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Foreword 
 
 

he Transportation Research Board’s Artificial Intelligence and Advanced Computing 
Committee (ABJ70) has as part of its mission to serve as a technical forum on the 

application of artificial intelligence (AI) to transportation problems, and to disseminate 
information about AI applications that is deemed credible and potentially useful to the 
transportation community. To this end, this Transportation Research Circular, created by 
members of ABJ70, provides six articles describing five general AI areas, namely, knowledge-
based systems, neural networks, fuzzy sets, genetic algorithms, and agent-based models. It is 
designed to serve as an informational resource for transportation practitioners and managers with 
respect to AI tools within these general areas.  

Each article, for its related AI paradigm, details the types of problems to which the 
paradigm is best suited, its strengths and weaknesses, example applications, and guidelines for its 
application. The articles are meant, as one of the authors states, as a sort of Cliff Notes for AI 
Applications in Transportation. In describing the state of the art vis a vis these areas of AI, it is 
hoped that better decisions will be made about what tools to choose, under what conditions and 
for what specific applications for a wide range of transportation problems. 
 

—Gary S. Spring, Chair 
TRB Artificial Intelligence and Advanced Computing Committee 

T 
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Artificial Intelligence Applications in Transportation 
 

ADEL W. SADEK 
University of Vermont 

 
 
 

t the turn of the 21st century, transportation professionals face challenges of increasing 
complexity. Transportation professionals are asked to meet the goals of providing safe, 

efficient, and reliable transportation while minimizing the impact on the environment and 
communities. This has turned out to be quite difficult given the constant increase in travel 
demand, fueled by economic development, and the ever-growing demands to do more with less. 
A partial listing of some of those challenges that transportation professionals face includes 
capacity problems, poor safety record, unreliability, environmental pollution, and wasted energy. 
Adding to the challenge is the fact that transportation systems are inherently complex systems 
involving a very large number of components and different parties, each having different and 
often conflicting objectives. 

In recent years, there has been increased interest among both transportation researchers 
and practitioners in exploring the feasibility of applying artificial intelligence (AI) paradigms to 
address some of the aforementioned problems in order to improve the efficiency, safety, and 
environmental-compatibility of transportation systems. AI researchers, especially in the 1950s 
and 1960s, often adopted lofty goals for the field such as the development of general-purpose 
problem solvers. As transportation researches and professionals, however, our objective in 
researching AI applications to transportation is much more modest. Our interest is primarily to 
utilize the tools and methods that the AI community has developed to address real transportation 
problems that have been quite challenging to solve using traditional and classical solution 
methods. Given this, we adopt the following definition for AI in this circular: AI refers to 
methods and approaches that mimic biologically intelligent behavior in order to solve problems 
that so far have been difficult to solve by classical mathematics. 
 
 
ARTIFICIAL INTELLIGENCE METHODS 
 
At the present time, AI methods can be divided into two broad categories: (a) symbolic AI, 
which focuses on the development of knowledge-based systems (KBS); and (b) computational 
intelligence, which includes such methods as neural networks (NN), fuzzy systems (FS), and 
evolutionary computing. A very brief introduction to these AI methods is given below, and each 
method is discussed in more detail in the different sections of this circular. 
 
Knowledge-Based Systems 
 
A KBS can be defined as a computer system capable of giving advice in a particular domain, 
utilizing knowledge provided by a human expert. A distinguishing feature of KBS lies in the 
separation behind the knowledge, which can be represented in a number of ways such as rules, 
frames, or cases, and the inference engine or algorithm which uses the knowledge base to arrive 
at a conclusion. 

A 
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Neural Networks 
 
NNs are biologically inspired systems consisting of a massively connected network of 
computational “neurons,” organized in layers (Figure 1). By adjusting the weights of the 
network, NNs can be “trained” to approximate virtually any nonlinear function to a required 
degree of accuracy. NNs typically are provided with a set of input and output exemplars. A 
learning algorithm (such as back propagation) would then be used to adjust the weights in the 
network so that the network would give the desired output, in a type of learning commonly 
called supervised learning. 
 
Fuzzy Systems 
 
Fuzzy set theory was proposed by Zadeh (1965) as a way to deal with the ambiguity associated 
with almost all real-world problems. Fuzzy set membership functions provide a way to show that 
an object can partially belong to a group. Classic set theory defines sharp boundaries between 
sets, which mean that an object can only be a member or a nonmember of a given set. Fuzzy 
membership functions allow for gradual transitions between sets and varying degrees of 
membership for objects within sets. Complete membership in a fuzzy function is indicated by a 
value of +1, while complete non-membership is shown by a value of 0. Partial membership is 
represented by a value between 0 and +1. 

Figure 2 shows an example of a fuzzy membership function defined for the set of 
“medium traffic volume” on a certain highway. In this example, traffic volumes between 800 and 
1,000 vehicles per hour (vph) fully belong to the medium traffic level set. Traffic volumes less 
than 400 vph or more than 1,400 vph would not be regarded as medium at all (membership 
function value = 0). However, values between 400 and 800 vph, or between 10,00 and 1,400 vph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1  A multilayer neural network. 
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FIGURE 1  Example of a fuzzy membership function for medium traffic volume. 
 
 
would have partial membership in the medium traffic level set. In a crisp set definition, on the 
other hand, only values between 800 and 1,000 vph would be regarded as medium, while all 
other values would not (for example, a traffic volume of 799 vph would not be regarded as a 
medium traffic level). The use of fuzzy set theory does not necessarily minimize uncertainty 
related to problem objectives or input values, but rather provides a standardized way to 
systematically capture and define ambiguity. 
 
Genetic Algorithms 
 
Genetic algorithms (GAs) are stochastic algorithms whose search methods are based on the 
principle of survival of the fittest. In recent years, GAs have been applied to a wide range of 
difficult optimization problems for which classical mathematical programming solution 
approaches were not appropriate. The basic idea behind GAs is quite simple. The procedure 
starts with a randomly generated initial population of individuals, where each individual or 
chromosome represents a potential solution to the problem under consideration. Each solution is 
evaluated to give some measure of its “fitness.” A new population is then formed by selecting 
the more fit individuals. Some members of this new population undergo alterations by means of 
genetic operations (typically referred to as crossover and mutation operations) to form new 
solutions. This process of evaluation, selection, and alteration is repeated for a number of 
iterations (generations in GA terminology). After some number of generations, it is expected that 
the algorithm “converges” to a near-optimum solution. 

In addition to the aforementioned AI methods, there has recently been an interest in a 
new modeling paradigm known as agent-based modeling (ABM). This modeling approach came 
out of research work in AI as well as in complex systems analysis. The idea behind ABM is to 
describe a system from the perspective of its constituent units. The approach is therefore quite 
appropriate for modeling complex systems whose behavior emerges as a result of interactions 
among the components making up the system. Since transportation systems exhibit almost all the 
characteristics of complex systems, ABM has been attracting a lot of attention within the 
transportation research community. Given this, ABM will be discussed in the last section of this 
circular. 
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A BRIEF HISTORY OF ARTIFICIAL INTELLIGENCE 
 
The modern history of AI can be traced back to the year 1956 when John McCarthy proposed the 
term as the topic for a conference held at Dartmouth College in New Hampshire devoted to the 
subject. The initial goals for the field were too ambitious and the first few AI systems failed to 
deliver what was promised. After a few of these early failures, AI researchers started setting 
some more realistic goals for themselves. In the 1960s and the 1970s, the focus of AI research 
was primarily on the development of KBS or expert systems. During these years, expert systems 
technology were applied to a wide range of problems and fields ranging from medical diagnosis 
to inferring molecular structure to natural language understanding. The same period also 
witnessed early work on NNs, which showed how a distributed structure of elements could 
collectively represent an individual concept, with the added advantage of robustness and 
parallelism. However, the publication of Minsky and Papert’s book Perceptrons in 1969, which 
argued for the limited representation capabilities of NN, led to the demise of NN research in the 
1970s. 

The late 1980s and the 1990s saw a renewed interest in NN research when several 
different researchers reinvented the back propagation learning algorithm (although the algorithm 
was really first discovered in 1969). The back propagation algorithm was soon applied to many 
learning problems causing great excitement within the AI community. The 1990s also witnessed 
some dramatic changes in the content and methodology of AI research. The focus of the field has 
been shifting toward grounding AI methods on a rigorous mathematical foundation, as well as to 
tackle real-world problems and not just toy examples. There is also a move toward the 
development of hybrid intelligent systems (i.e., systems that use more than one AI method) 
stemming from the recognition that many AI methods are complementary. Hybrid intelligent 
systems also started to use newer paradigms that mimic biological behavior such as GAs and 
fuzzy logic. 
 
 
WHAT MAKES ARTIFICIAL INTELLIGENCE APPROPRIATE FOR 
TRANSPORTATION PROBLEMS? 
 
Transportation problems exhibit a number of characteristics that make them amenable to solution 
using AI techniques. First, transportation problems often involve both quantitative as well as 
qualitative data. The fact that we often have to deal with qualitative data in transportation makes 
the use of expert and FS an obvious choice. Second, in transportation we often deal with systems 
whose behavior is very hard to model with traditional approach, either because the interactions 
among the different system components are not fully understood or because one is dealing with a 
lot of uncertainty stemming from the human component of the system. For such complex 
systems, building empirical models, based on observed data are, may be the only option 
remaining. NNs, given their universal function approximation capabilities, are perfect tools for 
building such models. Third, transportation problems often lead to challenging optimization 
problems that are quite challenging to solve using traditional mathematical programming 
techniques, either because the relationships are hard to specify analytically or because of the size 
of the problem and its computational intractability. For these problems, GAs may provide an 
alternative solution approach. Finally, the complex nature of transportation systems and the fact 

Artificial Intelligence in Transportation: Information for Application

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23208


Artificial Intelligence Applications in Transportation 5 
 
 

 

that their behavior emerges as a result of interactions among the system components makes 
ABM techniques quite appropriate for study the behavior of the system. 
 
 
ARTIFICIAL INTELLIGENCE APPLICATION AREAS 
 
AI application areas are quite diverse. This section lists some of those application areas to which 
AI methods has been applied over the years, and explains how these may be relevant to 
transportation applications. Among the most important of AI application areas are the following: 
 

• System identification and function approximation, which is concerned with building 
empirical dynamic models of systems from measured data, or mapping system inputs to outputs. 
As previously mentioned, in transportation systems, many of the interrelationships between the 
variables or components of a transportation system are not fully understood. Given this, 
empirical models are quite common. 

• Nonlinear prediction focuses on the prediction of the behavior of systems where the 
relationship between input and output is not linear. This is often the case with transportation 
problems including predicting traffic demand, or predicting the deterioration of transportation 
infrastructure as a function of traffic, construction, and environmental factors. 

• Control focuses on controlling a system so as to achieve a desired output. Control 
applications abound in transportation. Examples include signal control of traffic at road 
intersections, ramp metering on freeways, dynamic route guidance, positive train control on 
railroads, and air traffic control. 

• Pattern recognition or classification describes a broad range of problems where the 
goal is to classify an object or put it in its right class or category. Pattern recognition is often 
associated with image processing, although many prediction problems can also be regarded as a 
pattern classification problem. Examples of pattern recognition or classification problems in 
transportation include automatic incident detection (i.e., classifying the traffic state as incident or 
incident free), image processing for traffic data collection and for identifying cracks in 
pavements or bridge structures. Another example of a transportation pattern recognition problem 
involves the very important area of transportation equipment diagnosis. 

• Clustering refers to the problem of grouping cases with similar characteristics 
together, and identifying the number of groups or classes. For transportation, clustering could be 
used to identify specific classes of drivers based on driver behavior, for example. 

• Planning refers to the act of formulating a program for a definite course of action 
intended to achieve a desired goal. In transportation, the goal of the transportation planning 
process is to identify the transportation needs of a community and to recommend the best course 
of action required to meet those demands, while taking into account the economic, social, and 
environmental impacts of transportation. AI-based decision support systems for transportation 
planning could be quite useful, especially when accurate analytical models are lacking, and when 
problems involve multiple stakeholders with often conflicting objectives.  

• Design is a key activity of the transportation engineering profession, including 
geometric design of highways, interchange design, structural design of pavements and bridges, 
culvert design, retaining walls design, and guardrail design, to list a few examples. AI methods 
could add a lot to the value and capabilities of computer-aided design which is now commonly 
used for engineering design applications, by providing additional decision-support capabilities. 
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• Decision making refers to the cognitive process of selecting a course of action from 
among multiple alternatives. Transportation officials are continuously faced with challenging 
situations where a decision needs to be made. Examples of these situations include deciding 
whether to build a new road, how much money should be allocated to maintenance and 
rehabilitation activities and which road segments or bridges to maintain, and whether to divert 
traffic to an alternative route in an incident situation. 

• Optimization refers to the study of problems in which one seeks to minimize or 
maximize a function by choosing values for a set of decision variables while satisfying a set of 
constraints. Optimization problems abound in transportation. Examples include designing an 
optimal transit network for a given community, developing an optimal shipping policy for a 
company, developing an optimal work plan for maintaining and rehabilitating a pavement 
network, and developing an optimal timing plan for a group of traffic signals.  
 
 
PURPOSE AND SCOPE OF THIS CIRCULAR 
 
The main objective of the current circular is to introduce the reader to some of those AI 
paradigms that have recently been applied to transportation problems. Specifically, the circular 
focuses on the following five paradigms: 
 

1. KBS, 
2. Artificial NNs, 
3. FS, 
4. GAs, and  
5. ABM. 
 
Besides this introduction, the circular is divided into five parts, each discussing one of the 

above mentioned paradigms. Following a brief description of the paradigm, each part describes 
the types of problems for which the paradigm or method is most appropriate, as well as the 
strengths and weakness of the method. Examples of the paradigm’s application to specific 
transportation problems are provided, along with a description of variants or advanced 
implementations of the basic AI paradigm. 
 
 
REFERENCES 
 
Minsky, M. L., and S. Papert. Perceptrons: An Introduction to Computational Geometry (First edition). 

MIT Press, Cambridge, Massachusetts, 1969. 
Russel, S. J., and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Upper Saddle 
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Zadeh, L. A. Fuzzy Sets. Information and Control. Vol. 8, 1965, pp. 338–353. 
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Knowledge-Based Systems in Transportation 
 

GARY SPRING 
Merrimack College 

 
 
 

here exist many excellent references on KBS. The purpose of this monograph is not to serve as one 
more such resource but rather to serve as a sort of Cliff Notes on the technology. The following 

few pages provide a description of the basic KBS paradigm, the types of problems to which it is best 
suited and why, guidelines for application and some discussion of advanced implementations of KBS. 
 
 
THE BASIC PARADIGM 
 
Research in AI focuses on replicating the analytical, problem solving, and learning capabilities of the 
brain using software. KBS, a subcategory of AI, bring the benefits of knowledge and intelligence to the 
solution of complex problems. Indeed, the power of these systems derives from their use of knowledge 
to reduce the number of problem solutions that need be considered.  

KBSs were first introduced to the engineering profession in the 1970s and their use has grown 
and evolved throughout the intervening years. In the 30 years that have passed since the first 
documented KBS (the trinity of classic systems: DENDRAL, MYCIN, and PROSPECTOR) were 
reported, the basic architecture of KBS has changed little. In general, the defining feature of KBS as 
compared to other software systems is their separation of knowledge about a problem from the process 
by which the problem is solved. That is, so-called domain knowledge (knowledge base) and 
algorithmic control of the program (traditionally called the inference engine) are separate. The explicit 
separation of knowledge from control makes it easier to add new knowledge or remove existing 
knowledge when necessary. Hopgood (1992) makes an analogy to the functioning of our brains, whose 
control processes are approximately unchanging in nature while individual behavior is constantly 
modified by new knowledge and experience (updating the knowledge base). Other defining features 
include an interface from which the inference process is transparent, a readable knowledge base, a 
capability to grow and change and an ability to operate under uncertainty (Fenves, 1986). 

In practice, these systems have three components: a knowledge base in the form of rules, 
frames or objects, for example; an inference engine in the form of algorithms on how to control the 
processing of knowledge; and a database which may be thought of to be the system’s window on the 
world. 

Many AI systems have been placed under the rubric of KBS, including expert systems, case-
based reasoning, agent-based, FS, and many others. KBSs have been applied, in some cases very 
successfully, to transportation problems for more than 20 years. Indeed, more than 200 AI-related 
systems have been described in the literature during this time (Figure 3). Of these, almost 90% were 
some form of KBS. They held much promise as powerful problem-solving tools—solving problems 
that heretofore it had not been possible to solve using software. 

In recent years, emphasis has been less on developing independent KBS and more on 
integrating them into other paradigms, such as geographic information systems (GIS), object-oriented 
databases and even artificial NN. Indeed, one can see the use of the basic KBS concepts, described  

T 
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FIGURE 3  Summary of transportation-related KBS appearing  
in the literature (1985–present). 

 
 
below, in spreadsheets, word processing software, and other every day applications as well. 
 
Knowledge 
 
The knowledge component of KBS consists of a set of independent knowledge elements in the 
form of rules, frames, or objects. The choice of which form to use depends largely upon the 
problem to be solved and the tools that are available for use in coding the system. Rules of the 
form “if X, then Y” are the most common way of representing knowledge because they are most 
often the way we express our heuristic knowledge. They are therefore eminently understandable, 
fairly easy to extract from humans, and are very portable—thus allowing the system flexibility in 
the addition or change to its knowledge.  

Frames are slightly more complex in that they represent knowledge by association and 
taxonomies. They are very closely aligned with object-oriented systems in that both provide 
ways to represent and organize information. The frame provides slots that contain information 
about the object being represented. Similar to object-oriented systems, and unlike static database 
systems, information can take the form of facts, rules, procedures, or pointers to other frames. 
Unlike database systems, frames are meant to capture the essence of concepts or stereotypical 
situations, for example being in a living room or going out for dinner, by clustering all relevant 
information for these situations together. This includes information about how to use the frame, 
information about expectations (which may turn out to be wrong), information about what to do 
if expectations are not confirmed, and so on. A great deal of procedurally expressed knowledge 
may be part of the frames. Collections of such frames are organized in frame systems in which 
the frames are interconnected—called “classes” in object-oriented terminology. Frames are very 
useful for causal and commonsense knowledge.  
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Reasoning 
 
The inference engine establishes the focus for a particular problem and decides upon actions to 
take. Common strategies for control in rule-based systems are backward chaining, forward 
chaining, or some mixture of the two. Forward chaining uses known facts and rules about data to 
generate hypotheses. This strategy is especially appropriate in situations where data are 
expensive to collect, but few in quantity (Figure 4).  

Backward chaining requires beginning with a goal and then searching through a set of 
facts and rules in order to satisfy the goal. Backward chaining is useful in situations where the 
quantity of data is potentially very large and where some specific characteristic of the system 
under consideration is of interest. Typical situations are various problems of diagnosis or 
forensics. For example, in solving a diagnosis problem, one needs to begin by collecting as much 
information as possible in order to form alternative hypotheses that may then be assessed 
(forward chaining). Then using these hypotheses, one can examine the data and what we know 
about the data to make some diagnoses (backward chaining).  

Reasoning using a frames representation approach relies more on matching and the 
hierarchy of the system than deduction as is the case with rules. The ability to attach procedures 
and characteristics to frames and the arrangement into hierarchies and classes, have been adopted 
for development of object-oriented systems. An example of reasoning with a system representing 
a highway intersection with a frame in which its “slots” contain number of legs, crash 
experience, type of control, volumes, algorithms to access data base software and manipulate the 
resulting data, and thus determine level of service (LOS), delays, etc., and perhaps rules 
governing likelihood that it is a “hazardous” location.  

Using this unique separation of knowledge from control, there exist several software 
tools that provide the inferring mechanism with an empty knowledge base to be filled in by the 
buyer. These are commonly known as “shells.” Many of these now are available for 
implementation on the Internet and some are platform independent, using a Java-based code. 
 
Types of Problems 
 
Hayes (1994) pointed out that KBS are principally used for three reasons: 
 

1. To improve the reasoning of the applications system—time-critical systems (such as 
real-time control), for example, benefit from speed of light access to all knowledge, all of the 
time, consistently applied. 

2. To increase the flexibility of the applications system—the ability to solve problems 
with incomplete information and that are not completely formulated increases system flexibility 
substantially, and 

3. To increase the human-like qualities of the system—the ability to provide cogent 
explanations about why decisions are made makes for much better interfaces and increases trust 
in the system. 
 

Examples of problems that are appropriate for KBS solution in transportation include: 
diagnosing hazardous highway locations, planning construction activities, designing structural 
members for and/or assessing the structural integrity of bridges, scheduling airline maintenance 
activities, dispatch and control of rail and transit, developing traffic management strategies given 
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FIGURE 4  Reasoning examples. 

 
 
a traffic disaster, and intelligent transportation systems (ITS). The sheer diversity of disciplines 
involved and complexities that may be encountered in the Transportation Engineering problem 
domain provides a rich environment for KBS development. Problems most amenable to KBS 
solution, as typified by the systems summarized in Figure 3, either suffer from lack of data—in 
which heuristics may be used to “fill in the holes”—or they are poorly defined or are too 
complex such that standard solutions using analytical or simulation tools may not be appropriate. 
For problems such as these last, heuristics are used as decision support—for example, design of a 
signal plan for a complex network of intersections and roads; or diagnosis of problems at a high 
crash signalized intersection; crash data collection; recommending speed limits in speed zones; 
and providing diagnostic safety reviews for intersection designs. These last three are all 
examples of systems that have actually been implemented (Thielman, 2007; Kindler, et al, 2002; 
Srinivasan, 2006).  

Key questions that must be answered in helping to decide upon which type of tool to use 
include: Is there an analytical or simulation tool that could be used to solve the problem at hand? 
Would the problem best be solved using these more traditional techniques? For example, the 
determination of queue length at a signalized intersection or even the LOS of that intersection 

Knowledge Base
Rule 1:If A and C then F
Rule 2:If A and E then G
Rule 3:If B then E
Rule 4:If G then D

Data Base
A and B are TRUE

GOAL
D

Forward Chaining Algorithm
Step 1: Start with Rule 1 and proceed down the list until a rule that “fires” is found.  In this case,
Rule 3 is the only one that fires in the first iteration.
Step 2:  Add what was learned to the data base.  At the end of the first iteration, one may conclude
that A, B and E are true.

Repeat step 1 with this new database.  This time Rule 2 fires adding the information that G is true.
At the end of the second interation, we know that A, B, E and G are true.

Repeat step 1 and find that now Rule 4 fires and the goal is met.

Backward Chaining Algorithm
Find a rule or fact that proves D.  Rule 4 does so.  This creates a subgoal to prove that G is true.
Now Rule 2 comes into play.  It is already known that A is true so the new subgoal is E.  Here, Rule
3 provides the next sub-goal of proving B is true.  B is true (from the database), therefore E is true,
which implies G is true, which in turn implies that D is true.
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would be more amenable to analytical models than to KBS. Determination of the operational 
parameters of a complex network of intersections and roads would probably best be done using 
simulation models. Design of that complex network or diagnosis of its problems or its real-time 
control on the other hand may best be conducted using a KBS since these types of problems are 
characterized by missing data, complexity, and time-criticality. In short, the type of problem to 
be addressed drives the decision as to type of tool to be used (for example, matching and 
optimization problems are not amenable to KBS solution whereas the others described above do 
benefit from the application of knowledge).  
 
 
STRENGTHS 
 
KBS offer many significant advantages over their traditional counterpart tools. It has already 
been mentioned that they allow engineers to work with uncertain problems. Most problems of 
any complexity involve some level of uncertainty—either from data quality or some other 
source. Many are such that we are willing to live with that uncertainty but for some we are not. 
KBS allow us to express concepts in ways in which we are more comfortable (the concepts of 
fairly good, somewhat old, and so on) and to avoid problems with crisp boundaries such as using 
delay levels to assess the LOS of highway intersections.  

It is possible to consider problems requiring judgment and that are not amenable to a 
procedural approach. Design and evaluation problems are excellent examples of this type of 
problem. KBS are designed to improve with experience. By their nature, with knowledge 
separate from control, these systems are easily updated based upon experience.  

Many of the applications listed in Figure 4 require that time-critical decisions, based upon 
copious, often simultaneous information, be made and disseminated quickly and accurately.  
This type of response requires one who is well versed in handling emergencies and who is able 
to make decisions quickly. This well-versed person has access to a tremendous amount of 
knowledge mainly derived from work experience in the area. Thus, the same problem faced in 
other application areas requiring special expertise must be faced here as well. Experts are rare, 
they are expensive and it is often difficult to retain enough of them for an adequate length of time 
for safe and effective operations. This means that valuable expertise is sometimes available only 
sporadically and at significant cost to the user. These are among the reasons KBS offers such 
potential. KBSs have been used extensively in a variety of different areas, most notably ITS, in 
attempts to help meet the goals of improved safety and efficiency. Perhaps one of the most 
compelling reasons for using knowledge-based tools is their ability to use all available 
knowledge, consistently and without error or misjudgment, and to work with uncertainty—thus 
providing more reliable and consistent decisions, more useful information, and improved 
reaction times. Finally, in some cases, these systems are used to actually codify “substantive 
insights in and assumptions of” problems. 

KBS also hold great promise as educational tools, where even simple knowledge bases 
can have practical value for education. Work in developmental psychology indicates that actual 
“learning” must take place by “doing” (Piaget, 1970; Feigenbaum, 1982). Of course, such a 
system is not necessarily a good teacher of the material but nevertheless would expose students, 
in an interactive and nonthreatening way, to expert reasoning processes as well as to his or her 
domain knowledge. Another important advantage of using KBS as teaching aides is the 
capability of pooling heuristic knowledge into a common repository. This type of knowledge is 
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not normally published, and the only way it is shared is between teacher–student or master–
apprentice.  

 
 

WEAKNESSES 
 
Unfortunately, many, especially in the early years of AI applications in transportation, have been 
carried away with all of this wonderful potential and have become enamored with the hype. 
Consequently, very often KBS have been used for all types of problems under all conditions. The 
fact is that these systems are indeed powerful problem solvers and they hold great promise for 
the solution of a plethora of problems. However, they are not a panacea and they have some 
major drawbacks in their application—mainly, that they often only have surface knowledge 
about the problem at hand. The best of these systems have a great deal of surface knowledge 
about a much focused subset of a problem—and very little about anything else. For example, IF 
car will not start, THEN check battery. The system has no information about the relationship the 
battery has with the ability of the car to start—it only has the heuristic to check the battery in this 
instance. The fact that they can be used to enhance our understanding of problems 
notwithstanding, there often exist a temptation to use these systems as “black boxes.” 

Additionally, obtaining the knowledge for the KBS is and always has been a major 
concern, sometimes the main bottleneck in developing such systems. Finding the expert and then 
figuring out how to elicit knowledge from him is often a difficult process, and can be extremely 
expensive. 

Once implemented, the KBS model is often slow and unable to access or manage large 
volumes of information; and once implemented, it can be difficult to maintain. Solutions to these 
problems have been sought through better knowledge elicitation techniques and tools, better 
KBS shells and environments, improved development methodologies, knowledge modeling 
languages, facilitating the cooperation between KBS and databases in expert databases and 
deductive databases, and techniques and tools for maintaining systems. 

Even using off the shelf “shells,” implementing KBS is a difficult process requiring 
special skills and often taking many person-years. They can be very expensive. Perhaps this is 
why there have been so few actual implementations of the 200+ systems described in the 
transportation literature over the past 20 years. 
 
GUIDELINES FOR APPLICATION 
 
There are many steps in developing a successful KBS. The following three are a distillation of 
those that are critical to success. 
 

1. Determine if your problem is appropriate for a KBS tool versus a conventional tool. 
Do conventional tools do what you need to do? Would an analytic or simulation model be better 
applied to the problem for example? In the case of modeling applications where viable 
methologies exist both in the mathematical and soft computing domains there are clearly trade 
offs to be evaluated in model selection. For example, there may be a trade-off between the 
potential for new insight versus ease of implementation or between the motivation to inform the 
modeling with accurate prior knowledge versus the aversion to biasing the results through 
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misconceptions and faulty assumptions. Explicit presentation of the evaluation of these kinds of 
trade-offs is often missing from papers on transportation modeling applications. 

2. Establish an evaluation plan for the system at the outset. At a minimum, the plan 
should include system goals, specifications and constraints, and measures of effectiveness. This 
helps to assure that the system is designed to facilitate its own validation and verification. 

3. Assure that you have the resource commitment for full development, implementation 
and maintenance. This will include staff requirements, developer salaries, time commitment of 
individuals knowledgeable about the domain of interest, software (and possibly hardware) costs, 
and so on.  
 
 
ADVANCED SYSTEMS 
 
KBS serves as an umbrella phrase representing a wide variety of systems whose common theme 
is the use of knowledge and heuristics to solve problems. In the foregoing pages the two most 
commonly used paradigms (rules and frames or object-oriented) were described. The area of AI 
continues to grow however, and thus there are always emerging paradigms to be discussed. Two 
such paradigms that are fast becoming part of the mainstream AI tools for transportation 
applications, and briefly discussed in the following pages are case-based reasoning (CBR) 
systems and agent-based systems (ABS). 
 
Case-Based Reasoning 
 
CBR systems use as their primary knowledge source a database of stored cases recording 
specific prior episodes rather than generalized heuristics. In CBR, new solutions are generated 
not by chaining, but by retrieving the most relevant cases from memory and adapting them to 
new situations. That is, CBR solves new problems by adapting previously successful solutions to 
similar problems. Thus in CBR, reasoning is based on remembering. 

A complete CBR process can be represented as a cycle consisting of the following tasks: 
(a) retrieve; (b) reuse; (c) revise; and (d) retain (Figure 5). As previously mentioned, at the core 
of the CBR process is a case-base that stores previous instances of problems and their derived 
solutions. When faced with a new problem, a CBR system matches the new problem against 
cases in the case base, and retrieves the most similar case(s). Since the retrieved case is likely to 
be somewhat different from the current case, a CBR system typically adapts the retrieved 
solution to closely suit the new problem during the reuse step. The proposed solution is then 
implemented and tested for success; any revisions are then made, if needed. Finally, the new case 
is retained, allowing the system to learn and refine its knowledge with usage. 

CBR systems are attractive because they directly address one of the most difficult and 
most costly problems described earlier, namely the elicitation of knowledge. CBR does not 
require an explicit domain model nor the involvement of expensive experts in system 
development. Elicitation therefore becomes a task of gathering case histories and implementation 
is reduced to identifying significant features that describe a case—an easier task than creating an 
explicit model. By applying database techniques, large volumes of information can be managed, 
and CBR systems can learn by acquiring new knowledge as cases are processed. This makes 
maintenance easier as well. 
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FIGURE 5  The CBR cycle. 
 

 
Agents 
 
A software agent is a computational entity that is capable of autonomous behavior by virtue of a 
small number of simple rules that make each agent aware of the options available to it when 
faced with a decision-making task related to its domain of interest. Furthermore, such an entity is 
seen as part of a community of similar software processes that are designed to interact with each 
other, often acting cooperatively to achieve mutual goals. Therefore, the two key features of 
agents are autonomy and communal interaction. ABM is explained in more detail in the last part 
of this circular. 

Autonomy implies intelligence in that entities are directed toward specified goals; the 
level of intelligence required directly relates to the complexity of this goal and the associated 
heuristics involved. Of course since these entities use a form of knowledge base to direct their 
behavior they are also capable of reasoning about their behavior and interactions. 

Communal interaction does not imply agents are actually sending messages to one 
another. They may merely be cooperating by carrying out a shared task without actually sending 
messages to one another. Cooperation without communication, however, may be seen as a 
special case. 

Interfaces through which agents may interact must have common specifications. The 
agents must have an agreed upon architecture that would apply to all agents within a community. 
To these ends, the Foundation for Intelligent Physical Agents has developed specifications of 
four agent-based application areas: 

 
• Personal travel assistance: individualized, automated access to travel services; 
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• Audiovisual entertainment and broadcasting: negotiating, filtering, and retrieving 
audiovisual information, in particular for digital broadcasting networks; 

• Network management and provisioning: automated provisioning of dynamic virtual 
private network services where a user wants to set up a multimedia connection with several other 
users; and, 

• Personal assistant: management of a user’s personal meeting schedule, in particular in 
determining the time and place arrangements for meetings with several participants.” 
 

Numerous applications exist for such software agents, including air traffic control (Steeb, 
1988). 
 
 
CONCLUSION 
 
As noted in this monograph, there have been few real-world KBS applications in the area of 
transportation—for reasons listed. However, KBSs are now routinely used in thousands of real-
world applications. Most such applications involve relatively small knowledge bases, containing 
hundreds rather than thousands of units (objects, rules, frames, cases). The next generation of 
KBSs could involve knowledge bases containing hundreds of thousands or even millions of 
units. They will need to perform well in increasingly complex, time-critical environments. This 
is a daunting task, but it promises huge benefits in terms of safe and efficient transportation of 
our traveling public. 
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eural networks (NNs), or connectionist systems, have experienced a resurgence of interest 
in recent years as a paradigm of computational and knowledge representation. After a first 

surge of attempts to simulate the functioning of the human brain using artificial neurons in the 
1950s and 1960s, this AI subdiscipline did not receive much attention until the 1990s. The 
resurgence has been due mainly to the appearance of faster digital computers that can simulate 
large networks and the discovery of new NN architectures and more powerful learning 
mechanisms. The new network architectures, for the most part, are not meant to duplicate the 
operation of the human brain, but rather to receive inspiration from known facts about how the 
brain works. 

NNs are concerned with processing the information by a learning process and by 
adaptively responding to inputs in accordance with a learning rule. These powerful models are 
composed of many simulated neurons or simple computational units that are connected in such a 
way that they are able to learn in a manner similar to how human brains learn. This distributed 
architecture makes NNs particularly appropriate for solving nonlinear problems and input–output 
mapping problems. The usual application of NNs is in the area of learning and generalization of 
knowledge and patterns. They are not suitable for expert reasoning and they have poor 
explanation capabilities. 

While there are several definitions for NNs, the following definition emphasizes the key 
features of such models. An NN can be defined as a distributed, adaptive, generally nonlinear 
learning machine built from interconnecting different processing elements (PEs) (Principe et al., 
2000). The functionality of NNs is based on the interconnectivity between the PEs. Each PE 
receives connections from other PEs and/or itself. The connectivity defines the topology of NN 
and plays a role at least as important as the PEs in the NN’s functionality. The signals 
transmitted via the connections are controlled by adjustable parameters called weights, ijw . 

A typical PE structure is depicted in Figure 6 as a nonlinear (static) function applied to 
the sum of all the PE’s inputs. Due to the fact that NNs’ knowledge is stored in a distributed 
fashion through the connection weights between PEs and also the fact that the knowledge is 
acquired through a learning process that involves modification of the connection strengths 
between PEs, NNs tend to resemble in functionality the human brain. 

There are many types of NN architectures, each designed to address a particular class of 
problems such as system identification, function approximation, nonlinear prediction, control, 
pattern recognition, clustering, feature extraction, and others. NNs may also be classified as 
either static or dynamic. Static networks represent good function approximators with the ability 
to build long-term memory into their synaptic weights during training. On the other hand, 
dynamic networks have a built-in mechanism to produce an output based on more than one time 
instant in the past, establishing what is commonly referred to as short-term memory. 

N 
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FIGURE 6  Example of a neural network. 
 
 

The development process of NN models is typically carried out in two stages: training and 
testing. During the training stage an NN learns from the patterns presented in an existing dataset. 
The performance of the network is consequently evaluated using a testing dataset that is composed 
of patterns the network was never exposed to before. Because the learned knowledge is extracted 
from training datasets, NNs are considered both model-based and data-driven systems. Usually the 
learning phase uses an algorithm to adjust the connection weights, based on a given dataset of 
input–output pairs. Training patterns are presented to the network repeatedly until the error of the 
overall output is minimized. The presentation of all patterns once to the network is called an epoch 
and results in adjustment of the connection weights such that the network performance is 
improved. The training stage of NN is terminated when the error drops below a prespecified 
threshold value or when the number of epochs exceeds a certain prespecified limit. Another 
method to control the efficiency of the training stage is to monitor the network performance 
(errors) during the training stage on a cross-validation (CV) dataset, usually smaller than the 
learning dataset. The role of CV is to test for the network’s generalization capabilities during the 
training process. If the network is overtrained a sudden degradation of the network based on the 
CV data will trigger the training process to stop. 
 
 
THE BASIC PARADIGM: MULTILAYER PERCEPTRON 
 
There are different types of NN. The most commonly used architecture of NN is the multilayer 
perceptron (MLP). MLP is a static NN that has been extensively used in many transportation 
applications due to its simplicity and ability to perform nonlinear pattern classification and function 
approximation. It is, therefore, considered the most widely implemented network topology by 
many researchers (see for instance, Duda et al., 2001; Ham and Kostanic, 2001). Its mapping 
capability is believed to approximate any arbitrary mathematical function.  

MLP consists of three types of layers: input, hidden, and output. It has a one-directional 
flow of information, generally from the input layer, through hidden layer, and then to the output 
layer, which then provides the response of the network to the input stimuli. In this type of network, 
there are generally three distinct types of neurons organized in layers. The input layer contains as 
many neurons as the number of input variables. The hidden neurons, which are contained in one or 
more hidden layers, process the information and encode the knowledge within the network. The 
hidden layer receives, processes, and passes the input data, to the output layer. The selection of the 
number of hidden layers and the number of neurons within each affects the accuracy and 
performance of the network. The output layer contains the target output vector.  
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Figure 7 depicts an example of MLP topology. A weight coefficient is associated with 
each of the connections between any two neurons inside the network. Information processing at 
the neuron level is done by an “activation function” that controls the output of each one. 

NNs train through adaptation of their connection weights based on examples provided in 
a training set. The training is performed iteratively until the error between the computed and the 
real output over all training patterns is minimized. Output errors are calculated by comparing the 
desired output with the actual output. Therefore, it is possible to calculate an error function that 
is used to propagate the error back to the hidden layer and to the input layer in order to modify 
the weights. This iterative procedure is carried out until the error at the output layer is reduced to 
a prespecified minimum or for a prespecified number of epochs. The back-propagation algorithm 
is most commonly used for training MLP and is based on minimizing the sum of squared errors 
between the desired and actual outputs. 

Actual validation of an already trained NN requires testing the network performance on 
an exclusive set of data, called testing data, which is composed of data that was never presented 
to the network before. If the error obtained in both training and testing phases is satisfactory, the 
NN is considered adequately developed and thus can be used for practical applications. 

 
 
 
 

 
 
 

FIGURE 7  Example of MLP network topology. 
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ADVANCED TOPOLOGIES 
 
In addition to the basic MLP architecture, several other advanced topologies have been 
developed in the past few years to meet the needs of different types of applications. Although 
NN and other soft computing constituents may perform exceptionally well when used 
individually, the development of practical and efficient intelligent tools may require a synergic 
integration of several topologies to form hybrid systems. In fact, computational intelligence and 
soft computing fields have witnessed in the past few years an intensive research interest towards 
integrating different computing paradigms such as fuzzy set theory, GAs, and NNs to generate 
more efficient hybrid systems. The emphasis is placed on the synergistic, rather than the 
competitive, way the individual tools act to enhance each other’s application domain. The 
purpose is to provide flexible information processing systems that can exploit the tolerance for 
imprecision, uncertainty, approximate reasoning, and partial information to achieve tractability, 
robustness, low-solution cost, and close resemblance with human-like decision making (Pal et al. 
2001). 

For example, a combination of neural and fuzzy set, or neuro–fuzzy, model may 
consolidate the advantages of both techniques. When combined, they can be easily trained and 
have known properties of convergence and stability as NNs, and they can also provide a certain 
amount of functional transparency through rule dependency which is important to understand the 
solution of a problem. NN and GA could be combined to solve optimization problems. In fact, 
this hybrid approach could be applied using the properties of NN to define the observed 
functions with unknown shape, and the GA, to obtain the final result of an optimization problem. 
Examples of advanced and hybrid NN topologies include: 

 
• Modular networks, 
• Hybrid principal component analysis, 
• Coactive neuro–fuzzy inference system (CANFIS), 
• Jordan–Elman network, 
• Partially recurrent network (PRN), and 
• Time-lagged feed-forward network (TLFN). 

 
Modular Network 
 
Modular networks are a special class of multiple parallel feed-forward MLPs. The input is 
processed with several MLPs and then the results are recombined. The topology used specifically 
for this application is composed of two primary components: local expert networks and a gating 
network (Jang et al., 1997; Principe et al., 2000).  

Figure 8 shows the topology of a modular network. The basic idea is linked to the 
concept of “divide and conquer,” where a complex system is better attacked when divided into 
smaller problems, whose solutions lead to the solution of the entire system. Using a modular 
network, a given task will be split up among some local expert networks, thus reducing the load 
on each in comparison with one single network that must learn to generalize from the entire input 
space. Then, the modular NN architecture builds a bigger network by using modules as building 
blocks. A very common method is to construct an architecture that supports a division of the 
complex task into simpler tasks. 
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FIGURE 8  Example of the modular network topology. 
 
 

All modules are NN. The architecture of a single module is simpler and the subnetworks 
are smaller than a monolithic network. Due to the structural modifications, the task the module 
has to learn is in general easier than the whole task of the network. This makes it easier to train a 
single module (SO). In a further step, the modules are connected to a network of modules rather 
than to a network of neurons. The modules are independent to a certain level which allows the 
system to work in parallel. This NN type offers specialization of a function in each sub-module 
and does not require full interconnectivity between the MLP’s layers. A gating network 
eventually combines the output from the local experts to produce an overall output. For this 
modular approach, it is always necessary to have a control system to enable the modules to work 
together in a useful way. The evaluation using different real world data sets showed that the new 
architecture is very useful for high-dimensional input vectors. For certain domains, the learning 
speed and the generalization performance in the modular system is significantly better than in a 
monolithic multilayer feed-forward network (Ablameyko et al. 2003). 
 
Hybrid Principal Component Analysis Network 
 
Hybrid principal component analysis (PCA) is a technique that finds an orthogonal set of 
directions in the input space and provides a way to find the projections into these directions in an 
orderly fashion. The orthogonal directions are called eigenvectors of the correlation matrix of the 
input vector and the projections the corresponding eigen values. PCA has the ability to reduce 
the dimensionality of the input vectors, and therefore, can be used for data compression. When 
used in conjunction with MLP, the PCA can reduce the number of inputs to the MLP and 
improve its performance. The PCA projects the input vector onto a smaller dimensional space, 
thus compressing the input for the MLP network. It should be emphasized that PCA is a well-
known statistical procedure that is used in feature extraction from high-dimensional space (see 
Duda et al., 2001; Ham and Kostanic, 2001; Jang et al., 1997). The topology of the hybrid PCA 
network is illustrated in Figure 9. 
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FIGURE 9  Example of the PCA network topology. 
 
 
Coactive Neuro–Fuzzy Inference System 
 
CANFIS belongs to a more general class of adaptive neuro–fuzzy inference systems (ANFIS) 
(Jang et al., 1997). CANFIS may be used as a universal approximator of any nonlinear function. 
The characteristics of CANFIS are emphasized by the advantages of integrating NN with fuzzy 
inference systems (FIS) in the same topology. The powerful capability of CANFIS stems from 
pattern-dependent weights between the consequent layer and the fuzzy association layer. The 
architecture of CANFIS is illustrated in Figure 10. 

The fundamental component for CANFIS is a fuzzy neuron that applies membership 
functions (MFs) to the inputs (see the section on FS in this circular). Two membership functions 
are commonly used: general bell and Gaussian (Lefebvre, 2001). The network also contains a 
normalization axon to expand the output into a range of 0 to 1. The second major component in 
this type of CANFIS is a modular network that applies functional rules to the inputs. The number 
of modular networks matches the number of network outputs, and the number of processing 
elements in each network corresponds to the number of MFs. CANFIS also has a combiner axon 
that applies the MFs outputs to the modular network outputs. Finally, the combined outputs are 
channeled through a final output layer and the error is back-propagated to both the MFs and the 
modular networks.  

The function of each layer is described as follows. Each node in Layer 1 is the 
membership grade of a fuzzy set (A, B, C, or D) and specifies the degree to which the given 
input belongs to one of the fuzzy sets. The fuzzy sets are defined by three membership functions. 
Layer 2 receives input in the form of the product of all output pairs from the first layer. The third 
layer has two components. The upper component applies the membership functions to each of 
the inputs, while the lower component is a representation of the modular network that computes, 
for each output, the sum of all the firing strengths. The fourth layer calculates the weight 
normalization of the output of the two components from the third layer and produces the final 
output of the network. 
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FIGURE 10  Example of CANFIS network topology. 
 
 
Jordan–Elman Network 
 
The Jordan–Elman network is also referred to as the simple recurrent network (SRN) (Ham and 
Kostanic, 2001). It is a single hidden-layer feed-forward network with feedback connections 
from the outputs of the hidden-layer neuron to the input of the hidden layer (Principe et al., 
2000). It was originally developed to learn temporal sequences or time-varying patterns. As 
shown in Figure 11 the network contains context units located in the upper portion and used to 
replicate the hidden-layer output signals. 

The context units are introduced to resolve conflicts arising from patterns that are similar, 
yet result in dissimilar outputs. The feedback provides a mechanism to discriminate between 
identical patterns occurring at different times. The context units are referred to as a low-pass 
filter that creates a weighted average output of some of the more recent past inputs. They are also 
called “memory units” since they tend to remember information from past events. The training 
phase of this network is achieved by adapting all the weights using standard back-propagation 
procedures. More details on this topology can be found in Ham and Kostanic (2001) and 
Lefebvre (2001). 
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FIGURE 11  Example of Jordan–Elman network topology. 
 
 
Partially Recurrent Network  
 
PRN is considered a simplified version of the Jordan–Elman network without hidden neurons. It 
is composed of an input layer of source and feedback nodes, and an output layer, which is 
composed of two types of computation nodes: output neurons and context neurons. The output 
neurons produce the overall output, while the context neurons provide feedback to the input layer 
after a time delay. The topological structure of the network is illustrated in Figure 12. More 
details can be found in Haykin (1998) and Lefebvre (2001). 

 
Time-Lagged Feed-Forward Network 
 
In dynamic NN time is explicitly included in mapping input-output relationships. As a special 
type, TLFN extends nonlinear mapping capabilities with time representation by integrating linear 
filter structures in a feed-forward network. The type of topology is also called focused TLFN and 
has memory only at the input layer. The TLFN is composed of feed-forward arrangement of 
memory and nonlinear processing elements. It has some of the advantages of feed-forward 
networks such as stability, and can also capture information in input time signals. Figure 13 
shows a simplified topological structure of the focused TLFN. The figure shows that memory 
PEs are attached in the input layer only. The input-output mapping is performed in two stages: a 
linear time-representation stage at the memory PE layer and a nonlinear static stage between the 
representation layer and the output layer. Further details underlying the mathematical operations 
of TLFN can be found in Ham and Kostanic (2001), Principe et al. (2000), and Lefebvre (2001). 
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FIGURE 12  Example of PRN topology. 
 
 
 
 
 
 

 
 

FIGURE 13  Example of TLFN topology. 
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NEURAL NETWORK APPLICATIONS DOMAIN 
 
The inherent parallel architecture and the fault tolerance nature of NN are appealing to address 
problems in variety of application areas. NNs find their application in pattern recognition 
(classification, clustering, feature classification), image compression, image processing, system 
identification, and prediction. Neural models appear to have great potential for enhancing 
condition assessment and performance prediction modeling. In this section, we focus on just two 
representative transportation application domains (namely pavement management and 
engineering, and short-term traffic prediction) and provide a review of recent applications of NN 
to these two fields. 
 
Pavement Management and Engineering 
 
NNs have been used in a wide range of applications in the field of pavement management and 
engineering. Several models have been developed to predict pavement’s conditions as well as to 
recommend appropriate maintenance strategies. Some examples are provided below. 

An NN was used for roughness prediction of a flexible pavement, expressed as 
International Roughness Index (IRI) (La Torre et al., 1998). The application was performed 
using simulation data to calibrate the NN. Network performance was then verified using data 
obtained from experimental surveys. NNs were also used to predict the present serviciability 
rating (PSR) of pavements (Shekharan, 1998). The input variables were structural number, age 
and cumulative equivalent single-axle loads. Moreover, a partitioning method of connection 
weights was used to determine the relative contribution of each input variable to PSR prediction. 
Several NNs were used to determine the general visual condition index (VCI) of flexible 
pavements using distress data collected through visual assessments of the pavement surface (Van 
der Gryp et al., 1998). The networks were compared with classical methods. The results 
indicated the feasibility of using NNs for determining the VCI of pavement surfaces. 

A dynamic NN was used to perform a reliable and accurate time-dependent roughness 
prediction model for newly constructed Kansas jointed plain concrete pavements (Felker et al., 
2003). To achieve this objective, relevant data was obtained from the historical Kansas pavement 
condition database. The developed model produced output values very close to the measured IRI 
values. An overall pavement condition prediction methodology using NN was implemented 
(Yang et al., 2003). In particular, three individual NN models were developed to predict the three 
fundamental parameters used by Florida Department of Transportation (FDOT) for pavement 
evaluation purposes: crack rating, ride rating, and rut rating. The NNs were trained and tested 
using data from the FDOT pavement condition database. 

A decision analysis framework based on past experience of rubber removal operations at 
Singapore airport was realized using NNs (Fwa et al., 1997). This was carried out with the aim of 
reducing the reliance on a few experienced maintenance staff for such an operation, and for 
improving the consistency and continuity of the rubber removal decision-making process. NNs 
were used to develop an automatic procedure for screening and recommending roadway sections 
for pavement preservation (Flintsch et al., 1998). The NN was used to learn the knowledge from 
past project selections. It was then trained using data representing the pavement’s condition, the 
characteristics at the time of selection, and the sections selected for pavement preservation 
program for several years. NNs were used for selecting more appropriate strategies for repairing 
pavement distress of an airport rigid pavement to ensure optimum pavement performance (Lee et 
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al., 2002). In that study, experts were surveyed to compile expert knowledge that was then used 
to train the network. 

A methodology to derive the optimal weights for known sets of pavement condition and 
operating parameters of a given road was proposed (Fwa et al., 2002). It consisted of two phases. 
The first phase used a GA (see the section on GA in this circular) to determine the optimal 
weights for the specified inputs of pavement condition and environmental operation. The second 
phase consisted of training a NN for speedy selection of priority weights for any given pavement 
condition under given operating environment. An NN was used to develop a sideway force 
coefficient (SFC) prediction model (Bosurgi and Trifirò, 2005). Their results demonstrate that 
NNs were capable of correctly interpreting the phenomenon modeled and capturing the internal 
correlations existing between the variables. 
 
Short-Term Traffic Prediction 
 
The short-term traffic prediction problem, which is concerned with attempting to forecast future 
traffic volumes, speeds or travel times, has been receiving increased attention in the last few 
years, especially given the interest in ITS and real-time traffic management and control. Lately, 
several studies have investigated the use of NNs for this problem. For instance, Park and Rilett 
(1998) proposed two modular NN models for forecasting multiple-period freeway link travel 
times. One model used a Kohonen Self Organizing Feature Map (SOFM) while the other utilized 
a fuzzy c-means clustering technique for traffic patterns classification. Rilett and Park (1999) 
proposed a one-step approach for freeway corridor travel time forecasting rather than link travel 
time forecasting. They examined the use of a spectral basis neural network with actual travel 
times from Houston, Texas. 

Another study by Abdulhai et al. (1999) used an advanced time delay neural network 
(TDNN) model, optimized using a GA, for traffic flow prediction. The results of the study 
indicated that prediction errors were affected by the variables pertinent to traffic flow prediction 
such as spatial contribution, the extent of the loop-back interval, resolution of data, and others. 
Lint et al. (2002) presented an approach for freeway travel time prediction with state-space NNs. 
Using data from simulation models they showed that prediction accuracy was acceptable and 
favorable to traditional models. Several other studies applied NNs for predicting speed, flows, or 
travel times For instance, Park et al. (1999) used a spectral basis NN (SNN) to predict link travel 
times for one to five time periods ahead (of 5-min duration). They used traffic data collected 
from the TransStar system implemented in Houston. They found that the NN approach 
outperformed other statistical and heuristic approaches the Kalman filtering model, exponential 
smoothing model, and historical profile. 

In a study by Maschavan Der Voort et al. (1996) a hybrid method of short-term traffic 
forecasting is introduced. The technique uses a Kohonen SOFM as an initial classifier and each 
class has an individually tuned ARIMA model associated with it. It was therefore was called 
KARIMA. It is believed that the explicit separation of the tasks of classification and functional 
approximation improves the forecasting performance, as compared to either a single ARIMA 
model or a backpropagation neural network. The model is tested with data from a French 
motorway, by forecasting traffic flow at horizons of 30 and 60 min. 

Zhang et al. (1997) trained a multilayer feed-forward NN to address a freeway traffic 
system state identification problem. For this purpose, the authors used simulated traffic data from 
an artificially generated freeway. Several scenarios were generated, such as different demand 

Artificial Intelligence in Transportation: Information for Application

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23208


28 Transportation Research Circular E-C113: Artificial Intelligence in Transportation 
 
 
patterns and randomly generated incidents. The speed was predicted at a one time-step prediction 
horizon of 15 s duration. The solution was developed with the purpose of building an improved 
freeway traffic model that could be used for developing real-time predictive control strategies for 
dynamic traffic systems. 

Zhang (2000) developed a recursive traffic flow prediction algorithm using NNs. The 
system prediction model is specified based on the understanding of how disturbances in traffic 
flow are propagated. Although the methodology presented has the advantage of its applicability 
to other linear and nonlinear function approximation predictors than NNs, it also has a 
shortcoming. The prediction is made at one-time step horizon of 30-s duration. The practicability 
of using such short prediction horizons or the effect of increasing the time step size was not 
considered. 

In a study by Yasdi (1999) the effectiveness of a NN model for prediction of traffic 
volume based on time series data is presented. A dynamic NN, namely a Jordan–Elman recurrent 
network, was employed in this study to predict weekly, daily, and hourly based traffic volume. 
Fu and Rilett (2000) presented an NN-based method for estimating route travel times between 
individual localities in an urban traffic network. The methodology developed in this study 
assumes that route travel times are time-dependent and stochastic and their means and standard 
deviations have to be estimated. 

In a study by Ishak et al. (2003 and 2004) an optimized NN-based methodology for short-
term prediction horizons of traffic conditions was presented. It was found that the performance 
of different NNs families can be improved if traffic conditions and the number and type of the 
input parameters are considered. Up to 20-min point speed predictions are performed using the 
real traffic data and significant improvements were demonstrated. 
 
 
STRENGTHS AND WEAKNESSES  
 
The main advantages of NNs are their learning capabilities and their distributed architecture that 
allows for highly parallel implementation. When used for function approximation or for input-
output mapping, a unique advantage of NNs lie in the fact that they do not require the user to 
specify the model form a priori (although the user still needs to decide upon the network 
architecture and the number of hidden layers and hidden nodes, for example). NNs are also 
excellent pattern classifiers and can be very effectively used for pattern recognition and 
classification problems. Finally, NNs allow the cause–effect relationships that are at the basis of 
complex multivariable systems to be reconstructed; they can make generalizations, and are 
particularly appropriate in those cases in which there is a significant amount of examples 
available. 

On the negative side, the major criticism of NNs has always been that they are black 
boxes. The knowledge stored with the network structure is not transparent, but rather stored in 
the form of the weights of the network’s connectors. Therefore, the use of NNs requires the 
availability of enough data to allow for the correct training and testing of the network. The 
problem has to be precisely characterized by the selected inputs and outputs. Otherwise this 
model cannot be used or can result in significant errors. Another problem with NNs is the 
relative difficulty of applying them compared to other more traditional approaches such as 
regression analysis. In fact, some agencies and transportation engineers still have reservations 
about implementing them. One possible approach to facilitate acceptance is to provide NN 
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methodology as an alternative to traditional analysis in available software. In this case, users will 
be able to test the new technologies for themselves, and may then adopt them if they prove to be 
more effective than the traditional tools for a particular application. 

 
 

GUIDELINES—OR PITFALLS TO AVOID 
 
The following main steps should be distinguished in every network design: 
 

• Collection of prior information; 
• Construction of examples; 
• Selection of model structure; 
• Model parameter estimation; and 
• Model validation. 

 
The first phase is characterized from the correct interpretation of phenomenon to 

examine. In fact, the construction of input–output data depends on prior knowledge about the 
problem. Afterwards, it is necessary to individuate the input and output variables. The choice of 
these variables is very important because the exactness and accuracy of analysis depends on this 
phase. The second phase consists of selecting the examples. Sometimes it could be appropriate to 
carry out specific measurement surveys to construct the examples. It is important that the 
acquired input–output data cover all the important factors of the problem. 

Many different approaches can be applied in model identification depending on the prior 
information available, the goal of modeling, what aspects are to be considered, etc. Moreover, it 
is necessary to decide upon the network’s architecture and the characteristic parameters. 

To construct a neural network, its architecture must be first selected, and then the free 
parameters of the architecture must be determined. To select the architecture, the type, the 
numbers of neurons and their organization have to be determined. The values of the free 
parameters can be determined using the network’s adaptive nature, which is their learning 
capability. In particular, it is necessary to divide the examples into two sets (training and testing). 
This makes it possible to train and to test the network; testing verifies the strength of the trained 
network to make generalization. 

After the network has been trained, the final step of model identification is validation. For 
validation a proper criterion as a fitness of the model has to be used. The choice of this criterion 
is extremely important because it determines the measure of quality for the model. Validation 
tests typically address the following measures: mean square error, R2 coefficient, and error 
autocorrelation in the two phases. 

From the result of the validation it can be decided if the model is good enough for the 
intended purpose. If it isn’t good enough, an iterative cycle of selection of model structure, 
selection of the network structure, model parameter estimation, and model validation must be 
repeated until a suitable representation is found. Then the model identification is an iterative 
process. 

Since NNs are data-driven systems, the training patterns must cover the entire solution 
space to ensure sufficient representation of the data, and consequently, improve the network 
ability to generalize from the training data. Caution must also be exercised during training to 
avoid overtraining, which may result in a continuous improvement of performance with the 

Artificial Intelligence in Transportation: Information for Application

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23208


30 Transportation Research Circular E-C113: Artificial Intelligence in Transportation 
 
 
training dataset and degradation of performance with the validation dataset. If overtrained, NN 
tends to behave as a lookup table (i.e., memorize from training patterns) and its generalization 
ability is negatively impacted. Overtraining typically occurs when the same data is presented to 
the network at the learning stage for too many epochs. To avoid overtraining, a CV dataset 
should be used to monitor the network performance during training. Once the CV performance 
begins to deteriorate, the training process should stop since training beyond this point will cause 
the network to begin to memorize. 
 
 
SUMMARY 
 
In the last couple of decades NNs have been widely used to solve various transportation 
problems that defy traditional modeling approaches. A plethora of research efforts have shown 
that NNs can be most efficient and effective when addressing complex problems for which an 
accurate and complete analytical description is often too difficult to obtain, and yet can be easily 
represented by examples or patterns. NNs are particularly useful in applications of function 
approximation, pattern recognition, and pattern classification, to name a few. There exists a wide 
spectrum of architectures as presented earlier, each suited for specific applications (e.g., 
pavement management, short-term traffic prediction, incident detection, etc.) Flexibility and 
adaptability are two of the most powerful features in neural network architectures, which 
continue to expand this computational paradigm and its potential to tackle a large number of 
problems in the area of transportation engineering. 
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any topics in transportation planning and engineering can be characterized as subjective, 
ill-defined, ambiguous, and vague. Decision-making processes for transportation 

investment, traveler’s choice of routes and modes, and driver’s behavior are typical examples 
that are not entirely based on the clear-cut decision criteria. Often, the difficulty of dealing with 
these decision problems are caused by the analyst’s attempt to view the answers in the frame of 
binary logic; in other words, to seek an answer in one of two worlds, yes or no, or wrong or right, 
and nothing between with no uncertain term. As the scope of transportation analysis proliferates 
and as the consequences of transportation decisions pose far-reaching impacts on many non-
transportation aspects, the analysis of transportation must inevitably deal with the types of 
uncertainty that are different from the traditional form, which has been handled by probability 
theory.  

This part of the circular introduces fuzzy sets theory as a paradigm to deal with some of 
the difficulties that are related to the concepts or numbers that have vague boundaries. Fuzzy sets 
theory defines such concepts and numbers as fuzzy sets. Operations of fuzzy sets are the formal 
mechanism to operate on fuzzy sets to define new concepts. The theory facilitates modeling of 
situations that are observed as approximate or vague; most often a fuzzy set represents a concept 
associated with the natural language. Therefore, this theory is useful in analyzing qualitative or 
descriptive information and modeling a system whose properties are known or expressed only in 
natural language. There are many areas in which fuzzy set theory can be applied; they include 
inference, control, classification, decision making, and optimization.  

Since introduced by Zadeh, more than a quarter century ago, fuzzy sets theory has gained 
an increasing level of acceptance in science and engineering. Gupta (1977) as quoted in 
Fundamentals of Fuzzy Sets (Dubois and Prade, 2000, page 25) defines fuzzy sets theory as “a 
body of concept and techniques aimed at providing a systematic framework for dealing with the 
vagueness and imprecision inherent to human thought process.” Because the subjects in 
transportation engineering and planning cannot be separated from human perception and 
decision processes, transportation problems are a good domain for fuzzy theory application. In 
fact, a sizeable number of attempts have already been made to apply fuzzy set theory to 
transportation problems.  

This part presents the following topics with the purpose of providing an introduction to 
application of fuzzy sets theory to transportation problems. First, we examine the nature of the 
transportation problems and identify the need for a new paradigm to deal with complex problems 
that we face today. Second, we introduce the basics of fuzzy sets theory. Third, we explore the 
possible general application areas for fuzzy sets theory, as well as specific transportation 
applications.  
 

M 
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THE NATURE OF TRANSPORTATION PROBLEMS 
 
While the situations in which transportation analysis take place may be characterized in many 
different ways, in the following we characterize them in the context of four basic elements of 
systems analysis, which are input, model or knowledge base, output, and goals and objectives.  
  
Input  
 
Information used for making projection and decisions in transportation is usually imprecise. 
Accuracy of input is often inconsistent among different data sets, and the lack of data is often 
supplemented by interpolation and extrapolation based on the available coarse data. Data 
pertaining to perception and feeling are difficult to handle because the boundaries are vague and 
unclear. Traditionally such data are treated as a single value or a rigid interval. Examples of 
information and data that have vague boundaries include the following:  
 

• Notion of desire, goal, and target (e.g., desired cost, desired time-saving, desired 
arrival time); 

• Notion of satisfaction and acceptability level (e.g., satisfactory level of achievement, 
acceptable air pollution level, acceptable cost, acceptable delay, acceptable error, willingness to 
pay);  

• Perception and quantities based on memory (e.g., time spent for an activity, distance 
traveled, prices paid);  

• Description of perceived condition or quality (traffic congestion, comfort level, 
acceptable safety level);  

• Imprecise and hard to measure quantities (e.g., sight distance, reaction time, value of 
time, capacity of roadway, adjustment factors in highway capacity calculation);  

• Performance as a combination of attributes that are interacting one another (LOS of 
highway or transit, aesthetic quality, concept of livability); and   

• Cushion value—a padded value to absorb uncertainty (safety factor).  
 
Model or Knowledge Base 
 
The knowledge about causalities or relations is generally not very clear in the case of human and 
societal affairs, and it is expressed often in languages rather than in a precise equation and 
formula; although, often, such human phenomena have been modeled in a rigid mathematical 
formula in social science. Further, the domain to which a particular knowledge-base applies is 
not clear. Traditional rule-based models, such as expert systems, have a clearly defined domain 
in which each rule applies. A typical example is the relationship between different 
socioeconomic characteristics in an area and the number of trips generated from the area (cross-
classification-based trip generation approach) in a cross-classification form. In general, a 
transportation system is a complex system in which many elements are interacting in a 
complicated manner so that the input is affected by the output (i.e., feedback loops); hence, it is 
not possible to reproduce the phenomena precisely and also to generalize the phenomena in a 
precise format.  
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Output 
 
If either (or both) input or (and) the knowledge base is vague, then the output inevitably becomes 
vague. Such an output is the reflection of the propagation of uncertainty. In reality, however, the 
uncertainty in the output is often presented with a mask of certainty. This is typically seen in the 
forecasting situation. During the analysis process, uncertainty must propagate, but the initial 
uncertainty in the input and that in the knowledge base mysteriously disappears along the way, 
and, as a result, the output gives an illusion of certainty. In fact, presenting uncertainty would 
show more credibility in the analysis.  

Traditionally, testing the effects of uncertainty has been dealt with by the sensitivity 
analysis, in which the range of input values is used to generate a range of possible output. This 
approach is certainly better than the single input and single output approach, but still, it does not 
present the range of outcome with the degree of possibilities. What we need is an output that is 
consistent with the degree of uncertainty of the input and knowledge base. This is not easy to 
perform in the traditional framework of uncertainty, particularly when language-based 
information is involved.  

  
Goals 
 
The goals of the decision or control problem are often not clearly defined in transportation; 
usually they are stated qualitatively, such as to reduce congestion and to improve air quality. 
Therefore, whether the outcome of an action satisfies the goals or not is not clearly determined. 
Further, transportation plans intend to achieve many objectives, but the priorities and weights 
among them are not certain.  

The compounding effects of these characteristics lead to a conclusion of an analysis 
whose validity requires many qualifying statements. In summary, difficulty of transportation 
analysis is related largely to handling and interpreting uncertainty in (a) the data, (b) model or 
knowledge basis, (c) output, and (d) goals (or what we want to achieve); further, how to present 
the uncertainty in a credible manner is another important topic, because in the end the analysis is 
presented to the decision makers who generally do not like to face uncertainty.  
  
 
VOID IN THE CLASSICAL APPROACH  
 
Traditionally, probability theory has been the only avenue to analyze the uncertain situations. It 
is used to obtain the degree of likelihood that a particular event occurs. In this approach, the 
probability distribution function represents the information (in frequencies) that each of possible 
events occurs, and this distribution becomes the evidence for testing the hypotheses. Many 
problems of transportation have been dealt with by probability theory. A typical example is the 
application of queuing theory, in which the number of service channels is determined in order to 
limit the probability that the arriving units are delayed more than a certain tolerable time, or the 
probability that the length of the queue becomes more than a tolerable value. Another typical 
application of probability theory is the random utility models. In this theory, one chooses an 
alternative based on comparison of utility associated with each alternative. Utility is measured by 
the attributes of choice and elements of random terms, which accounts for all the unknown 
factors related to calculation of utility. This expression of the unknown factor has been the focus 

Artificial Intelligence in Transportation: Information for Application

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23208


36 Transportation Research Circular E-C113: Artificial Intelligence in Transportation 
 
 
of debate for many years. Depending on what probability distribution is assumed for this random 
term, either normal or Gumble distribution, the stochastic choice model has been grouped into 
probit and logit models, respectively. The question has been whether all unknown situations can 
be treated by a probability distribution. Probability theory is the correct approach when one is 
dealing with the random events in which all the possible outcomes are accounted for clearly and 
the phenomena are “observable and repeatable.” However, its use for all types of unknown 
situations is a point of debate.  

Consider the situation of tossing a die. If the outcome of each toss of a die is clearly 
observable, a value between 1 and 6, then the frequency distribution of the outcome provides the 
information (or evidence) about the system (in this case, about the die’s property). Given this 
evidence, one assesses the degree of truth that the outcome of the next throw will be a particular 
value in probability.  

What if the outcome is not clearly observable; say, if the toss was conducted under the 
feeble light, and one could observe the outcome only vaguely, “maybe 1 or 2,” “a large number,” 
“a small number,” etc. In this case, the probability distribution cannot be established easily, and 
the axiom of probability measure, the sum of the probabilities of all events is equal to unity, is 
not established. Even if the observation is clear, what if the hypothesis is, “the outcome is a 
‘large’ number”? In this case, without the clear definition of a “large number,” one cannot obtain 
the probability. In other words, vagueness in observation or proposition can disable the use of 
probability theory; when the language, such as “large” or “small,” is used to describe the 
outcome of the trial.  

Given the nature of transportation problem as described in the previous section, the 
important issue is how to formalize the uncertainty associated with the linguistic expression in the 
mathematical structure so that the observation and knowledge can be processed systematically and 
put in the form of a mathematical model. Such a scheme would allow the computer to simulate the 
situation and also replicate the human control and inference processes. Particularly useful would be 
the ability to model the human decision and control processes that are based on language, like 
driving a car, making a choice of path in a crowed pedestrian environment, diagnosing the cause of 
the environmental damage, and automating these processes.  

To discover and describe underlying relationships and to apply them for prediction, 
diagnosis, and control has always been at the core of the engineering profession. The 
relationships are normally formalized in the form of y=f(x). However, in human control and 
inference process, relationships are usually expressed in language in the form of “if… x..., 
then..y..,” like, “if the vehicle in front decelerates fast, then decelerate fast,” or “if traffic is 
congested, then leave home early.” In these situations, the issue is not simply whether the 
relationship between x and y does exist or not exit, but the strength of association between 
particular x and y values is important. Often in a description of a relationship, one says, 
“somewhat related” or “very much related.” This is usually the kind of description of 
relationships that are involved in the transportation analyses.  

If, for example, we formalize a police officer’s manual traffic control rules, which are 
based on his experience, at an intersection in a mathematical form, we may be able to develop a 
traffic control that emulates the police officer’s control. Similarly, if we can put the driving rules 
in mathematical form, we may be able to automate some of the driving tasks. Further, a complex 
transportation system’s workings, the relationships between supply and demand that are 
expressed in natural language, are put into a more formal expression, then predicting and 
diagnosing the situations may be systematized.  

Artificial Intelligence in Transportation: Information for Application

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23208


Fuzzy Sets Theory Approach to Transportation Problems 37 
 
 

 

In summary, the analysis of transportation engineering and planning needs a mechanism 
that allows for a formalized treatment of vagueness in human expression and human-based 
information. Fuzzy sets theory is a paradigm that expresses linguistic uncertainty by the 
mathematical formalism. This theory helps to establish mathematical integrity in the analysis 
process, but also creates new avenues for control and inference.  
 
  
FUZZY SET THEORY AND MEMBERSHIP FUNCTIONS 
 
A set is a collection of elements (or items) that has some common characteristics and functions, 
reference, or features. For example, different parts of a car can form a set which may be called a 
set of car parts, or the alternatives for a decision may be a set called the decision alternatives set. 
A set is the basic building block of mathematics, and it is also the building block of the thought 
development and process.  
 
Crisp Set 
 
The population of a country can be divided into two groups, those who are 65 and older, and 
those younger than 65. These subsets are called the crisp set, meaning that the boundary of the 
set is crisply definable. Formally, the elements of set A is characterized by the characteristic 
function, which assigns a value, either 0 or 1, to each element, 0 being not belonging to the set, 
and 1 belonging to the set.  
 

Crisp set: C
A
(x) = 0, if x is not included in A; C

A
(x) = 1, if x is included in A.  

 
Figure 14 shows the characteristic function for set A.  
 

Fuzzy Sets 
 
The natural language based expression, such as “high speed” or approximately 100”, cannot be 
clearly defined for their boundaries, because we cannot easily tell whether a particular speed, say 
60 mph, is “high speed,” or a value, say 120, is within the “approximately 100,” without 
knowing the situation or context in which they are discussed. Actually, on the city streets, 60 
mph is certainly a high speed, but this may not be the case on a rural road.  

 
 

 
FIGURE 14  Characteristic function for set A. 

Artificial Intelligence in Transportation: Information for Application

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23208


38 Transportation Research Circular E-C113: Artificial Intelligence in Transportation 
 
 

A fuzzy set is a set whose boundary is fuzzy so that one cannot easily state whether the 
element matches the notion of the set or not because the transition is gradual. Nearly all natural 
language based expressions, e.g., “late arrival,” “heavy traffic volume,” and “long distance,” can 
be considered as fuzzy sets with their elements being time, traffic volume, and distance, 
respectively.  

The counterpart of the characteristic function in fuzzy sets theory is called the 
membership function. This is a function that maps the degree of compatibility between the 
element and the notion that the set A represents. It has the following form.  

 
Fuzzy set A: A(x): X→[0,1] 
 
where A(x) is the membership function, which assigns an element x of the universal set X into a 
value between 0 and 1. The value of A(x) is called the grade of membership of x in set A; this 
indicates the degree of association, compatibility, and closeness to the notion of A.  

The membership function of a fuzzy set, “approximately 15,” A(x) can be in the 
following form: 

 

Continuous case: A(x) = )15(3
2−xe  

Discrete case: A(x) = 0.5/12 + 0.7/13 + 0.8/14 + 1/15 + 0.9/16 + 0.6/17 + 0.3/18 
 
where a/b, a shows the membership grade, and b is the element of the set.  

The shapes of these membership functions are shown in Figure 15. 
A fuzzy set does not have to be a set of numbers, as shown above. It may be a set of 

acceptable alternatives in a decision set, in which the elements are decision alternatives, A, B, C, 
and D as shown below: 

 
Z(x) = 0.5/A + 0.4/B + 0.8/C + 0.6/D +0.7/E 
 
where A through E are alternatives, and Z can be called the decision set with “acceptable” 
alternatives. Z(x) is the membership function, or the degree of acceptability of alternative x.  
 
 
 
 

 
 

FIGURE 15  Examples of membership functions, continuous, and discrete cases. 
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APPLICATION ENVIRONMENTS OF FUZZY SETS THEORY  
 
This section discusses the environment in which fuzzy sets theory is the suitable approach for 
analysis. However, before we begin explaining application of fuzzy set theory to various 
transportation problems, we must understand the domains in which fuzzy set theory is useful and 
also in which it is not appropriate.  
  
The Problem Domain Where Fuzzy Set Theory Is Applicable  
 
Generally, fuzzy sets theory is applicable to situations in which uncertainty is related to 
perception and interpretation due to the lack of the clear definition or boundaries. Consider the 
following. When one goes to an ophthalmologist for a visual acuity check up, one is asked to 
“read” letters on the Schellen chart from a distance. At a certain band of distance, one usually 
encounters difficulty in answering whether a particular letter is “readable” or not. Often, one 
takes time to decipher the letter. In this situation, the distance from which a particular letter is 
readable is fuzzy because there is no exact distance at which one can say “I can read it” and 
beyond which “I cannot read it.” Dubois and Prade (1991) characterizes fuzziness by the 
situation when one takes time to answer yes or no to a question. If one plots the degree of clarity 
at each distance from the chart, then the plot could constitute a membership function for a set of 
“readable” distance.  

Let us again think about the case of the Schellen chart above. When the experiments are 
performed for a number of people and each person specifically states yes or no (although this 
may be difficult for each), and the statistics with regard to the distance from which the test 
subjects can or cannot read the letter is compiled, then this information is the frequency 
distribution of the distances from which different persons can read the chart. The distribution, 
although it may be similar to the shape of the membership function, is not a fuzzy quantity; it is 
the statistical information based on the yes or no responses by the subjects.  

On the other hand, when one is presented with a crisp number of travel time, say 78 min, 
and this number may be based on the average value obtained from a frequency distribution of 
travel times. Most people consider the travel time as approximately 80 min, then, this rounded 
number is a fuzzy number because it is no longer the statistical value, but it is a convenient 
number that represents the sense of approximation. This 80 min is usually used to make the 
decision for the departure time or for normal conversation, meaning it is “possible” to travel in 
80 min.  

It is important to separate the situations in which the classical statistical treatment is 
needed and that in which fuzzy set theory is appropriate. Probability density function and the 
membership function of fuzzy set are fundamentally different. The probability density function 
represents a summary of the information obtained from random experiments, and it is used to 
measure the truth of a proposition in probability. On the other hand, the membership function 
represents the definition of a set that represents a person’s understanding, interpretation, feeling 
or disposition regarding the notion of a problem at hand, most often related to language, 
naturally, a subjective quantity. As a result, unlike the probability density distribution, the values 
of the membership functions are operated in the fuzzy set operations.  
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Fuzzy Inference  
 
For most daily activities, human behavior and decision is structured on the language-based 
inference system. For example, when one sees a long queue of vehicles on the highway, one 
would infer a traffic incident ahead. If the queue is very long, then one would infer a very large 
incident. If it is a short queue, one infers a relatively small incident.  

In this case, one perceives the queue length ahead, and also one has the general 
knowledge regarding the relationship between the queue length and the severity of traffic 
incident. Then, one builds a knowledge-base rule, which associates the queue length and the 
severity of accident. Then, if one has the information on the current queue length, one can infer 
the severity of the incident.  

The most fundamental structure of an inference is the following type: 
 

Premise 1: x is A  
Premise 2: If x is A, then y is B  
Consequent: y is B  
 

In this form of logic, if the two premises (Premises 1 and 2) are true, then the consequent 
is always true. This logical structure has been the foundation of reasoning from the time of 
Aristotle, and it is called modus ponens.  

This structure is generalized into a generalized modus ponens, in which A′, A, and B are 
expressed in fuzzy terms: 

 
Premise 1: x is A′ (fuzzy input)  
Premise 2: if X is A then Y is B (fuzzy relation)  
Consequent: y is B′ (fuzzy output)  
 

While A′ and A are not the same fuzzy set, but they are drawn from the same universal 
set. The degree of match between A and A′ defines the degree of validity of the consequent “y is 
B′.” Premise 1 is a fuzzy set of input (or data), and Premise 2 is a fuzzy relation expressed by the 
form shown above.  

Defuzzification is a step that defuzzifies the consequent. A situation may arise such that 
one needs to reduce the fuzzy outcome into a single value representation; after all a decision is 
binary. For this, we need a process to convert the fuzzy output into a single value. Several 
approaches are proposed for this step. The most popular approach is to take the center of gravity 
of the shape of the membership function of B′ (z) with respect to z.  

The modeling situation described above is called the fuzzy system. In a fuzzy system, 
input is fuzzy and the behavior of the system is known only fuzzy. The output becomes 
inevitably fuzzy. The description above is summarized in an illustrated form in Figure 16. 

The process is useful for many situations of transportation analysis, in which the 
causalities are represented by the linguistic rule basis, and the observed data is fuzzy. A typical 
example is the human choice process.  
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FIGURE 16  Fuzzy system input and output process. 
 
 
Fuzzy Controls  
 
Most human-based control problems, such as adjusting the hot water and the cold water faucet 
when taking a shower, adjusting the steering angle driving a car, and adjusting design parameters 
when remodeling a kitchen, are in essence fuzzy controls. There are no specific rigid formulas 
for control, but humans learn to exercise control by experience, and over time developed a set of 
rules. Cooking is another example of human control problem—fuzzy measurement of 
ingredients, mixing, and timing.  

Mathematically, the operation of the fuzzy sets for control is the same as what was 
demonstrated for fuzzy inference above, but an important difference is the derivation of a single 
value. In other words, in the case of control, usually, the parameter value for control must be 
specified by a single value; thus, it is a normal practice that output from the fuzzy inference is 
defuzzified to a single value. Defuzzification is performed by one of several methods, among 
them the most popular and intuitive approach is the center of gravity, which is the value 
corresponds to the center of gravity of the shape defined by the membership function.  
 
Fuzzy Optimization  
 
The Concept 
 
The traditional optimization processes finds the values of the decision variables so as to 
minimize or maximize the objective function, within the domain of values of variables that are 
defined by a set of constraints. Both the objective and the constraints are a function of the 
decision variables. The formulation requires the strict satisfaction of the constraints; thus, 
sometimes, the optimum value may not be found.  

In the fuzzy optimization, the process is to find the values of the decision variable so as to 
achieve the maximum “satisfaction” or “compatibility” with the objective and the constraints. 
The degree of satisfaction with the objective and constraints is measured by the membership 
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grade between 0 and 1. The approach is based on the idea that the optimum solution is the best 
compromise between the objective and constraints.  

In this formulation, the mathematical process is to find the set of parameter values in the 
intersection of the fuzzy sets of objectives and constraints. This approach follows the Bellman–
Zadeh principle of optimization [Bellman and Zadeh (1970)], which states that the optimum 
solution lies in the confluence of objective and the constraints. Thus, both the objective and the 
constraints perform the same purpose of defining the solution sets, and the notions of objective 
and constraint are interchangeable.  

Consider the following optimization problem. In the process of negotiating the salary, the 
labor wants the salary as high as possible, and the management wants the salary to be as small as 
possible. Say the labor wants the hourly salary to be greater than $18/h, and the management 
wants to contain the salary to be less than $14/h. Then, there is no window to negotiate. What 
usually happens, however, is that an arbitrator offers a compromise from both the labor and the 
management: say, an “acceptable” minimum salary to be somewhat greater than $16/h from the 
labor, and “acceptable” maximum salary to be somewhat less than $16/h from the management. 
By drawing the membership function of the “acceptable,” along the axis of the hourly pay, the 
intersection of the two sets defines the area of feasible solution. In the feasible solution, the value 
that maximizes the acceptability to both the management and the labor is found. This is the point 
where the minimum satisfaction is maximized, max–min. This is illustrated in Figure 17. 

In the classical optimization approach, the solution may become infeasible (Figure 17a); 
in real life, however, through a compromise, a solution is usually found. This is a result of 
fuzzifying the boundaries of the objective and the constraints; that is compromising. Such 
fuzzification of boundaries is seen in Figure 17b. The compromised solution is found the 
following.  
 
D(x*) = Max Min {G(x), C(x)} for all x 
 
where x is the decision variable; x* is the optimum solution, G(x) and C(x) are respectively, the 
membership function of the objective and the constraint. D(x*) represents the maximum degree 
of satisfaction of both the objective and constraint. Actually, we now see that there is no 
difference between objective and constraints as far as the computation is concerned.  
 
 
 

  
 (a) (b) 

 
FIGURE 17  Illustration of fuzzy optimization concept:  

(a) no feasible solution and (b) feasible solution. 
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Because the intersection can be formed by many objectives and constraints, this 
formulation solves the multiobjective and multiconstraint programs, in which the solution is 
found in the intersection of the objectives and constraints, by maximizing the value of the 
membership grade of intersecting membership functions. Thus, the generalized expression of the 
optimum solution is the following.  

 
D(x*) = Max Min {G

1
(x), G

2
(x), C

1
(x), C

2
(x), C

3
(x)}  

 
In this formulation, if the membership functions are in linear form as shown in Figure 

17b, then the problem can be solved using linear programming. This is shown in the next section.  
It should be noted that x does not mean to be a single variable. It can be a vector of 

decision variables, X. If the decision set’s elements are discrete then the optimization concept is 
depicted as shown in Figure 18, where each dot indicates the degree of satisfaction of an 
alternative for each objective and constraint. Among the alternatives (Xs) the one whose 
minimum degree of satisfaction is maximum is chosen as the optimum solution; in this case, 
alternative 3.  

The fuzzy optimization technique discussed above is suited for problems in which both 
the objective and constraints are not clearly defined or flexible; for example, when the objective 
is to control cost “around” a certain value to meet the budget level, or when the constraints are 
not known exactly and a certain level of tolerance is acceptable. Therefore, this approach can be 
most useful for the strategic planning level. The trade-off between the costs of obtaining precise 
information to find the optimum versus the cost of obtaining less accurate data to find somewhat 
less optimum solution must be evaluated before using fuzzy optimization. In some problem, the 
objectives and constraints are inherently vague; in this case, a fuzzy optimization approach is 
suitable. In some cases, the constraints may be a mix of fuzzy and crisp equations and 
inequalities.  
 
 
APPLICATION PROBLEMS  
 
In the following, we present a set of subjects in transportation to which fuzzy sets theory can be 
considered as a viable approach. What is common to these situations is the involvement of 
human interpretation, rather than completely mechanical or physical phenomena. The problem 
on hand should have the following features.  
 
 

 
FIGURE 18  Illustration of discrete fuzzy optimization. 
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• Fuzziness or approximation in the data values;  
• Fuzziness in the knowledge base, relations, and rules;  
• Fuzziness in the reference (e.g., goals and desire); and  
• Fuzziness in the model outcome is acceptable.  

 
Data Handling Problems 
 
The data used for transportation analysis are basically two types: numerical data and language-
based data. The nature of the numerical data may be the observed or measured values, perceived 
values, and the values set for reference, such as limiting value for safety or regulatory reasons. 
The language-based data are words, such as “large,” “small,” etc., whose meaning depends on 
the context.  

Fuzzy set theory is useful for dealing with the data that is approximate and also the 
language-based data in the problems, to show how the uncertainty associated with the individual 
values propagate as they are operated.  

  
Arithmetic Operations of Fuzzy and Crisp Values 
 
This is useful for estimating the cost of a large-scale project when individual component costs 
are known only in approximate terms and the relationships that connect the cost parameters are 
not well known. It is also applicable for estimating travel time between two points, when the 
travel times for different segments between the points are known approximately.  

  
Line Fitting Problem 
 
Line fitting problem to fuzzy data, in particular, when both the x–y values are fuzzy. For 
example, when a set of data points are approximate and with a range (both x and y values), and 
when a line that fits all the data points is needed.  

  
Adjustment of Data for Consistency 
 
Examples of applications include: (a) making the consistent traffic volume counts from the 
inconsistent observed counts on the transportation network; (b) making consistent transit 
ridership counts from the inconsistent counts, e.g., nonequal boarding and alighting sums; and 
(c) adjusting the desired design values while making sure the design values to confirm to a set of 
pre-established relationship.  

  
Optimization Methods 
 
The concept of fuzzy optimization has been applied to the traditional optimization algorithm, 
such as fuzzy linear programming transportation problem and fuzzy dynamic programming. In 
the case of fuzzy linear programming transportation problem, supply and demand are known 
only in fuzzy numbers and it determines the amount to be shipped between each demand–supply 
node pair (xij). Mathematically it is solved according to the following.  
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Max h  
Subject to: G(x

ij
) ≤ h, Si(x

ij
) ≤ h, and Dj(x

ij
) ≤ h, j

i
ij

j
ij DxSix ≈≈ ∑∑ ,  

where G(x
ij
) represents the goal, such as the minimum total cost or time of shipment, Si(xij) and 

Di(xij) represents the approximate total supply and demand at i and j, respectively. It is possible 
to introduce additional either fuzzy or rigid constraints.  
 

• Fuzzy linear programming for resource allocation at the strategic planning level. This 
is applicable when the objectives and constraints to an optimization problem are fuzzy.  

• Fuzzy dynamic programming for network optimum path analysis, sequential 
decision-making process. In this case, the cost function is not exact but fuzzy.  

• Compromise among different interest groups during planning stage, e.g., compromise 
of desires of different groups. One group’s desire is a constraint to another group. 
 
Reasoning and Inference 
 
Examples include 
 

• Traffic signal timing and phasing controls based on fuzzy data and fuzzy rules;  
• Dispatching control of public transportation, air traffic control, land use controls, and 

traffic flow controls;  
• Rule-based decision problem, e.g., choice of travel modes, choice of routes, and 

choice of departure time; and  
• Representation of a large-scale cause–effect relationship and measurement of the 

justification of the process for alternative investment analysis, traffic impact analysis.  
  

Fuzzy Systems 
 
Application examples include 
 

• Large-scale transportation planning and investment modeling as a fuzzy system; 
• Fuzzy input; 
• Fuzzy knowledge base–fuzzy output structure for travel demand forecasting; and  
• Diagnostic analysis, including accident analysis, evaluation of the cause of 

environmental damage, and causes of traffic congestion.  
  
Comparison of Fuzzy Numbers 
 
This includes 
 

• Comparing two approximate numbers for ranking and ordering;  
• Evaluation of driver perception of safe separation of vehicles and stopping distance;  
• Evaluation of vehicle design, passenger comfort, and safety; and  
• Highway capacity analysis and LOS determination, e.g., comparing the passenger car 

equivalent volume with the LOS demarcation.  
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CONCLUSIONS  
 
The essence of fuzzy set theory lies in the following. 
 

1. Its ability to model natural and human-related phenomena, in which no clear 
demarcation from one state to the next exists. In particular, it is suited when the data and the 
relationships are approximate or expressed in language, and the approximate output is sufficient. 
With the use of proper set operators, the set operations can preserve uncertainty in the 
computation process and reaches the output whose uncertainty is consistent with that of input 
and the relationships.  

2. Its ability to incorporate the traditional mathematical optimization. Many of the 
traditional operations research techniques can be modeled with fuzzy sets theory, e.g., fuzzy 
linear programming or fuzzy dynamic programming. For these applications, the theory can deal 
with approximate goals and constraints.  

3. Its ability to evaluate the truth of a proposition using fuzzy data. It can be used for 
evaluation of alternatives when there is more than one goal, and the goals are defined in 
language. This ability complements the classical probability theory, because the uncertainty 
involved is not random nature but rather perceptive.  
 

It should be noted that the theory does not explain the reason why the system is fuzzy; 
rather it describes the phenomena. The analyst must examine rigorously if in fact the phenomena 
being analyzed are fuzzy phenomena. It should be warned that fuzzy theory should be used only 
when the merits exist. For many transportation problems, the traditional deterministic 
assumptions or probabilistic approach may suffice. Probability theory is the legitimate approach 
when the phenomena are random and repeatable, such as the physical phenomena of vehicle 
arrivals. It should be emphasized, however, that fuzzy sets theory has no one-on-one match 
correspondence with probability theory. Therefore, fuzzy theory should be applied only when the 
benefits exist and the phenomena being analyzed meets the definition of fuzziness.  

Terms such as fuzziness, vagueness, and ambiguity have not been considered as the 
“desirable” features in the traditional analytical approach. The tendency has been to eliminate 
such uncertainty by assumptions. Definitive crisp statements and logic have been preferred to 
“fuzzy” reasoning for many years. Such a mindset, however, has not been effective in modeling 
when the subject involves human judgment and human decision process. Fuzzy sets theory offers 
a legitimate mathematical approach that complements the traditional approach in transportation 
engineering and planning by preserving uncertainty in the analysis process, which is abundant in 
this field.  

We conclude this section by saying  
 
Language changes based on what the society gives the meaning. Uncertainty and 
fuzziness is not the devil, it is a positive force to sustain the society. To make life 
interesting two basic elements are randomness and fuzziness. Those are 
indispensable unpredictability and the language cannot be singly interpreted. We 
are now accepting the fact that we need randomness and fuzziness.  
 

—Radhakrishna Rao 
Statistic and Truth: Putting Chances to Work (2nd Edition), 1989 
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ature-inspired computational paradigms are becoming more common in an increasing 
number of applications. While none of those paradigms work magic, they have uniqueness 

and power that make them a first choice in many application domains including transportation. 
This part of the circular aims at providing a one-stop overview of one such group of algorithms: 
GAs.  

GAs are part of a broader class of evolution-inspired algorithms (Figure 19). 
Alternatively, one can classify them as one of a derivative-free optimization group of algorithms. 
Their applications in transportation go back to the early 1990s and since then have been growing 
steadily. In all applications, GAs were instrumental in solving problems that had been either 
difficult to solve, or the solutions had been of modest quality.  

This part of the circular serves two broad objectives: (a) provide a brief introduction to 
GAs that covers their fundamental components and mechanisms, and a brief account of GA 
applications in transportation, and (b) provide a concise coverage of means to improve 
performance of GAs with special emphasis on parallel GAs. The first section is a brief overview 
of GAs including coverage of the primary components and functional steps, along with a brief 
note on why GAs work well. Section 2 discusses the general characteristics of problems for 
which GAs are particularly suited, presents a summary of GA applications in transportation, and 
concludes with a discussion of the general pitfalls users should be aware of. Means to improve 
GA performances and discussion of some advanced topics are the subject of section 3. Section 4 
is on parallel GAs. 

 
 
BRIEF OVERVIEW OF GENETIC ALGORITHMS 
 
GAs are one of the derivative-free stochastic optimization methods which have their foundation 
in the concepts of natural selection and evolutionary processes. While these two functional 
characteristics summarize the essence of GAs, more details are necessary to fully understand 
how GAs function and the secret to their strength. GAs use the mechanics of natural selection 
and natural genetics. The basic operation of a GA is simple. First a population of possible 
solutions to a problem is developed. Next, the better solutions are recombined with each other to 
form some new solutions. Finally, the new solutions are used to replace the poorer of the original 
solutions and the process is repeated. Here, GAs will be introduced through an example where 
the fundamentals and different functionalities are noted. This way, the reader will be able to 
follow the logic and the specific steps taken to put a GA to use for a given optimization problem. 
Later, we will discuss GA properties, how they function, what makes them unique, and what the 
sources of their strength are. Limitations of GAs will also be discussed. 
 

N 
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FIGURE 19  GAs among family of search algorithms. 

 
 

 
How Does a GA Work? 
 
The following are the main functional steps that take place in a GA: (a) selection, (b) cross-over 
(or recombination), and (c) mutation. At the end of this sequence of steps the population is ready 
for the next evaluation (which is done using the fitness or evaluation function). In some respect, 
evaluation may be though of as a fourth step. Here is a pseudo code for a generic GA. Pop is the 
population and t is time measured by number of generations: 
 

Begin 
t = 0 
Initialize Pop(t) 
Evaluate Pop(t) 
While (t < maximum # of generations) do 
 Begin 
  t = t +1 
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  Select Pop(t) from Pop(t-1) 
  Reproduce Pop(t) 
   Crossover  
   Mutate 
  Evaluate Pop(t) 
 End 
End 

 
GA Through an Examplea 
 
Assume we want to find x in the range [–1 … 2] that maximizes the following function: 
 

f(x) = x · sin (10π · x) + 1.0 
 
This is a simple problem and the derivative can be found easily then made equal to zero 

to find the value(s) of x at which the value of the function f is maximum: 
 

f′ = sin (10π · x) + 10π · cos (10π · x) = 0 
 
This is equivalent to 

 
tan (10π · x) = –10 π 
 
This equation has an infinite number of solutions. 
Let us assume that we want to use a GA to optimize the above problem. This will involve 

six distinct components:  
 
1. Genetic representation; 
2. A way to create a pool of chromosomes (individuals, solutions);  
3. An evaluation function; 
4. Genetic operators to alter the composition of children; 
5. Selection procedure; and  
6. Values of the different parameters, namely the population size, probabilities of 

crossover and mutation.  
 
Representation 
 
We will use binary representation (other presentations are possible; more on that later). The 
length of the chromosome will depend on the precision (how many decimal points) we desire. 
Use 6 places after the decimal. Note that the domain of x has a length of 3 (–1 to 2). Given the 
desired precision, the domain length has to be divided into at least 3 × 1,000,000 equal size 
ranges. Since each bit can have two possibilities, a 0 or a 1, the number of bits needed to 
represent this is 22 bits (221 = 2097152 < 3,000,000 < 222 = 4194304). Mapping the binary string 
into real number in [–1, 2] is done in two steps: 1) convert the string from base-2 to base-10. For 
example, the base-2 string 01011 can be converted into base-10 as follows: 24 × 0 + 23 × 1 + 22 × 
0 +21 × 1 + 20 × 1 = 11, and 2) find a corresponding real number x such that  

Main phenomenon of 
evolution takes place 
here 
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x= –1.0 + (base-2 value of the string) × 
12

3
22 −

  

 
The –1.0 in this equation is the lower boundary of the domain and 3 is the length of the 

domain. For example, the following chromosome (1000101110110101000111) represents the 
number 0.637197 since the base-2 value of the string, (1000101110110101000111)2 = 2288967, 

and x = –1.0 + 2288967 × 
4194303

3 = 0.637197. And, the chromosomes 

(0000000000000000000000) and (1111111111111111111111) represent –1 and 2.0 (the domain 
boundaries), respectively. 
 
Initial Population 
 
A GA starts its search from a population of chromosomes (possible solutions) and not just one 
point. How this initial population is created and how many should be in is largely dependent and 
the GA literature has some ad-hoc rules for deciding that. A randomly created population is not a 
bad start unless the user has some prior knowledge as to where within the search space the 
solution is, in which case the initial population would be created accordingly. Otherwise all bits 
of all chromosomes would be initialized randomly. 
 
Evaluation Function 
 
The role of the evaluation function is to evaluate and rate the different chromosomes (solutions). 
If v is the binary vector (chromosome) that corresponds to x, then the evaluation function, EF, is 
related to the objective function f as follows EF(v) = f(x). Using the above example, v1= 
(1000101110110101000111), v2= (0000001110000000010000), and v3= 
(1110000000111111000101) respectively correspond to x1= 0.637197, x2= –0.958971, and x3= 
1.627888. EV will rate those chromosomes as follows: 
 

EF (v1) = f(x1) = 1.586345 
EF (v2) = f(x2) = 0.078878 
EF (v3) = f(x3) = 2.250650 
 
Chromosome v3 is the best since its evaluation value is the highest. 

 
Genetic Operators 
 
There are two classical genetic operators: mutation and cross-over. Besides these two, others 
have also been discussed and used in the GA literature. For binary representation, the mutation 
operator flips one or more bits from 0 to 1 or from 1 to 0 with a predetermined probability (Pm). 
For real value representation (not emphasized in this section) mutation takes place by perturbing 
values by adding some random noise. The crossover operator recombines pieces of 
chromosomes from different parent chromosomes to form a new “baby” chromosome, or an 
offspring. What pieces from the parents is decided by what crossover point or points are selected. 
It is possible to cut a parent chromosome into n pieces. If n is 1 then a chromosome is cut into 
two pieces and the location of this cut is determined randomly. The selection of one or more 
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cutting points has profound impact on the GA performance; too many cutting points, for 
example, disrupt the ability of the GA to piece together the necessary pieces of a potentially 
good solution. Use the above example and assume that the crossover point was randomly 
selected to be after the fifth bit of chromosomes (parents) v2 and v3: 
 

v2= (00000|01110000000010000) 
v3= (11100|00000111111000101) 
 
The two resulting offspring are: 

 
v2′ = (0000000000111111000101) 
v3′ = (1110001110000000010000) 
 
and the values of those offspring are: 

 
f(v2′) = f(–0.99813) = 0.940865 
f(v3′)= f(1.666028) = 2.459245 

 
Note that the best of those two offsprings is better (more fit) than the best of the parents 

(v2 and v3). 
 
Selection 
 
Here the new population is selected. Individuals are selected based on their relative fitness as 
follows: (a) calculate the fitness value of each chromosome (potential solution); (b) calculate the 
total fitness of the population (this is the summation of fitnesses of all chromosome in the 
population); and (c) calculate the portability of a selection for each chromosome. This equals to 
the ratio of the fitness of the chromosome to that of the total fitness of the population. It is noted 
here that some chromosomes will be selected more than once and hence will get more copies 
(these would the more fit ones), and others will not be selected at all hence will die off (these are 
the less fit ones). The average ones stay even. 
 
Crossover (Recombination)  The chromosomes to be crossed over and then mate are selected 
randomly and so is the point (location within the string) of the crossover. Two chromosomes are 
replaced by a pair of their offsprings.b  
 
Mutation  This is formed on a bit-by-bit basis and every bit in the population has an equal 
chance of undergoing mutation. The probability of mutation gives the likelihood that a given bit 
will be mutated. If Pm is the probability of mutation, the population size is Pop, and each 
chromosome is n bits long, then the number of bits to be mutated, on average, is equal to 
Pm×Pop×n. The specific bits to be mutated are selected randomly. 

The end of the mutation step marks the end of one iteration, or one generation (and the 
beginning of the selection step, which is also the beginning of the next generation).  
 
Value of Parameters  The last GA component to be discussed is the values of the different 
parameters. There are many of those parameters but the most critical are the population size, 
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number of generations, portability of crossover, and the probability of mutation. A suitable 
choice of values of these parameters is important for the proper functioning of the GA. Later 
discussion will show that the particular choice of any of these values can have a profound impact 
on the performance of the GA. As will be noted later, there are some guidelines for how to 
choose those values although much is left to the user’s judgment. 

Michalewicz (1994) used a population of 50 chromosomes, 0.25 for Pc, 0.01 for Pm, and 
150 generations and found the best chromosome of (1111001101000100000101), which 
corresponds to x = 1.850773, to maximize the value of the function to 2.850227.  
 
 
WHY DO GAs WORK? 
 
In order to understand why GAs work, some fundamental properties should be recognized and 
their impact on survival of a chromosome understood. First, we introduce the concept of schema 
(Holland, 1975) as it is fundamental to the understanding of GAs and how they work. A schema 
is a similarity template describing a subset of chromosomes with similarities at certain string 
positions (Goldberg, 1989). For example, in a population of five-bit long chromosomes, the 
schema *0000 matches two chromosomes 10000 and 00000. A “0” or “1” is a fixed position; “*” 
is not since it can be either a 0 or a 1. A schema matches a particular chromosome if at every 
location in the schema a 1 matches a 1 in the chromosome, a 0 matches a 0, or a * matches 
either. Most GA literature refers to the “*” as a “do not care” symbol. The location of the “*” 
within a schema determines two important properties: Defining length and order, which both in 
turn impact the survivability of the chromosome during the GA working process. The Defining 
Length is the distance in bits between the first and last fixed position. It defines the compactness 
of information contained in a schema. The order of the schema is the number of 0 and 1 positions 
(number of fixed positions). The defining length impacts a schema’s survivability against 
crossover. And the order of a schema impacts it survivability against mutation. Needless to say, 
we would like a good schema to survive. Think of a good schema as a building block to a good 
solution. Another relevant property of the schema is its fitness at a given time t. 

Key to understand why a GA works efficiently [Holland (1975) calls it implicit 
parallelism] is to know how a schema grows from generation to generation. Knowing that a 
schema’s selection into a following generation is based on the ratio of its fitness to the total 
fitness of the population, an above average schema receives an increasing number of 
chromosomes (copies) into the next generation; a below average schema receives decreasing 
number of chromosomes, and an average schema stays on the same. The long-term effect of this 
is that the above average schema receives an exponentially increasing number of chromosomes 
in the next generations. As it turns out, a short, low-order, above-average schema receive 
exponentially increasing number of chromosomes. The immediate result of this is that “a GA is 
able to explore the search space using short, low-order schemata, which, subsequently, are used 
for information exchange during crossover. Goldberg (1987) noted that a GA seeks near-optimal 
performance through the juxtaposition of short, low-order, high-performance schemata—which 
he called the building blocks. Put simply, a GA works wonderfully because by working with the 
building blocks it reduces the complexity of the optimization problem: instead of building high-
performance chromosomes by trying every conceivable combination, the GA constructs better 
and better chromosomes from the best partial solutions of past samplings. 
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TYPES OF PROBLEMS TO WHICH GAs ARE MOST SUITED 
 
In brief, a GA is a suitable choice for problems that are difficult to formulate and solve using 
derivative-based and other traditional optimization techniques. Problems that are characterized 
by complex objective functions including multiobjective problems, problems with no-closed 
form objective function, and ones with large number of variable and mixed solution space are 
particularly suited for optimization with GAs. 

A GA has no requirement of the function being optimized; it does not need to be 
differentiable, continuous, monotonic, etc. In fact it can be as ill-behaved as it may and that 
would not have any bearing on its implementation in a GA—all the user needs from the function 
is to be able to calculate a value of the function given values of the different decision variables. 
In more practical terms, a GA is a good choice to optimize complex and combinatorial problems. 
Of course the term “complex” is a loaded one that can mean discontinuous, nondifferentiable, 
nonclosed form, multiobjective, etc. As a side point, GAs are particularly suited for 
multiobjective optimization problems. 
 
Strengths of GAs 
 
There are a number of specific attributes of GAs that give them an edge over other traditional 
optimization techniques. These are: 
 

1. A GA works from a population, not a single point, and hence it is less likely to be 
trapped at a local optimum. 

2. Derivative freeness. A GA does not need the objective function’s derivative to do its 
work. 

3. Flexibility. A GA can function just fine regardless of how complex the objective 
function; the only thing it requires of the function is that it be executable (i.e., its value can be 
calculated given the values of the decision variables). 

4. Because of its implicit parallelism, a GA can handle combinatorial problems 
efficiently. It was shown that as the size of the search space or number of solutions increases 
exponentially, the time requirements for the GA grow only linearly. This feature is particularly 
useful for on-line optimization of transportation problems such as traffic control (Abu-Lebdeh 
and Benekohal, 1999, 2000).  

5. A GA naturally lends itself to parallel implementation. This follows from its 
functional components–structure. 

6. Intuitive guidelines and flexible structure and use of parameters. GAs are for the most 
part based on intuitive notions and concepts.c 
 
Weaknesses of GAs 
 
GAs have limitations as well: 
 

1. Analytical opacity (murkiness). One cannot do much analytical studies on GAs. This 
follows from the randomness inherently in GAs and the fact that much of how the GA is 
designed depends on the problem at hand. Most of what we understand about GAs is based on 
empirical studies 
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2. Slowness. Because GAs work without derivatives, they are bound to be slower. 
3. Global optima not guaranteed. Because of the nature of GAs, finding the global 

optima is not guaranteed. A GA is a heuristic search method and although randomness is a 
characteristic of GA’s search, the search is not purely random; it is “directed.” 

4. Iterative nature. There is no clear rule on when the GA should stop. In some cases 
users run the GA for a pre-specified number of runs, or generations. In other cases one may want 
to observe the generational rate of improvement and decide accordingly. In other cases 
computational issues may dictate when to stop. 
 

Besides the above, to most users it is still not clear how to “optimally” select the 
appropriate type of operators and values of parameters (population size, number of generations, 
crossover probability, etc.). This is ironic given that GAs themselves are an optimization tool. 
 
 
EXAMPLES OF TRANSPORTATION PROBLEMS 
 
The example applications of GAs in transportation noted below are a sample of the diverse uses 
of GAs in transportation problems. As such details of the different applications are not noted. 
This review is also not intended to be a critique of those applications. The applications are 
presented by specific application area within transportation, but this classification is strictly a 
convenience than anything else since once a problem is coded in a GA framework, domain 
differences simply disappear. 
 
Traffic Signal Timing and Control 
 
Of the first GA applications in this area was of Foy et al. (1992). They used a GA to minimize 
delay in a four-intersection network. Binary coding was used to encode all signal timing 
parameters. A population size of 50 was used and run for 60 generations. A simple microscopic 
traffic simulator performed the evaluation. Results indicated an improvement in system 
performance. Hadi and Wallace (1993) added a GA component to TRANSYT-7F so that all four 
signal timing variables could be optimized. A two-stage optimization was used with binary 
representation of variables: first, a simple GA (SGA) optimizes the phase sequence and cycle 
lengths, and both are then used as input to TRANSY-7F for determining the optimal green splits 
and offsets. A variant of their work that improved performance but required more computational 
time was to use a GA to optimize offsets. They experimented on three networks of 7 to 12 
intersections and used a population and number of generations of 50 each. Crossover and 
mutation probabilities were 0.9 and 0.01, respectively. Results showed that with the GA-based 
phase sequence and cycle length optimization, system performance improved by 15% to 44%. 

Abu-Lebdeh and Benekohal (1997, 2000) and Girianna and Benekohal (2002, 2004) 
presented formulations and solutions to control of oversaturated arterials and network control 
problems, respectively. Control was formulated as an optimization of dynamical problems and 
Micro-GAsd were used with binary coding to optimize green splits and offsets. Ceylan and Bell 
(2004) used GAs to optimize signal timing with consideration to traffic assignment. Chen and 
Abu-Lebdeh (2006) used GAs to simultaneously optimize signal control and dynamic speed 
selection in signalized networks. Park et al. (1999) used mesoscopic simulation with a GA-based 
optimizer to simultaneously optimize all four signal parameters with consideration to 
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oversaturated conditions. They accounted for hard constraints partially by using fractional value 
representation of parameters. The GA parameter values were: 250 and 10 for the population and 
number of generations, respectively, and 0.4 and 0.03 for the probabilities of crossover and 
mutation, respectively. A hypothetical network with three levels of demand was used to test the 
algorithm. The GA-based solutions outperformed those from TRANSYT-7F for both low and 
high demands, but were comparable for the medium demand. Later work (Park, 2000) 
considered multioptimization strategies. 

Duerr (2000) used GAs with a microscopic traffic simulator as fitness evaluator to 
optimize signal coordination to reduce delay to buses, and other vehicles as possible. The 
simulator considered vehicle behavior at intersections and at transit stops. The GA parameter 
values were: 200 and 100 for the population and number of generations, respectively, and 0.5 
and 0.1 for the probabilities of cross over and mutation, respectively. Results showed a 25% and 
5% delay reduction for buses and cars, respectively, but the solution was too computationally 
demanding to be implemented in real time.  
 
GA for Transit Network Design  
 
The transit network design (TND) problem is about designing new routes or modifying existing 
ones given the roadway network, travel demand, and operating policies and objectives. The TND 
problem is commonly formulated as a minimization of the sum of user and operator costs (Baaj 
and Mahmassani, 1990; Ceder and Wilson, 1986). Especially for large networks, TND problems 
are typically characterized by computational complexity and inability to obtain optimal solutions. 

Chakroborty et al. (1995) used GAs to solve a TND problem where transit routes are 
given and meet at a common transfer station. The objective is to determine the optimal schedules 
for these routes subject to minimum passenger waiting and transfer times as well as fixed fleet 
size and demand. The GA enabled a simpler formulation of this computationally intractable 
problem; as the GA does not use a derivative to guide its search, the problem was formulated 
with only one decision variable (arrival–departure times). Integer transfer variables were 
determined in a sub-procedure based on the solution of the reformulated bus arrival–departure 
times’ problem. A three-route problem was solved. The GA parameter values were: 350 for the 
population and 0.95 and 0.005 for the probabilities of cross over and mutation, respectively. A 
sensitivity analysis showed the results to be reasonable but no other effectiveness indicators were 
given. Later work presented cases with multiple transfer stations (Chakroborty et al., 1998), and 
the case of schedule coordination between trains and feeder buses (Shrivastava and Dhingra, 
2002). 

Pattnaik et al. (1998) used GAs with other heuristic procedures to solve a general version 
of the TND problem. The main problem was broken into two sequential sub-problems. 
Candidate routes were generated heuristically based on origin–destination (O-D) patterns and 
policy constraints. A GA was then used to solve the TND problem with the candidate routes 
constituting the search space. The fitness of a solution was determined after the volume of 
passengers on each route had been determined using a specified assignment procedure. In depth 
analysis was used and the optimal GA parameter values were determined to be: 50 and 250 for 
the population and number of generations, respectively, and 0.6 and 0.05 for the probabilities of 
crossover and mutation, respectively. The GA was then used to solve the TND problem of 25 
routes and 39 links. Tom and Mohan (2003) later extended Pattnaik et al.’s work to include 
frequency of routes. The work by Bielli et al. (2002) is similar to that of Tom and Mohan (2003). 
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Ngamchai and Lovell (2000) used a GA with heuristic procedures to identify the optimal 
routes, transfer points, and headways that minimize the total operator and passenger costs. Initial 
candidate routes (solutions) were constructed using a branching technique over a spider graph of 
a known set of demand points that must be connected by one or more routes. Routing decisions 
did not include how each route should be located on the underlying road network. One unique 
aspect of this work is the use of seven operators (not like commonly used ones) that can be used 
to generate new configurations and transfer points from the existing ones. The algorithm was 
tested on a hypothetical 19-node network. Optimal values for the proposed operators were 
determined through experimentation; all operators ranged between 0.1 and 0.3, and the number 
of generations was 40. Chien et al. (2001) used a GA to construct and evaluate alternative feeder 
bus routes where a single feeder route is to be located within a given service area. GA parameters 
were calibrated via simulation to yield ranges of population size (50-60), crossover probability 
(0.8-0.9), and mutation probability (0.05-0.1). This work applies only to rectangular network and 
directional demand to and from a transfer station or central business district.  

Kruchten et al (2006) used GAs to estimate appropriate parameters so that within-
household interactions were incorporated in the mode choice phase. Cevallos and Zhao (2006) 
used a GA to minimize transfer times in a public transit network. Jeon et al. (2006) used a special 
GA to ease the computational complexity of the discrete network design problem. 
 
Other Transportation Applications 
 
GAs were also used in scheduling of transportation crews and activities, and in transportation 
logistics (Kwan and Wren, 1996, Zhao et al., 1995, 1995; Kwan et al., 1999; Kwan and Kwan, 
2000; Lourenço et al., 2001) and demand responsive transit (Uchimura et al., 2002; Marchiori 
and Steenbeek, 2000; Helena et al., 2001; Le and Lixin, 2006; Cao, 2006). Miester et al. (2005) 
used GAs to optimally generate household daily activity schedules based on the structure of a 
household and the activity agendas of its members. This was done to use activity-based analysis 
operational for transportation planning.  

Calibration of parameters of microscopic traffic simulation models and parameters of 
other types of models is another area where GAs were used with some success. Lee and Yang 
(2001) used GAs to calibrate two Paramics parameters with some success (12% improvement 
over use of default parameter values). GA’s parameter values were: 20 and 12 for population size 
and number of generations, respectively. Cheu et al. (1998) used a GA to calibrate FRESIM 
through optimizing values of 12 of its parameters so that it replicates observed traffic conditions. 
They experimented with different of population sizes and numbers of generations and selected 4 
and 100, respectively. Significant improvement was noted over use of the default parameter 
values. Srinivasan et al. (2000) applied a GA to calibrate the parameters of an automated incident 
detection algorithm and reported improved performance over other established algorithms. Liu 
and Mahmassani (2000) used a GA to calibrate four of a multinomial probit (MNP) model using 
artificial data. The GA-based values were very close to the optimal values. Loizos et al (2005) 
used a GA to optimize the topology of a neural network that was used to estimate the elasticity 
modulus of the pavement granular layer. Dong et al. (2006) used GAs to calibrate departure time 
and route choice parameters of microsimulation models. Zhang and Xie used GAs to improve the 
predictive abilities of NNs for detection of accidents at signalized intersections in real time. 
Hegeman and Hoogendoorn (2006) used GAs to minimize the Kolmogorov–Smirnov distances 
between observed and simulated gaps in order to estimate a distribution of critical gaps. 
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Jha et al. (2001) used GAs with GIS to present an advanced approach to visualization and 
design of roadway alignments. 
 
 
GUIDELINES—OR PITFALLS TO AVOID 
 
While GAs have been shown to work well, they do not work magic and in fact they could easily 
be misleading. They have limitations, and shrewd use is necessary to ensure good results. The 
three primary areas where users can have difficulty are (a) GAs, especially SGAs, can easily get 
trapped at local optima of deceptive problems; (b) selecting of parameter values (and selecting 
some specialized operators) is still an art that requires significant offline work by users; and (c) 
finding the global optimum (optima) is not guaranteed. Each of these points is discussed below 
with some details. 
 
Simple GAs and Deceptive Problems  
 
For particularly difficult optimization problems (deceptive ones), SGAs can easily be trapped at 
local optima. Assuming that the problem at hand cannot be solved with other more traditional 
optimization methods, users should be aware of the fact that a GA can be trapped at a local 
optimum, a problem that GAs are often able to overcome, but not always. Complicating this is 
the fact that there is nothing inherent in a GA structure to indicate that it is in fact trapped at a 
local optimum, which makes it critical that users be aware of this limitation. If it is suspected that 
a GA is indeed trapped at a local optima, a user should explore, perhaps aggressively, widely 
varying values of the key parameters (population size, number of generations, and to a lesser 
extern the probabilities of crossover and mutation). Even then, this is not a guarantee that the 
problem is solved as will be discussed later. More recent generations of GAs address this but do 
not solve it entirely. 
 
Selecting Parameter Values 
 
While GAs are widely used as an optimization tool, selection of the best values of the different 
parameter is still an ad hoc process despite a significant volume of both theoretical and empirical 
research to address this very point. Most theoretical research used “toy” problems of known 
structure and complexity to derive some rules or guidelines on selection of parameter values 
(Thierens et al., 1999; Thierens and Goldberg, 1993; Goldberg, 1998a). The problem with that 
approach is that in most practical cases users have little knowledge of the inner working or 
structure of their problems. The empirical research on the other hand used practical problems and 
experimented with wide ranges of values for the parameters, and some preliminary rules were 
extracted (Abu-Lebdeh and Benekohal, 1999; Abu-Lebdeh and Al-Omari, 2003). The problem 
with this approach is that no two problems are the same, and even if they are, users are still 
burdened with having to compare structures of problems. Hence the results of the empirical 
approach are difficult to generalize. This whole issue is ironic since GAs are used as an 
optimization tool and yet we are not even close to knowing how to optimally select the values of 
the different parameters. One can argue that experimenting with a large enough pool of values 
solves the problem, but that is impractical to say the least.  
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Genetic Algorithms and Global Optima 
 
Because of the nature of GAs, there is no guarantee that a GA will find the global optima 
(assuming there is one). That there is nothing in the GA structure or “behavior” to detect that 
makes this a potentially serious problem. Hence a less-than-prudent use of GAs can easily result 
in inferior results. This is a particularly relevant problem when the primary motivation for using 
a GA is the “novelty” of the approach; if that is the case, a GA may not be a good choice—
actually it could be a poor one. That is one reason why the best result of GA should be called a 
“near-optimal” as opposed to “optimal.” 
 
 
IMPROVING GA PERFORMANCE 
 
Virtually all of the GA applications in transportation have used SGAs. But SGAs may not be 
suitable for some problems because they are not easy to configure, can be too slow to converge, 
and have difficulty solving deceptive and hard problems. Recent advances in evolutionary 
computation can alleviate many of these shortcomings. In fact some of those advances are 
revolutionizing the use of GAs whereby hard problems can now be solved efficiently and in 
reasonable time. Although some of those advances are still at the research stage, several have 
matured enough to be used in real-life applications and they started to appear in non-evolutionary 
computation literature. Newer generations of GAs are upon us, and the issue now is not whether 
to use GAs but rather “how best” to use them. 

Six courses may be taken to make the application of GAs efficient, rapid, and productive:  
 
1. Selection of appropriate operators and parameter values; 
2. Appropriate problem-specific representations of candidate solutions; 
3. Faster and better evaluation of solutions (or individuals); 
4. Structuring of individuals into subpopulations or various other classes that are treated 

separately with respect to application of various operators, etc.; 
5. Division of workload among multiple loosely coupled processors (as in a cluster or 

network, for example); and  
6. Hybridizing GAs with other non-evolutionary search methods.  
 
It is intuitive that in order to get the most from the GA, the first three areas need to be 

“done” right. The fifth action can be done regardless of the structure of GA employed or any of 
the other actions. The sixth area is less fundamental to the functioning of the GA per se; it is 
more of a supplement, but for the right type of problem, it can be valuable. A GA user will 
almost always get results even with a basic problem representation and primitive selection of 
parameter values. Those results, however, can easily be inferior, and the user might not know it. 
As noted earlier, there is nothing about the GA’s mechanics that will either assure optimal search 
or “warn” the user of bad search results. 

The rest of the discussion primarily concerns points 3, 4, and 5. But before discussing 
those, the other areas are briefly discussed. 
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Appropriate Operators and Parameter Values 
 
One approach to improving GA search performance is to simply test different values for 
mutation rates, population size, number of generations, etc. Selection of different values for 
those parameters has become easier since the work of Goldberg (1989 and 2002, books and later 
papers) and his students helps to provide some guidance regarding those parameters, given some 
characterization of the difficulty of the problem. The Schema Theorem (Holland, 1975) provides 
additional guidance. In many cases, however, the use of those rules and guidelines requires 
specialized knowledge of specific properties of the optimization problem, which may not be easy 
for typical nonevolutionary computation researchers or user. If changing the configuration 
parameters has no effect on the search performance then a more fundamental problem may be 
the cause.  
 
Problem Representation 
 
GAs can be used with either binary or real coding, and with many forms, depending on the 
nature of the problem to be solved. A simple method of improving GA performance is 
sometimes to change the genetic representation. Many researchers published results showing that 
binary coding worked better for their applications, while other researchers report different results 
(Deb, 2001). Particularly for combinatorial optimization problems, the topic of appropriate 
representations is the focus of a great deal of current research (Rothlauf and Goldberg, 2002). 
There are certain advantages to each representation scheme that can be exploited for certain 
applications. 

Problem representation (binary versus nonbinary) becomes very important when the 
search space is inherently continuous, or even ranges over a number of integer values. For 
example, with binary coded GAs, Hamming cliffs are a common difficulty (Hamming cliffs 
appear where transition between neighboring individuals in the phenotypic space requires 
alteration of many bits of the genotype). This translates into an “artificial” difficulty to a gradual 
search in a continuous space (Deb, 2001). Gray codes or phenotype-based mutation operators are 
possible solutions. Also, with higher precision, longer strings are needed, and with longer strings, 
larger populations are needed, thus increasing the computation time. There are additional 
problems caused by the fixed coding scheme. Discussion of those issues is beyond the scope of 
this circular.  

Real-parameter GAs are an option that has some advantages, since real-parameter values 
are easier to deal with. But there are also issues with real-number GAs. The crossover and 
mutation operators are not as easy or intuitive to apply as for binary codes. There is no universal 
resolution for binary versus real coding. Deb (2001) noted that there are many arguments for 
using binary codings, and at least one against it (i.e., for GAs that fundamentally represent real 
numbers). 
 
Faster Evaluation of Solutions  
 
Even when the GA is optimally configured and the problem is optimally represented, the user 
should ensure that the best solution is obtained as soon as possible. This is a particularly critical 
point for real-time online optimization such as real-time traffic control. In these cases, the system 
operator is usually interested in the GA’s best-solution-so-far. Anything that can be done to 
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reduce the time to evaluate each solution can contribute enormously to reducing total time to 
identify good solutions. For example, rapid rejection (and assignment of poor fitness (objective 
function values) to solutions that perform poorly in an initial time period can reduce the average 
evaluation time dramatically. 
 
Hybridizing GAs with Nonevolutionary Search Methods (Hybrid or Memetic Algorithms) 
 
Many researchers have found that it is beneficial to augment the GA with additional search 
operators. Two types are commonly used—generic local search (such as using simulated 
annealing, nonlinear sequential quadratic programming, neural nets, etc.) or problem-specific 
heuristic search rules. In either case, it is possible to subject each individual generated by the GA 
to local search, or to apply local search only when particular “triggers” occur. It also is possible 
to replace the starting GA-generated genotype (solution) by the representation of the newly-
created solution (“Lamarckian” approach) or merely to assign the locally optimized fitness to the 
original GA-generated genotype (“Baldwinian” approach). 

 
 

PARALLEL GENETIC ALGORITHMS 
 
A distinction should be made between parallel GAs and parallel “implementations” of a SGA. 
By parallel GA, this circular shall mean one in which the structuring of the population(s) is into 
some set of demes or subgroups which are treated separately, whether these groups are very large 
or as small as single individuals. A parallel GA can be implemented on a single processor or can 
be implemented across multiple, loosely connected processors, but in either case, the generation 
of new individuals is affected by the structuring of the population into multiple groups. This is a 
separate issue from whether or not the GA is implemented across multiple processors (e.g., a 
network of loosely coupled computers). Either a SGA or a parallel GA can be implemented on 
multiple processors, with no difference in the actual course of the search (unless asynchronous 
operation is allowed) [see Cantu-Paz (2000) for more discussion]. Below, parallel GAs are 
discussed along with considering the possibilities of implementing them on multiple processors, 
further speeding their search time, but without fundamentally affecting their search trajectory. 
But a GA which uses multiple processors to evaluate in parallel the individuals in a single GA 
population (below, it is called the “global parallel GA”) will not be considered to be a parallel 
GA (PGA) in the strictest sense. 
 
Global Parallel Genetic Algorithms 
 
Parallel hardware can be utilized with a SGA in the master–slave architecture. Here, an overall 
node called the master initializes and contains the entire population and performs the selection 
operation and any needed rescaling of fitnesses. A number k of “slave” nodes perform at least 
the function evaluations, in a parallel fashion, hence improving the speed of execution of the GA 
(Figure 20).  
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FIGURE 20  Global parallel GA. 
 

If individuals are passed in a group to each slave, the slaves may also perform 
recombination and mutation in parallel, also relieving the master of some work. In this type of 
implementation the algorithm has to balance serial-parallel tasks to minimize bottlenecks hence 
the issue of synchronous–asynchronous operation is an important consideration. However, unless 
the imbalance among processors is large, either mode of operation can produce similar results. 
The distributed evaluation of GA is appealing when objective function evaluation is expensive, 
but the same advantages of parallel execution can be gained by PGAs using parallel hardware, as 
well. 

Increasing the number of slaves, n, obviously will increase the efficiency of the GA; 
however, the communication requirements also increase. Therefore there is a point beyond which 
adding more slave nodes become counterproductive; however, for problems with long evaluation 
times for each individual, this limit is very large. Cantu-Paz and Goldberg derived a relationship 
that determines the optimal number of nodes (Cantu-Paz and Goldberg, 1999). 
 
Parallel Genetic Algorithms 
 
In contrast to the global parallel GA described above, PGAs are based on GAs, but instead of 
considering a single fully-mixed (panmictic) population (i.e., any individual can be crossed over 
with any other individual to produce offspring), PGAs treat individuals as being divided into 
groups, or as spatially distributed in some nonhomogeneous fashion.  

Here, two types of PGAs—island PGAs and diffusion PGAs—are discussed. The main 
differences between those types are in the population structure and method of selecting 
individuals for reproduction. The following subsections briefly describe these two types of PGA. 
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Island Parallel Genetic Algorithms 
 
In migration or island or coarse-grained PGAs (first introduced by Grosso in 1985), the 
population is divided into small clusters, each of which is treated as a separate breeding unit 
under the control of a conventional GA. As noted in Figure 21, the island PGA does not operate 
globally on a single population. Occasionally, individuals from the various subpopulations 
(islands) are permitted to migrate to other islands, where they may subsequently mate with other 
members of that island. There are many different implementations (topologies) of the island 
PGA scheme—some examples are shown in Figure 21.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 (b) (c) 

 
FIGURE 21  Topologies of migration PGA : (a) unrestricted migration; (b) ring 

migration; and (c) neighborhood migration. 
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A few additional key parameters need to be defined when using an island PGA. The 
interval between migrations and the number of individuals to migrate are the most notable. 
Additionally, one has to decide on which individuals are going to migrate. The topology is 
another decision which is determined by the target subpopulation. Traditionally, the topology is a 
ring and one individual—the best, or a randomly selected one—migrates at each migration step, 
which takes place at predefined cyclic points in time. Many other migration schemes have also 
been successfully employed. A typical pseudo-code for an island PGA follows: 

 
-- For each node (GAi) 
WHILE not finished 
 SEQuential 
  … Selection 
 … Reproduction 
 … Evaluation 
PARallel 
 … send emigrants 
 … receive immigrants 
 

A notable advantage of island PGAs is a reduction in takeover time by superior 
individuals. A classical problem, premature convergence, affects SGAs more strongly than island 
PGAs: when a superior individual is found, a SGA will tend to begin converging toward that 
individual, skewing all future search. In contrast, until that individual or its descendants 
propagate through all the subpopulations of an island PGA, search in the remaining islands goes 
on unaffected by that individual. It is possible that several superior individuals will exist in an 
island PGA at any time and migration allows for their recombination, but delays the convergence 
of the entire population to any of their genotypes. 

The tradeoff is that to avoid an excessive number of function evaluations, each 
subpopulation’s size must be smaller than the total population of the SGA. Thus the choice of 
number of subpopulations and subpopulation sizes is a subtle and problem-dependent issue, 
which introduces some additional complication for the user of this GA. However, the advantages 
of island parallel GAs have been demonstrated many times (Cantu-Paz, 2000). 

Hierarchical GAs (HGAs) are another category of island PGA. They use a hierarchical 
topology for the layout of the subpopulations, as noted in Figure 22. In fact, if the GA 
subpopulations are also allowed to be heterogeneous (i.e., represent the problem or calculate 
fitnesses differently), this hierarchical topology makes it possible to have different layers 
performing different tasks. Such an architecture, the injection island GA, was first introduced by 
Lin et al. (1994). In one such implementation, the top layer concentrates on refinement while the 
bottom layer performs mostly exploration (Figure 22). This type of implementation addresses the 
dilemma of having to choose between complex modeling that requires a long time to compute a 
fitness function or coarser but faster models. HGAs with multiple models provides a way out of 
this problem through using distinct models for each level of the hierarchy.  

A recent form of PGA uses the hierarchical fair competition principle (HFC) to structure 
a set of subpopulations (Hu, 2002). Subpopulations are stratified according to fitness brackets, 
and whenever a newly created individual has a fitness higher than the range of the bracket in 
which it originates, it is moved out to a subpopulation with a fitness bracket corresponding to the 
individual. This allows for rapid exploitation of high-fitness individuals through recombination 
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FIGURE 22  Three-level hierarchical GA. 
 
 
with others of like fitness, but keeps high-fitness individuals from taking over subpopulations 
composed mostly of low-fitness individuals, thereby restricting future exploration. 

Any of these forms of island PGA can be implemented almost trivially across multiple 
computers or processors: each processor is assigned one or more islands, and communicates 
migrants to/from other subpopulations (via a buffer or synchronously) at appropriate intervals. 
 
Diffusion (Cellular) Parallel Genetic Algorithm 
 
A diffusion PGA (also know as a cellular or massively parallel GA) is similar to the island PGA 
but overcomes the discontinuities generated by the island PGA. Here the diffusion PGA 
represents the population as a single spatially distributed population with individuals being 
assigned a location within some (typically two- or three-dimensional) space. Mating is allowed 
between individuals in the same or neighboring cells. Genetic operations take place in parallel 
(conceptually, at least) for every node of the population, and every individual interacts only with 
those in its neighborhood. The replacement policy typically destroys the considered individual 
by overwriting it with the newly computed chromosome. A typical structure of a diffusion PGA 
is shown in Figure 23. 

In a diffusion PGA, the population is a single continuous structure, but each individual is 
assigned a spatial location. Mating is only allowed within a small local neighborhood. For 
example, in Figure 23, I(2,2) can only mate with I(1,2), I(2,1), I(2,3), I(3,2). This isolation-by-
distance property allows a high diversity, and the selection pressure is also weaker due to the 
local selection operator. The appearance of new species of solution in the grid and the refinement 
of existing solutions are both permitted and desired. In that respect, a diffusion PGA allows a 
well-developed balance between exploitation (of high quality chromosomes) and exploration (of 
the search space). 
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FIGURE 23  Diffusion or cellular PGA. 

 
 

Diffusion PGAs have often been implemented on multiprocessors due to the close 
similarities between the model and the physical arrangement of central processing units. Another 
possible approach is to simulate the diffusion PGA in a network of workstations. However, the 
same architecture can be simulated on a single processor, at the cost of longer run times. A 
pseudocode for cellular PGA follows: 
 
-- Each node (Ii,j) 
WHILE not finished 
SEQuential  
… Evaluate 
PARallel 
  … send self to neighbors 
   … receive neighbors 
… select mate 
… reproduce 
 

Cantu-Paz (2000) discusses cellular PGAs in some detail, and provides more information 
on their advantages and disadvantages relative to island PGAs. In the limit, a large enough set of 
subpopulations and small enough neighborhood for migration in an island PGA can yield 
equivalence to a cellular PGA, so the distinction is largely conceptual, rather than a firm 
boundary. 
 
 
SUMMARY 
 
This section presented one of the most popular derivative-free optimization methods: GAs. This 
technique relies n modern high-speed computing and entails more computation as compared to 
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derivate-based approaches. However, it is more flexible as it makes uses of institutive guidelines 
and principles to formulate complex objective functions and account for necessary constraints. 
 
 
NOTES 
 
a. This example is largely after Michalewicz, 1994. 
b. Other schemes where some of the parents are not replaced are possible. 
c. Users who are not well-versed in the theory of GAs may argue that the last point is in fact a 

weakness in that it makes their use of GAs a little onerous. 
d. These are GAs with very small population, no mutation, and repetitive injection of new 

chromosomes. 
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gent-based modeling (ABM) is a relatively new paradigm compared to some of the other 
advanced computing paradigms discussed in this document. Researchers and practitioners 

in many disciplines, from biology to business, have developed agent-based models, and the 
number of applications continues to rise. Bonabeau (2002b) provides an accessible overview of 
the variety of applications of ABM. 

The purpose of this chapter is to explain briefly what ABM is and what it can be used for, 
as well as to review some of the many applications developed so far in the transportation 
domain. Because interest in ABM continues to grow, the number of applications continues to 
grow as well. The applications described present examples of the type of work that can be done 
rather than a comprehensive review. This chapter provides a primer of sorts for those wondering 
whether ABM could be a useful tool for a particular transportation problem. 

The following sections define ABM, describe the types of problems to which ABM can 
be applied, discuss its strengths and weaknesses, provide some examples of transportation 
applications, and suggest some guidelines for those interested in developing an ABM for a 
transportation application. 
 
 
WHAT IS AGENT-BASED MODELING? 
 
Despite the disaggregate nature of transportation systems, we historically have attempted to 
model them from the top-down. That is, we have started with the behavior we expect to see and 
have created models that produce this end behavior. ABM takes the opposite approach. It begins 
with the individual actors (agents) and defines their potential interactions; the simulated 
interactions of the actors generate the system-level (end) behavior. As described by Bonabeau 
(2002a), ABM “consists of describing a system from the perspective of its constituent units.” He 
likens ABM to microscopic modeling, as contrasted with macroscopic modeling. Another 
perspective is to think of ABM as “bottom-up” modeling, as contrasted with “top-down” 
modeling (Figure 24). 

ABM is particularly appropriate for exploring the behavior of complex systems. Complex 
systems comprise collections of interrelated elements in which the simple behaviors of the basic 
agents or elements combine in unprogrammed ways to produce sometimes unexpected results. 
These larger system dynamics are said to emerge from the interactions of the individuals, or the 
system produces “emergent behavior.” That is, system behavior emerges as agents react to other 
agents and the environment in which they operate or function. As defined by Holland (1988), 
complex systems are characterized by (a) many agents or decision makers with dispersed 
control, (b) many organizational levels, (c) the ability of agents to adapt, and (d) the use of 
internal models to anticipate the future.  

A 
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FIGURE 24  A complex systems approach. 
 
 

Toroczkai and Eubank (2005) describe the characteristics of an agent using traffic 
modeling as an example. An agent has characteristics that describe its state, how it perceives its 
environment, and an objective. It also has a set of “allowable actions” and a set of strategies for 
choosing among them. Finally, an agent has a set of additional characteristics pertaining to its 
history and constraints on the function it is trying to optimize. Note that each agent optimizing its 
own objective may not (and often will not) lead to an optimal state for the system as a whole. 
Following Toroczkai and Eubank’s (2005) traffic modeling example: 

 
• The agent’s state would include position, speed, driver health, etc.; 
• The agent’s perception of the environment might include ice on the pavement surface 

or an upcoming traffic jam; 
• Allowable actions might include accelerating and decelerating; 
• Strategies determine how the driver will respond to an event—for example, a driver 

might either brake or swerve if the vehicle in front slows suddenly; 
• Characteristics might include number of speeding tickets and constraints might 

include remaining on the road; and 
• The agent’s objective might be to minimize its travel time. 

 
Parunak et al. (1998) distinguish between “observables [which] are measurable 

characteristics of interest,” and “behaviors through which individuals interact with one another.” 
A traditional model, then, develops equations to describe the observed characteristics, while an 
ABM uses rules or equations to describe the individual behaviors. As a result, “Direct 
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relationships among the observables are an output of the process, not its input” (Parunak et al. 
1998). 

Axelrod (1997) explains ABM in relation to the commonly understood methods of 
induction, or learning from empirical data, and deduction, in which one “[specifies] a set of 
axioms and [proves] consequences that can be derived from the assumptions.” An agent-based 
model actually starts with a set of rules (like deduction), but it uses those rules to generate data 
that can be analyzed (like induction). According to Axelrod (1997), “the purpose of agent-based 
modeling is to aid intuition.” 
 
 
PROBLEM TYPES FOR WHICH AGENT-BASED MODELING IS APPROPRIATE 
 
Axelrod and Tesfatsion (2005) suggest that ABM is most appropriate “for studying systems 
exhibiting the following two properties: (a) the system is composed of interacting agents; and (b) 
the system exhibits emergent properties, that is, properties arising from the interactions of the 
agents that cannot be deduced simply by aggregating the properties of the agents.” These 
researchers suggest that appropriate goals for using ABM are empirical understanding, normative 
understanding, and heuristic. For example, we might empirically investigate the causes of 
recurring traffic congestion. Normative understanding might project the effect a new policy, such 
as implementing an high-occupancy vehicle lane, is likely to have on the system as a whole. 
Heuristics can help us understand how individual choices lead to counterintuitive 
consequences—for example, why everyone choosing their perceived shortest travel time fails to 
yield the lowest overall minimum travel time. 

Within the transportation domain, ABM is particularly appropriate for modeling systems 
in which human decision making and action are a critical component. Examples include highway 
traffic, pedestrian movements, and demand modeling; these are discussed further in a subsequent 
section. 
 
Strengths of Agent-Based Modeling 
 
Bonabeau (2002a) characterizes the strengths of ABM as its ability to capture emergent 
phenomena, provide a natural description of the system, and provide flexibility in modeling. He 
notes that, of these, the ability to capture emergent phenomena is most significant. He goes on to 
suggest that ABM is best applied to situations in which  
 

• The interactions between the agents are complex, nonlinear, discontinuous, or 
discrete; 

• Space is crucial and the agents’ positions are not fixed; 
• The population is heterogeneous, when each individual is (potentially) different; 
• The topology of the interactions is heterogeneous and complex; and 
• The agents exhibit complex behavior, including learning and adaptation. 

 
Parunak et al. (1998) describe strengths of ABM as including: 

 
• The ability to define both physical space and “interaction space”—that is, the ability 

of agents to interact across a distance via electronic or other communication. 
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• Validation at two levels—are the observables consistent with our experience and are 
the individual behaviors reasonable? 

• Ease of experimentation—users can “think directly in terms of familiar … processes, 
rather than having to translate them into equations relating observables.” 

• Ease of implementation of changes in practice—if behavior modifications are 
determined to produce a desirable outcome, they can be translated into real-world strategies. 
 

In summary, ABM allows the user to develop a deeper understanding of the causes 
underlying system-level behavior by examining the emergent behavior of the complex systems 
model. 
 
Weaknesses of Agent-Based Modeling 
 
The advantages described above notwithstanding, like other advanced computing paradigms, 
ABM is not a magic bullet.  

Agent-based models require significant quantities of data and can be computationally 
intensive. While neither of these is unique to ABM, agent-based models often require behavioral 
data, which may be difficult and/or costly to obtain, and the simulation of individual agents 
requires significant computational power. In addition, it is often unclear how to validate such a 
model, particularly if the goal is prediction of behavior in an untested system. For example, if 
one is modeling lane changing behavior on a highway, the model results can be compared with 
observed results. However, if one is predicting passenger behavior in the presence of new 
information, there are no observed results to which the model results can be compared. 

Bonabeau (2002a) warns that, as with any model, an ABM must be designed at an 
appropriate level of detail. Further, because many of the agent characteristics are “soft,” 
outcomes are more often appropriately viewed at a qualitative rather than a quantitative level. 
Finally, ABM tends to be time-consuming and resource-intensive because it is working at the 
component level and simulating the interactions among many agents rather than scripting 
macroscopic behavior. 

In their review of transportation applications of ABM, Kikuchi et al. (2002) describe the 
fact that “…the individual agents do not make the globally optimal decisions” as a limitation of 
ABM. It is a limitation if we are trying to determine a globally optimal state. If, however, we are 
trying to gain a better understanding of the system dynamics (in order to identify appropriate 
intervention points, for example), this becomes a strength rather than a limitation. 
 
 
AGENT-BASED MODELING APPLIED TO TRANSPORTATION PROBLEMS 
 
ABM has been applied to a variety of transportation problems. In 2002, Transportation Research 
C published a special issue on “Intelligent Agents in Traffic and Transportation.” The volume 
comprises nine papers, each detailing applications of agents in transportation. Four of the papers 
deal explicitly with ABM, or simulation, while the others address a variety of other agent 
applications.  

In addition, a literature review by Kikuchi et al. (2002) showed that most transportation-
related applications of ABM were to vehicle or pedestrian flow. Additional applications cited 
included ITS, aircraft arrivals at an airport, travel behavior, vehicle routing, and land use 
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patterns. More recently, an informal review showed that the most common applications 
described in the literature are traffic or pedestrian simulation and demand modeling efforts.  

Microscopic traffic simulation is becoming an increasingly important analysis tool. One 
of the only ways to test new operational schema, such as those proposed in ITS initiatives, is 
through simulation. Agent-based models lend themselves particularly well to microscopic 
simulation because they are disaggregate and can account for human behavior. In fact, Hidas 
(2002) observes that “most microscopic simulation models—at least those developed in an 
object-oriented framework—would correspond to the specifications of multi-agent systems.” 

A number of researchers have explored ABM for traffic simulation. Dia (2002) applied 
ABM to analyze the effects of advanced traveler information systems on traffic congestion to 
evaluate the impacts of providing drivers with travel information. He applied discrete choice 
models to behavioral data to determine agent characteristics, and the agents’ route-choice 
behavior was based on these frameworks. The model yielded promising results for more 
sophisticated ABMs in this domain. Wahle et al. (2002) also studied the effects of traveler 
information on driver choices as it ultimately affected traffic congestion. In their model, agents 
operate at a tactical layer, which controls the “task of driving,” and a strategic layer, which 
controls route choice. Agents choose between two routes and are either “static,” meaning they 
maintain their preferred route regardless of travel time information provided, or “dynamic,” 
meaning they choose the route with the lower travel time. The simulation showed that, when 
provided with travel time information and two route choices, “the concentration of drivers on the 
recommended routes is intrinsic to many systems and leads to a negative impact on the traffic 
pattern, e.g., oscillations.” 

In addition to route choice, researchers have used ABM to model lane-changing and car-
following behaviors. Hidas (2002) describes Simulation of Intelligent TRAnsport Systems 
(SITRAS), an agent-based traffic simulation. SITRAS is designed to provide a test-bed for ITS 
technologies to evaluate situations, such as driver response to incidents, which are not feasibly 
tested in the real world. He describes an agent-based approach to modeling lane changing 
behavior in congested conditions. Specifically, the model demonstrates that simulation of forced 
lane changing behavior is required for a realistic representation of traffic when an incident 
occurs. Peeta et al. (2004) model the interaction between cars and trucks to examine the effects 
of changes in car-following and lane-changing behavior on aggregate flow. They use the results 
of stated preference surveys to characterize the behavior of non-truck drivers in the vicinity of 
trucks. The model allowed the authors to investigate the effects of mitigation strategies for car-
truck interactions, and they conclude that for the best combination of safety, traffic flow, and car-
truck interactions, restricting trucks to the right lane is preferred. Louisell et al. (2006) model 
driver behavior approaching a work zone, distinguishing between driver interactions with the 
roadway and driver interactions with other drivers. The latter is modeled with strategic game 
theory. Inputs include driver behavior characteristics and work-zone configuration; the output is 
how these interactions generate micro-shockwaves and how they affect recovery.  

Two of the more widely known agent-based models for traffic simulation are 
TRANSIMS (http://transims.tsasa.lanl.gov/) and MATSIM (http://www.matsim.org/). 
TRANSIMS was developed by Los Alamos National Labs with funding from a variety of 
government agencies. It is an agent-based model for large metropolitan areas that “is designed to 
give transportation planners more accurate, complete information on traffic impacts, energy 
consumption, traffic congestion, land use planning, traffic safety, intelligent vehicle efficiencies, 
and emergency evacuation.” Rilett (2001) notes that TRANSIMS requires large amounts of data 
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as it models the large-scale dynamics of a system. Henson and Goulias (2006), in a bit of a shift, 
explore how TRANSIMS might be used for Homeland Security modeling applications, and they 
also conclude that the key for this type of modeling is large quantities of detailed data. Finally, 
Balmer et al. (2006) describe MATSIM, a more recently developed large-scale agent-based 
traffic simulator. They note similarities to TRANSIMS and other activity-based demand 
generation packages. However, they also identify differences; for example, MATSIM uses XML 
file formats in contrast to TRANSIMS flat files, and MATSIM runs more quickly than 
TRANSIMS because its traffic flow simulation is more simplified. 

Several researchers have applied ABM to pedestrian simulation. Markowski and Kikuchi 
(2004) propose a framework for modeling pedestrian flow that is based on hierarchical “groups,” 
such as a single person, a family, or several colleagues. This is in contrast to models that are 
based on individual pedestrians of particular types. Object-oriented structures are used, and rules 
are defined, the most important of which determines velocity. In addition, messages are passed 
between agents that can influence their behavior. Kukla et al. (2001) developed an ABM that 
“reliably mimics the movement decisions of pedestrians negotiating the walking environment.” It 
includes a set of rules that applies to all agents, but the parameters differ among agents. The rules 
are derived from video recordings of real-life pedestrian movement. 

Travel demand modeling is another area that has generated significant interest in ABM. 
For example, Devisch et al. have developed a residential choice model for use in integrated land 
use/transportation models. The agents are buyers and sellers, each of which acts “strategically 
based on their beliefs under conditions of uncertainty to achieve the best price.” More 
traditionally, Zhang (2006) developed a route-choice model to explore route choice decisions 
made in real life. He notes that “normative assumptions, such as perfect information and 
unlimited human abilities to maximize utility, may produce serious prediction biases.” His model 
is based on individual behavior and takes into account users having imperfect information. The 
output is network flow patterns. He points out that because the model is based on behavior, the 
behavioral rules require empirical data for both development and validation. Zhang and Levinson 
(2004) describe an agent-based travel demand model for trip distribution and route assignment. 
They define three types of agents: nodes, arcs, and travelers. The agents communicate with one 
another—for example, arcs inform travelers about travel times, and nodes provide information 
about adjacent nodes. Agents also share information about shortest paths and therefore learn 
from one another. The model is demonstrated on a simple grid network and also on the Chicago 
area sketch network. For the latter, “the trip length distribution [is] reasonably close to the 
observed one and [the model] assigns most traffic to the shortest routes.” Rossetti et al. (2002) 
have extended the DRACULA (Dynamic Route Assignment Combining User Learning and 
microsimulAtion) model, an existing microscopic simulation model, to include intelligent agents 
that choose their departure times and routes.  

The concept of agents has been used in transportation not just for modeling but also for 
control. Software agents are designed to function autonomously and control tasks. For example, 
Choy et al. (2003) and Manikonda et al. (2001) use software agents to optimize traffic signal 
timing.  
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GUIDELINES FOR AGENT-BASED MODELING IN TRANSPORTATION 
 
Bonabeau (2002a) suggests that ABM is appropriate  
 

• When there is potential for emergent phenomena—that is, individual behavior is 
nonlinear and changes over time, and fluctuations are more important than averages; 

• When describing the system from the perspective of its constituent units’ activities is 
more natural—that is, “activities are a more natural way of describing the system than 
processes”; and 

• When the appropriate level of description or complexity is not known ahead of time. 
 

As in all modeling initiatives, it is important first to define the problem clearly and 
second, to determine whether it is appropriate for an agent-based approach. If an agent-based 
approach is appropriate, the modeler must define agents, their interaction rules, and their 
environment, as well as select a modeling tool and/or programming language. In defining agents, 
the modeler needs to determine: 
 

• The types of agents (e.g. drivers, traffic signals); 
• The attributes of the agents; 
• The allowable values for the attributes; and 
• The initial values for the attributes. 

 
Once agents are defined, the modeler needs to specify interaction rules for the agents. 

Agents will interact with one another and with their environment. Because the results will often 
need to be validated intuitively (at least in the short term), experts recommend keeping the rules 
as simple as possible, at least initially. This facilitates a “reality check” in which the modelers 
can quickly assess whether the results seem to make sense, given the rules, as well as the 
opportunity to focus on the resulting complex system-level behavior.  

An agent-based model can be programmed in the developer’s programming language or 
software package of choice. While programming from scratch in C, C++, Java, or any other 
language is possible, there are several modeling tools that can minimize the programming effort 
required. These modeling tools range from free and widely available to proprietary. Tobias and 
Hofmann (2004) compared several of the freely available tools that had been designed for social-
science simulation. They concluded that, of the four tools reviewed (RePast, Swarm, 
Quicksilver, and VSEit), RePast (http://repast.sourceforge.net/) was best suited for this type of 
modeling and had the potential to save modelers significant programming time and effort. Other 
available tools include the SimAgent Toolkit (http://www.cs.bham.ac.uk/research/projects/ 
poplog/packages/simagent.html) and ABLE (http://www.alphaworks.ibm.com/tech/able). 
 
 
ADVANCED TOPOLOGIES 
 
One of the things that makes the behavior of agent-based models so interesting is that agents 
typically have the ability to learn. This can be accomplished in a variety of ways, including 
through explicit knowledge updating rules. However, agents can use any advanced computing 
technique that facilitates learning, including artificial NNs (ANNs) and GAs. In fact, Sadek et al. 
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(2003) note that “CI [computational intelligence] is the study of the design of intelligent agents, 
in which an agent is regarded as something that acts in an environment. … Commonly used 
techniques to implement intelligent agents in CI include ANNs, fuzzy logic, KBS, CBR, and 
probabilistic reasoning (including genetic algorithms).” 
 
 
CONCLUSIONS 
 
As demonstrated by the results of research in many different aspects of transportation systems, 
ABM provides a reasonable and promising approach to modeling transportation phenomena. 
Specifically, it is a method for bottom-up modeling in which individual behavior, which is often 
well understood, yields system-level emergent behavior. The system-level behavior may also be 
easily observable, but the analytical links between the individual and system-level behavior are 
not; therein lies the contribution of ABM. 
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