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F O R E W O R D

By Nanda Srinivasan
Staff Officer
Transportation Research Board

This report provides guidelines on the use of multiple sources of GPS data to understand 
travel behavior and activity. The guidelines are intended to provide a jump-start for pro-
cessing GPS data for travel behavior purposes and provide key information elements that 
practitioners should consider when using GPS data. The report will be of interest to trans-
portation planners, travel modelers, and travel survey practitioners.

With the high costs associated with primary data collection, methods to improve the use 
and accessibility of newer sources of data such as Global Positioning System (GPS) data 
can benefit many transportation practitioners. GPS data can have multiple uses beyond 
traditional applications such as estimates of speed and travel times. GPS-related data that 
have been collected from automatic vehicle location systems, from highway sensors, as 
supplemental information to traditional travel surveys, and via passive technologies [e.g., 
Bluetooth, radio frequency identification (RFID), and smartphones] have shown promise 
for additional planning purposes. Some challenges to increased use of GPS data include 
addressing data bias; balancing precision, coverage, and confidentiality; resolving institu-
tional issues such as data ownership; and addressing the complexity of combining these data 
with other sources to discern behavioral relationships. While it has been generally accepted 
that GPS data have a wide variety of uses, research was needed to assist in their use by trans-
portation planners, travel modelers, and travel survey practitioners. 

The research under NCHRP Project 8-89 was performed by Jean Wolf, William Bach-
man, and Marcelo Simas Oliveira of Westat | GeoStats Services, Atlanta, Georgia, in asso-
ciation with Joshua Auld and Kouros Mohammadian from University of Illinois, Chicago, 
Peter Vovsha from Parsons Brinckerhoff, Inc., and Johanna Zmud from RAND Corpora-
tion. Information was gathered via literature review and from interviews with practitioners, 
data providers, and researchers. The next stage of research explored a number of analytical 
approaches for extracting information from traces of GPS data. Only a few of those methods 
could be easily translated into clear and defensible methods (or standards) for processing 
GPS travel trace data. The research team selected the most promising and valuable analytical 
procedures for testing and evaluation within the scope of this research effort and applied 
these methods using datasets available from several GPS-enhanced travel surveys conducted 
within the past decade. 

The report is structured in two volumes. Volume 1 presents the methods used and results 
of tests conducted. Volume II translates the results of the tests conducted into guidelines for 
planners and researchers to implement these procedures. 
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P R E F A C E

NCHRP Report 775: Applying GPS Data to Understand Travel Behavior spans two volumes. 
Volume I includes the detailed literature review and industry assessment, an identification 
of best methods, a plan to perform some tests of these methods, and the results of these tests. 
Volume II is a guidance document that highlights key information for practitioners who 
are interested in using Global Positioning System (GPS) data for evaluating travel behavior. 

Since the inception of the GPS in the mid-1990s, potential applications of GPS data 
in transportation planning have been explored broadly and extensively, and the specific 
use of GPS data for better understanding of travel behavior has held a special interest for 
transportation modelers and planners. Applications of these highly accurate location and 
spatial data have been implemented in a wide range of transportation uses, including asset 
management and tracking, congestion management, and household travel surveys. 

However, the full potential of the GPS and similar location tracking technologies for 
providing travel behavior details is still unknown. Hardware, software, and processing tech-
niques continue to evolve and will likely do so for the foreseeable future. For practitioners 
and researchers, specific questions still remain regarding the best methods for processing 
and using these data as a source for travel behavior analyses. Additionally, the availability 
of new data products that are based on archived consumer product trace data has greatly 
increased awareness of the need for guidance about these products so that practitioners 
can develop fiscally responsible and theoretically sound data collection programs. NCHRP 
Project 8-89 addressed these challenges by documenting the state of practice in 2012 and 
exploring techniques to extract travel details inherent in simple GPS-based trace data sets. 

There were two major challenges encountered and addressed while conducting this 
research. First, the increasing availability and promise of consumer product trace data 
has made practitioners anxious to evaluate these new population-based data sources as 
a replacement for conducting stratified travel surveys as well as other origin–destination 
studies. While certainly appealing, these data sources are processed and aggregated by pri-
vate companies that maintain proprietary data management methods and are unwilling to 
share techniques and algorithms. Furthermore, these private firms are bound to protect 
the privacy of their data sources; consequently, they are unwilling or unable to release data 
at the individual data-source level. To address this challenge, the NCHRP Project 8-89 
research team interviewed the primary data providers (who provided marketing materials), 
reviewed published studies that attempted to evaluate these data products, and then sum-
marized key findings. Volume II contains descriptions of standard data product structures 
and formats and suggests key information elements that users should consider when evalu-
ating these data products. 

The second major challenge was limiting the full range of analytic options to include 
for detailed analysis and documentation of methods. While the research community has 
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explored a number of analytical approaches for extracting information from traces of GPS 
data, there are few examples that can be easily translated into clear and defensible methods 
(or standards) for processing GPS travel trace data. The research team selected the most 
promising and valuable analytical procedures for testing and evaluation within the scope 
of this research effort. The methods used and results of these tests are described in Volume 
I. Volume II translates the results of these tests into guidelines for planners and researchers 
wishing to implement these procedures. 

The research team believes that the two volumes that make up this report will provide 
insight and instruction to the transportation community with respect to past and present 
uses of GPS data (from a range of sources) for travel behavior analysis, as well as sound 
guidance on processing GPS data to better understand travel behavior. 
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1   

Transportation professionals have been enamored with 
the potential uses of Global Positioning System (GPS) data 
ever since GPS became fully operational in 1995. Early GPS-
enhanced household travel surveys, such as the 1996 FHWA 
Lexington Pilot Study and the 1997 Austin Household Travel 
Survey, have led the way in evaluating GPS use in travel  
surveys (Battelle Memorial Institute 1997; Murakami and 
Wagner 1999; Casas and Arce 1999). These initial studies were 
hindered by the U.S. government’s intentional degradation 
of GPS’s positional accuracy (known as selective availability). 
Selective availability was eliminated in early 2000, thereby 
accelerating the rapid development and implementation of 
a wide range of commercial, consumer-oriented, location-
based services (LBS) and supporting GPS devices.

Over the past 11 years, more than 25 household travel 
surveys (HTSs) conducted within the U.S. have used GPS 
augments to help assess the level, breadth, and magnitude 
of travel underreporting or misreporting by the large diary-
based reporting sample. And, with each survey, GPS sample 
sizes have steadily increased, with some of the most recent 
surveys involving the deployment of GPS data loggers to 
thousands of households, either with large subsamples (e.g., 
New York City, Atlanta, and California) or with the entire 
surveyed population (e.g., Cincinnati, Cleveland, and Jeru-
salem). Over this same time frame, consumer-based GPS 
products, such as stand-alone or in-dash personal navigation 
devices (PNDs), GPS-enabled smartphones, and fleet track-
ing systems [e.g., automatic vehicle location (AVL) systems] 
have led to the creation of large-scale GPS data sets that can 
be mined or translated into detailed travel behavior informa-
tion. In addition, other fixed-location approaches to tracking 
personal travel, such as those supported by Bluetooth, radio 
frequency identification (RFID), and mobile phone tower 
technologies, offer alternative methods for providing some 
level of travel behavior information.

The combination of these large-scale GPS travel survey 
data collection events, the increasing availability of large 

consumer-based GPS data sets, and ongoing studies evaluat-
ing the use and benefits of fixed-location sensors have led 
to many discussions within the transportation community 
about the roles, advantages, and disadvantages of various 
GPS data sources for transportation planning and modeling, 
as well as for other travel behavior research initiatives. Given 
the need for more data to support a wide range of transporta-
tion planning and modeling activities, combined with ongo-
ing budgetary constraints, the time has come to clearly and 
objectively evaluate the multiple sources of GPS data that 
could be leveraged and used for transportation planning 
beyond the traditional application area of travel time and 
speed studies.

Overview of Literature Review  
and Industry Interview Process

The increasing availability of travel data collected from 
location-aware technology, such GPS devices, combined with 
the availability of open application programming interfaces 
(APIs) and open-source software (OSS), has peaked interest 
in the application of GPS data for use in travel forecasting, 
planning analysis, and transportation system management. 
Frequently, however, the initial attraction by public agencies 
to these detailed travel data has met with roadblocks related 
to cost, challenges with integration into existing modeling 
paradigms, concerns about data privacy, sample bias, and 
data management difficulties. GPS and other tracking tech-
nologies can provide a depth of insight into travel behav-
ior and activity patterns that exceeds traditional modeling 
data needs (such as trip rates and travel times) and that 
complements standard system performance metrics (e.g., 
average speed and congestion identification). Realization 
of these potential benefits will require an objective assess-
ment of these various data sources along with guidance to 
assist transportation data users in decision making and data 
management.

C H A P T E R  1

Literature Review and Industry Assessment
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In 2011, the Transportation Research Board initiated a 
study to evaluate these GPS data sources and to provide guid-
ance on the use of these sources by transportation planners, 
travel modelers, and travel survey practitioners; this study 
is NCHRP Project 8-89, “Applying GPS Data to Understand 
Travel Behavior.” This chapter reports on a broad literature 
review conducted on GPS data sources, actual and potential 
uses of these data in the field of transportation, standards 
for GPS data collection and storage, and concerns about the 
various sources with respect to coverage, bias, accuracy, and 
privacy.

To supplement this literature review, comprehensive ques-
tionnaires were sent to industry experts in the areas of travel 
surveys, travel behavior research, travel demand modeling, and 
traffic data provision. The responses from these questionnaires 
provided additional direction to the literature review process 
and have been summarized at the end of this chapter to provide 
both state-of-the-practice and state-of-the-art confirmation of 
industry uses and plans for GPS data. Hereafter, information 
gathered from these industry responses are referred to as the 
2012 Industry Survey.

For the purpose of this report, it is important to clarify 
the scope of this research initiative. The prioritized GPS data 
sources evaluated were:

1. GPS data loggers and GPS-equipped smartphones 
deployed to households recruited within a household 
travel survey;

2. Passive GPS or cell phone data collected from devices pur-
chased by consumers, such as mobile phones and PNDs;

3. Other GPS and location-based data sources that have been 
used for understanding various aspects of travel behavior 
(i.e., transit surveys, transit AVL data, private fleet tracking 
systems, and probe vehicle studies).

In addition, other fixed-location sensors, such as mobile 
phone towers, RFID readers, Bluetooth sensors, and Wi-Fi 
sensors, that have known locations and can detect when rel-
evant devices pass by can also provide useful information 
about transportation system performance as well as travel 
behavior. Although not GPS technology as defined in the pre-
vious list, these technologies are also discussed in this chapter.

GPS-Based Travel Behavior  
Data Collection and Uses

The following subsections discuss the use of GPS tech-
nology to enhance HTSs, provide notable examples of 
GPS-augmented HTSs, present ways in which GPS data 
have been used to improve travel demand models (TDMs), 
and conclude by identifying other travel behavior study types 
that have benefited from GPS technology.

Overview of GPS-Enhanced Travel Surveys

This section presents an overview of the use of GPS in 
travel surveys and its evolution over the past two decades. It 
concludes with a discussion on the emerging use of smart-
phones as GPS data collection alternatives for these surveys.

As data needs for developing TDMs have increased and 
survey participation rates have generally fallen over the past 
several decades, more sophisticated methods of data collec-
tion have been developed by the travel survey community in 
an effort to address these problems. There was a shift first 
from traditional travel diaries to activity diaries accompanied 
with major advances in survey techniques that were gener-
ally driven by increases in computing power, portability, and 
availability along with decreases in cost.

The evolution of travel survey methods has continued 
with the introduction of GPS-enhanced travel survey tech-
niques. The use of GPS data collection has been found to 
have many advantages over traditional survey methods. First, 
GPS-enhanced surveys provide a more accurate and detailed 
account of the spatial and temporal aspects of personal travel 
than what survey respondents are able to recall and report, 
and GPS data sets have been used to correct significant trip 
underreporting errors associated with pen-and-paper or 
phone-based activity surveys (Battelle Memorial Institute 
1997; Wolf, Bricka, et al. 2004). GPS-enhanced surveys should 
have less respondent burden for capturing travel details by 
leveraging passive GPS data collection while collecting more 
information and more accurate information. In addition, 
by further reducing respondent burden through the use of 
automated activity type, location, timing, and travel mode 
identification routines, GPS-based prompted-recall surveys 
allow for more complex questions to be asked.

The latest generation of GPS-based surveys includes GPS-
only studies, in which basic household information is collected 
first and then GPS data loggers are used by study participants, 
with software algorithms and models used to generate all 
necessary details of travel. Finally, the combination of more 
accurate spatial–temporal data along with reduced respon-
dent burden allows for multiday data collection, which in turn 
enables more in-depth aspects of travel behavior to be studied, 
including variability in travel patterns, route choice, activity 
location selection, and mode selection. Furthermore, multi-
day data collection can support reductions in required sam-
ple sizes, thereby offsetting some, if not all, of the additional 
costs inherent in GPS-enhanced and GPS-based travel surveys  
(Stopher, Kockelman, et al. 2008).

GPS-Based Subsamples for Travel  
and Activity Surveys

The use of GPS data in activity and travel surveys is a rela-
tively new practice, made possible through improvements 
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in the technology itself and the demand for more accurate 
travel data. Initially, GPS data collection was used mostly to 
provide corrections for trip rates obtained from traditional 
household travel surveys or to demonstrate the feasibility of 
doing so. These studies tended to be conducted in conjunc-
tion with traditional diary-based household travel surveys. 
GPS-enhanced surveys of this type primarily used passive 
GPS data collection systems, where the GPS traces were col-
lected and analyzed without any input from the participants, 
with a few studies using more active or interactive systems that 
employed a combination of technologies such as an onboard 
computer or handheld device combined with a GPS receiver to 
gain additional input from the participants (Battelle Memo-
rial Institute 1997, Doherty and Oh 2012, Guensler and Wolf 
1999). Some of these studies compared the GPS-identified 
trips with the diary report trips from the same GPS sub-
sample as a means to correct larger, traditional activity diary 
samples. This method is also referred to as the dual-method 
approach because it requires the GPS subsample to use both 
GPS devices and diaries, which results in increased burden to 
these participants.

Several examples of GPS-enhanced surveys that have used 
the dual-method approach are statewide surveys in Califor-
nia (NuStats 2002) and Ohio (Pierce et al. 2003), and regional 
studies in Austin (Casas and Arce 1999), Laredo (Forrest 
and Pearson 2005), Kansas City (NuStats 2004), Seattle  
(Cambridge Systematics 2007), Chicago [Chicago Metro-
politan Agency for Planning (CMAP) 2008], and Denver 
(NuStats 2010). Similar dual-method studies have recently 

been completed in California (performed by NuStats and 
GeoStats) as well as in regional surveys conducted for Phila-
delphia and Los Angeles by Abt SRBI (2012 Industry Sur-
vey). The primary intent of the GPS component in each of 
these studies was to develop trip rate correction factors. Fig-
ure 1-1 shows GPS data collected during the California HTS 
pilot study conducted in 2011.

Additional analysis was performed using GPS data col-
lected in the 2001 California statewide (Wolf, Oliveira, and 
Thompson 2003; Zmud and Wolf 2003), Ohio statewide 
(Pierce et al. 2003), Kansas City (Wolf, Bricka, et al. 2004; 
Bricka and Bhat 2007), and Denver (Bachman et al. 2012) sur-
veys, among others, to gain insight into the underreporting 
phenomenon. Most recently, a study by Bricka and Murakami 
(2012) used a combined GPS and diary sample from India-
napolis to not only evaluate trip underreporting in traditional 
surveys, but also to test potential trip reporting errors with the 
use of GPS-only samples.

These survey and research efforts have led to a large body 
of knowledge about trip underreporting in household travel 
surveys as well as the methods for identifying and correcting 
this problem. The use of a GPS subsample within a larger tra-
ditional travel survey for correction factors continues to be an 
important way for this technology to support travel demand 
modeling needs. In the 2012 Industry Survey of market 
research firms that specialize in travel surveys (conducted as 
part of this research effort), most respondents reported either 
recently using or continuing to use GPS samples to correct 
self-reported trip rates (2012 Industry Survey).

Figure 1-1. Example of GPS data collected during 2011 California HTS pilot study.

Applying GPS Data to Understand Travel Behavior, Volume I: Background, Methods, and Tests

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22370


4

travel and activity diaries and associated retrieval methods. 
Efforts in this area have been conducted along two main lines: 
(1) processing the GPS data into basic trips and attributes 
and then having the participants confirm, complete, and/or 
correct these data through a GPS-based prompted-recall inter-
view, and (2) using a GPS-based prompted-recall subsample to 
calibrate models that are then used to impute details on com-
pletely passive GPS data collected by the majority of the sample 
without further input from survey participants. The following 
sections discuss these two approaches in more detail.

GPS-Based Prompted-Recall Travel Surveys

The use of passive GPS logging coupled with a follow-up 
survey that is based on the trips identified within the GPS 
data is usually referred to as a GPS-based prompted-recall 
(PR) survey. This is because the GPS data are used to recon-
struct the activity-travel pattern of the respondent, with the 
detected trips and trip attributes then presented to the partici-
pant, who is prompted for further responses. This mode com-
bines the automated data processing routines of purely passive 
surveys with respondent verification of the auto-generated 
data and, usually, the collection of additional data that may be 
difficult to extract from GPS traces alone (i.e., trip purpose, 
vehicle occupancy, parking cost, etc.). Several different types 
of prompted-recall surveys have been conducted, including 
both vehicle-based and person-based, that use various strate-
gies for prompting the individual recall of travel patterns. The 
primary advantages of this survey mode are the collection 
of detailed information about aspects of travel and activity 
participation that cannot be automatically deduced (Auld 
et al. 2009) and the reduced respondent burden during actual 
travel, which is limited to carrying the device, something that 
most respondents do not seem bothered by (Lawson, Chen, 
and Gong 2010).

An early example of a GPS-based prompted-recall survey 
was implemented by Bachu, Dudala, and Kothuri (2001), 
who used vehicle-based GPS data to track a sample of 10 house-
holds over several days. The results of this study showed that 
the survey participants could recall the details of trips identi-
fied in the GPS traces several days after initial data collec-
tion with little loss of recall ability. A small pilot study was 
also conducted by Stopher, Bullock, and Horst (2002) using 
prompted-recall survey methods with a similar process of 
auto-identifying activity-travel episodes with manual adjust-
ment. In this study the travel patterns were shown in maps 
and in a sequential tabular format, with unknown attributes 
(such as purpose, travel companions, and costs incurred) left 
blank for the respondents to fill in. This survey also had the 
respondents correct the generated travel patterns. A similar 
mail-out PR follow-up study was conducted for a portion of 
the Kansas City GPS subsample, in which respondents were 

A Move Toward the Replacement  
of Travel Surveys with GPS

Although the first significant use of GPS in travel surveys 
was to measure and correct for trip underreporting, it has 
long been thought that GPS-based surveys could someday 
completely replace the travel reporting component of house-
hold travel surveys (Wolf 2000). The expectation has been 
that a completely GPS-based survey would significantly 
lower the respondent burden while increasing the quality 
and quantity of information captured, specifically in the 
automatic collection of trips and their attributes, including 
trip start and end times, activity locations and durations, and 
route choices (Wolf 2000; Murakami, Morris, and Arce 2003). 
Accurate travel reporting has traditionally been a challenge 
for survey respondents due to limitations in memory recall, 
the tendency to filter out what is considered by the partici-
pant as either unimportant (i.e., ATM visit or convenience 
store stop) or confidential, and the inherent complexities of 
trip reporting methods.

Furthermore, there has been interest from travel demand 
modelers to extend the reporting period of traditional travel 
surveys beyond a single day to better measure the variability 
in day-to-day travel. A few travel surveys conducted outside of 
the United States have done this; for example, the Mobidrive 
survey conducted in Germany collected travel information for 
6 weeks (Axhausen et al. 2002). However, in the United States 
there have been few travel surveys that have attempted to col-
lect even 2 days of travel data due to a significant decline in 
participation rates and trip rates attributed to higher respon-
dent burden (Chicago Metropolitan Agency for Planning 
2008; Bricka 2008). Consequently, reducing respondent bur-
den is critical to recruiting and retaining a good, representa-
tive sample of the targeted population—and even more so if 
multiday travel information is desired. It is worth noting that 
most of the recent GPS-enhanced travel surveys conducted in 
the United States have collected multiday GPS data ranging 
from 2 to 7 consecutive days.

During the industry interviews conducted for this project, 
a leading researcher from the Institute of Transportation and 
Logistics Studies (ITLS) touched on many of these aspects in 
his industry survey response, “Accuracy [of GPS] is clearly 
far greater than in diaries. People are notoriously bad at esti-
mating the times at which they travel, how long they travel, 
and certainly how far they travel. . . . A huge advantage is the 
ability to collect multiday data as well as the accuracy and 
coverage already described. We believe that personal passive 
GPS loggers reduce respondent burden substantially” (2012 
Industry Survey).

With the relative ease and accuracy of collecting travel data 
through GPS logging established by early studies, subsequent 
research has looked into using processing techniques on 
the collected GPS data to completely replace the traditional 
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was remarkable in its aggressiveness with respect to technol-
ogy adoption by the planning agency and acceptance by diverse 
population groups within the region. Furthermore, the survey 
platform made it possible to conduct PR interviews imme-
diately following GPS data downloads to the laptops in the 
participants’ homes, with no opportunity for interviewer pre-
processing or cleaning of the GPS trip data prior to participant 
review.

The Ohio Approach to GPS-Based  
Household Travel Surveys

Since 2009, the Ohio Department of Transportation 
has initiated two large-scale GPS-based household travel 
surveys within the state, which advanced the current state 
of practice in GPS-based travel surveys. The first survey, 
derived from the work previously implemented by Stopher 
and Collins (2005), was conducted in the Cincinnati area 
where a completely GPS-based household travel survey was 
performed. The travel survey included over 2,000 house-
holds, of whom 601 completed a 1-day prompted-recall 
study (Stopher et al. 2012). The study found that GPS-only 
travel surveys were feasible, although the authors state that 
prompted-recall data had limited usefulness because “it was 
also quite clear from the results of the prompted recall that 
it does not provide ‘ground truth,’ because people still mis-
understand what is required and misremember what they 
did” (Stopher et al. 2012).

The second GPS-based travel survey in Ohio was con-
ducted in Cleveland by GeoStats (2012 Industry Survey). In 
this study, more than 4,000 households provided travel infor-
mation using GPS data loggers, with approximately 1,300 of 
these households participating in a GPS-based prompted-
recall interview using CASI or CATI survey methods. The 
purpose of the prompted-recall sample was to assist in the 
calibration and validation of the algorithms and models 
developed for imputing critical trip attributes such as travel 
mode, companions, and trip purpose for the remaining GPS-
only sample. Another 453 households composed entirely of 
persons over the age of 75 reported their travel using travel 
logs (which seems simpler and more appropriate for this 
demographic group), yielding a final overall sample size of 
4,545 households.

Smartphone Use in Household Travel Surveys

According to the Pew Research Center (Smith 2012), 46% 
of adults in the United States own a smartphone, with almost 
three-quarters (74%) of them getting real-time location-
based information on their smartphones. These statistics 
are particularly impressive given that the two most popular 
smartphone platforms did not exist until the middle of the 
first decade of the 2000s.

prompted to fill in details of GPS-identified trips that were 
not recorded in the standard diary the respondents filled out 
or mentioned by the household during the travel reporting 
interview (NuStats 2004).

As mentioned previously, most of the early prompted-recall 
studies involved creating maps or other displays, then mailing 
these to the respondents for completion, which could involve 
significant delays and, therefore, a potential degradation of 
recall ability. More recently, GPS-based prompted-recall sur-
veys have been implemented using web-based data collec-
tion platforms. The use of web-based prompted recall allows 
much more detailed information regarding travel behavior 
to be collected. Yasuo Asakura of Kobe University states, 
“The combination of GPS [and] web has made [it] possible 
to obtain whole travel behavior data that were not observed 
only by the GPS,” (2012 Industry Survey). Examples include 
the collection of detailed travel planning behavior (Auld et al. 
2009) and activity rescheduling strategies (Clark and Doherty 
2010), among others. Studies by Marca (2002), Stopher and 
Collins (2005), Lee-Gosselin, Doherty, and Papinski (2006), 
Li and Shalaby (2008), and Auld et al. (2009) were performed 
using PR surveys over the Internet, and web-based computer-
assisted self-interviews (CASIs). A computer-assisted tele-
phone interview (CATI) GPS prompted-recall component 
was added to the recent household travel survey for the New 
York Metropolitan Transportation Council, which also used a 
web-based CASI PR component (Chiao et al. 2011; Wilhelm, 
Wolf, and Oliviera 2012).

In each of these PR studies, members of recruited house-
hold wore GPS data loggers for one or more days, and the data 
were later transferred to a central server for processing, either 
by direct uploading of the data removed from the device 
after the survey was complete, as in the surveys by Stopher 
and Collins (2005); Auld et al. (2009); Wilhelm, Wolf, and 
Oliviera (2012); and Oliveira et al. (2011), or through con-
tinuous wireless communication as in Lee-Gosselin, Doherty, 
and Papinski (2006). Regardless of the data transfer method, 
the collected raw points were then processed to identify the 
activities and trips, and the recall survey was built upon the 
identified activity-travel episodes.

Another variation of a GPS-based prompted-recall sur-
vey was implemented in Jerusalem in 2010–2011, where the 
regional planning agency used an internal team to conduct a 
100% GPS-based travel survey. They used laptops to administer 
face-to-face interviews using commercial off-the-shelf (COTS) 
computer-assisted personal interview (CAPI)  software that 
was integrated with a custom GPS prompted-recall tool devel-
oped by GeoStats. This approach was used to carry out both 
the initial recruitment and subsequent GPS-based prompted-
recall interviews (Oliveira et al. 2011). This survey collected 
detailed GPS-based prompted-recall travel data from more 
than 8,800 households located within the Jerusalem region and 
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can become dominant in household travel surveys; these 
challenges include:

1. Market fragmentation,
2. Power management,
3. Data plans and associated costs, and
4. Self-selection and capture mode biases.

The first issue is that there are several active smartphone 
platforms in the United States, each with multiple versions in 
active use and varying levels of API and technology support. 
Table 1-1 shows the breakdown of the top five smartphone 
platforms in the United States and includes the number of 
active different versions for each.

This fragmented reality makes it difficult and costly to 
develop apps for multiple platforms and operating system 
(OS) versions to support the majority of participants with 
smartphones. For example, the iPhone 3G running iOS ver-
sions older than 4 does not have the ability to log GPS data in 
the background while the phone is performing other activi-
ties, such as running a different app or during a call. There are 
also significant API differences between platforms that make 
it challenging to offer the same features and logic consistently 
across all apps offered to all participants.

The second issue that needs to be addressed is that of 
power management when logging trace data, be it from GPS 
or other sources such as Wi-Fi. A viable travel survey app 
has to allow a participant to make normal use of his or her 
smartphone while capturing the required data. Incremental 
improvements in battery technology, central processor units 
(CPUs), and GPS chipsets have alleviated this limitation, but 
it is still the case that continuously logging GPS data will 
rapidly deplete a smartphone battery. Researchers have dealt 
with this limitation through various strategies such as pro-
viding external power sources (Doherty and Oh 2012), limit-
ing the use of GPS and relying mostly on Wi-Fi and cell tower 
data for positioning combined with algorithms for identify-
ing when to start and stop logging (see Quantifiable Traveler 

In addition to being capable of running custom software 
applications (commonly referred to as “apps”), most smart-
phones integrate multiple technologies, such as keyboard and 
voice inputs, GPS, accelerometers, gyroscopes, and cameras, 
most of which are applicable to conducting travel surveys. 
Modern platforms make the use of these imbedded technolo-
gies available to software developers, with GPS-based location-
referencing services becoming one of the most popular features 
in smartphones. For example, there are several free apps avail-
able for the most popular platforms that allow users to record 
GPS locations as frequently as one point per second.

The opportunity to leverage smartphones is appealing 
to travel behavior researchers, and these devices are quickly 
becoming another method in the travel survey toolbox for 
collecting GPS-based travel data. According to Murakami 
and Bricka (2012), the possibility of using devices owned by 
participants can address common implementation challenges 
in GPS-based travel surveys by: (a) eliminating the need to 
ship out and retrieve GPS loggers, (b) shortening the time 
between travel date collection and data review, and (c) reduc-
ing costs associated with equipment loss. When combined, 
the growing market penetration and technical capabilities 
of smartphones makes them an attractive medium for con-
ducting travel surveys. This has sparked a growing interest 
in the travel survey community, with several pilot studies 
having been conducted over the past few years (Bricka and 
Murakami 2012).

Smartphones have the ability to be used in travel surveys 
as either active or passive data collection devices. In the active 
scenario, respondents would use the phone app to respond 
to survey questions before (i.e., recruitment questions) and 
during their travel day, either by confirming stops or explic-
itly starting and stopping the recording of GPS traces. Early 
deployments of smartphones to collect GPS data within travel 
surveys have used this approach, with notable examples being 
the TRAC-IT research project (Center for Urban Transporta-
tion Research, University of South Florida 2012) and the PTV 
Pacelogger app (Bricka and Murakami 2012).

Passive use of smartphone technology requires partici-
pants to download and initialize the app and identify them-
selves within the household persons roster; from that point 
on, all recording takes place automatically in the background, 
with the app detecting when the monitoring period ended 
and transmitting the captured data for processing. This pas-
sive data collection scenario can also be complemented by a 
PR interview completed in the same app or via the web. Rel-
evant examples of this approach are the Quantifiable Traveler 
app developed by UC Berkley and the Future Mobility Survey 
conducted in Singapore (Murakami and Bricka 2012).

However, there are still a few technological and method-
ological challenges to overcome before smartphone solutions 

Platform February 2012 Number of Major 
OS Versions* 

Android (Google) 50.1% 8 

iOS (Apple) 30.2% 6 

Blackberry (RIM) 13.4% 4 

Windows (Microsoft) 3.9% 3 

Symbian (Nokia) 1.5% 4 

Others 0.9% N/A 

*Only includes versions released since 2007.
Source: comScore MobiLens from http://www.comscore.com/Press_Events/
Press_Releases/2012/4/comScore_Reports_February_2012_U.S._Mobile_
Subscriber_Market_Share, accessed on 08/31/2012.

Table 1-1. Top U.S. smartphone platforms.
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The relevant travel demand model’s data requirements 
have a large influence on the data elements collected in a 
household travel survey. Simple four-step TDMs may require 
basic household, person, vehicle, and trip-level information, 
whereas advanced activity-based models require more precise 
details about household, person, and vehicle characteristics, 
as well as expanded information about actual travel behavior, 
travel options, and costs.

These three surveys have been selected as representative 
examples of an expansive survey design (whose requirements 
were driven by many state agency and regional agency stake-
holders), a typical survey design (in which the requirements 
were driven by a regional metropolitan planning organiza-
tion (MPO) that has both a four-step TDM and an activity-
based TDM), and a GPS-/technology-driven design (that was 
intentionally defined to require the minimum data elements 
needed to support the current four-step regional TDM), 
respectively. The purpose of this comparison is to show the 
range of current data requirements in household travel sur-
veys to be considered when evaluating the reduced respondent 
burden associated with GPS-based travel surveys as well as 
when evaluating other data sources to replace travel surveys.

The California Statewide Household  
Travel Survey—An Expansive Survey

The California Department of Transportation (Caltrans) 
sponsors the decennial CHTS, the most recent of which began 
survey data collection in February 2012 and was completed in 
January 2013. This statewide survey was designed to support 
the statewide travel demand model. Additionally, an attempt 
was made to accommodate regional travel demand models 
by including representatives from the MPOs and councils 
of governments from across the state in the planning and 
design process. Other California state agencies, such as the 
California Energy Commission, were also active participants 
in the design of the survey to meet their own agency data 
needs. By trying to accommodate the data needs of this wide 
range of users, the CHTS was a significantly longer and more 
comprehensive survey than typical household travel surveys. 
The design of the survey also included a long-distance trip 
diary in addition to the regular single-day travel diary; the 
purpose of the long-distance trip diary was to collect infor-
mation about inter-regional travel within the state that is not 
captured in a typical 1-day survey. The final sample size for 
the full survey was approximately 42,500 households, and 
5,717 of these households also participated in the GPS com-
ponent. The survey used a dual-method approach (partici-
pants receive both diaries and GPS devices) with three GPS 
subsamples: diary and wearable GPS, diary and vehicle GPS, 
and diary and vehicle GPS supplemented with an onboard 
diagnostic (OBD) device (or engine sensor).

and Future Mobility Survey in Chapter 26 of the Travel Sur-
vey Manual Update by Murakami and Bricka and also Battelle 
Memorial Institute 2012), and providing direct control over 
the logging to participants (Center for Urban Transportation 
Research, University of South Florida 2012).

The third issue is related to the need to transmit and down-
load data from the app and the fact that participants may 
have limitations on their data plans. Even after applying data 
compression, high-resolution GPS traces can get fairly large, 
and transmitting them back for processing could have con-
siderable cost impacts on an unknowing participant. This can 
be alleviated by providing materials that explain the expected 
data transfer demands of the application up front, applying 
trace simplification algorithms such as SQUISH (Muckell 
et al. 2011), providing incentives that will offset data trans-
mission costs, or only transmitting minimal information 
back to a central location (Center for Urban Transportation 
Research, University of South Florida 2012).

The fourth challenge has to do with the fact that travel sur-
veys are typically conducted at the household level and that not 
all adult members will have a compatible smartphone. This 
means that passive GPS data loggers will still need to be shipped 
to households even if there is a smartphone owner/user in the 
household. Of course, households without any smartphone will 
require one or more passive GPS loggers as well. These mixed 
GPS methods could be confusing for a survey household.

Finally, as seen with other data collection methods and 
technologies, there are multiple biases (e.g., age, gender, 
income, and ethnicity) related to smartphones. To mitigate 
these biases, it is important to provide alternative means of 
participating and to ensure that the data collected, regardless 
of survey mode, is properly integrated into the overall survey 
platform and framework. Developing a comprehensive sys-
tem to support and integrate multiple survey modes across 
and within households is not a trivial task, and the costs to 
develop, maintain, and update this system and all compo-
nents, as well as to provide technical support to participants, 
will be incurred on an ongoing basis.

Despite all of these challenges, it should be noted that the 
widespread availability and use of smartphones are relatively 
recent phenomena, and the technology as well as its uses are 
likely to continue changing and evolving at a fast pace over 
the next several years.

Examples of GPS-Enhanced  
Household Travel Surveys

This section describes the data requirements of three 
recent household travel surveys: the 2012–2013 California 
Household Travel Survey (CHTS), the 2011 Atlanta Regional 
Travel Survey, and the 2012–2013 Northeast Ohio Regional 
Travel Survey (covering the greater Cleveland region).
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study conducted in Cincinnati and an 8,800 household GPS-
based travel survey conducted in Jerusalem.) The Cleveland 
survey collected detailed socio-demographic and travel data 
from 4,545 households, including a 30% subset who partici-
pated in a GPS-based prompted-recall interview designed to 
confirm trip details via CATI or CASI survey methods. Trip 
details for the remaining GPS-only sample were imputed 
based on land use data, geocoded addresses, GPS data char-
acteristics, and information collected during the recruitment 
interview.

This means that the majority of households in the study 
completed a recruitment interview, wore a GPS device for  
3 or 4 days, completed a record of usage, and sent the device(s) 
back, thereby concluding their participation. The smaller per-
centage of the sample used GPS to record their travel while 
recording a few basic details of the trips made on their assigned 
travel day to reference during their retrieval interview.

Given the use of GPS as a primary means of data collection 
and software algorithms for imputing travel details, the survey 
sponsors (the Northeast Ohio Areawide Coordinating Agency 
and the Ohio Department of Transportation) agreed that 
they would also try to minimize the number of data elements 
required in both the recruitment and retrieval interviews so 
that only essential variables needed for model development or 
support were required. Consequently, this survey represents a 
minimalistic approach to HTS data collection.

Comparison of Data Requirements

Table 1-2 and Table 1-3 provide summaries of the counts 
of variables for each of the three surveys discussed in this sec-
tion. The summary includes the count of variables in each of 
the typical tables provided in the final data set. The two right-
most columns show the difference between the variables col-
lected for the two sample types in Cleveland, with a notable 
difference in the second table illustrating the reduced burden 
for the GPS-only participants. As mentioned previously, the 
number of variables in these TDM data sets is also a reflection 
of what might be required when trying to use or reuse existing 
data sets for travel survey purposes. Appendix A contains the 
complete listing of all variables delivered by table (household, 

The 2011 Atlanta Regional Travel  
Survey—A Typical Travel Survey

The Atlanta Regional Commission (ARC) conducted its 
most recent regional travel survey in 2011; this survey had 
a targeted sample size of 10,000 households with a subset 
of 1,000 GPS households (PTV NuStats 2011). Recruitment 
methods offered to participants were telephone (CATI) or 
web (CASI) interviews, and retrieval methods included CATI, 
CASI, and diary mail back with data entry into the web-based 
retrieval system. The purpose of the 10% GPS subsample 
was to collect detailed information about all trips made to 
estimate levels of trip underreporting that could be applied 
to the larger, non-GPS sample. Consequently, the dual GPS 
and diary method was implemented. A split design was also 
recommended, with the objective being to obtain 667 com-
plete households with in-vehicle GPS data and the remaining 
333 complete households with wearable GPS data. The GPS 
devices were used for 7 days by the vehicle sample and 3 days 
by the wearable sample, with the first day coinciding with the 
assigned diary/travel day.

This split technology design allowed for the collection of 
7 days of highly accurate vehicle-based data with minimal 
respondent burden while focusing the use of the wearable 
GPS device to those households that reported some incidence 
of transit use for a work or school commute. Households 
selected for the wearable GPS component were deployed for 
3 days, with all household members between the ages of 16 
and 75 receiving GPS equipment. A $25 incentive per instru-
mented vehicle or person was offered to all recruited GPS 
households for successfully reporting travel data, using all 
GPS devices provided, and for returning all devices. The final 
data sets for the survey contained 10,278 completed house-
holds and 1,061 completed GPS households.

The Northeast Ohio Regional Travel  
Survey—A State-of-the-Art, GPS-Only Survey

The Northeast Ohio Regional Travel Survey, covering the 
Cleveland metropolitan area, was one of only three large-scale 
travel surveys to use GPS for nearly 100% of the participating 
households. (The other two were a smaller 2,583 household 

Description 

California 

Statewide  Atlanta  

 Cleveland  

 PR 

Cleveland  

GPS Only 

Household variables 50 38 32 32 

Person variables 104 92 93 93 

Vehicle variables 29 15 7 7 

Location/place/trip/activity variables 53 54 43 43 

Long-distance travel 51 0 0 0 

Totals 287 199 175 175 

Table 1-2. Number of delivered variables.
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during model development, the systematic use of these data 
sets for other purposes is just now beginning to grow. Perhaps 
most intriguing is the use of passive GPS data collected by 
survey participants to replace traditional diary-based report-
ing methods (as discussed in the previous section).

Over the past decade, GPS data have been applied in trans-
portation planning model development to:

•	 Generate trip rate correction factors,
•	 Identify activity schedules,
•	 Explore activity interactions within a household and 

within larger social networks,
•	 Identify activity locations,
•	 Identify route choice and mode choice preferences,
•	 Explore variability and pattern formation in activity-travel 

patterns,
•	 Identify baseline network roads and conditions,
•	 Evaluate bike/pedestrian travel behavior,
•	 Validate travel demand models, and
•	 Identify trip purpose and activity type.

While uses such as trip rate correction factors and the 
identification of baseline transportation network conditions 
have been applied in several regional model development 
efforts to date, other uses are still emerging and are found 
only in research studies. Table 1-4 lists some of the known 
uses of GPS data that have been applied in practice.

person, vehicle, location/place/trip, and long-distance travel) 
and by survey.

Use of GPS Travel Data in the Development 
of Transportation Models

The decision-making demands on applied transportation 
models are requiring an ever-increasing level of complexity 
to estimate transportation policy impacts beyond capacity 
expansion (Cambridge Systematics, Inc., et al. 2012). The 
increasing complexity of models and their planning roles 
require higher-quality data to identify travel behavior and 
transportation system existing conditions. GPS technology 
has been targeted as an important tool for collecting the qual-
ity data needed in today’s models. More specifically, GPS-
based travel/activity surveys have been implemented with the 
expressed intent of improving the quality of behavioral data 
needed for trip, tour, and activity-based models. Data from 
GPS and consumer technologies are also emerging as a source 
for identifying baseline network operating conditions and for 
validating model outputs.

Over the last several years, the primary incentive for regions 
to invest in a GPS-enhanced travel survey component has been 
the identification of trip rate correction factors that adjust 
model trip rates based on unreported travel measured in the 
GPS subsample for the larger diary-based samples. While GPS 
survey data have been used for other investigative analyses 

Description 
California 
Statewide  Atlanta 

 Cleveland  

 PR 

Cleveland  

GPS Only 

Household variables 25 15 8 8 

Person variables 97 85 83 83 

Vehicle variables 27 13 5 5 

Location/place/trip/activity variables 45 36 34 0 

Long-distance travel 47 0 0 0 

Totals 241 149 130 96 

Table 1-3. Number of questions asked of participants.

Use of GPS Data Applied in Practice 

Trip rate correction factors Atlanta, California, St. Louis, Kansas City, Washington, 
D.C., Chicago, Massachusetts, New York City 

Activity schedule development Jerusalem, New York, Cincinnati 

Activity interaction analysis Jerusalem, Cincinnati, New York  

Activity/trip end geocoding Cincinnati, Jerusalem, Cleveland 

Baseline network development Many (GPS probe vehicle data, consumer data) 

Route and/or mode choice analysis Jerusalem, Zurich, Seattle, San Francisco, Portland 

Model calibration/validation Many (GPS probe vehicle data, consumer data) 

Bike/pedestrian models San Francisco, Monterey Bay 

Full travel diary replacement Cincinnati, Jerusalem, Cleveland 

Table 1-4. Uses of GPS data in transportation model development.
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to restore the individual disaggregate details that include not 
only the number of trips by purpose but also their sequence 
and timing based on a small subsample. This becomes espe-
cially important as scheduling models begin to account for 
intra-household interactions among household members, 
which require consistent schedules for all household mem-
bers. Consequently, missing or underreported data for just 
one household member can invalidate the data for the entire 
household, increasing the prevalence of unusable data.

One advanced surveying approach that fully addresses 
this issue and minimizes the underreporting biases is a 100% 
GPS-assisted prompted-recall method (Oliveira et al. 2011). 
The recent comparisons between GPS and non-GPS sub-
samples of the Jerusalem HTS have shown that, all else being 
equal, a GPS subsample provides trip rates that are 50%–70% 
higher and tour rates that are 10%–20% higher than diary-
only households, with rates varying based on trip/tour pur-
pose. The most frequently underreported travel components 
are short trips, nonmotorized trips, and intermediate stops 
on commuting tours. While these trips might not contribute 
significantly to regional vehicle miles traveled (VMT), they are 
important for understanding and modeling travel behavior 
and other (longer) trips. For example, the presence of inter-
mediate stops on commuting trips (like dropping off a child at 
school on the way to work or visiting a gym or shopping mall 
on the way from work) can be a major reason for a person’s 
resistance to switch to transit. A data collection method that 
systematically simplifies tours may result in an overly optimis-
tic mode choice model that would overpredict the number of 
transit users for a new service.

Such GPS data collection efforts as the types described pre-
viously will be even more vital to emerging travel demand 
modeling paradigms. These include advanced activity-based 
models that focus more on the dynamic behavioral aspects 
of the traveler, such as in models by Habib and Miller (2008), 
Nijland et al. (2011), Auld and Mohammadian (2012), and 
others. These models all have a focus on day-to-day dynam-
ics and choice behavior that cannot be observed in standard 
travel diary data. This is especially true for several large-scale, 
next-generation travel demand models in the process of devel-
opment, including ADAPTS (Auld et al. 2009), SimAGENT 
(Goulias et al. 2012), and SIMTRAVEL (Pendyala, Konduri, 
and Chiu 2012), which could greatly benefit from new GPS-
based data collection techniques.

Many of these models rely on somewhat esoteric con-
cepts, such as choice set formation, activity time-space con-
straints, and scheduling flexibility, which individuals rely on 
when forming activity-travel patterns but are likely to have a 
fairly limited ability to recall in a survey setting. For example, 
a concept such as flexibility (e.g., spatial flexibility) can be 
factored into models when attempting to formulate realistic 
choice sets from which survey participants can choose. How-

Trip Rate Correction Factors

One of the main attractions of using GPS devices to iden-
tify travel behavior is that the data set is observed (passive) 
instead of reported (active). The basic limitations of reported 
travel behavior through diaries have been recognized for 
many years (Stopher and Greaves 2007; Casas and Arce 1999) 
as respondents frequently forget some trips and interpret the 
definition of a “trip” differently. When GPS became viable for 
use as part of a household travel survey, one of the first analy-
ses was the comparison of GPS trips to diary trips. The differ-
ences between the observed and reported trips and the need to 
account for these differences in demand models have justified 
the inclusion of GPS subsamples in many large-scale travel 
surveys over the last decade (Wolf, Loechl, et al. 2003; Bradley, 
Wolf, and Bricka 2005). The extent of underreporting varies 
by region and demographic profile (Wolf, Loechl, et al. 2003; 
Bricka and Bhat 2007). A review of five recently completed 
surveys conducted for Denver, Atlanta, Nashville, Massachu-
setts, and California revealed overall underreporting levels 
ranging from 11% to 25%; however, these percentages should 
neither be interpreted nor applied broadly—additional analy-
ses are needed to generate appropriate, targeted correction 
factors based on specific trip, tour, and socio-demographic 
characteristics.

Generating trip rate correction factors can be accom-
plished for surveys in which households report travel in addi-
tion to GPS travel data, and also for surveys in which some 
households report travel using diaries only and others use 
GPS with prompted recall only. (The recent 2010–2011 New 
York City regional travel survey used this latter approach.) 
The techniques for either situation are similar in that correc-
tion factors are generated for subsets of travel. For trip-based 
models the corrections should be for specific trip types (i.e., 
home-based work), and for tour-based models the corrections 
should be for specific tours (i.e., school tours for children).

Activity Schedules and Interactions

Activity-based models (ABMs) tend to require data on 
the full activity-travel pattern of individuals and such hard-
to-collect information as planning times and flexibility 
measures. ABMs operate with disaggregate individual daily 
patterns and schedules. From this point of view, it is essential 
to collect a full-day list of person trips and activities with no 
gaps, overlaps, or inconsistencies. If one of the trips or activi-
ties of the person is missing, miscoded, or underreported, this 
essentially makes the entire person-day unusable for some of 
the ABM components. Underreporting in aggregate four-step 
models can be somewhat improved by applying trip rate cor-
rection factors derived, for example, from a 10%–15% sub-
sample of GPS-assisted households (Wolf, Bricka, et al. 2004). 
This approach is less useful for ABMs since it is impossible 
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lation models and dynamic traffic assignment (DTA) models 
need detailed speed and condition data for the specific model 
scope. Many model developers have used GPS-based probe 
vehicles to collect these data over the last 15 years. Probe-
vehicle data are typically collected using a sampling plan to 
ensure that the roads of concern are collected at designated 
times of day. GPS tracking has also been used to monitor net-
work performance measures such as travel times, speeds, and 
delay (Quiroga 2004; Hackney, Marchal, and Axhausen 2005).

More recently, consumer data that is collected by private 
companies is being used to identify baseline conditions. Sev-
eral private data companies have roadway speeds archived 
over multiple years and can generate custom queries. The 
original data come from a number of different technologies, 
including personal navigation devices, commercial vehicle 
GPS, and smartphones. These technologies are discussed in 
more detail in a later section.

GPS data that have been collected as part of a household 
travel survey can also be used to identify new model links that 
are needed in the network. Since travel demand model net-
works do not typically include all roads, some collector and 
local roads that are heavily traveled may not be represented. 
The GPS travel data can be used to identify these frequently 
traveled links.

Another related research area is measuring travel behav-
ior changes that result from changes in network conditions. 
Much work has been completed in Australia measuring 
travel behavior changes in response to the TravelSmart policy 
(Stopher, Fitzgerald, and Biddle 2006; Stopher, Swann, and 
Fitzgerald 2007). These studies use either 1-week or 4-week 
GPS panels, repeated over a period of years, to extract some 
basic travel behavior measures, such as the vehicle kilometers 
traveled and number of trips. As the GPS data allows for a 
much more accurate method of determining these values and 
the data are easier to collect, it has proved useful in measuring 
travel behavior changes.

Route Choice Analysis

Route choice decisions are very difficult for survey respon-
dents to reproduce using any reporting method. This has led 
to a lack of useful data on route selection behavior outside 
of simulated experiments. However, once GPS technology 
started being used in travel surveys, it was realized that the 
route selection behavior of the travelers would also be cap-
tured (Jan, Horowitz, and Peng 2000; Li, Guensler, and Ogle 
2005; Papinski, Scott, and Dougherty 2008). In the research 
of Jan, Horowitz, and Peng, data from the Lexington study 
were used to form general observations about route selec-
tion behavior, comparing variations in path selection and 
deviations from assumed shortest paths (Jan, Horowitz, and 
Peng 2000). Georgia Tech researchers used GPS to observe 

ever, the individual will often have difficulty articulating the 
actual constraints underlying a location decision, as was found 
in the UTRACS survey (Frignani et al. 2010). Rather than rely 
on individuals to recall their location choice decision-making 
process, long-term observations can be used to directly observe 
the variability of location decisions for activities to formulate 
a more accurate measure for use in model development. This 
can similarly be done for other factors such as timing flex-
ibility, and route choice variability.

Activity and Trip End Locations

Another issue that has plagued HTSs and subsequent travel 
model development for many years is geocoding of loca-
tions (trip origins and destinations) and ensuring proper trip 
arrival and departure times. For any travel model, whether four 
step or ABM, a trip record with unknown or incorrect desti-
nation location(s) is unusable for most sub-models. Round-
ing and other mistakes in trip departure and arrival times 
are less critical for four-step models since they operate with 
broad 3- to 4-hour time periods. However, advanced ABMs 
are extremely sensitive to both spatial and temporal incon-
sistencies. They operate with tours rather than trips, and hav-
ing a data item missing on one of the trips frequently results 
in discarding the entire tour. Differences between CATI- and 
GPS-collected travel time data and how they compare with 
modeled estimates based on the same origin–destination 
(OD) pairs were analyzed by GeoStats (Wolf, Oliveira, and 
Thompson 2003) for the three regions in California that par-
ticipated in the GPS component of the 2001 statewide travel 
survey. This analysis revealed that CATI tends to significantly 
overestimate travel time when compared with GPS-derived 
trips and modeled travel times.

GPS technology can be used to ensure a consistent daily 
chain of trips and activities for a person because both the spa-
tial and temporal aspects are present in the GPS stream with 
a high level of detail for routes and modes. In particular, for 
auto trips, such data as toll facilities or managed lanes used 
on the trip can be automatically retrieved. For transit trips, 
the GPS stream provides information about the sequence of 
all access and transit line segments (including exact boarding, 
alighting, and transfer points). The GPS stream also clearly 
identifies the parking location for both auto and transit trips 
with auto access or egress.

Baseline Transportation Network Conditions

All transportation models require some sort of baseline 
network and measurement of operating conditions. Travel 
demand model networks typically require estimates of free 
flow and congested speeds. Activity and tour models require 
these same speeds but at a more refined temporal scale. Simu-
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from probe vehicles, GPS-based travel surveys, or consumer 
product origin–destination data sets. Trip ends are geocoded 
and assigned to a traffic analysis zone (TAZ). Trip travel times 
between TAZs are recorded based on their start times. The 
resulting table of TAZ-to-TAZ trips is aggregated and aver-
aged into time-of-day bins based on the model design needs. 
The results can then be used in comparison with a similar 
output table generated by the model.

In addition to GPS-based household travel survey data, the 
same information can be tabulated from reported informa-
tion in travel diaries. A more recent development by a cell 
phone data provider allows modelers to purchase zone-to-
zone travel times for large percentages (30%–70%) of the 
population where zones are based on census geometry. While 
still needing some independent evaluation, the approach is 
palatable to the modeling industry and fits the needs of inde-
pendent and comprehensive validation data sets.

Additional Modeling Needs

Visitor/Tourist Travel Behavior.  There are very few visi-
tor models applied in practice. Most that have been applied 
are greatly simplified and aggregate in nature. However, for 
some major cities like New York, visitors represent a very sig-
nificant travel component. In advanced ABMs, a disaggregate 
approach for modeling visitors has been considered that is 
based on the same principle of micro-simulation of individ-
ual behavior as the core model for residents. Hotels provide 
the basis for structural synthesis of the population of visitors. 
To support such a model, a sample of daily travel diaries of 
hotel customers similar to individual questionnaires of HTSs 
can be collected. However, daily travel of visitors might be 
quite intensive in terms of number of trips and chains of trips 
(especially for nonbusiness purposes). Further, visitors and 
tourists are less familiar with the area, and it would be more 
difficult to retrieve trip end locations with them by address in 
a conventional non-GPS setting. Tourists and visitors may be 
even more reluctant to participate in a comprehensive, long 
survey compared to residents. It is possible that GPS-assisted 
methods with prompted recall would be attractive for this 
type of survey. A simplifying aspect of this type of survey is 
that the sampled unit is a person rather than an entire house-
hold (when compared to a household travel survey).

One approach would be to integrate an airport survey with 
the hotel visitors’ survey. Visitors can be recruited as they 
arrive at the airport and be equipped with a GPS device for 
the duration of their stay, with travel information retrieved 
using a prompted-recall method when they return to the air-
port for their departing flight. It should be noted that visitors’ 
trips to and from airports themselves represent an important 
travel market with unique characteristics such as very high 
willingness to pay for travel time savings and reliability.

variations in the chosen morning commute route within the 
Commute Atlanta project (Li, Guensler, and Ogle 2005). Papin-
ski, Scott, and Dougherty compared route pre-planning to 
actual morning commute routes and made observations about 
how routes are planned (Papinski, Scott, and Dougherty 2008).

The recent Traffic Choices Study sponsored by FHWA 
and conducted in Seattle, WA evaluated the before and after 
choices (including route) when different corridors were tolled 
(Puget Sound Regional Council 2008). This type of survey 
can be combined with any travel demand policy experiment. 
(Imposing differentiated tolls was the essence of the Seattle 
study.) In this case, the individual response to the policy can 
be analyzed through car use. An important additional benefit 
of this type of study that has not been fully utilized yet is the 
ability to calculate travel condition measures like travel time 
reliability in addition to average travel time and cost. Travel 
time reliability has been widely recognized as a very impor-
tant characteristic of highway service quality. However, this 
characteristic has never been included in travel models [and 
travel behavior analysis in general except for stated preference 
(SP) studies] because of the absence of network data on travel 
time variation at the trip origin–destination level. There is a 
wealth of data on travel time distribution at the highway seg-
ment level provided by sensor-based data collection systems 
(loops, cameras, RFID, etc.). However, a GPS-assisted traffic 
choices study is a unique way to track travel times and con-
ditions for entire trips (for example, commuting to and from 
work) implemented by the same individual over a substantial 
period of time.

The San Francisco County Transportation Authority 
developed a route choice model based on GPS travel data col-
lected as part of the CycleTracks data collection effort (Hood, 
Sall, and Charlton 2011). GPS data collected on smartphones 
using the CycleTracks application were analyzed to identify 
activities, mode transfers, and network paths. The results 
were used to create a multinomial logit model to reveal route 
and condition preferences. A smaller-scale but similar effort 
was conducted in Portland in 1999 (Broach, Gliebe, and Dill 
2009), and recent efforts in Austin, TX and Monterey, CA also 
used the same approach to route choice modeling.

Model Calibration and Validation

Travel model calibration and validation are conducted by 
comparing travel time forecasts from the baseline model with 
some sort of ground-truth data. The ground-truth data in this 
situation can come from trip origin–destination travel times 
and traffic volume counts at major screenlines. (Screenlines 
refer to locations around an urban area where traffic is fun-
neled into a few crossing points. Screenlines typically occur 
at river crossings, rail crossings, or border crossings.) More 
recently, GPS origin–destination travel times have been used 
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variability, thereby giving planners more options for improv-
ing emissions estimates. GPS data also provide measurement 
of time between engine starts. This value is used in estimating 
the intensity of cold start emission events.

Local road travel is often unknown. A properly designed 
GPS component can help analysts identify the fraction of 
VMT and vehicle hours traveled (VHT), two common emis-
sions modeling metrics, that occurs on links outside of the 
model network. These data can increase the accuracy of emis-
sions estimates, particularly local travel, which may have a lot 
of stop-and-go activity.

GPS data from household travel surveys have been used 
to support secondary research into emissions and green-
house gas formation by the National Renewable Energy Lab 
in Colorado and the U.S. EPA (Gonder et al. 2007). Emis-
sions researchers are relying less on typical driving cycles for 
emission rate estimates and instead, with the proliferation of 
GPS and other research, relying more on actual driving pat-
terns from the general population. This interest is expected 
to continue with an increased focus in greenhouse gas emis-
sions and tighter emissions standards. Involvement of these 
researchers in the formation of a possible GPS supplement to 
a household travel survey could result in additional financial 
support and increased benefits from the study.

In fact, the California Energy Commission and the Califor-
nia Air Resources Board (CARB) spearheaded a GPS augment 
to the 2012–2013 CHTS California Statewide Travel Survey in 
which 1,200 households received both GPS devices and OBD 
engine sensors to install in up to three household vehicles 
for 7 days. These data streams were processed, delivered, and 
used to estimate fuel consumption and vehicle emissions as 
required by recently passed state laws that require greenhouse 
gas emissions monitoring.

An early use of GPS in 1999 by CARB evaluated heavy-
duty truck activity (Battelle Memorial Institute 1999). This 
study, and many other special-purpose studies, has evaluated 
detailed trace data from instrumented vehicles to improve on 
the understanding of vehicle activity.

Other Types of GPS-Based  
Travel Behavior Studies

Physical Activity/Health Research

Given that many regions are interested in smarter and 
more transit-oriented development, many are including a 
physical activity component to the planned travel surveys. 
The 2001 SMARTRAQ survey in Atlanta included a compo-
nent similar to this that was funded by the Centers for Disease 
Control. Health researchers have been very active in trans-
portation planning in recent years due to the clear impact of 
travel behavior on physical activity (and obesity). People who 

Taxi Vehicle Activity Patterns.  Taxi as a travel mode has 
never been fully represented in travel models. In many regional 
travel models, taxi activity is entirely missing from the forecast. 
In other models, it is represented in a simplified way in terms of 
actual availability for the trip and associated travel time (wait 
and ride) and cost. However, in some major cities like New 
York, taxis represent over 30% of motorized trips. Making 
the taxi share more accurate in the mode choice model is not 
the only task to adequately represent taxies in travel models. 
Another important issue that has never been fully addressed 
in operational models is a proper representation of taxi vehicle 
movements that is much more complicated than for private 
automobiles. Taxi vehicle movement represents a complicated 
daily chain of trips with and without passengers that do not 
directly relate to passenger tours. For advanced travel models, 
one can envision a special new sub-model being developed for 
converting passenger taxi trips into vehicle trip chains. This 
sub-model will require a new data source that could be envi-
sioned as a multiday GPS-assisted survey of taxis (with GPS 
devices installed on taxis). Some recent and ongoing research 
has been completed in modeling taxi behavior and taxi 
demand assisted by GPS data collection. One such a study was 
conducted by Liu, Andris, and Ratti (2010), who used a large 
database of taxi driver GPS traces to analyze how taxi drivers 
evolve their travel patterns to increase revenue.

Commercial Delivery Vehicle Activity Patterns.  Similar 
to the additional data recommended for taxi movements, one 
could consider a GPS-assisted multiday survey for trucks, deliv-
eries, and other non-passenger vehicles contributing to daily 
circulation in major cities. Behavior of commercial vehicles is 
very different from passenger travel behavior and, in general, 
has been less explored and understood. A delivery truck might 
have 10 to 20 chained trips per day that are very difficult to 
retrieve reliably in a conventional survey setting. GPS-assisted 
technology is the only way to retrieve actual truck movements 
as a basis for a more advanced freight delivery model. A truck 
GPS study of a major grocery chain in the Chicago region 
was recently completed by the University of Illinois – Chicago 
(Mohammadian et al. 2013).

Emissions Modeling.  Household travel survey GPS data 
can be used in emissions modeling to develop and evaluate 
driving profiles and to generate link-level speed estimates. 
Emissions models require speed data to generate accurate 
estimates of vehicle emissions. The driving profiles provide 
the fraction of time respondents spend at different speed 
bins. Both Mobile 6.2 and the new MOVES model need this 
information to generate emissions estimates. Many regions 
also use a link-based emissions assessment that is based on 
the average speed of a road network link and the road vol-
ume. GPS data can provide the average speeds as well as their 
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enabled device to assess user fees, either through onboard 
calculation or communication with a centralized manage-
ment center (Pierce et al. 2011). The study has looked at the 
suitability of GPS in terms of its accuracy in being able to 
distinguish various road segments, privacy issues, and vari-
ous architectures for collecting the data and assessing the fees. 
Samsung smartphones were provided to recruited participants, 
who installed the devices in their vehicles for the duration of 
the study. Some of the findings are likely applicable to more 
general GPS survey efforts, such as the trade-offs between thick 
and thin client data processing strategies (i.e., processing and 
aggregating data within the device instead of at a centralized 
location), which could help mitigate some of the privacy issues 
in other surveys as well (Pierce et al. 2011).

The aforementioned Traffic Choices Study sponsored by 
FHWA and conducted in Seattle, WA evaluated the before 
and after behavior when different corridors were tolled at dif-
ferent times of the day (Puget Sound Regional Council 2008). 
Findings suggested that participants made small-scale adjust-
ments that could, as a whole, have an impact on traffic con-
gestion. Further, the study suggested that open road tolling 
is technically feasible but will require a more robust business 
model to achieve the tolling program’s goals.

Transit Passenger Surveying

To comply with Title VI requirements as well as to improve 
service planning, transit agencies conduct surveys at varying 
frequencies to gather data regarding travel patterns (which 
may include origin–destination information), ridership 
demographics, and customer satisfaction information. The 
data are a valuable tool for effective transit planning and 
travel demand modeling. Traditional surveys collect data 
on the sequence of the current one-way trip from origin to 
boarding and then alighting to destination. These surveys also 
generally ask about payment method, fare subsidies available 
to the customer, and options for alternative modes, as well 
as demographic details about the rider, including age, race, 
income, and frequency of transit use. A 2005 survey of 52 
transit agencies found that larger agencies conduct five or 
more onboard and intercept surveys annually, while smaller 
agencies conduct surveys every 1 to 3 years (Schaller 2005). 
Transit agencies are also required to have data collected by a 
recent onboard survey (within 5 years) to apply to the Federal 
Transit Administration’s New Starts program.

Prior to the rise of GPS and mobile technology, the latter 
of which allowed for real-time geocoding, the most common 
approach to the collection of these data was to have a survey 
administrator hand out pencil and paper questionnaires on  
selected bus routes or trains. An advantage of the pencil 
and paper method is the relative ease of handing out a 
questionnaire to a large proportion of the riders of a given 

become car-dependent not only have an impact on traffic  
congestion but may also have limited physical activity. Wear-
able GPS devices combined with activity monitors (or accel-
erometers) have been deployed for multiday periods in 
many studies to quantify the levels of physical activity and 
travel for different populations of interest. These studies 
have included before and after mobility and travel evalu-
ations of the cane training rehabilitation program offered 
for visually impaired veterans, an analysis of travel patterns 
and environmental exposures of children with asthma, and 
an examination of the level of physical activity on and off 
trails by trail users across the state of Massachusetts (Wolf 
and Lee 2009; Wolf and Trost 2009; Troped et al. 2008). GPS 
and accelerometer data can be used to answer key questions 
such as where does most physical activity occur (at home, a 
non-home location, or as a by-product of travel), how much 
physical activity occurs on a daily basis, and at what intensity 
does this activity occur.

Mark Freedman of Westat stated, “We are excited about the 
potential opportunities to combine the transportation and 
health sectors in joint data collection efforts where the use of 
travel diaries, GPS, and accelerometer data can be combined” 
(2012 Industry Survey). Such a study was recently conducted by 
Thompson and Kayak (2011) using GPS combined with accel-
erometer data to quantify individual daily activity levels. A simi-
lar study by Lee et al. (2012) used GPS traces from travel surveys 
to assess the amount of physical activity respondents engage 
in when choosing active transportation modes (i.e., walking, 
biking, etc.). Such studies are likely to become more and more 
important as public health challenges in the developed world, 
such as obesity and cardiovascular disease, grow more prevalent 
(Thompson and Kayak 2011; Doherty and Oh 2012).

Inclusion of a physical activity component in a household 
travel survey can serve health research needs, as well as pro-
vide data for transportation modeling and regional planning 
needs. The relationship between physical activity and trans-
portation planning is clear, and this knowledge is useful in the 
development of strategies that promote nonmotorized travel. 
Beyond this, understanding the relationship between physi-
cal activity and travel mode must factor into the design of 
livable communities and other built environment planning 
exercises. The most recent Nashville regional travel survey 
was designed with these joint goals in mind. This survey was 
branded as the Nashville Transportation and Health Study 
and included a 10% subsample of households who used GPS 
devices and accelerometers and also completed an extensive 
health survey in addition to the household travel survey.

Road Pricing and User Fees

An ongoing study being conducted in Minnesota has 
looked at the feasibility of road pricing strategies using a GPS-
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ized areas with populations exceeding 200,000, go through a 
certification review every 4 years per 23 CFR § 450.334(b) 
(U.S. Department of Transportation 2012). During this 
review, a TMA may be required to update the data used in its 
TDM, especially if the travel survey data used were collected 
15 or more years previously (Murakami and Bricka 2012). In 
fact, for most MPOs, conducting a travel survey constitutes 
one of the largest routine expenditures made from its plan-
ning budgets (Stopher, Alsnih, et al. 2008).

Evolution of Household Travel  
Survey Standardization

The 1990s saw an increase in the demands placed on 
TDMs and travel surveys as a consequence of changes put 
in place by the 1990 Clean Air Act amendments, the 1991 
Intermodal Surface Transportation Efficiency Act (ISTEA), 
and other earlier legislation (Tierney et al. 1996). At the 
same time, travel surveys went through several technology 
evolutions throughout the 1980s and 1990s with the intro-
duction of computerized interviewing systems, centralized 
call-centers, and online address validation and geocoding 
technology.

Guidance on recommended processes and practices 
in travel surveys was needed to better meet these added 
demands by improving quality, reliability, and transferabil-
ity of the collected data. These initial efforts were crystalized 
in the FHWA Travel Survey Manual (Tierney et al. 1996). 
Although this document did not prescribe standards, it did 
provide significant guidance by compiling material from pre-
vious guideline documents as well as technical papers into a 
single comprehensive source. The 580-page report identified 
the various types of travel surveys and covered several impor-
tant subjects, such as management and quality control, preci-
sion and accuracy, geocoding, and emerging trends identified 
at the time (including stated response and longitudinal sur-
veys). In addition, the report dedicated individual chapters to 
the main types of travel surveys identified by FHWA, which 
were household travel surveys, vehicle intercept and external 
station surveys, transit onboard surveys, commercial vehicle 
surveys, workplace and establishment surveys, visitor sur-
veys, and parking surveys.

A subsequent push for standardization came about in the 
early 2000s with the publication of the NCHRP Report 571: 
Standardized Procedures for Travel Surveys (Stopher, Alsnih, 
et al. 2008). This report was jointly created by a team of 
travel survey experts from around the world and focused on 
identifying aspects of personal travel surveys that could be 
standardized. It also provided recommendations on how to 
implement the drafted standards, identified areas for future 
research, and included templates for requests for proposals 

route. A disadvantage to this approach is the possibility 
of a failure by the participant to understand the objec-
tive (e.g., participants will report a round trip instead of 
the requested one-way trip). Additionally, the complete-
ness, precision, or accuracy of reported origin, boarding, 
alighting, or destination locations are not always known 
and not easily verifiable. While this approach is still widely 
used today, innovative methods are being used to replace or 
supplement this traditional approach.

One such method used to collect and audit responses to 
transit surveys uses GPS-enabled personal digital assistants 
(Oliveira and Casas 2010). However, this approach does not 
fully address concerns about the accuracy of self-reported data. 
A method that addresses the concerns about the accuracy of 
the data, while also leveraging the capabilities of real-time geo-
coding and GPS data, is the use of tablet devices to conduct face-
to-face personal interviews (Atlanta Regional Commission 
2012). The use of this combination allows for more accurate, 
complete, and representative responses and also provides the  
interviewer with details about the transit system and study 
area that would otherwise be unavailable. Tablets with cel-
lular connectivity allow the survey managers to adjust goals 
in real time. While there may be concerns about the costs of 
the tablets or the labor-intensive nature of face-to-face per-
sonal interviews, there is also evidence to suggest that the costs 
become fairly comparable when calculated using completed, 
usable surveys.

Automated passenger counter (APC) and AVL systems are 
used frequently as a means to measure level of service (LOS), 
manage dispatching and scheduling, and provide feedback to 
drivers about schedule adherence (Furth et al. 2006). While it 
is possible that these technologies could be integrated to pro-
vide high-quality and accurate passenger movement data, it 
is not a prevalent option at this time. Challenges to this pos-
sibility include the fact that not all vehicles in a fleet are out-
fitted with APC and AVL devices and that their integration 
is not always a straightforward task. Other applications of 
merged AVL/APC data include the estimation of dwell times.

Standards, Guidelines, and Common 
Practices for Travel Demand  
Model Data Collection

Household travel surveys constitute one of the most 
important sources of disaggregate travel behavior data for 
TDMs. They were initially conducted in the United States 
in the 1950s, and, during most of the decades since then, 
little has been done “to standardize the processes or to insti-
tute consistent practices of acceptable quality of reliability”  
(Stopher, Alsnih, et al. 2008).

The U.S. Department of Transportation requires that 
transportation management areas (TMAs), defined as urban-
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surveys (U.S. Office of Management and Budget 2006). The 
document is similar in form and content to the standards and 
guidelines found in the BTS document and contains the fol-
lowing caveat:

The standards and guidelines are not intended to substitute for the 
extensive existing literature on statistical and survey theory, meth-
ods, and operations. When undertaking a survey, an agency should 
engage knowledgeable and experienced survey practitioners to 
effectively achieve the goals of the standards. Persons involved 
should have knowledge and experience in survey sampling theory, 
survey design and methodology, field operations, data analysis, 
and dissemination as well as technological aspects of surveys.

As with the BTS, the OMB has provided a firm general 
framework for survey design and deployment, and it has 
stressed the need to conform to sound, proven statistical 
methods when conducting surveys but resists providing any 
more concrete requirements, thereby leaving discretion to the 
survey design process.

The U.S. Census Bureau conducts a decennial census, an 
economic and government census every 5 years, and the annual 
American Community Survey (ACS). It is common practice to 
use ACS question wording and choice lists in travel surveys. 
The bins used for questions about income, for example, are 
often identical to the bins found in income questions posed 
by the Census Bureau. Questions about race/ethnicity, gender, 
occupation, age, and other socio-demographic attributes may 
also be based on census structure, wording, or choices. These 
intentional design consistencies between surveys allow for 
comparisons at appropriate person/household and geographic 
aggregation levels, which are an important means of checking 
and controlling the sample for biases and representativeness 
during the survey effort.

Guidelines in GPS Data Collection and  
Basic Processing for Travel Surveys

Although U.S. federal agencies do not provide formal stan-
dards or guidance on how to use GPS technology in travel 
surveys, there exists a considerable body of literature on the 
topic. There are also standards that are related to how GPS 
data are collected, archived, and shared, which are applicable 
to household travel surveys. This section discusses these two 
topics. The next section of this chapter covers the literature 
review results in the area of GPS data processing and imputa-
tion methods.

Guidance from Technical Literature

Wolf proposed guidance in the form of simple steps that 
can be used to convert a stream of raw GPS points into trips 
(Wolf 2000). The process included the filtering of GPS points 

(RFPs). The main aspects for which standards were devel-
oped and presented in this report were:

•	 Design of survey instruments,
•	 Design of data collection procedures,
•	 Pilot surveys and pre-tests,
•	 Survey implementation,
•	 Data coding and geocoding,
•	 Data analysis and expansion, and
•	 Assessment of survey quality.

Several of these standards were incorporated into the design 
of the 2009 National Household Travel Survey (NHTS). More 
recently, members and friends of the Transportation Research 
Board’s Travel Survey Methods Committee (ABJ40) have 
started maintaining an online version of the travel survey man-
ual (http://www.travelsurveymanual.org). Initial content for 
the website came primarily from NCHRP Report 571 (Stopher, 
Alsnih, et al. 2008) and FHWA’s 1996 Travel Survey Manual 
(Tierney et al. 1996). Since its initial release, the content has 
been updated and expanded by the professional community.

The remaining parts of this section summarize the main 
aspects of these latest standards with regard to how they affect 
the collection of travel survey data for supporting GPS data 
processing and augmentation, present a review of the basic 
elements of a successful GPS-enhanced travel survey, and 
present three examples of recent travel surveys that illustrate 
different design approaches.

Relevant Travel Survey Standards Guidance 
from Other U.S. Federal Agencies

Other federal agencies that provide guidance relevant 
to travel surveys are the Bureau of Transportation Statistics 
(BTS), the Office of Management and Budget (OMB), and 
the U.S. Census Bureau. After the passage of ISTEA in 1991, 
the BTS was created in 1992 for the purpose of administer-
ing “data collection, analysis, and reporting and to ensure 
the most cost-effective use of transportation-monitoring 
resources.” The stated mission of the BTS is “to create, man-
age, and share transportation statistical knowledge with public 
and private transportation communities and the nation” (U.S. 
Bureau of Transportation Statistics 2005). To that end, the BTS 
has released a statistical standards manual that provides general 
guidelines about the planning and design of all types of sur-
veys run by a government agency and includes guidelines for 
the actual collection of data, the processing of data, and subse-
quent analysis, dissemination, and evaluations of data quality 
(U.S. Bureau of Transportation Statistics 2005).

The OMB oversees the Office of Information and Regula-
tory Affairs, which hosts a document developed to provide 
guidance on the development and deployment of statistical 
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a serial protocol; parsing these messages yields information 
that can be used for navigation or logged for later processing.

The GPS exchange format (GPX) uses XML (extensible 
markup language) schema for the lightweight encoding of 
waypoints, routes, and tracks (Foster 2004). This format is 
very popular in consumer-grade devices and is supported by 
several websites and web services. Another XML-like standard 
that has been used for exchanging GPS data is the Keyhole 
Markup Language (KML), which can be used by both Google 
Earth and Google Maps to display GPS data on an image of 
a globe and map respectively (Google 2012). Since its initial 
adoption, KML has also become an Open Geospatial Consor-
tium (OGC) standard (Open Geospatial Consortium 2008). 
GeoJSON is a geospatial data interchange format based on 
JavaScript object notation (JSON) and is commonly used 
in web development (Butler et al. 2008). The focus of these 
standards is on mapping and navigation applications, mak-
ing them less than suitable to travel survey and transportation 
planning applications.

More recent advances in both the capabilities and usage of 
web and mobile (i.e., smartphone and tablet devices) map-
ping APIs have generated a few de facto standards that the 
information technology industry follows when processing 
GPS data, such as:

•	 Point coordinates are stored in decimal degrees using the 
World Geodetic System (WGS) 84 datum,

•	 Point date and time information are provided in coordi-
nated universal time (UTC),

•	 ISO 8601 or NMEA 0183 formats are used when encoding 
date and time information into text, and

•	 Speed is indicated in meters per second.

Imputation and Data Fusion  
of Travel Behavior Details

Travel behavior researchers have recognized that detailed 
travel data from GPS traces combined with other trip details 
and geographic information has the potential to provide 
travel behavior details without participant reporting. For 
example, trip ends derived from passively collected GPS data 
can logically be combined with geographically referenced 
land use data to estimate trip purpose (i.e., home-based 
shopping trips). Several other travel details can be similarly 
estimated when combined with other measured or reported 
data elements. These processes of imputation and data fusion 
are attractive to travel behavior researchers because data 
generation moves away from participant-reported variables 
and more toward measured variables, which are deemed 
more reliable. Further, there is growing interest in using GPS 
data generated through consumer devices and apps that are 
archived and resold by private companies. This type of data 

based on quality indicators and zero speed followed by the 
computation of dwell time at each point. It was reported that 
a dwell time of 120 s worked well for identifying most trips. 
Stopher, Jiang, and Fitzgerald provided additional guidance 
on how to prepare raw GPS point data for processing along 
with suggested thresholds for GPS data-quality indicators, 
more detailed procedures for filtering non-movement, and 
suggestions for how to detect and handle cold starts and sig-
nal dropouts (Stopher, Jiang, and Fitzgerald 2005). More spe-
cifically, the team proposed that GPS points with zero speed 
and that show movements of less than 15 m be removed dur-
ing filtering (Stopher, Jiang, and Fitzgerald 2005).

Tsui and Shalaby (2006) suggested that points with fewer 
than three satellites in view and with horizontal dilution of 
precision (HDOP, a measure of the quality of a GPS coordi-
nate solution, where smaller numbers indicate better data) 
values above 5 be automatically removed, as well as points 
with zero directional heading and speed values. The resulting 
points are then reviewed for positional jumps, which tend to 
occur in urban canyon areas. Schüssler and Axhausen (2009b) 
used altitude in lieu of traditional dilution of precision qual-
ity indicators in cases where the collected data do not contain 
them by removing points that reported unrealistic altitude 
readings. Schüssler and Axhausen combined this filtering with 
the examination of points with near-zero speed for a mini-
mum of 120 s to detect trip ends; activity locations were sub-
sequently identified by looking at “bundles of GPS points” 
consisting of at least 15 points in sequence (Schüssler and 
Axhausen, 2009b). Alvarez-Garcia et al. (2010) used a mini-
mum distance threshold of 30 m between points to filter raw 
data before identifying stops, while Lawson, Chen, and Gong 
(2010) employed 50-m buffers to detect trip ends by search-
ing for records outside a point buffer within a 120-second 
time window.

With regard to device selection, information can be 
obtained in reports from previous projects as well as from 
findings in research papers. However, given the rapid evolu-
tion and constant change in the consumer market for GPS 
data loggers, it may be necessary to conduct independent 
evaluations such as the ones contained in Lawson et al. (2008) 
and Anderson et al. (2009).

Related GPS Data Standards  
Applicable to Travel Surveys

The National Marine Electronics Association (NMEA) 
developed one of the earliest standards for encoding data 
from GPS receivers, as well as for use with other navigational 
sensors. This standard, which is named NMEA 0183, is sup-
ported by most GPS receivers and has undergone several 
updates since being released in the 1990s. The NMEA 0183 
standard defines a set of text messages that can be sent over 
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up receiver positional reacquisition. Cold start events can be 
detected by comparing the end and start locations of adjoining 
trips and searching for distance gaps. The trip start location and 
path can then be corrected using information from the previous 
trip as well as geographic information system (GIS) data.

Signal dropouts occur when the receiver no longer has a 
lock on the minimum number of satellites needed to com-
pute a positional fix (i.e., three for a two-dimensional solu-
tion and four for computing a three-dimensional solution). 
Typical causes of signal dropouts are urban canyons and 
overhead blockages such as bridges, tunnels, and tree foli-
age. Signal dropouts can be detected by computing the speed 
between the starting and ending points of a data gap (defined 
as a gap consisting of two points that are separated by a time 
interval longer than a multiplier of the logging epoch but 
shorter than the defined trip end criterion) and comparing 
it with a minimum movement speed. If the computed aver-
age speed is greater than the minimum movement speed, the 
dropout can be ignored. If the computed average speed is 
less than the minimum movement speed, then it should be 
inspected for possible short stops like those that occur when 
picking up and dropping off passengers.

These methods are usually combined with analyst follow-
up and inspection procedures to ensure that consistent and 
accurate results are produced. These are especially important 
when reviewing and tagging short stops that last less than the 
usual trip end delay criteria of 120 s (Steer Davies Gleave and 
GeoStats 2003).

Determining Basic Trip Details

Once the end points of trips are identified, it becomes a 
simple computational problem to derive basic trip attributes. 
For example, one can define P as the ordered set of n GPS 
points (pi) belonging to a trip, D as a function that returns 
the distance between any two points pi and pi+1, and T as the 
function that returns the amount of time between any two 
points. Using these, one can identify the basic trip attributes 
using the formulae that appear in Table 1-5.

Additional filtering and post-processing of the GPS points 
may be conducted before these formulae are applied. For 

does not come with additional travel details other than the 
GPS trip trace and is limited in usefulness unless additional 
behavioral details can be imputed. The following sections 
present how these tasks have been accomplished by research-
ers and practitioners.

Trip End Identification

Before trip identification can occur, it is often necessary 
to perform basic formatting of the logged data to have it in 
a consistent format that is convenient for processing. This 
includes converting date and time information (which is 
often provided in UTC) to local date and time, as well as 
performing unit conversions (i.e., some devices may report 
speeds in atypical units such as knots). It is also important 
when performing these initial steps to be aware of the log-
ging rules used to configure the GPS loggers prior to data 
collection. These rules define when and how often a new GPS 
position is to be logged. For example, knowing the expected 
logging interval helps in detecting signal dropouts. An initial 
data quality step is often undertaken prior to any analysis to 
remove data points identified by the device as having too few 
satellite connections or low precision due to poor satellite 
configurations.

Next, the remaining points are processed to remove fur-
ther erroneous observations to produce reasonable traces. 
The traditional method involves the filtering of GPS points 
moving at very slow speed (e.g., less than 1 mph) followed by 
the computation of time intervals between subsequent points; 
these time intervals represent time over which the logger did 
not move. Whenever a gap of 120 s or more is found, a new 
trip end is placed (Wolf, Guensler, and Bachman 2001). This 
method has also been extended by looking at distance covered 
between points, spatial buffers, and heading changes (Stopher, 
Jiang, and Fitzgerald 2005; Lawson, Chen, and Gong 2010). 
Other studies have used various clustering algorithms such 
as k-means clustering (Ashbrook and Starner 2003), spatial 
density analysis (Flamm, Jemelin, and Kaufmann 2007), and 
land-use–constrained spatial buffering (Auld et al. 2009). 
Once the initial set of trip ends is identified, it is necessary 
to perform additional processing to deal with the potential 
presence of cold starts and signal dropouts.

Cold start events occur when the GPS receiver is either 
powered down or has not acquired satellite signals for an 
extended period of time (i.e., more than a few hours). Under 
these circumstances, a receiver may take several minutes to 
restart acquiring and reporting GPS positions, which results 
in the start portion (or the entirety) of the trip not being cap-
tured. Smartphones and other connected devices can shorten 
this time through the use of assisted GPS technologies that 
use the cell-data network to download updated satellite orbit 
information and time offsets, which can be used to speed 

Name Formula 

Origin location and time p1 

Destination location and time pn 

Trip duration  T(pn, p1) 

Trip distance  

Trip path P 

Table 1-5. Basic trip attributes from GPS.
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SOW points follows the same logic, but in reverse order, while 
each point after a time difference of at least 80 s is marked as 
a potential EOG point.

Travel Mode Identification

Different approaches have been used to associate a travel 
mode with a sequence of GPS points. Most mode identifica-
tion algorithms rely on central tendency measures of instan-
taneous GPS point speeds, such as mean, median, mode, as 
well as indicators of speed variability, such as acceleration and 
deceleration rates, standard deviation values, and maximum 
speed and acceleration values for different high percentiles 
(e.g., 85th and 95th), as well as measures of positional quality. 
The main methods used to perform mode identification can 
be classified into three groups: rule-based, probabilistic, and 
artificial intelligence. Artificial intelligence methods include 
both fuzzy logic and neural network applications.

Stopher, Clifford, and Zhang proposed a hierarchical, rule-
based process in which candidate modes are tested against 
the GPS data in the following predetermined sequence: walk, 
bicycle, off-street network transit, bus, and auto (Stopher, 
Clifford, and Zhang 2007). In all cases, the 85th percentile 
values for speed, acceleration, and deceleration are used to 
rule out a travel mode candidate. The authors point out that 
using the 85th percentile values for the decision variables has 
the benefit of dealing with outliers typically found in person-
based GPS logs (i.e., the few points that stray from the cap-
tured trajectory). Oliveira et al. (2011) used pre-computed 
values for average, maximum, and standard deviation of 
mode speeds to select the most likely candidate. The first step 
in the process was to compute average and standard devia-
tion values of the trip segments’ point speeds. The algorithm 
selected the travel mode that most closely matched the values 
for average and standard deviation of point speeds while hav-
ing its 95th percentile speed lower than or equal to the mode’s 
maximum speed.

Oliveira et al. (2006) demonstrated how a probabilistic 
modeling approach could be used to identify travel mode using 
data obtained by fusing GPS points with personal accelerom-
eters. The developed multinomial logit model was shown to 
accurately identify modes for 75% of the validation cases. It 
was also found that using the accelerometer data improved 
the identification accuracy for nonmotorized travel modes.  
Moiseeva, Jessurun, and Timmermans (2010) also used a prob-
abilistic approach, this one called the Bayesian belief network, 
to identify travel modes achieving a high accuracy rate of 92%.

Fuzzy logic has its roots in machine control and is appli-
cable to imprecise situations, which cannot be defined with 
crisp true-and-false rules. For example, trips can be defined 
in terms of slow, medium, or fast using median travel speed. 
Most people typically do not reason that there is an exact cutoff 

example, the points’ positions could be smoothed to remove 
outliers before computing distance or generating a final trip 
path (Li, Guensler, and Ogle 2005).

Travel Mode Detection and Processing

Once the data are segmented using basic trip ends, it is 
necessary to detect mode transitions that may have occurred 
within a GPS trip. The resulting sub-trips are often referred 
to as trip or mode segments or elemental trips. Once these are 
identified, travel modes are assigned.

Detecting Mode Transitions

Work presented by de Jong and Mensonides proposed an 
approach whereby trips were segmented into single-mode 
stages based on the assumption that a short period of zero 
speed was necessary for each mode change (de Jong and 
Mensonides 2003). The travel mode of the stages was then 
determined by leveraging the speed characteristics and the 
proximity to public transport stops and routes. In addi-
tion, the proposed logic tested whether the generated mode 
sequence was reasonable; for example, the logic would not 
allow direct transitions from bus to auto without an interme-
diate walk stage. The logic uses the fact that the walk mode 
has consistently low speeds and accelerations.

Tsui and Shalaby presented an integrated system to process 
person-based GPS data for travel surveys (Tsui and Shalaby 
2006). This system (GPS-GIS) included two versions; version 
one included modules for performing data filtering, identify-
ing trip ends, and detecting mode transitions within trips and 
mode identification, while version two used link matching 
of the GPS data to a GIS representation of the transporta-
tion network to support further GIS-based processing. The 
mode transition identification module in version one of the 
GPS-GIS system segmented each trip into single-mode stages 
by finding the points where the mode changed from walk to 
another mode or vice versa; the authors referred to these as 
mode transfer points (MTPs).

Schüssler and Axhausen (2008) implemented a mode tran-
sition detection system based on the one proposed by Tsui 
and Shalaby (2006), with the original implementation featur-
ing three types of MTP: end-of-walk (EOW), start-of-walk 
(SOW), and end-of-gap (EOG) points. The EOG point was 
used to indicate the end of a period with GPS signal loss. For 
each transition from a speed below 2.78 m/s to above 2.78 m/s, 
the algorithm searches backward until the next point with a 
speed above 2.78 m/s or until at least three consecutive GPS 
points with a maximum acceleration of 0.1 m/s2 are found. In 
this case, the last of the trailing points with small acceleration 
values were marked as being potential EOW points; otherwise, 
no EOW point was detected. The procedure for the potential 
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quite possible. Processing enhancements such as including trip 
chain logic, evaluating related geospatial data, and expand-
ing to traveler-specific behaviors across multiple days may 
improve trip mode identification; however, research results 
in these areas were not formally published at the time the 
literature review was performed for this NCHRP study.

Route Identification

One of the post-processing steps implemented with GPS 
data sets is to relate their point locations with spatial data sets 
representing the transportation network in a process known 
as map matching (MM). When applied to GPS data sets, it 
allows the identification of the routes taken on the network.

MM processes can be performed on the fly (i.e., in a navi-
gation device) or as a post-processing step to previously col-
lected GPS trajectory data sets. The first application has been 
covered extensively in the literature and is mostly concerned 
with accurate predictions of where a GPS receiver is along 
a link and does not necessarily need to run faster than real 
time. This discussion focuses on the latter application, which 
is frequently applied in the context of household travel sur-
veys (Doherty et al. 2000), performance measurement studies 
(Marchal, Hackney, and Axhausen 2005), and the analysis of 
utility vehicle behavior (Blazquez and Vonderohe 2005). Some 
additional applications of the results of a post-processing MM 
exercise of GPS point trajectories to a transportation network 
are to associate speed information to network links, identify 
locations where congestion occurs, generate data sets that help 
to understand route choice, and associate network data ele-
ments with the GPS data.

Initial map-matching algorithms used with GPS data 
would identify match candidates either by finding the clos-
est line feature to the point or locate the line feature with the 
shape point closest to the GPS point. Greenfeld proposed an 
algorithm that created lines between subsequent GPS points 
and used similarity comparisons to decide which network link 
best matched each GPS point pair (Greenfeld 2002). A weight-
ing scheme was used to balance the degree of parallelism 
between the GPS line segment and the link, the shortest dis-
tance to the link, and the size of the intersecting angle between 
the GPS-derived line and the street arc. White, Bernstein, and 
Kornhauser (2000) suggested a similar algorithm that used 
differences in heading to rule out matches.

Blazques and Vonderohe (2005) developed a rule-based 
MM algorithm that made use of shortest-path computations 
and turn restriction information to verify matches as the 
route was built. Although a high success rate was observed 
while applying this approach, the authors felt that it could  
be further improved, particularly when poor quality data were 
used, at the intersection of divided highways and where false 
negatives failed to snap (Blazquez, Ponce, and Miranda 2010). 

between someone traveling slowly and fast. Fuzzy logic allows 
you to describe a speed value in terms of how slow and how 
fast it is at the same time using continuous values from 0 to 
1 (Lawson, Chen, and Gong 2010). Tsui and Shalaby (2006) 
and Schüssler and Axhausen (2008) employed a fuzzy logic 
basic approach to define whether a mode candidate was suit-
able to a set of GPS points; in both cases an ordered set of 
most-likely candidates was associated with each trip segment 
to be classified. The fuzzy variables used in the membership 
functions were average speed of GPS points, 95th percentile 
maximum speed of GPS records, positive median acceleration 
of GPS records, and data quality of GPS records (based on 
HDOP). Tsui and Shalaby performed additional discrimina-
tory analysis on the initial set from the fuzzy logic functions 
utilizing the results from a map-matching procedure, further 
refining the resultant choice set (Tsui and Shalaby 2006).

Neural networks are able to generalize conclusions for  
data without the need to define relationships or rules in an a 
priori manner. A neural network can learn the subtle differences 
between car, bus, and walking trips and, therefore, automati-
cally detect the mode of transportation for a new, previously 
unseen trip (Gonzalez et al. 2008). Byon, Abdulhai, and Shalaby 
(2007) demonstrated how neural networks could be used to 
automatically detect the mode of transportation. Their research 
used data collected using a laptop connected to GPS receivers; 
attributes used in their neural network included instantaneous 
acceleration, speed, and HDOP. The impact of different log-
ging frequencies was analyzed, with the authors finding that 
mode detection performance was close to 80% with sampling 
intervals as long as 3 min (Byon, Abdulhai, and Shalaby 2007). 
Shorter reporting intervals produced better results.

Gonzalez et al. (2008) took the application of neural net-
works to model identification further by examining how well 
it could work on data collected using mobile phones equipped 
with assisted GPS technology. The authors also showed how 
the method could be applied to a reduced version of the input 
data, which were called “critical points.” These were defined 
as the minimum set of points necessary to reconstruct a par-
ticipant’s path (Gonzalez et al. 2008).

Lawson, Chen, and Gong (2010) conducted a controlled 
experiment where the performance of three mode selection 
methods was compared. The first applied a rule-based algo-
rithm similar to the one proposed in Stopher, Clifford, and 
Zhang (2007), the second implemented the neural network 
method previously described by Gonzalez et al. (2008), and 
the third was the approach documented in Schüssler and 
Axhausen (2008). The overall result was that the neural net-
work approach produced the best results, with a success rate 
of 84% (Lawson, Chen, and Gong 2010).

Research on improving instantaneous and post-processed 
travel mode identification techniques is ongoing, and improve-
ments in the reported success rates stated in this section are 
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added. Once each decision to extend the route with a link is 
made and accepted, this link will remain on the final selected 
route. MM procedures based on the multiple hypothesis tech-
nique (MHT) address this limitation by maintaining several 
alternative paths and eventually selecting the best one at the 
end of the process.

Pyo, Shin, and Sung (2001) demonstrated how MHT can 
be used in a navigation setting, which included integration 
with a DR device. However, due to its origins in navigation, 
the proposed logic focused on the accuracy of the point 
projections on the network instead of the final vehicle path. 
Marchal, Hackney, and Axhausen (2005) applied MHT to the 
problem of post-processing MM, with a focus on the opera-
tional performance. This meant that only the two-dimensional 
GPS point coordinates along with the line features represent-
ing the network were used as inputs. Furthermore, the scoring 
of point snaps and routes was mostly based on the distance 
between the GPS points and the network links. One of the 
findings of this application of MHT was that reasonable results 
could be obtained despite these simplifications. The authors 
also looked at the impact of keeping different numbers of can-
didate routes during the course of a route derivation; it was 
found that keeping 30 candidates produced quality results at 
reasonable computational speeds. This algorithm was later 
extended by Schüssler and Axhausen (2009a) to be used within 
the context of trips with the added ability to fill in gaps in the 
identified routes.

Trip Purpose Identification

Identifying trip purpose or activity at destination from 
GPS-derived trips remains a difficult problem to solve. This 
is because it inherently requires a multi-factorial approach 
where extensive data sources are combined with the basic trip 
attributes derived directly from the underlying trace data.

Wolf, Guensler, and Bachman (2001) demonstrated how 
trip end locations could be matched to GIS data to derive 
basic trip purpose classifications. At the time of the research 
it was noted that the trip purpose determination step worked 
well for approximately 78% of the test cases.

Schönfelder and Samaga (2003) used a multistage hierar-
chical matching procedure to infer trip purposes. This process 
involved the calculation of clusters of trip ends, the identi-
fication of trips whose purposes could be trivially deduced, 
and determining relationships between trip purposes and the 
socio-demographics of the respondents, as well as time of day 
when the activity occurred. Since the authors did not have 
information on the true trip purposes, the distribution of 
the inferred purposes was compared to that from a regional 
household travel survey. The results indicated differences in 
a number of purposes, including private business, work and 
work-related, shopping, and leisure activities.

The improved algorithm added dynamic resizing of the match 
distance tolerance, filtering of snaps based on the vehicle azi-
muth (or heading), and a revised set of matching rules.

Quddus et al. (2003) proposed an algorithm for use in a 
real-time navigation application that fused GPS points with 
data from a dead-reckoning (DR) device using a Kalman fil-
ter. It made use of weights to compute a score for each match. 
The score took into account the distance between the GPS 
points and the network arc, as well as the deviation between 
the point’s heading (computed by the DR device) and the 
bearing of the link, and the position of the point relative to 
the link. Byon, Abdulhai, and Shalaby (2007) also proposed a 
MM routine to be used in real-time monitoring applications 
using data from GPS-enabled mobile phones.

Quddus, Noland, and Ochieng (2006) proposed an algorithm 
that used fuzzy logic to deal with the errors and uncertainties 
present when matching GPS points to a road network and that 
also used data from a DR device. It used multiple inputs to 
evaluate if a GPS point should be matched to a link, but placed 
emphasis on heading differences and the perpendicular dis-
tance to links. Fuzzy inference systems were used to combine the 
multiple input variables to generate likelihoods of links being 
appropriate matches in the different stages of the algorithm, 
namely the selection of the first route link, the determination 
of whether a point snapped to the current link, and the selec-
tion of links to be added to the route.

The MM process proposed in Velaga, Quddus, and Bristow 
(2011) built on the approach proposed by Quddus et al. (2003) 
by adding an additional step that optimizes the weights used 
in the scoring scheme using a genetic algorithm optimiza-
tion technique. The authors also proposed the use of different 
weights based on the operating environment where the GPS 
data were collected (e.g., urban, suburban, and rural).

A common characteristic of these and most existing MM 
algorithms is the concept of match modes, with most of them 
containing an initialization mode, which identifies the first 
route link; a link snapping stage, which computes projec-
tions, or snaps, of the GPS points on the current link; and 
a new link search mode, which identifies the next link to be 
added to the route. The algorithm proposed by Dalumpines 
and Scott (2011) did not follow this pattern; it instead relied 
on network topology and used the GPS trace to construct 
a series of gates that limited the road network connectivity. 
This way, a shortest-path solution connecting the start of the 
trace to its end was likely to match the actual route taken. 
This process assumed that a complete and up-to-date road 
network, including information on turning restrictions, was 
available. It is not likely to be able to handle incomplete road 
networks, such as the ones typically used by travel demand 
models (i.e., missing local and collector type roads).

Most MM algorithms in the literature reconstruct the orig-
inal route using a linear process with a single link at a time 
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(2008) with probabilistic multinomial logit models (MNL). 
The approach consists of two steps: (1) clustering trip ends 
into origins and destinations and (2) identifying trip purposes. 
The second step is performed through two sub-steps; the first 
one assigns trip purposes deterministically, while the second 
applies MNL models to calculate the probability of four trip 
purposes: work/school related, personal business, shopping, 
and social recreation. Two MNL models were developed, one 
for home-based trips and another for non–home-based trips. 
The factors taken in as independent variables in these models 
fell into three different types: time of day, history dependence, 
and land use characteristics. The authors reported 67% and 
78% match rates for home-based trips and non–home-based 
trips, respectively (Chen et al. 2010).

Cell Phones, Personal Navigation 
Devices, Smartphones, and the 
Emerging Role of Consumer 
Technologies in Travel  
Behavior Research

Cell phones, PNDs, smartphones, and other consumer 
technologies are commonly used across most demographics 
and are now viable sources of travel data. Unlike documented 
research studies and applied public-sector data collection, data 
and methods for collecting and using GPS capabilities found 
in consumer devices and applications are closely guarded by 
the private companies that are developing commercial prod-
ucts. Further, consumer products and applications change 
rapidly, and systems evaluated one day may be irrelevant the 
next. For this section of the report, attention will be focused 
on documented studies using consumer products and the 
most relevant but generalized capabilities of these products 
for extracting travel behavior details. First, active data collec-
tion strategies are presented, followed by the more prevalent 
passive data collection approach. This section concludes with 
a sample of current offerings from private data providers.

Research institutions and private companies have devel-
oped capabilities to use consumer devices to generate travel 
behavior data in both an active and a passive manner. Active 
data collection refers to the use of common personal con-
sumer products to administer a survey or seek direct user 
feedback. Passive data collection refers to the use of the 
archived travel data generated by consumer technologies and 
consumer applications.

From a transportation planning or research perspective, 
the technology and data access methods are less important 
than the characteristics of the resulting data set. However, 
researchers and practitioners must be aware of the limitations 
of new technology solutions and new consumer data products, 
particularly before they are applied in a forecasting model. All 
solutions, regardless of type, require three key considerations 

Bohte and Maat (2009) also used GIS data (land use and 
points of interest) to pre-assign trip purposes to participants 
in a GPS PR survey. The developed survey system applied 
corrections to the derived purposes based on responses from 
participants. This rather simple trip identification approach 
was able to correctly predict purpose for 43% of the collected 
trips (Bohte and Maat 2009). The ability to accumulate these 
corrections across multiple participants was later added and 
pilot tested by Moiseeva, Jessurun, and Timmermans (2010).

Stopher, Clifford, and Zhang refined this method with 
the addition of several improvements, including the use of 
frequently visited locations (e.g., home, work, and school) 
and activity duration (Stopher, Clifford, and Zhang 2007). 
More recently, improvements have been made to this core 
method by adding the concept of tours to the data process-
ing and review (Shen and Stopher 2012). The latest version 
of this method was applied to the GPS data collected in the  
2009–2010 Greater Cincinnati regional travel survey, in 
which every member in the household over the age of 12 was 
asked to carry a passive GPS device for 3 days. A subset of the 
households also completed a PR interview where the GPS-
derived trips were presented and additional attributes, includ-
ing trip purpose, were added. The 4,133 GPS trips from the PR 
data set were used to evaluate the accuracy of the method. The 
authors found that the accuracy of the base method, without 
the tour-based corrections, was approximately 59%. The added 
validation and corrections were able to increase the accuracy 
to 67%. The authors also compared the derived trip purpose 
distribution with that generated using data collected as part of 
the 2009 NHTS and found that the two were not significantly 
different (Shen and Stopher 2012).

Griffin and Huang (2005) used decision trees, built using 
the C4.5 algorithm, to identify trip purposes for GPS activ-
ity locations. The authors reported a high accuracy in the 
determined purposes, but the focus of the paper was on the 
clustering approach used to determine trip end locations 
from the GPS data stream. McGowen and McNally (2006) 
demonstrated the use of classification trees and discriminant 
analysis to identify the most likely trip purpose. The devel-
oped models were based on personal, household, and trip 
attributes. A total of 22 different variables were employed, 
with the source of the data being the 2000–2001 CHTS. Only 
out-of-home activities were considered in the developed 
models, and these accounted for 40% of destinations. The 
reduced set of purposes contained 26 types, which were also 
aggregated into five major activity categories. The developed 
classification trees and discriminant models performed very 
similarly, with average accuracies in the 73% to 74% range for 
the major activities and 62% to 63% in the 26 disaggregated 
activities (McGowen and McNally 2006).

Chen et al. (2010) combined the approaches proposed in 
Schönfelder and Samaga (2003) and Stopher, Alsnih, et al. 
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•	 Smartphone use is not biased by race, but is biased toward 
those with a high income and those who are well-educated, 
urban/suburban, and under age 50.

As transportation planners and researchers identify new 
methods to access travel data, statistics such as these can 
provide some insight into survey design and data usage limi-
tations. The use of cell phones and smartphones across differ-
ent races appears to be unbiased, which is encouraging given 
that travel data from minorities have been difficult to access 
using traditional or GPS-based methods (Bricka et al. 2009). 
It should also be noted that known bias in device usage can 
be accounted for in survey design. In fact, some of the bias 
in device usage may aid in capturing individuals that do not 
respond well to traditional methods.

Active Data Collection  
from Consumer Devices

Interest in the active use of smartphones for surveying has 
increased in the last several years as travel behavior research-
ers have tried to find ways to reduce respondent burden and 
the equipment costs (and deployment costs) for GPS-based 
travel surveys. Given that smartphones are typically equipped 
with GPS (plus accelerometry and motion sensing capabili-
ties) and carried by users almost everywhere, the attraction to 
tap into these devices for location and human activity infor-
mation as well is logical.

Before smartphones were widely available, active electronic 
data collection was possible using personal digital assistant 
(PDA) devices configured with GPS receivers and other exter-
nal devices. One early example of such an instrumentation 
package was the Electronic Travel Diary solution developed 
for the physical activity sub-survey of the 2000 SMARTRAQ 
travel survey done in the Atlanta region. The package included 
a Palm III device and a wearable GPS data logger; custom 
programming was done to encode the main portions of the 
travel survey into the Palm device, which was later fused with 
the GPS data in a post-processing step (Wolf et al. 2000).

The TRAC-IT application is one of the first examples of 
using smartphones to actively collect travel behavior data. 
TRAC-IT was developed in 2007 for use in a Florida DOT 
research project with the objective being to “better under-
stand and pattern household travel behavior for the purpose 
of educating, promoting, and encouraging households to use 
alternatives to driving alone.” The application required users 
to actively start and stop trip capture, followed by the input of 
information such as place type, purpose, mode of transporta-
tion, and travel companion counts. The phone captured and 
transmitted GPS trace information while the trip was active. 
Using the data collected, the application provided feedback 
to participants in the form of personalized suggestions on 

for evaluating a consumer data product’s ability to accurately 
identify travel behavior:

1. Identifying data bias—Data from consumer products can be 
biased because it is the user’s choice to purchase and operate 
the product. Some demographic groups have been slower 
to use consumer products and, therefore, may not be repre-
sented in the data samples. It should also be noted that just 
because a device may be more prevalent in a certain demo-
graphic does not mean that the data has the same bias. For 
example, travel speed data from a smartphone may not be 
biased because the user must follow traffic laws like everyone 
else, thereby negating some of the demographic bias.

2. Verifying data quality—Location and attribute accuracy 
is important for understanding potential error ranges in 
subsequent analyses. Furthermore, the consumer product 
market is very competitive, and independent validation of 
quality is important until data standards are implemented 
that provide some level of quality assurance.

3. Ensuring privacy protection—Given that these data sets 
come from private consumers, special attention to privacy 
protection must be maintained. Planners and researchers 
must be assured that they are legally protected and that 
the original consumers have provided consent. Existing 
and proposed legislation at the state and federal level is 
focused on this issue.

Initial questions that arise with consumer products address 
market penetration. For example, how many people use the 
data-generating product, and is the user group demographi-
cally biased? The Pew Research Center provides market statistics 
about consumer product usage and technology penetration 
into American society (Pew Research Center 2012). These  
statistics are useful in determining any high-level bias that 
might be intrinsic in the use of consumer products. The fol-
lowing statistics were noted in April of 2012:

•	 One in five people do not use the Internet. The non-users are 
biased toward senior citizens, Spanish speakers, those with 
less than a high school education, and those with low income.

•	 Those that do use the Internet use it very frequently.
•	 Eighty-eight percent of American adults have a cell phone.
•	 More demographic groups are using smartphones as their 

main Internet access source (including minorities and low-
income households that have been traditionally low-level 
Internet users).

•	 The use of cell phones is not biased by race.
•	 Forty-six percent of American adults have a smartphone, 

and the market share is growing. In less than 1 year, between 
May 2011 and February 2012, estimated smartphone own-
ership increased by 11%. The forecast is for this trend to 
continue.
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crumbs created by everyday technologies. The transportation 
community has been slower than several other disciplines in 
finding applied roles for consumer data to support tradi-
tional transportation planning. Most of the consumer data 
products currently used in transportation are targeted at sup-
porting traveler information systems and marketed directly 
to consumers. Within the past few years, consumer data mar-
keted for public agency consumption has found footing and 
is now poised to play a role in improving understanding of 
travel behavior and supporting future transportation plan-
ning decisions.

These sources of passive travel data are the result of stan-
dard technologies that are used in everyday life (i.e., com-
munication, navigation) but also generate archival traces of 
information. While the list of potential consumer products 
includes familiar devices such as mobile phones, smart-
phones, and PNDs, there are other, lesser-known devices 
that can also be used as sources of travel data. Given that 
products and product updates come and go with regularity, 
one way of categorizing each solution may be to base the 
categories on the fundamental location technology and the 
data collection method.

Most consumer data that are available to public agencies 
today are generated for a purpose other than supporting 
travel behavior analyses. Almost all original products were 
designed to support real-time traffic data offerings where 
sensor, GPS, and/or cell phone data were collected in real 
time and translated into link-level speeds. As this market took 
hold and as data archives grew, other uses for the data arose. 
These archival data sets can be extensive with respect to the 
amount of data collected, the duration of the data collection 
period, and the geographic coverage. Generally, these data 
are converted into a data product (e.g., NavTeq traffic pat-
terns data) or a data query service (e.g., such as that offered 
by TomTom) that are, in turn, offered for purchase. More 
recently, these products have been adapted to public-sector 
planning applications promising details of population move-
ment or facility-based performance.

Table 1-6 lists potential technologies, example providers, 
market focuses, and potential travel behavior values.

From the public-sector perspective, there are a number of 
attractive advantages and complicating disadvantages when 
considering these data products.

Advantages of these data sets include that they contain:

•	 A massive amount of data,
•	 Data that are both comprehensive and continuous (i.e., 

many days of data),
•	 Data that represent real-world experiences/conditions, and
•	 Raw data that allow for a wide variety of delivered prod-

uct solutions custom made for certain studies (e.g., speed, 
origin–destination, delay, and turning movement studies).

how to save time and money by streamlining travel behav-
ior (Center for Urban Transportation Research, University of 
South Florida, 2012).

Another good example of active data collection using 
smartphones is the CycleTracks app, which was originally 
developed by the San Francisco County Transportation 
Authority to document bike routes with the purpose of using 
them to build the model network support for bicycles. The 
application design requires users to actively start and stop 
logging GPS data and to associate comment information 
with the collected trace. The original CycleTracks source code 
was made available publicly using an open-source license. In 
2011, NuStats modified this code base to create a proof-of-
concept app called PTV Pacelogger. This effort was done in 
close collaboration with Portland Metro for use in a pilot 
survey in Portland within the context of Oregon Household 
Activity Survey (Bricka and Murakami 2012).

Smartphones have also been used to collect vehicle-based 
GPS data as part of the Minnesota DOT Mileage Based User 
Fee demonstration project. In this project, smartphones 
and supporting equipment were provided to 500 volunteer 
participants, primarily in Minnesota’s Wright County, with 
the intent of keeping the phone permanently installed in 
the vehicles for the duration of the study. Participants were 
asked to use the equipment for 6 months and agreed to pay a 
mileage-based fee accumulated during the testing period. The 
collected GPS data were used in the smartphones to estimate 
charges based on roadway type, geography, and other factors 
and were not transmitted to the central processing location 
(Battelle Memorial Institute 2012).

Passive Data Collection  
from Consumer Products

Transportation planners and decision makers are in a 
dynamic age of transportation data availability. The rapid 
market penetration of location-enabled consumer technolo-
gies is providing new, nontraditional sources of travel data 
regarding persons, vehicles, and transportation networks. 
Mobile phones and personal navigation devices can generate 
massive amounts of archival data regarding personal travel, 
and this information is increasingly used by transportation 
professionals in planning and research. Initial consideration 
is generally met with enthusiasm regarding the potential of 
the data to identify detailed travel behavior but is soon tem-
pered with questions regarding bias, data quality, value, and 
integration into existing models and planning procedures. 
Further, planners and researchers are facing these issues in a 
rapidly evolving consumer marketplace where formal guid-
ance is limited and new product offerings are common.

There is a wide range of active research initiatives into 
social behavior patterns, as evidenced by the digital bread-
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logging logic, point resolution/frequency, post-processing 
algorithms, coverage, bias, quality, and privacy protection. 
One method of validation that can be implemented in these 
early travel behavior products is to compare results to other 
travel surveys like the NHTS. Comparing average trip length 
distributions for certain trip types (home-based work, home-
based school, and non–home-based) may be a simple way to 
evaluate a product’s potential.

Early Proof-of-Concept Studies  
for Passive Data Capture

The earliest use of data from consumer products relied 
primarily on cell phones and occurred as part of academic 
studies for traveler information systems. A research paper by 
Qiu and Cheng provides a good summary of the early history 
of cell phone use for traveler information systems (Qiu and 
Cheng 2007). As early as 1996, researchers were exploring the 
concept of using cell phone signals to find the location of a 
phone and to estimate its travel speed. These studies were 
precursors to efforts in using the same technology to measure 
travel behavior.

Researchers at Kobe University developed methods for 
extracting travel details from mobile phone data (Asakura 
and Hato 2004). They developed techniques and algorithms 
for extracting movement information based on archived cell 
phone activity data. Their procedures were successfully tested 
on 100 participants. They also recognized that additional 
data besides time and location are needed for use in travel 
behavior applications.

Researchers in South Africa tracked cell phone data for 
83 participants over a 2-day period where time and position 
were updated every 5 minutes (Krygsman and Schmitz 2005). 
Findings showed that it was possible to use cell phone track-
ing techniques to generate time and location information for 
activities. They also noted that substantial effort was required 

Some disadvantages of these data sets are that:

•	 They have privacy issues with releasing detailed travel data,
•	 They are unproven in applied travel behavior models,
•	 They have a potential demographic bias in source data 

(i.e., actual demographics are unknown or proprietary),
•	 They have uncontrolled equipment usage (users can acti-

vate or deactivate device),
•	 They are unable to automatically identify short trip ends 

with low-resolution data,
•	 Current products are heavily aggregated and are typically 

averaged at segment levels,
•	 Black-box processing (i.e., proprietary algorithms) makes 

data quality uncertain, and
•	 There is a dynamic market space—data providers and 

products might not be around for long, may change con-
tent, or may shift focus.

Passive location data are obtained from the user in differ-
ent ways. Some data are obtained from remote sensors, other 
data may be directly uploaded from the consumer device, 
and some data may be volunteered from users. The primary 
methods of gaining access to passive location data from con-
sumer products are:

•	 Cellular activity detection by cell towers,
•	 User-installed application with automatic data upload of 

location data,
•	 Imbedded application within product not under user 

control,
•	 User-initiated data upload or sharing of location data, and
•	 Signal detection by sensors (Bluetooth, Wi-Fi, etc.).

From a traveler behavior standpoint, the method of data 
upload or access is less important than the various data char-
acteristics that define its quality and usefulness, including 

Technology Example 
Provider 

Primary Market Focus Potential Public-Sector Interest 

In-vehicle 
navigation device 

TomTom Navigation and real-time 
traffic information 

Transportation system 
performance, repetitive travel 
patterns 

In-vehicle service OnStar Location-based services Origin–destination data, parking, 
transportation system 
performance 

Mobile phone  
tower-to-tower 
handoffs 

AirSage Traffic data, population 
movement data 

Origin–destination data, 
population movement, long-
distance travel times 

Smartphone 
application 

INRIX Traffic Real-time and predictive 
traffic information 

Transportation system 
performance, origin–destination 
data, trip-making patterns 

Table 1-6. Emerging consumer data sources.
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2011). Data were collected over a 60-day period from more 
than 600,000 Sprint phones. Data were tabulated to gen-
erate origin–destination matrices for TAZs to support 
CAMPO modeling efforts. A similar project was conducted 
for the South Alabama Regional Planning Commission in 
2011 (Mobile MPO 2011). Final results from these projects 
have not yet been published. CAMPO also used AirSage data 
as part of a speed study for their region and found the results 
comparable to those obtained using GPS probe data. Some 
concerns over validation were mentioned.

In 2011, MyGistics conducted an evaluation of time- 
varying travel demand for a major interchange in Roseville, 
CA using cell phone data from AirSage (Ma et al. 2012). 
Zonal trips for the study area were tabulated from cell phone 
data to estimate the travel demand for peak periods. The 
results showed that the time-varying demand estimation is 
possible using passive sources.

In 2012, the Virginia DOT studied the origin–destination 
patterns of travelers passing along the joint section of I-95 
and I-64 (Business Wire 2012). TomTom origin– destination 
data were used to identify zone-to-zone travel patterns and 
were then used as inputs into a micro-simulation model of the 
corridor. The results of this study have not yet been published.

Table 1-7 shows additional project characteristics for 
known applications of consumer data for travel behavior 
analysis.

Sample of Current Offerings  
from Private Companies

Several private companies that sell transportation data 
generated from consumer devices (and other sources) were 
contacted regarding their data offerings and were sent cus-
tom industry-specific questionnaires. This section briefly 
summarizes the information provided by each company 
that responded to these questionnaires. It is worth noting 
that most responses were provided in the form of marketing 
materials. The following sections summarize the information 
gathered from each provider.

AirSage. AirSage has agreements with two of the top 
three major mobile phone carriers that allow AirSage to 
gather information regarding the location of mobile phones 
in real time, which, in turn, enables them to generate real-
time traffic data for traveler information systems and to gen-
erate archived cell phone movement information to support 
origin–destination studies. They have a refined and patent-
protected process [known as Wireless Signal Extraction 
(WiSE)] for triangulated signals based on signal strength at 
cell towers and can classify data points as transient or sta-
tionary. Their coverage area includes the continental United 

for establishing additional details needed to support the data 
needs of transport models.

Research papers available at the SENSEable City Labo-
ratory at the Massachusetts Institute of Technology (MIT) 
include a wide range of concept papers on consumer product 
data analysis. The earliest papers focused on issues surround-
ing location-based services and wireless hotspots. Their 
research expanded with time and now includes a number of 
papers and findings that provide insight and direction into 
the future transportation planning roles of consumer data. In 
2006, a paper by Ratti et al. identified a vision for using cell 
phone data for understanding people’s behavior (Ratti et al. 
2006). The vision was demonstrated with data from Milan, 
Italy, and showed the possibility of true travel monitoring 
for both typical and atypical events. Ratti et al. (2007) fol-
lowed up this research with a study of cell phone movement 
data in Graz, Austria. In that study, cell phone users volun-
teered to have their locations tracked for a 24-hour period 
to show how users’ travel could be monitored. These early 
efforts did not fully address the mass processing and impu-
tation needs but rather focused on the idea that behavior 
could be identified based on the passive data. Since 2007, the  
SENSEable City Lab at MIT has had available several addi-
tional papers focusing on the technological challenges and 
opportunities for using consumer data to identify action-
able travel behavior information.

In all of these early studies, the focus was on proof of con-
cept with limited sample sizes. All studies mentioned con-
cerns over privacy as a significant hurdle to both the future 
application and the viability of publicly sponsored research 
efforts. Most defended against the concept of bias due to the 
market penetration of cell phones.

Public Agency Applications

The first documented large-scale public agency use of 
archived consumer product data for estimating travel behav-
ior was in Israel in 2009 (Gur et al. 2009). In this study, data 
from ITIS Traffic Services Ltd. was acquired by the Israel 
Department of Transport and contained archived data from 
10,000 mobile phones for 16 one-week periods. The project 
was conducted as part of an effort in building a countrywide 
travel demand model. The data were used to identify inter-
zonal trips to and from home and other non–home-based 
trips. While the effort was successful in supporting large-scale 
movements of the population, it was suggested that the data 
should be used in conjunction with more traditional survey 
methods to support the specific modeling requirements of 
city and regional planning.

In 2011, AirSage was contracted by the Capital Area 
Metro politan Planning Organization (CAMPO) in Raleigh, 
NC to conduct an origin–destination study (AirSage Inc. 
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data from fleet vehicles, personal vehicles, roadside sensor-
based systems, cell phone data, smartphone applications, 
RFID, and other sources. They have products that have been 
generated specifically for public agencies that are based on 
archived travel condition data. The majority of their solutions 
are designed to support operations, system planning and 
measurement, and system optimizations. For travel behavior 
and model support, archived INRIX speed data have been 
used for developing baseline speeds by times of day.

Bias: No information provided other than as indicated by 
their listed sources of information. Generally, roadway speed 
and delay information is not susceptible to the same impact 
of demographic bias as trip information.

Data Quality: Historical data products provide statistical 
distributions to reflect variability. Quality is related to sample 
size that may vary based on traffic volumes and functional clas-
sification. Multiple data sources contribute to data validation.

Privacy Protection: INRIX does not reveal private infor-
mation from sources; only aggregate data at a road segment 
or route level are provided.

Nokia/NAVTEQ. Nokia gathers real-time travel infor-
mation from a wide range of original sources, including GPS/

States and Hawaii. Most of AirSage’s data products are based 
on all cell phones covered by the carrier agreements that 
provide these triangulated data points. Other data products 
are based on location data collected from opt-in devices that 
allow more detailed tracking (called FastCache). AirSage 
estimates home and other activity locations based on time-
of-day, day-of-week, and location patterns over many weeks. 
Demographic distributions can then be applied to the esti-
mated home locations.

Bias: AirSage reports that their coverage includes 70% of 
cell phones in the United States.

Data Quality: Origin–destination information is aggre-
gated to the U.S. Census block level or higher. An internal 
data validation process is conducted within WiSE.

Privacy Protection: No information about private con-
sumers is extracted to any data products. Exact trip end 
information is not provided for their origin–destination 
data; locations are aggregated to the U.S. Census block level. 
FastCache users have license agreements in place that allow 
sharing of more detailed information.

INRIX, Inc. INRIX gathers real-time travel information 
from a wide range of original sources, including GPS/AVL 

Study Data 
Source 

Retrieval 
Method 

Bias Treatment Noted Data 
Quality Issues 

Stated Privacy 
Protection 

Ministry of 
Transport and 
Road Safety, 
Israel, 2008 
(Gur et al. 
2009) 

Cell 
phone 

Passive 
cellular 
activity 
detection 

Overnight locations 
compared to 
aggregated 
demographics 
 
Conducted separate 
CATI survey of 
population regarding 
cell phone use 

Trip end location 
limitations, 
processed data 
not exactly 
matching model 
needs 

Legal review by 
agency lawyers, 
removal of 
private 
information from 
raw data 

Capital Area 
MPO, Raleigh 
NC, 2011 
(AirSage Inc. 
2011) 

Cell 
phone 

Passive 
cellular 
activity 
detection 

Overnight locations 
compared to 
aggregated 
demographics 

Very short trips 
excluded, some 
merging of TAZs 
needed in dense 
areas 

Removal of 
private 
information, final 
products only 
include 
aggregated 
results by TAZ 

South Alabama 
RPC, 2011 
(Mobile MPO 
2011) 

Cell 
phone 

Passive 
cellular 
activity 
detection 

Unreported Unreported Unreported 

Virginia DOT, 
2011 
(Business Wire 
2012) 
 

PND User-
initiated 
app with 
auto data 
upload 

Unreported Unreported Covered under 
license 
agreement 

MyGistics 2011 
(Ma et al. 
2012)  

Cell 
phone 

Passive 
cellular 
activity 
detection 

Not explicitly 
discussed, but 
mentioned “data 
cleaning” 

Unreported Unreported 

Table 1-7. Summary of efforts applying consumer data for travel  
behavior analysis.
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Bias: There is potential bias in traffic data given the heavy 
reliance on fleet vehicles. Bluetooth sensor data are biased 
toward drivers that are more likely to have Bluetooth-enabled 
devices. In both of these situations, traffic conditions mitigate 
the impact of final product bias.

Data Quality: Quality metrics are used internally to iden-
tify potential sensor or data-quality issues. Quality is related 
to sample size, which may vary based on traffic volumes and 
functional classification.

Privacy Protection: No private information is gathered 
from any of the information sources.

Privacy Protection in Consumer Data Sets

As noted previously, a wide range of information can be 
gathered about travelers moving on transportation networks 
through various data collection methods. As the capabilities 
of sensor-based systems and consumer products advance, 
more personally identifiable information is accessible and, 
therefore, comes with an increased risk of exposure of pri-
vate information. In the last couple of years, it was revealed 
that most phones, GPS devices, and smartphone applica-
tions have stated and unstated capability to archive and 
upload information about usage, including location data. 
The hardware and software companies controlling these ele-
ments protect their data access with license agreements that 
users must agree to prior to operation. These companies are 
also very sensitive to the concerns of their customers and 
generally avoid risking their primary markets. Therefore, 
while the idea of selling consumer data has some attraction, 
there is some hesitation to providing any sort of private data 
to a government agency.

At the time of this writing, there were three proposed leg-
islative acts intended to control government access to private 
data collected from consumer products: the Geolocation Pri-
vacy and Surveillance Act of 2011 in the U.S. Congress, the 
Wireless Surveillance Act of 2012 in the House of Representa-
tives, and the California Location Privacy Act (which passed 
with bipartisan support in August of 2012).

The Geolocation Privacy and Surveillance Act is a bipar-
tisan bill that provides “a legal framework designed to give 
government agencies, commercial entities, and private citi-
zens clear guidelines for when and how geolocation infor-
mation can be accessed and used.” The primary focus of this 
act is to prevent law enforcement from tracking individuals 
without a search warrant except in cases of emergency. More 
importantly, the bill also addresses private companies’ use 
of consumer data and limits their use unless there is explicit 
consent by the individual. Passage of this bill may have 
some impact on the availability of some consumer data sets, 
particularly those with blanket or third-party data access 
agreements.

AVL data from fleet vehicles, personal navigation devices, cell 
phones, roadside sensors, and other sources. For public agen-
cies, Nokia provides Traffic Patterns and Traffic Analytics that 
aggregate traffic speeds as needed to support performance 
evaluation or planning efforts.

Bias: Approximately half of the data sources are private, 
consumer-based sources, and the other half are fleet vehicle-
based sources. Bias is limited because they only provide road 
segment speeds.

Data Quality: Data quality procedures are applied to all 
data before they are released into a real-time or archived data 
product. Multiple data sources contribute to data validation. 
Quality is related to sample size, which may vary based on 
traffic volumes and functional classification.

Privacy Protection: No private information is released in 
any product. Private information is not collected, and unique 
IDs are periodically assigned in the data processing to ensure 
anonymity. Nokia private consumer data usage is authorized 
with direct user acceptance of a data sharing agreement at the 
activation of a Nokia device.

TomTom. TomTom gathers GPS data from personal 
navigation devices, and GPS/AVL from fleet vehicles, smart-
phones, cell phones, and third-party data. TomTom data 
products serve real-time information in support of traveler 
information systems and archived historical data for trans-
portation planning and operations.

Bias: The prevalence of consumer devices has indicated 
a potential demographic bias typical of cell phone market 
penetration rates. Bias is limited for road segment and route 
speed information.

Data Quality: Smartphone GPS data are controlled for 
mode bias by limiting data usage to when the smartphone 
is docked in a car holder. Multiple data sources contribute to 
data validation. Quality is related to sample size, which may 
vary based on traffic volumes and functional classification.

Privacy Protection: Data from consumer products are 
provided according to data usage agreements with the con-
sumer. Private information is given the highest regard, and no 
private information is released in any data products. Random 
IDs are generated at regular intervals in the internal process-
ing of data.

TrafficCast. TrafficCast gathers GPS/AVL data from 
fleet vehicles and from mobile and fixed-sensor–based 
sources to generate estimates of real-time traffic infor-
mation (provided as Dynaflow). TrafficCast also provides 
Bluetooth sensor systems and data delivery for interested 
agencies (provided as BlueTOAD). Travel-behavior–related 
data products include archival data for estimating baseline 
speeds and OD data at setup using Bluetooth sensors for 
specific study areas.
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where the Federal Communication Commission required all 
cell phone manufacturers to have built-in location-detecting 
technology that would allow wireless network operators to 
provide latitude and longitude information on callers within 
300 m to support emergency response. This requirement was 
part of the Wireless Communications and Public Safety Act 
of 1999 (Wolf 2000; Karim 2004).

As a result of the E-911 mandate, cell phones are now 
equipped with a number of location-sensing technologies. 
The location can be determined by GPS, Wi-Fi, Bluetooth, 
and their interaction with the wireless network. Data collected 
using the first three detection types can be controlled by the 
owner by altering the settings on the phone. Data collection 
via the wireless network interaction, however, is done so that 
anytime a phone is turned on and interacts with the wire-
less network in some way, whether a tower-to-tower handoff 
or the initiation of a phone call or text, the location can be 
determined through triangulation. This location detection is 
done passively and has been processed by private companies 
for real-time traffic and population movement applications.

Data from smartphone applications is an area of location 
detection that is advancing swiftly. People agree to certain 
terms to use the services that require location detection and/
or sharing. Many location-based services such as navigational 
apps (e.g., Google Maps) and social networking applications 
(e.g., foursquare) are very popular, and the location data gen-
erated by these apps can be archived and resold according to 
licensing agreement terms.

RFID, Bluetooth, and Wi-Fi. RFID systems can detect 
the location of travelers when their assigned RFID tag is 
within range of a receiver. Generally, this allows the pro-
vider of the RFID tag to look up private account informa-
tion for the person subscribed to the unique RFID. This 
capability can be employed for applying and enforcing road 
use-based fees.

Bluetooth readers are much less obtrusive and function 
by identifying the media access control (MAC) address as 

The Wireless Surveillance Act of 2012 is designed to limit 
access to electronic communication. This act, less important 
to travel behavior research, addresses email and phone com-
munications. The recently passed California Location Pri-
vacy Act of 2012 makes it mandatory for law enforcement 
agencies to obtain a search warrant before gathering any 
GPS or location tracking data from a personal cell phone or 
other device. While most of the attention on privacy legis-
lation is in law enforcement, there are definite concerns in 
all three (and in older efforts) regarding data access by any 
public agency.

One of the first transportation planning studies to address 
the issue of data privacy was the Connected Vehicle Road 
User Fee Test (Pierce et al. 2011). The researchers were con-
fronted with public concern about the tracking capability of 
the technology to be used. The issue and the project’s focus 
on privacy protection identified that the concerns were valid 
and that other transportation planning studies should have 
thorough procedures for checking legality and providing the 
utmost security for private information.

The types of private data that can be accessed vary by 
device.

Table 1-8 details the type of information that can be col-
lected by detector type. There are several categories of agree-
ments between users, service providers, and data collectors 
when data are actively or passively collected. In some cases 
there is no agreement at all, as in video surveillance typically 
purposed for traffic and incident management.

GPS and Cell Phones. Once selective availability, which 
refers to the degradation of GPS signals, was eliminated in 
2000, the accuracy of GPS devices improved from 30 m to 
100 m in 2000 to 5 m to 10 m by 2003 (Zmud and Wolf 2003). 
The information that can be collected from GPS devices has 
such precision that much information can be derived from 
the time-stamped position data. Another move by the govern-
ment that affected location capabilities by cell phone rather 
than GPS technology alone was the development of E-911, 

Location detector Individual information 

Video surveillance Vehicle – location, vehicle type, speed, time, occupancy 
Pedestrian/transit – location, time, activity, company 
License tag ID – can be linked to vehicle registration data 

Bluetooth Location, time 

GPS device (includes PND) Location, speed, route, frequent locations, time, acceleration  

RFID Location, speed, time 

Cell phone Location, speed, time 

Smartphone application Location, user information, context 

Transit smart cards Origin, destination, frequented stations/stops, and times 

Table 1-8. Individual information accessed from consumer products  
and detectors.
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location, application and feature usage, network traffic data, ser-
vice options you choose, mobile and device number, and other 
similar information may be used for billing purposes, to deliver 
and maintain products and services, or to help you with service-
related issues or questions.”

“We may collect and process information about your actual loca-
tion, like GPS signals sent by a mobile device. We may also use 
various technologies to determine location, such as sensor data 
from your device that may, for example, provide information on 
nearby Wi-Fi access points and cell towers.”

“We may share aggregated, non-personally identifiable informa-
tion publicly and with our partners – like publishers, advertisers 
or connected sites.”

“This type of information may be aggregated or anonymized for 
business and marketing uses by us or by third parties.”

“We may also draw upon this Personal Information in order to 
adapt the Services of our community to your needs, to research 
the effectiveness of our network and Services, and to develop 
new tools for the community.”

“We receive and store any information you enter on our Service 
or provide to us in any other way. . . . We automatically receive 
your location when you use the Service.”

“We may automatically collect location information from your 
mobile device, but such information will not be directly linked 
to a specific person. Your location data will only be provided to 
us in accordance with Terms governing your app, and will then 
be aggregated with other data.”

“These companies, often called ad servers or ad networks, may 
place and access cookies on your device to collect information 
about your visit on our websites.”

“We may put together your current city with GPS and other 
location information we have about you to, for example, tell 
you and your friends about people or events nearby, or offer 
deals to you that you might be interested in. We may also put 
together data about you to serve you ads that might be more 
relevant to you.”

These excerpts exemplify the variety of ways companies 
inform users of how their personal data may be accessed, 
used, and shared with others. However, consumers are 
often unaware of these terms, do not know where to find 
these terms, or do not understand the implications of pos-
sibly ambiguous terms such as “to develop new tools for 
the community” or “to deliver and maintain products and 
services.” The ambiguity in terms combined with the vari-
ability of policies across license agreements adds to the 
inconsistency and future unreliability of data sources from 
consumer products.

Fixed-Location Sensors

Application of Fixed-Location Sensors  
to Transportation Data Collection

Fixed-location sensors are devices that are positioned 
along a transportation system and have a short-range detec-

Bluetooth-equipped devices pass by a sensor. By pairing the 
MAC address with observations downstream, the travel time 
and speed information can be generated. A similar approach 
is possible for devices emitting Wi-Fi signals.

When transit fares are collected from passengers via elec-
tronic fare media, records of passengers’ travel times (i.e., when 
their transit trips started and ended), their transit trip dura-
tions (i.e., how much time it took to travel within the transit 
system), and routes used are automatically captured. Further-
more, at the transit vehicle level, boarding counts (as well as 
alighting counts for some transit systems) are also stored. With 
this information, transit agencies know when, where, and how 
their passengers use the system; in turn, the transit agencies 
are able to monitor and improve their services. Electronic fare 
media can also have additional information associated with 
the user, such as school, employment, other organization, age, 
credit card details, and home address.

Data Processing Techniques to Reduce  
Privacy Exposure

There are ways to process the data to reduce the ability to 
trace it back to a specific household or person. Almost all pro-
cessing of data includes a step that renders the data anony-
mous. However, even though the data are anonymous, it is still 
possible to use accurate location information within the data 
to identify a person’s home location, work location, and other 
frequently visited places. A recent research project conducted 
by Elango and Guensler explored two traceability-reducing 
post-processing techniques for GPS-collected data prior to 
distribution (Elango and Guensler 2011). Both techniques 
involve creating polygons around home locations and trim-
ming the location data from within that polygon. By keeping 
the authentication and filtering process in the communica-
tion servers separate from the analyzing processes of the traffic 
servers, the privacy protection of users can be ensured while 
still maintaining data integrity (Hoh et al. 2006).

License Agreements for Secondary Use

For many users and service providers, it is important that 
information collected cannot be traced back to the individual 
user unless explicitly authorized by the user. To protect the 
information that can be obtained from cell phone usage, Con-
gress passed the Telecommunications Act of 1996, which con-
tained Section 222 that requires telecommunication customer 
approval before customer proprietary network information is 
distributed to third parties (Karim 2004).

The following user agreement excerpts were found on dif-
ferent manufacturer or service provider websites regarding 
the use or reuse of consumer data on April 27, 2012:

“We collect information about your use of our products and ser-
vices. Information such as call records, websites visited, wireless 
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day, and a trip travel time. Not all individuals or vehicles have 
active Bluetooth transmitters. Estimates of detection percent-
age range from 3% to 8% in the multiple studies reviewed 
over the last few years (Lee, Agnello, and Chen 2011; Voigt 
2011; Bullock, Haseman, and Wasson 2010). Since the sensors 
operate independently, they can record data for long periods 
to capture enough data to support analysis needs.

There have been applications of Bluetooth devices around 
the country to support transportation initiatives. Most  
of these applications focus on performance evaluation and 
traveler information systems. A few, however, have used 
Bluetooth technology to understand travel behavior and to 
feed modeling efforts. A recent Virginia DOT study com-
pared OD data from traditional video data collection and 
Bluetooth (Lee, Agnello, and Chen 2011). Both approaches 
were used to identify travel patterns of vehicles entering and 
leaving the Richmond, VA area (external–external, external–
internal, and internal–external counts). The Bluetooth cap-
ture rates varied from between 3.73% and 5.82%, while the 
video captured between 52% and 88% of vehicles. A compar-
ison of trip tables showed significant differences and led the 
researchers to believe that the video capture was more reli-
able since the Bluetooth sensors have smaller capture rates 
and much more signal noise in the data. Another applica-
tion of Bluetooth sensors for identifying external travel was 
conducted by the Texas Transportation Institute in Houston 
(Voigt 2011). The study explored a broad deployment of sen-
sors along different road classes to support a traveler infor-
mation application. It found capture rates for Bluetooth 
sensors as high as 20% and determined that capture rates 
were increasing over time.

A study by Bullock, Haseman, and Wasson was conducted 
over a 12-week period in 2009 along the I-65 corridor in 
Indiana and collected 1.4 million travel times (Bullock, 
Haseman, and Wasson 2010). Portable Bluetooth devices 
were placed along the main line of the Interstate with semi-
permanent ones placed along diversion routes. The possible 
uses for the data included determination of travel delay times, 
driver diversion rates, and work zone mobility performance.  
Bluetooth was also used in a Florida DOT study to identify traf-
fic pattern changes related to a new interchange in Jacksonville 
(Carpenter, Fowler, and Adler 2012). Fourteen sensors were 
deployed for 1 week to identify OD matrices for the primary 
access points in the study area. The resulting OD travel time 
matrix was also used to validate the final model.

One of the most interesting future travel behavior appli-
cations of Bluetooth is its potential role in the Connected 
Vehicle Initiative research program. The Connected Vehicle 
Initiative, originally envisioned to improve safety and reduce 
congestion, is a large research initiative involving intelligent 
transportation systems (ITSs) that allow vehicle-to-vehicle 
and vehicle-to-infrastructure communications. Bluetooth is 
one of the communication technologies being considered. If 

tion capability. Historically, license plate surveys and video 
capture have been used to support OD and travel time studies 
when information was needed for the modeling of specific 
transportation facilities or areas. The introduction of RFID 
and Bluetooth sensor technology allowed the same types of 
studies to be conducted with reduced labor cost, increased 
accuracy, and potentially larger sample sizes (due to increased 
study durations). With enough sensors along a transporta-
tion system, travel patterns can be identified and developed 
into OD matrices that can be used to support travel demand 
models. Since Bluetooth sensors only capture observed travel 
times between fixed locations without socioeconomic or 
demographic information regarding drivers, the data pro-
vided are limited to short-term modeling and generally are 
only applied in specific situations. RFID sensors, on the other 
hand, are typically used for toll tags or transit smartcards that 
individuals carry for their travel needs and hence have a con-
nection to a specific user. This connection allows the poten-
tial to use other data regarding that person that may be part 
of a customer database. Further, the customer information 
also provides an ability to contact that person for follow-up 
surveys, granted that previous consent was provided.

In addition to these current technologies, there is a signifi-
cant amount of research regarding connected vehicles. The 
U.S. DOT is sponsoring research, known as the Connected 
Vehicle Initiative and the Smart Roadside Initiative, that will 
allow data transmissions between vehicles [vehicle to vehi-
cle (V2V)] and from vehicle to infrastructure (VTI), where 
infrastructure includes roadside control systems and sensors. 
Conceivably, these data could also be used for travel behav-
ior analysis when they become available. Data streams from 
a fully implemented system would capture vehicle trips. Like 
most of the vehicle sensing technologies, travel from non-
motorized modes would not be captured. Regardless, these 
initiatives have the potential to be powerful data collection 
sources for anonymous vehicle trajectory data.

Bluetooth Technology and Data Collection

The Bluetooth protocol is widely used for exchanging data 
over short distances from fixed and mobile devices. Bluetooth 
technology has been used in transportation data collection 
since 2007. Bluetooth sensors can be fixed along roadways, 
nonmotorized transportation facilities, onboard transit vehi-
cles, or a number of other pathways. The sensors or stationary 
receivers can detect the presence of vehicles or individuals 
with Bluetooth-enabled devices (when the device is in discov-
erable mode) such as in-vehicle navigational devices, mobile 
phones, and wireless headsets. The receiver does not collect 
any information other than the unique MAC address of the 
device and the time of the observation. As a person or vehicle 
travels along a network link with multiple sensors, its signal 
is detected by each sensor generating a trip path, trip time of 
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a transit vehicle to debit stored value from the card. Some 
systems require that the passenger tap out to exit a transit 
station. Most of these systems are the exclusive means for 
transit passengers to use for fare payment and thus are used 
by nearly 100% of riders. The location of the fare boxes can 
be geocoded, allowing for the boarding and alighting data 
of passengers to be accurately collected or recorded. In cases 
where the AFC is integrated with an AVL, bus and light rail 
transactions may also be geocoded with a reasonable degree 
of accuracy. Registration of cards is an option but is not 
compulsory. Such registration does not require the passen-
ger’s home, work, or school address to be provided. However, 
the lack of these attributes does not necessarily mean that 
data about origins and destinations cannot be deduced. With 
the addition of land use data, there is a reasonable means for 
determining whether a trip is originating in an area likely to 
be the home, work, or school location.

Managing Large Data Sets

The advent of high-frequency GPS logging applications for 
transportation in the early 2000s brought new data manage-
ment challenges to transportation researchers and practitio-
ners. This type of data has the potential of being quite large. 
For example, a person traveling for an average of 90 min a 
day for a week will generate 37,800 GPS points at a 1-s log-
ging resolution if points are only collected during travel. If 
one then tries to log the same amount of travel from 1,000 
persons, there would be 37.8 million points. Translated into 
disk space requirements, this number of points would require 
2 to 3 gigabytes (GB), depending on the number of attributes 
stored per point, the resolution, and the level of indexing. 
However, if no filtering of non-travel points is applied, these 
numbers would be increased 16-fold.

When compared to today’s large disk drives, with capacities 
measured in hundreds of gigabytes, storage requirements in 
the 2-GB to 3-GB range (or even 32 GB to 48 GB if all points 
are logged) may not seem like much, but one needs to real-
ize that the real challenge is to be able to effectively retrieve, 
clean, process, visualize, and attach attributes to groups of 
records. The current state-of-the-practice approach to solve 
this problem is to use server-based relational databases (Wolf, 
Schönfelder, et al. 2004; Oliveira et al. 2011) to store the GPS 
data in context. The availability of open-source server-based 
relational databases such as MySQL and PostgreSQL has 
made this an affordable and popular solution.

One approach to make these large data sets more manage-
able is to apply compression and filtering schemes at import 
time. For example, when the objective is to measure travel, 
one can simply filter out speeds below a minimum thresh-
old. Other strategies for reducing the number of records 
stored (and therefore memory/storage requirements) include 

implemented on a wide scale, sensors could detect vehicles 
and gather travel path information.

Another interesting study explored the use of multiple 
Bluetooth sensors to identify in-home activities. Schenk et al. 
(2011) explored the combination of collecting data from 
both Bluetooth devices and smartphones to build a com-
plete spatial and temporal “lifespace” pattern. Each of the 
participants carried a smartphone, which collected GPS data 
and transmitted a signal to a Bluetooth receiver installed in 
their homes. For two of the participants, 30 days of data were 
recorded, and for the remaining participants only 21 days of 
data were recorded due to battery limitations. While the study 
was successful in collecting detailed activity data, the need for 
installing multiple fixed sensors prohibits wide-scale deploy-
ment for large-scale behavioral studies. If, however, existing 
consumer devices can capture and record the same signals, 
then this approach could become more feasible.

In essence, Bluetooth will continue to play a role in pro-
viding OD data for modeling. However, it is likely that this 
technology will be limited to small-scale or corridor imple-
mentations where models are needed to evaluate changes 
in geometric or operation conditions. Broader policy and 
behavioral changes will likely not depend on this technology 
in the near future.

RFID Technology and Data Collection

RFID is a technology that is applicable to a variety of 
fields for the purpose of tracking vehicles, people, and goods 
wirelessly. For transportation planning, RFID allows orga-
nizations and agencies to passively collect data about the 
tag-equipped users of a roadway or transit facility. Similar to 
Bluetooth, the user must pass within a certain distance of an 
RFID sensor for detection. The primary difference between 
RFID and Bluetooth is that the RFID technology is deployed 
in transportation infrastructure as a means to identify users of 
a particular service such as toll collection, parking, and transit 
fare capture. This implies that additional information such as 
home address can be linked to any RFID-derived travel data. 
This added capability provides for a deeper understanding of 
the socio-demographics of the travelers that pass a sensor and 
affords the opportunity for follow-up contact. Transit and 
toll agencies have used this capability to track system perfor-
mance, to measure demand, and for user satisfaction surveys.

Another implementation of fixed-location sensors is the 
automated fare collection (AFC) system. AFCs are being used 
in a variety of transit systems such as MARTA, the NY Metro, 
and the Chicago Transit Authority. Research into using these 
systems as a potential replacement for traditional OD sur-
veys is currently under way (Munizaga, Devillaine, and 
Amaya 2012; Chakirov and Erath 2012). Generally, AFC cards 
require that a passenger tap a fare box at a train station or on 
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the resulting system to scale out to meet demand. Unfortu-
nately, when data are segmented in this way, additional steps 
are required to conduct analysis over the entire data set. This 
added management overhead increases as the size of the data 
set in question grows and more segmentation is needed.

To deal with these issues, Google developed distributed stor-
age and processing systems using commodity (i.e., inexpensive 
and numerous) computer clusters running Linux and capable 
of handling hardware failures through the use of redundancy 
when partitioning the data on the cluster (Chang et al. 2006). 
Adding computers to the cluster would automatically increase 
processing capacity and reduce total run time (also referred to 
as scaling out).

These new technologies make it possible to run very large 
data crunching jobs in a reliable and efficient manner, allow-
ing software engineers to focus on the algorithms and pro-
cessing logic instead of the management overhead associated 
with these types of tasks. The research papers Google pub-
lished on this approach inspired other companies and indi-
viduals to develop software implementing the same approach. 
Some of these efforts, in turn, became open-source projects, 
and a community grew around them.

As a whole, these new technologies have been referred 
to as “big data.” The storage solutions that drive these new 
data management solutions are collectively called “noSQL” 
and are commonly combined with a programming approach 
called MapReduce. These new data storage technologies 
focused on simpler data structures (typically consisting of 
key value pairs) as opposed to the more complex represen-
tations used in relational data modeling. This is explained 
by the fact that most of the initial applications consisted of 
processing document-based data such as web pages and web 
server logs. Table 1-9 shows examples of popular open-source 
big-data technologies.

Finally, the recent emergence of cloud computing has made 
it possible to rent large computer clusters on demand at rea-
sonable costs. The combination of this new availability and 
big-data technologies has made it possible for small organiza-
tions to tackle sizable data management and processing jobs. 
The flexibility inherent in cloud-based solutions also allows 
computing resources to be added and removed as needed.

For example, StreetLightData is a start-up company which 
is developing technology for processing massive amounts of 
GPS data collected using smartphones. The processed data will 
then be used to develop site selection and planning data prod-
ucts. According to a recent interview given by its chief tech-
nology officer and founder, Paul Friedman, StreetLightData is 
using a Hadoop-based big-data cloud solution from Claudera 
to batch process initial processing done using several servers 
running PostgreSQL (i.e., the initial database is segmented). 
StreetLightData’s website is http://www.streetlightdata.com/.

sampling the data at lower frequencies (e.g., record only a 
point every 10 s instead of every second) and applying data 
simplification or compression procedures such as SQUISH 
(Muckell et al. 2011). Unfortunately, these latter approaches 
result in loss of information, which may not be a problem 
for immediate uses of the collected data but may limit future 
secondary applications.

Best practices should be followed when using a relational 
database to store large data sets. These include using appro-
priate field data types to keep record sizes small, ensuring that 
tables have primary keys defined, and applying normaliza-
tion to schema. Expected data storage and processing needs 
should be used to guide the selection and configuration of 
a relational database platform, including the hardware on 
which it will run. From a hardware standpoint, it is impor-
tant to use servers that have as much random access mem-
ory (RAM) as the budget can afford, to use servers with a 
redundant array of inexpensive disks for both performance 
and failure protection, and to have good backup and restore 
procedures in place.

Despite being capable of storing, managing, and process-
ing very large data sets, relational databases have architec-
tural limitations that make them unsuitable for keeping data 
sets whose size is measured in terabytes. This magnitude of 
data is becoming increasingly common with the advent of 
continuously monitored data sources such as those data sets 
generated from permanently instrumented vehicles. For 
example, the American Trucking Research Institute records 
approximately 4 billion position data points from com-
mercial trucks annually (Bernardin et al. 2012). A research 
project in Singapore reported on a comparable data set with 
over 4 billion GPS observations coming from approximately 
15,000 Singapore taxicabs (Koh, Nguyen, and Woodard 
2010). This specific data set occupied over 300 GB of disk 
space and was loaded in a PostgreSQL database.

The current trend in household travel surveys toward data 
collection methods that are primarily based on GPS meth-
ods or sources is likely to increase the amount of data that 
needs to be managed (Giaimo et al. 2010; Oliveira et al. 2011). 
Smartphone applications that allow participants to collect 
GPS and other sensor-based data (such as accelerometer 
data) within existing travel surveys are also likely to reduce 
the data acquisition costs associated with the deployment of 
specialized devices while contributing to the creation of sig-
nificantly larger large data sets (Bricka and Murakami 2012).

A common practice used when managing and processing 
larger data sets is segmenting (also known as partitioning or 
sharding) the accumulated data into smaller units (Nemala 
2009). Partitioning the data in this manner allows traditional 
database software to find and process records quickly by 
loading much of the data into RAM. Data partitioned in this 
manner can also be placed on different servers, which allows 

Applying GPS Data to Understand Travel Behavior, Volume I: Background, Methods, and Tests

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22370


34

is considered an expert in his or her respective discipline/
category based on the research team’s knowledge, available 
publications, and conference presentations. Representatives 
from different firms and research organizations were selected 
within each industry category to give adequate coverage and 
to minimize bias.

Table 1-10 provides a complete list of all questionnaire 
respondents, with their company affiliation, organization 
or firm affiliation, and industry group. The questionnaires 

Survey of Industry Experts

To assess data needs, current capabilities, and future direc-
tions of both transportation data providers and users, custom-
ized questionnaires were sent to industry experts who worked 
for companies or organizations that (1) collect or analyze GPS 
data for travel behavior research, (2) use GPS data for travel 
behavior and activity modeling, or (3) sell consumer travel or 
traffic data. Each person selected to complete a questionnaire 

Name Description 

Hadoop Apache Hadoop is an open-source software framework for data-intensive distributed 
applications and was originally created by Doug Cutting to support his work on 
Nutch, an open-source web search engine. It is currently one of the most popular 
frameworks for distributed processing. 

Cassandra Apache Cassandra is an open-source distributed database management system 
developed by Facebook to power its Inbox Search feature. Facebook abandoned 
Cassandra in favor of HBase in 2010, but Cassandra is still used by a number of 
companies, including Netflix, which uses Cassandra as the back-end database for its 
streaming services. 

HBase Apache HBase is an open-source, non-relational columnar distributed database 
designed to run on top of Hadoop. It provides fault-tolerant storage and quick access 
to large quantities of sparse data. HBase is one of a multitude of NoSQL data stores 
that have become available in the past several years. 

MongoDB Created by the founders of DoubleClick, MongoDB is another popular open-source 
NoSQL data store. 

CouchDB Apache CouchDB is still another open-source NoSQL database. It uses JSON to 
store data, JavaScript as its query language, and MapReduce and HTTP for an API. 

Source: http://www.networkworld.com/slideshow/51090 

Table 1-9. Popular open-source big-data technologies.

Industry Organization or Firm 

Travel Survey Practitioners 

Abt SRBI  

Battelle Memorial Institute 

ETC Institute 

GeoStats 

NuStats 

Resource Systems Group (RSG) 

University of Sydney 

Westat 

Travel Behavior Researchers 

Argonne National Laboratory/UIC 

Delft University of Technology 

ETH Zürich 

FHWA / USDOT 

IFSTTAR (French Institute for Science &  
Technology of Transport, Development & Networks) 

Texas Transportation Institute  

Tokyo Institute of Technology 

University at Albany 

University of Tokyo 

Table 1-10. List of experts by industry.
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along with a few key, representative quotes. The responses 
appear in Table 1-11, Table 1-12, and Table 1-13, respectively.

It should be noted that the traffic data providers did not 
respond to the questionnaires directly; instead, many of them 
simply copied marketing information into the questionnaire 
itself. Consequently, there is no summary table of responses for 
this last industry category. Instead the marketing information 
offered by the traffic data providers has been integrated within 
the relevant literature review sections of this report and their 
complete individual responses are provided in Appendix C.

sent to these industry experts were designed to collect both 
current and future plans for GPS data use or provision, and 
were customized for each industry (see Appendix B for each 
questionnaire). As responses were received, follow-up con-
tact was made as needed for clarifications or to collect refer-
ence material mentioned in the response. These references 
were then reviewed and included if relevant in the literature 
review synthesis.

Summary tables have been created that contain the main 
themes and responses received for each question, by industry, 

Industry Organization or Firm 

 

 

Transportation Planners and 
Modelers 

Atlanta Regional Commission 

Cambridge Systematics, Inc. 

Chicago Metropolitan Agency for Planning 

Chicago Transit Authority 

Jerusalem Transport Masterplan 

Mark Bradley Research and Consulting 

Metropolitan Council (Minneapolis & St. Paul) 

Ohio DOT 

Parsons Brinckerhoff, Inc. 

San Francisco County Transportation Authority 

Texas Transportation Institute 

Traffic Data Providers 

AirSage  

INRIX, Inc. 

Nokia (NAVTEQ) 

TomTom, Inc. 

TrafficCast International 

Table 1-10. (Continued).

Question Summary Relevant Quotes 

1. Current use 
of 
technologies 

 All use passive vehicle or personal/wearable GPS loggers 
 Surveying purposes include: 

– Correction of trip diaries (still the predominant use) 
– As supplemental data to trip diaries (for more accurate 

timing/location info) 
 As sole source of travel information with either passive diary creation or 

used to generate prompted-recall questionnaires for nonspatial-temporal 
information 

 Other uses include: 
– Driving behavior analysis in response to policy intervention at 

either the aggregate (i.e., road pricing – Minnesota) or individual 
level (TravelSmart – ITLS) 

– Health and physical activity surveys, either to match location to 
physical activity (2012 Nashville Transportation and Health 
Study) or to correct self-reports 

– Vehicle emissions and fuel consumption studies [GPS used in 
tandem with engine sensors (i.e., California Energy Commission 
interest in 2012 CHTS)] 

– Real-time vehicle information studies (i.e., bus tracking) 
– Survey administration – selection of intercept sites, track 

surveyors, etc. 

  “We have used GPS in a range of 
travel behavior surveys over the 
last decade including pilot tests 
for conventional household travel 
surveys, evaluation of travel 
behavior change interventions, 
and in-vehicle driving behavior 
studies.” 

Table 1-11. Summary table of travel survey consultant responses.

(continued on next page)
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Question Summary Relevant Quotes 

5. GPS-based 
travel behavior 
details 
included in 
deliverables 

 Travel surveys generally provide, at a minimum, the trip segments (by 
mode if using person-based devices), and calculated origins and 
destinations for trips (corrected by diary data if a combined survey). 

 Some provide link-matching details from GIS, which can correct 
inaccuracies in GPS data and link the trip records to detailed network 
information. 

 Others match to TAZ or census tract. 
 Most also provide speed, distance, and travel time from the GPS data. 
 For combined sensor surveys (i.e., health studies), GPS data can be 

combined and enhanced with other sensor data (i.e., accelerometers). 
 Many now include automated data imputation for modes (most common) 

and imputed purpose (if the survey did not include diary collection). 
 Driving behavior data are extracted from GPS (i.e., VMT, start/end times). 

  “Our standard GPS data 
deliverable contains tables with 
complete details on GPS 
households, GPS persons or GPS 
vehicles, GPS trips, GPS trip 
segments, GPS points, and 
network links matched to GPS 
points. For dual-method (diary 
comparison) studies, we also 
provide tables with GPS trips 
matched to reported trips and 
missed trip analysis results.” 

6. Methods for 
privacy 
protection 

Privacy and security enforcement is generally maintained through the 
following mechanisms: 

 Institutional controls [such as institutional review boards (IRBs), ethics 
guides, confidentiality agreements, human subjects training] 

 Physical security – secured storage, protected databases 
 De-identification – removing identifiers from travel information, including 

names and addresses 
 Data separation 
 

This list is similar to solutions in all types of surveys. GPS raises new issues 
not addressed by the above, such as: 

 Fuzzification of trip start/end (i.e., add random error, round to zone 
centroid, etc.) 

 What to do about pattern information that can be uniquely derived 
 Concerns about privacy can be mitigated as in thick-client paradigm (i.e., 

equipment collects and aggregates the data before transmission, actual raw 
data never sent). 

 

 “We are concerned about the 
release of raw data and would 
welcome some easily processed 
method of hiding the specific 
locations in the data for the 
purpose of releasing the data.” 

2. GPS plans 
for near/long 
term 

The near-term plans for GPS data collection mostly involve three main thrusts: 
 Enhanced processing and imputation algorithms utilized in GPS data 

processing 
 Sensor fusion or use in tandem efforts [i.e., adding accelerometers or OBD 

sensors (ITLS, GeoStats, Westat)] 
 Transitioning to smartphone data collection, either as a survey application 

for respondents who have smartphones or possibly as replacements for 
GPS loggers 

 “We are ... investigating [the] 
potential of smartphones, which I 
think are the future in this space.” 

 “We foresee more GPS-only 
designs that leverage data 
processing and imputation 
algorithms to derive trip details.” 

 “We are actively testing/fielding a 
new smartphone application.” 

3. Impact of 
GPS use on 
participation 
rates and 
sample 
represent-
ativeness 

 In general, not a lot of information provided on impacts of GPS data 
collection on participation or response rates. 

 Representativeness is not generally found to be an issue, with GPS either 
having no effect or actually increasing sample representativeness (at least 
in the ITLS/Sydney case and in the 2010–2011 NYC regional travel 
survey). Establishing representative samples for household travel surveys 
is often a requirement and handled by proprietary methods (Abt SRBI). 

 Anecdotal evidence is mostly given, with wide variance depending on the 
type of study. Short-term data collection replacing or supplementing diary 
surveys has generally found either no change (ETC Institute, GeoStats) or 
an increase in participation or at least compliance (ITLS, Westat). On the 
other hand, longer-term surveys, which require more from participants, 
seem to be more challenging to recruit for, as was found in the Battelle 
road pricing study and was observed by GeoStats. 

 “Recruit and retrieval rates seem 
to be most impacted by the 
overall level of burden associated 
with survey participation. 
Offering more options for 
participation . . . increase[s] both 
participation rates and sample 
representativeness by bringing in 
different population groups.” 

 “While we can’t isolate the 
impact of the GPS per se on 
recruitment, anecdotally it had 
both positive and negative 
impacts.” 

4. How do you 
process GPS 
data to 
generate 
deliverables? 

 Mostly proprietary algorithms 
 Most GPS-enhanced travel surveys reported following some variation of 

clustering points about stops and segmenting traces into separate trips or 
trip segments. 

 Either fully automated or automated with manual review and correction 
– ITLS algorithms available for review (Stopher et al. 2012)  
– Other survey purposes require less processing—for example 

speed limit studies, road pricing impacts (which just get VMT, 
etc.), and some driving behavior studies. 

 Simplified methods for vehicle-based data collection (not multimodal, 
which tends to produce messier data due to continuous power supply and 
more line-of-view obstructions with GPS satellites) 

  “Most travel surveyors/firms 
have some algorithms to process 
the retrieved household travel 
survey GPS data from 
participants. These processes 
include determination of origins 
and destinations, travel paths, 
travel speeds, and travel modes.” 

“One consistent prevailing theme 
in this research is the concern 
expressed by the general public 
regarding privacy, or more speci- 
fically how studies like this could 
result in a reduction in personal 
privacy. Frequently, these fears 
are manifested through concerns 
of Big Brother type statements or 
how these studies would enable 
the government to track the 
movement of individual citizens.” 

Table 1-11. (Continued).
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9. Limitations/ 
concerns 
about GPS 

 Major concern exists regarding bias introduced through using GPS (i.e., 
respondents with privacy concerns regarding the collection method may 
select themselves out of the survey)  

 Accuracy of processing algorithms, and time required to manually correct 
or the extra burden introduced for respondent correction 

 Battery life 
 Costs, compounded by potentially high loss rates of equipment 
 Data loss due to compliance, device failure, or environmental limitations 

(i.e., weather) 
 Cost 
 

 

 “The final GPS data is still only 
as accurate and reliable as the 
individuals who have been 
recruited to carry the GPS 
devices.” 

  “Perhaps the most salient 
limitation of GPS is cost. Like 
most technology, the cost of units 
is decreasing; however, the cost 
of acquiring, maintaining, 
deploying, and retrieving enough 
units to conduct a large-scale data 
collection effort is still high.” 

10. Pricing 
information 

 Data collection firms are reluctant to share cost information.  
 GPS survey costs can range from slightly higher to much higher than 

traditional surveys, depending on scope of survey. 
 GPS device prices have decreased dramatically over the past decade, and 

use of smartphone apps may further reduce costs. 
 Low marginal cost of extending data collection period once devices are in 

place  
 Can make costs comparable to traditional data collection with longer 

deployment periods and smaller sample sizes. 
 Not relevant for surveys that can only be accomplished by GPS (behavior 

modification, road pricing, etc.) 

 “Costs are rapidly becoming 
comparable to those for 
equivalent conventional survey 
procedures.” 

Question Summary Relevant Quotes 

7. GPS 
coverage and 
accuracy 
compared to 
other methods 

 Clear improvements in collecting spatial–temporal data [i.e., location 
within 5 m at every second (provided the device is charged, taken, and 
used correctly)] 

– Charging and carrying along are primarily issues with personal 
loggers. 

– Accuracy and coverage issues remain due to cold start 
delays/satellite acquisition times, sky blockage, and urban 
canyon issues. 

– Some issues may be addressed with improved technology (i.e., 
differential GPS, secondary sensors) 

 Studies consistently show that GPS-collected travel surveys are more 
accurate than traditional diary surveys in terms of trip reporting. 

 Technology continues to improve. 
 Positional accuracy is now to a level that link identification, even between 

parallel roads, is possible with a high degree of accuracy. 

 “Accuracy is clearly far greater 
than in diaries. People are 
notoriously bad at estimating the 
times at which they travel, how 
long they travel, and certainly 
how far they travel.” 

 “Each generation of GPS units is 
better than the previous 
generation. For example, the 
delays in getting signals have 
been almost eliminated.” 

8. Advantages 
of GPS 

 Advantages largely relate to the previously identified improvements in 
– Accuracy of trips, 
– Detail of trips, and 
– Reduction in respondent burden. 

 Additionally, the greater level of trip detail available allows other survey 
purposes beyond travel surveys, as mentioned (i.e., road pricing, travel 
behavior modification interventions, etc.). 

 GPS data support next-generation travel models by providing more 
detailed data (e.g., exact routes, fine-grained location data) 

 It is possible to reduce sample sizes through longer data collection periods, 
enabled with burden reduction 

 “There is less respondent burden 
for capturing travel details while 
collecting more information and 
more accurate information.” 

 “[GPS] is ubiquitous and 
available using off-the-shelf 
technology that is widely popular 
in the U.S. (i.e., a cell phone). No 
special equipment is needed. The 
phone almost always 
accompanies the individual and 
thus permits capturing both 
vehicle and non–vehicle-based 
travel.” 

Table 1-11. (Continued).
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Question Summary Relevant Quotes 

1. Current use 
of technology 

 Many have used GPS data collection devices that include in-vehicle, 
wearable GPS loggers, smartphones, PDAs, or in-tablet PCs. 

 Others have conducted GPS-based speed studies and employed GPS 
technology in bicycle studies, parking studies, traffic operations, and transit 
scheduling/planning to evaluate vehicle drive cycles and related emissions 
and to obtain route choice behavior. 

 The ubiquitous presence of GPS and other embedded technologies in smart 
phones and PDAs has turned those devices into great travel logger tools. 

 GPS logs have been used to obtain detailed trajectory of travel, travel mode, 
departure and arrival times, origin and destination, and (even) trip purpose. 

 The GPS log data have been further enhanced by the use of other 
technologies, such as three-dimensional acceleration data (using 
accelerometers), and air pressure data for estimating detailed travel 
behavior, such as the microscopic movement for horizontal direction and the 
movement in a room. 

 Several recent studies have employed a combination of a GPS data logger 
and an accelerometer followed by a prompted-recall instrument on the web.  

 Others have used GPS on an experimental subsample (e.g., 10%) of a larger 
group participating in traditional travel diary surveys. 

 GPS devices have provided the opportunity to collect passive data for longer 
durations and multiple days, thereby allowing for the collection of additional 
data (e.g., processes data) that were otherwise not presented to avoid survey 
burden. 

 Availability of GPS data loggers with flash memory for data storage, as 
opposed to other devices that require proprietary software, has eased the 
process of data extraction, avoiding the need to collect and process the GPS 
data in separate steps.  

  “The combination of GPS + web 
has made it possible to obtain 
whole travel behavior data that 
were not observed when only 
using the GPS.” 

  “We wrote customized software 
that was loaded into the flash 
memory, which handled the data 
cleanup, conversion to trace 
format, extraction, and uploading 
transparently from the user 
perspective. The primary purpose 
of this was to shorten the recall 
period to the same day as data 
collection.” 

2. GPS plans 
for near/long 
term 

 The research and practice trends are toward developing apps for 
smartphones and tablet PCs.  

 Use of other technologies to collect location data where GPS signal is not 
available is being considered.  

 The improved technology would allow focusing on data collection for 
longer periods and eventually longitudinal GPS data collection where travel 
behavior could be studied as a function of life-cycle changes. 

 Further extension of work on automatic processing of the GPS traces is 
expected, especially for trip purpose imputation, parking search, and mode 
changes.  

 Post-processing of GPS data is becoming more important since it makes it 
possible to analyze and understand massive sets of GPS data by extracting 
knowledge from raw data while also maintaining its accuracy for planning 
purposes.  

 Shifting to GPS-only household travel surveys 

  “FHWA has a project looking at 
alternatives for collecting long-
distance travel information. These 
could potentially include using 
cell phone tracking (e.g., from a 
commercial source), Twitter 
feeds, or Facebook posts from 
smartphones (which includes 
location) and combining these 
data sources with other more 
traditional sources.” 

 “We are interested in collecting 
GPS data for use in an ongoing 
project involving travel demand 
modeling incorporating ITS 
strategies.” 

3. Impact of 
GPS use on 
participation 
rates and sample 
represent-
ativeness 

 

  “The GPS technology generally 
tends to attract the higher income 
and higher educated respondents. 
We do see evidence of higher 
interest among the younger 
crowd, and avoidance from the 
elderly, and have had to adjust 
sampling plans to ensure an 
equitable distribution of 
participation.”  

A study by INRETS suggests that “GPS survey participation is positively 
correlated with higher education, higher income and, therefore, higher access 
to cars and greater mobility.” 

Therefore, using multiple survey modes and an appropriate method for 
weighting responses will be necessary. 

Recruitment and sample representativeness might be challenging in GPS + 
web studies since those without Internet access are sometimes eliminated 
from the study, resulting in sampling bias. In particular, older populations and 
those with limited Internet access will not be adequately covered to capture 
all travel markets. 

The cost of equipment and limited number of units in hand may affect the 
sample size and the duration of the study both in terms of total time needed to 
conduct the survey and duration of data collection from each participant. 

Most participants agree that the experience was interesting since the data 
collection burden for a respondent seems to be much less than for the 
traditional travel and diary surveys, thus allowing for a longer duration of 
survey. This will result in somewhat higher cooperation rates. 

One approach is to combine a GPS-enabled mobile phone with a web-based 
prompted-recall travel survey. 

Table 1-12. Summary table of travel behavior researcher responses.
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Table 1-12. (Continued).

Question Summary Relevant Quotes 

4. How do you 
process GPS 
data? 

 Typically there are multiple layers of data processing:  
– Quality assurance of the data collection 
– Log generation 
– Identifying trips by using a stay-and-move identification 

algorithm 
– Identifying travel attributes (e.g., route, mode, destination, 

purpose) using various heuristic, machine learning, data 
mining, or statistical models.  

 Mostly use an in-house program to parse the data into trips and an in-
house algorithm to impute trip attributes  

Map-matching algorithms are also developed to identify the route (path) in 
the network. 

 

5. GPS-based 
travel behavior 
details included 
in deliverables 

 Many aim to obtain data as comparable as possible to those produced by 
conventional surveys. 

 GPS-based travel surveys generally result in full traces of the logger 
movement at up to second-by-second resolution. 

 The processed trip and activity records include basic activity-travel 
information for each episode, including origins and destinations for trip 
segments, departure and arrival times, trip frequencies, chains, and the 
route in the network.  

 In some prompted-recall surveys, additional information is collected on 
what respondents were doing, who they were with, what the activity at 
the trip ends was, how the activity-travel episodes were planned, the 
time constraints at trip ends, the payment of fares, and so on. Qualitative 
data, such as attitude and opinion, can be also obtained in relation to the 
actual travel behavior. 

 Most (if not all) trip and stage details include location coordinates (or 
geocodes). Mostly have geocoded the stage/trip details. 

 

6. Methods for 
privacy 
protection 

 Methods for privacy protection in GPS studies are similar to those 
employed in traditional surveys: 

– Institutional controls (IRB, ethics guides, confidentiality 
agreements, human subjects training) 

– Removing identifiers from travel information, including 
names and addresses 

– Physical and digital security, including the use of firewalls, 
secured storage, and protected databases, as well as data 
separation where data identifiers are kept separate from travel 
data 

– There have been recent efforts by the Department of Energy 
and the National Renewable Energy Laboratory to establish 
the Transportation Secure Data Center to improve access to 
GPS data while maintaining individual confidentiality. 

 The right to participate and start the survey remains with respondents, 
and they can turn on/off the equipment whenever they desire to do so.  

 Synthetic GPS traces and multi-trace compression can be used as a 

 “We are experimenting with 
synthetic GPS traces that could be 
developed from actual trace 
characteristics but still be shared 
with the public as they won’t 
expose participant behaviors. 
Multi-trace compression is 
another approach we are using to 
‘shelter’ the information in 
individual traces.” 

solution to deal with the privacy issue. 
7. GPS coverage 
and accuracy 
compared to 
other methods 

 The data received from GPS units (both spatial and temporal) are fairly 
accurate—certainly more accurate than traditional diary surveys—
although minor corrections might be necessary to the logs from 
inaccurate location tagging.  

 Researchers have found that GPS surveys result in higher trip 
frequencies. 

 There are several well-known issues with the accuracy of GPS studies, 
including: 

– Signal losses through urban canyons, tunnels, and buildings; 
– Cold start and loss of signal at the beginning of trip; and 
– Need to apply an effective and suitable imputation method to 

fix these issues. 

  “We have seen the quality of the 
GPS traces improve as the GPS 
technology has improved.”  

  “The location data itself was also 
fairly accurate with very few 
corrections made to the logs from 
inaccurate location tagging. The 
accuracy as far as respondent-
identified to algorithm-identified 
activity locations were above 95%.”

  “Recent work has shown that by 
using Wi-Fi most of the time and 
GPS only when Wi-Fi is not 
available, the draw on the battery 
can be much less. However, this 
increases the error on route 
delineation and does not provide 
sufficient information about travel 
speed (if someone wants speed).” 

(continued on next page)
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Question Summary Relevant Quotes 

8. Advantages of 
GPS 

 There are several clear advantages to GPS studies as opposed to 
traditional surveys, including: 

– Ability to collect all movements, precise times, locations, and 
routes; 

– Respondent burden reduction on data collection, with the 
individuals not needing to remember exact times and 
locations; longer reporting and ability to collect multiple days 
of travel to examine variability of travel; 

– Ability to capture route choice and speed;  
– Improved data quality: not reliant on self-report; and 
– Ability to look at activity time/space prisms and use in travel 

micro-simulation. 
 The use of GPS with smartphones also seems to allow for richer, more 

interactive data collection, where the location-based services provided 
by phone companies, Google maps, etc. can be used to enrich the data 
set.  

– Using a respondent’s smartphone reduces the cost and time 
compared to sending and retrieving GPS equipment.  

– Smartphones could be used for longitudinal studies, attitudinal 
surveys, daily travel, or long-distance travel diaries. 

 GPS data collecting supports activity-based models and next-generation 
travel models with more detailed data. 

 “[Use of smartphones] can be an 
excellent tradeoff – giving 
participants a significant cash 
[that is saved by not sending GPS 
units to them] incentive (toward 
their monthly cell phone bill) to 
participate in a travel behavior 
project.” 

 

9. Limitations/ 
concerns about 
GPS 

 Sampling bias in GPS studies is inevitable. It seems better to develop the 
analytical methods with the biased samples. 

 Despite significant improvements, the life of batteries when GPS is 
constantly in use is still not satisfactory. Several solutions have been 
suggested to remedy battery life issues: 

– Collect GPS data less frequently by setting a longer data 
collection interval (i.e., not every second) 

– Use GPS along with other technologies (accelerometer) so the 
unit can go to sleep when the person is not in motion 

– Use combinations of GPS and Wi-Fi to collect data 
 While some attributes (e.g., start and end time, speed, duration, and 

mode) could be detected, additional questionnaires might be needed to 
capture other travel attributes like trip purpose.  

 There are signal losses in urban canyons, tunnels, and buildings. 
 Privacy issues and securing fine-grained GPS records is a point of 

concern. 

 

10. Pricing 
information 

 Most researchers have performed small GPS studies, so their cost 
estimates significantly vary and do not reflect the true cost of a major 
GPS study. 

 The survey cost is decreased as the price of devices drops. 
 Assuming that a GPS mobile phone is given to a respondent for a month 

and he/she has to carry the mobile phone and update the web diary every 
day, the direct survey costs consist of shipping costs, communication 
costs, and monetary incentives for the respondent. 

 “The devices were approximately 
$60, and we gave out a survey 
incentive of $35 per household. 
Other costs included the student 
employees to deliver the devices 
and provide about 1 hour of 
training to the respondents on 
taking the survey and using the 
device.” 
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Table 1-13. Summary table of transportation modeler responses.

Question Summary Relevant Quotes 

1. Current 
roles of GPS 

 Common use of GPS subsample data for comparison to traditional diary 
methods 

 Common use of GPS floating car data for travel time and delay studies, as 
well as for defining link-level speeds by time of day 

 Common use of GPS for performance evaluation of transportation 
networks 

 Use of smartphone application for collecting special use data 
(CycleTracks) 

 Growing use of GPS as primary source of travel data for model 
development 

 Use of AVL data for bus speed models and route planning 
 Some analysis of GPS travel data in route choice 
 Some use of GPS data for model calibration and validation 

 “We have participated in 
SFCTA’s CycleTracks 
application to allow cyclists to 
voluntarily provide us route 
information for analysis. We are 
considering expanding this 
program and developing our own 
applications.”  

2. Specific 
roles of GPS 
data in model 
development 

 Development of trip correction factors 
 Estimate trip rate variability from multiday data sets 
 Provide baseline network speeds 
 Calculating core travel time and distance statistics for trip purposes and 

demographics 
 Use as primary source in revealed preference household survey 
 Use as primary source for trip, tours, and activity patterns 
 Estimate bicycle route choice model 
 Validation of travel times in DTA  

 “In a 100% GPS-assisted HTS 
(like the Jerusalem HTS), the 
GPS traces of individual person 
travel are the basis for extracting 
trips, tours, and activity patterns. 
In this case, and especially if the 
prompted-recall method is 
applied, the GPS data constitute 
the core component from which 
all other data items are derived, 
and not just correction factors. 
My personal view is that is the 
best approach.” 

3. Secondary 
uses of GPS 
data 

 GPS data commonly being shared outside of agencies for research 
purposes: 

– Air quality analysis 
– Active transportation (bike/walk) 
– Congestion analysis 
– NCHRP Project 8-57, SHRP 2 C04, and SHRP 2 L04 

 GPS travel survey data used for congestion analysis and bottleneck ID 

 

4. Plans for 
future use of 
GPS data for 
travel demand 
modeling  

 Plans to use GPS as the primary source of travel behavior data 
 Find volunteered GPS data instead of conducting large recruiting efforts. 

Sampling bias is probably as bad as self-selection bias. 
 Implement 100% GPS-based prompted recall, with multiday surveys (for 

at least 1 week) 
 Use GPS for focused subsamples (visitors, taxis, trucks/commercial 

vehicles) 
 Use GPS for surveys of visitors, taxis, and commercial vehicles to assist 

with modeling 
 Explore data imputation methods for mode and purpose 
 Use GPS data to generate models of transit customer trip times, access 

times, and wait times.  
 Development of route choice models 

  “We hope to use GPS trace data 
(with subsequent follow-up 
questions) more as the main data 
source for surveys and models. 
Hope that there are ways that 
more and more ‘volunteer’ GPS 
data can be used to support 
modeling, as opposed to (or in 
addition to) launching expensive 
surveys that purport to have 
‘probability-based samples,’ but, 
due to inevitable sampling biases 
these days, probably aren't much 
better than self-selected samples 
(or at least have compensating 
biases).” 

 “GPS will remain an integral part 
of household (HH) travel surveys, 
providing actual measured, 
revealed preference data on times, 
paths, durations, amounts, 
locations to supplement surveyed 
responses on motivation, purpose, 
costs, scheduling, etc.” 

(continued on next page)
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Question Summary Relevant Quotes 

5. Other 
sources of 
origin–
destination 
data 

 Several modelers are exploring the use of cell phone and sensor-based 
systems for origin–destination travel times. 

 Several are currently using consumer data for improving baseline network 
data and congestion analysis. 

 RFID data can be used for identifying transit trip start and end locations 
and trip travel times. 

 

 “As it stands now this data can be 
used only for certain types of 
analysis (travel times and speeds 
as well as individual route choice 
trajectories). This data cannot 
replace HTS because it is non-
behavioral in nature. The main 
difference between behavioral 
and non-behavioral data is that 
behavioral data includes 
characteristics of the individual 
(such as age, gender, and income) 
and characteristics of the 
associated daily activities and 
travel (trip purpose, car 
occupancy, other trips made on 
the same day, etc.).  

6. Recent 
purchases of 
travel behavior 
data 

 Bluetooth readers for travel time and special OD studies 
 TomTom speed data for model validation and baseline speeds 
 INRIX for real-time speed monitoring is also being used for network speed 

validation. 
 TomTom speed data used to identify travel time reliability 
 Considering AirSage OD data 

 

7. Plans for 
short-term 
modeling 

 Multiple efforts for building/integrating DTA models to support activity-
based models 

 Regional DTA tools to evaluate system improvements 
 DTA to evaluate toll roads and managed lane projects 

 “Observed activity patterns would 
also be useful in validating 
activity-based models in addition 
to using for short-term forecasts. 
Having the data at the activity-
pattern level allows one to more 
easily test mode and time of day 
shift possibilities, among other 
things.” 

8. Key data 
needs for long- 
range 
modeling 

 Better baseline network and demographic data 
 Better LOS skims 
 Better data on hard-to-reach populations 
 Identification of long-term trends in changing travel habits  
 Better survey data 

– Spatial and temporal accuracy 
– Oversample some population groups 
– Complete/accurate spatial traces 

 Better networks 
 Better parking location information 
 Revealed travel data 
 Traveler stated preferences 
 Tourist and visitor surveys for major cities 
 Taxi models 
 Delivery vehicle models 
 Ideally, real-time data would feed self-calibration model routines. 
 Reliability metrics 
 Data for understanding the inertia effects on shifting patterns over time 
 Passive data that can have key behavioral information imputed 

 “Long-term forecasts require both 
the revealed travel data that can 
be obtained from counts, GPS and 
cell phone/AVL, and also 
surveyed data, which, in the 
future, needs to focus more on 
preferences, scheduling, 
flexibility, purposes, etc. rather 
than respondents trying to tell you 
what they did (which will be 
measured instead).” 

9. Key travel 
behavior data 
issues for 
activity-based 
models 

 Completeness of household interactions and schedule coordination 
 Complete household travel data (no missing persons or trips) 
 Geocoded data that can be tied to parcel location 
 Completeness of individual daily patterns 
 Intra-person time/space consistency 
 Inter-person, intra-household consistency 
 Survey information for an entire week 
 Observed behavior 
 Long-term and travel-related decisions 

 “Quality is important for all 
aspects; less good data is better 
than more bad, focus needs to be 
more on quality than sample 
sizes.” 

 “Data fidelity and resolution, 
finer level grain of detail.” 

Table 1-13. (Continued).
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Question  Summary Relevant Quotes 

10. Benefits of 
GPS for 
understanding 
travel behavior 

 Increased accuracy of spatial and temporal travel details 
 Completeness and minimization of underreporting 
 Spatial and temporal resolution 
 Reduced burden on the respondent to report addresses and timing for all 

trips/locations, thereby significantly speeding up the survey 
 Attractive high-tech image of the survey, especially if the prompted-recall 

method applied is integrated with GIS (such as in the case of the Jerusalem 
HTS, where the recruitment rate was 70%–80%) 

 Possibility of collecting data non-invasively for multiple days with 
subsequent automated imputations of travel modes, purposes, and other 
data  

 “A fusion of the traveler’s own 
experience (GPS) with adjacent 
system conditions 
(Bluetooth/INRIX) and an 
effective means for gathering and 
recording traveler perceptions of 
conditions and reactions.” 

11. 
Disadvantages 
of GPS for 
understanding 
travel behavior 

 Sampling issues due to reliance on traditional recruitment methods 
 Specific errors associated with GPS not as well understood relative to 

traditional survey methods 
 Need for auxiliary data in addition to GPS trace (can’t just use passive 

data) 
 Signal issues in some locations 
 Respondent burden of special GPS device 
 Cost 
 Limited set of tools for processing GPS into trips 

 “GPS has a high cost, and 
charging requirements coupled 
with device costs create a high 
respondent burden. The 
emergence of smartphone 
technology provides a great 
opportunity to bring down the 
costs of data collection and 
analysis.” 

 “GPS has its own potential data 
error/quality issues that are not as 
well understood yet as the types 
of errors/biases that are inherent 
in travel diary surveys.” 

Table 1-13. (Continued).
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Introduction

Chapter 1 discussed several methods for processing and 
deriving information from GPS traces in the context of HTSs, 
as well as a wide range of applications of GPS data in the 
development of transportation models. Also, the research 
identified the need for guidelines in the processing and 
archiving of GPS-derived travel survey data. In addition, the 
first chapter covered several emerging mobility data sources 
and data providers that are currently using these data sources 
to derive commercial traffic and aggregate transportation 
data products. The challenges associated with managing 
ever-increasing archival data sets were recognized, together 
with a new set of technologies developed to better handle  
big data.

This chapter presents a multidimensional analysis of the 
main candidate data sources that can be used in the analy-
tical tests presented in Chapter 3. Based on the findings in 
this analy sis, candidate test data sets are identified. This is 
followed by a review of the data processing, imputation, and 
fusion methods that will be used to augment GPS traces with 
more complete travel details, and, in some cases, with socio- 
demographic information.

Inventory and Discussion  
of Available Data Sets

To evaluate the performance of the various data fusion 
methods proposed later in this chapter, the research team used 
the Chapter 1 literature review findings along with informa-
tion about other recently available data sets (as identified by 
NCHRP Project 8-89 panel members) to identify potential 
data sources. These sources included:

•	 GPS data sets collected as part of HTSs, including those 
collected in Atlanta, Denver, New York City, Chicago, and 
California;

•	 Smartphone GPS data collected either as part of an HTS 
(such as what was collected in Portland) or for another 
purpose (such as CycleTracks);

•	 GPS or other location data collected by traffic data vendors;
•	 GPS data collected in other transport studies [such as value 

pricing or mileage-based user fee (MBUF) studies]; and
•	 GPS data collected by personal navigation devices (such as 

TomTom data, often sold by traffic data vendors).

This inventory process also categorized each potential 
data source as one of three types: (1) GPS data collected in  
tandem with HTSs; (2) anonymous GPS bulk traces from 
instrumented vehicles, mobile phones, and navigation devices; 
and (3) fixed-location sensor data. The various characteris-
tics of these types of data are presented in Table 2-1. Of these 
three data types, only the first and second are truly applicable 
for deriving the type of behavioral information necessary for 
developing transportation demand models that are based 
on modeling individual choices. The third data type, fixed-
location sensor data, can only be used for model validation 
(and aggregate calibration in a very limited sense) and esti-
mating base-year transportation network conditions. This is 
because it is necessary that the source data contain complete 
tours from sampled persons (rather than unrelated trips) and, 
as such, provide enough information to explain the factors 
causing the observed travel choices. These explanatory factors 
relate to the person and household characteristics such as age, 
gender, income, and occupation, as well as activity contexts 
such as the placement of the particular trips in the individual’s 
daily activity chain.

Other elements that are important for model development 
include accurately capturing intra-household interactions in 
the form of shared travel and activity information. For exam-
ple, the necessity of escorting a child to school on the way 
to work is an important determinant of commuting mode 
choice. This behavior component cannot be analyzed and 
understood solely from the trace of the work commute itself. 

C H A P T E R  2

Summary of Best Data Sources 
and Methods to Test
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Without this contextual information foundation, it becomes 
very challenging to develop the analytical models that pro-
vide the foundation for modern TDMs.

The overall trend in travel model development today is to 
apply individual behavioral models that explain the outcome 
(i.e., travel by such dimensions as origin, destination, mode, 
and time of day) by means of explanatory variables through 
a plausible decision-making process. In this sense, the GPS 
traces themselves only provide the snapshot of the outcome, 
albeit with a very high level of accuracy and spatial–temporal 
resolution. Supporting the GPS data with behavioral explan-
atory variables is paramount for applying results within a 
forecasting model.

Based on this assessment, and given the research team’s 
authorized access to GPS data sets collected as part of house-
hold travel surveys, initial efforts were focused on the second 
data type (i.e., bulk traces). The research team approached 
two traffic data vendors to obtain test data sets. One was 
selected due to its focus on cell-phone–based products and 
large market penetration, and the other was selected based 
on its use of GPS-based solutions. Unfortunately, the efforts 
to obtain bulk GPS trace data sets from these traffic data ven-
dors did not succeed given end user licensing restrictions that 

prevent them from sharing high-resolution trace data with 
third parties.

It is also important to note that traffic data vendors have 
historically relied on the instrumentation of fleet vehicles 
as a primary data source and on smartphone apps that only 
collect data when users are checking traffic conditions. This 
means that if one of these data sets was made available for 
this or any similar personal travel behavior study, the results 
could be biased due to this significant commercial fleet com-
ponent (especially for driver owned-and-operated vehicles) 
and, in the case of personal travel, would likely show partial 
day traces clustered during morning or afternoon commute 
hours.

Given the restrictions in obtaining bulk GPS traces from 
traffic data vendors for this study (data sets that will likely 
not be made available to planning agencies for the same rea-
sons), as well as the potential personal mobility measure-
ment biases that do exist in these traffic data vendor sources, 
it became obvious that data sets from the first group, GPS-
assisted HTSs, were the most appropriate for use in the test 
experiments that appear in Chapter 3. More specifically, the 
research team felt that two types of GPS data from travel 
surveys could be tested: (1) person-based, GPS-assisted HTS 

 GPS Data from HTS Bulk Traces  Fixed-Location Sensors 

Characteristics Person Vehicles Smartphones Mobile 
Phones 

Instrumented 
Vehicles  

Navigation
Devices 

Bluetooth RFID 

Sample size Small Small Small Large Large Large Large Small 

Spatial accuracy High High Depends 
on hardware 
and software  

Low High High Limited Limited 

Path completeness Yes Yes Depends No Yes Depends 
on use 

No No 

Complete tours? Yes Yes Not certain Not certain Yes Not certain No No 

Household 
interactions? 

Yes No Depends 
on usage 

Depends 
on usage 

No No No No 

Person or vehicle? Person Vehicle Person Person Vehicle Vehicle Both Both 

Socio-
demographics 

Yes Yes Yes Derived 
from home 

location 

Derived  
from home 

location 

Derived  
from home 

location 

No No 

Expected biases 

 

Controlled 
by survey 

design 
 

Controlled 
by survey 

design

Controlled 
by survey 

design 

Age and 
market 

penetration of 
mobile phone 

service 
 

Contains 
commercial 
vehicle travel 

Unknown 
 
 
 
 
 

Contains 
commercial 
vehicle travel 

 
Market 

penetration of
navigation 

devices and 
level of 
usage 

Contains 
commercial 
vehicle travel 

Market 
penetration 
of Bluetooth 
equipment 

 
 

Contains 
commercial 

vehicle 
travel 

Market 
penetration of 

cards and 
tags equipped 

with RFID 
 

Contains 
commercial 
vehicle travel 

Table 2-1. Available data set types and characteristics.
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data sets collected by stand-alone GPS data loggers deployed 
as part of the study; and (2) smartphone-collected GPS data 
collected in tandem with a household travel survey. Data 
from this type of GPS data source have the most potential 
for testing various data fusion methods because of the wealth 
of information associated with the sampled households and 
persons. In addition, depending on the original study design, 
the GPS-derived travel may be associated with trips reported 
by participants, which can provide calibration data for trip-
level imputation models.

The research team obtained permission from ARC and the 
Denver Regional Council of Governments (DRCOG) to use 
the GPS data collected as part of their recently completed 
household travel surveys. In addition, the most recent CHTS, 
which consisted of a year-long data collection effort, included 
a 100% person-based GPS target sample of 3,100 households 
collected in the Oakland/San Francisco region for the Metro-
politan Transportation Commission (MTC). MTC agreed to 
make this data set available for this project’s methods tests. 
Table 2-2 presents summary information on these candidate 
data sets.

With respect to smartphone data sets collected as part of 
an HTS, the best candidate identified is the PaceLogger data 
set that was collected by a subsample of households in Port-
land as part of the recent Oregon Household Activity Survey 
(OHAS). This data set was collected using a modified ver-
sion of the original CycleTracks iPhone app and contains 
data from 308 smartphone users from 256 households. The 
research team received permission to use this smartphone 
data from the OHAS subcommittee of the Oregon Model-
ing Steering Committee (OMSC), and obtained a copy of 
the data set and documentation to continue its assessment 
of the data.

As mentioned previously, the research team is aware of other 
transportation-related GPS data sets, such as the vehicle-based 
GPS data collected as part of the Puget Sound Regional Coun-
cil’s Value Pricing Study and the vehicle-based smartphone 
GPS data collected in the recently completed MBUF project 
conducted in Minnesota. Given the 100% vehicle focus of 
these studies, however, it was decided that it would be more 
informative from a comprehensive research perspective to 
use a person-based data set with multimodal travel patterns.  

Furthermore, the MBUF data set was not available at the time 
this research was conducted. Although the CycleTracks data 
set was also available for use in testing, it was decided that the 
intended use of this smartphone app for collecting bicycle trips 
would limit its usefulness in the analysis of multimodal and 
motorized travel behavior.

Review of Data Fusion Methods

In the context of this study, the term “data fusion” refers to 
the process in which two or more data sets are integrated to 
generate a single reliable data source for modeling and other 
applications. In data fusion, when two or more data sets are 
to be integrated, the analyst should find data elements that 
are statistically compatible across data sets (e.g., income, 
household structure) and that can perform data integration 
by applying normalization of the common data elements 
across data sets along with necessary weight adjustments. It 
should be noted that since data sets are collected in differ-
ent contexts, significant differences may exist among them. 
Therefore, various statistical tests are required to reconcile 
the differences across data sets.

The data fusion approach relies on data mining and pat-
tern recognition tools combined with statistical distribution 
updating methods to add demographic characteristics to the 
GPS traces. The general processes involved in data transfer-
ability are reviewed in the following and generally relate to 
the transference of travel characteristics.

Data Fusion Methods

Data fusion deals with the problem of merging different 
data sets from a variety of sources into a single data set. The 
approach allows the merging of two or more data sources 
collected through various surveys or at different aggregation 
levels. Data sets typically contain missing variables that com-
plement each other in such a way that the resulting data set 
includes a complete list of consistent variables. Data fusion 
could be seen as a special type of data imputation where 
several variables are missing in data sets because they have 
not been collected to reduce respondent burden during the 
survey, or where multiple surveys were conducted to obtain 

Study Name Number of  
Households 

Number of  
Instrumented Persons 

Number of  
Trips on First Day 

ARC 2010 Person GPS HTS 334 649 3,613 

DRCOG 2009 Person HTS 170 332 2,308 

MTC 2012 Person HTS* 1,732 3,386 19,839 

Total 2,236 4,367 25,760 

*Numbers as of October 2012. 

Table 2-2. Available person-based GPS HTS data sets.
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Data Fusion and Transferability

There has been extensive research in recent years on the 
transferability of travel attributes of individuals from one 
context to another. Travel attributes like number of trips, dis-
tance traveled, and modes used for each individual are critical 
requirements in any disaggregate travel demand analysis, and 
data transferability approaches are seen as reliable alternative 
solutions for smaller communities where data collection is 
more costly and challenging. “Data transferability” broadly 
refers to any approach that utilizes data or models from one 
context to generate data or models for use in another context. 
This can be used either in a spatial context, such as generat-
ing a model or data for a region on the basis of data that is 
obtained from another region, or in a temporal context, such 
as forecasting data for a region based on existing data from 
the same region. Transferring travel data either temporally or 
spatially is a common practice that is typically performed in 
an ad-hoc fashion using household-based cross-classification 
tables. While the focus of much of this work has been on trans-
ferring relations between demographics to travel patterns, 
the methods should be applicable to the converse situation 
of interest in this study (i.e., inferring demographics from 
travel patterns).

Data transferability models are basically built upon data 
mining methods that can explore the data and detect the 
interdependencies and correlations among variables (Stopher, 
Greaves, and Bullock 2003; Reuscher, Schmoyer, and Hu 
2002). In the literature, various models have been proposed to 
transfer disaggregate travel attributes using statistical meth-
ods. Mahmassani and Sinha (1981) studied spatial transfer-
ability of trip frequency for small urban areas in the state 
of Indiana at three levels: area wide, zonal, and household. 
They compared cross-classification tables of trip frequencies 
among urban areas and their distributions for different trip 
purposes across different socioeconomic groups. Wilmot 
(1995) used multiple linear regression models to perform a 
similar analysis. Unlike the regression models that generate 
continuous results for discrete variables, Zhao (2000) applied 
discrete choice models to account for more of the behavioral 
process of trip generation. Ben-Akiva and Bolduc (1987) and 
Zhang and Mohammadian (2008) used a Bayesian updating 
approach to improve spatial transferability of travel attri-
butes. Zhang and Mohammadian transferred data from the 
NHTS to smaller areas in Iowa and New York and showed 
that using a small, local sample and Bayesian updating can 
significantly improve the quality of the synthesized data 
(Zhang and Mohammadian 2008). Long, Lin, and Pu (2009) 
applied small area estimation models to identify household- 
and census-tract–level travel characteristics, such as number 
of work trips for small and midsize metropolitan areas, where 
few travel samples are available from various data sources.

different samples where the questions of interest are split in 
two sets with a common set of socio-demographic variables. 
There are several classical approaches to data fusion problems 
that are presented in the literature (Saporta 2002).

Explicit Model-Based Estimation

In this approach, each missing value can be estimated using 
a simple model such as regression, discrete choice, machine 
learning, or cross-classification. Estimations are made vari-
able by variable, not taking into account their correlations, 
and may lead to inconsistent results. The other problem with 
this approach is homogeneity of estimated values, in which 
two units will have the same estimates if their independent 
variables are the same, and hence it will lack heterogeneity 
in estimates. It appears that an explicit estimation technique 
is useful when few missing data points need to be estimated; 
however, it might not be a good approach to apply when large 
blocks of missing data need to be generated in a data fusion 
practice.

Imputation with Implicit Models 
(e.g., Nearest Neighbors)

This approach is similar to a copy-and-paste practice in 
that a whole vector of variables for record i from a source 
data set is transferred to record j of the target data set where 
records i and j have close profiles. The closeness of profiles 
is measured by identifying the nearest neighbors within  
an appropriate distance. Another commonly used approach 
in this category is file grafting, which is based on principal 
component analysis (PCA).

Data Fusion by Maximizing Internal Consistency

The approach is based on multiple correspondence analy-
sis (MCA) or homogeneity analysis. The essential idea is to 
assign categories to the set to minimize a loss function. MCA 
of a disjunctive table can be viewed as the minimization 
problem of a loss function that is, in fact, equivalent to get-
ting maximum eigenvalues for the completed table (Saporta 
and Co 1999).

Double Imputation Method

This approach is a file grafting technique that combines 
the explicit and implicit approaches and is also called non-
symmetrical grafting. It is based on the constrained princi-
pal component analysis technique that allows imputing the 
missing information into a target sample, taking into account 
knowledge of the relationship structure among variables 
(Piscitelli 2008).
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the individual traces into a sequence of trips. The major steps 
of behavior-ization include identification of individual trips, 
trip modes, purposes, and activity types. For both tasks, 
multiple additional data sources are used.

Demographic Estimation 
Using GPS Traces

The data fusion approaches discussed in the previous sec-
tion have generally been shown to transfer at least some travel 
characteristics from one context to another with some degree 
of accuracy, and generally seem to offer potential applications 
for transferring the relation between travel pattern and per-
sonal characteristics to anonymous GPS data traces. There-
fore, in addition to the test described in the previous section, 
the data transferability approach was also tested in this study.

The approach to the personalization of GPS followed in 
this study begins by developing clusters of travel patterns 
observed in the source data set to be transferred that exhibit 
similarities in the types of individuals who engage in them. 
There are many ways to accomplish such clustering that have 
been pursued in the transferability literature. To narrow the 
scope of the project, the research team tested the decision tree 
methods of cluster development using the C4.5 approach. 
The general effect of the decision tree models is to split the 
travel pattern observations into pattern clusters with maxi-
mal homogeneity of demographic data within each cluster, 
in a similar manner to that discussed in the previous section.

In this case, the sample data would be from a high-quality, 
representative data source, such as the NHTS or other house-
hold travel surveys from one or more regions. Anything that 
can serve as a reliable source to link travel patterns and travel 
characteristics could be used. While the ideal data source 
would clearly be a locally collected household travel survey, 
the assumption in this study is that such data are not avail-
able in sufficient quantity to feasibly estimate a travel demand 
model. However, small-scale, local data may be incorporated 
into the demographic estimation procedure through a data 
transferability or updating process.

The dependency between the travel attributes is a challeng-
ing issue that has typically been ignored in the transferability 
of transportation models. For example, the number of recre-
ational trips for an individual in a day might be dependent on 
the work trips for the individual on that day. This means that 
modeling the number of daily recreational trips and work 
trips independently could add estimation bias to the results. 
Rashidi and Mohammadian (2011) attempted to study dis-
aggregate trip rates for different trip purposes in the trans-
ferability context. They presented household travel attribute 
models using an exhaustive chi-squared automatic inter-
action detection (CHAID) data mining algorithm to address  
several limitations concerning complexity of models, lim-
ited explanatory variables, and lack of accurate disaggre-
gate models. In a follow-up study, Fasihozaman, Rashidi, 
and Mohammadian (2013) applied a significantly modified 
version of the same algorithm in an attempt to explore and 
discuss a more disaggregate, and policy-sensitive, individual-
based data transferability approach. This was achieved by 
using a broad set of socio-demographic and land use vari-
ables. Using the 2009 version of the NHTS, the modeling 
approach was further enhanced by using a wide range of 
probability density functions.

Applicability

There are two main problem areas where data fusion tech-
niques could be used to augment GPS data sets. The first 
involves the association of socio-demographic and household 
structure information with individual GPS traces, while the 
second is related to identifying travel and activity characteris-
tics from the GPS spatial and temporal dimensions.

Figure 2-1 depicts a basic understanding of the two major 
technical tasks. The first problem area can be called demo-
graphic estimation, which consists of attaching person and 
household characteristics to the individual GPS records. This 
task is relevant only for anonymous, massive data. The sec-
ond problem area can be handled by behavior-ization of the 
person or vehicle traces, and begins with the conversion of 

Figure 2-1. Data fusion tasks.
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Identifying Behavior from GPS Traces

The first challenge to overcome when extracting behavior 
from GPS data is to clean and process it into trips and activi-
ties. Performing these types of tasks can take significant effort 
when processing raw GPS data from emerging sources such 
as smartphones and wearable (and continuously powered) 
GPS data loggers. This issue has been tackled in the past using 
various heuristics that are not necessarily consistent. Based 
on the literature review findings, the research team proposed 
that the tests in Chapter 3 focus on the core processing meth-
ods necessary to perform basic GPS trip processing, which 
excludes map matching and route identification. The com-
plete list of methods along with their references is provided 
in Table 2-3.

The test consists of implementing code or using imple-
mentations from the original authors, when available, for 
each method and using it to process the raw GPS data into 
trips. In the case of the wearable GPS loggers’ HTS data 
sets, the performance was measured by comparing the out-
puts with those originally identified, which were reviewed 
by analysts at GeoStats. However, the research team does 
not believe that there is much benefit in applying these 
methods to the smartphone data set from the OHAS study 
given that it was by definition recorded as separate trips by 
participants.

The clustering procedure using the source data is followed 
by an updating procedure that is used to update the depen-
dent variable distributions. In this step, clusters from the 
transferred sample can be updated with small local samples 
using, for example, Bayesian updating methods, as in the 
related work described previously on transferring travel pat-
tern data. A local household travel survey complementary to 
the anonymous GPS data would be used for this purpose. 
Alternatively, the procedure can be tested with a household 
travel survey alone, which would involve both developing and 
applying the clusters using the same data set, which would 
allow the updating procedure to be skipped. This would be 
the case if a household survey with an attached GPS data col-
lection component is to be used.

The result of this process would be a set of clusters (or 
rules, neurons, models, etc.) that relate travel characteristics 
to specific sets of demographics, from which demographics 
for a specific target pattern can be drawn using secondary 
models, as described previously. These distributions need to 
conform to known marginal distributions of the target demo-
graphic characteristics, which can be derived from census 
data. The models can also be constrained by joint distribu-
tions of demographic variables if these are available from 
either the census data or from population synthesis. The trans-
ferred models will then need to be calibrated to reflect the 
constraints on the population characteristics.

Task Method Types Source References Description 

Noise filtering Complex 
heuristics 

Stopher, Jiang, and 
Fitzgerald (2005) 

Remove zero-speed points and points 
that show movements of less than 15 m. 

  Lawson, Chen, and 
Gong (2010) 

Remove points based on HDOP, number 
of satellites, zero speed or heading, and 
presence of jumps. 

  Schüssler and 
Axhausen (2008) 

Grouping of points between position 
jumps combined with an iterative 
removal process based on segment 
length. Data are then smoothed using 
kernel density, and points are removed 
based on altitude. 

Trip identification Simple dwell 
time 

Wolf, Guensler, and 
Bachman ( 2001) 

A 120-s dwell time between GPS points 
is used to identify trip ends. 

 Complex 
heuristics 

Schüssler and 
Axhausen (2008) 
 

Data stream is classified into activity 
clusters based on position density, with 
clusters being grouped if they are too 
close in time, and trips are derived from 
the clusters.  

  Oliveira et al. (2011) Stream of points is segmented based on 
dwell time and mode transitions; the 
resulting trips are then compared against 
a set of quality parameters (number of 
jumps, spatial coverage) to determine 
whether they are real. 

Mode transition 
identification 

Heuristics Tsui and Shalaby 
(2006) and Schüssler 
and Axhausen (2008) 

Classifies transitions as either EOW, 
SOW, or EOG points using speed and 
acceleration thresholds. 

Table 2-3. Proposed GPS data cleaning and trip identification methods for testing.
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ing trip purpose to various trip and person attributes. This is 
a method similar to the one proposed in Chen et al. (2010) 
and that was applied to the Northeastern Ohio Areawide 
Coordinating Agency (Cleveland) GPS-based HTS.

Methods based on heuristics may appear at first to be 
easier to implement since they require little calibration and 
only a basic understanding of statistical modeling. How-
ever, they tend to contain various constants and thresh-
olds that need to be examined and adjusted based on local 
deployment conditions. Making these adjustments requires 
expert knowledge on the local conditions as well as the logic 
behind the algorithms being used. It can also be the case 
that the logic embedded in the algorithms is tied to local 
characteristics.

On the other hand, probabilistic and artificial intelligence 
models require more advanced analytical knowledge (statis-
tical and mathematical) and more extensive calibration. The 
first aspect of this latter requirement is the need to obtain or 

Once the traces have been converted into trips, classifier 
methods can be used to identify behavior. These methods 
select attribute characteristics from a limited set of choices 
and can be applied to augment GPS traces with travel mode, 
trip purpose, and activity information. In this scenario, the 
additional sources of data that are to be fused with the GPS 
traces include information about the transportation infra-
structure (e.g., proximity to transit facilities and segregated 
travel modes), land use (e.g., points of interest and parcel and 
zonal data), common household locations (e.g., home, work, 
and school), and schedules.

The literature review identified three main groups of 
methods that could be used to solve this problem: heuris-
tics, probabilistic, and artificial intelligence (AI). Table 2-4 
identifies candidate methods from these groups along with 
potential applications tested. The probabilistic approach 
mentioned for identifying trip purpose in Table 2-4 consists 
of developing a multinomial logit (MNL) choice model relat-

Task  Method Types Source References Description 

Travel mode 
identification 

Heuristics Stopher, Clifford, 
and Zhang (2007) 

Series of rules that employ both point 
speed values and GIS data 
relationships. More recent variations 
also employ checks based on tour 
relationships and acceptable mode 
sequences. 
 

 Probabilistic 
(MNL) 

Oliveira et al. (2006) Used multinomial logit model to assign 
mode based on GPS and 
accelerometer data 
 

 AI – fuzzy logic Tsui and Shalaby 
(2006) and 
Schüssler and 
Axhausen (2008) 

Membership functions were specified 
for each travel mode. 

 AI – neural 
networks 
 

Gonzalez et al. 
(2008) 

Trained neural networks using GPS 
data collected for car, bus, and walking 
trips. Also examined the performance of 
the mode identification network while 
using a subset of the captured points, 
which the authors defined as “critical 
points.”  
 

Trip purpose 
(activity) 
identification 

Decision trees Griffin and Huang 
(2005) 

Applied the C4.5 algorithm to build a 
decision tree capable of classifying trip 
ends into multiple trip purposes 
 

 Probabilistic 
(MNL) 

Chen et al. (2010) This is an approach GeoStats 
developed with Parson Brinckerhoff for 
use in the Cleveland HTS. It uses both 
rule-based heuristics (for home 
purposes) and a probabilistic model to 
compute trip purpose probabilities 
based on person, household, and trip 
attributes. The nesting structure is 
based on natural trip purpose 
aggregations, from the simpler structure 
used in traditional four-step modeling to 
a more detailed one used in an ABM.  

Table 2-4. Proposed travel mode and trip purpose identification methods.
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The overall performance of the methods was evaluated by 
comparing their results with the responses reported in the 
original data. In the case of the HTS data sets, these responses 
came from the set of GPS trips that were matched to the tra-
ditionally reported travel. Only results for trip purpose iden-
tification were evaluated on the smartphone OHAS data set 
since travel mode information was not captured by the data 
collection application. The number of matches and the char-
acteristics of the mismatches will be explored with the help 
of tables and charts.

The result of the application of these data imputation and 
fusion methods was an improved understanding of their 
performance and shortcomings when applied to person-
level GPS trace data. This allowed the research team to make 
suggestions on the applicability and use of these methods to 
practitioners.

collect calibration data that can be used to refine and specify 
the models for use. If no calibration data are available, then 
one can use models specified for similar use conditions, but 
this should be done while acknowledging that there may be 
challenges in transferability. It is worth pointing out that the 
AI fuzzy logic method does not necessarily require a calibra-
tion data set but rather a review of the parameters used by 
membership functions for the various outputs.

As mentioned previously, the need to calibrate models 
poses challenges to their transferability. This is an aspect that 
will be evaluated in the next chapter by comparing the char-
acteristics and specifications of the models developed for the 
different test data sets. Transferability will also be examined 
by cross-validating models across the different data sets (i.e., 
calibrating a model with one data set and validating it against 
another).
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Introduction

Chapter 3 summarizes the results from the tests conducted 
on the methods identified in Chapter 2. This demonstration 
was conducted through two experiments:

•	 Experiment A: augmenting person-based GPS HTS data 
with trip details.

•	 Experiment B: enriching anonymized smartphone GPS data 
with socioeconomic and demographic information.

Overview of Experiment A

The goal of Experiment A was to evaluate data fusion meth-
ods that can be used in the context of GPS-only household 
travel surveys. The tests consist of implementing code, or using 
implementations from the original authors when available, for 
each method and using it to process the raw GPS data into trips. 
Figure 3-1 shows an overview of the process of turning raw 
GPS data into processed travel information using the methods 
tested in Experiment A.

It should be noted that a balanced approach with respect 
to level of effort allocated was pursued when implementing 
these methods; in other words, the researchers attempted 
to perform a comparable amount of calibration and setup 
across all methods (i.e., to invest a similar level of effort across 
methods). This ensured that a fair evaluation was performed 
and also benefited methods that were simpler to calibrate and 
set up; however, this also means that the full potential of these 
methods was not necessarily extracted from the tests.

Initial work focused on data preparation and standardiza-
tion. This work included exporting original GPS data files 
to comma-separated value (CSV) text files and also locating 
original raw GPS data files from the ARC and DRCOG surveys.

The resulting CSV input file types generated included:

•	 Raw GPS points – as collected by the field devices;
•	 Processed GPS points – filtered to exclude data outside the 

travel date range and noise; and

•	 Mode segments – one record per unlinked trip (also referred 
to as an elemental trip) identified in the processed GPS data; 
these correspond to individual mode segments in a multi-
modal trip.

Survey data, which were used to calibrate mode and pur-
pose identification models, were converted from their original 
database structures to a standardized place-based relational 
schema. In addition to places, this schema included tables for 
storing household, person, and location data.

Overview of Experiment B

The purpose of Experiment B was to evaluate methods for 
attaching person- and household-level information to travel 
patterns observed in GPS-based household survey data or 
other sources of GPS trace data. As such, the experiment was 
designed to be as general as possible, with very few assump-
tions about the data that would be available in the source data 
set. So, while the experiment included models derived from 
household travel survey data, these models should be generally 
applicable to any source of GPS traces.

Figure 3-2 provides an overview of the process developed 
for Experiment B. The experiment can be broken down into 
four stages:

•	 Stage 0: processing of input trip data from Experiment A 
into person-travel data records.

•	 Stage 1: development of the primary demographic clusters.
•	 Stage 2: selection of optimal person-type clusters based on 

travel attribute similarity.
•	 Stage 3: development of person-attribute assignment 

models for a selected set of demographics.

The outputs of Experiment B include open-source computer 
code that processes the mode segment data from Experiment A 
into person-travel records and a set of model files that can be 
applied to the processed travel records using various open-
source modeling packages, including WEKA and BIOGEME.

C H A P T E R  3

Methods Evaluation
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Figure 3-1. Overall sequence of steps covered in Experiment A.
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Figure 3-2. Experiment B demographic characterization process.
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The remainder of this chapter is organized as follows. 
First, it introduces the data sets used to carry out the selected 
experiments along with an outline of the implementation 
and testing approaches used to evaluate the methods. This 
is followed by discussions of the two experiments, along 
with the main findings and results. Additional information 
on the models implemented in Experiment A and Experi-
ment B is included in Appendix D and Appendix E, respec-
tively. Appendix F contains explanations of the various tools 
used to conduct the experiments, along with script or code 
instructions and listings, where applicable.

Reference Data and Software Tools

The research team obtained permission from ARC for 
using the GPS data collected as part of its recently completed 
household travel survey. Both person and vehicle GPS data 
were used to test the GPS processing methods. GPS vehicle data 
were used to test the noise filtering data because they included 
values for HDOP and number of satellites, which were not 
available in the person-based GPS data due to limitations in 
the wearable GPS logger that was employed. Person-based GPS 
data were used in all subsequent GPS processing method tests. 
Both the vehicle-based and person-based GPS data were exten-
sively reviewed as part of the original HTS effort. The origi-
nal cleaning process included the review of individual travel 
days by analysts using custom data processing and visualiza-
tion tools. Because of this original review, the processed data 
can be treated as a reliable benchmark against which the tested 
methods’ outputs can be evaluated. Three types of reference 
GPS data sets were created: filtered points, trip ends, and mode 
segments (corresponding to unlinked trips). A subset of the 
Atlanta diary data was also used to calibrate trip purpose iden-
tification methods; the idea here was that these would simulate 
the data that are typically collected using GPS prompted-
recall methods in GPS-only HTSs.

With respect to smartphone data sets collected as part of 
an HTS, the research team obtained the PaceLogger data set, 
which consisted of a subsample of households in Portland as 
part of the recent OHAS. This data set was collected using a 
modified version of the original CycleTracks app and contains 
data from 308 smartphone users within 256 households.

Permission to use and access this data set was obtained from 
the OHAS subcommittee of the OMSC. In addition to the 
smartphone GPS points, data from the regular survey were used 
to test the fit of the models used in the experiments. The data 
used to train the demographic characterization models were 
drawn from the 2008 Chicago HTS, which included 2 travel 
days for about 40% of the respondents (9,736 total observa-
tions). The data used for model estimation were limited to the 
2-day sample to reduce the confounding effects of intraper-
sonal, day-to-day variability on the models. This is discussed 
further in the Experiment B discussion. Table 3-1 provides a 
summary of the reference data used in Experiment A.

To increase the reproducibility of the tests implemented 
as part of the research project, a decision was made to use, 
as much as possible, free and open-source software tools for 
data processing, modeling, and data analysis. Consequently, 
the tools (and supporting software) selected to implement the 
algorithms and models in Experiments A and B were:

•	 R 3.0 (R Core Team 2013) for heuristics methods and for 
calling fuzzy logic routines in Java;

•	 BIOGEME 2.2 and BIOSIM (Bierlaire 2003) for multinomial 
and nested logit choice modeling;

•	 WEKA 3 data-mining tool set (Hall et al. 2009) for neural 
networks, classifier trees, and clustering;

•	 PostgreSQL; and
•	 C+	+ for developing Experiment B data processing scripts.

Table 3-2 shows the assignment of the three programming 
packages to the experiment tasks.

Study Name Number of 
Households

Number of 
Persons

ARC 2010 Diary 10,278 25,810

ARC 2010 Person GPS HTS 334 649

ARC 2010 Vehicle GPS HTS 727 1,422

OHAS 2009 Portland HTS Diary 4,799 11,133

OHAS 2009 Portland HTS Smartphone 256 307

Chicago 2008 HTS Diary (Total) 10,552 23,808

Chicago 2008 HTS Diary (2-day w/travel)* 2,395 5,125

*Excludes anyone with a travel day on Saturday or Sunday, anyone only responding 
for 1 day, and anyone who did not travel. This sample was used for the analysis, 
implementation, and testing approach. 

Table 3-1. Reference data details and sources used in 
Experiment A.
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The resulting filtered points from the application of each 
method were compared against the processed and filtered 
points in the original GPS data deliverable, also referred to as 
the reference data, which were reviewed by GeoStats analysts. 
The null hypothesis here was that each point’s final filtered state 
was to be the same in both data sets. Errors were categorized as 
belonging to one of the following groups:

•	 Type I error: Point is not blocked in method when it is 
blocked in the reference data.

•	 Type II error: Point is blocked in method when it is not 
blocked in the reference data.

The noise filtering methods were run against 100 randomly 
selected raw GPS point vehicle-based data files from the ARC 
data set. These files contained a total of 2,446,984 GPS points. 
Each point had a flag appended to it that indicated whether 
it was considered to be noise by the method. These flags were 
then used to compare the method’s results with the reference, 
filtered GPS data. Error percentages were calculated by taking 
the number of errors in each category and dividing by the total 
number of points. Table 3-3 summarizes the error results of 
the tested data cleaning methods along with insights obtained 
while implementing the method.

The first evaluated method (Stopher, Jiang, and Fitzgerald 
2005) was originally developed for use in vehicle-based sur-
veys, while the other methods were developed to be applied 
to person-based GPS data. More specifically, the method by 
Schüssler and Axhausen (2008) featured additional steps that 
were added to deal with limitations of the originally used 
device (i.e., it did not capture instantaneous speeds, HDOP, 
or number of satellites).

The results indicated that simple rule-based methods based 
on point quality and speed data available from the GPS 
device were the most effective. While all three methods had 
similarly small counts of Type II errors (point was filtered by 
method, but it was not filtered in the reference data), two of 
them displayed higher rates of Type I errors (point was not 
blocked in method, but it was blocked in the reference data). 

Scripts and code sets created for many of these experiments 
are provided in Appendix F, along with some basic instruc-
tions for use. The data associated with these experiments can-
not be made available to the public given privacy concerns for 
the original participants in the survey efforts under which 
the GPS data were collected. This is mostly applicable to the 
original raw GPS coordinate data that were used as input for 
the data cleaning and trip identification methods.

Experiment A: Basic 
GPS Data Processing

This section covers the testing of data processing meth-
ods that are used to convert raw GPS data into clean points, 
trips, and mode segments. The application of these methods 
constitutes the first step necessary for turning raw trace data 
into transportation behavior information. The methods pre-
sented in this section correspond to the boxes with diagonal 
hashing, as presented in Figure 3-1.

GPS Data Cleaning Methods

GPS data cleaning or noise filtering methods seek to iden-
tify points that do not indicate real participant movement 
and that can hence be removed from the data without loss of 
travel information. They are typically necessary to improve 
visualization of the data and also to improve the accuracy 
of trip identification methods. Furthermore, by removing 
points that are not indicative of actual movement, they have 
the added benefit of making the data more manageable.

Original, raw, vehicle-based GPS point files (each one repre-
senting all the points collected for an instrumented vehicle) 
were used as input into the data cleaning methods. The devices 
used were continuously powered by an internal recharge-
able battery, which was also charged by the vehicle’s cigarette 
lighter connector whenever the car was driven. The logging 
frequency of these devices was set to one point per second, and 
only points with instantaneous speeds above 1.9 mph (3 km/h) 
were recorded.

Procedure 
Tool Components 

R WEKA BIOGEME 

Cleaning raw GPS data X 

Identifying trips and mode transitions X 

Identifying travel mode X X X 

Identifying trip purpose X X 

Inferring demographics X X 

Table 3-2. Programming packages used in the processing 
of GPS data.
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Figure 3-3 illustrates the results of the three tested meth-
ods using a sample of the points from one of the processed 
files, which contained activity in downtown Atlanta. The 
maps show points that were classified as noise by the various 
methods, with the shade of gray varying based on each point’s 
instantaneous speed (converted to miles per hour). The maps 
indicate that the Stopher, Jiang, and Fitzgerald method only 

This is to be expected since it is much more likely that the 
methods will try to err on the side of caution (and thus fail to 
block some points) than it is that they will block valid points. 
The Type I error rate for the Stopher, Jiang, and Fitzgerald 
method was found to be the lowest of the three methods, 
with a very small number of points being incorrectly flagged 
as noise.

Source 
References 

Implementation Findings Type I 
Error 

Type II 
Error

Stopher, Jiang, 
and Fitzgerald 
(2005) 

First filtered out all points with fewer than three 
satellites in view and HDOP equal to or greater than 5. 
Then removed points that showed no movement 
(speed equal to zero, less than 15 m of movement, 
and heading also being zero or unchanged). Point 
movements were calculated using the great circle 
distance according to the Vincenty (sphere) method 
(Vincenty 1975).  

0.00% 8.89%

Lawson, Chen, and 
Gong (2010) 

Remove points based on HDOP, number of satellites, 
zero speed or heading, and presence of jumps. The 
thresholds for considering points to be of poor quality 
using HDOP, number of satellites, and speed 
proposed in the paper were used; these were: HDOP > 
5, number of satellites < 3, and speed < 3 m/s (6.7 
mph). The paper and its sources did not contain details 
on how the jump-detection procedure was 
implemented, and this information could not be 
obtained. As a result, the stop-flag procedure 
proposed by Chung and Shalaby (2005), which 
consisted of discarding points that showed less than 
0.00005 decimal degrees of movement, was used. 

13.79% 6.90%

Schüssler and 
Axhausen (2008) 

Points are removed if their altitude is not within the 
study area. They are then smoothed and filtered by 
speed and acceleration. Since the GPS data used 
included instantaneous speed data from the actual 
devices (which are more accurate), the implementation 
did not calculate speeds as specified in the paper.  

14.15% 7.25%

Table 3-3. Data cleaning methods tested and results from Experiment A.

Stopher, Jiang, and Fitzgerald
(2005)

Lawson, Chen, and Gong
(2010)

Schüssler and Axhausen
(2008)

Figure 3-3. Sample of points from downtown Atlanta identified as noise by tested methods.
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point every 3 s, and only points with instantaneous speeds 
above 1 mph were recorded.

Success of the method was measured by comparing the 
detected trips against the trips in the reference data set. The 
null hypothesis in this test was that the same set of trips was 
identified in both data sets. Trips were deemed to match if 
their end locations were approximately the same between the 
reference and processed data sets, where “approximately the 
same” means the end times of the two data sets were within 
15 min and the start and end locations were within 75 m. 
Based on this, the following errors were computed:

•	 Type I error: Trip is not found in method but is found in 
reference data.

•	 Type II error: Trip is found in method but is not found in 
reference data.

The trip identification methods were run against 300 ran-
domly selected processed GPS files from the ARC GPS data 
set, which included 336 individual linked trips. The percent-
ages for Type I errors were calculated by taking the number of 
trips that did not match the reference data and dividing that 
by the total number of generated trips. The percentages for 
Type II errors were calculated by taking the number of refer-
ence trips that did not match any generated trips and divid-
ing that by the total number of trips in the reference data. 
Table 3-4 presents findings from the process of implementing 
the tested identification methods along with the failure rates 
of the two detected errors.

Both methods ended up generating fewer trips than what 
was contained in the reference data set, and this was reflected in 
the higher rates of Type II errors (trip is found in method but 
not in reference data). The simple approach proposed by Wolf, 
Guensler, and Bachman showed a slightly higher Type I (trip 
is found in reference data but not in tested method) error 
rate than the one proposed by Schüssler and Axhausen. This 
result was expected given that the method has no mechanism 
for detecting short stops (i.e., those which last less than the 
120-s threshold). However, this simpler approach ended up 
with a lower Type II error rate, which indicates that it is less 
likely to erroneously consider short stops as valid trip ends. 
The higher Type II error rate found for Schüssler and Axhau-
sen was caused by the fact that the method consistently failed 
to find trip ends arriving at a smaller number of trips than 
the method proposed by Wolf, Guensler, and Bachman. An 
examination of the characteristics of the trips identified by 
the two tested methods also revealed that the trips identified 
by the Schüssler and Axhausen method tended to be longer 
and to have lower average speeds, which is consistent with 
failing to identify stops. It is possible that this was a side effect 
of the method’s original design, which was customized to a 
specific data collection device and may not be well suited for 
processing data that were already filtered for noise points.

identified a small number of points as noise in this area; 
the maps also illustrate how the Lawson, Chen, and Gong 
method tended to filter out points around intersections. 
These were likely points with speeds below the prescribed 
6.7 mph (3 m/s) but above the original data collection’s min-
imum speed setting of 1.9 mph. Finally, the maps show that 
the Schüssler and Axhausen method did block some valid 
traces, but also captured some of the same noise identified 
by Lawson, Chen, and Gong.

GPS Data Cleaning Findings

Based on the test results, it is suggested that practitioners 
select devices (or data sources) that can provide instanta-
neous speed, as well as HDOP and number of satellites, given 
the importance that these data elements have in the process 
of filtering noise out of raw GPS trace data. Another finding 
from this effort was that further analyst review may be neces-
sary after applying automated filtering to raw GPS data to 
deal with points that should have been identified as noise but 
were ignored by the methods (Type I error).

It is also worth noting that the Schüssler and Axhausen 
method arrived at sound results without relying on point 
quality indicators like HDOP and number of satellites. How-
ever, this method was much more complicated to implement 
and took significantly longer to process than the other meth-
ods. (It was at least 10 times slower.) In the end, the Lawson, 
Chen, and Gong method clearly performed the best, which 
shows the importance of having access to the number of sat-
ellites, HDOP, and instantaneous speed in the raw GPS data.

Trip Identification Methods

Trip identification methods can take clean GPS points as 
input and generate a list of trips as output. These methods are 
not able to detect mode transitions within multimodal trips 
and are hence more appropriate for use with vehicle-based 
GPS data. They can also be used to generate trips whose point 
sequences can be further processed into separate mode seg-
ments using mode transition detection methods (reviewed in 
the next section).

The test consisted of comparing trips identified in the ref-
erence data with those generated by the evaluated methods. 
These methods are typically rule-based, and the criteria for 
these rules will require a simple calibration effort, which will 
heavily depend on how the data were collected (i.e., logging 
rules) and the performance of the GPS device used. As part 
of this test, the default values found in the original work were 
used to configure the methods. Input data for this test con-
sisted of noise-filtered points in the original ARC person-
based GPS data deliverable. These only included points that 
were used by delivered trips, which were limited by the origi-
nal household’s assigned travel date range. The devices used 
to collect the original GPS data were configured to record a 
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end times that were within 15 min of each other. The two fol-
lowing errors were detected from this check:

•	 Type I error: Mode segment end point is not found in 
method but is found in reference data.

•	 Type II error: Mode segment end point is found in method 
but is not found in reference data.

Table 3-5 presents observations based on the exercise 
of programming the tested mode transition identification 
method along with the two detected errors. The methods 
were applied to the filtered GPS points from 300 randomly 
selected person-based GPS files in the reference data (same 
set used in the trip identification test) and their correspond-
ing mode segments.

The tests revealed that the first method (Tsui and Shalaby 
2006; Schüssler and Axhausen 2008) clearly performed bet-
ter, with lower Type I (mode transition is not detected by 
method) and Type II (mode transition end point is found  
in method but not in reference) error rates. And while the 
first method showed lower Type I error rates, the second 
method featured higher Type II error rates.

Examining the distribution of travel times of the iden-
tified mode segments in Figure 3-4 reveals that the first 
method tended to identify shorter mode transitions, likely to 
be short walk segments. These short segments were attached 
to longer, and likely motorized, mode segments in the sec-
ond method. This is consistent with the fact that the second 
method found many fewer (a 10% decrease) mode segments 
than what was present in the reference data. On the other 

Trip Identification Findings

Based on the results of this test, it is suggested that trips 
found using automated methods be reviewed for potentially 
missed short stops. The test also made it clear that a very 
simple approach like the one proposed by Wolf, Guensler, 
and Bachman can generate a reasonable first estimate of trip 
ends. The simplicity of the method also makes it very com-
putationally efficient, thus making it suitable for real-time 
processing.

Mode Transition Identification Methods

In instances where multimodal travel was captured using 
GPS, it is necessary to further parse identified trips into 
mode segments (also referred to as unlinked or elemental 
trips). Each of these segments features a consistent travel 
mode. For example, a typical single-leg transit trip will 
consist of a sequence of three mode segments: walk → 
bus → walk. The methods presented in this section take as 
inputs the points belonging to trips and find mode transi-
tions within them.

The null hypothesis in this test was that the mode transi-
tion points identified by the method would match the refer-
ence data. The test involved passing the filtered GPS points 
from the reference data (from the person-based GPS sub-
sample of the ARC HTS data set) to the implemented algo-
rithm and then comparing the resulting mode segments 
against the unlinked trips in the reference data. Unlinked 
trips were deemed to match if their end locations were within 
75 m between the reference and processed data sets and had 

Source 
References 

Implementation Findings Type I 
Error 

Type II 
Error

Wolf, Guensler, 
and Bachman 
(2001) 

This method consists of calculating point dwell time 
based on subsequent time steps. Trip ends are then 
identified based on a minimum delay threshold of 120 s. 
The method was straightforward to implement. 

4.25% 10.27%

Schüssler and 
Axhausen 
(2008) 

The exact sequence of steps included in the paper was 
unclear. The test implementation first did a pass over 
the data to determine the dwell time and activity 
detection based on point density and time. It also 
included a short series of points with the activity. Then a 
second pass was made to determine whether any of the 
remaining point sequences had a density ratio higher 
than 2/3. The rest of the data was split into trips. Even 
though there were several rules applied to the data, the 
bulk of the detection typically occurred based on the first 
point density rule. The dwell time activity detection rarely 
happened, possibly due to the high threshold specified 
in the paper. There were also only a few instances 
where the second pass for activity detection found any 
activities.  

3.09% 35.92%

Table 3-4. Trip identification methods tested and results from Experiment A.
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Source References Implementation Findings Type I 
Error 

Type II 
Error 

Tsui and Shalaby 
(2006) and Schüssler 
and Axhausen (2008) 

The papers were unclear about whether to discard 
an SOW point if another SOW point is detected 
before an EOW or EOG point is detected. Also 
unclear about whether to discard an SOW point if an 
EOG point fails to be an EOW point but could be 
another SOW. The tested implementation keeps the 
first SOW in both cases. If no SOW points are 
detected, the entire file is considered non-walk. The 
initial implementation tended to keep data together 
in segments, even though long dwell times were 
present in its points. To account for this, the 
implementation added a step that ended a mode 
segment if a dwell time of at least 120 s was found. 

16.58% 9.59% 

Oliveira et al. (2011) This method produces elemental trips (separate 
trips per mode or unlinked trips), so it was treated 
as a mode transition identification method. The 
implemented logic did not create places as per the 
paper but mode segments instead so that the 
results could be compared with the other tested 
method. Since places bound mode segments, this 
was a straightforward change. An error was found in 
paper about multiplying the segment’s average 
speed by 1.96 times the point speed standard 
deviation; it should be adding the result of the 
second multiplication to the segment’s average 
speed. Finally, since the input data used was 
already filtered of noise, the original paper’s noise 
filtering logic was disabled for this test. 

24.76% 31.96% 

Table 3-5. Mode transition identification method tested and results.

Tsui and Shalaby (2006) and
Schüssler and Axhausen (2008)

Oliveira et al. (2011)

Figure 3-4. Travel time distribution of identified mode segments.
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Note that Type I and Type II are paired for this hypoth-
esis (picking a wrong answer implies that you failed to pick 
the right answer), but it is still interesting to treat them sepa-
rately to see what modes are frequently overused (Type I) and 
underused (Type II). Table 3-6 identifies the tested methods 
and presents findings that derived from the implementation 
of the methods.

The validation step’s goal was to estimate the reliability of 
the developed process (or model) and to document its per-
formance. Reliability of the calibrated models was assessed 
by applying them to the validation portion of the data sets 
and then comparing predicted purposes to actual respondent 
choices. Classification errors were tabulated as a function of 
the actual choices selected by respondents, and the distribu-
tion of imputed trip purposes was compared to that of the 
validation data sets.

A confusion matrix, also referred to as a prediction-suc-
cess table in travel forecasting, was constructed for each 
method of application. This is a matrix that shows actual 
choices as rows and modeled outcomes as columns; correct 
classifications appear on the matrix’s diagonal. Within the 
context of a confusion matrix, Type I errors are the sum of 
each column without the diagonal value, and likewise the 
Type II errors are the sum of each row without the diago-
nal value. It should be noted that the mode-specific error 
percentages in these matrices are not supposed to add up 
to 100%; that is because they are generated using different 
totals (i.e., the horizontal or vertical sum of outcomes for 
a given mode, not the sum of outcomes across all modes). 
Type I error rates are computed with respect to column totals, 
while Type II error rates are calculated using row totals. 
Table 3-7, Table 3-8, Table 3-9, and Table 3-10 present the 
confusion matrices for the four tested travel mode identifica-
tion methods.

Table 3-11 and Table 3-12 summarize the Type I and Type II 
errors for the tested travel mode identification methods. They 
show the error rates by mode across rows and tested method 
across columns.

The heuristics-based method worked best with walk and  
bicycle trips, but performed poorly with bus trips. It was 
also not effective at differentiating between auto and bus  
modes, and failed to classify most bus mode segments as 
such. Another limitation of this approach is that it may result 
in some mode segments not being assigned a travel mode—
11 in the case of this test. When rail lines travel along the 
same path as roads (for instance, a metro line that travels 
between the directions of a highway), this method has diffi-
culty assigning to rail because to qualify for rail, a trip cannot 
be on the road network. This is the reason why a small buffer 
of 50 ft was used. The bicycle travel mode was also disquali-
fied if the household reported that they had no bikes, even if 
the trip matched a biking signature.

hand, the first method also identified a higher number (a 
3.8% increase) of mode segments than what was reported in 
the reference data.

Mode Transition Identification Findings

The method originally proposed by Tsui and Shalaby (2006) 
and later refined by Schüssler and Axhausen (2008) produced 
better results than the method proposed by Oliveira et al. 
(2011), with error rates that were 1.5 to 3 times smaller. Fur-
thermore, the first method was also better at capturing short 
nonmotorized mode segments, which typically occur before 
and after motorized travel. It should be noted, however, that 
the first method ended up identifying more mode segments 
than what was present in the reference data.

Experiment A: Classifier Data 
Fusion Methods

This test covered the evaluation of classified methods in the 
context of travel mode and trip purpose identification. Three 
types of methods were evaluated: heuristic, probabilistic, and 
AI. The input data for the tests consisted of processing subsets 
of the unlinked trips present in the reference data set by using 
the evaluated methods. Some of the methods required cali-
bration (or machine learning), and in these cases the data set 
was split into calibration and validation groups. The methods 
presented in this section correspond to the boxes with hori-
zontal hashing presented in Figure 3-1.

Travel Mode Identification Methods

To evaluate the performance of the travel mode identifica-
tion methods selected from the literature, a set of unlinked GPS 
trips from the reference data was obtained. The set was con-
structed so as to have the same number of records per evaluated 
travel mode. This set was then further divided into calibration 
and validation records. The first contained 36 records for each 
evaluated travel mode, while the second included 18 records 
per mode set. The travel modes used in the tests were walk, 
bicycle, auto, bus, and heavy rail. Initially, these records had no 
attributes (other than an identifier), but various attributes were 
computed from the GPS points that the trips covered, according 
to the needs of each method.

The null hypothesis for the tests was that the mode selected 
from the method matched the reference data. Based on this, 
the following errors were computed:

•	 Type I error (detected wrongly): Mode classified does not 
match reference data.

•	 Type II error (failed to detect): Reference data mode does 
not match mode classified.
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Method  

Types 

Source 
References 

Implementation Findings 

Heuristics Stopher, 
Clifford, and 
Zhang (2007) 

This method needed baseline statistics for each mode, so the 180 
training trips were used. The implementation used a 50-ft buffer 
around road, rail, and bus stops, and to count as being on the road or 
rail networks, over 50% of the points in the trip had to be within that 
buffer. For bus mode, both start and end of trip had to be within 50 ft 
of a bus stop, but the path of the trip was not verified. The 95th 
percentile speeds in the training data were compared against the 
85th percentile speeds in the test data. This was done to account for 
underestimation of higher speeds in the training samples, which was 
found in early applications of the method. This method can return N/A 
results for cases where the mode could not be classified.  

Probabilistic Oliveira et al. 
(2006) 

First, the model in the original paper had to be changed since no 
accelerometer-based physical activity data were available in the test 
data set. The first model specification included alternative specific 
constants and betas for average speed and standard deviation of 
acceleration. Although this original model’s coefficients could be 
estimated, the resulting model performed very poorly (adjusted rho-
square < 0), so a new specification was created that used dummy 
variables for low, middle, and high speed and acceleration levels by 
mode in addition to alternative specific constants. This final 
specification performed better (adjusted rho-square = 0.537), but the 
small number of observations made it so that the majority of its 
coefficients did not pass the t-test for significance. The final model 
specification is listed in Appendix D. 

Fuzzy logic Tsui and 
Shalaby (2006) 
and Schüssler 
and Axhausen 
(2008) 

The low, 95th percentile acceleration (m/s2) category was (0, 0, 0.5, 
and 0.6) in the papers, but the used data had negative 95th percentile 
acceleration values (where the person was mostly decelerating for 
the whole mode), so -9999 was used to cover these cases. The fuzzy 
logic gives a score of between 0 and 1 to each mode. If there was a 
tie for greatest value, a value was randomly picked between the 
winning values. (The papers did not specify a tiebreaker.) The 
random seed was set to 1 at the beginning of the process so that the 
same random values were chosen each time.  

Neural 
networks 

Gonzalez et al. 
(2008) 

Given that the stopped time is defined as “a certain threshold” in the 
paper, an assumption was made to consider time spent at 5 mph or 
less to be stopped time. Since each point was 3 s apart, two 
successive points must be at or below 5 mph to count 3 s toward the 
stopped time. Furthermore, HDOP and percent cell-ID fixes were not 
available. (All points were captured by GPS.) The paper did not 
specify how to determine stops within a trip; since stops are used to 
track bus stops, a minimum of 20 s of dwell time was used to identify 
stops. The test used a learning rate of 0.1 and 300 iterations as given 
in the final results of the paper, rather than computing which 
thresholds were best as the paper did. The researchers also did not 
make use of critical points as suggested in the original paper.  

Table 3-6. Travel mode identification methods.

Ref\Method Walk Bicycle Auto Bus Heavy Rail N/A Type II 

Walk 17 0 1 0 0 0 1 (06%)
Bicycle 0 10 3 0 0 5 8 (44%)
Auto 0 0 17 0 0 1 1 (06%)
Bus 0 0 16 2 0 0 16 (89%)
Heavy rail 1 0 3 0 9 5 9 (50%)
N/A 0 0 0 0 0 0 –

Type I 1  
(6%) 

0  
(0%) 

23  
(58%) 

0  
(0%) 

0  
(0%) 

11 
(100%) 

-

Table 3-7. Heuristic confusion matrix (55/90  61% correct, 12% indeterminate).
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Ref\Method Walk Bicycle Auto Bus Heavy Rail N/A Type II 

Walk 14 4 0 0 0 – 4 (22%)
Bicycle 2 16 0 0 0 – 2 (11%)
Auto 0 0 9 3 6 – 9 (50%)
Bus 0 1 7 7 3 – 11 (61%)
Heavy rail 1 0 5 2 10 – 8 (44%)
N/A – – – – – – –

Type I 3  
(18%) 

5  
(24%) 

12  
(57%) 

5  
(42%) 

9  
(47%) 

– –

Table 3-8. Probabilistic confusion matrix (56/90 5 62% correct).

Ref\Method Walk Bicycle Auto Bus Heavy Rail N/A Type II 

Walk 17 1 0 0 0 – 1 (06%)
Bicycle 1 16 0 1 0 – 2 (11%)
Auto 0 0 18 0 0 – 0 (00%)
Bus 0 0 14 4 0 – 14 (78%)
Heavy rail 1 0 13 1 3 – 15 (83%)
N/A – – – – – – –

Type I 2  
(11%) 

1  
(6%) 

27  
(60%) 

2  
(33%) 

0  
(0%) 

– –

Table 3-9. Fuzzy logic confusion matrix (58/90 5 64% correct).

Ref\Method Walk Bicycle Auto Bus Heavy Rail N/A Type II 

Walk 17 0 1 0 0 – 1 (06%)
Bicycle 0 17 1 0 0 – 1 (06%)
Auto 0 0 10 5 3 – 8 (44%)
Bus 0 2 1 14 1 – 4 (22%)
Heavy rail 1 0 0 1 16 – 2 (11%)
N/A – – – – – – –

Type I 1  
(6%) 

2  
(11%) 

3  
(23%) 

6  
(30%) 

4  
(20%) 

– –

Table 3-10. Neural net confusion matrix (74/90 5 82% correct).

Ref\Method Heuristics Probabilistic Fuzzy Logic Neural Network 

Walk 6% 18% 11% 6% 

Bicycle 0% 24% 6% 11% 

Auto 58% 57% 60% 23% 

Bus 0% 42% 33% 30% 

Heavy rail 0% 47% 0% 20% 

N/A 100% – – – 

Table 3-11. Mode identification Type I error rates by travel mode and method.

Ref\Method Heuristics Probabilistic Fuzzy Logic Neural Network 

Walk 6% 22% 6% 6% 

Bicycle 44% 11% 11% 6% 

Auto 6% 50% 0% 44% 

Bus 89% 61% 78% 22% 

Heavy rail 50% 44% 83% 11% 

N/A – – – – 

Table 3-12. Mode identification Type II error rates by travel mode and method.
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choices. This additional review may be automated through 
the use of GIS transit infrastructure data, which helped lower 
the Type I error rate of the heuristics method for bus and 
heavy rail modes.

Trip Purpose Identification Methods

The research team tested two modeling techniques for iden-
tifying trip purpose: discrete choice modeling, using nested 
multinomial logit (NMNL) models, and decision trees ( Griffin 
and Huang 2005). Both decision trees and NMNL methods 
can be calibrated using revealed trip purpose responses from 
existing HTS data and can then be applied to identify trip pur-
pose for GPS-derived data or GPS-like data (i.e., containing 
only basic trip attributes). Decision trees have the benefit of 
graphically organizing the variables that go into trip purpose 
selection and, in turn, can be used to help direct the develop-
ment of a model specification for the discrete choice method. 
For the purpose of this research effort, the team used the 
WEKA (http://www.cs.waikato.ac.nz/ml/weka/) data mining 
tool for estimating decision trees using the C4.5 method.

Probabilistic Method for Identifying 
Trip Purposes

A nested logit model structure was used for this test order 
to logically group choices according to aggregate purposes 
such as: at home, at work, nonwork, university or school, air-
port, and loop trip. At the same time, the participants were 
classified as belonging to one of eight life-cycle categories 
listed in Table 3-13.

The BIOGEME modeling tool was used to calibrate these 
nested logit models. Choice simulations were generated using 
the associated BIOSIM simulation to perform model valida-
tion. Although BIOGEME works in Microsoft Windows, it 
has known memory management problems in this platform. 
To avoid these issues, all computations were done using a 
Linux virtual machine.

The final probabilistic model worked well for nonmotorized 
modes but had a difficult time discerning between motorized 
modes, particularly bus and auto. This was likely due to the 
limited attributes used as independent variables (i.e., all based 
on speed and acceleration). As with the probabilistic approach, 
the fuzzy logic method worked best with nonmotorized modes 
and in making the distinction between them and motorized 
alternatives. But it also struggled when selecting between 
motorized alternatives.

The neural network method worked the best across all alter-
native modes. As with the other methods, its main challenge 
was differentiating between auto and bus modes, but even in 
these cases it fared better than all other methods. A key differ-
ence here was that the network calibration data included infor-
mation about time spent at or below 5 mph, which may have 
helped with differentiating between bus and auto modes.

Interestingly, the neural net was the only method that had 
a nearly even overuse and underuse bias toward bus mode 
(the other methods heavily under-selecting it). As observed 
in most of the papers referenced here, detecting walk and 
bicycle modes was relatively easy for all methods. The fuzzy 
logic thresholds were taken as written in the papers, rather 
than computing them as the paper specified. It is possible that 
this method would have performed better if the thresholds 
were calibrated using the 180 training cases that the other 
methods used.

Mode Identification Findings

Based on these test results, the neural network method 
should be employed whenever calibration data are available 
given its lower error rates. If no calibration data are avail-
able, then the next best approach should be to use the fuzzy 
logic method, which performed reasonably well with no cali-
bration. In cases where a calibration data set is not available 
to train a neural network and another method is selected, it 
may be necessary to perform additional review of motorized 
mode selections to properly classify them between competing 

ID Category Description 

1 FT worker Person is a full-time worker. 
2 PT worker Person works only part-time. 
3 University student Person is 18 years of age or older and a student. 
4 Nonworker Person is 18 years of age or older and does not work 

or go to university. 
5 Retiree Person is retired. 
6 Driving-age school child (16–17 yrs) Person is between 16 and 17 years of age and goes to 

high school. 
7 Pre–driving-age school child (6–15 yrs) Person is younger than 16 years of age and older than 

5 years of age. 
8 Preschool child (<6 yrs) Person is younger than 6 years of age. 

Table 3-13. Person life-cycle categories.
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hold members on the trip was reduced by one). For determin-
ing if a place matched the previous destination, the variable 
“originisdestination” was computed; places were considered 
the same if they were within 75 m of each other and had the 
same name. The two following subsections provide details on 
some of the challenges encountered when processing the two 
test data sets selected for this task.

Spatial attributes were attached to the place records using 
relationships between their destination coordinates and GIS 
data sets. Table 3-15 identifies these variables, as well as the 
source spatial data, and also provides a description for how 
they were set.

It is worth noting that land use data for the Atlanta plan-
ning region was sparse in its classification, with only 23 land 

The first step was to categorize each household member into 
one of the eight categories shown in Table 3-13. If household 
members qualified for more than one category (e.g., univer-
sity student and part-time worker), they were then classified 
into the lowest number for which they qualified in Table 3-13.

Once the data were imported, a series of computed variables 
were added to the place and person records. These variables 
and their definitions are identified in Table 3-14.

In addition to the variables listed in Table 3-14, additional 
dummy variables for specific time-of-day periods as well as 
their interactions were computed. For all trips in which partici-
pants counted themselves as another party member, that pas-
senger was considered a non-household member (so the count 
of people on the trip stayed the same, but the count of house-

Variable Description 

nonworker Person is not a worker. 
mode Trip mode 
mode_aft Mode of the trip to the next place 
nonauto Non-auto trip mode 
tottr Total travelers on the trip to current place 
tottr_aft Total travelers on the trip to the next place 
actdur Activity duration (minutes) 
nonmand Trip to a non-mandatory location other than home, usual school location, 

or usual workplace 
transfervariable Variable indicating possibility of a transfer between two non-auto modes 
adultparty Party of only adult members 
childparty Party of only child members 
mixedparty Party of both adult and child members 
someonedropped A person was dropped at this destination.  
someonepicked A person was picked up at this destination. 
dropoffvariable Variable indicating possibility of drop off 
pickupvariable Variable indicating possibility of pickup 
worklocationmatch Destination location is usual work location, but excluding work from home 

cases. 
schoollocationmatch Destination location is usual school location, but excluding home 

schooling cases. 
subtourdummy Set to one if the given trip is a part of a sub-tour  

(tour starting and ending at the primary destination of the main tour) 
simplesubtour A sub-tour in which only one destination is visited 
complexsubtour A sub-tour in which more than one destination is visited 
hhmem Number of household members, excluding the respondent on this trip 
groupgroceryduration A trip with a household member to a non-mandatory location and taking 

between 20 and 40 min., indicating possibility of grocery shopping 
groupeatoutduration A trip with a household member to a non-mandatory location and taking 

between 40 and 60 min., indicating possibility of a typical family eat-out 
trip 

walkmode Includes walk and wheelchair 
bikemode Includes bike, skates, skateboard, Segway, and scooter 
grouprecreationduration A trip with a household member to a non-mandatory location and taking 

between 110 and 150 min., indicating possibility of a typical family 
recreational trip 

groupsocialvisitduration A trip with a household member to a non-mandatory location and with 
activity duration greater than 150 min., indicating possibility of a typical 
family social visit 

notworklocation Destination location is not the usual workplace. 

Table 3-14. Explanation of computed variables used in the utility equations.
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During the model’s initial successful estimation runs, a 
large number of the estimated coefficients either failed the null 
hypothesis t-test or ended up with coefficient estimates for 
which BIOGEME could not estimate p-values. Furthermore, 
two purposes (#12: all other activities at school and #24: attend 
major sporting event) did not have enough observations to 
calibrate their coefficients. These two purposes only appeared 
in 49 and 46 places, respectively.

Two actions were taken to deal with these challenges. First 
the list of trip purposes was further simplified into 12 choices 
by combining shopping and maintenance activities [under #15 
and #7 respectively; drive through (#7) is considered a main-
tenance activity for this model, as are vehicle service (#14), 
household maintenance (#16), health care (#19), and per-
sonal business (#20)] and by combining entertainment activi-
ties [indoor recreation or outdoor recreation (#23) and attend 
major sporting event (#24)].

Figure 3-6 shows the final nesting structure. Second, choice, 
and life-cycle coefficients were simplified so that they could be 
shared across activities on the second nest level. These changes 
improved the estimation results, and after three rounds in 
which coefficients were removed, a final model specification 
was obtained. The final model specification contained 150 esti-
mated parameters (three of which were nesting coefficients) 
and had an adjusted R2 equal to 0.54.

The two strongest positive coefficients in the final model 
were the ones associated with school and work location 
matches for school and work purposes (6.99 and 6.35), 
while the two strongest negative coefficients corresponded 
to person life-cycle coefficients for retired and nonworker 
persons and the school purpose (-3.02 and -1.38). Only 
one of the three nesting coefficient (dis_work) ended up 
not being significant, with the final estimated value being 
1.0, which effectively collapses the nest into two choices at 
the root level.

use categories available. This low level of resolution made it 
difficult to differentiate trip purposes for trip ends located at 
or near multipurpose land uses, such as attempting to differ-
entiate areas in which health care is dispensed from ordinary 
commercial developments, government buildings, or schools.

Before a model specification was developed, the original list 
of trip purposes was simplified. This simplification involved 
collapsing all purposes that took place at home and work to 
“any other activities at home” and “work doing my job,” respec-
tively. The final list of input purposes contained 21 entries. This 
was done to consolidate purposes that were identified as either 
being too similar or very difficult to differentiate based on 
household, traveler, and trip characteristics. Table 3-16 shows 
the original ARC trip purposes and those that correspond to 
them in the processed (simplified) data set.

This basic nesting structure developed for estimating trip 
purpose for the Atlanta HTS data set is shown in Figure 3-5. 
This diagram includes some simplifications such as not listing 
home or loop purposes and only including one work purpose 
that can take place at the work location.

Utility equations for the final 21 trip purposes were defined 
using the computed variables added to the data set and the 
interactions between them. These interactions included 
choice and life-cycle–specific coefficients to all purposes 
(total of 8 × 21 = 168). The utilities included purpose-specific 
co efficients that captured the impact that certain trip attri-
butes were expected to exert on specific activities (e.g., short 
activity duration, change in party size, and mixed part for 
pickup and drop-off events), disaggregate nest-specific coeffi-
cients (applied to all purposes under a specific aggregate nest), 
which were applied to time of day, and person and GIS vari-
ables using interactions (e.g., commercial land use for shop-
ping, maintenance, eating out, and discretionary activities). 
This first model specification contained 295 utility coefficients 
to be estimated.

Variable GIS Data Sets Source Description 

nearchurch Church and places of 
worship 

ESRI (2010) The destination geocode is within 
150 m of a feature in the GIS data 
sets. 

nearbigbox Walmart, Target, and 
shopping mall locations 

ARC (2010) The destination geocode is within 
150 m of a feature in the GIS data 
sets. 

lu_commercial LandPro ARC (2010) The destination geocode is 
contained by or within 25 m of a 
commercial land use area. 

nearschool School locations from all 
surveyed participants 

ARC HTS The destination geocode is within 
150 m of a school location. 

lu_institutional LandPro ARC (2010) The destination geocode is 
contained by or within 25 m of an 
institutional land use area. 

Table 3-15. Spatial variables added to the Atlanta Regional Travel Survey data set.
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model results (Type II error), with the first (#22) showing a 
match in only 15 out of 173 reported instances (91% Type II 
error), while the second (#25) was correctly identified 103 
out of 630 occurrences (50% Type II error). Another interest-
ing observation is that the largest absolute cells outside the 
diagonal correspond to the reported-modeled and modeled-
reported purpose pairs for activity #7 (maintenance) and #15 
(shopping), which indicates that the model cannot easily dif-
ferentiate between these two purposes.

Figure 3-7 shows the distribution of actual choices accord-
ing to the modeled purposes; it illustrates the high degree 
of uncertainty that the model has for discretionary purposes. 
Match rates for each choice are shown at the top of each 
choice’s bar.

Using BIOSIM, the NMNL purpose model was applied to 
the validation data set using Monte Carlo simulation; results 
were output for 10,316 of the 10,512 destinations without a 
home purpose. The average success rate of three enumeration 
runs was 60%. When including places with home purposes, 
which were not modeled, the overall success rate was 77%. A 
confusion matrix was generated using the mode from 10 enu-
merations of the validation set and is presented in Table 3-17 
(see Table 3-16 for definitions of the trip purpose codes).

As seen in Table 3-17, the purposes that were incorrectly 
selected most often (Type I error) were #22 (civic or religious 
activity) with a 75% Type I error rate and #25 (social visit) 
with a 68% Type I error rate. These same trip purposes were 
also the reported purposes that most often showed different 

ARC Trip Purpose  Model Purpose 

Code Description Code  Description 

1 Working at home (for pay or volunteer) N/A  

2 Shopping (online, catalog, or by phone)  N/A  

3 Any other activities at home 3 Any other activities at home 

4 Change travel mode/transfer 4 Change travel mode/transfer 

5 Dropped off passenger 5 Dropped off passenger 

6 Picked up passenger 6 Picked up passenger 

7 Drive through (ATM, bank, fast-food, etc.) 7 Drive through (ATM, bank, fast-food, 
etc.) 

8 Work/doing my job 8 Work/doing my job 

9 Other work-related activities at work 9 Work/doing my job 

10 Volunteer work/activities 10 Volunteer work/activities 

11 Attending class/studying 11 Attending class/studying 

12 All other activities at school (eat lunch, 
recreational, etc.) 

12 All other activities at school (eat lunch, 
recreational, etc.) 

13 Work related (meeting, sales call, delivery) 13 Work related (meeting, sales call, 
delivery) 

14 Service private vehicle (getting gas, oil, 
lube, repairs)  

14 Service private vehicle (getting gas, oil, 
lube, repairs)  

15 Grocery/food shopping 15 Grocery/food shopping 

16 Other routine shopping (clothing, 
convenience store, household 
maintenance) 

16 Other routine shopping (clothing, 
convenience store, household 
maintenance) 

17 Shopping for major purchases or specialty 
items 

17 Shopping for major purchases or 
specialty items 

18 Household errands (bank, dry cleaning, 
etc.) 

18 Household errands (bank, dry cleaning, 
etc.) 

19 Health care (doctor, dentist, etc.) 19 Health care (doctor, dentist, etc.) 

20 Personal business (visit government office, 
attorney, accountant) 

20 Personal business (visit government 
office, attorney, accountant) 

21 Eat meal out at restaurant/diner 21 Eat meal out at restaurant/diner 

22 Civic or religious activities 22 Civic or religious activities 

23 Indoor recreation or outdoor recreation 23 Indoor recreation or outdoor recreation 

24 Attend major sporting event 24 Attend major sporting event 

25 Social/visit friends/relatives 25 Social/visit friends/relatives 

96 Loop trip 96 Loop trip 

97 Other, specify N/A  

Table 3-16. Atlanta HTS trip purpose simplification.
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Note: agg = aggregate, dis = disaggregate.

Figure 3-5. Full nested logit trip purpose network structure for ARC model.

Note: agg = aggregate, dis = disaggregate.

Figure 3-6. Final nested logit trip purpose network structure for ARC purpose model.
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J48. In addition to the life-cycle Boolean variables listed in 
Table 3-13, the computed variables identified in Table 3-14, 
and the spatial variables in Table 3-15, the arrival hour was 
added to the list of inputs available to the tree-building algo-
rithm. The tree was built using a confidence factor of 0.25 
and at least 25 instances per leaf. The confidence factor deter-
mines how closely the tree conforms to the training set, and 
0.25 is the default in both C4.5 and J48. The 25-instances-
per-leaf setting keeps the tree from being overly specific 
by forcing every leaf to have at least 25 samples. A training 
sample size of 11,854 was used. The produced tree was able 

The purposes that were correctly identified most often were 
#8 (work/doing my job) and #11 (attending class/studying), 
which showed match rates of 97% and 98%, respectively, closely 
followed by #5 and #6 (dropping off/picking up passengers), 
with match rates close to 85%.

Decision Tree Method for Identifying 
Trip Purposes

Trip purpose decision trees were created using WEKA’s 
open-source implementation of the C4.5 algorithm, called 

Reported
/ 

Modeled 
4 5 6 7 8 11 13 15 21 22 23 25 

Type
II

Error 

4 137 49 40 123 – 2 7 34 3 – 12 9 67%

5 1 606 17 30 12 10 3 17 4 1 3 9 15%

6 3 11 521 20 13 3 1 32 3 1 9 2 16%

7 46 22 24 923 3 1 88 503 105 16 62 54 50%

8 2 – 1 11 1,516 – 17 7 1 – 6 7 3%

11 2 – 4 – 3 761 – 1 – 1 2 1 2%

13 31 12 26 186 33 2 161 66 62 4 24 23 74%

15 16 11 5 542 10 1 56 841 119 6 35 26 50%

21 13 5 16 164 2 3 29 289 207 3 38 23 74%

22 5 6 4 40 6 1 22 15 14 15 28 17 91%

23 42 23 20 90 5 6 36 99 70 8 153 45 74%

25 26 34 50 99 3 1 65 50 17 5 65 103 80%

Type I 
Error 

58% 22% 28% 59% 6% 4% 67% 57% 66% 75% 65% 68% 

Table 3-17. Confusion matrix with results of the NMNL purpose model.

Figure 3-7. Actual choices in the validation data set by simulated choice.
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Figure 3-8 shows the actual trip purpose frequencies accord-
ing to the selections identified by the decision tree. Match rates 
are noted as percentages on top of the choice bars.

Trip Purpose Identification Findings

The models developed as part of this research achieved accu-
racy levels comparable with previous efforts documented by 
Shen and Stopher (2012) and McGowen and McNally (2006), 
albeit without the post-validation tour logic added by Shen 
and Stopher. As expected, mandatory activities (i.e., going to 
work and school) were easier to identify than discretionary 
ones. This matches findings reported by Stopher et al. (2012). 
In fact, accuracies for mandatory purposes were above 95% 
in both modeling approaches. Escorting activities (i.e., pickup 
and drop off) were also identifiable to a good degree of accu-
racy (approximately 85%) using party size and companion 
information and showed relatively high match rates.

Non-mandatory activities proved harder to identify. This 
can be attributed to the greater variability displayed by the 
characteristics of places where these activities occur, particu-
larly with respect to time and space. Higher-resolution spatial 
data could help disambiguate the competing choices in these 
purposes as well as provide more information on participants 
(e.g., collection of usual places used to perform discretion-
ary and maintenance activities such as eating out, buying 
groceries, and banking). Better spatial data would include 
extensive databases with the locations of places associated 
with discretionary activities; examples of places such as these 
are restaurants, gas stations, grocery stores, and government 
buildings. Unfortunately, the availability of public sources of 
these types of data varies greatly from region to region, so it 

to correctly classify 70% of the training data and 68% of the 
cross-validation data. The resulting decision tree included 
369 decision nodes and is included in Appendix D. The most 
notable difference between the generated tree and the devel-
oped NMNL model was the tree’s use of the same variable in 
paths within the overall the decision process, combined with 
the occurrence of multiple final decision nodes for the same 
purpose. These two factors make a complex tree like this one 
difficult to review and present.

The Atlanta HTS decision tree used the 10,512 trip destina-
tions from the households in the GPS subsample and correctly 
classified 65% of their activity codes. Counting the places with 
home purposes, which were excluded from the model, as cor-
rectly identified resulted in a final 80% match rate. The purposes 
that were incorrectly selected most often were #16 (other rou-
tine shopping – clothing, convenience store, household mainte-
nance) and #21 (eat meal out at restaurant/diner). Thus, when 
a mistake was made by the classifier, it was often to select one 
of these two. Table 3-18 presents the confusion matrix obtained 
after applying this decision tree to the reported trip purposes.

The reported purposes that were most often incorrectly 
identified by the classifier were #22 (civic/religious activities) 
and #23 (entertainment); these were incorrectly identi-
fied 66 times out of 104 (63%) and 223 times of 515 (57%), 
respectively. In other words, these two activities were the 
hardest to identify correctly and showed wider error ranges 
by the classifier. Similar to what was revealed in Table 3-17, 
the largest absolute cells outside the diagonal correspond to 
the reported-modeled and modeled-reported purpose pairs 
for activity #7 (maintenance) and #15 (grocery/food shop-
ping); this indicates that the decision tree also cannot easily 
differentiate between these two purposes.

Reported
/ 

Modeled 
4 5 6 7 8 11 13 15 21 22 23 25 

Type
II

Error

4 371 32 15 29 0 1 3 26 1 0 0 2 23% 

5 13 609 13 29 4 8 7 4 6 0 10 10 15% 

6 21 8 547 16 5 0 5 3 3 0 5 6 12% 

7 32 20 31 1,112 15 3 82 417 58 13 48 55 41% 

8 6 2 1 8 1,508 0 33 5 2 3 3 7  4% 

11 1 0 2 1 3 759 1 1 0 0 3 4  2% 

13 16 5 28 153 28 2 264 58 39 5 26 32 60% 

15 18 9 12 544 7 4 44 898 88 2 28 20 46% 

21 11 3 15 150 1 1 30 239 257 8 64 13 68% 

22 1 2 0 30 6 1 7 14 18 38 33 26 78% 

23 25 8 10 73 2 10 32 70 59 27 223 73 64% 

25 15 23 39 73 1 6 42 47 24 8 72 201 64% 

Type I 
Error 

30% 16% 23% 50% 5% 5% 52% 50% 54% 63% 57% 55%

Table 3-18. Confusion matrix with deterministic results of decision tree  
purpose model.
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would be to define the minimum set of purposes that can 
be easily explained to survey participants in the calibra-
tion subsample and yet still provides enough resolution for 
travel demand modeling.

•	 Plan to collect personal locations (e.g., work, school, and 
volunteer) for each household member as part of the recruit-
ment survey instrument. Build consistency checks into the 
GPS processing logic to ensure that captured mandatory 
locations are being matched to GPS destinations; a lack of 
a match in a typical travel day is unlikely and may be due to 
a poor geocode. This is especially important for mandatory 
purposes given that the single most important driving vari-
able for these purposes was found to be a location match 
with the personal locations. It may be possible to derive 
work and school locations from data sets such as HAZUS  
(http://www.fema.gov/hazus).

•	 Capture frequently visited locations (along with activities 
conducted at them) as part of the recruitment process (for 
example, grocery stores, ATMs, and gas stations). The avail-
ability of these data will assist in disambiguating choices 
between competing non-mandatory purposes.

Overall Findings

One of the main findings of Experiment A is that the tested 
methods for automatically filtering noise out of GPS points, 
identifying GPS trips, and splitting trips into mode segments 
generated results that would likely require considerable man-
ual review and cleaning before being deemed usable. This 
highlights the importance of software tools that can help by 
increasing the efficiency with which reviews and edits are per-
formed on the processed results. Assuming that these extra 

may be necessary to investigate the availability of commercial 
data sources.

With regard to the two tested methods, it can be said that 
it was much faster to generate working models using decision 
trees than it was using the choice models. This is due to the 
complexity involved in specifying large models such as these, 
as well as the long run times needed to estimate model coef-
ficients. For example, the final model specifications took, on 
average, 5 hours to conclude in BIOGEME, while decision 
trees could be built and evaluated in WEKA in less than 5 min-
utes. It should also be noted that the tasks associated with 
survey data preparation and preprocessing are not trivial, and 
adequate time should be factored in to project schedules to 
accommodate the development of automated procedures as 
well as multiple revision and correction cycles.

Based on this research, the following set of suggestions 
was developed. These are relevant for efforts that plan to use 
modeling to identify trip purposes using attributes that can be 
automatically derived from passively collected trace data (such 
as GPS data) as well as household and person characteristics.

•	 Research the availability of detailed land use and point of 
interest (POI) data for the study area, and consider looking 
into commercial options.

•	 Ensure that the recruitment survey captures enough attri-
butes to successfully classify all household members into a 
life-cycle category. This will reduce the number of assump-
tions made while preparing the data set for model estimation 
and deployment.

•	 Consider simplifying trip purpose classifications. This 
helps in the estimation of models and improves their suc-
cess rates when applied to identify purposes. The goal here 

Figure 3-8. Distribution of actual choices in Atlanta HTS validation data set by tree choice.
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Some assumptions regarding the input data were neces-
sary for model estimation and should hold for any data set to 
which the model is applied. These include:

•	 The GPS traces can be uniquely linked to one person.
•	 The linked trace data covers at least one full day of travel.
•	 The workplace and school location of the person can be 

determined from the data or are available from other 
sources. It is possible that workplaces and school locations 
may be available from data sets such as HAZUS (http://
www.fema.gov/hazus).

•	 Land use data are available for the region being modeled; 
this experiment used data from the Census Transportation 
Planning Package (CTPP).

Any data set meeting these limited assumptions should 
allow for the models in Experiment B to be applied. If fur-
ther assumptions could be made regarding the input data 
(for example, “all household members are tracked and can be 
linked”), then the resulting person models could have more 
explanatory power; however, this was not done as part of this 
exercise so as to keep the models as general as possible.

The overall process flow diagram for Experiment B was 
shown in Figure 3-2. The procedure starts with a data pro-
cessing step (Stage 0 in Figure 3-2), which is used to derive 
a series of person-level travel and tour characteristics used 
as input to the later model stages. The demographic char-
acterization procedure for the GPS traces then proceeds in 
three stages (Stages 1–3 in Figure 3-2). First, aggregate-level 
person-type clusters are developed for later use. These clus-
ters serve as the dependent variable for the later stages, so 
that in the demographic characterization process, the major 
type of the person is selected first, then more detailed demo-
graphics are modeled depending on the type of the person. 
In the second stage, the travel pattern data and local land use 
data are used to select one of the major person types. Finally, 
in Stage 3, all of the input data (i.e., the travel pattern data, 
land use data, and the selected major person type) are used to 
determine the various socio-demographic details of interest.

The outputs of Experiment B include open-source com-
puter code, which processes the mode segment data resulting 
from Experiment A into person-travel records, and a set of 
model files that can be applied to the processed travel records 
using various open-source modeling packages, including 
WEKA and BIOGEME. Finally, a set of findings regarding 
the use of these procedures, limitations of the procedures, 
and areas for further development are given.

Data Processing

The primary output of Experiment A (i.e., the mode segments, 
which aggregate the GPS traces into trip records) is used as the 

steps are taken, these methods can be considered ready for 
implementation, with some of them having already been 
implemented in large-scale GPS-based HTS projects.

Regarding travel mode identification methods, it was found 
that neural networks should be used if calibration data are avail-
able. If no calibration data exist, then the next best approach 
found was the one using fuzzy logic rules. As with the GPS 
cleaning and processing methods, mode identification results 
would benefit from additional consistency and logic checks to 
avoid using unlikely mode sequences, and also would benefit 
from analyst review.

As for trip purpose identification, the methods evaluated 
here can be considered the most experimental ones and are 
likely further from being ready for implementation. However, 
they did show promising results once the purpose classifica-
tion was simplified. Both evaluated methods performed well 
for mandatory and escorting purposes, but had difficulty dif-
ferentiating between discretionary and maintenance activities. 
The biggest obstacles for the implementation of these methods 
are the availability of (1) detailed data on the households and 
persons within the households, (2) location information for 
locations most frequently visited by the household members, 
and (3) detailed land use and POI data.

Experiment B: Demographic 
Characterization of GPS Traces

Introduction

Experiment B was performed to evaluate various methods 
for attaching person- and household-level information to 
travel patterns observed in GPS-based household survey data 
and other sources of anonymized GPS trace data. For this rea-
son, the experiment was designed to be as general as possible. 
Consequently, very few assumptions were made about what 
would be available in the input data sets, and all of the models 
were estimated using the limited amount of information that 
can be derived using the methods in Experiment A. The more 
detailed activity-travel and socio-demographic information 
available from the HTS data sets was generally ignored or used 
for validation purposes only. This allows the models developed 
to be generally applicable to any source of GPS trace data. The 
methods developed here, then, are appropriate for situations 
where there is an interest in demographically characterizing 
mass anonymous GPS traces for further analysis; for example, 
identifying facility utilization by user classes and developing 
segmented origin–destination estimates. The methods devel-
oped here are not intended to replace the HTS for purposes of 
travel demand model estimation. Since the process is in fact 
a simplified, inverted travel demand model, using the model 
results to estimate or calibrate further models would likely 
introduce substantial error.
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Stage 1 analysis shown in Figure 3-2. During the completion 
of the first stage of Experiment B, several subtasks were per-
formed. First, the tour and daily activity pattern variables 
extracted from the survey data were transformed into a set of 
primary factors using PCA. This was done to better understand 
the high levels of interdependence that existed between many 
of the variables. These factors were then clustered using the 
K-means clustering algorithm. Finally, the major person 
demographic types were developed using a partial decision 
tree classification algorithm (PART), with the travel pattern 
cluster membership distribution serving as the univariate 
dependent variable.

The classification algorithm has the effect of choosing the 
major person types with the maximum differences in travel 
cluster membership distribution (i.e., the person types with the 
most differences in travel patterns). Using these person clusters 
helps with the Stage 2 analysis, since it was determined that the 
person types vary with the travel characteristics. So, when the 
travel characteristics are used as the independent variables in 
Stage 2, stronger differences in person clusters (now the depen-
dent variable) are likely to be seen. A description of the most 
useful demographic clustering model found in the Stage 1 
analysis is shown in Table 3-22. These clusters will serve as the 
primary dependent variables for the Stage 2 analysis.

A variety of models are used to classify individuals in terms 
of the five primary person-level attributes, which are person/
worker type derived from the Stage 1 analysis, educational 
attainment, gender, possession of driver’s license, and age. 
The individuals observed in the GPS traces are also classi-
fied as belonging to a set of household types, which incorpo-
rate the household size, number of vehicles, and presence of 
children dimensions. A variety of modeling procedures from 
machine learning, choice modeling, and so forth were evalu-
ated, and the final models are discussed in the following. The 
final models were selected for performance reasons, but also 
to give a representation of both joint and non-joint modeling 
methods, as well as regression-type models versus machine 

primary input to Experiment B. These data are approximated 
in the model estimation stage by using the Chicago Household 
Travel Survey trip record file and stripping out all information 
not found in the Experiment A results. The main variables in the 
input trip file are shown in Table 3-19. A sample of individuals 
who had recorded 2 days of travel where neither travel day was a 
weekend day was extracted from the full Chicago survey data for 
use in model estimation. This sample also excluded individuals 
who recorded no travel since these will not appear in GPS trace 
data. The data file described in Table 3-19 was then recreated 
from this sample. The demographic information for the sample 
was retained for model estimation and validation purposes.

As can be seen in Table 3-19, only eight variables, three 
of which are identifiers, are used in the development of the 
person-type and person-attribute models. The five trip record 
variables are converted using the data processing routine to the 
set of person-level aggregate travel characteristics in Table 3-20. 
These routines first look for tour patterns in the trip records, 
based on the home and work anchor points, and repeated stops 
at the same destination. Then, the characteristics of the tours 
are determined, including the number and type of stops, the 
modes used on tour legs, and the length of time spent in activi-
ties and traveling. The full set of derived travel characteristics is 
shown in Table 3-20.

Finally, these derived travel characteristics are combined with 
a set of simplified land use variables derived from the CTTP at 
the census-tract level. These variables describe the built envi-
ronment and basic land use characteristics such as employment, 
housing, and population density. The characteristics of the land 
use variables for the Chicago data set are listed in Table 3-21.

These data sets, taken together, form the basis of the model 
estimation procedure described in the following section.

Model Estimation

The first task after data processing in Experiment B was 
the development of the primary demographic clusters in the 

Variable Data Type Description 

HH number Unique identifier Combined with person number to form unique ID 
Person number Unique identifier within HH  Combined with HH number, if no household data, 

set to 1 
Activity ID Unique identifier within 

person 
Activity record number for person 

Location type String Required location types: “home, work, school, 
other” 

Location ID Unique identifier Unique identifier for physical location 
Mode Integer 1–10 Walk, bike, drive, pass, transit, paratransit, taxi, 

school bus, carpool 

Duration Integer Trip duration 
Activity duration Integer Defined as the time spent at trip end 

Note: HH = household.

Table 3-19. Experiment B data processing routine input variables.
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Variable Name Description Avg Min Max

total_tours Number of total tours per day 2.850 1 13

num_subtours Number of subtours per day 0.017 0 2

work_tours Number of work tours 0.743 0 4

school_tours Number of school tours 0.303 0 5

other_tours Number of other tours 1.804 0 13

avg_stops_per_tour Average number of stops per tour 2.351 1 12

avg_stops_per_work_tour Average number of stops per work tour 1.070 0 10

avg_stops_per_school_tour Average number of stops per school 
tour 

0.308 0 8

avg_stops_per_other_tour Average number of stops per other 
tour 

1.689 0 12

avg_tour_ttime Average travel time per tour 57.843 0 841

avg_work_tour_ttime Average travel time per work tour 32.233 0 1,050

avg_school_tour_ttime Average travel time per school tour 6.029 0 423

avg_other_tour_ttime Average travel time per other tour 35.903 0 1,160

at_home_duration Total time spent at home 1970.328 0 8,571

num_acts_work Number of work activities 0.775 0 6

total_dur_work Total duration of all work activities 377.092 0 2,878

avg_dur_work Average duration of work activities 208.874 0 1,439

num_acts_school Number of school activities 0.328 0 6

total_dur_school Total duration of all school activities 123.748 0 2,878

avg_dur_school Average duration of school activities 65.177 0 1,439

num_acts_pickdrop Number of pickup/drop-off activities 0.234 0 10

total_dur_pickdrop Total duration of all pickup/drop-off 
activities 

1.418 0 90

avg_dur_pickdrop Average duration of pickup/drop-off 
activities 

0.587 0 20

num_acts_other Number of other activities 3.920 0 32

total_dur_other Total duration of all other activities 290.168 0 2,878

avg_dur_other Average duration of other activities 79.994 0 1,439

auto_total Percentage of tours by auto mode 0.769 0 1

auto_work Percentage of work tours by auto 
mode 

0.326 0 1

auto_school Percentage of school tours by auto 
mode 

0.095 0 1

Table 3-20. Processed person-level travel characteristics.

Variable Description Avg Min Max

Transit use Percentage of residents using transit 0.122 0.00 0.61

Road density Miles/sq mile of road 17.248 2.12 43.66

Intersection density Intersections/sq mile 161.203 5.36 650

Block size Average block size (intersection density/road 
density) 

0.108 0.05 0.40

Employment density Jobs/sq mile 4.237 0.01 68.42

Population density Inhabitants/sq mile 8.561 0.03 92.95

Housing density Housing units/sq mile 3.823 0.01 78.95

Table 3-21. Census-tract–level information for the Chicago data set from CTPP.
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between educational attainment and work status. The educa-
tion sub-models similarly conform to expectations. The full 
results are shown in Appendix E.

The ordinal logit model for age categories excludes the retiree, 
child, and schoolchild person categories from input since these 
categories also define age categories (65+, >16, and <16, respec-
tively). Therefore, the model applies to part-time and full-time 
workers as well as other persons. The ordinal logit model was 
selected because there is a natural ordering to the age categories, 
with the various person-travel characteristics shifting the prob-
ability of being older (positive coefficients) or younger. For 
example, someone who lives in a densely populated, high-
employment area and has more work, school, and pickup/
drop-off activities is likely to be younger. This is intuitive as 
younger individuals tend to work or be in school. Conversely, 
those living in high housing density areas and high transit 
use areas are likely to be older. See Appendix E for a complete 
specification.

The gender binary logit model was necessary for the gen-
der choice because very little in the daily travel patterns seems 
to discriminate between males and females, and the decision 
tree and rule-based classifiers tended to overestimate the pres-
ence of females in the sample. Some minor differences exist in 
that one who has more pickup/drop-off activities, and more 
numerous—but shorter—work activities is more likely to be 
female. Meanwhile, males are more likely to have longer work 
activities, to live in higher population density areas, and to 
travel further for discretionary tours. However, the differences 
observed are relatively minor, making this a difficult category 
to predict.

The possession of a driver’s license is another difficult trait 
to model since the non-possession of a driver’s license in 
adults is a somewhat rare characteristic, especially as children 
were excluded from the model. Such individuals represented 
less than 10% of the total sample. The PART decision list, 
while not providing the overall highest model fit, performs 
well at identifying the persons with no license, and since these 
persons are often of interest in travel demand modeling, this 

learning approaches. An overview of the modeling compo-
nents and procedures is shown in Table 3-23. Actual model 
specifications are included in Appendix E.

The first model estimated and applied when performing 
the demographic characterization process is the person-type 
choice model, which combines broad person-type categories 
(i.e., full-time worker, part-time worker, retiree, children, 
schoolchildren, and others) with basic educational attain-
ment, including no high school, high school graduate, and 
college graduate. This is referred to as the Stage 2 model in Fig-
ure 3-2. The model is estimated as a nested logit model jointly 
with the educational attainment to capture the substantial 
correlation between work/student status and education level. 
The person-type choice model was generally consistent with 
expectations. Higher numbers of work activities and longer 
duration of work activities are associated with being a worker, 
individuals with even longer durations being more likely to 
be employed full time. Those with more school activities 
are more likely to be either children or schoolchildren and 
are least likely to be retirees. The models show that land use 
characteristics are also related to work status, to some extent. 
Workers and children are more likely to live in high-density 
employment areas with lower housing density, while part-
time workers, retirees, and others have more likelihood to live 
in denser housing areas, probably because these person types 
are less likely to live in family units. Finally, the inclusive value 
terms of the joint model demonstrate the strong correlation 

Class Description % of Sample

1 Part-time workers 10.4%

2 Full-time workers  45.0%

3 Retirees 13.0%

4 Young children 6.4%

5 School children 11.8%

6 Others 13.4%

Table 3-22. Optimal person-type clusters.

# Variable Values Model Procedure 

1 Person/worker status Part-time worker, full-time worker, retiree, child, 
schoolchild, other person type 

Nested logit 

2 Educational attainment No high school, high school, college  with above 

3 Age 0–16, 16–25, 25–45, 45–65, 65+ Ordered logit  

4 Gender Male, female Binary logit 

5 License Yes, no PART decision list 

6 HH size 1, 2, 3+ J48 tree 

7 Num vehicles 0, 1, 2+  with above 

8 Has children No, yes  with above 

Note: HH = household.

Table 3-23. Model components and procedures.
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Model Application

The various models estimated for the person and house-
hold characteristics have been applied to both the Chicago 
data set, which was used as the training data, and the Portland 
household survey data set. The latter was processed using the 
data processing procedure and combined with the census-
tract land use variables. The fit results for each model are dis-
cussed in the following paragraphs.

To evaluate the performance of the person-type model, the 
prediction matrices for the Chicago (CMAP) training data 
set and the unused test data set from the Portland household 
(HH) survey data were used (see Table 3-24). These results 
are from a probabilistic application of the model, where the 
person type is assigned to an individual randomly accord-
ing to the modeled probability distribution. The table first 
shows the confusion matrix, which contains the counts of 
correctly and incorrectly classified examples. The second half 
of the table then shows the percentage correctly predicted for 
each person-type category, for both the null model and the 
probabilistic selection. The null model results are obtained 
by assigning each observation to a category with a probability 

criterion was important in the selection of the final model. 
The decision rules show that the individuals least likely to 
have driver’s licenses are those who make relatively few tours 
(≤3) and have short durations for their discretionary activi-
ties. This is intuitive since those without driver’s licenses are 
more likely to be constrained in their ability to engage in 
multiple tours and likely have to plan tours to work around 
mobility constraints. Conversely, individuals with long work 
durations and, naturally, those observed making trips by auto 
mode are most likely to have a driver’s license. The rules in the 
decision list are shown in Appendix E.

Finally, a joint household characteristics model was esti-
mated based on the individual tour patterns. The household-
type model was estimated jointly for household size, number  
of vehicles, and presence of children. A joint model was 
selected here to maintain consistency between models since 
the selection of household size, for example, implies that cer-
tain values of the presence of children and number of vehicles 
variables are not available. The household-type joint model 
was estimated using the J48 decision tree to demonstrate 
joint modeling with a machine learning approach. The full 
tree is shown in Appendix E.

CMAP – TRAINING RESULTS (67% split)  Prediction Results

Simulated Person Type 
Null model 
% correct

Model
% correct1.part 2.full 3.retiree 4.child 5.student 6.other Total % 

O
b

se
rv

ed
  

P
er

so
n

 T
yp

e 

1 53 155 44 17 19 45 333 10% 1% 16%

2 152 1,177 87 23 15 73 1,527 45% 20% 77%

3 43 80 156 39 27 113 458 14% 2% 34%

4 19 18 37 37 50 55 216 6% 0% 17%

5 20 14 21 53 205 70 383 11% 1% 53%

6 48 82 113 47 66 109 465 14% 2% 23%

Total 335 1,526 458 216 382 465 3,382 27% 51%

% 10% 45% 14% 6% 11% 14% 

TEST RESULTS – PORTLAND HH SURVEY (100%) Prediction Results

Simulated Person Type 
Null model 
% correct

Model
% correct1.part 2.full 3.retiree 4.child 5.student 6.other Total % 

O
b

se
rv

ed
 

P
er

so
n

 T
yp

e 

1 152 464 184 91 83 192 1,166 10% 1% 13%

2 430 3,267 331 144 72 294 4,538 41% 17% 72%

3 110 184 413 181 83 312 1,283 12% 1% 32%

4 45 44 94 100 145 134 562 5% 0% 18%

5 88 27 50 206 775 268 1,414 13% 2% 55%

6 214 341 492 285 328 508 2,168 19% 4% 23%

Total 1,039 4,327 1,564 1,007 1,486 1,708 11,131 25% 47%

% 9% 39% 14% 9% 14% 15% 

Table 3-24. Probabilistic application of the person-type model.
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constants in the model are fitted to the Chicago data. How-
ever, a calibration process could be undertaken when apply-
ing the estimated model to other areas where the alternative 
specific constants for each person type could be adjusted until 
a known distribution of the person types is matched. In the 
case of the Portland model, however, this is not particularly 
necessary since the distributions for Chicago and Portland 
are fairly similar.

The deterministic results shown in Table 3-25 are obtained 
by assigning the category with the highest probability for each 
example. The deterministic model results show similar char-
acteristics to the probabilistic results, with the training model 
using the Chicago survey data somewhat outperforming the 
Portland model, as expected, although the difference in over-
all percent correctly predicted is not substantial. While the fit 
results appear better under the deterministic model applica-
tion, as is often the case with this type of selection process, there 
is a substantial distortion in the simulated person classifica-
tion distribution when compared to the observed distribution, 
which is why the deterministic assignment is not preferred 
when performing the demographic characterization process.

The educational attainment variable is estimated jointly with 
the person classification in the nested logit model formulation 
described previously. Once the results in the person classifi-
cation process are obtained, the final educational attainment 

equal to the observed distribution (i.e., if 45% of people are 
full-time workers, then each observation has a 45% chance 
of being a full-time worker). The expected percent correct 
for the null model for each category is then the square of this 
value. The probabilistic assignment lowers the performance of 
the model somewhat as compared to a deterministic applica-
tion of the model (i.e., where the highest probability category is 
always assigned for each observation) but produces more real-
istic distributions and provides better fit to infrequent classes. 
For comparison purposes, the deterministic application results 
are also shown in Table 3-24 and Table 3-25.

The results show that the person-type choice model, which 
forms the core of the demographic characterization process, 
is generalizable at least to the Portland data set, where it per-
forms approximately as well as on the training data set estima-
tion (Chicago model). This is significant since the Portland 
data were not used in model estimation, and it shows that the 
model is not likely to have been overfitted and is potentially 
transferable. In each case, the model can correctly predict 
between 47% and 51% of person types correctly, which for 
both applications is substantially higher than the null model 
expectation of 25% and 27%. One observation from the test 
results is that the probabilistic application of the model for 
Portland does not exactly replicate the observed distribution 
as in the training results for the Chicago model, since the 

CMAP – TRAINING RESULTS (67% split)  Prediction Results 

Simulated Person Type 
Null model 
% correct 

Model
% correct1.part 2.full 3.retiree 4.child 5.student 6.other Total % 

O
b

se
rv

ed
 

P
er

so
n

 T
yp

e 

1 15 181 93 2 17 25 333 10% 0% 5%
2 4 1,333 158 4 1 27 1,527 45% 45% 87%
3 50 401 2 1 4 458 14% 0% 88%
4 3 6 95 13 59 40 216 6% 0% 6%
5 9 49 2 300 23 383 11% 0% 78%
6 2 62 271 10 66 54 465 14% 0% 12%

Total 24 1,641 1,067 33 444 173 3,382 45% 63%

% 1% 48% 32% 1% 13% 5% 

TEST RESULTS – PORTLAND HH SURVEY (100%) Prediction Results 

Simulated Person Type 
Null model 
% correct 

Model
% correct1.part 2.full 3.retiree 4.child 5.student 6.other Total % 

O
b

se
rv

ed
 

P
er

so
n

 T
yp

e 

1 24 521 442 14 68 97 1,166 10% 0% 2%
2 24 3,634 756 24 14 86 4,538 41% 41% 80%
3 3 152 1,090 6 1 31 1,283 12% 0% 85%
4 1 28 245 34 177 77 562 5% 0% 6%
5 2 16 135 25 1,167 69 1,414 13% 0% 83%
6 17 309 1,250 47 333 212 2,168 19% 0% 10%

Total 71 4,660 3,918 150 1760 572 11,131 41% 55%

% 1% 42% 35% 1% 16% 5% 

Table 3-25. Deterministic application of the person-type model.
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The results of the gender classification model for Chicago 
and Portland are shown in Table 3-28. The gender classification 
model was a simple binary logit model. The results show that 
the model only slightly outperforms the null model for both 
cases, demonstrating that gender differences are not strongly 
reflected in differing travel patterns. The model does a better 
job of predicting classification as female, possibly reflecting the 
existence to a certain extent of unique travel pattern identifiers 
for females.

The last person-level classification model is for the pos-
session of a driver’s license, which is modeled using a PART 
decision rule set. The model is applied to all individuals in the 
sample over age 16. The results for Chicago and Portland are 
shown in Table 3-29. The possession of a driver’s license is dif-
ficult to model since it is an unbalanced distribution, with the 
vast majority of individuals in the sample possessing a license. 
The results in the table show the difficulty of predicting which 
samples do not have licenses based only on observed travel 
patterns. It is relatively easy to identify which individuals have 
licenses, especially if the mode classification is included from 
Experiment A. However, individuals not having a license will 
appear similar to individuals who have a license and choose 
to use public transport, individuals who happened to not 
travel much on the survey day, and so forth. The model, how-
ever, does improve on the null model for both training and 
test data sets, and is highly sensitive to identifying travelers 
with licenses.

model, which is conditional based on the person-type classifica-
tion, is applied. The fit results are shown in Table 3-26.

The model results for the educational attainment classifica-
tion show both the Chicago training model and the Portland 
test model performing very well when compared to the null 
model results, with a prediction potential of 56% versus 39%. 
The models both perform very well in identifying individuals 
without a high school degree and individuals with a college 
degree, although the model has some trouble identifying 
individuals with only a high school degree.

Next, the results for the age categorization model are shown 
in Table 3-27 for the Chicago and Portland data sets. The 
age categorization model classifies the sample data into five 
broad age categories, which are children (0–16), young adults 
(17–25), young middle age (26–45), older middle age (46–65), 
and seniors (66+), using ordinal logit regression. The results 
show the model performing reasonably well, with an approxi-
mately 50% improvement over the null model. Interestingly, 
the model performs marginally better for the test application 
using Portland data, although the differences are slight. The 
results show that the children and middle-age categories are 
relatively easy to predict, while the young adult category is 
difficult, which is expected since it is the most infrequently 
observed category. Additionally, when the classification for 
age is incorrect, it is generally only off by one category in 
either direction, with over 75% for both training and test 
applications within one level of the observed category.

CMAP – TRAINING RESULTS (67% split)  Prediction Results 

Simulated Education Level 

Null model % 
correct 

Model % 
correct 

No High 
School 

High 
School College Total % 

O
b

se
rv

ed
 No High School 489.2 120.0 150.8 760.0 22% 5% 64% 

High School 120.0 250.9 464.1 835.0 25% 6% 30% 

College 173.1 467.8 1146.1 1,787.0 53% 28% 64% 

Total 782.3 838.7 1,761.0 3,382.0 39% 56% 

% 23% 25% 52% 

PORTLAND – TEST RESULTS Prediction Results 

Simulated Education Level 

Null model % 
correct 

Model % 
correct 

No High 
School 

High 
School College Total % 

O
b

se
rv

ed
 No High School 1,853 314 357 2,524 23% 5% 73% 

High School 569 817 1,446 2,832 25% 6% 29% 

College 767 1,560 3,448 5,775 52% 27% 60% 

Estimated 3,189 2,691 5,251 11,131 39% 55% 

% 29% 24% 47% 

Table 3-26. Educational attainment model results for training and test data.
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Table 3-27. Ordered logit age category model results for training and test data.

CMAP – TRAINING RESULTS (67% split)  Prediction Results 

Simulated Age Category 
Null model 
% correct 

Model % 
correct 0–16  16–25  25–45  45–65  65+ Total % 

O
b

se
rv

ed
 

 0–16 314 46 88 93 46 587 17% 3% 53% 

 16–25 80 14 39 45 19 197 6% 0% 7% 

 25–45 65 48 221 315 136 785 23% 5% 28% 

 45–65 68 59 315 519 251 1,212 36% 13% 43% 

 65+ 28 22 128 266 157 601 18% 3% 26% 

Total 555 189 791 1,238 609 3,382 25% 36% 

% 16% 6% 23% 37% 18% 

TEST RESULTS – PORTLAND HH SURVEY (100%)  Prediction Results 

Simulated Age Category 
Null model 
% correct 

Model % 
correct 0–16  16–25  25–45  45–65  65+ Total % 

O
b

se
rv

ed
 

0–16 1,338 155 257 249 118 2,117 19% 4% 63% 

16–25 253 45 128 166 77 669 6% 0% 7% 

25–45 233 152 683 948 407 2,423 22%
 

5% 28% 

45–65 253 211 1,086 1,732 810 4,092 37% 14% 42% 

65+ 118 73 408 795 436 1,830 16% 3% 24% 

Total 2,195 636 2,562 3,890 1,848 11,131 25% 38% 

% 20% 6% 23% 35% 16% 

CMAP – TRAINING RESULTS (67% split)  Prediction Results 

Simulated Gender 
Null model % 

correct 
Model % 
correct Male Female Total % 

O
b

s.
 Male 768 807 1,575 47% 22% 49% 

Female 807 994 1,801 53% 28% 55% 

Total 1,575 1,801 3,376 50% 52% 

% 47% 53% 

PORTLAND – TEST RESULTS Prediction Results 

Simulated Gender 
Null model % 

correct 
Model % 
correct Male Female Total % 

O
b

s.
 Male 2,294 3,001 5,295 48% 23% 43% 

Female 2,418 3,400 5,818 52% 27% 58% 

Total 4,712 6,401 11,113 50% 51% 

% 42% 58% 

Table 3-28. Gender classification model results for training and test data.
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substantial increase, showing that the presence of children is 
related to differences in travel patterns, as expected.

The remaining sub-models for person attributes perform 
similarly. Fit results for the remaining models are shown in 
Appendix E, along with the model estimates.

Findings

The results of the Experiment B demographic characteriza-
tion process appear promising in that the models generally 
show substantial improvement over null model expecta-
tions, appear to be transferable to some degree, and are able 
to generate consistent person-characteristic estimates. These 
results are significant in light of the minimal data used as 
input to the demographic characterization process, meaning 
that as more data from detailed land use databases become 
available and larger and longer-duration GPS trace collec-
tion procedures are developed, the models could be improved  
substantially.

Several key findings were observed in the performance of 
the demographic characterization experiment that can help 
improve the application of such a procedure and can help to 
guide the data collection process used to gather input traces.

•	 Multiday data collection is preferable to single-day data 
collection since it helps to average out intrapersonal day-
to-day variation, which can be greater than interpersonal 
variation. This variability tends to confound the demo-
graphic characterization procedure (e.g., if a worker is sur-
veyed on a nonworking day, the person will be very hard 

Finally, the household-type joint model shows a similar 
pattern in performance as the person-level models, with the 
model performing nearly as well in Portland as it did in Chi-
cago. The fit results can be seen in Table 3-30. Note here that 
the full misclassification matrix is not shown for the joint 
model since it is an 18 × 18 matrix of values and is difficult to 
interpret. Therefore, only the prediction potential versus null 
model is shown, which is equivalent to the right-hand side of 
the tables for the personal characteristics. The overall fit, which 
represents the number of observations with all three variables 
predicted correctly, is 45% for Chicago against 40% in Port-
land, both of which are higher than the null model expectation 
of 35%. The difference here is less substantial than in the other 
models, but this is as expected since fitting three categories 
simultaneously is a difficult task. Individual attribute models 
perform somewhat better than the null model expectation for 
Chicago, although there is no difference for the household size 
and number of vehicles categories when applied to Portland. 
However, the identification of the presence of children has a 

CMAP – TRAINING RESULTS (67% split)  Prediction Results 

Simulated 
Null model % 

correct 
Model % 
correct Yes No Total % 

O
b

s.
 Yes 2,497 44 2,541 91% 83% 98% 

No 151 91 242 9% 1% 38% 

Total 2,648 135 2,783 84% 93% 

% 95% 5% 

PORTLAND – TEST RESULTS Prediction Results 

Simulated 
Null model % 

correct 
Model % 
correct Yes No Total % 

O
b

s.
 Yes 8,066 210 8,276 92% 84% 97% 

No 651 87 738 8% 1% 12% 

Total 8,717 297 9,014 85% 90% 

% 97% 3% 

Table 3-29. Possession of driver’s license classification model results for training 
and test data.

Training – Chicago Test – Portland

Model % Null % Model % Null %

% correct overall 45% 35% 40% 34%

% correct hh size 56% 51% 55% 56%

% correct # vehicle 73% 68% 71% 72%

% correct has children 74% 43% 68% 58%

Table 3-30. Training versus test model fit results for 
joint household-type model.
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the reverse case. In other words, people travel the way they 
do because of who they are, but people are generally not 
who they are because of the way they travel (with some 
exceptions, such as with possession of a license or vehicle 
ownership).

•	 A significant problem is that some person types are virtu-
ally indistinguishable based on travel characteristics alone 
(e.g., a young child’s travel pattern, naturally, looks much 
like the caretaker’s pattern). This is especially true for short-
term data collection. For example, part-time and full-time 
workers are rarely distinguishable in short-term collection 
efforts (most part-time workers work full shifts for fewer 
days).

•	 Finally, the joint modeling of attributes is difficult but pro-
vides benefits over modeling attributes separately, outside 
of just consistency, which is also important.

to identify as a worker). This finding aligns with previous 
research (Pas and Sundar 1995).

•	 It is also important to have reasonable estimates of work-
place and school locations, either from access to more 
detailed location databases or from longer-term observa-
tion that can identify recurrent travel patterns.

•	 If it was possible to ensure that all household members 
were tracked and linked together, much better estimates 
of certain person and household characteristics could be 
made. This would especially help since the joint trip-mak-
ing travel characteristics tended to be significant in early 
versions of the model effort, which did not conform to the 
assumptions made in Experiment A.

•	 The causality between travel patterns and personal char-
acteristics here runs counter to how the modeling is usu-
ally done and, as such, appears to be much weaker than in 
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ATIS Advanced traveler information system
CAMPO Capital Area Metropolitan Planning Agency
CAPI Computer-assisted personal interview
CASI Computer-assisted self-interview
CATI Computer-assisted telephone interview
CMP Congestion management program
DRCOG Denver Regional Council of Governments
ETC Electronic toll collection
GIS Geographical information system
GPS Global Positioning System
GSM Groupe Spécial Mobile
HTS Household travel survey
ISTDM Indiana State Transportation Demand Model
LBS Location-based services
LOS Level of service
LSS Location sharing services
MAC Media access control
MCOG Mendocino Council of Governments
MPO Metropolitan planning organization
OD Origin–destination
PND Personal navigation device
POI Point of interest
PR Prompted recall
QS Quantified self
RFID Radio frequency identification
RP Revealed preference
SP Stated preference
TAZ Traffic analysis zone
TDM Travel demand model
TOS Terms of service
VMS Variable message sign

Abbreviations
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The tables in this appendix list all variables included in 
the data deliverables of three recently completed household 
travel surveys: the 2012 California Household Travel Sur-
vey, the 2011 (Atlanta) Regional Travel Survey, and the 2012 
Northeast Ohio (Cleveland) Regional Travel Survey. The 
variables are listed based on the four typical tables that make 

up a household travel survey data set; these are household, 
person, vehicle, and place/trip tables.

Permission to list these variables was given by each of the 
sponsoring agencies (the California Department of Transpor-
tation, the Atlanta Regional Commission, and the Northeast 
Ohio Areawide Coordinating Agency).

A P P E N D I X  A

Example Data Sets Delivered in Recent 
Household Travel Surveys
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Household Variables 

Description 
California 
Statewide Atlanta Cleveland 

Sample Number X X X 

Recruit Mode X X X 

Retrieval Mode X X X 

MPO X X X 

Sample Type X X X 

GPS Sample Type X X 

GPS Type X X X 

Number of Household Workers X X 

Number of Household Students X X X 

Number of Household Driver License Holders X X X 

Number of Household Trips on Travel Day X X X 

Flag for Household Who Reported LD Trip X 

Number of Household Children X 

Household Life Cycle [COMPUTED] X X 

Home Travel Analysis Zone X 

Partial Completed Households. 4+ HHMEM completed 
survey X 

Household Vehicles vs. Household Workers X 

Household Vehicles vs. Household Size X 

Household Size vs. Household Workers X 

K thru X2 Student Present in Household X 

Post-Secondary Student Present in Household X 

Diary Collected for Household Non-GPS Members X 

One or more Household members Completed PR survey X 

Incentive Flag X X X 

Interview Language X X 

Residential County X X 

Assigned Travel Date X X X 

Assigned Travel Day X X X 

Transit Use At Least Once Per Week X 

New vehicle X 

Buyer X-8 X 

Residence Type X X 

Description of home-OTHER X X 

Home Ownership X X 

Home ownership-other  X X 

TENURE X 

Previous address X 

Previous suit X 

Previous address city X 

Previous address state X 

Previous address zip code X 

Number of land line phones X X X 

Household income X X X 

Household Size X X X 

Non-related Household Flag X X 

Number of Household Vehicle X X X 

Number of Household Bicycle X 

Home Address X X X 

Home suit# X X X 

Home city X X X 

Home state X X X 

(continued on next page)
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Description 
California 
Statewide Atlanta Cleveland 

Home zip X X X 

Home x-coordinate X X X 

Home y-coordinate X X X 

Reason of no possession of a vehicle  X 

Number of operational household vehicle X X 

Number of Vehicles with Power Outlet X X 

Number of newer vehicles with power outlet X 

Willingness to Participate in Future Study X X 

Hispanic household flag X 

Household Complete Flag X X 

Hispanic Origin X 

Hispanic household flag X 

Shop & purchase items online via Internet X 

Places Regularly Visit Weekly [Multiple Response] X 

Overnight Guest During Travel Day X 

Number of Guests X 

Person Variables  

Description 
California 
Statewide Atlanta Cleveland 

Sample Number X X X 

Person Number X X X 

Relationship to Head of House X X X 

Gender X X 

Age X X X 

HISPANIC OR LATINO X X 

ETHNICITY OR RACE X X X 

ETHNICITY OR RACE, other X X X 

NATIVITY X 

COUNTRY OF BIRTH X 

Valid license X X X 

Vehicle driven by Respondent X 

Transit pass X 

Type of transit pass X 

Type of transit pass, other X 

Type of Clipper Card X 

Type of Compass Card  X 

Type of TAP/EZ Pass Card X 

Toll Pass X 

Car Sharing X 

Employed? X X X 

Employment status X X 

Employment status X X 

Work Location X X X 

How many jobs X X X 

Primary Work name X X X 

Primary Work Address (including suit#) X X X 

Primary Work City X X X 

Primary Work State X X X 

Primary Work Zip X X X 

Primary Work Cross StreetX X X X 

Primary Work Cross Street2 X X X 

Total 50 38 32 
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Work Days X 

Work Days X 

Hours Worked at Primary Job X X X 

Flexible work schedule X 

Flexible work programs offered X X 

Work mode X X X 

Industry X X 

Industry, Other X X X 

Occupation X X X 

Occupation, Other X X X 

Work Location X X 

Secondary Work name X X 

Secondary Work Address(including suit#) X X 

Secondary Work City X X 

Secondary Work State X X 

Secondary Work Zip X X 

Secondary Work Cross StreetX X X 

Secondary Work Cross Street2 X X 

Days at secondary work X 

Disability Status X X X 

Disability Type X X X 

Other, Disability Type X X X 

Disabled license plate X 

Disabled transit registration X 

Transit trips used in past week X 

Transit Subsidy X 

Subsidized amount X 

fair unit X 

Other, fair unit X 

Walk in the last week X 

Bicycle in the last week X 

Student X X X 

School grade level attends X X X 

School grade level attends. Other X X X 

Home School X X X 

Online School X X X 

School name X X X 

School address X X X 

School City X X X 

School State X X X 

School Zip X X 

Primary Work X-coordinates X X X 

Primary Work Y-coordinates X X X 

Days at Primary work X X X 

Work Days X 

Work Days X 

Work Days X 

Work Days X 

X 

School Cross Streets X X X 

School Cross Streets X X X 

School X-coordinates X X X 

School Y-coordinates X X X 

Pre-school location X 

Pre-school location, other X 

Description 
California 
Statewide Atlanta Cleveland 

(continued on next page)
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School mode X X X 

Level of education completed X X X 

Level of education completed, other X X X 

ARE YOU INTERVIEWING THIS PERSON? X X X 

WHICH PERSON SERVED AS PROXY? X X X 

Did [NAME] complete the travel log? X X X 

Have diary to refer to X X X 

Person Trips X X X 

Did you use a toll X X 

Toll Road Used X 

Toll Bridge Used X 

HOV lane used X 

Why no trips on travel day X X 

Why no trips on travel day, other X X 

Person Retrieval Incomplete Flag X 

Gender  X 

Cell Phone X 

Volunteer Worker? X X 

Yes if employed or Volunteer X X 

Hours Worked at Secondary Job  X X 

Hours Worked at Tertiary Job  X 

Telecommuting Offered at Workplace X 

Telecommute Hours  X X 

Work Start Time  X 

Work End Time  X 

Work Schedule  X 

Other, Compressed Work Week  X 

Employer  X 

Other, Employer  X 

Employer Provided Parking X 

Employer Subsidized Parking X 

Use of Employer Subsidized Parking X 

Employer Subsidized Transit X 

Work Travel Analysis Zone X 

Other, Mode of Transport to Work  X X 

School Travel Analysis Zone X 

Other, Mode of Transport to School X X 

Rides Transit X 

Breeze Card X 

Value Added to Breeze Card X 

Other, Value Added to Breeze Card X 

GRTA Xpress Bus Pass X 

Type of GRTA Fare X 

Cobb or Gwinett County Transit Pass X 

Type of Cobb or Gwinett County Transit Pass X 

Discounted Fare X 

Other, Discounted Fare Program  X 

Frequency of Bike to Work X X 

Reason for No Trips X 

Other, Reason for No Trips X 

Person Belongs To Partial Complete X 

County FIPS  X 

Refused AGE - Age range asked X X X 

Description 
California 
Statewide Atlanta Cleveland 
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Over or Under X6 X X X 

Person-level GPS qualification X 

Type of Pass Owned [Multiple Response] X 

Transit Agency pass is from X 

Type of Transit Pass Owned X 

Pay Full price, Discounted, Student or Employer 
Subsidy for Transit Pass X 

Amount of Employer Subsidy for Transit Pass X 

Own or Access to a Bike X 

Employment Status X 

Which Days are Worked from Home X 

Location Number for Primary Work X 

Location Number for Secondary Work X 

Primary Work Location Parking X 

Primary Work Location Parking - Other X 

Parking Location Distance from Work X 

How often Walk to Work X 

Location Number for Primary School (K-X2) X 

School Name for Secondary School (>X2th) X 

Location Number for Secondary School  X 

How often Bike to School X 

How often Walk to School X 

Total 104 92 93 

Description 
California 
Statewide Atlanta Cleveland 

Vehicle Variables 

Description  
California 
Statewide Atlanta Cleveland 

Sample Number X X X 

Vehicle number X X X 

Year of vehicle X X X 

Vehicle make X X X 

Other, Vehicle make  X X X 

Vehicle model X X X 

Series X 

Other, Series X 

Body type X X 

Other, Body type X 

Vehicle Transmission  X 

Power train X 

Power train, other X 

Cylinders X 

Cylinders, other  X 

Electrical outlet X 

Outlet volts  X 

Vehicle Type X 

Fuel type X X 

Other, Fuel type X X 

Working power outlet  X X 

Vehicle acquired X 

Vehicle ownership X X 

Other, Vehicle ownership X X 

Vehicle insurance  X 

Vehicle devices X 

(continued on next page)
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Vehicle used on travel day  X X 

Reason why not X 

Other, Reason why not  X 
Primary Driver X 

EZPass Tag  X 

Reason Not Used X 

Total 29 15 7 

Location Variables 

Description 
California 
Statewide Atlanta Cleveland 

Sample number X X X 

Person number X X X 

Place number X X X 

Location ID from the Location Table X 

Location Name X 

Place Type X X X 

Mode of Trip - Other X X 

Trip Purpose - Other X X 

Use a Transfer on Trip X 

Parking Location X X 

Pay a Toll X 

Amount Paid for Toll X 

When Trip was Scheduled X 

Flexibility of trip timing X 

Trip Speed X 

Total People traveling on trip X X X 

Number of household members on trip X X X 

Person number on trip X X X 

Number of non-household members on trip X X X 

Mode of trip X X X 

Household vehicle number used on trip X X 

Get out of vehicle X X X 

Parking location type X X X 

Parking location type, other X X X 

Parking location address X 

Time(Mins) walking from Park to destination X 

Pay to park X X X 

Parking amount X X X 

Parking unit X X X 

How did you pay for parking X 

How did you pay for parking, other X 

Parking cost not reimbursed by employer X 

Transit system X 

Transit system, other X 

Transit Route X X 

Number of activities X 

Arrival time - hour X X X 

Arrival time - minute X X X 

Departure time - hour X X X 

Departure time - minute X X X 

Travel time to place in minutes. X X 

Activity duration at place in minutes. X X X 

Description  
California 
Statewide Atlanta Cleveland 
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Description 
California 
Statewide Atlanta Cleveland 

Travel distance (air distance) X X X 

Place Name X X 

Address X 

City X X 

State X X 

Zip X X 

X-coordinate X X 

Y-coordinate X X 

Primary Trip Purpose X X 

Secondary Trip Purpose X 

Other, Trip Purpose X 

Used HOV Lane X 

Used TOLL Lane X 

Transit Service X 

Other, Transit Service X 

Transit Fare Type X 

Transit Fare Cost X X 

Trip Duration in Minutes X 

Place Travel Analysis Zone X 

Trip Number X 

Number of Person Trips X 

Transit Access Mode X 

Transit Access Mode - Other X 

Transit Egress Mode X 

Transit Egress Mode - Other X 

Origin Place Name X 

Destination Place Name X 

Origin Travel Analysis Zone X 

Destination Travel Analysis Zone X 

Origin Longitude  X 

Origin Latitude X 

Destination Longitude  X 

Destination Latitude X 

Departure Time  X 

Destination Arrival Time X 

Street Number and Street Name of Address X 

Run Street & Cross Street X 

Traffic Analysis Zone X 

Activity number X 

Household member on this activity? X 

Activity Number of HH/family Members X 

Activity Number of other relatives X 

Activity - Number of people from your Work X 

Activity - Number of people from your School X 

Activity - Number of people from same rel/social org. X 

Activity - Number of Friends X 

Activity - Number of Other relations X 

Activity - Purpose X 

Activity - Purpose, Other X 

Activity - Start Time X 

Activity - End Time X 

Activity - Place number X 

Total 53 54 43 
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Long-Distance Travel Variables 

Description 
California 
Statewide Atlanta Cleveland 

Complete Long-distance Log X N/A N/A 
HH member who completed LD log X N/A N/A 
Last eight weeks X N/A N/A 
SAMPLE NUMBER for Long-distance trip X N/A N/A 
Long-distance trip number X N/A N/A 
Long-distance Date X N/A N/A 
Long-distance Origin X N/A N/A 
Long-distance Origin Place Name X N/A N/A 
Long-distance Origin Address X N/A N/A 
Long-distance Origin City X N/A N/A 
Long-distance Origin State X N/A N/A 
Long-distance Origin Zip code X N/A N/A 
Long-distance Origin Country X N/A N/A 
Long-distance Origin X-coordinate X N/A N/A 
Long-distance Origin Y-coordinate X N/A N/A 
Long-distance Destination Place Name X N/A N/A 
Long-distance Destination Address X N/A N/A 
Long-distance Destination City X N/A N/A 
Long-distance Destination State X N/A N/A 
Long-distance Destination Zip code X N/A N/A 
Long-distance Destination Country X N/A N/A 
Long-distance Destination X-coordinate X N/A N/A 
Long-distance Destination Y-coordinate X N/A N/A 
Long-distance Trip Purpose X N/A N/A 
Long-distance Trip Purpose, other X N/A N/A 
Long-distance - People on trip X N/A N/A 
Long-distance - Household members on trip X N/A N/A 
Person who made Long-distance tripX X N/A N/A 
Person who made Long-distance trip2 X N/A N/A 
Person who made Long-distance trip3 X N/A N/A 
Person who made Long-distance trip4 X N/A N/A 
Person who made Long-distance trip5 X N/A N/A 
Person who made Long-distance trip6 X N/A N/A 
Person who made Long-distance trip7 X N/A N/A 
Person who made Long-distance trip8 X N/A N/A 
Long-distance Mode 1 X N/A N/A 
Long-distance Mode 2 X N/A N/A 
Long-distance Mode 3 X N/A N/A 
Long-distance Mode 4 X N/A N/A 
Latest Long-distance Trip Flag X N/A N/A 
Long-distance Time start X N/A N/A 
Long-distance Departure Place Name X N/A N/A 
Long-distance Departure Mode 1 X N/A N/A 
Long-distance Departure Mode 2 X N/A N/A 
Long-distance Departure Mode 3 X N/A N/A 
Long-distance Departure Mode 4 X N/A N/A 
Long-distance Arrival Place Name X N/A N/A 
Long-distance Arrival Mode 1 X N/A N/A 
Long-distance Arrival Mode 2 X N/A N/A 
Long-distance Arrival Mode 3 X N/A N/A 
Long-distance Arrival Mode 4 X N/A N/A 

Total 51 N/A N/A
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Travel Survey Practitioners  
and Travel Survey Researchers

Please answer the following questions within the context 
of any travel behavior surveys in which you, your agency, 
or your organization may have been involved (including 
household travel surveys, transit studies, visitor surveys, and 
establishment surveys).

 1. Please describe the use of technologies in the collection 
of travel behavior information at your organization or 
firm. Specifically, please include details of how GPS data 
are collected, processed, and leveraged. For the purpose 
of this project, it would be helpful to understand what 
GPS technologies or methods were used in the past as 
well as are used in the present.

 2. What plans do you or your organization have for near-
term or longer-term collection or use of GPS data (or other  
location-based data) for better understanding travel behav-
ior? Please provide as much detail as possible regarding 
future technology needs or plans.

 3. If you have used GPS devices and/or smart phones with 
GPS in your travel behavior studies, please discuss how 
the use of these technologies may have affected recruit-
ment rates, retrieval rates, and sample representativeness.

 4. Please explain how you or your firm processes GPS data 
or other location-based data to answer your research 
questions or the research questions of your clients.

 5. Please describe the GPS-based or other location-based 
travel behavior details that are included in your data sets 
or in deliverables to your clients.

 6. Please explain how confidentiality is maintained for sur-
vey participants who provide GPS data in your studies. 
Describe any issues or concerns regarding participant 
privacy that you have encountered in a GPS-specific, cell 
phone, or other location-based technology study.

 7. Overall, how does the coverage and accuracy of GPS data 
and/or cell phone data compare with previously used 

methods? (Please elaborate on previous methods as well.) 
If you are collecting or using mobile phone data, please 
elaborate on the source of the location information (i.e., 
from the GPS chip, from cell phone tower locations or 
handoffs, or from participant self-report) as well as the 
coverage and accuracy levels obtained.

 8. Given your experience to date, what do you consider to 
be the advantages of using GPS or other location-based 
technologies for the collection of travel behavior?

 9. Given your experience with using GPS or other location-
based technologies to measure travel behavior, what do 
you consider to be the limitations or concerns for these 
technologies? (Please be specific.)

10. If applicable, please provide cost information that could 
be used by agencies that are considering adding GPS or 
other location-based technologies to their travel behavior 
surveys—either as an addition or instead of traditional 
methods. Types of costs could include cost per house-
hold, per person, or per travel day. Please explain as much 
as possible.

Transportation Planners  
and Travel Demand Modelers

 1. Please describe the current role of GPS data within your 
organization or within your daily work responsibilities 
(for example, is GPS data leveraged to determine trans-
portation network speeds, for congestion management, 
or for travel behavior analysis); please provide details.

 2. Please describe the specific role of GPS data in your model 
development process (for example, to calculate trip rate 
correction factors or to evaluate baseline networks).

 3. Please describe any secondary applications of GPS data 
in which you or your organization acquired GPS data 
for one purpose but then used for another/additional 
purpose (such as for congestion management planning, 
bike/pedestrian planning, or transit planning).

A P P E N D I X  B

Industry Expert Questionnaires
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 4. Please describe any future plans you or your organization/ 
firm have for using GPS data to support travel demand 
modeling data needs.

 5. Please describe others sources of measured origin–
destination data that you have used or plan to use to 
support model development (such as data provided by 
INRIX, TomTom, NAVTEQ, AirSage, or other similar 
sources).

 6. Have you purchased any advanced travel behavior data 
(GPS, Bluetooth, cell-phone–based data, or other origin–
destination data) in the last 12 months? If so, can you 
briefly describe what you purchased, the intended pur-
pose, and any challenges you faced with its integration?

 7. Please describe your plans for using short-term model-
ing tools for evaluating transportation improvements 
(i.e., dynamic transportation models) and identify what 
you see as the key data needs for short-term forecasts.

 8. If you are involved in long-term transportation forecasts, 
what do you believe to be the key data needs in this mod-
eling area?

 9. If you are using or building an activity-based model, 
what travel behavior data quality issues are most critical 
from your perspective?

10. What benefits do you believe can be gained by leveraging 
GPS data to better understand travel behavior?

11. What disadvantages or limitations do you believe exist 
with using GPS data for modeling travel behavior?

12. How accurate do you believe GPS data should be for 
modeling travel behavior? What resolution or frequency 
of GPS locations do you believe is needed?

13. Do you have a plan/idea for using advanced travel behavior 
data (such as GPS or Bluetooth/sensor data) for some pur-
pose but lack the technical capabilities for its application?

14. Describe your level of knowledge regarding advanced 
travel behavior data collection and provide the primary 
sources of your knowledge and training (such as formal 
classes, conference presentations, research papers, meet-
ings with vendors, or personal exploration). If you need 
training or reference materials, please explain what train-
ing methods or materials you prefer.

15. Is there anything else you would like to say about the use 
of GPS data for understanding travel behavior?

Traffic Data Providers

 1. Describe the primary and secondary markets for your 
data products (i.e., real-time traffic, transportation plan-
ning, etc.)

 2. List and describe the different data-generating technolo-
gies that are used to build your company’s data products 
(for example, in-dash navigation devices, personal navi-
gation devices, non-GPS cell phones, GPS cell phones, 
truck GPS/AVL). Is one technology primary; if yes, 
please identify.

 3. If you are using personal mobile devices (such as cell 
phones or smart phones) as a data source, please describe 
the penetration rate of this data source.

 4. Describe your company’s plans for future vehicle or per-
sonal technology and data product development.

 5. What is your current geographic coverage? Do you have 
plans to expand? If so, please elaborate on the planned 
geography as well as implementation timeline.

 6. Describe any of your data products’ limitations that are 
relevant to road functional classification or other trans-
portation system characteristics. Are expected error ranges 
provided by road segment or TMC [Traffic Message 
Channel] location code?

 7. Describe how your products are packaged to specifi-
cally serve the needs of transportation planners for travel 
demand forecast modeling or for congestion manage-
ment programs.

 8. For each of your specific data products (copy and repeat 
this question and categories as needed), please describe 
the following:

 – Data product name and description
 – Raw data frequency and accuracy
 – Data cleaning process
 – Level of aggregation or disaggregation
 – Cost structure

 9. Describe any potential demographic bias that exists in 
your data sources.

10. Describe any data usage clauses of agreements that come 
with new vehicle/device purchases that enable or autho-
rize your firm to use personal mobility data.

11. Describe how data source privacy and location/time of 
day details are protected.
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AirSage

 1. Describe the primary and secondary markets for your 
data products (i.e., real-time traffic, transportation plan-
ning, etc.).

AirSage’s primary market is government MPO’s for 
transportation planning and origin–destination studies. 
AirSage is also a leader in nationwide traffic flow analysis 
and an innovative product called FastCache—the next-
generation marketing and LBS strategy.

 2. List and describe the different data-generating tech-
nologies that are used to build your company’s data 
products (for example, in-dash navigation devices, per-
sonal navigation devices, non-GPS cell phones, GPS cell 
phones, truck GPS/AVL). Is one technology primary; if 
yes, please identify.

AirSage has the exclusive ability to mine signaling data 
from any type of mobile device from two major carriers 
(roughly 70% of the U.S. population), and from those 
location points we can infer traffic speeds, phone/user 
origins and destinations, and travel trends.

 3. If you are using personal mobile devices (such as cell 
phones or smart phones) as a data source, please describe 
the penetration rate of this data source.

Because we collect data points as a mobile device com-
municates with a tower, any type of mobile device is seen. 
We have 100% penetration rate of mobile devices.

 4. Describe your company’s plans for future vehicle or per-
sonal technology and data product development.

AirSage has spent years getting the technology in place 
and continues to fine-tune the accuracy of our location 
data. We built the geolocation systems used by major 
wireless carriers in North America. We are now com-
mercializing the insights and information that can be 

realized, all while protecting the privacy rights of mobile 
consumers. AirSage is the leading mobile Big Data pro-
vider and can provide clients with solutions in anytime 
population studies, origin–destination studies, Fast-
Cache (geofencing) reporting and mobility attributes. 
AirSage has partnered with a firm that specializes in 
demographic and geographic analysis and through this 
partnership we will be able to garner much more insight 
into the users’ lifestyle.

 5. What is your current geographic coverage? Do you have 
plans to expand? If so, please elaborate on the planned 
geography as well as implementation timeline.

AirSage has a geographic reach of the entire U.S., includ-
ing Hawaii. Wherever a cell phone with one of our two 
carriers has service, we see it.

 6. Describe any of your data products’ limitations that are 
relevant to road functional classification or other trans-
portation system characteristics. Are expected error 
ranges provided by road segment or TMC location code?

For real-time and historical traffic data, AirSage uses TMC 
codes from FC Class 1-4. Data points are triangulated 
based on cell signals and assigned a TMC code. Data points 
are (immediately) tagged as Transient Points (moving) or 
Activity Points (stationary).

 7. Describe how your products are packaged to specifically 
serve the needs of transportation planners for travel 
demand forecast modeling or for congestion manage-
ment programs.

Projects are defined using our standard PO, with the 
following options:

OD Matrix
A Trip Distribution table shows the number of people 
that made trips between a specific Zone pairs during the 
given time period.

A P P E N D I X  C

Questionnaire Responses  
from Traffic Data Providers
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Productions
A Productions table shows the number of people that  
departed from a specific Zone during a specific hour of 
the day for each hour of each day of the time frame for 
each of the Zones in the Study Area.

Attractions
An Attractions table shows the number of people that 
arrived in a specific Zone during a specific hour of the 
day for each hour of each day of the time frame for each 
of the Zones in the Study Area.

Traffic Counts
A Traffic Count table shows the number of people that 
traveled a road segment during the given time period(s) 
for each of the road segments in the Study Area.

Home-Work Matrix
A Home-Work Matrix shows the number of people who 
live and work in a specific pair of zones.

Sub-Area Analysis
A Corridor Study shows the number of people who trav-
eled on a specific road segment (corridor) that started 
and ended their trips in a specific origin, destination, and 
entered and exited the corridor at specific entry and exit 
points.

Select Link Analysis
A Select Link Analysis shows the number of people who 
traveled a specific road segment (link) while making a 
trip between specific origin and destination pairs.

External Station Analysis
An External Station Analysis shows the number of people 
that traveled through a given metropolitan area, grouped 
by given count station pairs.

Trip Chains
Trip Chains show the number of trips within a given 
geographic area that contain a specific sequence of stops 
and/or Activity Points for a given time period.

Trip Frequency
A Trip Frequency table shows the number people who took 
a specific number or number range of trips from a given 
origin to a given destination over a specified time period.

Trip Duration
A Trip Duration table shows the number of people who 
traveled between the specific Origin and Destination 
pairs during the specified time frame and stayed for a 
certain number of days.

Anytime Population
An Anytime Population table shows the number of 
people who were present or passed through a given geo-
graphic area during a given time period.

Traffic Flow
A Traffic Flow table shows average travel times for spe-
cific road segments during a given time period. This data 
includes, by individual road segment, traffic flow by day-
part at 5-minute intervals.

 8. For each of your specific data products (copy and repeat 
this question and categories as needed), please describe 
the following:

 a) Data product name and description
 b) Raw data frequency and accuracy
 c) Data cleaning process
 d) Level of aggregation or disaggregation
 e) Cost structure

Origin–Destination
This AirSage suite of analysis and reporting tools lets 
you analyze billions of location points derived each day 
from our exclusive network of over 100 million mobile 
consumer devices. Study traffic zone-to-zone, by trip 
or travel patterns, even by demographic characteristics. 
You’ll gain powerful insights that fuel the creation of new 
businesses, additional locations, or the development of a 
new product or service.

AirSage’s suite of Origin–Destination reports is based on 
billions of location points derived every day from our 
exclusive access to over 100 million mobile devices. Data 
is collected in real time and at lat/long accuracy level but 
aggregated up to 1,000-m grid cells. Smaller grid cells can 
be utilized.

AirSage’s patent-protected Wireless Signal Extraction 
(WiSE™) technology aggregates and analyzes signaling 
data from individual handsets throughout a broad cellu-
lar network. In essence, each individual handset becomes 
a mobile location sensor, allowing AirSage to identify how 
phones move over time. AirSage validates the informa-
tion and converts it into real-time location data, includ-
ing traffic speed and time of day. Anywhere our wireless 
partners provide coverage, AirSage can provide location 
information in a cost-effective manner, customized for 
your business.

Patented technology and multiple layers of privacy pro-
tection ensure that no proprietary, customer-identifying 
data is accessed or released from within the carrier’s 
secure environment. We report at the census tract level 
with at least 10 mobile devices present. All data is bal-
anced with time.

Cost structure varies from project to project and is based 
on multiple variables such as population, study area, 
study length, etc.
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FastCache
FastCache, as a part of an integrated marketing strategy, 
can drive greater consumer engagement. FastCache is the 
quickest, most affordable way to get unlimited location 
fixes for all your mobile opt-in subscribers any time, all 
the time. You’ll receive continual location updates when-
ever a device communicates with the network. AirSage 
FastCache gives you access to multiple device locations 
with a single request. It provides you with the ability to 
take location information, store it, analyze it, and act on 
the trends and patterns you uncover.

Location updates are speedy—with latency of less than a 
second for single or multiple device locations. Informa-
tion is time-stamped and provides a “last seen” location 
for all your opted-in mobile devices.

FastCache works with all mobile devices on any supported 
network: smartphone or feature phone, with GPS or with-
out. No special software, configuration, or user intervention 
is required. And, unlike GPS-based location services, Fast-
Cache won’t drain the batteries on mobile devices. Instant, 
time-stamped locations wrapped up tight inside a layer of 
anonymity are sent as often as the client needs them.

Patented technology and multiple layers of privacy pro-
tection ensure that no proprietary, customer-identifying 
data is accessed or released from within the carrier’s 
secure environment.

FastCache is available in an easy-to-understand flat rate. 
Rates begin at one penny per ping, with a max of $.03/per 
day and/or $0.45/per month, per subscriber. The volume 
discount of $0.45 per subscriber/per month allows for 
unlimited “pinging.”

Traffic Flow
AirSage gives you real-time and historical traffic infor-
mation on over 500,000 miles of highway and arterial 
roads throughout the U.S. With over 100 million mobile 
devices continually reporting in, AirSage offers up-to-
date information for vehicle movement, traffic speeds, 
patterns and location.

Clients get traffic data updated every 1–2 minutes, every 
day, 24 hours a day. AirSage will deliver detailed, minute-
by-minute speed and travel time history for the same 
nationwide coverage. Clients have access to archived 
traffic information derived from over 100 million mobile 
devices, 24 × 7. Testers manually collected GPS data points 
for 3 major cities and compared them to AirSage’s results. 
AirSage scored 91%–93% accuracy on real-time conges-
tion reports.

AirSage’s patent-protected Wireless Signal Extraction 
(WiSE™) technology aggregates, and analyzes signal-

ing data from individual handsets throughout a broad 
cellular network. In essence, each individual handset 
becomes a mobile location sensor, allowing AirSage to 
identify how phones move over time. AirSage validates 
the information and converts it into real-time location 
data, including traffic speed and time of day. Anywhere 
our wireless partners provide coverage, AirSage can pro-
vide location information in a cost-effective manner,  
customized for your business.

Patented technology and multiple layers of privacy pro-
tection ensure that no proprietary, customer-identifying 
data is accessed or released from within the carrier’s secure 
environment. We report at the census tract level with at least 
10 mobile devices present. All data is balanced with time.

Cost structure varies from project to project and is based 
on multiple variables such as population, study area, study 
length, etc.

 9. Describe any potential demographic bias that exists in 
your data sources.

According to CTIA US Wireless; “There are now more 
wireless devices being used in the United States than there 
are people, and Americans have doubled the amount 
of Internet data traffic they generate on smart phones, 
according to the trade group CTIA.” Because we can see 
any and all mobile devices on our two partner networks, 
there are no demographic biases.

10. Describe any data usage clauses of agreements that come 
with new vehicle/device purchases that enable or autho-
rize your firm to use personal mobility data.

All of our data is collected anonymously behind a firewall; 
therefore it does not affect the user’s privacy or mobile 
device capabilities. Through our FastCache product, a 
person must consent to opt-in for the phones identity 
to be revealed.

11. Describe how data source privacy and location/time of 
day details are protected.

AirSage spends a great deal of time and effort ensuring the 
privacy and security of mobile device users. Timestamp 
information is available and necessary to our studies, but 
individual location data is always aggregated up to the cen-
sus block and census tract level. Unless a phone has opted 
in, we will never follow an individual phone for a study.

AirSage’s privacy module ensures that sensitive personal 
information is not compromised. It protects consumers 
from unwanted intrusions, yet enables them to interact 
with the brands and services they choose.

Our technology is fully server-based so there’s no impact 
to the carrier, the consumer, or your business—no soft-
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traffic services. No single data source type can provide 
the accuracy, coverage or scalability that is required in the 
market today.

GPS-based Probe Vehicles and Devices: While INRIX was 
not the first company to use GPS vehicle probes for traf-
fic information, INRIX has built the world’s largest GPS 
probe network using real-time data from nearly 100 mil-
lion probes. These vehicles include cars and commer-
cial vehicles such as taxis, limos, airport shuttles, service 
delivery vehicles, long-haul trucks, and less than truck-
load vehicles, plus a rapidly growing number of consumer 
vehicles. This floating car data is the single biggest input to 
the INRIX traffic model.

Mobile Devices: GPS-enabled smartphones are also 
becoming an important component of the network. 
As an example, iPhone users in San Francisco report to 
INRIX via the INRIX Traffic application as well as other 
GPS-enabled applications that include INRIX traffic 
information. Mobile consumers using INRIX Traffic apps 
on the iPhone and Android-based smartphones have 
been regularly contributing probe data since the app 
availability in mid-2009.

Road Sensors: More than 30,000 (and growing) road sen-
sors across the U.S.

Other Flow Sources: Other traffic flow sources including 
cellular probe data and toll tags.

 3. If you are using personal mobile devices (such as cell 
phones or smart phones) as a data source, please describe 
the penetration rate of this data source.

N/A—This information is proprietary.

 4. Describe your company’s plans for future vehicle or per-
sonal technology and data product development.

INRIX data services include product offerings developed 
specifically for the public sector, auto OEMs, consumer 
mobile applications, Internet and media. Detail of future 
products is proprietary information.

 5. What is your current geographic coverage? Do you have 
plans to expand? If so, please elaborate on the planned 
geography as well as implementation timeline.

From a road coverage standpoint, INRIX provides traf-
fic information on over 850,000 miles across the United 
States with over 600,000 individual TMC links. INRIX 
currently provides coverage in the U.S., Canada, and 
Western Europe. In 2013, the company plans to expand 
to Brazil, Russia, China, South Africa, and Scandinavia, as 
well as preparing for operations in Eastern Europe, Central 
America, Australia, India, and northern Africa.

ware to load, no stress on systems, and no impact to cell 
phone battery life. AirSage is regularly tested by indepen-
dent security auditors to ensure the data coming in and 
going out is fully anonymous.

In addition, AirSage is compliant with the Telecommu-
nications Act of 1996; the Wireless Communications and 
Public Safety Act of 1999; FCC Proposed Rule-making 
following the CTIA petition to the FCC on Wireless 
Location Privacy Principles, November 22, 2000; the 
European Union Location Privacy, Article 9, amended 
July 12, 2000; and the individual privacy policies of our 
carrier partners.

INRIX Inc.

 1. Describe the primary and secondary markets for your 
data products (i.e., real-time traffic, transportation 
planning, etc.).

INRIX has a full range of services specifically developed 
for public transportation agencies. Following is an out-
line of available services, aligned with the three compre-
hensive strategies typically aimed at fighting congestion.

Services for Efficient Operations
•	 Real-Time and Predictive Traffic Flow
•	 Traffic Information Network
•	 Regional Incident Integration Platform
•	 Dynamic Route Travel Times

Services for Effective Capacity Planning
•	 Historical Traffic Flow Statistics
•	 Historical Five-Minute Archives
•	 Dynamic Route Travel Time Archive
•	 Analytics and Performance Measures

Services to Optimize Demand
•	 White Label Mobile Applications
•	 Custom Mobile Application
•	 Advanced Routing
•	 Consumer Alerting and Planning

 2. List and describe the different data-generating technologies 
that are used to build your company’s data products (for 
example, in-dash navigation devices, personal navigation 
devices, non-GPS cell phones, GPS cell phones, truck GPS/
AVL). Is one technology primary; if yes, please identify.

INRIX is able to provide extensive traffic information 
because of the integration of a large variety of sources 
to calculate the real-time speed on the roadways. INRIX 
evaluates and uses advanced fusion technologies to intel-
ligently integrate the full range of potential traffic data 
source types in consideration of creating high-quality 
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INRIX Historical Archive is a running archive of real-
time speeds provided by INRIX for all TMCs in service at 
that time. Data provided on each segment for each time 
slice includes the Speed, Travel Time, and the Score. The 
archive data is available in 5 minute increments begin-
ning July 1, 2008, through December 31, 2010. Starting 
January 1, 2011, the running archive is available in one 
minute increments.

INRIX data, both real-time and historic, is now avail-
able as a subscription service bundled with state-of-the-
practice analytics and visualization tools. INRIX has 
partnered with the University of Maryland to expand 
the Vehicle Probe Project Analytics Suite currently in 
use by the I-95 Corridor Coalition to provide national 
coverage. The Suite provides a real-time dashboard as 
well as instant access to historical data and the ability 
to compute common mobility performance measures 
on demand along with visualization tools. An over-
view of the VPP Analytics Suite is available in the form 
of a short video tutorial at: http://vpp.ritis.org/suite/ 
screencast/.

The analytics suite includes:
•	 A System Dashboard indicating current congestion 

levels and bottlenecks
•	 Raw data query tool for instant access to archived 

data based on user specified locations and date 
ranges

•	 Historical Analytic Tools to instantly calculate com-
mon performance measures for user defined corri-
dors and date ranges, including:

 – Average Speed
 – Travel Time Index
 – Travel Time
 – Buffer Index
 – Buffer Time
 – Planning Time Index
 – Planning Time

•	 Visualization Tools for defined performance mea-
sures, including: charts, contour plots, and tabular 
summaries

•	 Bottleneck Ranking Tool to identify system bottle-
necks for user defined date ranges

 8. For each of your specific data products (copy and repeat 
this question and categories as needed), please describe 
the following:

 a) Data product name and description
 b) Raw data frequency and accuracy
 c) Data cleaning process
 d) Level of aggregation or disaggregation
 e) Cost structure

 6. Describe any of your data products’ limitations that are 
relevant to road functional classification or other trans-
portation system characteristics. Are expected error 
ranges provided by road segment or TMC location code?

N/A

 7. Describe how your products are packaged to specifically 
serve the needs of transportation planners for travel 
demand forecast modeling or for congestion manage-
ment programs.

INRIX has several products developed specifically for 
planners and performance managers. Planners and those 
interested in model calibration are most interested in 
aggregation of historical data while performance manag-
ers may want to see current conditions in addition to the 
ability to review historical performance. INRIX provides 
choices in the type of historical aggregation as well as a 
new suite of analytic tools and visualizations that can dis-
play both real-time and historical performance measures.

INRIX Historical Speed Statistics use comprehensive 
data from the INRIX Smart Driver Network, including 
billions of historical data points, to provide true histori-
cal average speeds and statistical distribution on indi-
vidual road segments covering nearly 1 million miles on 
major freeways, highways, urban and rural arterials and 
side streets throughout North America. This data is spe-
cific to every day of the week, every hour or quarter hour 
of the day, and is reported at the Traffic Message Channel 
(TMC) link level or at the smallest road segment for Tele 
Atlas and NAVTEQ map databases.

Using INRIX’s proprietary technology, the data is ana-
lyzed and normalized to account for the impact of major 
events, seasonal traffic patterns, typical weather condi-
tions and other variables that can impact traffic flow—
ensuring the highest degree of accuracy. The data is 
updated regularly, incorporating both changes to map 
databases as well as additional historical data from the 
INRIX Smart Driver Network.

INRIX statistical parameters provided for each time bin 
include the average speed, standard deviation, the 5th, 
10th, 15th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 
80th, 85th, 90th, and 95th percentiles of speed values in 
mph, and the 30, 40, 50, 60, 70, 80, and 90 mph “failure 
rates,” or the percentage of data points that fall below the 
specific speed threshold for the given segment/time.

In addition to typical annual files, monthly and quarterly 
files are also available. Monthly and quarterly files are 
available starting January, 2009. Future monthly files for 
2012 and beyond can be made available by the 15th of the 
following month.
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INRIX Historical Archive
INRIX Historical Archive is a running archive of Real-
Time speeds provided by INRIX for all TMCs in service 
at that time. Data provided on each segment for each 
time slice includes the Speed, Travel Time, and the Score. 
The archive data is available in 5-minute increments 
beginning July 1, 2008, through December 31, 2010. 
Starting January 1, 2011, the running archive is available 
in one minute increments.

INRIX Real-Time Traffic Information Network
INRIX’s Real-Time Traffic Information Network pro-
vides a visualization of real-time traffic information via 
a hosted statewide traffic monitoring website of the real-
time coverage so agencies can monitor conditions on 
roadways in real time at Traffic Operations Centers and 
for other internal agency viewing/use. The monitoring 
website includes access for 20 simultaneous users (more 
users are available for additional amount depending on 
number of users).

INRIX Traffic Tile Overlays
Traffic Tile Overlays allow for a web services API request 
to INRIX and, in response, agencies receive a semi-
transparent, match projection (Mercator) overlay image 
of INRIX Traffic Flow for display on common mapping 
platforms (Google, Microsoft, Yahoo!, etc.).

INRIX Traffic Tile Overlays are fully configurable and 
are available in various tile sizes (256 x 256 standard) 
with broad browser support (IE, Firefox, WebKit [Safari, 
Chrome]) and token-based security (access via token 
with timeout, configurable to a user).

INRIX Dynamic Route Travel Times
INRIX Dynamic Route Travel Times provide the current 
travel time (based on real-time traffic conditions) along 
a precisely-specified route between any Origin (starting 
point) and Destination (ending point) in either direction. 
Travel times can be queried in real time with archive rights 
to provide information for both instantaneous and histor-
ical analytic purposes This information may be used for: 
corridor management; planning and modeling purposes; 
reliability and performance measures; making opera-
tional decisions; and disseminating traveler information 
like travel times on dynamic message signs (DMS).

INRIX Analytical Tools
INRIX data, both real-time and historic, is now available as 
a subscription service bundled with state-of-the-practice 
analytics and visualization tools. See full description and 
figures in response to Question 7.

 9. Describe any potential demographic bias that exists in 
your data sources.

 N/A

Following is an overview of specific INRIX Data Services 
specifically developed for public-sector transportation 
agencies. Cost of services costs are based on annual terms 
but can be customized. Cost structure is proprietary as 
most agencies contract for specific services through a 
competitive process.

INRIX Real-Time Flow Data Service
Real-Time Flow is INRIX’s full suite of traffic data which 
is available via an API call as often as once per minute. 
The data provided via XML includes road segment code; 
roadway name and cross streets of roadway; time; current 
speed in mph (“speed”); typical speed in mph (“aver-
age”); free flow speed in mph (“reference”); and travel 
time along segment in minutes (“traveltimeminutes”). 
Predicted speeds and travel times are also available via an 
API call. Predicted times include 15 minute, 30 minute, 
60 minute, 24 hours, and 48 hours into the future at a 
minimum.

INRIX Historical Traffic Flow Statistics
INRIX Historical Traffic Flow Statistics use comprehen-
sive data from the INRIX Smart Driver Network, includ-
ing billions of historical data points, to provide true 
historical average speeds and statistical distribution on 
individual road segments covering over nine thousand 
centerline miles on major freeways, highways, urban and 
rural arterials and side streets throughout Washington 
State. This data is specific to every day of the week, every 
hour or quarter hour of the day, and is reported at the 
Traffic Message Channel (TMC) link level.

Using INRIX’s proprietary technology, the data is ana-
lyzed and normalized to account for the impact of major 
events, seasonal traffic patterns, typical weather condi-
tions and other variables that can impact traffic flow—
ensuring the highest degree of accuracy. The data is 
updated regularly, incorporating both changes to map 
databases as well as additional historical data from the 
INRIX Smart Driver Network.

INRIX statistical parameters provided for each time bin 
include the average speed, standard deviation, the 5th, 
10th, 15th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 
80th, 85th, 90th, and 95th percentiles of speed values in 
mph, and the 30, 40, 50, 60, 70, 80, and 90 mph “failure 
rates,” or the percentage of data points that fall below 
the specific speed threshold for the given segment/time.

In addition to typical annual files, monthly and quarterly 
files are also available. Monthly and quarterly files are 
available starting January, 2009. Future monthly files for 
2012 and beyond can be made available by the 15th of the 
following month.
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applications. Many of the clients who use our navigation 
applications provide data back to Nokia. The mix of data, 
coupled with fixed point traffic monitoring devices, cre-
ates extensive coverage on freeway and arterial roadways 
using sophisticated algorithms to produce reliable data 
for Nokia’s private and public clients.

 3. If you are using personal mobile devices (such as cell 
phones or smart phones) as a data source, please describe 
the penetration rate of this data source.

Nokia receives billions of GPS data points monthly 
globally from cell phones and other smart devices. The 
penetration rate varies by geographic area, time of day 
and day of week.

 4. Describe your company’s plans for future vehicle or per-
sonal technology and data product development.

Nokia is constantly working to expand and enhance the 
data, coverage and applications. A few examples of our 
latest products include Nokia Drive, Nokia Transit, and 
Mirrorlink. Nokia Drive and Nokia Transit applications 
allow users to interact more naturally with the world sur-
rounding them and helps travelers determine their best 
routing options. Mirrorlink enables the phone to interact 
with in-vehicle devices integrating the smartphone into 
the dashboard to provide safe and seamless access within 
the connected vehicle.

 5. What is your current geographic coverage? Do you have 
plans to expand? If so, please elaborate on the planned 
geography as well as implementation timeline.

In the United States the Nokia coverage includes all the 
Interstate highways and limited access roadways, in addi-
tion to thousands of miles of arterial roadways in metro-
politan areas. We continue to expand the arterial footprint 
to more rural areas and will soon be expanding to include 
additional major arterial roadways nationwide.

 6. Describe any of your data products’ limitations that are 
relevant to road functional classification or other trans-
portation system characteristics. Are expected error 
ranges provided by road segment or TMC location code?

The roadways with higher volume and higher functional 
class roadways also carry more available probe vehicles. 
Lower functional classification roadways have many com-
plex movements and require more sophisticated algo-
rithms to match data and determine the speeds associated 
with a smaller arterial. To provide users with a mechanism 
to manage data that is distributed in time and space and 
calculated for each roadway segment, Nokia provides a 
confidence level in its real-time traffic data feed. The con-
fidence value provides an indication of the quality and 

10. Describe any data usage clauses of agreements that come 
with new vehicle/device purchases that enable or autho-
rize your firm to use personal mobility data.

 N/A

11. Describe how data source privacy and location/time of 
day details are protected.

INRIX assures complete privacy by requiring all data 
providers remove all personally identifiable information 
from all data prior to sending to INRIX.

Nokia/NAVTEQ

 1. Describe the primary and secondary markets for your 
data products (i.e., real-time traffic, transportation plan-
ning, etc.)

Nokia is successfully delivering traffic data to government 
agencies and private sector companies globally. Nokia’s 
primary market is real-time data for traveler information 
and secondary markets are traffic operations and trans-
portation planning, including archived data. Nokia North 
American clients include over 20 State Departments 
of Transportation, Verizon Wireless, Sirius XM Satellite 
Radio, Microsoft Bing, Garmin, The Weather Channel, 
and Comcast. We also provide traffic data services and 
applications to all of the major United States mobile phone 
carriers: AT&T, Sprint, T-Mobile, and Verizon.

Collectively, more than 220 million people in North 
America are served by Nokia traffic. Nokia Traffic powers:

•	 20 out of the 20 top ranked in-vehicle navigation sys-
tems, supporting over 150 vehicle models;

•	 75% of traffic enabled personal navigation devices 
(PNDs), including 3.1 million PND users with  
Ad-supported free lifetime traffic; and 3.5 million 
paying subscribers

•	 Major online mapping applications including Bing 
Maps

•	 Wireless providers including Nokia, Verizon’s VZ 
Navigator, RIM/Blackberry, and Gokivo the first 
traffic enabled Turn-By-Turn app for the iPhone

 2. List and describe the different data-generating technologies 
that are used to build your company’s data products (for 
example, in-dash navigation devices, personal navigation 
devices, non-GPS cell phones, GPS cell phones, truck GPS/
AVL). Is one technology primary; if yes, please identify.

Nokia’s traffic is powered by a variety of originating probe 
devices including GPS-enabled personal navigation 
devices, commercial fleets and commercial third-party 

Applying GPS Data to Understand Travel Behavior, Volume I: Background, Methods, and Tests

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22370


106

updates are provided every two minutes. Accuracy for 
an individual TMC depends on the number of data 
sources the age of the data and the variability of traffic 
conditions.

The data is quality checked prior to data integration, map 
matched in real time, cleaned for erroneous values, and 
filtered extensively. The cleaning and matching process 
is more extensive on arterial roadways due to increased 
variability of travel patterns requiring more sophisticated 
map-matching and algorithm processing to support 
quality results.

The data is collected from consumer and commercial 
probes, toll tags and sensors. The average speed and travel 
time is aggregated for each TMC using a sophisticated 
algorithm.

Nokia’s diverse user community of public and private sec-
tor clients demands a highly flexible and adaptable licens-
ing program. Several licensing options are available to 
ensure scalable and effective use of Nokia data. Licensing 
fees are determined based on the number of users, licens-
ing term (i.e., number of years), geographic extent, and 
data delivery mechanism (e.g., desktop, web based). Fees 
are not based on the miles of roads covered in a region.

Archived Data
Nokia maintains several types of historic traffic data that 
is summarized in the Nokia Traffic Patterns and Traffic 
Analytics products. Traffic Patterns applies a weighting 
algorithm to multiple years of traffic data to provide the 
best possible assignment of the typical speeds experienced 
on all roads and highways. Traffic Analytics is an annual 
summary of traffic speeds contain 15-minute intervals 
by day, month and season. Both models also represent 
holiday travel conditions. Confidence scores are provided 
with all data summaries. Nokia also summarizes data 
directionally at the link level and TMC level for all roads.

Raw GPS data is used to develop the archived products.

During the data cleaning process for the data archive, 
erroneous values are removed and a raw probe is refor-
matted to enable map matching. The output of our clean 
process normalizes the data and ensures uniformity 
and quality prior to data aggregation. The data cleaning 
occurs on data obtained from the archive of the real-time 
traffic services as well as from probe archives received 
directly from third-party vendors.

The data is collected from individual probe points, then 
it is aggregated into 15-minute speeds and available 
at the TMC level and detailed Nokia link level for all 
mapped roads.

density of the data in time and space. There are also spe-
cific challenges in very complex urban conditions includ-
ing tunnels and bridges structures with multiple levels that 
we are continually working to make as precise as possible.

 7. Describe how your products are packaged to specifically 
serve the needs of transportation planners for travel 
demand forecast modeling or for congestion manage-
ment programs.

Nokia has an application called Traffic Patterns that 
includes archived data in a variety of aggregations. The 
most commonly used format is 15-minute average speed 
and travel time for each TMC at 15-minute increments 
for each day of the week.

Nokia currently provides real-time and archived data to 
Michigan DOT. This data will be integrated into the RITIS 
software application provided by the University of Mary-
land for performance measure and other transportation 
planning.

 8. For each of your specific data products (copy and repeat 
this question and categories as needed), please describe 
the following:

 a) Data product name and description
 b) Raw data frequency and accuracy
 c) Data cleaning process
 d) Level of aggregation or disaggregation
 e) Cost structure

Real-Time Data Feed
Nokia Traffic Satellite—Nokia is the exclusive provider 
of real-time traffic services for all satellite radio providers 
who offer traffic information via satellite radio in North 
America.

Nokia Traffic RDS—Real-time traffic delivered over FM 
radio using a radio data system (RDS) sub-carrier chan-
nel. RDS is well suited for auto companies and PND 
manufacturers.

Nokia Traffic ML—Real-time traffic designed for 
mobile and server-based navigation, as well as mapping 
applications.

Nokia Traffic Online—Real-time traffic available via 
consumer traffic websites.

Nokia Traffic Digital—Real-time traffic delivered over 
digital radio’s high bandwidth will mark a major leap for-
ward as additional data services beyond traffic become 
available.

Real-time data is continuously collected, models are 
updated every minute and the files containing the 
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•	 Before and after studies—changes to road infra-
structure, construction

•	 Performance analysis of intersections
•	 Traffic model calibration

Geo-Marketing
•	 Site location
•	 Advertising display location
•	 Demographic travel patterns

Logistics
•	 Fleet management (See also Navigation below)
•	 Supply chain optimization (See also Navigation 

below)
•	 Delivery scheduling (See also Navigation below)

Navigation (Automotive, Personal Navigation, Internet, 
Mobile)

•	 Estimated Arrival Time calculation based on day of 
week, time of day

•	 Time specific route selection: Routing based on day 
of week, time of day

Insurance
•	 Risk assessment—accident hotspot and high risk 

area identification

Live Traffic
Transportation Planning/Traffic Engineering: Private/
Public-Government

•	 Active traffic management
•	 Traffic Monitoring—Traffic Control Centers
•	 Flow Data—Speed, Travel Time
•	 Incident Data—Traffic Jam, accident, closure etc.
•	 Traffic website—511 etc.
•	 Variable message sign display—travel time, delay 

time

Navigation
•	 Dynamic live navigation/routing
•	 Dynamic pre-trip route planning
•	 Dynamic Estimated Time of Arrival calculation

 2. List and describe the different data-generating techno l-
ogies that are used to build your company’s data prod-
ucts (for example, in-dash navigation devices, personal 
navigation devices, non-GPS cell phones, GPS cell 
phones, truck GPS/AVL). Is one technology primary; if 
yes, please identify.

TomTom data sources include connected (GSM enabled) 
and non-connected after-market GPS devices, in-dash 
GPS systems, commercial vehicle GPS systems, GPS smart 
phones, and third-party incident data. After-market GPS 
devices represent TomTom’s primary data source.

Nokia’s diverse user community of public and private 
sector clients demands a highly flexible and adaptable 
licensing program. Several licensing options are avail-
able to ensure scalable and effective use of Nokia data. 
Licensing fees are determined based on the number of 
users, licensing term (i.e., number of years), geographic 
extent, and data delivery mechanism (e.g., desktop, web 
based). Fees are not based on the miles of roads covered 
in a region.

 9. Describe any potential demographic bias that exists in 
your data sources.

We receive data from a variety of data source types that 
likely mitigates bias in the data sources. Approximately 
half of the probe data is consumer, approximately half is 
commercial. The consumer mix includes mobile phones 
and mobile phone applications, personal navigation 
devices and navigation systems.

10. Describe any data usage clauses of agreements that come 
with new vehicle/device purchases that enable or autho-
rize your firm to use personal mobility data.

Many of Nokia’s clients provide data back to Nokia and 
therefore provide the data usage clause to the user. Some 
of Nokia’s products simply ask “(Product name) would 
like to use your current location, OK?”

11. Describe how data source privacy and location/time of 
day details are protected.

All data collected has a unique ID and there is no way 
to track the information back to an individual user. As 
an example, Nokia uses a completely anonymous id that 
resets periodically to further ensure anonymity.

TomTom

 1. Describe the primary and secondary markets for your 
data products (i.e., real-time traffic, transportation plan-
ning, etc.)

TomTom markets served include consumer navigation 
systems, commercial vehicle navigation systems, in-dash 
solutions for automotive OEMs, traffic information sys-
tems (e.g., 511), transportation planning and modeling, 
and GIS analysis.

Historic Traffic
Transportation Planning/Traffic Engineering: Private/
Public-Government

•	 Network performance monitoring
•	 Road network bottleneck reporting/analysis
•	 Noise and emission hotspot identification
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crowd-sourced GPS speed measurements from devices 
and smartphone applications as well as third-party 
information on road closures and accidents. Industry 
standards for data transmission are used and the traffic 
information can be provided to public and private enti-
ties using standard protocols.

Individual privacy is of paramount importance in  
TomTom’s systems. Because a large proportion of real-
time information is crowd-sourced, the crowd has to be 
able to trust that their information will not be misused or 
shared inappropriately. Protecting privacy goes beyond 
legal limitations: if the crowd does not perceive us as 
trustworthy, the crowd will no longer be a source. Tom-
Tom has developed methods of safeguarding the privacy 
of individuals and the information they provide. These 
continue to evolve as the number of channels providing 
crowd-sourced information grows.

 5. What is your current geographic coverage? Do you have 
plans to expand? If so, please elaborate on the planned 
geography as well as implementation timeline.

TomTom provides historical traffic data for 45 countries, 
and real-time traffic data in 23 countries. Coverage is 
expanding to include China and Russia this year and will 
continue to expand in the future.

 6. Describe any of your data products’ limitations that 
are relevant to road functional classification or other 
transportation system characteristics. Are expected 
error ranges provided by road segment or TMC loca-
tion code?

Limitations: probe-based speed measurements rely on 
there being vehicles on the road to provide data. Small, 
local roads with little or no traffic have therefore the 
lowest coverage in our system, yet we do provide speeds 
based on multiple years of measured, historical speed 
information by time of day and day of week. Some of our 
products include a ‘confidence value’ for each road sec-
tion to indicate the number of recent observations taken 
into account with that updated value in the file. Due to 
limitations of TMC table coverage, TomTom has imple-
mented new location referencing which can provide traf-
fic information at any location (see OpenLR.org).

 7. Describe how your products are packaged to specifically 
serve the needs of transportation planners for travel 
demand forecast modeling or for congestion manage-
ment programs.

TomTom Traffic Stats
TomTom lets you access the largest historic traffic database 
in the world available for governments and enterprises 
via our web-based Traffic Stats portal. Measure location 

 3. If you are using personal mobile devices (such as cell 
phones or smart phones) as a data source, please describe 
the penetration rate of this data source.

The specific penetration rate is unknown. There have 
been in excess of 1 million downloads of the TomTom 
smartphone GPS navigation application globally—but 
TomTom only collect traffic traces from devices docked 
in a car holder as a better indication that they are being 
used on a vehicle journey as opposed to train/bus etc.

TomTom also uses cellular probe data as an input source. 
By looking at the activity of cell phones moving near 
GSM network antennae, the (anonymous) handset loca-
tion can be matched to the road network and speed 
information calculated. Over 80 million GSM probes 
contribute to the TomTom real-time traffic system in 
Belgium, France, Germany, Italy, Netherlands, Portugal, 
Switzerland, and the UK—but always as a supplement to 
GPS probe data not as a substitute for GPS data.

 4. Describe your company’s plans for future vehicle or per-
sonal technology and data product development.

TomTom will continue to focus on smartphone appli-
cations, in-dash systems, and after-market navigation 
devices to ensure that the richest set of accurate GPS real-
time traces from a broad range of vehicles are available 
for creating traffic information.

There will also be a continued focus on traffic content, 
quality, coverage and geo-expansion to make traffic infor-
mation available in more markets globally. TomTom will 
add increased probe quantity both in real time and for the 
historical traffic database by adding 3rd party partner GPS 
data and connected device information starting from sec-
ond half of 2012 to improve the accuracy and confidence 
in the data. The project to be undertaken which will facili-
tate addition of the connected, (live,) and 3rd party probes 
to the historical database will not only increase sample size 
but also improve the freshness of the data available for 
analysis. This will take place across all markets where  
TomTom operates including North America.

TomTom has technology for multiple platforms. These 
include after-market consumer navigation devices, smart-
phone applications, fleet management systems and in-dash 
solutions. Predictive (based on historical information) 
and real-time route information is also made available on 
TomTom’s web platform. All our systems are supported 
by a customer care division, which has won a series of JD 
Power awards in recent years.

TomTom’s back-office systems include our own data 
fusion technology and provide updated traffic infor-
mation every minute. The data fusion uses anonymous 
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may also be possible though it was created to specifically 
improve route and ETA calculation. This product links 
directly to the TomTom MultiNet map database. This 
product is based on a two year average of speed per time 
of day, (5-minute time bins,) and is released quarterly.

 8. For each of your specific data products (copy and repeat 
this question and categories as needed), please describe 
the following:

 a) Data product name and description:

TomTom Custom Travel Times
Custom Travel Times is a traffic solution designed to give 
government agencies and enterprises more insight into 
traffic flows on a specific roadway, or series of connected 
roadways, (created using an A to B route calculation.) 
Custom Travel Times provides highly granular speed 
and bottleneck information for roads around the world. 
TomTom’s ever-expanding historical traffic database has 
over 5 trillion data points with over 6 billion new records 
being added each day—with some roads having more 
than 20,000 measurements. This makes it possible to 
obtain actual driven travel times and speeds on any stretch 
of road over any period of time and time of day. Cus-
tom Travel Times covers all roads, from major highways 
to local and destination roads, throughout Europe and 
North America. Please find detailed data output informa-
tion below.

•	 Excel
 – Route Name: Customer defined
 – Time collection: Customer defined
 – Length (meters)—Total length of the route.
 – Sample size: Average per segment.
 – Average Travel Time (hh:mm:ss)—Arithmetic 

average of travel time over the route.
 – Median Travel Time: (hh:mm:ss)
 – Average speed: (kph/mph)—Harmonic average 

speed.
 – Travel Time ratio: Comparison Sets
 – Percentile travel times: 5%–95%

•	 KML
 – Average speed: KPH/MPH
 – Length of segment: Meters
 – Average travel time: Seconds
 – Median travel time: Seconds
 – Standard deviation: Seconds
 – Sample size
 – Travel Time Ratio: Comparison Sets

•	 Charts
 – Available online for viewing. Not downloadable.
 – Charts/Graphs can be made from the data con-

tained in the Excel output.

accessibility for site selection, identify road network bot-
tlenecks and noise emission hotspots, perform before and 
after studies relating to infrastructure changes or analyze 
intersection design and performance. All you need is an 
Internet connected computer, and you will receive 24 × 7 
access to TomTom traffic data.

•	 Access to TomTom historical traffic products any-
where & anytime.

•	 Tailor-made reports available within 24 hours.
•	 Data can be downloaded for use in other applica-

tions/traffic modeling tools, etc.

Through the Traffic Stats website three products, Custom 
Area Analysis, Custom Travel Times and Custom Probe 
Counts can be accessed. Below please find brief descrip-
tions of these three products, with a more detailed descrip-
tion to follow in response to question 8. NOTE: Custom 
Probe Counts has yet to be officially released.

Custom Area Analysis
Custom Area Analysis delivers a Shape file (*.shp) with 
both the road geometry of the segments analyzed and 
the data base, (*.dbf) with the related statistical data for 
each road segment. This data can be readily uploaded 
into standard GIS tools to visualize and manipulate 
the data. A sample size is provided upon completion of  
the query and one can reject a report before accepting 
if the sample size proves inadequate for a given project. 
This allows for the time parameters to be adjusted so that 
a greater sample size might be obtained. NOTE: This is 
also the case for Custom Travel Times which is outlined 
immediately below.

Custom Travel Times
Results of a Custom Travel Times query are given in three 
different types of output:

•	 Excel
•	 KML
•	 Charts

NOTE: Charts are only available for viewing within the 
Traffic Stats web portal. However, graphs can be made 
using the Excel output.

Custom Probe Counts
The results are given in an industry standard ESRI 
Shapefile compatible dBASE file and can be downloaded 
through a simple web interface, once confirmation has 
been given that the job has been processed.

Speed Profiles
A fourth historical speed product is also available for the 
purpose of providing real-world data for the calcula-
tion of routes and estimated times of arrival in routing/
navigation applications. Other potential uses of the data 
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by aggregating billions of GPS measurements to offer 
precise speeds for specific times of day and days of the 
week. With Speed Profiles routes adapt dynamically to 
the time of departure and incorporate local knowledge. 
The optimal route on Monday morning may differ on 
Sunday afternoon, just as the travel time on a Tues-
day in December will be longer than in May. Armed 
with Speed Profiles, ETAs are highly accurate and 
travel time is reduced along with stress levels, travel 
costs and environmental impact. Deployment effort is 
minimal thanks to a compact data footprint and with 
wide coverage of highways, urban, rural and second-
ary roads it delivers a seamless country by country  
experience.

TomTom Enterprise Traffic
TomTom Enterprise Traffic provides precise locations 
and delays caused by congestion on the road network, 
allowing routing programs to provide the fastest route 
based on actual current travel times. By incorporating 
TomTom Enterprise Traffic into a navigation solution, 
drivers can determine the quickest route to their desti-
nations by considering “live” road conditions. The data 
in each Enterprise Traffic file includes road delays allow-
ing routing programs to evaluate the true travel time 
to each destination. This product can also be deployed 
for display purposes such as in traffic control center or 
even embedded into a website for A to B dynamic rout-
ing. The Enterprise Traffic XML feed is made available 
for consumption via the client pull method every minute 
in standard formatting and can be implemented using 
either TMC segments or OpenLR.

TomTom HD Flow
TomTom HD Flow delivers a real-time, detailed view of 
traffic speeds on the entire road network, designed for 
easy integration into traffic management systems or cal-
culating current routing travel times. The data output 
is generated from TomTom’s proprietary fusion engine 
and is refreshed every minute. For each road segment 
this delivers the road’s identification, the total travel time 
under current and ideal conditions and the average speed 
and quality for that segment. This enables traffic control 
centers to determine relative levels of road service over 
wide areas, and personal navigation device and smart-
phone manufacturers to benefit from dynamic routing 
and display. With HD Flow we help you in the placement 
of real-time traffic signs showing the fastest road choice 
to a common destination. A quality/confidence value is 
also provided in the output. The data is made available 
in XML feed, client pull method, every minute, DATEX2 
format, TMC application.

TomTom Custom Area Analysis
Custom Area Analysis is a traffic solution designed to 
give government agencies and enterprises more insight 
into traffic flows for complete road networks. Custom 
Area Analysis provides highly granular speed and bottle-
neck information for large and small road networks 
around the world across all road classes. TomTom’s ever-
expanding historical traffic database has over 5 trillion 
data points with over 6 billion new records being added 
each day—with some roads having more than 20,000 
measurements. This makes it possible to obtain actual 
driven travel times and speeds on any stretch of road 
over any period of time and time of day. Custom Area 
Analysis covers all roads, from major highways to local and 
destination roads, throughout Europe and North Amer-
ica. No need to purchase road collection hardware such 
as cameras, and loop sensors. With Custom Area Analysis 
it is possible to gather statistics on the road network as 
a whole, from Interstates through arterials to the local 
street level.

•	 Shapefile (*.dbf) output fields
 – ID: Segment ID number
 – Average Travel Time: Harmonic average travel 

time. kph or mph
 – Median Travel Time: Seconds
 – Average Speed: Arithmetic Average. kph—mph
 – Median Speed: kph or mph
 – Standard Deviation of Speed: kph or mph
 – Sample Size: Per segment
 – Travel Time ratio: Comparison Sets. Seconds
 – Percentile travel times: 5%–95%

Custom Probe Counts
Not all studies of road usage require speed and congestion 
information. Sometimes it is interesting to understand 
the relative traffic volumes that use the roads around sites 
being considered for locating new buildings or shopping 
areas—or even which locations might attract more viewers 
for an advertising campaign. Custom Probe Counts can 
provide data on the number of devices that were recorded 
on individual MultiNet road segments for any given period 
back to 2008. Highly granular data from TomTom’s ever-
expanding historical traffic database has over 5 trillion 
data points with over 6 billion new records being added 
each day—with some roads having more than 20,000 mea-
surements. Using this data, analysts can quickly gather an 
indication of the relative traffic volume on the individual 
roads surrounding the location of interest.

Speed Profiles
Speed Profiles is different. It is a comprehensive data-
base of actual historic roadway speeds. These are attained 
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Real-Time Output Quality:
•	 TUV Certified
•	 Regular QKZ tested (Enterprise Traffic)
•	 HD Flow tested by methodology developed by the 

Texas Transportation Institute

 c) Data cleaning process:

All data inputs are processed through the proprietary 
TomTom applications to remove possible errors such as 
map-matching anomalies, outliers etc. Filters are applied 
to remove possible data from devices used on public 
transport/pedestrians and also where vehicles are tem-
porarily in gas stations etc.

 d) Level of aggregation or disaggregation:

With respect to aggregation at the road element level 
TomTom offers different levels of aggregation. In Cus-
tom Area Analysis and Custom Travel Times road ele-
ments can be quite short, (multiple road elements within 
one city block for example,) to road elements on high-
ways which can be measured in terms of miles. In Live 
Traffic offerings Traffic Messaging Channel links can be 
utilized which result in much longer road elements and 
cover only the TMC network. Real-time data can also be 
made available in the above mentioned shorter road ele-
ment lengths via our open-source OpenLR format which 
allows for the application of traffic information across 
the road network wherever information is available. With 
respect to Live Traffic updates are made available via the 
client pull method every minute.

The historical products Custom Travel Times and Custom 
Area Analysis data can be sliced by one hour combinable 
time bins. Future iterations of these two products will 
offer more flexibility with respect to time bins the details 
of which are not available at this time. Speed profile data 
represents two year averaged data which is applied to the 
TomTom MultiNet map at the road element level.

 e) Cost structure

Custom Travel Times: Price per route.
Custom Area Analysis: Price per geographic scope, road 
class and number of queries.
Custom Probe Counts: Price per mile.
Real-Time Traffic: Price per mile.

9. Describe any potential demographic bias that exists in 
your data sources.

When TomTom first entered the mass market for navi-
gation we saw a bias toward men between the ages of 25 
and 35 who drive often. We now know from our own 
market research that our customer base is now much 

TomTom HD Route Times
TomTom HD Route Times is a turnkey solution pro-
viding highly accurate real-time travel and delay times 
for a specific route either on a temporary basis or for 
permanent solutions. Key to this data is its flexibility. 
Travel times and delay statistics are delivered without 
the need to build infrastructure or install and maintain 
hardware. Data can be sent continuously to roadside 
information systems or on a temporary basis to mobile 
systems used during road works. The data is refreshed 
every minute allowing traffic control centers to deploy 
variable message signs (VMS) suggesting alternative 
routes. Event managers can schedule travel information 
to be displayed around special events. Even kiosks and 
corporate offices can take advantage of TomTom HD 
Route Times’ detailed, granular data for specific local 
route data.

 b) Raw data frequency and accuracy:

TomTom GPS data
In raw form, TomTom GPS data has the following  
characteristics:

•	 Time stamp: year, month, day, hour, minutes, seconds, 
hundredths of seconds

•	 Position stamp: latitude and longitude
•	 Identification number (randomly generated)

Data from real-time GPS devices are transmitted between 
every 40 and 60 seconds to a server after which it is pro-
cessed through the proprietary TomTom fusion engine.

For privacy protection the identification number is 
changed for every 24-hour period.

Further processing makes it possible to calculate:
•	 Speed
•	 Travel time
•	 Speed and travel time variance
•	 Acceleration rate
•	 Deceleration rate
•	 Trip origin, destination, route choice

To calculate these statistics, the GPS data points must 
first be ‘map-matched’. This is a process developed by 
TomTom to match each GPS point to a specific road seg-
ment as defined in our own map database. The map-
matching process also performs filtering of unreliable 
GPS measurements.

Data presentation:
•	 Data made available every minute
•	 XML Feed
•	 Datex2 format
•	 Location referenced by TMC code or OpenLR
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unique serial numbers, potentially allowing (re-)iden-
tification of the user are destroyed either immediately 
or within 20 minutes after their device or car has been 
shut down. Users also are informed about the fact that 
TomTom uses their information in an anonymous way 
to enhance its products and services, which also are made 
available to business and governments.

In those cases geolocation information is obtained from 
third-party sources, TomTom ensures, technically, orga-
nizationally and contractually, the data it receives from 
the third party does not allow TomTom to identify or 
even single out the individual contributing the data: 
TomTom obtains anonymous data only and uses it only 
for the agreed purpose after which the data is destroyed. 
TomTom applies advanced Privacy Enhancing Techno l-
ogies and organizational measures to subsequently live 
up to the agreement with its users and third parties. All 
geolocation data is protected against unauthorized access 
(i.e., anyone except TomTom) with strong encryption 
while stored on end user devices and while in transit. To 
avoid identification or singling out individuals, TomTom 
irreversibly destroys any unique identifiers immediately 
upon reception of the data from its users. It those cases 
where this is not possible (specifically: generating traffic 
information), one-way pseudonyms with a short lifetime 
are used and data is kept in volatile memory to not cre-
ate potentially recoverable copies of identifiable geoloca-
tion data. Pseudonym lifetime is capped at a maximum 
of 20 minutes after the device contributing the data has 
been switched off or 24 hours, whichever is shorter. In 
those cases where TomTom retains a copy of the geolo-
cation data, this always is done without any identifying 
elements (such as device unique serial numbers) and on a 
per trip basis only, i.e., without maintaining the relation-
ship between trip originating from the same device.

Please also refer to www.tomtom.com/yourdata for our 
publicly available information regarding the way Tom-
Tom treats information obtained from its customers.

TrafficCast

 1. Describe the primary and secondary markets for your 
data products (i.e., real-time traffic, transportation plan-
ning, etc.)

Primary markets:
•	 Provide real-time traffic data (Dynaflow and inci-

dents) to support online and mobile applications 
and to TV stations for broadcasting.

•	 Provide BlueTOAD services to public agencies for 
workzone impact study, special events traffic flow 

more representative of the general population, but we 
still have some underrepresentation of women and of 
people older than 65 years of age or short-distance com-
muters. There may also be some bias against very low 
household income groups.

10. Describe any data usage clauses of agreements that come 
with new vehicle/device purchases that enable or autho-
rize your firm to use personal mobility data.

After-market devices include an opt-in question. In-dash 
systems vary. Opt-in depends on the actual OEM and the 
specific agreement.

11. Describe how data source privacy and location/time of 
day details are protected.

Individual privacy is of paramount importance in  
TomTom’s systems. Because a large proportion of real-
time information is crowd-sourced, the crowd has to be 
able to trust that their information will not be misused 
or shared inappropriately. Protecting privacy goes beyond 
legal limitations: if the crowd does not perceive us as trust-
worthy, the crowd will no longer be a source. TomTom has 
developed methods of safeguarding the privacy of individ-
uals and the information they provide. These continue to 
evolve as the number of channels providing crowd-sourced 
information grows. TomTom uses various data sources to 
create its maps and map related products and services, 
such as real-time and historic traffic information. These 
data sources include geolocation data obtained from indi-
viduals, who need to be able to trust TomTom to use their 
data in a responsible way that does not violate their privacy. 
To obtain the highest possible yield, resulting in the high-
est possible quality, it is paramount for TomTom to foster 
this trust. As such TomTom is committed to acting above 
and beyond the OECD privacy principles (notice, purpose, 
consent, security, disclosure, access and accountability), 
also laid down in legislation and enforced by independent 
regulators in the various countries in which TomTom 
operates.

More specifically, in all cases where TomTom obtains 
geolocation data from its customers, this is done based 
on prior, explicit, informed consent, which can be with-
drawn at any time. Effectively this means that users of 
TomTom products are informed about the use of their 
geolocation information and voluntarily opt-in, before 
any geolocation information is captured to be sent to 
TomTom for further use. Users are informed about the 
data being captured and the fact that it will only be used 
for map, road, traffic and traffic related purposes, under 
the moniker “we profile roads, not people.” Users also are 
informed that TomTom will use the data anonymously, 
i.e., elements, such as account names, email addresses or 
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the process of investigating its critical attributes required 
for generating useful traffic information. The prelimi-
nary findings indicate the needs of adopting theory 
developed in the linear dynamic system to make this data 
useful. The final goal of this exercise is to come out a soft-
ware product that runs on either device side or server 
side, which ever mobile data is available, so the traffic 
information can be produced on the fly to feed mobile 
application needs.

Another product plan that is directly related to end users 
and has already been in the testing phase is the traffic 
broadcaster application that is currently under reviewed 
by media companies. This application is designed to pro-
duce graphical and narrative traffic information for live 
TV and radio broadcast. The requirement of this initia-
tive also calls for providing mobile traffic application for 
smartphone so media can use it as name branding and 
promotion vehicle. In return, the data collected by these 
applications will be used to enhance TrafficCast’s product 
offering.

As for the BlueTOAD, TCI has developed several related 
products to meet both real-time traffic management 
and offline transportation study needs. Please see http:// 
trafficcast.com/products/view/blue-toad/ for the details.

 5. What is your current geographic coverage? Do you have 
plans to expand? If so, please elaborate on the planned 
geography as well as implementation timeline.

Currently TCI Dynaflow and incident data service cover-
age for functional class 1 to 4 roads in the U.S. BlueTOAD 
deployment covers major road and arterial in 20+ states 
in the U.S. as well as in Vancouver, Calgary, and Kelowna, 
Canada, Sao Paulo, Brazil, Santiago and Puerto Montt, 
Chile, and Hong Kong, China.

The planned geographic expansion includes providing 
top 20 markets of Dynaflow in Canada by 2013 Q1 and 
continuously expands BlueTOAD deployment to major 
metropolitan areas in the U.S. and Central and South 
America in 2013 and 2014.

 6. Describe any of your data products’ limitations that are 
relevant to road functional classification or other trans-
portation system characteristics. Are expected error ranges 
provided by road segment or TMC location code?

Dynaflow: It covers functional class 1 to 4 roads in the 
U.S. The error rate varies from 10% to 35% depending 
on the markets and road functional class. Freeway and 
major arterial in an urban area usually have a higher 
accuracy than that of minor roads. This is probably 
due to flow disruption caused by the deployment of 

monitoring, OD study, and real-time travel speed 
and travel time reporting.

Secondary markets:
•	 Provide real-time and historical speed data to public 

agencies for transportation planning and modeling.

 2. List and describe the different data-generating techno l-
ogies that are used to build your company’s data products 
(for example, in-dash navigation devices, personal navi-
gation devices, non-GPS cell phones, GPS cell phones, 
truck GPS/AVL). Is one technology primary; if yes, please 
identify.

For Dynaflow product, major input data come from two 
main sources:

•	 GPS data from fleet and mobile device that TCI pur-
chases and data exchanges from fleet management 
companies and business partners that provide  
location-based service through application installed 
on GPS-enabled mobile phone.

•	 Data collected by BlueTOAD installed across more 
than 20 states in the U.S.A. and in other countries 
such as Canada, Chile, and Brazil. See http://trafficcast.
com/products/view/blue-toad/ for the detailed infor-
mation about BlueTOAD.

•	 The majority of mobile data used to produce Dyna-
flow come from GPS data collected through fleets.

For incident data service:
•	 More than 120 Java programs are developed to retrieve 

and parse publically available incident data from city, 
state DOTs and 511 systems.

•	 Data collected by TCI operators at National Opera-
tion Center based in Madison, Wisconsin, and Phila-
delphia through TrafficCaster, an interactive map 
and table driven web-based application developed by  
TrafficCast. Operators watch the traffic camera and lis-
ten to police radio scanner to identify and confirm traf-
fic incident during morning and evening rush hours.

 3. If you are using personal mobile devices (such as cell 
phones or smart phones) as a data source, please describe 
the penetration rate of this data source.

This information is not available to TCI due to data from 
mobile devices are indirectly obtained through business 
partners that TrafficCast doesn’t have information about 
the penetration rate.

 4. Describe your company’s plans for future vehicle or per-
sonal technology and data product development.

TCI has the opportunity to take a close look at the mobile 
data collected by telecommunication carriers and is in 
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purpose in every 15-minute interval for each day in 
the week and by season. Its basic attributes include 
season, day of week, time of day, TMC segment ID, 
and speed. This data is updated annually and being 
used by some public agencies and navigation device 
manufactures.

•	 Incident: gathered from public agencies and by TCI 
NOC (National Operation Center in both Philadel-
phia, PA, and Madison, WI), the content of traffic 
incident data include accident, planned roadwork, 
and emergency events such as flooding, hurricane 
evacuation, etc. This information has been provided 
to TV stations and major telematics service providers 
such as Google and OnStar.

•	 BlueTOAD data: By detecting Bluetooth signal,  
BlueTOAD detects the MAC address of the device. 
With known BlueTOAD location and the time 
stamp a device is detected, travel time and travel 
speed between two BlueTOAD units are calculated.  
BlueTOAD is also used to assess the percentile of 
traffic distribution for a small network.

 b) Raw data frequency and accuracy:

Dynaflow-real-time and Dynaflow-predictive: The raw 
data used by Dynaflow-real-time, Dynaflow-predictive 
come from many sources and each with different update 
frequency and quality.

•	 Speed data from DOTs: TrafficCast has access to  
45 markets of speed data collected by city or state 
DOTs with update frequency generally between 3 to 
5 minutes. However, the technology used to collect 
such data imposes a challenge of regular maintenance 
of those detectors such that its accuracy is certainly 
questionable. In last few years, TrafficCast conducted 
two major quality assessments for DOT speed data 
collected from all available markets by comparing it 
to GPS probe data. The finding is somewhat discour-
aging due to many DOT data never change through-
out a day probably because of malfunctioning.

•	 BlueTOAD data: Sold to public agencies for corri-
dor and regional traffic data collection, BlueTOAD 
data has been integrated into Dynaflow as part of its 
inputs. It is one unique data source only available to 
TrafficCast. BlueTOAD scans passing by Bluetooth-
enabled devices every 5 seconds and aggregate the 
data for speed calculation every minute. Its accu-
racy, which is in the range of 90% to 95%, has been 
verified by several DOTs and independent consulting 
firms through ground truth.

•	 GPS probe data: used to create Dynaflow products, 
GPS probe is updated in a frequency varies from 
one data provider to another. Some update every 

un synchronized traffic control mechanism such as traf-
fic signal or stop sign.

BlueTOAD: It mainly covers arterial roads in urban and 
suburban areas. The speed accuracy is about 85% to 93% 
measured by the ground truth done by TCI team, TCI 
customers, and independent consulting firms.

 7. Describe how your products are packaged to specifically 
serve the needs of transportation planners for travel 
demand forecast modeling or for congestion manage-
ment programs.

Dynaflow-historical is produced and updated once a year 
based on GPS data to provide historical trend that can 
be utilized for traffic demand modeling and, service level 
assessment, and transportation planning. It is packaged 
in season, day of week, and time of day in 15-minute 
interval for each TMC for the entire U.S.

BlueTOAD data has been used to provide real-time travel 
time delivery through variable message sign, and informa-
tion to DOT web site. For planning purpose, BlueTOAD is 
also used by several public agencies to produce route traffic 
assignment percentile for a small network, which is essen-
tial for roadwork impact study and the measurement of 
effectiveness of detour advisory.

 8. For each of your specific data products (copy and repeat 
this question and categories as needed), please describe 
the following:

 a) Data product name and description:

Fused from a variety of sources including historical road 
speed trends, real-time GPS probe, speed data from pub-
lic agencies, and anticipated traffic impacts such as inci-
dent, construction, weather and upcoming events from 
both public and private sources, Dynaflow provides 
accurate historical, real-time and forecast road speeds 
for the functional class 1 to 4 roads in the United States.

•	 Dynaflow-real-time: update every minute, Dynaflow- 
real-time provides speed either based on NAVTEQ 
link ID or TMC location code depending on client’s 
needs.

•	 Dynaflow-predictive: Although there are seven days 
of predictive speed stored in the database, at any 
given time, TrafficCast only allows customer come 
to retrieve up to 48-hour of prediction. The reason is 
the quality of weather forecast, the dominant factor 
for the long-term traffic prediction, degrades drasti-
cally beyond 48 hours. To reduce the data size, this 
data is made available in TMC segment.

•	 Dynaflow-historical: TrafficCast packages histori-
cal traffic trend data for traffic study or planning 
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navigation. Therefore, tremendous effort has been 
spent to refine traffic event location by a sophisti-
cated map-matching algorithm. Data lack of suf-
ficient information is not provided to customer or 
used by traffic impact model.

 d) Level of aggregation or disaggregation:

Internally, TrafficCast builds Dynaflow model based on 
NAVTEQ link identifier. Therefore, one level of aggrega-
tion in spatial domain is to aggregate multiple GPS probe 
points fall into the same link ID within each model itera-
tion cycle (which is usually one minute, the aggregation 
in temporal domain inside the model) to produce one 
single speed output for that particular link.

When the speed is produced based on TMC segment to 
support application needs, another layer of spatial domain 
is performed by merging multiple link speeds to a single 
TMC speed. Both Dynaflow-historical and Dynaflow- 
predictive are based on TMC and use 15-minute as basic 
time interval.

 e) Cost structure:

The cost structure varies from one customer to another 
and it also depends on market segment such as public 
agencies, media (TV station), web portal, and mobile 
location-based services, etc. The table below shows how 
TrafficCast data products are packaged and sold to differ-
ent market segments.

10 to 30 seconds, and the others update every 1 
to 3 minutes. It is difficult to measure raw GPS  
accuracy, but there are indicators, such as GPS fix 
time and number of satellites observed, in some of 
data sources that can tell if the data is reliable so 
Dyna flow model can decide whether they should 
be used as input.

•	 Incident data: incident data from private source usu-
ally update within one minute during rush hours. 
While generally the public sources only report inci-
dent at the beginning and the end of an event, ex-
cept California Highway Patrol. It is expected that 
the quality of incident data is not consistent across 
the entire country with some include detailed event  
description but some only provide a short phrase 
such as “traffic accident” or “traffic collision” such 
that it is almost impossible to derive traffic impact 
from such limited information.

Dynaflow-real-time is updated every minute, Dynaflow-
predictive is updated every 15 minutes, and Dynaflow-
historical is updated annually.

Accuracy of Dynaflow-historical is difficult to measure, 
but the accuracy of Dynaflow-real-time and Dynaflow-
predictive is between 65% and 90% depending on market 
and road functional class.

 c) Data cleaning process:

•	 GPS probe data: criteria used to filter GPS probe 
data include its location (on the roadway or inside 
a building), quality index (for the data sources pos-
sess such information), heading (within 5 degrees 
compared to road geometry calculated from the 
digital map), and data latency (need to be within 
5 minutes).

•	 DOT speed data: TrafficCast assigns a quality index 
1 to 4, with 4 is the highest quality, to each DOT sen-
sor dynamically based on offline data analysis, real-
time speed trend (to make sure data changes with 
time),and comparison to GPS probe data. Quality 
index lower than 3 is not used by TrafficCast’s traffic 
models.

•	 Incident data: The quality of incident data is  
inconsistent due to they come from different sources. 
Among three key attributes of an incident—time 
(when), location (where), and what happens, loca-
tion is usually the most challenging one to deal with. 
For the data to be provided to customers and be used 
by traffic impact model, knowing the exact location 
of incident data is crucial (so a ramp closure won’t 
be mistakenly treated as a highway closure). This is 
particularly true for the data used to support mobile 

 Product\Customer 
public 
agency media web portal 

mobile 
LBS 

Dynaflow-real-time city or state city nation wide nation wide 

Dynaflow-predictive state  - nation wide nation wide 

Dynaflow-historical state  - nation wide nation wide 

incident  - city nation wide nation wide 

BlueTOAD city, county  -  -  - 

•	 Dynaflow-real-time: For nationwide web portal and 
mobile LBS, TrafficCast charges client a lump sum 
annual loyal fee plus a small monthly subscription 
fee for each end user. If data is not use to support 
nationwide service, it is mainly charged based on the 
number of markets and the tier of market (top 20, 
20–40, 40 after, etc.) they belong to. For public sector 
that requires statewide coverage, the price is based on 
total road mile.

•	 Dynaflow-historical: It is charged based on number 
of road mile and data update frequency.

•	 Dynaflow-predictive: It is charged based on the tier 
of market (top 20, 20-40, 40 after, etc.) and number 
of markets. If it is for nationwide traffic service, then 
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DOT speed: Generally, it is only available for the urban 
Interstate freeway system. Arterial may not be covered.

Incident data: Often time data from state DOTs or 
511 systems doesn’t cover traffic event occurs at local 
arterial. Therefore, the impact (delay and queue length) 
on minor roads may not always be available to Dynaflow.

10. Describe any data usage clauses of agreements that come 
with new vehicle/device purchases that enable or autho-
rize your firm to use personal mobility data.

TrafficCast does not own any product or application to 
collect mobility data directly from end users.

11. Describe how data source privacy and location/time of 
day details are protected.

Privacy is a major concern to those GPS probe data provid-
ers; therefore, before data made available to TrafficCast, 
their unique identifiers (either, vehicle ID, device ID or 
device series number) have been converted to a set of 
random numbers using hash function that is unknown 
to TrafficCast.

the pricing structure is similar to that of Dynaflow-
real-time.

Incident data: It is charged by the tier of the market 
for media. For web portal and mobile LBS, TrafficCast 
charges a lump sum annual loyal fee plus a small monthly 
subscription fee for each end user.

BlueTOAD: it is sold by number of BlueTOAD units. Data 
is included. Separate charges for solar panel and/or wire-
less communication fee are applied if power and/or Ether-
net connection is not available at the site of installation.

 9. Describe any potential demographic bias that exists in 
your data sources.

GPS probe data: the bias could be (1) it mainly comes from 
fleet (delivery truck and long-haul truck), (2) depending 
on data providers, the data could be limited to a certain 
region. Hence, data from multiple vendors is required to 
create a solid nationwide flow database, and (3) some data 
is collected from handheld devices, which is limited to 
those smart phones with GPS tracking capability enabled.
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A P P E N D I X  D

Experiment A Models

Mode Identification MNL Model 

Utility Parameters 

Name Value Std Error t test p value
asc_auto 7.13 1.80e+308 0 1

asc_bike 7.65 1.80e+308 0 1

asc_bus 7.78 1.80e+308 0 1

asc_train 6.44 1.80e+308 0 1

asc_walk 1.86 1.80e+308 0 1

auto_highaccel 16.1 1.18E+03 0.01 0.99

auto_higheraccel 0.785 0.77 1.02 0.31

auto_highspeed 1.44 2.73E+04 0 1

auto_midspeed 0.997 3.23E+03 0 1

bike_lowspeed 0.671 2.80E+04 0 1

bike_midaccel 19 1.76E+03 0.01 0.99

bike_midspeed 13.3 2.79E+04 0 1

bus_highaccel 31.1 1.70E+03 0.02 0.99

bus_higheraccel 0.468 0.737 0.64 0.52

bus_highspeed 1.51 2.73E+04 0 1

bus_midspeed 0.368 3.23E+03 0 1

train_highaccel 4.46 6.26E+03 0 1

train_higherspeed 3.97 1.06 3.75 0

train_highspeed 20.5 2.79E+04 0 1

walk_lowaccel 0.916 1.3 0.7 0.48

walk_lowspeed 7.47 1.44E+04 0 1
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Trip Purpose MNL Model 

Utility Coefficients (Excluded Items Equal to Zero) 

Beta Value Std Error t test p value

asc_cra_lu_institutional 1.27 0.0605 20.95 0

asc_cra_nearchurch 1.21 0.0837 14.42 0

asc_ctm_iswalkorwheelchair 2.59 0.0618 41.85 0

asc_ctm_transfervariableatleastonenonauto 0.969 0.131 7.38 0

asc_ctm_transfervariablebothnonauto 3.35 0.121 27.74 0

asc_drp_actdurless10min 1.19 0.0473 25.29 0

asc_drp_dropoffvariable 1.39 0.0745 18.69 0

asc_drp_someonedropped 2.56 0.0805 31.77 0

asc_dth_tripdistgreater10mi 0.0837 0.0222 3.77 0

asc_emo_actdurgreater10min 0.55 0.0389 14.12 0

asc_emo_actdurgreater150min 0.514 0.0775 6.63 0

asc_emo_actdurless120min 0.413 0.057 7.25 0

asc_emo_adultparty12pmto2pm 0.172 0.0339 5.08 0

asc_emo_adultpartyactdur20to40min 0.238 0.0298 7.98 0

asc_emo_complexsubtour 0.377 0.0777 4.85 0

asc_emo_groupeatoutduration 0.69 0.0389 17.75 0

asc_emo_iswalkorwheelchair 0.375 0.0609 6.16 0

asc_emo_simplesubtour 0.954 0.0609 15.66 0

asc_grc_actdurgreater10min 0.61 0.0289 21.15 0

asc_grc_actdurgreater90min 0.571 0.0413 13.82 0

asc_grc_adultparty12pmto2pm 0.113 0.0262 4.32 0

asc_grc_groupgroceryduration 0.179 0.0288 6.21 0

asc_hcr_actdur30to90min 0.105 0.0235 4.48 0

asc_her_actdurgreater45min 0.321 0.0334 9.6 0

asc_lu_parks 1.58 0.0756 20.9 0

asc_orc_nearbigbox 0.76 0.0632 12.02 0

asc_orc_nonmand 0.898 0.141 6.36 0

asc_pbs_complexsubtour 0.213 0.0653 3.26 0

asc_pbs_simplesubtour 0.199 0.0627 3.17 0

asc_pkp_actdurless10min 0.955 0.0455 20.98 0

Utility Functions 

ID Name Specification

3 auto asc_auto * one + auto_midspeed * midspeed + auto_highspeed * highspeed + auto_highaccel *
highaccel + auto_higheraccel * higheraccel

2 bike asc_bike * one + bike_lowspeed * lowspeed + bike_midspeed * midspeed + bike_midaccel *
midaccel

5 bus asc_bus * one + bus_midspeed * midspeed + bus_highspeed * highspeed + bus_highaccel *
highaccel + bus_higheraccel * higheraccel

7 train asc_train * one + train_highspeed * highspeed + train_higherspeed * higherspeed +
train_highaccel * highaccel

1 walk asc_walk * one + walk_lowspeed * lowspeed + walk_lowaccel * lowaccel
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Beta Value Std Error t test p value

asc_wrl_ftworkeractdurless120min 0.953 0.0609 15.64 0

asc_wrl_ptworkeractdurless120min 0.642 0.105 6.1 0

child_dis_discretionary_starttime3pmto7pm 1.06 0.0823 12.91 0

child_dis_eating_out_starttime5pmto7pm 0.401 0.0792 5.06 0

child_dis_maintenance_starttime2pmto6pm 0.156 0.0585 2.67 0.01

child_dis_visiting_starttime2pmto7pm 0.478 0.0699 6.84 0

cra_all 1.54 0.0787 19.57 0

ctm_child 2.43 0.0928 26.2 0

ctm_drvchild 1.36 0.163 8.35 0

ctm_ftw 2.57 0.0725 35.4 0

ctm_nonw 1.21 0.0825 14.67 0

ctm_presc 0.825 0.176 4.7 0

ctm_ptw 1.61 0.0947 16.98 0

ctm_retr 0.803 0.112 7.18 0

ctm_ustu 2.39 0.148 16.17 0

dis_discretionary_highincome 0.219 0.0231 9.45 0

dis_discretionary_lu_commercial 0.482 0.0265 18.22 0

dis_discretionary_zerocars 0.572 0.1 5.72 0

dis_eating_out_highincome 0.137 0.0231 5.95 0

dis_eating_out_lu_commercial 1.38 0.0455 30.37 0

dis_eating_out_zerocars 0.377 0.0948 3.97 0

dis_escorting_female 0.176 0.032 5.49 0

dis_escorting_highschoolenrollment 0.442 0.114 3.87 0

dis_escorting_k8enrollment 0.49 0.126 3.89 0

dis_escorting_nondrivingchildren 0.549 0.0363 15.14 0

dis_maintenance_female 0.128 0.0186 6.88 0

dis_maintenance_lu_commercial 0.959 0.0301 31.84 0

dis_maintenance_lu_institutional 0.431 0.0266 16.24 0

dis_shopping_female 0.164 0.0197 8.31 0

dis_shopping_lu_commercial 1.49 0.0443 33.56 0

drp_child 1.21 0.175 6.91 0

drp_drvchild 1.08 0.165 6.56 0

drp_ftw 1.7 0.11 15.4 0

drp_nonw 1.24 0.116 10.62 0

drp_presc 1.21 0.135 8.92 0

asc_pkp_someonepicked 3.12 0.0903 34.59 0

asc_rec_grouprecreationduration 0.54 0.0545 9.91 0

asc_sch_schoolbusmode 2.38 0.185 12.86 0

asc_sch_schoollocationmatch 6.99 0.0895 78.12 0

asc_shp_actdurless60min 0.793 0.0329 24.07 0

asc_soc 3.15 0.0676 46.64 0

asc_soc_groupsocialvisitduration 0.554 0.0488 11.34 0

asc_srv_actdurgreater30min 0.421 0.0368 11.45 0

asc_wrk_worklocationmatch 6.35 0.0709 89.65 0

asc_wrl_complexsubtour 1.46 0.1 14.57 0

asc_pkp_pickupvariable 0.899 0.0818 10.99 0

(continued on next page)
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Beta Value Std Error t test p value

emo_ptw 1.55 0.131 11.81 0

emo_retr 1.45 0.131 11.09 0

emo_ustu 1.39 0.17 8.19 0

ftw_dis_discretionary_starttime5pmto7pm 0.812 0.0524 15.48 0

ftw_dis_eating_out_starttime11amto1pm 0.408 0.0473 8.63 0

ftw_dis_eating_out_starttime5pmto7pm 0.532 0.0462 11.49 0

ftw_dis_maintenance_starttime3pmto6pm 0.105 0.034 3.1 0

ftw_dis_shopping_starttime3pmto7pm 0.39 0.0362 10.77 0

ftw_dis_visiting_starttime3pmto8pm 0.487 0.0502 9.69 0

mnt_child 3.62 0.084 43.07 0

mnt_drvchild 3.32 0.0946 35.13 0

mnt_ftw 3.83 0.0705 54.24 0

mnt_nonw 3.34 0.0727 45.99 0

mnt_presc 3.3 0.0934 35.35 0

mnt_ptw 3.57 0.0757 47.19 0

mnt_retr 3.48 0.0752 46.22 0

mnt_ustu 3.37 0.11 30.68 0

nonw_dis_discretionary_startttime8amto11am 0.42 0.0687 6.11 0

nonw_dis_eating_out_starttime11amto1pm 0.452 0.0616 7.34 0

nonw_dis_eating_out_starttime5pmto7pm 0.541 0.0692 7.82 0

nonw_dis_maintenance_startttime8amto2pm 0.412 0.0376 10.97 0

nonw_dis_shopping_startttime9amto3pm 0.205 0.0393 5.21 0

presc_dis_eating_out_starttime11amto1pm 0.758 0.149 5.1 0

presc_dis_eating_out_starttime5pmto7pm 0.958 0.137 6.98 0

presc_dis_maintenance_starttime8amto2pm 0.259 0.0784 3.3 0

ptw_dis_discretionary_starttime5pmto7pm 0.507 0.0879 5.76 0

ptw_dis_eating_out_starttime11amto1pm 0.422 0.0697 6.06 0

ptw_dis_eating_out_starttime5pmto7pm 0.314 0.0765 4.11 0

ptw_dis_shopping_starttime11amto3pm 0.0984 0.0466 2.11 0.03

ptw_dis_visiting_starttime4pmto7pm 0.143 0.0782 1.83 0.07

rec_child 2.76 0.104 26.62 0

rec_drvchild 2.37 0.15 15.77 0

rec_ftw 2.92 0.0822 35.46 0

rec_nonw 2.5 0.0845 29.6 0

rec_presc 2.82 0.0948 29.75 0

rec_ptw 2.67 0.0919 29.03 0

rec_retr 2.51 0.096 26.18 0

drp_ptw 1.39 0.12 11.62 0

drp_retr 1.37 0.117 11.73 0

drp_ustu 1.26 0.167 7.56 0

drvchild_dis_discretionary_starttime3pmto7pm 0.661 0.155 4.27 0

drvchild_dis_eating_out_starttime5pmto7pm 0.24 0.149 1.62 0.11

emo_child 1.65 0.139 11.88 0

emo_drvchild 1.44 0.153 9.4 0

emo_ftw 1.85 0.123 14.95 0

emo_nonw 1.27 0.132 9.57 0

emo_presc 0.91 0.17 5.35 0
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Beta Value Std Error t test p value

sch_ptw 0.403 0.177 2.28 0.02

sch_retr 3.02 0.593 5.09 0

sch_ustu 0.38 0.287 1.32 0.19

shp_child 1.04 0.19 5.47 0

shp_drvchild 0.74 0.199 3.72 0

shp_ftw 1.12 0.184 6.11 0

shp_nonw 0.885 0.186 4.76 0

shp_presc 0.961 0.189 5.09 0

shp_ptw 0.985 0.187 5.26 0

shp_retr 1 0.187 5.38 0

shp_ustu 0.905 0.204 4.44 0

ustu_dis_eating_out_starttime5pmto7pm 0.244 0.197 1.24 0.21

wrk_ftw 1.56 0.0808 19.36 0

wrk_ptw 1.05 0.104 10.1 0

wrl_ftw 4.02 0.0794 50.65 0

wrl_ptw 3.19 0.108 29.47 0

 

Nesting Coefficients  

Beta Value Std Error t test p value

agg_non_work 1.88 0.0525 35.85 0.00

dis_escorting 1.18 0.0467 25.24 0.00

dis_work 1.00 1.8e+308 0.00 1.00

rec_ustu 2.4 0.159 15.08 0

retr_dis_discretionary_starttime8amto12pm 0.274 0.0858 3.19 0

retr_dis_eating_out_starttime11amto1pm 0.413 0.0654 6.32 0

retr_dis_eating_out_starttime5pmto7pm 0.478 0.0826 5.78 0

retr_dis_maintenance_starttime8amto2pm 0.348 0.0447 7.77 0

retr_dis_shopping_starttime9amto3pm 0.217 0.0475 4.57 0

sch_ftw 1.16 0.189 6.14 0

sch_nonw 1.38 0.188 7.33 0
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Utility Equations 
ID Name Specification

4 change_travel_mode_transfer asc_ctm_iswalkorwheelchair * iswalkorwheelchair +

asc_ctm_transfervariablebothnonauto * transfervariablebothnonauto +

asc_ctm_transfervariableatleastonenonauto * transfervariableatleastonenonauto +

ctm_ftw * finalftworker + ctm_ptw * finalptworker + ctm_ustu * finalunivstud +

ctm_nonw * finalnonworker + ctm_retr * finalretiree + ctm_drvchild *

finaldrivingagechild + ctm_child * finalpredriving + ctm_presc * finalpreschool

5 dropped_off_passenger_from_car dis_escorting_female * female + dis_escorting_nondrivingchildren *

nondrivingchildren + dis_escorting_k8enrollment * k8enrollment +

dis_escorting_highschoolenrollment * highschoolenrollment +

asc_drp_dropoffvariable * dropoffvariable + asc_drp_someonedropped *

someonedropped + asc_drp_actdurless10min * actdurless10min + drp_ftw *

finalftworker + drp_ptw * finalptworker + drp_ustu * finalunivstud + drp_nonw *

finalnonworker + drp_retr * finalretiree + drp_drvchild * finaldrivingagechild

+ drp_child * finalpredriving + drp_presc * finalpreschool

6 picked_up_passenger_from_car dis_escorting_female * female + dis_escorting_nondrivingchildren *

nondrivingchildren + dis_escorting_k8enrollment * k8enrollment +

dis_escorting_highschoolenrollment * highschoolenrollment +

asc_pkp_pickupvariable * pickupvariable + asc_pkp_someonepicked * someonepicked

+ asc_pkp_actdurless10min * actdurless10min + drp_ftw * finalftworker + drp_ptw

* finalptworker + drp_ustu * finalunivstud + drp_nonw * finalnonworker +

drp_retr * finalretiree + drp_drvchild * finaldrivingagechild + drp_child *

finalpredriving + drp_presc * finalpreschool

7 maintenance ftw_dis_maintenance_starttime3pmto6pm * ftw_starttime3pmto6pm +

ptw_dis_maintenance_startttime11amto6pm * ptw_startttime11amto6pm +

nonw_dis_maintenance_startttime8amto2pm * nonw_startttime8amto2pm +

retr_dis_maintenance_starttime8amto2pm * retr_starttime8amto2pm +

drvchild_dis_maintenance_starttime2pmto6pm * drvchild_starttime2pmto6pm +

child_dis_maintenance_starttime2pmto6pm * child_starttime2pmto6pm +

presc_dis_maintenance_starttime8amto2pm * presc_starttime8amto2pm +

dis_maintenance_female * female + dis_maintenance_lu_commercial * lu_commercial

+ dis_maintenance_lu_institutional * lu_institutional +

asc_pbs_actdurgreater120min * actdurgreater120min + asc_pbs_actdurless30min *

actdurless30min + asc_pbs_complexsubtour * complexsubtourstop +

asc_pbs_simplesubtour * simplesubtourstop + asc_dth_actdurgreater10min *

actdurgreater10min + asc_dth_tripdistgreater10mi * tripdistgreater10mi +

asc_dth_actdurless30min * actdurless30min + asc_srv_actdurgreater30min *

actdurgreater30min + asc_srv_actdurless30min * actdurless30min +

asc_her_actdurgreater10min * actdurgreater10min + asc_her_tripdistgreater10mi *

tripdistgreater10mi + asc_her_actdurgreater45min * actdurgreater45min +

asc_her_actdurless30min * actdurless30min + asc_hcr_actdur30to90min *

actdur30to90min + mnt_ftw * finalftworker + mnt_ptw * finalptworker + mnt_ustu

* finalunivstud + mnt_nonw * finalnonworker + mnt_retr * finalretiree +

mnt_drvchild * finaldrivingagechild + mnt_child * finalpredriving + mnt_presc *

finalpreschool

8 work_doing_my_job asc_wrk_worklocationmatch * worklocationmatch + wrk_ftw * finalftworker +

wrk_ptw * finalptworker + wrk_ustu * finalunivstud + wrk_nonw * finalnonworker
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ID Name Specification

+ wrk_retr * finalretiree + wrk_drvchild * finaldrivingagechild + wrk_child *

finalpredriving + wrk_presc * finalpreschool

11 school asc_sch_schoolbusmode * schoolbusmode + asc_sch_schoollocationmatch *

schoollocationmatch + sch_ftw * finalftworker + sch_ptw * finalptworker +

sch_ustu * finalunivstud + sch_nonw * finalnonworker + sch_retr * finalretiree

+ sch_drvchild * finaldrivingagechild + sch_child * finalpredriving + sch_presc

* finalpreschool

13 work_related asc_wrl_simplesubtour * simplesubtourstop + asc_wrl_complexsubtour *

complexsubtourstop + asc_wrl_ftworkeractdurless120min *

ftworkeractdurless120min + asc_wrl_ptworkeractdurless120min *

ptworkeractdurless120min + asc_wrl_univstudactdurless120min *

univstudactdurless120min + wrl_ftw * finalftworker + wrl_ptw * finalptworker +

wrl_ustu * finalunivstud + wrl_nonw * finalnonworker + wrl_retr * finalretiree

+ wrl_drvchild * finaldrivingagechild + wrl_child * finalpredriving + wrl_presc

* finalpreschool

15 shopping ftw_dis_shopping_starttime3pmto7pm * ftw_starttime3pmto7pm +

ptw_dis_shopping_starttime11amto3pm * ptw_starttime11amto3pm +

nonw_dis_shopping_startttime9amto3pm * nonw_startttime9amto3pm +

retr_dis_shopping_starttime9amto3pm * retr_starttime9amto3pm +

drvchild_dis_shopping_starttime3pmto5pm * drvchild_starttime3pmto5pm +

child_dis_shopping_starttime2pmto7pm * child_starttime2pmto7pm +

presc_dis_shopping_starttime9amto11am * presc_starttime9amto11am +

dis_shopping_female * female + dis_shopping_lu_commercial * lu_commercial +

asc_grc_adultparty12pmto2pm * adultparty12pmto2pm + asc_grc_actdurgreater10min

* actdurgreater10min + asc_grc_tripdistgreater10mi * tripdistgreater10mi +

asc_grc_actdurgreater90min * actdurgreater90min + asc_grc_groupgroceryduration

* groupgroceryduration + asc_orc_nonmand * nonmand + asc_orc_nearbigbox *

nearbigbox + asc_shp_actdurless60min * actdurless60min + shp_ftw *

finalftworker + shp_ptw * finalptworker + shp_ustu * finalunivstud + shp_nonw *

finalnonworker + shp_retr * finalretiree + shp_drvchild * finaldrivingagechild

+ shp_child * finalpredriving + shp_presc * finalpreschool

21 eat_meal_out_at_restaurant_diner ftw_dis_eating_out_starttime11amto1pm * ftw_starttime11amto1pm +

ftw_dis_eating_out_starttime5pmto7pm * ftw_starttime5pmto7pm +

ptw_dis_eating_out_starttime11amto1pm * ptw_starttime11amto1pm +

ptw_dis_eating_out_starttime5pmto7pm * ptw_starttime5pmto7pm +

ustu_dis_eating_out_starttime11amto1pm * ustu_starttime11amto1pm +

ustu_dis_eating_out_starttime5pmto7pm * ustu_starttime5pmto7pm +

nonw_dis_eating_out_starttime11amto1pm * nonw_starttime11amto1pm +

nonw_dis_eating_out_starttime5pmto7pm * nonw_starttime5pmto7pm +

retr_dis_eating_out_starttime11amto1pm * retr_starttime11amto1pm +

retr_dis_eating_out_starttime5pmto7pm * retr_starttime5pmto7pm +

drvchild_dis_eating_out_starttime5pmto7pm * drvchild_starttime5pmto7pm +

child_dis_eating_out_starttime11amto1pm * child_starttime11amto1pm +

child_dis_eating_out_starttime5pmto7pm * child_starttime5pmto7pm +

presc_dis_eating_out_starttime11amto1pm * presc_starttime11amto1pm +

presc_dis_eating_out_starttime5pmto7pm * presc_starttime5pmto7pm +

dis_eating_out_zerocars * zerocars + dis_eating_out_highincome * highincome +

dis_eating_out_lu_commercial * lu_commercial + asc_emo_iswalkorwheelchair *
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Applying GPS Data to Understand Travel Behavior, Volume I: Background, Methods, and Tests

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22370


124

ID Name Specification

iswalkorwheelchair + asc_emo_adultparty12pmto2pm * adultparty12pmto2pm +

asc_emo_adultpartyactdur20to40min * adultpartyactdur20to40min +

asc_emo_simplesubtour12pmto2pm * simplesubtour12pmto2pm +

asc_emo_complexsubtour12pmto2pm * complexsubtour12pmto2pm +

asc_emo_simplesubtour * simplesubtourstop + asc_emo_complexsubtour *

complexsubtourstop + asc_emo_actdurgreater10min * actdurgreater10min +

asc_emo_tripdistgreater10mi * tripdistgreater10mi + asc_emo_groupeatoutduration

* groupeatoutduration + asc_emo_actdurgreater150min * actdurgreater150min +

asc_emo_actdurless120min * actdurless120min + emo_ftw * finalftworker + emo_ptw

* finalptworker + emo_ustu * finalunivstud + emo_nonw * finalnonworker +

emo_retr * finalretiree + emo_drvchild * finaldrivingagechild + emo_child *

finalpredriving + emo_presc * finalpreschool

22 civic_or_religious_activities cra_all * one + cra_notretr * notretiredadult + dis_discretionary_zerocars *

zerocars + dis_discretionary_highincome * highincome +

dis_discretionary_lu_commercial * lu_commercial + asc_cra_nearchurch *

nearchurch + asc_cra_lu_institutional * lu_institutional

23 entertainment ftw_dis_discretionary_starttime5pmto7pm * ftw_starttime5pmto7pm +

ptw_dis_discretionary_starttime5pmto7pm * ptw_starttime5pmto7pm +

nonw_dis_discretionary_startttime8amto11am * nonw_startttime8amto11am +

retr_dis_discretionary_starttime8amto12pm * retr_starttime8amto12pm +

drvchild_dis_discretionary_starttime3pmto7pm * drvchild_starttime3pmto7pm +

child_dis_discretionary_starttime3pmto7pm * child_starttime3pmto7pm +

dis_discretionary_zerocars * zerocars + dis_discretionary_highincome *

highincome + dis_discretionary_lu_commercial * lu_commercial + asc_lu_parks *

lu_parks + asc_rec_iswalkorwheelchair * iswalkorwheelchair +

asc_rec_grouprecreationduration * grouprecreationduration + rec_ftw *

finalftworker + rec_ptw * finalptworker + rec_ustu * finalunivstud + rec_nonw *

finalnonworker + rec_retr * finalretiree + rec_drvchild * finaldrivingagechild

+ rec_child * finalpredriving + rec_presc * finalpreschool

25 social_visit_friends_relatives asc_soc * one + ftw_dis_visiting_starttime3pmto8pm * ftw_starttime3pmto8pm +

ptw_dis_visiting_starttime4pmto7pm * ptw_starttime4pmto7pm +

nonw_dis_visiting_starttime10amto1pm * nonw_starttime10amto1pm +

retr_dis_visiting_starttime2pmto5pm * retr_starttime2pmto5pm +

drvchild_dis_visiting_starttime2pmto7pm * drvchild_starttime2pmto7pm +

child_dis_visiting_starttime2pmto7pm * child_starttime2pmto7pm +

presc_dis_visiting_starttime2pmto7pm * presc_starttime2pmto7pm +

dis_visiting_highincome * highincome + asc_soc_bikemode * bikemode +

asc_soc_groupsocialvisitduration * groupsocialvisitduration + soc_ftw *

finalftworker + soc_ptw * finalptworker + soc_ustu * finalunivstud + soc_nonw *

finalnonworker + soc_retr * finalretiree + soc_drvchild * finaldrivingagechild

+ soc_child * finalpredriving + soc_presc * finalpreschool
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Trip Purpose Decision Tree 
J48 pruned tree 
------------------ 
 
schoollocationmatch = 0 
|  worklocationmatch = 0 
|  |  dropoffvariable = 0 
|  |  |  someonepicked = 0 
|  |  |  |  nonauto = 0 
|  |  |  |  |  someonedropped = 0 
|  |  |  |  |  |  actdurgreater150min = 0 
|  |  |  |  |  |  |  lu_commercial = 0 
|  |  |  |  |  |  |  |  lu_parks = 0 
|  |  |  |  |  |  |  |  |  actdurless30min = 0 
|  |  |  |  |  |  |  |  |  |  arrhour <= 16 
|  |  |  |  |  |  |  |  |  |  |  finalftworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 12: 7 (34.0/22.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 12: 15 (43.0/27.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  k8enrollment = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  final preschool = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 0: 23 (149.0/96.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 2.736193: 23 (30.0/20.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 2.736193: 7 (32.0/22.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 1: 7 (56.0/36.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 1: 7 (26.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 1: 25 (39.0/25.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 12 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 51: 25 (40.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 51: 21 (89.0/57.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 12 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultpartyactdur20to40min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 0: 25 (115.0/68.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 0: 7 (60.0/32.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultpartyactdur20to40min = 1: 7 (28.0/16.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalpreschool = 1: 25 (58.0/30.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  k8enrollment = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 14: 7 (37.0/21.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 14: 23 (44.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty = 0: 23 (26.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  young = 0: 13 (201.0/125.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  young = 1: 25 (51.0/38.0)  
|  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 15: 7 (333.0/149.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 15: 23 (36.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 1: 7 (30.0/4.0) 
|  |  |  |  |  |  |  |  |  |  |  finalftworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  simplesubtour12pmto2pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0: 13 (463.0/207.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 0: 7 (52.0/33.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 1: 13 (47.0/20.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 1: 7 (31.0/19.0)  
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 0: 23 (34.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 1: 21 (26.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  simplesubtour12pmto2pm = 1: 21 (30.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  mi xedparty = 1: 7 (32.0/18.0) 
|  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 0: 23 (26.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 1: 7 (28.0/18.0)  
|  |  |  |  |  |  |  |  |  |  arrhour > 16 
|  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 2 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  k8enrollment = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 1: 25 (27.0/12.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 2: 25 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 3: 25 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 7 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultpartyactdur20to40min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 2 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto8pm = 0: 25 (41.0/17.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto8pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto5pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultactdurless100min = 0: 25 (87.0/54.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultactdurless100min = 1: 23 (81.0/50.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 0: 22 (49.0/36.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 1: 23 (35.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 1: 25 (26.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1: 25 (42.0/24.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto5pm = 1: 25 (48.0/32.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 2 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 17: 23 (35.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 17  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 82: 23 (28.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 82: 21 (32.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultpartyactdur20to40min = 1: 15 (56.0/37.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  k8enrollment = 1: 23 (71.0/26.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 2: 23 (59.0/29.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nondrivingchildren = 0: 21 (41.0/25.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nondrivingchildren = 1: 23 (41.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1: 21 (26.0/13.0)  
|  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 18: 15 (39.0/16.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 18: 21 (38.0/19.0) 
|  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1 
|  |  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 17 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1: 22 (37.0/25.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 23 (47.0/20.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 17: 22 (235.0/106.0)  
|  |  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 1: 23 (29.0/11.0)  
|  |  |  |  |  |  |  |  |  actdurless30min = 1 
|  |  |  |  |  |  |  |  |  |  arrhour <= 7 
|  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 0: 7 (25.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 1: 4 (104.0/51.0)  
|  |  |  |  |  |  |  |  |  |  |  tottr > 1 
|  |  |  |  |  |  |  |  |  |  |  |  highincome = 0: 6 (47.0/26.0)  
|  |  |  |  |  |  |  |  |  |  |  |  highincome = 1: 5 (25.0/12.0)  
|  |  |  |  |  |  |  |  |  |  arrhour > 7 
|  |  |  |  |  |  |  |  |  |  |  subtourdummy = 0 
|  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 0 
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 6: 7 (240.0/106.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 6 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 29: 7 (45.0/33.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 29 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  volunactdurless60min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 71  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0: 15 (154.0/92.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1: 7 (70.0/37.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 71: 7 (43.0/25.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  volunactdurless60min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 0: 25 (30.0/22.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 1: 15 (27.0/17.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 13: 7 (61.0/39.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 13: 15 (54.0/36.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1: 7 (166.0/78.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 2 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater10min = 0: 7 (319.0/176.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater10min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 0: 15 (50.0/30.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime5pmto7pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 0: 13 (166.0/90.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 1: 7 (37.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime5pmto7pm = 1: 15 (43.0/29.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 2: 13 (36.0/8.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 5 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto6pm = 0: 6 (36.0/24.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto6pm = 1: 7 (40.0/19.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 5 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto6pm = 0: 7 (31.0/13.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto6pm = 1: 15 (34.0/17.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 1: 15 (45.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1: 6 (37.0/24.0) 
|  |  |  |  |  |  |  |  |  |  |  |  hhmem > 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 24 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 8.796565 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  startti me8amto2pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto8pm = 0: 5 (33.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto8pm = 1: 7 (95.0/40.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime8amto2pm = 1: 7 (33.0/13.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 8.796565: 25 (34.0/21.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 24: 7 (25.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  subtourdummy = 1 
|  |  |  |  |  |  |  |  |  |  |  |  starttime8amto11am = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater10min = 0: 7 (52.0/32.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater10min = 1: 13 (49.0/25.0)  
|  |  |  |  |  |  |  |  |  |  |  |  starttime8amto11am = 1: 13 (28.0/13.0) 
|  |  |  |  |  |  |  |  lu_parks = 1 
|  |  |  |  |  |  |  |  |  actdurless30min = 0: 23 (245.0/26.0)  
|  |  |  |  |  |  |  |  |  actdurless30min = 1: 7 (32.0/12.0)  
|  |  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  |  actdurgreater10min = 0 
|  |  |  |  |  |  |  |  |  simplesubtour = 0 
|  |  |  |  |  |  |  |  |  |  actdur <= 5: 7 (2318.0/786.0) 
|  |  |  |  |  |  |  |  |  |  actdur > 5 
|  |  |  |  |  |  |  |  |  |  |  mixedparty = 0 
|  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 0: 15 (74.0/33.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurl ess10min = 0: 15 (38.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurl ess10min = 1: 7 (57.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 15 (87.0/39.0)  
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|  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  finalretiree = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 0: 7 (1047.0/486.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless10min = 0: 15 (120.0/52.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurl ess10min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0: 7 (78.0/33.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1: 15 (39.0/21.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  finalretiree = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 7: 7 (71.0/20.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 7 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto5pm = 0: 7 (90.0/33.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto5pm = 1: 15 (31.0/15.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1: 15 (59.0/31.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1: 15 (34.0/10.0)  
|  |  |  |  |  |  |  |  |  |  |  mixedparty = 1 
|  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 12: 7 (112.0/38.0) 
|  |  |  |  |  |  |  |  |  |  |  |  arrhour > 12 
|  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 1.317402 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 0: 7 (82.0/40.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 1: 15 (25.0/8.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 1.317402: 7 (179.0/79.0) 
|  |  |  |  |  |  |  |  |  simplesubtour = 1 
|  |  |  |  |  |  |  |  |  |  female = 0 
|  |  |  |  |  |  |  |  |  |  |  actdur <= 5: 7 (29.0/15.0) 
|  |  |  |  |  |  |  |  |  |  |  actdur > 5: 21 (32.0/17.0) 
|  |  |  |  |  |  |  |  |  |  female = 1: 7 (56.0/18.0) 
|  |  |  |  |  |  |  |  actdurgreater10min = 1 
|  |  |  |  |  |  |  |  |  simplesubtour = 0 
|  |  |  |  |  |  |  |  |  |  actdurless60min = 0 
|  |  |  |  |  |  |  |  |  |  |  arrhour <= 16 
|  |  |  |  |  |  |  |  |  |  |  |  starttime7amto12am = 0: 23 (102.0/40.0)  
|  |  |  |  |  |  |  |  |  |  |  |  starttime7amto12am = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nearbigbox = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto1pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  childparty = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highschoolenrollment = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 115 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalpredriving = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 8 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 3.341837 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 1.760107: 15 (25.0/17.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 1.760107: 23 (27.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 3.341837: 7 (26.0/10.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 8 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mi xedparty = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0: 15 (185.0/92.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hi ghincome = 1: 7 (70.0/40.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 10: 7 (65.0/37.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 10: 15 (86.0/45.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mi xedparty = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 1.752865: 15 (45.0/16.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 1.752865 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 69: 15 (30.0/12.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 69  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 1: 7 (25.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 1: 23 (25.0/12.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 1: 7 (100.0/48.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalpredriving = 1: 7 (47.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1: 7 (40.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 115 
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 0: 7 (117.0/64.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 1: 15 (26.0/10.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highschoolenrollment = 1: 7 (33.0/11.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  childparty = 1: 23 (32.0/18.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultactdurless100min = 0: 23 (42.0/30.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultactdurless100min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime9amto11am = 0: 7 (52.0/32.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime9amto11am = 1: 23 (26.0/15.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1: 15 (31.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 12: 7 (25.0/12.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 12: 15 (34.0/19.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto1pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  grouprecreationduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless120min = 0: 7 (47.0/32.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless120min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime8amto11am = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 12  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 0: 15 (164.0/100.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 0: 21 (47.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 1: 15 (34.0/17.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 1: 21 (58.0/34.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 12 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1: 15 (43.0/20.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 7 (29.0/18.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime8amto11am = 1: 15 (32.0/18.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 1: 15 (28.0/7.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  grouprecreationduration = 1: 7 (42.0/23.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nearbigbox = 1: 15 (55.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 60: 23 (71.0/44.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 60: 15 (26.0/7.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nondrivingchildren = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto1pm = 0: 7 (79.0/55.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto1pm = 1: 21 (25.0/18.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nondrivingchildren = 1: 13 (64.0/37.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 10: 7 (44.0/30.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 10: 15 (82.0/53.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime4pmto7pm = 1: 7 (33.0/23.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 21 (34.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 1: 13 (113.0/54.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 0: 7 (92.0/48.0)  
|  |  |  |  |  |  |  |  |  |  |  arrhour > 16 
|  |  |  |  |  |  |  |  |  |  |  |  nearchurch = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto5pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 68: 15 (48.0/29.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 68 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  young = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 17: 23 (49.0/28.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 17: 21 (148.0/100.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  young = 1: 23 (40.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto8pm = 0: 21 (54.0/24.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto8pm = 1 
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultpart y = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 2: 23 (118.0/59.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 2 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 66  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 3.75533: 21 (32.0/8.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 3.75533: 15 (27.0/10.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 66 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 3.969448  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 2.141056: 21 (73.0/22.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 2.141056: 23 (49.0/27.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 3.969448  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincom e = 0: 21 (40.0/11.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincom e = 1: 22 (50.0/27.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty = 1: 21 (266.0/91.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto7pm = 0: 15 (35.0/20.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto7pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 84: 15 (47.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 84 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 99: 23 (25.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 99: 22 (45.0/32.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto5pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0: 7 (34.0/21.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1: 15 (30.0/20.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 21 (56.0/34.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater90min = 0: 23 (29.0/14.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater90min = 1: 22 (25.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  nearchurch = 1: 22 (47.0/21.0)  
|  |  |  |  |  |  |  |  |  |  actdurless60min = 1 
|  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  starttime7amto12am = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 0: 7 (63.0/43.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 1: 23 (26.0/17.0)  
|  |  |  |  |  |  |  |  |  |  |  |  starttime7amto12am = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  subtourdummy = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurl ess30min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1: 15 (212.0/81.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 4.168607  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 0: 21 (44.0/21.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 1: 15 (46.0/6.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 0: 15 (40.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  mixedparty = 1: 21 (27.0/12.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 4.168607: 21 (53.0/22.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless30min = 1: 15 (614.0/195.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 8 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 1.202759: 15 (44.0/15.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 1.202759: 7 (119.0/68.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1: 7 (69.0/40.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 4.482676  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  fi nalftworker = 0: 15 (50.0/24.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  fi nalftworker = 1: 7 (31.0/20.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 4.482676: 7 (38.0/20.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 8 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nearbigbox = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 20 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem <= 2 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highschoolenrollment = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 2 
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 15 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttim e3pmto5pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime8amto2pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1: 15 (53.0/22.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 7 (43.0/20.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime8amto2pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 0.294596: 15 (42.0/11.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 0.294596 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 65  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime10amto1pm = 0: 15 (56.0/25.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime10amto1pm = 1: 7 (96.0/45.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 65: 15 (85.0/34.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hi ghincome = 1: 15 (57.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto5pm = 1: 15 (87.0/44.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 15: 15 (395.0/140.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 2 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto5pm = 0: 7 (60.0/30.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto5pm = 1: 15 (32.0/6.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1: 7 (42.0/12.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime8amto11am = 0: 15 (252.0/109.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime8amto11am = 1: 7 (48.0/23.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highschoolenrollment = 1: 15 (35.0/14.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  hhmem > 2: 15 (57.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 20 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 0: 15 (2128.0/797.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  young = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  fem ale = 0: 7 (36.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  fem ale = 1: 15 (52.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 13.666906: 21 (27.0/12.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 13.666906: 7 (34.0/20.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  young = 1: 15 (31.0/15.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  nearbigbox = 1: 15 (127.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto6pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto1pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 24 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime9amto11am = 0: 15 (50.0/28.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime9amto11am = 1: 7 (33.0/13.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 24: 15 (83.0/44.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 1.209368: 15 (35.0/16.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 1.209368: 7 (79.0/46.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1: 15 (45.0/21.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto1pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 1.884516: 15 (34.0/17.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 1.884516: 13 (35.0/22.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 23 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 0: 15 (32.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 1: 7 (34.0/17.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 23: 21 (27.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater30min = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 11: 7 (27.0/17.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 11: 21 (28.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1: 15 (37.0/22.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 1 
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 47: 15 (36.0/24.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 47: 13 (56.0/32.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1: 13 (32.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  groupgroceryduration = 1: 15 (60.0/26.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime3pmto6pm = 1: 15 (714.0/271.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  subtourdummy = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 0: 13 (28.0/12.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 23: 15 (55.0/31.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 23: 21 (90.0/46.0)  
|  |  |  |  |  |  |  |  |  |  |  groupeatoutduration = 1 
|  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 0: 21 (253.0/104.0) 
|  |  |  |  |  |  |  |  |  |  |  |  starttime1amto6pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  starttime5pmto7pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 0: 15 (419.0/177.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  highincome = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 2.108016 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater45min = 0: 21 (36.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurgreater45min = 1: 15 (35.0/14.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 2.108016 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 4.656515: 7 (47.0/26.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 4.656515: 15 (38.0/21.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  adultparty12pmto2pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 12: 21 (37.0/13.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 12 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 4.433623: 15 (33.0/13.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 4.433623: 21 (26.0/9.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  starttime5pmto7pm = 1: 21 (135.0/61.0)  
|  |  |  |  |  |  |  |  |  simplesubtour = 1 
|  |  |  |  |  |  |  |  |  |  arrhour <= 10: 13 (36.0/20.0)  
|  |  |  |  |  |  |  |  |  |  arrhour > 10: 21 (431.0/150.0)  
|  |  |  |  |  |  actdurgreater150min = 1 
|  |  |  |  |  |  |  finalpreschool = 0 
|  |  |  |  |  |  |  |  finalpredriving = 0 
|  |  |  |  |  |  |  |  |  arrhour <= 14 
|  |  |  |  |  |  |  |  |  |  finalretiree = 0 
|  |  |  |  |  |  |  |  |  |  |  finalnonworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  groupsocialvisitduration = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 3 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 1: 13 (139.0/70.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 2: 13 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 3: 13 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 7 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 0: 25 (48.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 0: 13 (100.0/33.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  female = 1: 25 (40.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 3 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 1: 8 (34.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 2: 13 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 3: 13 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 7: 13 (657.0/309.0)  
|  |  |  |  |  |  |  |  |  |  |  |  groupsocialvisitduration = 1: 7 (85.0/52.0) 
|  |  |  |  |  |  |  |  |  |  |  finalnonworker = 1 
|  |  |  |  |  |  |  |  |  |  |  |  ptype = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  age <= 49: 5 (33.0/24.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  age > 49: 7 (27.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  ptype = 2: 7 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  ptype = 3: 7 (0.0) 
|  |  |  |  |  |  |  |  |  |  |  |  ptype = 7 
|  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 0: 25 (41.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 412 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 60 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_commercial = 0: 25 (63.0/35.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 42: 15 (26.0/17.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 42: 7 (41.0/25.0)  
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|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 60: 25 (38.0/28.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 412 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 8: 13 (27.0/12.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 8: 25 (27.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1: 7 (76.0/34.0) 
|  |  |  |  |  |  |  |  |  |  finalretiree = 1 
|  |  |  |  |  |  |  |  |  |  |  age <= 54: 25 (26.0/13.0) 
|  |  |  |  |  |  |  |  |  |  |  age > 54 
|  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 1: 23 (29.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 2: 7 (0.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 3: 7 (0.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  ptype = 7 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime9amto3pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 6: 7 (27.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  arrhour > 6: 23 (42.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime9amto3pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1: 25 (44.0/29.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 7 (35.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 2.371755: 25 (32.0/21.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 2.371755: 7 (53.0/32.0) 
|  |  |  |  |  |  |  |  |  arrhour > 14 
|  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  lu_commercial = 0: 25 (482.0/222.0)  
|  |  |  |  |  |  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  |  |  |  |  |  actdur <= 324 
|  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto7pm = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 0: 21 (28.0/13.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  finalftworker = 1: 25 (30.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  starttime2pmto7pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalnonworker = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime5pmto7pm = 0: 23 (56.0/44.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  starttime5pmto7pm = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age <= 47: 21 (32.0/22.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  age > 47: 23 (29.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistgreater10mi = 1: 21 (25.0/15.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  finalnonworker = 1: 15 (29.0/22.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  finalptworker = 1: 13 (44.0/31.0)  
|  |  |  |  |  |  |  |  |  |  |  |  actdur > 324: 25 (38.0/27.0)  
|  |  |  |  |  |  |  |  |  |  lu_institutional = 1 
|  |  |  |  |  |  |  |  |  |  |  adultparty = 0: 23 (25.0/8.0)  
|  |  |  |  |  |  |  |  |  |  |  adultparty = 1 
|  |  |  |  |  |  |  |  |  |  |  |  actdur <= 261: 22 (64.0/41.0) 
|  |  |  |  |  |  |  |  |  |  |  |  actdur > 261: 25 (25.0/17.0)  
|  |  |  |  |  |  |  |  finalpredriving = 1 
|  |  |  |  |  |  |  |  |  ptype = 1: 23 (25.0/18.0) 
|  |  |  |  |  |  |  |  |  ptype = 2: 25 (0.0) 
|  |  |  |  |  |  |  |  |  ptype = 3: 25 (0.0) 
|  |  |  |  |  |  |  |  |  ptype = 7 
|  |  |  |  |  |  |  |  |  |  lu_commercial = 0 
|  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0: 25 (140.0/57.0) 
|  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1: 23 (29.0/18.0) 
|  |  |  |  |  |  |  |  |  |  lu_commercial = 1: 23 (56.0/32.0)  
|  |  |  |  |  |  |  finalpreschool = 1 
|  |  |  |  |  |  |  |  lu_commercial = 0: 25 (102.0/38.0)  
|  |  |  |  |  |  |  |  lu_commercial = 1: 11 (41.0/27.0)  
|  |  |  |  |  someonedropped = 1 
|  |  |  |  |  |  actdurgreater45min = 0 
|  |  |  |  |  |  |  actdurgreater30min = 0 
|  |  |  |  |  |  |  |  adultpartyactdur20to40min = 0: 5 (959.0/200.0) 
|  |  |  |  |  |  |  |  adultpartyactdur20to40min = 1 
|  |  |  |  |  |  |  |  |  lu_commercial = 0: 5 (36.0/18.0) 
|  |  |  |  |  |  |  |  |  lu_commercial = 1: 7 (36.0/23.0) 
|  |  |  |  |  |  |  actdurgreater30min = 1 
|  |  |  |  |  |  |  |  lu_commercial = 0: 5 (29.0/15.0)  
|  |  |  |  |  |  |  |  lu_commercial = 1: 15 (27.0/16.0)  
|  |  |  |  |  |  actdurgreater45min = 1 
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|  |  |  |  |  |  |  arrhour <= 14 
|  |  |  |  |  |  |  |  lu_commercial = 0 
|  |  |  |  |  |  |  |  |  finalftworker = 0 
|  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 0: 5 (49.0/34.0)  
|  |  |  |  |  |  |  |  |  |  starttime11amto3pm = 1: 25 (47.0/25.0)  
|  |  |  |  |  |  |  |  |  finalftworker = 1: 13 (44.0/30.0)  
|  |  |  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  |  |  starttime11amto1pm = 0 
|  |  |  |  |  |  |  |  |  |  actdurgreater120min = 0: 7 (26.0/15.0)  
|  |  |  |  |  |  |  |  |  |  actdurgreater120min = 1: 25 (32.0/22.0)  
|  |  |  |  |  |  |  |  |  starttime11amto1pm = 1: 21 (25.0/9.0)  
|  |  |  |  |  |  |  arrhour > 14 
|  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  lu_commercial = 0 
|  |  |  |  |  |  |  |  |  |  mixedparty = 0: 25 (65.0/29.0)  
|  |  |  |  |  |  |  |  |  |  mixedparty = 1: 23 (50.0/23.0)  
|  |  |  |  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  |  |  |  arrhour <= 17: 23 (47.0/29.0)  
|  |  |  |  |  |  |  |  |  |  arrhour > 17: 21 (47.0/18.0) 
|  |  |  |  |  |  |  |  lu_institutional = 1: 23 (41.0/13.0) 
|  |  |  |  nonauto = 1 
|  |  |  |  |  actdurless30min = 0 
|  |  |  |  |  |  simplesubtour = 0 
|  |  |  |  |  |  |  k8enrollment = 0 
|  |  |  |  |  |  |  |  tripdistance <= 51.838412 
|  |  |  |  |  |  |  |  |  schoolbusmode = 0 
|  |  |  |  |  |  |  |  |  |  finalftworker = 0 
|  |  |  |  |  |  |  |  |  |  |  lu_commercial = 0 
|  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 1.716877 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 0: 25 (79.0/36.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  actdurless60min = 1: 23 (42.0/26.0) 
|  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 1.716877: 7 (28.0/18.0) 
|  |  |  |  |  |  |  |  |  |  |  |  lu_institutional = 1: 7 (61.0/22.0) 
|  |  |  |  |  |  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  |  |  |  |  |  actdur <= 237 
|  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr <= 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur <= 64: 15 (28.0/16.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  actdur > 64: 7 (25.0/14.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tottr > 1: 21 (35.0/23.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  lowincome = 1: 15 (154.0/79.0) 
|  |  |  |  |  |  |  |  |  |  |  |  actdur > 237: 7 (38.0/28.0)  
|  |  |  |  |  |  |  |  |  |  finalftworker = 1 
|  |  |  |  |  |  |  |  |  |  |  actdur <= 160 
|  |  |  |  |  |  |  |  |  |  |  |  arrhour <= 16 
|  |  |  |  |  |  |  |  |  |  |  |  |  lu_commercial = 0: 4 (42.0/28.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance <= 0.297274: 21 (29.0/18.0)  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  tripdistance > 0.297274: 23 (26.0/19.0)  
|  |  |  |  |  |  |  |  |  |  |  |  arrhour > 16: 21 (58.0/34.0) 
|  |  |  |  |  |  |  |  |  |  |  actdur > 160: 13 (42.0/25.0)  
|  |  |  |  |  |  |  |  |  schoolbusmode = 1: 23 (37.0/24.0)  
|  |  |  |  |  |  |  |  tripdistance > 51.838412 
|  |  |  |  |  |  |  |  |  adultactdurless100min = 0: 13 (55.0/26.0)  
|  |  |  |  |  |  |  |  |  adultactdurless100min = 1: 4 (26.0/10.0)  
|  |  |  |  |  |  |  k8enrollment = 1 
|  |  |  |  |  |  |  |  starttime2pmto6pm = 0: 11 (33.0/20.0)  
|  |  |  |  |  |  |  |  starttime2pmto6pm = 1: 25 (61.0/29.0)  
|  |  |  |  |  |  simplesubtour = 1: 21 (47.0/18.0) 
|  |  |  |  |  actdurless30min = 1 
|  |  |  |  |  |  simplesubtour = 0 
|  |  |  |  |  |  |  groupgroceryduration = 0 
|  |  |  |  |  |  |  |  hhmem <= 1: 4 (2878.0/464.0) 
|  |  |  |  |  |  |  |  hhmem > 1 
|  |  |  |  |  |  |  |  |  mixedparty = 0: 4 (25.0/8.0) 
|  |  |  |  |  |  |  |  |  mixedparty = 1: 15 (49.0/25.0)  
|  |  |  |  |  |  |  groupgroceryduration = 1: 15 (32.0/21.0)  
|  |  |  |  |  |  simplesubtour = 1: 21 (42.0/25.0) 
|  |  |  someonepicked = 1 
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|  |  |  |  actdurless60min = 0 
|  |  |  |  |  arrhour <= 9 
|  |  |  |  |  |  hhmem <= 0: 13 (69.0/45.0) 
|  |  |  |  |  |  hhmem > 0: 5 (36.0/27.0) 
|  |  |  |  |  arrhour > 9 
|  |  |  |  |  |  lu_commercial = 0 
|  |  |  |  |  |  |  starttime5pmto7pm = 0 
|  |  |  |  |  |  |  |  actdurgreater120min = 0 
|  |  |  |  |  |  |  |  |  young = 0: 6 (60.0/33.0)  
|  |  |  |  |  |  |  |  |  young = 1: 25 (46.0/28.0)  
|  |  |  |  |  |  |  |  actdurgreater120min = 1: 25 (107.0/55.0) 
|  |  |  |  |  |  |  starttime5pmto7pm = 1: 23 (77.0/44.0) 
|  |  |  |  |  |  lu_commercial = 1 
|  |  |  |  |  |  |  lowincome = 0 
|  |  |  |  |  |  |  |  adultparty = 0: 23 (37.0/22.0) 
|  |  |  |  |  |  |  |  adultparty = 1 
|  |  |  |  |  |  |  |  |  arrhour <= 17: 7 (38.0/27.0) 
|  |  |  |  |  |  |  |  |  arrhour > 17: 21 (31.0/19.0) 
|  |  |  |  |  |  |  lowincome = 1: 15 (33.0/21.0) 
|  |  |  |  actdurless60min = 1 
|  |  |  |  |  nonauto = 0 
|  |  |  |  |  |  starttime7amto12am = 0 
|  |  |  |  |  |  |  actdurless10min = 0: 4 (30.0/16.0) 
|  |  |  |  |  |  |  actdurless10min = 1: 6 (73.0/29.0) 
|  |  |  |  |  |  starttime7amto12am = 1: 6 (2932.0/365.0) 
|  |  |  |  |  nonauto = 1 
|  |  |  |  |  |  nondrivingchildren = 0: 4 (130.0/43.0) 
|  |  |  |  |  |  nondrivingchildren = 1 
|  |  |  |  |  |  |  schoolageactdurless150min = 0 
|  |  |  |  |  |  |  |  starttime2pmto5pm = 0: 4 (44.0/18.0)  
|  |  |  |  |  |  |  |  starttime2pmto5pm = 1: 6 (91.0/20.0)  
|  |  |  |  |  |  |  schoolageactdurless150min = 1: 4 (146.0/54.0) 
|  |  dropoffvariable = 1 
|  |  |  zerocars = 0 
|  |  |  |  finalpredriving = 0: 5 (2082.0/93.0) 
|  |  |  |  finalpredriving = 1 
|  |  |  |  |  iswalkorwheelchair = 0 
|  |  |  |  |  |  tottr <= 2: 4 (28.0/9.0) 
|  |  |  |  |  |  tottr > 2: 5 (286.0/39.0) 
|  |  |  |  |  iswalkorwheelchair = 1: 4 (30.0/7.0) 
|  |  |  zerocars = 1: 4 (26.0/6.0) 
|  worklocationmatch = 1 
|  |  actdurless10min = 0 
|  |  |  volunactdurless60min = 0 
|  |  |  |  actdurless30min = 0: 8 (8722.0/296.0) 
|  |  |  |  actdurless30min = 1 
|  |  |  |  |  iswalkorwheelchair = 0: 8 (143.0/48.0) 
|  |  |  |  |  iswalkorwheelchair = 1: 4 (28.0/14.0) 
|  |  |  volunactdurless60min = 1 
|  |  |  |  partysizechange = 0: 8 (25.0/8.0) 
|  |  |  |  partysizechange = 1: 6 (35.0/15.0) 
|  |  actdurless10min = 1 
|  |  |  nonauto = 0 
|  |  |  |  someonedropped = 0 
|  |  |  |  |  someonepicked = 0: 8 (59.0/32.0) 
|  |  |  |  |  someonepicked = 1: 6 (29.0/6.0) 
|  |  |  |  someonedropped = 1: 5 (57.0/8.0) 
|  |  |  nonauto = 1: 4 (166.0/15.0) 
schoollocationmatch = 1 
|  actdurless10min = 0 
|  |  actdurless30min = 0: 11 (4509.0/173.0) 
|  |  actdurless30min = 1 
|  |  |  hhmem <= 0: 11 (28.0/15.0) 
|  |  |  hhmem > 0: 6 (25.0/13.0) 
|  actdurless10min = 1 
|  |  someonedropped = 0 
|  |  |  age <= 18: 6 (33.0/18.0) 
|  |  |  age > 18: 4 (35.0/3.0) 
|  |  someonedropped = 1: 5 (30.0/13.0) 
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Number of Leaves:  389 
 
Size of the tree:  765 
 
 
Time taken to build model: 18.81 seconds 
Time taken to test model on training data: 1.26 seconds 
 
=== Error on training data === 
 
Correctly Classified Instances    36860        70.5387 % 
Incorrectly Classified Instances   15395        29.4613 % 
Kappa statistic             0.6681 
Mean absolute error           0.0689 
Root mean squared error         0.1856 
Relative absolute error         46.3931 % 
Root relative squared error       68.1127 % 
Total Number of Instances      52255    
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A P P E N D I X  E

Experiment B Models

Person-Type and Education Model 
Upper level Person type Model Educa�on – full �me worker
Parameter Coeff. t stat Parameter Coeff. t stat
ASC_part 0.848 3.6 ASC_NOHS 0.000 –
ASC_full 1.280 4.9 ASC_HS 2.090 3.2
ASC_re�red 1.310 6.5 ASC_COLL 2.500 4.1
ASC_child 0.920 4.1 B_HS_Housing_Density 0.696 2.6
ASC_student 0.000 – B_HS_Pop_Density 0.251 3.0
ASC_other 0.600 2.8 B_HS_avg_tour_�me 0.002 1.7
B_PART_num_acts_other 0.087 4.6 B_HS_intersec�on_density 0.003 1.5
B_PART_num_acts_work 3.020 16.0 B_HS_num_acts_other 0.234 2.2
B_FULL_Employment_Density 0.176 4.2 B_HS_road_density 0.066 3.2
B_FULL_Housing_Density 0.199 4.7 B_HS_total_dur_work 0.001 1.6
B_FULL_avg_stops_per_tour 0.161 3.0 B_COLL_employment_density 0.252 4.1
B_FULL_avg_tour_�me 0.004 4.3 B_COLL_Housing_Density 0.713 2.7
B_FULL_num_acts_school 1.620 8.3 B_COLL_Pop_Density 0.399 4.7
B_FULL_num_acts_work 2.760 10.5 B_COLL_avg_work_tour_�me 0.004 3.0
B_FULL_total_dur_other 0.001 3.8 B_COLL_num_acts_other 0.287 2.8
B_FULL_total_dur_work 0.002 5.5 B_COLL_total_dur_work 0.001 1.2
B_RETIRE_num_acts_other 0.051 2.6
B_RETIRE_num_acts_school 3.150 5.8 Educa�on – part �me worker
B_RETIRE_total_dur_pickdrop 0.075 3.8 Parameter Coeff. t stat
B_CHILD_Employment_Density 0.238 3.6 ASC_NOHS 0.000 –
B_CHILD_Housing_Density 0.217 3.1 ASC_HS 1.670 6.6
B_CHILD_avg_tour_�me 0.013 4.7 ASC_COLL 2.410 5.4
B_CHILD_num_acts_other 0.149 5.0 B_HS_total_dur_school 0.004 4.7
B_CHILD_total_dur_pickdrop 0.017 2.1 B_COLL_Employment_Density 0.434 3.6
B_STUDE_Employment_Density 0.158 2.2 B_COLL_Pop_Denssity 0.123 2.7
B_STUDE_Housing_Density 0.172 2.3 B_COLL_avg_other_tour_�me 0.005 1.4
B_STUDE_num_acts_other 0.152 4.7 B_COLL_avg_school_tour_�me 0.012 1.3
B_STUDE_total_dur_other 0.000 2.3 B_COLL_avg_tour_�me 0.009 2.0
B_STUDE_total_dur_pickdrop 0.096 2.9 B_COLL_avg_work_tour_�me 0.004 1.1
B_STUDE_total_dur_school 0.003 11.5 B_COLL_num_acts_other 0.074 2.2
IV_PART_EDUC 0.116 2.2 B_COLL_road_density 0.050 2.0
IV_FULL_EDUC 0.217 5.6 B_COLL_total_dur_school 0.006 4.4
IV_RET_EDUC 0.052 2.2
IV_OTHER_EDUC 0.125 2.8
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Educa�on re�ree
Educa�on other
Parameter Coeff. t stat

Parameter Coeff. t stat ASC_NOHS 0.000 –
ASC_NOHS 0.000 – ASC_HS 0.864 1.1
ASC_HS 2.250 3.4 ASC_COLL 0.314 0.5
ASC_COLL 1.920 3.0 B_HS_Housing_Density 0.134 1.9
B_HS_Employment_Density 0.752 2.8 B_HS_Pop_Density 0.048 1.3
B_HS_Pop_Density 0.158 2.1 B_HS_at_home_dura�on 0.001 3.3
B_HS_num_acts_other 0.235 2.2 B_HS_avg_other_tour_�me 0.005 1.9
B_HS_road_density 0.102 3.4 B_HS_avg_school_tour_�me 0.011 1.4
B_HS_total_dur_pickdrop 0.097 1.9 B_HS_avg_stops_per_other_tour 0.387 2.0
B_COLL_Employment_Density 0.973 3.4 B_HS_avg_stops_per_tour 0.273 1.4
B_COLL_Pop_Density 0.257 3.3 B_HS_num_acts_school 1.320 4.8
B_COLL_intersec�on_density 0.011 3.6 B_COLL_Employment_Density 0.346 4.0
B_COLL_num_acts_other 0.317 3.0 B_COLL_Pop_Density 0.163 3.9
B_COLL_total_dur_pickdrop 0.069 1.8 B_COLL_at_home_dura�on 0.001 2.7

B_COLL_num_acts_school 1.770 7.4

Ordinal Logit Model for Age Categories 

Variable Coefficient t-stat

Constant 3.208 25.2

avg_school_tour_ttime 0.005 2.0

num_acts_work -0.355 -9.1

num_acts_school -1.073 -9.1

avg_dur_school -0.007 -10.9

num_acts_pickdrop -0.188 -2.7

total_dur_pickdrop -0.023 -2.5

total_dur_other 0.000 -3.8

auto_tour_percent 0.338 3.4

transituse 1.090 2.6

Employment_Density -0.091 -3.6

Pop_Density -0.024 -2.3

Housing_Density 0.125 5.2

Threshold 

Mu(1) 0.703 17.9

Mu(2) 2.365 57.5

Mu(3) 4.351 84.8
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Gender Binary Logit Model 

Parameter Coefficient t-stat

ASCMALE -0.026 0.2

B_MALE_Employment_Density 0.053 1.9

B_MALE_Housing_Density -0.068 -2.4

B_MALE_Pop_Denssity 0.021 1.7

B_MALE_avg_other_tour_ttime 0.003 4.0

B_MALE_avg_school_tour_ttime 0.003 1.5

B_MALE_avg_stops_per_tour -0.102 -2.5

B_MALE_avg_stops_per_work_tour -0.070 -1.5

B_MALE_avg_work_tour_ttime 0.003 3.1

B_MALE_num_acts_pickdrop -0.152 -3.2

B_MALE_num_acts_school 0.144 2.4

B_MALE_num_acts_work -0.218 -1.8

B_MALE_road_density -0.021 -3.3

B_MALE_total_dur_work 0.001 4.5

Has License PART Decision List Model 

auto_total > 0 avg_dur_school <= 261.667 total_tours > 1 auto_total > 0.75: YES (1707.0/38.0)
auto_work <= 0.5 avg_dur_school <= 380 avg_stops_per_work_tour > 2.5: YES (141.0/9.0)

auto_work <= 0.5 auto_total > 0 avg_dur_work <= 373 other_tours > 0 num_acts_other <= 6 at_home_dura�on <= 2803
total_tours <= 3 block_size <= 0.14 block_size <= 0.12 intersec�on_density <= 233.33: YES (167.0/35.0)

auto_work > 0.5: YES (127.0/1.0)
auto_total > 0 avg_dur_school <= 386.333 avg_dur_work <= 373 Pop_Denssity <= 5.64: YES (115.0/4.0)
avg_dur_work > 373 auto_total > 0: YES (87.0)
num_acts_other > 6 total_tours <= 5 intersec�on_density > 232.14: YES (21.0)
avg_dur_work > 467.5: YES (94.0/19.0)
num_acts_other <= 9 num_acts_pickdrop > 0: YES (22.0/5.0)
num_acts_other <= 9 other_tours > 3 auto_total > 0: YES (21.0/2.0)
num_acts_other <= 9 num_primary_tours > 2 Housing_Density <= 11.27: NO (39.0/8.0)
other_tours <= 2 total_dur_work <= 675 avg_dur_other <= 669 total_dur_work <= 262 total_tours <= 1 transitu <= 0.3:

YES (54.0/19.0)
num_primary_tours <= 4 avg_dur_other <= 669 total_tours > 2: YES (32.0/8.0)
total_tours <= 3 avg_dur_other <= 669 total_tours > 1 work_tours > 0: YES (24.0/9.0)
total_tours <= 3 avg_dur_other <= 600 total_tours <= 1: NO (21.0/6.0)
total_tours <= 3 avg_dur_other <= 444.667 block_size <= 0.09 avg_other_tour_�me <= 40: YES (13.0/2.0)
total_tours <= 3 avg_dur_other <= 444.667: NO (75.0/30.0)
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Joint Household-Type Decision Tree Model

total_dur_school <= 190
num_acts_pickdrop <= 0

auto_total <= 0.25
Pop_Denssity <= 13.17
at_home_dura�on <= 2588
avg_stops_per_tour <= 2.8: H_220 (64.0/50.0)
avg_stops_per_tour > 2.8: H_321 (30.0/17.0)

at_home_dura�on > 2588: H_100 (21.0/14.0)
Pop_Denssity > 13.17
Employment_Density <= 5.77: H_100 (25.0/18.0)
Employment_Density > 5.77
block_size <= 0.11
intersec�on_density <= 230.76: H_100 (32.0/14.0)
intersec�on_density > 230.76: H_210 (47.0/29.0)

block_size > 0.11: H_100 (25.0/21.0)
auto_total > 0.25
Housing_Density <= 6.31
transitu <= 0.18
auto_work <= 0
avg_dur_other <= 290
Employment_Density <= 5.84
work_tours <= 0
auto_total <= 0.7: H_220 (48.0/33.0)
auto_total > 0.7
Pop_Denssity <= 7.16
num_acts_other <= 2
total_dur_other <= 89
avg_tour_�me <= 29.5: H_321 (24.0/16.0)
avg_tour_�me > 29.5: H_220 (20.0/11.0)

total_dur_other > 89
at_home_dura�on <= 2698: H_321 (33.0/23.0)
at_home_dura�on > 2698: H_210 (20.0/10.0)

num_acts_other > 2: H_220 (350.0/212.0)
Pop_Denssity > 7.16
Housing_Density <= 3.54: H_210 (24.0/16.0)
Housing_Density > 3.54: H_220 (20.0/10.0)

work_tours > 0
avg_tour_�me <= 69: H_321 (21.0/13.0)
avg_tour_�me > 69: H_220 (20.0/14.0)

Employment_Density > 5.84: H_321 (28.0/9.0)
avg_dur_other > 290: H_321 (32.0/18.0)

auto_work > 0
num_acts_work <= 2: H_220 (506.0/304.0)
num_acts_work > 2: H_321 (22.0/10.0)

transitu > 0.18
auto_total <= 0.8: H_311 (39.0/29.0)
auto_total > 0.8: H_220 (112.0/74.0)

Housing_Density > 6.31: H_110 (160.0/119.0)
num_acts_pickdrop > 0: H_321 (188.0/52.0)

total_dur_school > 190: H_321 (344.0/96.0)
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Introduction

The scripts compiled as part of this appendix implement 
basic aspects of the GPS processing methods tested as part 
of Experiments A and B. The main goal of these implemen-
tations was to test the feasibility of various methods and to 
assess how well they worked. As such, these implementations 
do not necessarily produce readily usable results, although 
they certainly can be modified and extended to meet these 
types of applications. It should also be noted that the code and 
procedures provided with this report were developed as part 
of this project, but NCHRP makes no warranty that the code 
and procedures will continue to work as written given that 
the software tools they depend upon are periodically updated.

Prerequisites for Running the Bundled Code

The methods implemented as part of Experiment A were 
mostly developed using R version 3.0.1, the latest version of R for 
various platforms can be downloaded from www.r-project.org. 
The methods implemented in R are the most straightforward 
to use given their procedural nature (i.e., to get results simply 
call the appropriate function with the correct data parameters). 
The fact that R supports multiple computing platforms also 
makes it easy to use these methods in Microsoft Windows, Mac 
OS X, and various Linux distributions. To facilitate the use of 
R, end users are encouraged to download and install RStudio, 
which provides a nice integrated user environment for running 
R scripts, editing code, browsing data, and viewing graphical 
outputs. RStudio install packages for most popular computing 
platforms can be downloaded from www.rstudio.com.

The WEKA toolkit was also used to implement some of 
the procedures described; for procedures implemented using 
WEKA, a simple list of steps to follow is given that should 
allow practitioners to reproduce the results. Whenever appli-
cable, model configuration files are provided that can be 
used as a starting point by practitioners. The latest version 
of WEKA can be obtained from www.cs.waikato.ac.nz/ml/

A P P E N D I X  F

Using the Bundled Scripts and Code

weka. WEKA requires Java Runtime, which can be installed 
in Microsoft Windows, Mac OS X, and various Linux Distros.

The discrete choice modeling package BIOGEME was used 
to estimate models for travel mode and trip purpose identifi-
cation. The original Bison BIOGEME model specification files 
are provided along with instructions on how to use them with 
BIOGEME. Source code and pre-compiled binaries of Bison 
BIOGEME can downloaded from biogeme.epfl.ch. The web-
site makes available pre-compiled Microsoft Windows binaries, 
but BIOGEME can also be built from source on Mac OS X and 
most Linux Distros.

Finally, code in Java, SQL, and C++ is also referenced as part 
of some of the implemented methods. The Java code is invoked 
directly from R using the rJava package; pre-compiled .jar files 
are provided so only the Java Run-Time Engine (JRE) is needed. 
The latest version of the JRE can be downloaded from https://
java.com/en/download/index.jsp.

The SQL scripts provided were used with an instance of 
PostgreSql version 9.1, which can be downloaded from www.
postgresql.org. The C++ code implements the tool named 
NCHRP_GPS_Data_Reduction, which is used to prepare 
the input data for Experiment B; it can be compiled in the 
Microsoft Windows platform using free versions of Micro-
soft Visual Studio, which can be downloaded from http://
www.microsoft.com/visualstudio/eng/downloads#d-2013- 
express. Using the provided C++ source code in other plat-
forms is possible, but may require modifications as well as the 
creation of make files, which are not included in this package.

Experiment A Instructions

This section covers the loading and use of the procedures 
implemented as part of five Experiment A methods tested, 
which include:

1. GPS point noise filtering
2. Trip end identification
3. Mode transition identification
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4. Travel mode identification
5. Trip purpose identification

Information on how to use the Experiment A method imple-
mentations is organized based on the software tools used. The 
majority of the methods in Experiment A were implemented 
using R, with a smaller set done using WEKA and BIOGEME.

Methods Implemented Using R

Before the routines can be loaded, it is necessary to config-
ure the R environment by ensuring that the following pack-
ages are installed: geosphere, rJava, ggplot2, and ggmap. This 
action can be done by issuing the following command:

> install.packages(“geosphere,rJava, 
ggplot2,ggmap”);

Once these packages are loaded, the methods routines can 
be loaded into R for use. The simplest way to do this is to load 
the RStudio project file NchrpScripts.Rproj; this action will 
set up R’s home to the home folder of the script files. Once 
the project file is open, the following command can be issued 
to initialize the R environment and preload the implemented 
routines:

> source(‘Initialize.r’)

Loading GPS Point Data
The package includes the function loadData() for loading 

GPS point data in GeoLogger format. The GeoLogger format 

Field  Description 
Field 1   A = valid data, GPS ok

  D = valid data, DGPS ok 
  V = first valid point after loss of signal or power

Field 2 Latitude (dd.ddddd)
Field 3 N = North of the Equator

S = South of the Equator
Field 4 Longitude (ddd.dddd)
Field 5 E = East of Greenwich

W = West of Greenwich
Field 6 Speed in mph (s.s)

Field 7 Time UTC (hhmmss)

Field 8 Date UTC (ddmmyy)

Field 9 Heading – clockwise degrees from north (000 - 259)

Field 10 Altitude in feet (a.a)

Field 11 HDOP (00.5 - 99.9)
Field 12 Number of satellites (00 - 12)

is a comma-separated values text file that contains the follow-
ing data fields:

The loadData function returns a data set that can be used 
as inputs to point-based methods. To invoke the provided 
function and have the loaded GPS data assigned to a variable, 
the following command can be issued:

> rawPoints <- loadData(‘~/NchrpScripts/ 
Data/sample_points.csv’)

The loaded points can then be viewed using RStudio’s 
built-in data grid browser by issuing the following command:

View(rawPoints)
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The built-in statistical functions of R can also be used to 
summarize and graph the data:

> summary(rawPoints)
> hist(rawPoints$speedmph)

GPS Point Noise Filtering
To run the noise filtering methods, pass in the raw GPS 

points loaded using the loadData() function. The methods 
add a Boolean variable (noise) to the passed-in data set that 
is set to TRUE if the point is considered to be noise. Three 
noise filtering method implementations are contained in the 
bundled source code. The sample code below shows how to 
run them and do a quick summarization of their results:

> lwPoints <- noiseFiltering_Lawson 
(rawPoints)
>  summary(lwPoints$noise)
  Mode FALSE TRUE NA’s
logical 4337 663 0
>
> safPoints <- noiseFiltering_Schuessler_ 
Axhausen(rawPoints)
> summary(safPoints$noise)
  Mode FALSE TRUE NA’s
logical 4744 256 0
>
> stfPoints <- noiseFiltering_Stopher 
(rawPoints)

> summary(stfPoints$noise)
  Mode FALSE TRUE NA’s
logical 4996 4 0

The filtered out points can also be visualized using the 
ggmap library. For example, the following commands will 
create a map using a bounding box computed based on the 
points’ coordinates and will apply different colors (or gray 
levels) based on their speeds:

> fgps <- subset(lwPoints, noise)
> bbox <- c(min(fgps $long), min(fgps $lat),  
  max(fgps $long), max(fgps $lat))
> map <- qmap(bbox, zoom = 15)
> map + labs(x = “Longitude”, y=”Latitude”)
> map + geom_point(aes(long,lat, colour=
speedmph, size=2, alpha=0.25), data= 
fgps) + scale_colour_gradient(low=”red”, 
high=”green”)

Trip Identification
The trip identification methods implemented take as input a 

data set of GPS points and return a list of GPS trips, with some 
basic attributes added. To derive trips using the two imple-
mented methods and the GPS points filtered by the Lawson 
method as input, the following commands can be used:

saTrips <- tripIdentification_Schuessler_
Axhausen(subset(lwPoints, !noise))
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wlTrips <- tripIdentification_Wolf(subset 
(lwPoints, !noise))

The generated trips include the following basic attributes:

•	 startindex & endindex: point indexes into the passed-in 
point data for each trip

•	 starttime & endtime: UTC date and time stamps for the 
start and end of each trip

•	 startlat & startlong: latitude and longitude coordinates for 
the trip start

•	 endtlat & endlong: latitude and longitude coordinates for 
the trip end

•	 distancemeters: total distance accumulated over the trip’s 
points, calculated using the great-circle distance formula 
and returned in meters

•	 travtimeminutes: endtime – starttime in fractional minutes
•	 avgspeedkph: trip’s average speed in km/h

Travel Mode Transition Identification
These methods can break a sequence of GPS points into 

mode segments and are only applicable to GPS data that have 
been collected using on-person data loggers. Mode segments 
consist of individual legs in a multimodal trip. The output of 
these methods is similar to that of the trip identification meth-
ods, as input that take in a data set of GPS points returned by 
the loadData() function. The first implemented mode transi-
tion identification methods can be invoked using the follow-
ing commands:

segments <- modeTransitionIdentification_ 
Oliveira (rawPoints)

The second method (modeTransitionIdentification_Tsui 
Shalaby_SchuesslerAxhausen) employed a Fuzzy Logic Engine 
written in Java by Edward Sazonov that can be found at 
http://people.clarkson.edu/~esazonov/FuzzyEngine.htm. 
The authors modified the engine by adding a method to return 
several variables, one for each mode of interest. (A fuzzy engine’s 
normal operation is to return a decimal value between 0  
and 1; the modification allowed an array of values to be 
returned: 0 to 1 for each mode, such that the sum of all is 1.) 
Because the Experiment A reference data used a different set 
of travel modes, further modifications to the engine to gener-
alize the mode handling were made. The modified code and 
compiled objects are included in the distributed package. The 
package rJava was used to invoke the Java .jar code directly 
from R, so the method can be invoked directly using the fol-
lowing command:

modeSegments <- travelModeIdentification_
TsuiShalaby_SchuesslerAxhausen(segments, 
filteredPoints)

Travel Mode Identification
The implementation of the Stopher travel mode identifi-

cation method was very dependent on the available spatial 
data regarding the location of roadways and railroads. To 
implement this method within R, it was necessary to conduct 
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extensive preprocessing of the data using a GIS; the results 
of this preprocessing were then saved as text files, which are 
directly referenced by the R code. This makes the implemen-
tation unsuitable for uses outside of this project, and, because 
of this, this method is not covered in the bundled package.

Methods Implemented Using WEKA

The WEKA machine learning tools were used to implement 
machine learning-based methods, namely neural networks for 
travel mode identification and decision trees for trip purpose. 
The packaged model files (.model) can be opened with WEKA 
to run on other data sources. Note that text files produced by 
WEKA use UNIX line endings, which Windows Notepad will 
not display correctly. Use WordPad or a more advanced text 
editor to view them.

WEKA makes a distinction between numeric values and 
nominal values. A numeric variable can vary over the whole 
real line, while a nominal value is one of a set. We use nominal 
values where there is no “closeness” relationship, and the con-
cept of “for cases with less than a value” does not make sense. 
For example, the number of household members on a trip 
(hhmem) is a numeric value because there might be inter-
esting relationships between having one household member 
and having more than one household member on the trip. 
On the other hand, the place type (ptype) is nominal, because 
there is no obvious relationship that home and work share 
that school does not.

Travel Mode Identification Using Neural Networks
The saved file ForWekaTrain180.model contains the final 

trained neural net, which can identify between the travel modes 
walk, bike, car, bus, and train. This file can be opened in WEKA 
and then applied to input data files containing independent 
variables that the net can use to estimate travel mode.

Input files for WEKA use the Attribute-Relation File For-
mat (ARFF). These are CSV text files that include metadata 
that covers such items as all the possible values that nominal 
variables can take. For more information on ARFF files see 
http://www.cs.waikato.ac.nz/~ml/weka/arff.html.

You can use WEKA’s explorer to prepare input ARFF files from 
CSVs. In this case the following transformations were done:

1. Remote attributes 2 and 3 (startindex and endindex)
2. Convert attribute 6 (travmode) from numeric to nominal
3. Convert attribute 1 (caseid) from numeric to nominal, 

and then from nominal to string.

The ARFF file records this as:

@relation ForWekaTrain180-weka.filters.
unsupervised.attribute.Remove-R2-3-weka. 

filters.unsupervised.attribute.Numeric 
ToNominal-R6-weka.filters.unsupervised.
attribute.NumericToNominal-R1-weka. 
filters.unsupervised.attribute.Nominal 
ToString-C1

As part of Experiment A, a random sample of 180 trips 
was chosen to train the network, and then a separate random 
sample of 90 trips was used to test the network. The neural 
net uses the following fields (travmode is the result):

•	 Average speed in mph
•	 Max speed in mph
•	 Standard deviation of the distance between locations in 

feet
•	 Dwell time in seconds
•	 Travel mode [1 = walk, 2 = bike, 3 = car, 5 = bus, 7 = train]

Once an ARFF file is ready, the neural network model can 
be built by training it on that ARFF. This example script uses 
a learning rate of 0.1 and runs for 300 epochs:

>java -cp weka.jar weka.classifiers.meta.
FilteredClassifier -d ForWekaTrain180.
model -t ForWekaTrain180.csv.arff -F 
weka.filters.unsupervised.attribute.
RemoveType -W weka.classifiers.functions.
MultilayerPerceptron — -L 0.1 -N 300 > 
ForWekaTrain180.out.txt

To validate the model, run the following script on the test 
ARFF:

>java -cp weka.jar weka.classifiers.meta.
FilteredClassifier -l ForWekaTrain180.
model -T ForWekaTest90.csv.arff  
> ForWekaTest90.out.txt

The FilteredClassifier/RemoveType is necessary to have 
the input ARFF file have a record identifier, but not allow 
the neural net to make inferences based on that record identi-
fier. The record identifier allows the mapping of the results 
back to the original data, but since the neural net’s training 
set and test set must have the same schema, the removal of the 
record identifier must be done within the WEKA command. It 
is RemoveType because the record identifier is a string, and it 
is the only string in the data.

Trip Purpose Identification Using Decision Trees
To apply the trip purpose decision tree, it is first necessary 

to prepare an input file containing all of the variables refer-
enced in the model, as specified in Appendix D. This process 
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was conducted using a PostgreSql database. A template that 
can be used to recreate this database’s structure is included 
in the bundled packager. To use it, first install PostgreSql and 
start the service. Once you connect to the server, create a new 
database and load the PostGIS extension on it. More infor-
mation on how to configure and use PostgreSql and PostGIS 
can be found at http://www.postgresql.org/docs/manuals/ 
and http://postgis.net/documentation, respectively.

Once the database is created, open a query window to it 
using a client like pgAdmin (http://www.pgadmin.org/) and 
then load the purpose_template.sql file and execute it. This 
action will create a blank database structure as well as a series 
of functions that can be called to prepare the data.

The database structure uses places to store trip informa-
tion. Each place record has a reference to a location record, 
where the actual destination addresses and coordinates are 
stored. Similarly, household, person, and vehicle informa-
tion should be entered into the supporting tables. Once the 
database is populated, the function prepare_data() can be 
invoked with the following command:

SELECT prepare_data();

This command will populate the table placestripimpute-
variablesints, which can be exported to CSVs and used as 
input to the trip purpose identification models.

The saved decision tree for estimating trip purpose is 
included in the file arc_agg_sample.model. This file can be 
opened in WEKA and used to classify trip purpose files. Use 
WEKA’s Explorer to prepare an ARFF file with input data and 
then follow these steps to make the data usable by WEKA:

1. Remove columns ID, finalpersoncategory, tpurp, stpurp, 
distancetohome, airportdestnotflying, orig_taz, dest_taz, 
airport, outoftown, airportpurpose, longitude, latitude

2. Move apurp to the last column (WEKA prefers that train-
ing validation/output columns be last)

3. When preparing the validation file, remove nearschool, 
lu_name

4. Turn all columns into nominal values except arrhour, age, 
actdur, tripdistance, tottr, hhmem

5. When preparing the validation file, remove home pur-
poses with

 a. RemoveWithValues index 99 (apurp)
 b. Nominal indexes 1,2,3,16,17 modifyheader (16 and 17 

are codes 96 and 97)
6. Rename apurp to tpurp by editing the ARFF file in a text 

editor

This is recorded in the resulting ARFF as:

@relation ‘arc_agg_sample-weka.filters. 
unsupervised.attribute.Remove-R1,5,15-16, 

21,33,49-51,53-54,111-112-weka.filters. 
unsupervised.attribute.Reorder-Rfirst- 
12,14-last,13-weka.filters.unsupervised. 
attribute.NumericToNominal-R2,3,12,15, 
16,36-V’

And for the validate file:

@relation ‘arc_agg_validate-weka. 
filters.unsupervised.attribute. 
Remove-R1,5,15-16,21,33,49-51, 
53-54,113-114-weka.filters.unsupervised.
attribute.Reorder-Rfirst-12,14-last, 
13-weka.filters.unsuper vised.attribute. 
Remove-R96,100-weka.filters.unsupervised. 
attribute.NumericToNominal-R2,3,12,15, 
16,36-V-weka.filters.unsupervised.
instance.RemoveWithValues-S0.0-Clast-
L1,2,3,16,17-H’

The steps described here can also be done in the graphi-
cal user interface (GUI) tool but it is simpler and faster to 
explain them as command-line interface (CLI) statements. 
First make a .model file, which contains all the information 
about the tree. This can be done by issuing the following 
command:

>java -cp weka.jar weka.classifiers.
trees.J48 -t arc_agg_sample.csv.arff  
-M 25 -x 10 -d arc_agg_sample.model  
-i > arc_agg_sample.output.txt

This command gives WEKA an ARFF file and produces a 
J48 decision tree with a minimum leaf of 25 instances and 
10 folds of cross-validation. The output file gives a textual 
description of the decision tree, its success rate on the train-
ing sample, and the confusion matrix on the training sample 
(which is a grid comparing model predictions with actual 
values). The tree can be visualized by creating a DOT file, 
which can be done using the following command:

>java -cp weka.jar weka.classifiers.
trees.J48 -t arc_agg_sample.csv.arff  
-M 25 -x 10 -g > arc_agg_sample.dotty

The open-source program “dot” can then be used to cre-
ate a flowchart using the .dotty file. The easiest way to get 
this program is to install “GraphViz” from www.graphviz.
org. The output from the dot program will be scalable vec-
tor graphics (SVG) flowcharts, which can be opened in most 
modern browsers. Alternatively, WEKA’s built-in visualiza-
tion of trees can be used, but it does not produce as clean 
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of an image. To obtain a SVG flowchart, issue the following 
command:

>dot.exe -Tsvg -o -Kdot arc_agg_sample. 
dotty > arc_agg_sample.svg

Finally, the created tree can be applied to an existing data 
set (arc_agg_validate.csv.arff) to generate aggregate results 
using the following command:

>java -cp weka.jar weka.classifiers.
trees.J48 -T arc_agg_validate.csv.arff 
-l arc_agg_sample.model > arc_agg_ 
validate.output.txt

The following command can be used to obtain a file with 
the predicted values for each input record:

>java -cp weka.jar weka.classifiers.
trees.J48 -T arc_agg_validate.csv.arff 
-l arc_agg_sample.model -p 0 > arc_agg_
validate.predictions.txt

Methods Implemented Using Bison BIOGEME

BIOGEME is very strict about its input variables; so, to save 
time and to avoid major headaches, ensure that the input data 
contain only numbers (except for the header row) and that 
no empty values are present in the file. Bison BIOGEME uses 
a CLI; to obtain a CLI console in Windows, click on the start 
menu, type in cmd.exe, and hit enter. Once the console 
window is open, navigate to the path where the BIOGEME 
model file is using the console’s cd command. Finally, to run 
Bison BIOGEME with the provided model specification file 
(assumes extension .mod) and, passing in the input file name 
(tab-delimited text file), issue the following console command:

> biogeme mymodel sample.dat

Once a satisfactory model estimation is obtained, the  
BIOSIM tool can be used to simulate choices using the Monte 
Carlo method. Several output files will be created by the pro-
gram as it runs. The two most important files are an HTML 
document with a detailed report on the model estimation 
results and a .res text file, which follows the same format as 
the input model file, with the final estimated model.

The final model .res file can be used as input along with a tab-
delimited text file containing the independent variables of the 
model. To do this, create a copy of the file and change its exten-
sion to .mod, then open the file and update the [SampleEnum] 
value to the desired number of simulated outcomes.

A GUI is also available. More information on using the 
GUI and BIOGEME can be found on the biogeme.epfl.ch 

website; a helpful tutorial is also available at http://biogeme.
epfl.ch/v18/tutorialv18.pdf.

Probabilistic Travel Mode Identification
To use the included discrete choice travel mode identifica-

tion model, prepare an input tab-delimited text file with the 
appropriate speed attributes, as described in Appendix D. The 
file header should contain the following columns:

Caseid startindex endindex minspeedmph 
maxspeedmph avgspeedmph sdspeedmph 
minaccelmps2 maxaccelmps2 avgaccelmps2  
sdaccelmps2 distancemiles travmode

It is important to have all records populated with a valid 
value for travmode as shown in Appendix D; otherwise the 
record will be ignored by BIOGEME. Once the input file is 
assembled, an enumeration file can be generated by issuing 
the following command:

>biosim final test.dat

This command will produce an enumeration file (.enu) 
with utilities for all the choices, probabilities, and simulated 
outcomes.

Trip Purpose Identification
To apply the trip purpose discrete choice model, it is first 

necessary to prepare an input file containing all of the vari-
ables referenced in the model, as specified in Appendix D. 
The database procedure described previously in the section 
named “Trip Purpose Identification Using Decision Trees” 
can be used for this purpose. Once the data are prepared, 
BIOSIM can be used to simulate choices based on an input 
file. To simulate choices using the aggregate purpose model, 
the following command can be used:

> biosim agg_purpose input.dat

The resulting enumeration results can then be related back 
to the input data for analysis.

Experiment B Instructions

This section provides instructions for applying the mod-
eling process for identifying demographic characteristics of 
GPS sample data described in Experiment B. The process here 
assumes that the sample models estimated during the develop-
ment of the modeling process are to be applied to sample data 
that have been generated through the trip imputation process.

Prerequisites
Obtain the ‘NCHRP_GPS_Data_Reduction.exe’ execut-

able from the bundled files. Alternatively the project can be 
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compiled from source code. This can be done using free 
software such as Microsoft Visual C++ express, or free open-
source software such as Eclipse.

Steps
 1. Generate the Trip Input File from the results of the GPS 

trace analysis in the format shown in the table below. 
There should be one record for each travel episode for 
each person. If no unique linkage between persons in the 
sample is known (i.e., no household connections), set 
the PERNO variable = 1, and the SAMPN variable as the 
unique identifier. Ideally, multiple days of input data will 
be used here, but a minimum of 1 day is required. Save 
the file as a tab-delimited text file.

 2. Run the NCHRP_GPS_Data_Reduction tool and enter 
the inputs requested. These include the filepath to the 
trip input file described above, and the length of data col-
lection for the trips in the filepath. For a one day survey 
enter “1.”

 3. After pressing Enter, the program will then run for a short 
time and create three output files, trip_info.xls, tour_info.
xls, and person_info.xls. The tour_info and trip_info files 
show the trips/tours identified by the algorithm, while 
the person_info.xls file contains the estimated travel/tour 
characteristics for the individuals in the sample. This file 
forms the basis for further analysis.

 4. From the original input file resulting from the Trip Impu-
tation process, identify the Home Location for each 
individual in the sample, which will include the coor-
dinates of the home location. Using suitable GIS soft-
ware, create a Shapefile of the sample home locations 
and perform an overlay analysis with Census Tract 
Shapefiles from TIGER Line or other sources to iden-
tify the home Census Tract. This can be approximated 
without GIS by calculating straightline distances from 
the home location coordinates to Census Tract centroids 
and assigning the sampled individual to the nearest 
tract. Add the home census tract for each individual to 
the person_info.xls file.

 5. For each census tract in the study area, create the follow-
ing variables using the Census Transportation Planning 
Package data:

Data Requirements for Tour Identification 

Variable Data Type Descrip�on

SAMPN Integer Unique Iden�fier of Person (or Household if HH level analysis)

PERNO Integer Iden�fier of Person in Household (if HH level analysis), otherwise set to 1

PLANO Integer Iden�fier of Ac�vity, unique within SAMPN PERNO combina�on

LOCATION_TYPE String Required Loca�on types: 'Home, Work, School, Other'

LOCATION_ID Integer Loca�on iden�fier unique within SAMPN PERNO combina�on

MODE Integer 1 10 Walk=1, Bike, Drive, Pass, Transit, Paratransit, Taxi, School bus, Carpool, Other

TRPDUR Integer Trip dura�on in minutes

ACTDUR Integer Ac�vity at trip end dura�on in minutes

Variable Descrip�on
transituse % of residents in tract using transit
road_density length of roads in CT / area (miles/sq mile)
intersec�on_density intersec�ons / area (#/sq mile)
block_size avg block size (road density/intersec�on 

density)
employment_density employees per sq mile
pop_density popula�on per sq mile
housing_density housing units per sq mile

 6. Join the land use variables to the person_info.xls file 
using the Census Tract ID.

 7. First, apply the four education models conditional on 
the work status to the sample (full-time worker, part-
time worker, retiree, and other – students and children 
are excluded). This gives the conditional log-sum values 
to be used in the upper-level work status model. To cal-
culate the logsums for each work-status category, follow 
this procedure:

 a. Rename person_info.xls to person_info.dat.
 b. Select this file as the input file in the biogeme GUI.
 c.  Select the “educ_<workstatus>_sim.mod” file for the 

workstatus for which the IV is being estimated, as the 
“model” input in BIOGEME GUI. Mod files are included 
in the Report appendix and on the GitHub repository.

 d.  Alternatively, steps b and c can be input at once using 
BIOGEME command line.

 e.  Press “Simulate” in BIOGEME. This will result in the 
creation of a *.enu file, which contains the utility esti-
mates for each education alternative.

 f.  Calculate the inclusive value (IV) to use in work status 
model from the utility estimates: IV_<workstatus> = 
ln ∑ieVi, where utility Vi is given in the *.enu file for 
each alternative.

 g.  Append the education IV to the person_info.dat file 
for each sample.

 h. Repeat for each work status.
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 8. Next, apply the upper-level work status model using 
BIOGEME in the same manner as described in 7 a–e, 
using “wkstat_simulation_FINAL.mod” to estimate the 
work status utilities.

 9. Calculate work status probabilities for each sample using 
the estimated utilities in the *.enu file and the MNL for-
mula: Pi = eVi / ∑jeVj and choose a realization of the work 
status using simulation. Append the work status to the 
person_info.dat file as a new column.

10. Estimate the education status conditional on work status 
as follows:

 a.  Split the person_info.dat file into four temporary files 
based on work status (ignore child and student work 
status in this step.

 b.  Repeat steps 7 b–e to estimate the utilities for each 
education alternative.

 c.  Follow step 11 using the *.enu file in the previous step 
to estimate probabilities for each educational status and 
choose a realization. Append to the temporary data file.

 d.  Education status values have been selected for each 
work-status data file; append the results back to the 
person_info.dat main input file. At this point the work 
status and education status conditional on the work 
status have been fully specified for each individual in 
the sample.

11. Estimate the gender of the sample using the process 
described in 7 a–e using the “gender_ALL_simulation.
mod” BIOGEME model file. Generate the gender for the 
sample using the process described in 11 with the result-
ing *.enu file.

12. The person age model is an ordered logit model devel-
oped using the NLOGIT software. The probabilities for 
age categories can be estimated in Excel as follows:

 a.  Add a column to the “person_info.dat” file called utility.
 b.  Calculate the utility by multiplying all of the estimated 

coefficients shown in the final report by the appropri-
ate columns and summing the results.

 c.  Add five columns called cumulative probability to 
calculate the probability of each category.

 d.  Calculate the cumulative probability of each category 
(0–4) using the formula Pi = eµi-V / (eµi-V	+	1), where 
µ0 = 0 and µ4 = ∞, the remaining µ-values are as shown 
as shown in “Ordinal Logit Model for Age Categories” 
table in Appendix E.

 e.  Finally, calculate the probabilities for each category by 
subtracting the cumulative probability of the previous 
category (except for category 0, where the cumulative 
probability equals the category probability).

13. Estimate the possession of a driver’s license for the indi-
vidual using the WEKA software.

 a.  Download “license_model.model” from the code 
repository.

 b.  Save a copy of the “person_info.dat” file as a csv file 
(using Excel or other file converter).

 c.  Open WEKA (if the “Weka GUI Chooser” window 
appears, select “Explorer”).

 d.  Under the “Preprocess” tab click “Open file . . . ” and 
select the csv file.

 e.  In the lower left corner labeled “Attributes,” select all 
variables not in the list in the table below, then click 
the “Remove” button. It is critical that the remaining 
attributes shown in the window match EXACTLY the 
variables shown in the table, including variable names, 
otherwise the simulation will fail. If no “LIC” (license) 
variable exists, create the column and set all values 
equal to “NO” in the .DAT file and repeat steps a–c.

 f.  Click the “Save . . . “ button at the top of the form and 
save as an ARFF file.

 g.  Navigate to the “Classify” tab, and click the “Set..” but-
ton next to “Supplied test set” and choose the file saved 
in the previous step.

 h.  Right click in the “Result list” area and select the 
“license_model.model” file previously downloaded.

 i.  Right click on the model that was loaded in the 
“Result list” area and select “Re-evaluate model on 
current test set.”

 j.  Right click again on the model and select “Visualize 
Classifier Errors”; when the window appears, click 
“Save.” The saved file will then contain all of the attri-
butes as well as the column “predictedLIC,” which con-
tains the license prediction. This column can then be 
joined back to the original “person_info.dat” file.

14. The process for running the Household-type joint model 
is nearly identical to the process for the license model. Dif-
ferences in the steps are listed based on the corresponding 
letter.

 a.  Download “household_type_j48.model” from the 
code repository.

 e.  Create the “HHTYPE” column if necessary and default 
values to “H_100.”

 h. Select “household_type_j48.model.”
 j.  Save the file that will contain the “predictedHHTYPE” 

column. Create new columns in the original “per-
son_info.dat” file for the household size, number of 
vehicles, and presence of children, then populate the 
columns using the first, second, and third digit after 
the “H_” in the “predictedHHTYPE” column.
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Abbreviations and acronyms used without definitions in TRB publications:

A4A Airlines for America
AAAE American Association of Airport Executives
AASHO American Association of State Highway Officials
AASHTO American Association of State Highway and Transportation Officials
ACI–NA Airports Council International–North America
ACRP Airport Cooperative Research Program
ADA Americans with Disabilities Act
APTA American Public Transportation Association
ASCE American Society of Civil Engineers
ASME American Society of Mechanical Engineers
ASTM American Society for Testing and Materials
ATA American Trucking Associations
CTAA Community Transportation Association of America
CTBSSP Commercial Truck and Bus Safety Synthesis Program
DHS Department of Homeland Security
DOE Department of Energy
EPA Environmental Protection Agency
FAA Federal Aviation Administration
FHWA Federal Highway Administration
FMCSA Federal Motor Carrier Safety Administration
FRA Federal Railroad Administration
FTA Federal Transit Administration
HMCRP Hazardous Materials Cooperative Research Program
IEEE Institute of Electrical and Electronics Engineers
ISTEA Intermodal Surface Transportation Efficiency Act of 1991
ITE Institute of Transportation Engineers
MAP-21 Moving Ahead for Progress in the 21st Century Act (2012)
NASA National Aeronautics and Space Administration
NASAO National Association of State Aviation Officials
NCFRP National Cooperative Freight Research Program
NCHRP National Cooperative Highway Research Program
NHTSA National Highway Traffic Safety Administration
NTSB National Transportation Safety Board
PHMSA Pipeline and Hazardous Materials Safety Administration
RITA Research and Innovative Technology Administration
SAE Society of Automotive Engineers
SAFETEA-LU Safe, Accountable, Flexible, Efficient Transportation Equity Act: 
 A Legacy for Users (2005)
TCRP Transit Cooperative Research Program
TEA-21 Transportation Equity Act for the 21st Century (1998)
TRB Transportation Research Board
TSA Transportation Security Administration
U.S.DOT United States Department of Transportation
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