposed to teach.

Another teacher who grasps the core concept comments on the idea of “bor-
rowing” as follows:9

Some of my students may have learned from their parents that you
“borrow one unit form the tens and regard it as 10 ones”. . . . I will
explain to them that we are not borrowing a 10, but decomposing a
10. “Borrowing” can’t explain why you can take a 10 to the ones
place. But “decomposing” can. When you say decomposing, it
implies that the digits in higher places are actually composed of
those at lower places. They are exchangeable . . . borrowing one unit
and turning it into 10 sounds arbitrary. My students may ask me how
can we borrow from the tens? If we borrow something, we should
return it later on.
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ing strategy does or does not work, as well as the relative benefits of differ-
ent strategies, that can support skilled mathematics performance.

Similarly, in the science chapters students typically work in groups, and
the groups question each other and explain their reasoning. Box 13-3 repro-
duces a dialogue at the high school level that is a more sophisticated version
of that among young mathematics students just described. One group of
students explains to another not only what they concluded about the evolu-
tionary purpose of different coloration, but also the thinking that led them to
that conclusion and the background knowledge from an earlier example
that supported their thinking. The practice of bringing other knowledge to
bear in the reasoning process is at the heart of effective problem solving, but
can be difficult to teach directly. It involves a search through one’s mental
files for what is relevant. If teachers simply give students the knowledge to
incorporate, the practice and skill development of doing one’s own mental
search is shortchanged. Group work and discussions encourage students to
engage actively in the mental search; they also provide examples from other
students’ thinking of different searches and search results. The monitoring of
consistency between explanation and theory that we see in this group dis-
cussion (e.g., even if the male dies, the genes have already been passed
along) is preparation for the kind of self-monitoring that biologists do rou-
tinely.

Having emphasized the benefits of classroom discussion, however, we
offer two cautionary notes. First, the discussion cited in the chapters is guided
by teachers to achieve the desired learning. Using classroom discussion well
places a substantial burden on the teacher to support skilled discussion,
respond flexibly to the direction the discussion is taking, and steer it produc-
tively. Guiding discussion can be a challenging instructional task. Not all
questions are good ones, and the art of questioning requires learning on the
part of both students and teachers.10  Even at the high school level, Bain (see
Chapter 4) notes the challenge a teacher faces in supporting good student
questioning:

Sarena Does anyone notice the years that these were
written? About how old are these accounts?
Andrew?

Andrew They were written in 1889 and 1836. So some
of them are about 112 years old and others are
about 165 years old.

Teacher Why did you ask, Sarena?

Sarena I’m supposed to ask questions about when the
source was written and who wrote it. So, I’m
just doing my job.
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BOX 13-2 Supporting Skilled Questioning and Explaining in
Mathematics Problem Solving

In the dialogue below, young children are learning to explain their thinking
and to ask questions of each other—skills that help students guide their
own learning when those skills are eventually internalized as self-ques-
tioning and self-explaining.

Teacher Maria, can you please explain to your friends in
the class how you solved the problem?

Maria Six is bigger than 4, so I can’t subtract here
[pointing] in the ones. So I have to get more
ones. But I have to be fair when I get more
ones, so I add ten to both my numbers. I add a
ten here in the top [pointing] to change the 4 to
a 14, and I add a ten here in the bottom in the
tens place, so I write another ten by my 5. So
now I count up from 6 to 14, and I get 8 ones
(demonstrating by counting “6, 7, 8, 9, 10, 11,
12, 13, 14” while raising a finger for each word
from 7 to 14). And I know my doubles, so 6 plus
6 is 12, so I have 6 tens left. [She thought, “1 +
5 = 6 and 6 + ? = 12 tens. Oh, I know 6 + 6 = 12,
so my answer is 6 tens.”]

Jorge I don’t see the other 6 in your tens. I only see
one 6 in your answer.

Maria The other 6 is from adding my 1 ten to the 5
tens to get 6 tens. I didn’t write it down.

Andy But you’re changing the problem. How do you
get the right answer?

Maria If I make both numbers bigger by the same
amount, the difference will stay the same.
Remember we looked at that on drawings last
week and on the meter stick.

Michelle Why did you count up?

Palincsar11  has documented the progress of students as they move be-
yond early, unskilled efforts at questioning. Initially, students often parrot
the questions of a teacher regardless of their appropriateness or develop
questions from a written text that repeat a line of the text verbatim, leaving
a blank to be filled in. With experience, however, students become produc-
tive questioners, learning to attend to content and ask genuine questions.
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Maria Counting down is too hard, and my mother
taught me to count up to subtract in first
grade.

Teacher How many of you remember how confused we
were when we first saw Maria’s method last
week? Some of us could not figure out what
she was doing even though Elena and Juan
and Elba did it the same way. What did we do?

Rafael We made drawings with our ten-sticks and
dots to see what those numbers meant. And
we figured out they were both tens. Even
though the 5 looked like a 15, it was really just
6. And we went home to see if any of

our parents could explain it to us, but we had
to figure it out ourselves and it took us 2 days.

Teacher Yes, I was asking other teachers, too. We
worked on other methods too, but we kept
trying to understand what this method was
and why it worked.

And Elena and Juan decided it was clearer if
they crossed out the 5 and wrote a 6, but Elba
and Maria liked to do it the way they learned at
home. Any other questions or comments for
Maria? No? Ok, Peter, can you explain your
method?

Peter Yes, I like to ungroup my top number when I
don’t have enough to subtract everywhere. So
here I ungrouped 1 ten and gave it to the 4
ones to make 14 ones, so I had 1 ten left here.
So 6 up to 10 is 4 and 4 more up to 14 is 8, so
14 minus 6 is 8 ones. And 5 tens up to 11 tens
is 6 tens. So my answer is 68.

Carmen How did you know it was 11 tens?

Peter Because it is 1 hundred and 1 ten and that is
11 tens.

Similarly, students’ answers often cannot serve the purpose of clarifying
their thinking for classmates, teachers, or themselves without substantial
support from teachers. The dialogue in Box 13-4 provides an example of a
student becoming clearer about the meaning of what he observed as the
teacher helped structure the articulation.
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BOX 13-3 Questioning and Explaining in High School Science

The teacher passes out eight pages of case materials and asks the stu-
dents to get to work. Each group receives a file folder containing the task
description and information about the natural history of the ring-necked
pheasant. There are color pictures that show adult males, adult females,
and young. Some of the pages contain information about predators, mat-
ing behavior, and mating success. The three students spend the remain-
der of the period looking over and discussing various aspects of the case.
By the middle of the period on Tuesday, this group is just finalizing their
explanation when Casey, a member of another group, asks if she can talk
to them.

Casey What have you guys come up with? Our group
was wondering if we could talk over our ideas
with you.

Grace Sure, come over and we can each read our
explanations.

These two groups have very different explanations. Hillary’s group is
thinking that the males’ bright coloration distracts predators from the nest,
while Casey’s group has decided that the bright coloration confers an
advantage on the males by helping them attract more mates. A lively
discussion ensues.

Ed But wait, I don’t understand. How can dying be
a good thing?

Jerome Well, you have to think beyond just survival of
the male himself. We think that the key is the
survival of the kids. If the male can protect his

Group work and group or classroom discussions have another potential
pitfall that requires teacher attention: some students may dominate the dis-
cussion and the group decisions, while others may participate little if at all.
Having a classmate take charge is no more effective at promoting
metacognitive development—or supporting conceptual change—than hav-
ing a teacher take charge. In either case, active engagement becomes unnec-
essary. One approach to tackling this problem is to have students rate their
group effort in terms not only of their product, but also of their group dy-
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namics.12  Another approach, suggested by Bain (Chapter 4), is to have stu-
dents pause during class discussion to think and write individually. As stu-
dents discussed the kind of person Columbus was, Bain asked them to write
a 2-minute essay before discussing further. Such an exercise ensures that
students who do not engage in the public discussion nonetheless formulate
their ideas.

Group work is certainly not the only approach to supporting the devel-
opment of metacognitive skills. And given the potential hazard of group

young and give them a better chance of
surviving then he has an advantage.

Claire Even if he dies doing it?

Grace Yeah, because he will have already passed on
his genes and stuff to his kids before he dies.

Casey How did you come up with this? Did you see
something in the packets that we didn’t see?

Grace One reason we thought of it had to do with the
last case with the monarchs and viceroy.

Hillary Yeah, we were thinking that the advantage isn’t
always obvious and sometimes what is good
for the whole group might not seem like it is
good  for one bird or butterfly or whatever.

Jerome We also looked at the data in our packets on
the number of offspring  fathered by brighter
versus duller males. We saw that the brighter
males  had a longer bar.

Grace See, look on page 5, right here.

Jerome So they had more kids, right?

Casey We saw that table too, but we thought that it
could back up our idea that the brighter males
were able to attract more females as mates.

The groups agree to disagree on their interpretation of this piece of
data and continue to compare their explanations on other points. While it
may take the involvement of a teacher to consider further merits of each
explanation given the data, the students’ group work and dialogue pro-
vide the opportunity for constructing, articulating, and questioning a sci-
entific hypothesis.
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BOX 13-4 Guiding Student Observation and Articulation

In an elementary classroom in which students were studying the behav-
ior of light, one group of students observed that light could be both re-
flected and transmitted by a single object. But students needed consider-
able support from teachers to be able to articulate this observation in a
way that was meaningful to them and to others in the class:

Ms. Lacey I’m wondering. I know you have a lot of see-
through things, a lot of reflect things. I’m
wondering how you knew it was see-through.

Kevin It would shine just, straight through it.

Ms. Lacey What did you see happening?

Kevin We saw light going through the . . .

Derek Like if we put light . . .

Kevin Wherever we tried the flashlight, like right
here, it would show on  the board.

Derek And then I looked at the screen [in front of and
to the side of the object], and then it showed a
light on the screen. Then he said, come here,
and look at the back. And I saw the back, and it
had another [spot].

Ms. Lacey Did you see anything else happening at the
material?

Kevin We saw sort of a little reflection, but we, it had
mostly just see-through.

Derek We put, on our paper we put reflect, but we
had to decide which one to put it in. Because it
had more of this than more of that.

Ms. Lacey Oh. So you’re saying that some materials . . .

Derek Had more than others . . .

dynamics, using some individual approaches to supporting self-monitoring
and evaluation may be important. For example, in two experiments with
students using a cognitive tutor, Aleven and Koedinger13  asked one group to
explain the problem-solving steps to themselves as they worked. They found
that students who were asked to self-explain outperformed those who spent
the same amount of time on task but did not engage in self-explanation on
transfer problems. This was true even though the common time limitation
meant that the self-explainers solved fewer problems.
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Another individual approach to supporting metacognition is suggested
by Stewart (Chapter 12). Students record their thinking early in the treatment
of a new topic and refer back to it at the unit’s end to see how it has
changed. This brings conscious attention to the change in a student’s own
thinking. Similarly, the reflective assessment aspect of the ThinkerTools cur-
riculum described in Chapter 1 shifts students from group inquiry work to
evaluating their group’s inquiry individually. The results in the ThinkerTools
case suggest that the combination of group work and individual reflective

Ms. Lacey  . . . are doing, could be in two different
categories.

Derek Yeah, because some through were really
reflection and see-through together, but we
had to decide which.

[Intervening discussion takes place about
other data presented by this group that had to
do with seeing light reflected or transmitted as
a particular color, and how that color com-
pared with the color of the object.]

[at the end of this group’s reporting, and after
the students had been encouraged to identify
several claims that their data supported
among those that had been presented previ-
ously by other groups of students]

Ms. Lacey There was something else I was kinda con-
vinced of. And that was  that light can do two
different things. Didn’t you tell me it went both
see-through and reflected?

Kevin & Derek Yeah. Mm-hmm.

Ms. Lacey So do you think you might have another claim
there?

Derek Yeah.

Kevin Light can do two things with one object.

Ms. Lacey More than one thing?

Kevin Yeah.

Ms. Lacey Okay. What did you say?

Kevin & Derek Light can do two things with one object.

See Chapter 10 for the context of this dialogue.
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assessment is more powerful that the group work alone (see Box 9-5 in
Chapter 9).

PRINCIPLES OF LEARNING AND CLASSROOM
ENVIRONMENTS

The principles that shaped these chapters are based on efforts by re-
searchers to uncover the rules of the learning game. Those rules as we
understand them today do not tell us how to play the best instructional
game. They can, however, point to the strengths and weakness of instruc-
tional strategies and the classroom environments that support those strate-
gies. In Chapter 1, we describe effective classroom environments as learner-
centered, knowledge-centered, assessment-centered, and community-
centered. Each of these characteristics suggests a somewhat different focus.
But at the same time they are interrelated, and the balance among them will
help determine the effectiveness of instruction.

A community-centered classroom that relies extensively on classroom
discussion, for example, can facilitate learning for several reasons (in addi-
tion to supporting metacognition as discussed above):

• It allows students’ thinking to be made transparent—an outcome that
is critical to a learner-centered classroom. Teachers can become familiar
with student ideas—for example, the idea in Chapter 7 that two-thirds of a
pie is about the same as three-fourths of a pie because both are missing one
piece. Teachers can also monitor the change in those ideas with learning
opportunities, the pace at which students are prepared to move, and the
ideas that require further work—key features of an assessment-centered class-
room.

• It requires that students explain their thinking to others. In the course
of explanation, students develop a disposition toward productive interchange
with others (community-centered) and develop their thinking more fully
(learner-centered). In many of the examples of student discussion through-
out this volume—for example, the discussion in Chapter 2 of students exam-
ining the role of Hitler in World War II—one sees individual students becom-
ing clearer about their own thinking as the discussion develops.

• Conceptual change can be supported when students’ thinking is chal-
lenged, as when one group points out a phenomenon that another group’s
model cannot explain (knowledge-centered). This happens, for example, in
a dialogue in Chapter 12 when Delia explains to Scott that a flap might
prevent more detergent from pouring out, but cannot explain why the amount
of detergent would always be the same.
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At the same time, emphasizing the benefits of classroom discussion in
supporting effective learning does not imply that lectures cannot be excel-
lent pedagogical devices. Who among us have not been witness to a lecture
from which we have come away having learned something new and impor-
tant? The Feynman lectures on introductory physics mentioned in Chapter 1,
for example, are well designed to support learning. That design incorpo-
rates a strategy for accomplishing the learning goals described throughout
this volume.14 Feynman anticipates and addresses the points at which stu-
dents’ preconceptions may be a problem. Knowing that students will likely
have had no experiences that support grasping the size of an atom, he
spends time on this issue, using familiar references for relative size that
allow students to envision just how tiny an atom is.

But to achieve effective learning by means of lectures alone places a
major burden on the teacher to anticipate student thinking and address prob-
lems effectively. To be applied well, this approach is likely to require both a
great deal of insight and much experience on the part of the teacher. With-
out such insight and experience, it will be difficult for teachers to anticipate
the full range of conceptions students bring and the points at which they
may stumble.15 While one can see that Feynman made deliberate efforts to
anticipate student misconceptions, he himself commented that the major
difficulty in the lecture series was the lack of opportunity for student ques-
tions and discussion, so that he had no way of really knowing how effective
the lectures were. In a learner-centered classroom, discussion is a powerful
tool for eliciting and monitoring student thinking and learning.

In a knowledge-centered classroom, however, lectures can be an impor-
tant accompaniment to classroom discussion—an efficient means of consoli-
dating learning or presenting a set of concepts coherently. In Chapter 4, for
example, Bain describes how, once students have spent some time working
on competing accounts of the significance of Columbus’s voyage and struggled
with the question of how the anniversaries of the voyage were celebrated,
he delivers a lecture that presents students with a description of current
thinking on the topic among historians. At the point at which this lecture is
delivered, student conceptions have already been elicited and explored.
Because lectures can play an important role in instruction, we stress once
again that the emphasis in this volume on the use of discussion to elicit
students’ thinking, monitor understanding, and support metacognitive de-
velopment—all critical elements of effective teaching—should not be mis-
taken for a pedagogical recommendation of a single approach to instruction.
Indeed, inquiry-based learning may fall short of its target of providing stu-
dents with deep conceptual understanding if the teacher places the full bur-
den of learning on the activities. As Box 1-3 in Chapter 1 suggests, a lecture
that consolidates the lessons of an activity and places the activity in the
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conceptual framework of the discipline explicitly can play a critical role in
supporting student understanding.

How the balance is struck in creating a classroom that functions as a
learning community attentive to the learners’ needs, the knowledge to be
mastered, and assessments that support and guide instruction will certain
vary from one teacher and classroom to the next. Our hope for this volume,
then, is that its presentations of instructional approaches to addressing the
key principles from How People Learn will support the efforts of teachers to
play their own instructional game well. This volume is a first effort to elabo-
rate those findings with regard to specific topics, but we hope it is the first of
many such efforts. As teachers and researchers become more familiar with
some common aspects of student thinking about a topic, their attention may
begin to shift to other aspects that have previously attracted little notice. And
as insights about one topic become commonplace, they may be applied to
new topics.

Beyond extending the reach of the treatment of the learning principles
of How People Learn within and across topics, we hope that efforts to incor-
porate those principles into teaching and learning will help strengthen and
reshape our understanding of the rules of the learning game. With physics
as his topic of concern, Feynman16  talks about just such a process: “For a
long time we will have a rule that works excellently in an overall way, even
when we cannot follow the details, and then some time we may discover a
new rule. From the point of view of basic physics, the most interesting
phenomena are of course in the new places, the places where the rules do
not work—not the places where they do work! That is the way in which we
discover new rules.”

We look forward to the opportunities created for the evolution of the
science of learning and the professional practice of teaching as the prin-
ciples of learning on which this volume focuses are incorporated into class-
room teaching.

NOTES
1. Egan, 1986.
2. Story summarized by Kieran Egan, personal communication, March 7, 2003.
3. Liping Ma’s work, described in Chapter 1, refers to the set of core concepts and

the connected concepts and knowledge that support them as “knowledge
packages.”

4. Griffin and Case, 1995.
5. Moss and Case, 1999.
6. Kalchman et al., 2001.
7. Palincsar, 1986; White and Fredrickson, 1998.
8. Ma, 1999, p. 5.
9. Ma, 1999, p. 9.
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10. Palincsar, 1986.
11. Palincsar, 1986.
12. National Research Council, 2005 (Stewart et al., 2005, Chapter 12).
13. Aleven and Koedinger, 2002.
14. For example, he highlights core concepts conspicuously. In his first lecture, he

asks, “If, in some cataclysm, all of scientific knowledge were to be destroyed,
and only one sentence passed on to the next generation of creatures, what
statement would contain the most information in the fewest words? I believe it
is the atomic hypothesis that all things are made of atoms—little particles that
move around in perpetual motion, attracting each other when they are a little
distance apart, but repelling upon being squeezed into one another.

15. Even with experience, the thinking of individual students may be unantici-
pated by the teacher.

16. Feynman, 1995, p. 25.
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Index

A
Absolute difference, 311
Absolute thinking

as additive, 311
Access to someone who saw for himself

and textbook claims and the nature
of sources, 93

Accounts, 59–61
of Colombian voyages, 192–193
different ideas about historical, 38–39
historical, 59–61
substantiated, 87

Actions at a distance
exploring similarities and differences

between, 492–493
Activity A1 worksheet, 483
Adams, John, 185
Adaptive reasoning, 218
Adding It Up, 218, 233, 241
Additive reasoning, 311, 321

absolute thinking as, 311
Addressing preconceptions, 399–403
Advantage

selective, 542
Adventure

sense of, 71
Alternative instructional approaches, 321–

322

American Association for the Advancement
of Science

guidelines of, 398
textbook review by, 16

Analogs of number representations that
children can actively explore
hands-on, 292–296

Rosemary’s Magic Shoes game, 295–
296

Skating Party game, 292–295
Analogy to understand the benchmark

experience, 489–490
Ancient views of the Earth as flat or round,

196–197
the Atlas Farnese, 196
the story of Eratosthenes and the

Earth’s circumference, 196–197
Anglo-Saxons, 117
Anselm, St., 46
Arguments

inadequacies in, 403
Ashby, Rosalyn, 79–178, 591
Assessment-centered, 415
Assessment-centered classroom

environments, 13, 16–17, 267, 290,
292, 555–558

examples of students’ critiques of
their own Darwinian explanations,
558

This index includes the text of the full version of How Students Learn: History,
Mathematics, and Science, which can be found on the CD attached to the
back cover.
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sample exam question, and
consistency between models, 557

Assessment systems
DIAGNOSER, 513

Assessments. See also Self-assessment
formative, 16–17, 193
preinstruction, 495
“reflective,” 412

Assumptions
substantive, 127

Atlas Farnese, 194, 196
Authority, 135
Award cards, 293
Awareness of how you are thinking, 135

B
Bain, Robert B., 23, 179–213, 591
Balzac, Honoré de, 236
Barry, Tr., 578
Barton, Keith, 45, 160
Beakers

a new approach to rational-number
learning, 322–324

Bede, St., 58
Bell jar experiment, 484, 489
Benchmark lessons, 493–501, 512n

weighing in a vacuum, 480–483
Black box approaches, 519–520
“Blastoff!”, 298
Boorstin, Daniel, 198
Bradford, William, 84–88, 96, 108–111
Bransford, John D., 1–28, 217–256, 397–

419, 569–592
Brendan, St., 71, 82–83, 128–164, 171

believing historical films when people
in them behave as we would, 151

the deficit past, 154–155
explanation of words in the story,

132–133
finding out what kind of story it is,

150–164
grid for evidence on, 173–174
the question, 128
the shrinking past, 160–161
the story, 128–133
thinking from inside the story, 144–

150
thinking from outside the story, 138–

144

voyage of, 130–132
working things out for ourselves,

133–138
Bridging

from understanding magnetic action
at a distance to understanding
gravitational action at a distance,
508–510

“Bridging context,” 324, 359
Briefing sheets, 87, 91

and textbook claims and the nature
of sources, 88–89

Building conceptual understanding,
procedural fluency, and
connected knowledge, 364–369

3-slot schema for graphing a line,
370–371

developmental model for learning
functions, 365–366

level 0, 364, 367
level 1, 367–368
level 2, 368
level 3, 369

Building on children’s current
understandings, 267–279, 359–364

administering and scoring the
Number Knowledge Test, 271

mental counting line structure, 276
Number Knowledge Test, 268–269
understandings of 4-year-olds, 270–

273
understandings of 5-year-olds, 273–

274
understandings of 6-year-olds, 274–

277
understandings of 7-year-olds, 277–

278
understandings of 8-year-olds, 278–

279
Building resourceful, self-regulating

problem solvers, 371–373
an integrated understanding of

functions, 372

C
Cambridge History Project, 177n
Canada

teaching history in, 151
“Candles” (unit), 456
Card games, 335–337
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Carey, Susan, 592
Cartier, Jennifer L., 23, 515–565, 592
Cartoons, 143, 145–146, 148, 546–549

Peanuts, 309
sequencing activity, 546–547

Case, Robbie, 23
Causal models to account for patterns

providing students with opportunities
to develop, 524

Causes, 49–54
exploring the logic of the situation,

50–51
modeling, 562n
as necessary conditions, 53
“underlying,” 35

Central conceptual structure hypothesis
bidimensional, for number, 279
dependence of future learning on the

acquisition of this structure, 264–
265

importance of structure to successful
performance on a range of tasks,
262–263

for whole number, 261–262, 275
Change, 43–46, 61

direction of, 44
large-scale patterns of, 68
pace of, 44
as progressive, rational, and limited in

time, 45
Cheese and the Worms, 185
Children

engaging their emotions and
capturing their imagination,
embedding knowledge
constructed in their hopes, fears,
and passions, 296–298

exposing to major forms of number
representation, 283–288

as “natural” scientists, 421
Children passing the Number Knowledge

Test
and measures of arithmetic learning

and achievement, 265
and numerical transfer tests, 263

Children’s Math World project, 219, 223,
227, 229, 231, 236, 241

Children’s thinking after instruction, 338–
340

China
teaching of mathematics in, 15–16,

18–19

Christian geography, 200
Circle Land, 286–287
Claims

backing up, 58
Classroom environments

genetic inquiry in, 529–534
principles of learning and, 586–588

Classroom environments that support
learning with understanding, 555–
560

assessment-centered classroom
environments, 13, 16–17, 267, 290,
292, 555–558

community-centered classroom
environments, 13, 17–20, 301,
559–560

knowledge-centered classroom
environments, 13–16, 267, 284,
292, 555, 587

learner-centered classroom
environments, 13–14, 266, 292,
555

Clumping information, 69
Codes

cracking, 335
Cognitive Tutor Algebra, 355, 391
Colombian Exposition, 208
Columbus’ voyages, 189–193, 195, 199,

204–205, 207–208, 587
Common preconceptions about

mathematics, 220–222
as “following rules” to guarantee

correct answers, 220–221
as learning to compute, 220
only some people have the ability to

“do math,” 221–222
Community-centered classroom

environments, 13, 17–20, 301, 415,
559–560

learning with understanding, 559–560
organizing knowledge around core

concepts, 18–19
Comparing number worlds and control

group outcomes, 304
Competence developed by students, 1
Comprehensive Test of Basic Skills, 412
Computing with percent, 329
Concepts

substantive, 61–65
Concepts of History and Teaching

Approaches (Project CHATA), 38–
39, 51–53, 56, 62, 82
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Conceptual change, 400–403
student conceptions of knowledge

generation and justification in
science, 402–403

Conceptual explanations
without conceptual understanding,

578
Conceptual structure

bidimensional central, for number,
279

central, for whole number, 261–262,
275

Conceptual understanding, 218
of light, 423–424

Conceptualization
children’s problems with, 137

Connected knowledge, 15–16
Conquest of Paradise, 208
Consistency

internal and external, 518
between models, 557

Constitution, 61
Context

evidence in, 167
Continuity, 44
“Controlled experiments,” 402
Core concepts, 589

organizing knowledge around, 18–19
organizing procedural knowledge and

skills around, 19
Corne, Michael Felice, 90
“Counterintuitive” intuitions

in history, 33, 42
Counting schema, 272
Counting words

as the crucial link between the world
of quantity and the world of
formal symbols, 280–281

order of, 274
Course outcomes, 181
Curriculum

mandates in, 181
from Modeling for Understanding in

Science Education, 555, 559
“openings” in, 245

Curriculum for moving students through
the model, 373–375

example lessons, 375–389
learning slope, 378–381
learning y-intercept, 381–384
operating on y = x2, 384–389
sample computer screen, 386

suggested curricular sequence, 376–377
two different student solutions to an

open-ended problem, 385
Cut-and-paste, 167
Cycles of investigation

development of community
knowledge across cycles of
investigation, 460

development of conceptual
frameworks for light, 462–467

in guided-inquiry science, 427
supporting learning through, 460–467

D
Dances with Wolves (film), 151
Darwin, Charles, 542–545, 550–551, 556,

573
Darwin’s model of natural selection in high

school evolution, 540–554
attending to significant disciplinary

knowledge, 543–544
attending to student knowledge, 544–

545
cartoon sequencing activity, 546–547
explanation written by students on

the monarch/viceroy case, 553
instruction, 545–554
laying the groundwork, 545–549
understanding, 550–552

Data
interpretation of, 403

Data tables from initial recording and with
revisions for analysis, 445

Debugging
emphasizing, 239–240

Decimals, 332–334
magnitude and order in decimal

numbers, 333–334
and stopwatches, 332–333

Decisions
as to what knowledge to teach, 259–

267, 281–282
Deficit past, 154–155
Dependence, 234, 352
Design of instruction

bridging instructional activities, 231
learning environments and, 12–20

Development
of community knowledge across

cycles of investigation, 460
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of Darwin’s model of natural
selection in high school evolution,
540–554

of physical concepts in infancy, 4
of understanding through model-

based inquiry, 515–565
Development of conceptual frameworks

for light, 462–467
community knowledge from the first

cycle of investigation (first-hand),
463

community knowledge from the
fourth cycle of investigation (first-
hand), 467

community knowledge from the
second cycle of investigation
(first-hand), 464

community knowledge from the third
cycle of investigation (second-
hand), 465

Development of mathematical proficiency,
232–236

inaccessible algorithms, 236
instruction to support mathematical

proficiency, 233–236
a learning path from children’s math

worlds for single-digit addition
and subtraction, 234–235

Developmental model
for learning functions, 365–366

DIAGNOSER assessment system, 513
Diagnosing preconceptions in physics, 404
Diagnostic assessment, 491–492
Diagnostic questions, 478
Dialogue

internal and external, as support for
metacognition, 241

Direction of change, 44
Disciplinary knowledge, 32

attending to significant, 543–544
“second-order,” 61

Disconfirmation, 415
Discrepant events

providing students with opportunities
to experience, 571–573

Discussion
guided, 579, 582

DiSessa, Andrea, 5
Distinguishing among kinds of textbook

claims
and the nature of sources, 101–102

DNA, 517, 526
“Doing,” 32, 48
“Doing math”

only some people having the ability
for, 221–222

Donovan, M. Suzanne, 1–28, 397–419,
569–590, 592

Double-blind procedure, 302
Dragon Quest game, 297–298

E
Earth as flat or round, ancient views of,

196–197
Earth’s circumference

the story of Eratosthenes and, 196–197
Effects of gravity, 510–511

explaining falling bodies, 510–511
explaining motion of projectiles, 511

Egan, Kieran, 592
8-year-olds understandings of, 278–

279
Elementary Science Study

Optics unit, 422, 468
“Embroidering” stories, 153
Empathy, 46–49, 65, 112
Encouraging math talk, 228–231
Encouraging the use of metacognitive

processes to facilitate knowledge
construction, 300–302

Engage phase, 428–434
Engagement of students’ preconceptions

and building on existing
knowledge, 4–5, 223–231

allowing multiple strategies, 223–227
designing bridging instructional

activities, 231
encouraging math talk, 228–231

Engagement of students’ problem-solving
strategies, 225–227

Equipment Manager, 435
Eratosthenes, 194, 196–197
European geographic knowledge

the great interruption in, 200–201
Everyday concepts

history and, 33–61
of scientific methods, argumentation,

and reasoning, 400
of scientific phenomena, 399–400
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Evidence, 41, 54–58, 61, 65, 112, 120, 165
in context, 167
cutting-and-pasting, 167
finding out about the past from

received information, 56–58
historical, 134
information as, 166
in isolation, 167
model of progression in ideas about,

166–167
pictures of the past, 166
questions at the heart of using, 124
testimony as, 166

Experiments on Plant Hybridization, 529
Experts remembering considerably more

relevant detail than novices in
tasks within their domain, 8–9

Explanations, 156
of words in the story, 132–133

Explanatory power, 518
External consistency, 518
External migration, 68
External testing, 181

F
Face value

going beyond, 134
Factual knowledge

manipulating, 79–80
Falling bodies

explaining, 510–511
Familiarity, 389–390

the dangers of what appears to be
familiar, 122

Feynman, Richard, 24, 403
Filling the world with people

unit on, 169
First contacts

whether St. Brendan sailed from
Ireland to America, unit on, 171

why the Norse colonists didn’t stay in
America, unit on, 172

First cycle of investigation
community knowledge from, 463

Fish story (Fish Is Fish), 2–12, 398, 414, 575
5-year-olds understandings of, 273–

274
engaging prior understandings in, 4–5

essential role of factual knowledge
and conceptual frameworks in
understanding, 6–9

importance of self-monitoring in, 10–
12

“Flat earth,” 189–199
accounts of Colombian voyages, 192–

193
ancient views of the Earth as flat or

round, 196–197
Formative assessments, 16–17, 193
Forms of representation

4-year-olds understandings of, 270–
273

and the lands in which they appear,
286

Fourth cycle of investigation
community knowledge from, 467

Fourth graders’ initial ideas about light, 431
Fractions and mixed representations of

rational numbers, 334–337
card games, 335–337
cracking the code, 335
fractions and equivalencies, 334–335

Framework of How People Learn
seeking a balanced classroom

environment, 242–243
Frank, Anne, 109
Fundamental physics, 24
Fundamentalism, 176
Fuson, Karen C., 23, 217–256, 593
Future real-world experience, 390

G
Galapagos tortoises, 558
GCK. See Genetics Construction Kit
General ideas, 162
General meaning of slope, 363
Generalizing and textbook claims and the

nature of sources, 102–107
Genetics, 516–540

attending to students’ existing
knowledge, 517–526

metacognition and engaging students
in reflective scientific practice,
538–540

simple dominance homework
assignment, 539

student inquiry in, 526–538
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Genetics Construction Kit (GCK), 534–537
homework assignment, example of

student work on, 535
Genetics content

learning, 524–526
Geographic knowledge

Christian, 200
the great interruption in European,

200–201
Gibbon, Edward, 57
GIsML Community of Practice, 470n
“Globalization,” 169
Gould, Stephen Jay, 198
Gragg, Charles, 236
Gravity and its effects, 477–511

activity A1 worksheet, 483
analogy to magnetism, 508
bridging from understanding

magnetic action at a distance to
understanding gravitational action
at a distance, 508–510

building an analogy to understand
the benchmark experience, 489–
490

consensus discussion and summary of
learning, 490–491

defining, 477–510
diagnostic assessment, 491–492
exploring similarities and differences

between actions at a distance,
492–493

factors on which the magnitude of
gravitational force depends, 501–
508

finding out about students’ initial
ideas, 477–478

identifying preconceptions, 478–480
opportunities for students to suggest

and test related hypotheses, 484–
489

twisting a torsion bar, 493–501
weighing in a vacuum, 480–483

Grids, 173–175
Griffin, Sharon, 23, 257–308, 593
Group work, 582–584
Guess My Number, 300
Guidance of student observation and

articulation
supporting metacognition, 584–585

Guided inquiry, 495, 579, 582

H
“H(ac)”, 187–188
Hall, G. Stanley, 177n
Halsall, William Formsby, 87
Help

seeking and giving, 241–242
Heuristic for teaching and learning science

through guided inquiry, 427–455
cycle of investigation in guided-

inquiry science, 427
data tables from initial recording and

with revisions for analysis, 445
engage phase, 428–434
fourth graders’ initial ideas about

light, 431
investigate phase, 438–443
investigative setup for studying how

light interacts with solid objects,
437

prepare-to-investigate phase, 434–438
prepare-to-report phase, 443–448
report phase, 448–455

“H(ev)”, 187
Higher-order knowledge structure, 276
Historical accounts, 59–61

different ideas about, 38–39
not copies of the past, 62–63
“problematizing,” 184–188

Historical evidence, 134
Historical films, 151
Historical lines of thinking, 182
Historical problems

transforming topics and objectives
into, 181–199

History, 29–213
applying the principles of How People

Learn in teaching high school
history, 179–213

“counterintuitive” intuitions in, 33, 42
“doing,” 32, 48
implications for planning, 164–176
periods in, 42–43
putting principles into practice, 79–

178
the reality test, 80–84
significance in, 45
that “works,” 65–72
understanding, 31–77
working with evidence, 84–119
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History and everyday ideas, 33–61
differences in the power of ideas, 36–

37
grounds for caution, 40–41
ideas we need to address, 41–61
the progression of ideas, 37–40
understanding the past and

understanding the discipline of
history, 34–35

“History-as-account,” 187–188, 203
“History-as-event,” 187, 203
“History-considerate” learning

environments
designing, 199–209
the great interruption in European

geographic knowledge, 200–201
with tools for historical thinking, 199–

209
History of the Decline and Fall of the

Roman Empire, The, 57
Hitler, Adolf, 34–35, 59–60, 586
Holt, John, 218
How People Learn: Brain, Mind, Experience,

and School, 1, 25, 31–32
cautions in, 199
design characteristics described in,

12–13, 20–22, 257–258, 359
key findings of, 79–80, 171–173, 176
research summarized in, 241
violating principles of, 319

How People Learn framework, 411–415
assessment-centered, 415
community-centered, 415
knowledge-centered, 414
learner-centered, 414
reflective assessment in ThinkerTools,

412–413
Humor

enlivening learning and helping build
positive relationships with
students, 501

I
Ideas, 41–61

accounts, 59–61
cause, 49–54
change, 43–46
empathy, 46–49
evidence, 54–58
progression of, 37–40

providing students with opportunities
to make public, 524

“second-order,” 32–33
time, 41–43

Inaccessible algorithms, 236
Information, 41, 124, 166

“clumping,” 69
finding, 121
from history, 499
from the history of science, 499
inquiry based, 470n
storing in memory, 180

Inheritance
meiotic processes governing, 528

Initial models
providing students with opportunities

to revise in light of anomalous
data and in response to critiques
of others, 524

Inquiry based information, 470n
Instruction, 545–554

to support mathematical proficiency,
233–236

Instruction in rational number, 319–340
alternative instructional approaches,

321–322
children’s thinking after instruction,

338–340
curriculum overview, 325
fractions and mixed representations

of rational numbers, 334–337
introduction of decimals, 332–334
introduction to percents, 325–332
knowledge network, 340
pie charts and a part-whole

interpretation of rational numbers,
320–321

pipes, tubes, and beakers, 322–324
Instruction that supports metacognition,

239–242
emphasizing debugging, 239–240
internal and external dialogue as

support for metacognition, 241
seeking and giving help, 241–242

Instructional lines of thinking, 182
Intellectual roles for students to adopt, 436
Internal consistency, 518
Internal migration, 68
Interpretation

anchoring themes in historical, 186
of data, 403
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Interpreting sources in context and
textbook claims and the nature of
sources, 100

Intuitions in history
“counterintuitive,” 33, 42

Invented procedures, 329
Investigate phase, 438–443
Investigative setup for studying how light

interacts with solid objects, 437
Irving, Washington, 208
Isolation

evidence in, 167
Italy

instruction about payment for work,
66–67

J
Japan

teacher professional development in,
244

Jasper Woodbury series, 391
Jefferson, Thomas, 62–63
Johnson, Lyndon, 62
Jonassen, David, 181
Judgments

avoiding expressing, 498

K
Kalchman, Mindy, 23, 217–256, 351–393,

593
Knowledge. See also Prior understandings

building learning paths and networks
of, 258

connected, 15–16
disciplinary, 32, 543–544
handed down through generations,

93–94
manipulating factual, 79–80
“metahistorical,” 32
organized, 462
“second-order,” 32–33
secret, 72
student, 258, 544–545
of what it means to “do science,”

403–407
Knowledge-centered classroom

environments, 13–16, 267, 284,
292, 414, 555, 587

Knowledge claims
in genetics, assessing, 523

Knowledge networks, 340
new concepts of numbers and new

applications, 312–316
new symbols, meanings, and

representations, 313–314
reconceptualizing the unit and

operations, 315
the subconstructs, 314–315
understanding numbers as

multiplicative relations, 316
“Knowledge packages,” 588n
Knowledge that should be taught, 259–267

central conceptual structure
hypothesis, 262–265

children passing the Number
Knowledge Test, 263, 265

measures of arithmetic learning and
achievement, 265

numerical transfer tests, 263
Koedinger, Kenneth R., 351–393, 593–594
Kraus, Pamela, 23, 401, 475–513, 594
KWL charts, 199, 428–430

L
Lamarck, Jean Baptiste de, 550, 573
Larson, Gary, 217
Learner-centered classroom environments,

13–14, 266, 292, 414, 555
Learning

an active process, 476
humor enlivening, 501

Learning environments and the design of
instruction, 12–20

assessment-centered classroom
environments, 13, 16–17, 267, 290,
292, 555–558

community-centered classroom
environments, 13, 17–20, 301,
559–560

knowledge-centered classroom
environments, 13–16, 267, 284,
292, 555, 587

learner-centered classroom
environments, 13–14, 266, 292,
414, 555

perspectives on, 13
Learning goals for prekindergarten through

grade 2, 284–285
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Learning paths of knowledge
building, 258
from children’s math worlds, for

single-digit addition and
subtraction, 234–235

Learning principles
engaging resilient preconceptions,

569–575
organizing knowledge around core

concepts, 575–577
principles of learning and classroom

environments, 586–588
pulling threads, 569–590
revisiting the three, 567–590
supporting metacognition, 577–586

Learning rational number, 341–343
metacognition, 342
network of concepts, 341–342
prior understandings, 341

Learning with understanding, 559–560
supporting knowledge use in new

situations, 7
Leather boats, 139–141
Lee, Peter J., 23, 31–178, 576, 594
Lesson Study Research Group, 244
Life and Voyages of Christopher Columbus,

The, 208
“Light catchers,” 437. See also Study of light
Linkage

of formal mathematical understanding
to informal reasoning, 354–355

Lionni, Lee, 2, 4. See also Fish story
Logic of the situation

exploring, 50–51
Lowenthal, David, 185

M
Ma, Liping, 15–16, 18–19, 577–578
Magic Shoes game, 295–296
Magnetism

analogy to gravity, 508
Magnitude

in decimal numbers, 333–334
of gravitational force, 501–508

Magnusson, Shirley J., 421–474, 594
Management of student activities, 435
Mandates

curricular, 181
Manipulation of factual knowledge, 79–80

Maps, 86, 140–141
conceptual, 188

Marfan’s syndrome, 533
Math words, 230
Mathematical proficiency, 218

adaptive reasoning, 218
conceptual understanding, 218
procedural fluency, 218
productive disposition, 218
strategic competence, 218

Mathematical thinkers
building, 258

Mathematical understanding, 217–256
computation without comprehension,

218
developing mathematical proficiency,

232–236
learning to use student thinking in

teacher video clubs, 244
lesson study cycle, 244
a metacognitive approach enabling

student self-monitoring, 236–243
suggested reading list for teachers,

256
teachers as curriculum designers, 245
teachers engaging students’

preconceptions, 219–231
understanding requiring factual

knowledge and conceptual
frameworks, 231–236

Mathematics, 215–393
as about quantity, not about numbers,

280
as “following rules” to guarantee

correct answers, 220–221
fostering the development of whole

number sense, 257–308
as learning to compute, 220
pipes, tubes, and beakers in, 309–349
teaching and learning functions, 351–

393
Mathematics instruction

in China, 15–16, 18–19
Mayflower, The

arrival of, 84, 87, 90, 92–95
Medawar, Peter, 406
Media

technical and passive, 496
Meiotic processes

governing inheritance, 528
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Mendel, Gregor, 406, 410, 517, 523, 525–
529, 539

model of simple dominance, 528
Mental counting line structure, 276
Metacognition, 10, 238, 407–411, 577–586

conceptual explanation without
conceptual understanding, 578

engaging students in reflective
scientific practice, 538–540

in evaluating the methods used in an
experiment, 408–409

guiding student observation and
articulation, 584–585

of light, 426
in Mendel’s contribution to genetics,

410
questioning and explaining in high

school science, 582–583
and rational number, 319, 342
supporting, 577–586
supporting skilled questioning and

explaining in mathematics
problem solving, 580–581

Metacognitive approaches to instruction, 2,
80

enabling student self-monitoring,
236–243

framework of How People Learn, 242–
243

instruction that supports
metacognition, 239–242

seeking a balanced classroom
environment, 242–243

supporting student and teacher
learning through a classroom
discourse community, 237

Metacognitive monitoring, 10
“Metahistorical” knowledge, 32
“Metamemory,” 11
Migration

internal and external, 68
Miller Analogies Test, 404
“Mindtools,” 181
Minstrell, James, 23, 401, 475–513, 594–595
Minus Mouse, 290–291
Misconceptions

about momentum, 5
about the scientific method, 414

“Missing-term problem,” 317
Misunderstandings, 310

Model-based inquiry, 515–565
classroom environments that support

learning with understanding, 555–
560

developing Darwin’s model of natural
selection in high school evolution,
540–554

genetics, 516–540
Modeling for Understanding in Science

Education (MUSE), 516, 548
curricula from, 555, 559

Models, 402–403
consistency between, 557
of progression in ideas about

evidence, 166–167
providing students with opportunities

to revise in light of anomalous
data and in response to critiques
of others, 524

Monarch/viceroy case
Darwinian explanation written by

students on the, 553
Monitoring. See also Self-monitoring

metacognitive, 10
“Monster-free zone,” 295
Moss, Joan, 23, 309–349, 595
Motion of projectiles

explaining, 511
Multiple strategies, 223–227

allowing, 223–227
engaging students’ problem-solving

strategies, 225–227
three subtraction methods, 224

Multiplicative operators, 315
Multiplicative reasoning

relative thinking as, 311
MUSE. See Modeling for Understanding in

Science Education
Mystery

sense of, 71
“Mystery Object Challenge,” 329

N
Narrative accounts

providing students with, 573–575
National Council of Teachers of

Mathematics (NCTM), 221, 241,
259

standards from, 305
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National Curriculum for History, 177n
National Research Council, 1, 218, 221, 233

guidelines of, 398
National Science Education Standards,

455, 561
Native Americans, 41, 82–83, 98, 105–106
NCTM. See National Council of Teachers of

Mathematics
Necessary conditions

causes as, 53
Neighborhood Number Line, 295
Networks

of concepts, and rational number,
341–342

of knowledge, building, 258
New conceptualizations

understanding numbers as
multiplicative relations, 316

New ideas
development of, 470n

New rules
discovering, 588

New symbols
meanings, and representations, 313–

314
“Nothing” happening, 43
Number Knowledge Test, 260, 264, 267–

269, 271, 279, 304–305
administering and scoring, 271

Number worlds, 282–302
encouraging the use of metacognitive

processes to facilitate knowledge
construction, 300–302

engaging children’s emotions and
capturing their imagination, 296–
298

exposing children to major forms of
number representation, 283–288

the five forms of representation and
the lands in which they appear,
286

learning goals for prekindergarten
through grade 2, 284–285

providing analogs of number
representations that children can
actively explore hands-on, 292–
296

providing opportunities for children
to acquire computational fluency
as well as conceptual
understanding, 298–300

providing opportunities to link the
“world of quantity” with the
“world of counting numbers” and
the “world of formal symbols,”
288–292

Number Worlds program, 262, 283, 287–
288, 292, 296, 300, 302–303

Numeric answers, 372

O
Object Land, 284–286, 288
“One world” revolution, 169
“Openings” in the curriculum, 245
Opportunities

to develop causal models to account
for patterns, 524

to experience discrepant events that
allow them to come to terms with
the shortcomings in their everyday
models, 571–573

to make ideas public, 524
providing students with, 523–524
to revise initial models in light of

anomalous data and in response
to critiques of others, 524

to search for patterns in data, 524
to use patterns in data and models to

make predictions, 524
to use prior knowledge to pose

problems and generate data, 523–
524

Opportunities for children to acquire
computational fluency as well as
conceptual understanding, 298–300

Sky Land Blastoff activity, 298–299
Opportunities for students to suggest and

test related hypotheses in
elaboration activities, 484–489

inverted cylinder in a cylinder of
water, 485–486

inverted glass of water, 484–485
leaky bottle, 486
water and air in a straw, 486–488
weighing” an object in a fluid

medium, 488–489
Opportunities to link the “world of

quantity” with the “world of
counting numbers” and the “world
of formal symbols,” 288–292

Minus Mouse, 290–291
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Plus Pup, 288–290
Plus Pup meets Minus Mouse, 291–292

Optics kit, 422, 468
Order

of counting words, 274
in decimal numbers, 333–334

Organized knowledge, 462
Organizing knowledge around core

concepts
subtraction with regrouping, 18–19

Origin of Species, 551
Outcomes of courses, 181

P
Pace of change, 44
Paley, William, 550–551, 573
Palincsar, Annemarie Sullivan, 23, 421–474,

595
Park, Lesley, 455
Part-whole relation, 314
Pass it on (game), 105
Passive media, 496
Passmore, Cynthia M., 23, 515–565, 595
Past

finding out about, 56–58
pictures of, 166

Patterns in data
providing students with opportunities

to search for, 524
providing students with opportunities

to use to make predictions, 524
Payment for work in history, 66–67
Peanuts cartoon, 309
Pedagogical words

meaningful, 230
People going their separate ways

unit on, 170
Percents, 325–332, 340

computing with, 329
in everyday life, 325
“families” of, 331
invented procedures, 329
on number lines, 326–329
pipes and tubes, as representations

for fullness, 325–326
starting from, 322–324
string challenges, 329–331

Percy, George, 122
Performance

need to assist, 203

Periods in history, 42–43
Physics

fundamental, 24
instruction in, 16–17

Picture Land, 285–287, 297
Pie charts and a part-whole interpretation

of rational numbers, 320–321
Pilgrim Fathers and Native Americans, 71,

84–119
exploring the basis for textbook

claims and the nature of sources,
84–111

grid for evidence on, 173, 175
ideas, beliefs, and attitudes, 112–118
language of sources, interpretation,

and other perspectives, 118–119
teacher questions, 112–113, 115
whether people thought like us in the

past, 117
Pipes

a new approach to rational-number
learning, 322–324

a representation for fullness, 325–326
Planning, 164–176

of progression in ideas about
evidence, 166–167, 174–175

unit on filling the world with people,
169

unit on first contacts, whether St.
Brendan sailed from Ireland to
America, 171

unit on first contacts, why the Norse
colonists didn’t stay in America,
172

unit on people going their separate
ways, 170

Plausibility, 138
Plus Pup, 288–290

meeting Minus Mouse, 291–292
Pocahontas (Disney film), 122
Pory, John, 84–85, 90, 97, 100–104, 106–

108
Positive relationships

humor helping to build with students,
501

Possible Worlds, 406
Power

explanatory and predictive, 518
Preconceptions, 1, 55, 399–403

about people, society, and how the
world works, 127–128

conceptual change, 400–403
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drawing on knowledge and
experiences that students
commonly bring to the classroom
but are generally not activated
with regard to the topic of study,
569–571

engaging resilient, 569–575
everyday concepts of scientific

methods, argumentation, and
reasoning, 400

everyday concepts of scientific
phenomena, 399–400

importance of students’, 79
providing opportunities for students

to experience discrepant events
that allow them to come to terms
with the shortcomings in their
everyday models, 571–573

providing students with narrative
accounts of the discovery of
(targeted) knowledge or the
development of (targeted) tools,
573–575

Preconceptions about how we know about
the past, 121–123

common student assumptions about
how we know of the past, 123

dangers of what appears to be
familiar, 122

Predictive power, 518
Preinstruction assessments, 495
Prepare-to-investigate phase, 434–438
Prepare-to-report phase, 443–448
Principles of How People Learn applied to

teaching high school history, 179–
213

designing a “history-considerate”
learning environment, 199–209

transforming topics and objectives
into historical problems, 181–199

Prior understandings
development of physical concepts in

infancy, 4
engaging, 4–5
of light, 425
misconceptions about momentum, 5
providing students with opportunities

to use to pose problems and
generate data, 523–524

and rational number, 341
Problem solvers

building, 258

“Problematizing” historical accounts, 184–188
Procedural fluency, 218
Productive disposition, 218
Proficiency

mathematical, 218
Progress, 44–45
Progression of ideas, 37–40

different ideas about historical
accounts, 38–39

Progressive change, 45
Project CHATA. See Concepts of History

and Teaching Approaches
Projectiles

explaining motion of, 511
Proportion, 234, 340
Pump Algebra Tutor. See Cognitive Tutor

Algebra

Q
Quantity, 234

schema for, 272
Question Poser, 300–301
Questioning and explaining in high school

science
supporting metacognition, 582–583

Questions, 128
diagnostic, 478
at the heart of using evidence, 124
many as yet unanswered, 492
teachers modeling for students, 477

Quotient interpretation, 314

R
Rational change, 45
Rational number, 341–343

metacognition, 342
network of concepts, 341–342
prior understandings, 341

Rational-number learning
and the knowledge network, 312–316
metacognition and rational number, 319
new concepts of numbers and new

applications, 312–316
and the principles of How People

Learn, 312–319
students’ errors and misconceptions

based on previous learning, 316–
319
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Real-world experience
current and future, 390

Real-world words, 230
Reality test, 80–84

“7-year gap,” 82
Reciprocal teaching, 11
Reconceptualizing the unit and operations,

315
Recorder, 435
Reflective assessments, 412

in ThinkerTools, 412–413
Regrouping

subtraction with, 18–19
Relative thinking as multiplicative, 311
Relativism, 176
Reliability, 126
Religious practices, 113–118
Reporter, 301
Reporting phase, 427, 448–455
Representations, 372

anchoring themes in historical, 186
Reproductive success, 542
Revolution, 61

S
Sagan, Carl, 194, 196–197
Sales, Kirkpatrick, 208
Schemas

2-slot and 3-slot, 370
counting and quantity, 272

Schools Council History Project, 40, 177n
Science, 395–565

developing understanding through
model-based inquiry, 515–565

guided inquiry in the science
classroom, 475–513

information from the history of, 499
leaving many questions as yet

unanswered, 492
teaching to promote the development

of scientific knowledge and
reasoning about light at the
elementary school level, 421–474

unit on the nature of gravity and its
effects, 477–511

Science classrooms
guided inquiry in, 475–513

Scientific inquiry and How People Learn,
397–419

addressing preconceptions, 399–403

diagnosing preconceptions in physics,
404

the How People Learn framework,
411–415

knowledge of what it means to “do
science,” 403–407

Scientific method
misconceptions about, 414

Scissors-and-paste approach and textbook
claims and the nature of sources,
94

Searchers, The (film), 151
Second cycle of investigation

community knowledge from, 464
Second-hand investigation, 455–459
“Second-order” disciplinary concepts, 61,

73n
“Second-order” knowledge, 32–33, 41

acquisition of, 40–41
Secret knowledge, 72
Seeing for yourself and textbook claims

and the nature of sources, 93
Seixas, Peter, 151
Selective advantage, 542
Self-assessment, 12
Self-monitoring

importance of, 10–12
metacognitive monitoring, 10

Sensitivity
“7-year gap,” 82
7-year-olds understandings of, 277–

278
to students’ substantive assumptions,

127
Severin, Tim, 139, 142–143
Shemilt, Denis, 23, 56, 79–178, 595–596
Shrinking past, 160–161
Significance, 45

historical, 45
Simplicity, 389–390

6-year-olds understandings of, 274–
277

Skating Party game, 292–295
Skills

defining, 40
Sky Land, 286–287

Blastoff activity, 298–299
Smith, John, 122
Sources

access to someone who saw for
himself, 93

briefing sheet, 88–89
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distinguishing among kinds of claims,
101–102

generalizing, 102–107
getting behind the record to concerns

of the people who produced
them, 107–108

interpreting sources in context, 100
maintaining contact with an

eyewitness using knowledge
handed down through
generations, 93–94

the nature of, 84–111
scissors-and-paste approach, 94
seeing for yourself, 93
teacher questions, 92, 95–96, 99–101
trusting the source who was in a

position to know, 96
understanding the purpose of the

source, 96–99
understanding what is likely to get

recorded and under what
circumstances, 108–111

working out the facts from other
sources or available knowledge,
94–95

Splitting, 323
State of affairs

changes in, 44
Stearns, Peter, 210
Stewart, James, 23, 515–565, 596
“Stop-Start Challenge,” 333
Stopwatches

decimals and, 332–333
Stories

“embroidering,” 153
Strategic competence, 218
String challenges

guessing mystery objects, 329–331
Student assumptions about how we know

of the past, 123
Student conceptions

experimentation, 402
inadequacies in arguments, 403
interpretation of data, 403
of knowledge generation and

justification in science, 402–403
models, 402–403, 518

Student inquiry in genetics, 526–538
example of student work on a GCK

homework assignment, 535
genetic inquiry in the classroom, 529–

534

initial GCK population for the final
GCK inquiry, 537

meiotic processes governing
inheritance, 528

Mendel’s model of simple dominance,
528

Students’ errors and misconceptions based
on previous learning, 316–319

Students’ existing knowledge, 517–526
assessing knowledge claims in

genetics, 523
attending to, 544–545
black box, 520
building on and connecting, 258
learning genetics content, 524–526
providing students with learning

opportunities, 523–524
student conceptions of models, 518

Students’ preconceptions
importance of, 79

Study of light, 422–426
conceptual understanding, 423–424
metacognition, 426
prior knowledge, 425

Study of light through inquiry, 426–459
heuristic for teaching and learning

science through guided inquiry,
427–455

second-hand investigation, 455–459
Subconstructs

the many personalities of rational
number, 314–315

Subject-specific knowledge in effective
science instruction, 467–469

Substantiated accounts, 87
Substantive assumptions

sensitivity to students’, 127
Substantive concepts, 61–65

historical accounts not copies of the
past, 62–63

payment for work, 66–67
Subtraction with regrouping, 18–19
Supporting learning through cycles of

investigation, 460–467
Supporting skilled questioning and

explaining in mathematics
problem solving

supporting metacognition, 580–581
Supporting student and teacher learning

through a classroom discourse
community, 237
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T
Table of values to produce a function,

353–358
Teacher professional development in

Japan, 244
Teacher questions, 112–113, 115

and textbook claims and the nature
of sources, 92, 95–96, 99–101

Teachers’ conceptions and partial
understandings, 279–281

acquiring an understanding of
number as a lengthy, step-by-step
process, 280–281

counting words as the crucial link
between the world of quantity
and the world of formal symbols,
280–281

math as not about numbers, but
about quantity, 280

Teachers engaging students’
preconceptions, 219–231

common preconceptions about
mathematics, 220–222

engaging students’ preconceptions
and building on existing
knowledge, 223–231

Teaching
reciprocal, 11

Teaching and learning functions in
mathematics, 351–393

addressing the three principles, 359–
373

building conceptual understanding,
procedural fluency, and
connected knowledge, 364–369

building on prior knowledge, 359–
364

building resourceful, self-regulating
problem solvers, 371–373

linking formal mathematical
understanding to informal
reasoning, 354–355

making a table of values to produce a
function, 353–358

teaching functions for understanding,
373–389

teaching to achieve this kind of
understanding, 358–359

Teaching as Story Telling, 574
Teaching functions for understanding, 373–

389

Teaching mathematics in the primary
grades, 257–308

acknowledging teachers’ conceptions
and partial understandings, 279–
281

building on children’s current
understandings, 267–279

the case of number worlds, 282–302
comparing number worlds and

control group outcomes, 304
deciding what knowledge to teach,

259–267
defining the knowledge that should

be taught, 281–282
Teaching the rational number system, 309–

349
additive and multiplicative reasoning,

311
how students learn rational number,

341–343
instruction in rational number, 319–

340
rational-number learning and the

principles of How People Learn,
312–319

Teaching to promote the development of
scientific knowledge and
reasoning about light at the
elementary school level, 421–474

the role of subject-specific knowledge
in effective science instruction,
467–469

the study of light, 422–426
the study of light through inquiry,

426–459
supporting learning through cycles of

investigation, 460–467
Technical media, 496
Testimony, 41, 124, 135, 166
Testing

external, 181
Textbook claims

access to someone who saw for
himself, 93

briefing sheet, 88–89
distinguishing among kinds of claims,

101–102
generalizing, 102–107
getting behind the record to concerns

of the people who produced
them, 107–108

interpreting sources in context, 100
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maintaining contact with an
eyewitness using knowledge
handed down through
generations, 93–94

and the nature of sources, 84–111
scissors-and-paste approach, 94
seeing for yourself, 93
teacher questions, 92, 95–96, 99–101
trusting the source who was in a

position to know, 96
understanding the purpose of the

source, 96–99
understanding what is likely to get

recorded and under what
circumstances, 108–111

working out the facts from other
sources or available knowledge,
94–95

Themes, 44
anchoring in historical representation

and interpretation, 186
ThinkerTools, 407, 585
Third cycle of investigation

community knowledge from, 465
Third International Mathematics and

Science Study, 243
3-slot schema
for graphing a line, 370–371

Three subtraction methods, 224
Time, 41–43

change limited in, 45
periods in history, 43

Time lines, 129, 159
Timekeeper, 435
Torsion bar, 493–501
Transforming topics and objectives into

historical problems, 181–199
accounting for the “flat earth,” 189–

199
“problematizing” historical accounts,

184–188
Transmission errors, 123
Trusting the source who was in a position

to know
and textbook claims and the nature

of sources, 96
Truth

twisting, 105, 123
Tubes

a new approach to rational-number
learning, 322–324

a representation for fullness, 325–326

Turner, Frederick Jackson, 58
Twisting the truth, 105, 123

2-slot schemas, 370

U
“Underlying” causes, 35
Understanding

essential role of factual knowledge
and conceptual frameworks in,
6–9

experts remembering considerably
more relevant detail than novices
in tasks within their domain, 8–9

learning with understanding
supporting knowledge use in new
situations, 7

Understanding of number
a lengthy, step-by-step process, 280–

281
Understanding the purpose of the source

and textbook claims and the
nature of sources, 96–99

Understanding what is likely to get
recorded and under what
circumstances

and textbook claims and the nature
of sources, 108–111

Unit-level problem, 189–199
accounts of Colombian voyages, 192–

193
ancient views of the Earth as flat or

round, 196–197
Unit on the nature of gravity and its

effects, 477–511
United Kingdom

adjusting data from, 177n
Schools Council History Project, 40,

177n
Units

on filling the world with people, 169
on first contacts, whether St. Brendan

sailed from Ireland to America,
171

on first contacts, why the Norse
colonists didn’t stay in America,
172

on people going their separate ways,
170
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V
Verbal interpretations, 372
Visual proportional estimation

starting from, and halving and
doubling, 323–324

W
War (card game), 336
Warm-Up period, 298, 300
Water and air in a straw, 486–488
Website, 562n
“Weighing” an object in a fluid medium,

488–489
Weighing-in-a-vacuum situation, 484, 489
Whole number

central conceptual structure for, 261–
262, 275

Wilson, Suzanne M., 596
Wineburg, Samuel S., 100
Wisdom, 236, 238
Woodbury, Jasper, 391
Word Problems test, 264–265
Words

versus notations, 230
Words in stories

explaining, 132–133

Work
payment for in history, 66–67

Working out the facts from other sources
or available knowledge

and textbook claims and the nature
of sources, 94–95

Working things out for ourselves, 133–138
being aware of how we are thinking,

135
going beyond face value, 134
how far a leather boat could have

managed to sail, 139–141
Working through the task, 128–164
Working with evidence

Pilgrim Fathers and Native Americans,
84–119

preparing for the task, 121–128
the St. Brendan’s voyage task, 128–

164
World’s Fair of 1892, 208
Wrap-Up period, 301
Written Arithmetic test, 264–265

Y
Year-long historical questions, 184–188
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