
AUTHORS

DETAILS

Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press.
(Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences.

Copyright © National Academy of Sciences. All rights reserved.

THE NATIONAL ACADEMIES PRESS

Visit the National Academies Press at NAP.edu and login or register to get:

– Access to free PDF downloads of thousands of scientific reports

– 10% off the price of print titles

– Email or social media notifications of new titles related to your interests

– Special offers and discounts





BUY THIS BOOK

FIND RELATED TITLES

This PDF is available at    SHAREhttp://nap.edu/12980

The Future of Computing Performance: Game Over or Next
Level?

200 pages | 6 x 9 | PAPERBACK

ISBN 978-0-309-15951-7 | DOI 10.17226/12980

Samuel H. Fuller and Lynette I. Millett, <i>Editors</i>; Committee on Sustaining

Growth in Computing Performance; National Research Council

http://cart.nap.edu/cart/cart.cgi?list=fs&action=buy%20it&record_id=12980&isbn=978-0-309-15951-7&quantity=1
http://www.nap.edu/related.php?record_id=12980
http://www.nap.edu/reprint_permission.html
http://nap.edu
http://api.addthis.com/oexchange/0.8/forward/facebook/offer?pco=tbxnj-1.0&url=http://www.nap.edu/12980&pubid=napdigops
http://www.nap.edu/share.php?type=twitter&record_id=12980&title=The+Future+of+Computing+Performance%3A+Game+Over+or+Next+Level%3F
http://api.addthis.com/oexchange/0.8/forward/linkedin/offer?pco=tbxnj-1.0&url=http://www.nap.edu/12980&pubid=napdigops
mailto:?subject=null&body=http://nap.edu/12980

Samuel H. Fuller and Lynette I. Millett, Editors

Committee on Sustaining Growth in Computing Performance

Computer Science and Telecommunications Board

Division on Engineering and Physical Science

Game Over or
Next Level?

T H E F U T U R E O F

COMPUTING PERFORMANCE

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NATIONAL ACADEMIES PRESS  500 Fifth Street, N.W.  Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Gov-
erning Board of the National Research Council, whose members are drawn from
the councils of the National Academy of Sciences, the National Academy of Engi-
neering, and the Institute of Medicine. The members of the committee responsible
for the report were chosen for their special competences and with regard for
appropriate balance.

Support for this project was provided by the National Science Foundation under
award CNS-0630358. Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and do not necessarily reflect
the views of the organization that provided support for the project.

International Standard Book Number-13:  978-0-309-15951-7
International Standard Book Number-10:  0-309-15951-2
Library of Congress Control Number:  2011923200

Additional copies of this report are available from

The National Academies Press
500 Fifth Street, N.W., Lockbox 285
Washington, D.C. 20055
800 624-6242
202 334-3313 (in the Washington metropolitan area)
http://www.nap.edu

Copyright 2011 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

The National Academy of Sciences is a private, nonprofit, self-perpetuating
society of distinguished scholars engaged in scientific and engineering research,
dedicated to the furtherance of science and technology and to their use for the
general welfare. Upon the authority of the charter granted to it by the Congress
in 1863, the Academy has a mandate that requires it to advise the federal govern-
ment on scientific and technical matters. Dr. Ralph J. Cicerone is president of the
National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter
of the National Academy of Sciences, as a parallel organization of outstanding
engineers. It is autonomous in its administration and in the selection of its mem-
bers, sharing with the National Academy of Sciences the responsibility for advis-
ing the federal government. The National Academy of Engineering also sponsors
engineering programs aimed at meeting national needs, encourages education
and research, and recognizes the superior achievements of engineers. Dr. Charles
M. Vest is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of
Sciences to secure the services of eminent members of appropriate professions
in the examination of policy matters pertaining to the health of the public. The
Institute acts under the responsibility given to the National Academy of Sciences
by its congressional charter to be an adviser to the federal government and, upon
its own initiative, to identify issues of medical care, research, and education.
Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of
Sciences in 1916 to associate the broad community of science and technology
with the Academy’s purposes of furthering knowledge and advising the federal
government. Functioning in accordance with general policies determined by the
Academy, the Council has become the principal operating agency of both the
National Academy of Sciences and the National Academy of Engineering in pro-
viding services to the government, the public, and the scientific and engineering
communities. The Council is administered jointly by both Academies and the
Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and
vice chair, respectively, of the National Research Council.

www.national-academies.org

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

v

COMMITTEE ON SUSTAINING GROWTH
IN COMPUTING PERFORMANCE

SAMUEL H. FULLER, Analog Devices Inc., Chair
LUIZ ANDRÉ BARROSO, Google, Inc.
ROBERT P. COLWELL, Independent Consultant
WILLIAM J. DALLY, NVIDIA Corporation and Stanford University
DAN DOBBERPUHL, P.A. Semi
PRADEEP DUBEY, Intel Corporation
MARK D. HILL, University of Wisconsin–Madison
MARK HOROWITZ, Stanford University
DAVID KIRK, NVIDIA Corporation
MONICA LAM, Stanford University
KATHRYN S. McKINLEY, University of Texas at Austin
CHARLES MOORE, Advanced Micro Devices
KATHERINE YELICK, University of California, Berkeley

Staff

LYNETTE I. MILLETT, Study Director
SHENAE BRADLEY, Senior Program Assistant

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

vi

COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD

ROBERT F. SPROULL, Sun Labs, Chair
PRITHVIRAJ BANERJEE, Hewlett Packard Company
STEVEN M. BELLOVIN, Columbia University
WILLIAM J. DALLY, NVIDIA Corporation and Stanford University
SEYMOUR E. GOODMAN, Georgia Institute of Technology
JOHN E. KELLY, III, IBM
JON M. KLEINBERG, Cornell University
ROBERT KRAUT, Carnegie Mellon University
SUSAN LANDAU, Radcliffe Institute for Advanced Study
PETER LEE, Microsoft Corporation
DAVID LIDDLE, US Venture Partners
WILLIAM H. PRESS, University of Texas
PRABHAKAR RAGHAVAN, Yahoo! Research
DAVID E. SHAW, Columbia University
ALFRED Z. SPECTOR, Google, Inc.
JOHN SWAINSON, Silver Lake Partners
PETER SZOLOVITS, Massachusetts Institute of Technology
PETER J. WEINBERGER, Google, Inc.
ERNEST J. WILSON, University of Southern California

JON EISENBERG, Director
RENEE HAWKINS, Financial and Administrative Manager
HERBERT S. LIN, Chief Scientist
LYNETTE I. MILLETT, Senior Program Officer
EMILY ANN MEYER, Program Officer
ENITA A. WILLIAMS, Associate Program Officer
VIRGINIA BACON TALATI, Associate Program Officer
SHENAE BRADLEY, Senior Program Assistant
ERIC WHITAKER, Senior Program Assistant

For more information on CSTB, see its website at
http://www.cstb.org, write to CSTB, National Research Council,

500 Fifth Street, N.W., Washington, D.C. 20001, call (202) 334-2605,
or e‑mail the CSTB at cstb@nas.edu.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

vii

Preface

Fast, inexpensive computers are now essential for nearly all human
endeavors and have been a critical factor in increasing economic
productivity, enabling new defense systems, and advancing the

frontiers of science. But less well understood is the need for ever-faster
computers at ever-lower costs. For the last half-century, computers have
been doubling in performance and capacity every couple of years. This
remarkable, continuous, exponential growth in computing performance
has resulted in an increase by a factor of over 100 per decade and more
than a million in the last 40 years. For example, the raw performance of
a 1970s supercomputer is now available in a typical modern cell phone.
That uninterrupted exponential growth in computing throughout the
lifetimes of most people has resulted in the expectation that such phenom-
enal progress, often called Moore’s law, will continue well into the future.
Indeed, societal expectations for increased technology performance con-
tinue apace and show no signs of slowing, a trend that underscores the
need to find ways to sustain exponentially increasing performance in
multiple dimensions.

The essential engine that made that exponential growth possible is
now in considerable danger. Thermal-power challenges and increasingly
expensive energy demands pose threats to the historical rate of increase in
processor performance. The implications of a dramatic slowdown in how
quickly computer performance is increasing—for our economy, our mili-
tary, our research institutions, and our way of life—are substantial. That
obstacle to continuing growth in computing performance is by now well

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

viii	 PREFACE

understood by the designers of microprocessors. Their initial response
was to design multiprocessor (often referred to as multicore) chips, but
fundamental challenges in algorithm and software design limit the wide-
spread use of multicore systems.

Even as multicore hardware systems are tailored to support software
that can exploit multiple computation units, thermal constraints will con-
tinue to be a primary concern. It is estimated that data centers delivering
Internet services consume over 1.5 percent of U.S. electric power. As the
use of the Internet continues to grow and massive computing facilities
are demanding that performance keep doubling, devoting correspond-
ing increases in the nation’s electrical energy capacity to computing may
become too expensive.

We do not have new software approaches that can exploit the innova-
tive architectures, and so sustaining performance growth—and its atten-
dant benefits—presents a major challenge. The present study emerged
from discussions among members of the Computer Science and Telecom-
munications Board and was sponsored by the National Science Foun-
dation. The original statement of task for the Committee on Sustaining
Growth in Computing Performance is as follows:

This study will bring together academic and industry researchers, ap-
plication developers, and members of the user community to explore
emerging challenges to sustaining performance growth and meeting
expectations in computing across the broad spectrum of software, hard-
ware, and architecture. It will identify key problems along with promis-
ing emerging technologies and models and describe how these might fit
together over time to enable continued performance scaling. In addition,
it will focus attention on areas where there are tractable problems whose
solution would have significant payback and at the same time highlight
known solutions to challenges that already have them. The study will
outline a research, development, and educational agenda for meeting the
emerging computing needs of the 21st century.

Parallelism and related approaches in software will increase in impor-
tance as a path to achieving continued performance growth. There have
been promising developments in the use of parallel processing in some
scientific applications, Internet search and retrieval, and the processing of
visual and graphic images. This report reviews that progress and recom-
mends subjects for further research and development. Chapter 1 exam-
ines the need for high-performance computers, and computers that are
increasingly higher-performing, in a variety of sectors of society. The
need may be intuitively obvious to some readers but is included here to
be explicit about the need for continued performance growth. Chapter 2
examines the aspects of “performance” in depth. Often used as short-
hand for speed, performance is actually a much more multidimensional

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

PREFACE	 ix

concept. (Appendix A provides a brief history of computing performance
as a complement to Chapter 2.) Chapter 3 delves into the fundamen-
tal reasons why single-processor performance has stopped its dramatic,
exponential growth and why this is a fundamental change rather than a
temporary nuisance. Chapter 4 addresses the fundamental challenge now
facing the computer science and engineering community: how to exploit
parallelism in software and hardware. Chapter 5 outlines the committee’s
recommended research, practice, and education agenda to meet those
challenges.

This report represents the cooperative effort of many people. The
members of the study committee, after substantial discussions, drafted
and worked though several revisions of the report. We particularly appre-
ciate the insights and perspectives provided by the following experts who
briefed the committee:

Jeff Dean, Google,
Robert Doering, Texas Instruments,
Michael Foster, National Science Foundation,
Garth Gibson, Carnegie Mellon University,
Wen-Mei Hwu, University of Illinois at Urbana-Champaign,
Bruce Jacob, University of Maryland,
Jim Larus, Microsoft,
Charles Leiserson, Massachusetts Institute of Technology,
Trevor Mudge, University of Michigan,
Daniel Reed, Microsoft,
Phillip Rosedale, Linden Lab,
Vivek Sarkar, Rice University,
Kevin Skadron, University of Virginia,
Tim Sweeny, Epic Games, and
Tom Williams, Synopsys.

The committee also thanks the reviewers who provided many percep-
tive comments that helped to improve the content of the report materi-
ally. The committee thanks Michael Marty, who worked with committee
member Mark Hill to update some of the graphs, and Paul S. Diette of the
Diette Group, who assisted in refining the images. The committee appreci-
ates the financial support provided by the National Science Foundation.
The committee also gratefully acknowledges the assistance of members
of the National Research Council staff. Lynette Millett, our study direc-
tor, ably served the critical roles of study organizer, report editor, and
review coordinator. Jon Eisenberg provided many valuable suggestions
that improved the quality of the final report.

It is difficult to overstate the importance of ever-more-capable com-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

x	 PREFACE

puters to the U.S. industrial and social infrastructure, economy, and
national security. The United States cannot afford to let this growth engine
stall out, and a concerted effort is needed to sustain it. Several centers
for parallel computing have already been established in leading research
universities. Those centers are a good start, and additional, strong actions
are required in many subdisciplines of computer science and computer
engineering. Our major goal for this study is to help to identify the actions
and opportunities that will prove most fruitful.

Samuel H. Fuller, Chair
Committee on Sustaining Growth
in Computing Performance

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

xi

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen
for their diverse perspectives and technical expertise, in accordance
with procedures approved by the National Research Council’s

(NRC’s) Report Review Committee. The purpose of this independent
review is to provide candid and critical comments that will assist the
institution in making its published report as sound as possible and to
ensure that the report meets institutional standards for objectivity, evi-
dence, and responsiveness to the study charge. The review comments
and draft manuscript remain confidential to protect the integrity of the
deliberative process. We wish to thank the following individuals for their
review of this report:

Tilak Agerwala, IBM Research,
David Ceperley, University of Illinois,
Robert Dennard, IBM Research,
Robert Doering, Texas Instruments, Inc.,
Urs Hölzle, Google, Inc.,
Norm Jouppi, Hewlett-Packard Laboratories,
Kevin Kahn, Intel Corporation,
James Kajiya, Microsoft Corporation
Randy Katz, University of California, Berkeley,
Barbara Liskov, Massachusetts Institute of Technology,
Keshav Pingali, University of Texas, Austin,
James Plummer, Stanford University, and
Vivek Sarkar, Rice University.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

xii	 ACKNOWLEDGMENTS

Although the reviewers listed above have provided many construc-
tive comments and suggestions, they were not asked to endorse the con-
clusions or recommendations, nor did they see the final draft of the report
before its release. The review of this report was overseen by Butler Lamp-
son, Microsoft Corporation. Appointed by the National Research Council,
he was responsible for making certain that an independent examination
of this report was carried out in accordance with institutional procedures
and that all review comments were carefully considered. Responsibility
for the final content of this report rests entirely with the authoring com-
mittee and the institution.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

xiii

Contents

ABSTRACT	 1

SUMMARY	 5

1	 THE NEED FOR CONTINUED PERFORMANCE GROWTH	 21
Why Faster Computers Are Important, 22
The Importance of Computing Performance for the Sciences, 29
The Importance of Computing Performance for Defense and

		 National Security, 36
The Importance of Computing Performance for Consumer

		 Needs and Applications, 44
The Importance of Computing Performance for Enterprise

		 Productivity, 47

2	 WHAT IS COMPUTER PERFORMANCE?	 53
Why Performance Matters, 58
Performance as Measured by Raw Computation, 59
Computation and Communication’s Effects on Performance, 62
Technology Advances and the History of Computer Performance, 65
Assessing Performance with Benchmarks, 68
The Interplay of Software and Performance, 70
The Economics of Computer Performance, 75

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

xiv	 CONTENTS

3	 �POWER IS NOW LIMITING GROWTH IN COMPUTING 	 80
	 PERFORMANCE

Basic Technology Scaling, 83
Classic CMOS Scaling, 84
How CMOS-Processor Performance Improved Exponentially,	

	 	 and Then Slowed, 87
How Chip Multiprocessors Allow Some Continued 	

	 	 Performance-Scaling, 90
Problems in Scaling Nanometer Devices, 94
Advanced Technology Options, 97
Application-Specific Integrated Circuits, 100
Bibliography, 103

4	 THE END OF PROGRAMMING AS WE KNOW IT	 105
Moore’s Bounty: Software Abstraction, 106
Software Implications of Parallelism, 110
The Challenges of Parallelism, 116
The State of the Art of Parallel Programming, 119
Parallel-Programming Systems and the Parallel 	

	 	 Software “Stack,” 127
Meeting the Challenges of Parallelism, 130

5	 �RESEARCH, PRACTICE, AND EDUCATION TO MEET 	 132
	 TOMORROW’S PERFORMANCE NEEDS

Systems Research and Practice, 133
Parallel-Programming Models and Education, 146
Game Over or Next Level? 150

APPENDIXES

A 	 A History of Computer Performance	 155
B	 Biographies of Committee Members and Staff	 160
C	 �Reprint of Gordon E. Moore’s “Cramming More Components 	

onto Integrated Circuits”	 169
D	 �Reprint of Robert H. Dennard’s “Design of Ion-Implanted

MOSFET’s with Very Small Physical Dimensions”	 174

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

1

Abstract

Information technology (IT) has the potential to continue to dramati-
cally transform how we work and live. One might expect that future IT
advances will occur as a natural continuation of the stunning advances

that IT has enabled over the last half-century, but reality is more sobering.
IT advances of the last half-century have depended critically on the

rapid growth of single-processor performance—by a factor of 10,000 in
just the last 2 decades—at ever-decreasing cost and with manageable
increases in power consumption. That growth stemmed from increasing
the number and speed of transistors on a processor chip by reducing
their size and—with improvements in memory, storage, and network-
ing capacities—resulted in ever more capable computer systems. It was
important for widespread IT adoption that the phenomenal growth in
performance was achieved while maintaining the sequential stored-program
model that was developed for computers in the 1940s. Moreover, computer
manufacturers worked to ensure that specific instruction set compatibil-
ity was maintained over generations of computer hardware—that is, a
new computer could run new applications, and the existing applications
would run faster. Thus, software did not have to be rewritten for each
hardware generation, and so ambition and imagination were free to drive
the creation of increasingly innovative, capable, and computationally
intensive software, and this in turn inspired businesses, government, and
the average consumer to buy successive generations of computer software
and hardware. Software and hardware advances fed each other, creating
a virtuous IT economic cycle.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

2	 THE FUTURE OF COMPUTING PERFORMANCE

Early in the 21st century, improvements in single-processor perfor-
mance slowed, as measured in instructions executed per second, and such
performance now improves at a very modest pace, if at all. This abrupt
shift is due to fundamental limits in the power efficiency of complemen-
tary metal oxide semiconductor integrated circuits (used in virtually all
computer chips today) and apparent limits in the efficiencies that can be
exploited in single-processor architectures. Reductions in transistor size
continue apace, and so more transistors can still be packed onto chips,
albeit without the speedups seen in the past. As a result, the computer-
hardware industry has commenced building chips with multiple proces-
sors. Current chips range from several complex processors to hundreds
of simpler processors, and future generations will keep adding more.
Unfortunately, that change in hardware requires a concomitant change in
the software programming model. To use chip multiprocessors, applica-
tions must use a parallel programming model, which divides a program into
parts that are then executed in parallel on distinct processors. However,
much software today is written according to a sequential programming
model, and applications written this way cannot easily be sped up by
using parallel processors.

The only foreseeable way to continue advancing performance is to
match parallel hardware with parallel software and ensure that the new
software is portable across generations of parallel hardware. There has
been genuine progress on the software front in specific fields, such as
some scientific applications and commercial searching and transactional
applications. Heroic programmers can exploit vast amounts of parallel-
ism, domain-specific languages flourish, and powerful abstractions hide
complexity. However, none of those developments comes close to the
ubiquitous support for programming parallel hardware that is required
to ensure that IT’s effect on society over the next two decades will be as
stunning as it has been over the last half-century.

For those reasons, the Committee on Sustaining Growth in Com-
puting Performance recommends that our nation place a much greater
emphasis on IT and computer-science research and development focused
on improvements and innovations in parallel processing, and on making
the transition to computing centered on parallelism. The following should
have high priority:

·	 Algorithms that can exploit parallel processing;
·	 New computing “stacks” (applications, programming languages,

compilers, runtime/virtual machines, operating systems, and
architectures) that execute parallel rather than sequential pro-
grams and that effectively manage software parallelism, hard-
ware parallelism, power, memory, and other resources;

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

ABSTRACT	 3

·	 Portable programming models that allow expert and typical pro-
grammers to express parallelism easily and allow software to be
efficiently reused on multiple generations of evolving hardware;

·	 Parallel-computing architectures driven by applications, includ-
ing enhancements of chip multiprocessors, conventional data-
parallel architectures, application-specific architectures, and radi-
cally different architectures;

·	 Open interface standards for parallel programming systems that
promote cooperation and innovation to accelerate the transition
to practical parallel computing systems; and

·	 Engineering and computer-science educational programs that
incorporate an increased emphasis on parallelism and use a vari-
ety of methods and approaches to better prepare students for the
types of computing resources that they will encounter in their
careers.

Although all of those areas are important, fundamental power and
energy constraints mean that even the best efforts might not yield a com-
plete solution. Parallel computing systems will grow in performance over
the long term only if they can become more power-efficient. Therefore, in
addition to a focus on parallel processing, we need research and devel-
opment on much more power-efficient computing systems at all levels
of technology, including devices, hardware architecture, and software
systems.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

5

Summary

The end of dramatic exponential growth in single-processor perfor-
mance marks the end of the dominance of the single microprocessor
in computing. The era of sequential computing must give way to

a new era in which parallelism is at the forefront. Although important
scientific and engineering challenges lie ahead, this is an opportune time
for innovation in programming systems and computing architectures. We
have already begun to see diversity in computer designs to optimize for
such considerations as power and throughput. The next generation of dis-
coveries is likely to require advances at both the hardware and software
levels of computing systems.

There is no guarantee that we can make parallel computing as com-
mon and easy to use as yesterday’s sequential single-processor computer
systems, but unless we aggressively pursue efforts suggested by the rec-
ommendations below, it will be “game over” for growth in computing
performance. If parallel programming and related software efforts fail to
become widespread, the development of exciting new applications that
drive the computer industry will stall; if such innovation stalls, many
other parts of the economy will follow suit.

This report of the Committee on Sustaining Growth in Computing
Performance describes the factors that have led to the future limitations
on growth for single processors based on complementary metal oxide
semiconductor (CMOS) technology. The recommendations that follow
are aimed at supporting and focusing research, development, and educa-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

6	 THE FUTURE OF COMPUTING PERFORMANCE

tion in parallel computing, architectures, and power to sustain growth
in computer performance and enjoy the next level of benefits to society.

SOCIETAL DEPENDENCE ON GROWTH
IN COMPUTING PERFORMANCE

Information technology (IT) has transformed how we work and live—
and has the potential to continue to do so. IT helps to bring distant people
together, coordinate disaster response, enhance economic productivity,
enable new medical diagnoses and treatments, add new efficiencies to
our economy, improve weather prediction and climate modeling, broaden
educational access, strengthen national defense, advance science, and
produce and deliver content for education and entertainment.

Those transformations have been made possible by sustained
improvements in the performance of computers. We have been living
in a world where the cost of information processing has been decreas-
ing exponentially year after year. The term Moore’s law, which originally
referred to an empirical observation about the most economically favor-
able rate for industry to increase the number of transistors on a chip,
has come to be associated, at least popularly, with the expectation that
microprocessors will become faster, that communication bandwidth will
increase, that storage will become less expensive, and, more broadly, that
computers will become faster. Most notably, the performance of indi-
vidual computer processors increased on the order of 10,000 times over
the last 2 decades of the 20th century without substantial increases in cost
or power consumption.

Although some might say that they do not want or need a faster
computer, computer users as well as the computer industry have in reality
become dependent on the continuation of that performance growth. U.S.
leadership in IT depends in no small part on taking advantage of the lead-
ing edge of computing performance. The IT industry annually generates
a trillion dollars of revenue and has even larger indirect effects through-
out society. This huge economic engine depends on a sustained demand
for IT products and services; use of these products and services in turn
fuels demand for constantly improving performance. More broadly, vir-
tually every sector of society—manufacturing, financial services, educa-
tion, science, government, the military, entertainment, and so on—has
become dependent on continued growth in computing performance to
drive industrial productivity, increase efficiency, and enable innovation.
The performance achievements have driven an implicit, pervasive expec-
tation that future IT advances will occur as an inevitable continuation of
the stunning advances that IT has experienced over the last half-century.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

SUMMARY	 7

Finding: The information technology sector itself and most other sec-
tors of society—for example, manufacturing, financial and other ser-
vices, science, engineering, education, defense and other government
services, and entertainment—have grown dependent on continued
growth in computing performance.

Software developers themselves have come to depend on that growth
in performance in several important ways, including:

·	 Developing applications that were previously infeasible, such as
real-time video chat;

·	 Adding visible features and ever more sophisticated interfaces to
existing applications;

·	 Adding “hidden” (nonfunctional) value—such as improved
security, reliability, and other trustworthiness features—without
degrading the performance of existing functions;

·	 Using higher-level abstractions, programming languages, and
systems that require more computing power but reduce develop-
ment time and improve software quality by making the devel-
opment of correct programs and the integration of components
easier; and

·	 Anticipating performance improvements and creating innovative,
computationally intensive applications even before the required
performance is available at low cost.

The U.S. computing industry has been adept at taking advantage of
increases in computing performance, allowing the United States to be a
moving and therefore elusive target—innovating and improvising faster
than anyone else. If computer capability improvements stall, the U.S. lead
will erode, as will the associated industrial competitiveness and military
advantage.

Another consequence of 5 decades of exponential growth in perfor-
mance has been the rise and dominance of the general-purpose micropro-
cessor that is the heart of all personal computers. The dominance of the
general-purpose microprocessor has stemmed from a virtuous cycle of (1)
economies of scale wherein each generation of computers has been both
faster and less expensive than the previous one, and (2) software correct-
ness and performance portability—current software continues to run and
to run faster on the new computers, and innovative applications can also
run on them. The economies of scale have resulted from Moore’s law scal-
ing of transistor density along with innovative approaches to harnessing
effectively all the new transistors that have become available. Portability
has been preserved by keeping instruction sets compatible over many

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

8	 THE FUTURE OF COMPUTING PERFORMANCE

generations of microprocessors even as the underlying microprocessor
technology saw substantial enhancements, allowing investments in soft-
ware to be amortized over long periods.

The success of this virtuous cycle dampened interest in the develop-
ment of alternative computer and programming models. Even though
alternative architectures might have been technically superior (faster or
more power-efficient) in specific domains, if they did not offer software
compatibility they could not easily compete in the marketplace and were
easily overtaken by the ever-improving general-purpose processors avail-
able at a relatively low cost.

CONSTRAINTS ON GROWTH IN SINGLE-
PROCESSOR PERFORMANCE

By the 2000s, however, it had become apparent that processor per-
formance growth was facing two major constraints. First, the ability
to increase clock speeds has run up against power limits. The densest,
highest-performance, and most power-efficient integrated circuits are
constructed from CMOS technology. By 2004, the long-fruitful strategy of
scaling down the size of CMOS circuits, reducing the supply voltage and
increasing the clock rate was becoming infeasible. Since a chip’s power
consumption is proportional to the clock speed times the supply voltage
squared, the inability to continue to lower the supply voltage halted the
ability to increase the clock speed without increasing power dissipation.
The resulting power consumption exceeded the few hundred watts per
chip level that can practically be dissipated in a mass-market computing
device as well as the practical limits for mobile, battery-powered devices.
The ultimate consequence has been that growth in single-processor per-
formance has stalled (or at least is being increased only marginally over
time).

Second, efforts to improve the internal architecture of individual pro-
cessors have seen diminishing returns. Many advances in the architec-
ture of general-purpose sequential processors, such as deeper pipelines
and speculative execution, have contributed to successful exploitation
of increasing transistor densities. Today, however, there appears to be
little opportunity to significantly increase performance by improving the
internal structure of existing sequential processors. Figure S.1 graphically
illustrates these trends and the slowdown in the growth of processor per-
formance, clock speed, and power since around 2004. In contrast, it also
shows the continued, exponential growth in the number of transistors per
chip. The original Moore’s law projection of increasing transistors per chip
continues unabated even as performance has stalled. The 2009 edition of

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

SUMMARY	 9

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year of Introduction

Cl
oc

k F
re

qu
en

cy
 (M

Hz
)

FIGURE S.1  Historical growth in single-processor performance and a forecast
of processor performance to 2020, based on the ITRS roadmap. The dashed line
represents expectations if single-processor performance had continued its histori-
cal trend. The vertical scale is logarithmic. A break in the growth rate at around
2004 can be seen. Before 2004, processor performance was growing by a factor of
about 100 per decade; since 2004, processor performance has been growing and is
forecasted to grow by a factor of only about 2 per decade. An expectation gap is
apparent. In 2010, this expectation gap for single-processor performance is about
a factor of 10; by 2020, it will have grown to a factor of 100. Most sectors of the
economy and society implicitly or explicitly expect computing to deliver steady,
exponentially increasing performance, but as this graph illustrates, traditional
single-processor computing systems will not match expectations. Note that this
graph plots processor clock rate as the measure of processor performance. Other
processor design choices impact processor performance, but clock rate is a domi-
nant processor performance determinant.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

10	 THE FUTURE OF COMPUTING PERFORMANCE

the International Technology Roadmap for Semiconductors (ITRS)1 pre-
dicts the continued growth of transistors/chips for the next decade, but it
will probably not be possible to continue to increase the transistor density
(number of transistors per unit area) of CMOS chips at the current pace
beyond the next 10 to 15 years. Figure S.1 shows the historical growth in
single-processor performance and a forecast of processor performance to
2020 based on the ITRS roadmap. A dashed line represents what could
have been expected if single-processor performance had continued on its
historical trend. By 2020, however, a large “expectation gap” is apparent
for single processors. This report explores the implications of that gap and
offers a way to begin to bridging it.

Finding: After many decades of dramatic exponential growth, single-
processor performance is increasing at a much lower rate, and this situ-
ation is not expected to improve in the foreseeable future.

Energy and power constraints play an important—and growing—role
in computing performance. Computer systems require energy to operate
and, as with any device, the more energy needed, the more expensive the
system is to operate and maintain. Moreover, all the energy consumed
by the system ends up as heat, which must be removed. Even when new
parallel models and solutions are found, most future computing systems’
performance will be limited by power or energy in ways that the com-
puter industry and researchers have not had to deal with thus far. For
example, the benefits of replacing a single, highly complex processor with
increasing numbers of simpler processors will eventually reach a limit
when further simplification costs more in performance than it saves in
power. Constraints due to power are thus inevitable for systems ranging
from hand-held devices to the largest computing data centers even as the
transition is made to parallel systems.

Even with success in sidestepping the limits on single-processor per-
formance, total energy consumption will remain an important concern,
and growth in performance will become limited by power consumption
within a decade. The total energy consumed by computing systems is
already substantial and continues to grow rapidly in the United States and
around the world. As is the case in other sectors of the economy, the total
energy consumed by computing will come under increasing pressure.

1 ITRS, 2009, ITRS 2009 Edition, available online at http://www.itrs.net/links/2009ITRS/
Home2009.htm.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

SUMMARY	 11

Finding: The growth in the performance of computing systems—even
if they are multiple-processor parallel systems—will become limited by
power consumption within a decade.

In short, the single processor and the sequential programming model
that have dominated computing since its birth in the 1940s, will no longer
be sufficient to deliver the continued growth in performance needed to
facilitate future IT advances.2 Moreover, it is an open question whether
power and energy will be showstoppers or just significant constraints.
Although these issues pose major technical challenges, they will also
drive considerable innovation in computing by forcing a rethinking of the
von Neumann model that has prevailed since the 1940s.	

PARALLELISM AS A SOLUTION

Future growth in computing performance will have to come from
parallelism. Most software developers today think and program by
using a sequential programming model to create software for single general-
purpose microprocessors. The microprocessor industry has already begun
to deliver parallel hardware in mainstream products with chip multi-
processors (CMPs—sometimes referred to as multicore), an approach
that places new burdens on software developers to build applications
to take advantage of multiple, distinct cores. Although developers have
found reasonable ways to use two or even four cores effectively by run-
ning independent tasks on each one, they have not, for the most part,
parallelized individual tasks in such a way as to make full use of the
available computational capacity. Moreover, if industry continues to fol-
low the same trends, they will soon be delivering chips with hundreds
of cores. Harnessing these cores will require new techniques for parallel
computing, including breakthroughs in software models, languages, and
tools. Developers of both hardware and software will need to focus more
attention on overall system performance, likely at the expense of time to
market and the efficiency of the virtuous cycle described previously.

Of course, the computer science and engineering communities have
been working for decades on the hard problems associated with paral-
lelism. For example, high-performance computing for science and engi-
neering applications has depended on particular parallel-programming
techniques such as Message Passing Interface (MPI). In other cases,

2 Of course, computing performance encompasses more than intrinsic CPU speed, but
CPU performance has historically driven everything else: input/output, memory sizes and
speeds, buses and interconnects, networks, and so on. If continued growth in CPU perfor-
mance is threatened, so are the rest.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

12	 THE FUTURE OF COMPUTING PERFORMANCE

domain-specific languages and abstractions such as MapReduce have
provided interfaces with behind-the-scenes parallelism and well-chosen
abstractions developed by experts, technologies that hide the complexity
of parallel programming from application developers. Those efforts have
typically involved a small cadre of programmers with highly specialized
training in parallel programming working on relatively narrow types
of computing problems. None of this work has, however, come close to
enabling widespread use of parallel programming for a wide array of
computing problems.

Encouragingly, a few research universities, including MIT, the Uni-
versity of Washington, the University of California, Berkeley, and oth-
ers have launched or revived research programs in parallelism, and the
topic has also seen a renewed focus in industry at companies such as
NVIDIA. However, these initial investments are not commensurate with
the magnitude of the technical challenges or the stakes. Moreover, his-
tory shows that technology advances of this sort often require a decade
or more. The results of such research are already needed today to sustain
historical trends in computing performance, which makes us already a
decade behind. Even with concerted investment, there is no guarantee
that widely applicable solutions will be found. If they cannot be, we need
to know that as soon as possible so that we can seek other avenues for
progress.

Finding: There is no known alternative to parallel systems for sustain-
ing growth in computing performance; however, no compelling pro-
gramming paradigms for general parallel systems have yet emerged.

RECOMMENDATIONS

The committee’s findings outline a set of serious challenges that affect
not only the computing industry but also the many sectors of society
that now depend on advances in IT and computation, and they suggest
national and global economic repercussions. At the same time, the crisis
in computing performance has pointed the way to new opportunities for
innovation in diverse software and hardware infrastructures that excel
in metrics other than single-chip processing performance, such as low
power consumption and aggregate delivery of throughput cycles. There
are opportunities for major changes in system architectures, and extensive
investment in whole-system research is needed to lay the foundation of
the computing environment for the next generation.

The committee’s recommendations are broadly aimed at federal
research agencies, the computing and information technology industry,

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

SUMMARY	 13

and educators and fall into two categories. The first is research. The best
science and engineering minds must be brought to bear on the challenges.
The second is practice and education. Better practice in the development
of computer hardware and software today will provide a foundation for
future performance gains. Education will enable the emerging genera-
tion of technical experts to understand different and in some cases not-
yet-developed parallel models of thinking about IT, computation, and
software.

Recommendations for Research

The committee urges investment in several crosscutting areas of
research, including algorithms, broadly usable parallel programming
methods, rethinking the canonical computing stack, parallel architectures,
and power efficiency.

Recommendation: Invest in research in and development of algorithms
that can exploit parallel processing.

Today, relatively little software is explicitly parallel. To obtain the
desired performance, it will be necessary for many more—if not most—
software designers to grapple with parallelism. For some applications,
they may still be able to write sequential programs, leaving it to compil-
ers and other software tools to extract the parallelism in the underlying
algorithms. For more complex applications, it may be necessary for pro-
grammers to write explicitly parallel programs. Parallel approaches are
already used in some applications when there is no viable alternative. The
committee believes that careful attention to parallelism will become the
rule rather than the notable exception.

Recommendation: Invest in research in and development of program-
ming methods that will enable efficient use of parallel systems not only
by parallel-systems experts but also by typical programmers.

Many of today’s programming models, languages, compilers, hyper-
visors (to manage virtual machines), and operating systems are targeted
primarily at single-processor hardware. In the future, these layers will
need to target, optimize programs for, and be optimized themselves for
explicitly parallel hardware. The intellectual keystone of the endeavor is
rethinking programming models so that programmers can express appli-
cation parallelism naturally. The idea is to allow parallel software to be
developed for diverse systems rather than specific configurations, and to
have system software deal with balancing computation and minimizing

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

14	 THE FUTURE OF COMPUTING PERFORMANCE

communication among multiple computational units. The situation is
reminiscent of the late 1970s, when programming models and tools were
not up to the task of building substantially more complex software. Bet-
ter programming models—such as structured programming in the 1970s,
object orientation in the 1980s, and managed programming languages in
the 1990s—have made it possible to produce much more sophisticated
software. Analogous advances in the form of better tools and additional
training will be needed to increase programmer productivity for parallel
systems.

A key breakthrough would be the ability to express application par-
allelism in such ways that an application will run faster as more cores
are added. The most prevalent parallel-programming languages do not
provide this performance portability. A related question is what to do
with the enormous body of legacy sequential code, which will be able to
realize substantial performance improvements only if it can be parallel-
ized. Experience has shown that parallelizing sequential code or highly
sequential algorithms effectively is exceedingly difficult in general. Writ-
ing software that expresses the type of parallelism required to exploit chip
multiprocessor hardware requires new software engineering processes
and tools, including new programming languages that ease the expres-
sion of parallelism and a new software stack that can exploit and map the
parallelism to hardware that is diverse and evolving. It will also require
training programmers to solve their problems with parallel computational
thinking.

The models themselves may or may not be explicitly parallel; it is an
open question whether or when most programmers should be exposed
to explicit parallelism. A single, universal programming model may or
may not exist, and so multiple models—including some that are domain-
specific—should be explored. Additional research is needed in the devel-
opment of new libraries and new programming languages with appropri-
ate compilation and runtime support that embody the new programming
models. It seems reasonable to expect that some programming models,
libraries, and languages will be suited for a broad base of skilled but
not superstar programmers. They may even appear on the surface to be
sequential or declarative. Others, however, will target efficiency, seeking
the highest performance for critical subsystems that are to be extensively
reused, and thus be intended for a smaller set of expert programmers.

Another focus for research should be system software for highly par-
allel systems. Although operating systems of today can handle some mod-
est parallelism, future systems will include many more processors whose
allocation, load balancing, and data communication and synchronization
interactions will be difficult to handle well. Solving those problems will
require a rethinking of how computation and communication resources

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

SUMMARY	 15

are viewed much as demands for increased memory size led to the intro-
duction of virtual memory a half-century ago.

Recommendation: Focus long-term efforts on rethinking of the canonical
computing “stack”—applications, programming language, compiler, run-
time, virtual machine, operating system, hypervisor, and architecture—in
light of parallelism and resource-management challenges.

Computer scientists and engineers typically manage complexity by
separating interface from implementation. In conventional computer sys-
tems, that is done recursively to form a computing stack: applications,
programming language, compiler, runtime, virtual machine, operating
system, hypervisor, and architecture. It is unclear whether today’s con-
ventional stack provides the right framework to support parallelism and
manage resources. The structure and elements of the stack itself should
be a focus of long-term research exploration.

Recommendation: Invest in research on and development of parallel
architectures driven by applications, including enhancements of chip
multiprocessor systems and conventional data-parallel architectures,
cost-effective designs for application-specific architectures, and support
for radically different approaches.

In addition to innovation and advancements in parallel program-
ming models and systems, advances in architecture and hardware will
play an important role. One path forward is to continue to refine the
chip multiprocessors (CMPs) and associated architectural approaches.
Are today’s CMP approaches suitable for designing most computers? The
current CMP architecture has the advantage of maintaining compatibility
with existing software, the heart of the architectural franchise that keeps
companies investing heavily. But CMP architectures bring their own chal-
lenges. Will large numbers of cores work in most computer deployments,
such as on desktops and even in mobile phones? How can cores be har-
nessed together temporarily, in an automated or semiautomated fashion,
to overcome sequential bottlenecks? What mechanisms and policies will
best exploit locality (keeping data stored close to other data that might
be needed at the same time or for particular computations and saving on
the power needed to move data around) so as to avoid communications
bottlenecks? How should synchronization and scheduling be handled?
How should challenges associated with power and energy be addressed?
What do the new architectures mean for such system-level features as
reliability and security?

Is using homogeneous processors in CMP architectures the best

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

16	 THE FUTURE OF COMPUTING PERFORMANCE

approach, or will computer architectures that include multiple but hetero-
geneous cores—some of which may be more capable than others or even
use different instruction-set architectures—be more effective? Special-
purpose processors that have long exploited parallelism, notably graph-
ics processing units (GPUs) and digital signal processor (DSP) hardware,
have been successfully deployed in important segments of the market.
Are there other important niches like those filled by GPUs and DSPs?
Alternatively, will computing cores support more graphics and GPUs
support more general-purpose programs, so that the difference between
the two will blur?

Perhaps some entirely new architectural approach will prove more
successful. If systems with CMP architectures cannot be effectively pro-
grammed, an alternative will be needed. Work in this general area could
eschew conventional cores. It can view the chip as a tabula rasa of billions
of transistors, which translates to hundreds of functional units; the effec-
tive organization of those units into a programmable architecture is an
open question. Exploratory computing systems based on field-program-
mable gate arrays (FPGAs) are a step in this direction, but continued
innovation is needed to develop programming systems that can harness
the potential parallelism of FPGAs.

Another place where fundamentally different approaches may be
needed is alternatives to CMOS. There are many advantages to sticking
with today’s silicon-based CMOS technology, which has proved remark-
ably scalable over many generations of microprocessors and around
which an enormous industrial and experience base has been established.
However, it will also be essential to invest in new computation substrates
whose underlying power efficiency promises to be fundamentally better
than that of silicon-based CMOS circuits. Computing has benefited in
the past from order-of-magnitude performance improvements in power
consumption in the progression from vacuum tubes to discrete bipolar
transistors to integrated circuits first based on bipolar transistors, then
on N-type metal oxide semiconductors (NMOS) and now on CMOS.
No alternative is near commercial availability yet, although some show
potential.

In the best case, investment will yield devices and manufacturing
methods—as yet unforeseen—that will dramatically surpass the CMOS IC.
In the worst case, no new technology will emerge to help solve the prob-
lems. That uncertainty argues for investment in multiple approaches as
soon as possible, and computer system designers would be well advised
not to expect one of the new devices to appear in time to obviate the devel-
opment of new, parallel architectures built on the proven CMOS technol-
ogy. Better performance is needed immediately. Society cannot wait the
decade or two that it would take to identify, refine, and apply a new tech-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

SUMMARY	 17

nology that may or may not even be on the horizon now. Moreover, even
if a groundbreaking new technology were discovered, the investment in
parallelism would not be wasted, in that advances in parallelism would
probably exploit the new technology as well.

Recommendation: Invest in research and development to make com-
puter systems more power-efficient at all levels of the system, including
software, application-specific approaches, and alternative devices. Such
efforts should address ways in which software and system architectures
can improve power efficiency, such as by exploiting locality and the use
of domain-specific execution units. R&D should also be aimed at mak-
ing logic gates more power-efficient. Such efforts should address alter-
native physical devices beyond incremental improvements in today’s
CMOS circuits.

Because computing systems are increasingly limited by energy con-
sumption and power dissipation, it is essential to invest in research and
development to make computing systems more power-efficient. Exploit-
ing parallelism alone cannot ensure continued growth in computer per-
formance. There are numerous potential avenues for investigation into
better power efficiency, some of which require sustained attention to
known engineering issues and others of which require research. These
include:

·	 Redesign the delivery of power to and removal of heat from
computing systems for increased efficiency. Design and deploy
systems in which the absolute maximum fraction of power is
used to do the computing and less is used in routing power to
the system and removing heat from the system. New voluntary or
mandatory standards (including ones that set ever-more-aggres-
sive targets) might provide useful incentives for the development
and use of better techniques.

·	 Develop alternatives to the general-purpose processor that exploit
locality.

·	 Develop domain-specific or application-specific processors analo-
gous to GPUs and DSPs that provide better performance and
power-consumption characteristics than do general-purpose pro-
cessors for other specific application domains.

·	 Investigate possible new, lower-power device technology beyond
CMOS.

Additional research should focus on system designs and software
configurations that reduce power consumption, for example, reducing

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

18	 THE FUTURE OF COMPUTING PERFORMANCE

power consumption when resources are idle, mapping applications to
domain-specific and heterogeneous hardware units, and limiting the
amount of communication among disparate hardware units.

Although the shift toward CMPs will allow industry to continue for
some time to scale the performance of CMPs based on general-purpose
processors, general-purpose CMPs will eventually reach their own lim-
its. CMP designers can trade off single-thread performance of individual
processors against lower energy dissipation per instruction, thus allow-
ing more instructions by multiple processors while the same amount of
energy is dissipated by the chip. However, that is possible only within
a limited range of energy performance. Beyond some limit, lowering
energy per instruction by processor simplification can lead to degrada-
tion in overall CMP performance because processor performance starts
to decrease faster than energy per instruction. When that occurs, new
approaches will be needed to create more energy-efficient computers.

It may be that general-purpose CMPs will prove not to be a solu-
tion in the long run and that we will need to create more application-
optimized processing units. Tuning hardware and software toward a
specific type of application allows a much more energy-efficient solution.
However, the current design trend is away from building customized
solutions, because increasing design complexity has caused the nonrecur-
ring engineering costs for designing the chips to grow rapidly. High costs
limit the range of potential market segments to the few that have volume
high enough to justify the initial engineering investment. A shift to more
application-optimized computing systems, if necessary, demands a new
approach to design that would allow application-specific chips to be cre-
ated at reasonable cost.

Recommendations for Practice and Education

Implementing the research agenda proposed here, although crucial
for progress, will take time. Meanwhile, society has an immediate and
pressing need to use current and emerging CMP systems effectively. To
that end, the committee offers three recommendations related to current
development and engineering practices and educational opportunities.

Recommendation: To promote cooperation and innovation by sharing,
encourage development of open interface standards for parallel program-
ming rather than proliferating proprietary programming environments.

Private-sector firms are often incentivized to create proprietary inter-
faces and implementations to establish a competitive advantage. How-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

SUMMARY	 19

ever, a lack of standardization can impede progress inasmuch as the
presence of many incompatible approaches allows none to achieve the
benefits of wide adoption and reuse—a major reason that industry par-
ticipates in standards efforts. The committee encourages the development
of programming-interface standards that can facilitate wide adoption of
parallel programming even as they foster competition in other matters.

Recommendation: Invest in the development of tools and methods to
transform legacy applications to parallel systems.

Whatever long-term success is achieved in the effective use of parallel
systems from rethinking algorithms and developing new programming
methods will probably come at the expense of the backward-platform
and cross-platform compatibility that has been an economic cornerstone
of IT for decades. To salvage value from the nation’s current, substantial
IT investment, we should seek ways to bring sequential programs into
the parallel world. On the one hand, there are probably no “silver bul-
lets” that enable automatic transformation. On the other hand, it is pro-
hibitively expensive to rewrite many applications. The committee urges
industry and academe to develop “power tools” for experts that can help
them to migrate legacy code to tomorrow’s parallel computers. In addi-
tion, emphasis should be placed on tools and strategies to enhance code
creation, maintenance, verification, and adaptation of parallel programs.

Recommendation: Incorporate in computer science education an increased
emphasis on parallelism, and use a variety of methods and approaches
to better prepare students for the types of computing resources that they
will encounter in their careers.

Who will develop the parallel software of the future? To sustain IT
innovation, we will need a workforce that is adept in writing parallel
applications that run well on parallel hardware, in creating parallel soft-
ware systems, and in designing parallel hardware.

Both undergraduate and graduate students in computer science, as
well as in other fields that make intensive use of computing, will need
to be educated in parallel programming. The engineering, science, and
computer-science curriculum at both the undergraduate and graduate
levels should begin to incorporate an emphasis on parallel computational
thinking, parallel algorithms, and parallel programming. With respect to
the computer-science curriculum, because no general-purpose paradigm
has emerged, universities should teach diverse parallel-programming
languages, abstractions, and approaches until effective ways of teaching

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

20	 THE FUTURE OF COMPUTING PERFORMANCE

and programming emerge. The necessary shape of the needed changes
will not be clear until some reasonably general parallel-programming
methods have been devised and shown to be promising.

Related to this is improving the ability of the programming workforce
to cope with the new challenges of parallelism. This will involve retrain-
ing today’s programmers and also developing new models and abstrac-
tions to make parallel programming more accessible to typically skilled
programmers.

CONCLUDING REMARKS

There is no guarantee that we can make future parallel computing
ubiquitous and as easy to use as yesterday’s sequential computer, but
unless we aggressively pursue efforts as suggested by the recommenda-
tions above, it will be game over for future growth in computing perfor-
mance. This report describes the factors that have led to limitations of
growth of single processors based on CMOS technology. The recommen-
dations here are aimed at supporting and focusing research, development,
and education in architectures, power, and parallel computing to sustain
growth in computer performance and to permit society to enjoy the next
level of benefits.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

21

1

The Need for Continued
Performance Growth

Information technology (IT) has become an integral part of modern
society, affecting nearly every aspect of our lives, including education,
medicine, government, business, entertainment, and social interac-

tions. Innovations in IT have been fueled by a continuous and extraor-
dinary increase in computer performance. By some metrics computer
performance has improved by a factor of an average of 10 every 5 years
over the past 2 decades. A sustained downshift in the rate of growth
in computing performance would have considerable ramifications both
economically and for society. The industries involved are responsible for
about $1 trillion of annual revenue in the United States. That revenue has
depended on a sustained demand for IT products and services that in
turn has fueled demand for constantly improving performance. Indeed,
U.S. leadership in IT depends in no small part on its driving and taking
advantage of the leading edge of computing performance. Virtually every
sector of society—manufacturing, financial services, education, science,
government, military, entertainment, and so on—has become dependent
on the continued growth in computing performance to drive new efficien-
cies and innovations. Moreover, all the current and foreseeable future
applications rely on a huge software infrastructure, and the software
infrastructure itself would have been impossible to develop with the more
primitive software development and programming methods of the past.
The principal force allowing better programming models, which empha-
size programmer productivity over computing efficiency, has been the

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

22	 THE FUTURE OF COMPUTING PERFORMANCE

growth in computing performance. (Chapter 4 explores implications for
software and programming in more detail.)

This chapter first considers the general question of why faster
computers are important. It then examines four broad fields—science,
defense and national security, consumer applications, and enterprise
productivity—that have depended on and will continue to depend on
sustained growth in computing performance. The fields discussed by no
means constitute an exhaustive list,1 but they are meant to illustrate how
computing performance and its historic exponential growth have had vast
effects on broad sectors of society and what the results of a slowdown in
that growth would be.

WHY FASTER COMPUTERS ARE IMPORTANT

Computers can do only four things: they can move data from one
place to another, they can create new data from old data via various
arithmetic and logical operations, they can store data in and retrieve them
from memories, and they can decide what to do next. Students studying
computers or programming for the first time are often struck by the sur-
prising intuition that, notwithstanding compelling appearance to the con-
trary, computers are extremely primitive machines, capable of performing
only the most mind-numbingly banal tasks. The trick is that computers
can perform those simple tasks extremely fast—in periods measured in
billionths of a second—and they perform these tasks reliably and repeat-
ably. Like a drop of water in the Grand Canyon, each operation may be
simple and may in itself not accomplish much, but a lot of them (billions
per second, in the case of computers) can get a lot done.

Over the last 60 years of computing history, computer buyers and
users have essentially “voted with their wallets” by consistently paying
more for faster computers, and computer makers have responded by pric-

1 Health care is another field in which IT has substantial effects—in, for example, patient
care, research and innovation, and administration. A recent National Research Council
(NRC) report, although it does not focus specifically on computing performance, provides
numerous examples of ways in which computation technology and IT are critical under-
pinnings of virtually every aspect of health care (NRC, 2009, Computational Technology
for Effective Health Care: Immediate Steps and Strategic Directions, Washington, D.C.: The
National Academies Press, available online at http://www.nap.edu/catalog.php?record_
id=12572). Yet another critically important field that increasingly benefits from computa-
tion power is infrastructure. “Smart” infrastructure applications in urban planning, high-
performance buildings, energy, traffic, and so on are of increasing importance. That is also
the underlying theme of two of the articles in the February 2009 issue of Communications of
the ACM (Tom Leighton, 2009, Improving performance on the Internet, Communications of
the ACM 52(2): 44-51; and T.V. Raman, 2009, Toward 2W: Beyond Web 2.0, Communications
of the ACM 52(2): 52-59).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 23

ing their systems accordingly: a high-end system may be, on the average,
10 percent faster and 30 percent more expensive than the next-best. That
behavior has dovetailed perfectly with the underlying technology devel-
opment in the computers—as ever-faster silicon technology has become
available, faster and faster computers could be designed. It is the nature
of the semiconductor manufacturing process that silicon chips coming
off the fabrication line exhibit a range of speeds. Rather than discard the
slower chips, the manufacturer simply charges less for them. Ever-rising
performance has been the wellspring of the entire computer industry.
Meanwhile, the improving economics of ever-larger shipment volumes
have driven overall system costs down, reinforcing a virtuous spiral2 by
making computer systems available to lower-price, larger-unit-volume
markets.

For their part, computer buyers demand ever-faster computers in
part because they believe that using faster machines confers on them an
advantage in the marketplace in which they compete.3 Applications that
run on a particular generation of computing system may be impractical or
not run at all on a system that is only one-tenth as fast, and this encour-
ages hardware replacements for performance every 3-5 years. That trend
has also encouraged buyers to place a premium on fast new computer
systems because buying fast systems will forestall system obsolescence
as long as possible. Traditionally, software providers have shown a ten-
dency to use exponentially more storage space and central processing unit
(CPU) cycles to attain linearly more performance; a tradeoff commonly
referred to as bloat. Reducing bloat is another way in which future system
improvements may be possible. The need for periodic replacements exists
whether the performance is taking place on the desktop or in the “cloud”

2 A small number of chips are fast, and many more are slower. That is how a range of prod-
ucts is produced that in total provide profits and, ultimately, funding for the next generation
of technology. The semiconductor industry is nearing a point where extreme ultraviolet
(EUV) light sources—or other expensive, exotic alternatives—will be needed to continue the
lithography-based steps in manufacturing. There are a few more techniques left to imple-
ment before EUV is required, but they are increasingly expensive to use in manufacturing,
and they are driving costs substantially higher. The future scenario that this implies is not
only that very few companies will be able to manufacture chips with the smallest feature
sizes but also that only very high-volume products will be able to justify the cost of using
the latest generation of technology.

3 For scientific researchers, faster computers allow larger or more important questions to be
pursued or more accurate answers to be obtained; office workers can model, communicate,
store, retrieve, and search their data more productively; engineers can design buildings,
bridges, materials, chemicals, and other devices more quickly and safely; and manufacturers
can automate various parts of their assembly processes and delivery methods more cost-
effectively. In fact, the increasing amounts of data that are generated, stored, indexed, and
retrieved require continued performance improvements. See Box 1.1 for more on data as a
performance driver.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

24	 THE FUTURE OF COMPUTING PERFORMANCE

BOX 1.1
Growth of Stored and Retrievable Data

The quantity of information and data that is stored in a digital format has
been growing at an exponential rate that exceeds even the historical rate of
growth in computing performance, which is the focus of this report. Data are
of value only if they can be analyzed to produce useful information that can
be retrieved when needed. Hence, the growth in stored information is another
reason for the need to sustain substantial growth in computing performance.

As the types and formats of information that is stored in digital form con-
tinue to increase, they drive the rapid growth in stored data. Only a few decades
ago, the primary data types stored in IT systems were text and numerical data.
But images of increasing resolution, audio streams, and video have all become
important types of data stored digitally and then indexed, searched, and re-
trieved by computing systems.

The growth of stored information is occurring at the personal, enterprise,
national, and global levels. On the personal level, the expanding use of e-mail,
text messaging, Web logs, and so on is adding to stored text. Digital cameras
have enabled people to store many more images in their personal computers
and data centers than they ever would have considered with traditional film
cameras. Video cameras and audio recorders add yet more data that are stored
and then must be indexed and searched. Embedding those devices into the
ubiquitous cell phone means that people can and do take photos and movies
of events that would previously not have been recorded.

At the global level, the amount of information on the Internet continues to
increase dramatically. As static Web pages give way to interactive pages and so-
cial-networking sites support video, the amount of stored and searchable data
continues its explosive growth. Storage technology has enabled this growth by
reducing the cost of storage by a rate even greater than that of the growth in
processor performance.

The challenge is to match the growth in stored information with the com-
putational capability to index, search, and retrieve relevant information. Today,
there are not sufficiently powerful computing systems to process effectively all
the images and video streams being stored. Satellite cameras and other remote
sensing devices typically collect much more data than can be examined for use-
ful information or important events.

Considerably more progress is needed to achieve the vision described by
Vannevar Bush in his 1945 paper about a MEMEX device that would collect and
make available to users all the information relevant to their life and work.1

1Vannevar Bush, 1945, “As we may think,” Atlantic Magazine, July 1945, available online at
http://www.theatlantic.com/magazine/archive/1969/12/as-we-may-think/3881/.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 25

in a Web-based service, although the pace of hardware replacement may
vary in the cloud.

All else being equal, faster computers are better computers.4 The
unprecedented evolution of computers since 1980 exhibits an essentially
exponential speedup that spans 4 orders of magnitude in performance
for the same (or lower) price. No other engineered system in human his-
tory has ever achieved that rate of improvement; small wonder that our
intuitions are ill-tuned to perceive its significance. Whole fields of human
endeavors have been transformed as computer system capability has
ascended through various threshold performance values.5 The impact
of computer technology is so widespread that it is nearly impossible to
overstate its importance.

Faster computers create not just the ability to do old things faster
but the ability to do new things that were not feasible at all before.6 Fast
computers have enabled cell phones, MP3 players, and global positioning
devices; Internet search engines and worldwide online auctions; MRI and
CT scanners; and handheld PDAs and wireless networks. In many cases,
those achievements were not predicted, nor were computers designed
specifically to cause the breakthroughs. There is no overarching roadmap
for where faster computer technology will take us—each new achieve-
ment opens doors to developments that we had not even conceived.
We should assume that this pattern will continue as computer systems

4 See Box 1.2 for a discussion of why this is true even though desktop computers, for ex-
ample, spend most of their time idle.

5 The music business, for example, is almost entirely digital now, from the initial sound
capture through mixing, processing, mastering, and distribution. Computer-based tricks that
were once almost inconceivable are now commonplace, from subtly adjusting a singer’s note
to be more in tune with the instruments, to nudging the timing of one instrument relative to
another. All keyboard instruments except acoustic pianos are now digital (computer-based)
and not only can render very accurate imitations of existing instruments but also can alter
them in real time in a dizzying variety of ways. It has even become possible to isolate a
single note from a chord and alter it, a trick that had long been thought impossible. Similarly,
modern cars have dozens of microprocessors that run the engine more efficiently, minimize
exhaust pollution, control the antilock braking system, control the security system, control
the sound system, control the navigation system, control the airbags and seatbelt retractors,
operate the cruise control, and handle other features. Over many years, the increasing ca-
pability of these embedded computer systems has allowed them to penetrate nearly every
aspect of vehicles.

6 Anyone who has played state-of-the-art video games will recognize the various ways
in which game designers wielded the computational and graphics horsepower of a new
computer system for extra realism in a game’s features, screen resolution, frame rate, scope
of the “theater of combat,” and so on.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

26	 THE FUTURE OF COMPUTING PERFORMANCE

BOX 1.2
Why Do I Need More Performance When
My Computer Is Idle Most of the Time?

When computers find themselves with nothing to do, by default they run
operating-system code known as the idle loop. The idle loop is like the cell-
phone parking lot at an airport, where your spouse sits waiting to pick you up
when you arrive and call him or her. It may seem surprising or incongruous that
nearly all the computing cycles ever executed by computers have been wasted
in the idle loop, but it is true. If we have “wasted” virtually all the computing
horsepower available since the beginning of the computer age, why should we
worry about a potential threat to increased performance in the future? Is there
any point in making machinery execute the idle loop even faster? In fact, there
is. The reason has as much to do with humans as it does with the computing
machines that they design.

Consider the automobile. The average internal-combustion vehicle has a
six-cylinder engine capable of a peak output of around 200 horsepower. Many
aspects of the engine and drivetrain reflect that peak horsepower: when you
press the pedal to the floor while passing or entering a highway, you expect the
vehicle to deliver that peak horsepower to the wheels, and you would be quite
unhappy if various parts of the car were to leave the vehicle instead, unable to
handle the load. But if you drive efficiently, over several years of driving, what
fraction of the time is spent under that peak load condition? For most people,
the answer is approximately zero. It only takes about 20 horsepower to keep
a passenger car at highway speeds under nominal conditions, so you end up
paying for a lot more horsepower than you use.

But if all you had at your driving disposal was a 20-horsepower power plant
(essentially, a golf cart), you would soon tire of driving the vehicle because you
would recognize that energy efficiency is great but not everything; that annoy-
ing all the other drivers as you slowly, painfully accelerate from an on-ramp gets
old quickly; and that your own time is valuable to you as well. In effect, we all

get faster yet.7 There is no reason to think that it will not continue as
long as computers continue to improve. What has changed—and will be
described in detail in later chapters—is how we achieve faster computers.
In short, power dissipation can no longer be dealt with independently of
performance (see Chapter 3). Moreover, although computing performance
has many components (see Chapter 2), a touchstone in this report will be
computer speed; as described in Box 1.3, speed can be traded for almost
any other sort of functionality that one might want.

7 Some of the breakthroughs were not solely performance-driven—some depend on a
particular performance at a particular cost. But cost and performance are closely related,
and performance can be traded for lower cost if desired.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 27

Finding: The information technology sector itself and most other sec-
tors of society—for example, manufacturing, financial and other ser-
vices, science, engineering, education, defense and other government
services, and entertainment—have become dependent on continued
growth in computing performance.

The rest of this chapter describes a sampling of fields in which com-
puting performance has been critical and in which a slowing of the growth
of computing performance would have serious adverse repercussions. We
focus first on high-performance computing and computing performance
in the sciences. Threats to growth in computing performance will be felt
there first, before inevitably extending to other types of computing.

accept a compromise that results in a system that is overdesigned for the com-
mon case because we care about the uncommon case and are willing to pay
for the resulting inefficiency.

In a computing system, although you may know that the system is spending
almost all its time doing nothing, that fact pales in comparison with how you
feel when you ask the system to do something in real time and must wait for
it to accomplish that task. For instance, when you click on an attachment or a
file and are waiting for the associated application to open (assuming that it is
not already open), every second drags.1 At that moment, all you want is a faster
system, regardless of what the machine is doing when you are not there. And
for the same reason that a car’s power plant and drivetrain are overdesigned for
their normal use, your computing system will end up sporting clock frequen-
cies, bus speeds, cache sizes, and memory capacity that will combine to yield a
computing experience to you, the user, that is statistically rather rare but about
which you care very much.

The idle-loop effect is much less pronounced in dedicated environments—
such as servers and cloud computing, scientific supercomputers, and some
embedded applications—than it is on personal desktop computers. Servers
and supercomputers can never go fast enough, however—there is no real limit
to the demand for higher performance in them. Some embedded applications,
such as the engine computer in a car, will idle for a considerable fraction of their
existence, but they must remain fast enough to handle the worst-case compu-
tational demands of the engine and the driver. Other embedded applications
may run at a substantial fraction of peak capacity, depending on the workload
and the system organization.

1 It is worth noting that the interval between clicking on most e-mail attachments and suc-
cessful opening of their corresponding applications is not so much a function of the CPU’s
performance as it is of disk speed, memory capacity, and input/output interconnect bandwidth.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

28	 THE FUTURE OF COMPUTING PERFORMANCE

BOX 1.3
Computing Performance Is Fungible

Computing speed can be traded for almost any other feature that one might
want. In this sense, computing-system performance is fungible, and that is what
gives it such importance. Workloads that are at or near the absolute capacity
of a computing system tend to get all the publicity—for every new computing-
system generation, the marketing holy grail is a “killer app” (software applica-
tion), some new software application that was previously infeasible, now runs
adequately, and is so desirable that buyers will replace their existing systems
just to buy whatever hardware is fast enough to run it. The VisiCalc spreadsheet
program on the Apple II was the canonical killer app; it appeared at the dawn of
the personal-computing era and was so compelling that many people bought
computers just to run it. It has been at least a decade since anything like a killer
app appeared, at least outside the vocal but relatively small hard-core gaming
community. The reality is that modern computing systems spend nearly all their
time idle (see Box 1.2 for an explanation of why faster computers are needed
despite that); thus, most systems have a substantial amount of excess computing
capacity, which can be put to use in other ways.

Performance can be traded for higher reliability: for example, the digital sig-
nal processor in a compact-disk player executes an elaborate error-detection-
and-correction algorithm, and the more processing capability can be brought
to bear on that problem, the more bumps and shocks the player can withstand
before the errors become audible to the listener. Computational capacity can
also be used to index mail and other data on a computer periodically in the
background to make the next search faster. Database servers can take elabo-
rate precautions to ensure high system dependability in the face of inevitable
hardware-component failures. Spacecraft computers often incorporate three
processors where one would suffice for performance; the outputs of all three
processors are compared via a voting scheme that detects if one of the three
machines has failed. In effect, three processors’ worth of performance is re-
duced to one processor’s performance in exchange for improved system de-
pendability. Performance can be used in the service of other goals, as well. Files
on a hard drive can be compressed, and this trades computing effort and time
for better effective drive capacity. Files that are sent across a network or across
the Internet use far less bandwidth and arrive at their destination faster when
they are compressed. Likewise, files can be encrypted in much the same way
to keep their contents private while in transit.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 29

THE IMPORTANCE OF COMPUTING
PERFORMANCE FOR THE SCIENCES

Computing has become a critical component of most sciences and
complements the traditional roles of theory and experimentation.8 Theo-
retical models may be tested by implementing them in software, evaluat-
ing them through simulation, and comparing their results with known
experimental results. Computational techniques are critical when experi-
mentation is too expensive, too dangerous, or simply impossible. Exam-
ples include understanding the behavior of the universe after the Big
Bang, the life cycle of stars, the structure of proteins, functions of living
cells, genetics, and the behavior of subatomic particles. Computation is
used for science and engineering problems that affect nearly every aspect
of our daily lives, including the design of bridges, buildings, electronic
devices, aircraft, medications, soft-drink containers, potato chips, and
soap bubbles. Computation makes automobiles safer, more aerodynamic,
and more energy-efficient. Extremely large computations are done to
understand economics, national security, and climate change, and some
of these computations are used in setting public policy. For example, hun-
dreds of millions of processor hours are devoted to understanding and
predicting climate change–one purpose of which is to inform the setting
of international carbon-emission standards.

In many cases, what scientists and engineers can accomplish is lim-
ited by the performance of computing systems. With faster systems, they
could simulate critical details—such as clouds in a climate model or
mechanics, chemistry, and fluid dynamics in the human body—and they
could run larger suites of computations that would improve confidence in
the results of simulations and increase the range of scientific exploration.

Two themes common to many computational science and engineering
disciplines are driving increases in computational capability. The first is
an increased desire to support multiphysics or coupled simulations, such
as adding chemical models to simulations that involve fluid-dynamics
simulations or structural simulations. Multiphysics simulations are neces-
sary for understanding complex real-world systems, such as the climate,
the human body, nuclear weapons, and energy production. Imagine, for
example, a model of the human body in which one could experiment
with the addition of new chemicals (medicines to change blood pressure),
changing structures (artificial organs or prosthetic devices), or effects of
radiation. Many scientific fields are ripe for multiphysics simulations

8 See an NRC report for one relatively recent take on computing and the sciences (NRC,
2008, The Potential Impact of High-End Capability Computing on Four Illustrative Fields of
Science and Engineering, Washington, D.C.: The National Academies Press, available online
at http://www.nap.edu/catalog.php?record_id=12451).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

30	 THE FUTURE OF COMPUTING PERFORMANCE

because the individual components are understood well enough and are
represented by a particular model and instantiation within a given code
base. The next step is to take two or more such code bases and couple
them in such a way that each communicates with the others. Climate
modeling, for example, is well along that path toward deploying coupled
models, but the approach is still emerging in some other science domains.

The second crosscutting theme in the demand for increased comput-
ing performance is the need to improve confidence in simulations to make
computation truly predictive. At one level, this may involve running mul-
tiple simulations and comparing results with different initial conditions,
parameterizations, simulations at higher space or time resolutions or
numerical precision, models, levels of detail, or implementations. In some
fields, sophisticated “uncertainty quantification” techniques are built into
application codes by using statistical models of uncertainty, redundant
calculations, or other approaches. In any of those cases, the techniques
to reduce uncertainty increase the demand for computing performance
substantially.9

High-Energy Physics, Nuclear Physics, and Astrophysics

The basic sciences, including physics, also rely heavily on high-end
computing to solve some of the most challenging questions involving
phenomena that are too large, too small, or too far away to study directly.
The report of the 2008 Department of Energy (DOE) workshop on Sci-
entific Grand Challenges: Challenges for Understanding the Quantum
Universe and the Role of Computing at the Extreme Scale summarizes the
computational gap: “To date, the computational capacity has barely been
able to keep up with the experimental and theoretical research programs.
There is considerable evidence that the gap between scientific aspiration
and the availability of computing resource is now widening. . . .”10 One
of the examples involves understanding properties of dark matter and
dark energy by analyzing datasets from digital sky surveys, a technique
that has already been used to explain the behavior of the universe shortly

9 In 2008 and 2009, the Department of Energy (DOE) held a series of workshops on com-
puting and extreme scales in a variety of sciences. The workshop reports summarize some
of the scientific challenges that require 1,000 times more computing than is available to the
science community today. More information about these workshops and others is available
online at DOE’s Office of Advanced Scientific Computing Research website, http://www.
er.doe.gov/ascr/WorkshopsConferences/WorkshopsConferences.html.

10 DOE, 2009, Scientific Grand Challenges: Challenges for Understanding the Quan-
tum Universe and the Role of Computing at the Extreme Scale, Workshop Report, Menlo
Park, Cal., December 9-11, 2008, p. 2, available at http://www.er.doe.gov/ascr/Program
Documents/ProgDocs.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 31

after the Big Bang and its continuing expansion. The new datasets are
expected to be on the order of 100 petabytes (1017 bytes) in size and will be
generated with new high-resolution telescopes that are on an exponential
growth path in capability and data generation. High-resolution simula-
tions of type Ia and type II supernova explosions will be used to calibrate
their luminosity; the behavior of such explosions is of fundamental inter-
est, and such observational data contribute to our understanding of the
expansion of the universe. In addition, an improved understanding of
supernovae yields a better understanding of turbulent combustion under
conditions not achievable on Earth. Finally, one of the most computation-
ally expensive problems in physics is aimed at revealing new physics
beyond the standard model, described in the DOE report as “analogous
to the development of atomic physics and quantum electrodynamics in
the 20th century.”11

In addition to the data analysis needed for scientific experiments and
basic compute-intensive problems to refine theory, computation is critical
to engineering one-of-a-kind scientific instruments, such as particle accel-
erators like the International Linear Collider and fusion reactors like ITER
(which originally stood for International Thermonuclear Experimental
Reactor). Computation is used to optimize the designs, save money in
construction, and reduce the risk associated with these devices. Similarly,
simulation can aid in the design of complex systems outside the realm of
basic science, such as nuclear reactors, or in extending the life of existing
reactor plants.

Chemistry, Materials Science, and Fluid Dynamics

A 2003 National Research Council report outlines several of the
“grand challenges” in chemistry and chemical engineering, including
two that explicitly require high-performance computing.12 The first is to
“understand and control how molecules react—over all time scales and
the full range of molecular size”; this will require advances in predictive
computational modeling of molecular motions, which will complement
other experimental and theoretical work. The second is to “learn how to
design and produce new substances, materials, and molecular devices
with properties that can be predicted, tailored, and tuned before produc-
tion”; this will also require advances in computing and has implications
for commercial use of chemical and materials engineering in medicine,

11 Ibid. at p. vi.
12 NRC, 2003, Beyond the Molecular Frontier: Challenges for Chemistry and Chemical

Engineering, Washington, D.C.: The National Academies Press, available online at http://
www.nap.edu/catalog.php?record_id=10633.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

32	 THE FUTURE OF COMPUTING PERFORMANCE

energy and defense applications, and other fields. Advances in computing
performance are necessary to increase length scales to allow modeling of
multigranular samples, to increase time scales for fast chemical processes,
and to improve confidence in simulation results by allowing first-princi-
ples calculations that can be used in their own right or to validate codes
based on approximate models. Computational materials science contrib-
utes to the discovery of new materials. The materials are often the foun-
dation of new industries; for example, understanding of semiconductors
led to the electronics industry and understanding of magnetic materials
contributed to data storage.

Chemistry and material science are keys to solving some of the most
pressing problems facing society today. In energy research, for example,
they are used to develop cleaner fuels, new materials for solar panels, bet-
ter batteries, more efficient catalysts, and chemical processes for carbon
capture and sequestration. In nuclear energy alone, simulation that com-
bines materials, fluids, and structures may be used for safety assessments,
design activities, cost, and risk reduction.13 Fluid-dynamics simulations
are used to make buildings, engines, planes, cars, and other devices more
energy-efficient and to improve understanding of the processes, such as
combustion, that are fundamental to the behavior of stars, weapons, and
energy production. Those simulations vary widely among computational
scales, but whether they are run on personal computers or on petascale
systems, the value of additional performance is universal.

Biological Sciences

The use of large-scale computation in biology is perhaps most visible
in genomics, in which enormous data-analysis problems were involved
in computing and mapping the human genome. Human genomics has
changed from a purely science-driven field to one with commercial and
personal applications as new sequence-generation systems have become a
commodity and been combined with computing and storage systems that
are modest by today’s standards. Companies will soon offer personalized
genome calculation to the public. Genomics does not stop with the human
genome, however, and is critical in analyzing and synthesizing microor-
ganisms for fighting disease, developing better biofuels, and mitigating
environmental effects. The goal is no longer to sequence a single species
but to scoop organisms from a pond or ocean, from soil, or from deep

13  Horst Simon, Thomas Zacharia, and Rick Stevens, 2007, Modeling and Simulation at
the Exascale for the Energy and Environment, Report on the Advanced Scientific Comput-
ing Research Town Hall Meetings on Simulation and Modeling at the Exascale for Energy,
Ecological Sustainability and Global Security (E3), Washington, D.C.: DOE, available online
at http://www.er.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 33

underground and analyze an entire host of organisms and compare them
with other species to understand better what lives and why in particular
environments.

At the macro level, reverse engineering of the human brain and simu-
lating complete biologic systems from individual cells to the structures
and fluids of a human are still enormous challenges that exceed our cur-
rent reach in both understanding and computational capability. But prog-
ress on smaller versions of those problems shows that progress is possible.

One of the most successful kinds of computation in biology has been
at the level of proteins and understanding their structure. For example,
a group of biochemical researchers14 are applying standard computer-
industry technology (technology that was originally designed with and
funded by profits from mundane consumer electronics items) to tackle the
protein-folding problem at the heart of modern drug discovery and inven-
tion. This problem has eluded even the fastest computers because of its
overwhelming scale and complexity. But several decades of Moore’s law
have now enabled computational machinery of such capability that the
protein-folding problem is coming into range. With even faster hardware
in the future, new treatment regimens tailored to individual patients may
become feasible with far fewer side effects.

Climate-Change Science

In its 2007 report on climate change, the Intergovernmental Panel
on Climate Change (IPPC) concluded that Earth’s climate would change
dramatically over the next several decades.15 The report was based on
millions of hours of computer simulations on some of the most powerful

14 See David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H.
Larson, John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C. Chao,
Michael P. Eastwood, Joseph Gagliardo, J. P. Grossman, Richard C. Ho, Douglas J. Lerardi,
István Kolossváry, John L. Klepeis, Timothy Layman, Christine Mcleavey, Mark A. Moraes,
Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler, Michael Theobald, Brian
Towles, and Stanley C. Wang, 2008, Anton, a special-purpose machine for molecular dynam-
ics simulation, Communications of the ACM 51(7): 91-97.

15 See IPCC, 2007, Climate Change 2007: Synthesis Report, Contribution of Working
Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, eds. Core Writing Team, Rajendra K. Pachauri and Andy Reisinger, Ge-
neva, Switzerland: IPCC. The National Research Council has also recently released three
reports noting that strong evidence on climate change underscores the need for actions
to reduce emissions and begin adapting to impacts (NRC, 2010, Advancing the Science of
Climate Change, Limiting the Magnitude of Climate Change, and Adapting to the Impacts
of Climate Change, Washington, D.C.: The National Academies Press, available online at
http://www.nap.edu/catalog.php?record_id=12782; NRC, 2010, Limiting the Magnitude of
Future Climate Change, Washington, D.C.: The National Academies Press, available online
at http://www.nap.edu/catalog.php?record_id=12785; NRC, 2010, Adapting to the Impacts
of Climate Change, available online at http://www.nap.edu/catalog.php?record_id=12783.)

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

34	 THE FUTURE OF COMPUTING PERFORMANCE

supercomputers in the world. The need for computer models in the study
of climate change is far from over, however, and the most obvious need is
to improve the resolution of models, which previously simulated only one
data point every 200 kilometers, whereas physical phenomena like clouds
appear on a kilometer scale. To be useful as a predictive tool, climate
models need to run at roughly 1,000 times real time, and estimates for a
kilometer-scale model therefore require a 20-petaflop (1015 floating-point
operations per second) machine, which is an order of magnitude faster
than the fastest machine available at this writing.16

Resolution is only one of the problems, however, and a report based
on a DOE workshop suggests that 1 exaflop (1018 floating-point operations
per second) will be needed within the next decade to meet the needs of
the climate research community.17 Scientists and policy-makers need the
increased computational capability to add more features, such as fully
resolved clouds, and to capture the potential effects of both natural and
human-induced forcing functions on the climate. They also need to under-
stand specific effects of climate change, such as rise in sea levels, changes
in ocean circulation, extreme weather events at the local and regional
level, and the interaction of carbon, methane, and nitrogen cycles. Cli-
mate science is not just about prediction and observation but also about
understanding how various regions might need to adapt to changes and
how they would be affected by a variety of proposed mitigation strategies.
Experimenting with mitigation is expensive, impractical because of time
scales, and dangerous—all characteristics that call for improved climate
models that can predict favorable and adverse changes in the climate and
for improved computing performance to enable such simulations.

Computational Capability and Scientific Progress

The availability of large scientific instruments—such as telescopes,
lasers, particle accelerators, and genome sequencers—and of low-cost
sensors, cameras, and recording devices has opened up new challenges
related to computational analysis of data. Such analysis is useful in a vari-
ety of domains. For example, it can be used to observe and understand
physical phenomena in space, to monitor air and water quality, to develop
a map of the genetic makeup of many species, and to examine alternative

16 See, for example, Olive Heffernan, 2010, Earth science: The climate machine, Nature
463(7284): 1014-1016, which explores the complexity of new Earth models for climate
analysis.

17 DOE, 2009, Scientific Grand Challenges: Challenges in Climate Change Science and
the Role of Computing at the Extreme Scale, Workshop Report, Washington D.C., Novem-
ber 6-7, 2008, available online at http://www.er.doe.gov/ascr/ProgramDocuments/Docs/
ClimateReport.pdf.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 35

energy sources, such as fusion. Scientific datasets obtained with those
devices and simulations are stored in petabyte storage archives in scien-
tific computing centers around the world.

The largest computational problems are often the most visible, but the
use of computing devices by individual scientists and engineers is at least
as important for the progress of science. Desktop and laptop machines
today are an integral part of any scientific laboratory and are used for
computations and data-analysis problems that would have required
supercomputers only a decade ago. Individual investigators in engineer-
ing and science departments around the country use cluster computers
based on networks of personal computers. The systems are often shared
by a small group of researchers or by larger departments to amortize some
of the investment in personnel, infrastructure, and maintenance. And sys-
tems that are shared by departments or colleges are typically equivalent
in computational capability to the largest supercomputers in the world
5-10 years earlier.

Although no one problem, no matter how large, could have justified
the aggregate industry investment that was expended over many years
to bring hardware capability up to the required level, we can expect
that whole new fields will continue to appear as long as the stream
of improvements continues. As another example of the need for more
performance in the sciences, the computing centers that run the largest
machines have very high use rates, typically over 90 percent, and their
sophisticated users study the allocation policies among and within cen-
ters to optimize the use of their own allocations. Requests for time on the
machines perpetually exceed availability, and anecdotal and statistical
evidence suggests that requests are limited by expected availability rather
than by characteristics of the science problems to be attacked; when avail-
able resources double, so do the requests for computing time.

A slowdown in the growth in computing performance has implica-
tions for large swaths of scientific endeavor. The amount of data available
and accessible for scientific purposes will only grow, and computational
capability needs to keep up if the data are to be used most effectively.
Without continued expansion of computing performance commensurate
with both the amount of data being generated and the scope and scale
of the problems scientists are asked to solve—from climate change to
energy independence to disease eradication—it is inevitable that impor-
tant breakthroughs and opportunities will be missed. Just as in other
fields, exponential growth in computing performance has underpinned
much scientific innovation. As that growth slows or stops, the opportuni-
ties for innovation decrease, and this also has implications for economic
competitiveness.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

36	 THE FUTURE OF COMPUTING PERFORMANCE

THE IMPORTANCE OF COMPUTING PERFORMANCE FOR
DEFENSE AND NATIONAL SECURITY

It is difficult to overstate the importance of IT and computation for
defense and national security. The United States has an extremely high-
technology military; virtually every aspect depends on IT and compu-
tational capability. To expand our capabilities and maintain strategic
advantage, operational needs and economic motivators urge a still higher-
technology military and national and homeland security apparatus even
as many potential adversaries are climbing the same technology curve
that we traversed. If, for whatever reason, we do not continue climbing
that curve ourselves, the gap between the United States and many of its
adversaries will close. This section describes several examples of where
continued growth in computing performance is essential for effectiveness.
The examples span homeland security, defense, and intelligence and have
many obvious nonmilitary applications as well.

Military and Warfighting Needs

There has been no mystery about the efficacy of better technology
in weaponry since the longbow first appeared in the hands of English
archers or steel swords first sliced through copper shields. World War II
drove home the importance of climb rates, shielding, speed, and arma-
ment of aircraft and ended with perhaps the most devastating display of
unequal armament ever: the nuclear bomb.

The modern U.S. military is based largely on the availability of tech-
nologic advantages because it must be capable of maintaining extended
campaigns in multiple simultaneous theaters throughout the world, and
our armed forces are much smaller than those fielded by several potential
adversaries. Technology—such as better communication, satellite links,
state-of-the-art weapons platforms, precision air-sea-land launched rock-
ets, and air superiority—acts as a force multiplier that gives the U.S. mili-
tary a high confidence in its ability to prevail in any conventional fight.

Precision munitions have been a game-changer that enables us to
fight wars with far fewer collateral losses than in any recent wars. No
longer does the Air Force have to carpet-bomb a section of a city to ensure
that the main target of interest is destroyed; instead, it can drop a preci-
sion bomb of the required size from a stealthy platform or as a cruise
missile from an offshore ship and take out one building on a crowded city
street. Sufficiently fast computers provided such capabilities, and faster
ones will improve them.

Because high technology has conferred so strong an advantage on the
U.S. military for conventional warfare, few adversaries will ever consider
engaging us this way. Instead, experiences in Vietnam, Afghanistan, and

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 37

Iraq have been unconventional or “asymmetric”: instead of large-scale
tank engagements, these wars have been conducted on a much more
localized basis—between squads or platoons, not brigades or divisions.
Since Vietnam, where most of the fighting was in jungles, the venues
have been largely urban, in towns where the populace is either neutral or
actively hostile. In those settings, the improvised explosive device (IED)
has become a most effective weapon for our adversaries.

The military is working on improving methods for detecting and
avoiding IEDs, but it is also looking into after-the-fact analysis that could
be aided by computer-vision autosurveillance. With remotely piloted
aerial vehicles, we can fly many more observation platforms, at lower risk,
than ever before. And we can put so many sensors in the air that it is not
feasible to analyze all the data that they generate in a timely fashion. At
least some part of the analysis must be performed at the source. The better
and faster that analysis is, the less real-time human scrutiny is required,
and the greater the effectiveness of the devices. A small, efficient military
may find itself fighting at tempos that far exceed what was experienced
in the past, and this will translate into more sorties per day on an aircraft
carrier, faster deployment of ground troops, and quicker reactions to
real-time information by all concerned. Coordination among the various
U.S. military elements will become much more critical. Using computer
systems to manage much of the information associated with these activi-
ties could offload the tedious communication and background analytic
tasks and move humans’ attention to issues for which human judgment
is truly required.

Training Simulations

Although often rudimentary, training simulations for the military are
ubiquitous and effective. The U.S. government-sponsored first-person-
shooter game America’s Army is freely downloadable and puts its play-
ers through the online equivalent (in weapons, tactics, and first aid) of
the training sequence given to a raw recruit. There have been reports
that the “training” in the video game America’s Army was sufficient to
have enabled its players to save lives in the real world.18 The U.S. Army
conducts squad-level joint video-game simulations as a research exer-
cise. Squad tactics, communication, identification of poorly illuminated

18 Reported in Earnest Cavalli, 2008, Man imitates America’s army, saves lives, Wired.com,
January 18, 2008, available online at http://www.wired.com/gamelife/2008/01/americas-
army-t/. The article cites a press release from a game company Web site (The official Army
game: America’s Army, January 18, 2008, available at http://forum.americasarmy.com/
viewtopic.php?t=271086).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

38	 THE FUTURE OF COMPUTING PERFORMANCE

targets in houses, and overall movement are stressed and analyzed. In
another type of simulation, a single soldier is immersed in a simulation
with computer-generated images on all four walls around him. Future
training simulations could be made much more realistic, given enough
computational capability, by combining accurately portrayed audio (the
real sound of real weapons with echos, nulls, and reflections generated
by computer) with ever-improving graphics. Humans could be included,
perhaps as avatars as in Second Life, who know the languages and cus-
toms of the country in which the military is engaged. Limited handheld
language-translation devices are being tested in the field; some soldiers
like them, and others report difficulty in knowing how and when to use
them. Simulations can be run with the same devices so that soldiers can
become familiar with the capabilities and limitations and make their use
much more efficient. When training simulations become more realistic,
they can do what all more accurate simulations do: reduce the need for
expensive real-world realizations or increase the range and hazard-level
tolerances of operations that would not be possible to train for in the real
world.

Autonomous Robotic Vehicles

The Defense Advanced Research Projects Agency (DARPA) has spon-
sored multiple “Grand Challenge” events in which robotic vehicles com-
pete to traverse a preset course in minimum time. The 2007 competition
was in an urban setting in which the vehicles not only were required to
stay on the road (and on their own side of the road) but also had to obey
all laws and customs that human drivers would. The winning entry, Boss,
from the Carnegie Mellon University (CMU) Robotics Institute, had a
daunting array of cameras, lidars, and GPS sensors and a massive (for a
car) amount of computing horsepower.19

CMU’s car (and several other competitors) finished the course while
correctly identifying many tricky situations on the course, such as the
arrival of multiple vehicles at an intersection with stop signs all around.
(Correct answer: The driver on the right has the right of way. Unless you
got there considerably earlier than that driver, in which case you do. But
even if you do have an indisputable right of way, if that driver starts
across the intersection, you have the duty to avoid an accident. As it turns
out, many humans have trouble with this situation, but the machines
largely got it right.)

CMU says that to improve its vehicle, the one thing most desired is

19 See Carnegie Mellon Tartan Racing, available at http://www.tartanracing.org, for more
information about the vehicle and the underlying technology.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 39

additional computing horsepower—the more the better. According to
DARPA’s vision, we appear to be within shouting distance of a robotic
military supply truck, one that would no longer expose U.S. military
personnel to the threats of IEDs or ambushes. The same technology is
also expected to improve civilian transportation and has the potential to
reduce collisions on domestic roads and highways.

Domestic Security and Infrastructure

Airport Security Screening

Terrorist groups target civilian populations and infrastructure. The
events of 9/11 have sparked many changes in how security is handled,
most of which involve computer-based technology. For example, to detect
passenger-carried weapons—such as knives, guns, and box cutters—fast
x-ray scanners and metal detectors have become ubiquitous in airports
throughout the world.

But the x-ray machines are used primarily to produce a two-dimen-
sional image of the contents of carry-on bags; the actual “detector” is the
human being sitting in front of the screen. Humans are susceptible to a
wide array of malfunctions in that role: they get distracted, they get tired,
they get sick, and their effectiveness varies from one person to another.
Although it can be argued that there should always be a human in the
loop when it is humans one is trying to outsmart, it seems clear that this
is an opportunity for increased computational horsepower to augment a
human’s ability to identify threat patterns in the images.

In the future, one could envision such x-ray image analytic software
networking many detectors in an attempt to identify coordinated patterns
automatically. Such automation could help to eliminate threats in which
a coordinated group of terrorists is attempting to carry on to a plane a set
of objects that in isolation are nonthreatening (and will be passed by a
human monitor) but in combination can be used in some dangerous way.
Such a network might also be used to detect smuggling: one object might
seem innocuous, but an entire set carried by multiple people and passed
by different screeners might be a pattern of interest to the authorities. And
a network might correlate images with weapons found by hand inspec-
tion and thus “learn” what various weapons look like when imaged and
in the future signal an operator when a similar image appeared.

Surveillance, Smart Cameras, and Video Analytics

A staple of nearly all security schemes is the camera, which typically
feeds a real-time low-frame-rate image stream back to a security guard,

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

40	 THE FUTURE OF COMPUTING PERFORMANCE

whose job includes monitoring the outputs of the camera and distin-
guishing normal situations from those requiring action. As with airport
screeners, the security guards find it extremely difficult to maintain the
necessary vigilance in monitoring cameras: it is extremely boring, in part
because of the low prevalence of the events that they are watching for.
But “boring” is what computers do best: they never tire, get distracted,
show up for work with a hangover, or fight with a spouse. If a computer
system could watch the outputs of cameras 3, 5, and 8 and notify a human
if anything interesting happens, security could be greatly enhanced in
reliability, scope, and economics.

In the current state of the art, the raw video feed from all cameras is
fed directly to monitors with magnetic tape storage or digital sampling
to hard drives. With the emergence of inexpensive high-definition cam-
eras, the raw bit rates are quickly climbing well beyond the abilities of
networks to transport the video to the monitors economically and beyond
the capacity of storage systems to retain the information.

What is needed is for some processing to be performed in the cam-
eras themselves. Suppose that a major retailer needs surveillance on its
customer parking lot at night as an antitheft measure. Virtually all the
time, the various cameras will see exactly the same scene, down to the
last pixel, on every frame, hour after hour. Statistically, the only things
that will change from the camera point of view are leaves blowing across
the lot, the occasional wild animal, rain, shadows caused by the moon’s
traversal in the sky, and the general light-dark changes when the sun goes
down and comes up the next day. If a camera were smart enough to be
able to filter out all the normal, noninteresting events, identifying interest-
ing events would be easier. Although it may be desirable to carry out as
much analysis at the camera as possible to reduce the network bandwidth
required, the camera may not be constructed in a way that uses much
power (for example, it may not have cooling features), and this suggests
another way in which power constraints come into play.

Computer technology is only now becoming sophisticated enough at
the price and power levels available to a mobile platform to perform some
degree of autonomous filtering. Future generations of smart cameras
will permit the networking bandwidth freed up by the camera’s innate
intelligence to be used instead to coordinate observations and decisions
made by other cameras and arrive at a global, aggregate situational state
of much higher quality than what humans could otherwise have pieced
together.

Video search is an important emerging capability in this realm. If you
want to find a document on a computer system and cannot remember
where it is, you can use the computer system’s search feature to help
you find it. You might remember part of the file name or perhaps some

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 41

key words in the document. You might remember the date of creation or
the size. All those can be used by the search facility to narrow down the
possibilities to the point where you can scan a list and find the one the
document that you wanted. Faster computer systems will permit much
better automated filtering and searching, and even pictures that have not
been predesignated with key search words may still be analyzed for the
presence of a person or item of interest.

All the above applies to homeland security as well and could be
used for such things as much improved surveillance of ship and aircraft
loading areas to prevent the introduction of dangerous items; crowd
monitoring at control points; and pattern detection of vehicle movements
associated with bombing of facilities.20

A related technology is face recognition. It is a very short step from
surveilling crowds to asking whether anyone sees a particular face in a
crowd and then to asking whether any of a list of “persons of interest”
appear in the crowd. Algorithms that are moderately effective in that task
already exist. Faster computer systems could potentially improve the
accuracy rate by allowing more computation within a given period and
increase the speed at which a given frame can be analyzed. As with the
overall surveillance problem, networked smart cameras might be able to
use correlations to overcome natural-sight impediments.

Infrastructure Defense Against Automated Cyberattack

The Internet now carries a large fraction of all purchases made, so a
generalized attack on its infrastructure would cause an immediate loss in
sales. Much worse, however, is that many companies and other organi-
zations have placed even their most sensitive documents online, where
they are protected by firewalls and virtual private networks but online
nonetheless—bits protecting other bits. A coordinated, widespread attack
on the U.S. computing and network infrastructure would almost certainly

20 These efforts are much more difficult than it may seem to the uninitiated and, once un-
derstood by adversaries, potentially susceptible to countermeasures. For example, England
deployed a large set of motorway automated cameras to detect (and deter) speeding; when
a camera’s radar detected a vehicle exceeding the posted speed limit, the camera snapped
a photograph of the offending vehicle and its driver and issued the driver an automated
ticket. In the early days of the system’s deployment, someone noticed that if the speeding
vehicle happened to be changing lanes during the critical period when the radar could have
caught it, for some reason the offense would go unpunished. The new lore quickly spread
throughout the driving community and led to a rash of inspired lane-changing antics near
every radar camera—behavior that was much more dangerous than the speeding would
have been. This was reported in Ray Massey, 2006, Drivers can avoid speeding tickets ... by
changing lanes, Daily Mail Online, October 15, 2006, available at http://www.dailymail.
co.uk/news/article-410539/Drivers-avoid-speeding-tickets--changing-lanes.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

42	 THE FUTURE OF COMPUTING PERFORMANCE

be set up and initiated via the Internet, and the havoc that it could poten-
tially wreak on businesses and government could be catastrophic. It is not
out of the question that such an eventuality could lead to physical war.

The Internet was not designed with security in mind, and this over-
sight is evident in its architecture and in the difficulty with which security
measures can be retrofitted later. We cannot simply dismantle the Internet
and start over with something more secure. But as computer-system tech-
nology progresses and more performance becomes available, there will be
opportunities to look for ways to trade the parallel performance afforded
by the technology for improved defensive measures that will discourage
hackers, help to identify the people and countries behind cyberattacks,
and protect the secrets themselves better.

The global Internet can be a dangerous place. The ubiquitous con-
nectivity that yields the marvelous wonders of search engines, Web sites,
browsers, and online purchasing also facilitates identity theft, propaga-
tion of worms and viruses, ready platforms for staging denial-of-service
attacks, and faceless nearly risk-free opportunities for breaking into the
intellectual-property stores and information resources of companies,
schools, government institutions, and military organizations. Today, a
handful of Web-monitoring groups pool their observations and exper-
tise with a few dozen university computer-science experts and many
industrial and government watchdogs to help to spot Internet anomalies,
malevolent patterns of behavior, and attacks on the Internet’s backbone
and name-resolution facilities. As with video surveillance, the battle is
ultimately human on human, so it seems unlikely that humans should
ever be fully removed from the defensive side of the struggle. However,
faster computers can help tremendously, especially if the good guys have
much faster computing machinery than the bad guys.

Stateful packet inspection, for example, is a state-of-the-art method
for detecting the presence of a set of known virus signatures in traf-
fic on communications networks, which on detection can be shunted
into a quarantine area before damage is done. Port-based attacks can be
identified before they are launched. The key to those mitigations is that
all Internet traffic, harmful or not, must take the form of bits traversing
various links of the Internet; computer systems capable of analyzing the
contents over any given link are well positioned to eliminate a sizable
fraction of threats.

Data Analysis for Intelligence

Vast amounts of unencrypted data not only are not generated in intel-
ligence agencies but are available in the open for strategic data-mining.
Continued performance improvements are needed if the agencies are to

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 43

garner useful intelligence from raw data. There is a continuing need to
analyze satellite images for evidence of military and nuclear buildups,
evidence of emerging droughts or other natural disasters, evidence of ter-
rorist training camps, and so on. Although it is no secret that the National
Security Agency and the National Reconnaissance Office have some of
the largest computer complexes in the world, the complexity of the data
that they store and process and of the questions that they are asked to
address is substantial. Increasing amounts of computational horsepower
are needed not only to meet their mission objectives but also to maintain
an advantage over adversaries.

Nuclear-Stockpile Stewardship

In the past, the reliability of a nuclear weapon (the probability that
it detonates when commanded to do so) and its safety (the probability
that it does not detonate otherwise) were established largely with physi-
cal testing. Reliability tests detonated sample nuclear weapons from the
stockpile, and safety tests subjected sample nuclear weapons to extreme
conditions (such as fire and impact) to verify that they did not deto-
nate under such stresses. However, for a variety of policy reasons, the
safety and reliability of the nation’s nuclear weapons is today established
largely with computer simulation, and the data from nonnuclear labora-
tory experiments are used to validate the computer models.

The simulation of a nuclear weapon is computationally extremely
demanding in both computing capability and capacity. The already
daunting task is complicated by the need to simulate the effects of aging.
A 2003 JASON report21 concluded that at that time there were gaps in both
capability and capacity in fulfilling the mission of stockpile stewardship—
ensuring nuclear-weapon safety and reliability.

Historically, the increase in single-processor performance played a
large role in providing increased computing capability and capacity to
meet the increasing demands of stockpile stewardship. In addition, par-
allelism has been applied to the problem, so the rate of increase in per-
formance of the large machines devoted to the task has been greater than
called for by Moore’s law because the number of processors was increased
at the same time that single-processor performance was increasing. The
largest of the machines today have over 200,000 processors and LINPACK
benchmark performance of more than 1,000 Tflops.22

21 Roy Schwitters, 2003, Requirements for ASCI, JSR-03-330, McLean, Va.: The MITRE
Corporation.

22 For a list of the 500 most powerful known computer systems in the world, see “Top 500,”
available online at http://www.absoluteastronomy.com/topics/TOP500.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

44	 THE FUTURE OF COMPUTING PERFORMANCE

The end of single-processor performance scaling makes it difficult for
those “capability” machines to continue scaling at historical rates and so
makes it difficult to meet the projected increases in demands of nuclear-
weapon simulation. The end of single-processor scaling has also made the
energy and power demands of future capability systems problematic, as
described in the recent DARPA ExaScale computing study.23 Furthermore,
the historical increases in demand in the consumer market for computing
hardware and software have driven down costs and increased software
capabilities for military and science applications. If the consumer market
suffers, the demands of science and military applications are not likely
to be met.

THE IMPORTANCE OF COMPUTING PERFORMANCE FOR
CONSUMER NEEDS AND APPLICATIONS

The previous two sections offered examples of where growth in com-
puting performance has been essential for science, defense, and national
security. The growth has also been a driver for individuals using con-
sumer-oriented systems and applications. Two recent industry trends
have substantially affected end-user computational needs: the increasing
ubiquity of digital data and growth in the population of end users who
are not technically savvy. Sustained growth in computing performance
serves not only broad public-policy objectives, such as a strong defense
and scientific leadership, but also the current and emerging needs of
individual users.

The growth in computing performance over the last 4 decades—
impressive though it has been—has been dwarfed over the last decade or
so by the growth in digital data.24 The amount of digital data is growing
more rapidly than ever before. The volumes of data now available out-
strip our ability to comprehend it, much less take maximum advantage

23 Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman
Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott,
Allan Snavely, Thomas Sterling, R. Stanley Williams, and Katherine Yelick, 2008, ExaScale
Computing Study: Technology Challenges in Achieving Exascale Systems, Washington,
D.C.: DARPA. Available online at http://www.er.doe.gov/ascr/Research/CS/DARPA%20
exascale%20-%20hardware%20(2008).pdf.

24 A February 2010 report observed that “quantifying the amount of information that ex-
ists in the world is hard. What is clear is that there is an awful lot of it, and it is growing at
a terrific rate (a compound annual 60%) that is speeding up all the time. The flood of data
from sensors, computers, research labs, cameras, phones and the like surpassed the capac-
ity of storage technologies in 2007” (Data, data, everywhere: A special report on managing
information, The Economist, February 25, 2010, available online at http://www.economist.
com/displaystory.cfm?story_id=15557443).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 45

of it. According to the How Much Information project at the University of
California, Berkeley,25 print, film, magnetic, and optical storage media
produced about 5 exabytes (EB) of new information in 2003. Further-
more, the information explosion is accelerating. Market research firm IDC
estimates that in 2006 161 EB of digital content was created and that that
figure will rise to 988 EB by 2010. To handle so much information, people
will need systems that can help them to understand the available data. We
need computers to see data the way we do, identify what is useful to us,
and assemble it for our review or even process it on our behalf. This grow-
ing end-user need is the primary force behind the radical and continuing
transformation of the Web as it shifts its focus from data presentation to
end-users to automatic data-processing on behalf of end-users.26 The data
avalanche and the consequent transformation of the Web’s functionality
require increasing sophistication in data-processing and hence additional
computational capability to be able to reason automatically in real time
so that we can understand and interpret structured and unstructured
collections of information via, for example, sets of dynamically learned
inference rules.

A computer’s ability to perform a huge number of computations per
second has enabled many applications that have an important role in our
daily lives.27 An important subset of applications continues to push the
frontiers of very high computational needs. Examples of such applications
are these:

•	 Digital content creation—allows people to express creative skills
and be entertained through various modern forms of electronic
arts, such as animated films, digital photography, and video
games.

•	 Search and mining—enhances a person’s ability to search and
recall objects, events, and patterns well beyond the natural limits
of human memory by using modern search engines and the ever-
growing archive of globally shared digital content.

25 See Peter Lyman and Hal R. Varian, 2003, How much information?, available online at
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/index.htm, last
accessed November 2, 2010.

26 See, for example, Tim Berners-Lee’s 2007 testimony to the U.S. Congress on the future of
the World Wide Web, The digital future of the United States. Part I: The future of the World
Wide Web,” Hearings before the Subcommittee on Telecommunications and the Internet of
the Committee on Energy and Commerce, 110th Congress, available at http://dig.csail.mit.
edu/2007/03/01-ushouse-future-of-the-web.html, last accessed November 2, 2010.

27 Of course, a computer system’s aggregate performance may be limited by many things:
the nature of the workload itself, the CPU’s design, the memory subsystem, input/output
device speeds and sizes, the operating system, and myriad other system aspects. Those and
other aspects of performance are discussed in Chapter 2.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

46	 THE FUTURE OF COMPUTING PERFORMANCE

•	 Real-time decision-making—enables growing use of computa-
tional assistance for various complex problem-solving tasks, such
as speech transcription and language translation.

•	 Collaboration technology—offers a more immersive and interac-
tive 3D environment for real-time collaboration and telepresence.

•	 Machine-learning algorithms—filter e-mail spam, supply reli-
able telephone-answering services, and make book and music
recommendations.

Computers have become so pervasive that a vast majority of end-
users are not computer aficionados or system experts; rather, they are
experts in some other field or disciplines, such as science, art, education,
or entertainment. The shift has challenged the efficiency of human-com-
puter interfaces. There has always been an inherent gap between a user’s
conceptual model of a problem and a computer’s model of the problem.
However, given the change in demographics of computer users, the need
to bridge the gap is now more acute than ever before. The increased
complexity of common end-user tasks (“find a picture like this” rather
than “add these two numbers”) and the growing need to be able to offer
an effective interface to a non-computer-expert user at a higher level of
object semantics (for example, presenting not a Fourier transform data
dump of a flower image but a synthesized realistic visual of a flower)
have together increased the computational capability needed to provide
real-time responses to user actions.

Bridging the gap would be well served by computers that can deal
with natural user inputs, such as speech and gestures, and output content
in a visually rich form close to that of the physical world around us. A typ-
ical everyday problem requires multiple iterations of execute and evaluate
between the user and the computer system. Each such iteration normally
narrows the original modeling gap, and this in turn requires additional
computational capability. The larger the original gap, the more computa-
tion is needed to bridge it. For example, some technology-savvy users
working on an image-editing problem may iterate by editing a low-level
machine representation of an image, whereas a more typical end-user may
interact only at the level of a photo-real output of the image with virtual
brushes and paints.

Thanks to sustained growth in computing performance over the
years, more effective computer-use models and visually rich human-
computer interfaces are introducing new potential ways to bridge the gap.
An alternative to involving the end-user in each iteration is to depend
on a computer’s ability to refine model instances by itself and to nest
multiple iterations of such an analytics loop for each iteration of a visual
computing loop involving an end-user. Such nesting allows a reduction in

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 47

the number of interactions between a user and his or her computer and
therefore an increase in the system’s efficiency or response. However, it
also creates the need to sustain continued growth in computational per-
formance so that a wider variety of more complex tasks can be simulated
and solved in real time for the growing majority of end-users. Real-time
physical and behavioral simulation of even a simple daily-life object or
events (such as water flow, the trajectory of a ball in a game, and sum-
marizing of a text) is a surprisingly computationally expensive task, and
requires multiple iterations or solutions of a large number of subproblems
derived from decomposition of the original problem.

Computationally intensive consumer applications include such phe-
nomena as virtual world simulations and immersive social-networking,
video karaoke (and other sorts of real-time video interactions), remote
education and training that require simulation, and telemedicine (includ-
ing interventional medical imaging).28

THE IMPORTANCE OF COMPUTING PERFORMANCE
FOR ENTERPRISE PRODUCTIVITY

Advances in computing technology in the form of more convenient
communication and sharing of information have favorably affected the
productivity of enterprises. Improved communication and sharing have
been hallmarks of computing from the earliest days of time-sharing in
corporate or academic environments to today’s increasingly mobile, smart
phone-addicted labor force. Younger employees in many companies today
can hardly recall business processes that did not make use of e-mail, chat
and text messaging, group calendars, internal Web resources, blogs, Wiki
toolkits, audio and video conferencing, and automated management of
workflow. At the same time, huge improvements in magnetic storage
technology, particularly for disk drives, have made it affordable to keep
every item of an organization’s information accessible on line. Individual
worker productivity is not the only aspect of an enterprise that has been
affected by continued growth in computing performance. The ability of
virtually every sort of enterprise to use computation to understand data
related to its core lines of business—sometimes referred to as analytics—
has improved dramatically as computer performance has increased over
the years. In addition, massive amounts of data and computational capa-
bility accessible on the Internet have increased the demand for Web ser-
vices, or “software as a service,” in a variety of sectors. Analytics and

28 For more on emerging applications and their need for computational capability, see
Justin Rattner, 2009, The dawn of terascale computing, IEEE Solid-State Circuits Magazine
1(1): 83-89.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

48	 THE FUTURE OF COMPUTING PERFORMANCE

the implications of Web services for computing performance needs are
discussed below.

Analytics

Increases in computing capability and efficiency have made it feasible
to perform deep analysis of numerous kinds of business data—not just
off line but increasingly in real time—to obtain better input into business
decisions.29 Efficient computerized interactions between organizations
have created more efficient end-to-end manufacturing processes through
the use of supply-chain management systems that optimize invento-
ries, expedite product delivery, and reduce exposure to varying market
conditions.

In the past, real-time business performance needs were dictated
mostly by transaction rates. Analytics (which can be thought of as com-
putationally enhanced decision-making) were mostly off line. The com-
putational cost of actionable data-mining was too high to be of any value
under real-time use constraints. However, the growth in computing per-
formance has now made real-time analytics affordable for a larger class
of enterprise users.

One example is medical-imaging analytics. Over the last 2 decades,
unprecedented growth has taken place in the amount and complexity of
digital medical-image data collected on patients in standard medical prac-
tice. The clinical necessity to diagnose diseases accurately and develop
treatment strategies in a minimally invasive manner has mandated the
development of new image-acquisition methods, high-resolution acquisi-
tion hardware, and novel imaging modalities. Those requirements have
placed substantial computational burdens on the ability to use the image
information synergistically. With the increase in the quality and utility of
medical-image data, clinicians are under increasing pressure to generate
more accurate diagnoses or therapy plans. To meet the needs of the clini-
cian, the imaging-research community must provide real-time (or near
real-time) high-volume visualization and analyses of the image data to
optimize the clinical experience. Today, nearly all use of computation in
medical imaging is limited to “diagnostic imaging.” However, with suffi-
cient computational capability, it is likely that real-time medical interven-
tions could become possible. The shift from diagnostic imaging to inter-
ventional imaging can usher in a new era in medical imaging. Real-time

29 IBM’s Smart Analytics System, for example, is developing solutions aimed at retail,
insurance, banking, health care, and telecommunication. For more information see the IBM
Smart Analytics System website, available online at http://www-01.ibm.com/software/
data/infosphere/smart-analytics-system/.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 49

medical analytics can guide medical professionals, such as surgeons, in
their tasks. For example, surface extractions from volumetric data coupled
with simulations of various what-if scenarios accomplished in real time
offer clear advantages over basic preoperative planning scenarios.

Web Services

In the last 15 years, the Internet and the Web have had a transforma-
tional effect on people’s lives. That effect has been enabled by two concur-
rent and interdependent phenomena: the rapid expansion of Internet con-
nectivity, particularly high-speed Internet connections, and the emergence
of several extraordinarily useful Internet-based services. Web search and
free Web-based e-mail were among the first such services to explode
in popularity, and their emergence and continuous improvements have
been made possible by dramatic advances in computing performance,
storage, and networking technologies. Well beyond text, Web-server data
now include videos, photos, and various other kinds of media. Users—
individuals and businesses—increasingly need information systems to
see data the way they do, identify what is useful, and assemble it for
them. The ability to have computers understand the data and help us
to use it in various enterprise endeavors could have enormous benefits.
As a result, the Web is shifting its focus from data presentation to end-
users to automatic data-processing on behalf of end-users. Finding pre-
ferred travel routes while taking real-time traffic feeds into account and
rapid growth in program trading are some of the examples of real-time
decision-making.

Consider Web search as an example. A Web search service’s funda-
mental task is to take a user’s query, traverse data structures that are effec-
tively proportional in size to the total amount of information available on
line, and decide how to select from among possibly millions of candidate
results the handful that would be most likely to match the user’s expecta-
tion. The task needs to be accomplished in a few hundred milliseconds in
a system that can sustain a throughput of several thousand requests per
second. This and many other Web services are offered free and rely on
on-line advertisement revenues, which, depending on the service, may
bring only a few dollars for every thousand user page views. The com-
puting system that can meet those performance requirements needs to be
not only extremely powerful but also extremely cost-efficient so that the
business model behind the Internet service remains viable.

The appetite of Internet services for additional computing perfor-
mance doesn’t appear to have a foreseeable limit. A Web search can be
used to illustrate that, although a similar rationale could be applied to
other types of services. Search-computing demands fundamentally grow

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

50	 THE FUTURE OF COMPUTING PERFORMANCE

in three dimensions: data-repository increases, search-query increases,
and service-quality improvements. The amount of information currently
indexed by search engines, although massive, is still generally considered
a fraction of all on-line content even while the Web itself keeps expanding.
Moreover, there are still several non-Web data sources that have yet to
be added to the typical Web-search repositories (such as printed media).
Universal search,30 for example, is one way in which search-computing
demands can dramatically increase as all search queries are simultane-
ously sent to diverse data sources. As more users go online or become
more continuously connected to the Internet through better wireless links,
traffic to useful services would undergo further substantial increases.

In addition to the amount of data and types of queries, increases
in the quality of the search product invariably cause more work to be
performed on behalf of each query. For example, better results for a
user’s query will often be satisfied by searching also for some common
synonyms or plurals of the original query terms entered. To achieve the
better results, one will need to perform multiple repository lookups for
the combinations of variations and pick the best results among them, a
process that can easily increase the computing demands for each query
by substantial factors.

In some cases, substantial service-quality improvements will demand
improvements in computing performance along multiple dimensions
simultaneously. For example, the Web would be much more useful if
there were no language barriers; all information should be available in
every existing language, and this might be achievable through machine-
translation technology at a substantial processing cost. The cost would
come both from the translation step itself, because accurate translations
require very large models or learning over large corpora, and from the
increased amount of information that then becomes available for users of
every language. For example, a user search in Italian would traverse not
only Italian-language documents but potentially documents in every lan-
guage available to the translation system. The benefits to society at large
from overcoming language barriers would arguably rival any other single
technologic achievement in human history, especially if they extended to
speech-to-speech real-time systems.

The prospect of mobile computing systems—such as cell phones,
vehicle computers, and media players—that are increasingly powerful,
ubiquitous, and interconnected adds another set of opportunities for bet-

30 See Google’s announcement: Google begins move to universal search: Google introduces
new search features and unveils new homepage design,” Press Release, Google.com, May
16, 2007, available online at http://www.google.com/intl/en/press/pressrel/universal-
search_20070516.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE NEED FOR CONTINUED PERFORMANCE GROWTH	 51

ter computing services that go beyond simply accessing the Web on more
devices. Such devices could act as useful sensors and provide a rich set
of data about their environment that could be useful once aggregated for
real-time disaster response, traffic-congestion relief, and as-yet-unimag-
ined applications. An early example of the potential use of such systems
is illustrated in a recent experiment conducted by the University of Cali-
fornia, Berkeley, and Nokia in which cell phones equipped with GPS units
were used to provide data for a highway-conditions service.31

More generally, the unabated growth in digital data, although still
a challenge for managing and sifting, has now reached a data volume
large enough in many cases to have radical computing implications.32
Such huge amounts of data will be especially useful for a class of prob-
lems that have so far defied analytic formulation and been reliant on a
statistical data-driven approach. In the past, because of insufficiently large
datasets, the problems have had to rely on various, sometimes question-
able heuristics. Now, the digital-data volume for many of the problems
has reached a level sufficient to revert to statistical approaches. Using sta-
tistical approaches for this class of problems presents an unprecedented
opportunity in the history of computing: the intersection of massive data
with massive computational capability.

In addition to the possibility of solving problems that have heretofore
been intractable, the massive amounts of data that are increasingly avail-
able for analysis by small and large businesses offer the opportunity to
develop new products and services based on that analysis. Services can
be envisioned that automate the analysis itself so that the businesses do
not have to climb this learning curve. The machine-learning community
has many ideas for quasi-intelligent automated agents that can roam the
Web and assemble a much more thorough status of any topic at a much
deeper level than a human has time or patience to acquire. Automated
inferences can be drawn that show connections that have heretofore been
unearthed only by very talented and experienced humans. 	

On top of the massive amounts of data being created daily and all
that portends for computational needs, the combination of three elements
has the potential to deliver a massive increase in real-time computa-
tional resources targeted toward end-user devices constrained by cost
and power:

31 See the University of California, Berkeley, press release about this experiment (Sarah
Yang, 2008, Joint Nokia research project captures traffic data using GPS-enabled cell phones,
Press Release, UC Berkeley News, February 8, 2008, available online at http://berkeley.edu/
news/media/releases/2008/02/08_gps.shtml).

32 Wired.com ran a piece in 2008 declaring “the end of science”: The Petabyte Age: Be-
cause more isn’t just more—more is different,” Wired.com, June 23, 2008, available online
at http://www.wired.com/wired/issue/16-07.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

52	 THE FUTURE OF COMPUTING PERFORMANCE

·	 Clouds of servers.
·	 Vastly larger numbers of end-user devices, consoles, and various

form-factor computing platforms.
·	 The ubiquitous connectivity of computing equipment over a ser-

vice-oriented infrastructure backbone.

The primary technical challenge to take advantage of those resources
lies in software. Specifically, innovation is needed to enable the discovery
of the computing needs of various functional components of a specific ser-
vice offering. Such discovery is best done adaptively and under the real-
time constraints of available computing bandwidth at the client-server
ends, network bandwidth, and latency. On-line games, such as Second Life,
and virtual world simulations, such as Google Earth, are examples of such
a service. The services involve judicious decomposition of computing
needs over public client-server networks to produce an interactive, visu-
ally rich end-user experience. The realization of such a vision of connected
computing will require not only increased computing performance but
standardization of network software layers. Standardization should make
it easy to build and share unstructured data and application program-
ming interfaces (APIs) and enable ad hoc and innovative combinations
of various service offerings.

In summary, computing in a typical end-user’s life is undergoing a
momentous transformation from being useful yet nonessential software
and products to being the foundation for around-the-clock relied-on vital
services delivered by tomorrow’s enterprises.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

2

What Is Computer Performance?

Fast, inexpensive computers are now essential to numerous human
endeavors. But less well understood is the need not just for fast
computers but also for ever-faster and higher-performing comput-

ers at the same or better costs. Exponential growth of the type and scale
that have fueled the entire information technology industry is ending.1
In addition, a growing performance gap between processor performance
and memory bandwidth, thermal-power challenges and increasingly
expensive energy use, threats to the historical rate of increase in transistor
density, and a broad new class of computing applications pose a wide-
ranging new set of challenges to the computer industry. Meanwhile, soci-
etal expectations for increased technology performance continue apace
and show no signs of slowing, and this underscores the need for ways
to sustain exponentially increasing performance in multiple dimensions.
The essential engine that has met this need for the last 40 years is now in
considerable danger, and this has serious implications for our economy,
our military, our research institutions, and our way of life.

Five decades of exponential growth in processor performance led to

1 It can be difficult even for seasoned veterans to understand the effects of exponential
growth of the sort seen in the computer industry. On one level, industry experts, and even
consumers, display an implicit understanding in terms of their approach to application and
system development and their expectations of and demands for computing technologies.
On another level, that implicit understanding makes it easy to overlook how extraordinary
the exponential improvements in performance of the sort seen in the information technology
industry actually are.

53

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

54	 THE FUTURE OF COMPUTING PERFORMANCE

the rise and dominance of the general-purpose personal computer. The
success of the general-purpose microcomputer, which has been due pri-
marily to economies of scale, has had a devastating effect on the develop-
ment of alternative computer and programming models. The effect can be
seen in high-end machines like supercomputers and in low-end consumer
devices, such as media processors. Even though alternative architectures
and approaches might have been technically superior for the task they
were built for, they could not easily compete in the marketplace and
were readily overtaken by the ever-improving general-purpose proces-
sors available at a relatively low cost. Hence, the personal computer has
been dubbed “the killer micro.”

Over the years, we have seen a series of revolutions in computer
architecture, starting with the main-frame, the minicomputer, and the
work station and leading to the personal computer. Today, we are on
the verge of a new generation of smart phones, which perform many
of the applications that we run on personal computers and take advan-
tage of network-accessible computing platforms (cloud computing) when
needed. With each iteration, the machines have been lower in cost per
performance and capability, and this has broadened the user base. The
economies of scale have meant that as the per-unit cost of the machine has
continued to decrease, the size of the computer industry has kept growing
because more people and companies have bought more computers. Per-
haps even more important, general-purpose single processors—which all
these generations of architectures have taken advantage of—can be pro-
grammed by using the same simple, sequential programming abstraction
at root. As a result, software investment on this model has accumulated
over the years and has led to the de facto standardization of one instruc-
tion set, the Intel x86 architecture, and to the dominance of one desktop
operating system, Microsoft Windows.

The committee believes that the slowing in the exponential growth
in computing performance, while posing great risk, may also create a
tremendous opportunity for innovation in diverse hardware and software
infrastructures that excel as measured by other characteristics, such as low
power consumption and delivery of throughput cycles. In addition, the
use of the computer has becomes so pervasive that it is now economical
to have many more varieties of computers. Thus, there are opportunities
for major changes in system architectures, such as those exemplified by
the emergence of powerful distributed, embedded devices, that together
will create a truly ubiquitous and invisible computer fabric. Investment in
whole-system research is needed to lay the foundation of the computing
environment for the next generation. See Figure 2.1 for a graph showing
flattening curves of performance, power, and frequency.

Traditionally, computer architects have focused on the goal of creating

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 55

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1985 1990 1995 2000 2005 2010
Year of Introduction

Num Transistors (in Thousands)

Relative Performance

Clock Speed (MHz)

Power Typ (W)

NumCores/Chip

FIGURE 2.1 Transistors, frequency, power, performance, and cores over time
(1985-2010). The vertical scale is logarithmic. Data curated by Mark Horowitz with
input from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris
Batten, and Krste Asanoviç.

computers that perform single tasks as fast as possible. That goal is still
important. Because the uniprocessor model we have today is extremely
powerful, many performance-demanding applications can be mapped to
run on networks of processors by dividing the work up at a very coarse
granularity. Therefore, we now have great building blocks that enable us
to create a variety of high-performance systems that can be programmed
with high-level abstractions. There is a serious need for research and
education in the creation and use of high-level abstractions for parallel
systems.

However, single-task performance is no longer the only metric of
interest. The market for computers is so large that there is plenty of eco-
nomic incentive to create more specialized and hence more cost-effective
machines. Diversity is already evident. The current trend of moving com-
putation into what is now called the cloud has created great demands for
high-throughput systems. For those systems, making each transaction run
as fast as possible is not the best thing to do. It is better, for example, to
have a larger number of lower-speed processors to optimize the through-
put rate and minimize power consumption. It is similarly important to
conserve power for hand-held devices. Thus, power consumption is a

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

56	 THE FUTURE OF COMPUTING PERFORMANCE

key performance metric for both high-end servers and consumer hand-
held devices. See Box 2.1 for a discussion of embedded computing per-
formance as distinct from more traditional desktop systems. In general,
power considerations are likely to lead to a large variety of specialized
processors.

The rest of this chapter provides the committee’s views on matters
related to computer performance today. These views are summarized in

BOX 2.1
Embedded Computing Performance

The design of desktop systems often places considerable emphasis on gen-
eral CPU performance in running desktop workloads. Particular attention is
paid to the graphics system, which directly determines which consumer games
will run and how well. Mobile platforms, such as laptops and notebooks, at-
tempt to provide enough computing horsepower to run modern operating
systems well—subject to the energy and thermal constraints inherent in mobile,
battery-operated devices—but tend not to be used for serious gaming, so high-
end graphics solutions would not be appropriate. Servers run a different kind of
workload from either desktops or mobile platforms, are subject to substantially
different economic constraints in their design, and need no graphics support
at all. Desktops and mobile platforms tend to value legacy compatibility (for ex-
ample, that existing operating systems and software applications will continue
to run on new hardware), and this compatibility requirement affects the design
of the systems, their economics, and their use patterns.

Although desktops, mobile, and server computer systems exhibit important
differences from one another, it is natural to group them when comparing them
with embedded systems. It is difficult to define embedded systems accurately
because their space of applicability is huge—orders of magnitude larger than
the general-purpose computing systems of desktops, laptops, and servers. Em-
bedded computer systems can be found everywhere: a car’s radio, engine con-
troller, transmission controller, airbag deployment, antilock brakes, and dozens
of other places. They are in the refrigerator, the washer and dryer, the furnace
controller, the MP3 player, the television set, the alarm clock, the treadmill and
stationary bike, the Christmas lights, the DVD player, and the power tools in
the garage. They might even be found in ski boots, tennis shoes, and greeting
cards. They control the elevators and heating and cooling systems at the office,
the video surveillance system in the parking lot, and the lighting, fire protection,
and security systems.

Every computer system has economic constraints. But the various systems
tend to fall into characteristic financial ranges. Desktop systems once (in 1983)
cost $3,000 and now cost from a few hundred dollars to around $1,000. Mobile
systems cost more at the high end, perhaps $2,500, down to a few hundred dol-
lars at the low end. Servers vary from a few thousand dollars up to hundreds of
thousands for a moderate Web server, a few million dollars for a small corporate

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 57

the bullet points that follow this paragraph. Readers who accept the com-
mittee’s views may choose to skip the supporting arguments and move
on to the next chapter.

·	 Increasing computer performance enhances human productivity.
·	 One measure of single-processor performance is the product of

operating frequency, instruction count, and instructions per cycle.

server farm, and 1 or 2 orders of magnitude more than that for the huge server
farms fielded by large companies, such as eBay, Yahoo!, and Google.

Embedded systems tend to be inexpensive. The engine controller under the
hood of a car cost the car manufacturer about $3-5. The chips in a cell phone
were also in that range. The chip in a tennis shoe or greeting card is about 1/10
that cost. The embedded system that runs such safety-critical systems as eleva-
tors will cost thousands of dollars, but that cost is related more to the system
packaging, design, and testing than to the silicon that it uses.

One of the hallmarks of embedded systems versus general-purpose com-
puters is that, unlike desktops and servers, embedded performance is not an
open-ended boon. Within their cost and power budgets, desktops, laptops, and
server systems value as much performance as possible—the more the better.
Embedded systems are not generally like that. The embedded chip in a cell
phone has a set of tasks to perform, such as monitoring the phone’s buttons,
placing various messages and images on the display, controlling the phone’s
energy budget and configuration, and setting up and receiving calls. To ac-
complish those tasks, the embedded computer system (comprising a central
processor, its memory, and I/O facilities) must be capable of a some overall
performance level. The difference from general-purpose computers is that once
that level is reached in the system design, driving it higher is not beneficial; in
fact, it is detrimental to the system. Embedded computer systems that are faster
than necessary to meet requirements use more energy, dissipate more heat,
have lower reliability, and cost more—all for no gain.

Does that mean that embedded processors are now fast enough and have
no need to go faster? Are they exempt from the emphasis in this report on
“sustaining growth in computing performance”? No. If embedded processor
systems were to become faster and all else were held equal, embedded-system
designers would find ways of using the additional capability, and delivering
new functionalities would come to be expected on those devices. For example,
many embedded systems, such as the GPS or audio system in a car, tend to
interface directly with human beings. Voice and speech recognition capability
greatly enhance that experience, but current systems are not very good at the
noise suppression, beam-forming, and speech-processing that are required to
make this a seamless, enjoyable experience, although progress is being made.
Faster computer systems would help to solve that problem. Embedded systems
have benefited tremendously from riding an improvement curve equivalent to
that of the general-purpose systems and will continue to do so in the future.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

58	 THE FUTURE OF COMPUTING PERFORMANCE

·	 Performance comes directly from faster devices and indirectly
from using more devices in parallel.

·	 Parallelism can be helpfully divided into instruction-level paral-
lelism, data-level parallelism, and thread-level parallelism.

·	 Instruction-level parallelism has been extensively mined, but
there is now broad interest in data-level parallelism (for example,
due to graphics processing units) and thread-level parallelism
(for example, due to chip multiprocessors).

·	 Computer-system performance requires attention beyond pro-
cessors to memories (such as,dynamic random-access memory),
storage (for example, disks), and networking.

·	 Some computer systems seek to improve responsiveness (for
example, timely feedback to a user’s request), and others seek
to improve throughput (for example, handling many requests
quickly).

·	 Computers today are implemented with integrated circuits
(chips) that incorporate numerous devices (transistors) whose
population (measured as transistors per chaip) has been doubling
every 1.5-2 years (Moore’s law).

·	 Assessing the performance delivered to a user is difficult and
depends on the user’s specific applications.

·	 Large parts of the potential performance gain due to device inno-
vations have been usefully applied to productivity gains (for
example, via instruction-set compatibility and layers of software).

·	 Improvements in computer performance and cost have enabled
creative product innovations that generated computer sales
that, in turn, enabled a virtuous cycle of computer and product
innovations.

WHY PERFORMANCE MATTERS

Humans design machinery to solve problems. Measuring how well
machines perform their tasks is of vital importance for improving them,
conceiving better machines, and deploying them for economic bene-
fit. Such measurements often speak of a machine’s performance, and many
aspects of a machine’s operations can be characterized as performance.
For example, one aspect of an automobile’s performance is the time it
takes to accelerate from 0 to 60 mph; another is its average fuel economy.
Braking ability, traction in bad weather conditions, and the capacity to
tow trailers are other measures of the car’s performance.

Computer systems are machines designed to perform information
processing and computation. Their performance is typically measured
by how much information processing they can accomplish per unit time,

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 59

but there are various perspectives on what type of information process-
ing to consider when measuring performance and on the right time scale
for such measurements. Those perspectives reflect the broad array of
uses and the diversity of end users of modern computer systems. In gen-
eral, the systems are deployed and valued on the basis of their ability to
improve productivity. For some users, such as scientists and information
technology specialists, the improvements can be measured in quantitative
terms. For others, such as office workers and casual home users, the per-
formance and resulting productivity gains are more qualitative. Thus, no
single measure of performance or productivity adequately characterizes
computer systems for all their possible uses.2

On a more technical level, modern computer systems deploy and
coordinate a vast array of hardware and software technologies to pro-
duce the results that end users observe. Although the raw computational
capabilities of the central processing unit (CPU) core tend to get the most
attention, the reality is that performance comes from a complex balance
among many cooperating subsystems. In fact, the underlying perfor-
mance bottlenecks of some of today’s most commonly used large-scale
applications, such as Web searching, are dominated by the character-
istics of memory devices, disk drives, and network connections rather
than by the CPU cores involved in the processing. Similarly, the interac-
tive responsiveness perceived by end users of personal computers and
hand-held devices is typically defined more by the characteristics of the
operating system, the graphical user interface (GUI), and the storage com-
ponents than by the CPU core. Moreover, today’s ubiquitous networking
among computing devices seems to be setting the stage for a future in
which the computing experience is defined at least as much by the coor-
dinated interaction of multiple computers as it is by the performance of
any node in the network.

Nevertheless, to understand and reason about performance at a high
level, it is important to understand the fundamental lower-level contribu-
tors to performance. CPU performance is the driver that forces the many
other system components and features that contribute to overall perfor-
mance to keep up and avoid becoming bottlenecks

PERFORMANCE AS MEASURED BY RAW COMPUTATION

The classic formulation for raw computation in a single CPU core
identifies operating frequency, instruction count, and instructions per cycle

2 Consider the fact that the term “computer system” today encompasses everything from
small handheld devices to Netbooks to corporate data centers to massive server farms that
offer cloud computing to the masses.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

60	 THE FUTURE OF COMPUTING PERFORMANCE

(IPC) as the fundamental low-level components of performance.3 Each
has been the focus of a considerable amount of research and discovery
in the last 20 years. Although detailed technical descriptions of them are
beyond the intended scope of this report, the brief descriptions below will
provide context for the discussions that follow.

·	 Operating frequency defines the basic clock rate at which the CPU
core runs. Modern high-end processors run at several billion
cycles per second. Operating frequency is a function of the low-
level transistor characteristics in the chip, the length and physi-
cal characteristics of the internal chip wiring, the voltage that
is applied to the chip, and the degree of pipelining used in the
microarchitecture of the machine. The last 15 years have seen
dramatic increases in the operating frequency of CPU cores. As
an unfortunate side effect of that growth, the maximum operat-
ing frequency has often been used as a proxy for performance by
much of the popular press and industry marketing campaigns.
That can be misleading because there are many other important
low-level and system-level measures to consider in reasoning
about performance.

·	 Instruction count is the number of native instructions—instructions
written for that specific CPU—that must be executed by the CPU
to achieve correct results with a given computer program. Users
typically write programs in high-level programming languages—
such as Java, C, C++ , and C#—and then use a compiler to translate
the high-level program to native machine instructions. Machine
instructions are specific to the instruction set architecture (ISA) that
a given computer architecture or architecture family implements.
For a given high-level program, the machine instruction count
varies when it executes on different computer systems because
of differences in the underlying ISA, in the microarchitecture that
implements the ISA, and in the tools used to compile the pro-
gram. Although this section of the report focuses mostly on the
low-level raw performance measures, the role of the compiler and
other modern software system technologies are also necessary to
understand performance fully.

·	 Instructions per cycle refers to the average number of instructions
that a particular CPU core can execute and complete in each cycle.
IPC is a strong function of the underlying microarchitecture,
or machine organization, of the CPU core. Many modern CPU

3 John L. Hennessy and David A. Patterson, 2006, Computer Architecture: A Quantitative
Approach, fourth edition, San Francisco, Cal.: Morgan Kauffman.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 61

cores use advanced techniques—such as multiple instruction dis-
patch, out-of-order execution, branch prediction, and speculative
execution—to increase the average IPC.4 Those techniques all
seek to execute multiple instructions in a single cycle by using
additional resources to reduce the total number of cycles needed
to execute the program. Some performance assessments focus on
the peak capabilities of the machines; for example, the peak per-
formance of the IBM Power 7 is six instructions per cycle, and that
of the Intel Pentium, four. In reality, those and other sophisticated
CPU cores actually sustain an average of slightly more than one
instruction per cycle when executing many programs. The differ-
ence between theoretical peak performance and actual sustained
performance is an important aspect of overall computer-system
performance.

The program itself provides different forms of parallelism that differ-
ent machine organizations can exploit to achieve performance. The first
type, instruction-level parallelism, describes the amount of nondependent
instructions5 available for parallel execution at any given point in the
program. The program’s instruction-level parallelism in part determines
the IPC component of raw performance mentioned above. (IPC can be
viewed as describing the degree to which a particular machine organiza-
tion can harvest the available instruction-level performance.) The second
type of parallelism is data-level parallelism, which has to do with how data
elements are distributed among computational units for similar types of
processing. Data-level parallelism can be exploited through architectural
and microarchitectural techniques that direct low-level instructions to
operate on multiple pieces of data at the same time. This type of process-
ing is often referred to as single-instruction-multiple-data. The third type
is thread-level parallelism and has to do with the degree to which a program
can be partitioned into multiple sequences of instructions with the intent
of executing them concurrently and cooperatively on multiple processors.
To exploit program parallelism, the compiler or run-time system must
map it to appropriate parallel hardware.

Throughout the history of modern computer architecture, there have
been many attempts to build machines that exploit the various forms of

4 Providing the details of these microarchitecture techniques is beyond the scope of
this publication. See Hennessey & Patterson for more information on these and related
techniques.

5 An instruction X does not depend on instruction Y if X can be performed without using
results from Y. The instruction a = b + c depends on previous instructions that produce
the results b and c and thus cannot be executed until those previous instructions have
completed.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

62	 THE FUTURE OF COMPUTING PERFORMANCE

parallelism. In recent years, owing largely to the emergence of more gen-
eralized and programmable forms of graphics processing units, the inter-
est in building machines that exploit data-level parallelism has grown
enormously. The specialized machines do not offer compatibility with
existing programs, but they do offer the promise of much more per-
formance when presented with code that properly exposes the avail-
able data-level parallelism. Similarly, because of the emergence of chip
multiprocessors, there is considerable renewed interest in understanding
how to exploit thread-level parallelism on these machines more fully.
However, the techniques also highlight the importance of the full suite of
hardware components in modern computer systems, the communication
that must occur among them, and the software technologies that help to
automate application development in order to take advantage of parallel-
ism opportunities provided by the hardware.

COMPUTATION AND COMMUNICATION’S
EFFECTS ON PERFORMANCE

The raw computational capability of CPU cores is an important com-
ponent of system-level performance, but it is by no means the only one. To
complete any useful tasks, a CPU core must communicate with memory, a
broad array of input/output devices, other CPU cores, and in many cases
other computer systems. The overhead and latency of that communica-
tion in effect delays computational progress as the CPU waits for data to
arrive and for system-level interlocks to clear. Such delays tend to reduce
peak computational rates to effective computational rates substantially.
To understand effective performance, it is important to understand the
characteristics of the various forms of communication used in modern
computer systems.

In general, CPU cores perform best when all their operands (the inputs
to the instructions) are stored in the architected registers that are internal
to the core. However, in most architectures, there tend to be few such
registers because of their relatively high cost in silicon area. As a result,
operands must often be fetched from memory before the actual compu-
tation specified by an instruction can be completed. For most computer
systems today, the amount of time it takes to access data from memory
is more than 100 times the single cycle time of the CPU core. And, worse
yet, the gap between typical CPU cycle times and memory-access times
continues to grow. That imbalance would lead to a devastating loss in
performance of most programs if there were not hardware caches in these
systems. Caches hold the most frequently accessed parts of main memory
in special hardware structures that have much smaller latencies than the
main memory system; for example, a typical level-1 cache has an access

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 63

time that is only 2-3 times slower than the single cycle time of the CPU
core. They leverage a principle called locality of reference that characterizes
common data-access patterns exhibited by most computer programs. To
accommodate large working sets that do not fit in the first-level cache,
many computer systems deploy a hierarchy of caches. The later levels
of caches tend to be increasingly large (up to several megabytes), but as
a result they also have longer access times and resulting latencies. The
concept of locality is important for computer architecture, and Chapter 4
highlights the potential of exploiting locality in innovative ways.

Main memory in most modern computer systems is typically imple-
mented with dynamic random-access memory (DRAM) chips, and it
can be quite large (many gigabytes). However, it is nowhere near large
enough to hold all the addressable memory space available to appli-
cations and the file systems used for long-term storage of data and
programs. Therefore, nonvolatile magnetic-disk-based storage6 is com-
monly used to hold this much larger collection of data. The access time
for disk-based storage is several orders of magnitude larger than that of
DRAM, which can expose very long delays between a request for data
and the return of the data. As a result, in many computer systems, the
operating system takes advantage of the situation by arranging a “con-
text switch” to allow another pending program to run in the window of
time provided by the long delay in many computer systems. Although
context-switching by the operating system improves the multiprogram
throughput of the overall computer system, it hurts the performance of
any single application because of the associated overhead of the context-
switch mechanics. Similarly, as any given program accesses other system
resources, such as networking and other types of storage devices, the
associated request-response delays detract from the program’s ability to
make use of the full peak-performance potential of the CPU core. Because
each of those subsystems displays different performance characteristics,
the establishment of an appropriate system-level balance among them is
a fundamental challenge in modern computer-system design. As future
technology advances improve the characteristics of the subsystems, new
challenges and opportunities in balancing the overall system arise.

Today, an increasing number of computer systems deploy more than
one CPU core, and this has the potential to improve system performance.
In fact, there are several methods of taking advantage of the potential of
parallelism offered by additional CPU cores, each with distinct advantages
and associated challenges.

6 Nonvolatile storage does not require power to retain its information. A compact disk
(CD) is nonvolatile, for example, as is a computer hard drive, a USB flash key, or a book
like this one.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

64	 THE FUTURE OF COMPUTING PERFORMANCE

·	 The first method takes advantage of the additional CPUs to
improve the general responsiveness of the system. Instead of sched-
uling the execution of pending programs one at a time (as is done
in single-processor systems), the operating system can sched-
ule more than one program to run at the same time in different
processors. This method tends to increase the use of the other
subsystems (storage, networking, and so on), so it also demands
a different system-level balance among the subsystems than do
some of the other methods. From an end user’s standpoint, this
system organization tends to improve both the interactive respon-
siveness of the system and the turnaround time for any particular
execution task.

·	 The second method takes advantage of the additional CPU cores
to improve the turnaround time of a particular program more dra-
matically by running different parts of the program in parallel.
This method requires programmers to use parallel-programming
constructs; historically, this task has proved fairly difficult even
for the most advanced programmers. In addition, such constructs
tend to require particular attention to how the different parts of
the program synchronize and coordinate their execution. This
synchronization is a form of communication among the coop-
erating processors and represents a new type of overhead that
detracts from exploiting the peak potential of each individual
processor core. See Box 2.2 for a brief description of Amdahl’s
law.

·	 A third method takes advantage of the additional CPU cores to
improve the throughput of a particular program. Instead of work-
ing to speed up the program’s operation on a single piece of data
(or dataset), the system works to increase the rate at which a
collection of data (or datasets) can be processed by the program.
In general, because there tends to be more independence among
the collected data in this case, the development of these types of
programs is somewhat easier than development of the parallel
programs mentioned earlier. In addition, the degree of commu-
nication and synchronization required between the concurrently
executing parts of the program tends to be much less than in the
parallel-program case.

Another key aspect of modern computer systems is their ability to
communicate, or network, with one another. Programmers can write pro-
grams that make use of multiple CPU cores within a single computer sys-
tem or that make use of multiple computer systems to increase performance
or to solve larger, harder problems. In those cases, it takes much longer

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 65

to communicate, synchronize, and coordinate the progress of the overall
program. The programs tend to break the problem into coarser-grain tasks
to run in parallel, and they tend to use more explicit message-passing con-
structs. As a result, the development and optimization of such programs
are quite different from those of the others mentioned above.

In addition to the methods described above, computer scientists are
actively researching new ways to exploit multiple CPU cores, multiple
computer systems, and parallelism for future systems. Considering the
increased complexity of such systems, researchers are also concerned
about easing the associated programming complexity exposed to the
application programmer, inasmuch as programming effort has a first-
order effect on time to solution of any given problem. The magnitude
of these challenges and their effects on computer-system performance
motivate much of this report.

TECHNOLOGY ADVANCES AND THE HISTORY
OF COMPUTER PERFORMANCE

In many ways, the history of computer performance can be best
understood by tracking the development and issues of the technology
that underlies the machines. If one does that, an interesting pattern starts
to emerge. As incumbent technologies are stretched to their practical

BOX 2.2
Amdahl’s Law

Amdahl’s law sets the limit to which a parallel program can be sped up. Pro-
grams can be thought of as containing one or more parallel sections of code
that can be sped up with suitably parallel hardware and a sequential section that
cannot be sped up. Amdahl’s law is

Speedup = 1/[(1 – P) + P/N)],

where P is the proportion of the code that runs in parallel and N is the number
of processors.

The way to think about Amdahl’s law is that the faster the parallel section
of the code run, the more the remaining sequential code looms as the per-
formance bottleneck. In the limit, if the parallel section is responsible for 80
percent of the run time, and that section is sped up infinitely (so that it runs in
zero time), the other 20 percent now constitutes the entire run time. It would
therefore have been sped up by a factor of 5, but after that no amount of ad-
ditional parallel hardware will make it go any faster.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

66	 THE FUTURE OF COMPUTING PERFORMANCE

limits, innovations are leveraged to overcome these limits. At the same
time, they set the stage for a fresh round of incremental advances that
eventually overtake any remaining advantages of the older technology.
That technology-innovation cycle has been a driving force in the history
of computer-system performance improvements.

A very early electronic computing system, called Colossus,7 was cre-
ated in 1943.8 Its core was built with vacuum tubes, and although it had
fairly limited utility, it ushered in the use of electronic vacuum tubes for
a generation of computer systems that followed. As newer systems, such
as the ENIAC, introduced larger-scale and more generalized computing,
the collective power consumption of all the vacuum tubes eventually lim-
ited the ability to continue scaling the systems. In 1954, engineers at Bell
Laboratories created a discrete-transistor-based computer system called the
TRADIC.9 Although it was not quite as fast as the fastest vacuum-tube-
based systems of the day, it was much smaller and consumed much less
power. More important, it heralded the era of transistor-based computer
systems.10 In 1958, Jack Kilby and Robert Noyce separately invented the
integrated circuit, which for the first time allowed multiple transistors to
be fabricated and connected on a single piece of silicon. That technol-
ogy was quickly picked up by computer designers to design higher-per-
formance and more power-efficient computer systems. This technology
breakthrough inaugurated the modern computing era.

In 1965, Gordon Moore observed that the transistor density on inte-
grated circuits was doubling with each new technology generation, and
he projected that this would continue into the future.11 (See Appendix C

7 B. Jack Copeland, ed., 2006, Colossus: The Secrets of Bletchley Park’s Codebreaking, New
York, N.Y.: Oxford University Press.

8 Although many types of mechanical and electromechanical computing systems were
demonstrated before that, these devices were substantially limited in capabilities and de-
ployments, so we will leave them out of this discussion.

9 For a history of the TRADIC, see Louis C. Brown, 1999, Flyable TRADIC: The first air-
borne transistorized digital computer, IEEE Annals of the History of Computing 21(4): 55-61.

10 It was not only vacuum tube power requirements that were limiting the computer
industry back in the early 1060s. Packaging was a significant challenge, too—simply mak-
ing all the connections needed to carry signals and power to all those tubes was seriously
degrading reliability, because each connection had to be hand-soldered with some prob-
ability of failure greater than 0.0. All kinds of module packaging schemes were being tried,
but none of them really solved this manufacturability problem. One of the transformative
aspects of integrated circuit technology is that you get all the internal connections for free
by a chemical photolithography process that not only makes them essentially free but also
makes them several orders of magnitude more reliable. Were it not for that effect, all those
transistors we have enjoyed ever since would be of very limited usefulness, too expensive,
and too prone to failure.

11  Gordon Moore, 1965, Cramming more components onto integrated circuits, Electronics
38(8), available online at http://download.intel.com/research/silicon/moorespaper.pdf.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 67

for a reprint of his seminal paper.) That projection, now commonly called
Moore’s law, was remarkably accurate and still holds true. However,
over the years, there have been some important shifts in how integrated
circuits are used in computer systems. Early on, various segments of the
electronics industry made use of different types of transistor devices.
For high-end computer systems, the bipolar junction transistor (BJT) was
the technology of choice. As more BJT devices were integrated into the
systems, the power consumption of each chip also rose, and computer-
system designers were forced to use exotic power delivery and cooling
solutions. In the 1980s, another type of transistor, the field-effect transistor
(FET), was increasingly used for smaller electronic devices, such as cal-
culators and small computers meant for hobbyists. By the late 1980s, the
power-consumption characteristics of the BJT-based computer systems
hit a breaking point; around the same time, the early use of FET-based
integrated circuits had demonstrated both power and cost advantages
over the BJT-based technologies. Although the underlying transistors
were not as fast, their characteristics enabled far greater integration poten-
tial and much lower power consumption. Today, at the heart of virtually
all computer systems is a set of FET-based integrated-circuit chips.

It now appears that in some higher-end computer systems, the FET-
based integrated circuits have hit their practical limits of power consump-
tion. Although today’s technologists understand how to continue increas-
ing the level of integration (number of transistor devices) on future chips,
they are not able to continue reducing the voltage or the power.12 There are
several potential new technology concepts in the research laboratories—
such as carbon nanotubes, quantum dots, and biology-inspired devices—
but none of them is mature enough for practical deployment. Although
there is reasonable optimism that current research will eventually bring
one or more new technology breakthroughs into mainstream deployment,
it appears today that the technology-innovation cycle has a substantial
gap that must be overcome in some other way. The industry is therefore
shifting from the long-standing heritage of constantly improving the per-
formance characteristics of single-processor-based systems (sometimes
referred to as single-thread performance) to increasing the number of
processors in each system. As described in the following sections, that

12 The committee’s emphasis on transistor performance is not intended to convey the
impression that transistors are the sole determinant of computer system performance. The
interconnect wiring between transistors on a chip is a first-order limiter of system clock
rate and also contributes greatly to overall power dissipation. Memory and I/O systems
must also scale up to avoid becoming bottlenecks to faster computer systems. The focus is
on transistors here because it is possible to work around interconnect limitations (this has
already been done for at least 15 years), and so far, memory and I/O have been scaling up
enough to avoid being showstoppers.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

68	 THE FUTURE OF COMPUTING PERFORMANCE

puts substantial new demands and new pressures on the software side of
multiprocessor-based systems.

Appendix A provides additional data on historical computer-perfor-
mance trends. It illustrates that from 1985 to 2004 computer performance
improved at a compound annual growth rate exceeding 50 percent, mea-
sured with the SPECint2000 and SPECfp2000 benchmarks, but after 2004
grew much more slowly.13 Moreover, it shows that the recent slow growth
is due in large part to a flattening of clock-frequency improvements
needed to flatten the untenable growth in chip power requirements. The
appendix closes with Kurzweil’s observations on the 20th century that
encourage us to seek new computer technologies.

ASSESSING PERFORMANCE WITH BENCHMARKS

As discussed earlier in this chapter, another big challenge in under-
standing computer-system performance is choosing the right hardware
and software metrics and measurements. As this committee has already
discussed, the peak-performance potential of a machine is not a particu-
larly good metric in that the inevitable overheads associated with the use
of other system-level resources and communication can diminish deliv-
ered performance substantially. 	

There have been innumerable efforts over the years to create bench-
mark suites to define a set of workloads over which to measure metrics,
many of them quite successful within limited application domains. How-
ever, designing general benchmarks is difficult. Even considering hard-
ware performance alone can be challenging because computer hardware
consists of several different components (see Box 2.3). Computer systems
are deployed and used in a broad variety of ways. As one might expect,
different market segments have different use scenarios, and they stress
the system in different ways. As a result, the appropriate benchmark to
consider can vary considerably between market segments. For example,

·	 For casual home users, responsiveness of the GUI has high prior-
ity. The performance of the system when operating on various
types of entertainment media—such as audio, video, or pictures
files—is more important than it is in many other markets.

·	 In research settings, the computer system is an important tool for
exploring and modeling ideas. As a result, the turnaround time

13 SPEC benchmarks are a set of artificial workloads intended to measure a computer sys-
tem’s speed. A machine that achieves a SPEC benchmark score that is, say, 30 percent faster
than that of another machine should feel about 30 percent faster than the other machine on
real workloads.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 69

for a given program is important because it provides the results
that are an integral part of the iterative research loop directed by
the researcher. That is an example of performance as time to solu-
tion. (See Box 2.4 for more on time to solution.)

·	 In small-business settings, the computer system tends to be used
for a very wide array of applications, so high general-purpose
performance is valued.

·	 For computer systems used in banking and other financial mar-
kets, the reliability and accuracy of the computational results,
even in the face of defects or harsh external environmental con-
ditions, are paramount. Many deployments value gross transac-
tional throughput more than the turnaround time of any given
program, except for financial-transaction turnaround time.

·	 In some businesses, computer systems are deployed into mission-
critical roles in the overall operation of the business, for example,
e-commerce-based businesses, process automation, health care,
and human safety systems. In those situations, the gross reliabil-
ity and "up time" characteristics of the system can be far more
important than the instantaneous performance of the system at
any given time.

·	 At the very high end, supercomputer systems tend to work on
large problems with very large amounts of data. The underlying
performance of the memory system can be even more important
than the raw computational capability of the CPU cores involved.
That can be seen as an example of throughput as performance
(see Box 2.5).

Complicating matters a bit more, most computer-system deployments
define some set of important physical constraints on the system. For
example, in the case of a notebook-computer system, important energy-
consumption and physical-size constraints must be met. Similarly, even in
the largest supercomputer deployments, there are constraints on physical
size, weight, power, heat, and cost. Those constraints are several orders
of magnitude larger than in the notebook example, but they still are fun-
damental in defining the resulting performance and utility of the system.
As a result, for a given market opportunity, it often makes sense to gauge
the value of a computer system according to a ratio of performance to
constraints. Indeed, some of the metrics most frequently used today are
such ratios as performance per watt, performance per dollar, and perfor-
mance per area. More generally, most computer-system customers are
placing increasing emphasis on efficiency of computation rather than on
gross performance metrics.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

70	 THE FUTURE OF COMPUTING PERFORMANCE

THE INTERPLAY OF SOFTWARE AND PERFORMANCE

Although the amazing raw performance gains of the microproces-
sor over the last 20 years has garnered most of the attention, the overall
performance and utility of computer systems are strong functions of both
hardware and software. In fact, as computer systems have deployed more
hardware, they have depended more and more on software technologies
to harness their computational capability. Software has exploited that
capability directly and indirectly. Software has directly exploited increases
in computing capability by adding new features to existing software,
by solving larger problems more accurately, and by solving previously
unsolvable problems. It has indirectly exploited the capability through the
use of abstractions in high-level programming languages, libraries, and
virtual-machine execution environments. By using high-level program-
ming languages and exploiting layers of abstraction, programmers can

BOX 2.3
Hardware Components

A car is not just an engine. It has a cooling system to keep the engine running
efficiently and safely, an environmental system to do the same for the drivers
and passengers, a suspension system to improve the ride, a transmission so
that the engine’s torque can be applied to the drive wheels, a radio so that the
driver can listen to classic-rock stations, and cupholders and other convenience
features. One might still have a useful vehicle if the radio and cupholders were
missing, but the other features must be present because they all work in har-
mony to achieve the function of propelling the vehicle controllably and safely.

Computer systems are similar. The CPU tends to get much more than its
proper share of attention, but it would be useless without memory and I/O
subsystems. CPUs function by fetching their instructions from memory. How
did the instructions get into memory, and where did they come from? The in-
structions came from a file on a hard disk and traversed several buses (commu-
nication pathways) to get to memory. Many of the instructions, when executed
by the CPU, cause additional memory traffic and I/O traffic. When we speak of
the overall performance of a computer system, we are implicitly referring to
the overall performance of all those systems operating together. For any given
workload, it is common to find that one of the “links in the chain” is, in fact,
the weakest link. For instance, one can write a program that only executes CPU
operations on data that reside in the CPU’s own register file or its internal data
cache. We would refer to such a program as “CPU-bound,” and it would run
as fast as the CPU alone could perform it. Speeding up the memory or the I/O
system would have no discernible effect on measured performance for that
benchmark. Another benchmark could be written, however, that does little else
but perform memory load and store operations in such a way that the CPU’s
internal cache is ineffective. Such a benchmark would be bound by the speed

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 71

express their algorithms more succinctly and modularly and can compose
and reuse software written by others. Those high-level programming
constructs make it easier for programmers to develop correct complex
programs faster. Abstraction tends to trade increased human programmer
productivity for reduced software performance, but the past increases in
single-processor performance essentially hid much of the performance
cost. Thus, modern software systems now have and rely on multiple lay-
ers of system software to execute programs. The layers can include oper-
ating systems, runtime systems, virtual machines, and compilers. They
offer both an opportunity for introducing and managing parallelism and a
challenge in that each layer must now also understand and exploit paral-
lelism. The committee discusses those issues in more detail in Chapter 4
and summarizes the performance implications below.

The key performance driver to date has been software portability. Once

of memory (and possibly by the bus that carries the traffic between the CPU
and memory.) A third benchmark could be constructed that hammers on the
I/O subsystem with little dependence on the speed of either the CPU or the
memory.

Handling most real workloads relies on all three computer subsystems, and
their performance metrics therefore reflect the combined speed of all three.
Speed up only the CPU by 10 percent, and the workload is liable to speed up,
but not by 10 percent—it will probably speed up in a prorated way because only
the sections of the code that are CPU-bound will speed up. Likewise, speed up
the memory alone, and the workload performance improves, but typically much
less than the memory speedup in isolation.	 Numerous other pieces of com-
puter systems make up the hardware. The CPU architectures and microarchi-
tectures encompass instruction sets, branch-prediction algorithms, and other
techniques for higher performance. Storage (disks and memory) is a central
component. Memory, flash drives, traditional hard drives, and all the technical
details associated with their performance (such as bandwidth, latency, caches,
volatility, and bus overhead) are critical for a system’s overall performance. In
fact, information storage (hard-drive capacity) is understood to be increasing
even faster than transistor counts on the traditional Moore’s law curve,1 but it is
unknown how long this will continue. Switching and interconnect components,
from switches to routers to T1 lines, are part of every level of a computer system.
There are also hardware interface devices (keyboards, displays, and mice). All
those pieces can contribute to what users perceive of as the “performance” of
the system with which they are interacting.

1 This phenomenon has been dubbed Kryder’s law after Seagate executive Mark Kryder (Chip
Walter, 2005, Kryder’s law, Scientific American 293: 32-33, available online at http://www.
scientificamerican.com/article.cfm?id=kryders-law).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

72	 THE FUTURE OF COMPUTING PERFORMANCE

BOX 2.4
Time To Solution

Consider a jackhammer on a city street. Assume that using a jackhammer is
not a pastime enjoyable in its own right—the goal is to get a job done as soon
as possible. There are a few possible avenues for improvement: try to make
the jackhammer’s chisel strike the pavement more times per second; make
each stroke of the jackhammer more effective, perhaps by putting more power
behind each stroke; or think of ways to have the jackhammer drive multiple
chisels per stroke. All three possibilities have analogues in computer design,
and all three have been and continue to be used. The notion of “getting the
job done as soon as possible” is known in the computer industry as time to
solution and has been the traditional metric of choice for system performance
since computers were invented.

Modern computer systems are designed according to a synchronous, pipe-
lined schema. Synchronous means occurring at the same time. Synchronous
digital systems are based on a system clock, a specialized timer signal that
coordinates all activities in the system. Early computers had clock frequencies
in the tens of kilohertz. Contemporary microprocessor designs routinely sport
clocks with frequencies of over about 3-GHz range. To a first approximation,
the higher the clock rate, the higher the system performance. System designers
cannot pick arbitrarily high clock frequencies, however—there are limits to the
speed at which the transistors and logic gates can reliably switch, limits to how
quickly a signal can traverse a wire, and serious thermal power constraints that
worsen in direct proportion to the clock frequency. Just as there are physical
limits on how fast a jackhammer’s chisel can be driven downward and then
retracted for the next blow, higher computer clock rates generally yield faster
time-to-solution results, but there are several immutable physical constraints
on the upper limit of those clocks, and the attainable performance speedups
are not always proportional to the clock-rate improvement.

How much a computer system can accomplish per clock cycle varies widely
from system to system and even from workload to workload in a given system.
More complex computer-instruction sets, such as Intel’s x86, contain instruc-
tions that intrinsically accomplish more than a simpler instruction set, such as
that embodied in the ARM processor in a cell phone; but how effective the com-
plex instructions are is a function of how well a compiler can use them. Recent

a program has been created, debugged, and put into practical use, end
users’ expectation is that the program not only will continue to operate
correctly when they buy a new computer system but also will run faster
on a new system that has been advertised as offering increased perfor-
mance. More generally, once a large collection of programs have become
available for a particular computing platform, the broader expectation is
that they will all continue to work and speed up in later machine genera-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 73

additions to historical instruction sets—such as Intel’s SSE 1, 2, 3, and 4—attempt
to accomplish more work per clock cycle by operating on grouped data that are
in a compressed format (the equivalent of a jackhammer that drives multiple
chisels per stroke). Substantial system-performance improvements, such as fac-
tors of 2-4, are available to workloads that happen to fit the constraints of the
instruction-set extensions.

There is a special case of time-to-solution workloads: those which can be
successfully sped up with dedicated hardware accelerators. Graphics process-
ing units (GPUs)—such as those from NVIDIA, from ATI, and embedded in some
Intel chipsets—are examples. These processors were designed originally to
handle the demanding computational and memory bandwidth requirements of
3D graphics but more recently have evolved to include more general program-
mability features. With their intrinsically massive floating-point horsepower, 10
or more times higher than is available in the general-purpose (GP) micropro-
cessor, these chips have become the execution engine of choice for some im-
portant workloads. Although GPUs are just as constrained by the exponentially
rising power dissipation of modern silicon as are the GPs, GPUs are 1-2 orders
of magnitude more energy-efficient for suitable workloads and can therefore
accomplish much more processing within a similar power budget.

Applying multiple jackhammers to the pavement has a direct analogue in the
computer industry that has recently become the primary development avenue
for the hardware vendors: “multicore.” The computer industry’s pattern has
been for the hardware makers to leverage a new silicon process technology to
make a software-compatible chip that is substantially faster than any previous
chips. The new, higher-performing systems are then capable of executing soft-
ware workloads that would previously have been infeasible; the attractiveness
of the new software drives demand for the faster hardware, and the virtuous
cycle continues. A few years ago, however, thermal-power dissipation grew to
the limits of what air cooling can accomplish and began to constrain the attain-
able system performance directly. When the power constraints threatened to
diminish the generation-to-generation performance enhancements, chipmak-
ers Intel and AMD turned away from making ever more complex microarchitec-
tures on a single chip and began placing multiple processors on a chip instead.
The new chips are called multicore chips. Current chips have several processors
on a single die, and future generations will have even more.

tions. Indeed, not only has the remarkable speedup offered by industry
standard (×86-compatible) microprocessors over the last 20 years forged
compatibility expectation in the industry, but its success has hindered the
development of alternative, noncompatible computer systems that might
otherwise have kindled new and more scalable programming paradigms.
As the microprocessor industry shifts to multicore processors, the rate of
improvement of each individual processor is substantially diminished.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

74	 THE FUTURE OF COMPUTING PERFORMANCE

The net result is that the industry is ill prepared for the rather sudden
shift from ever-increasing single-processor performance to the presence
of increasing numbers of processors in computer systems. (See Box 2.6
for more on instruction-set architecture compatibility and possible future
outcomes.)

The reason that industry is ill prepared is that an enormous amount
of existing software does not use thread-level or data-level parallelism—
software did not need it to obtain performance improvements, because
users simply needed to buy new hardware to get performance improve-
ments. However, only programs that have these types of parallelism will
experience improved performance in the chip multiprocessor era. Fur-

BOX 2.5
Throughput

There is another useful performance metric besides time to solution, and
the Internet has pushed it to center stage: system throughput. Consider a Web
server, such as one of the machines at search giant Google. Those machines run
continuously, and their work is never finished, in that new requests for service
continue to arrive. For any given request for service, the user who made the
request may care about time to solution, but the overall performance metric for
the server is its throughput, which can be thought of informally as the number
of jobs that the server can satisfy simultaneously. Throughput will determine
the number and configuration of servers and hence the overall installation cost
of the server “farm.”

Before multicore chips, the computer industry’s efforts were aimed primarily
at decreasing the time to solution of a system. When a given workload required
the sequential execution of several million operations, a faster clock or a more
capable microarchitecture would satisfy the requirement. But compilers are not
generally capable of targeting multiple processors in pursuit of a single time-to-
solution target; they know how to target one processor. Multicore chips there-
fore tend to be used as throughput enhancers. Each available CPU core can pop
the next runnable process off the ready list, thus increasing the throughput of
the system by running multiple processes concurrently. But that type of concur-
rency does not automatically improve the time to solution of any given process.

Modern multithreading programming environments and their routine suc-
cessful use in server applications hold out the promise that applying multiple
threads to a single application may yet improve time to solution for multicore
platforms. We do not yet know to what extent the industry’s server multithread-
ing successes will translate to other market segments, such as mobile or desktop
computers. It is reasonably clear that although time-to-solution performance is
topping out, throughput can be increased indefinitely. The as yet unanswered
question is whether the buying public will find throughput enhancements as
irresistible as they have historically found time-to-solution improvements.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 75

thermore, even for applications with thread-level and data-level parallel-
ism, it is hard to obtain improved performance with chip multiprocessor
hardware because of communication costs and competition for shared
resources, such as cache memory. Although expert programmers in such
application domains as graphics, information retrieval, and databases
have successfully exploited those types of parallelism and attained per-
formance improvements with increasing numbers of processors, these
applications are the exception rather than the rule.

Writing software that expresses the type of parallelism that hardware
based on chip multiprocessors will be able to improve is the main obstacle
because it requires new software-engineering processes and tools. The pro-
cesses and tools include training programmers to solve their problems
with “parallel computational thinking,” new programming languages
that ease the expression of parallelism, and a new software stack that can
exploit and map the parallelism to hardware that is evolving. Indeed, the
outlook for overcoming this obstacle and the ability of academics and
industry to do it are primary subjects of this report.

THE ECONOMICS OF COMPUTER PERFORMANCE

There should be little doubt that computers have become an indis-
pensable tool in a broad array of businesses, industries, research endeav-
ors, and educational institutions. They have enabled profound improve-
ment in automation, data analysis, communication, entertainment, and
personal productivity. In return, those advances have created a virtu-
ous economic cycle in the development of new technologies and more
advanced computing systems. To understand the sustainability of con-
tinuing improvements in computer performance, it is important first to
understand the health of this cycle, which is a critical economic underpin-
ning of the computer industry.

From a purely technological standpoint, the engineering community
has proved to be remarkably innovative in finding ways to continue to
reduce microelectronic feature sizes. First, of course, industry has inte-
grated more and more transistors into the chips that make up the com-
puter systems. Fortunate side effects are improvements in speed and
power efficiency of the individual transistors. Computer architects have
learned to make use of the increasing numbers and improved characteris-
tics of the transistors to design continually higher-performance computer
systems. The demand for the increasingly powerful computer systems
has generated sufficient revenue to fuel the development of the next
round of technology while providing profits for the companies leading
the charge. Those relationships form the basis of the virtuous economic

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

76	 THE FUTURE OF COMPUTING PERFORMANCE

and technology-advancement cycles that have been key underlying driv-
ers in the computer-systems industry over the last 30 years.

There are many important applications of semiconductor technol-
ogy beyond the desire to build faster and faster high-end computer sys-
tems. In particular, the electronics industry has leveraged the advances

BOX 2.6
Instruction-Set Architecture: Compatibility

This history of computing hardware has been dominated by a few franchises.
IBM first noticed the trend of increasing performance in the 1960s and took ad-
vantage of it with the System/360 architecture. That instruction-set architecture
became so successful that it motivated many other companies to make com-
puter systems that would run the same software codes as the IBM System/360
machines; that is, they were building instruction-set-compatible computers. The
value of that approach is clearest from the end user’s perspective—compatible
systems worked as expected “right out of the box,” with no recompilation, no
alterations to source code, and no tracking down of software bugs that may
have been exposed by the process of migrating the code to a new architecture
and toolset.

With the rise of personal computing in the 1980s, compatibility has come
to mean the degree of compliance with the Intel architecture (also known as
IA-32 or x86). Intel and other semiconductor companies, such as AMD, have
managed to find ways to remain compatible with code for earlier generations
of x86 processors. That compatibility comes at a price. For example, the floating-
point registers in the x86 architecture are organized as a stack, not as a randomly
accessible register set, as all integer registers are. In the 1980s, stacking the
floating-point registers may have seemed like a good idea that would benefit
compiler writers; but in 2008, that stack is a hindrance to performance, and x86-
compatible chips therefore expend many transistors to give the architecturally
required appearance of a stacked floating-point register set—only to spend
more transistors “under the hood” to undo the stack so that modern perfor-
mance techniques can be applied. IA-32’s instruction-set encoding and its seg-
mented addressing scheme are other examples of old baggage that constitute
a tax on every new x86 chip.

There was a time in the industry when much architecture research was ex-
pended on the notion that because every new compatible generation of chips
must carry the aggregated baggage of its past and add ideas to the architecture
to keep it current, surely the architecture would eventually fail of its own ac-
cord, a victim of its own success. But that has not happened. The baggage is
there, but the magic of Moore’s law is that so many additional transistors are
made available in each new generation, that there have always been enough to
reimplement the baggage and to incorporate enough innovation to stay com-
petitive. Over time, such non-x86-compatible but worthy competitors as DEC’s
Alpha, SGI’s MIPS, Sun’s SPARC, and the Motorola/IBM PowerPC architectures
either have found a niche in market segments, such as cell phones or other
embedded products, or have disappeared.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 77

to create a wide variety of new form-factor devices (notebook computers,
smart phones, and GPS receivers, to name just a few). Although each of
those devices tends to have more substantial constraints (size, power, and
cost) than traditional computer systems, they often embody the computa-
tional and networking capabilities of previous generations of higher-end

The strength of the x86 architecture was most dramatically demonstrated
when Intel, the original and major supplier of x86 processors, decided to in-
troduce a new, non-x86 architecture during the transition from 32-bit to 64-bit
addressing in the 1990s. Around the same time, however, AMD created a proces-
sor with 64-bit addressing compatible with the x86 architecture, and customers,
again driven by the existence of the large software base, preferred the 64-bit x86
processor from AMD over the new IA-64 processor from Intel. In the end, Intel
also developed a 64-bit x86-compatible processor that is now far outselling its
IA-64 (Itanium) processor.

With the rise of the cell phone and other portable media and computing
appliances, yet another dominant architectural approach has emerged: the
ARM architecture. The rapidly growing software base for portable applications
running on ARM processors has made the compatible series of processors
licensed by ARM the dominant processors for embedded and portable applica-
tions. As seen in the dominance of the System/360 architecture for mainframe
computers, x86 for personal computers and networked servers, and the ARM
architecture for portable appliances, there will be an opportunity for a new
architecture or architectures as the industry moves to multicore, parallel com-
puting systems. Initial moves to chip-multiprocessor systems are being made
with existing architectures based primarily on the x86. The computing industry
has accumulated a lot of history on this subject, and it appears safe to say that
the era in which compatibility is an absolute requirement will probably end not
because an incompatible but compellingly faster competitor has appeared but
only when one of the following conditions takes hold:

•	 �Software translation (automatic conversion from code compiled for one
architecture to be suitable for running on another) becomes ubiquitous
and so successful that strict hardware compatibility is no longer neces-
sary for the user to reap the historical benefits.

•	 �Multicore performance has “topped out” to the point where most buyers
no longer perceive enough benefit to justify buying a new machine to
replace an existing, still-working one.

•	 �The fundamental hardware-software business changes so substantially
that the whole idea of compatibility is no longer relevant. Interpreted
and dynamically compiled languages—such as Java, PHP, and JavaScript
(“write once run anywhere”)—are harbingers of this new era. Although
their performance overhead is sometimes enough for the performance
advantages of compiled code to outweigh programmer productivity, Ja-
vaScript and PHP are fast becoming the languages of choice on the client
side and server side, respectively, for Web applications.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

78	 THE FUTURE OF COMPUTING PERFORMANCE

computer systems. In light of the capabilities of the smaller form-factor
devices, they will probably play an important role in unleashing the
aggregate performance potential of larger-scale networked systems in
the future. Those additional market opportunities have strong economic
underpinnings of their own, and they have clearly reaped benefits from
deploying technology advances driven into place by the computer-sys-
tems industry. In many ways, the incredible utility of computing not only
has provided direct improvement in productivity in many industries but
also has set the stage for amazing growth in a wide array of codependent
products and industries.

In recent years, however, we have seen some potentially troublesome
changes in the traditional return on investment embedded in this virtuous
cycle. As we approach more of the fundamental physical limits of tech-
nology, we continue to see dramatic increases in the costs associated with
technology development and in the capital required to build fabrication
facilities to the point where only a few companies have the wherewithal
even to consider building these facilities. At the same time, although we
can pack more and more transistors into a given area of silicon, we are
seeing diminishing improvements in transistor performance and power
efficiency. As a result, computer architects can no longer rely on those
sorts of improvements as means of building better computer systems and
now must rely much more exclusively on making use of the increased
transistor-integration capabilities.

Our progress in identifying and meeting the broader value proposi-
tions has been somewhat mixed. On the one hand, multiple processor
cores and other system-level features are being integrated into monolithic
pieces of silicon. On the other hand, to realize the benefits of the multi-
processor machines, the software that runs on them must be conceived
and written in a different way from what most programmers are accus-
tomed to. From an end-user perspective, the hardware and the software
must combine seamlessly to offer increased value. It is increasingly clear
that the computer-systems industry needs to address those software and
programmability concerns or risk the ability to offer the next round of
compelling customer value. Without performance incentives to buy the
next generation of hardware, the economic virtuous cycle is likely to break
down, and this would have widespread negative consequences for many
industries.

In summary, the sustained viability of the computer-systems indus-
try is heavily influenced by an underlying virtuous cycle that connects
continuing customer perception of value, financial investments, and new
products getting to market quickly. Although one of the primary indica-
tors of value has traditionally been the ever-increasing performance of
each individual compute node, the next round of technology improve-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

WHAT IS COMPUTER PERFORMANCE?	 79

ments on the horizon will not automatically enhance that value. As a
result, many computer systems under development are betting on the
ability to exploit multiple processors and alternative forms of parallel-
ism in place of the traditional increases in the performance of individual
computing nodes. To make good on that bet, there need to be substantial
breakthroughs in the software-engineering processes that enable the new
types of computer systems. Moreover, attention will probably be focused
on high-level performance issues in large systems at the expense of time
to market and the efficiency of the virtuous cycle.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

3

Power Is Now Limiting Growth
in Computing Performance

The previous chapters define computer performance and discuss
why its continued growth is critical for the U.S. economy. This
chapter explores the relationship between computer performance

and power consumption. The limitations imposed by power consumption
are responsible for the present movement toward parallel computation.
This chapter argues that such limitations will constrain the computation
performance of even parallel computing systems unless computer design-
ers take fundamentally different approaches.

The laws of thermodynamics are evident to anyone who has ever
used a laptop computer on his or her lap: the computer becomes hot.
When you run a marathon, your body is converting an internal supply
of energy formed from the food you eat into two outputs: mechanical
forces produced by your body’s muscles and heat. When you drive your
car, the engine converts the energy stored in the gasoline into the kinetic
energy of the wheels and vehicle motion and heat. If you put your hand
on an illuminated light bulb, you discover that the bulb is not only radiat-
ing the desired light but also generating heat. Heat is the unwanted, but
inevitable, side effect of using energy to accomplish any physical task—it
is not possible to convert all the input energy perfectly into the desired
results without wasting some energy as heat. 	

A vendor who describes a “powerful computer” is trying to character-
ize the machine as fast, not thermally hot. In this report, the committee
uses power to refer to the use of electric energy and performance to mean
computational capability. When we refer to power in the context of a

80

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 81

computer system, we are talking about energy flows: the rate at which
energy must be provided to the computer system from a battery or wall
outlet, which is the same as the rate at which that energy, now converted
to heat, must be extracted from the system. The temperature of the chip
or system rises above the ambient temperature and causes heat energy to
flow into the environment. To limit the system’s temperature rise, heat
must be extracted efficiently. (Transferring heat from the computer system
to the environment is the task of the cooling subsystem in a computer.)
Thus, referring to a chip’s power requirements is equivalent to talking
about power consumed and dissipated.

When we talk about scaling computing performance, we implicitly
mean to increase the computing performance that we can buy for each
dollar we spend. If we cannot scale down the energy per function as fast
as we scale up the performance (functions per second), the power (energy
per second) consumed by the system will rise, and the increase in power
consumption will increase the cost of the system. More expensive hard-
ware will be needed to supply the extra power and then remove the heat
that it generates. The cost of managing the power in and out of the system
will rise to dominate the cost of the hardware.

Historically, technology scaling has done a good job of scaling down
energy cost per function as the total cost per function dropped, and so
the overall power needs of systems were relatively constant as perfor-
mance (functions per second) dramatically increased. Recently, the cost
per function has been dropping faster than the power per function, which
means that the overall power of constant-cost chips has been growing.
The power problem is getting worse because of the recent difficulty in
continuing to scale down power-supply voltages, as is described later in
this chapter.

Our ability to supply power and cool chips is not improving rapidly,
so for many computers the performance per dollar is now limited by
power issues. In addition, computers are increasingly available in a vari-
ety of form-factors and many, such as cell phones, have strict power limits
because of user constraints. People do not want to hold hot cell phones,
and so the total power budget needs to be under a few watts when the
phone is active. Designers today must therefore find the best performance
that can be achieved within a specified power envelope. 	

To assist in understanding these issues, this chapter reviews inte-
grated circuit (IC) technology scaling. It assumes general knowledge of
electric circuits, and some readers may choose to review the findings
listed here and then move directly to Chapter 4. The basic conclusions of
this chapter are as follows:

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

82	 THE FUTURE OF COMPUTING PERFORMANCE

·	 Power consumption has become the limiting constraint on future
growth in single-processor performance.

·	 Power limitations on individual processors have resulted in chips
that have multiple lower-power processors that, in some applica-
tions, yield higher aggregate performance than chips with single
power-limited processors.

·	 Even as the computing industry successfully shifts to multiple,
simpler, and lower-power processor cores per chip, it will again
face performance limits within a few years because of aggregate,
full-chip power limitations.

·	 Like complementary metal oxide semiconductor (CMOS) tran-
sistors, many of the electronic devices being developed today as
potential replacements for CMOS transistors are based on regu-
lating the flow of electrons over a thermodynamic barrier and will
face their own power limits.

·	 A promising approach to enabling more power-efficient compu-
tation is to design application-specific or algorithm-specific com-
putational units. For that approach to succeed, new chip design
and verification methods (such as advanced electronic-design
automation tools) will need to be developed to reduce the time
and cost of IC design, and new IC fabrication methods will be
needed to reduced the one-time mask costs.

·	 The present move to chip multiprocessors is a step in the direction
of using parallelism to sustain growth in computing performance.
However, this or any other hardware architecture can succeed
only if appropriate software can be developed to exploit the par-
allelism in the hardware effectively. That software challenge is the
subject of Chapter 4.

For intrepid readers prepared to continue with this chapter, the com-
mittee starts by explaining how classic scaling enabled the creation of
cheaper, faster, and lower-power circuits; in essence, scaling is responsible
for Moore’s law. The chapter also discusses why modern scaling produces
smaller power gains than before. With that background in technology scal-
ing, the chapter then explains how computer designers have used improv-
ing technology to create faster computers. The discussion highlights why
processor performance grew faster than power efficiency and why the
problem is more critical today. The next sections explain the move to
chips that have multiple processors and clarify both the power-efficiency
advantage of parallel computing and the limitations of this approach. The
chapter concludes by mentioning some alternative technologies to assess
the potential advantages and the practicality of these approaches. Alter-
natives to general-purpose processors are examined as a way to address

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 83

power limitations. In short, although incremental advances in computing
performance will continue, overcoming the power constraint is difficult or
potentially impossible and will require radical rethinking of computation
and of the logic gates used to build computing systems.

BASIC TECHNOLOGY SCALING

Although this report focuses on computers based on IC processors, it
is useful to remember that computers have historically used various tech-
nologies. The earliest electric computers were built in the 1940s and used
mechanical relays.1,2 Vacuum tubes enabled faster electronic computers.
By the 1960s, the technology for building computers changed again, to
transistors that were smaller and had lower cost, lower power, and greater
reliability. Within a decade, computers migrated to ICs instead of discrete
transistors and were able to scale up performance as the technology scaled
down the size of transistors in the ICs. Each technology change, from
relays to vacuum tubes to transistors to ICs, decreased the cost, increased
the performance of each function, and decreased the energy per function.
Those three factors enabled designers to continue to build more capable
computers for the same cost.

Early IC computers were built with bipolar transistors3 in their ICs,
which offered high performance but used relatively high power (com-
pared with other IC options). By the late 1970s, low-end computers used
NMOS4 technology, which offered greater density and thus lower cost per
function but also lower-speed gates than the bipolar alternative. As scal-
ing continued, the cost per function was dropping rapidly, but the energy
needs of each gate were not dropping as rapidly, so the power-dissipation

1 Raúl Rojas, 1997, Konrad Zuse’s legacy: The architecture of the Z1 and Z3, IEEE Annals
of the History of Computing 19(2): 5-19.

2 IBM, 2010, Feeds, speeds and specifications, IBM Archives, website, available online at
http://www-03.ibm.com/ibm/history/exhibits/markI/markI_feeds.html.

3 Silicon ICs use one of two basic structures for building switches and amplifiers. Both
transistor structures modify the silicon by adding impurities to it that increase the concen-
tration of electric carriers—electrons for N regions and holes for P regions—and create three
regions: two Ns separated by a P or two Ps separated by an N. That the electrons are blocked
by holes (or vice versa) means that there is little current flow in all these structures. The first
ICs used NPN bipolar transistors, in which the layers are formed vertically in the material
and the current flow is a bulk property that requires electrons to flow into the P region (the
base) and holes to flow into the top N region (the emitter).

4 NMOS transistors are lateral devices that work by having a “gate” terminal that controls
the surface current flow between the “source” and “drain” contacts. The source-drain ter-
minals are doped N and supply the electrons that flow through a channel; hence the name
NMOS. Doping refers to introducing impurities to affect the electrical properties of the
semiconductor. PMOS transistors make the source and drain material P, so holes (electron
deficiencies) flow across the channels.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

84	 THE FUTURE OF COMPUTING PERFORMANCE

requirements of the chips were growing. By the middle 1980s, most pro-
cessor designers moved from bipolar and NMOS to CMOS5 technology.
CMOS gates were slower than those of NMOS or bipolar circuits but dis-
sipated much less energy, as described in the section below. Using CMOS
technology reduced the energy per function by over an order of mag-
nitude and scaled well. The remainder of this chapter describes CMOS
technology, its properties, its limitations, and how it affects the potential
for growth in computing performance.

CLASSIC CMOS SCALING

Computer-chip designers have used the scaling of feature sizes (that
is, the phenomenon wherein the same functionality requires less space on
a new chip) to build more capable, more complex devices, but the result-
ing chips must still operate within the power constraints of the system.
Early chips used circuit forms (bipolar or NMOS circuits) that dissipated
power all the time, whether the gate6 was computing a new value or just
holding the last value. Even though scaling allowed a decrease in the
power needed per gate, the number of gates on a chip was increasing
faster than the power requirements were falling; by the early to middle
1980s, chip power was becoming a design challenge. Advanced chips
were dissipating many watts;7 one chip, the HP Focus processor, for exam-
ple, was dissipating over 7 W, which at the time was a very large number.8

Fortunately, there was a circuit solution to the problem. It became
possible to build a type of gate that dissipated power only when the out-
put value changed. If the inputs were stable, the circuit would dissipate
practically no power. Furthermore, the gate dissipated power only as long
as it took to get the output to transition to its new value and then returned
to a zero-power state. During the transition, the gate’s power requirement
was comparable with those of the previous types of gates, but because
the transition lasts only a short time, even in a very active machine a gate

5 The C in CMOS stands for complementary. CMOS uses both NMOS and PMOS transistors.
6 A logic gate is a fundamental building block of a system. Gates typically have two to four

inputs and produce one input. These circuits are called logic gates because they compute
simple functions used in logic. For example, an AND gate takes two inputs (either 1s or 0s)
and returns 1 if both are 1s and 0 if either is 0. A NOT gate has only one input and returns
1 if the input is 0 and 0 if the input is 1.

7 Robert M. Supnick, 1984, MicroVAX 32, a 32 bit microprocessor, IEEE Journal of Solid
State Circuits 19(5): 675-681, available online at http://ieeexplore.ieee.org/stamp/stamp.js
p?arnumber=1052207&isnumber=22598.

8 Joseph W. Beyers, Louis J. Dohse, Jospeh P. Fucetola, Richard L. Kochis, Cliffird G. Lob,
Gary L. Taylor, and E.R. Zeller, 1981, A 32-bit VLSI CPU chip, IEEE Journal of Solid-State
Circuits 16(5): 537-542, available online at http://ieeexplore.ieee.org/stamp/stamp.jsp?ar
number=1051634&isnumber=22579.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 85

would be in transition around 1 percent of the time. Thus, moving to the
new circuit style decreased the power consumed by a computation by a
factor of over 30.9 The new circuit style was called complementary MOS,
or CMOS.

A further advantage of CMOS gates was that their performance and
power were completely determined by the MOS transistor properties.
In a classic 1974 paper, reprinted in Appendix D, Robert Dennard et
al. showed that the MOS transistor has a set of very convenient scaling
properties.10 The scaling properties are shown in Table 3.1, taken from that
paper. If all the voltages in a MOS device are scaled down with the physi-
cal dimensions, the operation of the device scales in a particularly favor-
able way. The gates clearly become smaller because linear dimensions are
scaled. That scaling also causes gates to become faster with lower energy
per transition. If all dimensions and voltages are scaled by the scaling fac-
tor k (k has typically been 1.4), after scaling the gates become (1/k)2 their
previous size, and k2 more gates can be placed on a chip of roughly the
same size and cost as before. The delay of the gate also decreases by 1/k,
and, most important, the energy dissipated each time the gate switches
decreases by (1/k)3. To understand why the energy drops so rapidly, note
that the energy that the gate dissipates is proportional to the energy that
is stored at the output of the gate. That energy is proportional to a quan-

9 The old style dissipated power only half the time; this is why the improvement was by
a factor of roughly 30.

10 Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien. Yu, V. Leo Rideout, Ernest Bassous,
and Andre R. LeBlanc, 1974, Design of ion-implanted MOSFETS with very small physical
dimensions, IEEE Journal of Solid State Circuits 9(5):256–268.

TABLE 3.1 Scaling Results for Circuit Performance

Device or Circuit Parameter Scaling Factor

Device dimension tox, L, W 1/k
Doping concentration Na k
Voltage V 1/k
Current I 1/k
Capacitance eA/t 1/k
Delay time per circuit VC/I 1/k
Power dissipation per circuit VI 1/k 2

Power density VI/A 1

SOURCE: Reprinted from Robert H. Dennard, Fritz H. Gaensslen,
Hwa-Nien. Yu, V. Leo Rideout, Ernest Bassous, and Andre R. LeBlanc,
1974, Design of ion-implanted MOSFETS with very small physical
dimensions, IEEE Journal of Solid State Circuits 9(5): 256-268.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

86	 THE FUTURE OF COMPUTING PERFORMANCE

tity called capacitance11 and the square of the supply voltage. The load
capacitance of the wiring decreases by 1/k because the smaller gates make
all the wires shorter and capacitance is proportional to length. Therefore,
the power requirements per unit of space on the chip (mm2), or energy
per second per mm2, remain constant:

		 Power 	 = (number of gates)(CLoad/gate)(Clock Rate)(Vsupply
2)

		 Power density = Ng Cload Fclk Vdd
2

			 Ng	 = CMOS gates per unit area
			 Cload	 = capacitive load per CMOS gate
			 Fclk	 = clock frequency
			 Vdd	 = supply voltage
		 Power density = (k2)(1/k)(k)(1/k)2 = 1

That the power density (power requirements per unit space on the
chip, even when each unit space contains many, many more gates) can
remain constant across generations of CMOS scaling has been a critical
property underlying progress in microprocessors and in ICs in general. In
every technology generation, ICs can double in complexity and increase
in clock frequency while consuming the same power and not increasing
in cost. 	

Given that description of classic CMOS scaling, one would expect
the power of processors to have remained constant since the CMOS tran-
sition, but this has not been the case. During the late 1980s and early
1990s, supply voltages were stuck at 5 V for system reasons. So power
density would have been expected to increase as technology scaled from
2 mm to 0.5 mm. However, until recently supply voltage has scaled with
technology, but power densities continued to increase. The cause of the
discrepancy is explained in the next section. Note that Figure 3.1 shows no
microprocessors above about 130 W; this is because 130 W is the physical
limit for air cooling, and even approaching 130 W requires massive heat
sinks and local fans.

11 Capacitance is a measure of how much electric charge is needed to increase the voltage
between two points and is also the proportionality constant between energy stored on a wire
and its voltage. Larger capacitors require more charge (and hence more current) to reach
a voltage than a smaller capacitor. Physically larger capacitors tend to have larger capaci-
tance. Because all wires have at least some parasitic capacitance, even just signaling across
the internal wires of a chip dissipates some power. Worse, to minimize the time wasted in
charging or discharging, the transistors that drive the signal must be made physically larger,
and this increases their capacitance load, which the prior gate must drive, and costs power
and increases the incremental die size.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 87

1

10

100

1,000

1985 1990 1995 2000 2005 2010
Year of Introduction

FIGURE 3.1 Microprocessor power dissipation (watts) over time (1985-2010).

HOW CMOS-PROCESSOR PERFORMANCE IMPROVED
EXPONENTIALLY, AND THEN SLOWED

Microprocessor performance, as measured against the SPEC2006
benchmark12,13,14 was growing exponentially at the rate of more than 50
percent per year (see Figure 3.2). That phenomenal single-processor per-
formance growth continued for 16 years and then slowed substantially15
partially because of power constraints. This section briefly describes how
those performance improvements were achieved and what contributed to
the slowdown in improvement early in the 2000s.

To achieve exponential performance growth, microprocessor design-
ers scaled processor-clock frequency and exploited instruction-level paral-

12 For older processors, SPEC2006 numbers were estimated from older versions of the
SPEC benchmark by using scaling factors.

13 John L. Henning, 2006, SPEC CPU2006 benchmark descriptions, ACM SIGARCH Com-
puter Architecture News 34(4): 1-17.

14 John L. Henning, 2007, SPEC CPU suite growth: An historical perspective, ACM SI-
GARCH Computer Architecture News 35(1): 65-68.

15 John L. Hennessy and David A. Patterson, 2006, Computer Architecture: A Quantitative
Approach, fourth edition, San Francisco, Cal.: Morgan Kauffman, pp. 2-4.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

88	 THE FUTURE OF COMPUTING PERFORMANCE

lelism (ILP) to increase the number of instructions per cycle.16,17,18 The power
problem arose primarily because clock frequencies were increasing faster
than the basic assumption in Dennard scaling (described previously).
The assumption there is that clock frequency will increase inversely pro-
portionally to the basic gate speed. But the increases in clock frequency
were made because of improvements in transistor speed due to CMOS-
technology scaling combined with improved circuits and architecture. The
designs also included deeper pipelining and required less logic (fewer
operations on gates) per pipeline stage.19

Separating the effect of technology scaling from those of the other
improvements requires examination of metrics that depend solely on the
improvements in underlying CMOS technology (and not other improve-

16 Ibid.
17 Mark Horowitz and William Dally, 2004, How scaling will change processor architecture,

IEEE International Solid States Circuits Conference Digest of Technical Papers, San Fran-
cisco, Cal., February 15-19, 2004, pp. 132-133.

18 Vikas Agarwal, Stephen W. Keckler, and Doug Burger, 2000, Clock rate versus IPC: The
end of the road for conventional microarchitectures, Proceedings of the 27th International
Symposium Computer Architecture, Vancouver, British Columbia, Canada, June 12-14, 2000,
pp. 248-259.

19 Pipelining is a technique in which the structure of a processor is partitioned into simpler,
sequential blocks. Instructions are then executed in assembly-line fashion by the processor.

0

0

0

1

10

100

1985 1990 1995 2000 2005 2010
Year of Introduction

0.1

0.001

0.01

FIGURE 3.2 Integer application performance (SPECint2006) over time (1985-2010).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 89

ments in circuits and architecture). (See Box 3.1 for a brief discussion of
this separation.) Another contribution to increasing power requirements
per chip has been the nonideal scaling of interconnecting wires between
CMOS devices. As the complexity of computer chips increased, it was
not sufficient simply to place two copies of the previous design on the
new chip. To yield the needed performance improvements, new commu-

BOX 3.1
Separating the Effects of CMOS Technology Scaling

on Performance by Using the FO4 Metric

To separate the effect of CMOS technology scaling from other sorts of
optimizations, processor clock-cycle time can be characterized by using the
technology-dependent delay metric fanout-of-four delay (FO4), which is defined
as the delay of one inverter driving four copies of an equally sized inverter.1,2
The metric measures the clock cycle in terms of the basic gate speed and gives
a number that is relatively technology-independent. In Dennard scaling, FO4/
cycle would be constant. As it turns out, clock-cycle time decreased from 60-90
FO4 at the end of the 1980s to 12-25 in 2003-2004. The increase in frequency
caused power to increase and, combined with growing die size, accounted for
most of the power growth until the early 2000s.

That fast growth in clock rate has stopped, and in the most recent machines
the number of FO4 in a clock cycle has begun to increase. Squeezing cycle time
further does not result in substantial performance improvements, but it does
increase power dissipation, complexity, and cost of design.3,4 As a result, clock
frequency is not increasing as fast as before (see Figure 3.3). The decrease in
the rate of growth in of clock frequency is also forecast in the 2009 ITRS semi-
conductor roadmap,5 which shows the clock rate for the highest-performance
single processors no more than doubling each decade over the foreseeable
future.

1 David Harris, Ron Ho, Gu-Yeon Wei, and Mark Horowitz, The fanout-of-4 inverter delay
metric, Unpublished manuscript, May 29, 2009, available online at http://www-vlsi.stanford.
edu/papers/dh_vlsi_97.pdf.

2 David Harris and Mark Horowitz, 1997, Skew-tolerant Domino circuits, IEEE Journal of
Solid-State Circuits 32(11): 1702-1711.

3 Mark Horowitz and William Dally, 2004, How scaling will change processor architecture,
IEEE International Solid States Circuits Conference Digest of Technical Papers, San Francisco,
Cal., February 15-19, 2004, pp. 132-133.

4Vikas Agarwal, Stephen W. Keckler, and Doug Burger, 2000, Clock rate versus IPC: The
end of the road for conventional microarchitectures. Proceedings of the 27th International Sym-
posium on Computer Architecture, Vancouver, British Columbia, Canada, June 12-14, 2000,
pp. 248-259.

5See http://www.itrs.net/Links/2009ITRS/Home2009.htm.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

90	 THE FUTURE OF COMPUTING PERFORMANCE

nication paths across the entire machine were needed—interconnections
that did not exist in the previous generation. To provide the increased
interconnection, it was necessary to increase the number of levels of
metal interconnection available on a chip, and this increased the total
load capacitance faster than assumed in Dennard scaling. Another fac-
tor that has led to increases in load capacitance is the slight scaling up
of wire capacitance per length. That has been due to increasing side-to-
side capacitance because practical considerations limited the amount of
vertical scaling possible in wires. Technologists have attacked both those
issues by creating new insulating materials that had lower capacitance
per length (known as low K dielectrics); this has helped to alleviate the
problem, but it continues to be a factor in shrinking technologies.

One reason that increasing clock rate was pushed so hard in the 1990s,
apart from competitive considerations in the chip market, was that find-
ing parallelism in an application constructed from a sequential stream of
instructions (ILP) was difficult, required large hardware structures, and
was increasingly inefficient. Doubling the hardware (number of transistors
available) generated only about a 50 percent increase in performance—a
relationship that at Intel was referred to as Pollack’s rule.20 To continue to
scale performance required dramatic increases in clock frequency, which
drove processor power requirements. By the early 2000s, processors had
attained power dissipation levels that were becoming difficult to handle
cheaply, so processor power started to level out. Consequently, single-
processor performance improvements began to slow. The upshot is a core
finding and driver of the present report (see Figure 3.3), namely,

Finding: After many decades of dramatic exponential growth, single-
processor performance is increasing at a much lower rate, and this situ-
ation is not expected to improve in the foreseeable future.

HOW CHIP MULTIPROCESSORS ALLOW SOME
CONTINUED PERFORMANCE-SCALING

One way around the performance-scaling dilemma described in the
previous section is to construct computing systems that have multiple,
explicitly parallel processors. For parallel applications, that arrangement
should get around Pollack’s rule; doubling the area should double the

20 Patrick P. Gelsinger, 2001, Microprocessors for the new millennium: Challenges, op-
portunities, and new frontiers, IEEE International Solid-State Circuits Conference Digest
of Technical Papers, San Francisco, Cal., February 5-7, 2001, pp. 22-25. Available online at
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=912412&isnumber=19686.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 91

expected performance. One might think that it should therefore be pos-
sible to continue to scale performance by doubling the number of proces-
sor cores. And, in fact, since the middle 1990s, some researchers have
argued that chip multiprocessors (CMPs) can exploit capabilities of CMOS
technology more effectively than single-processor chips.21 However, dur-
ing the 1990s, the performance of single processors continued to scale at
the rate of more than 50 percent per year, and power dissipation was still
not a limiting factor, so those efforts did not receive wide attention. As
single-processor performance scaling slowed down and the air-cooling
power-dissipation limit became a major design constraint, researchers and
industry shifted toward CMPs or multicore microprocessors.22

21 Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang,
1996, The case for a single-chip multiprocessor, Proceedings of 7th International Conference
on Architectural Support for Programming Languages and Operating Systems, Cambridge,
Mass., October 1-5, 1996, pp. 2-11.

22 Listed here are some of the references that document, describe, and analyze this shift:
Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald,
Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman,
Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal, 2004, Evaluation
of the raw microprocessor: An exposed-wire-delay architecture for ILP and streams, Pro-
ceedings of the 31st Annual International Symposium on Computer Architecture, Munich,

10

100

1,000

10,000

1985 1990 1995 2000 2005 2010
Year of Introduction

FIGURE 3.3 Microprocessor-clock frequency (MHz) over time (1985-2010).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

92	 THE FUTURE OF COMPUTING PERFORMANCE

The key observation motivating a CMP design is that to increase
performance when the overall design is power-limited, each instruction
needs to be executed with less energy. The power consumed is the energy
per instruction times the performance (instructions per second). Examina-
tion of Intel microprocessor-design data from the i486 to the Pentium 4,
for example, showed that power dissipation scales as performance raised
to the 1.73 power after technology improvements are factored out. If the
energy per instruction were constant, the relationship should be linear.
Thus, the Intel Pentium 4 is about 6 times faster than the i486 in the same

Germany, June 19-23, 2004, pp. 2-13; Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval
J. Kapasi, and Abhishek Das, 2004, Evaluating the imagine stream architecture, Proceedings
of the 31st Annual International Symposium on Computer Architecture, Munich, Germany,
June 19-23, 2004, pp. 14-25; Brucek Khailany, Ted Williams, Jim Lin, Eileen Peters Long,
Mark Rygh, Deforest W. Tovey, and William Dally, 2008, A programmable 512 GOPS stream
processor for signal, image, and video processing, IEEE Journal of Solid-State Circuits
43(1): 202-213; Christoforos Kozyrakis and David Patterson, 2002, Vector vs superscalar and
VLIW architectures for embedded multimedia benchmarks, Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture, Istanbul, Turkey, November
18-22, 2002, pp. 283-293; Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara,
Andreas Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese,
2000, Piranha: A scalable architecture based on single-chip multiprocessing, Proceedings
of the 27th Annual International Symposium on Computer Architecture, Vancouver, Brit-
ish Columbia, Canada, June 10-14, 2000, pp. 282-293; Poonacha Kongetira, Kathirgamar
Aingaran, and Kunle Olukotun, 2005, “Niagara: A 32-way multithreaded SPARC processor,
IEEE Micro 25(2): 21-29; Dac C. Pham, Shigehiro Asano, Mark D. Bolliger, Michael N. Day,
H. Peter Hofstee, Charles Johns, James A. Kahle, Atsushi Kameyama, John Keaty, Yoshio
Masubuchi, Mack W. Riley, David Shippy, Daniel Stasiak, Masakazu Suzuoki, Michael F.
Wang, James Warnock, Stephen Weitzel, Dieter F. Wendel, Takeshi Yamazaki, and Kazuaki
Yazawa, 2005, The design and implementation of a first-generation CELL processor, IEEE
International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, Cal.,
February 10, 2005, pp. 184-185; R. Kalla, B. Sinharoy, and J.M. Tendler, 2004, IBM POWER5
chip: A dual-core multithreaded processor, IEEE Micro Magazine 24(2): 40-47; Toshinari
Takayanagi, Jinuk Luke Shin, Bruce Petrick, Jeffrey Su, and Ana Sonia Leon, 2004, A dual-
core 64b UltraSPARC microprocessor for dense server applications, IEEE International Solid-
State Circuits Conference Digest of Technical Papers, San Francisco, Cal., February 15-19,
2004, pp. 58-59; Nabeel Sakran, Marcelo Uffe, Moty Mehelel, Jack Dowweck, Ernest Knoll,
and Avi Kovacks, 2007, The implementation of the 65nm dual-core 64b Merom processor,
IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco,
Cal., February 11-15, 2007, pp. 106-107; Marc Tremblay and Shailender Chaudhry, 2008, A
third-generation 65nm 16-core 32-thread plus 32-count-thread CMT SPARC processor, IEEE
International Solid-State Circuits Conference Digest of Technical Papers, San Francisco,
Cal., February 3-7, 2008, p. 82-83; Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth,
Michael Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan, 2008, “Larrabee: A
many-core x86 architecture for visual computing, ACM Transactions on Graphics 27(3):
1-15; Doug Carmean, 2008, Larrabee: A many-core x86 architecture for visual computing,
Hot Chips 20: A Symposium on High Performance Chips, Stanford, Cal., August 24-26, 2008.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 93

technology but consumes 23 times more power23 and spends about 4
times more energy per instruction. That is another way of showing why
single-processor power requirements increased because of circuit and
architectural changes to improve performance. In achieving higher perfor-
mance, the designs’ energy efficiency was worsening: performance scaled
because of technology scaling and growing power budgets.

CMPs provide an alternative approach: using less aggressive pro-
cessor-core design to reduce energy dissipation per instruction and at
the same time using multiple-processor cores to scale overall chip per-
formance. That approach allows one to use the growing number of tran-
sistors per chip to scale performance while staying within the limit of
air-cooling. It increases chip parallelism, but only a specific type of coarse-
grain program parallelism can exploit this type of parallelism.

Switching to chip multiprocessors reduces the effect of wire delays
(the length of time it takes a signal—output from a gate—to travel along
a given length of wire), which is growing relative to the gate delay (the
length of time it takes to translate input to a logic gate to be transformed
into output from that gate).24,25 Each processor in a CMP is small relative
to the total chip area, and wires within a processor are short compared
with the overall chip size. Interprocessor communication still requires
long wires, but the latency of interprocessor communication is less critical
for performance in a CMP system than is the latency between units within
a single processor. In addition, the long wires can be pipelined and thus
do not affect the clock-cycle time and performance of individual proces-
sors in a CMP.

Chip multiprocessors are a promising approach to scaling, but they
face challenges as well; problems with modern scaling are described in
the next section. Moreover, they cannot be programmed with the tech-
niques that have proved successful for single processors; to achieve the
potential performance of CMP, new software approaches and ultimately
parallel applications must be developed. This will be discussed in the
next chapter.

23 Ed Grochowski, Ronny Ronen, John Shen,and Hong Wang., 2004, Best of both latency
and throughput, Proceedings of the IEEE International Conference on Computer Design,
San Jose, Cal., October 11-13, 2004, pp. 236-243.

24 Mark Horowitz and William Dally, 2004, How scaling will change processor architecture,
IEEE International Solid States Circuits Conference Digest of Technical Papers, San Fran-
cisco, Cal., February 15-19, 2004, pp. 132-133

25 Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang,
1996, The case for a single-chip multiprocessor, Proceedings of 7th International Conference
on Architectural Support for Programming Languages and Operating Systems, Cambridge,
Mass., October 1-5, 1996, pp. 2-11.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

94	 THE FUTURE OF COMPUTING PERFORMANCE

PROBLEMS IN SCALING NANOMETER DEVICES

If voltages could continue to be scaled with feature size (following
classic Dennard scaling), CMP performance could continue to be scaled
with technology. However, early in this decade scaling ran into some
fundamental limits that make it impossible to continue along that path,26
and the improvements in both performance and power achieved with
technology scaling have slowed from their historical rates. The net result
is that even CMPs will run into power limitations. To understand those
issues and their ramifications, we need to revisit technology scaling and
look at one aspect of transistor performance that we ignored before: leak-
age current.

As described earlier, CMOS circuits have the important property
that they dissipate energy only when a node changes value. Consider
the simple but representative CMOS logic circuits in Figure 3.4. One type
of CMOS device, a pMOS transistor, is connected to the power supply
(Vsupply). When its input is low (Vgnd), it turns on, connects Vsupply to
the output, and drives the output high to Vsupply. When the input to the
pMOS device is high (Vsupply), it disconnects the output from Vsupply. The
other type of CMOS device, an nMOS transistor, has the complementary
behavior: when its input is high (Vsupply), it connects the output to Vgnd;
when its input is low (Vgnd), it disconnects the output from Vgnd. Because
of the construction of the CMOS logic, the pMOS and nMOS transistors
are never driving the output at the same time. Hence, the only current
that flows through the gate is that needed to charge or discharge the
capacitances associated with the gate, so the energy consumed is mostly
the energy needed to change the voltage on a capacitor with transistors,
which is Cload multiplied by Vsupply

2. For that analysis to hold, it is impor-
tant that the off transistors not conduct any current in the off state: that
is, they should have low leakage.

However, the voltage scaling that the industry has been following has
indirectly been increasing leakage current. Transistors operate by chang-
ing the height of an energy barrier to modulate the number of carriers that
can flow across them. One might expect a fairly sharp current transition,
so that when the barrier is higher than the energy of the carriers, there
is no current, and when it is lowered, the carriers can “spill” over and
flow across the transistor. The actual situation is more complex. The basic
reason is related to thermodynamics. At any finite temperature, although

26 Sam Naffziger reviews the Vdd limitations and describes various approaches (circuit,
architecture, and so on) to future processor design given the voltage scaling limitations in
the article High-performance processors in a power-limited world, Proceedings of the IEEE
Symposium on VLSI Circuits, Honolulu, Hawaii, June 15-17, 2006, pp. 93-97, available on-
line at http://ewh.ieee.org/r5/denver/sscs/Presentations/2006_11_Naffziger_paper.pdf.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 95

there is a well-defined average energy for the carriers, the energy of each
individual carrier follows a probability distribution. The probability of
having an energy higher than the average falls off exponentially, with a
characteristic scale factor that is proportional to the temperature of the
transistors measured measured in kelvins. The hotter the device, the
wider the range of energies that the carriers can have.

That energy distribution is critical in the building of transistors. Even
with an energy barrier that is higher than the average energy of the car-
riers, some carriers will flow over the barrier and through the transistor;
the transistor will continue to conduct some current when we would like
it to be off. The energy scale is kT, where k is the Boltzmann constant and
T is the temperature in kelvins. We can convert it into voltage by divid-
ing energy by the charge on the particle, an electron in this case: q = 1.6
× 10–19 coulombs. kT/q is around 26 mV at room temperature. Thus, the
current through an off transistor drops exponentially with the height of
the energy barrier, falling by slightly less than a factor of 3 for each 26-mV
increase in the barrier height. The height of the barrier is normally called
the threshold voltage (Vth) of the transistor, and the leakage current can
be written as

I I e
q V V

kTds o

gs th=
(–)

,
α

nMOS

pMOS

OutputInput

Input A

Input B

Output

Vgnd

Vsupply

Vgnd

V
supply

FIGURE 3.4 Representative CMOS logic circuits.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

96	 THE FUTURE OF COMPUTING PERFORMANCE

where Io is a constant around 1 mA (microampere) per micrometer of tran-
sistor width at room temperature, Vgs is the voltage applied to the control
gate of the transistor, and a is a number greater than 1 (generally around
1.3) that represents how effectively the gate voltage changes the energy
barrier. From the equation, it is easy to see that the amount of leakage cur-
rent through an off transistor (Vgs = 0) depends heavily on the transistor’s
threshold voltage. The leakage current increases by about a factor of 10
each time the threshold voltage drops by another 100 mV.

Historically, Vths were around 800 mV, so the residual transistor leak-
age currents were so small that they did not matter. Starting from high
Vth values, it was possible to scale Vth, Vsupply, and L together. While leak-
age current grew exponentially with shrinking Vth, the contribution of
subthreshold leakage to the overall power was negligible as long as Vth
values were still relatively large. But ultimately by the 90-nm node, the
leakage grew to a point where it started to affect overall chip power.27 At
that point, Vth and Vsupply scaling slowed dramatically. 	

One approach to reduce leakage current is to reduce temperature,
inasmuch as this makes the exponential slope steeper. That is possible and
has been tried on occasion, but it runs into two problems. The first is that
one needs to consider the power and cost of providing a low-temperature
environment, which usually dwarf the gains provided by the system;
this is especially true for small or middle-size systems that operate in
an office or home environment. The second is related to testing, repair,
thermal cycling, and reliability of the systems. For those reasons, we will
not consider this option further in the present report. However, for suf-
ficiently large computing centers, it may prove advantageous to use liquid
cooling or other chilling approaches where the energy costs of operating
the semiconductor hardware in a low-temperature environment do not
outweigh the performance gains, and hence energy savings, that are pos-
sible in such an environment.

Vth stopped scaling because of increasing leakage currents, and Vsupply
scaling slowed to preserve transistor speed with a constant (Vsupply – Vth).
Once leakage becomes important, an interesting optimization between
Vsupply and Vth is possible. Increasing Vth decreases leakage current but
also makes the gates slower because the number of carriers that can flow
through a transistor is roughly proportional to the decreasing (Vsupply –
Vth). One can recover the lost speed by increasing Vsupply, but this also
increases the power consumed to switch the gate dynamically. For a given
gate delay, the lowest-power solution is one in which the marginal energy
cost of increasing Vdd is exactly balanced by the marginal energy savings

27 Edward J. Nowak, 2002, Maintaining the benefits of CMOS scaling when scaling bogs
down, IBM Journal of Research and Development 46(2/3): 169-180.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 97

of increasing Vth. The balance occurs when the static leakage power is
roughly 30 percent of the dynamic power dissipation.

This leakage-constrained scaling began at roughly the 130-nm tech-
nology node, and today both Vsupply and Vth scaling have dramatically
slowed; this has also changed how gate energy and speed scale with tech-
nology. The energy required to switch a gate is C multiplied by Vsupply

2,
which scales only as 1/k if Vsupply is not scaling. That means that technol-
ogy scaling reduces the power by k only if the scaled circuit is run at the
same frequency. That is, if gate speed continued to increase, half the die
(the size of the scaled circuit) would dissipate the same power as the
full die in the previous generation and would operate k times, that is
1.4 times, faster, much less than the three-fold performance increase we
have come to expect. Clearly, that is not optimal, so many designers are
scaling Vdd slightly to increase the energy savings. That works but lowers
the gate speeds, so some parallelism is needed just to recover from the
slowing single-thread performance. The poor scaling will eventually limit
the performance of CMPs.

Combining the lessons of the last several sections of this chapter,
the committee concluded that neither CMOS nor chip multiprocessors
can overcome the power limits facing modern computer systems. That
leads to another core conclusion of this report. Basic laws of physics and
constraints on chip design mean that the growth in the performance
of computer systems will become limited by their power and thermal
requirements within the next decade. Optimists might hope that new
technologies and new research could overcome that limitation and allow
hardware to continue to drive future performance scaling akin to what
we have seen with single-thread performance, but there are reasons for
caution, as described in the next section.

Finding: The growth in the performance of computing systems—even
if they are multiple-processor parallel systems—will become limited by
power consumption within a decade.

ADVANCED TECHNOLOGY OPTIONS

If CMOS scaling, even in chip-multiprocessor designs, is reaching
limits, it is natural to ask whether other technology options might get
around the limits and eventually overtake CMOS, as CMOS did to nMOS
and bipolar circuits in the 1980s. The answer to the question is mixed.28 It

28 Mark Bohr, Intel senior fellow, gave a plenary talk at ISSCC 2009 on scaling in an SOC
world in which he argues that “our challenge . . . is to recognize the coming revolutionary

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

98	 THE FUTURE OF COMPUTING PERFORMANCE

is clear that new technologies and techniques will be created and applied
to scaled technologies, but these major advances—such as high-k gate
dielectrics, low-K interconnect dielectrics, and strained silicon—will prob-
ably be used to continue technology scaling in general and not create a
disruptive change in the technology. Recent press reports make it clear, for
example, that Intel expects to be using silicon supplemented with other
materials in future generations of chips.29

A recent study compared estimated gate speed and energy of transis-
tors built with exotic materials that should have very high performance.30
Although the results were positive, the maximum improvement at the
same power was modest, around a factor of 2 for the best technology.
Those results should not be surprising. The fundamental problem is that
Vth does not scale, so it is hard to scale the supply voltage. The limitation
on Vth is set by leakage of carriers over an energy barrier, so any device
that modulates current by changing an energy barrier should have similar limi-
tations. All the devices used in the study cited above used the same cur-
rent-control method, as do transistors made from nanotubes, nanowires,
graphene, and so on. To get around that limitation, one needs to change
“the game” and build devices that work by different principles. A few
options are being pursued, but each has serious issues that would need
to be overcome before they could become practical.

One alternative approach is to stop using an energy barrier to con-
trol current flow and instead use quantum mechanical tunneling. That
approach eliminates the problem with the energy tails by using carriers
that are constrained by the energy bands in the silicon, which have fixed
levels. Because there is no energy tail, they can have, in theory, a steep
turnon characteristic. Many researchers are trying to create a useful device
of this type, but there are a number of challenges. The first is to create a
large enough current ratio in a small enough voltage range. The tunneling
current will turn on rapidly, but its increase with voltage is not that rapid.
Because a current ratio of around 10,000 is required, we need a device that
can transition through this current range in a small voltage (<400 mV).

changes and opportunities and to prepare to utilize them (Mark Bohr, 2009, The new era
of scaling in an SOC world, IEEE International Solid-State Circuits Conference, San Fran-
cisco, Cal., February 9, 2009, available online at http://download.intel.com/technology/
architecture-silicon/ISSCC_09_plenary_paper_Bohr.pdf).

29 Intel CEO Paul Ottelini was said to have declared that silicon was in its last decade as the
base material of the CPU (David Flynn, 2009, Intel looks beyond silicon for processors past
2017, Apcmag.com, October 29, 2009, available online at http://apcmag.com/intel-looks-
beyond-silicon-for-processors-past-2017.htm).

30 Donghyun Kim, Tejas Krishnamohan1, and Krishna C. Saraswat, 2008, Performance
evaluation of 15nm gate length double-gate n-MOSFETs with high mobility channels: III-V,
Ge and Si, Electrochemical Society Transactions 16(11): 47-55.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 99

Even if one can create a device with that current ratio, another problem
arises. The speed of the gates depends on the transistor current. So not
only do we need the current ratio, we also need devices that can supply
roughly the same magnitude of current as CMOS transistors provide.
Tunnel currents are often small, so best estimates indicate that tunnel
FETs might be much slower (less current) than in CMOS transistors. Such
slowness will make their adoption difficult.

Another group of researchers are trying to leverage the collective
effort of many particles together to get around the voltage limits of CMOS.
Recall that the operating voltage is set by the thermal energy (kT) divided
by the charge on one electron, because that is the charged particle. If the
charged particle had a charge of 2q, the voltage requirements would be
half what it is today. That is the approach that nerve cells use to operate
robustly at low voltages. The proteins in the voltage-activated ion chan-
nels have a charge that allows them to operate easily at 100 mV. Although
some groups have been trying to create paired charge carriers, most are
looking at other types of cooperative processes. The ion channels in nerves
go though a physical change, so many groups are trying to build logic
from nanorelays (nanomicroelectromechanical systems, or nano MEMS).
Because of the large number of charges on the gate electrode and the posi-
tive feedback intrinsic in electrostatic devices, it is theoretically possible
to have very low operating voltages; indeed, operation down to a couple
of tenths of a volt seems possible. Even as researchers work to overcome
that hurdle, there are a number of issues that need to be addressed. The
most important is determining the minimum operating voltage that can
reliably overcome contact sticking. It might not take much voltage to cre-
ate a contact, but if the two surfaces that connect stick together (either
because of molecular forces or because of microwelding from the current
flow), larger voltages will be needed to break the contact. Devices will
have large numbers of these structures, so the voltage must be less than
CMOS operating voltages at similar performance. The second issue is per-
formance and reliability. This device depends on a mechanically moving
structure, so the delay will probably be larger than that of CMOS (around
1 nanosecond), and it will probably be an additional challenge to build
structures that can move for billions of cycles without failing.

There is also promising research in the use of electron-spin-based
devices (spintronics) in contrast with the charge-based devices (electron-
ics) in use today. Spin-based devices—and even pseudospin devices, such
as the BiSFET31—have the potential to greatly reduce the power dissi-

31 Sanjay K.Banerjee, Leonard F. Register, Emanuel Tutuc, Dharmendar Reddy, and Allan
H. MacDonald, 2009, Bilayer pseudospin field-effect transistor (BiSFET): A proposed new
logic device, IEEE Electron Device Letters 30(2): 158-160.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

100	 THE FUTURE OF COMPUTING PERFORMANCE

pated in performing basic logic functions. However, large fundamental
and practical problems remain to be solved before spintronic systems
can become practical.32 Those or other approaches (such as using the
correlation of particles in ferro materials33) might yield a breakthrough.
However, given the complexity of today’s chips, with billions of working
transistors, it is likely to take at least a decade to introduce any new tech-
nology into volume manufacturing. Thus, although we should continue
to invest in technology research, we cannot count on it to save the day. It
is unlikely to change the situation in the next decade.

Recommendation: Invest in research and development to make com-
puter systems more power-efficient at all levels of the system, includ-
ing software, application-specific approaches, and alternative devices.
R&D should be aimed at making logic gates more power-efficient. Such
efforts should address alternative physical devices beyond incremental
improvements in today’s CMOS circuits.

APPLICATION-SPECIFIC INTEGRATED CIRCUITS

Although the shift toward chip multiprocessors will allow industry
to continue to scale the performance of CMPs based on general-purpose
processor cores for some time, general-purpose chip multiprocessors will
reach their own limit. As discussed earlier, CMP designers can trade off
single-thread performance of individual processors against lower energy
dissipation per instruction, thus allowing more instructions by multiple
processors while the same amount of energy is dissipated by the chip.
However, that is possible only within some range of energy performance.
Beyond some limit, lowering energy per instruction by processor sim-
plification can lead to overall CMP performance degradation because
processor performance starts to decrease faster than energy per instruc-
tion. That range is likely to be a factor of about 10, that is, energy per
instruction cannot be reduced by more than a factor of 10 compared with
the highest-performance single-processor chip, such as the Intel Pentium
4 or the Intel Itanium.34

When such limits are reached, we will need to create other approaches

32 In their article, cited in the preceding footnote, Banerjee et al. look at a promising technol-
ogy that still faces many challenges.

33 See, for instance, the research of Sayeef Salahuddin at the University of California,
Berkeley.

34 The real gain might be even smaller because with an increase in the number of proces-
sors on the chip, more energy will be dissipated by the memory system and interconnect, or
the performance of many parallel applications will scale less than linearly with the number
of processors.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 101

to create an energy-efficient computation unit. On the basis of the histori-
cal data, the answer seems clear: we will need to create more application-
optimized processing units. It is well known that tuning the hardware and
software toward a specific application or set of applications allows a more
energy-efficient solution. That work started with the digital watch many
decades ago and continues today. Figure 3.5 shows data for general-pur-
pose processors, digital-signal processors, and application-specific inte-
grated circuits (ASICs) from publications presented at the International
Solid-State Circuits Conference. The data are somewhat dated, but all
chips were designed for similar 0.18- to 0.25-µm CMOS technology, and
one can see that the ASIC designs are roughly 3 orders of magnitude more
energy-efficient than the general-purpose processors.

The main reason for such a difference is a combination of algorithm
and hardware tuning and the ability to reduce the use of large memory
structures as general interconnects: instead of a value’s being stored in a
register or memory, it is consumed by the next function unit. Doing only
what needs to be done saves both energy and area (see Figure 3.6).

More recently, researchers at Lawrence Berkeley National Laboratory,
interested in building peta-scale supercomputers for kilometer-scale cli-
mate modeling, argued that designing a specialized supercomputer based
on highly efficient customizable embedded processors can be attractive
in terms of energy cost.35 For example, they estimated that a peta-scale
climate supercomputer built with custom chips would consume 2.5 MW
of electric power whereas a computer with the same level of performance
but built with general-purpose AMD processors would require 179 MW.

The current design trend, however, is away from building custom-
ized solutions; increasing design complexity has caused the nonrecurring
engineering costs for designing these chips to grow rapidly. Typical ASIC
design requires $20-50 million, which limits the range of market segments
to very few with volumes high enough to justify the initial engineering
investment. Thus, if we do need to create more application-optimized
computing systems, we will need to create a new approach to design that
will allow a small team to create an application-specific chip at reasonable
cost. That leads to this chapter’s overarching recommendation. Efforts
are needed along multiple paths to deal with the power limitations that
modern scaling and computer-chip designs are encountering.

35 Michael Wehner, Leonid Oliker, and John Shalf, 2008, Towards ultra-high resolution
models of climate and weather, International Journal of High Performance Computing Ap-
plications 22(2): 149-165.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

102	 THE FUTURE OF COMPUTING PERFORMANCE

Chip

Year Paper Description Chip

Year Paper Description

1 1997 10.3 µP - S/390 11 1998 18.1 DSP -Graphics

2 2000 5.2 µP – PPC

(SOI)

12 1998 18.2 DSP -

Multimedia

3 1999 5.2 µP - G5 13 2000 14.6 DSP –

Multimedia

4 2000 5.6 µP - G6 14 2002 22.1 DSP –

Mpeg Decoder

5 2000 5.1 µP - Alpha 15 1998 18.3 DSP -

Multimedia

6 1998 15.4 µP - P6 16 2001 21.2 Encryption

Processor

7 1998 18.4 µP - Alpha 17 2000 14.5 Hearing Aid

Processor

8 1999 5.6 µP – PPC 18 2000 4.7 FIR for Disk

Read Head

9 1998 18.6 DSP -

StrongArm

19 1998 2.1 MPEG

Encoder

10 2000 4.2 DSP – Comm 20 2002 7.2 802.11a

Baseband

Microprocessors

DSPs

Dedicated

DSP’s

Microprocessors General
Purpose DSP Dedicated

PPC

NEC
DSP

WLAN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chip Number

E
n

er
g

y
(P

o
w

er
)

E
ff

ic
ie

n
cy

 (
 M

O
P

S
/m

W
)

0.01

0.1

1

10

100

3.5 bottomFIGURE 3.5 Energy efficiency comparison of CPUs, DSPs, and ASICs. SOURCE:
Robert Brodersen of the University of California, Berkeley, and Teresa Meng of
Stanford University. Data published at International Solid-State Circuits Confer-
ence (0.18- to 0.25-μm).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

POWER IS NOW LIMITING GROWTH IN COMPUTING PERFORMANCE	 103

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
op

 (m
m

2 p
er

 o
pe

ra
tio

n)

Chip Number

Microprocessors
General
Purpose DSP

Dedicated

3.6
FIGURE 3.6 Area efficiency comparison of CPUs, DSPs, and ASICs. SOURCE:
Robert Brodersen of the University of California at Berkeley and Teresa Meng of
Stanford University.

Recommendation: Invest in research and development of parallel archi-
tectures driven by applications, including enhancements of chip mul-
tiprocessor systems and conventional data-parallel architectures, cost-
effective designs for application-specific architectures, and support for
radically different approaches.

BIBLIOGRAPHY

Broderson, Robert. “Interview: A Conversation with Teresa Meng.” ACM Queue 2(6): 14-21,
2004.

Chabini, Noureddine, Ismaïl Chabini, El Mostapha Aboulhamid, and Yvon Savaria. “Meth-
ods for Minimizing Dynamic Power Consumption in Synchronous Designs with Mul-
tiple Supply Voltages.” In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 22(3): 346-351, 2003.

Copeland, Jack. Colossus: The Secrets of Bletchley Park’s Code-Breaking Computers. New York:
Oxford University Press, 2006.

International Technology Roadmap for Semiconductors (ITRS). “System Drivers.” ITRS 2007
Edition. Available online at http://www.itrs.net/Links/2007ITRS/Home2007.htm.

Kannan, Hari, Fei Guo, Li Zhao, Ramesh Illikkal, Ravi Iyer, Don Newell, Yan Solihin, and
Christos Kozyrakis. “From Chaos to QoS: Case Studies in CMP Resource Manage-
ment.” At the 2nd Workshop on Design, Architecture, and Simulation of Chip-Multi-
processors (dasCMP). Orlando, Fla., December 10, 2006.

Khailany, Brucek, William J. Dally, Scott Rixner, Ujval J. Kapasi, Peter Mattson, Jinyung
Namkoong, John D. Owens, Brian Towles, and Andrew Chang. “Imagine: Media Pro-
cessing with Streams.” IEEE Micro 21(2): 35-46, 2001.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

104	 THE FUTURE OF COMPUTING PERFORMANCE

Knight, Tom. 1986.“An Architecture for Mostly Functional Languages.” In Proceedings of
ACM Conference on LISP and Functional Programming. Cambridge, Mass., August 4-6,
1986, pp. 105-112.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. “Niagara: A 32-way
Multithreaded Sparc Processor.” IEEE Micro 25(2):21-29 2005, 2005.

Lee, Edward A. “The Problem with Threads.” IEEE Computer 39(5): 33-42, 2006.
Lee, Walter, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb, Vivek

Sarkar, and Saman Amarasinghe. “Space-time Scheduling of Instruction-level Parallel-
ism on a Raw Machine.” In Proceedings of the Eighth International Conference on Architec-
tural Support for Programming Language and Operating Systems. San Jose, Cal., October
3-7, 1998, pp. 46-57.

Lomet, David B., “Process Structuring, Synchronization, and Recovery Using Atomic Ac-
tions,” In Proceedings of the ACM Conference on Language Design for Reliable Software.
Raleigh, N.C., March 28-30, 1977, pp. 128-137.

Marković, Dejan, Borivoje Nikolić, and Robert W. Brodersen. “Power and Area Minimiza-
tion for Multidimensional Signal Processing.” IEEE Journal of Solid-State Circuits 42(4):
922-934, 2007.

Nowak, Edward J. “Maintaining the Benefits of CMOS Scaling When Scaling Bogs Down.”
IBM Journal of Research and Development 46(2/3):169-180, 2002.

Rixner, Scott, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo López-Lagunas,
Peter R. Mattson, and John D. Owens. “A Bandwidth-Efficient Architecture for Media
Processing.” In Proceedings of the International Symposium on Microarchitecture. Dallas,
Tex.: November 30-December 2, 1998, pp. 3-13, 1998.

Rusu, Stefan, Simon Tam, Harry Muljono, David Ayers, and Jonathan Chang. “A Dual-core
Multi-threaded Xeon Processor with 16MB L3 Cache.” In IEEE International Solid-State
Circuits Conference Digest of Technical Papers. San Francisco, Cal., February 6-9, 2006,
pp. 315-324.

Sandararajan, Vijay, and Keshab Parhi. “Synthesis of Low Power CMOS VLSI Circuits Using
Dual Supply Voltages.” In Proceedings of the 35th Design Automation Conference. New
Orleans, La.., June 21-25, 1999, pp. 72-75.

Sutter, Herb, and James Larus. “Software and the Concurrency Revolution.” ACM Queue
3(7): 54-62, 2005.

Taur, Yuan, and Tak H. Ning, Fundamentals of Modern VLSI Devices, Ninth Edition, New York:
Cambridge University Press, 2006.

Thies, Bill, Michal Karczmarek, and Saman Amarasinghe. “StreamIt: A Language for Stream-
ing Applications.” In Proceedings of the International Conference on Compiler Construction.
Grenoble, France, April 8-12, 2002, pp. 179-196.

Wehner, Michael, Leonid Oliker, and John Shalf. “Towards Ultra-High Resolution Models of
Climate and Weather.” International Journal of High Performance Computing Application
22(2): 149-165, 2008.

Zhao, Li, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Makineni, and Don Newell.
“CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms.” In Proceed-
ings of the 16th International Conference on Parallel Architecture and Compilation Techniques.
Brasov, Romania, September 15-19, 2007, pp. 339-352.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

4

The End of Programming
as We Know It

Future growth in computing performance will have to come from
software parallelism that can exploit hardware parallelism. Pro-
grams will need to be expressed by dividing work into multiple

computations that execute on separate processors and that communicate
infrequently or, better yet, not at all. This chapter first explains how cur-
rent software reaped the benefits of Moore’s law and how much of the
resulting software is not well suited to parallelism. It then explores the
challenges of programming parallel systems. The committee explores
examples of software and programming parallelism successes and possi-
bilities for leveraging these successes, as well as examples of limitations of
parallelism and challenges to programming parallel systems. The sudden
shift from single-core to multiple-core processor chips requires a dramatic
change in programming, but software developers are also challenged by
the continuously widening gap between memory system and processor
performance. That gap is often referred to as the “memory wall,” but it
reflects a continuous rather than discrete shift in the balance between the
costs of computational and memory operations and adds to the difficulty
of obtaining high performance. To optimize for locality, software must be
written to minimize both communication between processors and data
transfers between processors and memory.

105

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

106	 THE FUTURE OF COMPUTING PERFORMANCE

MOORE’S BOUNTY: SOFTWARE ABSTRACTION

Moore’s bounty is a portable sequential-programming model.1 Pro-
grammers did not have to rewrite their software—software just ran faster
on the next generation of hardware. Programmers therefore designed
and built new software applications that executed correctly on current
hardware but were often too compute-intensive to be useful (that is, it
took too long to get a useful answer in many cases), anticipating the next
generation of faster hardware. The software pressure built demand for
next-generation hardware. The sequential-programming model evolved
in that ecosystem as well. To build innovative, more capable sophisticated
software, software developers turned increasingly to higher-level sequen-
tial-programming languages and higher levels of abstraction (that is, the
reuse of libraries and component software for common tasks). Moore’s
law helped to drive the progression in sequential-language abstractions
because increasing processor speed hid their costs.

For example, early sequential computers were programmed in assem-
bly language. Assembly-language statements have a one-to-one mapping
to the instructions that the computer executes. In 1957, Backus and his
colleagues at IBM recognized that assembly-language programming was
arduous, and they introduced the first implementation of a high-level
sequential scientific computing language, called Fortran, for the IBM 704
computer.2 Instead of writing assembly language, programmers wrote
in Fortran, and then a compiler translated Fortran into the computer’s
assembly language. The IBM team made the following claims for that
approach:

1.	 Programs will contain fewer errors because writing, reading, and
understanding Fortran is easier than performing the same tasks
in assembly language.

2.	 It will take less time to write a correct program in Fortran because
each Fortran statement is an abstraction of many assembly
instructions.

3.	 The performance of the program will be comparable with that of
assembly language given good compiler technology.

1 Jim Larus makes this argument in an article in 2009, Spending Moore’s dividend, Com-
munications of the ACM 52(5): 62-69.

2 J.W. Backus, R.I. Beeber, S. Best, R. Goldberg, L.M. Haibt, H.L. Herrick, R.A. Nelson, D.
Sayre, P.B. Sheridan, H. Stern, Ziller, R.A. Hughes, and R. Nutt, 1957, The Fortran automatic
coding system, Proceedings of the Western Joint Computer Conference, Los Angeles, Cal.,
pp. 187-198, available online at http://archive.computerhistory.org/resources/text/For-
tran/102663113.05.01.acc.pdf.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 107

The claimed benefits of high-level languages are now widely accepted.
In fact, as computers got faster, modern programming languages added
more and more abstractions. For example, modern languages—such as
Java, C#, Ruby, Python, F#, PHP, and Javascript—provide such features
as automatic memory management, object orientation, static typing,
dynamic typing, and referential transparency, all of which ease the pro-
gramming task. They do that often at a performance cost, but companies
chose these languages to improve the correctness and functionality of
their software, which they valued more than performance mainly because
the progress of Moore’s law hid the costs of abstraction. Although higher
levels of abstraction often result in performance penalties, the initial tran-
sition away from hand-coded assembly language came with performance
gains, in that compilers are better at managing the complexity of low-level
code generation, such as register allocation and instruction scheduling,
better than most programmers.

That pattern of increases in processor performance coupling with
increases in the use of programming-language abstractions has played
out repeatedly. The above discussion describes the coupling for general-
purpose computing devices, and it is at various stages in other hardware
devices, such as graphics hardware, cell phones, personal digital assis-
tants, and other embedded devices.

High-level programming languages have made it easier to create
capable, large sophisticated sequential programs. During the height of
the synergy between software and increasing single-processor speeds in
1997, Nathan Myhrvold, former chief technology officer for Microsoft,
postulated four “laws of software”:3

1.	 Software is a gas. Software always expands to fit whatever con-
tainer it is stored in.

2.	 Software grows until it becomes limited by Moore’s law. The
growth of software is initially rapid, like gas expanding, but is
inevitably limited by the rate of increase in hardware speed.

3.	 Software growth makes Moore’s law possible. People buy new
hardware because the software requires it.

4.	 Software is limited only by human ambition and expectation.
We will always find new algorithms, new applications, and new
users.

3 These laws were described in a 1997 presentation that the Association for Computing
Machinery hosted on the next 50 years of computing (Nathan P. Myhrvold, 1997, The next
fifty years of software, Presentation, available at http://research.microsoft.com/en-us/um/
siliconvalley/events/acm97/nmNoVid.ppt).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

108	 THE FUTURE OF COMPUTING PERFORMANCE

Myhrvold’s analysis explains both the expansion of existing applica-
tions and the explosive growth in innovative applications. Some of the
code expansion can be attributed to a lack of attention to performance
and memory use: it is often easier to leave old and inefficient code in a
system than to optimize it and clean it up. But the growth in performance
also enabled the addition of new features into existing software systems
and new paradigms for computing. For example, Vincent Maraia reports
that in 1993, the Windows NT 3.1 operating system (OS) consisted of 4-5
million lines of code and by 2003, the Windows Server OS had 50 mil-
lion lines, 10 times as many.4 Similarly, from 2000 to 2007, the Debian 2.2
Linux OS grew from about 59 to 283 million lines in version 4.0, about 5
times as many.5 Those operating systems added capabilities, such as better
reliability, without slowing down the existing features, and users experi-
enced faster operating system startup time and improvement in overall
performance. Furthermore, the improvements described by Moore’s law
enabled new applications in such domains as science, entertainment, busi-
ness, and communication. Thus, the key driver in the virtuous cycle of
exploiting Moore’s law is that applications benefited from processor per-
formance improvements without those applications having to be adapted
to changes in hardware. Programs ran faster on successive generations of
hardware, allowing new features to be added without slowing the application
performance.

The problem is that much of the innovative software is sequential
and is designed to execute on only one processor, whereas the previous
chapters explained why all future computers will contain multiple proces-
sors. Thus, current programs will not run faster on successive generations
of hardware.6 The shift in the hardware industry has broken the perfor-
mance-portability connection in the virtuous cycle—sequential programs
will not benefit from increases in processor performance that stem from
the use of multiple processors. There were and are many problems—for
example, in search, Web applications, graphics, and scientific computing—
that require much more processing capability than a single processor pro-

4 Vincent Maraia, The Build Master: Microsoft’s Software Configuration Management Best
Practices, Addison-Wesley Professional, 2005.

5 Debian Web site, Wikipedia.com.http://en.wikipedia.org/wiki/Debian.
6 Successive generations of hardware processors will not continue to increase in per-

formance as they have in the past; this may be an incentive for programmers to develop
tools and methods to optimize and extract the most performance possible from sequential
programs. In other words, working to eliminate the inefficiencies in software may yield im-
pressive gains given that past progress in hardware performance encouraged work on new
functions rather than optimizing existing functions. However, optimizing deployed software
for efficiency will ultimately reach a point of diminishing returns and is not a long-term
alternative to moving to parallel systems for more performance.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 109

vides. The developers of the applications and programming systems have
made much progress in providing appropriate abstractions (discussed in
detail below) but not enough in that most developers and programming
systems currently use the sequential model. Conventional sequential pro-
grams and programming systems are ill equipped to support parallel
programming because they lack abstractions to deal with the problems
of extracting parallelism, synchronizing computations, managing locality,
and balancing load. In the future, however, all software must be able to
exploit multiple processors to enter into a new virtuous cycle with succes-
sive generations of parallel hardware that expands software capabilities
and generates new applications.7

Finding: There is no known alternative to parallel systems for sustain-
ing growth in computing performance; however, no compelling pro-
gramming paradigms for general parallel systems have yet emerged.

To develop parallel applications, future developers must invent new
parallel algorithms and build new parallel applications. The applica-
tions will require new parallel-programming languages, abstractions,
compilers, debuggers, execution environments, operating systems, and
hardware virtualization systems. We refer to those tools collectively as
a programming system. Future programming systems will need to take
advantage of all those features to build applications whose performance
will be able to improve on successive generations of parallel hardware
that increase their capabilities by increasing the number of processors. In
contrast, what we have today are conventional sequential-programming
systems based on two abstractions that are fundamentally at odds with
parallelism and locality. First, they tie the ordering of statements in a
program to a serial execution order of the statements. Any form of paral-
lelism violates that model unless it is unobservable. Second, conventional
programs are written on the assumption of a flat, uniform-cost global
memory system. Coordinating locality (minimizing the number of expen-
sive main memory references) is at odds with the flat model of memory
that does not distinguish between fast and slow memory (for example,
on and off chip). Parallelism and locality are also often in conflict in that

7 Indeed, the compiler community is bracing for the challenges ahead. On p. 62 of their
book, Mary Hall et al. observe that “exploiting large-scale parallel hardware will be essential
for improving an application’s performance or its capabilities in terms of execution speed
and power consumption. The challenge for compiler research is how to enable the exploi-
tation of the power [that is, performance, not thermals or energy] of the target machine,
including its parallelism, without undue programmer effort.” (Mary Hall, David Padua,
and Keshav Pingali, 2009, Compiler research: The next 50 years, Communications of the
AC 52(2): 60-67.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

110	 THE FUTURE OF COMPUTING PERFORMANCE

locality will encourage designs that put all data close to a single processor
to avoid expensive remote references, whereas performing computations
in parallel requires spreading data among processors.

SOFTWARE IMPLICATIONS OF PARALLELISM

There are five main challenges to increasing performance and energy
efficiency through parallelism:

·	 Finding independent operations.
·	 Communicating between operations.
·	 Preserving locality between operations.
·	 Synchronizing operations.
·	 Balancing the load represented by the operations among the sys-

tem resources.

The first challenge in making an application parallel is to design a
parallel algorithm to solve the problem at hand that provides enough
independent operations to keep the available parallel resources busy.
Some demanding problems have large amounts of data parallelism—that
is, a single operation can be performed for every data element of a set,
and the operations are independent of one another (or can be made so
via transformations). Some problems also have moderate amounts of
control or task parallelism in which different operations can be performed
in parallel on different data items. In both task and data parallelism, an
operation may comprise a sequence of instructions. For some applica-
tions, the parallelism is limited by a sequence of dependent operations,
and performance is limited not by throughput but by the latency along
this critical path.8

The second challenge, communication, occurs when computations
that execute in parallel are not entirely independent and must commu-
nicate. Some demanding problems cannot be divided into completely
independent parallel tasks, but they can be divided into parallel tasks that
communicate to find a solution cooperatively. For example, to search for
a particular object in an image, one may divide the image into pieces that
are searched by independent tasks. If the object crosses pieces, the tasks
will need to communicate. The programming system can perform com-
munication through inputs and outputs along dependences by reading
and writing to shared data structures or by explicitly sending messages

8 This limit on parallelism is often called Amdahl’s law, after Gene Amdahl. For more on
this law, see Box 2.4.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 111

between parallel operations. Even in the implicit case, some data will
need to transfer between processors to allow access to shared data.

Locality, the third challenge, reduces the costs associated with com-
munication by placing two operations that access the same data near
each other in space or in time. Scheduling operations nearby in space on
the same processor avoids communication entirely, and placing them on
nearby processors may reduce the distance that data need to travel. Sched-
uling operations nearby in time shortens the lifetime of data produced
by one operation and consumed by another; this reduces the volume of
live data and allows the data to be captured in small on-chip memories.
Locality avoids the need for communication between processors, but is
also critical for avoiding another form of communication: the movement
of data between memory and processors.

The fourth challenge, synchronization, is also needed to provide
cooperation between parallel computations. Some operations must be
performed in a particular order to observe dependence. Other operations
may be performed in an arbitrary order but must be grouped so that some
sequences execute atomically (without interference from other sequences).
Synchronization is used to serialize parts of an otherwise parallel execu-
tion, and there is often a tension between the performance gained from
parallelism and the correctness ensured by synchronization. For example,
barrier synchronization forces a set of parallel computations to wait until
all of them reach the barrier. Locks are used to control access to shared
data structures by allowing only one thread to hold a lock at a given time.
Unnecessary synchronization may occur when an entire data structure is
locked to manipulate one element or when a barrier is placed on every
loop iteration even when the iterations are independent.

Finally, load balancing involves distributing operations evenly among
processors. If the load becomes unbalanced because some processors have
more work than others or take more time to perform their work, other
processors will be idle at barrier synchronization or when program execu-
tion ends. The difficulty of load balancing depends on the characteristics
of the application. Load balancing is trivial if all parallel computations
have the same cost, more difficult if they have different costs that are
known in advance, and even more difficult if the costs are not known
until the tasks execute.

Locality’s Increasing Importance

Effective parallel computation is tied to coordinating computations
and data; that is, the system must collocate computations with their data.
Data are stored in memory. Main-memory bandwidth, access energy, and
latency have all scaled at a lower rate than the corresponding characteris-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

112	 THE FUTURE OF COMPUTING PERFORMANCE

tics of processor chips for many years. In short, there is an ever-widening
gap between processor and memory performance. On-chip cache memo-
ries are used to bridge the gap between processor and memory perfor-
mance partially. However, even a cache with the best algorithm to predict
the next operands needed by the processor does not have a success rate
high enough to close the gap effectively. The advent of chip multiproces-
sors means that the bandwidth gap will probably continue to widen in
that the aggregate rate of computation on a single chip will continue to
outpace main-memory capacity and performance improvements. The gap
between memory latency and computation is also a limitation in software
performance, although this gap will not grow with multicore technology,
inasmuch as clock rates are relatively constant. In addition to performance
concerns, the movement of data between cores and between the proces-
sor and memory chips consumes a substantial fraction of a system’s total
power budget. Hence, to keep memory from severely limiting system
power and performance, applications must have locality, and we must
increase the amount of locality. In other words, the mapping of data and
computation should minimize the distance that data must travel.

To see the importance of locality in future systems, it is instructive
to examine the relative energy per operation for contemporary systems
and how it is expected to scale with technology. In a contemporary 40-nm
CMOS process, performing a 64-bit floating-point multiply-add (FMA)
operation requires that the energy of the operation, Eop, be equal to 100 pJ.
The energy consumed in moving data over 1 mm of wire, Ew, is 200 fJ/
bit-mm, or 12.8 pJ/W-mm (for 64-bit words). Moving data off-chip takes
energy, EP, of 2 pJ/bit (128 pJ/W) or more. Supplying the four operands
(three input and one output) of the FMA operation from even 1 mm away
takes 51.2 pJ—half as much energy as doing the operation itself. Sup-
plying the data globally on-chip—say, over a distance of 20 mm—takes
about 1 nJ, an order of magnitude more energy than doing the operation.
Moving data off-chip is comparably expensive. Thus, to avoid having the
vast majority of all energy be spent in moving data, it is imperative that
data be kept local.

Locality is inherently present in many algorithms, but the compu-
tation must be properly ordered to express locality. For dense matrix
computations, ordering is usually expressed by blocking the algorithm.
For example, consider multiplying two 10,000 × 10,000 matrices. Using
the straightforward algorithm, it requires performing 2 × 1012 arithmetic
operations. If we perform the operations in a random order, there is little
locality, and 4 × 1012 memory references will be required to compute the
result, so both arithmetic operations and data access grow with the cube
of the matrix dimension. Even with a natural implementation based on
three nested loops, data accesses will grow with the cube of the matrix

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 113

dimension, because one of the matrices will be accessed in an order that
allows little reuse of data in the cache. However, if we decompose the
problem into smaller matrix multiplication problems, we can capture
locality, reusing each word fetched from memory many times.

Suppose we have a memory capable of holding 256 kB (32 kW) 1
mm from our floating-point unit. The local memory is large enough to
hold three 100 × 100 submatrices, one for each input operand and one
for the partial result. We can perform a 100 × 100 matrix multiplication
entirely out of the local memory, performing 2 × 106 operations with only
4 ×104 memory references—a ratio of 50 operations per reference. We can
apply this blocking recursively. If there is aggregate on-chip memory of
32 MB (4 MW), we can hold three 1,000 × 1,000 submatrices at this level
of the storage hierarchy. In a seminal paper by Hong and Kung, that idea
was proved to be optimal for matrix multiplication in the sense that this
kind of blocked algorithm moves the minimum amount of data pos-
sible between processor and memory system.9 Other array computations,
including convolutions and fast Fourier transformations, can be blocked
in this manner—although with different computation-to-communication
ratios—and there are theoretical results on the optimality of communi-
cation for several linear algebra problems for both parallel and serial
machines.

The recursive nature of the blocked algorithm also led to the notion
of “cache-oblivious” algorithms, in which the recursive subdivision pro-
duces successively smaller subproblems that eventually fit into a cache or
other fast memory layer.10 Whereas other blocked algorithms are imple-
mented to match the size of a cache, the oblivious algorithms are opti-
mized for locality without having specific constants, such as cache size, in
their implementation. Locality optimizations for irregular codes, such as
graph algorithms, can be much more difficult because the data structures
are built with pointers or indexed structures that lead to random memory
accesses. Even some of the graph algorithms have considerable locality
that can be realized by partitioning the graph subgraphs that fit into a
local memory and reorganizing the computations to operate on each
subgraph with reuse before moving on to the next subgraph. There are
many algorithms and software libraries for performing graph partition-

9 See Hong Jia-Wei and H.T. Kung, 1981, I/O complexity: The red-blue pebble game, Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, Milwaukee,
Wis., May 11-13, 1981, pp. 326-333

10 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran, 1999,
Cache-oblivious algorithms, Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science, New York, N.Y., October 17-19, 1999, pp. 285-297.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

114	 THE FUTURE OF COMPUTING PERFORMANCE

ing that minimize edge cuts for locality but with equal subgraph sizes for
load-balancing.11

A key challenge in exploiting locality is developing abstractions for
locality that allow a programmer to express the locality in a program
independent of any particular target machine. One promising approach,
used by the Sequoia programming system,12 is to present the programmer
with an abstract memory hierarchy. The programmer views the machines
as a tree of memories; the number of levels in the tree and the size of
the memory at each level are unspecified. The programmer describes
a decomposition method that subdivides the problem at one level into
smaller problems at the next level and combines the partial solutions
and a leaf method that solves the subproblem at the lowest level of the
hierarchy. An autotuner then determines the number of times to apply
the decomposition method and the appropriate data sizes at each level
to map the program optimally onto a specific machine. The result is a
programming approach that gives good locality with portability among
diverse target machines.

Software Abstractions and Hardware Mechanisms Needed

Simplifying the task of parallel programming requires software
abstractions that provide powerful mechanisms for synchronization, load
balance, communication, and locality, as described above, while hiding
the underlying details. Most current mechanisms for these operations are
low-level and architecture-specific. The mechanisms must be carefully
programmed to obtain good performance with a given parallel architec-
ture, and the resulting programs are typically not performance-portable;
that is, they do not exhibit better performance with a similar parallel
architecture that has more processors. Successful software abstractions are
needed to enable programmers to express the parallelism that is inherent
in a program and the dependences between operations and to structure
a program to enhance locality without being bogged down in low-level
architectural details. Which abstractions make parallel programming con-
venient and result in performance-portable programs is an open research
question. Successful abstractions will probably involve global address
spaces, accessible ways to describe or invoke parallel operations over

11 For one example of a graph-partitioning library, see George Karypis and Vipin Kumar,
1995, METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Techni-
cal report, Minneapolis, Minn.: University of Minnesota.

12 See Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez, Daniel Reiter
Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex Aiken, William J. Dally, and Pat
Hanrahan, 2006, Sequoia: Programming the memory hierarchy, Proceedings of the ACM/
IEEE Conference on Supercomputing, Tampa, Fla., November 11-17, 2006.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 115

collections of data, and constructs for atomic operations. Abstractions
may also involve abstract machine models that capture resource costs
and locality while hiding details of particular machines. Abstractions
for parallelism are typically encapsulated in a programming system and
execution model.

At the same time, reasonable performance requires efficient underly-
ing hardware mechanisms, particularly in cases that need fine-grained
communication and synchronization. Some parallel machines require
interactions between processors to occur by means of high-overhead
message transfers or by passing data via shared memory locations. Such
mechanisms are useful but can be cumbersome and restrict the granu-
larity of parallelism that can be efficiently exploited. Resolving those
details will require research, but successful mechanisms will enable low-
overhead communication and synchronization and will facilitate migra-
tion of data and operations to balance load. There are several emerging
directions in hardware to support parallel computations. It is too early to
know which hardware architecture or architectures will prove most suc-
cessful, but several trends are evident:

·	 Multiple processors sharing a memory. This direction was taken
by chip multiprocessors and was the primary approach used
by semiconductor companies once they could not continue to
increase their single-processor products.

·	 Multiple computers interconnected via a high-speed communica-
tion network. When very large computation facilities are needed
for research or business, it is impractical for all the processors to
share a memory, and a high-speed interconnect is used to tie the
hundreds or thousands of processors together in a single system.
Data centers use this model.

·	 A single processor containing multiple execution units. In this
architecture, a single processor, or instruction stream, controls an
array of similar execution units. This is sometimes termed single-
instruction stream multiple-data (SIMD) architecture.

·	 Array of specialized processors. This approach is effective for
executing a specialized task, such as a graphic or video process-
ing algorithm. Each individual processor and its interconnections
can be tailored and simplied for the target application.

·	 Field-programmable gate arrays (FPGAs) used in some parallel
computing systems. FPGAs with execution units embedded in
their fabric can yield high performance because they exploit local-
ity and program their on-chip interconnects to match the data
flow of the application.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

116	 THE FUTURE OF COMPUTING PERFORMANCE

That list of parallel architectures is not exhaustive, and some systems
will use a combination of them. We expect current versions of the architec-
tures to evolve substantially to support the most promising programming
systems, and we may see entirely new hardware architectures in support
of not-yet-developed programming approaches to parallel computing.

An encouraging development is that programs of research in paral-
lelism being initiated or revived in a few research universities. Some
research efforts already under way are aimed at some of the challenges
that this report outlines. For example, in 2008, the University of Califor-
nia, Berkeley, and the University of Illinois at Urbana–Champaign were
awarded research grants from Microsoft and Intel to establish Universal
Parallel Computing Research Centers. In 2009, Stanford University—with
industrial funding from Sun, AMD, NVIDIA, and other companies—
started the Pervasive Parallelism Laboratory. Those centers at leading
research universities are a good beginning to address the broad and
challenging research agenda that we outline below, but they are just a
beginning. History shows that the development of technology similar to
that needed for parallelism often takes a decade or more. The results of
such research are needed now, so the research is starting a decade late.
Moreover, there is no guarantee that there is an answer to the challenges.
If there is not a good answer, we need to know that as soon as possible
so that we can push innovation in some other direction in a timely way.

THE CHALLENGES OF PARALLELISM

Parallelism has long been recognized as promising to achieve greater
computing performance. Research on parallel hardware architectures
began in earnest in the 1960s.13 Many ways of organizing computers
have been investigated, including vector machines, SIMD machines,
shared-memory multiprocessors, very-long-instruction-word machines,
data-flow machines, distributed-memory machines, nonuniform-memory
architectures, and multithreaded architectures. As described elsewhere
in this report, single-processor performance has historically been mak-
ing it difficult exponentially for companies promoting specialized par-
allel architectures to succeed. Over the years, however, ideas that have
originated or been refined in the parallel-computer architecture research
community have become standard features on PC processors, such as
having SIMD instructions, a small degree of instruction-level parallelism,
and multiple cores on a chip. In addition, higher performance has been
obtained by using a network of such PC or server processors both for

13 W. J. Bouknight, Stewart A. Denenberg, David F. McIntyre, J.M. Randal, Amed H. Sameh,
and Daniel L. Slotnick, 1972, The Illiac IV system, Proceedings of the IEEE 60(4): 369-388.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 117

scientific computing and to serve an aggregate workload of independent
tasks, such as Web services. The recent graphical-processing-unit chips
also borrow ideas from the body of work on parallel hardware.

As noted previously, it has long been clear that one of the major
hurdles in parallel computing is software development. Even if there
were sufficient and appropriate software abstractions to enable parallel
programming (Google’s MapReduce, discussed below, is an example of a
successful approach for a particular class of problems), characteristics of
the application under consideration can still pose challenges. To exploit
parallelism successfully, several things are necessary:

·	 The application under consideration must inherently have par-
allelism. Not all programs are amenable to parallelization, but
many computationally intensive problems have high-level tasks
that are largely independent or they are processing large datasets
in which the operations on each individual item are mostly inde-
pendent. Scientific simulations and graphics applications, for
example, often have substantial parallelism to exploit because
they perform operations on large arrays of data. Web servers
process requests for a large set of users that involve mostly inde-
pendent operations.

·	 Assuming that the application under consideration has sufficient
parallelism, the parallelism must be identified. Either the pro-
grammer explicitly specifies the parallel tasks when developing
the application or the system needs to infer the parallelism and
automatically take advantage of it. If the parallelism involves
tasks that are not entirely independent, the programmer or sys-
tem also needs to identify communication and synchronization
between tasks.

·	 Efficiency needs to be taken into account, inasmuch as it is not
unusual for an initial parallel implementation to run more slowly
than its serial counterpart. Parallelism inevitably incurs overhead
costs, which include the time to create parallelism and to com-
municate and synchronize between parallel components. Some
applications do not divide neatly into tasks that entail equal
amounts of work, so the load must be balanced and any overhead
associated with load-balancing managed. Locality is no longer a
question of working within a single memory hierarchy, but one
of managing the distribution of data between parallel tasks. It is
important that multiprocessors exploit coarse-grain parallelism
to minimize synchronization and communication overhead and
exploit locality. It is this phase that naturally turns programmers

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

118	 THE FUTURE OF COMPUTING PERFORMANCE

into performance engineers, making them more aware of all per-
formance issues in the application.

·	 Last, but definitely not least, the parallel program must be correct.
Parallelism introduces a new class of errors due to the creation
of parallel computations for work that is not independent or to
failure to communicate or synchronize correctly between parallel
tasks. Parallelism also introduces new problems into testing and
debugging, in that program behavior can depend on the sched-
ule of execution of different processes. Those dependences make
it difficult to test programs thoroughly and to reproduce faulty
behavior when it is observed. Parallel programming approaches
can be restricted to eliminate some of the problems by requir-
ing, for example, that programs communicate only through syn-
chronous messaging or that a compiler verify the independence
of loop iterations before running them in parallel. But those
approaches can limit the effectiveness of parallel computing by
adding overhead or restricting its use. Writing correct sequential
code is hard enough, but the complexity of parallel programming
is so high that only a small percentage of the programmers in the
industry today are competent at it.

The software industry has invested a lot of time and effort in creating the
existing software base. In the past, when growth in computing perfor-
mance was on its exponentially rising curve (see previous chapters), most
applications would automatically run faster on a faster machine.

There has been a lot of research to try to minimize the cost of soft-
ware development for parallel machines. There will be a major prize if
we succeed in doing it in a way that allows reuse of the large software-
code base that has been developed over many years. Automatic paral-
lelization has some successes, such as instruction-level parallelism and
fine-grained loop-level parallelism in FORTRAN programs operating on
arrays. The theory for automatically transforming code of this sort is well
understood, and compilers often rely on substantial code restructuring
to run effectively. In practice, the performance of the programs is quite
sensitive to the particular details of how the program is written, and these
approaches are more effective in fine-grained parallelism than in the more
useful coarse-grained parallelism. However, there has not been sufficient
demand in the parallel-software tool industry to sustain research and
development.

Most programs, once coded sequentially, have many data depen-
dences that prevent automatic parallelization. Various studies that ana-
lyzed the inherent dependences in a sequential program have found a lot
of data dependences in such programs. Sometimes, a data dependence is

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 119

a result of a reuse of memory locations, which may be eliminated through
analysis. It is perhaps not surprising that programs written with a sequen-
tial-machine model cannot automatically be parallelized. Researchers
have also explored whether expressing computation in a different way
may expose the parallelism inherent in a program more readily. In data-
flow and functional programs, the memory is not reused, and computa-
tion can proceed as soon as the operands are ready. That translates to
abundant parallelism but adds substantial cost in memory use and copy-
ing overhead because data structures cannot be updated in place. Analy-
sis is then necessary to determine when memory can be reused, which is
the case if the program will no longer touch the old structure. Optimizing
a functional language then becomes a problem of replacing the creation
of new data structures with in-place updates of old ones. The analysis
requires the discovery of all potential read accesses to a data structure
before it can be reclaimed, which in turn necessitates analyzing aliases to
detect whether two expressions can refer to the same value. Such analysis
is no easier than automatic parallelization in that both require accurate
aliasing information, which is not practical for problems with complex
pointer-based data structures.

THE STATE OF THE ART OF PARALLEL PROGRAMMING

Notwithstanding the challenges presented by parallelism, there have
been some success stories over the years. This section describes several
parallel approaches to illustrate the array of applications to which par-
allelism has been applied and the array of approaches that are encom-
passed under the term parallelism. None of the approaches described here
constitutes a general-purpose solution, and none meets all the emerg-
ing requirements (described above) that the performance slowdown and
new architectures will require; but they may offer lessons for moving
forward. Historically, the success of any given programming approach
has been strongly influenced by the availability of hardware that is well
matched to it. Although there are cases of programming systems that
run on hardware that is not a natural fit, the trends in parallel hardware
have largely determined which approaches are successful. The specific
examples discussed here are thread programming for shared memory,
message-passing interface, MapReduce (used to exploit data parallelism
and distributed computation), and ad hoc distributed computation (as
in such efforts as SETI@home). The latter is not normally thought of as a
parallel-programming approach, but it is offered here to demonstrate the
variety of approaches that can be considered parallelism.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

120	 THE FUTURE OF COMPUTING PERFORMANCE

Thread Programming for Shared Memory

The concept of independent computations within a shared-memory
space as threads is popular for programming of parallel shared-memory
systems and for writing applications that involve asynchronous interac-
tion with the environment—for example, user interfaces in which one
thread of a computation is waiting for a response from the user while
another thread is updating a display and a third may be performing
calculations on the basis of earlier input. In the latter case, there may be
only a single processor in the system and therefore no real parallelism, but
the thread execution is interleaved, making the computations appear to
be concurrent. And the performance advantage is real, in the same sense
that allowing someone with only one item to go ahead in a supermarket
line can result in a net “system throughput” for all concerned. The word
thread is used in a variety of ways in different programming systems, but
in general two properties are associated with threads: the ability to create
parallel work dynamically, so the number of threads in a given execution
may vary over time; and the ability of threads to read and write shared
variables.

Threads require little or no language modification but only a small set
of primitive features to create and destroy parallelism and synchroniza-
tion to control access to shared variables. The most common system-level
library for threads is the POSIX Thread, or “PThread” library, which
allows a programmer to create a parallel computation by providing a
function and an argument that will be passed to that function when it
begins executing. Threads are first-class values in the language, so they
can be named, stored in data structures, and passed as arguments, and
one can wait for completion of a thread by performing a “join” operation
on the thread. The PThread library contains synchronization primitives
to acquire and release locks, which are used to give one thread exclusive
access to shared data structures. There are other features of thread cre-
ation and synchronization, but the set of primitives is relatively small
and easy to learn.

Although the set of primitives in PThreads is small, it is a low-level
programming interface that involves function pointers, loss of type infor-
mation on the arguments, and manual error-checking. To address those
issues, there are several language-level versions of threads that provide a
more convenient interface for programmers. For example, the Java thread
model and more recent Thread Building Blocks (TBB) library for C++ use
object-oriented programming abstractions to provide thread-management
capabilities in those languages. Java threads are widely use for program-
ming user interfaces and other concurrent programming problems, as
described above, but the runtime support for true parallelism is more
recent, so there is less experience in using Java threads for parallel pro-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 121

gramming. TBB is also relatively recent but has demonstrated support in
both industry and academe. In the 1980s, when shared-memory hardware
was especially popular, the functional language community introduced
the notion of a “future”14 that wrapped around a function invocation and
resulted in an implicit synchronization of thread completion; any attempt
to access the return value of the function would wait until the thread
had completed. The closely related idea of a “promise”15 is also wrapped
around a function invocation but uses a special return type that must be
explicitly unwrapped, making the wait for thread completion explicit.

Two issues with dynamic thread creation are the overhead of thread
creation and the policy for load-balancing threads among processors. A
program written to create a thread everywhere that one could be used
will typically overwhelm the scheduler. Several research efforts address
such problems, including one extension of C called Cilk,16 which is now
supported by the Cilk Arts company. Cilk uses the syntactic block struc-
ture of the language to restrict thread creation and completion to simple
nested patterns. It also uses a lazy thread creation model, which allows
many threads to execute with low overhead as simple function calls if no
processor is available to execute the thread. Instead, the runtime system
on an idle processor steals work randomly from other processors. Allow-
ing lazy-thread creation affects the semantics of the threading model; the
PThread semantics require that each thread eventually execute even if
there are enough other threads to keep the processors busy. In contrast,
Cilk makes no such guarantee, so in a Cilk program, if one thread waits
for a variable to be set by another thread, it may wait forever. Waiting for
a variable to be set or a data structure to be updated without some explicit
synchronization is generally considered dubious programming practice in
parallel code although it is a popular technique for avoiding the overhead
associated with system-provided synchronization primitives.

In scientific computing, the most popular programming interface for
shared-memory programming is OpenMP, a standard that emphasizes
loop-level parallelism but also has support for more general task paral-
lelism. OpenMP addresses the thread-overhead issue by dividing a set of
iterations into groups so that each thread handles a set of iterations, and
the programmer is able to control the load-balancing policy. It also gives
more flexibility in restricting data that are private to a thread, as opposed
to allowing them to be shared by all threads; and controlled forms of syn-

14 Robert Halstead, 1985, MULTILISP: A language for concurrent symbolic computation,
ACM Transactions on Programming Languages and Systems 7(4): 501-538.

15 Barbara Liskov, 1998, Distributed programming in Argus, Communications of the ACM
31(3): 300-312.

16 For more on Cilk, see its project page at The Cilk Project, MIT website, at http://
supertech.csail.mit.edu/cilk/index.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

122	 THE FUTURE OF COMPUTING PERFORMANCE

chronization and parallelism avoid some kinds of programming errors.
OpenMP is sometimes used with message-passing to create a hybrid
programming model: large-scale computing clusters in which individual
nodes have hardware support for shared memory.

The biggest drawbacks to thread programming are the potential for
uncontrolled access to shared variables and the lack of locality control.
Shared-variable access results in race conditions, in which two threads
access a variable and at least one writes the variable; this results in indeter-
minate behavior that depends on the access order and may vary from one
run to the next. Those accesses make testing and debugging especially dif-
ficult. Synchronization primitives—such as locks, which are used to avoid
races—have their own forms of subtle errors: threads acquiring multiple
locks can form deadlocks in which each of two threads are waiting for
a lock held by the other thread. Some tools have been developed by the
research community to detect those kinds of parallel-programming errors,
but they have not reached the level of generality, accuracy, and speed
that would encourage widespread deployment. Thread programming
remains an error-prone process best handled by expert programmers, not
the broader programming community of persons who have little formal
training in programming, who would find it extremely challenging to
create and maintain reliable code with these models. The broader com-
munity fueled the growth in computing applications and the associated
economic and social effects.

The lack of locality support in threaded models limits the scalability
of the underlying architecture and calls for some form of cache coherence,
which traditionally has been a hardware challenge that grows exponen-
tially harder as the number of processors grows.17 On the scale of chip
multiprocessor systems available today, the problem is tractable, but even
with on-chip data transfer rates, it is unclear how performance will be
affected as core counts grow. Further complicating the programming
problem for shared memory, many shared-memory machines with coher-
ent caches use a relaxed consistency model; that is, some memory opera-
tions performed by one thread may appear to be performed in a different
order by another thread. There is some research on mapping OpenMP
and Cilk to distributed-memory systems or building shared-memory sup-
port with cache coherence in software, but the locality-aware model has
often proved superior in performance even on systems with hardware-
supported shared memory. Savvy thread programmers will use system
mechanisms to control data layout and thread affinity to processors, but

17 More recent parallel languages, such as Chapel and X10, have explicitly included sup-
port for locality.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 123

in the end, this model is best reserved for a relatively small set of compiler
writers, runtime-system developers, and low-level library programmers.

Message-Passing Interface

The combination of scalability limits of shared-memory architectures
and the cost and performance benefits of building parallel machines from
commodity processors made distributed-memory multiprocessors a pop-
ular architecture for high-end parallel computing. Those systems can
vary from generic clusters built from personal computers and an Ether-
net network to more specialized supercomputers with low-latency high-
bandwidth networks that are more closely integrated into the processor
nodes. As this architectural model become dominant in the early 1990s,
several message-passing systems were developed by scientific program-
ming communities, computer scientists, and industry. In the early 1990s,
a group with representatives from those communities began a process to
specify the message-passing interface (MPI). MPI has since emerged as
the de facto standard programming model for high-performance com-
puting and has nearly ubiquitous support among machines, including
open-source implementations, such as MPICH and OpenMPI, that can be
ported to new interconnection networks with modest effort.18 Although
the standardization decisions in defining MPI were far from obvious, the
relative ease with which application developers moved code from one of
the previous models to MPI reflects the commonality of base concepts that
already existed in the community. MPI has also proved to be a highly scal-
able programming model and is used today in applications that regularly
run on tens of thousands of processor cores, and sometimes over 100,000,
in the largest supercomputers in the world. MPI is generally used to pro-
gram a single cluster or supercomputer that resides at one site, but “grid-
computing” variations of MPI and related libraries support programming
among machines at multiple sites. It is also low-level programming and
has analogues to the challenges presented by machine-language program-
ming mentioned earlier.

MPI has enabled tremendous scientific breakthroughs in nearly every
scientific domain with some of the largest computations in climate change,
chemistry, astronomy, and various aspects of defense. Computer simula-
tions have demonstrated human effects on climate change and are critical

18 For more on the MPI standard, see the final version of the draft released in May 1994,
available online at http://www.mcs.anl.gov/Projects/mpi/standard.html. See also Open
MPI: Open source high performance computing at http://www.open-mpi.org. and Peter
Pacheco, 1997, Parallel Programming with MPI, fourth edition, San Francisco, Cal.: Morgan
Kaufmann.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

124	 THE FUTURE OF COMPUTING PERFORMANCE

for international environmental-policy negotiations, as recognized in the
2007 Nobel prize awarded to the Intergovernmental Panel on Climate
Change. The climate-modeling problem is far from solved as researchers
attempt to identify particular phenomena, such as the disappearance of
polar ice caps; effects on the frequency or severity of hurricanes, floods,
or droughts; and the effects of various mitigation proposals. The size and
accuracy of the computations continue to push the limits of available
computing systems, consuming tens of millions of processor-hours each
year. The Community Climate Simulation Model and nearly all other
major codes used for global-scale long-term climate simulations are writ-
ten in MPI. A related problem that also relies heavily on MPI is weather-
forecasting, which is more detailed but of shorter term and on smaller
regional scales than climate models. MPI programs have been used to
understand the origins of the universe on the basis of a study of cosmic
microwave background (CMB) and to study quantum chromodynamics
in particle physics—both uses are based on Nobel prize-wining work in
physics. MPI is used in the design of new materials, in crash simulations
in the automobile industry, in simulating earthquakes to improve build-
ing designs and standards, and in fluid-dynamics simulations for improv-
ing aircraft design, engine design, and biomedical simulations.

There are limitations, however. MPI is designed for comparatively
coarse-grained parallelism—among clusters of computers—not for par-
allelism between cores on a chip. For example, most supercomputers
installed in the last few years have dual-core or quad-core processing
chips, and most applications use an MPI process per core. The model
is shifting as application scientists strive to make more effective use of
shared-memory chip multiprocessors by exploiting a mixture of MPI with
OpenMP or PThreads. MPI-3 is a recent effort to implement MPI on mul-
ticore processors although memory-per-core constraints are still a barrier
to MPI-style weak scaling. Indeed, the motivation to mix programming
models is often driven more by memory footprint concerns than by per-
formance itself because the shared-memory model exploits fine-grained
parallelism better in that it requires less memory per thread. Moreover,
there is a broad class of applications of particular interest to the defense
and intelligence communities for which MPI is not appropriate, owing
to its mismatch with the computational patterns of particular problems.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 125

MapReduce: Exploiting Data Parallelism
and Distributed Computation

MapReduce is a data-processing infrastructure19 developed internally
by Google and later popularized in the Hadoop open-source version.20
MapReduce is targeted at large-scale data-parallel workloads in which
the input is represented as a set of key-value pairs and computation is
expressed as a sequence of two user-provided functions: map and reduce.
The Map function processes the input to create an intermediate key-value
pair. Intermediate pairs with the same key are aggregated by the system
and fed to the reduce function, which produces the final output.

What makes MapReduce particularly compelling is that it frees
the programmer from the need to worry about much of the complex-
ity required to run large-scale computations. The programmer needs
only to produce the body of the two MapReduce methods, and the sys-
tem takes care of parallelization, data distribution, fault tolerance, and
load-balancing.

The class of problems that can be mapped to this relatively simple
processing framework is surprisingly broad. MapReduce was conceived
to simplify the data-processing involved in creating a Web index from
a set of crawled documents, but developers have also used it for large-
scale graph algorithms (for example, finding citation occurrences among
scientific articles), computing query-term popularity (for example, Google
Trends21), and creating language models for statistical machine transla-
tion (for example, finding and keeping a count for every unique sequence
of five or more terms in a large corpus), and other applications. Within
Google itself, MapReduce’s popularity has exploded since its introduction.

MapReduce has also been found to be useful for systems much smaller
than the large distributed clusters for which it was designed. Ranger et al.
examined the adequacy of the MapReduce framework for multicore and
multiprocessor systems22 and found that it was equally compelling as a
programming system for this class of machines. In a set of eight applica-
tions both coded with a version of MapReduce (the Phoenix runtime)
and hand-coded directly, the authors found that MapReduce-coded ver-

19 See Jeffrey Dean and Sanjay Ghemawat, 2008, MapReduce: Simplified data processing on
large clusters, Communications of the ACM 51(1): 107-113, and Micheal Noth, 2006, Building
a computing system for the world’s information, Invited talk, University of Iowa, IT Tech
Forum Presentations, April 20, 2006.

20 See The Apache Hadoop project, available at http://hadoop.apache.org.
21 See Google trends, available at http://trends.google.com.
22 Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis,

2007, Evaluating MapReduce for multi-core and multiprocessor systems, Proceedings of the
IEEE 13th International Symposium on High-Performance Computer Architecture, Phoenix,
Ariz., February 10-14, 2007.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

126	 THE FUTURE OF COMPUTING PERFORMANCE

sions roughly matched the performance of the hand-coded versions for
five. The remaining three applications did not fit well with MapReduce’s
key-value data-stream model, and the hand-coded versions performed
significantly better.

Despite MapReduce’s success as a programming system beyond its
initial application domain and machine-architecture context, it is far from
a complete solution for extracting and managing parallelism in general. It
remains limited to, for example, batch-processing systems and is therefore
not suitable for many on-line serving systems. MapReduce also does not
extract implicit parallelism from an otherwise sequential algorithm but
instead facilitates the partitioning, distribution, and runtime management
of an application that is already essentially data-parallel. Such systems as
MapReduce and NVIDIA’s CUDA,23 however, point to a solution strategy
for the general programming challenge of large-scale parallel systems.
The solutions are not aimed at a single programming paradigm for all
possible cases but are based on a small set of programming systems that
can be specialized for particular types of applications.

Distributed Computation—Harnessing the
World’s Spare Computing Capacity

The increasing quality of Internet connectivity around the globe has
led researchers to contemplate the possibility of harnessing the unused
computing capability of the world’s personal computers and servers to
perform extremely compute-intensive parallel tasks. The most notable
examples have come in the form of volunteer-based initiatives, such
as SETI@home (http://setiathome.berkeley.edu/) and Folding@home
(http://folding.stanford.edu/). The model consists of breaking a very
large-scale computation into subtasks that can operate on relatively few
input and result data, require substantial processing over that input set,
and do not require much (or any) communication between subtasks other
than passing of inputs and results. Those initiatives attract volunteers
(individuals or organizations) that sympathize with their scientific goals
to donate computing cycles on their equipment to take on and execute a
number of subtasks and return the results to a coordinating server that
coalesces and combines final results.

The relatively few success cases of the model have relied not only
on the friendly nature of the computation to be performed (vast data
parallelism with very low communication requirements for each unit of

23 CUDA is a parallel computing approach aimed at taking advantages of NVIDIA graphi-
cal processing units. For more, see CUDA zone, NVIDIA.com, available at http://www.
nvidia.com/object/cuda_home.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 127

computing) but also on the trust of the volunteers that the code is safe to
execute in their machines. For more widespread adoption, this particular
programming model would require continuing improvements in secure
execution technologies, incorporation of an economic model that provides
users an incentive to donate their spare computing capacity, and improve-
ments in Internet connectivity. To some extent, one can consider large
illegitimately assembled networks of hijacked computers (or botnets) to
be an exploitation of this computing model; this exemplifies the potential
value of harnessing a large number of well-connected computing systems
toward nobler aims.

Summary Observations

These success stories show that there are already a wide variety of
computational models for parallel computation and that science and
industry are successfully harnessing parallelism in some domains. The
parallelism success stories bode well for the future if we can find ways
to map more applications to the models or, for computations that do not
map well to the models, if we can develop new models.

PARALLEL-PROGRAMMING SYSTEMS AND
THE PARALLEL SOFTWARE “STACK”

The general problem of designing parallel algorithms and program-
ming them to exploit parallelism is an extremely important, timely,
and unsolved problem. The vast majority of software in use today is
sequential. Although the previous section described examples of parallel
approaches that work in particular domains, general solutions are still
lacking. Many successful parallel approaches are tied to a specific type of
parallel hardware (MPI and distributed clusters; storage-cluster architec-
ture, which heavily influenced MapReduce; openGL and SIMD graphics
processors; and so on). The looming crisis that is the subject of this report
comes down to the question of how to continue to improve performance
scalability as architectures continue to change and as more and more pro-
cessors are added. There has been some limited success, but there is not
yet an analogue of the sequential-programming models that have been so
successful in software for decades.

We know some things about what new parallel-programming
approaches will need. A high-level performance-portable programming
model is the only way to restart the virtuous cycle described in Chapter
2. The new model will need to be portable over successive generations
of chips, multiple architectures, and different kinds of parallel hardware,
and it will need to scale well. For all of those goals to be achieved, the

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

128	 THE FUTURE OF COMPUTING PERFORMANCE

entire software stack will need to be rethought, and architectural assump-
tions will need to be included in the stack. Indeed, in the future, the term
software stack will be a misnomer. A “software-hardware stack” will be the
norm. The hardware, the programming model, and the applications will
all need to change.

A key part of modern programming systems is the software stack
that executes the program on the hardware. The stack must also allow
reasoning about the five main challenges to scalable and efficient perfor-
mance: parallelism, communication, locality, synchronization, and load-
balancing. The components of a modern software stack include

·	 Libraries: Generic and domain-specific libraries provide appli-
cation programmers with predefined software components that
can be included in applications. Because library software may be
reused in many applications, it is often highly optimized by hand
or with automated tools.

·	 Compiler: An ahead-of-time or a just-in-time compiler translates
the program into assembly code and optimizes it for the underly-
ing hardware. Just-in-time compilers combine profile data from
the current execution with static program analysis to perform
optimizations.

·	 Runtime system or virtual machine: These systems manage fine-
grain memory resources, application-thread creation and sched-
uling, runtime profiling, and runtime compilation.

·	 Operating system: The operating system manages processes and
their resources, including coarse-grain memory management.

·	 Hypervisors: Hypervisors abstract the hardware context to pro-
vide performance portability for operating systems among hard-
ware platforms.

Because programming systems are mostly sequential, the software stack
mostly optimizes and manages sequential programs. Optimizing and
understanding the five challenges at all levels of the stack for parallel
approaches will require substantial changes in these systems and their
interfaces, and perhaps researchers should reconsider whether the overall
structure of the stack is a good one for parallel systems.

Researchers have made some progress in system support for pro-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 129

viding and supporting parallel-programming models.24 Over the years,
researchers and industry have developed parallel-programming system
tools, which include languages, compilers, runtime environments, librar-
ies, components, and frameworks to assist programmers and software
developers in managing parallelism. We list some examples below.

·	 Runtime abstractions: multiprogramming and virtualization. The
operating system can exploit chip multiprocessors at a coarse
granularity immediately because operating systems can run mul-
tiple user and kernel processes in parallel. Virtualization runs
multiple operating systems in parallel. However, it remains chal-
lenging to manage competition for shared resources, such as
caches, when a particular application load varies dramatically.

·	 Components: database transactions and Web applications. Data-
base-transaction systems provide an extremely effective abstrac-
tion in which programs use a sequential model, without the need
to worry about synchronization and communication, and the
database coordinates all the parallelism between user programs.
Success in this regard emerged from over 20 years of research in
parallelizing database systems.

·	 Frameworks: three-tiered Web applications and MapReduce.
Such frameworks as J2EE and Websphere make it easy to create
large-scale parallel Web applications. For example, MapReduce
(described above) simplifies the development of a large class of
distributed applications that combine the results of the computa-
tion of distributed nodes. Web applications follow the database-
transaction model in which users write sequential tasks and the
framework manages the parallelism.

·	 Libraries: graphics libraries. Graphics libraries for DirectX 10 and
OpenGl hide the details of parallelism in graphics hardware from
the user.

·	 Languages: Cuda Fortress, Cilk, x10, and Chapel. These languages
seek to provide an array of high-level and low-level abstractions
that help programmers to develop classes of efficient parallel
software faster.

What those tools suggest is that managing parallelism is another, more

24 One recent example was a parallel debugger, STAT, from the Lawrence Livermore Na-
tional Laboratory, available at http://www.paradyn.org/STAT/STAT.html, presented at
Supercomputing 2008. See Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de
Supinski, Matthew Legendre, Barton P. Miller, Martin Schulz, and Ben Liblit, 2008, Lessons
learned at 208K: Towards debugging millions of cores, available online at ftp://ftp.cs.wisc.
edu/paradyn/papers/Lee08ScalingSTAT.pdf, last accessed on November 8, 2010.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

130	 THE FUTURE OF COMPUTING PERFORMANCE

challenging facet of software engineering—it can be thought of as akin
to a complex version of the problem of resource management. Parallel-
program productivity can be improved if we can develop languages that
provide useful software-engineering abstractions for parallelism, parallel
components and libraries that programmers can reuse, and a software-
hardware stack that can facilitate reasoning about all of them.

MEETING THE CHALLENGES OF PARALLELISM

The need for robust, general, and scalable parallel-software approaches
presents challenges that affect the entire computing ecosystem. There are
numerous possible paths toward a future that exploits abundant paral-
lelism while managing locality. Parallel programming and parallel com-
puters have been around since the 1960s, and much progress has been
made. Much of the challenge of parallel programming deals with making
parallel programs efficient and portable without requiring heroic efforts
on the part of the programmer. No subfield or niche will be able to solve
the problem of sustaining growth in computing performance on its own.
The uncertainty about the best way forward is inhibiting investment. In
other words, there is currently no parallel-programming approach that
can help drive hardware development. Historically, a vendor might have
taken on risk and invested heavily in developing an ecosystem, but given
all the uncertainty, there is not enough of this investment, which entails
risk as well as innovation. Research investment along multiple fronts, as
described in this report, is essential.25

Software lasts a long time. The huge entrenched base of legacy soft-
ware is part of the reason that people resist change and resist investment
in new models, which may or may not take advantage of the capital
investment represented by legacy software. Rewriting software is expen-
sive. The economics of software results in pressure against any kind of
innovative models and approaches. It also explains why the approaches
we have seen have had relatively narrow applications or been incremen-
tal. Industry, for example, has turned to chip multiprocessors (CMPs)
that replicate existing cores a few times (many times in the future). Care
is taken to maintain backward compatibility to bring forward the exist-
ing multi-billion-dollar installed software base. With prospects dim for

25 A recent overview in Communications of the ACM articulates the view that develop-
ing software for parallel cores needs to become as straightforward as writing software for
traditional processors: Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny,
Kurt Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John
Wawrzynek, David Wessel, and Katherine Yelick, 2009, A view of the parallel computing
landscape, Communications of the ACM 52(10): 56-67, available online at http://cacm.
acm.org/magazines/2009/10/42368-a-view-of-the-parallel-computing-landscape/fulltext.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

THE END OF PROGRAMMING AS WE KNOW IT	 131

repeated doublings of single-core performance, CMPs inherit the mantle
as the most obvious alternative, and industry is motivated to devote sub-
stantial resources to moving compatible CMPs forward. The downside is
that the core designs being replicated are optimized for serial code with
support for dynamic parallelism discovery, such as speculation and out-
of-order execution, which may waste area and energy for programs that
are already parallel. At the same time, they may be missing some of the
features needed for highly efficient parallel programming, such as light-
weight synchronization, global communication, and locality control in
software. A great deal of research remains to be done on on-chip network-
ing, cache coherence, and distributed cache and memory management.

One important role for academe is to explore CMP designs that are
more aggressive than industry’s designs. Academics should project both
hardware and software trends much further into the future to seek pos-
sible inflection points even if they are not sure when or even whether tran-
sitioning a technology from academe to industry will occur. Moreover,
researchers have the opportunity to break the shackles of strict backward
compatibility. Promising ideas should be nurtured to see whether they
can either create enough benefit to be adopted without portability or to
enable portability strategies to be developed later. There needs to be an
intellectual ecosystem that enables ideas to be proposed, cross-fertilized,
and refined and, ultimately, the best approaches to be adopted. Such an
ecosystem requires sufficient resources to enable contributions from many
competing and cooperating research teams.

Meeting the challenges will involve essentially all aspects of comput-
ing. Focusing on a single component—assuming a CMP architecture or a
particular number of transistors, focusing on data parallelism or on het-
erogeneity, and so on—will be insufficient to the task. Chapter 5 discusses
recommendations for research aimed at meeting the challenges.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

5

Research, Practice, and Education to
Meet Tomorrow’s Performance Needs

Early in the 21st century, single-processor performance stopped
growing exponentially, and it now improves at a modest pace, if at
all. The abrupt shift is due to fundamental limits on the power effi-

ciency of complementary metal oxide semiconductor (CMOS) integrated
circuits (used in virtually all computer chips today) and apparent limits
on what sorts of efficiencies can be exploited in single-core architectures.
A sequential-programming model will no longer be sufficient to facilitate
future information technology (IT) advances.

Although efforts to advance low-power technology are important, the
only foreseeable way to continue advancing performance is with parallel-
ism. To that end, the hardware industry recently began doubling the num-
ber of cores per chip rather than focusing solely on more performance per
core and began deploying more aggressive parallel options, for example,
in graphics processing units (GPUs). Attaining dramatic IT advances in
the future will require programs and supporting software systems that
can access vast parallelism. The shift to explicitly parallel hardware will
fail unless there is a concomitant shift to useful programming models for
parallel hardware. There has been progress in that direction: extremely
skilled and savvy programmers can exploit vast parallelism (for example,
in what has traditionally been referred to as high-performance comput-
ing), domain-specific languages flourish (for example, SQL and DirectX),
and powerful abstractions hide complexity (for example, MapReduce).
However, none of those developments comes close to the ubiquitous
support for programming parallel hardware that is required to sustain

132

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 133

growth in computing performance and meet society’s expectations for IT.
(See Box 5.1 for additional context regarding other aspects of computing
research that should not be neglected while the push for parallelism in
software takes place.)

The findings and results described in this report represent a serious
set of challenges not only for the computing industry but also for the
many sectors of society that depend on advances in IT and computation.
The findings also pose challenges to U.S. competitiveness: a slowdown
in the growth of computing performance will have global economic and
political repercussions. The committee has developed a set of recom-
mended actions aimed at addressing the challenges, but the fundamental
power and energy constraints mean that even our best efforts may not
offer a complete solution. This chapter presents the committee’s recom-
mendations in two categories: research—the best science and engineering
minds must be brought to bear; and practice—how we go about devel-
oping computer hardware and software today will form a foundation
for future performance gains. Changes in education are also needed; the
emerging generation of technical experts will need to understand quite
different (and in some cases not yet developed) models of thinking about
IT, computation, and software.

SYSTEMS RESEARCH AND PRACTICE

Algorithms

In light of the inevitable trend toward parallel architectures and
emerging applications, one must ask whether existing applications are ame-
nable algorithmically for decomposition on any parallel architecture. Algorithms
based on context-dependent state machines are not easily amenable to
parallel decomposition. Applications based on those algorithms have
always been around and are likely to gain more importance as security
needs grow. Even so, there is a large amount of throughput parallelism in
these applications, in that many such tasks usually need to be processed
simultaneously by a data center.

At the other extreme, there are applications that have obvious paral-
lelism to exploit. The abundance of parallelism in a vast majority of those
underlying algorithms is data-level parallelism. One simple example of
data-level parallelism for mass applications is found in two-dimensional
(2D) and three-dimensional (3D) media-processing (image, signal, graph-
ics, and so on), which has an abundance of primitives (such as blocks,
triangles, and grids) that need to be processed simultaneously. Continu-
ous growth in the size of input datasets (from the text-heavy Internet of
the past to 2D-media-rich current Internet applications to emerging 3D

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

134	 THE FUTURE OF COMPUTING PERFORMANCE

Internet applications) has been important in the steady increase in avail-
able parallelism for these sorts of applications.

A large and growing collection of applications lies between those
extremes. In these applications, there is parallelism to be exploited, but it
is not easy to extract: it is less regular and less structured in its spatial and
temporal control and its data-access and communication patterns. One
might argue that these have been the focus of the high-performance com-
puting (HPC) research community for many decades and thus are well
understood with respect to those aspects that are amenable to parallel
decomposition. The research community also knows that algorithms best
suited for a serial machine (for example, quicksort, simplex, and gaston)
differ from their counterparts that are best suited for parallel machines

BOX 5.1
React, But Don’t Overreact, to Parallelism

As this report makes clear, software and hardware researchers and practitio-
ners should address important concerns regarding parallelism. At such critical
junctures, enthusiasm seems to dictate that all talents and resources be applied
to the crisis at hand. Taking the longer view, however, a prudent research port-
folio must include concomitant efforts to advance all systems aspects, lest they
become tomorrow’s bottlenecks or crises.

For example, in the rush to innovate on chip multiprocessors (CMPs), it is
tempting to ignore sequential core performance and to deploy many simple
cores. That approach may prevail, but history and Amdahl’s law suggest caution.
Three decades ago, a hot technology was vectors. Pioneering vector machines,
such as the Control Data STAR-100 and Texas Instruments ASC, advanced vec-
tor technology without great concern for improving other aspects of compu-
tation. Seymour Cray, in contrast, designed the Cray-11 to have great vector
performance as well as to be the world’s fastest scalar computer. Ultimately, his
approach prevailed, and the early machines faded away.

Moreover, Amdahl’s law raises concern.2 Amdahl’s limit argument assumed
that a fraction, P, of software execution is infinitely parallelizable without over-
head, whereas the remaining fraction, 1 - P, is totally sequential. From that as-
sumption, it follows that the speedup with N cores—execution time on N cores
divided by execution time on one core—is governed by 1/[(1 - P) + P/N]. Many
learn that equation, but it is still instructive to consider its harsh numerical
consequences. For N = 256 cores and a fraction parallel P = 99%, for example,
speedup is bounded by 72. Moreover, Gustafson3 made good “weak scaling”
arguments for why some software will fare much better. Nevertheless, the com-
mittee is skeptical that most future software will avoid sequential bottlenecks.
Even such a very parallel approach as MapReduce4 has near-sequential activity
as the reduce phase draws to a close.

For those reasons, it is prudent to continue work on faster sequential cores,

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 135

(for example, mergesort, interior-point, and gspan). Given the abundance
of single-thread machines in mass computing, commonly found imple-
mentations of these algorithms on mass machines are almost always the
nonparallel or serial-friendly versions. Attempts to extract parallelism
from the serial implementations are unproductive exercises and likely
to be misleading if they cause one to conclude that the original problem
has an inherently sequential nature. Therefore, there is an opportunity
to benefit from the learning and experience of the HPC research and to
reformulate problems in terms amenable to parallel decomposition.

Three additional observations are warranted in the modern context
of data-intensive connected computing:

especially with an emphasis on energy efficiency (for example, on large-content
addressable-memory structures) and perhaps on-demand scaling (to be respon-
sive to software bottlenecks). Hill and Marty5 illuminate some potential oppor-
tunities by extending Amdahl’s law with a corollary that models CMP hardware.
They find, for example, that as Moore’s law provides more transistors, many
CMP designs benefit from increasing the sequential core performance and
considering asymmetric (heterogeneous) designs where some cores provide
more performance (statically or dynamically).

Finally, although the focus in this box is on core performance, many other
aspects of computer design continue to require innovation to keep systems
balanced. Memories should be larger, faster, and less expensive. Nonvolatile
storage should be larger, faster, and less expensive and may merge with volatile
memory. Networks should be faster (higher bandwidth) and less expensive, and
interfaces to networks may need to get more closely coupled to host nodes. All
components must be designed for energy-efficient operation and even more
energy efficiency when not in current use.

1Richard M. Russell, 1978, The Cray-1 computer system, Communications of the ACM
21(1): 63-72

2 Gene M. Amdahl, 1967, Validity of the single-processor approach to achieving large scale
computing capabilities, AFIPS Conference Proceedings, Atlantic City, N.J,, April 18-20, 1967,
pp. 483-485.

3John L. Gustafson, 1998, Reevaluating Amdahl’s law, Communications of the ACM 31(5):
532-533.

4Jeffrey Dean and Sanjay Ghemawat, 2004, MapReduce: Simplified data processing on
large clusters, Symposium on Operating System Design and Implementation, San Francisco,
Cal., December 6-8, 2004.

5 Mark D. Hill and Michael R. Marty, 2008, Amdahl’s law in the multicore era, IEEE
Computer 41(7): 33-38, available online at http://www.cs.wisc.edu/multifacet/papers/
tr1593_amdahl_multicore.pdf.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

136	 THE FUTURE OF COMPUTING PERFORMANCE

·	 In the growing segment of the entertainment industry, in contrast
with the scientific computing requirements of the past, approxi-
mate or sometimes even incorrect solutions are often good
enough if end users are insensitive to the details. An example
is cloud simulation for gaming compared with cloud simulation
for weather prediction. Looser correctness requirements almost
always make problems more amenable to parallel algorithms
because strict dependence requires synchronized communication,
whereas an approximation often can eliminate communication
and synchronization.

·	 The serial fraction of any parallel algorithm would normally
dominate the performance—a manifestation of Amdahl’s law
(described in Box 2.2) typically referred to as weak scaling. That
is true for a fixed problem size. However, if the problem size
continues to scale, one would observe continuously improved
performance scaling of a parallel architecture, provided that it
could effectively handle the larger data input. This is the so-called
Gustafson corollary1 to Amdahl’s law. Current digitization trends
are leading to input-dataset scaling for most applications (for
example, today there might be 1,000 songs on a typical iPod, but
in another couple of years there may be 10,000).

·	 Massive, easily accessible real-time datasets have turned some
previous sparse input into much denser inputs. This has at least
two important algorithmic implications: the problem becomes
more regular and hence more amenable to parallelism, and bet-
ter training and hence better classification accuracies make addi-
tional parallel formulations usable in practice. Examples include
scene completion in photographs2 and language-neutral transla-
tion systems.3

For many of today’s applications, the underlying algorithms in use do
not assume or exploit parallel processing explicitly, except as in the cases
described above. Instead, software creators typically depend, implicitly or
explicitly, on compilers and other layers of the programming environment
to parallelize where possible, leaving the software developer free to think
sequentially and focus on higher-level issues. That state of affairs will
need to change, and a fundamental focus on parallelism will be needed in

1 John L. Gustafson, 1998, Reevaluating Amdahl’s law, Communications of the ACM 31(5):
532-533.

2 See James Hays and Alexei A. Efros, 2008, Scene completion using millions of photo-
graphs, Communications of the ACM 51(10): 87-94.

3 See Jim Giles, 2006, Google tops translation ranking, Nature.com, November 7, 2006,
available online at http://www.nature.com/news/2006/061106/full/news061106-6.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 137

designing solutions to specific problems in addition to general program-
ming paradigms and models.

Recommendation: Invest in research in and development of algorithms
that can exploit parallel processing.

Programming Methods and Systems

Many of today’s programming models, languages, compilers, hyper-
visors, and operating systems are targeted primarily at single-core hard-
ware. For the future, all these layers in the stack must explicitly target
parallel hardware. The intellectual keystone of this endeavor is rethink-
ing programming models. Programmers must have appropriate models
of computation that express application parallelism in such a way that
diverse and evolving computer hardware systems and software can bal-
ance computation and minimize communication among multiple com-
putational units. There was a time in the late 1970s when even the con-
ventional sequential-programming model was thought to be an eventual
limiter of software creation, but better methods and training largely ame-
liorated that concern. We need advances in programmer productivity for
parallel systems similar to the advances brought first by structured pro-
gramming languages, such as Fortran and C, and then later by managed
programming languages, such as C# and Java.

The models themselves may or may not be explicitly parallel; it is an
open question whether and when most programmers should be exposed
to explicit hardware parallelism. The committee does not call for a singu-
lar programming model, because a unified solution may or may not exist.
Instead, it recommends the exploration of alternative models—perhaps
domain-specific—that can serve as sources of possible future unification.
Moreover, the committee expects that some programming models will
favor ease of use by a broad base of programmers who are not necessar-
ily expert whereas others will target expert programmers who seek the
highest performance for critical subsystems that get extensively reused.

Additional research is needed in the development of new libraries
and new programming languages that embody the new programming
models described above. Development of such libraries will facilitate
rapid prototyping of complementary and competing ideas. The commit-
tee expects that some of the languages will be easier for more typical pro-
grammers to use—that is, they will appear on the surface to be sequential
or declarative—and that others will target efficiency and, consequently,
expert programmers.

New programming languages—especially those whose abstractions
are far from the underlying parallel hardware—will require new compila-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

138	 THE FUTURE OF COMPUTING PERFORMANCE

tion and runtime support. Fortress, Chapel, and X10 are three new recently
proposed general-purpose parallel languages, but none of them has yet
developed a strong following.4 Experience has shown that it is generally
exceedingly difficult to parallelize sequential code effectively—or even to
parallelize and redesign highly sequential algorithms. Nevertheless, we
must redouble our efforts on this front in part by changing the languages,
targeting specific domains, and enlisting new hardware support.

We also need more research in system software for highly parallel
systems. Although the hypervisors and operating systems of today can
handle some modest parallelism, future systems will include many more
cores (and multithreaded contexts), whose allocation, load-balancing, and
data communication and synchronization interactions will be difficult
to handle well. Solving those problems will require a rethinking of how
computation resources are viewed, much as increased physical memory
size led to virtual memory a half-century ago.

Recommendation: Invest in research in and development of program-
ming methods that will enable efficient use of parallel systems not only
by parallel systems experts but also by typical programmers.

Computer Architecture and Hardware

Most 20th-century computers used a single sequential processor, but
many larger computers—hidden in the backroom or by the Internet—
harnessed multiple cores on separate chips to form a symmetric multi-
processor (SMP). When industry was unable to use more transistors on
a chip for a faster core effectively, it turned, by default, to implementing
multiple cores per chip to provide an SMP-like software model. In addi-
tion, special-purpose processors—notably GPUs and digital signal pro-
cessing (DSP) hardware—exploited parallelism and were very successful
in important niches.

Researchers must now determine the best way to spend the transistor
bounty still provided by Moore’s law.5 On the one hand, we must exam-
ine and refine CMPs and associated architectural approaches. But CMP
architectures bring numerous issues to the fore. Will multiple cores work
in most computer deployments, such as in desktops and even in mobile
phones? Under what circumstances should some cores be more capable

4 For more on Fortress, see the website of Project Fortress community, at http://project
fortress.sun.com/Projects/Community. For more on Chapel, see the website The Chapel
parallel programming language, at http://chapel.cray.com. For more on X10, see the website
The X10 programming language, at http://x10.codehaus.org/.

5 James Larus, 2009, Spending Moore’s dividend, Communications of the ACM 52(5):
62-69.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 139

than others or even use different instruction-set architectures? How can
cores be harnessed together temporarily in an automated or semiauto-
mated fashion to overcome sequential bottlenecks? What mechanisms
and policies will best exploit locality and ease communication? How
should synchronization and scheduling be handled? How will challenges
associated with power and energy be addressed? What do the new archi-
tectures mean for system-level features, such as reliability and security?

Research in computer architecture must focus on providing useful,
programmable systems driven by important applications. It is well known
that customizing hardware for a specific task yields more efficient and
higher-performance hardware. DSP chips are one example. Research is
needed to understand application characteristics to drive parallel-hard-
ware design. There is a bit of a chicken-and-egg problem. Without effec-
tive CMP hardware, it is hard to motivate programmers to build parallel
applications; but it is also difficult to build effective hardware without
parallel applications. Because of the lack of parallel applications, hard-
ware designers are at risk of developing idiosyncratic CMP hardware arti-
facts that serve as poor targets for applications, libraries, compilers, and
runtime systems. In some cases, progress may be facilitated by domain-
specific systems that may lead to general-purpose systems later.

CMPs have now inherited the computing landscape from perfor-
mance-stalled single cores. To promote robust, long-term growth, how-
ever, we need to look for alternatives to CMPs. Some of the alternatives
may prove better; some may pioneer improvements in CMPs; and even
if no alternative proves better, we would then know that CMPs have
withstood the assault of alternatives. The research could eschew conven-
tional cores. It could, for example, view the chip as a tabula rasa of billions
of transistors, which translates to hundreds of functional units; but the
best organization of these units into a programmable architecture is an
open question. Nevertheless, researchers must be keenly aware of the
need to enable useful, programmable systems. Examples include evolv-
ing GPUs for more general-purpose programming, game processors, or
computational accelerators used as coprocessors; and exploiting special-
purpose, energy-efficient engines at some level of granularity for compu-
tations, such as fast Fourier transforms, Codec, or encryption. Other tasks
to which increased computational capability could be applied include
architectural support for machine learning, communication compression,
decompression, encryption, and decryption, and dedicated engines for
GPS, networking, human interface, search, and video analytics. Those
approaches have potential demonstrated advantages in increased per-
formance and energy efficiency relative to a more conservative CMP
approach.

Ultimately, we must question whether the CMP-architecture direc-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

140	 THE FUTURE OF COMPUTING PERFORMANCE

tion, as currently defined, is a good approach for designing most comput-
ers. The current CMP architecture preserves object-code compatibility,
the heart of the architectural franchise that keeps such companies as
Intel and AMD investing heavily. Despite their motivation and ability to
expend resources, if systems with CMP architectures cannot be effectively
programmed, an alternative will be needed. Is using homogeneous pro-
cessors in CMP architectures the best approach, or will computer architec-
tures that include multiple but heterogeneous cores be more effective—for
example, a single high-performance but power-inefficient processor for
programs that are stubbornly sequential and many power-efficient but
lower-performance cores for other applications? Perhaps truly effective
parallel hardware needs to follow a model that does not assume shared
memory parallelism, instead exploiting single-instruction multiple-data
approaches, streaming, dataflow, or other paradigms yet to be invented.
Are there other important niches like those exploited by GPUs and DSPs?
Alternatively, will cores support more graphics and GPUs support more
general-purpose programs, so that the line between the two blurs? And
most important, are any of those alternatives sufficient to keep the indus-
try driving forward at a pace that can avoid the challenges described
elsewhere?

We may also need to consider fundamentally rethinking the nature
of hardware in light of today’s near-universal connectivity to the Inter-
net. The trend is likely to accelerate. When Google needed to refine the
general Internet search problem, it used the MapReduce paradigm so that
it could easily and naturally harness the computational horsepower of a
very large number of computer systems. Perhaps an equivalent basic shift
in how we think about engineering computer systems themselves ought
to be considered.

The slowing of growth in single-core performance provides the best
opportunity to rethink computer hardware since the von Neumann model
was developed in the 1940s. While a focus on the new research challenges
is critical, continuing investments are needed in new computation sub-
strates whose underlying power efficiency promises to be fundamentally
better than silicon-based CMOSs. In the best case, investment will yield
devices and manufacturing methods—as yet unforeseen—that will dra-
matically surpass the transistor-based integrated circuit. In the worst case,
no new technology will emerge to help solve the problems. It is therefore
essential to invest in parallel approaches, as outlined previously, and to
do so now. Performance is needed immediately, and society cannot wait
the decade or two needed to refine a new technology, which may or may
not even be on the horizon. Moreover, even if we discover a groundbreak-
ing new technology, the investment in parallelism would not be wasted,
inasmuch as it is very likely that advances in parallelism would exploit

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 141

new technology as well.6 Substantial research investment should focus on
approaches that eschew conventional cores and develop new experimen-
tal structures for each chip’s billions of transistors.

Recommendation: Invest in research on and development of parallel
architectures driven by applications, including enhancements of chip
multiprocessor systems and conventional data-parallel architectures,
cost-effective designs for application-specific architectures, and support
for radically different approaches.

Computer scientists and engineers manage complexity by separating
interface from implementation. In conventional computer systems, the
separation is recursive and forms the traditional computing stack: appli-
cations, programming language, compiler, runtime and virtual machine
environments, operating system, hypervisor, and architecture. The com-
mittee has expressed above and in Chapter 4 the need for innovation with
reference to that stack. However, some long-term work should focus on
whether the von Neumann stack is best for our parallel future. The exami-
nation will require teams of computer scientists in many subdisciplines.
Ideas may focus on changing the details of an interface (for example,
new instructions) or even on displacing a portion of the stack (for exam-
ple, compiling straight down to field-programmable gate arrays). Work
should explore first what is possible and later how to move IT from where
it is today to where we want it to be.

Recommendation: Focus long-term efforts on rethinking of the canonical
computing “stack”—applications, programming language, compiler, run-
time, virtual machine, operating system, hypervisor, and architecture—in
light of parallelism and resource-management challenges.

Finally, the fundamental question of power efficiency merits consid-
erable research attention. Chapter 3 explains in great detail the power
limitations that we are running up against with CMOS technology. But

6 For example, in the 1930s AT&T could see the limitations of relays and vacuum tubes for
communication switches and began the search for solid-state devices. Ultimately, AT&T Bell
Labs discovered the solid-state semiconductor transistor, which, after several generations
of improvements, became the foundation of today’s IT. Even earlier, the breakthrough in-
novation of the stored-program computer architecture (EDSAC) replacing the patch-panel
electronic calculator (ENIAC) changed the fundamental approach to computing and opened
the door for the computing revolution of the last 60 years. See Arthur W. Burks, Herman H.
Goldstine, and John von Neumann, 1946, Preliminary Discussion of the Logical Design of
an Electronic Computing Instrument, Princeton, N.J.: Institute for Advanced Study, available
online at http://www.cs.unc.edu/~adyilie/comp265/vonNeumann.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

142	 THE FUTURE OF COMPUTING PERFORMANCE

the power challenges go beyond chip and architectural considerations
and warrant attention at all levels of the computing system. New parallel-
programming models and approaches will also have an effect on power
needs. Thus, research and development efforts are needed in multiple
dimensions, with high priority going to software, then to application-
specific devices, and then, as described earlier in this report, to alternative
devices.7

Recommendation: Invest in research and development to make com-
puter systems more power-efficient at all levels of the system, including
software, application-specific approaches, and alternative devices. Such
efforts should address ways in which software and system architectures
can improve power efficiency, such as by exploiting locality and the use
of domain-specific execution units.

The need for power efficiency at the processor level was explored in
detail in Chapter 3. That chapter explored the decreasing rate of energy-
use reduction by silicon technology as feature sizes decrease. One of the
consequences of that trend is a flattening of the energy efficiency of com-
puting devices; that is, a given level of performance improvement from
a new generation of devices comes with a higher energy need than was
the case in previous generations. The increased energy need has broad
implications for the sustainability of computing growth from an economic
and environmental perspective. That is particularly true for the kinds of
server-class systems that are relied on by businesses and users of cloud-
computing services.8

If improvements in energy efficiency of computing devices flatten
out while hardware-cost improvements continue at near historical rates,
there will be a shift in the economic costs of computing. The cost basis
for deploying computer servers will change as energy-related costs as a
fraction of total IT expenses begin to increase. To some extent, that has
already been observed by researchers and IT professionals, and this trend

7 Indeed, a new National Science Foundation science and technology center, the Center for
Energy Efficient Electronics Science (ES3), has recently been announced. The press release for
the center quotes center Director Eli Yablonovitch: “There has been great progress in mak-
ing transistor circuits more efficient, but further scientific breakthroughs will be needed to
achieve the six-orders-of-magnitude further improvement that remain before we approach
the theoretical limits of energy consumption.” See Sarah Yang, 2010, NSF awards $24.5
million for center to stem increase of electronics power draw, UC Berkeley News, February
23, 2010, available online at http://berkeley.edu/news/media/releases/2010/02/23_nsf_
award.shtml.

8 For more on data centers, their design, energy efficiency, and so on, see Luiz Barroso
and Urs Holzle, 2009, The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, San Rafael, Cal.: Morgan & Claypool, available online at http://
www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 143

is partially responsible for the increased attention being given to so-called
green-computing efforts.9

The following simple model illustrates the relative weight of two
of the main components of IT expenses for large data centers: server-
hardware depreciation and electricity consumption. Assume a data center
filled mostly with a popular midrange server system that is marketed as
a high-efficiency system: a Dell PowerEdge Smart 2950 III. As of Decem-
ber 2008, a reasonable configuration of the system was priced at about
US$6,000 and may consume from 208 W (at idle) to 313 W (under scien-
tific workload) with an average consumption estimated at 275 W.10 When
the system is purchased as part of a large order, vendors typically offer
discounts of at least 15 percent, bringing the actual cost closer to US$5,000.
With servers having an operational lifetime of about 4 years, the total
energy used by this server in operation is 9,636 kWh, which translates to
US$674.52 if it is using the U.S. average industrial cost of electricity for
2008, US$0.0699/kWh.11 The typical energy efficiency of data-center facili-
ties can multiply IT power consumption by 1.8-2.0,12 which would result
in an actual electricity cost of running the server of up to about US$1,300.

According to that rough model, electricity costs for the server could
correspond to about one-fourth of its hardware costs. If hardware-cost
efficiency (performance/hardware costs) continues to improve at his-
torical rates but energy efficiency (performance/electricity costs) stops
improving, the electricity costs would surpass hardware costs within 3
years. At that point, electricity use could become a primary limiting factor
in the growth of aggregate computing performance. Another implication
of such a scenario is that at that point most of the IT expenses would be
funding development and innovation not in the computing field but in
the energy generation and distribution sectors of the economy, and this

9 See, for example, Maury Wright’s article, which examines improving power-conversion
efficiency (arguably low-hanging fruit among the suite of challenges that need to be ad-
dressed): Maury Wright, 2009, Efficient architectures move sources closer to loads, EE Times
Design, January 26, 2009, available online at http://www.eetimes.com/showArticle.jht
ml?articleID=212901943&cid=NL_eet. See also Randy H. Katz, 2009, Tech titans building
boom, IEEE Spectrum, February 2009, available online at http://www.spectrum.ieee.org/
green-tech/buildings/tech-titans-building-boom.

10 See an online Dell power calculator in Planning for energy requirements with Dell serv-
ers, storage, and networking, available online at http://www.dell.com/content/topics/top-
ic.aspx/global/products/pedge/topics/en/config_calculator?c=us&cs=555&l=en&s=biz.

11 See U.S. electric utility sales at a site of DOE’s Energy Information Administration: 2010,
U.S. electric utility sales, revenue and average retail price of electricity, available online at
http://www.eia.doe.gov/cneaf/electricity/page/at_a_glance/sales_tabs.html.

12 See the TPC-C executive summary for the Dell PowerEdge 2900 at the Transactions
Processing Performance Council Web site, June 2008, PowerEdge 2900 Server with Ora-
cle Database 11g Standard Edition One, available online at http://www.tpc.org/results/
individual_results/Dell/Dell_2900_061608_es.pdf.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

144	 THE FUTURE OF COMPUTING PERFORMANCE

would adversely affect the virtuous cycle described in Chapter 2 that has
propelled so many advances in computing technology.

Energy use could curb the growth in computing performance in
another important way: by consuming too much of the planet’s energy
resources. We are keenly aware today of our planet’s limited energy
budget, especially for electricity generation, and of the environmental
harm that can result from ignoring such limitations. Computing con-
fers an immense benefit on society, but that benefit is offset in part by
the resources that it consumes. As computing becomes more pervasive
and the full value to society of the field’s great advances over the last
few decades begins to be recognized, its energy footprint becomes more
noticeable.

An Environmental Protection Agency report to Congress in 200713
states that servers consumed about 1.5 percent of the total electricity gen-
erated in the United States in 2006 and that server energy use had doubled
from 2000 to 2006. The same report estimated that under current efficiency
trends, server power consumption could double once more from 2006 to
2011—a growth that would correspond to the energy output of 10 new
power plants (about 5 GW).14 An interesting way to understand the effect
of such growth rates is to compare them with the projections for growth
in electricity generation in the United States. The U.S. Department of
Energy estimated that about 87 MW of new summer generation capacity
would come on line in 2006-2011—an increase of less than 9 percent in
that period.15

On the basis of those projections, growth in server energy use is out-
pacing growth in overall electricity use by a wide margin; server use
is expected to grow at about 14 percent a year compared with overall
electricity generation at about 1.74 percent a year. If those rates are main-
tained, server electricity use will surpass 5 percent of the total U.S. gen-
erating capacity by 2016.

The net environmental effect of more (or better) computing capa-
bilities goes beyond simply accounting for the resources that server-class

13 See the Report to Congress of the U.S. Environmental Protection Agency (EPA) on the
Energy Star Program (EPA, 2007, Report to Congress on Server and Data Center Energy
Efficiency Public Law 109-431, Washington, D.C.: EPA, available online at http://www.
energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_
Congress_Final1.pdf).

14 An article in the EE Times suggests that data-center power requirements are increasing
by as much as 20 percent per year. See Mark LaPedus, 2009, Green-memory movement takes
root, EE Times, May 18, 2009, available online at http://www.eetimes.com/showArticle.jh
tml?articleID=217500448&cid=NL_eet.

15 Find information on DOE planned nameplate capacity additions from new generators at
DOE, 2010, Planned nameplate capacity additions from new generators, by energy source,
available online at http://www.eia.doe.gov/cneaf/electricity/epa/epat2p4.html.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 145

computers consume. It must also include the energy and emission savings
that are enabled by additional computing capacity. A joint report by The
Climate Group and the Global e-Sustainability Initiative (GeSI) states that
although the worldwide carbon footprint of the computing and telecom-
munication sectors might triple from 2002 to 2020, the same sectors could
deliver over 5 times their footprint in emission savings in other industries
(including transportation and energy generation and transmission).16

Whether that prediction is accurate depends largely on how smartly
computing is deployed in those sectors. It is clear, however, that even
if the environmental effect of computing machinery is dwarfed by the
environmental savings made possible by its use, computing will remain a
large consumer of electricity, so curbing consumption of natural resources
should continue to have high priority.

Transitioning of Legacy Applications

It will take time for results of the proposed research agenda to come
to fruition. Society has an immediate and pressing need to use current
and emerging chip multiprocessor systems effectively. To that end, the
committee offers two recommendations related to current development
and engineering practices.

Although we expect long-term success in the effective use of parallel
systems to come from rethinking architectures and algorithms and devel-
oping new programming methods, this strategy will probably sacrifice
the backward-platform and cross-platform compatibility that has been
an economic cornerstone of IT for decades. To salvage value from the
nation’s current, substantial IT investment, we should seek ways to bring
sequential programs into the parallel world. On the one hand, we expect
no silver bullets to enable automatic black-box transformation. On the
other hand, it is prohibitively expensive to rewrite many applications. In
fact, the committee believes that industry will not migrate its installed
base of software to a new parallel future without good, reliable tools to
facilitate the migration. Not only can industry not afford a brute-force
migration financially, but also it cannot take the chance that innate latent
bugs will manifest, potentially many years after the original software
engineers created the code being migrated. If we cannot find a way to
smooth the transition, this single item could stall the entire parallel-
ism effort, and innovation in many types of IT might well stagnate. The
committee urges industry and academe to develop tools that provide a

16 Global e-Sustainability Initiative, 2008, Smart2020: Enabling the Low Carbon Economy
in the Information Age, Brussels, Belgium: Global e-Sustainability Initiative, available online
at http://www.smart2020.org.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

146	 THE FUTURE OF COMPUTING PERFORMANCE

middle ground and give experts “power tools” that can assist with the
hard work that will be necessary for vastly increased parallelization. In
addition, emphasis should be placed on tools and strategies to enhance
code creation, maintenance, verification, and adaptation. All are essential,
and current solutions, which are often inadequate even for single-thread
software development, are unlikely to be useful for parallel systems.

Recommendation: Invest in the development of tools and methods to
transform legacy applications to parallel systems.

Interface Standards

Competition in the private sector often (appropriately) encourages
the development of proprietary interfaces and implementations that seek
to create competitive advantage. In computer systems, however, a lack
of standardization can also impede progress when many incompatible
approaches allow none to achieve the benefits of wide adoption and
reuse—and this is a major reason that industry participates in standards
efforts. We therefore encourage the development of programming inter-
face standards. Standards can facilitate wide adoption of parallel pro-
gramming and yet encourage competition that will benefit all. Perhaps
a useful model is the one used for Java: the standard was initially devel-
oped by a small team (not a standards committee), protected in incubation
from devolving into many incompatible variants, and yet made public
enough to facilitate use and adoption by many cooperating and compet-
ing entities.

Recommendation: To promote cooperation and innovation by shar-
ing, encourage development of open interface standards for paral-
lel programming rather than proliferating proprietary programming
environments.

PARALLEL-PROGRAMMING MODELS AND EDUCATION

As described earlier in this report, future growth in performance
will be driven by parallel programs. Because most programs now in use
are not parallel, we will need to rely on the creation of new parallel pro-
grams. Who will create those programs? Students must be educated in
parallel programming at both the undergraduate and the graduate levels,
both in computer science and in other domains in which specialists use
computers.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 147

Current State of Programming

One view of the current pool of practicing programmers is that there
is a large disparity between the very best programmers and the rest in
both time to solution and elegance of solution. The conventional wisdom
in the field is that the difference in skills and productivity between the
average programmer and the best programmers is a factor of 10 or more.17
Opinions may vary on the specifics, but the pool of programmers breaks
down roughly as follows:

A.	 A few highly trained, highly skilled, and highly productive com-
puter science (CS) system designers.

B.	 A few highly trained, highly skilled, and highly productive CS
application developers.

C.	 Many moderately well-trained (average), moderately productive
CS system developers.

D.	 Many moderately productive developers without CS training.

The developers who are not CS-trained are domain scientists, busi-
ness people, and others who use computers as a tool to solve their prob-
lems. There are many such people. It is possible that fewer of those people
will be able to program well in the future, because of the difficulty of
parallel programming. However, if the CS community develops good
abstractions and programming languages that make it easy to program
in parallel, even more of those types of developers will be productive.

There is some chance that we will find solutions in which most
programmers still program sequentially. Some existing successful sys-
tems, such as databases and Web services, exploit parallelism but do not
require parallel programs to be written by most users and developers.
For example, a developer writes a single-threaded database query that
operates in parallel with other queries managed by the database system.
Another more modern and popularly known example is MapReduce,
which abstracts many programming problems for search and display into
a sequence of Map and Reduce operations, as described in Chapter 4.

Those examples are compelling and useful, but we cannot assume that
such domain-specific solutions will generalize to all important and per-
vasive problems. In addition to the shift to new architectural approaches,

17 In reality, the wizard programmers can have an even far greater effect on the organi-
zation than the one order of magnitude cited. The wizards will naturally gravitate to an
approach to problems that saves tremendous amounts of effort and will debug later, and
they will keep a programming team out of trouble far out of proportion to the 10:1 ratio
mentioned. Indeed, as in arts in general, there is a sense in which no number of ordinary
people can be combined to accomplish what one gifted person can contribute.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

148	 THE FUTURE OF COMPUTING PERFORMANCE

attention must be paid to the curriculum to ensure that students are pre-
pared to keep pace with the expected changes in software systems and
development. Without adequate training, we will not produce enough
of the category (A) and (B) highly skilled programmers above. Without
them, who will build the programming abstraction systems?

Parallel computing and thus parallel programming showed great
promise in the 1980s with comparably great expectations about what
could be accomplished. However, apart from horizontally scalable pro-
gramming paradigms, such as MapReduce, limited progress resulted in
frustration and comparatively little progress in recent years. Accordingly,
the focus recently has been more on publishable research results on the
theory of parallelism and new languages and approaches and less on sim-
plification of expression and practical use of parallelism and concurrency.

There has been much investment and comparatively limited success
in the approach of automatically extracting parallelism from sequential
code. There has been considerably less focus on effective expression of
parallelism in such a way that software is not expected to guess what
parallelism was present in the original problem or computational formu-
lation. Those questions remain unresolved. What should we teach?

Modern Computer-Science Curricula
Ill-Equipped for a Parallel Future

In the last 20 years, what is considered CS has greatly expanded, and it
has been increasingly interdisciplinary. Recently, many CS departments—
such as those at the Massachusetts Institute of Technology, Cornell Univer-
sity, Stanford University, and the Georgia Institute of Technology—have
revised their curricula by reducing or eliminating a required core and
adding multiple “threads” of concentrations from which students choose
one or more specializations, such as computational biology, computer
systems, theoretical computing, human-computer interaction, graphics,
robotics, or artificial intelligence. With respect to the topic of the present
report, the CS curriculum is not training undergraduate and graduate stu-
dents in either effective parallel programming or parallel computational
thinking. But that knowledge is now necessary for effective programming
of current commodity-parallel hardware, which is increasingly common
in the form of CMPs and graphics processors, not to mention possible
changes in systems of the future.

Developers and system designers are needed. Developers design
and program application software; system designers design and build
parallel-programming systems—which include programming languages,
compilers, runtime systems, virtual machines, and operating systems—to
make them work on computer hardware. In most universities, parallel

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 149

programming is not part of the undergraduate curriculum for either
CS students or scientists in other domains and is often presented as a
graduate elective course for CS and electrical and computer engineering
students. In the coming world of nearly ubiquitous parallel architectures,
relegating parallelism to the boundaries of the curriculum will not suf-
fice. Instead, it will increasingly be a practical tool for domain scientists
and will be immediately useful for software, system, and application
development.

Parallel programming—even the parallel programming of today—is
hard, but there are enough counterexamples to suggest that it may not be
intractable. Computational reasoning for parallel problem-solving—the
intellectual process of mapping the structure of a problem to a strategy
for solution—is fairly straightforward for computer scientists and domain
scientists alike, regardless of the level of parallelism involved or apparent
in the solution. Most domain scientists—in such fields as physics, biology,
chemistry, and engineering—understand the concepts of causality, corre-
lation, and independence (parallelism vs sequence). There is a mismatch
between how scientists and other domain specialists think about their
problems and how they express parallelism in their code. It therefore
becomes difficult for both computer and noncomputer scientists to write
programs. Straightforwardness is lost in the current expression of parallel
programming. It is possible, and even common, to express the problem
of parallel programming in a way that is complex and difficult to under-
stand, but the recommendations in this report are aimed at developing
models and approaches in which such complexity is not necessary.

Arguably, computational experimentation—performing science
exploration with computer models—is becoming an important part of
modern scientific endeavor. Computational experimentation is modern-
izing the scientific method. Consequently, the ability to express scientific
theories and models in computational form is a critical skill for modern
scientists. If computational models are to be targeted to parallel hardware,
as we argue in this report, parallel approaches to reasoning and think-
ing will be essential. Jeannette Wing has argued18 for the importance of
computational thinking, broadly, and a current National Research Council
study is exploring that notion. A recent report of that study also touched
on concurrency and parallelism as part of computational thinking.19 With
respect to the CS curriculum, because no general-purpose paradigm has

18 Jeannette M. Wing, 2006, Computational thinking, Communications of the ACM 49(3):
33-35.

19 See NRC, 2010, Report of a Workshop on the Scope and Nature of Computational Think-
ing, Washington, D.C.: The National Academies Press, available online at http://www.nap.
edu/catalog.php?record_id=12840.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

150	 THE FUTURE OF COMPUTING PERFORMANCE

emerged, universities should teach diverse parallel-programming lan-
guages, abstractions, and approaches until effective ways of teaching
and programming emerge. The necessary shape of the needed changes
will not be clear until some reasonably general parallel-programming
methods have been devised and shown to be promising. Nevertheless,
possible models for reform include making parallelism an intrinsic part of
every course (algorithms, architecture, programming, operating systems,
compilers, and so on) as a fundamental way of solving problems; adding
specialized courses, such as parallel computational reasoning, parallel
algorithms, parallel architecture, and parallel programming; and creat-
ing an honors section for advanced training in parallelism (this option is
much less desirable in that it enforces the notion that parallel program-
ming is outside mainstream approaches). It will be important to try many
parallel-programming languages and models in the curriculum and in
research to sort out which ones will work best and to learn the most effec-
tive methods.

Recommendation: Incorporate in computer science education an
increased emphasis on parallelism, and use a variety of methods and
approaches to prepare students better for the types of computing
resources that they will encounter in their careers.

GAME OVER OR NEXT LEVEL?

Since the invention of the transistor and the stored-program computer
architecture in the 1ate 1940s, we have enjoyed over a half-century of
phenomenal growth in computing and its effects on society. Will the sec-
ond half of the 20th century be recorded as the golden age of computing
progress, or will we now step up to the next set of challenges and continue
the growth in computing that we have come to expect?

Our computing models are likely to continue to evolve quickly in the
foreseeable future. We expect that there are still many changes to come,
which will require evolution of combined software and hardware sys-
tems. We are already seeing substantial centralization of computational
capability in the cloud-computing paradigm with its attendant challenges
to data storage and bandwidth. It is also possible to envision an abun-
dance of Internet-enabled embedded devices that run software that has
the sophistication and complexity of software running on today’s general-
purpose processors. Networked, those devices will form a ubiquitous and
invisible computing platform that provides data and services that we can
only begin to imagine today. These drivers combine with the technical
constraints and challenges outlined in the rest of this report to reinforce
the notion that computing is changing at virtually every level.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

RESEARCH, PRACTICE, AND EDUCATION	 151

The end of the exponential runup in uniprocessor performance and
the market saturation of the general-purpose processor mark the end
of the “killer micro.” This is a golden time for innovation in computing
architectures and software. We have already begun to see diversity in
computer designs to optimize for such metrics as power and throughput.
The next generation of discoveries will require advances at both the hard-
ware and the software levels.

There is no guarantee that we can make future parallel computing
ubiquitous and as easy to use as yesterday’s sequential computer, but
unless we aggressively pursue efforts suggested by the recommendations
above, it will be game over for future growth in computing performance.
This report describes the factors that have led to the limitations on growth
in the use of single processors based on CMOS technology. The recom-
mendations here are aimed at supporting and focusing research, devel-
opment, and education in architectures, power, and parallel computing
to sustain growth in computer performance and enjoy the next level of
benefits to society.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

Appendixes

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

A

A History of Computer Performance

Computer performance has historically been defined by how fast a
computer system can execute a single-threaded program to per-
form useful work. Why care about computer performance? What

is the work? How has computer performance improved?
Better computer performance matters in two ways. First, in what

is often called capability computing, it can enable computations that
were previously not practical or worthwhile. It does no good to compute
tomorrow’s weather forecast in 24 hours, but 12-hour computation is
valuable. Second, when performance scales up more rapidly than com-
puter cost—as has often been the case—better cost performance allows
computation to be used where it was previously not economically tenable.
Neither spreadsheets on $1,000,000 mainframes nor $10,000 MP3 players
make sense.

Computer performance should be evaluated on the basis of the work
that matters. Computer vendors should analyze their designs with the
(present and future) workloads of their (present and future) custom-
ers, and those purchasing computers should consider their own (present
and future) workloads with alternative computers under consideration.
Because the above is time-consuming—and therefore expensive—many
people evaluate computers by using standard benchmark suites. Each
vendor produces benchmark results for its computers, often after opti-
mizing computers for the benchmarks. Each customer can then compare
benchmark results and get useful information—but only if the benchmark
suite is sufficiently close to the customer’s actual workloads.

155

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

156	 THE FUTURE OF COMPUTING PERFORMANCE

Two popular benchmark suites are SPECint2000 and SPECfp2000.
Both are produced by the Standard Performance Evaluation Corporation
(SPEC) (http://www.spec.org/). SPECint2000 includes 12 integer codes,
and SPECfp200 has 14 floating-point benchmarks. Below, we use SPEC
data to examine computer-performance trends over the last 2 decades.
The results are valuable, but their absolute numbers should be regarded
as rough approximations of systems’ absolute performance. Nevertheless,
they are much better than results based on “peak rate,” which gives a
computer’s speed when it is doing nothing.

Figures A.1 (INT) and A.2 (FP) display results for SPECint2000 and
SPECfp2000, respectively. The X axes give the years from 1985 or 1988 to
2007. The logarithmic Y axes give the SPEC rate normalized to circa 1985.
Thus, a value of 10 means that the computer is 10 times faster than (can
execute the work in one-tenth the time of) a 1985 model.

The Figures A.1 and A.2 reveal two trends. First, computer perfor-
mance has improved exponentially (linearly on a semilogarithmic plot) for
most years under study. In particular, until 2004 or so, both SPECint2000
and SPECfp2000 improved at a compound annual rate exceeding 50% (for
example, a factor of 100 in about 10 years).

Second, the performance improvements after 2004 have been poorer.

1

10

100

1,000

10,000

1985 1990 1995 2000 2005 2010
Year of Introduction

FIGURE A.1 Integer application performance (SPECint2000) over time (1985-2010).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX A	 157

1

10

100

1,000

10,000

1985 1990 1995 2000 2005 2010
Year of Introduction

FIGURE A.2 Floating-point application performance (SPECfp2000) over time
(1985-2010).

One could hope that the results are an anomaly and that computer ven-
dors will soon return to robust annual improvements. However, public
roadmaps and private conversations with vendors reveal that single-
threaded computer-performance gains have entered a new era of modest
improvement.

Trends in computer-clock frequency offer another reason for pessi-
mism. Clock frequency is the “heart rate” of a computer, and its improve-
ment has traditionally been a major component of computer-performance
improvement. Figure A.3 (FREQ) illustrates clock frequency over time
in megahertz (millions of cycles per second). Clearly, clock-frequency
improvements have also stalled (especially if the 4.7-GHz power 6 is more
an exception than the new rule).

Moreover, the principal reason that clock-frequency improvement has
slowed greatly is that higher clock frequencies demand greater power
and the power used by modern microprocessors has reached a level that
make increases questionable from an economic perspective and may even
encourage clock-frequency reductions. Figure A.4 (POWER) plots chip
power (in watts) versus. year. Like clock frequencies, power consumed
by a chip increased exponentially (linearly on a semilogarithmic plot) for
years, but it has recently reached a plateau.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

158	 THE FUTURE OF COMPUTING PERFORMANCE

10

100

1,000

10,000

1985 1990 1995 2000 2005 2010
Year of Introduction

1

10

100

1,000

1985 1990 1995 2000 2005 2010
Year of Introduction

FIGURE A.3 Microprocessor clock frequency (MHz) over time (1985-2010).

FIGURE A.4 Microprocessor power dissipation (watts) over time (1985-2010).

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX A	 159

To put those trends into context, we should look further back in
history. Kurzweil and others argue that the performance improvements
during the recent microprocessor or Moore’s law era follow a longer
historical trend.1 In particular, in Kurzweil’s estimates of 20th-century
computer-performance improvements, he finds that over the whole cen-
tury, computer performance improved exponentially and that exponential
improvement was, if anything, accelerating. Although his exact numbers
are open to debate, it is clear that computer performance grew exponen-
tially over the entirety of the 20th century.

What will the rest of the 21st century bring? Optimists predict that
Kurzweil’s trend will continue. Pessimists worry that single-threaded
architectures and complementary metal oxide semiconductor technology
are reaching their limits, that multithreaded programming has not been
broadly successful, and that alternative technologies are still insufficient.
Our job, as encouraged in the rest of this report, is to prove the optimists
correct.

1 The Law of Accelerating Returns, by Ray Kurzweil, http://www.kurzweilai.net/articles/
art0134.html?printable=1.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

B

Biographies of Committee
Members and Staff

Samuel H. Fuller (Chair), NAE, is the CTO and vice president of research
and development at Analog Devices, Inc. (ADI) and is responsible for its
technology and product strategy. He also manages university research
programs and advanced development initiatives and supports the growth
of ADI product-design centers around the world. Dr. Fuller has man-
aged the development of EDA tools and methods and design of digital
signal processors and sponsored the development of advanced opto-
electronic integrated circuits. Before joining ADI in 1998, Dr. Fuller was
vice president of research at Digital Equipment Corporation and built
the company’s corporate research programs, which included laboratories
in Massachusetts, California, France, and Germany. While at Digital, he
initiated work in local-area networking, RISC processors, distributed sys-
tems, and Internet search engines. He was also responsible for research
programs with universities; the Massachusetts Institute of Technology
Project Athena was one of the major programs. Earlier, Dr. Fuller was
an associate professor of computer science and electrical engineering at
Carnegie Mellon University, where he led the design and performance
evaluation of experimental multiprocessor computer systems. He holds
a BS in electrical engineering from the University of Michigan and an
MS and a PhD from Stanford University. He is a member of the board
of Zygo Corporation and the Corporation for National Research Initia-
tives and serves on the Technology Strategy Committee of the Semicon-
ductor Industry Association. Dr. Fuller has served on several National
Research Council studies, including the one that produced Cryptography’s

160

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX B	 161

Role in Securing the Information Society, and was a founding member of the
Research Council’s Computer Science and Telecommunications Board. He
is a fellow of the Institute of Electrical and Electronics Engineers and the
American Association for the Advancement of Science and a member of
the National Academy of Engineering.

Luiz André Barroso is a Distinguished Engineer at Google Inc., where his
work has spanned a number of fields, including software-infrastructure
design, fault detection and recovery, power provisioning, networking
software, performance optimizations, and the design of Google’s com-
puting platform. Before joining Google, he was a member of the research
staff at Compaq and Digital Equipment Corporation, where his group did
some of the pioneering work on processor and memory-system design for
commercial workloads (such as database and Web servers). The group
also designed Piranha, a scalable shared-memory architecture based on
single-chip multiprocessing; this work on Piranha has had an important
impact in the microprocessor industry, helping to inspire many of the
multicore central processing units that are now in the mainstream. Before
joining Digital, he was one of the designers of the USC RPM, an FPGA-
based multiprocessor emulator for rapid hardware prototyping. He has
also worked at IBM Brazil’s Rio Scientific Center and lectured at PUC-Rio
(Brazil) and Stanford University. He holds a PhD in computer engineering
from the University of Southern California and a BS and an MS in electri-
cal engineering from the Pontifícia Universidade Católica, Rio de Janeiro.

Robert P. Colwell, NAE, was Intel’s chief IA32 (Pentium) microprocessor
architect from 1992 to 2000 and managed the IA32 Architecture group at
Intel’s Hillsboro, Oregon, facility through the P6 and Pentium 4 proj-
ects. He was named the Eckert-Mauchly Award winner for 2005. He was
elected to the National Academy of Engineering in 2006 “for contributions
to turning novel computer architecture concepts into viable, cutting-edge
commercial processors.” He was named an Intel fellow in 1996, and a fel-
low of the Institute of Electrical and Electronics Engineers (IEEE) in 2006.
Previously, Dr. Colwell was a central processing unit architect at VLIW
minisupercomputer pioneer Multiflow Computer, a hardware-design
engineer at workstation vendor Perq Systems, and a member of technical
staff at Bell Labs. He has published many technical papers and journal
articles, is inventor or coinventor on 40 patents, and has participated in
numerous panel sessions and invited talks. He is the Perspectives editor
for IEEE’s Computer magazine, wrote the At Random column in 2002-2005,
and is author of The Pentium Chronicles, a behind-the-scenes look at mod-
ern microprocessor design. He is currently an independent consultant. Dr.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

162	 THE FUTURE OF COMPUTING PERFORMANCE

Colwell holds a BSEE from the University of Pittsburgh and an MSEE and
a PhD from Carnegie Mellon University.

William J. Dally, NAE, is the Willard R. and Inez Kerr Bell Professor
of Engineering at Stanford University and chair of the Computer Sci-
ence Department. He is also chief scientist and vice president of NVIDIA
Research. He has done pioneering development work at Bell Telephone
Laboratories, the California Institute of Technology, and the Massa-
chusetts Institute of Technology, where he was a professor of electrical
engineering and computer science. At Stanford University, his group
has developed the Imagine processor, which introduced the concepts of
stream processing and partitioned register organizations. Dr. Dally has
worked with Cray Research and Intel to incorporate many of those inno-
vations into commercial parallel computers and with Avici Systems to
incorporate the technology into Internet routers, and he cofounded Velio
Communications to commercialize high-speed signaling technology and
Stream Processors to commercialize stream-processor technology. He is a
fellow of the Institute of Electrical and Electronics Engineers and of the
Association for Computing Machinery (ACM) and has received numer-
ous honors, including the ACM Maurice Wilkes award. He has published
more than 150 papers and is an author of the textbooks Digital Systems
Engineering (Cambridge University Press, 1998) and Principles and Practices
of Interconnection Networks (Morgan Kaufmann, 2003). Dr. Dally is a mem-
ber of the Computer Science and Telecommunications Board (CSTB) and
was a member of the CSTB committee that produced the report Getting
up to Speed: The Future of Supercomputing.

Dan Dobberpuhl, NAE, cofounder, president, and CEO of P. A. Semi,
has been credited with developing fundamental breakthroughs in the
evolution of high-speed and low-power microprocessors. Before start-
ing P. A. Semi, Mr. Dobberpuhl was vice president and general man-
ager of the broadband processor division of Broadcom Corporation. He
came to Broadcom via an acquisition of his previous company, SiByte,
Inc., founded in 1998, which was sold to Broadcom in 2000. Before that,
he worked for Digital Equipment Corporation for more than 20 years,
where he was credited with creating some of the most fundamental break-
throughs in microprocessing technology. In 1998, EE Times named Mr.
Dobberpuhl as one of the “40 forces to shape the future of the Semicon-
ductor Industry.” In 2003, he was awarded the prestigious IEEE Solid
State Circuits Award for “pioneering design of high-speed and low-power
microprocessors.” In 2006, Mr. Dobberpuhl was elected to the National
Academy of Engineering for “innovative design and implementation of
high-performance, low-power microprocessors.” Mr. Dobberpuhl holds

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX B	 163

15 patents and has written many publications related to integrated circuits
and central processing units, including being coauthor of the seminal text-
book Design and Analysis of VLSI Circuits, published by Addison-Wesley
in 1985. He holds a bachelor’s degree in electrical engineering from the
University of Illinois.

Pradeep Dubey is a senior principal engineer and director of the Parallel
Computing Lab, part of Intel Labs at Intel Corporation. His research focus
is computer architectures to handle new application paradigms for the
future computing environment efficiently. Dr. Dubey previously worked
at IBM’s T. J. Watson Research Center and Broadcom Corporation. He
was one of the principal architects of the AltiVec* multimedia extension to
Power PC* architecture. He also worked on the design, architecture, and
performance issues of various microprocessors, including Intel® i386TM,
i486TM, and Pentium® processors. He holds 26 patents and has published
extensively. Dr. Dubey received a BS in electronics and communication
engineering from Birla Institute of Technology, India, an MSEE from the
University of Massachusetts at Amherst, and a PhD in electrical engineer-
ing from Purdue University. He is a fellow of the Institute of Electrical and
Electronics Engineering.

Mark D. Hill is a professor in both the Computer Sciences Department
and the Electrical and Computer Engineering Department at the Uni-
versity of Wisconsin-Madison. Dr. Hill’s research targets the memory
systems of multiple-processor and single-processor computer systems.
His work emphasizes quantitative analysis of system-level performance.
His research interests include parallel computer-system design (for exam-
ple, memory-consistency models and cache coherence), memory-system
design (for example, caches and translation buffers), computer simulation
(for example, parallel systems and memory systems), and software (page
tables and cache-conscious optimizations for databases and pointer-based
codes). He is the inventor of the widely used 3C model of cache behavior
(compulsory, capacity, and conflict misses). Dr. Hill’s current research is
mostly part of the Wisconsin Multifacet Project that seeks to improve the
multiprocessor servers that form the computational infrastructure for
Internet Web servers, databases, and other demanding applications. His
work focuses on using the transistor bounty predicted by Moore’s law
to improve multiprocessor performance, cost, and fault tolerance while
making these systems easier to design and program. Dr. Hill is a fellow
of the Association for Computing Machinery (ACM) (2004) for contribu-
tions to memory-consistency models and memory-system design and a
fellow of the Institute of Electrical and Electronics Engineers (2000) for
contributions to cache-memory design and analysis. He was named a

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

164	 THE FUTURE OF COMPUTING PERFORMANCE

Wisconsin Vilas Associate in 2006, was a co-winner of the best-paper
award in VLDB in 2001, was named a Wisconsin Romnes fellow in 1997,
and won a National Science Foundation Presidential Young Investigator
award in 1989. He is a director of ACM SIGARCH, coeditor of Readings
in Computer Architecture (2000), and coinventor on 28 U.S. patents (sev-
eral coissued in the European Union and Japan). He has held visiting
positions at Universidad Politecnica de Catalunya (2002-2003) and Sun
Microsystems (1995-1996). Dr. Hill earned a PhD in computer science from
the University of California, Berkeley (UCB) in 1987, an MS in computer
science from UCB in 1983, and a BSE in computer engineering from the
University of Michigan-Ann Arbor in 1981.

Mark Horowitz, NAE, is the associate vice provost for graduate educa-
tion, working on special programs, and the Yahoo! Founders Professor of
the School of Engineering at Stanford University. In addition, he is chief
scientist at Rambus Inc. He received his BS and MS in electrical engineer-
ing from the Massachusetts Institute of Technology in 1978 and his PhD
from Stanford in 1984. Dr. Horowitz has received many awards, including
a 1985 Presidential Young Investigator Award, the 1993 ISSCC Best Paper
Award, the ISCA 2004 Most Influential Paper of 1989, and the 2006 Don
Pederson IEEE Technical Field Award. He is a fellow of the Institute of
Electrical and Electronics Engineers and the Association for Computing
Machinery and is a member of the National Academy of Engineering.
Dr. Horowitz’s research interests are quite broad and span using electri-
cal engineering and computer science analysis methods on problems in
molecular biology and creating new design methods for analogue and
digital very-large-scale implementation circuits. He has worked on many
processor designs, from early RISC chips to creating some of the first
distributed shared-memory multiprocessors and is currently working on
on-chip multiprocessor designs. Recently, he has worked on a number
of problems in computational photography. In 1990, he took leave from
Stanford to help start Rambus Inc., a company designing high-bandwidth
memory-interface technology, and has continued work in high-speed
I/O at Stanford. His current research includes multiprocessor design,
low-power circuits, high-speed links, computational photography, and
applying engineering to biology.

David Kirk, NAE, was NVIDIA’s chief scientist since from 1997 to 2009
and is now an NVIDIA fellow. His contributions include leading NVIDIA
graphics-technology development for today’s most popular consumer
entertainment platforms. In 2002, Dr. Kirk received the SIGGRAPH Com-
puter Graphics Achievement Award for his role in bringing high-perfor-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX B	 165

mance computer graphics systems to the mass market. From 1993 to 1996,
he was chief scientist and head of technology for Crystal Dynamics, a
video-game manufacturing company. From 1989 to 1991, Dr. Kirk was an
engineer for the Apollo Systems Division of Hewlett-Packard Company.
He is the inventor on 50 patents and patent applications related to graph-
ics design and has published more than 50 articles on graphics technol-
ogy. Dr. Kirk holds a BS and an MS in mechanical engineering from the
Massachusetts Institute of Technology and an MS and a PhD in computer
science from the California Institute of Technology.

Monica Lam is a professor of computer science at Stanford University,
having joined the faculty in 1988. She has contributed to research on a
wide array of computer-systems topics, including compilers, program
analysis, operating systems, security, computer architecture, and high-
performance computing. Her recent research focus is to make computing
and programming easier. In the Collective Project, she and her research
group developed the concept of a livePC: subscribers to the livePC will
automatically run the latest of the published PC virtual images with each
reboot. That approach allows computers to be managed scalably and
securely. In 2005, the group started a company called moka5 to transfer the
technology to industry. In another research project, her program-analysis
group has developed a collection of tools for improving software security
and reliability. They developed the first scalable context-sensitive inclu-
sion-based pointer analysis and a freely available tool called BDDBDDB
that allows programmers to express context-sensitive analyses simply by
writing Datalog queries. Other tools developed include Griffin, static and
dynamic analysis for finding security vulnerabilities in Web applications,
such as SQL injection; a static and dynamic program query language
called PQL; a static memory-leak detector called Clouseau; a dynamic
buffer-overrun detector called CRED; and a dynamic error-diagnosis tool
called DIDUCE. Previously, Dr. Lam led the Stanford University Interme-
diate Format Compiler project, which produced a widely used compiler
infrastructure known for its locality optimizations and interprocedural
parallelization. Many of the compiler techniques that she developed have
been adopted by industry. Her other research projects included the archi-
tecture and compiler for the CMU Warp machine, a systolic array of very-
long-instruction-word processors, and the Stanford DASH distributed
shared-memory machine. In 1998, she took a sabbatical leave from Stan-
ford University to help to start Tensilica Inc., a company that specializes
in configurable processor cores. She received a BSc from the University of
British Columbia in 1980 and a PhD in computer science from Carnegie
Mellon University in 1987.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

166	 THE FUTURE OF COMPUTING PERFORMANCE

Kathryn S. McKinley is a professor at the University of Texas at Austin.
Her research interests include compilers, runtime systems, and architec-
ture. Her research seeks to enable high-level programming languages to
achieve high performance, reliability, and availability. She and her collab-
orators have developed compiler optimizations for improving memory-
system performance, high-performance garbage-collection algorithms,
scalable explicit-memory management algorithms for parallel systems,
and cooperative dynamic optimizations for improving the performance
of managed languages. She is leading the compiler effort for the TRIPS
project, which is exploring attaining scalable performance improvements
using explicit dataflow graph execution architectures. Her honors include
being named an Association for Computing Machinery (ACM) Distin-
guished Scientist and receiving a National Science Foundation Career
Award. She is the co-editor-in-chief of ACM’s Transactions on Programming
Language and Systems (TOPLAS). She is active in increasing minority-group
participation in computer science and, for example, co-led with Daniel
Jimenez the CRAW/CDC Programming Languages Summer School in
2007. She has published over 75 refereed articles and has supervised eight
PhD degrees. Dr. McKinley holds a BA (1985) in electrical engineering and
computer science and an MS (1990) and a PhD (1992) in computer science,
all from Rice University.

Charles Moore is an Advanced Micro Devices (AMD) corporate fellow and
the CTO for AMD’s Technology Group. He is the chief engineer of AMD’s
next-generation processor design. His responsibilities include interacting
with key customers to understand their requirements, identifying impor-
tant technology trends that may affect future designs, and architectural
development and management of the next-generation design. Before join-
ing AMD, Mr. Moore was a senior industrial research fellow at the Uni-
versity of Texas at Austin, where he did research on technology-scalable
computer architecture. Before then, he was a distinguished engineer at
IBM, where he was the chief engineer on the POWER4 project. Earlier, he
was the coleader of the first single-chip POWER architecture implementa-
tion and the coleader of the first PowerPC implementation used by Apple
Computer in its PowerMac line of personal computers. While at IBM, he
was elected to the IBM Academy of Technology and was named an IBM
master inventor. He has been granted 29 US patents and has several oth-
ers pending. He has published numerous conference papers and articles
on a wide array of subjects related to computer architecture and design.
He is on the editorial board of IEEE Micro magazine and on the program
committee for several important industry conferences. Mr. Moore holds a
master’s degree in electrical engineering from the University of Texas at

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX B	 167

Austin and a bachelor’s degree in electrical engineering from the Rens-
selaer Polytechnic Institute.

Katherine Yelick is a professor in the Computer Science Division of the
University of California, Berkeley. The main goal of her research is to
develop techniques for obtaining high performance on a wide array of
computational platforms and to ease the programming effort required to
obtain performance. Dr. Yelick is perhaps best known for her efforts in
global address space (GAS) languages, which attempt to present the pro-
grammer with a shared-memory model for parallel programming. Those
efforts have led to the design of Unified Parallel C (UPC), which merged
some of the ideas of three shared-address-space dialects of C: Split-C,
AC (from IDA), and PCP (from Lawrence Livermore National Labora-
tory). In recent years, UPC has gained recognition as an alternative to
message-passing programming for large-scale machines. Compaq, Sun,
Cray, HP, and SGI are implementing UPC, and she is currently leading a
large effort at Lawrence Berkeley National Laboratory to implement UPC
on Linux clusters and IBM machines and to develop new optimizations.
The language provides a uniform programming model for both shared
and distributed memory hardware. She has also worked on other global-
address-space languages, such as Titanium, which is based on Java. She
has done notable work on single-processor optimizations, including tech-
niques for automatically optimizing sparse matrix algorithms for memory
hierarchies. Another field that she has worked in is architectures for
memory-intensive applications and in particular the use of mixed logic,
which avoids the off-chip accesses to DRAM, thereby gaining bandwidth
while lowering latency and energy consumption. In the IRAM project, a
joint effort with David Patterson, she developed an architecture to take
advantage of this technology. The IRAM processor is a single-chip system
designed for low power and high performance in multimedia applica-
tions and achieves an estimated 6.4 gigaops per second in a 2-W design.
Dr. Yelick received her bachelor’s degree (1985), master’s degree (1985),
and PhD (1991) in electrical engineering and computer science from the
Massachusetts Institute of Technology.

STAFF

Lynette I. Millett is a senior program officer and study director at the
Computer Science and Telecommunications Board (CSTB), National
Research Council of the National Academies. She currently directs sev-
eral CSTB projects, including a study to advise the Centers for Medicare
and Medicaid Service on future information systems architectures and a
study examining opportunities for computing research to help meet sus-

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

168	 THE FUTURE OF COMPUTING PERFORMANCE

tainability challenges. She served as the study director for the CSTB report
Social Security Administration Electronic Service Provision: A Strategic Assess-
ment. Ms. Millett’s portfolio includes substantial portions of CSTB’s recent
work on software, identity systems, and privacy. She directed, among
other projects, those that produced Software for Dependable Systems: Suf-
ficient Evidence?, an exploration of fundamental approaches to develop-
ing dependable mission-critical systems; Biometric Recognition: Challenges
and Opportunities, a comprehensive assessment of biometric technology;
Who Goes There? Authentication Through the Lens of Privacy, a discussion of
authentication technologies and their privacy implications; and IDs—Not
That Easy: Questions About Nationwide Identity Systems, a post-9/11 analy-
sis of the challenges presented by large-scale identity systems. She has an
M.Sc. in computer science from Cornell University, where her work was
supported by graduate fellowships from the National Science Founda-
tion and the Intel Corporation; and a BA with honors in mathematics and
computer science from Colby College, where she was elected to Phi Beta
Kappa.

Shenae Bradley is a senior program assistant at the Computer Science
and Telecommunications Board of the National Research Council. She
currently provides support for the Committee on Sustaining Growth in
Computing Performance, the Committee on Wireless Technology Pros-
pects and Policy Options, and the Computational Thinking for Everyone:
A Workshop Series Planning Committee, to name a few. Prior to this, she
served as an administrative assistant for the Ironworker Management
Progressive Action Cooperative Trust and managed a number of apart-
ment rental communities for Edgewood Management Corporation in the
Maryland/DC/Delaware metropolitan areas. Ms. Bradley is in the pro-
cess of earning her BS in family studies from the University of Maryland
at College Park.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

C

Reprint of Gordon E. Moore’s
“Cramming More Components

onto Integrated Circuits”

NOTE: Reprinted from Gordon Moore, 1965, Cramming more components onto integrated
circuits, Electronics 38(8) with permission from Intel Corporation.

169

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

170	 THE FUTURE OF COMPUTING PERFORMANCE

Cramming More Components onto
Integrated Circuits
GORDON E. MOORE, LIFE FELLOW, IEEE

With unit cost falling as the number of components per circuit
rises, by 1975 economics may dictate squeezing as many as 65000
components on a single silicon chip.
The future of integrated electronics is the future of

electronics itself. The advantages of integration will bring
about a proliferation of electronics, pushing this science
into many new areas.
Integrated circuits will lead to such wonders as home

computers—or at least terminals connected to a central
computer—automatic controls for automobiles, and per-
sonal portable communications equipment. The electronic
wristwatch needs only a display to be feasible today.
But the biggest potential lies in the production of large

systems. In telephone communications, integrated circuits
in digital lters will separate channels on multiplex equip-
ment. Integrated circuits will also switch telephone circuits
and perform data processing.
Computers will be more powerful, and will be organized

in completely different ways. For example, memories built
of integrated electronics may be distributed throughout
the machine instead of being concentrated in a central
unit. In addition, the improved reliability made possible
by integrated circuits will allow the construction of larger
processing units. Machines similar to those in existence
today will be built at lower costs and with faster turn-
around.

I. PRESENT AND FUTURE
By integrated electronics, I mean all the various tech-

nologies which are referred to as microelectronics today
as well as any additional ones that result in electronics
functions supplied to the user as irreducible units. These
technologies were rst investigated in the late 1950’s. The
object was to miniaturize electronics equipment to include
increasingly complex electronic functions in limited space
with minimum weight. Several approaches evolved, includ-
ing microassembly techniques for individual components,
thin-lm structures, and semiconductor integrated circuits.

Reprinted from Gordon E. Moore, “Cramming More Components onto
Integrated Circuits,” Electronics, pp. 114–117, April 19, 1965.
Publisher Item Identier S 0018-9219(98)00753-1.

Each approach evolved rapidly and converged so that
each borrowed techniques from another. Many researchers
believe the way of the future to be a combination of the
various approaches.
The advocates of semiconductor integrated circuitry are

already using the improved characteristics of thin-lm
resistors by applying such lms directly to an active semi-
conductor substrate. Those advocating a technology based
upon lms are developing sophisticated techniques for the
attachment of active semiconductor devices to the passive
lm arrays.
Both approaches have worked well and are being used

in equipment today.

II. THE ESTABLISHMENT

Integrated electronics is established today. Its techniques
are almost mandatory for new military systems, since the
reliability, size, and weight required by some of them is
achievable only with integration. Such programs as Apollo,
for manned moon ight, have demonstrated the reliability
of integrated electronics by showing that complete circuit
functions are as free from failure as the best individual
transistors.
Most companies in the commercial computer eld have

machines in design or in early production employing inte-
grated electronics. These machines cost less and perform
better than those which use “conventional” electronics.
Instruments of various sorts, especially the rapidly in-

creasing numbers employing digital techniques, are starting
to use integration because it cuts costs of both manufacture
and design.
The use of linear integrated circuitry is still restricted

primarily to the military. Such integrated functions are ex-
pensive and not available in the variety required to satisfy a
major fraction of linear electronics. But the rst applications
are beginning to appear in commercial electronics, partic-
ularly in equipment which needs low-frequency ampliers
of small size.

III. RELIABILITY COUNTS
In almost every case, integrated electronics has demon-

strated high reliability. Even at the present level of pro-

82 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 1, JANUARY 1998

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX C	 171

duction—low compared to that of discrete components—it
offers reduced systems cost, and in many systems improved
performance has been realized.
Integrated electronics will make electronic techniques

more generally available throughout all of society, perform-
ing many functions that presently are done inadequately by
other techniques or not done at all. The principal advantages
will be lower costs and greatly simplied design—payoffs
from a ready supply of low-cost functional packages.
For most applications, semiconductor integrated circuits

will predominate. Semiconductor devices are the only rea-
sonable candidates presently in existence for the active
elements of integrated circuits. Passive semiconductor el-
ements look attractive too, because of their potential for
low cost and high reliability, but they can be used only if
precision is not a prime requisite.
Silicon is likely to remain the basic material, although

others will be of use in specic applications. For example,
gallium arsenide will be important in integrated microwave
functions. But silicon will predominate at lower frequencies
because of the technology which has already evolved
around it and its oxide, and because it is an abundant and
relatively inexpensive starting material.

IV. COSTS AND CURVES
Reduced cost is one of the big attractions of integrated

electronics, and the cost advantage continues to increase
as the technology evolves toward the production of larger
and larger circuit functions on a single semiconductor
substrate. For simple circuits, the cost per component is
nearly inversely proportional to the number of components,
the result of the equivalent piece of semiconductor in
the equivalent package containing more components. But
as components are added, decreased yields more than
compensate for the increased complexity, tending to raise
the cost per component. Thus there is a minimum cost
at any given time in the evolution of the technology. At
present, it is reached when 50 components are used per
circuit. But the minimum is rising rapidly while the entire
cost curve is falling (see graph). If we look ahead ve
years, a plot of costs suggests that the minimum cost per
component might be expected in circuits with about 1000
components per circuit (providing such circuit functions
can be produced in moderate quantities). In 1970, the
manufacturing cost per component can be expected to be
only a tenth of the present cost.
The complexity for minimum component costs has in-

creased at a rate of roughly a factor of two per year
(see graph). Certainly over the short term this rate can be
expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly
constant for at least ten years. That means by 1975, the
number of components per integrated circuit for minimum
cost will be 65 000.
I believe that such a large circuit can be built on a single

wafer.

Fig. 1.

V. TWO-MIL SQUARES

With the dimensional tolerances already being employed
in integrated circuits, isolated high-performance transistors
can be built on centers two-thousandths of an inch apart.
Such a two-mil square can also contain several kilohms
of resistance or a few diodes. This allows at least 500
components per linear inch or a quarter million per square
inch. Thus, 65 000 components need occupy only about
one-fourth a square inch.
On the silicon wafer currently used, usually an inch or

more in diameter, there is ample room for such a structure if
the components can be closely packed with no space wasted
for interconnection patterns. This is realistic, since efforts to
achieve a level of complexity above the presently available
integrated circuits are already under way using multilayer
metallization patterns separated by dielectric lms. Such a
density of components can be achieved by present optical
techniques and does not require the more exotic techniques,
such as electron beam operations, which are being studied
to make even smaller structures.

VI. INCREASING THE YIELD

There is no fundamental obstacle to achieving device
yields of 100%. At present, packaging costs so far exceed
the cost of the semiconductor structure itself that there is no
incentive to improve yields, but they can be raised as high
as is economically justied. No barrier exists comparable
to the thermodynamic equilibrium considerations that often
limit yields in chemical reactions; it is not even necessary
to do any fundamental research or to replace present
processes. Only the engineering effort is needed.
In the early days of integrated circuitry, when yields were

extremely low, there was such incentive. Today ordinary
integrated circuits are made with yields comparable with
those obtained for individual semiconductor devices. The
same pattern will make larger arrays economical, if other
considerations make such arrays desirable.

MOORE: CRAMMING COMPONENTS ONTO INTEGRATED CIRCUITS 83

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

172	 THE FUTURE OF COMPUTING PERFORMANCE

Fig. 2.

Fig. 3.

VII. HEAT PROBLEM
Will it be possible to remove the heat generated by tens

of thousands of components in a single silicon chip?
If we could shrink the volume of a standard high-

speed digital computer to that required for the components
themselves, we would expect it to glow brightly with
present power dissipation. But it won’t happen with in-
tegrated circuits. Since integrated electronic structures are
two dimensional, they have a surface available for cooling
close to each center of heat generation. In addition, power is
needed primarily to drive the various lines and capacitances
associated with the system. As long as a function is conned
to a small area on a wafer, the amount of capacitance
which must be driven is distinctly limited. In fact, shrinking
dimensions on an integrated structure makes it possible to
operate the structure at higher speed for the same power
per unit area.

VIII. DAY OF RECKONING
Clearly, we will be able to build such component-

crammed equipment. Next, we ask under what circum-
stances we should do it. The total cost of making a
particular system function must be minimized. To do so,
we could amortize the engineering over several identical
items, or evolve exible techniques for the engineering of
large functions so that no disproportionate expense need
be borne by a particular array. Perhaps newly devised
design automation procedures could translate from logic

diagram to technological realization without any special
engineering.
It may prove to be more economical to build large

systems out of smaller functions, which are separately pack-
aged and interconnected. The availability of large functions,
combined with functional design and construction, should
allow the manufacturer of large systems to design and
construct a considerable variety of equipment both rapidly
and economically.

IX. LINEAR CIRCUITRY
Integration will not change linear systems as radically as

digital systems. Still, a considerable degree of integration
will be achieved with linear circuits. The lack of large-
value capacitors and inductors is the greatest fundamental
limitation to integrated electronics in the linear area.
By their very nature, such elements require the storage

of energy in a volume. For high it is necessary that the
volume be large. The incompatibility of large volume and
integrated electronics is obvious from the terms themselves.
Certain resonance phenomena, such as those in piezoelec-
tric crystals, can be expected to have some applications for
tuning functions, but inductors and capacitors will be with
us for some time.
The integrated RF amplier of the future might well con-

sist of integrated stages of gain, giving high performance
at minimum cost, interspersed with relatively large tuning
elements.
Other linear functions will be changed considerably. The

matching and tracking of similar components in integrated
structures will allow the design of differential ampliers of
greatly improved performance. The use of thermal feedback
effects to stabilize integrated structures to a small fraction
of a degree will allow the construction of oscillators with
crystal stability.
Even in the microwave area, structures included in the

denition of integrated electronics will become increasingly
important. The ability to make and assemble components
small compared with the wavelengths involved will allow
the use of lumped parameter design, at least at the lower
frequencies. It is difcult to predict at the present time
just how extensive the invasion of the microwave area by
integrated electronics will be. The successful realization of
such items as phased-array antennas, for example, using a
multiplicity of integrated microwave power sources, could
completely revolutionize radar.

84 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 1, JANUARY 1998

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX C	 173

G. E. Moore is one of the new breed of elec-
tronic engineers, schooled in the physical sci-
ences rather than in electronics. He earned a B.S.
degree in chemistry from the University of Cal-
ifornia and a Ph.D. degree in physical chemistry
from the California Institute of Technology. He
was one of the founders of Fairchild Semicon-
ductor and has been Director of the research and
development laboratories since 1959.

MOORE: CRAMMING COMPONENTS ONTO INTEGRATED CIRCUITS 85

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

D

Reprint of Robert H. Dennard’s
“Design of Ion-Implanted MOSFET’s

with Very Small Physical Dimensions”

NOTE: Reprinted from Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo
Rideout, Ernest Bassous, and Andre R. LeBlanc, 1974, Design of ion-implanted MOSFETS
with very small physical dimensions, IEEE Journal of Solid State Circuits 9(5):256 with per-
mission of IEEE and Robert H. Dennard © 1974 IEEE.

174

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX D	 175

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

176	 THE FUTURE OF COMPUTING PERFORMANCE

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX D	 177

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

178	 THE FUTURE OF COMPUTING PERFORMANCE

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX D	 179

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

180	 THE FUTURE OF COMPUTING PERFORMANCE

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX D	 181

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

182	 THE FUTURE OF COMPUTING PERFORMANCE

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX D	 183

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

184	 THE FUTURE OF COMPUTING PERFORMANCE

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

APPENDIX D	 185

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980

	FrontMatter
	Preface
	Acknowledgment of Reviewers
	Contents
	Abstract
	Summary
	1 The Need for Continued Performance Growth
	2 What Is Computer Performance?
	3 Power Is Now Limiting Growth in Computing Performance
	4 The End of Programming as We Know It
	5 Research, Practice, and Education to Meet Tomorrow’s Performance Needs
	Appendixes
	Appendix A: A History of Computer Performance
	Appendix B: Biographies of Committee Members and Staff
	Appendix C: Reprint of Gordon E. Moore’s “Cramming More Components onto Integrated Circuits”
	Appendix D: Reprint of Robert H. Dennard’s “Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions”

