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1

Introduction

The mathematical sciences are part of everyday life. Modern 
communication, transportation, science, engineering, technol-
ogy, medicine, manufacturing, security, and finance all depend 

on the mathematical sciences, which consist of mathematics, statistics, 
operations research, and theoretical computer science. In addition, 
there are very mathematical people working in theoretical areas of 
most fields of science and engineering who also contribute to the 
mathematical sciences.  There is a healthy continuum between research 
in the mathematical sciences, which may or may not be pursued with 
an application in mind, and the range of applications to which math-
ematical science advances contribute.  To function well in a technologi-
cally advanced society, every educated person should be familiar with 
multiple aspects of the mathematical sciences.

Although the mathematical sciences are pervasive, they are often invoked without 
an explicit awareness of their presence. For example, in the everyday operation of 
making a cell phone call, the mathematical sciences are essential in every step: We 
enter numbers in the decimal system, which are converted into sequences of bits (zeros 
and ones); next comes conversion to an electromagnetic signal; after an available 
receiver is located, the signal is transmitted and (finally) converted into the sound of 
our voice. Wireless technology uses techniques called “error correcting codes,” “linear 
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and nonlinear filtering,” “hypothesis testing,” 
“spatial multiplexing,” “statistical waveform 
or parameter estimation,” and these are built 
on tools of the mathematical sciences, such as 
matrix analysis, linear algebra, algebra, random 
matrices, graphical models, and so on.

More generally, the mathematical sciences 
contribute to modern life whenever data must 
be analyzed or when computational modeling 
and simulation is used to enable design and 
analysis of systems or exploration of “what-if” 
scenarios.  The emergence of truly massive 
data sets across most fields of science and 
engineering, and in business, government, 
and national security, increases the need 
for new tools from the mathematical sciences.  Because the mathematical sciences 
are independent of a particular scientific context, they can facilitate the translation of 
advances from one discipline to another.  

The mathematical sciences provide a 
language—numbers, symbols, graphs, and 
diagrams—for expressing ideas in everyday life as 
well as in science, engineering, medicine, business, 
and the arts. Mathematical symbols, which are 
more universal than Chinese, English, or Arabic, 
allow communication across communities with 
completely dissimilar spoken and written languages.

The stories told here describe a number of 
recent advances made possible by research in the 
mathematical sciences.
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In the last two decades, two separate revolutions have brought digital media out of 
the pre-Internet age.  Both revolutions were deeply grounded in the mathematical 
sciences.  One of them is now mature, and you benefit whenever you go to a movie 

with computer-generated animation.  The other revolution has just begun but is already 
redefining the limits of feasibility in some areas of biological imaging, communication, 
remote sensing, and other fields of science.

The first could be called the “wavelet revolution.” Wavelets are a mathematical method 
for isolating the most relevant pieces of information in an image or in a signal of any kind 
(acoustic, seismic, infrared, etc.).  There are coarse wavelets for identifying general features 
and fine wavelets for identifying particular details.  Prior to wavelets, information was 
represented in long, cumbersome strings of bits that did not distinguish importance. 

The central idea of wavelets is that for most real-world images, we don’t need all the 
details (bytes) in order to learn something useful.   In a 10-megapixel image of a face, 
for instance, the vast majority of the pixels do not give us any useful information.  The 
human eye sees the general features that connote a face—a nose, two eyes, a mouth—
and then focuses on the places that convey the most information, which tend to be 
edges of features.  We don’t look at every hair in the eyebrow, but we do look at its 
overall shape.  We don’t look at every pixel in the skin, because most of the pixels will be 
very much like their neighbors.  We do focus on a patch of pixels that contrast with their 
neighbors—which might be a freckle or a birthmark or an edge.

Now much of this information can be represented much more compactly as the 
overlapping of a set of wavelets, each with a different coefficient to capture its weight 
or importance.  In any typical picture, the weighting amplitude of most of the wavelets 

Compressed Sensing 

                                       / Through the Kaleidoscope
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will be near zero, reflecting the absence of features at that particular scale.  If the model 
in the photograph doesn’t have a blemish on a particular part of her skin, you won’t 
need the wavelet that would capture such a blemish.  Thus you can compress the 
image by ignoring all of the wavelets with small weighting coefficients and keeping only 
the others.  Instead of storing 10 million pixels, you may only need to store 100,000 
or a million coefficients.  The picture reconstructed from those coefficients will be 
indistinguishable from the original to the human eye. 

Curiously, wavelets were discovered and rediscovered more than a dozen times 
in the 20th century—for example, by physicists trying to localize waves in time and 
frequency and by geologists trying to interpret Earth movements from seismograms.  In 
1984, it was discovered that all of these disparate, ad hoc techniques for decomposing a 
signal into its most informative pieces were really the same.  This is typical of the role of 
the mathematical sciences in science and engineering:  Because they are independent of 
a particular scientific context, the mathematical sciences can bridge disciplines.  

Once the mathematical foundation was laid, stronger versions of wavelets were 
developed and an explosion of applications occurred.  Some computer images could be 
compressed more effectively.  Fingerprints could be digitized.  The process could also 
be reversed: Animated movie characters could be built up out of wavelets.  A company 
called Pixar turned wavelets (plus some pretty good story ideas) into a whole series of 
blockbuster movies (see Figure 1).

In 2004, the central premise of the wavelet revolution was turned on its head 
with some simple questions: Why do we even bother acquiring 10 million pixels of 
information if, as is commonly the case, we are going to discard 90 percent or 99 
percent of it with a compression algorithm?  Why don’t we acquire only the most 
relevant 1 percent of the information to start with?  This realization helped to start a 
second revolution, called compressed sensing.

Answering these questions might appear almost impossible.  After all, how can we 
know which 1 percent of information is the most relevant until we have acquired it all?  
A key insight came from the interesting application of how to reconstruct a magnetic 
resonance image (MRI) from insufficient data.  MRI scanners are too slow to allow them 
to capture dynamic images (videos) at a decent resolution, and they are not ideal for 
imaging patients such as children, who are unable to hold still and might not be good 
candidates for sedation.  These challenges led to the discovery that MRI test images 
could, under certain conditions, be reconstructed perfectly—not approximately, but 
perfectly—from a too-short scan by a mathematical method called L1 (read as “ell-
one”) minimization.  Essentially, random measurements of the image are taken, with 
each measurement being a randomly weighted average of many randomly selected 
pixels.  Imagine replacing your camera lens with a kaleidoscope.  If you do this again 
and again, a million times, you can get a better image than you can from a camera 
that takes a 10-megapixel photo through a perfect lens.

After all, how can 
we know which 
1 percent of 
information is the 
most relevant until 
we have acquired  
it all?
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1 / Stills from an animated short film called “Geri’s Game,” released by Pixar 
Animation Studios in 1997, which received an Academy Award in 1998. It was 
the first animated film to use subdivision surfaces, a mathematical technique 
based on wavelet compression. Wavelets allow computers to compress an im-
age into a smaller data file. Subdivision surfaces do the reverse: They allow the 
computer to create a small data file that can be manipulated and then uncom-
pressed to create lifelike images of something that never existed—in this case, an 
old man playing chess in the park. The top image shows the subdivision surface. 
The image below shows an actual frame from the movie. © 1997 Pixar. /
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The magic lies, of course, in the mathematical sciences.  Even though there may 
be millions of scenes that would reproduce the million pictures you took with your 
kaleidoscopic camera, it is highly likely that there will be only one sparse scene that 
does.  Therefore, if you know the scene you photographed is information-sparse (e.g., 
it contains a heart and a kidney and nothing else) and measurement noise is controlled, 
you can reconstruct it perfectly.  L1 minimization happens to be a good technique for 
zeroing in on that one sparse solution.  Compressed sensing actually built on, and helped 
make coherent, ideas that had been applied or developed in particular scientific contexts, 
such as geophysical imaging and theoretical computer science, and even in mathematics 
itself (e.g., geometric functional analysis). Lots of other reconstruction algorithms are 
possible, and a hot area for current research is to find the ones that work best when the 
scene is not quite so sparse.

As with wavelets, seeing is believing.  Compressed sensing has the potential to cut 
down imaging time with an MRI from 2 minutes to 40 seconds.  Other researchers have 
used compressed sensing in wireless sensor networks that monitor a patient’s heartbeat 
without tethering him or her to an electrocardiograph.  The sensors strap to the patient’s 
limbs and transmit their measurements to a remote receiver.  Because a heartbeat is 
information-sparse (it’s flat most of the time, with a few spikes whose size and timing 
are the most important information), it can be reconstructed perfectly from the sensors’ 
sporadic measurements. 

Compressed sensing is already changing the way that scientists and engineers 
think about signal acquisition in areas ranging from analog-to-digital conversion to 
digital optics and seismology.  For instance, the country’s intelligence services have 
struggled with the problem of eavesdropping on enemy transmissions that hop from one 
frequency to another.  When the frequency range is large, no analog-to-digital converter 
is fast enough to scan the full range in a reasonable time.  However, compressed sensing 
ideas demonstrate that such signals can be acquired quickly enough to allow such 
scanning, and this has led to new analog-to-digital converter architectures.

Ironically, the one place where you aren’t likely to find compressed sensing used, 
now or ever, is digital photography.  The reason is that optical sensors are so cheap; 
they can be packed by the millions onto a computer chip.  Even though this may be a 
waste of sensors, it costs essentially nothing.  However, as soon as you start acquiring 
data at other wavelengths (such as radio or infrared) or in other forms (as in MRI scans), 
the savings in cost and time offered by compressed sensing take on much greater 
importance.  Thus compressed sensing is likely to continue to be fertile ground for 
dialogue between mathematicians and all kinds of scientists and engineers.

The magic lies, 
of course, in the 
mathematical 
sciences.
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In 1997, when Sergey Brin and Larry Page were graduate students at Stanford, they 
wrote a short paper about an experimental search engine that they called Google. Brin 
and Page’s idea—which was based on the research of many mathematical scientists—

was to give each Web page a ranking, called PageRank, that indicates how authoritative 
it is.  Your PageRank will improve if a lot of other Websites link to your Website.  
Intuitively, those other pages are casting a vote for your page.  Also, Brin and Page 
assumed that a vote from a page that is itself quite authoritative should count for more.  
Thus your PageRank is a function of the PageRanks of all the pages that link to you.

The genius of Brin and Page’s PageRank was its ability to harness human judgments 
without explicitly asking for them.  Every link to a Web page is an implicit vote for the 
relevance of that page.  In an exploding Internet, its simplicity also turned out to be 
of paramount importance.  The calculation could be done offline, and thus it could be 
applied to the entire Web. PageRank represented a major advance over approaches to 
Internet search that were based on matching words or strings on a page. These earlier 
search engines returned far too many results, even in a drastically smaller Internet than 
today.

The PageRank algorithm seems to pose a chicken-and-egg paradox: To compute one 
PageRank, you already need to know all of the other PageRanks.  However, Brin and Page 
recognized that this challenge is a form of a well-known type of math problem, known 
as the eigenvector problem.  A vector (in this case) is just a list of numbers, such as the 
list of the PageRanks of all pages on the Web.  If you apply the PageRank algorithm to a 
collection of vectors, most will be changed, but the true PageRank vector persists:  It is 
not changed by the algorithm.

              Eigenvectors 

                                       / From the Mathematical
Sciences to . . . an IPO
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This kind of “persistent” vector is known in mathematics as an eigenvector (eigen 
being the German word for “characteristic”).  Eigenvectors have appeared in numerous 
contexts over the centuries.  The concept (though not the terminology) first arose in the 
work of the 18th century mathematician Leonhard Euler on the rotation of solid bodies.  
Because any rotation in space must have an axis—a line that persists in the same direction 
throughout the rotation—Euler recognized that the axis and angle of rotation characterize 
the rotation (which justifies the term “characteristic,” at least in this context).

Fast forward a century or so, and you find eigenvectors used again in quantum 
physics.  The motion of electrons is described by Schrödinger’s equation, formulated in 
1926 by Austrian physicist Erwin Schrödinger.  They do not orbit atomic nuclei in circles 
or ellipses in the way that planets orbit the Sun.  Instead, their orbits form complicated 
three-dimensional shapes that are determined by the eigenvectors of Schrödinger’s 
equation.  By counting the number of these solutions, you can tell how many electrons 
fit in each energy level or orbital of an atom, and in this way you can start to explain the 
patterns and periodicities of the periodic table.

Fast forward again to the present, and you can find the same concept used in 
genomics.  Imagine that you have a large array of data; for example, the level of activity 
of 3,000 genes in a cell at 20 different times.  Although the cell has thousands of genes, 
it does not have that many biologically meaningful processes.  Some of the genes 
may work together to repel an invader.  Other genes may be involved in cell division 
or metabolism.  But the rest may not be doing much of anything, at least while you 
are watching them; their activity just amounts to random noise.  The eigenvectors of 
the data set correspond to the most relevant patterns in the data, those which persist 
through the noise of chance variation. Figure 2 (on page 10) shows networks of genes 
found using eigenvectors.  One eigenvector (the term “eigengene” has even been coined 
here) might correspond to genes that control metabolism.  Another might consist of 
genes activated during cell division.  The mathematics identifies the gene networks that 
appear most tied to biological activity, but it cannot tell what the networks do.  That is 
up to the biologist. 

Singular value decomposition (SVD) is a purely mathematical technique to pick 
out characteristic features in a giant array of data by finding eigenvectors.  The idea is 
something like this: First you look for the one vector that most closely matches all of the 
rows of data in the array; that is the first eigenvector.  Then you look for a second vector 
that most closely matches the residual variations after the first eigenvector has been 
subtracted out.  This is the second eigenvector.  The process can, of course, be repeated. 
For the PageRank example, only the first eigenvector is used.  But in other applications, 
such as genomics, more than one eigenvector may be biologically significant.  

Given the general applicability of eigenvector approaches, perhaps it is not too 
surprising that Google’s PageRank—an algorithm that involves no actual understanding 
of your search query—could rank Web sites better than algorithms that attempted to 
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analyze the semantic content of Web pages.  However, 
the ability to use this eigenvector approach with real data 
that are random or contain much uncertainty is the key to 
PageRank.  Within a few years, everybody was using Google, 
and “to google” had become a verb. When Brin and Page’s 
company went public in 2004, its initial public stock offering 
raised $27 billion.

In many other applications, finding eigenvectors 
through SVD has proved to be effective for aggregating 
the collective wisdom of humans.  From 2006 to 2009, 
another hot Internet company ran a competition that led to 
a number of advances in this field. 

Netflix, a company that rents videos and streams media 
over the Internet, had developed a proprietary algorithm 
called Cinematch, which could predict the number of stars 
(out of five) a user would give a movie, based on the user’s past ratings and the ratings 
of other users.  However, its predictions were typically off by about 0.95 stars.  Netflix 
wanted a better way to predict its customers’ tastes, so in 2006 it offered a million-dollar 
prize for the first person or team who could develop an algorithm that would be 10 
percent better (i.e., its average error would be less than about 0.85 stars).  The company 
publicly released an anonymized database of 100 million past ratings by nearly half a 
million users so that competitors could test their algorithms on real data.

Rather unexpectedly, the most effective single method in the competition turned 
out to be good old-fashioned SVD.  The idea is roughly as follows: Each customer has 
a specific set of features that they like in a movie—for instance, whether it is a drama 
or a comedy, whether it is a “chick flick” or a “guy flick,” or who the lead actors are.  A 
singular value decomposition of the database of past ratings can identify the features that 
matter most to Netflix customers.  Just as in the genomics example, the mathematical 
sciences cannot say what the features are, but they can tell when two movies have the 
same constellation of factors.  By combining a movie’s scores for each feature with the 
weight that a customer assigns to those features, it can predict the rating the customer 
will give to the movie.

The team that won the Netflix Prize combined SVD with other methods to reach 
an improvement of just over 10 percent.  Not only that, the competition showed that 
computer recommendations were better than the judgment of any human critic.  In 
other words, the computer can predict how much your best friend will like a movie 
better than you can.

The above examples attest to the remarkable ability of eigenvector methods (often 
in combination with other techniques) to extract information from vast amounts of 
noisy data.  Nevertheless, plenty of work remains to be done.  One area of opportunity 

Within a few years, 
everybody was 
using Google, and 
“to google” had 
become a verb.
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is to speed up the computation of eigenvectors.  Recently mathematicians have found 
that “random projections” can compress the information in a large matrix into a smaller 
matrix while essentially preserving the same eigenvectors.  The compressed matrix 
can be used as a proxy for the original matrix, and SVD can then proceed with less 
computational cost.

	 One of Google’s biggest challenges is to guard the integrity of PageRanks 
against spammers.  By building up artificial networks of links, spammers undercut the 
underlying assumption that a Web link represents a human judgment about the value 
of a Web page.  While Google has refined the PageRank algorithm many times over 
to ferret out fake links, keeping ahead of the spammers is an ongoing mathematical 
science challenge.

 

2 / When the gene expressions for the C57BL/6J and A/J strains of mice are compared, it is possible 
to find gene networks using eigenvectors that are specific for brain regions, independent of genetic 
background.  Image from S. de Jong, T.F. Fuller, E. Janson, E. Strengman, S. Horvath, M.J.H. Kas, and 
R.A. Ophoff, 2010, Gene expression profiling in C57BL/6J and A/J mouse inbred strains reveals gene 
networks specific for brain regions independent of genetic background, BMC Genomics 11:20. /
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Computer simulations, which are built on mathematical modeling, are used daily 
in scientific research of all types, for informing decision making in business and 
government, including national defense, and for designing and controlling 

complex systems such as those for transportation, utilities, and supply chains, and so on.  
Simulations are used to gain insight into the expected quality and operation of those 
systems and to carry out what-if evaluations of systems that may not yet exist or are not 
amenable to experimentation.  

As an example, one of the most important and spectacular events in the universe 
is the explosion of a star into a supernova.  Such explosions seeded our own solar 
system with all of its heavier elements; they also have taught us, indirectly, a great deal 
about the size, age, and composition of our universe.  But within our galaxy, the Milky 
Way, supernovas are exceedingly rare.  How can you study something that cannot be 
duplicated in a laboratory, would fry you if you got close to it, and rarely even occurs?  

That is where mathematical sciences enter the story, via computer simulation.  In 
scores of applications, from physics to biology to chemistry to engineering, scientists use 
computer models—whose construction requires the formulation of mathematical and 
statistical models, the development of algorithms, and the creation of software—to study 
phenomena that are too big, too small, too fast, too slow, too rare, or too dangerous to 
study in a laboratory.  

While scientists and engineers have long been able to write down equations to 
describe physical systems, before the computer age they could only solve the equations 
in certain highly simplified cases, literally using a pen and paper or chalk and a 
blackboard.  For example, they might assume the solutions were symmetric, or simplify a 
problem to two or three variables, or operate at only one size scale or time scale.

Mathematical Simulations 

                                             / When the Lab 
Isn’t Big Enough
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3 / Image from a three-dimensional simulation of an exploding superno-
va.  Reprinted with permission from Professor Adam Burrows, Princeton 
University. /
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Now, however, the scientific universe has changed.  The study of supernovas is 
a perfect case in point.  It is possible to create a rudimentary theory of supernovas 
by assuming that the star is perfectly symmetrical.  Astrophysicists call this a one-
dimensional theory because all of the quantities depend on one parameter, the distance 
from the center of the star.  Unfortunately, it doesn’t work: You can’t get a one-
dimensional star to explode, and so simulations based on that simplified model cannot 
represent all of the important aspects of this complex system.  Of course, real stars are 
not so symmetric; they bulge at the equator, due to rotation.  So astrophysicists began 
to simulate stars with a shape parameter as well as a size parameter, and they called 
these two-dimensional simulations.  However, such simulations still cannot capture the 
behaviors of interest:  Some fail to explode, while others explode but with less energy 
than a real supernova.

Only with fully three-dimensional simulations have astrophysicists started to 
produce supernovas with realistic energy outputs.  And this tells us something 
important: The energy of the supernova must be coming from convection, a process 
that cannot be properly modeled in two dimensions.  In a supernova, the core of a 
star collapses and then rebounds outward, forming an expanding shock wave.  The 
shock wave then stalls as it runs into matter falling in from the outside the star.  That’s 
the hurdle that two-dimensional simulations have trouble getting over.  But in three 
dimensions, the matter inside the shock wave starts to churn as it is irradiated by 
neutrinos, like soup being heated in a microwave oven.  This convection reenergizes 
the shock wave over a period of several seconds, and the star’s contents explode out 
into the universe (see Figure 3).

While many are aware of the amazing gains in raw speed from Moore’s law—the 
approximate doubling of computer hardware capabilities every 2 years—successful 
simulation on this scale also depends to an equal degree on new algorithms that perform 
the needed computations.  For example, the transition from two to three dimensions 
invariably increases (usually by an enormous factor) the difficulty of a problem, requiring 
mathematical advances in representing reality as well as problem solving. Three-
dimensional simulations on this scale are possible only through a combination of massive 
computing power and smart mathematical algorithms. The transition from a two- to 
a three-dimensional model requires more than simply running the same code with 
more data points. Often, new mathematical representations must be incorporated to 
capture new phenomenology, and new comparisons against theory must be made to 
assess the validity of the resulting three-dimensional model. More generally, advances 
in mathematics and statistics and improved algorithms provide leapfrog advances in 
computational capabilities. Scholarly studies have estimated that at least half of the 
improvement in high-performance computing capabilities over the past 50 years can be 
traced to advances in mathematical sciences algorithms and numerical methods rather 
than to hardware developments alone.  
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The value of simulation is not limited to real-world problems of huge scale: It is just 
as useful for tiny problems such as understanding processes within our cells.  Many of 
the cell’s functions are carried out by proteins—large molecules that fold into a precise 
shape to accomplish a particular task.  For example, the proteins in an ion channel, 
which regulates the flow of ions across a cell membrane, need to fold autonomously 
into a pore that will admit a potassium atom into the cell but not a sodium atom.  A 
mistake at the subcellular level can have implications that affect the whole body.  In 
cystic fibrosis the channels that are supposed to transport chlorine ions don’t work 
correctly, possibly resulting in a buildup of fluid in the lungs; in certain kinds of heart 
arrhythmias, the potassium channels do not properly regulate the movement of 
potassium ions, which can interfere with the normal muscle contractions that create 
each heartbeat.

At present, nobody knows how to take the chemical formula for a protein and 
predict the shape it will fold into.  The shape is determined by the forces between 
the many atoms within the protein and between those atoms and their surroundings.  

4 / Anton, a special-purpose supercomputer, is capable of performing atomically detailed simula-
tions of protein motions over periods 100 times longer than the longest such simulations previously 
reported.  These simulations are now allowing the examination of biologically important processes 
that were previously inaccessible to both computational and experimental study.  Printed with per-
mission from D.E. Shaw Research. /
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Calculating the net result of all those forces is a daunting computational challenge, but 
simulations are getting close to that goal.  Recently a special-purpose supercomputer 
managed to simulate the motion of a relatively small protein called FiP35 over a period 
of 200 microseconds (one five-thousandth of a second), during which time it folded and 
unfolded 15 times (see Figures 4 and 5).  Again, while part of this capability was made 
possible by the special-purpose hardware, it also depends on mathematical advances.  
First, the precise but computationally intractable force field must be replaced by a good 
approximation based on empirical data and on simpler systems, and mathematical 
analysis is necessary to characterize the adequacy of the approximation.  Second, 
computational algorithms have been developed to speed the computation of the 
interactions between atoms.  For the story of one such algorithm, see a later section,  
“Fast Multipole Method: A Long-Term Payoff.”

These success stories illustrate the kinds of problems that scientists now routinely ask 
computer simulations to solve.  For decades, biology had only two modes of research—in 
vivo (experiments with living organisms) and in vitro (experiments with chemicals in a 

5 / Snapshots of the folding and unfolding 
of a protein, obtained from a simulation 
of unprecedented length performed on the 
special-purpose supercomputer Anton.  Mul-
tiple transitions are observed between a dis-
ordered “unfolded state” (red and gray) and 
an ordered “folded” state (blue).  Printed 
with permission from D.E. Shaw Research. /
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test tube).  Now, there is a third paradigm, in silico (experiments on a computer).  And 
the results of this kind of experiment are taken just as seriously.

Nevertheless, simulations face major challenges, which will be the focus of ongoing 
research over the next 20 years.

First, real-world processes often require simulation over a wide range of scales, both 
in space and in time.  For instance, the core collapse of a supernova takes milliseconds, 
while the crucial convection step takes place over a span of seconds and the aftermath 
of the explosion lasts for centuries.  Spatially, the thermonuclear flame of the supernova 
varies from millimeters to hundreds of meters during the explosion. 

In biology, the range of scales is just as daunting.  Subcellular processes, like the 
opening and closing of ion channels, are linked to events at the scale of a cell.  These 
effects cascade upward, affecting heart tissues, then the heart, and finally (in the 
event of a heart attack) the health of the whole body.  Likewise, the timescales also 
span a vast range: microseconds for the folding of a protein, fractions of a second for 
the choreography of a single heartbeat, minutes for a heart attack, weeks or months 
for the body’s recovery.  It is very difficult to incorporate all these scales into a single 
mathematical model.

Related to the multiscale problem is the multiphysics problem.  Often the types of 
models used at different scales are incompatible with one another.  Events at a subcellular 
level are often chemical and random, influenced by the presence or absence of a few 
molecules.  In the heart, these events translate into electrical currents and mechanical 
motions that are governed by differential equations, which are usually deterministic.  
Multiphysics can also characterize a single scale: The heart is simultaneously an electric 
circuit and a hydraulic pump.  It’s not easy to reconcile and simultaneously model those 
two identities.  Progress in such cases often depends on a combination of insights from 
the domain science and the mathematical sciences.

Given the complexity of simulations, model validation also becomes an important 
challenge.  First the modeler has to make sure that the individual parts of the program are 
working as expected; for a complex simulation, this can be very difficult.  Then he or she 
will test it to see if it reproduces the behavior of simple real-world systems and matches 
existing data.  Finally, the model will be used to make predictions about genuinely new 
phenomena.  But there is no universal procedure for deciding when a model is good 
enough to use, so to some extent model validation is still more art than science.

Another major challenge for simulations in the near future has to do with hardware 
and software. It goes without saying that any scientist who does simulations would like 
more computing power.  That is the main bottleneck in the supernova and protein-
folding simulations.  Three-dimensional simulations are just barely feasible today, but 
astrophysicists would really like to go up to six dimensions!  That would allow more 
accurate simulation of the velocity as well as the location of each particle.

But raw computing power is not the only solution.  At the cutting edge of research, 
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the importance of new and better algorithms cannot be overstated.  To put it simply, 
you can wait 2 years for Moore’s law to hand you a computer that is twice as fast—or 
you can get the same speedup today by developing better algorithms.  

Apparent advances in raw computation speed do not translate directly, and 
perhaps not even indirectly, to simulations that are faster or more accurate.  Today’s 
expectation is that the high-end computers of the future will have huge numbers of 
very fast “cores”—processing units operating individually at extremely high speed—but 
that communication between cores will be relatively slow.  Hence, software written 
for computers with a single core (or a small number of cores) will not be efficient, and 
standard computations, such as those for linear algebra, will need serious reworking by 
mathematical and computer scientists.
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Mathematical Sciences Inside...     Tsunamis
The mathematical sciences help to predict the path and strength of a tsunami 
following an earthquake or other oceanic event (such as a massive landslide or 
volcano eruption).  Mathematical models underpin tsunami warning systems by 
estimating where a tsunami will make landfall, how high the waves will be, and 
how fast the waves will be traveling.  More fundamentally, the mathematical 
sciences help to map the topography of the ocean floor and infer large-scale wave 
behavior from independent ocean tide gauges that are irregularly spaced and can 
be hundreds of miles apart.  This knowledge is behind emergency warnings and 
evacuations, which help to avoid potentially devastating consequences.  

Numerical models are used to simulate the earthquake, transoceanic propagation, and 
inundation of dry land.  To save time in the event of an emergency, these simulations 
are run for a variety of possible earthquake sizes and locations, and these scenarios are 
then combined with ocean tide readings as they become available.  This figure shows 
the predicted sea level increase (in cm) resulting from the deadly 9.0 magnitude earth-
quake off the coast of Japan in March 2011.
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Mathematical Sciences Inside...     Tsunamis

Mathematical science models help predict the timing and trajectory 
of tsunami waves based on ocean floor mappings and ocean tide 
gauge readings.  This information is used to predict when tsunami 
waves will hit different coasts.   *Deep Ocean Assessment and Reporting of Tsunamis

*

High-resolution computational models are used to simulate wave-heights for a traveling tsunami, 
shown here for two different earthquakes.  These estimates help to identify evacuation zones and 
routes.  The impacts of tsunamis vary widely, due to local topography, long-term sea level rise,  
annual climate variability, monthly tidal cycles, and short-term meteorological events.
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During World War II, the German army, navy, and air force transmitted thousands 
of messages using an encrypting machine called Enigma.  Little did they realize 
that British mathematicians were eavesdropping on them.  (In fact, the secret 

did not fully come out until the 1970s.)  The battle of 
Enigma was, in its way, just as important as any military 
engagement.  It was won in part by a statistical method 
called Bayesian inference, which allowed code breakers to 
determine probabilistically which settings of the Enigma 
machine (which changed daily) were more likely than 
others (see Figure 6). 

In the years after the war, Bayesian analysis continued 
to enjoy remarkable success.  From 1960 to 1978, NBC 
forecast the results of elections using similar techniques.  
The U.S. Navy used Bayesian analysis to search for a lost 
hydrogen bomb and a wrecked U.S. submarine.  Yet these 
successes were not shared, for security or proprietary 
reasons.  In academic circles Bayesian inference was rarely 
espoused, for both historical and philosophical reasons (as 
explained below). 	

Over the last 30 years, however, Bayesian analysis has 
become a central tool in statistics and science.  Its primary 
advantage is that it answers the types of questions that 
scientists are most likely to ask, in a direct and intuitive 

Bayesian Inference 

                                  / Not an Enigma Anymore

6 / The World War II-era Enigma is one 
of the most well-known examples of 
cryptography machines and was used 
to encrypt and decrypt secret messages.  
Photo by Karsten Sperling. /
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way.  And it may be the best technique for extracting information out of very large and 
heterogeneous databases. 

For example, in medical applications, classical statistics treats all patients as if they 
were the same at some level.  In fact, classical statistics is fundamentally based on the 
notion of repetition; if one cannot embed the situation in a series of like events, classical 
statistics cannot be applied.  Bayesian statistics, on the other hand, can better deal with 
uniqueness and can use information about the whole population to make inferences 
about individuals.  In an era of individualized medicine, Bayesian analysis may become 
the tool of choice.

Bayesian and classical statistics begin with different answers to the philosophical 
question “What is probability?”  To a classical statistician, a probability is a frequency.  
To say that the probability of a coin landing heads up is 50 percent means that in many 
tosses of the coin, it will come up heads about half the time. 

By contrast, a Bayesian views probability as a degree of belief.  Thus, if you say that 
football team A has a 75 percent chance of beating football team B, you are expressing 
your degree of belief in that outcome.  The football game will certainly not be played 
many times, so your statement makes no sense from the frequency perspective.  But to 
a Bayesian, it makes perfect sense; it means that you are willing to give 3-1 odds in a bet 
on team A. 

The key ingredient in Bayesian statistics is Bayes’s rule (named after the Reverend 
Thomas Bayes, whose monograph on the subject was published posthumously in 1763).  
It is a simple formula that tells you how to assess new evidence.  You start with a prior 
degree of belief in a hypothesis, which may be expressed as an odds ratio.  Then you 
perform an experiment, or a number of them, which gives you new data.  In the light of 
those data, your hypothesis may become either more or less likely.  The change in odds is 
objective and quantifiable.  Bayes’s rule yields a likelihood ratio or “Bayes factor,” which 
is multiplied by your prior odds (or degree of belief) to give you the new, posterior odds 
(see Figure 7 on page 22).

Classical statistics is good at providing answers to questions like this: If a certain drug 
is no better than a placebo, what is the probability that it will cure 10 percent more 
patients in a clinical trial just due to chance variation?  Bayesian statistics answers the 
inverse question: If the drug cures 10 percent more patients in a clinical trial, what is the 
probability that it is better than a placebo? 

Usually it is the latter probability that people really want to know.  Yet classical 
statistics provides something called a p-value or a statistical significance level, neither of 
which is actually the probability that the drug is effective.  Both of them relate to this 
probability only indirectly.  In Bayesian statistics, however, you can directly compute the 
odds that the drug is better than a placebo. 

So why did Bayesian analysis not become the norm?  The main philosophical reason 
is that Bayes’s rule requires as input a prior degree of belief in the hypothesis you are 
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testing, before you conduct any experiments.  To many statisticians and other scientists 
this seemed to be an unacceptable incursion of subjectivity into science.  But in reality, 
statisticians have known ways of choosing “objective” priors almost since Bayes’s rule 
was discovered.  It is possible to do Bayesian statistics with subjective priors reflecting 
personal (or group) beliefs, but it is not necessary.  

A second, and more practical, objection to Bayesian statistics was its computational 
difficulty.  Classical statistics leads to a small number of well-understood, well-studied 
probability distributions.  (The most important of these is the normal distribution, or bell-
shaped curve, but there are others.)  In Bayesian statistics you may start with a simple 
prior distribution, but in any sufficiently complicated real-world problem, the posterior 
probability distribution will be highly idiosyncratic—unique to that problem and that 
data set—and may in fact be impossible to compute directly.

However, two developments in the last 20 years have made the practical objections 
melt away.  The more important one is theoretical. In the late 1980s, statisticians realized 
that a technique called Markov chain Monte Carlo provided a very efficient and general 
way to empirically sample a random distribution that is too complex to be expressed in a 
formula.  Markov chain Monte Carlo had been developed in the 1950s by physicists who 
wanted to simulate random processes like the chain reactions of neutrons in a hydrogen 
bomb.

The second development for Bayesian statistics was the advent of reliable and fast 
numerical methods.  Bayesian statistics, with its complicated posterior distributions, really 
had to wait for the computer age before Markov chain Monte Carlo could be practical. 
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7 / Bayes’s rule can be visualized using a nomo-
gram, a graphical device that assists in calcula-
tions.  Suppose, for example, a drug test is 100 
times more likely (the “likelihood ratio”) to give a 
true positive than a false positive.  Also, you believe 
that 10 percent of the athletes participating in a 
particular sport (the “pre-test probability”) use the 
drug.  Now Athlete A tests positive.  If you draw a 
line from 10 percent on the first scale through 100 
on the second scale, it intersects the third scale 
of the nomogram at 91.7.  This means that the 
“post-test probability” that Athlete A is using the 
drug is 91.7 percent.  Adapted from the Center for 
Evidence Based Medicine, www.cebm.net. /
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The number of applications of Bayesian inference has been growing rapidly and 
will probably continue so over the next 20 years.  For example, it is now widely used 
in astrophysics.  Certain theories of cosmology contain fundamental parameters—the 
curvature of space, density of visible matter, density of dark matter, and dark energy—
that are constrained by experiments.  Bayesian inference can pin down these quantities 
in several different ways.  If you subscribe to a particular model, you can work out the 
most likely parameter values given your prior belief.  If you are not sure which model 
to believe, Bayes’s rule allows you to compute odds ratios on which one is more likely.  
Finally, if you don’t think the evidence is conclusive for any one model, you can average 
the probability distributions over all the candidate models and estimate the parameters 
that way.

Bayesian inference is also becoming popular in biology.  For instance, genes in a cell 
interact in complicated networks called pathways.  Using microarrays, biologists can see 
which pathways are active in a breast cancer cell.  Many pathways are known already, 
but the databases are far from perfect.  Bayesian inference gives biologists a way to move 
from prior hypotheses (this set of genes is likely to work together) to posterior ones (that 
set of genes is likely to be involved in breast cancer).

In economics, a Bayesian analysis of consumer surveys may allow companies to 
better predict the response to a new product offering.  Bayesian methods can burrow 
into survey data and figure out what makes customers different (for instance, some like 
anchovies on their pizza, while others hate them). 

Bayesian inference has proved to be effective in machine learning—for example, 
to teach spam filters to recognize junk e-mail.  The probability distribution of all e-mail 
messages is so vast as to be unknowable; yet Bayesian inference can take the filter 
automatically from a prior state of not knowing anything about spam, to a posterior state 
where it recognizes that a message about “V1agra” is very likely to be spam.

While Bayesian inference has a variety of real-world applications, many of the 
advances in Bayesian statistics have depended and will depend on research that is 
not application-specific.  Markov chain Monte Carlo, for example, arose out of a 
completely different field of science.  One important area of research is the old problem 
of prior distributions.  In many cases there is a unique prior distribution that allows an 
experimenter to avoid making an initial estimate of the values of the parameters that enter 
into a statistical model, while making full use of his or her knowledge of the geometry of 
the parameter space.  For example, an experimenter might know that a parameter will be 
negative without knowing anything about the specific value of the parameter.  

Basic research in these areas will complement the application-specific research on 
problems like finding breast cancer genes or building robots and will therefore ensure 
that Bayesian inference continues to find a wealth of new applications.

Bayesian inference 
is also becoming 
popular in biology.  
For instance, genes 
in a cell interact 
in complicated 
networks called 
pathways.  Using 
microarrays, 
biologists can see 
which pathways are 
active in a breast 
cancer cell.

Fueling Innovation and Discovery: The Mathematical Sciences in the 21st Century

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/13373


FUELING
innovation and discovery

24

On battlefields and playing fields, from Iraq to Cowboys Stadium, one of the 
signature injuries of the past decade has been concussion.  More than 300,000 
soldiers suffered suspected concussions between 2001 and 2007.  Nevertheless, 

it remains a difficult condition to diagnose because the damage to the brain is hard to 
see with conventional imaging techniques.  The brain may look completely normal on 
magnetic resonance imaging (MRI) or on a computed axial tomography (CAT) scan, yet 
patients report ongoing effects, such as memory loss, headaches, sensitivity to light or 
noise, and depression.

	 A new imaging technique—a variant of MRI called diffusion tensor imaging—has 
revealed that the damage to concussed brains may lie not in the gray matter but in the 
white matter.  For decades, neurologists considered the white matter (consisting of axons 
and glial cells) to be less important than the gray matter (which consists of neurons).  
They saw the white matter as a passive scaffolding for the brain’s architecture.  However, 
this view has changed dramatically in the last decade.  If the brain is like a computer, 
then the gray matter can be compared to the processors, while the white matter can 
be compared to the communications grid that links those processors.  Even the most 
powerful processors cannot work correctly if the pathways are destroyed or disrupted.

	 Besides concussion, a whole host of other brain functions and malfunctions are 
now linked to the white matter.  Patients with schizophrenia, Alzheimer’s disease, or 
deterioration due to a stroke, autism, and attention deficit disorder all have detectable 
changes in diffusion tensor imaging images of their white matter.  Even during normal 
development and learning, the diffusion tensor imaging changes in intriguing ways. 

	

 Diffusion Tensor Imaging 

                                             / A New View of the Brain
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The revolution in our understanding of white matter—which has only just begun—
would never have been possible without diffusion tensor imaging.  And diffusion tensor 
imaging, in turn, would never have been possible without the mathematical sciences.  
The mathematics is hidden in plain sight: in that mysterious word “tensor” in diffusion 
tensor imaging.  A tensor is a mathematical concept, developed in the 19th century, that 
generalizes the notion of vectors.  Tensors have proved useful in a number of areas of 
physics.

To explain what a tensor has to do with white matter in the brain, it helps to start 
with how MRI works.  An MRI machine (see Figure 8) creates a strong magnetic field, 
which causes the protons in the body to rotate and line up in a predictable way.  Most of 
these protons are actually hydrogen atoms in water molecules; thus MRI is especially 
sensitive to the water (or fluids) in your body.  It is an excellent complement to traditional 
x-rays, which see the dense, hard structures in your body but are relatively blind to the 
soft tissues.  One of the most informative parts of the body to image with MRI is the 
brain, because it is squishy and it uses a lot of blood.

By modulating or pulsing the magnetic field in various ways, doctors can tune the 
MRI scan to detect different kinds of tissue in the body.  In particular, one technique 
allows them to measure the displacement of water molecules over a short period of 
time—displacements that are due not to blood flow but to random jitters of the 
molecules, called Brownian motion.  Because Brownian motion underlies the process of 
diffusion, this technique measures what is called the “apparent diffusion coefficient” in a 
tiny cubic region of the brain.

Already this 
imaging capability 
has led to 
fundamental 
insights about 
normal and 
abnormal brains.

8 / Magnetic resonance 
imaging (MRI is an im-
portant medical imaging 
technique that allows in-
ternal structures to be vi-
sualized. Image courtesy 
of the National Institutes 
of Health Clinical Center, 
Center for Interventional 
Oncology. /
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Beginning in the early 1990s, researchers noticed a puzzling fact: In the white 
matter, the apparent diffusion coefficient of a sample seemed to depend on its 
orientation with respect to the magnetic field.  Tilt the sample and you would get a 
different diffusion coefficient. In 1991, a biomedical engineer had a eureka! moment:  
The dependence of the apparent diffusion coefficient on orientation wasn’t a problem, it 
opened a path toward a solution.

This engineer knew something that most doctors didn’t. In an anisotropic 
material—a material that is directionally dependent, such as a wood with a grain going in 
a particular direction or brain tissue that consists of layers or fibers—water doesn’t diffuse 
equally rapidly in all directions.  Water molecules move faster along the fibers and more 
slowly perpendicular to them.  Over time, a tiny blob of water molecules will diffuse 
into an ellipsoid (or football) shape, with the long axis of the ellipsoid pointing along 
the fibers.  The diffusion tensor contains all the mathematical information needed to 
graph this ellipsoid.  It is not just a single number (like the apparent diffusion coefficient) 
but a 3 × 3 array of numbers.  Starting with pork loins and working up to living human 
tissue, the experimental and mathematical procedures were developed for measuring 
the diffusion tensor from point to point within a sample and putting it into a three-
dimensional image. 

Diffusion tensor imaging was made to order for visualizing white matter, which 
consists mostly of axons, elongated cells that convey electrical impulses.  Water diffuses 
rapidly along the length of an axon but slowly across the width.  In addition, many but 
not all axons have a fatty sheath, called a myelin layer, which impedes the diffusion 
of water.  (The myelin sheath is also what gives white matter its color.)  Thus diffusion 
tensor imaging can both map out the direction of the brain’s electric fibers (this is called 
“tractography” and is illustrated in Figure 9) and also detect the extent of myelination in 
various parts of the brain.

9 / Diffusion tensor imaging used to reconstruct network connections in the brain (tractogra-
phy). Similarly oriented fibers are shown in the same color.  Reprinted from Moriah E. Thomason 
and Paul M. Thompson, 2011, Diffusion imaging, white matter, and psychopathology, Annual 
Review of Clinical Psychology 7:63-85, with permission from Annual Reviews, Inc. /
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Already this imaging capability has led to fundamental insights about normal and 
abnormal brains.  For example, biologists have known for a long time that the human 
brain starts out with little myelin, and that the axons gradually myelinate over childhood 
and adolescence.  The myelination process seems to be associated with learning.  With 
diffusion tensor imaging, researchers can now see this process in living humans.  For 
example, they can see which parts of the brain are associated with reading and language 
acquisition.  People with higher IQs in general tend to have longer, skinnier diffusion 
ellipsoids, suggesting greater fiber integrity or a greater amount of myelination.  The 
fiber integrity (or “fractional anisotropy”) seems to peak in the early 30s and gradually 
decreases thereafter; this may explain why memory and other cognitive processes decline 
gradually with age.

Likewise, diffusion tensor imaging points out areas of the white matter that are 
compromised in particular diseases.  In schizophrenic patients, the fiber integrity is 
reduced in the part of the brain called the cingulate (responsible for error detection), 
the corpus callosum (responsible for communication between the brain hemispheres), 
and the frontal lobe. In autism, the deficits in fractional anisotropy occur in regions that 
are associated with processing social cues.  Attention deficit hyperactivity disorder seems 
to be an exceptional case where the fractional anisotropy is too high rather than too 
low.  And in concussion injuries, the fiber integrity is reduced near the site of the injury.  
This finding could be useful as both an objective criterion for diagnosis and a way of 
predicting which patients will suffer more serious long-term symptoms.

In the decade of the 2000s, research on diffusion tensor imaging took off, with 
the number of research papers doubling roughly every 2 years.  Probably the most 
fundamental problem that remains is to distinguish when two fibers cross within a 
single cube (or “voxel,” the three-dimensional analogue of a pixel) of the image.  It has 
been estimated that as many as 30 percent of the voxels in a diffusion tensor imaging 
scan have more than one fiber passing through them.  Unfortunately, the standard 
diffusion tensor cannot detect this fact.  An ellipsoid has only one longest axis, and it 
cannot have two separate “bumps.”  If there are actually two fibers, diffusion tensor 
imaging will produce not two ellipsoids but a single, rounder ellipsoid.  It will thus 
underestimate the fractional anisotropy in that voxel, and it may also draw the fiber 
pathways incorrectly. 

One way to address the problem of crossing fibers would be to improve the 
resolution of the scans, so that each voxel is smaller.  This would require MRI scanners 
with stronger magnetic fields—a trend that has continued throughout the past decade.  
But a less expensive alternative is to develop mathematical methods that would 
replace ellipsoids with more complicated diffusion surfaces.  For example, a method 
called high angular resolution diffusion imaging (as shown in Figure 10 on page 28) 
combines magnetic resonance data with the principles of tomography, and it produces 
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spectacular detailed images of crossing fibers that would confuse an ordinary diffusion tensor 
imaging scan.  However, it generates a great deal more data, necessitating advances in data 
mining and analysis.  It is safe to say that much work remains to be done, from both the 
experimental and analytical sides.

10 / High angular 
resolution diffusion 
imaging data used to 
show diffusion surfaces 
in three dimensions in 
the brain. This allows 
for a higher-resolution 
image than conventional 
diffusion tensor imaging 
but generates a great 
deal more data, making 
data mining and analysis 
more complex.  Reprinted 
from Moriah E. Thoma-
son and Paul M. Thomp-
son, 2011, Diffusion 
imaging, white matter, 
and psychopathology, 
Annual Review of Clini-
cal Psychology 7:63-85, 
with permission from 
Annual Reviews, Inc. /
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In school, we all learn that the problem precedes the solution.  But in the mathematical 
sciences, it is sometimes the case that existing solutions suddenly become relevant to a 
new problem. 

In the early 1990s, Vladimir Rokhlin of Yale University and Leslie Greengard of 
New York University had a solution.  They had devised an algorithm called the Fast 
Multipole Method to speed up the solution of certain kinds of integral equations.  Later, 
the American Institute of Physics and the IEEE Computer Society would name the Fast 
Multipole Method as one of the top ten algorithms of the century.

Louis Auslander, on the other hand, was a man with problems—lots of them.  As 
the applied mathematics program manager at the Defense Advanced Research Projects 
Agency, his job was to match up defense-related problems with people who could solve 
them.  When he heard about the Fast Multipole Method, he suspected that it could 
resolve an issue that had long bothered the Air Force, the problem of automatic target 
recognition.

The question is this: When you see an airplane on a radar screen, how can you tell 
what kind of airplane it is?  Ideally, the radar should be able to recognize both friendly and 
enemy aircraft and determine which of the two kinds of plane it is.  While this may appear 
to be a simple problem, it is in fact very difficult.  Even if the plane is doing nothing to 
evade detection, every rivet on it, every bomb carried under its wings can change its radar 
profile.  For an everyday analogue, compare a disco ball to a perfectly round, polished 
sphere.  Even though their shapes are very similar, they reflect light very differently. 

For years, the Air Force dreamed of having a library containing all the possible ways 
that a plane’s radar signature could look.  But to compile such a library, you would have 

      Fast Multipole Method 

                                             / A Long-Term Payoff
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to fly the plane past a radar detector thousands of times, from every possible angle and 
with every possible configuration of bombs or fuel tanks or other attachments.  This 
would be prohibitively expensive and might be impossible for many enemy aircraft. 

Alternatively, you could try to compute mathematically what the plane’s radar 
signature should look like.  If you could do that reliably, then it would be an easy matter 
to tweak the configuration to take into account bombs, fuel tanks, etc.

The problem of directly computing a radar reflection boils down to solving a system 
of differential equations called Maxwell’s equations, which describe the way that electric 
and magnetic fields propagate through space.  (A radar pulse is nothing more than an 
electromagnetic wave.)  There was nothing new about the physics; the Maxwell equations 
have been known since the 19th century.  The difficulty was all in the mathematics. Before 
the Fast Multipole Method, it took a prohibitively large number of calculations to compute 
the radar signature of something as complicated as an airplane.  In fact, scientists could 
not compute the radar reflection of anything other than simple shapes.

It was known in principle that Maxwell’s equations could be formulated as an 
integral equation, which is more tolerant of facets, corners, and discontinuities.  To solve 
these, one must be able to calculate something called a Green’s function, which treats 
the skin of the plane as if it were made up of many point emitters of radar waves, adding 
up the contribution of each source.  This approach reduces Maxwell’s equations from a 
three-dimensional problem to a two-dimensional one (the two dimensions of the plane’s 
surface).  However, that reduction is still not enough to make the computation feasible.  
Using Green’s function to evaluate the signal produced by N pulses from N points on the 
target would seem to require N2 computations.  Such a strategy does not work well for 
large planes because the larger the plane is, the more data one needs to include and this 
approach requires an impractically large computational effort.

The Fast Multipole Method builds on the insight that the problem becomes more 
manageable if the source points and target points are widely separated from one 
another.  In that case, the radar waves produced by the sources can be approximated 
by a single “multipole” field.  Although it still takes N computations to compute the 
multipole field the first time, after that you can reuse the same multipole function over 
and over.  Thus, instead of doing 1 million computations 1 million times (a trillion 
computations), you do 1 million computations once, and then you do one computation 
1 million times (2 million computations in total).  Thus, Fast Multipole Method makes the 
more efficient Green’s function approach computationally feasible.

A second ingenious idea behind the Fast Multipole Method is that it can be applied 
even when the source points and target points are not widely separated.  You simply 
divide up space into a hierarchical arrangement of cubes.  When sources and targets lie in 
adjacent cubes, you compute their interaction directly (not with a multipole expansion).  
That part of the Fast Multipole Method is slow.  But the great majority of source-target 
pairs are not in adjacent cubes.  Thus their contributions to the Green’s function can be 

. . . the difference 
between computing 
the radar signature 
of a coarse 
approximation to 
an airplane and 
computing the 
radar signature of a 
particular model of 
aircraft. 
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computed quickly, using the multipole approximation.  Because most of the calculation is 
accelerated and only a tiny part is slow, the overall effect is a great speedup. 

In practice, the Fast Multipole Method has meant the difference between computing 
the radar signature of a coarse approximation to an airplane and computing the radar 
signature of a particular model of aircraft.  While it would be tempting to say that it has 
saved the Air Force millions of dollars, it would be more accurate to say that it has enabled 
them to do something they could not previously do at any price (see Figure 11).

The applications of the Fast Multipole Method have not been limited to the military.  
In fact, its most important application from a business perspective is for the fabrication 
of computer chips and electronic components.  Integrated circuits now pack 10 billion 
transistors into a few square centimeters, and this makes their electromagnetic behavior 
hard to predict.  The electrons don’t just go through the wires they are supposed to, as 
they would in a normal-sized circuit.  A charge in one wire can induce a parasitic charge 
in other wires that are only a few microns away.

Predicting the actual behavior of a chip means solving Maxwell’s equations, and the 
Fast Multipole Method has proved to be the perfect tool.  For example, most cell phones 
now contain components that were tested with the Fast Multipole Method before they 
were ever manufactured.

At present the semiconductor companies use a slightly simpler version of the 
Fast Multipole Method than the original algorithm developed for Defense Advanced 
Research Projects Agency.  The simpler version is applicable to static electric fields or 

11 / Simulation of two-dimensional radar scat-
tering from a stealthy airplane, similar in shape 
to the B-2 bomber.  The front of the plane is at 
the top; two simulated radar signals are plotted 
in red and purple.  On the left (red) is a com-
putation using a low-order discretization.  It 
incorrectly shows a considerable radar signal to 
the front and side of the airplane. On the right 
(purple) is a more accurate reconstruction of the 
radar signal, which would in practice be com-
puted with the Fast Multipole Method.  Note 
the near absence of a radar signal to the front 
and side of the airplane.  (Actual three-dimen-
sional data for the B-2 bomber are classified.)  
Reprinted with permission from Mark Stalzer, 
California Institute of Technology. /
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low-frequency electromagnetic waves.  Believe it or not, even a 1-gigahertz chip—which 
operates at 1 billion cycles per second—operates at low frequency from the point of view 
of the Fast Multipole Method!  That is because a 1-GHz electromagnetic wave still has a 
wavelength that is much longer than the width of a chip.

However, it is quite possible that the computer industry will one day graduate to optical 
chips, which will use light waves instead of electricity to communicate.  A wavelength of 
light is much shorter than the width of a chip.  So for an integrated optical chip, the high-
frequency version of the Fast Multipole Method will become an essential part of the product 

12 / A simulation of red blood cells, performed on the Jaguar computer at Oak Ridge National Labo-
ratory, won the Gordon Bell Prize for best use of supercomputing in 2010. The Fast Multipole Method 
was used to accelerate the computation of long-range interactions between red blood cells and 
plasma. A single-cell computation is shown in (a) and multicell interactions are shown in (b). Each 
cell’s boundary is discretized (c). The hierarchical structure of the Fast Multipole Method computation 
is shown schematically in (d) and (e). The volume of blood simulated is shown in (f). This was 10,000 
times the volume of any previous computer simulation of blood flow that accurately represented cel-
lular interactions.  Reprinted from A. Rahimian, I.  Lashuk, S.K. Veerapaneni, C. Aparna, D. Malhotra, 
L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros, 2010, Petascale 
direct numerical simulation of blood flow on 200K cores and heterogeneous architectures. ACM/IEEE 
Supercomputing (SCxy) Conference Series: 1-11, Figure 1 with permission from IEEE. /

(a) (b) (c) (d)

(e) (f)
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development cycle.  If so, the small investment in mathematical sciences that Auslander 
made in 1990 will pay off in an even bigger way three or four decades later.

Finally, it is worth noting that variants of the Fast Multipole Method are applicable 
to problems that have nothing to do with electromagnetism.  The method is relevant to 
any situation where a large number of objects interact with one another, such as stars 
in a galaxy or red blood cells in an artery.  Each red blood cell affects many nearby red 
blood cells, because they are packed quite densely inside a viscous fluid (the plasma).  In 
addition, blood cells are squishy:  they bend around curves or around each other.  To 
take this into account, a good computer simulation needs to track dozens of points on 
the surface of each blood cell, and those points interact strongly with one another as the 
cell maintains its structural integrity.  

In 2010, a simulation of blood flow based on the Fast Multipole Method won the 
prestigious Gordon Bell Prize for peak performance on a genuine (i.e., not a toy) problem 
of supercomputing (Figure 12). Researchers at the Georgia Institute of Technology and 
New York University used the Oak Ridge National Laboratory’s Jaguar supercomputer 
to simulate the flow of 260 million deformable red blood cells (about the number from 
one finger prick).  This smashed the previous record of only 14,000 cells and allowed the 
simulation to approximate the real fluid properties of blood.  Although media attention 
focused on the supercomputer, the calculation would not have been possible without 
the Fast Multipole Method, implemented in a new way that was adapted to parallel 
computing.  Ultimately, such simulations will help doctors understand blood clotting 
better and perhaps improve anticoagulation therapy for people with heart disease.
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The mathematical sciences underpin many of the technologies on which national defense 
depends.  Cutting-edge mathematics and statistics lie behind smart sensors and ad-

vanced control and communications.  They are used 
throughout the research, development, engineering, 
and test and evaluation process.  They are embed-
ded in simulation systems for planning and for war-
fighter training.  Since World War II, the mathemati-
cal sciences have been key contributors to national 
defense, and their utility continues to expand.  This 
graphic illustrates some of those impacts. 

The mathematical sciences are used in planning 
logistics, deployments, and scenario evaluations 
for complex operations. 

Mathematical simulations allow  
predictions of the spread of smoke and 
chemical and biological agents in urban 
terrain.

Mathematics is used to design 
advanced armor.Mathematics and statistics 

underpin tools for control 
and communications in 
tactical operations.

Mathematical Sciences Inside...     The Battlefield
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Modeling and simulation facilitates 
trade-off analysis during vehicle 
design, while statistics underpins  
test and evaluation.

Large-scale computational codes are 
used to design aircraft, simulate flight 
paths, and train personnel.

Satellite-guided weapons utilize GPS 
for highly-precise targeting, while 
mathematical methods improve  
ballistics.

Signal processing facilitates 
communication capabilities.

Mobile translation systems employ voice 
recognition software to reduce language 
barriers when human linguists are not 
available   More generally, math-based 
simulations are used in mission and  
specialty training.

Signal analysis and control 
theory are essential for drones.

Mathematical Sciences Inside...     The Battlefield
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A sandpile grows in an hourglass, one grain at a time.  Occasionally the impact of 
one sand grain will create a minicascade of grains.  Even less often, a minicascade 
will trigger a macrocascade that changes the shape of the whole sand pile.  How 

often do these cascades occur, and do they follow a predictable pattern?
A snowflake grows by attaching one molecule of water at a time.  How does that 

process lead to the lacy, frilly shapes that we see in real snowflakes?  What do we get if 
we grow the snowflake in different ways, using different attachment rules?

A city has two directions of traffic, east and north.  At each intersection a car can 
proceed only if there is no other car already in the intersection.  How many cars do you 
need to have in the city before gridlock ensues?  Can the traffic self-organize into moving 
patterns?

These are three examples of a stylized mathematical model called a cellular 
automaton.  Often inspired by real physical objects (such as sandpiles, snowflakes, and 
traffic), cellular automata demonstrate that amazingly complicated large-scale effects 
can arise from very simple local rules.  They have been applied to other phenomena as 
diverse as avalanches and wildfires.

There is a widespread belief that highly complex systems can only be understood 
through computer simulation.  However, mathematicians have found that simulation is 
far from the only way to discern patterns and phenomenology.

“Packard snowflakes,” invented by Norman Packard in 1984, begin with a hexagonal 
lattice, like a honeycomb, in which one cell is filled by an ice crystal.  One particularly 
interesting snowflake grows by the following rule: If an open cell is adjacent to 1, 4, 5, or 
6 cells that are already filled, then at the next time step that cell fills and freezes.  However, 
nodes that are adjacent to 0, 2, or 3 “frozen” nodes remain unfrozen at the next step.

Cellular Automata 

                                / Sublimely Complex
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After many steps, a shape emerges that bears a striking resemblance to a real 
snowflake (Figure 13).  What if we let the Packard snowflake grow for as long as we 
want?  Will all of the gaps in the snowflake eventually be filled?

In computer simulations, every gap seemed to fill eventually.  But in 2006, it was 
shown that unfillable gaps do exist.  The closest unfillable gap to the center is at least 
a billion cells away!  Because a billion billion cells have to be filled before you can even 
get to this gap, it’s no wonder that simulations never saw it.  However, a billion billion is 
not an unrealistic number.  It is less than the number of molecules in a milligram of ice.  
This example demonstrates the value of mathematical analysis and mathematical proof, 
which can provide insights that may be otherwise unavailable. 

The cellular version of a sandpile starts with a rectangular grid and a distribution 
of sand grains on the grid that may be highly unstable.  For instance, a thousand or a 
million grains could be stacked up into a tower (something quite unachievable with real 
sand).  Like the Packard snowflake, the sandpile evolves by discrete steps.  At each step 
in this simulation, a rule requires that any cell that is occupied by a stack of four or more 
grains of sand will redistribute one grain to each of its four neighbors.  Of course, this 
may cause one of the neighbors to have four or more grains, so that the cell topples at 
the next time step.  A cascade of toppling grains is thereby produced that can continue 

13 / A “snowfake” grows on a hexagonal grid by using simple attachment rules that model the ad-
hesion of water molecules to a growing ice crystal. The resulting model (left, reprinted with permis-
sion from Janko Gravner, UC Davis, and David Griffeath, University of Wisconsin) looks remarkably 
similar to a real snowflake (right, reprinted with permission from Ken Libbrecht, California Institute 
of Technology.). The final macroscopic shape depends in very subtle ways on the local attachment 
rules on the molecular scale. /
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for a very long time but ultimately settles down into a final configuration that looks like 
Figure 14.  Note that in this figure, every cell contains 0, 1, 2, or 3 grains of sand and the 
cells are color-coded accordingly.

What is the shape of this final configuration?  Does it depend on the number of grains 
of sand?  What about the mysterious pattern of triangles that is so apparent in Figure 14? 

In 2011, it was proved that at a large scale, the final shape is independent of the size.  
Thus a sandpile with a billion grains looks about the same as a sandpile with a million 
grains (only larger).  Likewise, the pattern of colors stabilizes, so that every sufficiently 
large sandpile will look the same as the others (only larger or smaller).

The proof involves a mathematical model known as a free-boundary problem.  Such 
problems arise, for example, in the study of combustion, glaciers, and stalactites, when 
a scientist is solving for not just an unknown function (say, the temperature in a moving 
flame) but also an unknown domain on which the function is defined.  The theory of this 
particular free-boundary problem is less than 20 years old.  Thus the sandpile problem, 
which might at first seem like an amusing game, is in fact intimately tied both to physics 
and to new developments in the mathematical sciences.

Another beautiful and conceptually important cellular automaton is called the “rotor-
router.”  One version was designed to mimic internal diffusion-limited aggregation, 
which is more or less the flip side of snowflake growth.  Imagine a crystal that instead of 
growing by attachment of particles from outside, grows by attachment of new particles 
from within.  Each new particle wanders around the inside of the crystal at random until 
it hits a cell that has not been occupied yet and stops there.  

14 / In a cellular automaton model of a sandpile, a billion 
grains of sand form complex patterns whose existence and 
shape can be confirmed from the mathematical theory of 
free-boundary problems. Colors denote the number of grains 
of sand in each cell (0, 1, 2, or 3).  Reprinted with permis-
sion from David B. Wilson, Microsoft Research. /

15 / The rotor-router model is a deterministic version of 
a random process called internal diffusion-limited ag-
gregation. The boundary has been proven to be circu-
lar; the “puckers” are still unexplained.  Reprinted with 
permission from Tobias Friedrich (Max Planck Institute) 
and Lionel Levine (Cornell University). /
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Unlike the previous two examples, internal diffusion-limited aggregation involves 
randomness.  A rotor-router model was designed to be essentially a derandomized 
version of internal diffusion-limited aggregation, where each new particle follows a 
prescribed sequence of turns that is designed to distribute its motion equally in each 
direction.  In 2005, it was shown that the shape of a crystal grown by the deterministic 
rotor-router model is the same as the shape of one grown by internal diffusion-
limited aggregation: a circle (see Figure 15).  This result may appear specialized, but 
the principle it illustrates is much more general: Sometimes the average behavior of 
a random system can be well captured by a deterministic system.  In such cases the 
randomness may not actually be an essential feature of the process.

The theory of cellular automata remains a very lively area of research, awash in 
examples, with many unexplored territories and relatively few guiding or unifying principles 
to join them.  Cellular automata have been used to study avalanches, forest fires, landslides, 
and earthquakes, among others.  The traffic model in Figure 16 shows that a traffic jam 
must happen before the city streets are 100 percent occupied.  Simulations suggest that 
the onset of traffic jams happens when the density is between 30 and 40 percent, and no 
one yet has been able to close the gap between the theory and the experiments to really 
understand the dynamics of traffic.  And there seems to be an intermediate and remarkably 
structured regime between freely moving streets and gridlock that could be described as a 
moving traffic jam whose existence has not yet been confirmed.

Though much remains unknown about cellular automata, it is exactly at such wild 
and untamed frontiers that the mathematical sciences grow.  The connections between 
cellular automata and more classical mathematics, such as those mentioned above, bode 
well for the future development of the subject.  These connections are like wires bringing 
electricity to the frontier.

16 / Biham-Levine-Middleton traffic model 
(right, reprinted with permission from 
Alexander Holroyd, Microsoft Research): In 
this idealized version of a grid of one-way 
streets, eastbound traffic (red) interacts 
with northbound traffic (blue). Jammed 
regions are solid, and flowing traffic forms 
dashed lines. /
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When chemists want to identify the molecules in an unknown sample—say, a 
rock from another planet—the first thing they do is measure its spectrum.  
That is, for instance, how space scientists detected water on the Moon and 

methane on Saturn’s moon, Titan.
It may seem surprising that mathematical scientists are interested in measuring 

spectra too, in a whole host of applications that seem to have little to do with the original 
meaning of the word.  To detect the edges of a cancerous region in a mammogram, 
they can use an “image segmentation” program that computes a spectrum.  Similarly, 
problems like designing a computer chip that runs efficiently, identifying communities 
within a social network, or creating a computer network that won’t shut down if some 
of the computers go offline, all involve analyzing the spectra of networks, or what 
mathematicians call “graphs.”

To understand what a molecular spectrum is, think of a molecule as a collection of 
balls bound together with the aid of springs.  The springs are always vibrating, and there 
are certain modes of vibration that, if left alone, will keep on going indefinitely.  Each 
mode of vibration corresponds to a specific energy.  The molecule prefers to absorb 
and emit photons with exactly the right energy to excite one particular mode.  Those 
photons can be detected by a spectrometer, and the characteristic frequencies of the 
photons allow you to identify the molecule.

A network, which is a type of graph (a mathematical structure used to represent 
relationships between objects), is a more general mathematical version of the balls-and-
springs model of a molecule.  The most obvious difference, perhaps, is that networks of 
transistors or people don’t vibrate and therefore don’t have an obvious energy function 

Graph Spectra 

                        / Sparsest Cuts in Minimum Time
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associated with them.  However, this difference is only superficial. In fact, mathematicians 
have derived a way of measuring energy on any network. 

The way they do this is with something called a Laplacian, which has characteristic 
frequencies or eigenvalues, just like a vibrating molecule.  Those frequencies collectively 
form a spectrum, and this spectrum is in many cases the best way to gain an overview of 
the network.  For instance, it helps you find cliques (closely connected sets of nodes) and 
transportation bottlenecks.  

But there is a problem of scale, because the networks of today are much larger than 
those in molecules.  For example, the users of Facebook form a social network with 
nearly 1 billion active users.  An Intel Xeon chip is a network with 800 million transistors.  
The Web is a network with 46 billion Web pages (and growing).  Mathematical scientists 
have to design, in effect, a new kind of spectrometer to compute the spectra of such 
immense graphs.

Laplacians have a very long history—in fact, they predate both the concept of 
molecular spectra and the concept of graph theory.  They were first defined in the 19th 
century to solve problems of heat flow and wave motion.  The heat equation says that 
heat will flow toward any point that is colder than the average of its neighbors and 
away from any point that is warmer.  The wave equation says that a point on a vibrating 
drumhead will accelerate in the direction of the average of its neighbors.  In both cases, 
the operation “averaging the neighbors” is performed by a differential operator called 
the Laplacian (see Figure 17).

In the drum example, the eigenvalues of the Laplacian correspond to particularly 
simple modes of vibration, which we hear as the fundamental frequency and the overtones 
of the drum.  In the heat equation, the eigenvalues have a slightly different interpretation.  
A cooling bar of metal has a relaxation time that governs how rapidly the bar cools off.  
This time is inversely related to the first (or smallest) eigenvalue of the Laplacian.

17 / Fundamental modes of vibration of a drum. Notice how certain frequencies of vibration isolate 
certain regions of the drum. Graph spectra are based on a similar idea, with the drumhead being 
replaced by a network of springs.  /
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In 1970, mathematician Jeff Cheeger proved that Laplacians are good at detecting 
bottlenecks in surfaces and higher dimensional objects called manifolds.  The reason is 
especially apparent in the case of heat flow.  If a metal bar is shaped like an hourglass, 
the constriction means that the first eigenvalue of the Laplacian will be small.  In turn, 
this implies that the relaxation time will be longer than for a rectangular bar, and that is 
indeed what one measures.  

The Laplacian on a network is defined analogously to the Laplacian on a surface. It is 
again computed by taking the difference between a function’s values at a point and the 
average of its values at the neighboring points.  In 1985, it was shown that Cheeger’s 
result applied perfectly to this new setting.  The first eigenvalue of the Laplacian, which 
is relatively easy to compute, is a good proxy for the width of the narrowest bottleneck, 
which is harder to determine.

A network has a bottleneck if it contains two (large) subgraphs with (relatively) 
few connections between them.  (There are some subtleties connected with the words 
“large” and “relatively.”)  A driveway isn’t a bottleneck, because if you cut it you take 
only one house out of the network.  However, if two large cities are joined by only one 
bridge—such as the Ambassador Bridge between Detroit and Windsor, Canada—that 
bridge is definitely a bottleneck.  Even if you include the Detroit-Windsor Tunnel, creating 
a second link between the cities, the ratio of the number of cuts required to disconnect 
the network (two) to the minimum number of people taken out of the network (216,000 
on the Windsor side) is still very small (2/236,000, or 0.00001) (see Figure 18). 

18 / The Ambassador Bridge 
connecting Detroit, Michigan, 
and Windsor, Ontario, is a very 
visible example of a “miminum 
cut.” /

Port of Detroit

Ambassador Bridge Detroit-Windsor Tunnel
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In a map of a city it is easy to spot the links that, if cut, have the largest effects 
on connectivity, especially if there is a river flowing through it.  Such a link is called 
a sparsest cut, and in a typical graph, it is much harder to spot.  But there are many 
instances in which we want to make those cuts, such as when we wish to decompose 
a network into simpler subgraphs with minimal effect on connections.  For instance, a 
Laplacian-based method has been used to extract features from images. The surface of 
an object can be approximated by a mesh. The spectrum of this mesh can be used by a 
computer to identify distinct regions of the image without any human input.  

Cheeger’s work was important because it related something that was known to be 
very difficult to compute (sparsest cuts) to something that is much easier to compute 
(eigenvalues).  It should be noted that Cheeger’s theorem is an estimate, not a precise 
equation.  However, the connection has proved robust enough to make the spectrum of 
the Laplacian an important tool in graph partitioning. 

Spectral methods—a class of techniques to numerically solve dynamical (or constantly 
evolving) systems—can be used to design new networks as well as to study existing ones.  
For example, networks with the largest possible eigenvalues, called “expander graphs,” 
have some remarkable properties.  They convey information very rapidly, so it is easy to 
route messages from one point to another.  They have no bottlenecks, so they cannot 
be disabled by the failure of a few nodes or links.  Unfortunately, they are not so easy to 
design, so research in this area is currently a high priority.

Finally, although eigenvalues are easier to compute than sparsest cuts, even they get 
difficult when you are faced with monster networks consisting of millions or billions of 
nodes.  Until recently, algorithms for finding the eigenvalues did not scale well and were 
not practical for such large networks.  However, it now appears that this barrier has been 
breached. 

In 2004, a method was devised for solving equations involving graph Laplacians 
that was significantly faster (in theory) than any previously known method.  Like many 
great scientific advances, the strategy was wonderful, completely unexpected, and yet 
in retrospect completely natural.  The idea is to replace the Laplacian of the graph with 
the Laplacian of a well-chosen subgraph.  If this is done carefully, the spectrum is almost 
undisturbed yet the graph becomes much sparser.  Imagine ripping out 95 percent of 
the streets in Manhattan and having everybody’s commute time remain almost the same!  
That is roughly what this method managed to do.

There is still plenty of room for practical improvement, and some substantial 
improvements have already been made.  The long-standing dream of finding sparsest 
cuts in approximately linear time—in other words, being able to understand the structure 
of a network almost as quickly as one can read in the data—now appears much closer. 
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On June 26, 2000, two biologists—Francis Collins of the international Human 
Genome Project and Craig Venter of Celera Genomics—stood side by side with 
President Clinton in the East Room of the White House and announced that 

they had finished sequencing the first draft of the human genome.  All of a sudden, 
the molecular code that makes us human seemed like an open book.  The genome was 
subsequently published in Science magazine.

	 Though it was heralded as a breakthrough in biology—and rightfully so—the 
cracking of the human genetic code also owed a great deal to the mathematical sciences.  
The Human Genome Project had begun in 1990 and was originally expected to take at 
least 15 years.  However, around 1998 advances in the new discipline of bioinformatics—
which combines biology with computer science, statistics, linear algebra, combinatorics, 
and even geometry—dramatically accelerated the project, turning it from a marathon 
into a 2-year sprint to the finish.  

	 In the years since 2000, genetic sequencing has become even more dependent 
on mathematical science techniques.  Next-generation sequencers have reduced the cost 
of reading an entire human genome from $300 million to $30,000 and the time from 
years to weeks.  Further improvements, including the “$1,000 genome,” are anticipated 
soon.  The lower cost and quicker turnaround trend are continuing.  The speed of 
information processing has now become the rate-limiting factor.

	 How did scientists assemble the human genome?  The process is often compared 
to putting together a jigsaw puzzle.  The analogy is a good one, but it is incomplete.  
In genomics, many of the pieces don’t match, and some are duplicates. Also, many of 
the pieces come in pairs with a string glued to each piece, so you know roughly how 

    Bioinformatics 

                             / Interpreting the Human Genome

Fueling Innovation and Discovery: The Mathematical Sciences in the 21st Century

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/13373


The Mathematical Sciences
in the 21st Century

45

far apart they are supposed to be in the puzzle.  These complications present both 
opportunities and challenges for mathematical analysis.

Human DNA is a long molecule that is shaped like a spiral staircase, in which each 
step contains a pair of amino acids that fit together like a tongue and groove joint.  
Adenine (A) fits together with thymine (T), and cytosine (C) fits together with guanine 
(G).  Each chemical fits only one of the others, so that the sequence of letters along one 
side of the staircase (GATTCC…) uniquely determines the corresponding sequence on 
the other side (CTAAGG…), which is conventionally read in the opposite direction (…
GGAATC).  Like a photographic negative, one strand is a template for duplicating the 
other (see Figures 19 and 20).

In all, human DNA contains about 3 billion “base pairs,” or rungs of the staircase.  
The goal of the Human Genome Project was to list all of them in order. Unfortunately, 
chemists can sequence only a few hundred base pairs at a time.  To sequence the whole 
genome, scientists had to chop it into millions of shorter pieces, sequence those pieces, 
and reassemble them.

The publicly funded Human Genome Project and the privately funded Celera 
Genomics adopted two different strategies, both of which eventually led to the same 
mathematical problem.  You have millions of short (500-base) overlapping puzzle pieces 
that have been completely scrambled by the chopping process.  There are enough pieces 
to cover the length of the genome seven or eight times over, so there are many overlaps 
between pieces.  You want to use these overlaps as a guide to assemble the pieces into 
the longest possible sequence of contiguous regions.

19 / Human DNA can 
be extracted from 
biological tissue such 
as skin and blood and 
a unique genetic se-
quence of amino acids 
can be determined. 
Image courtesy of the 
National Institutes of 
Health. /
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If all of the sequence reads were perfectly accurate, matching the overlapping ones 
would be routine.  However, about 1 percent of base pairs were misread, and this meant 
the overlapping jigsaw puzzle pieces would not match.  The approach then became to 
find a good match rather than the best match (see Figure 21).

Another issue, somewhat more subtle, was the problem of repeats.  Human genomes 
include many sequences that repeat identically in many places.  These repeats were a big 
headache for genome sequencers because when a contiguous region ended with a pattern 
that occurred in many places, they had no idea which puzzle piece should come next. 

The way around the problem, it turned out, was to take a longer snippet of DNA—
say, several thousand base pairs long—and sequence both ends.  Even though you can’t 
sequence the middle, you can at least get a few hundred base pairs at each end and 
estimate how many base pairs lie between them.  This gives you strings that link two 
jigsaw puzzle pieces together, including some that are on opposite sides of a gap or a 
repeat.  These tethers create a scaffold to hang the “contigs” onto.  Finally, the scaffolds 
could be wheeled into proper position by using the Human Genome Project’s high-level 
map of the genome.

In the more than a decade since the completion of the human genome, the 
landscape has changed in at least two important ways.  First, because a “reference” 
human genome is now available (in fact, many such reference genomes are), no human 
genome has to be sequenced from scratch.  If you have a patient with cancer or with a 
genetic disease, you can zero in on the 0.1 percent of the genome that is different from 
the reference version and ignore the 99.9 percent that is the same.  Thus the problem is 
not one of assembling the genome but of looking up sequences in the reference genome 
that are similar to (but slightly different from) your patient’s.

20 / The structure of DNA: a double helix with matching base pairs of CG and AT.  Image from U.S. 
Department of Energy Genomic Science Program. /
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Once again, the solution to this lookup problem came from far outside biology.  In 
1994, a “transform” was devised that dramatically speeds up the search for strings of text 
in a long file.  Researchers created a table in which each row is a copy of the string, shifted 
either left or right.  The rows are in alphabetical order.  To search for a string like ATCTTG, 
you look for all the rows beginning with A, then for all the ones beginning with AT, and 
so on.  Instead of searching through a linear string of 3 billion characters, you descend a 
tree with (in this case) six layers of branches.  Once you get to the bottom, a transform 
identifies all the places where ATCTTG appears in the original string.  Thanks to such 
indexing techniques, the reference genome can be searched in a fraction of a second.

A second transformation of genomics was the introduction of commercial next-
generation gene sequencers, around 2004.  Thanks to new advances in chemistry, 
biologists can now read hundreds of thousands of DNA snippets simultaneously.  But 
the technology comes at a cost: The snippets have to be much shorter.  One popular 
commercial sequencer can read fragments of only 50 to 75 base pairs, and another can 
manage only 100 to 150.  The short reads are a double whammy for biologists.  First, 
they need to collect much more data—typically the new machines will sequence enough 
snippets to cover the genome 30 times over.  Second, a tiny 50-base read is more likely 
than a 500-base read to fall right into the middle of a repeated motif.  The methods used 
by the first generation cannot deal with this increase in ambiguity.

Again, the right mathematics was already in existence and ready to be used, 
but it was unknown to biologists.  The idea is to create a network in which nodes 
represent substrings of the genome and edges represent overlapping substrings.  The 
first-generation methods amount to finding a path through a network that passes 
through each node once.  This problem is known to take a hopelessly long time to 
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A C G A C C T A G G T C A A C

T G C T G G A T C C A G T T G

reference A C C T G G T T C T G T A G T C A G G A T T A C T A A

fragment T G A C G T T C A G T A G T C G A T T

insertion mismatch deletion

21 / The top image illustrates the sequence of C’s, G’s, T’s, and A’s in an untwisted segment of 
DNA. The bottom  image shows typical errors in DNA sequencing: insertions, mismatches, and 
deletions.  Reprinted with permission from the American Mathematical Society.  /
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solve. However, a better approach is to find a path that passes through each link of the 
network exactly once.  (Note that it may visit some nodes repeatedly. These correspond 
to repeated strings in the genome.)  This problem, called the Eulerian path problem, has 
a computationally efficient solution, which makes next-generation sequencing practical 
(especially for other animal species, which have no reference genome to consult).

The application of the mathematical sciences to the genome stands to have a great 
impact on society.  A Battelle Memorial Institute study in 2011 concluded that the 
economic impact of the Human Genome Project has nearly reached $800 billion—quite 
a return on the U.S. government’s $3 billion investment.  And that doesn’t even begin to 
account for the impact on humans, which is just beginning.

For example, in 2010 a 39-year-old patient was admitted to Barnes-Jewish Hospital 
in St. Louis with leukemia.  There were two possible diagnoses with two different 
treatments.  The patient had symptoms of a form of leukemia called APL, which responds 
well to chemotherapy.  At the same time she had symptoms of another condition that 
would require a stem cell transplant, a risky procedure that can itself be fatal.

The standard genetic test for APL looks for two regions on chromosomes 15 and 17 
that are swapped.  That test came back negative.  As an experiment, the patient’s doctors 
spent $40,000 and six weeks to sequence her genome, comparing her skin cells to her 
cancer cells.  In the cancer cells, they found about 77,000 base pairs of her chromosome 
15 had been inserted into the chromosome 17—too small a fragment for the standard 
test to detect but easily detectable by genomics.  Since then, they have identified similar 
genetic alterations in two other leukemia patients.

The doctors went on to treat the patient with the anti-APL drug instead of the 
dangerous stem cell transplant.  It eliminated her cancer cells, and she was still in 
remission 15 months later.  This is exactly the sort of individualized medicine that doctors 
dreamed the Human Genome Project would make possible.  Though such medicine is 
still experimental today, with continued progress in bioinformatics it will probably be 
common a generation from now.

The application of 
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to have a great 
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       Geometry and Physics 

                                             / Endlessly Intertwined

“Philosophy is written in this grand book—I mean the universe—which stands 
continually open to our gaze, but it cannot be understood unless one first learns 
to comprehend the language in which it is written.  It is written in the language of 

mathematics, and its characters are triangles, circles, and other geometric figures.”
So wrote Galileo Galilei in 1623, at the dawn of the scientific era.  Nearly four 

centuries later, we can only marvel at his prescience, because what he wrote then is 
even more true today.  The secrets of the universe are still written in geometric terms, 
although the figures Galileo wrote about have now been replaced by more exotic and 
abstract ones: manifolds, fiber bundles, and Calabi-Yau spaces.

In the early 1800s, it was shown that the familiar Euclidean geometry, which has 
been taught since the ancient Greeks and is still taught in high schools today, is only 
one of an infinite variety of possible geometries.  Euclidean geometry is flat—it is the 
geometry of a tabletop, infinitely extended.  By contrast, non-Euclidean geometries are 
curved.  They may have the positive curvature of a sphere, or they may have negative 
curvature, which is harder to visualize but may be compared to the frilly surface of some 
leafy vegetables.

In the 1850s, Bernhard Riemann took another bold step forward, describing spaces 
in which the curvature could change from point to point within the space. Riemann’s 
geometry also allows space to take on any number of dimensions—two, three, or even 
more.  He called these curved spaces “manifolds” (see Figure 22 on page 50).

For some time these new geometries remained just a mathematical curiosity.  But in 
the early 1900s, Albert Einstein used Riemann’s mathematics as a language to express his 
theory of general relativity—a theory in which gravity results from the curvature of four-

A long list 
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the equations 
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dimensional space-time.  A long list of profound discoveries followed from the equations 
that Einstein wrote down in 1915: black holes, the expanding universe, the big bang, 
and dark energy.  To understand any of these ideas fully, you have to learn Riemannian 
geometry.  Somewhere, Galileo must be smiling.

But Einstein’s general relativity was only the beginning.  Similar geometric 
constructions underlie the field theories that describe particle physics.  The discovery 
of antimatter, in 1932, grew directly out of an attempt to reconcile relativity with the 
quantum-mechanical description of the electron.  The equations predicted extra solutions 
that seemed like positively charged electrons.  We now call them positrons.  They are the 
key ingredients in positron emission tomography, or PET scans, which are used to study 
the workings of the human brain.

In the later 1930s and 1940s, physicists and mathematicians started losing touch 
with one another. Physicists started thinking about fields that permeate all of space, 
which they called “gauge fields.” (Examples include the electromagnetic field and the 
weak and strong nuclear forces.) Meanwhile mathematicians, for different reasons, 
became very interested in a new kind of geometric space, called a fiber bundle, which is 
roughly like a curved space with a quiver of arrows attached at every point (see Figure 
23 for an example).  It wasn’t until the 1970s that mathematicians and physicists realized 
that they were doing the same thing.  The physicists’ gauge fields were like individual 
arrows in the mathematicians’ quiver of arrows.

22 / Two-dimensional manifolds are also known as surfaces. A sphere (left) is positively curved, while 
the surface on the right, which resembles a six-connection pipe fitting, is negatively curved.  Reprint-
ed with permission from Gerard Westendorp. /

Fueling Innovation and Discovery: The Mathematical Sciences in the 21st Century

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/13373


The Mathematical Sciences
in the 21st Century

51

The cross-fertilization of ideas between the mathematical sciences and theoretical 
physics continues to this day.  In the late 20th and early 21st centuries, string theory 
was formulated as an approach to unifying gravity and quantum physics into a theory 
of everything.  Like all other theories in physics, it is highly mathematical—but the 
necessary mathematics has not yet been invented.  There is still no rigorous context for 
the calculations that string theorists do, nor do mathematical scientists know the extent 
to which these techniques are valid.

However, the study of string theory has led to some important applications of the 
mathematical sciences.  For example, since the 1800s, mathematicians have studied the 
solution sets of polynomial equations, such as a fifth degree polynomial in four variables. 
An example of such a polynomial is x5 + y5 + z5 + s5 + t5 = 0, which is known as a “quintic 
hypersurface” (see Figure 24.)  These surfaces contain figures that Galileo would have 
recognized.  

23 / The Mobius band is the simplest nontrivial 
example of a fiber bundle. The fibers are shown 
in red. The twist given to the fibers makes the 
Mobius band topologically different from an 
ordinary cylindrical band. /

24 / A cross-section of a quintic hypersurface.  
Reprinted with permission from Paul Nylander, 
http://bugman123.com. /
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And why did string theorists care about quintic hypersurfaces?  Because string 
theory postulates that the universe has six extra, unseen dimensions that are curled up 
into a tight ball.  Except that “ball” is not really the correct word.  They actually form a 
manifold—a type of space discovered by mathematical scientists.  

The list of interactions between geometry and physics could go on and on.  It is 
difficult to speculate where it will lead next, but it is virtually certain that unexpected 
ideas for both disciplines will continue to grow out of the interaction.  Galileo’s words 
continue to hold true: Geometry is still the language spoken by the universe.  

. 
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                     Probability and 

                                             / Connecting Microscopic
and Macroscopic

Statistical Physics

In 1827, a botanist named Robert Brown noticed that grains of pollen suspended in 
water did a strange sort of dance when examined under a microscope.  At first he 
thought the pollen was alive.  But in 1905, Albert Einstein explained the real cause of 

“Brownian motion,” which had nothing to do with biology.  The grains are constantly 
buffeted by collisions with water molecules, which cause them to jiggle in random 
directions.

It is surprisingly common for random microscopic events to produce predictable 
effects at a macroscopic level.  The Brownian motion of any single particle of smoke 
is highly unpredictable, yet smoke spreads in a room at a predictable rate.  Iron 
atoms make innumerable random choices on which way to spin, but at a predictable 
temperature their spins spontaneously line up and the iron becomes magnetized.  
The voids in a porous material may be distributed randomly, but at a certain density, 
which is predictable, they connect up and the material becomes permeable.  There 
are three kinds of “random path” here: the meanderings of a smoke particle, the 
boundary between spin-up and spin-down atoms in a magnet, and the path of water 
through a rock.  But remarkably, all these disparate phenomena (or at least a simplified 
mathematical model of each one) can be brought under one roof.

In 2000, a universal mechanism was discovered that shows how microscopic disorder 
can lead to macroscopic order for two-dimensional systems.  This discovery is now 
called Schramm-Loewner evolution, which allows precise calculations of macroscale 
phenomena that could until then only be predicted nonrigorously.  Not only that, the 
mechanism applies to the random processes mentioned above as well as to others.  A 
single parameter, k (the Greek letter kappa), distinguishes Brownian motion (k = 8) 
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from measures of the boundaries between small regions of 
materials (“magnetic grains”) that are aligned magnetically 
(k = 3) or paths for water percolation (k = 6) (Figure 
25).  Schramm-Loewner evolution is a wonderful unified 
description of all these separate phenomena, illuminating 
how disorder can create order.

The most essential feature of Schramm-Loewner 
evolution is a symmetry property called conformal 
invariance.  Conformal invariance has two components: 
scale invariance and rotation invariance.  The first means 
that a Brownian trajectory will look just the same at any 
level of magnification.  If you blow it up by a factor of 
10, it will look just as jiggly as before.  The formerly small 
bounces will become big bounces—but you will see new, 
even smaller bounces that you couldn’t make out before.  
Rotation invariance means that Brownian motion has no 
preferred direction.  For example, in a closed room, smoke 
will go everywhere. 

Consider a crack that grows randomly inward from 
the edge of an infinite pane of glass.  According to the 
idea on which Schramm-Loewner evolution is based, 
the pane of glass can always be “healed” by a conformal 
transformation, deforming the glass in a way that pushes 
the crack back out to the boundary.  If the crack grows, 
the glass can be healed again.  In this never-ending 
process of cracking and healing, the attachment point of 
the crack moves around.  In fact, it jiggles very erratically 
along the edge of the glass.  Does this sound familiar?  The 
attachment point is actually undergoing one-dimensional 
Brownian motion.  The intensity of the jiggling is described 
by the parameter k; larger values of k correspond to more 
intense jiggling and to more jagged cracks.  The basic 
idea of Schramm-Loewner evolution converts any two-
dimensional, conformally invariant random process into 
a one-dimensional Brownian motion.  Many questions 
become simpler after they are restated as a Schramm-
Loewner evolution.  What is the probability that the 
trajectories of two pollen grains in a petri dish will intersect 
before the grains reach the edge of the dish?  What is the 
probability that water will percolate from one side of a 

25 / Schramm-Loewner evolution for different values 
of k. For example, critical percolation (top) gives  
trajectories with k = 6. The middle image shows  
k = 0.5, and the bottom image k = 8/3.  Reprinted 
with permission from Scott Sheffield, Massachusetts 
Institute of Technology. /
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rectangle to the other before it escapes out the top or bottom?  What is the fractional 
dimension (or roughness) of the outside of a cloud of smoke? All of these questions have 
precise answers now. 

Schramm-Loewner evolution is a purely mathematical construct.  There is no known 
physical mechanism that can duplicate the cracking-and-healing process described 
above.  It’s “mathemagic” in the best sense.

Conformally invariant processes are particularly relevant to the physics of phase 
transitions, such as the freezing of water or the magnetization of iron.  (Just as there is a 
freezing point for water, above a certain temperature, iron will not magnetize; below that 
temperature, it will.)  These processes are scale-invariant because it is precisely at a phase 
transition that, when the temperature is dropping, small-scale, local correlations become 
large-scale as the ice crystals or iron crystals lock into place. 

Though Schramm-Loewner evolution is a key to understanding such random 
processes in two dimensions, it has two caveats.  First, it is anything but routine to prove 
that a given random process corresponds to a particular value of k.  There are some 
processes, such as the growth of polymers (which are like self-avoiding random walks), 
where the appropriate value of k is strongly suspected but not rigorously established.

Second, Schramm-Loewner evolution is—unfortunately—limited to two dimensions.  
It seems very likely that three-dimensional random processes cannot be classified by 
a single parameter such as k.  It is likely also that the critical exponents describing the 
correlation of nearby molecules are not as simple as they are in the two-dimensional 
case.  So 21st century mathematical scientists still have their work cut out for them as 
they try to explain phase transitions in our three-dimensional world. 

However, Schramm-Loewner evolution provides a model for how a theory of phase 
transitions might look.  Research based on Schramm-Loewner evolution has twice won 
the Fields Medal, one of the highest honors in the mathematical sciences.  An award 
like this shows the remarkable amount of esteem among mathematical scientists for a 
discovery that is scarcely a decade old.

26 / Critical percolation model. When each cell 
has an equal probability of being red or white, 
the red and white cells connect up into very long 
networks, and the interface between them is a 
curve described by Schramm-Loewner evolution.  
Reprinted with permission from Michael Kozdron, 
University of Regina, Saskatchewan. /
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Remember how magical it seemed when CD players started to appear in automobiles?  How 
could a precision instrument, which has to detect pits less than a micron across, possibly 
function in an environment where it is routinely jolted distances that are tens of thousands 
of times larger than that?  The magic is not in the shock absorbers, it’s in the mathematical 
sciences.  A method called maximum likelihood sequence estimation, based on the statisti-
cal technique called maximum likelihood, works out the most likely sequence of 1s and 0s 
recorded on the disk and compensates for the noise and errors created by the bumpy car ride.

Many other technologies that we now take for granted are based on mathematical ideas.  
Other inventions that seem visionary today but might be commonplace 20 years from now, 
likewise depend on math. To illustrate that point, the table below lists 10 inventions whose 
patents cite a method from the mathematical sciences.  The data are from the Google patent 
database at www.google.com/patents, accessed on August 3, 2011.  The terms are ordered 
roughly by their frequency of occurrence in the Google database.

Fast Fourier Transform (FFT)

The industry standard way of decomposing 
an electronic signal into its constituent 
frequencies, based on samples taken 
at regular time intervals.

This patent is for a “monolithic” 
silicon chip that can compute 
FFT’s; such chips are used 
in digital image processing, 
speech recognition, and 
transmission as in cell phones.
Patent No. 4547862 (1985) TRW, Inc.

Correlation coefficient

A basic statistical method for determining how 
closely related two paired sets of data are.

An optical scanner locates a “bull’s-eye” on 
a label by finding the correlation between 
scanned pixel sequences and the expected 
sequence for a cross section of the bull’s-eye.
Patent No. 6122310 (2000) United Parcel Service

Viterbi algorithm

Algorithm used in cell phones and CD and DVD players to decode noisy 
signals. Its key idea is to use “soft,” probabilistic decision procedures.

This patent is one of hundreds that tweaks the original version, here 
by speeding up the “traceback” part of the algorithm.
Patent No. 6904105 (2005) Intel
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Mathematical Sciences Inside...     Inventions Complex number

Elliptic curve

Algebraic structure used in public-key 
cryptography—for example, to authenticate the 
user of a smart card. 

In this patent, users can pick their own elliptic 
curve instead of selecting one from a centrally 
managed registry.
Patent No . 6446205 (2002) Citibank

B-spline

The industry standard method of representing smooth surfaces, 
used in computer-aided design and manufacturing.

B-splines have become popular in recent years with video game 
manufacturers; in this patent, they are used to generate smooth 
motions of three-dimensional figures under user control.
Patent No. 5982389 (1999) Microsoft

Quaternion

Hypercomplex numbers used 
primarily for composing spatial 
rotations.

This patent is for a toothbrush 
that will automatically track its 
location relative to the user’s 
teeth. Quaternions are used to 
compensate for motion of the 
user’s head.
Patent No. 12/866,381 (applied 2010) Philips

Conjugate gradient method

An iterative method for solving linear equations (Ax = b) or 
energy minimization problems involving many variables.

Used in this patent to compute the electronic structure 
of simple molecules like glass. The energy depends on 
thousands of variables, each representing a possible 
electron orbit.
Patent No. 6106562 (2000) Corning

Minimal surface

Surfaces, such as soap films, 
that have the least area 
spanning a given boundary.

This patent proposes the 
Schwarz triply periodic 
minimal surface as a scaffold 
for regenerating human bone 
and organ tissue.
Patent No. 7718109 (2010) Mayo 
Foundation

Support vector machine (SVM)

Recently discovered (1995) method for 
partitioning data into classes.

SVMs are used in an implantable “brain 
pacemaker” for Parkinson’s disease patients, to 
determine when the patient is having a seizure 
or movement disorder.
Patent No. 12/694035 (applied 2010) Medtronic, Inc.

Numbers of the form a + bi (where i =   −1).

Applications such as FFT require integrated 
circuits capable of adding and multiplying 
complex numbers, as described in this patent.
Patent No. 4858164 (1989) United Technologies
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