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Preface

Fast, inexpensive computers are now essential for nearly all human 
endeavors and have been a critical factor in increasing economic 
productivity, enabling new defense systems, and advancing the 

frontiers of science. But less well understood is the need for ever-faster 
computers at ever-lower costs. For the last half-century, computers have 
been doubling in performance and capacity every couple of years. This 
remarkable, continuous, exponential growth in computing performance 
has resulted in an increase by a factor of over 100 per decade and more 
than a million in the last 40 years. For example, the raw performance of 
a 1970s supercomputer is now available in a typical modern cell phone. 
That uninterrupted exponential growth in computing throughout the 
lifetimes of most people has resulted in the expectation that such phenom-
enal progress, often called Moore’s law, will continue well into the future. 
Indeed, societal expectations for increased technology performance con-
tinue apace and show no signs of slowing, a trend that underscores the 
need to find ways to sustain exponentially increasing performance in 
multiple dimensions. 

The essential engine that made that exponential growth possible is 
now in considerable danger. Thermal-power challenges and increasingly 
expensive energy demands pose threats to the historical rate of increase in 
processor performance. The implications of a dramatic slowdown in how 
quickly computer performance is increasing—for our economy, our mili-
tary, our research institutions, and our way of life—are substantial. That 
obstacle to continuing growth in computing performance is by now well 
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understood by the designers of microprocessors. Their initial response 
was to design multiprocessor (often referred to as multicore) chips, but 
fundamental challenges in algorithm and software design limit the wide-
spread use of multicore systems.

Even as multicore hardware systems are tailored to support software 
that can exploit multiple computation units, thermal constraints will con-
tinue to be a primary concern. It is estimated that data centers delivering 
Internet services consume over 1.5 percent of U.S. electric power. As the 
use of the Internet continues to grow and massive computing facilities 
are demanding that performance keep doubling, devoting correspond-
ing increases in the nation’s electrical energy capacity to computing may 
become too expensive. 

We do not have new software approaches that can exploit the innova-
tive architectures, and so sustaining performance growth—and its atten-
dant benefits—presents a major challenge. The present study emerged 
from discussions among members of the Computer Science and Telecom-
munications Board and was sponsored by the National Science Foun-
dation. The original statement of task for the Committee on Sustaining 
Growth in Computing Performance is as follows:

This study will bring together academic and industry researchers, ap-
plication developers, and members of the user community to explore 
emerging challenges to sustaining performance growth and meeting 
expectations in computing across the broad spectrum of software, hard-
ware, and architecture. It will identify key problems along with promis-
ing emerging technologies and models and describe how these might fit 
together over time to enable continued performance scaling. In addition, 
it will focus attention on areas where there are tractable problems whose 
solution would have significant payback and at the same time highlight 
known solutions to challenges that already have them. The study will 
outline a research, development, and educational agenda for meeting the 
emerging computing needs of the 21st century. 

Parallelism and related approaches in software will increase in impor-
tance as a path to achieving continued performance growth. There have 
been promising developments in the use of parallel processing in some 
scientific applications, Internet search and retrieval, and the processing of 
visual and graphic images. This report reviews that progress and recom-
mends subjects for further research and development. Chapter 1 exam-
ines the need for high-performance computers, and computers that are 
increasingly higher-performing, in a variety of sectors of society. The 
need may be intuitively obvious to some readers but is included here to 
be explicit about the need for continued performance growth. Chapter 2 
examines the aspects of “performance” in depth. Often used as short-
hand for speed, performance is actually a much more multidimensional 
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concept. (Appendix A provides a brief history of computing performance 
as a complement to Chapter 2.) Chapter 3 delves into the fundamen-
tal reasons why single-processor performance has stopped its dramatic, 
exponential growth and why this is a fundamental change rather than a 
temporary nuisance. Chapter 4 addresses the fundamental challenge now 
facing the computer science and engineering community: how to exploit 
parallelism in software and hardware. Chapter 5 outlines the committee’s 
recommended research, practice, and education agenda to meet those 
challenges.

This report represents the cooperative effort of many people. The 
members of the study committee, after substantial discussions, drafted 
and worked though several revisions of the report. We particularly appre-
ciate the insights and perspectives provided by the following experts who 
briefed the committee:

Jeff Dean, Google,
Robert Doering, Texas Instruments,
Michael Foster, National Science Foundation,
Garth Gibson, Carnegie Mellon University,
Wen-Mei Hwu, University of Illinois at Urbana-Champaign,
Bruce Jacob, University of Maryland,
Jim Larus, Microsoft,
Charles Leiserson, Massachusetts Institute of Technology,
Trevor Mudge, University of Michigan,
Daniel Reed, Microsoft, 
Phillip Rosedale, Linden Lab,
Vivek Sarkar, Rice University, 
Kevin Skadron, University of Virginia,
Tim Sweeny, Epic Games, and
Tom Williams, Synopsys.

The committee also thanks the reviewers who provided many percep-
tive comments that helped to improve the content of the report materi-
ally. The committee thanks Michael Marty, who worked with committee 
member Mark Hill to update some of the graphs, and Paul S. Diette of the 
Diette Group, who assisted in refining the images. The committee appreci-
ates the financial support provided by the National Science Foundation. 
The committee also gratefully acknowledges the assistance of members 
of the National Research Council staff. Lynette Millett, our study direc-
tor, ably served the critical roles of study organizer, report editor, and 
review coordinator. Jon Eisenberg provided many valuable suggestions 
that improved the quality of the final report. 

It is difficult to overstate the importance of ever-more-capable com-
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puters to the U.S. industrial and social infrastructure, economy, and 
national security. The United States cannot afford to let this growth engine 
stall out, and a concerted effort is needed to sustain it. Several centers 
for parallel computing have already been established in leading research 
universities. Those centers are a good start, and additional, strong actions 
are required in many subdisciplines of computer science and computer 
engineering. Our major goal for this study is to help to identify the actions 
and opportunities that will prove most fruitful.

Samuel H. Fuller, Chair
Committee on Sustaining Growth 
in Computing Performance
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1

Abstract

Information technology (IT) has the potential to continue to dramati-
cally transform how we work and live. One might expect that future IT 
advances will occur as a natural continuation of the stunning advances 

that IT has enabled over the last half-century, but reality is more sobering.
IT advances of the last half-century have depended critically on the 

rapid growth of single-processor performance—by a factor of 10,000 in 
just the last 2 decades—at ever-decreasing cost and with manageable 
increases in power consumption. That growth stemmed from increasing 
the number and speed of transistors on a processor chip by reducing 
their size and—with improvements in memory, storage, and network-
ing capacities—resulted in ever more capable computer systems. It was 
important for widespread IT adoption that the phenomenal growth in 
performance was achieved while maintaining the sequential stored-program 
model that was developed for computers in the 1940s. Moreover, computer 
manufacturers worked to ensure that specific instruction set compatibil-
ity was maintained over generations of computer hardware—that is, a 
new computer could run new applications, and the existing applications 
would run faster. Thus, software did not have to be rewritten for each 
hardware generation, and so ambition and imagination were free to drive 
the creation of increasingly innovative, capable, and computationally 
intensive software, and this in turn inspired businesses, government, and 
the average consumer to buy successive generations of computer software 
and hardware. Software and hardware advances fed each other, creating 
a virtuous IT economic cycle. 
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2	 THE FUTURE OF COMPUTING PERFORMANCE

Early in the 21st century, improvements in single-processor perfor-
mance slowed, as measured in instructions executed per second, and such 
performance now improves at a very modest pace, if at all. This abrupt 
shift is due to fundamental limits in the power efficiency of complemen-
tary metal oxide semiconductor integrated circuits (used in virtually all 
computer chips today) and apparent limits in the efficiencies that can be 
exploited in single-processor architectures. Reductions in transistor size 
continue apace, and so more transistors can still be packed onto chips, 
albeit without the speedups seen in the past. As a result, the computer-
hardware industry has commenced building chips with multiple proces-
sors. Current chips range from several complex processors to hundreds 
of simpler processors, and future generations will keep adding more. 
Unfortunately, that change in hardware requires a concomitant change in 
the software programming model. To use chip multiprocessors, applica-
tions must use a parallel programming model, which divides a program into 
parts that are then executed in parallel on distinct processors. However, 
much software today is written according to a sequential programming 
model, and applications written this way cannot easily be sped up by 
using parallel processors. 

The only foreseeable way to continue advancing performance is to 
match parallel hardware with parallel software and ensure that the new 
software is portable across generations of parallel hardware. There has 
been genuine progress on the software front in specific fields, such as 
some scientific applications and commercial searching and transactional 
applications. Heroic programmers can exploit vast amounts of parallel-
ism, domain-specific languages flourish, and powerful abstractions hide 
complexity. However, none of those developments comes close to the 
ubiquitous support for programming parallel hardware that is required 
to ensure that IT’s effect on society over the next two decades will be as 
stunning as it has been over the last half-century. 

For those reasons, the Committee on Sustaining Growth in Com-
puting Performance recommends that our nation place a much greater 
emphasis on IT and computer-science research and development focused 
on improvements and innovations in parallel processing, and on making 
the transition to computing centered on parallelism. The following should 
have high priority:

·	 Algorithms that can exploit parallel processing;
·	 New computing “stacks” (applications, programming languages, 

compilers, runtime/virtual machines, operating systems, and 
architectures) that execute parallel rather than sequential pro-
grams and that effectively manage software parallelism, hard-
ware parallelism, power, memory, and other resources;
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ABSTRACT	 3

·	 Portable programming models that allow expert and typical pro-
grammers to express parallelism easily and allow software to be 
efficiently reused on multiple generations of evolving hardware;

·	 Parallel-computing architectures driven by applications, includ-
ing enhancements of chip multiprocessors, conventional data-
parallel architectures, application-specific architectures, and radi-
cally different architectures;

·	 Open interface standards for parallel programming systems that 
promote cooperation and innovation to accelerate the transition 
to practical parallel computing systems; and 

·	 Engineering and computer-science educational programs that 
incorporate an increased emphasis on parallelism and use a vari-
ety of methods and approaches to better prepare students for the 
types of computing resources that they will encounter in their 
careers.

Although all of those areas are important, fundamental power and 
energy constraints mean that even the best efforts might not yield a com-
plete solution. Parallel computing systems will grow in performance over 
the long term only if they can become more power-efficient. Therefore, in 
addition to a focus on parallel processing, we need research and devel-
opment on much more power-efficient computing systems at all levels 
of technology, including devices, hardware architecture, and software 
systems. 
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5

Summary

The end of dramatic exponential growth in single-processor perfor-
mance marks the end of the dominance of the single microprocessor 
in computing. The era of sequential computing must give way to 

a new era in which parallelism is at the forefront. Although important 
scientific and engineering challenges lie ahead, this is an opportune time 
for innovation in programming systems and computing architectures. We 
have already begun to see diversity in computer designs to optimize for 
such considerations as power and throughput. The next generation of dis-
coveries is likely to require advances at both the hardware and software 
levels of computing systems. 

There is no guarantee that we can make parallel computing as com-
mon and easy to use as yesterday’s sequential single-processor computer 
systems, but unless we aggressively pursue efforts suggested by the rec-
ommendations below, it will be “game over” for growth in computing 
performance. If parallel programming and related software efforts fail to 
become widespread, the development of exciting new applications that 
drive the computer industry will stall; if such innovation stalls, many 
other parts of the economy will follow suit.

This report of the Committee on Sustaining Growth in Computing 
Performance describes the factors that have led to the future limitations 
on growth for single processors based on complementary metal oxide 
semiconductor (CMOS) technology. The recommendations that follow 
are aimed at supporting and focusing research, development, and educa-
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6	 THE FUTURE OF COMPUTING PERFORMANCE

tion in parallel computing, architectures, and power to sustain growth 
in computer performance and enjoy the next level of benefits to society. 

SOCIETAL DEPENDENCE ON GROWTH 
IN COMPUTING PERFORMANCE

Information technology (IT) has transformed how we work and live—
and has the potential to continue to do so. IT helps to bring distant people 
together, coordinate disaster response, enhance economic productivity, 
enable new medical diagnoses and treatments, add new efficiencies to 
our economy, improve weather prediction and climate modeling, broaden 
educational access, strengthen national defense, advance science, and 
produce and deliver content for education and entertainment. 

Those transformations have been made possible by sustained 
improvements in the performance of computers. We have been living 
in a world where the cost of information processing has been decreas-
ing exponentially year after year. The term Moore’s law, which originally 
referred to an empirical observation about the most economically favor-
able rate for industry to increase the number of transistors on a chip, 
has come to be associated, at least popularly, with the expectation that 
microprocessors will become faster, that communication bandwidth will 
increase, that storage will become less expensive, and, more broadly, that 
computers will become faster. Most notably, the performance of indi-
vidual computer processors increased on the order of 10,000 times over 
the last 2 decades of the 20th century without substantial increases in cost 
or power consumption. 

Although some might say that they do not want or need a faster 
computer, computer users as well as the computer industry have in reality 
become dependent on the continuation of that performance growth. U.S. 
leadership in IT depends in no small part on taking advantage of the lead-
ing edge of computing performance. The IT industry annually generates 
a trillion dollars of revenue and has even larger indirect effects through-
out society. This huge economic engine depends on a sustained demand 
for IT products and services; use of these products and services in turn 
fuels demand for constantly improving performance. More broadly, vir-
tually every sector of society—manufacturing, financial services, educa-
tion, science, government, the military, entertainment, and so on—has 
become dependent on continued growth in computing performance to 
drive industrial productivity, increase efficiency, and enable innovation. 
The performance achievements have driven an implicit, pervasive expec-
tation that future IT advances will occur as an inevitable continuation of 
the stunning advances that IT has experienced over the last half-century. 
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SUMMARY	 7

Finding: The information technology sector itself and most other sec-
tors of society—for example, manufacturing, financial and other ser-
vices, science, engineering, education, defense and other government 
services, and entertainment—have grown dependent on continued 
growth in computing performance. 

Software developers themselves have come to depend on that growth 
in performance in several important ways, including:

·	 Developing applications that were previously infeasible, such as 
real-time video chat; 

·	 Adding visible features and ever more sophisticated interfaces to 
existing applications;

·	 Adding “hidden” (nonfunctional) value—such as improved 
security, reliability, and other trustworthiness features—without 
degrading the performance of existing functions; 

·	 Using higher-level abstractions, programming languages, and 
systems that require more computing power but reduce develop-
ment time and improve software quality by making the devel-
opment of correct programs and the integration of components 
easier; and

·	 Anticipating performance improvements and creating innovative, 
computationally intensive applications even before the required 
performance is available at low cost. 

The U.S. computing industry has been adept at taking advantage of 
increases in computing performance, allowing the United States to be a 
moving and therefore elusive target—innovating and improvising faster 
than anyone else. If computer capability improvements stall, the U.S. lead 
will erode, as will the associated industrial competitiveness and military 
advantage.

Another consequence of 5 decades of exponential growth in perfor-
mance has been the rise and dominance of the general-purpose micropro-
cessor that is the heart of all personal computers. The dominance of the 
general-purpose microprocessor has stemmed from a virtuous cycle of (1) 
economies of scale wherein each generation of computers has been both 
faster and less expensive than the previous one, and (2) software correct-
ness and performance portability—current software continues to run and 
to run faster on the new computers, and innovative applications can also 
run on them. The economies of scale have resulted from Moore’s law scal-
ing of transistor density along with innovative approaches to harnessing 
effectively all the new transistors that have become available. Portability 
has been preserved by keeping instruction sets compatible over many 
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generations of microprocessors even as the underlying microprocessor 
technology saw substantial enhancements, allowing investments in soft-
ware to be amortized over long periods. 

The success of this virtuous cycle dampened interest in the develop-
ment of alternative computer and programming models. Even though 
alternative architectures might have been technically superior (faster or 
more power-efficient) in specific domains, if they did not offer software 
compatibility they could not easily compete in the marketplace and were 
easily overtaken by the ever-improving general-purpose processors avail-
able at a relatively low cost. 

CONSTRAINTS ON GROWTH IN SINGLE-
PROCESSOR PERFORMANCE

By the 2000s, however, it had become apparent that processor per-
formance growth was facing two major constraints. First, the ability 
to increase clock speeds has run up against power limits. The densest, 
highest-performance, and most power-efficient integrated circuits are 
constructed from CMOS technology. By 2004, the long-fruitful strategy of 
scaling down the size of CMOS circuits, reducing the supply voltage and 
increasing the clock rate was becoming infeasible. Since a chip’s power 
consumption is proportional to the clock speed times the supply voltage 
squared, the inability to continue to lower the supply voltage halted the 
ability to increase the clock speed without increasing power dissipation. 
The resulting power consumption exceeded the few hundred watts per 
chip level that can practically be dissipated in a mass-market computing 
device as well as the practical limits for mobile, battery-powered devices. 
The ultimate consequence has been that growth in single-processor per-
formance has stalled (or at least is being increased only marginally over 
time).

Second, efforts to improve the internal architecture of individual pro-
cessors have seen diminishing returns. Many advances in the architec-
ture of general-purpose sequential processors, such as deeper pipelines 
and speculative execution, have contributed to successful exploitation 
of increasing transistor densities. Today, however, there appears to be 
little opportunity to significantly increase performance by improving the 
internal structure of existing sequential processors. Figure S.1 graphically 
illustrates these trends and the slowdown in the growth of processor per-
formance, clock speed, and power since around 2004. In contrast, it also 
shows the continued, exponential growth in the number of transistors per 
chip. The original Moore’s law projection of increasing transistors per chip 
continues unabated even as performance has stalled. The 2009 edition of 
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FIGURE S.1  Historical growth in single-processor performance and a forecast 
of processor performance to 2020, based on the ITRS roadmap. The dashed line 
represents expectations if single-processor performance had continued its histori-
cal trend. The vertical scale is logarithmic. A break in the growth rate at around 
2004 can be seen. Before 2004, processor performance was growing by a factor of 
about 100 per decade; since 2004, processor performance has been growing and is 
forecasted to grow by a factor of only about 2 per decade. An expectation gap is 
apparent. In 2010, this expectation gap for single-processor performance is about 
a factor of 10; by 2020, it will have grown to a factor of 100. Most sectors of the 
economy and society implicitly or explicitly expect computing to deliver steady, 
exponentially increasing performance, but as this graph illustrates, traditional 
single-processor computing systems will not match expectations. Note that this 
graph plots processor clock rate as the measure of processor performance. Other 
processor design choices impact processor performance, but clock rate is a domi-
nant processor performance determinant.
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the International Technology Roadmap for Semiconductors (ITRS)1 pre-
dicts the continued growth of transistors/chips for the next decade, but it 
will probably not be possible to continue to increase the transistor density 
(number of transistors per unit area) of CMOS chips at the current pace 
beyond the next 10 to 15 years. Figure S.1 shows the historical growth in 
single-processor performance and a forecast of processor performance to 
2020 based on the ITRS roadmap. A dashed line represents what could 
have been expected if single-processor performance had continued on its 
historical trend. By 2020, however, a large “expectation gap” is apparent 
for single processors. This report explores the implications of that gap and 
offers a way to begin to bridging it.

Finding: After many decades of dramatic exponential growth, single-
processor performance is increasing at a much lower rate, and this situ-
ation is not expected to improve in the foreseeable future. 

Energy and power constraints play an important—and growing—role 
in computing performance. Computer systems require energy to operate 
and, as with any device, the more energy needed, the more expensive the 
system is to operate and maintain. Moreover, all the energy consumed 
by the system ends up as heat, which must be removed. Even when new 
parallel models and solutions are found, most future computing systems’ 
performance will be limited by power or energy in ways that the com-
puter industry and researchers have not had to deal with thus far. For 
example, the benefits of replacing a single, highly complex processor with 
increasing numbers of simpler processors will eventually reach a limit 
when further simplification costs more in performance than it saves in 
power. Constraints due to power are thus inevitable for systems ranging 
from hand-held devices to the largest computing data centers even as the 
transition is made to parallel systems. 

Even with success in sidestepping the limits on single-processor per-
formance, total energy consumption will remain an important concern, 
and growth in performance will become limited by power consumption 
within a decade. The total energy consumed by computing systems is 
already substantial and continues to grow rapidly in the United States and 
around the world. As is the case in other sectors of the economy, the total 
energy consumed by computing will come under increasing pressure. 

1 ITRS, 2009, ITRS 2009 Edition, available online at http://www.itrs.net/links/2009ITRS/
Home2009.htm. 
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Finding: The growth in the performance of computing systems—even 
if they are multiple-processor parallel systems—will become limited by 
power consumption within a decade. 

In short, the single processor and the sequential programming model 
that have dominated computing since its birth in the 1940s, will no longer 
be sufficient to deliver the continued growth in performance needed to 
facilitate future IT advances.2 Moreover, it is an open question whether 
power and energy will be showstoppers or just significant constraints. 
Although these issues pose major technical challenges, they will also 
drive considerable innovation in computing by forcing a rethinking of the 
von Neumann model that has prevailed since the 1940s.	

PARALLELISM AS A SOLUTION

Future growth in computing performance will have to come from 
parallelism. Most software developers today think and program by 
using a sequential programming model to create software for single general-
purpose microprocessors. The microprocessor industry has already begun 
to deliver parallel hardware in mainstream products with chip multi-
processors (CMPs—sometimes referred to as multicore), an approach 
that places new burdens on software developers to build applications 
to take advantage of multiple, distinct cores. Although developers have 
found reasonable ways to use two or even four cores effectively by run-
ning independent tasks on each one, they have not, for the most part, 
parallelized individual tasks in such a way as to make full use of the 
available computational capacity. Moreover, if industry continues to fol-
low the same trends, they will soon be delivering chips with hundreds 
of cores. Harnessing these cores will require new techniques for parallel 
computing, including breakthroughs in software models, languages, and 
tools. Developers of both hardware and software will need to focus more 
attention on overall system performance, likely at the expense of time to 
market and the efficiency of the virtuous cycle described previously. 

Of course, the computer science and engineering communities have 
been working for decades on the hard problems associated with paral-
lelism. For example, high-performance computing for science and engi-
neering applications has depended on particular parallel-programming 
techniques such as Message Passing Interface (MPI). In other cases, 

2 Of course, computing performance encompasses more than intrinsic CPU speed, but 
CPU performance has historically driven everything else: input/output, memory sizes and 
speeds, buses and interconnects, networks, and so on. If continued growth in CPU perfor-
mance is threatened, so are the rest.
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domain-specific languages and abstractions such as MapReduce have 
provided interfaces with behind-the-scenes parallelism and well-chosen 
abstractions developed by experts, technologies that hide the complexity 
of parallel programming from application developers. Those efforts have 
typically involved a small cadre of programmers with highly specialized 
training in parallel programming working on relatively narrow types 
of computing problems. None of this work has, however, come close to 
enabling widespread use of parallel programming for a wide array of 
computing problems. 

Encouragingly, a few research universities, including MIT, the Uni-
versity of Washington, the University of California, Berkeley, and oth-
ers have launched or revived research programs in parallelism, and the 
topic has also seen a renewed focus in industry at companies such as 
NVIDIA. However, these initial investments are not commensurate with 
the magnitude of the technical challenges or the stakes. Moreover, his-
tory shows that technology advances of this sort often require a decade 
or more. The results of such research are already needed today to sustain 
historical trends in computing performance, which makes us already a 
decade behind. Even with concerted investment, there is no guarantee 
that widely applicable solutions will be found. If they cannot be, we need 
to know that as soon as possible so that we can seek other avenues for 
progress.

Finding: There is no known alternative to parallel systems for sustain-
ing growth in computing performance; however, no compelling pro-
gramming paradigms for general parallel systems have yet emerged. 

RECOMMENDATIONS

The committee’s findings outline a set of serious challenges that affect 
not only the computing industry but also the many sectors of society 
that now depend on advances in IT and computation, and they suggest 
national and global economic repercussions. At the same time, the crisis 
in computing performance has pointed the way to new opportunities for 
innovation in diverse software and hardware infrastructures that excel 
in metrics other than single-chip processing performance, such as low 
power consumption and aggregate delivery of throughput cycles. There 
are opportunities for major changes in system architectures, and extensive 
investment in whole-system research is needed to lay the foundation of 
the computing environment for the next generation. 

The committee’s recommendations are broadly aimed at federal 
research agencies, the computing and information technology industry, 
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and educators and fall into two categories. The first is research. The best 
science and engineering minds must be brought to bear on the challenges. 
The second is practice and education. Better practice in the development 
of computer hardware and software today will provide a foundation for 
future performance gains. Education will enable the emerging genera-
tion of technical experts to understand different and in some cases not-
yet-developed parallel models of thinking about IT, computation, and 
software. 

Recommendations for Research

The committee urges investment in several crosscutting areas of 
research, including algorithms, broadly usable parallel programming 
methods, rethinking the canonical computing stack, parallel architectures, 
and power efficiency.

Recommendation: Invest in research in and development of algorithms 
that can exploit parallel processing. 

Today, relatively little software is explicitly parallel. To obtain the 
desired performance, it will be necessary for many more—if not most—
software designers to grapple with parallelism. For some applications, 
they may still be able to write sequential programs, leaving it to compil-
ers and other software tools to extract the parallelism in the underlying 
algorithms. For more complex applications, it may be necessary for pro-
grammers to write explicitly parallel programs. Parallel approaches are 
already used in some applications when there is no viable alternative. The 
committee believes that careful attention to parallelism will become the 
rule rather than the notable exception. 

Recommendation: Invest in research in and development of program-
ming methods that will enable efficient use of parallel systems not only 
by parallel-systems experts but also by typical programmers. 

Many of today’s programming models, languages, compilers, hyper-
visors (to manage virtual machines), and operating systems are targeted 
primarily at single-processor hardware. In the future, these layers will 
need to target, optimize programs for, and be optimized themselves for 
explicitly parallel hardware. The intellectual keystone of the endeavor is 
rethinking programming models so that programmers can express appli-
cation parallelism naturally. The idea is to allow parallel software to be 
developed for diverse systems rather than specific configurations, and to 
have system software deal with balancing computation and minimizing 
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communication among multiple computational units. The situation is 
reminiscent of the late 1970s, when programming models and tools were 
not up to the task of building substantially more complex software. Bet-
ter programming models—such as structured programming in the 1970s, 
object orientation in the 1980s, and managed programming languages in 
the 1990s—have made it possible to produce much more sophisticated 
software. Analogous advances in the form of better tools and additional 
training will be needed to increase programmer productivity for parallel 
systems.

A key breakthrough would be the ability to express application par-
allelism in such ways that an application will run faster as more cores 
are added. The most prevalent parallel-programming languages do not 
provide this performance portability. A related question is what to do 
with the enormous body of legacy sequential code, which will be able to 
realize substantial performance improvements only if it can be parallel-
ized. Experience has shown that parallelizing sequential code or highly 
sequential algorithms effectively is exceedingly difficult in general. Writ-
ing software that expresses the type of parallelism required to exploit chip 
multiprocessor hardware requires new software engineering processes 
and tools, including new programming languages that ease the expres-
sion of parallelism and a new software stack that can exploit and map the 
parallelism to hardware that is diverse and evolving. It will also require 
training programmers to solve their problems with parallel computational 
thinking.

The models themselves may or may not be explicitly parallel; it is an 
open question whether or when most programmers should be exposed 
to explicit parallelism. A single, universal programming model may or 
may not exist, and so multiple models—including some that are domain-
specific—should be explored. Additional research is needed in the devel-
opment of new libraries and new programming languages with appropri-
ate compilation and runtime support that embody the new programming 
models. It seems reasonable to expect that some programming models, 
libraries, and languages will be suited for a broad base of skilled but 
not superstar programmers. They may even appear on the surface to be 
sequential or declarative. Others, however, will target efficiency, seeking 
the highest performance for critical subsystems that are to be extensively 
reused, and thus be intended for a smaller set of expert programmers. 

Another focus for research should be system software for highly par-
allel systems. Although operating systems of today can handle some mod-
est parallelism, future systems will include many more processors whose 
allocation, load balancing, and data communication and synchronization 
interactions will be difficult to handle well. Solving those problems will 
require a rethinking of how computation and communication resources 
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are viewed much as demands for increased memory size led to the intro-
duction of virtual memory a half-century ago.

Recommendation: Focus long-term efforts on rethinking of the canonical 
computing “stack”—applications, programming language, compiler, run-
time, virtual machine, operating system, hypervisor, and architecture—in 
light of parallelism and resource-management challenges. 

Computer scientists and engineers typically manage complexity by 
separating interface from implementation. In conventional computer sys-
tems, that is done recursively to form a computing stack: applications, 
programming language, compiler, runtime, virtual machine, operating 
system, hypervisor, and architecture. It is unclear whether today’s con-
ventional stack provides the right framework to support parallelism and 
manage resources. The structure and elements of the stack itself should 
be a focus of long-term research exploration. 

Recommendation: Invest in research on and development of parallel 
architectures driven by applications, including enhancements of chip 
multiprocessor systems and conventional data-parallel architectures, 
cost-effective designs for application-specific architectures, and support 
for radically different approaches. 

In addition to innovation and advancements in parallel program-
ming models and systems, advances in architecture and hardware will 
play an important role. One path forward is to continue to refine the 
chip multiprocessors (CMPs) and associated architectural approaches. 
Are today’s CMP approaches suitable for designing most computers? The 
current CMP architecture has the advantage of maintaining compatibility 
with existing software, the heart of the architectural franchise that keeps 
companies investing heavily. But CMP architectures bring their own chal-
lenges. Will large numbers of cores work in most computer deployments, 
such as on desktops and even in mobile phones? How can cores be har-
nessed together temporarily, in an automated or semiautomated fashion, 
to overcome sequential bottlenecks? What mechanisms and policies will 
best exploit locality (keeping data stored close to other data that might 
be needed at the same time or for particular computations and saving on 
the power needed to move data around) so as to avoid communications 
bottlenecks? How should synchronization and scheduling be handled? 
How should challenges associated with power and energy be addressed? 
What do the new architectures mean for such system-level features as 
reliability and security? 

Is using homogeneous processors in CMP architectures the best 
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approach, or will computer architectures that include multiple but hetero-
geneous cores—some of which may be more capable than others or even 
use different instruction-set architectures—be more effective? Special-
purpose processors that have long exploited parallelism, notably graph-
ics processing units (GPUs) and digital signal processor (DSP) hardware, 
have been successfully deployed in important segments of the market. 
Are there other important niches like those filled by GPUs and DSPs? 
Alternatively, will computing cores support more graphics and GPUs 
support more general-purpose programs, so that the difference between 
the two will blur? 

Perhaps some entirely new architectural approach will prove more 
successful. If systems with CMP architectures cannot be effectively pro-
grammed, an alternative will be needed. Work in this general area could 
eschew conventional cores. It can view the chip as a tabula rasa of billions 
of transistors, which translates to hundreds of functional units; the effec-
tive organization of those units into a programmable architecture is an 
open question. Exploratory computing systems based on field-program-
mable gate arrays (FPGAs) are a step in this direction, but continued 
innovation is needed to develop programming systems that can harness 
the potential parallelism of FPGAs. 

Another place where fundamentally different approaches may be 
needed is alternatives to CMOS. There are many advantages to sticking 
with today’s silicon-based CMOS technology, which has proved remark-
ably scalable over many generations of microprocessors and around 
which an enormous industrial and experience base has been established. 
However, it will also be essential to invest in new computation substrates 
whose underlying power efficiency promises to be fundamentally better 
than that of silicon-based CMOS circuits. Computing has benefited in 
the past from order-of-magnitude performance improvements in power 
consumption in the progression from vacuum tubes to discrete bipolar 
transistors to integrated circuits first based on bipolar transistors, then 
on N-type metal oxide semiconductors (NMOS) and now on CMOS. 
No alternative is near commercial availability yet, although some show 
potential.

In the best case, investment will yield devices and manufacturing 
methods—as yet unforeseen—that will dramatically surpass the CMOS IC. 
In the worst case, no new technology will emerge to help solve the prob-
lems. That uncertainty argues for investment in multiple approaches as 
soon as possible, and computer system designers would be well advised 
not to expect one of the new devices to appear in time to obviate the devel-
opment of new, parallel architectures built on the proven CMOS technol-
ogy. Better performance is needed immediately. Society cannot wait the 
decade or two that it would take to identify, refine, and apply a new tech-
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nology that may or may not even be on the horizon now. Moreover, even 
if a groundbreaking new technology were discovered, the investment in 
parallelism would not be wasted, in that advances in parallelism would 
probably exploit the new technology as well. 

Recommendation: Invest in research and development to make com-
puter systems more power-efficient at all levels of the system, including 
software, application-specific approaches, and alternative devices. Such 
efforts should address ways in which software and system architectures 
can improve power efficiency, such as by exploiting locality and the use 
of domain-specific execution units. R&D should also be aimed at mak-
ing logic gates more power-efficient. Such efforts should address alter-
native physical devices beyond incremental improvements in today’s 
CMOS circuits. 

Because computing systems are increasingly limited by energy con-
sumption and power dissipation, it is essential to invest in research and 
development to make computing systems more power-efficient. Exploit-
ing parallelism alone cannot ensure continued growth in computer per-
formance. There are numerous potential avenues for investigation into 
better power efficiency, some of which require sustained attention to 
known engineering issues and others of which require research. These 
include:

·	 Redesign the delivery of power to and removal of heat from 
computing systems for increased efficiency. Design and deploy 
systems in which the absolute maximum fraction of power is 
used to do the computing and less is used in routing power to 
the system and removing heat from the system. New voluntary or 
mandatory standards (including ones that set ever-more-aggres-
sive targets) might provide useful incentives for the development 
and use of better techniques.

·	 Develop alternatives to the general-purpose processor that exploit 
locality.

·	 Develop domain-specific or application-specific processors analo-
gous to GPUs and DSPs that provide better performance and 
power-consumption characteristics than do general-purpose pro-
cessors for other specific application domains.

·	 Investigate possible new, lower-power device technology beyond 
CMOS. 

Additional research should focus on system designs and software 
configurations that reduce power consumption, for example, reducing 
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power consumption when resources are idle, mapping applications to 
domain-specific and heterogeneous hardware units, and limiting the 
amount of communication among disparate hardware units. 

Although the shift toward CMPs will allow industry to continue for 
some time to scale the performance of CMPs based on general-purpose 
processors, general-purpose CMPs will eventually reach their own lim-
its. CMP designers can trade off single-thread performance of individual 
processors against lower energy dissipation per instruction, thus allow-
ing more instructions by multiple processors while the same amount of 
energy is dissipated by the chip. However, that is possible only within 
a limited range of energy performance. Beyond some limit, lowering 
energy per instruction by processor simplification can lead to degrada-
tion in overall CMP performance because processor performance starts 
to decrease faster than energy per instruction. When that occurs, new 
approaches will be needed to create more energy-efficient computers. 

It may be that general-purpose CMPs will prove not to be a solu-
tion in the long run and that we will need to create more application-
optimized processing units. Tuning hardware and software toward a 
specific type of application allows a much more energy-efficient solution. 
However, the current design trend is away from building customized 
solutions, because increasing design complexity has caused the nonrecur-
ring engineering costs for designing the chips to grow rapidly. High costs 
limit the range of potential market segments to the few that have volume 
high enough to justify the initial engineering investment. A shift to more 
application-optimized computing systems, if necessary, demands a new 
approach to design that would allow application-specific chips to be cre-
ated at reasonable cost.

Recommendations for Practice and Education  

Implementing the research agenda proposed here, although crucial 
for progress, will take time. Meanwhile, society has an immediate and 
pressing need to use current and emerging CMP systems effectively. To 
that end, the committee offers three recommendations related to current 
development and engineering practices and educational opportunities.

Recommendation: To promote cooperation and innovation by sharing, 
encourage development of open interface standards for parallel program-
ming rather than proliferating proprietary programming environments.

Private-sector firms are often incentivized to create proprietary inter-
faces and implementations to establish a competitive advantage. How-
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ever, a lack of standardization can impede progress inasmuch as the 
presence of many incompatible approaches allows none to achieve the 
benefits of wide adoption and reuse—a major reason that industry par-
ticipates in standards efforts. The committee encourages the development 
of programming-interface standards that can facilitate wide adoption of 
parallel programming even as they foster competition in other matters. 

Recommendation: Invest in the development of tools and methods to 
transform legacy applications to parallel systems. 

Whatever long-term success is achieved in the effective use of parallel 
systems from rethinking algorithms and developing new programming 
methods will probably come at the expense of the backward-platform 
and cross-platform compatibility that has been an economic cornerstone 
of IT for decades. To salvage value from the nation’s current, substantial 
IT investment, we should seek ways to bring sequential programs into 
the parallel world. On the one hand, there are probably no “silver bul-
lets” that enable automatic transformation. On the other hand, it is pro-
hibitively expensive to rewrite many applications. The committee urges 
industry and academe to develop “power tools” for experts that can help 
them to migrate legacy code to tomorrow’s parallel computers. In addi-
tion, emphasis should be placed on tools and strategies to enhance code 
creation, maintenance, verification, and adaptation of parallel programs. 

Recommendation: Incorporate in computer science education an increased 
emphasis on parallelism, and use a variety of methods and approaches 
to better prepare students for the types of computing resources that they 
will encounter in their careers.

Who will develop the parallel software of the future? To sustain IT 
innovation, we will need a workforce that is adept in writing parallel 
applications that run well on parallel hardware, in creating parallel soft-
ware systems, and in designing parallel hardware. 

Both undergraduate and graduate students in computer science, as 
well as in other fields that make intensive use of computing, will need 
to be educated in parallel programming. The engineering, science, and 
computer-science curriculum at both the undergraduate and graduate 
levels should begin to incorporate an emphasis on parallel computational 
thinking, parallel algorithms, and parallel programming. With respect to 
the computer-science curriculum, because no general-purpose paradigm 
has emerged, universities should teach diverse parallel-programming 
languages, abstractions, and approaches until effective ways of teaching 
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and programming emerge. The necessary shape of the needed changes 
will not be clear until some reasonably general parallel-programming 
methods have been devised and shown to be promising. 

Related to this is improving the ability of the programming workforce 
to cope with the new challenges of parallelism. This will involve retrain-
ing today’s programmers and also developing new models and abstrac-
tions to make parallel programming more accessible to typically skilled 
programmers.

CONCLUDING REMARKS

There is no guarantee that we can make future parallel computing 
ubiquitous and as easy to use as yesterday’s sequential computer, but 
unless we aggressively pursue efforts as suggested by the recommenda-
tions above, it will be game over for future growth in computing perfor-
mance. This report describes the factors that have led to limitations of 
growth of single processors based on CMOS technology. The recommen-
dations here are aimed at supporting and focusing research, development, 
and education in architectures, power, and parallel computing to sustain 
growth in computer performance and to permit society to enjoy the next 
level of benefits.
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1

The Need for Continued 
Performance Growth

 

Information technology (IT) has become an integral part of modern 
society, affecting nearly every aspect of our lives, including education, 
medicine, government, business, entertainment, and social interac-

tions. Innovations in IT have been fueled by a continuous and extraor-
dinary increase in computer performance. By some metrics computer 
performance has improved by a factor of an average of 10 every 5 years 
over the past 2 decades. A sustained downshift in the rate of growth 
in computing performance would have considerable ramifications both 
economically and for society. The industries involved are responsible for 
about $1 trillion of annual revenue in the United States. That revenue has 
depended on a sustained demand for IT products and services that in 
turn has fueled demand for constantly improving performance. Indeed, 
U.S. leadership in IT depends in no small part on its driving and taking 
advantage of the leading edge of computing performance. Virtually every 
sector of society—manufacturing, financial services, education, science, 
government, military, entertainment, and so on—has become dependent 
on the continued growth in computing performance to drive new efficien-
cies and innovations. Moreover, all the current and foreseeable future 
applications rely on a huge software infrastructure, and the software 
infrastructure itself would have been impossible to develop with the more 
primitive software development and programming methods of the past. 
The principal force allowing better programming models, which empha-
size programmer productivity over computing efficiency, has been the 
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growth in computing performance. (Chapter 4 explores implications for 
software and programming in more detail.)  

This chapter first considers the general question of why faster 
computers are important. It then examines four broad fields—science, 
defense and national security, consumer applications, and enterprise 
productivity—that have depended on and will continue to depend on 
sustained growth in computing performance. The fields discussed by no 
means constitute an exhaustive list,1 but they are meant to illustrate how 
computing performance and its historic exponential growth have had vast 
effects on broad sectors of society and what the results of a slowdown in 
that growth would be. 

WHY FASTER COMPUTERS ARE IMPORTANT

Computers can do only four things: they can move data from one 
place to another, they can create new data from old data via various 
arithmetic and logical operations, they can store data in and retrieve them 
from memories, and they can decide what to do next. Students studying 
computers or programming for the first time are often struck by the sur-
prising intuition that, notwithstanding compelling appearance to the con-
trary, computers are extremely primitive machines, capable of performing 
only the most mind-numbingly banal tasks. The trick is that computers 
can perform those simple tasks extremely fast—in periods measured in 
billionths of a second—and they perform these tasks reliably and repeat-
ably. Like a drop of water in the Grand Canyon, each operation may be 
simple and may in itself not accomplish much, but a lot of them (billions 
per second, in the case of computers) can get a lot done.

Over the last 60 years of computing history, computer buyers and 
users have essentially “voted with their wallets” by consistently paying 
more for faster computers, and computer makers have responded by pric-

1 Health care is another field in which IT has substantial effects—in, for example, patient 
care, research and innovation, and administration. A recent National Research Council 
(NRC) report, although it does not focus specifically on computing performance, provides 
numerous examples of ways in which computation technology and IT are critical under-
pinnings of virtually every aspect of health care (NRC, 2009, Computational Technology 
for Effective Health Care: Immediate Steps and Strategic Directions, Washington, D.C.: The 
National Academies Press, available online at http://www.nap.edu/catalog.php?record_
id=12572). Yet another critically important field that increasingly benefits from computa-
tion power is infrastructure. “Smart” infrastructure applications in urban planning, high-
performance buildings, energy, traffic, and so on are of increasing importance. That is also 
the underlying theme of two of the articles in the February 2009 issue of Communications of 
the ACM (Tom Leighton, 2009, Improving performance on the Internet, Communications of 
the ACM 52(2): 44-51; and T.V. Raman, 2009, Toward 2W: Beyond Web 2.0, Communications 
of the ACM 52(2): 52-59).
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ing their systems accordingly: a high-end system may be, on the average, 
10 percent faster and 30 percent more expensive than the next-best. That 
behavior has dovetailed perfectly with the underlying technology devel-
opment in the computers—as ever-faster silicon technology has become 
available, faster and faster computers could be designed. It is the nature 
of the semiconductor manufacturing process that silicon chips coming 
off the fabrication line exhibit a range of speeds. Rather than discard the 
slower chips, the manufacturer simply charges less for them. Ever-rising 
performance has been the wellspring of the entire computer industry. 
Meanwhile, the improving economics of ever-larger shipment volumes 
have driven overall system costs down, reinforcing a virtuous spiral2 by 
making computer systems available to lower-price, larger-unit-volume 
markets.

For their part, computer buyers demand ever-faster computers in 
part because they believe that using faster machines confers on them an 
advantage in the marketplace in which they compete.3 Applications that 
run on a particular generation of computing system may be impractical or 
not run at all on a system that is only one-tenth as fast, and this encour-
ages hardware replacements for performance every 3-5 years. That trend 
has also encouraged buyers to place a premium on fast new computer 
systems because buying fast systems will forestall system obsolescence 
as long as possible. Traditionally, software providers have shown a ten-
dency to use exponentially more storage space and central processing unit 
(CPU) cycles to attain linearly more performance; a tradeoff commonly 
referred to as bloat. Reducing bloat is another way in which future system 
improvements may be possible. The need for periodic replacements exists 
whether the performance is taking place on the desktop or in the “cloud” 

2 A small number of chips are fast, and many more are slower. That is how a range of prod-
ucts is produced that in total provide profits and, ultimately, funding for the next generation 
of technology. The semiconductor industry is nearing a point where extreme ultraviolet 
(EUV) light sources—or other expensive, exotic alternatives—will be needed to continue the 
lithography-based steps in manufacturing. There are a few more techniques left to imple-
ment before EUV is required, but they are increasingly expensive to use in manufacturing, 
and they are driving costs substantially higher. The future scenario that this implies is not 
only that very few companies will be able to manufacture chips with the smallest feature 
sizes but also that only very high-volume products will be able to justify the cost of using 
the latest generation of technology.

3 For scientific researchers, faster computers allow larger or more important questions to be 
pursued or more accurate answers to be obtained; office workers can model, communicate, 
store, retrieve, and search their data more productively; engineers can design buildings, 
bridges, materials, chemicals, and other devices more quickly and safely; and manufacturers 
can automate various parts of their assembly processes and delivery methods more cost-
effectively. In fact, the increasing amounts of data that are generated, stored, indexed, and 
retrieved require continued performance improvements. See Box 1.1 for more on data as a 
performance driver.
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BOX 1.1
Growth of Stored and Retrievable Data

The quantity of information and data that is stored in a digital format has 
been growing at an exponential rate that exceeds even the historical rate of 
growth in computing performance, which is the focus of this report. Data are 
of value only if they can be analyzed to produce useful information that can 
be retrieved when needed. Hence, the growth in stored information is another 
reason for the need to sustain substantial growth in computing performance.

As the types and formats of information that is stored in digital form con-
tinue to increase, they drive the rapid growth in stored data. Only a few decades 
ago, the primary data types stored in IT systems were text and numerical data. 
But images of increasing resolution, audio streams, and video have all become 
important types of data stored digitally and then indexed, searched, and re-
trieved by computing systems.

The growth of stored information is occurring at the personal, enterprise, 
national, and global levels. On the personal level, the expanding use of e-mail, 
text messaging, Web logs, and so on is adding to stored text. Digital cameras 
have enabled people to store many more images in their personal computers 
and data centers than they ever would have considered with traditional film 
cameras. Video cameras and audio recorders add yet more data that are stored 
and then must be indexed and searched. Embedding those devices into the 
ubiquitous cell phone means that people can and do take photos and movies 
of events that would previously not have been recorded. 

At the global level, the amount of information on the Internet continues to 
increase dramatically. As static Web pages give way to interactive pages and so-
cial-networking sites support video, the amount of stored and searchable data 
continues its explosive growth. Storage technology has enabled this growth by 
reducing the cost of storage by a rate even greater than that of the growth in 
processor performance.

The challenge is to match the growth in stored information with the com-
putational capability to index, search, and retrieve relevant information. Today, 
there are not sufficiently powerful computing systems to process effectively all 
the images and video streams being stored. Satellite cameras and other remote 
sensing devices typically collect much more data than can be examined for use-
ful information or important events.

Considerably more progress is needed to achieve the vision described by 
Vannevar Bush in his 1945 paper about a MEMEX device that would collect and 
make available to users all the information relevant to their life and work.1

1Vannevar Bush, 1945, “As we may think,” Atlantic Magazine, July 1945, available online at 
http://www.theatlantic.com/magazine/archive/1969/12/as-we-may-think/3881/.
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in a Web-based service, although the pace of hardware replacement may 
vary in the cloud. 

All else being equal, faster computers are better computers.4 The 
unprecedented evolution of computers since 1980 exhibits an essentially 
exponential speedup that spans 4 orders of magnitude in performance 
for the same (or lower) price. No other engineered system in human his-
tory has ever achieved that rate of improvement; small wonder that our 
intuitions are ill-tuned to perceive its significance. Whole fields of human 
endeavors have been transformed as computer system capability has 
ascended through various threshold performance values.5 The impact 
of computer technology is so widespread that it is nearly impossible to 
overstate its importance.

Faster computers create not just the ability to do old things faster 
but the ability to do new things that were not feasible at all before.6 Fast 
computers have enabled cell phones, MP3 players, and global positioning 
devices; Internet search engines and worldwide online auctions; MRI and 
CT scanners; and handheld PDAs and wireless networks. In many cases, 
those achievements were not predicted, nor were computers designed 
specifically to cause the breakthroughs. There is no overarching roadmap 
for where faster computer technology will take us—each new achieve-
ment opens doors to developments that we had not even conceived. 
We should assume that this pattern will continue as computer systems 

4 See Box 1.2 for a discussion of why this is true even though desktop computers, for ex-
ample, spend most of their time idle.

5 The music business, for example, is almost entirely digital now, from the initial sound 
capture through mixing, processing, mastering, and distribution. Computer-based tricks that 
were once almost inconceivable are now commonplace, from subtly adjusting a singer’s note 
to be more in tune with the instruments, to nudging the timing of one instrument relative to 
another. All keyboard instruments except acoustic pianos are now digital (computer-based) 
and not only can render very accurate imitations of existing instruments but also can alter 
them in real time in a dizzying variety of ways. It has even become possible to isolate a 
single note from a chord and alter it, a trick that had long been thought impossible. Similarly, 
modern cars have dozens of microprocessors that run the engine more efficiently, minimize 
exhaust pollution, control the antilock braking system, control the security system, control 
the sound system, control the navigation system, control the airbags and seatbelt retractors, 
operate the cruise control, and handle other features. Over many years, the increasing ca-
pability of these embedded computer systems has allowed them to penetrate nearly every 
aspect of vehicles.

6 Anyone who has played state-of-the-art video games will recognize the various ways 
in which game designers wielded the computational and graphics horsepower of a new 
computer system for extra realism in a game’s features, screen resolution, frame rate, scope 
of the “theater of combat,” and so on.
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BOX 1.2
Why Do I Need More Performance When  
My Computer Is Idle Most of the Time?

When computers find themselves with nothing to do, by default they run 
operating-system code known as the idle loop. The idle loop is like the cell-
phone parking lot at an airport, where your spouse sits waiting to pick you up 
when you arrive and call him or her. It may seem surprising or incongruous that 
nearly all the computing cycles ever executed by computers have been wasted 
in the idle loop, but it is true. If we have “wasted” virtually all the computing 
horsepower available since the beginning of the computer age, why should we 
worry about a potential threat to increased performance in the future? Is there 
any point in making machinery execute the idle loop even faster? In fact, there 
is. The reason has as much to do with humans as it does with the computing 
machines that they design.

Consider the automobile. The average internal-combustion vehicle has a 
six-cylinder engine capable of a peak output of around 200 horsepower. Many 
aspects of the engine and drivetrain reflect that peak horsepower: when you 
press the pedal to the floor while passing or entering a highway, you expect the 
vehicle to deliver that peak horsepower to the wheels, and you would be quite 
unhappy if various parts of the car were to leave the vehicle instead, unable to 
handle the load. But if you drive efficiently, over several years of driving, what 
fraction of the time is spent under that peak load condition? For most people, 
the answer is approximately zero. It only takes about 20 horsepower to keep 
a passenger car at highway speeds under nominal conditions, so you end up 
paying for a lot more horsepower than you use. 

But if all you had at your driving disposal was a 20-horsepower power plant 
(essentially, a golf cart), you would soon tire of driving the vehicle because you 
would recognize that energy efficiency is great but not everything; that annoy-
ing all the other drivers as you slowly, painfully accelerate from an on-ramp gets 
old quickly; and that your own time is valuable to you as well. In effect, we all 

get faster yet.7 There is no reason to think that it will not continue as 
long as computers continue to improve. What has changed—and will be 
described in detail in later chapters—is how we achieve faster computers. 
In short, power dissipation can no longer be dealt with independently of 
performance (see Chapter 3). Moreover, although computing performance 
has many components (see Chapter 2), a touchstone in this report will be 
computer speed; as described in Box 1.3, speed can be traded for almost 
any other sort of functionality that one might want.

7 Some of the breakthroughs were not solely performance-driven—some depend on a 
particular performance at a particular cost. But cost and performance are closely related, 
and performance can be traded for lower cost if desired.
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Finding: The information technology sector itself and most other sec-
tors of society—for example, manufacturing, financial and other ser-
vices, science, engineering, education, defense and other government 
services, and entertainment—have become dependent on continued 
growth in computing performance. 

The rest of this chapter describes a sampling of fields in which com-
puting performance has been critical and in which a slowing of the growth 
of computing performance would have serious adverse repercussions. We 
focus first on high-performance computing and computing performance 
in the sciences. Threats to growth in computing performance will be felt 
there first, before inevitably extending to other types of computing. 

accept a compromise that results in a system that is overdesigned for the com-
mon case because we care about the uncommon case and are willing to pay 
for the resulting inefficiency.

In a computing system, although you may know that the system is spending 
almost all its time doing nothing, that fact pales in comparison with how you 
feel when you ask the system to do something in real time and must wait for 
it to accomplish that task. For instance, when you click on an attachment or a 
file and are waiting for the associated application to open (assuming that it is 
not already open), every second drags.1 At that moment, all you want is a faster 
system, regardless of what the machine is doing when you are not there. And 
for the same reason that a car’s power plant and drivetrain are overdesigned for 
their normal use, your computing system will end up sporting clock frequen-
cies, bus speeds, cache sizes, and memory capacity that will combine to yield a 
computing experience to you, the user, that is statistically rather rare but about 
which you care very much.

The idle-loop effect is much less pronounced in dedicated environments—
such as servers and cloud computing, scientific supercomputers, and some 
embedded applications—than it is on personal desktop computers. Servers 
and supercomputers can never go fast enough, however—there is no real limit 
to the demand for higher performance in them. Some embedded applications, 
such as the engine computer in a car, will idle for a considerable fraction of their 
existence, but they must remain fast enough to handle the worst-case compu-
tational demands of the engine and the driver. Other embedded applications 
may run at a substantial fraction of peak capacity, depending on the workload 
and the system organization.

1 It is worth noting that the interval between clicking on most e-mail attachments and suc-
cessful opening of their corresponding applications is not so much a function of the CPU’s 
performance as it is of disk speed, memory capacity, and input/output interconnect bandwidth.
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BOX 1.3 
Computing Performance Is Fungible

Computing speed can be traded for almost any other feature that one might 
want. In this sense, computing-system performance is fungible, and that is what 
gives it such importance. Workloads that are at or near the absolute capacity 
of a computing system tend to get all the publicity—for every new computing-
system generation, the marketing holy grail is a “killer app” (software applica-
tion), some new software application that was previously infeasible, now runs 
adequately, and is so desirable that buyers will replace their existing systems 
just to buy whatever hardware is fast enough to run it. The VisiCalc spreadsheet 
program on the Apple II was the canonical killer app; it appeared at the dawn of 
the personal-computing era and was so compelling that many people bought 
computers just to run it. It has been at least a decade since anything like a killer 
app appeared, at least outside the vocal but relatively small hard-core gaming 
community. The reality is that modern computing systems spend nearly all their 
time idle (see Box 1.2 for an explanation of why faster computers are needed 
despite that); thus, most systems have a substantial amount of excess computing 
capacity, which can be put to use in other ways. 

Performance can be traded for higher reliability: for example, the digital sig-
nal processor in a compact-disk player executes an elaborate error-detection-
and-correction algorithm, and the more processing capability can be brought 
to bear on that problem, the more bumps and shocks the player can withstand 
before the errors become audible to the listener. Computational capacity can 
also be used to index mail and other data on a computer periodically in the 
background to make the next search faster. Database servers can take elabo-
rate precautions to ensure high system dependability in the face of inevitable 
hardware-component failures. Spacecraft computers often incorporate three 
processors where one would suffice for performance; the outputs of all three 
processors are compared via a voting scheme that detects if one of the three 
machines has failed. In effect, three processors’ worth of performance is re-
duced to one processor’s performance in exchange for improved system de-
pendability. Performance can be used in the service of other goals, as well. Files 
on a hard drive can be compressed, and this trades computing effort and time 
for better effective drive capacity. Files that are sent across a network or across 
the Internet use far less bandwidth and arrive at their destination faster when 
they are compressed. Likewise, files can be encrypted in much the same way 
to keep their contents private while in transit. 
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THE IMPORTANCE OF COMPUTING 
PERFORMANCE FOR THE SCIENCES

Computing has become a critical component of most sciences and 
complements the traditional roles of theory and experimentation.8 Theo-
retical models may be tested by implementing them in software, evaluat-
ing them through simulation, and comparing their results with known 
experimental results. Computational techniques are critical when experi-
mentation is too expensive, too dangerous, or simply impossible. Exam-
ples include understanding the behavior of the universe after the Big 
Bang, the life cycle of stars, the structure of proteins, functions of living 
cells, genetics, and the behavior of subatomic particles. Computation is 
used for science and engineering problems that affect nearly every aspect 
of our daily lives, including the design of bridges, buildings, electronic 
devices, aircraft, medications, soft-drink containers, potato chips, and 
soap bubbles. Computation makes automobiles safer, more aerodynamic, 
and more energy-efficient. Extremely large computations are done to 
understand economics, national security, and climate change, and some 
of these computations are used in setting public policy. For example, hun-
dreds of millions of processor hours are devoted to understanding and 
predicting climate change–one purpose of which is to inform the setting 
of international carbon-emission standards.

In many cases, what scientists and engineers can accomplish is lim-
ited by the performance of computing systems. With faster systems, they 
could simulate critical details—such as clouds in a climate model or 
mechanics, chemistry, and fluid dynamics in the human body—and they 
could run larger suites of computations that would improve confidence in 
the results of simulations and increase the range of scientific exploration. 

Two themes common to many computational science and engineering 
disciplines are driving increases in computational capability. The first is 
an increased desire to support multiphysics or coupled simulations, such 
as adding chemical models to simulations that involve fluid-dynamics 
simulations or structural simulations. Multiphysics simulations are neces-
sary for understanding complex real-world systems, such as the climate, 
the human body, nuclear weapons, and energy production. Imagine, for 
example, a model of the human body in which one could experiment 
with the addition of new chemicals (medicines to change blood pressure), 
changing structures (artificial organs or prosthetic devices), or effects of 
radiation. Many scientific fields are ripe for multiphysics simulations 

8 See an NRC report for one relatively recent take on computing and the sciences (NRC, 
2008, The Potential Impact of High-End Capability Computing on Four Illustrative Fields of 
Science and Engineering, Washington, D.C.: The National Academies Press, available online 
at http://www.nap.edu/catalog.php?record_id=12451). 
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because the individual components are understood well enough and are 
represented by a particular model and instantiation within a given code 
base. The next step is to take two or more such code bases and couple 
them in such a way that each communicates with the others. Climate 
modeling, for example, is well along that path toward deploying coupled 
models, but the approach is still emerging in some other science domains. 

The second crosscutting theme in the demand for increased comput-
ing performance is the need to improve confidence in simulations to make 
computation truly predictive. At one level, this may involve running mul-
tiple simulations and comparing results with different initial conditions, 
parameterizations, simulations at higher space or time resolutions or 
numerical precision, models, levels of detail, or implementations. In some 
fields, sophisticated “uncertainty quantification” techniques are built into 
application codes by using statistical models of uncertainty, redundant 
calculations, or other approaches. In any of those cases, the techniques 
to reduce uncertainty increase the demand for computing performance 
substantially.9

High-Energy Physics, Nuclear Physics, and Astrophysics

The basic sciences, including physics, also rely heavily on high-end 
computing to solve some of the most challenging questions involving 
phenomena that are too large, too small, or too far away to study directly. 
The report of the 2008 Department of Energy (DOE) workshop on Sci-
entific Grand Challenges: Challenges for Understanding the Quantum 
Universe and the Role of Computing at the Extreme Scale summarizes the 
computational gap: “To date, the computational capacity has barely been 
able to keep up with the experimental and theoretical research programs. 
There is considerable evidence that the gap between scientific aspiration 
and the availability of computing resource is now widening. . . .”10 One 
of the examples involves understanding properties of dark matter and 
dark energy by analyzing datasets from digital sky surveys, a technique 
that has already been used to explain the behavior of the universe shortly 

9 In 2008 and 2009, the Department of Energy (DOE) held a series of workshops on com-
puting and extreme scales in a variety of sciences. The workshop reports summarize some 
of the scientific challenges that require 1,000 times more computing than is available to the 
science community today. More information about these workshops and others is available 
online at DOE’s Office of Advanced Scientific Computing Research website, http://www.
er.doe.gov/ascr/WorkshopsConferences/WorkshopsConferences.html.

10 DOE, 2009, Scientific Grand Challenges: Challenges for Understanding the Quan-
tum Universe and the Role of Computing at the Extreme Scale, Workshop Report, Menlo 
Park, Cal., December 9-11, 2008, p. 2, available at http://www.er.doe.gov/ascr/Program 
Documents/ProgDocs.html.
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after the Big Bang and its continuing expansion. The new datasets are 
expected to be on the order of 100 petabytes (1017 bytes) in size and will be 
generated with new high-resolution telescopes that are on an exponential 
growth path in capability and data generation. High-resolution simula-
tions of type Ia and type II supernova explosions will be used to calibrate 
their luminosity; the behavior of such explosions is of fundamental inter-
est, and such observational data contribute to our understanding of the 
expansion of the universe. In addition, an improved understanding of 
supernovae yields a better understanding of turbulent combustion under 
conditions not achievable on Earth. Finally, one of the most computation-
ally expensive problems in physics is aimed at revealing new physics 
beyond the standard model, described in the DOE report as “analogous 
to the development of atomic physics and quantum electrodynamics in 
the 20th century.”11

In addition to the data analysis needed for scientific experiments and 
basic compute-intensive problems to refine theory, computation is critical 
to engineering one-of-a-kind scientific instruments, such as particle accel-
erators like the International Linear Collider and fusion reactors like ITER 
(which originally stood for International Thermonuclear Experimental 
Reactor). Computation is used to optimize the designs, save money in 
construction, and reduce the risk associated with these devices. Similarly, 
simulation can aid in the design of complex systems outside the realm of 
basic science, such as nuclear reactors, or in extending the life of existing 
reactor plants. 

Chemistry, Materials Science, and Fluid Dynamics

A 2003 National Research Council report outlines several of the 
“grand challenges” in chemistry and chemical engineering, including 
two that explicitly require high-performance computing.12 The first is to 
“understand and control how molecules react—over all time scales and 
the full range of molecular size”; this will require advances in predictive 
computational modeling of molecular motions, which will complement 
other experimental and theoretical work. The second is to “learn how to 
design and produce new substances, materials, and molecular devices 
with properties that can be predicted, tailored, and tuned before produc-
tion”; this will also require advances in computing and has implications 
for commercial use of chemical and materials engineering in medicine, 

11 Ibid. at p. vi.
12 NRC, 2003, Beyond the Molecular Frontier: Challenges for Chemistry and Chemical 

Engineering, Washington, D.C.: The National Academies Press, available online at http://
www.nap.edu/catalog.php?record_id=10633. 
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energy and defense applications, and other fields. Advances in computing 
performance are necessary to increase length scales to allow modeling of 
multigranular samples, to increase time scales for fast chemical processes, 
and to improve confidence in simulation results by allowing first-princi-
ples calculations that can be used in their own right or to validate codes 
based on approximate models. Computational materials science contrib-
utes to the discovery of new materials. The materials are often the foun-
dation of new industries; for example, understanding of semiconductors 
led to the electronics industry and understanding of magnetic materials 
contributed to data storage. 

Chemistry and material science are keys to solving some of the most 
pressing problems facing society today. In energy research, for example, 
they are used to develop cleaner fuels, new materials for solar panels, bet-
ter batteries, more efficient catalysts, and chemical processes for carbon 
capture and sequestration. In nuclear energy alone, simulation that com-
bines materials, fluids, and structures may be used for safety assessments, 
design activities, cost, and risk reduction.13 Fluid-dynamics simulations 
are used to make buildings, engines, planes, cars, and other devices more 
energy-efficient and to improve understanding of the processes, such as 
combustion, that are fundamental to the behavior of stars, weapons, and 
energy production. Those simulations vary widely among computational 
scales, but whether they are run on personal computers or on petascale 
systems, the value of additional performance is universal.

Biological Sciences

The use of large-scale computation in biology is perhaps most visible 
in genomics, in which enormous data-analysis problems were involved 
in computing and mapping the human genome. Human genomics has 
changed from a purely science-driven field to one with commercial and 
personal applications as new sequence-generation systems have become a 
commodity and been combined with computing and storage systems that 
are modest by today’s standards. Companies will soon offer personalized 
genome calculation to the public. Genomics does not stop with the human 
genome, however, and is critical in analyzing and synthesizing microor-
ganisms for fighting disease, developing better biofuels, and mitigating 
environmental effects. The goal is no longer to sequence a single species 
but to scoop organisms from a pond or ocean, from soil, or from deep 

13  Horst Simon, Thomas Zacharia, and Rick Stevens, 2007, Modeling and Simulation at 
the Exascale for the Energy and Environment, Report on the Advanced Scientific Comput-
ing Research Town Hall Meetings on Simulation and Modeling at the Exascale for Energy, 
Ecological Sustainability and Global Security (E3), Washington, D.C.: DOE, available online 
at http://www.er.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf.
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underground and analyze an entire host of organisms and compare them 
with other species to understand better what lives and why in particular 
environments. 

At the macro level, reverse engineering of the human brain and simu-
lating complete biologic systems from individual cells to the structures 
and fluids of a human are still enormous challenges that exceed our cur-
rent reach in both understanding and computational capability. But prog-
ress on smaller versions of those problems shows that progress is possible.

One of the most successful kinds of computation in biology has been 
at the level of proteins and understanding their structure. For example, 
a group of biochemical researchers14 are applying standard computer-
industry technology (technology that was originally designed with and 
funded by profits from mundane consumer electronics items) to tackle the 
protein-folding problem at the heart of modern drug discovery and inven-
tion. This problem has eluded even the fastest computers because of its 
overwhelming scale and complexity. But several decades of Moore’s law 
have now enabled computational machinery of such capability that the 
protein-folding problem is coming into range. With even faster hardware 
in the future, new treatment regimens tailored to individual patients may 
become feasible with far fewer side effects. 

Climate-Change Science

In its 2007 report on climate change, the Intergovernmental Panel 
on Climate Change (IPPC) concluded that Earth’s climate would change 
dramatically over the next several decades.15 The report was based on 
millions of hours of computer simulations on some of the most powerful 

14 See David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H. 
Larson, John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C. Chao, 
Michael P. Eastwood, Joseph Gagliardo, J. P. Grossman, Richard C. Ho, Douglas J. Lerardi, 
István Kolossváry, John L. Klepeis, Timothy Layman, Christine Mcleavey, Mark A. Moraes, 
Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler, Michael Theobald, Brian 
Towles, and Stanley C. Wang, 2008, Anton, a special-purpose machine for molecular dynam-
ics simulation, Communications of the ACM 51(7): 91-97.

15 See IPCC, 2007, Climate Change 2007: Synthesis Report, Contribution of Working 
Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change, eds. Core Writing Team, Rajendra K. Pachauri and Andy Reisinger, Ge-
neva, Switzerland: IPCC. The National Research Council has also recently released three 
reports noting that strong evidence on climate change underscores the need for actions 
to reduce emissions and begin adapting to impacts (NRC, 2010, Advancing the Science of 
Climate Change, Limiting the Magnitude of Climate Change, and Adapting to the Impacts 
of Climate Change, Washington, D.C.: The National Academies Press, available online at 
http://www.nap.edu/catalog.php?record_id=12782; NRC, 2010, Limiting the Magnitude of 
Future Climate Change, Washington, D.C.: The National Academies Press, available online 
at http://www.nap.edu/catalog.php?record_id=12785; NRC, 2010, Adapting to the Impacts 
of Climate Change, available online at http://www.nap.edu/catalog.php?record_id=12783.)
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supercomputers in the world. The need for computer models in the study 
of climate change is far from over, however, and the most obvious need is 
to improve the resolution of models, which previously simulated only one 
data point every 200 kilometers, whereas physical phenomena like clouds 
appear on a kilometer scale. To be useful as a predictive tool, climate 
models need to run at roughly 1,000 times real time, and estimates for a 
kilometer-scale model therefore require a 20-petaflop (1015 floating-point 
operations per second) machine, which is an order of magnitude faster 
than the fastest machine available at this writing.16 

Resolution is only one of the problems, however, and a report based 
on a DOE workshop suggests that 1 exaflop (1018 floating-point operations 
per second) will be needed within the next decade to meet the needs of 
the climate research community.17 Scientists and policy-makers need the 
increased computational capability to add more features, such as fully 
resolved clouds, and to capture the potential effects of both natural and 
human-induced forcing functions on the climate. They also need to under-
stand specific effects of climate change, such as rise in sea levels, changes 
in ocean circulation, extreme weather events at the local and regional 
level, and the interaction of carbon, methane, and nitrogen cycles. Cli-
mate science is not just about prediction and observation but also about 
understanding how various regions might need to adapt to changes and 
how they would be affected by a variety of proposed mitigation strategies. 
Experimenting with mitigation is expensive, impractical because of time 
scales, and dangerous—all characteristics that call for improved climate 
models that can predict favorable and adverse changes in the climate and 
for improved computing performance to enable such simulations. 

Computational Capability and Scientific Progress

The availability of large scientific instruments—such as telescopes, 
lasers, particle accelerators, and genome sequencers—and of low-cost 
sensors, cameras, and recording devices has opened up new challenges 
related to computational analysis of data. Such analysis is useful in a vari-
ety of domains. For example, it can be used to observe and understand 
physical phenomena in space, to monitor air and water quality, to develop 
a map of the genetic makeup of many species, and to examine alternative 

16 See, for example, Olive Heffernan, 2010, Earth science: The climate machine, Nature 
463(7284): 1014-1016, which explores the complexity of new Earth models for climate 
analysis.

17 DOE, 2009, Scientific Grand Challenges: Challenges in Climate Change Science and 
the Role of Computing at the Extreme Scale, Workshop Report, Washington D.C., Novem-
ber 6-7, 2008, available online at http://www.er.doe.gov/ascr/ProgramDocuments/Docs/
ClimateReport.pdf. 
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energy sources, such as fusion. Scientific datasets obtained with those 
devices and simulations are stored in petabyte storage archives in scien-
tific computing centers around the world. 

The largest computational problems are often the most visible, but the 
use of computing devices by individual scientists and engineers is at least 
as important for the progress of science. Desktop and laptop machines 
today are an integral part of any scientific laboratory and are used for 
computations and data-analysis problems that would have required 
supercomputers only a decade ago. Individual investigators in engineer-
ing and science departments around the country use cluster computers 
based on networks of personal computers. The systems are often shared 
by a small group of researchers or by larger departments to amortize some 
of the investment in personnel, infrastructure, and maintenance. And sys-
tems that are shared by departments or colleges are typically equivalent 
in computational capability to the largest supercomputers in the world 
5-10 years earlier.

Although no one problem, no matter how large, could have justified 
the aggregate industry investment that was expended over many years 
to bring hardware capability up to the required level, we can expect 
that whole new fields will continue to appear as long as the stream 
of improvements continues. As another example of the need for more 
performance in the sciences, the computing centers that run the largest 
machines have very high use rates, typically over 90 percent, and their 
sophisticated users study the allocation policies among and within cen-
ters to optimize the use of their own allocations. Requests for time on the 
machines perpetually exceed availability, and anecdotal and statistical 
evidence suggests that requests are limited by expected availability rather 
than by characteristics of the science problems to be attacked; when avail-
able resources double, so do the requests for computing time.

A slowdown in the growth in computing performance has implica-
tions for large swaths of scientific endeavor. The amount of data available 
and accessible for scientific purposes will only grow, and computational 
capability needs to keep up if the data are to be used most effectively. 
Without continued expansion of computing performance commensurate 
with both the amount of data being generated and the scope and scale 
of the problems scientists are asked to solve—from climate change to 
energy independence to disease eradication—it is inevitable that impor-
tant breakthroughs and opportunities will be missed. Just as in other 
fields, exponential growth in computing performance has underpinned 
much scientific innovation. As that growth slows or stops, the opportuni-
ties for innovation decrease, and this also has implications for economic 
competitiveness. 
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THE IMPORTANCE OF COMPUTING PERFORMANCE FOR  
DEFENSE AND NATIONAL SECURITY

It is difficult to overstate the importance of IT and computation for 
defense and national security. The United States has an extremely high-
technology military; virtually every aspect depends on IT and compu-
tational capability. To expand our capabilities and maintain strategic 
advantage, operational needs and economic motivators urge a still higher-
technology military and national and homeland security apparatus even 
as many potential adversaries are climbing the same technology curve 
that we traversed. If, for whatever reason, we do not continue climbing 
that curve ourselves, the gap between the United States and many of its 
adversaries will close. This section describes several examples of where 
continued growth in computing performance is essential for effectiveness. 
The examples span homeland security, defense, and intelligence and have 
many obvious nonmilitary applications as well. 

Military and Warfighting Needs

There has been no mystery about the efficacy of better technology 
in weaponry since the longbow first appeared in the hands of English 
archers or steel swords first sliced through copper shields. World War II 
drove home the importance of climb rates, shielding, speed, and arma-
ment of aircraft and ended with perhaps the most devastating display of 
unequal armament ever: the nuclear bomb.

The modern U.S. military is based largely on the availability of tech-
nologic advantages because it must be capable of maintaining extended 
campaigns in multiple simultaneous theaters throughout the world, and 
our armed forces are much smaller than those fielded by several potential 
adversaries. Technology—such as better communication, satellite links, 
state-of-the-art weapons platforms, precision air-sea-land launched rock-
ets, and air superiority—acts as a force multiplier that gives the U.S. mili-
tary a high confidence in its ability to prevail in any conventional fight.

Precision munitions have been a game-changer that enables us to 
fight wars with far fewer collateral losses than in any recent wars. No 
longer does the Air Force have to carpet-bomb a section of a city to ensure 
that the main target of interest is destroyed; instead, it can drop a preci-
sion bomb of the required size from a stealthy platform or as a cruise 
missile from an offshore ship and take out one building on a crowded city 
street. Sufficiently fast computers provided such capabilities, and faster 
ones will improve them.

Because high technology has conferred so strong an advantage on the 
U.S. military for conventional warfare, few adversaries will ever consider 
engaging us this way. Instead, experiences in Vietnam, Afghanistan, and 

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980


THE NEED FOR CONTINUED PERFORMANCE GROWTH	 37

Iraq have been unconventional or “asymmetric”: instead of large-scale 
tank engagements, these wars have been conducted on a much more 
localized basis—between squads or platoons, not brigades or divisions. 
Since Vietnam, where most of the fighting was in jungles, the venues 
have been largely urban, in towns where the populace is either neutral or 
actively hostile. In those settings, the improvised explosive device (IED) 
has become a most effective weapon for our adversaries.

The military is working on improving methods for detecting and 
avoiding IEDs, but it is also looking into after-the-fact analysis that could 
be aided by computer-vision autosurveillance. With remotely piloted 
aerial vehicles, we can fly many more observation platforms, at lower risk, 
than ever before. And we can put so many sensors in the air that it is not 
feasible to analyze all the data that they generate in a timely fashion. At 
least some part of the analysis must be performed at the source. The better 
and faster that analysis is, the less real-time human scrutiny is required, 
and the greater the effectiveness of the devices. A small, efficient military 
may find itself fighting at tempos that far exceed what was experienced 
in the past, and this will translate into more sorties per day on an aircraft 
carrier, faster deployment of ground troops, and quicker reactions to 
real-time information by all concerned. Coordination among the various 
U.S. military elements will become much more critical. Using computer 
systems to manage much of the information associated with these activi-
ties could offload the tedious communication and background analytic 
tasks and move humans’ attention to issues for which human judgment 
is truly required.

Training Simulations

Although often rudimentary, training simulations for the military are 
ubiquitous and effective. The U.S. government-sponsored first-person-
shooter game America’s Army is freely downloadable and puts its play-
ers through the online equivalent (in weapons, tactics, and first aid) of 
the training sequence given to a raw recruit. There have been reports 
that the “training” in the video game America’s Army was sufficient to 
have enabled its players to save lives in the real world.18 The U.S. Army 
conducts squad-level joint video-game simulations as a research exer-
cise. Squad tactics, communication, identification of poorly illuminated 

18 Reported in Earnest Cavalli, 2008, Man imitates America’s army, saves lives, Wired.com, 
January 18, 2008, available online at http://www.wired.com/gamelife/2008/01/americas-
army-t/. The article cites a press release from a game company Web site (The official Army 
game: America’s Army, January 18, 2008, available at http://forum.americasarmy.com/
viewtopic.php?t=271086). 
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targets in houses, and overall movement are stressed and analyzed. In 
another type of simulation, a single soldier is immersed in a simulation 
with computer-generated images on all four walls around him. Future 
training simulations could be made much more realistic, given enough 
computational capability, by combining accurately portrayed audio (the 
real sound of real weapons with echos, nulls, and reflections generated 
by computer) with ever-improving graphics. Humans could be included, 
perhaps as avatars as in Second Life, who know the languages and cus-
toms of the country in which the military is engaged. Limited handheld 
language-translation devices are being tested in the field; some soldiers 
like them, and others report difficulty in knowing how and when to use 
them. Simulations can be run with the same devices so that soldiers can 
become familiar with the capabilities and limitations and make their use 
much more efficient. When training simulations become more realistic, 
they can do what all more accurate simulations do: reduce the need for 
expensive real-world realizations or increase the range and hazard-level 
tolerances of operations that would not be possible to train for in the real 
world.

Autonomous Robotic Vehicles

The Defense Advanced Research Projects Agency (DARPA) has spon-
sored multiple “Grand Challenge” events in which robotic vehicles com-
pete to traverse a preset course in minimum time. The 2007 competition 
was in an urban setting in which the vehicles not only were required to 
stay on the road (and on their own side of the road) but also had to obey 
all laws and customs that human drivers would. The winning entry, Boss, 
from the Carnegie Mellon University (CMU) Robotics Institute, had a 
daunting array of cameras, lidars, and GPS sensors and a massive (for a 
car) amount of computing horsepower.19

CMU’s car (and several other competitors) finished the course while 
correctly identifying many tricky situations on the course, such as the 
arrival of multiple vehicles at an intersection with stop signs all around. 
(Correct answer: The driver on the right has the right of way. Unless you 
got there considerably earlier than that driver, in which case you do. But 
even if you do have an indisputable right of way, if that driver starts 
across the intersection, you have the duty to avoid an accident. As it turns 
out, many humans have trouble with this situation, but the machines 
largely got it right.)

CMU says that to improve its vehicle, the one thing most desired is 

19 See Carnegie Mellon Tartan Racing, available at http://www.tartanracing.org, for more 
information about the vehicle and the underlying technology. 
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additional computing horsepower—the more the better. According to 
DARPA’s vision, we appear to be within shouting distance of a robotic 
military supply truck, one that would no longer expose U.S. military 
personnel to the threats of IEDs or ambushes. The same technology is 
also expected to improve civilian transportation and has the potential to 
reduce collisions on domestic roads and highways.

Domestic Security and Infrastructure

Airport Security Screening

Terrorist groups target civilian populations and infrastructure. The 
events of 9/11 have sparked many changes in how security is handled, 
most of which involve computer-based technology. For example, to detect 
passenger-carried weapons—such as knives, guns, and box cutters—fast 
x-ray scanners and metal detectors have become ubiquitous in airports 
throughout the world.

But the x-ray machines are used primarily to produce a two-dimen-
sional image of the contents of carry-on bags; the actual “detector” is the 
human being sitting in front of the screen. Humans are susceptible to a 
wide array of malfunctions in that role: they get distracted, they get tired, 
they get sick, and their effectiveness varies from one person to another. 
Although it can be argued that there should always be a human in the 
loop when it is humans one is trying to outsmart, it seems clear that this 
is an opportunity for increased computational horsepower to augment a 
human’s ability to identify threat patterns in the images.

In the future, one could envision such x-ray image analytic software 
networking many detectors in an attempt to identify coordinated patterns 
automatically. Such automation could help to eliminate threats in which 
a coordinated group of terrorists is attempting to carry on to a plane a set 
of objects that in isolation are nonthreatening (and will be passed by a 
human monitor) but in combination can be used in some dangerous way. 
Such a network might also be used to detect smuggling: one object might 
seem innocuous, but an entire set carried by multiple people and passed 
by different screeners might be a pattern of interest to the authorities. And 
a network might correlate images with weapons found by hand inspec-
tion and thus “learn” what various weapons look like when imaged and 
in the future signal an operator when a similar image appeared.

Surveillance, Smart Cameras, and Video Analytics

A staple of nearly all security schemes is the camera, which typically 
feeds a real-time low-frame-rate image stream back to a security guard, 
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whose job includes monitoring the outputs of the camera and distin-
guishing normal situations from those requiring action. As with airport 
screeners, the security guards find it extremely difficult to maintain the 
necessary vigilance in monitoring cameras: it is extremely boring, in part 
because of the low prevalence of the events that they are watching for. 
But “boring” is what computers do best: they never tire, get distracted, 
show up for work with a hangover, or fight with a spouse. If a computer 
system could watch the outputs of cameras 3, 5, and 8 and notify a human 
if anything interesting happens, security could be greatly enhanced in 
reliability, scope, and economics.

In the current state of the art, the raw video feed from all cameras is 
fed directly to monitors with magnetic tape storage or digital sampling 
to hard drives. With the emergence of inexpensive high-definition cam-
eras, the raw bit rates are quickly climbing well beyond the abilities of 
networks to transport the video to the monitors economically and beyond 
the capacity of storage systems to retain the information.

What is needed is for some processing to be performed in the cam-
eras themselves. Suppose that a major retailer needs surveillance on its 
customer parking lot at night as an antitheft measure. Virtually all the 
time, the various cameras will see exactly the same scene, down to the 
last pixel, on every frame, hour after hour. Statistically, the only things 
that will change from the camera point of view are leaves blowing across 
the lot, the occasional wild animal, rain, shadows caused by the moon’s 
traversal in the sky, and the general light-dark changes when the sun goes 
down and comes up the next day. If a camera were smart enough to be 
able to filter out all the normal, noninteresting events, identifying interest-
ing events would be easier. Although it may be desirable to carry out as 
much analysis at the camera as possible to reduce the network bandwidth 
required, the camera may not be constructed in a way that uses much 
power (for example, it may not have cooling features), and this suggests 
another way in which power constraints come into play.

Computer technology is only now becoming sophisticated enough at 
the price and power levels available to a mobile platform to perform some 
degree of autonomous filtering. Future generations of smart cameras 
will permit the networking bandwidth freed up by the camera’s innate 
intelligence to be used instead to coordinate observations and decisions 
made by other cameras and arrive at a global, aggregate situational state 
of much higher quality than what humans could otherwise have pieced 
together.

Video search is an important emerging capability in this realm. If you 
want to find a document on a computer system and cannot remember 
where it is, you can use the computer system’s search feature to help 
you find it. You might remember part of the file name or perhaps some 
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key words in the document. You might remember the date of creation or 
the size. All those can be used by the search facility to narrow down the 
possibilities to the point where you can scan a list and find the one the 
document that you wanted. Faster computer systems will permit much 
better automated filtering and searching, and even pictures that have not 
been predesignated with key search words may still be analyzed for the 
presence of a person or item of interest. 

All the above applies to homeland security as well and could be 
used for such things as much improved surveillance of ship and aircraft 
loading areas to prevent the introduction of dangerous items; crowd 
monitoring at control points; and pattern detection of vehicle movements 
associated with bombing of facilities.20

A related technology is face recognition. It is a very short step from 
surveilling crowds to asking whether anyone sees a particular face in a 
crowd and then to asking whether any of a list of “persons of interest” 
appear in the crowd. Algorithms that are moderately effective in that task 
already exist. Faster computer systems could potentially improve the 
accuracy rate by allowing more computation within a given period and 
increase the speed at which a given frame can be analyzed. As with the 
overall surveillance problem, networked smart cameras might be able to 
use correlations to overcome natural-sight impediments.

Infrastructure Defense Against Automated Cyberattack 

The Internet now carries a large fraction of all purchases made, so a 
generalized attack on its infrastructure would cause an immediate loss in 
sales. Much worse, however, is that many companies and other organi-
zations have placed even their most sensitive documents online, where 
they are protected by firewalls and virtual private networks but online 
nonetheless—bits protecting other bits. A coordinated, widespread attack 
on the U.S. computing and network infrastructure would almost certainly 

20 These efforts are much more difficult than it may seem to the uninitiated and, once un-
derstood by adversaries, potentially susceptible to countermeasures. For example, England 
deployed a large set of motorway automated cameras to detect (and deter) speeding; when 
a camera’s radar detected a vehicle exceeding the posted speed limit, the camera snapped 
a photograph of the offending vehicle and its driver and issued the driver an automated 
ticket. In the early days of the system’s deployment, someone noticed that if the speeding 
vehicle happened to be changing lanes during the critical period when the radar could have 
caught it, for some reason the offense would go unpunished. The new lore quickly spread 
throughout the driving community and led to a rash of inspired lane-changing antics near 
every radar camera—behavior that was much more dangerous than the speeding would 
have been. This was reported in Ray Massey, 2006, Drivers can avoid speeding tickets ... by 
changing lanes, Daily Mail Online, October 15, 2006, available at http://www.dailymail.
co.uk/news/article-410539/Drivers-avoid-speeding-tickets--changing-lanes.html. 
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be set up and initiated via the Internet, and the havoc that it could poten-
tially wreak on businesses and government could be catastrophic. It is not 
out of the question that such an eventuality could lead to physical war.

The Internet was not designed with security in mind, and this over-
sight is evident in its architecture and in the difficulty with which security 
measures can be retrofitted later. We cannot simply dismantle the Internet 
and start over with something more secure. But as computer-system tech-
nology progresses and more performance becomes available, there will be 
opportunities to look for ways to trade the parallel performance afforded 
by the technology for improved defensive measures that will discourage 
hackers, help to identify the people and countries behind cyberattacks, 
and protect the secrets themselves better.

The global Internet can be a dangerous place. The ubiquitous con-
nectivity that yields the marvelous wonders of search engines, Web sites, 
browsers, and online purchasing also facilitates identity theft, propaga-
tion of worms and viruses, ready platforms for staging denial-of-service 
attacks, and faceless nearly risk-free opportunities for breaking into the 
intellectual-property stores and information resources of companies, 
schools, government institutions, and military organizations. Today, a 
handful of Web-monitoring groups pool their observations and exper-
tise with a few dozen university computer-science experts and many 
industrial and government watchdogs to help to spot Internet anomalies, 
malevolent patterns of behavior, and attacks on the Internet’s backbone 
and name-resolution facilities. As with video surveillance, the battle is 
ultimately human on human, so it seems unlikely that humans should 
ever be fully removed from the defensive side of the struggle. However, 
faster computers can help tremendously, especially if the good guys have 
much faster computing machinery than the bad guys.

Stateful packet inspection, for example, is a state-of-the-art method 
for detecting the presence of a set of known virus signatures in traf-
fic on communications networks, which on detection can be shunted 
into a quarantine area before damage is done. Port-based attacks can be 
identified before they are launched. The key to those mitigations is that 
all Internet traffic, harmful or not, must take the form of bits traversing 
various links of the Internet; computer systems capable of analyzing the 
contents over any given link are well positioned to eliminate a sizable 
fraction of threats.

Data Analysis for Intelligence

Vast amounts of unencrypted data not only are not generated in intel-
ligence agencies but are available in the open for strategic data-mining. 
Continued performance improvements are needed if the agencies are to 
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garner useful intelligence from raw data. There is a continuing need to 
analyze satellite images for evidence of military and nuclear buildups, 
evidence of emerging droughts or other natural disasters, evidence of ter-
rorist training camps, and so on. Although it is no secret that the National 
Security Agency and the National Reconnaissance Office have some of 
the largest computer complexes in the world, the complexity of the data 
that they store and process and of the questions that they are asked to 
address is substantial. Increasing amounts of computational horsepower 
are needed not only to meet their mission objectives but also to maintain 
an advantage over adversaries.

Nuclear-Stockpile Stewardship

In the past, the reliability of a nuclear weapon (the probability that 
it detonates when commanded to do so) and its safety (the probability 
that it does not detonate otherwise) were established largely with physi-
cal testing. Reliability tests detonated sample nuclear weapons from the 
stockpile, and safety tests subjected sample nuclear weapons to extreme 
conditions (such as fire and impact) to verify that they did not deto-
nate under such stresses. However, for a variety of policy reasons, the 
safety and reliability of the nation’s nuclear weapons is today established 
largely with computer simulation, and the data from nonnuclear labora-
tory experiments are used to validate the computer models. 

The simulation of a nuclear weapon is computationally extremely 
demanding in both computing capability and capacity. The already 
daunting task is complicated by the need to simulate the effects of aging. 
A 2003 JASON report21 concluded that at that time there were gaps in both 
capability and capacity in fulfilling the mission of stockpile stewardship—
ensuring nuclear-weapon safety and reliability.

Historically, the increase in single-processor performance played a 
large role in providing increased computing capability and capacity to 
meet the increasing demands of stockpile stewardship. In addition, par-
allelism has been applied to the problem, so the rate of increase in per-
formance of the large machines devoted to the task has been greater than 
called for by Moore’s law because the number of processors was increased 
at the same time that single-processor performance was increasing. The 
largest of the machines today have over 200,000 processors and LINPACK 
benchmark performance of more than 1,000 Tflops.22

21 Roy Schwitters, 2003, Requirements for ASCI, JSR-03-330, McLean, Va.: The MITRE 
Corporation.

22 For a list of the 500 most powerful known computer systems in the world, see “Top 500,” 
available online at http://www.absoluteastronomy.com/topics/TOP500.
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The end of single-processor performance scaling makes it difficult for 
those “capability” machines to continue scaling at historical rates and so 
makes it difficult to meet the projected increases in demands of nuclear-
weapon simulation. The end of single-processor scaling has also made the 
energy and power demands of future capability systems problematic, as 
described in the recent DARPA ExaScale computing study.23 Furthermore, 
the historical increases in demand in the consumer market for computing 
hardware and software have driven down costs and increased software 
capabilities for military and science applications. If the consumer market 
suffers, the demands of science and military applications are not likely 
to be met.

THE IMPORTANCE OF COMPUTING PERFORMANCE FOR  
CONSUMER NEEDS AND APPLICATIONS 

The previous two sections offered examples of where growth in com-
puting performance has been essential for science, defense, and national 
security. The growth has also been a driver for individuals using con-
sumer-oriented systems and applications. Two recent industry trends 
have substantially affected end-user computational needs: the increasing 
ubiquity of digital data and growth in the population of end users who 
are not technically savvy. Sustained growth in computing performance 
serves not only broad public-policy objectives, such as a strong defense 
and scientific leadership, but also the current and emerging needs of 
individual users. 

The growth in computing performance over the last 4 decades—
impressive though it has been—has been dwarfed over the last decade or 
so by the growth in digital data.24 The amount of digital data is growing 
more rapidly than ever before. The volumes of data now available out-
strip our ability to comprehend it, much less take maximum advantage 

23 Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William 
Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman 
Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, 
Allan Snavely, Thomas Sterling, R. Stanley Williams, and Katherine Yelick, 2008, ExaScale 
Computing Study: Technology Challenges in Achieving Exascale Systems, Washington, 
D.C.: DARPA. Available online at http://www.er.doe.gov/ascr/Research/CS/DARPA%20
exascale%20-%20hardware%20(2008).pdf. 

24 A February 2010 report observed that “quantifying the amount of information that ex-
ists in the world is hard. What is clear is that there is an awful lot of it, and it is growing at 
a terrific rate (a compound annual 60%) that is speeding up all the time. The flood of data 
from sensors, computers, research labs, cameras, phones and the like surpassed the capac-
ity of storage technologies in 2007” (Data, data, everywhere: A special report on managing 
information, The Economist, February 25, 2010, available online at http://www.economist.
com/displaystory.cfm?story_id=15557443). 
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of it. According to the How Much Information project at the University of 
California, Berkeley,25 print, film, magnetic, and optical storage media 
produced about 5 exabytes (EB) of new information in 2003. Further-
more, the information explosion is accelerating. Market research firm IDC 
estimates that in 2006 161 EB of digital content was created and that that 
figure will rise to 988 EB by 2010. To handle so much information, people 
will need systems that can help them to understand the available data. We 
need computers to see data the way we do, identify what is useful to us, 
and assemble it for our review or even process it on our behalf. This grow-
ing end-user need is the primary force behind the radical and continuing 
transformation of the Web as it shifts its focus from data presentation to 
end-users to automatic data-processing on behalf of end-users.26 The data 
avalanche and the consequent transformation of the Web’s functionality 
require increasing sophistication in data-processing and hence additional 
computational capability to be able to reason automatically in real time 
so that we can understand and interpret structured and unstructured 
collections of information via, for example, sets of dynamically learned 
inference rules.

A computer’s ability to perform a huge number of computations per 
second has enabled many applications that have an important role in our 
daily lives.27 An important subset of applications continues to push the 
frontiers of very high computational needs. Examples of such applications 
are these:

•	 Digital content creation—allows people to express creative skills 
and be entertained through various modern forms of electronic 
arts, such as animated films, digital photography, and video 
games.

•	 Search and mining—enhances a person’s ability to search and 
recall objects, events, and patterns well beyond the natural limits 
of human memory by using modern search engines and the ever-
growing archive of globally shared digital content.

25 See Peter Lyman and Hal R. Varian, 2003, How much information?, available online at 
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/index.htm, last 
accessed November 2, 2010. 

26 See, for example, Tim Berners-Lee’s 2007 testimony to the U.S. Congress on the future of 
the World Wide Web, The digital future of the United States. Part I: The future of the World 
Wide Web,” Hearings before the Subcommittee on Telecommunications and the Internet of 
the Committee on Energy and Commerce, 110th  Congress, available at http://dig.csail.mit.
edu/2007/03/01-ushouse-future-of-the-web.html, last accessed November 2, 2010. 

27 Of course, a computer system’s aggregate performance may be limited by many things: 
the nature of the workload itself, the CPU’s design, the memory subsystem, input/output 
device speeds and sizes, the operating system, and myriad other system aspects. Those and 
other aspects of performance are discussed in Chapter 2.
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•	 Real-time decision-making—enables growing use of computa-
tional assistance for various complex problem-solving tasks, such 
as speech transcription and language translation.

•	 Collaboration technology—offers a more immersive and interac-
tive 3D environment for real-time collaboration and telepresence. 

•	 Machine-learning algorithms—filter e-mail spam, supply reli-
able telephone-answering services, and make book and music 
recommendations.

Computers have become so pervasive that a vast majority of end-
users are not computer aficionados or system experts; rather, they are 
experts in some other field or disciplines, such as science, art, education, 
or entertainment. The shift has challenged the efficiency of human-com-
puter interfaces. There has always been an inherent gap between a user’s 
conceptual model of a problem and a computer’s model of the problem. 
However, given the change in demographics of computer users, the need 
to bridge the gap is now more acute than ever before. The increased 
complexity of common end-user tasks (“find a picture like this” rather 
than “add these two numbers”) and the growing need to be able to offer 
an effective interface to a non-computer-expert user at a higher level of 
object semantics (for example, presenting not a Fourier transform data 
dump of a flower image but a synthesized realistic visual of a flower) 
have together increased the computational capability needed to provide 
real-time responses to user actions. 

Bridging the gap would be well served by computers that can deal 
with natural user inputs, such as speech and gestures, and output content 
in a visually rich form close to that of the physical world around us. A typ-
ical everyday problem requires multiple iterations of execute and evaluate 
between the user and the computer system. Each such iteration normally 
narrows the original modeling gap, and this in turn requires additional 
computational capability. The larger the original gap, the more computa-
tion is needed to bridge it. For example, some technology-savvy users 
working on an image-editing problem may iterate by editing a low-level 
machine representation of an image, whereas a more typical end-user may 
interact only at the level of a photo-real output of the image with virtual 
brushes and paints. 

Thanks to sustained growth in computing performance over the 
years, more effective computer-use models and visually rich human-
computer interfaces are introducing new potential ways to bridge the gap. 
An alternative to involving the end-user in each iteration is to depend 
on a computer’s ability to refine model instances by itself and to nest 
multiple iterations of such an analytics loop for each iteration of a visual 
computing loop involving an end-user. Such nesting allows a reduction in 
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the number of interactions between a user and his or her computer and 
therefore an increase in the system’s efficiency or response. However, it 
also creates the need to sustain continued growth in computational per-
formance so that a wider variety of more complex tasks can be simulated 
and solved in real time for the growing majority of end-users. Real-time 
physical and behavioral simulation of even a simple daily-life object or 
events (such as water flow, the trajectory of a ball in a game, and sum-
marizing of a text) is a surprisingly computationally expensive task, and 
requires multiple iterations or solutions of a large number of subproblems 
derived from decomposition of the original problem.

Computationally intensive consumer applications include such phe-
nomena as virtual world simulations and immersive social-networking, 
video karaoke (and other sorts of real-time video interactions), remote 
education and training that require simulation, and telemedicine (includ-
ing interventional medical imaging).28 

THE IMPORTANCE OF COMPUTING PERFORMANCE 
FOR ENTERPRISE PRODUCTIVITY

Advances in computing technology in the form of more convenient 
communication and sharing of information have favorably affected the 
productivity of enterprises. Improved communication and sharing have 
been hallmarks of computing from the earliest days of time-sharing in 
corporate or academic environments to today’s increasingly mobile, smart 
phone-addicted labor force. Younger employees in many companies today 
can hardly recall business processes that did not make use of e-mail, chat 
and text messaging, group calendars, internal Web resources, blogs, Wiki 
toolkits, audio and video conferencing, and automated management of 
workflow. At the same time, huge improvements in magnetic storage 
technology, particularly for disk drives, have made it affordable to keep 
every item of an organization’s information accessible on line. Individual 
worker productivity is not the only aspect of an enterprise that has been 
affected by continued growth in computing performance. The ability of 
virtually every sort of enterprise to use computation to understand data 
related to its core lines of business—sometimes referred to as analytics—
has improved dramatically as computer performance has increased over 
the years. In addition, massive amounts of data and computational capa-
bility accessible on the Internet have increased the demand for Web ser-
vices, or “software as a service,” in a variety of sectors. Analytics and 

28 For more on emerging applications and their need for computational capability, see 
Justin Rattner, 2009, The dawn of terascale computing, IEEE Solid-State Circuits Magazine 
1(1): 83-89.
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the implications of Web services for computing performance needs are 
discussed below. 

Analytics

Increases in computing capability and efficiency have made it feasible 
to perform deep analysis of numerous kinds of business data—not just 
off line but increasingly in real time—to obtain better input into business 
decisions.29 Efficient computerized interactions between organizations 
have created more efficient end-to-end manufacturing processes through 
the use of supply-chain management systems that optimize invento-
ries, expedite product delivery, and reduce exposure to varying market 
conditions.

In the past, real-time business performance needs were dictated 
mostly by transaction rates. Analytics (which can be thought of as com-
putationally enhanced decision-making) were mostly off line. The com-
putational cost of actionable data-mining was too high to be of any value 
under real-time use constraints. However, the growth in computing per-
formance has now made real-time analytics affordable for a larger class 
of enterprise users. 

One example is medical-imaging analytics. Over the last 2 decades, 
unprecedented growth has taken place in the amount and complexity of 
digital medical-image data collected on patients in standard medical prac-
tice. The clinical necessity to diagnose diseases accurately and develop 
treatment strategies in a minimally invasive manner has mandated the 
development of new image-acquisition methods, high-resolution acquisi-
tion hardware, and novel imaging modalities. Those requirements have 
placed substantial computational burdens on the ability to use the image 
information synergistically. With the increase in the quality and utility of 
medical-image data, clinicians are under increasing pressure to generate 
more accurate diagnoses or therapy plans. To meet the needs of the clini-
cian, the imaging-research community must provide real-time (or near 
real-time) high-volume visualization and analyses of the image data to 
optimize the clinical experience. Today, nearly all use of computation in 
medical imaging is limited to “diagnostic imaging.” However, with suffi-
cient computational capability, it is likely that real-time medical interven-
tions could become possible. The shift from diagnostic imaging to inter-
ventional imaging can usher in a new era in medical imaging. Real-time 

29 IBM’s Smart Analytics System, for example, is developing solutions aimed at retail, 
insurance, banking, health care, and telecommunication. For more information see the IBM 
Smart Analytics System website, available online at http://www-01.ibm.com/software/
data/infosphere/smart-analytics-system/. 
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medical analytics can guide medical professionals, such as surgeons, in 
their tasks. For example, surface extractions from volumetric data coupled 
with simulations of various what-if scenarios accomplished in real time 
offer clear advantages over basic preoperative planning scenarios.

Web Services

In the last 15 years, the Internet and the Web have had a transforma-
tional effect on people’s lives. That effect has been enabled by two concur-
rent and interdependent phenomena: the rapid expansion of Internet con-
nectivity, particularly high-speed Internet connections, and the emergence 
of several extraordinarily useful Internet-based services. Web search and 
free Web-based e-mail were among the first such services to explode 
in popularity, and their emergence and continuous improvements have 
been made possible by dramatic advances in computing performance, 
storage, and networking technologies. Well beyond text, Web-server data 
now include videos, photos, and various other kinds of media. Users—
individuals and businesses—increasingly need information systems to 
see data the way they do, identify what is useful, and assemble it for 
them. The ability to have computers understand the data and help us 
to use it in various enterprise endeavors could have enormous benefits. 
As a result, the Web is shifting its focus from data presentation to end-
users to automatic data-processing on behalf of end-users. Finding pre-
ferred travel routes while taking real-time traffic feeds into account and 
rapid growth in program trading are some of the examples of real-time 
decision-making.

Consider Web search as an example. A Web search service’s funda-
mental task is to take a user’s query, traverse data structures that are effec-
tively proportional in size to the total amount of information available on 
line, and decide how to select from among possibly millions of candidate 
results the handful that would be most likely to match the user’s expecta-
tion. The task needs to be accomplished in a few hundred milliseconds in 
a system that can sustain a throughput of several thousand requests per 
second. This and many other Web services are offered free and rely on 
on-line advertisement revenues, which, depending on the service, may 
bring only a few dollars for every thousand user page views. The com-
puting system that can meet those performance requirements needs to be 
not only extremely powerful but also extremely cost-efficient so that the 
business model behind the Internet service remains viable. 

The appetite of Internet services for additional computing perfor-
mance doesn’t appear to have a foreseeable limit. A Web search can be 
used to illustrate that, although a similar rationale could be applied to 
other types of services. Search-computing demands fundamentally grow 
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in three dimensions: data-repository increases, search-query increases, 
and service-quality improvements. The amount of information currently 
indexed by search engines, although massive, is still generally considered 
a fraction of all on-line content even while the Web itself keeps expanding. 
Moreover, there are still several non-Web data sources that have yet to 
be added to the typical Web-search repositories (such as printed media). 
Universal search,30 for example, is one way in which search-computing 
demands can dramatically increase as all search queries are simultane-
ously sent to diverse data sources. As more users go online or become 
more continuously connected to the Internet through better wireless links, 
traffic to useful services would undergo further substantial increases. 

In addition to the amount of data and types of queries, increases 
in the quality of the search product invariably cause more work to be 
performed on behalf of each query. For example, better results for a 
user’s query will often be satisfied by searching also for some common 
synonyms or plurals of the original query terms entered. To achieve the 
better results, one will need to perform multiple repository lookups for 
the combinations of variations and pick the best results among them, a 
process that can easily increase the computing demands for each query 
by substantial factors.

In some cases, substantial service-quality improvements will demand 
improvements in computing performance along multiple dimensions 
simultaneously. For example, the Web would be much more useful if 
there were no language barriers; all information should be available in 
every existing language, and this might be achievable through machine-
translation technology at a substantial processing cost. The cost would 
come both from the translation step itself, because accurate translations 
require very large models or learning over large corpora, and from the 
increased amount of information that then becomes available for users of 
every language. For example, a user search in Italian would traverse not 
only Italian-language documents but potentially documents in every lan-
guage available to the translation system. The benefits to society at large 
from overcoming language barriers would arguably rival any other single 
technologic achievement in human history, especially if they extended to 
speech-to-speech real-time systems.

The prospect of mobile computing systems—such as cell phones, 
vehicle computers, and media players—that are increasingly powerful, 
ubiquitous, and interconnected adds another set of opportunities for bet-

30 See Google’s announcement: Google begins move to universal search: Google introduces 
new search features and unveils new homepage design,” Press Release, Google.com, May 
16, 2007, available online at http://www.google.com/intl/en/press/pressrel/universal-
search_20070516.html. 
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ter computing services that go beyond simply accessing the Web on more 
devices. Such devices could act as useful sensors and provide a rich set 
of data about their environment that could be useful once aggregated for 
real-time disaster response, traffic-congestion relief, and as-yet-unimag-
ined applications. An early example of the potential use of such systems 
is illustrated in a recent experiment conducted by the University of Cali-
fornia, Berkeley, and Nokia in which cell phones equipped with GPS units 
were used to provide data for a highway-conditions service.31

More generally, the unabated growth in digital data, although still 
a challenge for managing and sifting, has now reached a data volume 
large enough in many cases to have radical computing implications.32 
Such huge amounts of data will be especially useful for a class of prob-
lems that have so far defied analytic formulation and been reliant on a 
statistical data-driven approach. In the past, because of insufficiently large 
datasets, the problems have had to rely on various, sometimes question-
able heuristics. Now, the digital-data volume for many of the problems 
has reached a level sufficient to revert to statistical approaches. Using sta-
tistical approaches for this class of problems presents an unprecedented 
opportunity in the history of computing: the intersection of massive data 
with massive computational capability. 

In addition to the possibility of solving problems that have heretofore 
been intractable, the massive amounts of data that are increasingly avail-
able for analysis by small and large businesses offer the opportunity to 
develop new products and services based on that analysis. Services can 
be envisioned that automate the analysis itself so that the businesses do 
not have to climb this learning curve. The machine-learning community 
has many ideas for quasi-intelligent automated agents that can roam the 
Web and assemble a much more thorough status of any topic at a much 
deeper level than a human has time or patience to acquire. Automated 
inferences can be drawn that show connections that have heretofore been 
unearthed only by very talented and experienced humans. 	

On top of the massive amounts of data being created daily and all 
that portends for computational needs, the combination of three elements 
has the potential to deliver a massive increase in real-time computa-
tional resources targeted toward end-user devices constrained by cost 
and power:

31 See the University of California, Berkeley, press release about this experiment (Sarah 
Yang, 2008, Joint Nokia research project captures traffic data using GPS-enabled cell phones, 
Press Release, UC Berkeley News, February 8, 2008, available online at http://berkeley.edu/
news/media/releases/2008/02/08_gps.shtml).

32 Wired.com ran a piece in 2008 declaring “the end of science”: The Petabyte Age: Be-
cause more isn’t just more—more is different,” Wired.com, June 23, 2008, available online 
at http://www.wired.com/wired/issue/16-07.
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·	 Clouds of servers.
·	 Vastly larger numbers of end-user devices, consoles, and various 

form-factor computing platforms.
·	 The ubiquitous connectivity of computing equipment over a ser-

vice-oriented infrastructure backbone.

The primary technical challenge to take advantage of those resources 
lies in software. Specifically, innovation is needed to enable the discovery 
of the computing needs of various functional components of a specific ser-
vice offering. Such discovery is best done adaptively and under the real-
time constraints of available computing bandwidth at the client-server 
ends, network bandwidth, and latency. On-line games, such as Second Life, 
and virtual world simulations, such as Google Earth, are examples of such 
a service. The services involve judicious decomposition of computing 
needs over public client-server networks to produce an interactive, visu-
ally rich end-user experience. The realization of such a vision of connected 
computing will require not only increased computing performance but 
standardization of network software layers. Standardization should make 
it easy to build and share unstructured data and application program-
ming interfaces (APIs) and enable ad hoc and innovative combinations 
of various service offerings.

In summary, computing in a typical end-user’s life is undergoing a 
momentous transformation from being useful yet nonessential software 
and products to being the foundation for around-the-clock relied-on vital 
services delivered by tomorrow’s enterprises.
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What Is Computer Performance? 

Fast, inexpensive computers are now essential to numerous human 
endeavors. But less well understood is the need not just for fast 
computers but also for ever-faster and higher-performing comput-

ers at the same or better costs. Exponential growth of the type and scale 
that have fueled the entire information technology industry is ending.1 
In addition, a growing performance gap between processor performance 
and memory bandwidth, thermal-power challenges and increasingly 
expensive energy use, threats to the historical rate of increase in transistor 
density, and a broad new class of computing applications pose a wide-
ranging new set of challenges to the computer industry. Meanwhile, soci-
etal expectations for increased technology performance continue apace 
and show no signs of slowing, and this underscores the need for ways 
to sustain exponentially increasing performance in multiple dimensions. 
The essential engine that has met this need for the last 40 years is now in 
considerable danger, and this has serious implications for our economy, 
our military, our research institutions, and our way of life.

Five decades of exponential growth in processor performance led to 

1 It can be difficult even for seasoned veterans to understand the effects of exponential 
growth of the sort seen in the computer industry. On one level, industry experts, and even 
consumers, display an implicit understanding in terms of their approach to application and 
system development and their expectations of and demands for computing technologies. 
On another level, that implicit understanding makes it easy to overlook how extraordinary 
the exponential improvements in performance of the sort seen in the information technology 
industry actually are.
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the rise and dominance of the general-purpose personal computer. The 
success of the general-purpose microcomputer, which has been due pri-
marily to economies of scale, has had a devastating effect on the develop-
ment of alternative computer and programming models. The effect can be 
seen in high-end machines like supercomputers and in low-end consumer 
devices, such as media processors. Even though alternative architectures 
and approaches might have been technically superior for the task they 
were built for, they could not easily compete in the marketplace and 
were readily overtaken by the ever-improving general-purpose proces-
sors available at a relatively low cost. Hence, the personal computer has 
been dubbed “the killer micro.”

Over the years, we have seen a series of revolutions in computer 
architecture, starting with the main-frame, the minicomputer, and the 
work station and leading to the personal computer. Today, we are on 
the verge of a new generation of smart phones, which perform many 
of the applications that we run on personal computers and take advan-
tage of network-accessible computing platforms (cloud computing) when 
needed. With each iteration, the machines have been lower in cost per 
performance and capability, and this has broadened the user base. The 
economies of scale have meant that as the per-unit cost of the machine has 
continued to decrease, the size of the computer industry has kept growing 
because more people and companies have bought more computers. Per-
haps even more important, general-purpose single processors—which all 
these generations of architectures have taken advantage of—can be pro-
grammed by using the same simple, sequential programming abstraction 
at root. As a result, software investment on this model has accumulated 
over the years and has led to the de facto standardization of one instruc-
tion set, the Intel x86 architecture, and to the dominance of one desktop 
operating system, Microsoft Windows. 

The committee believes that the slowing in the exponential growth 
in computing performance, while posing great risk, may also create a 
tremendous opportunity for innovation in diverse hardware and software 
infrastructures that excel as measured by other characteristics, such as low 
power consumption and delivery of throughput cycles. In addition, the 
use of the computer has becomes so pervasive that it is now economical 
to have many more varieties of computers. Thus, there are opportunities 
for major changes in system architectures, such as those exemplified by 
the emergence of powerful distributed, embedded devices, that together 
will create a truly ubiquitous and invisible computer fabric. Investment in 
whole-system research is needed to lay the foundation of the computing 
environment for the next generation. See Figure 2.1 for a graph showing 
flattening curves of performance, power, and frequency. 

Traditionally, computer architects have focused on the goal of creating 
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FIGURE 2.1 Transistors, frequency, power, performance, and cores over time 
(1985-2010). The vertical scale is logarithmic. Data curated by Mark Horowitz with 
input from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris 
Batten, and Krste Asanoviç.

computers that perform single tasks as fast as possible. That goal is still 
important. Because the uniprocessor model we have today is extremely 
powerful, many performance-demanding applications can be mapped to 
run on networks of processors by dividing the work up at a very coarse 
granularity. Therefore, we now have great building blocks that enable us 
to create a variety of high-performance systems that can be programmed 
with high-level abstractions. There is a serious need for research and 
education in the creation and use of high-level abstractions for parallel 
systems. 

However, single-task performance is no longer the only metric of 
interest. The market for computers is so large that there is plenty of eco-
nomic incentive to create more specialized and hence more cost-effective 
machines. Diversity is already evident. The current trend of moving com-
putation into what is now called the cloud has created great demands for 
high-throughput systems. For those systems, making each transaction run 
as fast as possible is not the best thing to do. It is better, for example, to 
have a larger number of lower-speed processors to optimize the through-
put rate and minimize power consumption. It is similarly important to 
conserve power for hand-held devices. Thus, power consumption is a 

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980


56	 THE FUTURE OF COMPUTING PERFORMANCE

key performance metric for both high-end servers and consumer hand-
held devices. See Box 2.1 for a discussion of embedded computing per-
formance as distinct from more traditional desktop systems. In general, 
power considerations are likely to lead to a large variety of specialized 
processors.

The rest of this chapter provides the committee’s views on matters 
related to computer performance today. These views are summarized in 

BOX 2.1
Embedded Computing Performance

The design of desktop systems often places considerable emphasis on gen-
eral CPU performance in running desktop workloads. Particular attention is 
paid to the graphics system, which directly determines which consumer games 
will run and how well. Mobile platforms, such as laptops and notebooks, at-
tempt to provide enough computing horsepower to run modern operating 
systems well—subject to the energy and thermal constraints inherent in mobile, 
battery-operated devices—but tend not to be used for serious gaming, so high-
end graphics solutions would not be appropriate. Servers run a different kind of 
workload from either desktops or mobile platforms, are subject to substantially 
different economic constraints in their design, and need no graphics support 
at all. Desktops and mobile platforms tend to value legacy compatibility (for ex-
ample, that existing operating systems and software applications will continue 
to run on new hardware), and this compatibility requirement affects the design 
of the systems, their economics, and their use patterns.

Although desktops, mobile, and server computer systems exhibit important 
differences from one another, it is natural to group them when comparing them 
with embedded systems. It is difficult to define embedded systems accurately 
because their space of applicability is huge—orders of magnitude larger than 
the general-purpose computing systems of desktops, laptops, and servers. Em-
bedded computer systems can be found everywhere: a car’s radio, engine con-
troller, transmission controller, airbag deployment, antilock brakes, and dozens 
of other places. They are in the refrigerator, the washer and dryer, the furnace 
controller, the MP3 player, the television set, the alarm clock, the treadmill and 
stationary bike, the Christmas lights, the DVD player, and the power tools in 
the garage. They might even be found in ski boots, tennis shoes, and greeting 
cards. They control the elevators and heating and cooling systems at the office, 
the video surveillance system in the parking lot, and the lighting, fire protection, 
and security systems.

Every computer system has economic constraints. But the various systems 
tend to fall into characteristic financial ranges. Desktop systems once (in 1983) 
cost $3,000 and now cost from a few hundred dollars to around $1,000. Mobile 
systems cost more at the high end, perhaps $2,500, down to a few hundred dol-
lars at the low end. Servers vary from a few thousand dollars up to hundreds of 
thousands for a moderate Web server, a few million dollars for a small corporate 
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the bullet points that follow this paragraph. Readers who accept the com-
mittee’s views may choose to skip the supporting arguments and move 
on to the next chapter. 

·	 Increasing computer performance enhances human productivity. 
·	 One measure of single-processor performance is the product of 

operating frequency, instruction count, and instructions per cycle.

server farm, and 1 or 2 orders of magnitude more than that for the huge server 
farms fielded by large companies, such as eBay, Yahoo!, and Google.

Embedded systems tend to be inexpensive. The engine controller under the 
hood of a car cost the car manufacturer about $3-5. The chips in a cell phone 
were also in that range. The chip in a tennis shoe or greeting card is about 1/10 
that cost. The embedded system that runs such safety-critical systems as eleva-
tors will cost thousands of dollars, but that cost is related more to the system 
packaging, design, and testing than to the silicon that it uses.

One of the hallmarks of embedded systems versus general-purpose com-
puters is that, unlike desktops and servers, embedded performance is not an 
open-ended boon. Within their cost and power budgets, desktops, laptops, and 
server systems value as much performance as possible—the more the better. 
Embedded systems are not generally like that. The embedded chip in a cell 
phone has a set of tasks to perform, such as monitoring the phone’s buttons, 
placing various messages and images on the display, controlling the phone’s 
energy budget and configuration, and setting up and receiving calls. To ac-
complish those tasks, the embedded computer system (comprising a central 
processor, its memory, and I/O facilities) must be capable of a some overall 
performance level. The difference from general-purpose computers is that once 
that level is reached in the system design, driving it higher is not beneficial; in 
fact, it is detrimental to the system. Embedded computer systems that are faster 
than necessary to meet requirements use more energy, dissipate more heat, 
have lower reliability, and cost more—all for no gain.

Does that mean that embedded processors are now fast enough and have 
no need to go faster? Are they exempt from the emphasis in this report on 
“sustaining growth in computing performance”? No. If embedded processor 
systems were to become faster and all else were held equal, embedded-system 
designers would find ways of using the additional capability, and delivering 
new functionalities would come to be expected on those devices. For example, 
many embedded systems, such as the GPS or audio system in a car, tend to 
interface directly with human beings. Voice and speech recognition capability 
greatly enhance that experience, but current systems are not very good at the 
noise suppression, beam-forming, and speech-processing that are required to 
make this a seamless, enjoyable experience, although progress is being made. 
Faster computer systems would help to solve that problem. Embedded systems 
have benefited tremendously from riding an improvement curve equivalent to 
that of the general-purpose systems and will continue to do so in the future.
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·	 Performance comes directly from faster devices and indirectly 
from using more devices in parallel.

·	 Parallelism can be helpfully divided into instruction-level paral-
lelism, data-level parallelism, and thread-level parallelism.

·	 Instruction-level parallelism has been extensively mined, but 
there is now broad interest in data-level parallelism (for example, 
due to graphics processing units) and thread-level parallelism 
(for example, due to chip multiprocessors).

·	 Computer-system performance requires attention beyond pro-
cessors to memories (such as,dynamic random-access memory), 
storage (for example, disks), and networking.

·	 Some computer systems seek to improve responsiveness (for 
example, timely feedback to a user’s request), and others seek 
to improve throughput (for example, handling many requests 
quickly).

·	 Computers today are implemented with integrated circuits 
(chips) that incorporate numerous devices (transistors) whose 
population (measured as transistors per chaip) has been doubling 
every 1.5-2 years (Moore’s law).

·	 Assessing the performance delivered to a user is difficult and 
depends on the user’s specific applications.

·	 Large parts of the potential performance gain due to device inno-
vations have been usefully applied to productivity gains (for 
example, via instruction-set compatibility and layers of software).

·	 Improvements in computer performance and cost have enabled 
creative product innovations that generated computer sales 
that, in turn, enabled a virtuous cycle of computer and product 
innovations. 

WHY PERFORMANCE MATTERS

Humans design machinery to solve problems. Measuring how well 
machines perform their tasks is of vital importance for improving them, 
conceiving better machines, and deploying them for economic bene-
fit. Such measurements often speak of a machine’s performance, and many 
aspects of a machine’s operations can be characterized as performance. 
For example, one aspect of an automobile’s performance is the time it 
takes to accelerate from 0 to 60 mph; another is its average fuel economy. 
Braking ability, traction in bad weather conditions, and the capacity to 
tow trailers are other measures of the car’s performance. 

Computer systems are machines designed to perform information 
processing and computation. Their performance is typically measured 
by how much information processing they can accomplish per unit time, 
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but there are various perspectives on what type of information process-
ing to consider when measuring performance and on the right time scale 
for such measurements. Those perspectives reflect the broad array of 
uses and the diversity of end users of modern computer systems. In gen-
eral, the systems are deployed and valued on the basis of their ability to 
improve productivity. For some users, such as scientists and information 
technology specialists, the improvements can be measured in quantitative 
terms. For others, such as office workers and casual home users, the per-
formance and resulting productivity gains are more qualitative. Thus, no 
single measure of performance or productivity adequately characterizes 
computer systems for all their possible uses.2 

On a more technical level, modern  computer systems deploy and 
coordinate a vast array of hardware and software technologies to pro-
duce the results that end users observe. Although the raw computational 
capabilities of the central processing unit (CPU) core tend to get the most 
attention, the reality is that performance comes from a complex balance 
among many cooperating subsystems. In fact, the underlying perfor-
mance bottlenecks of some of today’s most commonly used large-scale 
applications, such as Web searching, are dominated by the character-
istics of memory devices, disk drives, and network connections rather 
than by the CPU cores involved in the processing. Similarly, the interac-
tive responsiveness perceived by end users of personal computers and 
hand-held devices is typically defined more by the characteristics of the 
operating system, the graphical user interface (GUI), and the storage com-
ponents than by the CPU core. Moreover, today’s ubiquitous networking 
among computing devices seems to be setting the stage for a future in 
which the computing experience is defined at least as much by the coor-
dinated interaction of multiple computers as it is by the performance of 
any node in the network. 

Nevertheless, to understand and reason about performance at a high 
level, it is important to understand the fundamental lower-level contribu-
tors to performance. CPU performance is the driver that forces the many 
other system components and features that contribute to overall perfor-
mance to keep up and avoid becoming bottlenecks

PERFORMANCE AS MEASURED BY RAW COMPUTATION 

The classic formulation for raw computation in a single CPU core 
identifies operating frequency, instruction count,  and instructions per cycle 

2 Consider the fact that the term “computer system” today encompasses everything from 
small handheld devices to Netbooks to corporate data centers to massive server farms that 
offer cloud computing to the masses. 
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(IPC) as the fundamental low-level components of performance.3  Each 
has been the focus of a considerable amount of research and discovery 
in the last 20 years. Although detailed technical descriptions of them are 
beyond the intended scope of this report, the brief descriptions below will 
provide context for the discussions that follow. 

·	 Operating frequency defines the basic clock rate at which the CPU 
core runs. Modern high-end processors run at several billion 
cycles per second. Operating frequency is a function of the low-
level transistor characteristics in the chip, the length and physi-
cal characteristics of the internal chip wiring, the voltage that 
is applied to the chip, and the degree of pipelining used in the 
microarchitecture of the machine. The last 15 years have seen 
dramatic increases in the operating frequency of CPU cores. As 
an unfortunate side effect of that growth, the maximum operat-
ing frequency has often been used as a proxy for performance by 
much of the popular press and industry marketing campaigns. 
That can be misleading because there are many other important 
low-level and system-level measures to consider in reasoning 
about performance. 

·	 Instruction count is the number of native instructions—instructions 
written for that specific CPU—that must be executed by the CPU 
to achieve correct results with a given computer program. Users 
typically write programs in high-level programming languages—
such as Java, C, C++ , and C#—and then use a compiler to translate 
the high-level program to native machine instructions. Machine 
instructions are specific to the instruction set architecture (ISA) that 
a given computer architecture or architecture family implements. 
For a given high-level program, the machine instruction count 
varies when it executes on different computer systems because 
of differences in the underlying ISA, in the microarchitecture that 
implements the ISA, and in the tools used to compile the pro-
gram. Although this section of the report focuses mostly on the 
low-level raw performance measures, the role of the compiler and 
other modern software system technologies are also necessary to 
understand performance fully.

·	 Instructions per cycle refers to the average number of instructions 
that a particular CPU core can execute and complete in each cycle. 
IPC is a strong function of the underlying microarchitecture, 
or machine organization, of the CPU core. Many modern CPU 

3 John L. Hennessy and David A. Patterson, 2006, Computer Architecture: A Quantitative 
Approach, fourth edition, San Francisco, Cal.: Morgan Kauffman. 
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cores use advanced techniques—such as multiple instruction dis-
patch, out-of-order execution, branch prediction, and speculative 
execution—to increase the average IPC.4 Those techniques all 
seek to execute multiple instructions in a single cycle by using 
additional resources to reduce the total number of cycles needed 
to execute the program. Some performance assessments focus on 
the peak capabilities of the machines; for example, the peak per-
formance of the IBM Power 7 is six instructions per cycle, and that 
of the Intel Pentium, four. In reality, those and other sophisticated 
CPU cores actually sustain an average of slightly more than one 
instruction per cycle when executing many programs. The differ-
ence between theoretical peak performance and actual sustained 
performance is an important aspect of overall computer-system 
performance.

The program itself provides different forms of parallelism that differ-
ent machine organizations can exploit to achieve performance. The first 
type, instruction-level parallelism, describes the amount of nondependent 
instructions5 available for parallel execution at any given point in the 
program. The program’s instruction-level parallelism in part determines 
the IPC component of raw performance mentioned above. (IPC can be 
viewed as describing the degree to which a particular machine organiza-
tion can harvest the available instruction-level performance.) The second 
type of parallelism is data-level parallelism, which has to do with how data 
elements are distributed among computational units for similar types of 
processing. Data-level parallelism can be exploited through architectural 
and microarchitectural  techniques that direct low-level instructions to 
operate on multiple pieces of data at the same time. This type of process-
ing is often referred to as single-instruction-multiple-data. The third type 
is thread-level parallelism and has to do with the degree to which a program 
can be partitioned into multiple sequences of instructions with the intent 
of executing them concurrently and cooperatively on multiple processors. 
To exploit program parallelism, the compiler or run-time system must 
map it to appropriate parallel hardware.

Throughout the history of modern computer architecture, there have 
been many attempts to build machines that exploit the various forms of 

4 Providing the details of these microarchitecture techniques is beyond the scope of 
this publication. See Hennessey & Patterson for more information on these and related 
techniques. 

5 An instruction X does not depend on instruction Y if X can be performed without using 
results from Y. The instruction a = b + c depends on previous instructions that produce 
the results b and c and thus cannot be executed until those previous instructions have 
completed. 
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parallelism. In recent years, owing largely to the emergence of more gen-
eralized and programmable forms of graphics processing units, the inter-
est in building machines that exploit data-level parallelism has grown 
enormously. The specialized machines do not offer compatibility with 
existing programs, but they do offer the promise of much more per-
formance when presented with code that properly exposes the avail-
able data-level parallelism. Similarly, because of the emergence of chip 
multiprocessors, there is considerable renewed interest in understanding 
how to exploit thread-level parallelism on these machines more fully. 
However, the techniques also highlight the importance of the full suite of 
hardware components in modern computer systems, the communication 
that must occur among them, and the software technologies that help to 
automate application development in order to take advantage of parallel-
ism opportunities provided by the hardware. 

COMPUTATION AND COMMUNICATION’S 
EFFECTS ON PERFORMANCE 

The raw computational capability of CPU cores is an important com-
ponent of system-level performance, but it is by no means the only one. To 
complete any useful tasks, a CPU core must communicate with memory, a 
broad array of input/output devices, other CPU cores, and in many cases 
other computer systems. The overhead and latency of that communica-
tion in effect delays computational progress as the CPU waits for data to 
arrive and for system-level interlocks to clear. Such delays tend to reduce 
peak computational rates to effective computational rates substantially. 
To understand effective performance, it is important to understand the 
characteristics of the various forms of communication used in modern 
computer systems. 

In general, CPU cores perform best when all their operands (the inputs 
to the instructions) are stored in the architected registers that are internal 
to the core. However, in most architectures, there tend to be few such 
registers because of their relatively high cost in silicon area. As a result, 
operands must often be fetched from memory before the actual compu-
tation specified by an instruction can be completed. For most computer 
systems today, the amount of time it takes to access data from memory 
is more than 100 times the single cycle time of the CPU core. And, worse 
yet, the gap between typical CPU cycle times and memory-access times 
continues to grow. That imbalance would lead to a devastating loss in 
performance of most programs if there were not hardware caches in these 
systems. Caches hold the most frequently accessed parts of main memory 
in special hardware structures that have much smaller latencies than the 
main memory system; for example, a typical level-1 cache has an access 
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time that is only 2-3 times slower than the single cycle time of the CPU 
core. They leverage a principle called locality of reference that characterizes 
common data-access patterns exhibited by most computer programs. To 
accommodate large working sets that do not fit in the first-level cache, 
many computer systems deploy a hierarchy of caches. The later levels 
of caches tend to be increasingly large (up to several megabytes), but as 
a result they also have longer access times and resulting latencies. The 
concept of locality is important for computer architecture, and Chapter 4 
highlights the potential of exploiting locality in innovative ways. 

Main memory in most modern computer systems is typically imple-
mented with dynamic random-access memory (DRAM) chips, and it 
can be quite large (many gigabytes). However, it is nowhere near large 
enough to hold all the addressable memory space available to appli-
cations and the file systems used for long-term storage of data and 
programs. Therefore, nonvolatile magnetic-disk-based storage6 is com-
monly used to hold this much larger collection of data. The access time 
for disk-based storage is several orders of magnitude larger than that of 
DRAM, which can expose very long delays between a request for data 
and the return of the data. As a result, in many computer systems, the 
operating system takes advantage of the situation by arranging a “con-
text switch” to allow another pending program to run in the window of 
time provided by the long delay in many computer systems. Although 
context-switching by the operating system improves the multiprogram 
throughput of the overall computer system, it hurts the performance of 
any single application because of the associated overhead of the context-
switch mechanics. Similarly, as any given program accesses other system 
resources, such as networking and other types of storage devices, the 
associated request-response delays detract from the program’s ability to 
make use of the full peak-performance potential of the CPU core. Because 
each of those subsystems displays different performance characteristics, 
the establishment of an appropriate system-level balance among them is 
a fundamental challenge in modern computer-system design. As future 
technology advances improve the characteristics of the subsystems, new 
challenges and opportunities in balancing the overall system arise. 

Today, an increasing number of computer systems deploy more than 
one CPU core, and this has the potential to improve system performance. 
In fact, there are several methods of taking advantage of the potential of 
parallelism offered by additional CPU cores, each with distinct advantages 
and associated challenges. 

6 Nonvolatile storage does not require power to retain its information. A compact disk 
(CD) is nonvolatile, for example, as is a computer hard drive, a USB flash key, or a book 
like this one.
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·	 The first method takes advantage of the additional CPUs to 
improve the general responsiveness of the system. Instead of sched-
uling the execution of pending programs one at a time (as is done 
in single-processor systems), the operating system can sched-
ule more than one program to run at the same time in different 
processors. This method tends to increase the use of the other 
subsystems (storage, networking, and so on), so it also demands 
a different system-level balance among the subsystems than do 
some of the other methods. From an end user’s standpoint, this 
system organization tends to improve both the interactive respon-
siveness of the system and the turnaround time for any particular 
execution task. 

·	 The second method takes advantage of the additional CPU cores 
to improve the turnaround time of a particular program more dra-
matically by running different parts of the program in parallel. 
This method requires programmers to use parallel-programming 
constructs; historically, this task has proved fairly difficult even 
for the most advanced programmers. In addition, such constructs 
tend to require particular attention to how the different parts of 
the program synchronize and coordinate their execution. This 
synchronization is a form of communication among the coop-
erating processors and represents a new type of overhead that 
detracts from exploiting the peak potential of each individual 
processor core. See Box 2.2 for a brief description of Amdahl’s 
law. 

·	 A third method takes advantage of the additional CPU cores to 
improve the throughput of a particular program. Instead of work-
ing to speed up the program’s operation on a single piece of data 
(or dataset), the system works to increase the rate at which a 
collection of data (or datasets) can be processed by the program. 
In general, because there tends to be more independence among 
the collected data in this case, the development of these types of 
programs is somewhat easier than development of the parallel 
programs mentioned earlier. In addition, the degree of commu-
nication and synchronization required between the concurrently 
executing parts of the program tends to be much less than in the 
parallel-program case. 

Another key aspect of modern computer systems is their ability to 
communicate, or network, with one another. Programmers can write pro-
grams that make use of multiple CPU cores within a single computer sys-
tem or that make use of multiple computer systems to increase performance 
or to solve larger, harder problems. In those cases, it takes much longer 
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to communicate, synchronize, and coordinate the progress of the overall 
program. The programs tend to break the problem into coarser-grain tasks 
to run in parallel, and they tend to use more explicit message-passing con-
structs. As a result, the development and optimization of such programs 
are quite different from those of the others mentioned above. 

In addition to the methods described above, computer scientists are 
actively researching new ways to exploit multiple CPU cores, multiple 
computer systems, and parallelism for future systems. Considering the 
increased complexity of such systems, researchers are also concerned 
about easing the associated programming complexity exposed to the 
application programmer, inasmuch as programming effort has a first-
order effect on time to solution of any given problem. The magnitude 
of these challenges and their effects on computer-system performance 
motivate much of this report. 

TECHNOLOGY ADVANCES AND THE HISTORY 
OF COMPUTER PERFORMANCE 

In many ways, the history of computer performance can be best 
understood by tracking the development and issues of the technology 
that underlies the machines. If one does that, an interesting pattern starts 
to emerge. As incumbent technologies are stretched to their practical 

BOX 2.2
Amdahl’s Law

Amdahl’s law sets the limit to which a parallel program can be sped up. Pro-
grams can be thought of as containing one or more parallel sections of code 
that can be sped up with suitably parallel hardware and a sequential section that 
cannot be sped up. Amdahl’s law is

Speedup = 1/[(1 – P) + P/N)],

where P is the proportion of the code that runs in parallel and N is the number 
of processors.

The way to think about Amdahl’s law is that the faster the parallel section 
of the code run, the more the remaining sequential code looms as the per-
formance bottleneck. In the limit, if the parallel section is responsible for 80 
percent of the run time, and that section is sped up infinitely (so that it runs in 
zero time), the other 20 percent now constitutes the entire run time. It would 
therefore have been sped up by a factor of 5, but after that no amount of ad-
ditional parallel hardware will make it go any faster.
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limits, innovations are leveraged to overcome these limits. At the same 
time, they set the stage for a fresh round of incremental advances that 
eventually overtake any remaining advantages of the older technology. 
That technology-innovation cycle has been a driving force in the history 
of computer-system performance improvements. 

A very early electronic computing system, called Colossus,7 was cre-
ated in 1943.8 Its core was built with vacuum tubes, and although it had 
fairly limited utility, it ushered in the use of electronic vacuum tubes for 
a generation of computer systems that followed. As newer systems, such 
as the ENIAC, introduced larger-scale and more generalized computing, 
the collective power consumption of all the vacuum tubes eventually lim-
ited the ability to continue scaling the systems. In 1954, engineers at Bell 
Laboratories created a discrete-transistor-based computer system called the 
TRADIC.9 Although it was not quite as fast as the fastest vacuum-tube-
based systems of the day, it was much smaller and consumed much less 
power. More important, it heralded the era of transistor-based computer 
systems.10 In 1958, Jack Kilby and Robert Noyce separately invented the 
integrated circuit, which for the first time allowed multiple transistors to 
be fabricated and connected on a single piece of silicon. That technol-
ogy was quickly picked up by computer designers to design higher-per-
formance and more power-efficient computer systems. This technology 
breakthrough inaugurated the modern computing era. 

In 1965, Gordon Moore observed that the transistor density on inte-
grated circuits was doubling with each new technology generation, and 
he projected that this would continue into the future.11 (See Appendix C 

7 B. Jack Copeland, ed., 2006, Colossus: The Secrets of Bletchley Park’s Codebreaking, New 
York, N.Y.: Oxford University Press.

8 Although many types of mechanical and electromechanical computing systems were 
demonstrated before that, these devices were substantially limited in capabilities and de-
ployments, so we will leave them out of this discussion.

9 For a history of the TRADIC, see Louis C. Brown, 1999, Flyable TRADIC: The first air-
borne transistorized digital computer, IEEE Annals of the History of Computing 21(4): 55-61.

10 It was not only vacuum tube power requirements that were limiting the computer 
industry back in the early 1060s. Packaging was a significant challenge, too—simply mak-
ing all the connections needed to carry signals and power to all those tubes was seriously 
degrading reliability, because each connection had to be hand-soldered with some prob-
ability of failure greater than 0.0. All kinds of module packaging schemes were being tried, 
but none of them really solved this manufacturability problem. One of the transformative 
aspects of integrated circuit technology is that you get all the internal connections for free 
by a chemical photolithography process that not only makes them essentially free but also 
makes them several orders of magnitude more reliable. Were it not for that effect, all those 
transistors we have enjoyed ever since would be of very limited usefulness, too expensive, 
and too prone to failure.

11  Gordon Moore, 1965, Cramming more components onto integrated circuits, Electronics 
38(8), available online at http://download.intel.com/research/silicon/moorespaper.pdf.
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for a reprint of his seminal paper.) That projection, now commonly called 
Moore’s law, was remarkably accurate and still holds true. However, 
over the years, there have been some important shifts in how integrated 
circuits are used in computer systems. Early on, various segments of the 
electronics industry made use of different types of transistor devices. 
For high-end computer systems, the bipolar junction transistor (BJT) was 
the technology of choice. As more BJT devices were integrated into the 
systems, the power consumption of each chip also rose, and computer-
system designers were forced to use exotic power delivery and cooling 
solutions. In the 1980s, another type of transistor, the field-effect transistor 
(FET), was increasingly used for smaller electronic devices, such as cal-
culators and small computers meant for hobbyists. By the late 1980s, the 
power-consumption characteristics of the BJT-based computer systems 
hit a breaking point; around the same time, the early use of FET-based 
integrated circuits had demonstrated both power and cost advantages 
over  the BJT-based technologies. Although the underlying transistors 
were not as fast, their characteristics enabled far greater integration poten-
tial and much lower power consumption. Today, at the heart of virtually 
all computer systems is a set of FET-based integrated-circuit chips. 

It now appears that in some higher-end computer systems, the FET-
based integrated circuits have hit their practical limits of power consump-
tion. Although today’s technologists understand how to continue increas-
ing the level of integration (number of transistor devices) on future chips, 
they are not able to continue reducing the voltage or the power.12 There are 
several potential new technology concepts in the research laboratories—
such as carbon nanotubes, quantum dots, and biology-inspired devices—
but none of them is mature enough for practical deployment. Although 
there is reasonable optimism that current research will eventually bring 
one or more new technology breakthroughs into mainstream deployment, 
it appears today that the technology-innovation cycle has a substantial 
gap that must be overcome in some other way. The industry is therefore 
shifting from the long-standing heritage of constantly improving the per-
formance characteristics of single-processor-based systems (sometimes 
referred to as single-thread performance) to increasing the number of 
processors in each system. As described in the following sections, that 

12 The committee’s emphasis on transistor performance is not intended to convey the 
impression that transistors are the sole determinant of computer system performance. The 
interconnect wiring between transistors on a chip is a first-order limiter of system clock 
rate and also contributes greatly to overall power dissipation. Memory and I/O systems 
must also scale up to avoid becoming bottlenecks to faster computer systems. The focus is 
on transistors here because it is possible to work around interconnect limitations (this has 
already been done for at least 15 years), and so far, memory and I/O have been scaling up 
enough to avoid being showstoppers.
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puts substantial new demands and new pressures on the software side of 
multiprocessor-based systems. 

Appendix A provides additional data on historical computer-perfor-
mance trends. It illustrates that from 1985 to 2004 computer performance 
improved at a compound annual growth rate exceeding 50 percent, mea-
sured with the SPECint2000 and SPECfp2000 benchmarks, but after 2004 
grew much more slowly.13 Moreover, it shows that the recent slow growth 
is due in large part to a flattening of clock-frequency improvements 
needed to flatten the untenable growth in chip power requirements. The 
appendix closes with Kurzweil’s observations on the 20th century that 
encourage us to seek new computer technologies. 

ASSESSING PERFORMANCE WITH BENCHMARKS

As discussed earlier in this chapter, another big challenge in under-
standing computer-system performance is choosing the right hardware 
and software metrics and measurements. As this committee has already 
discussed, the peak-performance potential of a machine is not a particu-
larly good metric in that the inevitable overheads associated with the use 
of other system-level resources and communication can diminish deliv-
ered performance substantially. 	

There have been innumerable efforts over the years to create bench-
mark suites to define a set of workloads over which to measure metrics, 
many of them quite successful within limited application domains. How-
ever, designing general benchmarks is difficult. Even considering hard-
ware performance alone can be challenging because computer hardware 
consists of several different components (see Box 2.3). Computer systems 
are deployed and used in a broad variety of ways. As one might expect, 
different market segments have different use scenarios, and they stress 
the system in different ways. As a result, the appropriate benchmark to 
consider can vary considerably between market segments. For example, 

·	 For casual home users, responsiveness of the GUI has high prior-
ity. The performance of the system when operating on various 
types of entertainment media—such as audio, video, or pictures 
files—is more important than it is in many other markets. 

·	 In research settings, the computer system is an important tool for 
exploring and modeling ideas. As a result, the turnaround time 

13 SPEC benchmarks are a set of artificial workloads intended to measure a computer sys-
tem’s speed. A machine that achieves a SPEC benchmark score that is, say, 30 percent faster 
than that of another machine should feel about 30 percent faster than the other machine on 
real workloads.
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for a given program is important because it provides the results 
that are an integral part of the iterative research loop directed by 
the researcher. That is an example of performance as time to solu-
tion. (See Box 2.4 for more on time to solution.)

·	 In small-business settings, the computer system tends to be used 
for a very wide array of applications, so high general-purpose 
performance is valued. 

·	 For computer systems used in banking and other financial mar-
kets, the reliability and accuracy of the computational results, 
even in the face of defects or harsh external environmental con-
ditions, are paramount. Many deployments value gross transac-
tional throughput more than the turnaround time of any given 
program, except for financial-transaction turnaround time.

·	 In some businesses, computer systems are deployed into mission-
critical roles in the overall operation of the business, for example, 
e-commerce-based businesses, process automation, health care, 
and human safety systems. In those situations, the gross reliabil-
ity and "up time" characteristics of the system can be far more 
important than the instantaneous performance of the system at 
any given time. 

·	 At the very high end, supercomputer systems tend to work on 
large problems with very large amounts of data. The underlying 
performance of the memory system can be even more important 
than the raw computational capability of the CPU cores involved. 
That can be seen as an example of throughput as performance 
(see Box 2.5).

Complicating matters a bit more, most computer-system deployments 
define some set of important physical constraints on the system. For 
example, in the case of a notebook-computer system, important energy-
consumption and physical-size constraints must be met. Similarly, even in 
the largest supercomputer deployments, there are constraints on physical 
size, weight, power, heat, and cost. Those constraints are several orders 
of magnitude larger than in the notebook example, but they still are fun-
damental in defining the resulting performance and utility of the system. 
As a result, for a given market opportunity, it often makes sense to gauge 
the value of a computer system according to a ratio of performance to 
constraints. Indeed, some of the metrics most frequently used today are 
such ratios as performance per watt, performance per dollar, and perfor-
mance per area. More generally, most computer-system customers are 
placing increasing emphasis on efficiency of computation rather than on 
gross performance metrics. 

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980


70	 THE FUTURE OF COMPUTING PERFORMANCE

THE INTERPLAY OF SOFTWARE AND PERFORMANCE

Although the amazing raw performance gains of the microproces-
sor over the last 20 years has garnered most of the attention, the overall 
performance and utility of computer systems are strong functions of both 
hardware and software. In fact, as computer systems have deployed more 
hardware, they have depended more and more on software technologies 
to harness their computational capability. Software has exploited that 
capability directly and indirectly. Software has directly exploited increases 
in computing capability by adding new features to existing software, 
by solving larger problems more accurately, and by solving previously 
unsolvable problems. It has indirectly exploited the capability through the 
use of abstractions in high-level programming languages, libraries, and 
virtual-machine execution environments. By using high-level program-
ming languages and exploiting layers of abstraction, programmers can 

BOX 2.3
Hardware Components

A car is not just an engine. It has a cooling system to keep the engine running 
efficiently and safely, an environmental system to do the same for the drivers 
and passengers, a suspension system to improve the ride, a transmission so 
that the engine’s torque can be applied to the drive wheels, a radio so that the 
driver can listen to classic-rock stations, and cupholders and other convenience 
features. One might still have a useful vehicle if the radio and cupholders were 
missing, but the other features must be present because they all work in har-
mony to achieve the function of propelling the vehicle controllably and safely.

Computer systems are similar. The CPU tends to get much more than its 
proper share of attention, but it would be useless without memory and I/O 
subsystems. CPUs function by fetching their instructions from memory. How 
did the instructions get into memory, and where did they come from? The in-
structions came from a file on a hard disk and traversed several buses (commu-
nication pathways) to get to memory. Many of the instructions, when executed 
by the CPU, cause additional memory traffic and I/O traffic. When we speak of 
the overall performance of a computer system, we are implicitly referring to 
the overall performance of all those systems operating together. For any given 
workload, it is common to find that one of the “links in the chain” is, in fact, 
the weakest link. For instance, one can write a program that only executes CPU 
operations on data that reside in the CPU’s own register file or its internal data 
cache. We would refer to such a program as “CPU-bound,” and it would run 
as fast as the CPU alone could perform it. Speeding up the memory or the I/O 
system would have no discernible effect on measured performance for that 
benchmark. Another benchmark could be written, however, that does little else 
but perform memory load and store operations in such a way that the CPU’s 
internal cache is ineffective. Such a benchmark would be bound by the speed 
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express their algorithms more succinctly and modularly and can compose 
and reuse software written by others. Those high-level programming 
constructs make it easier for programmers to develop correct complex 
programs faster. Abstraction tends to trade increased human programmer 
productivity for reduced software performance, but the past increases in 
single-processor performance essentially hid much of the performance 
cost. Thus, modern software systems now have and rely on multiple lay-
ers of system software to execute programs. The layers can include oper-
ating systems, runtime systems, virtual machines, and compilers. They 
offer both an opportunity for introducing and managing parallelism and a 
challenge in that each layer must now also understand and exploit paral-
lelism. The committee discusses those issues in more detail in Chapter 4 
and summarizes the performance implications below.

The key performance driver to date has been software portability. Once 

of memory (and possibly by the bus that carries the traffic between the CPU 
and memory.) A third benchmark could be constructed that hammers on the 
I/O subsystem with little dependence on the speed of either the CPU or the 
memory.

Handling most real workloads relies on all three computer subsystems, and 
their performance metrics therefore reflect the combined speed of all three. 
Speed up only the CPU by 10 percent, and the workload is liable to speed up, 
but not by 10 percent—it will probably speed up in a prorated way because only 
the sections of the code that are CPU-bound will speed up. Likewise, speed up 
the memory alone, and the workload performance improves, but typically much 
less than the memory speedup in isolation.	 Numerous other pieces of com-
puter systems make up the hardware. The CPU architectures and microarchi-
tectures encompass instruction sets, branch-prediction algorithms, and other 
techniques for higher performance. Storage (disks and memory) is a central 
component. Memory, flash drives, traditional hard drives, and all the technical 
details associated with their performance (such as bandwidth, latency, caches, 
volatility, and bus overhead) are critical for a system’s overall performance. In 
fact, information storage (hard-drive capacity) is understood to be increasing 
even faster than transistor counts on the traditional Moore’s law curve,1 but it is 
unknown how long this will continue. Switching and interconnect components, 
from switches to routers to T1 lines, are part of every level of a computer system. 
There are also hardware interface devices (keyboards, displays, and mice). All 
those pieces can contribute to what users perceive of as the “performance” of 
the system with which they are interacting. 

1 This phenomenon has been dubbed Kryder’s law after Seagate executive Mark Kryder (Chip 
Walter, 2005, Kryder’s law, Scientific American 293: 32-33, available online at http://www.
scientificamerican.com/article.cfm?id=kryders-law).
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BOX 2.4
Time To Solution

Consider a jackhammer on a city street. Assume that using a jackhammer is 
not a pastime enjoyable in its own right—the goal is to get a job done as soon 
as possible. There are a few possible avenues for improvement: try to make 
the jackhammer’s chisel strike the pavement more times per second; make 
each stroke of the jackhammer more effective, perhaps by putting more power 
behind each stroke; or think of ways to have the jackhammer drive multiple 
chisels per stroke. All three possibilities have analogues in computer design, 
and all three have been and continue to be used. The notion of “getting the 
job done as soon as possible” is known in the computer industry as time to 
solution and has been the traditional metric of choice for system performance 
since computers were invented.

Modern computer systems are designed according to a synchronous, pipe-
lined schema. Synchronous means occurring at the same time. Synchronous 
digital systems are based on a system clock, a specialized timer signal that 
coordinates all activities in the system. Early computers had clock frequencies 
in the tens of kilohertz. Contemporary microprocessor designs routinely sport 
clocks with frequencies of over about 3-GHz range. To a first approximation, 
the higher the clock rate, the higher the system performance. System designers 
cannot pick arbitrarily high clock frequencies, however—there are limits to the 
speed at which the transistors and logic gates can reliably switch, limits to how 
quickly a signal can traverse a wire, and serious thermal power constraints that 
worsen in direct proportion to the clock frequency. Just as there are physical 
limits on how fast a jackhammer’s chisel can be driven downward and then 
retracted for the next blow, higher computer clock rates generally yield faster 
time-to-solution results, but there are several immutable physical constraints 
on the upper limit of those clocks, and the attainable performance speedups 
are not always proportional to the clock-rate improvement.

How much a computer system can accomplish per clock cycle varies widely 
from system to system and even from workload to workload in a given system. 
More complex computer-instruction sets, such as Intel’s x86, contain instruc-
tions that intrinsically accomplish more than a simpler instruction set, such as 
that embodied in the ARM processor in a cell phone; but how effective the com-
plex instructions are is a function of how well a compiler can use them. Recent 

a program has been created, debugged, and put into practical use, end 
users’ expectation is that the program not only will continue to operate 
correctly when they buy a new computer system but also will run faster 
on a new system that has been advertised as offering increased perfor-
mance. More generally, once a large collection of programs have become 
available for a particular computing platform, the broader expectation is 
that they will all continue to work and speed up in later machine genera-
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additions to historical instruction sets—such as Intel’s SSE 1, 2, 3, and 4—attempt 
to accomplish more work per clock cycle by operating on grouped data that are 
in a compressed format (the equivalent of a jackhammer that drives multiple 
chisels per stroke). Substantial system-performance improvements, such as fac-
tors of 2-4, are available to workloads that happen to fit the constraints of the 
instruction-set extensions.

There is a special case of time-to-solution workloads: those which can be 
successfully sped up with dedicated hardware accelerators. Graphics process-
ing units (GPUs)—such as those from NVIDIA, from ATI, and embedded in some 
Intel chipsets—are examples. These processors were designed originally to 
handle the demanding computational and memory bandwidth requirements of 
3D graphics but more recently have evolved to include more general program-
mability features. With their intrinsically massive floating-point horsepower, 10 
or more times higher than is available in the general-purpose (GP) micropro-
cessor, these chips have become the execution engine of choice for some im-
portant workloads. Although GPUs are just as constrained by the exponentially 
rising power dissipation of modern silicon as are the GPs, GPUs are 1-2 orders 
of magnitude more energy-efficient for suitable workloads and can therefore 
accomplish much more processing within a similar power budget. 

Applying multiple jackhammers to the pavement has a direct analogue in the 
computer industry that has recently become the primary development avenue 
for the hardware vendors: “multicore.” The computer industry’s pattern has 
been for the hardware makers to leverage a new silicon process technology to 
make a software-compatible chip that is substantially faster than any previous 
chips. The new, higher-performing systems are then capable of executing soft-
ware workloads that would previously have been infeasible; the attractiveness 
of the new software drives demand for the faster hardware, and the virtuous 
cycle continues. A few years ago, however, thermal-power dissipation grew to 
the limits of what air cooling can accomplish and began to constrain the attain-
able system performance directly. When the power constraints threatened to 
diminish the generation-to-generation performance enhancements, chipmak-
ers Intel and AMD turned away from making ever more complex microarchitec-
tures on a single chip and began placing multiple processors on a chip instead. 
The new chips are called multicore chips. Current chips have several processors 
on a single die, and future generations will have even more.

tions. Indeed, not only has the remarkable speedup offered by industry 
standard (×86-compatible) microprocessors over the last 20 years forged 
compatibility expectation in the industry, but its success has hindered the 
development of alternative, noncompatible computer systems that might 
otherwise have kindled new and more scalable programming paradigms. 
As the microprocessor industry shifts to multicore processors, the rate of 
improvement of each individual processor is substantially diminished. 
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The net result is that the industry is ill prepared for the rather sudden 
shift from ever-increasing single-processor performance to the presence 
of increasing numbers of processors in computer systems. (See Box 2.6 
for more on instruction-set architecture compatibility and possible future 
outcomes.)

The reason that industry is ill prepared is that an enormous amount 
of existing software does not use thread-level or data-level parallelism—
software did not need it to obtain performance improvements, because 
users simply needed to buy new hardware to get performance improve-
ments. However, only programs that have these types of parallelism will 
experience improved performance in the chip multiprocessor era. Fur-

BOX 2.5
Throughput

There is another useful performance metric besides time to solution, and 
the Internet has pushed it to center stage: system throughput. Consider a Web 
server, such as one of the machines at search giant Google. Those machines run 
continuously, and their work is never finished, in that new requests for service 
continue to arrive. For any given request for service, the user who made the 
request may care about time to solution, but the overall performance metric for 
the server is its throughput, which can be thought of informally as the number 
of jobs that the server can satisfy simultaneously. Throughput will determine 
the number and configuration of servers and hence the overall installation cost 
of the server “farm.”

Before multicore chips, the computer industry’s efforts were aimed primarily 
at decreasing the time to solution of a system. When a given workload required 
the sequential execution of several million operations, a faster clock or a more 
capable microarchitecture would satisfy the requirement. But compilers are not 
generally capable of targeting multiple processors in pursuit of a single time-to-
solution target; they know how to target one processor. Multicore chips there-
fore tend to be used as throughput enhancers. Each available CPU core can pop 
the next runnable process off the ready list, thus increasing the throughput of 
the system by running multiple processes concurrently. But that type of concur-
rency does not automatically improve the time to solution of any given process.

Modern multithreading programming environments and their routine suc-
cessful use in server applications hold out the promise that applying multiple 
threads to a single application may yet improve time to solution for multicore 
platforms. We do not yet know to what extent the industry’s server multithread-
ing successes will translate to other market segments, such as mobile or desktop 
computers. It is reasonably clear that although time-to-solution performance is 
topping out, throughput can be increased indefinitely. The as yet unanswered 
question is whether the buying public will find throughput enhancements as 
irresistible as they have historically found time-to-solution improvements.
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thermore, even for applications with thread-level and data-level parallel-
ism, it is hard to obtain improved performance with chip multiprocessor 
hardware because of communication costs and competition for shared 
resources, such as cache memory. Although expert programmers in such 
application domains as graphics, information retrieval, and databases 
have successfully exploited those types of parallelism and attained per-
formance improvements with increasing numbers of processors, these 
applications are the exception rather than the rule.

Writing software that expresses the type of parallelism that hardware 
based on chip multiprocessors will be able to improve is the main obstacle 
because it requires new software-engineering processes and tools. The pro-
cesses and tools include training programmers to solve their problems 
with “parallel computational thinking,” new programming languages 
that ease the expression of parallelism, and a new software stack that can 
exploit and map the parallelism to hardware that is evolving. Indeed, the 
outlook for overcoming this obstacle and the ability of academics and 
industry to do it are primary subjects of this report. 

THE ECONOMICS OF COMPUTER PERFORMANCE 

There should be little doubt that computers have become an indis-
pensable tool in a broad array of businesses, industries, research endeav-
ors, and educational institutions. They have enabled profound improve-
ment in automation, data analysis, communication, entertainment, and 
personal productivity. In return, those advances have created a virtu-
ous economic cycle in the development of new technologies and more 
advanced computing systems. To understand the sustainability of con-
tinuing improvements in computer performance, it is important first to 
understand the health of this cycle, which is a critical economic underpin-
ning of the computer industry. 

From a purely technological standpoint, the engineering community 
has proved to be remarkably innovative in finding ways to continue to 
reduce microelectronic feature sizes. First, of course, industry has inte-
grated more and more transistors into the chips that make up the com-
puter systems. Fortunate side effects are improvements in speed and 
power efficiency of the individual transistors. Computer architects have 
learned to make use of the increasing numbers and improved characteris-
tics of the transistors to design continually higher-performance computer 
systems. The demand for the increasingly powerful computer systems 
has generated sufficient revenue to fuel the development of the next 
round of technology while providing profits for the companies leading 
the charge. Those relationships form the basis of the virtuous economic 
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and technology-advancement cycles that have been key underlying driv-
ers in the computer-systems industry over the last 30 years. 

There are many important applications of semiconductor technol-
ogy beyond the desire to build faster and faster high-end computer sys-
tems. In particular, the electronics industry has leveraged the advances 

BOX 2.6
Instruction-Set Architecture: Compatibility

This history of computing hardware has been dominated by a few franchises. 
IBM first noticed the trend of increasing performance in the 1960s and took ad-
vantage of it with the System/360 architecture. That instruction-set architecture 
became so successful that it motivated many other companies to make com-
puter systems that would run the same software codes as the IBM System/360 
machines; that is, they were building instruction-set-compatible computers. The 
value of that approach is clearest from the end user’s perspective—compatible 
systems worked as expected “right out of the box,” with no recompilation, no 
alterations to source code, and no tracking down of software bugs that may 
have been exposed by the process of migrating the code to a new architecture 
and toolset.

With the rise of personal computing in the 1980s, compatibility has come 
to mean the degree of compliance with the Intel architecture (also known as 
IA-32 or x86). Intel and other semiconductor companies, such as AMD, have 
managed to find ways to remain compatible with code for earlier generations 
of x86 processors. That compatibility comes at a price. For example, the floating-
point registers in the x86 architecture are organized as a stack, not as a randomly 
accessible register set, as all integer registers are. In the 1980s, stacking the 
floating-point registers may have seemed like a good idea that would benefit 
compiler writers; but in 2008, that stack is a hindrance to performance, and x86-
compatible chips therefore expend many transistors to give the architecturally 
required appearance of a stacked floating-point register set—only to spend 
more transistors “under the hood” to undo the stack so that modern perfor-
mance techniques can be applied. IA-32’s instruction-set encoding and its seg-
mented addressing scheme are other examples of old baggage that constitute 
a tax on every new x86 chip.

There was a time in the industry when much architecture research was ex-
pended on the notion that because every new compatible generation of chips 
must carry the aggregated baggage of its past and add ideas to the architecture 
to keep it current, surely the architecture would eventually fail of its own ac-
cord, a victim of its own success. But that has not happened. The baggage is 
there, but the magic of Moore’s law is that so many additional transistors are 
made available in each new generation, that there have always been enough to 
reimplement the baggage and to incorporate enough innovation to stay com-
petitive. Over time, such non-x86-compatible but worthy competitors as DEC’s 
Alpha, SGI’s MIPS, Sun’s SPARC, and the Motorola/IBM PowerPC architectures 
either have found a niche in market segments, such as cell phones or other 
embedded products, or have disappeared.
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to create a wide variety of new form-factor devices (notebook computers, 
smart phones, and GPS receivers, to name just a few). Although each of 
those devices tends to have more substantial constraints (size, power, and 
cost) than traditional computer systems, they often embody the computa-
tional and networking capabilities of previous generations of higher-end 

The strength of the x86 architecture was most dramatically demonstrated 
when Intel, the original and major supplier of x86 processors, decided to in-
troduce a new, non-x86 architecture during the transition from 32-bit to 64-bit 
addressing in the 1990s. Around the same time, however, AMD created a proces-
sor with 64-bit addressing compatible with the x86 architecture, and customers, 
again driven by the existence of the large software base, preferred the 64-bit x86 
processor from AMD over the new IA-64 processor from Intel. In the end, Intel 
also developed a 64-bit x86-compatible processor that is now far outselling its 
IA-64 (Itanium) processor. 

With the rise of the cell phone and other portable media and computing 
appliances, yet another dominant architectural approach has emerged: the 
ARM architecture. The rapidly growing software base for portable applications 
running on ARM processors has made the compatible series of processors 
licensed by ARM the dominant processors for embedded and portable applica-
tions. As seen in the dominance of the System/360 architecture for mainframe 
computers, x86 for personal computers and networked servers, and the ARM 
architecture for portable appliances, there will be an opportunity for a new 
architecture or architectures as the industry moves to multicore, parallel com-
puting systems. Initial moves to chip-multiprocessor systems are being made 
with existing architectures based primarily on the x86. The computing industry 
has accumulated a lot of history on this subject, and it appears safe to say that 
the era in which compatibility is an absolute requirement will probably end not 
because an incompatible but compellingly faster competitor has appeared but 
only when one of the following conditions takes hold:

•	 �Software translation (automatic conversion from code compiled for one 
architecture to be suitable for running on another) becomes ubiquitous 
and so successful that strict hardware compatibility is no longer neces-
sary for the user to reap the historical benefits.

•	 �Multicore performance has “topped out” to the point where most buyers 
no longer perceive enough benefit to justify buying a new machine to 
replace an existing, still-working one.

•	 �The fundamental hardware-software business changes so substantially 
that the whole idea of compatibility is no longer relevant. Interpreted 
and dynamically compiled languages—such as Java, PHP, and JavaScript 
(“write once run anywhere”)—are harbingers of this new era. Although 
their performance overhead is sometimes enough for the performance 
advantages of compiled code to outweigh programmer productivity, Ja-
vaScript and PHP are fast becoming the languages of choice on the client 
side and server side, respectively, for Web applications.
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computer systems. In light of the capabilities of the smaller form-factor 
devices, they will probably play an important role in unleashing the 
aggregate performance potential of larger-scale networked systems in 
the future. Those additional market opportunities have strong economic 
underpinnings of their own, and they have clearly reaped benefits from 
deploying technology advances driven into place by the computer-sys-
tems industry. In many ways, the incredible utility of computing not only 
has provided direct improvement in productivity in many industries but 
also has set the stage for amazing growth in a wide array of codependent 
products and industries. 

In recent years, however, we have seen some potentially troublesome 
changes in the traditional return on investment embedded in this virtuous 
cycle. As we approach more of the fundamental physical limits of tech-
nology, we continue to see dramatic increases in the costs associated with 
technology development and in the capital required to build fabrication 
facilities to the point where only a few companies have the wherewithal 
even to consider building these facilities. At the same time, although we 
can pack more and more transistors into a given area of silicon, we are 
seeing diminishing improvements in transistor performance and power 
efficiency. As a result, computer architects can no longer rely on those 
sorts of improvements as means of building better computer systems and 
now must rely much more exclusively on making use of the increased 
transistor-integration capabilities. 

Our progress in identifying and meeting the broader value proposi-
tions has been somewhat mixed. On the one hand, multiple processor 
cores and other system-level features are being integrated into monolithic 
pieces of silicon. On the other hand, to realize the benefits of the multi-
processor machines, the software that runs on them must be conceived 
and written in a different way from what most programmers are accus-
tomed to. From an end-user perspective, the hardware and the software 
must combine seamlessly to offer increased value. It is increasingly clear 
that the computer-systems industry needs to address those software and 
programmability concerns or risk the ability to offer the next round of 
compelling customer value. Without performance incentives to buy the 
next generation of hardware, the economic virtuous cycle is likely to break 
down, and this would have widespread negative consequences for many 
industries.

In summary, the sustained viability of the computer-systems indus-
try is heavily influenced by an underlying virtuous cycle that connects 
continuing customer perception of value, financial investments, and new 
products getting to market quickly. Although one of the primary indica-
tors of value has traditionally been the ever-increasing performance of 
each individual compute node, the next round of technology improve-
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ments on the horizon will not automatically enhance that value. As a 
result, many computer systems under development are betting on the 
ability to exploit multiple processors and alternative forms of parallel-
ism in place of the traditional increases in the performance of individual 
computing nodes. To make good on that bet, there need to be substantial 
breakthroughs in the software-engineering processes that enable the new 
types of computer systems. Moreover, attention will probably be focused 
on high-level performance issues in large systems at the expense of time 
to market and the efficiency of the virtuous cycle. 
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Power Is Now Limiting Growth 
in Computing Performance

The previous chapters define computer performance and discuss 
why its continued growth is critical for the U.S. economy. This 
chapter explores the relationship between computer performance 

and power consumption. The limitations imposed by power consumption 
are responsible for the present movement toward parallel computation. 
This chapter argues that such limitations will constrain the computation 
performance of even parallel computing systems unless computer design-
ers take fundamentally different approaches. 

The laws of thermodynamics are evident to anyone who has ever 
used a laptop computer on his or her lap: the computer becomes hot. 
When you run a marathon, your body is converting an internal supply 
of energy formed from the food you eat into two outputs: mechanical 
forces produced by your body’s muscles and heat. When you drive your 
car, the engine converts the energy stored in the gasoline into the kinetic 
energy of the wheels and vehicle motion and heat. If you put your hand 
on an illuminated light bulb, you discover that the bulb is not only radiat-
ing the desired light but also generating heat. Heat is the unwanted, but 
inevitable, side effect of using energy to accomplish any physical task—it 
is not possible to convert all the input energy perfectly into the desired 
results without wasting some energy as heat. 	

A vendor who describes a “powerful computer” is trying to character-
ize the machine as fast, not thermally hot. In this report, the committee 
uses power to refer to the use of electric energy and performance to mean 
computational capability. When we refer to power in the context of a 
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computer system, we are talking about energy flows: the rate at which 
energy must be provided to the computer system from a battery or wall 
outlet, which is the same as the rate at which that energy, now converted 
to heat, must be extracted from the system. The temperature of the chip 
or system rises above the ambient temperature and causes heat energy to 
flow into the environment. To limit the system’s temperature rise, heat 
must be extracted efficiently. (Transferring heat from the computer system 
to the environment is the task of the cooling subsystem in a computer.) 
Thus, referring to a chip’s power requirements is equivalent to talking 
about power consumed and dissipated. 

When we talk about scaling computing performance, we implicitly 
mean to increase the computing performance that we can buy for each 
dollar we spend. If we cannot scale down the energy per function as fast 
as we scale up the performance (functions per second), the power (energy 
per second) consumed by the system will rise, and the increase in power 
consumption will increase the cost of the system. More expensive hard-
ware will be needed to supply the extra power and then remove the heat 
that it generates. The cost of managing the power in and out of the system 
will rise to dominate the cost of the hardware.

Historically, technology scaling has done a good job of scaling down 
energy cost per function as the total cost per function dropped, and so 
the overall power needs of systems were relatively constant as perfor-
mance (functions per second) dramatically increased. Recently, the cost 
per function has been dropping faster than the power per function, which 
means that the overall power of constant-cost chips has been growing. 
The power problem is getting worse because of the recent difficulty in 
continuing to scale down power-supply voltages, as is described later in 
this chapter. 

Our ability to supply power and cool chips is not improving rapidly, 
so for many computers the performance per dollar is now limited by 
power issues. In addition, computers are increasingly available in a vari-
ety of form-factors and many, such as cell phones, have strict power limits 
because of user constraints. People do not want to hold hot cell phones, 
and so the total power budget needs to be under a few watts when the 
phone is active. Designers today must therefore find the best performance 
that can be achieved within a specified power envelope. 	

To assist in understanding these issues, this chapter reviews inte-
grated circuit (IC) technology scaling. It assumes general knowledge of 
electric circuits, and some readers may choose to review the findings 
listed here and then move directly to Chapter 4. The basic conclusions of 
this chapter are as follows:
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·	 Power consumption has become the limiting constraint on future 
growth in single-processor performance.

·	 Power limitations on individual processors have resulted in chips 
that have multiple lower-power processors that, in some applica-
tions, yield higher aggregate performance than chips with single 
power-limited processors.

·	 Even as the computing industry successfully shifts to multiple, 
simpler, and lower-power processor cores per chip, it will again 
face performance limits within a few years because of aggregate, 
full-chip power limitations. 

·	 Like complementary metal oxide semiconductor (CMOS) tran-
sistors, many of the electronic devices being developed today as 
potential replacements for CMOS transistors are based on regu-
lating the flow of electrons over a thermodynamic barrier and will 
face their own power limits. 

·	 A promising approach to enabling more power-efficient compu-
tation is to design application-specific or algorithm-specific com-
putational units. For that approach to succeed, new chip design 
and verification methods (such as advanced electronic-design 
automation tools) will need to be developed to reduce the time 
and cost of IC design, and new IC fabrication methods will be 
needed to reduced the one-time mask costs. 

·	 The present move to chip multiprocessors is a step in the direction 
of using parallelism to sustain growth in computing performance. 
However, this or any other hardware architecture can succeed 
only if appropriate software can be developed to exploit the par-
allelism in the hardware effectively. That software challenge is the 
subject of Chapter 4. 

For intrepid readers prepared to continue with this chapter, the com-
mittee starts by explaining how classic scaling enabled the creation of 
cheaper, faster, and lower-power circuits; in essence, scaling is responsible 
for Moore’s law. The chapter also discusses why modern scaling produces 
smaller power gains than before. With that background in technology scal-
ing, the chapter then explains how computer designers have used improv-
ing technology to create faster computers. The discussion highlights why 
processor performance grew faster than power efficiency and why the 
problem is more critical today. The next sections explain the move to 
chips that have multiple processors and clarify both the power-efficiency 
advantage of parallel computing and the limitations of this approach. The 
chapter concludes by mentioning some alternative technologies to assess 
the potential advantages and the practicality of these approaches. Alter-
natives to general-purpose processors are examined as a way to address 
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power limitations. In short, although incremental advances in computing 
performance will continue, overcoming the power constraint is difficult or 
potentially impossible and will require radical rethinking of computation 
and of the logic gates used to build computing systems.

BASIC TECHNOLOGY SCALING

Although this report focuses on computers based on IC processors, it 
is useful to remember that computers have historically used various tech-
nologies. The earliest electric computers were built in the 1940s and used 
mechanical relays.1,2 Vacuum tubes enabled faster electronic computers. 
By the 1960s, the technology for building computers changed again, to 
transistors that were smaller and had lower cost, lower power, and greater 
reliability. Within a decade, computers migrated to ICs instead of discrete 
transistors and were able to scale up performance as the technology scaled 
down the size of transistors in the ICs. Each technology change, from 
relays to vacuum tubes to transistors to ICs, decreased the cost, increased 
the performance of each function, and decreased the energy per function. 
Those three factors enabled designers to continue to build more capable 
computers for the same cost. 

Early IC computers were built with bipolar transistors3 in their ICs, 
which offered high performance but used relatively high power (com-
pared with other IC options). By the late 1970s, low-end computers used 
NMOS4 technology, which offered greater density and thus lower cost per 
function but also lower-speed gates than the bipolar alternative. As scal-
ing continued, the cost per function was dropping rapidly, but the energy 
needs of each gate were not dropping as rapidly, so the power-dissipation 

1 Raúl Rojas, 1997, Konrad Zuse’s legacy: The architecture of the Z1 and Z3, IEEE Annals 
of the History of Computing 19(2): 5-19.

2 IBM, 2010, Feeds, speeds and specifications, IBM Archives, website, available online at 
http://www-03.ibm.com/ibm/history/exhibits/markI/markI_feeds.html. 

3 Silicon ICs use one of two basic structures for building switches and amplifiers. Both 
transistor structures modify the silicon by adding impurities to it that increase the concen-
tration of electric carriers—electrons for N regions and holes for P regions—and create three 
regions: two Ns separated by a P or two Ps separated by an N. That the electrons are blocked 
by holes (or vice versa) means that there is little current flow in all these structures. The first 
ICs used NPN bipolar transistors, in which the layers are formed vertically in the material 
and the current flow is a bulk property that requires electrons to flow into the P region (the 
base) and holes to flow into the top N region (the emitter).

4 NMOS transistors are lateral devices that work by having a “gate” terminal that controls 
the surface current flow between the “source” and “drain” contacts. The source-drain ter-
minals are doped N and supply the electrons that flow through a channel; hence the name 
NMOS. Doping refers to introducing impurities to affect the electrical properties of the 
semiconductor. PMOS transistors make the source and drain material P, so holes (electron 
deficiencies) flow across the channels.
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requirements of the chips were growing. By the middle 1980s, most pro-
cessor designers moved from bipolar and NMOS to CMOS5 technology. 
CMOS gates were slower than those of NMOS or bipolar circuits but dis-
sipated much less energy, as described in the section below. Using CMOS 
technology reduced the energy per function by over an order of mag-
nitude and scaled well. The remainder of this chapter describes CMOS 
technology, its properties, its limitations, and how it affects the potential 
for growth in computing performance. 

CLASSIC CMOS SCALING

Computer-chip designers have used the scaling of feature sizes (that 
is, the phenomenon wherein the same functionality requires less space on 
a new chip) to build more capable, more complex devices, but the result-
ing chips must still operate within the power constraints of the system. 
Early chips used circuit forms (bipolar or NMOS circuits) that dissipated 
power all the time, whether the gate6 was computing a new value or just 
holding the last value. Even though scaling allowed a decrease in the 
power needed per gate, the number of gates on a chip was increasing 
faster than the power requirements were falling; by the early to middle 
1980s, chip power was becoming a design challenge. Advanced chips 
were dissipating many watts;7 one chip, the HP Focus processor, for exam-
ple, was dissipating over 7 W, which at the time was a very large number.8

Fortunately, there was a circuit solution to the problem. It became 
possible to build a type of gate that dissipated power only when the out-
put value changed. If the inputs were stable, the circuit would dissipate 
practically no power. Furthermore, the gate dissipated power only as long 
as it took to get the output to transition to its new value and then returned 
to a zero-power state. During the transition, the gate’s power requirement 
was comparable with those of the previous types of gates, but because 
the transition lasts only a short time, even in a very active machine a gate 

5 The C in CMOS stands for complementary. CMOS uses both NMOS and PMOS transistors.
6 A logic gate is a fundamental building block of a system. Gates typically have two to four 

inputs and produce one input. These circuits are called logic gates because they compute 
simple functions used in logic. For example, an AND gate takes two inputs (either 1s or 0s) 
and returns 1 if both are 1s and 0 if either is 0. A NOT gate has only one input and returns 
1 if the input is 0 and 0 if the input is 1. 

7 Robert M. Supnick, 1984, MicroVAX 32, a 32 bit microprocessor, IEEE Journal of Solid 
State Circuits 19(5): 675-681, available online at http://ieeexplore.ieee.org/stamp/stamp.js
p?arnumber=1052207&isnumber=22598.

8 Joseph W. Beyers, Louis J. Dohse, Jospeh P. Fucetola, Richard L. Kochis, Cliffird G. Lob, 
Gary L. Taylor, and E.R. Zeller, 1981, A 32-bit VLSI CPU chip, IEEE Journal of Solid-State 
Circuits 16(5): 537-542, available online at http://ieeexplore.ieee.org/stamp/stamp.jsp?ar 
number=1051634&isnumber=22579. 
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would be in transition around 1 percent of the time. Thus, moving to the 
new circuit style decreased the power consumed by a computation by a 
factor of over 30.9 The new circuit style was called complementary MOS, 
or CMOS.

A further advantage of CMOS gates was that their performance and 
power were completely determined by the MOS transistor properties. 
In a classic 1974 paper, reprinted in Appendix D, Robert Dennard et 
al. showed that the MOS transistor has a set of very convenient scaling 
properties.10 The scaling properties are shown in Table 3.1, taken from that 
paper. If all the voltages in a MOS device are scaled down with the physi-
cal dimensions, the operation of the device scales in a particularly favor-
able way. The gates clearly become smaller because linear dimensions are 
scaled. That scaling also causes gates to become faster with lower energy 
per transition. If all dimensions and voltages are scaled by the scaling fac-
tor k (k has typically been 1.4), after scaling the gates become (1/k)2 their 
previous size, and k2 more gates can be placed on a chip of roughly the 
same size and cost as before. The delay of the gate also decreases by 1/k, 
and, most important, the energy dissipated each time the gate switches 
decreases by (1/k)3. To understand why the energy drops so rapidly, note 
that the energy that the gate dissipates is proportional to the energy that 
is stored at the output of the gate. That energy is proportional to a quan-

9 The old style dissipated power only half the time; this is why the improvement was by 
a factor of roughly 30.

10 Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien. Yu, V. Leo Rideout, Ernest Bassous, 
and Andre R. LeBlanc, 1974, Design of ion-implanted MOSFETS with very small physical 
dimensions, IEEE Journal of Solid State Circuits 9(5):256–268. 

TABLE 3.1 Scaling Results for Circuit Performance 

Device or Circuit Parameter Scaling Factor

Device dimension tox, L, W 1/k
Doping concentration Na k
Voltage V 1/k
Current I 1/k
Capacitance eA/t 1/k
Delay time per circuit VC/I 1/k
Power dissipation per circuit VI 1/k 2

Power density VI/A 1

SOURCE: Reprinted from Robert H. Dennard, Fritz H. Gaensslen, 
Hwa-Nien. Yu, V. Leo Rideout, Ernest Bassous, and Andre R. LeBlanc, 
1974, Design of ion-implanted MOSFETS with very small physical 
dimensions, IEEE Journal of Solid State Circuits 9(5): 256-268.
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tity called capacitance11 and the square of the supply voltage. The load 
capacitance of the wiring decreases by 1/k because the smaller gates make 
all the wires shorter and capacitance is proportional to length. Therefore, 
the power requirements per unit of space on the chip (mm2), or energy 
per second per mm2, remain constant: 

		  Power 	 = (number of gates)(CLoad/gate)(Clock Rate)(Vsupply
2) 

		  Power density = Ng Cload Fclk Vdd
2 

			   Ng	 = CMOS gates per unit area
			   Cload	 = capacitive load per CMOS gate
			   Fclk	 = clock frequency
			   Vdd	 = supply voltage
		  Power density = ( k2 )( 1/k )( k )(1/k)2  = 1

That the power density (power requirements per unit space on the 
chip, even when each unit space contains many, many more gates) can 
remain constant across generations of CMOS scaling has been a critical 
property underlying progress in microprocessors and in ICs in general. In 
every technology generation, ICs can double in complexity and increase 
in clock frequency while consuming the same power and not increasing 
in cost. 	

Given that description of classic CMOS scaling, one would expect 
the power of processors to have remained constant since the CMOS tran-
sition, but this has not been the case. During the late 1980s and early 
1990s, supply voltages were stuck at 5 V for system reasons. So power 
density would have been expected to increase as technology scaled from 
2 mm to 0.5 mm. However, until recently supply voltage has scaled with 
technology, but power densities continued to increase. The cause of the 
discrepancy is explained in the next section. Note that Figure 3.1 shows no 
microprocessors above about 130 W; this is because 130 W is the physical 
limit for air cooling, and even approaching 130 W requires massive heat 
sinks and local fans.

11 Capacitance is a measure of how much electric charge is needed to increase the voltage 
between two points and is also the proportionality constant between energy stored on a wire 
and its voltage. Larger capacitors require more charge (and hence more current) to reach 
a voltage than a smaller capacitor. Physically larger capacitors tend to have larger capaci-
tance. Because all wires have at least some parasitic capacitance, even just signaling across 
the internal wires of a chip dissipates some power. Worse, to minimize the time wasted in 
charging or discharging, the transistors that drive the signal must be made physically larger, 
and this increases their capacitance load, which the prior gate must drive, and costs power 
and increases the incremental die size.
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FIGURE 3.1 Microprocessor power dissipation (watts) over time (1985-2010).

HOW CMOS-PROCESSOR PERFORMANCE IMPROVED 
EXPONENTIALLY, AND THEN SLOWED

Microprocessor performance, as measured against the SPEC2006 
benchmark12,13,14 was growing exponentially at the rate of more than 50 
percent per year (see Figure 3.2). That phenomenal single-processor per-
formance growth continued for 16 years and then slowed substantially15 
partially because of power constraints. This section briefly describes how 
those performance improvements were achieved and what contributed to 
the slowdown in improvement early in the 2000s. 

To achieve exponential performance growth, microprocessor design-
ers scaled processor-clock frequency and exploited instruction-level paral-

12 For older processors, SPEC2006 numbers were estimated from older versions of the 
SPEC benchmark by using scaling factors.

13 John L. Henning, 2006, SPEC CPU2006 benchmark descriptions, ACM SIGARCH Com-
puter Architecture News 34(4): 1-17.

14 John L. Henning, 2007, SPEC CPU suite growth: An historical perspective, ACM SI-
GARCH Computer Architecture News 35(1): 65-68. 

15 John L. Hennessy and David A. Patterson, 2006, Computer Architecture: A Quantitative 
Approach, fourth edition, San Francisco, Cal.: Morgan Kauffman, pp. 2-4.
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lelism (ILP) to increase the number of instructions per cycle.16,17,18 The power 
problem arose primarily because clock frequencies were increasing faster 
than the basic assumption in Dennard scaling (described previously). 
The assumption there is that clock frequency will increase inversely pro-
portionally to the basic gate speed. But the increases in clock frequency 
were made because of improvements in transistor speed due to CMOS-
technology scaling combined with improved circuits and architecture. The 
designs also included deeper pipelining and required less logic (fewer 
operations on gates) per pipeline stage.19 

Separating the effect of technology scaling from those of the other 
improvements requires examination of metrics that depend solely on the 
improvements in underlying CMOS technology (and not other improve-

16 Ibid. 
17 Mark Horowitz and William Dally, 2004, How scaling will change processor architecture, 

IEEE International Solid States Circuits Conference Digest of Technical Papers, San Fran-
cisco, Cal., February 15-19, 2004, pp. 132-133.

18 Vikas Agarwal, Stephen W. Keckler, and Doug Burger, 2000, Clock rate versus IPC: The 
end of the road for conventional microarchitectures, Proceedings of the 27th International 
Symposium Computer Architecture, Vancouver, British Columbia, Canada, June 12-14, 2000, 
pp. 248-259.

19 Pipelining is a technique in which the structure of a processor is partitioned into simpler, 
sequential blocks. Instructions are then executed in assembly-line fashion by the processor.
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FIGURE 3.2 Integer application performance (SPECint2006) over time (1985-2010).
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ments in circuits and architecture). (See Box 3.1 for a brief discussion of 
this separation.) Another contribution to increasing power requirements 
per chip has been the nonideal scaling of interconnecting wires between 
CMOS devices. As the complexity of computer chips increased, it was 
not sufficient simply to place two copies of the previous design on the 
new chip. To yield the needed performance improvements, new commu-

BOX 3.1 
Separating the Effects of CMOS Technology Scaling 

on Performance by Using the FO4 Metric

To separate the effect of CMOS technology scaling from other sorts of 
optimizations, processor clock-cycle time can be characterized by using the 
technology-dependent delay metric fanout-of-four delay (FO4), which is defined 
as the delay of one inverter driving four copies of an equally sized inverter.1,2 
The metric measures the clock cycle in terms of the basic gate speed and gives 
a number that is relatively technology-independent. In Dennard scaling, FO4/
cycle would be constant. As it turns out, clock-cycle time decreased from 60-90 
FO4 at the end of the 1980s to 12-25 in 2003-2004. The increase in frequency 
caused power to increase and, combined with growing die size, accounted for 
most of the power growth until the early 2000s.

That fast growth in clock rate has stopped, and in the most recent machines 
the number of FO4 in a clock cycle has begun to increase. Squeezing cycle time 
further does not result in substantial performance improvements, but it does 
increase power dissipation, complexity, and cost of design.3,4 As a result, clock 
frequency is not increasing as fast as before (see Figure 3.3). The decrease in 
the rate of growth in of clock frequency is also forecast in the 2009 ITRS semi-
conductor roadmap,5 which shows the clock rate for the highest-performance 
single processors no more than doubling each decade over the foreseeable 
future.

1 David Harris, Ron Ho, Gu-Yeon Wei, and Mark Horowitz, The fanout-of-4 inverter delay 
metric, Unpublished manuscript, May 29, 2009, available online at http://www-vlsi.stanford.
edu/papers/dh_vlsi_97.pdf.

2 David Harris and Mark Horowitz, 1997, Skew-tolerant Domino circuits, IEEE Journal of 
Solid-State Circuits 32(11): 1702-1711.

3 Mark Horowitz and William Dally, 2004, How scaling will change processor architecture, 
IEEE International Solid States Circuits Conference Digest of Technical Papers, San Francisco, 
Cal., February 15-19, 2004, pp. 132-133.

4Vikas Agarwal, Stephen W. Keckler, and Doug Burger, 2000, Clock rate versus IPC: The 
end of the road for conventional microarchitectures. Proceedings of the 27th International Sym-
posium on Computer Architecture, Vancouver, British Columbia, Canada, June 12-14, 2000, 
pp. 248-259.

5See http://www.itrs.net/Links/2009ITRS/Home2009.htm.

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980


90	 THE FUTURE OF COMPUTING PERFORMANCE

nication paths across the entire machine were needed—interconnections 
that did not exist in the previous generation. To provide the increased 
interconnection, it was necessary to increase the number of levels of 
metal interconnection available on a chip, and this increased the total 
load capacitance faster than assumed in Dennard scaling. Another fac-
tor that has led to increases in load capacitance is the slight scaling up 
of wire capacitance per length. That has been due to increasing side-to-
side capacitance because practical considerations limited the amount of 
vertical scaling possible in wires. Technologists have attacked both those 
issues by creating new insulating materials that had lower capacitance 
per length (known as low K dielectrics); this has helped to alleviate the 
problem, but it continues to be a factor in shrinking technologies. 

One reason that increasing clock rate was pushed so hard in the 1990s, 
apart from competitive considerations in the chip market, was that find-
ing parallelism in an application constructed from a sequential stream of 
instructions (ILP) was difficult, required large hardware structures, and 
was increasingly inefficient. Doubling the hardware (number of transistors 
available) generated only about a 50 percent increase in performance—a 
relationship that at Intel was referred to as Pollack’s rule.20 To continue to 
scale performance required dramatic increases in clock frequency, which 
drove processor power requirements. By the early 2000s, processors had 
attained power dissipation levels that were becoming difficult to handle 
cheaply, so processor power started to level out. Consequently, single-
processor performance improvements began to slow. The upshot is a core 
finding and driver of the present report (see Figure 3.3), namely,

Finding: After many decades of dramatic exponential growth, single-
processor performance is increasing at a much lower rate, and this situ-
ation is not expected to improve in the foreseeable future.

HOW CHIP MULTIPROCESSORS ALLOW SOME 
CONTINUED PERFORMANCE-SCALING

One way around the performance-scaling dilemma described in the 
previous section is to construct computing systems that have multiple, 
explicitly parallel processors. For parallel applications, that arrangement 
should get around Pollack’s rule; doubling the area should double the 

20 Patrick P. Gelsinger, 2001, Microprocessors for the new millennium: Challenges, op-
portunities, and new frontiers, IEEE International Solid-State Circuits Conference Digest 
of Technical Papers, San Francisco, Cal., February 5-7, 2001, pp. 22-25. Available online at 
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=912412&isnumber=19686. 
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expected performance. One might think that it should therefore be pos-
sible to continue to scale performance by doubling the number of proces-
sor cores. And, in fact, since the middle 1990s, some researchers have 
argued that chip multiprocessors (CMPs) can exploit capabilities of CMOS 
technology more effectively than single-processor chips.21 However, dur-
ing the 1990s, the performance of single processors continued to scale at 
the rate of more than 50 percent per year, and power dissipation was still 
not a limiting factor, so those efforts did not receive wide attention. As 
single-processor performance scaling slowed down and the air-cooling 
power-dissipation limit became a major design constraint, researchers and 
industry shifted toward CMPs or multicore microprocessors.22

21 Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang, 
1996, The case for a single-chip multiprocessor, Proceedings of 7th International Conference 
on Architectural Support for Programming Languages and Operating Systems, Cambridge, 
Mass., October 1-5, 1996, pp. 2-11. 

22 Listed here are some of the references that document, describe, and analyze this shift: 
Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, 
Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, 
Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal, 2004, Evaluation 
of the raw microprocessor: An exposed-wire-delay architecture for ILP and streams, Pro-
ceedings of the 31st Annual International Symposium on Computer Architecture, Munich, 
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FIGURE 3.3 Microprocessor-clock frequency (MHz) over time (1985-2010).
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The key observation motivating a CMP design is that to increase 
performance when the overall design is power-limited, each instruction 
needs to be executed with less energy. The power consumed is the energy 
per instruction times the performance (instructions per second). Examina-
tion of Intel microprocessor-design data from the i486 to the Pentium 4, 
for example, showed that power dissipation scales as performance raised 
to the 1.73 power after technology improvements are factored out. If the 
energy per instruction were constant, the relationship should be linear. 
Thus, the Intel Pentium 4 is about 6 times faster than the i486 in the same 

Germany, June 19-23, 2004, pp. 2-13; Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval 
J. Kapasi, and Abhishek Das, 2004, Evaluating the imagine stream architecture, Proceedings 
of the 31st Annual International Symposium on Computer Architecture, Munich, Germany, 
June 19-23, 2004, pp. 14-25; Brucek Khailany, Ted Williams, Jim Lin, Eileen Peters Long, 
Mark Rygh, Deforest W. Tovey, and William Dally, 2008, A programmable 512 GOPS stream 
processor for signal, image, and video processing, IEEE Journal of Solid-State Circuits 
43(1): 202-213; Christoforos Kozyrakis and David Patterson, 2002, Vector vs superscalar and 
VLIW architectures for embedded multimedia benchmarks, Proceedings of the 35th Annual 
ACM/IEEE International Symposium on Microarchitecture, Istanbul, Turkey, November 
18-22, 2002, pp. 283-293; Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, 
Andreas Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese, 
2000, Piranha: A scalable architecture based on single-chip multiprocessing, Proceedings 
of the 27th Annual International Symposium on Computer Architecture, Vancouver, Brit-
ish Columbia, Canada, June 10-14, 2000, pp. 282-293; Poonacha Kongetira, Kathirgamar 
Aingaran, and Kunle Olukotun, 2005, “Niagara: A 32-way multithreaded SPARC processor, 
IEEE Micro 25(2): 21-29; Dac C. Pham, Shigehiro Asano, Mark D. Bolliger, Michael N. Day, 
H. Peter Hofstee, Charles Johns, James A. Kahle, Atsushi Kameyama, John Keaty, Yoshio 
Masubuchi, Mack W. Riley, David Shippy, Daniel Stasiak, Masakazu Suzuoki, Michael F. 
Wang, James Warnock, Stephen Weitzel, Dieter F. Wendel, Takeshi Yamazaki, and Kazuaki 
Yazawa, 2005, The design and implementation of a first-generation CELL processor, IEEE 
International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, Cal., 
February 10, 2005, pp. 184-185; R. Kalla, B. Sinharoy, and J.M. Tendler, 2004, IBM POWER5 
chip: A dual-core multithreaded processor, IEEE Micro Magazine 24(2): 40-47; Toshinari 
Takayanagi, Jinuk Luke Shin, Bruce Petrick, Jeffrey Su, and Ana Sonia Leon, 2004, A dual-
core 64b UltraSPARC microprocessor for dense server applications, IEEE International Solid-
State Circuits Conference Digest of Technical Papers, San Francisco, Cal., February 15-19, 
2004, pp. 58-59; Nabeel Sakran, Marcelo Uffe, Moty Mehelel, Jack Dowweck, Ernest Knoll, 
and Avi Kovacks, 2007, The implementation of the 65nm dual-core 64b Merom processor, 
IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, 
Cal., February 11-15, 2007, pp. 106-107; Marc Tremblay and Shailender Chaudhry, 2008, A 
third-generation 65nm 16-core 32-thread plus 32-count-thread CMT SPARC processor, IEEE 
International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, 
Cal., February 3-7, 2008, p. 82-83; Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, 
Michael Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert 
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan, 2008, “Larrabee: A 
many-core x86 architecture for visual computing, ACM Transactions on Graphics 27(3): 
1-15; Doug Carmean, 2008, Larrabee: A many-core x86 architecture for visual computing, 
Hot Chips 20: A Symposium on High Performance Chips, Stanford, Cal., August 24-26, 2008.
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technology but consumes 23 times more power23 and spends about 4 
times more energy per instruction. That is another way of showing why 
single-processor power requirements increased because of circuit and 
architectural changes to improve performance. In achieving higher perfor-
mance, the designs’ energy efficiency was worsening: performance scaled 
because of technology scaling and growing power budgets.

CMPs provide an alternative approach: using less aggressive pro-
cessor-core design to reduce energy dissipation per instruction and at 
the same time using multiple-processor cores to scale overall chip per-
formance. That approach allows one to use the growing number of tran-
sistors per chip to scale performance while staying within the limit of 
air-cooling. It increases chip parallelism, but only a specific type of coarse-
grain program parallelism can exploit this type of parallelism.

Switching to chip multiprocessors reduces the effect of wire delays 
(the length of time it takes a signal—output from a gate—to travel along 
a given length of wire), which is growing relative to the gate delay (the 
length of time it takes to translate input to a logic gate to be transformed 
into output from that gate).24,25 Each processor in a CMP is small relative 
to the total chip area, and wires within a processor are short compared 
with the overall chip size. Interprocessor communication still requires 
long wires, but the latency of interprocessor communication is less critical 
for performance in a CMP system than is the latency between units within 
a single processor. In addition, the long wires can be pipelined and thus 
do not affect the clock-cycle time and performance of individual proces-
sors in a CMP.

Chip multiprocessors are a promising approach to scaling, but they 
face challenges as well; problems with modern scaling are described in 
the next section. Moreover, they cannot be programmed with the tech-
niques that have proved successful for single processors; to achieve the 
potential performance of CMP, new software approaches and ultimately 
parallel applications must be developed. This will be discussed in the 
next chapter. 

23 Ed Grochowski, Ronny Ronen, John Shen,and Hong Wang., 2004, Best of both latency 
and throughput, Proceedings of the IEEE International Conference on Computer Design, 
San Jose, Cal., October 11-13, 2004, pp. 236-243.

24 Mark Horowitz and William Dally, 2004, How scaling will change processor architecture, 
IEEE International Solid States Circuits Conference Digest of Technical Papers, San Fran-
cisco, Cal., February 15-19, 2004, pp. 132-133

25 Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang, 
1996, The case for a single-chip multiprocessor, Proceedings of 7th International Conference 
on Architectural Support for Programming Languages and Operating Systems, Cambridge, 
Mass., October 1-5, 1996, pp. 2-11.
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PROBLEMS IN SCALING NANOMETER DEVICES

If voltages could continue to be scaled with feature size (following 
classic Dennard scaling), CMP performance could continue to be scaled 
with technology. However, early in this decade scaling ran into some 
fundamental limits that make it impossible to continue along that path,26 
and the improvements in both performance and power achieved with 
technology scaling have slowed from their historical rates. The net result 
is that even CMPs will run into power limitations. To understand those 
issues and their ramifications, we need to revisit technology scaling and 
look at one aspect of transistor performance that we ignored before: leak-
age current. 

As described earlier, CMOS circuits have the important property 
that they dissipate energy only when a node changes value. Consider 
the simple but representative CMOS logic circuits in Figure 3.4. One type 
of CMOS device, a pMOS transistor, is connected to the power supply 
(Vsupply). When its input is low (Vgnd), it turns on, connects Vsupply to 
the output, and drives the output high to Vsupply. When the input to the 
pMOS device is high (Vsupply), it disconnects the output from Vsupply. The 
other type of CMOS device, an nMOS transistor, has the complementary 
behavior: when its input is high (Vsupply), it connects the output to Vgnd; 
when its input is low (Vgnd), it disconnects the output from Vgnd. Because 
of the construction of the CMOS logic, the pMOS and nMOS transistors 
are never driving the output at the same time. Hence, the only current 
that flows through the gate is that needed to charge or discharge the 
capacitances associated with the gate, so the energy consumed is mostly 
the energy needed to change the voltage on a capacitor with transistors, 
which is Cload multiplied by Vsupply

2. For that analysis to hold, it is impor-
tant that the off transistors not conduct any current in the off state: that 
is, they should have low leakage. 

However, the voltage scaling that the industry has been following has 
indirectly been increasing leakage current. Transistors operate by chang-
ing the height of an energy barrier to modulate the number of carriers that 
can flow across them. One might expect a fairly sharp current transition, 
so that when the barrier is higher than the energy of the carriers, there 
is no current, and when it is lowered, the carriers can “spill” over and 
flow across the transistor. The actual situation is more complex. The basic 
reason is related to thermodynamics. At any finite temperature, although 

26 Sam Naffziger reviews the Vdd limitations and describes various approaches (circuit, 
architecture, and so on) to future processor design given the voltage scaling limitations in 
the article High-performance processors in a power-limited world, Proceedings of the IEEE 
Symposium on VLSI Circuits, Honolulu, Hawaii, June 15-17, 2006, pp. 93-97, available on-
line at http://ewh.ieee.org/r5/denver/sscs/Presentations/2006_11_Naffziger_paper.pdf. 
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there is a well-defined average energy for the carriers, the energy of each 
individual carrier follows a probability distribution. The probability of 
having an energy higher than the average falls off exponentially, with a 
characteristic scale factor that is proportional to the temperature of the 
transistors measured measured in kelvins. The hotter the device, the 
wider the range of energies that the carriers can have.

That energy distribution is critical in the building of transistors. Even 
with an energy barrier that is higher than the average energy of the car-
riers, some carriers will flow over the barrier and through the transistor; 
the transistor will continue to conduct some current when we would like 
it to be off. The energy scale is kT, where k is the Boltzmann constant and 
T is the temperature in kelvins. We can convert it into voltage by divid-
ing energy by the charge on the particle, an electron in this case: q = 1.6 
× 10–19 coulombs. kT/q is around 26 mV at room temperature. Thus, the 
current through an off transistor drops exponentially with the height of 
the energy barrier, falling by slightly less than a factor of 3 for each 26-mV 
increase in the barrier height. The height of the barrier is normally called 
the threshold voltage (Vth) of the transistor, and the leakage current can 
be written as

I I e
q V V

kTds o

gs th=
( – )

,
α
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FIGURE 3.4 Representative CMOS logic circuits.
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where Io is a constant around 1 mA (microampere) per micrometer of tran-
sistor width at room temperature, Vgs is the voltage applied to the control 
gate of the transistor, and a is a number greater than 1 (generally around 
1.3) that represents how effectively the gate voltage changes the energy 
barrier. From the equation, it is easy to see that the amount of leakage cur-
rent through an off transistor (Vgs = 0) depends heavily on the transistor’s 
threshold voltage. The leakage current increases by about a factor of 10 
each time the threshold voltage drops by another 100 mV.

Historically, Vths were around 800 mV, so the residual transistor leak-
age currents were so small that they did not matter. Starting from high 
Vth values, it was possible to scale Vth, Vsupply, and L together. While leak-
age current grew exponentially with shrinking Vth, the contribution of 
subthreshold leakage to the overall power was negligible as long as Vth 
values were still relatively large. But ultimately by the 90-nm node, the 
leakage grew to a point where it started to affect overall chip power.27 At 
that point, Vth and Vsupply scaling slowed dramatically. 	

One approach to reduce leakage current is to reduce temperature, 
inasmuch as this makes the exponential slope steeper. That is possible and 
has been tried on occasion, but it runs into two problems. The first is that 
one needs to consider the power and cost of providing a low-temperature 
environment, which usually dwarf the gains provided by the system; 
this is especially true for small or middle-size systems that operate in 
an office or home environment. The second is related to testing, repair, 
thermal cycling, and reliability of the systems. For those reasons, we will 
not consider this option further in the present report. However, for suf-
ficiently large computing centers, it may prove advantageous to use liquid 
cooling or other chilling approaches where the energy costs of operating 
the semiconductor hardware in a low-temperature environment do not 
outweigh the performance gains, and hence energy savings, that are pos-
sible in such an environment. 

Vth stopped scaling because of increasing leakage currents, and Vsupply 
scaling slowed to preserve transistor speed with a constant (Vsupply – Vth). 
Once leakage becomes important, an interesting optimization between 
Vsupply and Vth is possible. Increasing Vth decreases leakage current but 
also makes the gates slower because the number of carriers that can flow 
through a transistor is roughly proportional to the decreasing (Vsupply – 
Vth). One can recover the lost speed by increasing Vsupply, but this also 
increases the power consumed to switch the gate dynamically. For a given 
gate delay, the lowest-power solution is one in which the marginal energy 
cost of increasing Vdd is exactly balanced by the marginal energy savings 

27 Edward J. Nowak, 2002, Maintaining the benefits of CMOS scaling when scaling bogs 
down, IBM Journal of Research and Development 46(2/3): 169-180.
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of increasing Vth. The balance occurs when the static leakage power is 
roughly 30 percent of the dynamic power dissipation.

This leakage-constrained scaling began at roughly the 130-nm tech-
nology node, and today both Vsupply and Vth scaling have dramatically 
slowed; this has also changed how gate energy and speed scale with tech-
nology. The energy required to switch a gate is C multiplied by Vsupply

2, 
which scales only as 1/k if Vsupply is not scaling. That means that technol-
ogy scaling reduces the power by k only if the scaled circuit is run at the 
same frequency. That is, if gate speed continued to increase, half the die 
(the size of the scaled circuit) would dissipate the same power as the 
full die in the previous generation and would operate k times, that is 
1.4 times, faster, much less than the three-fold performance increase we 
have come to expect. Clearly, that is not optimal, so many designers are 
scaling Vdd slightly to increase the energy savings. That works but lowers 
the gate speeds, so some parallelism is needed just to recover from the 
slowing single-thread performance. The poor scaling will eventually limit 
the performance of CMPs.

Combining the lessons of the last several sections of this chapter, 
the committee concluded that neither CMOS nor chip multiprocessors 
can overcome the power limits facing modern computer systems. That 
leads to another core conclusion of this report. Basic laws of physics and 
constraints on chip design mean that the growth in the performance 
of computer systems will become limited by their power and thermal 
requirements within the next decade. Optimists might hope that new 
technologies and new research could overcome that limitation and allow 
hardware to continue to drive future performance scaling akin to what 
we have seen with single-thread performance, but there are reasons for 
caution, as described in the next section. 

Finding: The growth in the performance of computing systems—even 
if they are multiple-processor parallel systems—will become limited by 
power consumption within a decade. 

ADVANCED TECHNOLOGY OPTIONS

If CMOS scaling, even in chip-multiprocessor designs, is reaching 
limits, it is natural to ask whether other technology options might get 
around the limits and eventually overtake CMOS, as CMOS did to nMOS 
and bipolar circuits in the 1980s. The answer to the question is mixed.28 It 

28 Mark Bohr, Intel senior fellow, gave a plenary talk at ISSCC 2009 on scaling in an SOC 
world in which he argues that “our challenge . . . is to recognize the coming revolutionary 
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is clear that new technologies and techniques will be created and applied 
to scaled technologies, but these major advances—such as high-k gate 
dielectrics, low-K interconnect dielectrics, and strained silicon—will prob-
ably be used to continue technology scaling in general and not create a 
disruptive change in the technology. Recent press reports make it clear, for 
example, that Intel expects to be using silicon supplemented with other 
materials in future generations of chips.29 

A recent study compared estimated gate speed and energy of transis-
tors built with exotic materials that should have very high performance.30 
Although the results were positive, the maximum improvement at the 
same power was modest, around a factor of 2 for the best technology. 
Those results should not be surprising. The fundamental problem is that 
Vth does not scale, so it is hard to scale the supply voltage. The limitation 
on Vth is set by leakage of carriers over an energy barrier, so any device 
that modulates current by changing an energy barrier should have similar limi-
tations. All the devices used in the study cited above used the same cur-
rent-control method, as do transistors made from nanotubes, nanowires, 
graphene, and so on. To get around that limitation, one needs to change 
“the game” and build devices that work by different principles. A few 
options are being pursued, but each has serious issues that would need 
to be overcome before they could become practical. 

One alternative approach is to stop using an energy barrier to con-
trol current flow and instead use quantum mechanical tunneling. That 
approach eliminates the problem with the energy tails by using carriers 
that are constrained by the energy bands in the silicon, which have fixed 
levels. Because there is no energy tail, they can have, in theory, a steep 
turnon characteristic. Many researchers are trying to create a useful device 
of this type, but there are a number of challenges. The first is to create a 
large enough current ratio in a small enough voltage range. The tunneling 
current will turn on rapidly, but its increase with voltage is not that rapid. 
Because a current ratio of around 10,000 is required, we need a device that 
can transition through this current range in a small voltage (<400 mV). 

changes and opportunities and to prepare to utilize them (Mark Bohr, 2009, The new era 
of scaling in an SOC world, IEEE International Solid-State Circuits Conference, San Fran-
cisco, Cal., February 9, 2009, available online at http://download.intel.com/technology/
architecture-silicon/ISSCC_09_plenary_paper_Bohr.pdf).

29 Intel CEO Paul Ottelini was said to have declared that silicon was in its last decade as the 
base material of the CPU (David Flynn, 2009, Intel looks beyond silicon for processors past 
2017, Apcmag.com, October 29, 2009, available online at http://apcmag.com/intel-looks-
beyond-silicon-for-processors-past-2017.htm). 

30 Donghyun Kim, Tejas Krishnamohan1, and Krishna C. Saraswat, 2008, Performance 
evaluation of 15nm gate length double-gate n-MOSFETs with high mobility channels:  III-V, 
Ge and Si, Electrochemical Society Transactions 16(11): 47-55.
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Even if one can create a device with that current ratio, another problem 
arises. The speed of the gates depends on the transistor current. So not 
only do we need the current ratio, we also need devices that can supply 
roughly the same magnitude of current as CMOS transistors provide. 
Tunnel currents are often small, so best estimates indicate that tunnel 
FETs might be much slower (less current) than in CMOS transistors. Such 
slowness will make their adoption difficult.

Another group of researchers are trying to leverage the collective 
effort of many particles together to get around the voltage limits of CMOS. 
Recall that the operating voltage is set by the thermal energy (kT) divided 
by the charge on one electron, because that is the charged particle. If the 
charged particle had a charge of 2q, the voltage requirements would be 
half what it is today. That is the approach that nerve cells use to operate 
robustly at low voltages. The proteins in the voltage-activated ion chan-
nels have a charge that allows them to operate easily at 100 mV. Although 
some groups have been trying to create paired charge carriers, most are 
looking at other types of cooperative processes. The ion channels in nerves 
go though a physical change, so many groups are trying to build logic 
from nanorelays (nanomicroelectromechanical systems, or nano MEMS). 
Because of the large number of charges on the gate electrode and the posi-
tive feedback intrinsic in electrostatic devices, it is theoretically possible 
to have very low operating voltages; indeed, operation down to a couple 
of tenths of a volt seems possible. Even as researchers work to overcome 
that hurdle, there are a number of issues that need to be addressed. The 
most important is determining the minimum operating voltage that can 
reliably overcome contact sticking. It might not take much voltage to cre-
ate a contact, but if the two surfaces that connect stick together (either 
because of molecular forces or because of microwelding from the current 
flow), larger voltages will be needed to break the contact. Devices will 
have large numbers of these structures, so the voltage must be less than 
CMOS operating voltages at similar performance. The second issue is per-
formance and reliability. This device depends on a mechanically moving 
structure, so the delay will probably be larger than that of CMOS (around 
1 nanosecond), and it will probably be an additional challenge to build 
structures that can move for billions of cycles without failing.

There is also promising research in the use of electron-spin-based 
devices (spintronics) in contrast with the charge-based devices (electron-
ics) in use today. Spin-based devices—and even pseudospin devices, such 
as the BiSFET31—have the potential to greatly reduce the power dissi-

31 Sanjay K.Banerjee, Leonard F. Register, Emanuel Tutuc, Dharmendar Reddy, and Allan 
H. MacDonald, 2009, Bilayer pseudospin field-effect transistor (BiSFET): A proposed new 
logic device, IEEE Electron Device Letters 30(2): 158-160.
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pated in performing basic logic functions. However, large fundamental 
and practical problems remain to be solved before spintronic systems 
can become practical.32 Those or other approaches (such as using the 
correlation of particles in ferro materials33) might yield a breakthrough. 
However, given the complexity of today’s chips, with billions of working 
transistors, it is likely to take at least a decade to introduce any new tech-
nology into volume manufacturing. Thus, although we should continue 
to invest in technology research, we cannot count on it to save the day. It 
is unlikely to change the situation in the next decade.

Recommendation: Invest in research and development to make com-
puter systems more power-efficient at all levels of the system, includ-
ing software, application-specific approaches, and alternative devices. 
R&D should be aimed at making logic gates more power-efficient. Such 
efforts should address alternative physical devices beyond incremental 
improvements in today’s CMOS circuits. 

APPLICATION-SPECIFIC INTEGRATED CIRCUITS

Although the shift toward chip multiprocessors will allow industry 
to continue to scale the performance of CMPs based on general-purpose 
processor cores for some time, general-purpose chip multiprocessors will 
reach their own limit. As discussed earlier, CMP designers can trade off 
single-thread performance of individual processors against lower energy 
dissipation per instruction, thus allowing more instructions by multiple 
processors while the same amount of energy is dissipated by the chip. 
However, that is possible only within some range of energy performance. 
Beyond some limit, lowering energy per instruction by processor sim-
plification can lead to overall CMP performance degradation because 
processor performance starts to decrease faster than energy per instruc-
tion. That range is likely to be a factor of about 10, that is, energy per 
instruction cannot be reduced by more than a factor of 10 compared with 
the highest-performance single-processor chip, such as the Intel Pentium 
4 or the Intel Itanium.34 

When such limits are reached, we will need to create other approaches 

32 In their article, cited in the preceding footnote, Banerjee et al. look at a promising technol-
ogy that still faces many challenges.

33 See, for instance, the research of Sayeef Salahuddin at the University of California, 
Berkeley.

34 The real gain might be even smaller because with an increase in the number of proces-
sors on the chip, more energy will be dissipated by the memory system and interconnect, or 
the performance of many parallel applications will scale less than linearly with the number 
of processors.
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to create an energy-efficient computation unit. On the basis of the histori-
cal data, the answer seems clear: we will need to create more application-
optimized processing units. It is well known that tuning the hardware and 
software toward a specific application or set of applications allows a more 
energy-efficient solution. That work started with the digital watch many 
decades ago and continues today. Figure 3.5 shows data for general-pur-
pose processors, digital-signal processors, and application-specific inte-
grated circuits (ASICs) from publications presented at the International 
Solid-State Circuits Conference. The data are somewhat dated, but all 
chips were designed for similar 0.18- to 0.25-µm CMOS technology, and 
one can see that the ASIC designs are roughly 3 orders of magnitude more 
energy-efficient than the general-purpose processors. 

The main reason for such a difference is a combination of algorithm 
and hardware tuning and the ability to reduce the use of large memory 
structures as general interconnects: instead of a value’s being stored in a 
register or memory, it is consumed by the next function unit. Doing only 
what needs to be done saves both energy and area (see Figure 3.6). 

More recently, researchers at Lawrence Berkeley National Laboratory, 
interested in building peta-scale supercomputers for kilometer-scale cli-
mate modeling, argued that designing a specialized supercomputer based 
on highly efficient customizable embedded processors can be attractive 
in terms of energy cost.35 For example, they estimated that a peta-scale 
climate supercomputer built with custom chips would consume 2.5 MW 
of electric power whereas a computer with the same level of performance 
but built with general-purpose AMD processors would require 179 MW. 

The current design trend, however, is away from building custom-
ized solutions; increasing design complexity has caused the nonrecurring 
engineering costs for designing these chips to grow rapidly. Typical ASIC 
design requires $20-50 million, which limits the range of market segments 
to very few with volumes high enough to justify the initial engineering 
investment. Thus, if we do need to create more application-optimized 
computing systems, we will need to create a new approach to design that 
will allow a small team to create an application-specific chip at reasonable 
cost. That leads to this chapter’s overarching recommendation. Efforts 
are needed along multiple paths to deal with the power limitations that 
modern scaling and computer-chip designs are encountering. 

35 Michael Wehner, Leonid Oliker, and John Shalf, 2008, Towards ultra-high resolution 
models of climate and weather, International Journal of High Performance Computing Ap-
plications 22(2): 149-165.
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Chip 
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Recommendation: Invest in research and development of parallel archi-
tectures driven by applications, including enhancements of chip mul-
tiprocessor systems and conventional data-parallel architectures, cost-
effective designs for application-specific architectures, and support for 
radically different approaches. 
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4

The End of Programming 
as We Know It

Future growth in computing performance will have to come from 
software parallelism that can exploit hardware parallelism. Pro-
grams will need to be expressed by dividing work into multiple 

computations that execute on separate processors and that communicate 
infrequently or, better yet, not at all. This chapter first explains how cur-
rent software reaped the benefits of Moore’s law and how much of the 
resulting software is not well suited to parallelism. It then explores the 
challenges of programming parallel systems. The committee explores 
examples of software and programming parallelism successes and possi-
bilities for leveraging these successes, as well as examples of limitations of 
parallelism and challenges to programming parallel systems. The sudden 
shift from single-core to multiple-core processor chips requires a dramatic 
change in programming, but software developers are also challenged by 
the continuously widening gap between memory system and processor 
performance. That gap is often referred to as the “memory wall,” but it 
reflects a continuous rather than discrete shift in the balance between the 
costs of computational and memory operations and adds to the difficulty 
of obtaining high performance. To optimize for locality, software must be 
written to minimize both communication between processors and data 
transfers between processors and memory.
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MOORE’S BOUNTY: SOFTWARE ABSTRACTION

Moore’s bounty is a portable sequential-programming model.1 Pro-
grammers did not have to rewrite their software—software just ran faster 
on the next generation of hardware. Programmers therefore designed 
and built new software applications that executed correctly on current 
hardware but were often too compute-intensive to be useful (that is, it 
took too long to get a useful answer in many cases), anticipating the next 
generation of faster hardware. The software pressure built demand for 
next-generation hardware. The sequential-programming model evolved 
in that ecosystem as well. To build innovative, more capable sophisticated 
software, software developers turned increasingly to higher-level sequen-
tial-programming languages and higher levels of abstraction (that is, the 
reuse of libraries and component software for common tasks). Moore’s 
law helped to drive the progression in sequential-language abstractions 
because increasing processor speed hid their costs.

For example, early sequential computers were programmed in assem-
bly language. Assembly-language statements have a one-to-one mapping 
to the instructions that the computer executes. In 1957, Backus and his 
colleagues at IBM recognized that assembly-language programming was 
arduous, and they introduced the first implementation of a high-level 
sequential scientific computing language, called Fortran, for the IBM 704 
computer.2 Instead of writing assembly language, programmers wrote 
in Fortran, and then a compiler translated Fortran into the computer’s 
assembly language. The IBM team made the following claims for that 
approach: 

1.	 Programs will contain fewer errors because writing, reading, and 
understanding Fortran is easier than performing the same tasks 
in assembly language.

2.	 It will take less time to write a correct program in Fortran because 
each Fortran statement is an abstraction of many assembly 
instructions.

3.	 The performance of the program will be comparable with that of 
assembly language given good compiler technology.

1 Jim Larus makes this argument in an article in 2009, Spending Moore’s dividend, Com-
munications of the ACM 52(5): 62-69.

2 J.W. Backus, R.I. Beeber, S. Best, R. Goldberg, L.M. Haibt, H.L. Herrick, R.A. Nelson, D. 
Sayre, P.B. Sheridan, H. Stern, Ziller, R.A. Hughes, and R. Nutt, 1957, The Fortran automatic 
coding system, Proceedings of the Western Joint Computer Conference, Los Angeles, Cal., 
pp. 187-198, available online at http://archive.computerhistory.org/resources/text/For-
tran/102663113.05.01.acc.pdf. 
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The claimed benefits of high-level languages are now widely accepted. 
In fact, as computers got faster, modern programming languages added 
more and more abstractions. For example, modern languages—such as 
Java, C#, Ruby, Python, F#, PHP, and Javascript—provide such features 
as automatic memory management, object orientation, static typing, 
dynamic typing, and referential transparency, all of which ease the pro-
gramming task. They do that often at a performance cost, but companies 
chose these languages to improve the correctness and functionality of 
their software, which they valued more than performance mainly because 
the progress of Moore’s law hid the costs of abstraction. Although higher 
levels of abstraction often result in performance penalties, the initial tran-
sition away from hand-coded assembly language came with performance 
gains, in that compilers are better at managing the complexity of low-level 
code generation, such as register allocation and instruction scheduling, 
better than most programmers. 

That pattern of increases in processor performance coupling with 
increases in the use of programming-language abstractions has played 
out repeatedly. The above discussion describes the coupling for general-
purpose computing devices, and it is at various stages in other hardware 
devices, such as graphics hardware, cell phones, personal digital assis-
tants, and other embedded devices.

High-level programming languages have made it easier to create 
capable, large sophisticated sequential programs. During the height of 
the synergy between software and increasing single-processor speeds in 
1997, Nathan Myhrvold, former chief technology officer for Microsoft, 
postulated four “laws of software”:3 

1.	 Software is a gas. Software always expands to fit whatever con-
tainer it is stored in.

2.	 Software grows until it becomes limited by Moore’s law. The 
growth of software is initially rapid, like gas expanding, but is 
inevitably limited by the rate of increase in hardware speed.

3.	 Software growth makes Moore’s law possible. People buy new 
hardware because the software requires it.

4.	 Software is limited only by human ambition and expectation. 
We will always find new algorithms, new applications, and new 
users.

 

3 These laws were described in a 1997 presentation that the Association for Computing 
Machinery hosted on the next 50 years of computing (Nathan P. Myhrvold, 1997, The next 
fifty years of software, Presentation, available at http://research.microsoft.com/en-us/um/
siliconvalley/events/acm97/nmNoVid.ppt). 
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Myhrvold’s analysis explains both the expansion of existing applica-
tions and the explosive growth in innovative applications. Some of the 
code expansion can be attributed to a lack of attention to performance 
and memory use: it is often easier to leave old and inefficient code in a 
system than to optimize it and clean it up. But the growth in performance 
also enabled the addition of new features into existing software systems 
and new paradigms for computing. For example, Vincent Maraia reports 
that in 1993, the Windows NT 3.1 operating system (OS) consisted of 4-5 
million lines of code and by 2003, the Windows Server OS had 50 mil-
lion lines, 10 times as many.4 Similarly, from 2000 to 2007, the Debian 2.2 
Linux OS grew from about 59 to 283 million lines in version 4.0, about 5 
times as many.5 Those operating systems added capabilities, such as better 
reliability, without slowing down the existing features, and users experi-
enced faster operating system startup time and improvement in overall 
performance. Furthermore, the improvements described by Moore’s law 
enabled new applications in such domains as science, entertainment, busi-
ness, and communication. Thus, the key driver in the virtuous cycle of 
exploiting Moore’s law is that applications benefited from processor per-
formance improvements without those applications having to be adapted 
to changes in hardware. Programs ran faster on successive generations of 
hardware, allowing new features to be added without slowing the application 
performance. 

The problem is that much of the innovative software is sequential 
and is designed to execute on only one processor, whereas the previous 
chapters explained why all future computers will contain multiple proces-
sors. Thus, current programs will not run faster on successive generations 
of hardware.6 The shift in the hardware industry has broken the perfor-
mance-portability connection in the virtuous cycle—sequential programs 
will not benefit from increases in processor performance that stem from 
the use of multiple processors. There were and are many problems—for 
example, in search, Web applications, graphics, and scientific computing—
that require much more processing capability than a single processor pro-

4 Vincent Maraia, The Build Master: Microsoft’s Software Configuration Management Best 
Practices, Addison-Wesley Professional, 2005. 

5 Debian Web site, Wikipedia.com.http://en.wikipedia.org/wiki/Debian. 
6 Successive generations of hardware processors will not continue to increase in per-

formance as they have in the past; this may be an incentive for programmers to develop 
tools and methods to optimize and extract the most performance possible from sequential 
programs. In other words, working to eliminate the inefficiencies in software may yield im-
pressive gains given that past progress in hardware performance encouraged work on new 
functions rather than optimizing existing functions. However, optimizing deployed software 
for efficiency will ultimately reach a point of diminishing returns and is not a long-term 
alternative to moving to parallel systems for more performance.
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vides. The developers of the applications and programming systems have 
made much progress in providing appropriate abstractions (discussed in 
detail below) but not enough in that most developers and programming 
systems currently use the sequential model. Conventional sequential pro-
grams and programming systems are ill equipped to support parallel 
programming because they lack abstractions to deal with the problems 
of extracting parallelism, synchronizing computations, managing locality, 
and balancing load. In the future, however, all software must be able to 
exploit multiple processors to enter into a new virtuous cycle with succes-
sive generations of parallel hardware that expands software capabilities 
and generates new applications.7

Finding: There is no known alternative to parallel systems for sustain-
ing growth in computing performance; however, no compelling pro-
gramming paradigms for general parallel systems have yet emerged.

To develop parallel applications, future developers must invent new 
parallel algorithms and build new parallel applications. The applica-
tions will require new parallel-programming languages, abstractions, 
compilers, debuggers, execution environments, operating systems, and 
hardware virtualization systems. We refer to those tools collectively as 
a programming system. Future programming systems will need to take 
advantage of all those features to build applications whose performance 
will be able to improve on successive generations of parallel hardware 
that increase their capabilities by increasing the number of processors. In 
contrast, what we have today are conventional sequential-programming 
systems based on two abstractions that are fundamentally at odds with 
parallelism and locality. First, they tie the ordering of statements in a 
program to a serial execution order of the statements. Any form of paral-
lelism violates that model unless it is unobservable. Second, conventional 
programs are written on the assumption of a flat, uniform-cost global 
memory system. Coordinating locality (minimizing the number of expen-
sive main memory references) is at odds with the flat model of memory 
that does not distinguish between fast and slow memory (for example, 
on and off chip). Parallelism and locality are also often in conflict in that 

7 Indeed, the compiler community is bracing for the challenges ahead. On p. 62 of their 
book, Mary Hall et al. observe that “exploiting large-scale parallel hardware will be essential 
for improving an application’s performance or its capabilities in terms of execution speed 
and power consumption. The challenge for compiler research is how to enable the exploi-
tation of the power [that is, performance, not thermals or energy] of the target machine, 
including its parallelism, without undue programmer effort.” (Mary Hall, David Padua, 
and Keshav Pingali, 2009, Compiler research: The next 50 years, Communications of the 
AC 52(2): 60-67.
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locality will encourage designs that put all data close to a single processor 
to avoid expensive remote references, whereas performing computations 
in parallel requires spreading data among processors.

SOFTWARE IMPLICATIONS OF PARALLELISM

There are five main challenges to increasing performance and energy 
efficiency through parallelism: 

·	 Finding independent operations. 
·	 Communicating between operations. 
·	 Preserving locality between operations. 
·	 Synchronizing operations. 
·	 Balancing the load represented by the operations among the sys-

tem resources.

The first challenge in making an application parallel is to design a 
parallel algorithm to solve the problem at hand that provides enough 
independent operations to keep the available parallel resources busy. 
Some demanding problems have large amounts of data parallelism—that 
is, a single operation can be performed for every data element of a set, 
and the operations are independent of one another (or can be made so 
via transformations). Some problems also have moderate amounts of 
control or task parallelism in which different operations can be performed 
in parallel on different data items. In both task and data parallelism, an 
operation may comprise a sequence of instructions. For some applica-
tions, the parallelism is limited by a sequence of dependent operations, 
and performance is limited not by throughput but by the latency along 
this critical path.8 

The second challenge, communication, occurs when computations 
that execute in parallel are not entirely independent and must commu-
nicate. Some demanding problems cannot be divided into completely 
independent parallel tasks, but they can be divided into parallel tasks that 
communicate to find a solution cooperatively. For example, to search for 
a particular object in an image, one may divide the image into pieces that 
are searched by independent tasks. If the object crosses pieces, the tasks 
will need to communicate. The programming system can perform com-
munication through inputs and outputs along dependences by reading 
and writing to shared data structures or by explicitly sending messages 

8 This limit on parallelism is often called Amdahl’s law, after Gene Amdahl. For more on 
this law, see Box 2.4. 
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between parallel operations. Even in the implicit case, some data will 
need to transfer between processors to allow access to shared data. 

Locality, the third challenge, reduces the costs associated with com-
munication by placing two operations that access the same data near 
each other in space or in time. Scheduling operations nearby in space on 
the same processor avoids communication entirely, and placing them on 
nearby processors may reduce the distance that data need to travel. Sched-
uling operations nearby in time shortens the lifetime of data produced 
by one operation and consumed by another; this reduces the volume of 
live data and allows the data to be captured in small on-chip memories. 
Locality avoids the need for communication between processors, but is 
also critical for avoiding another form of communication: the movement 
of data between memory and processors.

The fourth challenge, synchronization, is also needed to provide 
cooperation between parallel computations. Some operations must be 
performed in a particular order to observe dependence. Other operations 
may be performed in an arbitrary order but must be grouped so that some 
sequences execute atomically (without interference from other sequences). 
Synchronization is used to serialize parts of an otherwise parallel execu-
tion, and there is often a tension between the performance gained from 
parallelism and the correctness ensured by synchronization. For example, 
barrier synchronization forces a set of parallel computations to wait until 
all of them reach the barrier. Locks are used to control access to shared 
data structures by allowing only one thread to hold a lock at a given time. 
Unnecessary synchronization may occur when an entire data structure is 
locked to manipulate one element or when a barrier is placed on every 
loop iteration even when the iterations are independent. 

Finally, load balancing involves distributing operations evenly among 
processors. If the load becomes unbalanced because some processors have 
more work than others or take more time to perform their work, other 
processors will be idle at barrier synchronization or when program execu-
tion ends. The difficulty of load balancing depends on the characteristics 
of the application. Load balancing is trivial if all parallel computations 
have the same cost, more difficult if they have different costs that are 
known in advance, and even more difficult if the costs are not known 
until the tasks execute. 

Locality’s Increasing Importance

Effective parallel computation is tied to coordinating computations 
and data; that is, the system must collocate computations with their data. 
Data are stored in memory. Main-memory bandwidth, access energy, and 
latency have all scaled at a lower rate than the corresponding characteris-
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tics of processor chips for many years. In short, there is an ever-widening 
gap between processor and memory performance. On-chip cache memo-
ries are used to bridge the gap between processor and memory perfor-
mance partially. However, even a cache with the best algorithm to predict 
the next operands needed by the processor does not have a success rate 
high enough to close the gap effectively. The advent of chip multiproces-
sors means that the bandwidth gap will probably continue to widen in 
that the aggregate rate of computation on a single chip will continue to 
outpace main-memory capacity and performance improvements. The gap 
between memory latency and computation is also a limitation in software 
performance, although this gap will not grow with multicore technology, 
inasmuch as clock rates are relatively constant. In addition to performance 
concerns, the movement of data between cores and between the proces-
sor and memory chips consumes a substantial fraction of a system’s total 
power budget. Hence, to keep memory from severely limiting system 
power and performance, applications must have locality, and we must 
increase the amount of locality. In other words, the mapping of data and 
computation should minimize the distance that data must travel.

To see the importance of locality in future systems, it is instructive 
to examine the relative energy per operation for contemporary systems 
and how it is expected to scale with technology. In a contemporary 40-nm 
CMOS process, performing a 64-bit floating-point multiply-add (FMA) 
operation requires that the energy of the operation, Eop, be equal to 100 pJ. 
The energy consumed in moving data over 1 mm of wire, Ew, is 200 fJ/
bit-mm, or 12.8 pJ/W-mm (for 64-bit words). Moving data off-chip takes 
energy, EP, of 2 pJ/bit (128 pJ/W) or more. Supplying the four operands 
(three input and one output) of the FMA operation from even 1 mm away 
takes 51.2 pJ—half as much energy as doing the operation itself. Sup-
plying the data globally on-chip—say, over a distance of 20 mm—takes 
about 1 nJ, an order of magnitude more energy than doing the operation. 
Moving data off-chip is comparably expensive. Thus, to avoid having the 
vast majority of all energy be spent in moving data, it is imperative that 
data be kept local.

Locality is inherently present in many algorithms, but the compu-
tation must be properly ordered to express locality. For dense matrix 
computations, ordering is usually expressed by blocking the algorithm. 
For example, consider multiplying two 10,000 × 10,000 matrices. Using 
the straightforward algorithm, it requires performing 2 × 1012 arithmetic 
operations. If we perform the operations in a random order, there is little 
locality, and 4 × 1012 memory references will be required to compute the 
result, so both arithmetic operations and data access grow with the cube 
of the matrix dimension. Even with a natural implementation based on 
three nested loops, data accesses will grow with the cube of the matrix 
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dimension, because one of the matrices will be accessed in an order that 
allows little reuse of data in the cache. However, if we decompose the 
problem into smaller matrix multiplication problems, we can capture 
locality, reusing each word fetched from memory many times. 

Suppose we have a memory capable of holding 256 kB (32 kW) 1 
mm from our floating-point unit. The local memory is large enough to 
hold three 100 × 100 submatrices, one for each input operand and one 
for the partial result. We can perform a 100 × 100 matrix multiplication 
entirely out of the local memory, performing 2 × 106 operations with only 
4 ×104 memory references—a ratio of 50 operations per reference. We can 
apply this blocking recursively. If there is aggregate on-chip memory of 
32 MB (4 MW), we can hold three 1,000 × 1,000 submatrices at this level 
of the storage hierarchy. In a seminal paper by Hong and Kung, that idea 
was proved to be optimal for matrix multiplication in the sense that this 
kind of blocked algorithm moves the minimum amount of data pos-
sible between processor and memory system.9 Other array computations, 
including convolutions and fast Fourier transformations, can be blocked 
in this manner—although with different computation-to-communication 
ratios—and there are theoretical results on the optimality of communi-
cation for several linear algebra problems for both parallel and serial 
machines. 

The recursive nature of the blocked algorithm also led to the notion 
of “cache-oblivious” algorithms, in which the recursive subdivision pro-
duces successively smaller subproblems that eventually fit into a cache or 
other fast memory layer.10 Whereas other blocked algorithms are imple-
mented to match the size of a cache, the oblivious algorithms are opti-
mized for locality without having specific constants, such as cache size, in 
their implementation. Locality optimizations for irregular codes, such as 
graph algorithms, can be much more difficult because the data structures 
are built with pointers or indexed structures that lead to random memory 
accesses. Even some of the graph algorithms have considerable locality 
that can be realized by partitioning the graph subgraphs that fit into a 
local memory and reorganizing the computations to operate on each 
subgraph with reuse before moving on to the next subgraph. There are 
many algorithms and software libraries for performing graph partition-

9 See Hong Jia-Wei and H.T. Kung, 1981, I/O complexity: The red-blue pebble game, Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, Milwaukee, 
Wis., May 11-13, 1981, pp. 326-333

10 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran, 1999, 
Cache-oblivious algorithms, Proceedings of the 40th IEEE Symposium on Foundations of 
Computer Science, New York, N.Y., October 17-19, 1999, pp. 285-297. 
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ing that minimize edge cuts for locality but with equal subgraph sizes for 
load-balancing.11

A key challenge in exploiting locality is developing abstractions for 
locality that allow a programmer to express the locality in a program 
independent of any particular target machine. One promising approach, 
used by the Sequoia programming system,12 is to present the programmer 
with an abstract memory hierarchy. The programmer views the machines 
as a tree of memories; the number of levels in the tree and the size of 
the memory at each level are unspecified. The programmer describes 
a decomposition method that subdivides the problem at one level into 
smaller problems at the next level and combines the partial solutions 
and a leaf method that solves the subproblem at the lowest level of the 
hierarchy. An autotuner then determines the number of times to apply 
the decomposition method and the appropriate data sizes at each level 
to map the program optimally onto a specific machine. The result is a 
programming approach that gives good locality with portability among 
diverse target machines.

Software Abstractions and Hardware Mechanisms Needed

Simplifying the task of parallel programming requires software 
abstractions that provide powerful mechanisms for synchronization, load 
balance, communication, and locality, as described above, while hiding 
the underlying details. Most current mechanisms for these operations are 
low-level and architecture-specific. The mechanisms must be carefully 
programmed to obtain good performance with a given parallel architec-
ture, and the resulting programs are typically not performance-portable; 
that is, they do not exhibit better performance with a similar parallel 
architecture that has more processors. Successful software abstractions are 
needed to enable programmers to express the parallelism that is inherent 
in a program and the dependences between operations and to structure 
a program to enhance locality without being bogged down in low-level 
architectural details. Which abstractions make parallel programming con-
venient and result in performance-portable programs is an open research 
question. Successful abstractions will probably involve global address 
spaces, accessible ways to describe or invoke parallel operations over 

11 For one example of a graph-partitioning library, see George Karypis and Vipin Kumar, 
1995, METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Techni-
cal report, Minneapolis, Minn.: University of Minnesota.

12 See Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez, Daniel Reiter 
Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex Aiken, William J. Dally, and Pat 
Hanrahan, 2006, Sequoia: Programming the memory hierarchy, Proceedings of the ACM/
IEEE Conference on Supercomputing, Tampa, Fla., November 11-17, 2006.
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collections of data, and constructs for atomic operations. Abstractions 
may also involve abstract machine models that capture resource costs 
and locality while hiding details of particular machines. Abstractions 
for parallelism are typically encapsulated in a programming system and 
execution model.

At the same time, reasonable performance requires efficient underly-
ing hardware mechanisms, particularly in cases that need fine-grained 
communication and synchronization. Some parallel machines require 
interactions between processors to occur by means of high-overhead 
message transfers or by passing data via shared memory locations. Such 
mechanisms are useful but can be cumbersome and restrict the granu-
larity of parallelism that can be efficiently exploited. Resolving those 
details will require research, but successful mechanisms will enable low-
overhead communication and synchronization and will facilitate migra-
tion of data and operations to balance load. There are several emerging 
directions in hardware to support parallel computations. It is too early to 
know which hardware architecture or architectures will prove most suc-
cessful, but several trends are evident:

·	 Multiple processors sharing a memory. This direction was taken 
by chip multiprocessors and was the primary approach used 
by semiconductor companies once they could not continue to 
increase their single-processor products.

·	 Multiple computers interconnected via a high-speed communica-
tion network. When very large computation facilities are needed 
for research or business, it is impractical for all the processors to 
share a memory, and a high-speed interconnect is used to tie the 
hundreds or thousands of processors together in a single system. 
Data centers use this model.

·	 A single processor containing multiple execution units. In this 
architecture, a single processor, or instruction stream, controls an 
array of similar execution units. This is sometimes termed single-
instruction stream multiple-data (SIMD) architecture.

·	 Array of specialized processors. This approach is effective for 
executing a specialized task, such as a graphic or video process-
ing algorithm. Each individual processor and its interconnections 
can be tailored and simplied for the target application.

·	 Field-programmable gate arrays (FPGAs) used in some parallel 
computing systems. FPGAs with execution units embedded in 
their fabric can yield high performance because they exploit local-
ity and program their on-chip interconnects to match the data 
flow of the application.
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That list of parallel architectures is not exhaustive, and some systems 
will use a combination of them. We expect current versions of the architec-
tures to evolve substantially to support the most promising programming 
systems, and we may see entirely new hardware architectures in support 
of not-yet-developed programming approaches to parallel computing. 

An encouraging development is that programs of research in paral-
lelism being initiated or revived in a few research universities. Some 
research efforts already under way are aimed at some of the challenges 
that this report outlines. For example, in 2008, the University of Califor-
nia, Berkeley, and the University of Illinois at Urbana–Champaign were 
awarded research grants from Microsoft and Intel to establish Universal 
Parallel Computing Research Centers. In 2009, Stanford University—with 
industrial funding from Sun, AMD, NVIDIA, and other companies—
started the Pervasive Parallelism Laboratory. Those centers at leading 
research universities are a good beginning to address the broad and 
challenging research agenda that we outline below, but they are just a 
beginning. History shows that the development of technology similar to 
that needed for parallelism often takes a decade or more. The results of 
such research are needed now, so the research is starting a decade late. 
Moreover, there is no guarantee that there is an answer to the challenges. 
If there is not a good answer, we need to know that as soon as possible 
so that we can push innovation in some other direction in a timely way.

THE CHALLENGES OF PARALLELISM

Parallelism has long been recognized as promising to achieve greater 
computing performance. Research on parallel hardware architectures 
began in earnest in the 1960s.13 Many ways of organizing computers 
have been investigated, including vector machines, SIMD machines, 
shared-memory multiprocessors, very-long-instruction-word machines, 
data-flow machines, distributed-memory machines, nonuniform-memory 
architectures, and multithreaded architectures. As described elsewhere 
in this report, single-processor performance has historically been mak-
ing it difficult exponentially for companies promoting specialized par-
allel architectures to succeed. Over the years, however, ideas that have 
originated or been refined in the parallel-computer architecture research 
community have become standard features on PC processors, such as 
having SIMD instructions, a small degree of instruction-level parallelism, 
and multiple cores on a chip. In addition, higher performance has been 
obtained by using a network of such PC or server processors both for 

13 W. J. Bouknight, Stewart A. Denenberg, David F. McIntyre, J.M. Randal, Amed H. Sameh, 
and Daniel L. Slotnick, 1972, The Illiac IV system, Proceedings of the IEEE 60(4): 369-388.
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scientific computing and to serve an aggregate workload of independent 
tasks, such as Web services. The recent graphical-processing-unit chips 
also borrow ideas from the body of work on parallel hardware. 

As noted previously, it has long been clear that one of the major 
hurdles in parallel computing is software development. Even if there 
were sufficient and appropriate software abstractions to enable parallel 
programming (Google’s MapReduce, discussed below, is an example of a 
successful approach for a particular class of problems), characteristics of 
the application under consideration can still pose challenges. To exploit 
parallelism successfully, several things are necessary: 

·	 The application under consideration must inherently have par-
allelism. Not all programs are amenable to parallelization, but 
many computationally intensive problems have high-level tasks 
that are largely independent or they are processing large datasets 
in which the operations on each individual item are mostly inde-
pendent. Scientific simulations and graphics applications, for 
example, often have substantial parallelism to exploit because 
they perform operations on large arrays of data. Web servers 
process requests for a large set of users that involve mostly inde-
pendent operations.

·	 Assuming that the application under consideration has sufficient 
parallelism, the parallelism must be identified. Either the pro-
grammer explicitly specifies the parallel tasks when developing 
the application or the system needs to infer the parallelism and 
automatically take advantage of it. If the parallelism involves 
tasks that are not entirely independent, the programmer or sys-
tem also needs to identify communication and synchronization 
between tasks.

·	 Efficiency needs to be taken into account, inasmuch as it is not 
unusual for an initial parallel implementation to run more slowly 
than its serial counterpart. Parallelism inevitably incurs overhead 
costs, which include the time to create parallelism and to com-
municate and synchronize between parallel components. Some 
applications do not divide neatly into tasks that entail equal 
amounts of work, so the load must be balanced and any overhead 
associated with load-balancing managed. Locality is no longer a 
question of working within a single memory hierarchy, but one 
of managing the distribution of data between parallel tasks. It is 
important that multiprocessors exploit coarse-grain parallelism 
to minimize synchronization and communication overhead and 
exploit locality. It is this phase that naturally turns programmers 
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into performance engineers, making them more aware of all per-
formance issues in the application. 

·	 Last, but definitely not least, the parallel program must be correct. 
Parallelism introduces a new class of errors due to the creation 
of parallel computations for work that is not independent or to 
failure to communicate or synchronize correctly between parallel 
tasks. Parallelism also introduces new problems into testing and 
debugging, in that program behavior can depend on the sched-
ule of execution of different processes. Those dependences make 
it difficult to test programs thoroughly and to reproduce faulty 
behavior when it is observed. Parallel programming approaches 
can be restricted to eliminate some of the problems by requir-
ing, for example, that programs communicate only through syn-
chronous messaging or that a compiler verify the independence 
of loop iterations before running them in parallel. But those 
approaches can limit the effectiveness of parallel computing by 
adding overhead or restricting its use. Writing correct sequential 
code is hard enough, but the complexity of parallel programming 
is so high that only a small percentage of the programmers in the 
industry today are competent at it. 

The software industry has invested a lot of time and effort in creating the 
existing software base. In the past, when growth in computing perfor-
mance was on its exponentially rising curve (see previous chapters), most 
applications would automatically run faster on a faster machine. 

There has been a lot of research to try to minimize the cost of soft-
ware development for parallel machines. There will be a major prize if 
we succeed in doing it in a way that allows reuse of the large software-
code base that has been developed over many years. Automatic paral-
lelization has some successes, such as instruction-level parallelism and 
fine-grained loop-level parallelism in FORTRAN programs operating on 
arrays. The theory for automatically transforming code of this sort is well 
understood, and compilers often rely on substantial code restructuring 
to run effectively. In practice, the performance of the programs is quite 
sensitive to the particular details of how the program is written, and these 
approaches are more effective in fine-grained parallelism than in the more 
useful coarse-grained parallelism. However, there has not been sufficient 
demand in the parallel-software tool industry to sustain research and 
development.

Most programs, once coded sequentially, have many data depen-
dences that prevent automatic parallelization. Various studies that ana-
lyzed the inherent dependences in a sequential program have found a lot 
of data dependences in such programs. Sometimes, a data dependence is 
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a result of a reuse of memory locations, which may be eliminated through 
analysis. It is perhaps not surprising that programs written with a sequen-
tial-machine model cannot automatically be parallelized. Researchers 
have also explored whether expressing computation in a different way 
may expose the parallelism inherent in a program more readily. In data-
flow and functional programs, the memory is not reused, and computa-
tion can proceed as soon as the operands are ready. That translates to 
abundant parallelism but adds substantial cost in memory use and copy-
ing overhead because data structures cannot be updated in place. Analy-
sis is then necessary to determine when memory can be reused, which is 
the case if the program will no longer touch the old structure. Optimizing 
a functional language then becomes a problem of replacing the creation 
of new data structures with in-place updates of old ones. The analysis 
requires the discovery of all potential read accesses to a data structure 
before it can be reclaimed, which in turn necessitates analyzing aliases to 
detect whether two expressions can refer to the same value. Such analysis 
is no easier than automatic parallelization in that both require accurate 
aliasing information, which is not practical for problems with complex 
pointer-based data structures. 

THE STATE OF THE ART OF PARALLEL PROGRAMMING

Notwithstanding the challenges presented by parallelism, there have 
been some success stories over the years. This section describes several 
parallel approaches to illustrate the array of applications to which par-
allelism has been applied and the array of approaches that are encom-
passed under the term parallelism. None of the approaches described here 
constitutes a general-purpose solution, and none meets all the emerg-
ing requirements (described above) that the performance slowdown and 
new architectures will require; but they may offer lessons for moving 
forward. Historically, the success of any given programming approach 
has been strongly influenced by the availability of hardware that is well 
matched to it. Although there are cases of programming systems that 
run on hardware that is not a natural fit, the trends in parallel hardware 
have largely determined which approaches are successful. The specific 
examples discussed here are thread programming for shared memory, 
message-passing interface, MapReduce (used to exploit data parallelism 
and distributed computation), and ad hoc distributed computation (as 
in such efforts as SETI@home). The latter is not normally thought of as a 
parallel-programming approach, but it is offered here to demonstrate the 
variety of approaches that can be considered parallelism. 
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Thread Programming for Shared Memory

The concept of independent computations within a shared-memory 
space as threads is popular for programming of parallel shared-memory 
systems and for writing applications that involve asynchronous interac-
tion with the environment—for example, user interfaces in which one 
thread of a computation is waiting for a response from the user while 
another thread is updating a display and a third may be performing 
calculations on the basis of earlier input. In the latter case, there may be 
only a single processor in the system and therefore no real parallelism, but 
the thread execution is interleaved, making the computations appear to 
be concurrent. And the performance advantage is real, in the same sense 
that allowing someone with only one item to go ahead in a supermarket 
line can result in a net “system throughput” for all concerned. The word 
thread is used in a variety of ways in different programming systems, but 
in general two properties are associated with threads: the ability to create 
parallel work dynamically, so the number of threads in a given execution 
may vary over time; and the ability of threads to read and write shared 
variables. 

Threads require little or no language modification but only a small set 
of primitive features to create and destroy parallelism and synchroniza-
tion to control access to shared variables. The most common system-level 
library for threads is the POSIX Thread, or “PThread” library, which 
allows a programmer to create a parallel computation by providing a 
function and an argument that will be passed to that function when it 
begins executing. Threads are first-class values in the language, so they 
can be named, stored in data structures, and passed as arguments, and 
one can wait for completion of a thread by performing a “join” operation 
on the thread. The PThread library contains synchronization primitives 
to acquire and release locks, which are used to give one thread exclusive 
access to shared data structures. There are other features of thread cre-
ation and synchronization, but the set of primitives is relatively small 
and easy to learn.

Although the set of primitives in PThreads is small, it is a low-level 
programming interface that involves function pointers, loss of type infor-
mation on the arguments, and manual error-checking. To address those 
issues, there are several language-level versions of threads that provide a 
more convenient interface for programmers. For example, the Java thread 
model and more recent Thread Building Blocks (TBB) library for C++ use 
object-oriented programming abstractions to provide thread-management 
capabilities in those languages. Java threads are widely use for program-
ming user interfaces and other concurrent programming problems, as 
described above, but the runtime support for true parallelism is more 
recent, so there is less experience in using Java threads for parallel pro-
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gramming. TBB is also relatively recent but has demonstrated support in 
both industry and academe. In the 1980s, when shared-memory hardware 
was especially popular, the functional language community introduced 
the notion of a “future”14 that wrapped around a function invocation and 
resulted in an implicit synchronization of thread completion; any attempt 
to access the return value of the function would wait until the thread 
had completed. The closely related idea of a “promise”15 is also wrapped 
around a function invocation but uses a special return type that must be 
explicitly unwrapped, making the wait for thread completion explicit. 

Two issues with dynamic thread creation are the overhead of thread 
creation and the policy for load-balancing threads among processors. A 
program written to create a thread everywhere that one could be used 
will typically overwhelm the scheduler. Several research efforts address 
such problems, including one extension of C called Cilk,16 which is now 
supported by the Cilk Arts company. Cilk uses the syntactic block struc-
ture of the language to restrict thread creation and completion to simple 
nested patterns. It also uses a lazy thread creation model, which allows 
many threads to execute with low overhead as simple function calls if no 
processor is available to execute the thread. Instead, the runtime system 
on an idle processor steals work randomly from other processors. Allow-
ing lazy-thread creation affects the semantics of the threading model; the 
PThread semantics require that each thread eventually execute even if 
there are enough other threads to keep the processors busy. In contrast, 
Cilk makes no such guarantee, so in a Cilk program, if one thread waits 
for a variable to be set by another thread, it may wait forever. Waiting for 
a variable to be set or a data structure to be updated without some explicit 
synchronization is generally considered dubious programming practice in 
parallel code although it is a popular technique for avoiding the overhead 
associated with system-provided synchronization primitives.

In scientific computing, the most popular programming interface for 
shared-memory programming is OpenMP, a standard that emphasizes 
loop-level parallelism but also has support for more general task paral-
lelism. OpenMP addresses the thread-overhead issue by dividing a set of 
iterations into groups so that each thread handles a set of iterations, and 
the programmer is able to control the load-balancing policy. It also gives 
more flexibility in restricting data that are private to a thread, as opposed 
to allowing them to be shared by all threads; and controlled forms of syn-

14 Robert Halstead, 1985, MULTILISP: A language for concurrent symbolic computation, 
ACM Transactions on Programming Languages and Systems 7(4): 501-538. 

15 Barbara Liskov, 1998, Distributed programming in Argus, Communications of the ACM 
31(3): 300-312.

16 For more on Cilk, see its project page at The Cilk Project, MIT website, at http://
supertech.csail.mit.edu/cilk/index.html. 
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chronization and parallelism avoid some kinds of programming errors. 
OpenMP is sometimes used with message-passing to create a hybrid 
programming model: large-scale computing clusters in which individual 
nodes have hardware support for shared memory. 

The biggest drawbacks to thread programming are the potential for 
uncontrolled access to shared variables and the lack of locality control. 
Shared-variable access results in race conditions, in which two threads 
access a variable and at least one writes the variable; this results in indeter-
minate behavior that depends on the access order and may vary from one 
run to the next. Those accesses make testing and debugging especially dif-
ficult. Synchronization primitives—such as locks, which are used to avoid 
races—have their own forms of subtle errors: threads acquiring multiple 
locks can form deadlocks in which each of two threads are waiting for 
a lock held by the other thread. Some tools have been developed by the 
research community to detect those kinds of parallel-programming errors, 
but they have not reached the level of generality, accuracy, and speed 
that would encourage widespread deployment. Thread programming 
remains an error-prone process best handled by expert programmers, not 
the broader programming community of persons who have little formal 
training in programming, who would find it extremely challenging to 
create and maintain reliable code with these models. The broader com-
munity fueled the growth in computing applications and the associated 
economic and social effects. 

The lack of locality support in threaded models limits the scalability 
of the underlying architecture and calls for some form of cache coherence, 
which traditionally has been a hardware challenge that grows exponen-
tially harder as the number of processors grows.17 On the scale of chip 
multiprocessor systems available today, the problem is tractable, but even 
with on-chip data transfer rates, it is unclear how performance will be 
affected as core counts grow. Further complicating the programming 
problem for shared memory, many shared-memory machines with coher-
ent caches use a relaxed consistency model; that is, some memory opera-
tions performed by one thread may appear to be performed in a different 
order by another thread. There is some research on mapping OpenMP 
and Cilk to distributed-memory systems or building shared-memory sup-
port with cache coherence in software, but the locality-aware model has 
often proved superior in performance even on systems with hardware-
supported shared memory. Savvy thread programmers will use system 
mechanisms to control data layout and thread affinity to processors, but 

17 More recent parallel languages, such as Chapel and X10, have explicitly included sup-
port for locality. 
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in the end, this model is best reserved for a relatively small set of compiler 
writers, runtime-system developers, and low-level library programmers.

Message-Passing Interface

The combination of scalability limits of shared-memory architectures 
and the cost and performance benefits of building parallel machines from 
commodity processors made distributed-memory multiprocessors a pop-
ular architecture for high-end parallel computing. Those systems can 
vary from generic clusters built from personal computers and an Ether-
net network to more specialized supercomputers with low-latency high-
bandwidth networks that are more closely integrated into the processor 
nodes. As this architectural model become dominant in the early 1990s, 
several message-passing systems were developed by scientific program-
ming communities, computer scientists, and industry. In the early 1990s, 
a group with representatives from those communities began a process to 
specify the message-passing interface (MPI). MPI has since emerged as 
the de facto standard programming model for high-performance com-
puting and has nearly ubiquitous support among machines, including 
open-source implementations, such as MPICH and OpenMPI, that can be 
ported to new interconnection networks with modest effort.18 Although 
the standardization decisions in defining MPI were far from obvious, the 
relative ease with which application developers moved code from one of 
the previous models to MPI reflects the commonality of base concepts that 
already existed in the community. MPI has also proved to be a highly scal-
able programming model and is used today in applications that regularly 
run on tens of thousands of processor cores, and sometimes over 100,000, 
in the largest supercomputers in the world. MPI is generally used to pro-
gram a single cluster or supercomputer that resides at one site, but “grid-
computing” variations of MPI and related libraries support programming 
among machines at multiple sites. It is also low-level programming and 
has analogues to the challenges presented by machine-language program-
ming mentioned earlier. 

MPI has enabled tremendous scientific breakthroughs in nearly every 
scientific domain with some of the largest computations in climate change, 
chemistry, astronomy, and various aspects of defense. Computer simula-
tions have demonstrated human effects on climate change and are critical 

18 For more on the MPI standard, see the final version of the draft released in May 1994, 
available online at  http://www.mcs.anl.gov/Projects/mpi/standard.html. See also Open 
MPI: Open source high performance computing at http://www.open-mpi.org. and Peter 
Pacheco, 1997, Parallel Programming with MPI, fourth edition, San Francisco, Cal.: Morgan 
Kaufmann.
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for international environmental-policy negotiations, as recognized in the 
2007 Nobel prize awarded to the Intergovernmental Panel on Climate 
Change. The climate-modeling problem is far from solved as researchers 
attempt to identify particular phenomena, such as the disappearance of 
polar ice caps; effects on the frequency or severity of hurricanes, floods, 
or droughts; and the effects of various mitigation proposals. The size and 
accuracy of the computations continue to push the limits of available 
computing systems, consuming tens of millions of processor-hours each 
year. The Community Climate Simulation Model and nearly all other 
major codes used for global-scale long-term climate simulations are writ-
ten in MPI. A related problem that also relies heavily on MPI is weather-
forecasting, which is more detailed but of shorter term and on smaller 
regional scales than climate models. MPI programs have been used to 
understand the origins of the universe on the basis of a study of cosmic 
microwave background (CMB) and to study quantum chromodynamics 
in particle physics—both uses are based on Nobel prize-wining work in 
physics. MPI is used in the design of new materials, in crash simulations 
in the automobile industry, in simulating earthquakes to improve build-
ing designs and standards, and in fluid-dynamics simulations for improv-
ing aircraft design, engine design, and biomedical simulations. 

There are limitations, however. MPI is designed for comparatively 
coarse-grained parallelism—among clusters of computers—not for par-
allelism between cores on a chip. For example, most supercomputers 
installed in the last few years have dual-core or quad-core processing 
chips, and most applications use an MPI process per core. The model 
is shifting as application scientists strive to make more effective use of 
shared-memory chip multiprocessors by exploiting a mixture of MPI with 
OpenMP or PThreads. MPI-3 is a recent effort to implement MPI on mul-
ticore processors although memory-per-core constraints are still a barrier 
to MPI-style weak scaling. Indeed, the motivation to mix programming 
models is often driven more by memory footprint concerns than by per-
formance itself because the shared-memory model exploits fine-grained 
parallelism better in that it requires less memory per thread. Moreover, 
there is a broad class of applications of particular interest to the defense 
and intelligence communities for which MPI is not appropriate, owing 
to its mismatch with the computational patterns of particular problems.
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MapReduce: Exploiting Data Parallelism 
and Distributed Computation

MapReduce is a data-processing infrastructure19 developed internally 
by Google and later popularized in the Hadoop open-source version.20 
MapReduce is targeted at large-scale data-parallel workloads in which 
the input is represented as a set of key-value pairs and computation is 
expressed as a sequence of two user-provided functions: map and reduce. 
The Map function processes the input to create an intermediate key-value 
pair. Intermediate pairs with the same key are aggregated by the system 
and fed to the reduce function, which produces the final output. 

What makes MapReduce particularly compelling is that it frees 
the programmer from the need to worry about much of the complex-
ity required to run large-scale  computations. The programmer needs 
only to produce the body of the two MapReduce methods, and the sys-
tem takes care of parallelization, data distribution, fault tolerance, and 
load-balancing.

The class of problems that can be mapped to this relatively simple 
processing framework is surprisingly broad. MapReduce was conceived 
to simplify the data-processing involved in creating a Web index from 
a set of crawled documents, but developers have also used it for large-
scale graph algorithms (for example, finding citation occurrences among 
scientific articles), computing query-term popularity (for example, Google 
Trends21), and creating language models for statistical machine transla-
tion (for example, finding and keeping a count for every unique sequence 
of five or more terms in a large corpus), and other applications. Within 
Google itself, MapReduce’s popularity has exploded since its introduction.

MapReduce has also been found to be useful for systems much smaller 
than the large distributed clusters for which it was designed. Ranger et al. 
examined the adequacy of the MapReduce framework for multicore and 
multiprocessor systems22 and found that it was equally compelling as a 
programming system for this class of machines. In a set of eight applica-
tions both coded with a version of MapReduce (the Phoenix runtime) 
and hand-coded directly, the authors found that MapReduce-coded ver-

19 See Jeffrey Dean and Sanjay Ghemawat, 2008, MapReduce: Simplified data processing on 
large clusters, Communications of the ACM 51(1): 107-113, and Micheal Noth, 2006, Building 
a computing system for the world’s information, Invited talk, University of Iowa, IT Tech 
Forum Presentations, April 20, 2006.

20 See The Apache Hadoop project, available at http://hadoop.apache.org. 
21 See Google trends, available at http://trends.google.com.
22 Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis, 

2007, Evaluating MapReduce for multi-core and multiprocessor systems, Proceedings of the 
IEEE 13th International Symposium on High-Performance Computer Architecture, Phoenix, 
Ariz., February 10-14, 2007.
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sions roughly matched the performance of the hand-coded versions for 
five. The remaining three applications did not fit well with MapReduce’s 
key-value data-stream model, and the hand-coded versions performed 
significantly better.

Despite MapReduce’s success as a programming system beyond its 
initial application domain and machine-architecture context, it is far from 
a complete solution for extracting and managing parallelism in general. It 
remains limited to, for example, batch-processing systems and is therefore 
not suitable for many on-line serving systems. MapReduce also does not 
extract implicit parallelism from an otherwise sequential algorithm but 
instead facilitates the partitioning, distribution, and runtime management 
of an application that is already essentially data-parallel. Such systems as 
MapReduce and NVIDIA’s CUDA,23 however, point to a solution strategy 
for the general programming challenge of large-scale parallel systems. 
The solutions are not aimed at a single programming paradigm for all 
possible cases but are based on a small set of programming systems that 
can be specialized for particular types of applications.

Distributed Computation—Harnessing the 
World’s Spare Computing Capacity

The increasing quality of Internet connectivity around the globe has 
led researchers to contemplate the possibility of harnessing the unused 
computing capability of the world’s personal computers and servers to 
perform extremely compute-intensive parallel tasks. The most notable 
examples have come in the form of volunteer-based initiatives, such 
as SETI@home (http://setiathome.berkeley.edu/) and Folding@home 
(http://folding.stanford.edu/). The model consists of breaking a very 
large-scale computation into subtasks that can operate on relatively few 
input and result data, require substantial processing over that input set, 
and do not require much (or any) communication between subtasks other 
than passing of inputs and results. Those initiatives attract volunteers 
(individuals or organizations) that sympathize with their scientific goals 
to donate computing cycles on their equipment to take on and execute a 
number of subtasks and return the results to a coordinating server that 
coalesces and combines final results.

The relatively few success cases of the model have relied not only 
on the friendly nature of the computation to be performed (vast data 
parallelism with very low communication requirements for each unit of 

23 CUDA is a parallel computing approach aimed at taking advantages of NVIDIA graphi-
cal processing units. For more, see CUDA zone, NVIDIA.com, available at http://www.
nvidia.com/object/cuda_home.html. 
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computing) but also on the trust of the volunteers that the code is safe to 
execute in their machines. For more widespread adoption, this particular 
programming model would require continuing improvements in secure 
execution technologies, incorporation of an economic model that provides 
users an incentive to donate their spare computing capacity, and improve-
ments in Internet connectivity. To some extent, one can consider large 
illegitimately assembled networks of hijacked computers (or botnets) to 
be an exploitation of this computing model; this exemplifies the potential 
value of harnessing a large number of well-connected computing systems 
toward nobler aims.

Summary Observations

These success stories show that there are already a wide variety of 
computational models for parallel computation and that science and 
industry are successfully harnessing parallelism in some domains. The 
parallelism success stories bode well for the future if we can find ways 
to map more applications to the models or, for computations that do not 
map well to the models, if we can develop new models.

PARALLEL-PROGRAMMING SYSTEMS AND 
THE PARALLEL SOFTWARE “STACK”  

The general problem of designing parallel algorithms and program-
ming them to exploit parallelism is an extremely important, timely, 
and unsolved problem. The vast majority of software in use today is 
sequential. Although the previous section described examples of parallel 
approaches that work in particular domains, general solutions are still 
lacking. Many successful parallel approaches are tied to a specific type of 
parallel hardware (MPI and distributed clusters; storage-cluster architec-
ture, which heavily influenced MapReduce; openGL and SIMD graphics 
processors; and so on). The looming crisis that is the subject of this report 
comes down to the question of how to continue to improve performance 
scalability as architectures continue to change and as more and more pro-
cessors are added. There has been some limited success, but there is not 
yet an analogue of the sequential-programming models that have been so 
successful in software for decades. 

We know some things about what new parallel-programming 
approaches will need. A high-level performance-portable programming 
model is the only way to restart the virtuous cycle described in Chapter 
2. The new model will need to be portable over successive generations 
of chips, multiple architectures, and different kinds of parallel hardware, 
and it will need to scale well. For all of those goals to be achieved, the 
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entire software stack will need to be rethought, and architectural assump-
tions will need to be included in the stack. Indeed, in the future, the term 
software stack will be a misnomer. A “software-hardware stack” will be the 
norm. The hardware, the programming model, and the applications will 
all need to change. 

A key part of modern programming systems is the software stack 
that executes the program on the hardware. The stack must also allow 
reasoning about the five main challenges to scalable and efficient perfor-
mance: parallelism, communication, locality, synchronization, and load-
balancing. The components of a modern software stack include

·	 Libraries: Generic and domain-specific libraries provide appli-
cation programmers with predefined software components that 
can be included in applications. Because library software may be 
reused in many applications, it is often highly optimized by hand 
or with automated tools.

·	 Compiler: An ahead-of-time or a just-in-time compiler translates 
the program into assembly code and optimizes it for the underly-
ing hardware. Just-in-time compilers combine profile data from 
the current execution with static program analysis to perform 
optimizations.

·	 Runtime system or virtual machine: These systems manage fine-
grain memory resources, application-thread creation and sched-
uling, runtime profiling, and runtime compilation.

·	 Operating system: The operating system manages processes and 
their resources, including coarse-grain memory management.

·	 Hypervisors: Hypervisors abstract the hardware context to pro-
vide performance portability for operating systems among hard-
ware platforms.

Because programming systems are mostly sequential, the software stack 
mostly optimizes and manages sequential programs. Optimizing and 
understanding the five challenges at all levels of the stack for parallel 
approaches will require substantial changes in these systems and their 
interfaces, and perhaps researchers should reconsider whether the overall 
structure of the stack is a good one for parallel systems. 

Researchers have made some progress in system support for pro-
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viding and supporting parallel-programming models.24 Over the years, 
researchers and industry have developed parallel-programming system 
tools, which include languages, compilers, runtime environments, librar-
ies, components, and frameworks to assist programmers and software 
developers in managing parallelism. We list some examples below.

·	 Runtime abstractions: multiprogramming and virtualization. The 
operating system can exploit chip multiprocessors at a coarse 
granularity immediately because operating systems can run mul-
tiple user and kernel processes in parallel. Virtualization runs 
multiple operating systems in parallel. However, it remains chal-
lenging to manage competition for shared resources, such as 
caches, when a particular application load varies dramatically.

·	 Components: database transactions and Web applications. Data-
base-transaction systems provide an extremely effective abstrac-
tion in which programs use a sequential model, without the need 
to worry about synchronization and communication, and the 
database coordinates all the parallelism between user programs. 
Success in this regard emerged from over 20 years of research in 
parallelizing database systems.

·	 Frameworks: three-tiered Web applications and MapReduce. 
Such frameworks as J2EE and Websphere make it easy to create 
large-scale parallel Web applications. For example, MapReduce 
(described above) simplifies the development of a large class of 
distributed applications that combine the results of the computa-
tion of distributed nodes. Web applications follow the database-
transaction model in which users write sequential tasks and the 
framework manages the parallelism.

·	 Libraries: graphics libraries. Graphics libraries for DirectX 10 and 
OpenGl hide the details of parallelism in graphics hardware from 
the user. 

·	 Languages: Cuda Fortress, Cilk, x10, and Chapel. These languages 
seek to provide an array of high-level and low-level abstractions 
that help programmers to develop classes of efficient parallel 
software faster. 

What those tools suggest is that managing parallelism is another, more 

24 One recent example was a parallel debugger, STAT, from the Lawrence Livermore Na-
tional Laboratory,  available at http://www.paradyn.org/STAT/STAT.html, presented at 
Supercomputing 2008. See Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de 
Supinski, Matthew Legendre, Barton P. Miller, Martin Schulz, and Ben Liblit, 2008, Lessons 
learned at 208K: Towards debugging millions of cores, available online at ftp://ftp.cs.wisc.
edu/paradyn/papers/Lee08ScalingSTAT.pdf, last accessed on November 8, 2010. 
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challenging facet of software engineering—it can be thought of as akin 
to a complex version of the problem of resource management. Parallel-
program productivity can be improved if we can develop languages that 
provide useful software-engineering abstractions for parallelism, parallel 
components and libraries that programmers can reuse, and a software-
hardware stack that can facilitate reasoning about all of them. 

MEETING THE CHALLENGES OF PARALLELISM

The need for robust, general, and scalable parallel-software approaches 
presents challenges that affect the entire computing ecosystem. There are 
numerous possible paths toward a future that exploits abundant paral-
lelism while managing locality. Parallel programming and parallel com-
puters have been around since the 1960s, and much progress has been 
made. Much of the challenge of parallel programming deals with making 
parallel programs efficient and portable without requiring heroic efforts 
on the part of the programmer. No subfield or niche will be able to solve 
the problem of sustaining growth in computing performance on its own. 
The uncertainty about the best way forward is inhibiting investment. In 
other words, there is currently no parallel-programming approach that 
can help drive hardware development. Historically, a vendor might have 
taken on risk and invested heavily in developing an ecosystem, but given 
all the uncertainty, there is not enough of this investment, which entails 
risk as well as innovation. Research investment along multiple fronts, as 
described in this report, is essential.25 

Software lasts a long time. The huge entrenched base of legacy soft-
ware is part of the reason that people resist change and resist investment 
in new models, which may or may not take advantage of the capital 
investment represented by legacy software. Rewriting software is expen-
sive. The economics of software results in pressure against any kind of 
innovative models and approaches. It also explains why the approaches 
we have seen have had relatively narrow applications or been incremen-
tal. Industry, for example, has turned to chip multiprocessors (CMPs) 
that replicate existing cores a few times (many times in the future). Care 
is taken to maintain backward compatibility to bring forward the exist-
ing multi-billion-dollar installed software base. With prospects dim for 

25 A recent overview in Communications of the ACM articulates the view that develop-
ing software for parallel cores needs to become as straightforward as writing software for 
traditional processors: Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, 
Kurt Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John 
Wawrzynek, David Wessel, and Katherine Yelick, 2009, A view of the parallel computing 
landscape, Communications of the ACM 52(10): 56-67, available online at http://cacm.
acm.org/magazines/2009/10/42368-a-view-of-the-parallel-computing-landscape/fulltext. 
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repeated doublings of single-core performance, CMPs inherit the mantle 
as the most obvious alternative, and industry is motivated to devote sub-
stantial resources to moving compatible CMPs forward. The downside is 
that the core designs being replicated are optimized for serial code with 
support for dynamic parallelism discovery, such as speculation and out-
of-order execution, which may waste area and energy for programs that 
are already parallel. At the same time, they may be missing some of the 
features needed for highly efficient parallel programming, such as light-
weight synchronization, global communication, and locality control in 
software. A great deal of research remains to be done on on-chip network-
ing, cache coherence, and distributed cache and memory management.

One important role for academe is to explore CMP designs that are 
more aggressive than industry’s designs. Academics should project both 
hardware and software trends much further into the future to seek pos-
sible inflection points even if they are not sure when or even whether tran-
sitioning a technology from academe to industry will occur. Moreover, 
researchers have the opportunity to break the shackles of strict backward 
compatibility. Promising ideas should be nurtured to see whether they 
can either create enough benefit to be adopted without portability or to 
enable portability strategies to be developed later. There needs to be an 
intellectual ecosystem that enables ideas to be proposed, cross-fertilized, 
and refined and, ultimately, the best approaches to be adopted. Such an 
ecosystem requires sufficient resources to enable contributions from many 
competing and cooperating research teams.

Meeting the challenges will involve essentially all aspects of comput-
ing. Focusing on a single component—assuming a CMP architecture or a 
particular number of transistors, focusing on data parallelism or on het-
erogeneity, and so on—will be insufficient to the task. Chapter 5 discusses 
recommendations for research aimed at meeting the challenges. 
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Research, Practice, and Education to 
Meet Tomorrow’s Performance Needs

Early in the 21st century, single-processor performance stopped 
growing exponentially, and it now improves at a modest pace, if at 
all. The abrupt shift is due to fundamental limits on the power effi-

ciency of complementary metal oxide semiconductor (CMOS) integrated 
circuits (used in virtually all computer chips today) and apparent limits 
on what sorts of efficiencies can be exploited in single-core architectures. 
A sequential-programming model will no longer be sufficient to facilitate 
future information technology (IT) advances.

Although efforts to advance low-power technology are important, the 
only foreseeable way to continue advancing performance is with parallel-
ism. To that end, the hardware industry recently began doubling the num-
ber of cores per chip rather than focusing solely on more performance per 
core and began deploying more aggressive parallel options, for example, 
in graphics processing units (GPUs). Attaining dramatic IT advances in 
the future will require programs and supporting software systems that 
can access vast parallelism. The shift to explicitly parallel hardware will 
fail unless there is a concomitant shift to useful programming models for 
parallel hardware. There has been progress in that direction: extremely 
skilled and savvy programmers can exploit vast parallelism (for example, 
in what has traditionally been referred to as high-performance comput-
ing), domain-specific languages flourish (for example, SQL and DirectX), 
and powerful abstractions hide complexity (for example, MapReduce). 
However, none of those developments comes close to the ubiquitous 
support for programming parallel hardware that is required to sustain 
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growth in computing performance and meet society’s expectations for IT. 
(See Box 5.1 for additional context regarding other aspects of computing 
research that should not be neglected while the push for parallelism in 
software takes place.) 

The findings and results described in this report represent a serious 
set of challenges not only for the computing industry but also for the 
many sectors of society that depend on advances in IT and computation. 
The findings also pose challenges to U.S. competitiveness: a slowdown 
in the growth of computing performance will have global economic and 
political repercussions. The committee has developed a set of recom-
mended actions aimed at addressing the challenges, but the fundamental 
power and energy constraints mean that even our best efforts may not 
offer a complete solution. This chapter presents the committee’s recom-
mendations in two categories: research—the best science and engineering 
minds must be brought to bear; and practice—how we go about devel-
oping computer hardware and software today will form a foundation 
for future performance gains. Changes in education are also needed; the 
emerging generation of technical experts will need to understand quite 
different (and in some cases not yet developed) models of thinking about 
IT, computation, and software. 

SYSTEMS RESEARCH AND PRACTICE

Algorithms

In light of the inevitable trend toward parallel architectures and 
emerging applications, one must ask whether existing applications are ame-
nable algorithmically for decomposition on any parallel architecture. Algorithms 
based on context-dependent state machines are not easily amenable to 
parallel decomposition. Applications based on those algorithms have 
always been around and are likely to gain more importance as security 
needs grow. Even so, there is a large amount of throughput parallelism in 
these applications, in that many such tasks usually need to be processed 
simultaneously by a data center. 

At the other extreme, there are applications that have obvious paral-
lelism to exploit. The abundance of parallelism in a vast majority of those 
underlying algorithms is data-level parallelism. One simple example of 
data-level parallelism for mass applications is found in two-dimensional 
(2D) and three-dimensional (3D) media-processing (image, signal, graph-
ics, and so on), which has an abundance of primitives (such as blocks, 
triangles, and grids) that need to be processed simultaneously. Continu-
ous growth in the size of input datasets (from the text-heavy Internet of 
the past to 2D-media-rich current Internet applications to emerging 3D 
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Internet applications) has been important in the steady increase in avail-
able parallelism for these sorts of applications. 

A large and growing collection of applications lies between those 
extremes. In these applications, there is parallelism to be exploited, but it 
is not easy to extract: it is less regular and less structured in its spatial and 
temporal control and its data-access and communication patterns. One 
might argue that these have been the focus of the high-performance com-
puting (HPC) research community for many decades and thus are well 
understood with respect to those aspects that are amenable to parallel 
decomposition. The research community also knows that algorithms best 
suited for a serial machine (for example, quicksort, simplex, and gaston) 
differ from their counterparts that are best suited for parallel machines 

BOX 5.1
React, But Don’t Overreact, to Parallelism 

As this report makes clear, software and hardware researchers and practitio-
ners should address important concerns regarding parallelism. At such critical 
junctures, enthusiasm seems to dictate that all talents and resources be applied 
to the crisis at hand. Taking the longer view, however, a prudent research port-
folio must include concomitant efforts to advance all systems aspects, lest they 
become tomorrow’s bottlenecks or crises.

For example, in the rush to innovate on chip multiprocessors (CMPs), it is 
tempting to ignore sequential core performance and to deploy many simple 
cores. That approach may prevail, but history and Amdahl’s law suggest caution. 
Three decades ago, a hot technology was vectors. Pioneering vector machines, 
such as the Control Data STAR-100 and Texas Instruments ASC, advanced vec-
tor technology without great concern for improving other aspects of compu-
tation. Seymour Cray, in contrast, designed the Cray-11 to have great vector 
performance as well as to be the world’s fastest scalar computer. Ultimately, his 
approach prevailed, and the early machines faded away.

Moreover, Amdahl’s law raises concern.2 Amdahl’s limit argument assumed 
that a fraction, P, of software execution is infinitely parallelizable without over-
head, whereas the remaining fraction, 1 - P, is totally sequential. From that as-
sumption, it follows that the speedup with N cores—execution time on N cores 
divided by execution time on one core—is governed by 1/[(1 - P) + P/N]. Many 
learn that equation, but it is still instructive to consider its harsh numerical 
consequences. For N = 256 cores and a fraction parallel P = 99%, for example, 
speedup is bounded by 72. Moreover, Gustafson3 made good “weak scaling” 
arguments for why some software will fare much better. Nevertheless, the com-
mittee is skeptical that most future software will avoid sequential bottlenecks. 
Even such a very parallel approach as MapReduce4 has near-sequential activity 
as the reduce phase draws to a close.

For those reasons, it is prudent to continue work on faster sequential cores, 
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(for example, mergesort, interior-point, and gspan). Given the abundance 
of single-thread machines in mass computing, commonly found imple-
mentations of these algorithms on mass machines are almost always the 
nonparallel or serial-friendly versions. Attempts to extract parallelism 
from the serial implementations are unproductive exercises and likely 
to be misleading if they cause one to conclude that the original problem 
has an inherently sequential nature. Therefore, there is an opportunity 
to benefit from the learning and experience of the HPC research and to 
reformulate problems in terms amenable to parallel decomposition. 

Three additional observations are warranted in the modern context 
of data-intensive connected computing: 

especially with an emphasis on energy efficiency (for example, on large-content 
addressable-memory structures) and perhaps on-demand scaling (to be respon-
sive to software bottlenecks). Hill and Marty5 illuminate some potential oppor-
tunities by extending Amdahl’s law with a corollary that models CMP hardware. 
They find, for example, that as Moore’s law provides more transistors, many 
CMP designs benefit from increasing the sequential core performance and 
considering asymmetric (heterogeneous) designs where some cores provide 
more performance (statically or dynamically).

Finally, although the focus in this box is on core performance, many other 
aspects of computer design continue to require innovation to keep systems 
balanced. Memories should be larger, faster, and less expensive. Nonvolatile 
storage should be larger, faster, and less expensive and may merge with volatile 
memory. Networks should be faster (higher bandwidth) and less expensive, and 
interfaces to networks may need to get more closely coupled to host nodes. All 
components must be designed for energy-efficient operation and even more 
energy efficiency when not in current use.

1Richard M. Russell, 1978, The Cray-1 computer system, Communications of the ACM 
21(1): 63-72

2 Gene M. Amdahl, 1967, Validity of the single-processor approach to achieving large scale 
computing capabilities, AFIPS Conference Proceedings, Atlantic City, N.J,, April 18-20, 1967, 
pp. 483-485.

3John L. Gustafson, 1998, Reevaluating Amdahl’s law, Communications of the ACM 31(5): 
532-533.

4Jeffrey Dean and Sanjay Ghemawat, 2004, MapReduce: Simplified data processing on 
large clusters, Symposium on Operating System Design and Implementation, San Francisco, 
Cal., December 6-8, 2004.

5 Mark D. Hill and Michael R. Marty, 2008, Amdahl’s law in the multicore era, IEEE 
Computer 41(7): 33-38, available online at http://www.cs.wisc.edu/multifacet/papers/
tr1593_amdahl_multicore.pdf. 
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·	 In the growing segment of the entertainment industry, in contrast 
with the scientific computing requirements of the past, approxi-
mate or sometimes even incorrect solutions are often good 
enough if end users are insensitive to the details. An example 
is cloud simulation for gaming compared with cloud simulation 
for weather prediction. Looser correctness requirements almost 
always make problems more amenable to parallel algorithms 
because strict dependence requires synchronized communication, 
whereas an approximation often can eliminate communication 
and synchronization.

·	 The serial fraction of any parallel algorithm would normally 
dominate the performance—a manifestation of Amdahl’s law 
(described in Box 2.2) typically referred to as weak scaling. That 
is true for a fixed problem size. However, if the problem size 
continues to scale, one would observe continuously improved 
performance scaling of a parallel architecture, provided that it 
could effectively handle the larger data input. This is the so-called 
Gustafson corollary1 to Amdahl’s law. Current digitization trends 
are leading to input-dataset scaling for most applications (for 
example, today there might be 1,000 songs on a typical iPod, but 
in another couple of years there may be 10,000).

·	 Massive, easily accessible real-time datasets have turned some 
previous sparse input into much denser inputs. This has at least 
two important algorithmic implications: the problem becomes 
more regular and hence more amenable to parallelism, and bet-
ter training and hence better classification accuracies make addi-
tional parallel formulations usable in practice. Examples include 
scene completion in photographs2 and language-neutral transla-
tion systems.3

For many of today’s applications, the underlying algorithms in use do 
not assume or exploit parallel processing explicitly, except as in the cases 
described above. Instead, software creators typically depend, implicitly or 
explicitly, on compilers and other layers of the programming environment 
to parallelize where possible, leaving the software developer free to think 
sequentially and focus on higher-level issues. That state of affairs will 
need to change, and a fundamental focus on parallelism will be needed in 

1 John L. Gustafson, 1998, Reevaluating Amdahl’s law, Communications of the ACM 31(5): 
532-533.

2 See James Hays and Alexei A. Efros, 2008, Scene completion using millions of photo-
graphs, Communications of the ACM 51(10): 87-94.

3 See Jim Giles, 2006, Google tops translation ranking, Nature.com, November 7, 2006, 
available online at http://www.nature.com/news/2006/061106/full/news061106-6.html. 
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designing solutions to specific problems in addition to general program-
ming paradigms and models. 

Recommendation: Invest in research in and development of algorithms 
that can exploit parallel processing.

Programming Methods and Systems

Many of today’s programming models, languages, compilers, hyper-
visors, and operating systems are targeted primarily at single-core hard-
ware. For the future, all these layers in the stack must explicitly target 
parallel hardware. The intellectual keystone of this endeavor is rethink-
ing programming models. Programmers must have appropriate models 
of computation that express application parallelism in such a way that 
diverse and evolving computer hardware systems and software can bal-
ance computation and minimize communication among multiple com-
putational units. There was a time in the late 1970s when even the con-
ventional sequential-programming model was thought to be an eventual 
limiter of software creation, but better methods and training largely ame-
liorated that concern. We need advances in programmer productivity for 
parallel systems similar to the advances brought first by structured pro-
gramming languages, such as Fortran and C, and then later by managed 
programming languages, such as C# and Java.

The models themselves may or may not be explicitly parallel; it is an 
open question whether and when most programmers should be exposed 
to explicit hardware parallelism. The committee does not call for a singu-
lar programming model, because a unified solution may or may not exist. 
Instead, it recommends the exploration of alternative models—perhaps 
domain-specific—that can serve as sources of possible future unification. 
Moreover, the committee expects that some programming models will 
favor ease of use by a broad base of programmers who are not necessar-
ily expert whereas others will target expert programmers who seek the 
highest performance for critical subsystems that get extensively reused.

Additional research is needed in the development of new libraries 
and new programming languages that embody the new programming 
models described above. Development of such libraries will facilitate 
rapid prototyping of complementary and competing ideas. The commit-
tee expects that some of the languages will be easier for more typical pro-
grammers to use—that is, they will appear on the surface to be sequential 
or declarative—and that others will target efficiency and, consequently, 
expert programmers.

New programming languages—especially those whose abstractions 
are far from the underlying parallel hardware—will require new compila-
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tion and runtime support. Fortress, Chapel, and X10 are three new recently 
proposed general-purpose parallel languages, but none of them has yet 
developed a strong following.4 Experience has shown that it is generally 
exceedingly difficult to parallelize sequential code effectively—or even to 
parallelize and redesign highly sequential algorithms. Nevertheless, we 
must redouble our efforts on this front in part by changing the languages, 
targeting specific domains, and enlisting new hardware support.

We also need more research in system software for highly parallel 
systems. Although the hypervisors and operating systems of today can 
handle some modest parallelism, future systems will include many more 
cores (and multithreaded contexts), whose allocation, load-balancing, and 
data communication and synchronization interactions will be difficult 
to handle well. Solving those problems will require a rethinking of how 
computation resources are viewed, much as increased physical memory 
size led to virtual memory a half-century ago.

Recommendation: Invest in research in and development of program-
ming methods that will enable efficient use of parallel systems not only 
by parallel systems experts but also by typical programmers.

Computer Architecture and Hardware

Most 20th-century computers used a single sequential processor, but 
many larger computers—hidden in the backroom or by the Internet—
harnessed multiple cores on separate chips to form a symmetric multi-
processor (SMP). When industry was unable to use more transistors on 
a chip for a faster core effectively, it turned, by default, to implementing 
multiple cores per chip to provide an SMP-like software model. In addi-
tion, special-purpose processors—notably GPUs and digital signal pro-
cessing (DSP) hardware—exploited parallelism and were very successful 
in important niches.

Researchers must now determine the best way to spend the transistor 
bounty still provided by Moore’s law.5 On the one hand, we must exam-
ine and refine CMPs and associated architectural approaches. But CMP 
architectures bring numerous issues to the fore. Will multiple cores work 
in most computer deployments, such as in desktops and even in mobile 
phones? Under what circumstances should some cores be more capable 

4 For more on Fortress, see the website of Project Fortress community, at http://project
fortress.sun.com/Projects/Community. For more on Chapel, see the website The Chapel 
parallel programming language, at http://chapel.cray.com. For more on X10, see the website 
The X10 programming language, at http://x10.codehaus.org/. 

5 James Larus, 2009, Spending Moore’s dividend, Communications of the ACM 52(5): 
62-69. 
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than others or even use different instruction-set architectures? How can 
cores be harnessed together temporarily in an automated or semiauto-
mated fashion to overcome sequential bottlenecks? What mechanisms 
and policies will best exploit locality and ease communication? How 
should synchronization and scheduling be handled? How will challenges 
associated with power and energy be addressed? What do the new archi-
tectures mean for system-level features, such as reliability and security? 

Research in computer architecture must focus on providing useful, 
programmable systems driven by important applications. It is well known 
that customizing hardware for a specific task yields more efficient and 
higher-performance hardware. DSP chips are one example. Research is 
needed to understand application characteristics to drive parallel-hard-
ware design. There is a bit of a chicken-and-egg problem. Without effec-
tive CMP hardware, it is hard to motivate programmers to build parallel 
applications; but it is also difficult to build effective hardware without 
parallel applications. Because of the lack of parallel applications, hard-
ware designers are at risk of developing idiosyncratic CMP hardware arti-
facts that serve as poor targets for applications, libraries, compilers, and 
runtime systems. In some cases, progress may be facilitated by domain-
specific systems that may lead to general-purpose systems later.

CMPs have now inherited the computing landscape from perfor-
mance-stalled single cores. To promote robust, long-term growth, how-
ever, we need to look for alternatives to CMPs. Some of the alternatives 
may prove better; some may pioneer improvements in CMPs; and even 
if no alternative proves better, we would then know that CMPs have 
withstood the assault of alternatives. The research could eschew conven-
tional cores. It could, for example, view the chip as a tabula rasa of billions 
of transistors, which translates to hundreds of functional units; but the 
best organization of these units into a programmable architecture is an 
open question. Nevertheless, researchers must be keenly aware of the 
need to enable useful, programmable systems. Examples include evolv-
ing GPUs for more general-purpose programming, game processors, or 
computational accelerators used as coprocessors; and exploiting special-
purpose, energy-efficient engines at some level of granularity for compu-
tations, such as fast Fourier transforms, Codec, or encryption. Other tasks 
to which increased computational capability could be applied include 
architectural support for machine learning, communication compression, 
decompression, encryption, and decryption, and dedicated engines for 
GPS, networking, human interface, search, and video analytics. Those 
approaches have potential demonstrated advantages in increased per-
formance and energy efficiency relative to a more conservative CMP 
approach.

Ultimately, we must question whether the CMP-architecture direc-
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tion, as currently defined, is a good approach for designing most comput-
ers. The current CMP architecture preserves object-code compatibility, 
the heart of the architectural franchise that keeps such companies as 
Intel and AMD investing heavily. Despite their motivation and ability to 
expend resources, if systems with CMP architectures cannot be effectively 
programmed, an alternative will be needed. Is using homogeneous pro-
cessors in CMP architectures the best approach, or will computer architec-
tures that include multiple but heterogeneous cores be more effective—for 
example, a single high-performance but power-inefficient processor for 
programs that are stubbornly sequential and many power-efficient but 
lower-performance cores for other applications? Perhaps truly effective 
parallel hardware needs to follow a model that does not assume shared 
memory parallelism, instead exploiting single-instruction multiple-data 
approaches, streaming, dataflow, or other paradigms yet to be invented. 
Are there other important niches like those exploited by GPUs and DSPs? 
Alternatively, will cores support more graphics and GPUs support more 
general-purpose programs, so that the line between the two blurs? And 
most important, are any of those alternatives sufficient to keep the indus-
try driving forward at a pace that can avoid the challenges described 
elsewhere? 

We may also need to consider fundamentally rethinking the nature 
of hardware in light of today’s near-universal connectivity to the Inter-
net. The trend is likely to accelerate. When Google needed to refine the 
general Internet search problem, it used the MapReduce paradigm so that 
it could easily and naturally harness the computational horsepower of a 
very large number of computer systems. Perhaps an equivalent basic shift 
in how we think about engineering computer systems themselves ought 
to be considered. 

The slowing of growth in single-core performance provides the best 
opportunity to rethink computer hardware since the von Neumann model 
was developed in the 1940s. While a focus on the new research challenges 
is critical, continuing investments are needed in new computation sub-
strates whose underlying power efficiency promises to be fundamentally 
better than silicon-based CMOSs. In the best case, investment will yield 
devices and manufacturing methods—as yet unforeseen—that will dra-
matically surpass the transistor-based integrated circuit. In the worst case, 
no new technology will emerge to help solve the problems. It is therefore 
essential to invest in parallel approaches, as outlined previously, and to 
do so now. Performance is needed immediately, and society cannot wait 
the decade or two needed to refine a new technology, which may or may 
not even be on the horizon. Moreover, even if we discover a groundbreak-
ing new technology, the investment in parallelism would not be wasted, 
inasmuch as it is very likely that advances in parallelism would exploit 
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new technology as well.6 Substantial research investment should focus on 
approaches that eschew conventional cores and develop new experimen-
tal structures for each chip’s billions of transistors.

Recommendation: Invest in research on and development of parallel 
architectures driven by applications, including enhancements of chip 
multiprocessor systems and conventional data-parallel architectures, 
cost-effective designs for application-specific architectures, and support 
for radically different approaches. 

Computer scientists and engineers manage complexity by separating 
interface from implementation. In conventional computer systems, the 
separation is recursive and forms the traditional computing stack: appli-
cations, programming language, compiler, runtime and virtual machine 
environments, operating system, hypervisor, and architecture. The com-
mittee has expressed above and in Chapter 4 the need for innovation with 
reference to that stack. However, some long-term work should focus on 
whether the von Neumann stack is best for our parallel future. The exami-
nation will require teams of computer scientists in many subdisciplines. 
Ideas may focus on changing the details of an interface (for example, 
new instructions) or even on displacing a portion of the stack (for exam-
ple, compiling straight down to field-programmable gate arrays). Work 
should explore first what is possible and later how to move IT from where 
it is today to where we want it to be.

Recommendation: Focus long-term efforts on rethinking of the canonical 
computing “stack”—applications, programming language, compiler, run-
time, virtual machine, operating system, hypervisor, and architecture—in 
light of parallelism and resource-management challenges. 

Finally, the fundamental question of power efficiency merits consid-
erable research attention. Chapter 3 explains in great detail the power 
limitations that we are running up against with CMOS technology. But 

6 For example, in the 1930s AT&T could see the limitations of relays and vacuum tubes for 
communication switches and began the search for solid-state devices. Ultimately, AT&T Bell 
Labs discovered the solid-state semiconductor transistor, which, after several generations 
of improvements, became the foundation of today’s IT. Even earlier, the breakthrough in-
novation of the stored-program computer architecture (EDSAC) replacing the patch-panel 
electronic calculator (ENIAC) changed the fundamental approach to computing and opened 
the door for the computing revolution of the last 60 years. See Arthur W. Burks, Herman H. 
Goldstine, and John von Neumann, 1946, Preliminary Discussion of the Logical Design of 
an Electronic Computing Instrument, Princeton, N.J.: Institute for Advanced Study, available 
online at http://www.cs.unc.edu/~adyilie/comp265/vonNeumann.html.
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the power challenges go beyond chip and architectural considerations 
and warrant attention at all levels of the computing system. New parallel-
programming models and approaches will also have an effect on power 
needs. Thus, research and development efforts are needed in multiple 
dimensions, with high priority going to software, then to application-
specific devices, and then, as described earlier in this report, to alternative 
devices.7

Recommendation: Invest in research and development to make com-
puter systems more power-efficient at all levels of the system, including 
software, application-specific approaches, and alternative devices. Such 
efforts should address ways in which software and system architectures 
can improve power efficiency, such as by exploiting locality and the use 
of domain-specific execution units.

The need for power efficiency at the processor level was explored in 
detail in Chapter 3. That chapter explored the decreasing rate of energy-
use reduction by silicon technology as feature sizes decrease. One of the 
consequences of that trend is a flattening of the energy efficiency of com-
puting devices; that is, a given level of performance improvement from 
a new generation of devices comes with a higher energy need than was 
the case in previous generations. The increased energy need has broad 
implications for the sustainability of computing growth from an economic 
and environmental perspective. That is particularly true for the kinds of 
server-class systems that are relied on by businesses and users of cloud-
computing services.8

If improvements in energy efficiency of computing devices flatten 
out while hardware-cost improvements continue at near historical rates, 
there will be a shift in the economic costs of computing. The cost basis 
for deploying computer servers will change as energy-related costs as a 
fraction of total IT expenses begin to increase. To some extent, that has 
already been observed by researchers and IT professionals, and this trend 

7 Indeed, a new National Science Foundation science and technology center, the Center for 
Energy Efficient Electronics Science (ES3), has recently been announced. The press release for 
the center quotes center Director Eli Yablonovitch: “There has been great progress in mak-
ing transistor circuits more efficient, but further scientific breakthroughs will be needed to 
achieve the six-orders-of-magnitude further improvement that remain before we approach 
the theoretical limits of energy consumption.” See Sarah Yang, 2010, NSF awards $24.5 
million for center to stem increase of electronics power draw, UC Berkeley News, February 
23, 2010, available online at http://berkeley.edu/news/media/releases/2010/02/23_nsf_
award.shtml.

8 For more on data centers, their design, energy efficiency, and so on, see Luiz Barroso 
and Urs Holzle, 2009, The Datacenter as a Computer: An Introduction to the Design of 
Warehouse-Scale Machines, San Rafael, Cal.: Morgan & Claypool, available online at http://
www.morganclaypool.com/doi/abs/10.2200/S00193ED1V01Y200905CAC006. 
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is partially responsible for the increased attention being given to so-called 
green-computing efforts.9

The following simple model illustrates the relative weight of two 
of the main components of IT expenses for large data centers: server-
hardware depreciation and electricity consumption. Assume a data center 
filled mostly with a popular midrange server system that is marketed as 
a high-efficiency system: a Dell PowerEdge Smart 2950 III. As of Decem-
ber 2008, a reasonable configuration of the system was priced at about 
US$6,000 and may consume from 208 W (at idle) to 313 W (under scien-
tific workload) with an average consumption estimated at 275 W.10 When 
the system is purchased as part of a large order, vendors typically offer 
discounts of at least 15 percent, bringing the actual cost closer to US$5,000. 
With servers having an operational lifetime of about 4 years, the total 
energy used by this server in operation is 9,636 kWh, which translates to 
US$674.52 if it is using the U.S. average industrial cost of electricity for 
2008, US$0.0699/kWh.11 The typical energy efficiency of data-center facili-
ties can multiply IT power consumption by 1.8-2.0,12 which would result 
in an actual electricity cost of running the server of up to about US$1,300.

According to that rough model, electricity costs for the server could 
correspond to about one-fourth of its hardware costs. If hardware-cost 
efficiency (performance/hardware costs) continues to improve at his-
torical rates but energy efficiency (performance/electricity costs) stops 
improving, the electricity costs would surpass hardware costs within 3 
years. At that point, electricity use could become a primary limiting factor 
in the growth of aggregate computing performance. Another implication 
of such a scenario is that at that point most of the IT expenses would be 
funding development and innovation not in the computing field but in 
the energy generation and distribution sectors of the economy, and this 

9 See, for example, Maury Wright’s article, which examines improving power-conversion 
efficiency (arguably low-hanging fruit among the suite of challenges that need to be ad-
dressed): Maury Wright, 2009, Efficient architectures move sources closer to loads, EE Times 
Design, January 26, 2009, available online at http://www.eetimes.com/showArticle.jht
ml?articleID=212901943&cid=NL_eet. See also Randy H. Katz, 2009, Tech titans building 
boom, IEEE Spectrum, February 2009, available online at http://www.spectrum.ieee.org/
green-tech/buildings/tech-titans-building-boom. 

10 See an online Dell power calculator in Planning for energy requirements with Dell serv-
ers, storage, and networking, available online at http://www.dell.com/content/topics/top-
ic.aspx/global/products/pedge/topics/en/config_calculator?c=us&cs=555&l=en&s=biz. 

11 See U.S. electric utility sales at a site of DOE’s Energy Information Administration: 2010, 
U.S. electric utility sales, revenue and average retail price of electricity, available online at 
http://www.eia.doe.gov/cneaf/electricity/page/at_a_glance/sales_tabs.html. 

12 See the TPC-C executive summary for the Dell PowerEdge 2900 at the Transactions 
Processing Performance Council Web site, June 2008, PowerEdge 2900 Server with Ora-
cle Database 11g Standard Edition One, available online at http://www.tpc.org/results/
individual_results/Dell/Dell_2900_061608_es.pdf. 
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would adversely affect the virtuous cycle described in Chapter 2 that has 
propelled so many advances in computing technology.

Energy use could curb the growth in computing performance in 
another important way: by consuming too much of the planet’s energy 
resources. We are keenly aware today of our planet’s limited energy 
budget, especially for electricity generation, and of the environmental 
harm that can result from ignoring such limitations. Computing con-
fers an immense benefit on society, but that benefit is offset in part by 
the resources that it consumes. As computing becomes more pervasive 
and the full value to society of the field’s great advances over the last 
few decades begins to be recognized, its energy footprint becomes more 
noticeable.

An Environmental Protection Agency report to Congress in 200713 
states that servers consumed about 1.5 percent of the total electricity gen-
erated in the United States in 2006 and that server energy use had doubled 
from 2000 to 2006. The same report estimated that under current efficiency 
trends, server power consumption could double once more from 2006 to 
2011—a growth that would correspond to the energy output of 10 new 
power plants (about 5 GW).14 An interesting way to understand the effect 
of such growth rates is to compare them with the projections for growth 
in electricity generation in the United States. The U.S. Department of 
Energy estimated that about 87 MW of new summer generation capacity 
would come on line in 2006-2011—an increase of less than 9 percent in 
that period.15 

On the basis of those projections, growth in server energy use is out-
pacing growth in overall electricity use by a wide margin; server use 
is expected to grow at about 14 percent a year compared with overall 
electricity generation at about 1.74 percent a year. If those rates are main-
tained, server electricity use will surpass 5 percent of the total U.S. gen-
erating capacity by 2016.

The net environmental effect of more (or better) computing capa-
bilities goes beyond simply accounting for the resources that server-class 

13 See the Report to Congress of the U.S. Environmental Protection Agency (EPA) on the 
Energy Star Program (EPA, 2007, Report to Congress on Server and Data Center Energy 
Efficiency Public Law 109-431, Washington, D.C.: EPA, available online at http://www.
energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_ 
Congress_Final1.pdf). 

14 An article in the EE Times suggests that data-center power requirements are increasing 
by as much as 20 percent per year. See Mark LaPedus, 2009, Green-memory movement takes 
root, EE Times, May 18, 2009, available online at http://www.eetimes.com/showArticle.jh
tml?articleID=217500448&cid=NL_eet. 

15 Find information on DOE planned nameplate capacity additions from new generators at 
DOE, 2010, Planned nameplate capacity additions from new generators, by energy source, 
available online at http://www.eia.doe.gov/cneaf/electricity/epa/epat2p4.html. 
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computers consume. It must also include the energy and emission savings 
that are enabled by additional computing capacity. A joint report by The 
Climate Group and the Global e-Sustainability Initiative (GeSI) states that 
although the worldwide carbon footprint of the computing and telecom-
munication sectors might triple from 2002 to 2020, the same sectors could 
deliver over 5 times their footprint in emission savings in other industries 
(including transportation and energy generation and transmission).16

Whether that prediction is accurate depends largely on how smartly 
computing is deployed in those sectors. It is clear, however, that even 
if the environmental effect of computing machinery is dwarfed by the 
environmental savings made possible by its use, computing will remain a 
large consumer of electricity, so curbing consumption of natural resources 
should continue to have high priority.

Transitioning of Legacy Applications

It will take time for results of the proposed research agenda to come 
to fruition. Society has an immediate and pressing need to use current 
and emerging chip multiprocessor systems effectively. To that end, the 
committee offers two recommendations related to current development 
and engineering practices.

Although we expect long-term success in the effective use of parallel 
systems to come from rethinking architectures and algorithms and devel-
oping new programming methods, this strategy will probably sacrifice 
the backward-platform and cross-platform compatibility that has been 
an economic cornerstone of IT for decades. To salvage value from the 
nation’s current, substantial IT investment, we should seek ways to bring 
sequential programs into the parallel world. On the one hand, we expect 
no silver bullets to enable automatic black-box transformation. On the 
other hand, it is prohibitively expensive to rewrite many applications. In 
fact, the committee believes that industry will not migrate its installed 
base of software to a new parallel future without good, reliable tools to 
facilitate the migration. Not only can industry not afford a brute-force 
migration financially, but also it cannot take the chance that innate latent 
bugs will manifest, potentially many years after the original software 
engineers created the code being migrated. If we cannot find a way to 
smooth the transition, this single item could stall the entire parallel-
ism effort, and innovation in many types of IT might well stagnate. The 
committee urges industry and academe to develop tools that provide a 

16 Global e-Sustainability Initiative, 2008, Smart2020: Enabling the Low Carbon Economy 
in the Information Age, Brussels, Belgium: Global e-Sustainability Initiative, available online 
at http://www.smart2020.org. 
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middle ground and give experts “power tools” that can assist with the 
hard work that will be necessary for vastly increased parallelization. In 
addition, emphasis should be placed on tools and strategies to enhance 
code creation, maintenance, verification, and adaptation. All are essential, 
and current solutions, which are often inadequate even for single-thread 
software development, are unlikely to be useful for parallel systems. 

Recommendation: Invest in the development of tools and methods to 
transform legacy applications to parallel systems.

Interface Standards

Competition in the private sector often (appropriately) encourages 
the development of proprietary interfaces and implementations that seek 
to create competitive advantage. In computer systems, however, a lack 
of standardization can also impede progress when many incompatible 
approaches allow none to achieve the benefits of wide adoption and 
reuse—and this is a major reason that industry participates in standards 
efforts. We therefore encourage the development of programming inter-
face standards. Standards can facilitate wide adoption of parallel pro-
gramming and yet encourage competition that will benefit all. Perhaps 
a useful model is the one used for Java: the standard was initially devel-
oped by a small team (not a standards committee), protected in incubation 
from devolving into many incompatible variants, and yet made public 
enough to facilitate use and adoption by many cooperating and compet-
ing entities.

Recommendation: To promote cooperation and innovation by shar-
ing, encourage development of open interface standards for paral-
lel programming rather than proliferating proprietary programming 
environments. 

PARALLEL-PROGRAMMING MODELS AND EDUCATION

As described earlier in this report, future growth in performance 
will be driven by parallel programs. Because most programs now in use 
are not parallel, we will need to rely on the creation of new parallel pro-
grams. Who will create those programs? Students must be educated in 
parallel programming at both the undergraduate and the graduate levels, 
both in computer science and in other domains in which specialists use 
computers. 
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Current State of Programming

One view of the current pool of practicing programmers is that there 
is a large disparity between the very best programmers and the rest in 
both time to solution and elegance of solution. The conventional wisdom 
in the field is that the difference in skills and productivity between the 
average programmer and the best programmers is a factor of 10 or more.17 
Opinions may vary on the specifics, but the pool of programmers breaks 
down roughly as follows:

A.	 A few highly trained, highly skilled, and highly productive com-
puter science (CS) system designers.

B.	 A few highly trained, highly skilled, and highly productive CS 
application developers.

C.	 Many moderately well-trained (average), moderately productive 
CS system developers. 

D.	 Many moderately productive developers without CS training.

The developers who are not CS-trained are domain scientists, busi-
ness people, and others who use computers as a tool to solve their prob-
lems. There are many such people. It is possible that fewer of those people 
will be able to program well in the future, because of the difficulty of 
parallel programming. However, if the CS community develops good 
abstractions and programming languages that make it easy to program 
in parallel, even more of those types of developers will be productive.

There is some chance that we will find solutions in which most 
programmers still program sequentially. Some existing successful sys-
tems, such as databases and Web services, exploit parallelism but do not 
require parallel programs to be written by most users and developers. 
For example, a developer writes a single-threaded database query that 
operates in parallel with other queries managed by the database system. 
Another more modern and popularly known example is MapReduce, 
which abstracts many programming problems for search and display into 
a sequence of Map and Reduce operations, as described in Chapter 4. 

Those examples are compelling and useful, but we cannot assume that 
such domain-specific solutions will generalize to all important and per-
vasive problems. In addition to the shift to new architectural approaches, 

17 In reality, the wizard programmers can have an even far greater effect on the organi-
zation than the one order of magnitude cited. The wizards will naturally gravitate to an 
approach to problems that saves tremendous amounts of effort and will debug later, and 
they will keep a programming team out of trouble far out of proportion to the 10:1 ratio 
mentioned. Indeed, as in arts in general, there is a sense in which no number of ordinary 
people can be combined to accomplish what one gifted person can contribute.
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attention must be paid to the curriculum to ensure that students are pre-
pared to keep pace with the expected changes in software systems and 
development. Without adequate training, we will not produce enough 
of the category (A) and (B) highly skilled programmers above. Without 
them, who will build the programming abstraction systems?

Parallel computing and thus parallel programming showed great 
promise in the 1980s with comparably great expectations about what 
could be accomplished. However, apart from horizontally scalable pro-
gramming paradigms, such as MapReduce, limited progress resulted in 
frustration and comparatively little progress in recent years. Accordingly, 
the focus recently has been more on publishable research results on the 
theory of parallelism and new languages and approaches and less on sim-
plification of expression and practical use of parallelism and concurrency. 

There has been much investment and comparatively limited success 
in the approach of automatically extracting parallelism from sequential 
code. There has been considerably less focus on effective expression of 
parallelism in such a way that software is not expected to guess what 
parallelism was present in the original problem or computational formu-
lation. Those questions remain unresolved. What should we teach?

Modern Computer-Science Curricula  
Ill-Equipped for a Parallel Future

In the last 20 years, what is considered CS has greatly expanded, and it 
has been increasingly interdisciplinary. Recently, many CS departments—
such as those at the Massachusetts Institute of Technology, Cornell Univer-
sity, Stanford University, and the Georgia Institute of Technology—have 
revised their curricula by reducing or eliminating a required core and 
adding multiple “threads” of concentrations from which students choose 
one or more specializations, such as computational biology, computer 
systems, theoretical computing, human-computer interaction, graphics, 
robotics, or artificial intelligence. With respect to the topic of the present 
report, the CS curriculum is not training undergraduate and graduate stu-
dents in either effective parallel programming or parallel computational 
thinking. But that knowledge is now necessary for effective programming 
of current commodity-parallel hardware, which is increasingly common 
in the form of CMPs and graphics processors, not to mention possible 
changes in systems of the future. 

Developers and system designers are needed. Developers design 
and program application software; system designers design and build 
parallel-programming systems—which include programming languages, 
compilers, runtime systems, virtual machines, and operating systems—to 
make them work on computer hardware. In most universities, parallel 
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programming is not part of the undergraduate curriculum for either 
CS students or scientists in other domains and is often presented as a 
graduate elective course for CS and electrical and computer engineering 
students. In the coming world of nearly ubiquitous parallel architectures, 
relegating parallelism to the boundaries of the curriculum will not suf-
fice. Instead, it will increasingly be a practical tool for domain scientists 
and will be immediately useful for software, system, and application 
development.

Parallel programming—even the parallel programming of today—is 
hard, but there are enough counterexamples to suggest that it may not be 
intractable. Computational reasoning for parallel problem-solving—the 
intellectual process of mapping the structure of a problem to a strategy 
for solution—is fairly straightforward for computer scientists and domain 
scientists alike, regardless of the level of parallelism involved or apparent 
in the solution. Most domain scientists—in such fields as physics, biology, 
chemistry, and engineering—understand the concepts of causality, corre-
lation, and independence (parallelism vs sequence). There is a mismatch 
between how scientists and other domain specialists think about their 
problems and how they express parallelism in their code. It therefore 
becomes difficult for both computer and noncomputer scientists to write 
programs. Straightforwardness is lost in the current expression of parallel 
programming. It is possible, and even common, to express the problem 
of parallel programming in a way that is complex and difficult to under-
stand, but the recommendations in this report are aimed at developing 
models and approaches in which such complexity is not necessary. 

Arguably, computational experimentation—performing science 
exploration with computer models—is becoming an important part of 
modern scientific endeavor. Computational experimentation is modern-
izing the scientific method. Consequently, the ability to express scientific 
theories and models in computational form is a critical skill for modern 
scientists. If computational models are to be targeted to parallel hardware, 
as we argue in this report, parallel approaches to reasoning and think-
ing will be essential. Jeannette Wing has argued18 for the importance of 
computational thinking, broadly, and a current National Research Council 
study is exploring that notion. A recent report of that study also touched 
on concurrency and parallelism as part of computational thinking.19 With 
respect to the CS curriculum, because no general-purpose paradigm has 

18 Jeannette M. Wing, 2006, Computational thinking, Communications of the ACM 49(3): 
33-35.

19 See NRC, 2010, Report of a Workshop on the Scope and Nature of Computational Think-
ing, Washington, D.C.: The National Academies Press, available online at http://www.nap.
edu/catalog.php?record_id=12840. 
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emerged, universities should teach diverse parallel-programming lan-
guages, abstractions, and approaches until effective ways of teaching 
and programming emerge. The necessary shape of the needed changes 
will not be clear until some reasonably general parallel-programming 
methods have been devised and shown to be promising. Nevertheless, 
possible models for reform include making parallelism an intrinsic part of 
every course (algorithms, architecture, programming, operating systems, 
compilers, and so on) as a fundamental way of solving problems; adding 
specialized courses, such as parallel computational reasoning, parallel 
algorithms, parallel architecture, and parallel programming; and creat-
ing an honors section for advanced training in parallelism (this option is 
much less desirable in that it enforces the notion that parallel program-
ming is outside mainstream approaches). It will be important to try many 
parallel-programming languages and models in the curriculum and in 
research to sort out which ones will work best and to learn the most effec-
tive methods. 

Recommendation: Incorporate in computer science education an 
increased emphasis on parallelism, and use a variety of methods and 
approaches to prepare students better for the types of computing 
resources that they will encounter in their careers.

GAME OVER OR NEXT LEVEL?

Since the invention of the transistor and the stored-program computer 
architecture in the 1ate 1940s, we have enjoyed over a half-century of 
phenomenal growth in computing and its effects on society. Will the sec-
ond half of the 20th century be recorded as the golden age of computing 
progress, or will we now step up to the next set of challenges and continue 
the growth in computing that we have come to expect? 

Our computing models are likely to continue to evolve quickly in the 
foreseeable future. We expect that there are still many changes to come, 
which will require evolution of combined software and hardware sys-
tems. We are already seeing substantial centralization of computational 
capability in the cloud-computing paradigm with its attendant challenges 
to data storage and bandwidth. It is also possible to envision an abun-
dance of Internet-enabled embedded devices that run software that has 
the sophistication and complexity of software running on today’s general-
purpose processors. Networked, those devices will form a ubiquitous and 
invisible computing platform that provides data and services that we can 
only begin to imagine today. These drivers combine with the technical 
constraints and challenges outlined in the rest of this report to reinforce 
the notion that computing is changing at virtually every level.
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The end of the exponential runup in uniprocessor performance and 
the market saturation of the general-purpose processor mark the end 
of the “killer micro.” This is a golden time for innovation in computing 
architectures and software. We have already begun to see diversity in 
computer designs to optimize for such metrics as power and throughput. 
The next generation of discoveries will require advances at both the hard-
ware and the software levels. 

There is no guarantee that we can make future parallel computing 
ubiquitous and as easy to use as yesterday’s sequential computer, but 
unless we aggressively pursue efforts suggested by the recommendations 
above, it will be game over for future growth in computing performance. 
This report describes the factors that have led to the limitations on growth 
in the use of single processors based on CMOS technology. The recom-
mendations here are aimed at supporting and focusing research, devel-
opment, and education in architectures, power, and parallel computing 
to sustain growth in computer performance and enjoy the next level of 
benefits to society. 
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A

A History of Computer Performance

Computer performance has historically been defined by how fast a 
computer system can execute a single-threaded program to per-
form useful work. Why care about computer performance? What 

is the work? How has computer performance improved? 
Better computer performance matters in two ways. First, in what 

is often called capability computing, it can enable computations that 
were previously not practical or worthwhile. It does no good to compute 
tomorrow’s weather forecast in 24 hours, but 12-hour computation is 
valuable. Second, when performance scales up more rapidly than com-
puter cost—as has often been the case—better cost performance allows 
computation to be used where it was previously not economically tenable. 
Neither spreadsheets on $1,000,000 mainframes nor $10,000 MP3 players 
make sense.

Computer performance should be evaluated on the basis of the work 
that matters. Computer vendors should analyze their designs with the 
(present and future) workloads of their (present and future) custom-
ers, and those purchasing computers should consider their own (present 
and future) workloads with alternative computers under consideration. 
Because the above is time-consuming—and therefore expensive—many 
people evaluate computers by using standard benchmark suites. Each 
vendor produces benchmark results for its computers, often after opti-
mizing computers for the benchmarks. Each customer can then compare 
benchmark results and get useful information—but only if the benchmark 
suite is sufficiently close to the customer’s actual workloads.
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Two popular benchmark suites are SPECint2000 and SPECfp2000. 
Both are produced by the Standard Performance Evaluation Corporation 
(SPEC) (http://www.spec.org/). SPECint2000 includes 12 integer codes, 
and SPECfp200 has 14 floating-point benchmarks. Below, we use SPEC 
data to examine computer-performance trends over the last 2 decades. 
The results are valuable, but their absolute numbers should be regarded 
as rough approximations of systems’ absolute performance. Nevertheless, 
they are much better than results based on “peak rate,” which gives a 
computer’s speed when it is doing nothing.

Figures A.1 (INT) and A.2 (FP) display results for SPECint2000 and 
SPECfp2000, respectively. The X axes give the years from 1985 or 1988 to 
2007. The logarithmic Y axes give the SPEC rate normalized to circa 1985. 
Thus, a value of 10 means that the computer is 10 times faster than (can 
execute the work in one-tenth the time of) a 1985 model.

The Figures A.1 and A.2 reveal two trends. First, computer perfor-
mance has improved exponentially (linearly on a semilogarithmic plot) for 
most years under study. In particular, until 2004 or so, both SPECint2000 
and SPECfp2000 improved at a compound annual rate exceeding 50% (for 
example, a factor of 100 in about 10 years).

Second, the performance improvements after 2004 have been poorer. 
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FIGURE A.1 Integer application performance (SPECint2000) over time (1985-2010).
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FIGURE A.2 Floating-point application performance (SPECfp2000) over time 
(1985-2010).

One could hope that the results are an anomaly and that computer ven-
dors will soon return to robust annual improvements. However, public 
roadmaps and private conversations with vendors reveal that single-
threaded computer-performance gains have entered a new era of modest 
improvement.

Trends in computer-clock frequency offer another reason for pessi-
mism. Clock frequency is the “heart rate” of a computer, and its improve-
ment has traditionally been a major component of computer-performance 
improvement. Figure A.3 (FREQ) illustrates clock frequency over time 
in megahertz (millions of cycles per second). Clearly, clock-frequency 
improvements have also stalled (especially if the 4.7-GHz power 6 is more 
an exception than the new rule).

Moreover, the principal reason that clock-frequency improvement has 
slowed greatly is that higher clock frequencies demand greater power 
and the power used by modern microprocessors has reached a level that 
make increases questionable from an economic perspective and may even 
encourage clock-frequency reductions. Figure A.4 (POWER) plots chip 
power (in watts) versus. year. Like clock frequencies, power consumed 
by a chip increased exponentially (linearly on a semilogarithmic plot) for 
years, but it has recently reached a plateau.
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FIGURE A.3 Microprocessor clock frequency (MHz) over time (1985-2010).

FIGURE A.4 Microprocessor power dissipation (watts) over time (1985-2010).
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To put those trends into context, we should look further back in 
history. Kurzweil and others argue that the performance improvements 
during the recent microprocessor or Moore’s law era follow a longer 
historical trend.1 In particular, in Kurzweil’s estimates of 20th-century 
computer-performance improvements, he finds that over the whole cen-
tury, computer performance improved exponentially and that exponential 
improvement was, if anything, accelerating. Although his exact numbers 
are open to debate, it is clear that computer performance grew exponen-
tially over the entirety of the 20th century.

What will the rest of the 21st century bring? Optimists predict that 
Kurzweil’s trend will continue. Pessimists worry that single-threaded 
architectures and complementary metal oxide semiconductor technology 
are reaching their limits, that multithreaded programming has not been 
broadly successful, and that alternative technologies are still insufficient. 
Our job, as encouraged in the rest of this report, is to prove the optimists 
correct.

1 The Law of Accelerating Returns, by Ray Kurzweil, http://www.kurzweilai.net/articles/
art0134.html?printable=1.
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Samuel H. Fuller (Chair), NAE, is the CTO and vice president of research 
and development at Analog Devices, Inc. (ADI) and is responsible for its 
technology and product strategy. He also manages university research 
programs and advanced development initiatives and supports the growth 
of ADI product-design centers around the world. Dr. Fuller has man-
aged the development of EDA tools and methods and design of digital 
signal processors and sponsored the development of advanced opto-
electronic integrated circuits. Before joining ADI in 1998, Dr. Fuller was 
vice president of research at Digital Equipment Corporation and built 
the company’s corporate research programs, which included laboratories 
in Massachusetts, California, France, and Germany. While at Digital, he 
initiated work in local-area networking, RISC processors, distributed sys-
tems, and Internet search engines. He was also responsible for research 
programs with universities; the Massachusetts Institute of Technology 
Project Athena was one of the major programs. Earlier, Dr. Fuller was 
an associate professor of computer science and electrical engineering at 
Carnegie Mellon University, where he led the design and performance 
evaluation of experimental multiprocessor computer systems. He holds 
a BS in electrical engineering from the University of Michigan and an 
MS and a PhD from Stanford University. He is a member of the board 
of Zygo Corporation and the Corporation for National Research Initia-
tives and serves on the Technology Strategy Committee of the Semicon-
ductor Industry Association. Dr. Fuller has served on several National 
Research Council studies, including the one that produced Cryptography’s 
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Role in Securing the Information Society, and was a founding member of the 
Research Council’s Computer Science and Telecommunications Board. He 
is a fellow of the Institute of Electrical and Electronics Engineers and the 
American Association for the Advancement of Science and a member of 
the National Academy of Engineering. 

Luiz André Barroso is a Distinguished Engineer at Google Inc., where his 
work has spanned a number of fields, including software-infrastructure 
design, fault detection and recovery, power provisioning, networking 
software, performance optimizations, and the design of Google’s com-
puting platform. Before joining Google, he was a member of the research 
staff at Compaq and Digital Equipment Corporation, where his group did 
some of the pioneering work on processor and memory-system design for 
commercial workloads (such as database and Web servers). The group 
also designed Piranha, a scalable shared-memory architecture based on 
single-chip multiprocessing; this work on Piranha has had an important 
impact in the microprocessor industry, helping to inspire many of the 
multicore central processing units that are now in the mainstream. Before 
joining Digital, he was one of the designers of the USC RPM, an FPGA-
based multiprocessor emulator for rapid hardware prototyping. He has 
also worked at IBM Brazil’s Rio Scientific Center and lectured at PUC-Rio 
(Brazil) and Stanford University. He holds a PhD in computer engineering 
from the University of Southern California and a BS and an MS in electri-
cal engineering from the Pontifícia Universidade Católica, Rio de Janeiro. 

Robert P. Colwell, NAE, was Intel’s chief IA32 (Pentium) microprocessor 
architect from 1992 to 2000 and managed the IA32 Architecture group at 
Intel’s Hillsboro, Oregon, facility through the P6 and Pentium 4 proj-
ects. He was named the Eckert-Mauchly Award winner for 2005. He was 
elected to the National Academy of Engineering in 2006 “for contributions 
to turning novel computer architecture concepts into viable, cutting-edge 
commercial processors.” He was named an Intel fellow in 1996, and a fel-
low of the Institute of Electrical and Electronics Engineers (IEEE) in 2006. 
Previously, Dr. Colwell was a central processing unit architect at VLIW 
minisupercomputer pioneer Multiflow Computer, a hardware-design 
engineer at workstation vendor Perq Systems, and a member of technical 
staff at Bell Labs. He has published many technical papers and journal 
articles, is inventor or coinventor on 40 patents, and has participated in 
numerous panel sessions and invited talks. He is the Perspectives editor 
for IEEE’s Computer magazine, wrote the At Random column in 2002-2005, 
and is author of The Pentium Chronicles, a behind-the-scenes look at mod-
ern microprocessor design. He is currently an independent consultant. Dr. 
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Colwell holds a BSEE from the University of Pittsburgh and an MSEE and 
a PhD from Carnegie Mellon University.

William J. Dally, NAE, is the Willard R. and Inez Kerr Bell Professor 
of Engineering at Stanford University and chair of the Computer Sci-
ence Department. He is also chief scientist and vice president of NVIDIA 
Research. He has done pioneering development work at Bell Telephone 
Laboratories, the California Institute of Technology, and the Massa-
chusetts Institute of Technology, where he was a professor of electrical 
engineering and computer science. At Stanford University, his group 
has developed the Imagine processor, which introduced the concepts of 
stream processing and partitioned register organizations. Dr. Dally has 
worked with Cray Research and Intel to incorporate many of those inno-
vations into commercial parallel computers and with Avici Systems to 
incorporate the technology into Internet routers, and he cofounded Velio 
Communications to commercialize high-speed signaling technology and 
Stream Processors to commercialize stream-processor technology. He is a 
fellow of the Institute of Electrical and Electronics Engineers and of the 
Association for Computing Machinery (ACM) and has received numer-
ous honors, including the ACM Maurice Wilkes award. He has published 
more than 150 papers and is an author of the textbooks Digital Systems 
Engineering (Cambridge University Press, 1998) and Principles and Practices 
of Interconnection Networks (Morgan Kaufmann, 2003). Dr. Dally is a mem-
ber of the Computer Science and Telecommunications Board (CSTB) and 
was a member of the CSTB committee that produced the report Getting 
up to Speed: The Future of Supercomputing.

Dan Dobberpuhl, NAE, cofounder, president, and CEO of P. A. Semi, 
has been credited with developing fundamental breakthroughs in the 
evolution of high-speed and low-power microprocessors. Before start-
ing P. A. Semi, Mr. Dobberpuhl was vice president and general man-
ager of the broadband processor division of Broadcom Corporation. He 
came to Broadcom via an acquisition of his previous company, SiByte, 
Inc., founded in 1998, which was sold to Broadcom in 2000. Before that, 
he worked for Digital Equipment Corporation for more than 20 years, 
where he was credited with creating some of the most fundamental break-
throughs in microprocessing technology. In 1998, EE Times named Mr. 
Dobberpuhl as one of the “40 forces to shape the future of the Semicon-
ductor Industry.” In 2003, he was awarded the prestigious IEEE Solid 
State Circuits Award for “pioneering design of high-speed and low-power 
microprocessors.” In 2006, Mr. Dobberpuhl was elected to the National 
Academy of Engineering for “innovative design and implementation of 
high-performance, low-power microprocessors.” Mr. Dobberpuhl holds 

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980


APPENDIX B	 163

15 patents and has written many publications related to integrated circuits 
and central processing units, including being coauthor of the seminal text-
book Design and Analysis of VLSI Circuits, published by Addison-Wesley 
in 1985. He holds a bachelor’s degree in electrical engineering from the 
University of Illinois. 

Pradeep Dubey is a senior principal engineer and director of the Parallel 
Computing Lab, part of Intel Labs at Intel Corporation. His research focus 
is computer architectures to handle new application paradigms for the 
future computing environment efficiently. Dr. Dubey previously worked 
at IBM’s T. J. Watson Research Center and Broadcom Corporation. He 
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Power PC* architecture. He also worked on the design, architecture, and 
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i486TM, and Pentium® processors. He holds 26 patents and has published 
extensively. Dr. Dubey received a BS in electronics and communication 
engineering from Birla Institute of Technology, India, an MSEE from the 
University of Massachusetts at Amherst, and a PhD in electrical engineer-
ing from Purdue University. He is a fellow of the Institute of Electrical and 
Electronics Engineering. 

Mark D. Hill is a professor in both the Computer Sciences Department 
and the Electrical and Computer Engineering Department at the Uni-
versity of Wisconsin-Madison. Dr. Hill’s research targets the memory 
systems of multiple-processor and single-processor computer systems. 
His work emphasizes quantitative analysis of system-level performance. 
His research interests include parallel computer-system design (for exam-
ple, memory-consistency models and cache coherence), memory-system 
design (for example, caches and translation buffers), computer simulation 
(for example, parallel systems and memory systems), and software (page 
tables and cache-conscious optimizations for databases and pointer-based 
codes). He is the inventor of the widely used 3C model of cache behavior 
(compulsory, capacity, and conflict misses). Dr. Hill’s current research is 
mostly part of the Wisconsin Multifacet Project that seeks to improve the 
multiprocessor servers that form the computational infrastructure for 
Internet Web servers, databases, and other demanding applications. His 
work focuses on using the transistor bounty predicted by Moore’s law 
to improve multiprocessor performance, cost, and fault tolerance while 
making these systems easier to design and program. Dr. Hill is a fellow 
of the Association for Computing Machinery (ACM) (2004) for contribu-
tions to memory-consistency models and memory-system design and a 
fellow of the Institute of Electrical and Electronics Engineers (2000) for 
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Wisconsin Vilas Associate in 2006, was a co-winner of the best-paper 
award in VLDB in 2001, was named a Wisconsin Romnes fellow in 1997, 
and won a National Science Foundation Presidential Young Investigator 
award in 1989. He is a director of ACM SIGARCH, coeditor of Readings 
in Computer Architecture (2000), and coinventor on 28 U.S. patents (sev-
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positions at Universidad Politecnica de Catalunya (2002-2003) and Sun 
Microsystems (1995-1996). Dr. Hill earned a PhD in computer science from 
the University of California, Berkeley (UCB) in 1987, an MS in computer 
science from UCB in 1983, and a BSE in computer engineering from the 
University of Michigan-Ann Arbor in 1981.

Mark Horowitz, NAE, is the associate vice provost for graduate educa-
tion, working on special programs, and the Yahoo! Founders Professor of 
the School of Engineering at Stanford University. In addition, he is chief 
scientist at Rambus Inc. He received his BS and MS in electrical engineer-
ing from the Massachusetts Institute of Technology in 1978 and his PhD 
from Stanford in 1984. Dr. Horowitz has received many awards, including 
a 1985 Presidential Young Investigator Award, the 1993 ISSCC Best Paper 
Award, the ISCA 2004 Most Influential Paper of 1989, and the 2006 Don 
Pederson IEEE Technical Field Award. He is a fellow of the Institute of 
Electrical and Electronics Engineers and the Association for Computing 
Machinery and is a member of the National Academy of Engineering. 
Dr. Horowitz’s research interests are quite broad and span using electri-
cal engineering and computer science analysis methods on problems in 
molecular biology and creating new design methods for analogue and 
digital very-large-scale implementation circuits. He has worked on many 
processor designs, from early RISC chips to creating some of the first 
distributed shared-memory multiprocessors and is currently working on 
on-chip multiprocessor designs. Recently, he has worked on a number 
of problems in computational photography. In 1990, he took leave from 
Stanford to help start Rambus Inc., a company designing high-bandwidth 
memory-interface technology, and has continued work in high-speed 
I/O at Stanford. His current research includes multiprocessor design, 
low-power circuits, high-speed links, computational photography, and 
applying engineering to biology.

David Kirk, NAE, was NVIDIA’s chief scientist since from 1997 to 2009 
and is now an NVIDIA fellow. His contributions include leading NVIDIA 
graphics-technology development for today’s most popular consumer 
entertainment platforms. In 2002, Dr. Kirk received the SIGGRAPH Com-
puter Graphics Achievement Award for his role in bringing high-perfor-
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mance computer graphics systems to the mass market. From 1993 to 1996, 
he was chief scientist and head of technology for Crystal Dynamics, a 
video-game manufacturing company. From 1989 to 1991, Dr. Kirk was an 
engineer for the Apollo Systems Division of Hewlett-Packard Company. 
He is the inventor on 50 patents and patent applications related to graph-
ics design and has published more than 50 articles on graphics technol-
ogy. Dr. Kirk holds a BS and an MS in mechanical engineering from the 
Massachusetts Institute of Technology and an MS and a PhD in computer 
science from the California Institute of Technology. 

Monica Lam is a professor of computer science at Stanford University, 
having joined the faculty in 1988. She has contributed to research on a 
wide array of computer-systems topics, including compilers, program 
analysis, operating systems, security, computer architecture, and high-
performance computing. Her recent research focus is to make computing 
and programming easier. In the Collective Project, she and her research 
group developed the concept of a livePC: subscribers to the livePC will 
automatically run the latest of the published PC virtual images with each 
reboot. That approach allows computers to be managed scalably and 
securely. In 2005, the group started a company called moka5 to transfer the 
technology to industry. In another research project, her program-analysis 
group has developed a collection of tools for improving software security 
and reliability. They developed the first scalable context-sensitive inclu-
sion-based pointer analysis and a freely available tool called BDDBDDB 
that allows programmers to express context-sensitive analyses simply by 
writing Datalog queries. Other tools developed include Griffin, static and 
dynamic analysis for finding security vulnerabilities in Web applications, 
such as SQL injection; a static and dynamic program query language 
called PQL; a static memory-leak detector called Clouseau; a dynamic 
buffer-overrun detector called CRED; and a dynamic error-diagnosis tool 
called DIDUCE. Previously, Dr. Lam led the Stanford University Interme-
diate Format Compiler project, which produced a widely used compiler 
infrastructure known for its locality optimizations and interprocedural 
parallelization. Many of the compiler techniques that she developed have 
been adopted by industry. Her other research projects included the archi-
tecture and compiler for the CMU Warp machine, a systolic array of very-
long-instruction-word processors, and the Stanford DASH distributed 
shared-memory machine. In 1998, she took a sabbatical leave from Stan-
ford University to help to start Tensilica Inc., a company that specializes 
in configurable processor cores. She received a BSc from the University of 
British Columbia in 1980 and a PhD in computer science from Carnegie 
Mellon University in 1987.
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Charles Moore is an Advanced Micro Devices (AMD) corporate fellow and 
the CTO for AMD’s Technology Group. He is the chief engineer of AMD’s 
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master inventor. He has been granted 29 US patents and has several oth-
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Katherine Yelick is a professor in the Computer Science Division of the 
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niques for automatically optimizing sparse matrix algorithms for memory 
hierarchies. Another field that she has worked in is architectures for 
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joint effort with David Patterson, she developed an architecture to take 
advantage of this technology. The IRAM processor is a single-chip system 
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ing dependable mission-critical systems; Biometric Recognition: Challenges 
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Cramming More Components onto
Integrated Circuits
GORDON E. MOORE, LIFE FELLOW, IEEE

With unit cost falling as the number of components per circuit
rises, by 1975 economics may dictate squeezing as many as 65000
components on a single silicon chip.
The future of integrated electronics is the future of

electronics itself. The advantages of integration will bring
about a proliferation of electronics, pushing this science
into many new areas.
Integrated circuits will lead to such wonders as home

computers—or at least terminals connected to a central
computer—automatic controls for automobiles, and per-
sonal portable communications equipment. The electronic
wristwatch needs only a display to be feasible today.
But the biggest potential lies in the production of large

systems. In telephone communications, integrated circuits
in digital lters will separate channels on multiplex equip-
ment. Integrated circuits will also switch telephone circuits
and perform data processing.
Computers will be more powerful, and will be organized

in completely different ways. For example, memories built
of integrated electronics may be distributed throughout
the machine instead of being concentrated in a central
unit. In addition, the improved reliability made possible
by integrated circuits will allow the construction of larger
processing units. Machines similar to those in existence
today will be built at lower costs and with faster turn-
around.

I. PRESENT AND FUTURE
By integrated electronics, I mean all the various tech-

nologies which are referred to as microelectronics today
as well as any additional ones that result in electronics
functions supplied to the user as irreducible units. These
technologies were rst investigated in the late 1950’s. The
object was to miniaturize electronics equipment to include
increasingly complex electronic functions in limited space
with minimum weight. Several approaches evolved, includ-
ing microassembly techniques for individual components,
thin-lm structures, and semiconductor integrated circuits.

Reprinted from Gordon E. Moore, “Cramming More Components onto
Integrated Circuits,” Electronics, pp. 114–117, April 19, 1965.
Publisher Item Identier S 0018-9219(98)00753-1.

Each approach evolved rapidly and converged so that
each borrowed techniques from another. Many researchers
believe the way of the future to be a combination of the
various approaches.
The advocates of semiconductor integrated circuitry are

already using the improved characteristics of thin-lm
resistors by applying such lms directly to an active semi-
conductor substrate. Those advocating a technology based
upon lms are developing sophisticated techniques for the
attachment of active semiconductor devices to the passive
lm arrays.
Both approaches have worked well and are being used

in equipment today.

II. THE ESTABLISHMENT

Integrated electronics is established today. Its techniques
are almost mandatory for new military systems, since the
reliability, size, and weight required by some of them is
achievable only with integration. Such programs as Apollo,
for manned moon ight, have demonstrated the reliability
of integrated electronics by showing that complete circuit
functions are as free from failure as the best individual
transistors.
Most companies in the commercial computer eld have

machines in design or in early production employing inte-
grated electronics. These machines cost less and perform
better than those which use “conventional” electronics.
Instruments of various sorts, especially the rapidly in-

creasing numbers employing digital techniques, are starting
to use integration because it cuts costs of both manufacture
and design.
The use of linear integrated circuitry is still restricted

primarily to the military. Such integrated functions are ex-
pensive and not available in the variety required to satisfy a
major fraction of linear electronics. But the rst applications
are beginning to appear in commercial electronics, partic-
ularly in equipment which needs low-frequency ampliers
of small size.

III. RELIABILITY COUNTS
In almost every case, integrated electronics has demon-

strated high reliability. Even at the present level of pro-
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duction—low compared to that of discrete components—it
offers reduced systems cost, and in many systems improved
performance has been realized.
Integrated electronics will make electronic techniques

more generally available throughout all of society, perform-
ing many functions that presently are done inadequately by
other techniques or not done at all. The principal advantages
will be lower costs and greatly simplied design—payoffs
from a ready supply of low-cost functional packages.
For most applications, semiconductor integrated circuits

will predominate. Semiconductor devices are the only rea-
sonable candidates presently in existence for the active
elements of integrated circuits. Passive semiconductor el-
ements look attractive too, because of their potential for
low cost and high reliability, but they can be used only if
precision is not a prime requisite.
Silicon is likely to remain the basic material, although

others will be of use in specic applications. For example,
gallium arsenide will be important in integrated microwave
functions. But silicon will predominate at lower frequencies
because of the technology which has already evolved
around it and its oxide, and because it is an abundant and
relatively inexpensive starting material.

IV. COSTS AND CURVES
Reduced cost is one of the big attractions of integrated

electronics, and the cost advantage continues to increase
as the technology evolves toward the production of larger
and larger circuit functions on a single semiconductor
substrate. For simple circuits, the cost per component is
nearly inversely proportional to the number of components,
the result of the equivalent piece of semiconductor in
the equivalent package containing more components. But
as components are added, decreased yields more than
compensate for the increased complexity, tending to raise
the cost per component. Thus there is a minimum cost
at any given time in the evolution of the technology. At
present, it is reached when 50 components are used per
circuit. But the minimum is rising rapidly while the entire
cost curve is falling (see graph). If we look ahead ve
years, a plot of costs suggests that the minimum cost per
component might be expected in circuits with about 1000
components per circuit (providing such circuit functions
can be produced in moderate quantities). In 1970, the
manufacturing cost per component can be expected to be
only a tenth of the present cost.
The complexity for minimum component costs has in-

creased at a rate of roughly a factor of two per year
(see graph). Certainly over the short term this rate can be
expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly
constant for at least ten years. That means by 1975, the
number of components per integrated circuit for minimum
cost will be 65 000.
I believe that such a large circuit can be built on a single

wafer.

Fig. 1.

V. TWO-MIL SQUARES

With the dimensional tolerances already being employed
in integrated circuits, isolated high-performance transistors
can be built on centers two-thousandths of an inch apart.
Such a two-mil square can also contain several kilohms
of resistance or a few diodes. This allows at least 500
components per linear inch or a quarter million per square
inch. Thus, 65 000 components need occupy only about
one-fourth a square inch.
On the silicon wafer currently used, usually an inch or

more in diameter, there is ample room for such a structure if
the components can be closely packed with no space wasted
for interconnection patterns. This is realistic, since efforts to
achieve a level of complexity above the presently available
integrated circuits are already under way using multilayer
metallization patterns separated by dielectric lms. Such a
density of components can be achieved by present optical
techniques and does not require the more exotic techniques,
such as electron beam operations, which are being studied
to make even smaller structures.

VI. INCREASING THE YIELD

There is no fundamental obstacle to achieving device
yields of 100%. At present, packaging costs so far exceed
the cost of the semiconductor structure itself that there is no
incentive to improve yields, but they can be raised as high
as is economically justied. No barrier exists comparable
to the thermodynamic equilibrium considerations that often
limit yields in chemical reactions; it is not even necessary
to do any fundamental research or to replace present
processes. Only the engineering effort is needed.
In the early days of integrated circuitry, when yields were

extremely low, there was such incentive. Today ordinary
integrated circuits are made with yields comparable with
those obtained for individual semiconductor devices. The
same pattern will make larger arrays economical, if other
considerations make such arrays desirable.
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Fig. 2.

Fig. 3.

VII. HEAT PROBLEM
Will it be possible to remove the heat generated by tens

of thousands of components in a single silicon chip?
If we could shrink the volume of a standard high-

speed digital computer to that required for the components
themselves, we would expect it to glow brightly with
present power dissipation. But it won’t happen with in-
tegrated circuits. Since integrated electronic structures are
two dimensional, they have a surface available for cooling
close to each center of heat generation. In addition, power is
needed primarily to drive the various lines and capacitances
associated with the system. As long as a function is conned
to a small area on a wafer, the amount of capacitance
which must be driven is distinctly limited. In fact, shrinking
dimensions on an integrated structure makes it possible to
operate the structure at higher speed for the same power
per unit area.

VIII. DAY OF RECKONING
Clearly, we will be able to build such component-

crammed equipment. Next, we ask under what circum-
stances we should do it. The total cost of making a
particular system function must be minimized. To do so,
we could amortize the engineering over several identical
items, or evolve exible techniques for the engineering of
large functions so that no disproportionate expense need
be borne by a particular array. Perhaps newly devised
design automation procedures could translate from logic

diagram to technological realization without any special
engineering.
It may prove to be more economical to build large

systems out of smaller functions, which are separately pack-
aged and interconnected. The availability of large functions,
combined with functional design and construction, should
allow the manufacturer of large systems to design and
construct a considerable variety of equipment both rapidly
and economically.

IX. LINEAR CIRCUITRY
Integration will not change linear systems as radically as

digital systems. Still, a considerable degree of integration
will be achieved with linear circuits. The lack of large-
value capacitors and inductors is the greatest fundamental
limitation to integrated electronics in the linear area.
By their very nature, such elements require the storage

of energy in a volume. For high it is necessary that the
volume be large. The incompatibility of large volume and
integrated electronics is obvious from the terms themselves.
Certain resonance phenomena, such as those in piezoelec-
tric crystals, can be expected to have some applications for
tuning functions, but inductors and capacitors will be with
us for some time.
The integrated RF amplier of the future might well con-

sist of integrated stages of gain, giving high performance
at minimum cost, interspersed with relatively large tuning
elements.
Other linear functions will be changed considerably. The

matching and tracking of similar components in integrated
structures will allow the design of differential ampliers of
greatly improved performance. The use of thermal feedback
effects to stabilize integrated structures to a small fraction
of a degree will allow the construction of oscillators with
crystal stability.
Even in the microwave area, structures included in the

denition of integrated electronics will become increasingly
important. The ability to make and assemble components
small compared with the wavelengths involved will allow
the use of lumped parameter design, at least at the lower
frequencies. It is difcult to predict at the present time
just how extensive the invasion of the microwave area by
integrated electronics will be. The successful realization of
such items as phased-array antennas, for example, using a
multiplicity of integrated microwave power sources, could
completely revolutionize radar.

84 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 1, JANUARY 1998

The Future of Computing Performance: Game Over or Next Level?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12980


APPENDIX C	 173

G. E. Moore is one of the new breed of elec-
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