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F o r e w o r d
William Hyman, SHRP 2 Senior Program Officer, Reliability

The Incorporating Reliability Performance Measures into Operations and Planning Mod-
eling Tools project explored how to address reliability using micro- and mesosimulation 
models. In addition, it provided guidance on how to address reliability in other modeling 
systems, namely in traditional demand forecasting models and with activity-based models 
coupled with dynamic traffic assignment models. Substantial advances were made in this 
project, both conceptually and in terms of practical products produced.

This research should be of interest to those concerned with modeling travel time reliability 
and using the results for transportation system management and operations. The audience 
for the reports and products resulting from this research includes researchers, planners, 
traffic engineers, vendors of simulation models, consultants who work hand in hand with 
transportation agencies, and decision makers concerned with highway operations.

Early in the project the researchers set out a framework for incorporating reliability into plan-
ning and operation models that distinguishes between the demand and supply side. Travel 
demand may be static, as in typical planning models; dynamic for planning and operational 
models; or activity-based. Supply—in other words, the capacity of each part of the network—
may be fixed, stochastic, or systematically varying.

The SHRP 2 Reliability focus area identified seven sources of nonrecurring congestion: 
incidents, weather, work zones, special events, traffic control devices not working properly, 
unusual fluctuations in demand, and bottlenecks that can exacerbate these sources of unre-
liability. These nonrecurring sources of congestion can affect supply, demand, or both; for 
example, work zones affect supply; special events, demand; and incidents and weather, both. 
These supply and demand factors influence the travel time for origin–destination (O-D) pairs 
across the network and, in turn, the distribution of travel time from which various reliability 
measures can be derived.

To explain how to address reliability when using micro- and mesosimulation models, the 
framework was extended to distinguish between sources of nonrecurring congestion exter-
nal (exogenous) to a simulation model and internal (endogenous) to it. Exogenous factors 
include incidents, weather, and work zones, whereas endogenous factors include heteroge-
neity of driver behavior and vehicle type on the demand side and breakdown of flow, traffic 
control, and differences in car-following behavior on the supply side.

Microsimulation models are widely used in the transportation field to understand how 
vehicles behave in detailed settings, such as a series of traffic signals along an arterial street, 
freeway onramps, or a small network of roads. Mesosimulation models are suitable for 
higher-resolution analysis and can be applied to networks of varying sizes, including an entire 
region. Both micro- and mesosimulation models are based on some form of traffic physics, 
in contrast to a standard four-step demand model.

This project focused considerable attention on how micro- and mesosimulation models 
could address travel time reliability. The essence of the approach is to sandwich a simulation 
model between a pre- and post-processor such that together, all three components can portray 
travel time reliability on a network or part of it.
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The researchers developed two software prototypes that were tested with both a widely 
used mesosimulation model and a widely used microsimulation model. The first software 
prototype, the Scenario Manager, consisted of the pre-processor for either type of simula-
tion model. The Scenario Manager produces random scenarios involving various sources 
of nonrecurring congestion such as traffic incidents, weather, and work zones. It can also 
address scenarios based on historical data or scenarios previously constructed for planning 
purposes. The other software prototype is the Trajectory Processor. This post-processor 
determines the distribution of travel time for every O-D pair on a network. Nearly all the 
travel time reliability metrics, including standard deviation and the Planning Time Index, 
can be derived from the travel time distribution. For information about how to use the two 
prototypes, see their user guides. This report provides more information about the Scenario 
Manager and the Trajectory Processor, as well as the research. 

The research also produced SHRP 2 Report S2-L04-RR-1: Incorporating Reliability Perfor-
mance Measures into Operations and Planning Modeling Tools: Application Guidelines, about 
a micro- or mesosimulation model with pre- and post-processors. Private sector software 
vendors may wish to closely examine the prototype software to determine the merits of 
incorporating similar capability into the products they have on the market. The application 
guidelines and user guides should help private vendors make informed decisions.

It is worth noting that a similar scenario manager and procedures for compiling the dis-
tribution of travel time were also developed and applied in the SHRP 2 L02 project, Incor-
poration of Travel Time Reliability into the Highway Capacity Manual. The Transportation 
Research Board Committee on Highway Capacity and Quality of Service approved a motion 
to incorporate this new approach into the Highway Capacity Manual.

The SHRP 2 L04 project also drew on earlier work performed in the SHRP 2 Capacity 
focus area under a project titled Improving our Understanding of How Highway Congestion 
and Pricing Affect Travel Demand (SHRP 2 C02). Reliability was introduced into succes-
sively richer utility functions, beginning with the traditional variables of out-of-pocket costs 
and travel time, and progressively adding other variables including travel time reliability. 
The researchers describe how to place a value on travel time reliability given other relevant 
terms in the utility function and emphasize that the value of reliability is not a constant; 
rather, it varies with such factors as vehicle occupancy and household income. This project on 
incorporating reliability into planning and operation models absorbed important aspects of 
the earlier research performed within the SHRP 2 Capacity focus area.

Finally, a substantial effort was undertaken within this project to provide guidance on how to 
integrate reliability into a modeling system that uses activity-based models on the demand side 
and a fine-grained, time-sensitive model on the supply side (e.g., a mesosimulation model). 
This guidance appears in the project’s reference material report (SHRP 2 Report S2-L04-RR-1: 
Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools: 
Reference Material).
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The broader goals of the Reliability focus area within the second Strategic Highway Research 
Program (SHRP 2) are to address unexpected traffic congestion and improve travel time reli-
ability. To this end, SHRP 2 research projects have brought forward numerous technical 
measures and policies for further consideration and development. In parallel with these proj-
ects, the L04 project, Incorporating Reliability Performance Measures into Operations and 
Planning Modeling Tools, is aimed at improving planning and operations models to create 
suitable tools for the evaluation of projects and policies that are expected to improve 
reliability.

The L04 project addressed the need for a comprehensive framework and conceptually coher-
ent set of methodologies to (1) better characterize reliability, and the manner in which the vari-
ous sources of variability operate individually and in interaction with each other in determining 
overall reliability performance of a network; (2) assess the impact of reliability on users and the 
system; and (3) determine the effectiveness and value of proposed counter measures. In doing 
so, this project has closed an important gap in the underlying conceptual foundations of travel 
modeling and traffic simulation, and provided practical means of generating realistic reliability 
measures using network simulation models in a variety of application contexts. A principal 
accomplishment of the project is a unifying framework for reliability analysis using essentially 
any particle-based microsimulation or mesosimulation model that produces vehicle travel 
trajectories.

The framework developed in this study is built on a taxonomy that recognizes demand- versus 
supply-side, exogenous versus endogenous, and systematic versus random variability. The 
framework features three components:

1.	 A Scenario Manager, which captures exogenous sources of unreliability, such as special events, 
adverse weather, work zones, and travel demand variation;

2.	 Reliability-integrated simulation models that model sources of unreliability endogenously, 
including user heterogeneity, flow breakdown, and collisions; and

3.	 A vehicle Trajectory Processor, which extracts reliability information from the simulation 
output, namely, vehicle trajectories.

The primary role of the Scenario Manager is to prepare input scenarios for the traffic simula-
tion models; these scenarios represent mutually consistent combinations of demand- and supply-
side random factors and are intended to capture exogenous sources of variation. Endogenous 
variation sources are captured in the traffic simulation model, depending on the modeling 
capability of the selected platform and the intended purpose of the analysis. The framework 
may be used with any “particle-based” simulation model, namely, microscopic and mesoscopic 

Executive Summary
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simulation models that produce individual vehicle (or particle) trajectories. These trajectories 
enable construction of any level of travel time distributions of interest (e.g., networkwide, 
origin–destination pair, path, and link) and subsequent extraction of any desired reliability met-
ric. These tasks are performed by the Trajectory Processor, which produces the scenario-specific 
travel time distribution from each simulation run and constructs the overall travel time distribu-
tion aggregated over multiple scenarios.

The Scenario Manager allows generation of hypothetical scenarios for analysis and design 
purposes, while the scenario management functionality allows retrieval of historically occurring 
scenarios or of scenarios previously constructed as part of a planning exercise (e.g., in conjunc-
tion with emergency preparedness planning). Furthermore, the Scenario Manager/Generator 
facilitates direct execution of the simulation model for a particular scenario by creating the 
necessary inputs that reflect the scenario assumptions. When exercised in the latter manner (i.e., 
in random generation mode), the Scenario Manager becomes the primary platform for conduct-
ing reliability analyses, as experiments are conducted to replicate certain field conditions, under 
both actual and hypothetical (proposed) network and control scenarios. In particular, the Sce-
nario Generator enables execution of experimental designs that entail simulation over multiple 
days, thus reflecting daily fluctuations in demand, both systematic and random. Two main 
approaches may be used to assess the travel time reliability for a given project assessment  
or application: (1) the Monte Carlo approach and (2) the mix-and-match (or user-defined) 
approach. In addition to the framework and tool itself, the project also developed the method-
ological aspects of conducting scenario-based reliability analysis, including mechanisms for gen-
erating scenarios recognizing logical, temporal, and statistical interdependencies among different 
sources of variability modeled through the scenario approach.

The vehicle Trajectory Processor produces and helps visualize reliability performance  
measures (travel time distributions and indicators) from observed or simulated trajectories. 
The travel time distributions and associated indicators are derived from individual vehicle 
trajectories, defined as sequences of geographic positions (nodes) and associated passage 
times. These trajectories are obtained as output from particle-based microscopic or  
mesoscopic simulation models. Such trajectories may alternatively be obtained directly 
through measurement [e.g., probe vehicles equipped with global positioning systems (GPSs)], 
thus enabling validation of travel time reliability metrics generated on the basis of output 
from simulation tools.

Prototypes of a Scenario Manager and a Trajectory Processor have been developed as project-
specific deliverables of this research. The tools are conceptually generic and (simulation) software-
neutral. The prototypes were demonstrated for the microsimulation modeling platform Aimsun 
and the mesosimulation dynamic traffic assignment (DTA) platform DYNASMART-P, both of 
which are representative of other available options in their respective categories to enable rapid 
cross-platform adaptation.

The prototypes and the overall reliability-analysis framework were demonstrated by applying 
these microsimulation and mesosimulation models to networks extracted from the New York 
City regional network. Detailed calibration and validation steps were described using available 
data sources in addition to a specially acquired sample of actual vehicle trajectories based on GPS 
traces—highlighting and demonstrating the role and potential of such vehicle trajectories in 
traffic simulation model development and application, especially for reliability-oriented analysis 
purposes.

In addition to the development and application of this general framework, the study made 
specific contributions in several related areas, namely: (1) development and validation of a 
robust relationship between the standard deviation of the trip time per unit distance and the 
mean of the trip time per unit distance, using both simulated and observed trajectories; (2) a 
detailed proposal of an approach for incorporating reliability considerations into planning 
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models and practices, using different levels of representational detail and associated computa-
tional requirements; and (3) initial development of a new approach to microscopic modeling of 
driver behavior that can capture endogenously more of the sources of variability than currently 
available models.

In summary, this project developed and demonstrated a unified approach with broad 
applicability to various planning and operations analysis problems, which allows agencies to 
incorporate reliability as an essential evaluation criterion. The approach as such is indepen-
dent of specific analysis software tools so that it can enable and promote wide adoption by 
agencies and modeling software developers. The project also developed specific software tools 
intended to serve as prototypes of the key concepts—namely, a Scenario Manager and a Trajectory 
Processor—and demonstrated them with two commonly used network modeling software 
platforms.
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SHRP 2 L04, Incorporating Reliability Performance Mea-
sures into Operations and Planning Modeling Tools, is a cen-
tral project within the second Strategic Highway Research 
Program (SHRP 2) Reliability focus area. The goal of this 
focus area is to reduce unexpected congestion and improve 
travel time reliability. Numerous technical measures and 
policies are under consideration within SHRP 2 research 
projects to confront the problems of traffic congestion and 
devise means to improve reliability. The motivation for this 
L04 project is the recognition that it is essential to improve 
planning and operations models in parallel with these devel-
opments to have suitable evaluation tools for the projects 
and policies that are expected to improve reliability. What is 
lacking is a comprehensive framework and conceptually 
coherent set of methodologies to (1) better characterize reli-
ability, and the manner in which the various sources of vari-
ability operate individually and in interaction with each 
other in determining overall reliability performance of a net-
work; (2) assess the impacts of reliability on users and the 
system; and (3) determine the effectiveness and value of  
proposed counter measures. Therefore, this model develop-
ment project has a significant and practical role to play in 
future project investment evaluations that will use reliabil-
ity improvement estimates.

Objectives

The primary objective of this project is to develop the capability 
of producing measures of reliability performance as output in 
traffic simulation models and planning models. A secondary 
objective is to then examine how travel demand forecasting 
models can use reliability measures to produce revised esti-
mates of travel patterns. The intent of this project is therefore 
to close this gap in the underlying conceptual foundations of 
travel modeling and traffic simulation, and provide practical 
means of generating realistic reliability measures using network 
simulation models.

Approach

The research team’s approach centers on providing a unify-
ing framework for reliability analysis, using essentially any 
particle-based microsimulation or mesosimulation model 
that produces trajectories. To address the challenges associ-
ated with this task, the framework proposes to capture the 
sources of unreliability in network traffic performance through 
a combination of endogenous mechanisms (i.e., capture 
directly the phenomena that cause delay, such as flow break-
down) and exogenous events with given probabilities. Previ-
ous technical reports, particularly the Task 7 Report, 
Simulation Model Adaptation and Development [part of the 
SHRP 2 L04 Project Reference Material Report (Stogios et al. 
2014)], the team elaborated on the conceptual and method-
ological frameworks developed as an outcome of this project. 
They also presented the specific methodologies and procedures 
devised to incorporate reliability performance measures in 
supply-side (network operations) models used on their own or 
in conjunction with integrated demand-supply model systems 
for both strategic and operational planning applications.

This final report is intended to provide an application-
focused description of the methodology and tools developed 
under the L04 project to address the study objectives of assess-
ing the reliability performance of a network and evaluate the 
effectiveness of different projects and measures to improve 
reliability.

Report Organization

The report is organized into three principal parts. The first 
part focuses on the underlying conceptual and methodologi-
cal foundations of the work. The second part describes the 
specific framework and tools devised to perform the reliabil-
ity analysis. The final part concludes with study findings and 
conclusions that are preceded by the application of the frame-
work and tools on a real-world test network.

C h a p t e r  1

Introduction
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different levels of resolution (path, origin–destination, net-
work), from the set(s) of simulated trajectories obtained for 
a particular scenario simulation, or from actual vehicle tra-
jectories obtained through real world observations and data 
sources.

The third part, Part 3: Applications, consists of three chap-
ters. Chapter 8 describes the application of the overall meth-
odology in connection with a state-of-the-art mesoscopic 
traffic network simulator and dynamic assignment tool to the 
New York City regional network. Chapter 9 presents similar 
information using the selected microscopic simulation tool, 
applied in a subset of the New York City network for which 
the needed data were available. The applications provide vali-
dation by comparing the simulated outputs with those observed 
as part of a sample of GPS-equipped vehicles. Chapter 10 
concludes the report with a summary of the key findings, 
along with directions for further research necessary to 
advance the state of the art as well as the state of the practice 
in this important area.

Overall, this project has succeeded in meeting the main 
points articulated in the functional requirements and has 
shown considerable potential for general applicability to 
large-scale networks under realistic scenario assumptions. 
The approach was able to produce reasonable reliability  
metrics when compared with the observed trajectory data.

The first part, Part 1: Research Background, consists of three 
chapters. Chapter 2 describes the challenges associated with 
incorporating reliability measures into operational and plan-
ning models and provides a synthesis of existing approaches, 
thus placing the developments in this project against the back-
drop of existing contributions. Chapter 3 focuses on incorpo-
rating reliability into strategic planning tools; it is based on a 
report developed as the outcome of Task 11, which is now part 
of the SHRP 2 L04 Project Reference Material Report (Stogios 
et al. 2014). Chapter 4 articulates the functional requirements 
that have guided the development of the framework and the 
methods presented in the second part of the report.

The second part, Part 2: Framework and Tools for Travel 
Time Reliability Analysis, consists of three chapters. Chapter 5 
describes the data requirements and model selected for the 
application of the tools used in the application. Chapters 6 
and 7 present the principal general-purpose tools developed as 
part of this project. In particular, Chapter 6 describes the 
scenario-based approach devised in this study to capture 
exogenous sources of travel time variability in a network. It 
is a major contribution of this study, which may be used in 
connection with both planning and operations models, as 
described in Chapter 6. Chapter 7 describes the general pur-
pose Trajectory Processor designed to extract reliability per-
formance indicators, including travel time distributions at 
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RESEARCH BACKGROUND

The chapters in this part of the report discuss the fundamental issues of incorporating travel 
time reliability into modeling tools, investigate the feasibility of incorporating such into plan-
ning models, and identify the functional requirements for incorporating travel time reliability 
into simulation models.
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exacerbated recurrent congestion (if the baseline capacity 
is not adequate to accommodate even the average demand).

•	 Network capacity model. This model should incorporate 
the average (baseline) capacity for the given season, day of 
week, and hour that is contrasted to the average demand to 
estimate a general inadequacy that leads to recurrent con-
gestion. In addition to the baseline capacity, this model 
should include estimation of the impacts on capacity of 
lane/road closures for road maintenance/construction, as 
well as the impacts of extreme weather conditions (signifi-
cantly different from the usual weather conditions for the 
given season and hour), both of which are major supply-
side nonrecurrent congestion factors.

•	 Network simulation model. This model should integrate the 
demand and network supply sides through route choice, 
traffic flow effects, and individual microsimulation of vehi-
cles within the traffic flow. This model also provides a level-
of-service-feedback to the demand model as part of a global 
demand-supply equilibration. This model should incorpo-
rate the impacts of traffic control devices and the occur-
rence of traffic incidents, factors that also generally lead to 
nonrecurrent congestion. However, when network capac-
ity is generally inadequate and congestion levels are high, 
nonoptimal settings of traffic controls can result in (addi-
tional) recurrent congestion effects.

The incorporation of reliability factors into the models can 
be done in either of two principal ways:

•	 Analytically. Travel time is implicitly treated as a random 
variable and its distribution, or some parameters of this dis-
tribution (such as mean and variance) are described analyti-
cally and used in the modeling process.

•	 Empirically. The travel time distribution is not parameterized 
analytically but is simulated directly or explicitly through 
multiple model runs with different input variables (multiple 
scenarios).

Fundamental Issues of Incorporating Travel  
Time Reliability into Modeling Tools

C h a p t e r  2

Introduction

The general methodology for the inclusion of reliability in 
planning and operational models formulated in this research 
is based on the basic notion that transportation reliability is 
essentially a state of variation in experienced (or repeated) 
travel times for a given facility or travel experience. The pro-
posed approach is further grounded in a fundamental distinc-
tion between (1) systematic variation in travel times resulting 
from predictable seasonal, day-specific, or hour-specific factors 
that affect either travel demand or network service rates and 
(2) random variation that stems from various sources of fluc-
tuation that are largely unpredictable (to the user). A proposed 
general modeling framework for addressing both systematic 
and random variation is shown in Figure 2.1; the systematic 
sources of variation are addressed exogenously through model 
segmentation and demand-supply scenarios, creating the 
backdrop against which the random sources of variation are 
modeled. Depending on the intended application, these 
sources are modeled both in terms of their direct impact on 
network performance and the responses of travelers, which 
comprise resulting changes in travel demand.

The general model framework includes three major com-
ponents, each related to a certain subset of reliability factors 
associated with either recurrent or nonrecurrent congestion:

•	 Demand model. This model should incorporate the average 
(baseline) demand for a specific season, day of week, and 
hour that can be compared with the corresponding average 
network capacity to estimate a general inadequacy of sup-
ply that leads to recurrent congestion. In addition to the 
baseline demand, this model should include the generation 
of special events and a mechanism for accounting for other 
sources of day-to-day fluctuations in demand. A special 
event results in nonrecurrent congestion, while other day-
to-day fluctuations can manifest themselves as either non-
recurrent congestion (if the baseline capacity has enough 
reserves to accommodate most of the fluctuations) or 
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There are pros and cons associated with each method. The 
vision emerging from this research is that both methods are 
useful and could be hybridized to account for different sources 
of travel time variation in the most adequate and computa-
tionally efficient way. In particular, the team considered ana-
lytical methods whenever possible; they are generally 
preferable from both a theoretical point of view (particularly 
for network equilibrium formulations) and in terms of a 
more efficient use of computational resources in application. 
Generally, the factors that can be described by means of ana-
lytical tools and probabilistic distributions relate to the 

baseline demand and capacity estimates, day-to-day variabil-
ity in travel demand, impact of weather conditions, traffic 
control, route choice, meso effects associated with traffic flow 
physics, and individual driver behavior. Factors that can prob-
ably be better modeled through explicit scenarios, rather than 
captured by probabilistic distributions, mostly relate to spe-
cial events, road works, and occurrence of incidents.

Some factors—like day-to-day fluctuations in demand, 
weather conditions, and traffic control—can be modeled in 
both ways. It should also be noted that an explicit simulation 
by scenarios is in itself based on a probabilistic distribution 
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Figure 2.1.  General methodology for incorporating reliability into  
traffic analysis models.
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of input parameters (such as parameterized probability of 
occurrence of a certain event). However, the principal differ-
ence is that the resulting variation in travel times is generated 
through multiple simulations, rather than derived analyti-
cally from the distribution of input variables in a one-time 
network simulation.

The following sections discuss each of the reliability factors 
in detail, survey existing approaches to their modeling, and 
propose specific approaches for the current project.

Incorporating Reliability into 
Planning and Operation Models

Reliability as an Objective Network 
Performance Dimension

Characterization of Reliability Through  
Variability of Travel Times

In a very practical and constructive way, reliability is character-
ized by the lack of variability of travel times. This approach is 
largely adopted for the current project, as well as for the entire 
set of SHRP 2 projects. It should be noted, however, that if a 
more general view of highway system performance is adopted 
that includes such additional dimensions as variable cost (e.g., 
as a result of real-time dynamic pricing) and safety, then the 
highway reliability definition should be extended accordingly. 
Another salient point specifically discussed in Institute for 
Transportation Studies (2008) is that reliability also can include 
the ideas of trustworthiness and reliance, which can be affected 
by information available to highway users.

Travel time variability can be measured and analyzed in 
many different ways and at different levels of disaggregation; 
this is both important to and a complicating factor for this 
research. To constructively measure variability of travel times, 
a specific time unit must be chosen in terms of interval dur-
ing the day (e.g., an hour between 7:00 a.m. and 8:00 a.m.), 
day of week (e.g., Monday), and season (e.g., fall). This is nec-
essary to set aside differences in travel time that occur between 
hours of the day, between days of the week, and between sea-
sons; such differences are considered systematic variations 
because they are predictable, at least for most highway users 
familiar with the travel conditions in the area. The remaining 
variability of travel times across different days for the same 
unit (hour, day of week, and season) can then be used as the 
basic measure of travel reliability.

Many factors can produce different travel times for the same 
highway facility or route even if the same user drives through 
it on two or more consecutive workdays at the same time (see 
Figure 2.2). Also, because of differences in driving style, two 
different drivers may exhibit quite different patterns of travel 
behavior that result in significantly different travel times for 
exactly the same route even if they depart at the same time.

Given all of these considerations, the team concludes that 
travel time variability should be measured by variation across 
individual trajectories for the given facility and time unit. 
This factor should be incorporated into network simulation 
tools (most naturally, through microsimulation). Thus, for 
reliability analysis purposes, the framework unifies all particle-
based simulation approaches as long as they produce vehicle 
trajectories. This general modeling approach is based on two 
major principles:

•	 Incorporate the causal or systematic determinants of vari-
ability as much as possible (given the state of the art in 
traffic theories and behavioral models); and

•	 Add the remaining inherent variation through suitably 
calibrated probabilistic mechanisms.

However, from the perspective of evaluation of highway 
performance for planning purposes, it is not reasonable to 
include individual variation in travel times (and factors like 
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Figure 2.2.  Factors and dimensions of travel time 
variability.
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driving style) as a reliability component. Thus, for measuring 
reliability from the operations perspective, travel time vari-
ability should be averaged within the chosen time unit. For 
the current project, the team adopted the following definition 
for reliability as a highway performance measure:

Reliability as a highway performance measure is characterized 
by variability of travel times for the same chosen time unit 
(hour, day of week, season) observed for different days and 
averaged across individual travel times observed within the unit 
for the same day.

By virtue of this definition, the corresponding network simu-
lations incorporating reliability should be implemented with 
the same level of temporal resolution in terms of demand and 
supply, that is, hour/day/season-specific trip tables and hourly 
static traffic assignments (STA) or dynamic traffic assignments 
(DTA) covering several successive hours.

For individual behavioral analysis, additional sources of vari-
ation, such as different routes and different driving styles across 
individuals, are important. Thus, the team arrived at a different 
definition for individual behavioral analysis and microscopic 
modeling:

Reliability as a LOS measure for individual behavior is char-
acterized by variability of travel time for the same chosen unit 
(hour, day of week, season) across individual travel times 
observed within the unit.

This duality of reliability has a direct implication for the 
modeling approaches considered for the current project. 
Approaches that are based on macro modeling paradigms (i.e., 
operate with aggregate traffic flows) can only incorporate reli-
ability in the aggregate sense (first definition). Approaches that 
are based on individual microsimulation (i.e., operate with 
individual particles like persons on the demand side and vehi-
cles on the network supply side) can address both types of reli-
ability. Because several meso modeling paradigms capture 
characteristics of individual particles, the lines are increasingly 
blurred between micro and meso approaches—thus the refer-
ence to particle-based approaches as a basis for the approach 
developed in this study.

Approaches to Quantification  
of Travel Time Variability

Many quantitative measures have been proposed for travel 
time variability in different contexts, but most frequently for 
one of two distinct purposes: either for overall assessment of 
the highway facility performance, or for explaining individ-
ual preferences for a route, trip departure time, or mode for a 
particular trip. All such measures can be derived from the 
travel time distribution and none of them can be claimed to 

be particularly right or exhaustive. Each of them makes sense 
in its particular context.

From the perspective of highway operations, decisions about 
highway capacity expansion and traffic management reliability 
of travel times on a certain facility are naturally the focus of the 
analysis. Most of the actual data on travel time variability have 
been collected at the facility level. These data sources are valu-
able for building analytical functions that relate reliability mea-
sures to the traffic volume and facility characteristics (number 
of lanes, length, cross-sectional design, access, traffic signals). 
For example, robust statistical dependencies have been estab-
lished between almost all reliability measures, including stan-
dard deviation; 80th, 90th, and 95th percentile; buffer time 
and index; and average traffic volumes at the facility level. The 
SHRP 2 L03 project, Analytical Procedures for Determining 
the Impacts of Reliability Mitigation Strategies, specifically 
focused on this particular issue (Cambridge Systematics, Inc. 
et al. 2013). The specific measures of reliability that were 
proposed by the L03 team and which have largely been 
accepted in the majority of SHRP 2 projects are discussed in 
the next section.

Having these functions in place, however, does not yet provide 
an immediate basis for network simulation and travel demand 
models. Highway facilities represent elemental links in the high-
way network. The crux of the modeling challenge is that reli-
ability measures have to be generated at the trip route level, 
since that is the unit for which travel choices are essentially 
modeled. Construction of route-level reliability measures from 
facility-level reliability measures is a nontrivial problem since 
almost all reasonable reliability measures (e.g., travel time stan-
dard deviation) are not additive by links, and those that might 
be additive under certain conditions (e.g., travel time variances 
if assumed independent by links or buffer time) cannot be 
assumed independent in a general case.

User’s Perspective

Reliability as Travelers’ Subjective Perception  
and Determinant of Travel Behavior

Travel demand models and network simulation tools are based 
on the mathematical representation of choices made by the 
travelers with respect to network routes, departure times, 
modes, destinations, and frequencies for each trip type. Specifi-
cally, in the new generation travel demand models—called 
activity-based models (ABM)—and microscopic network sim-
ulation tools, the individual nature of these choices has been 
made explicit. These models have been developed and esti-
mated not only to replicate the observed aggregate traffic flows 
but also to replicate individual-level choices with the maximum 
degree of behavioral realism so as to provide reasonable predic-
tions of responses to future scenarios and policies.
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Obtaining behavioral realism in individual choices requires 
taking into account travelers’ subjective perceptions of reliabil-
ity, as well as the entire set of highway LOS attributes. Subjective 
perceptions of travel attributes can be quite different from their 
objective measurements. This phenomenon is well known to 
transportation modelers and has been long taken into account 
in some manner within the framework of conventional models. 
For example, in transit assignment and mode choice, compo-
nents of out-of-vehicle transit travel time such as wait and walk 
time are applied with perceived weights relative to in-vehicle 
time that are significant (in the range of 1.5 to 4.0). It is also not 
unusual for transit in-vehicle time to be differentiated by mode 
to reflect that rail modes are generally perceived as more conve-
nient and comfortable than conventional bus.

On the highway side, most of the travel models and network 
assignment procedures operate with a generic physical time 
variable regardless of the facility type, level of congestion, and 
associated reliability characteristics. There is compelling statis-
tical evidence from behavioral studies that travelers place a very 
significant value on reliability and other highway time attri-
butes, such as the level of congestion and driving conditions. 
Thus the concept of value of reliability (VOR) was introduced to 
complement value of time (VOT). See Concas and Kolpakov 
(2009) for a good survey of research and practical works in 
which VOT and VOR were estimated.

The highway operations perspective primarily relates the 
quantification of reliability to the comprehensive monitoring 
and measurement of the actual physical traffic times and speeds 
observed in the traffic flow. In contrast, the user’s perspective 
cannot be directly measured with roadside observations; it can 
only be quantified by relating user choices with respect to net-
work routes, trip departure times, modes, and so on to actual 
travel times and reliability measures. For each of these travel 
choices, the corresponding behavioral parameters like VOT and 
VOR are established by statistical estimation of the correspond-
ing choice models. The SHRP 2 C04 project, Improving Our 
Understanding of How Highway Congestion and Pricing Affect 
Travel Demand, is specifically devoted to this issue and provides 
behavioral models of route choice, trip departure time choice, 
and mode choice incorporating reliability measures for the  
L04 project (Parsons Brinckerhoff et al. 2013).

In summary, the following two important aspects of the 
problem need to be taken into account when the user’s perspec-
tive on reliability (and performance in general) is compared 
with the highway operations perspective:

•	 The user perspective can include many perceived compo-
nents and weights compared with the physical measures of 
average travel time and reliability in the highway operations 
perspective. The measure that looks the best and most sta-
tistically significant from the highway operations perspec-
tive might not be the best choice for modeling user responses. 

For example, the 95th percentile of travel time is favored in 
highway operations because it singles out the most critical 
cases of nonrecurrent congestion, mostly those associated 
with traffic incidents, road works, special events, and extreme 
weather (see Cambridge Systematics, Inc. 2005; Cambridge 
Systematics, Inc. et al. 2013). The current experience with 
models of individual behavior in the context of route choice, 
however, indicates that the decision-making point at which 
users evaluate reliability lies somewhere between the 80th 
and 90th percentile thus mixing recurrent and nonrecur-
rent congestion (see Concas and Kolpakov 2009; Parsons 
Brinckerhoff et al. 2013).

•	 The user perspective is inherently an entire-trip perspec-
tive. Thus, the reliability measures for travel models and 
network simulation tools have to be synthesized at the 
O–D-route level, while the bulk of statistical evidence on 
highway operations is collected at the facility/link level. This 
synthesis is not a trivial task because practically all sensible 
reliability measures are inherently nonadditive (Institute for 
Transportation Studies 2008).

Although reliability measures adopted for a travel model are 
different from reliability measures adopted for the analysis of 
highway operations, this fact does not mean that the opera-
tional simulation tools cannot be used to generate the reliabil-
ity measures needed for highway performance evaluation as an 
aggregate output. Eventually, the modeling tools designed in 
the current research will be able to generate the entire distribu-
tion of travel times for each network link, which would suffice 
for constructing virtually any reliability measure.

Reliability as a Decision-Making Factor in 
Transportation Operations and Scheduling

In addition to the general highway systems performance per-
spective and the individual driver’s perspective which consti-
tute the focus for this research project, there are several other 
important highway users, each with its own perspective on 
reliability. The other types of highway users and their per-
spectives include the following:

•	 Freight companies and truck operators. In certain regions, 
trucks constitute a significant share of traffic, and it is a nor-
mal practice to single them out as a separate vehicle class in 
traffic assignment (sometimes subdivided into heavy trucks, 
light trucks, and/or commercial vehicles), as well as have a 
separate demand model for them. Trucks are treated as a 
separate vehicle class because of their different speed and 
delay functions, possible network prohibitions, different 
toll rates, and VOT. With respect to reliability, trucks have 
an especially strong impact on traffic conditions and rep-
resent a risk factor in traffic. In general, all else being equal, 
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the higher the share of trucks in the traffic, the higher the 
variability of travel times. A related issue that has not yet been 
fully explored is the associated willingness to pay for travel 
time savings and reliability improvements. The behavioral 
mechanism associated with freight movements under the 
condition of uncertain travel time is different from the con-
sideration of reliability by private car drivers, although there 
may be some commonalities (such as the consideration of 
buffer times for on-time arrival at the destination). Some 
trucking companies, such as FedEx or UPS, might be signifi-
cantly more willing to pay for improvement in travel time 
reliability than an average trucker because those companies 
specialize in real-time deliveries. It should be recognized, 
however, that modeling truckers’ responses to reliability 
improvements is fundamentally different from modeling 
private car users’ responses in that, frequently, the truckers 
are not the actual decision makers; thus the whole (compli-
cated) aspect of dispatching and scheduling comes into play.

•	 Logistics companies. This category is another (sometimes 
invisible) player on the field. Logistics companies essentially 
generate the demand for truck movements and affect all 
choices on the truckers’ side with respect to travel time and 
reliability improvements. Unfortunately, most transporta-
tion models attempt to model truck movements directly and 
ignore the logistics component since it is very complicated. 
It is unrealistic to tackle this issue in the framework of the 
current project.

•	 Bus companies. Transit service reliability is an issue that is 
equally as important as highway reliability for the improve-
ment of modeling tools. Travelers perceive transit schedule 
adherence as one of the important attributes of a transit 
service (Institute for Transportation Studies 2008). Cars, 
trucks, and buses share the same road space in a mixed-
traffic case, thus highway reliability directly affects bus ser-
vices. It is generally agreed that due to their high occupancy 
levels, buses have very high underlying VOT and VOR per 
vehicle. This could be a very significant component in the 
evaluation of user benefits stemming from reliability 
improvements associated with special bus lanes as well as 
high-occupancy vehicle (HOV) and high-occupancy toll 
(HOT) lanes shared with buses.

•	 Taxi cab companies. In some urban areas taxis constitute a 
significant share of the traffic. For example, the share of 
taxis in internal traffic in Manhattan is almost 40%. This is, 
however, a rare case; taxis represent a negligible compo-
nent in traffic in most metropolitan regions in the United 
States. Consequently, for modeling purposes taxis are fre-
quently mixed with high-occupancy vehicles in terms of 
VOT, VOR, and other behavioral attributes that govern 
their route choice, departure time choice, and other related 
choices. To be exact, the full-day movement of taxis is 
rarely modeled, and the modeling system includes only the 

portion of their itinerary associated with the passenger 
trips they serve. The validity of these modeling assump-
tions has not been explored, and research relating to cab 
drivers’ behavior is practically nonexistent.

These specific markets are not the focus of the current 
project and are left for future research.

Reliability as a Result of Travel Decisions

The inclusion of travel time reliability in operational models 
that are based on individual microsimulation implies a two-
way linkage between the demand and network supply sides. In 
the direction from the network to the demand model, travel 
decisions (e.g., route choice) are obviously affected by reliabil-
ity, with drivers strongly preferring routes that are more reli-
able and predictable in terms of travel time. However, a model 
that includes only this linkage (i.e., feedback from the network 
supply model to the demand model that includes both average 
travel times and reliability measures) would not be complete 
without feedback to the network simulation.

This aspect of modeling reliability is important and actually 
less explored: the generation of reliability measures as a result 
of travel decisions made by multiple participants in the traffic 
flow. The most common way to establish this linkage (with 
methods largely inherited from the equilibrium techniques 
developed for conventional network assignment tools) is to 
model link-level reliability measures as an aggregate statistical 
function of the average traffic volume (or average travel time), 
which is itself a function of average traffic volume (Watling 
2006; Institute for Transportation Studies 2008). This is one 
possible approach, probably the most straightforward, and 
will be discussed in detail in the subsequent sections.

A traffic microsimulation platform in combination with a 
microsimulation demand model offers additional ways to gen-
erate travel time distributions for quantifying reliability, beyond 
the type of analytical functions of volume-delay-reliability 
that are built using aggregate statistical analysis (i.e., without 
explicit modeling of the particular mechanisms that lead to 
travel time variation). In particular, such phenomena as flow 
breakdown or the genesis of traffic collisions can be effectively 
and efficiently simulated explicitly at the micro- or meso-level. 
The same approach can be applied to special events on the 
demand side. This leads to the concept of an approach with 
multiple simulations (scenarios) that would produce travel 
time distributions (and any reliability measure derived from 
them) in a nonanalytically explicit way. This avenue of research 
is also discussed in detail in the subsequent sections.

The ultimate outcome of the current project is a complete 
model that includes both analytical and empirical (multiple-
simulation) features to produce a reasonable, stable demand-
supply equilibrium solution accounting for travel time 
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reliability in both directions of the modeling: from supply to 
demand (impact of reliability on travel choices) and from 
demand to supply (generation of reliability measures as a 
result of travel decisions).

Implication for Planning  
and Operation Models

Improving Reliability as a Policy Objective

Tackling traffic congestion and improving reliability has been 
recognized as one of the most important strategic goals of the 
highway transportation industry. Numerous technical mea-
sures and policies related to these issues have been considered 
in the SHRP 2 program. However, the genesis of this research 
project is the recognition that it is essential to improve plan-
ning models in parallel with these developments to have suit-
able evaluation tools for projects and policies that improve 
reliability.

From this perspective, when considering different possible 
approaches to the modeling of reliability, approaches that 
have the prospect of giving rise to a fully operational and com-
plete regional travel model are taken the most seriously. For 
these, the following modeling principles should be met:

•	 Measures of reliability should be incorporated into travel 
demand models, specifically in mode choice and time-of-
day choice, and (through these choices or in a different way) 
incorporated into the other travel choices, such as destina-
tion choice and trip frequency choice. This research direc-
tion is characterized by the largest body of work and 
proposed approaches. However, most of the results reported 
so far have been based on stated preference (SP) exercises; 
only a few based on revealed preference (RP) cases have ever 
been published.

•	 The reliability measures should be incorporated into net-
work simulation models in such a way that they can be effec-
tively generated within the network simulation procedure, as 
well as affect the route choice embedded in it. This research 
direction is characterized by a relatively scarce subset of pub-
lished works and suggested approaches. Most of the attempts 
resulted in path-based route choice models with complicated 
path utilities that cannot be directly incorporated into real-
world network simulations.

•	 The travel demand models and network simulation models 
that incorporate reliability measures should be combined 
in a certain equilibrium framework. It is probably unrealis-
tic to expect that a closed-form equilibrium formulation 
with reliability measures will ever be found. It is more real-
istic to construct a so-called loosely coupled demand-supply 
model with at least some level of consistency between the 
reliability measures generated by the network simulation 

and those used in the route choice and demand models. 
The existence and uniqueness of the equilibrium (stationary) 
solution in this case becomes largely an empirical issue. 
This area has been demonstrated as part of the SHRP 2 
C04 project with a restricted set of travel decisions in the 
equilibration loop (Jiang et al. 2011).

•	 The travel demand models and network simulation mod-
els that incorporate reliability measures must be opera-
tional in large networks. This is especially challenging for 
the network supply side, since most of the proposed for-
mulations inherently require path-based assignment.

Incorporating Reliability as a Way  
of Improving Modeling Tools

The incorporation of travel time reliability is generally recog-
nized as one of the main strategic directions for improving 
modeling tools on both the demand and the network-supply 
sides. It relates equally to the reliability of highway and transit 
times, although only highway reliability is the subject of the 
current research. Current practice and the existing culture of 
travel modeling are almost exclusively based on modeling with 
average travel times, ignoring actual travel time variability. 
There is generally no difference in this regard between 4-step 
and advanced activity-based models on the demand side, or 
between static and dynamic traffic assignments on the network 
simulation side, in current practice. As the result of excluding 
reliability, many of the travel phenomena associated with reli-
ability cannot be modeled properly; consequently, the models 
are required to incorporate a large number of nonbehavioral 
and nonparameterized constants that are calibrated to repli-
cate the base year data. The following common examples can 
be specifically mentioned in this respect:

•	 Large mode-specific biases in mode choice, specifically for 
rail transit services to areas associated with a high level of 
congestion (e.g., metropolitan cores).

•	 Positive toll road biases that capture all factors beyond 
average travel time and cost trade-offs, but primarily reli-
ability (though there are some other factors that can con-
tribute to this bias such as toll-averse behavior in a region 
where toll roads have not been used before).

These nonbehavioral and nonparametric components, how-
ever, can only help to shape the model to look good for the 
base year. They are not helpful for modeling new projects and 
policies that are intended to change reliability. For example, 
modeling a dynamic real time pricing facility that is designed 
to maintain a guaranteed LOS on the managed lanes repre-
sents a new challenge to travel modeling that cannot be fully 
addressed with existing models even excluding an explicit 
modeling of reliability.
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Respective Roles of Planning and Operation  
Models in Addressing Reliability

It is unrealistic to expect that it will be possible to establish one 
particular set of reliability measures associated with one par-
ticular method of incorporating reliability into demand and 
network simulation tools—that is, “one size fits all.” First, as 
existing practice shows, there are different modeling tasks asso-
ciated with highway planning and operations analysis that lead 
to different modeling frameworks and scales. Second, the team 
has distinguished between state-of-the-art, which reflects the 
best and theoretically consistent solutions available regardless 
of their complexity, and state-of-the-practice, which reflects 
numerous current constraints associated with the network 
size, reasonable runtime, data availability, and complexity for 
model use and analysis of results in a practical setting. The cur-
rent research project aims to cover and provide guidance for all 
four possible combinations of the following modeling tasks 
and frameworks:

•	 Complete regional-scale model for planning applications (e.g., 
traffic impacts of a new or significantly improved highway 
facility), including demand side and network simulation 
with consideration of equilibrium—a state-of-the-art ver-
sion based on an advanced activity-based microsimulation 
demand model that provides a way to link the demand and 
supply sides at the individual level.

•	 Complete regional-scale model for planning applications, 
including demand side and network simulation with con-
sideration of equilibrium—a state-of-the-practice version 
based on an aggregate demand model.

•	 Corridor-specific model for highway operations analysis, 
including demand side and network simulation—a state-of-
the-art version based on microsimulation of demand with a 
mode choice component.

•	 Corridor-specific model for highway operations analysis, 
including demand side and network simulation—a state-of-
the-practice version based on aggregate demand without a 
mode choice component.

The Crux of Reliability Modeling

Significant progress has been made in recent years in research 
on reliability, in a number of different directions that include 
qualitative characterization of reliability and congestion [see 
Cambridge Systematics, Inc. (2005) for a good overview], quan-
titative methods to measure reliability and VOR [see Concas 
and Kolpakov (2009) for a good synthesis], and mathematical 
models of reliability [see Institute for Transportation Studies 
(2008) for an extensive survey]. These research streams, 
however, have not yet been constructively combined into a 
single theoretical framework that would produce a complete 

operational travel model addressing reliability in both the 
demand and network simulation sides.

The crux of the problem seems to be in the inevitable com-
plexity that arises from any attempt to reconcile the following 
logical requirements for the model structure:

1.	 The model system should operate with some specific quan-
titative measures of reliability—that is, travel time variabil-
ity (standard deviation, buffer time, etc.)—in addition to 
average travel times and cost that are modeled in current 
practice.

2.	 The model system should integrate the demand and net-
work simulation sides in a reasonable way. Ideally it should 
be an equilibrium formulation. In practical terms, some 
logical structure of feedback with an empirical proof of 
convergence obtained within a reasonable number of iter-
ations would suffice.

3.	 The demand side of the model (specifically, mode choice 
and time-of-day choice, as well as other travel dimensions 
depending on the model structure) should be sensitive to 
the reliability measures. Since these models are inherently 
O–D-trip-level models, these reliability measures should 
be fed to them at the entire-route level.

4.	 The network side of the model (specifically, the functional 
or simulated dependences of link travel time distributions 
and derived reliability measures on link traffic volumes) 
should be based on the observed data from highway oper-
ations. The physics of traffic flow occurs and is observed 
at the link level. From this point of view, the model should 
be well calibrated to replicate the observed link-time vari-
ability patterns as functions of link (average) volumes.

5.	 The route choice model that is embedded in the network 
simulation model (assignment) should be sensitive to link 
reliability measures and also be able to produce O–D-level 
reliability skims for the demand model.

So far, all attempts to formulate such a model have resulted 
in computationally overly demanding path-based constructs, 
because of the inherently non-additive-by-link structure of 
all conceivable reliability measures. These formulations also 
required some very specific and simplifying assumptions about 
the link-level distributions (e.g., independence) that fail to 
account for such essential features as the correlation between 
the adjacent links because of mutually shared traffic flow. For 
this reason, it is very difficult to reconcile requirements 2, 3, 
and 4 in a behaviorally reasonable and computationally effi-
cient route-choice framework.

In light of these considerations, the main objective of the 
current L04 research project is to find a solution to this prob-
lem by means of certain empirically justified simplifications 
and arrive at a practical solution that can be applied at the 
regional scale.
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Specific Impacts of Congestion and Travel 
Time Reliability on Individual Travel Behavior

Travel time reliability has been generally recognized as an 
important missing component in the previous generation of 
travel demand models and network simulation tools. However, 
as important as it is, reliability is not the only additional issue 
or variable that needs to be incorporated into existing travel 
models to better address and account for congestion. To cap-
ture the impact of reliability effectively and correctly in demand 
models, a behavioral framework that captures the various 
dimensions in which congestion and its manifestations affect 
travel choices is needed. The L04 team believes that a deeper 
understanding of congestion impacts on travel behavior should 
include several additional aspects that directly or indirectly 
interact with the perception and effect of reliability, as discussed 
in this section of the report.

Unreliable Travel Times

This is the most commonly recognized aspect of conges-
tion that gives rise to the notion of reliability. As previously 
explained, the attempt to quantify this factor leads to dif-
ferent measures of travel time variability.

Perception of Highway Travel Time by Congestion 
Levels and Correlation with Reliability

The practice of using differential weights for different travel 
time components was introduced long ago and has been uni-
versally accepted for transit modeling. Transit in-vehicle time, 
walk time, and wait time are perceived differently by riders; the 
corresponding estimated utility function coefficients (weights) 
normally range between 1.0 and 4.0, with the highest weights 
associated with waiting time under uncertain conditions. 
There has not been, however, a parallel effort to estimate per-
ceived highway time as a function of highway level of service. 
Perceived highway time has always been implicitly assumed to 
be a totally generic variable in both route choice and mode 
choice models, as well as in the use of mode choice “logsums” 
or “generalized cost” in the trip distribution and upper-level 
models (in a hierarchical choice structure). However, a behav-
ioral analogue—between an uncertain waiting time for an 
unreliable transit service and an uncertain waiting time for 
being stuck in a car in a traffic jam—is appealing. The team 
believes that the idea of a perceived highway time structure 
(e.g., by travel speed categories) might be very beneficial from 
both a theoretical and a practical modeling perspective. Either 
as a simple operational proxy for reliability or as a complemen-
tary model parameter, perceived highway travel time under 
different conditions might be useful, especially in the context 
of applied operational models. The reason that this is relevant 
for this project is because unreliability manifests itself and 

affects demand in several complementary ways that are 
weighted differently by travelers.

Different Patterns of Highway User Behavior  
in Presence of Unpredictable Travel Times

A major assumption underlying conventional modeling 
approaches that becomes unrealistic under congested condi-
tions is that travelers (and specifically highway users) possess 
full information about all possible routes and modes and 
make rational decisions. In behavioral terms, congestion and 
associated unpredictability of travel times lead travelers to 
make seemingly irrational decisions based on intuition and 
past experience that may or may not be relevant for the cur-
rent situation. In modeling terms, we might expect the associ-
ated choice models to have relatively smaller coefficients for 
travel time and cost (more random behavior and regardless 
of VOT) compared with models estimated for uncongested 
areas where travel time is predictable.

As a result, in a route choice framework we might expect 
large deviations from the calculated shortest path. This general 
pattern will be affected by the travel information system, and 
more so as congestion creates demand for real-time informa-
tion. Travel information is especially essential for highway users 
who are not familiar with the area and do not implement trips 
along this route regularly; thus, this aspect requires some non-
traditional segmentation of the driving population. Specific 
inclusion of reliability information in addition to prevailing 
travel times could significantly affect this behavior (Dong and 
Mahmassani 2009).

Disequilibrium (Lagged Feedback) between  
Travel Demand and Network Performance

Another interesting and less investigated aspect of modeling 
reliability relates to the equilibrium formulation. It is gener-
ally recognized that travel models should reach a perfect 
(simultaneous) equilibrium between the demand and supply 
sides; a corresponding theory and effective algorithms are 
well established for aggregate 4-step models. While the con-
cept of equilibration is more ad hoc with the new generation 
of activity-based microsimulation models, the intention is still 
to reach a perfect equilibrium. Equilibrating with reliability as 
a demand factor has only recently been reported in the con-
text of a dynamic corridor analysis (Zhou et al. 2008). It is 
interesting to note that integrated land-use and transporta-
tion models have never used the concept of static equilib-
rium, since the land-use and transportation responses belong 
to different time scales. Most integrated land-use and trans-
portation models incorporate the concept of lagged equilib-
rium. In reality, there are also numerous and very different 
time scales within a travel demand model itself. In the 
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presence of congestion that makes travel time unstable, the 
process of traveler learning and adaptation associated with 
reaching equilibrium becomes longer and fuzzier. Integrating 
demand and supply models, with explicit consideration of 
reliability, has been addressed in the course of the current 
project, as well as part of the SHRP 2 C04 project.

Different Time Scales for Traveler Responses

Another important and related aspect is the identification of 
the time scales for each travel dimension and model compo-
nent that are behaviorally appropriate and which can also 
result in operational model structures. This issue is also the 
focus of the SHRP 2 C04 project, Improving Our Understand-
ing of How Highway Congestion and Pricing Affect Travel 
Demand (Parsons Brinckerhoff et al. 2013). The range of travel 
choices with very different time scales for traveler responses 
that are affected by travel time reliability is wide. Short-term 
responses include such travel dimensions as network route 
choice (including any portion of the route when new travelers’ 
information becomes available), route type choice (toll versus 
nontoll and/or managed lanes versus general-purpose lanes), 
trip departure times, and possibly mode choice (if a transit 
option is competitive). Since the perception of travel time reli-
ability generally stems from observed variability over time, it 
requires a certain learning curve and experience from travelers 
to perceive it and respond to changes (though an advance 
information system that provides reliability estimates along 
with the shortest and/or average travel times can change this 
drastically). Models that are based on the distribution of travel 
times imply that the travelers have a good idea about this dis-
tribution; in practical terms that probably means at least five to 
10 recent trips along the route at the same time of day. 
Researchers have yet to explore how the modeling assump-
tions about travelers’ knowledge and information match the 
reality, but this is largely the same problem with the conven-
tional models that operate with average travel time. The 
assumptions about drivers’ perfect knowledge and immediate 
response to changes in average travel times are seen to be essen-
tial for making the models analytically simple and operational, 
but they might be quite far from reality.

Classification of Sources  
of Travel Time Variability

Survey of the State of the Art  
and State of the Practice

This is a well-explored area, at least on the qualitative side. There 
have been several comprehensive surveys reported in literature, 
reflecting some consensus regarding the major sources of travel 
time variability and corresponding mechanisms that affect 
travel time (Cambridge Systematics, Inc. 2005).

Traffic delay factors. As stated in the request for proposal 
and according to previous research, seven major factors 
account for approximately half of all traffic delay and, there-
fore, a great deal of the uncertainty associated with travel time: 
(1) traffic incidents, (2) work zones, (3) weather, (4) special 
events, (5) traffic control devices, (6) fluctuations in demand, 
and (7) inadequate base capacity. These factors are well 
described and analyzed in Anatomy of Congestion (Cambridge 
Systematics, Inc. 2005, Figure 2.3). They do not always affect 
travel time reliability separately. They often interact, which 
increases the challenge of reducing the uncertainty of travel 
time that drivers experience.

While the L04 team accepts this classification as a very 
good and constructive starting point, this project incorpo-
rates certain details in the research that are important for 
operationalizing the simulation models that would address 
these factors. In particular, this research distinguishes between 
the systematic and random variation factors (loosely corre-
sponding to recurrent and nonrecurrent congestion) as well 
as between demand and supply (network) sides.

Systematic and random fluctuations in demand and network 
supply. It is important to distinguish between systematic and 
random variations in both travel demand and network sup-
ply. Speaking rigorously, reliability should only relate to the 
random variations (recurrent and nonrecurrent), while pre-
dictable systematic variations should not be included. On the 
demand side, that means year-to-year trends (associated with 
population growth, land-use development, and transporta-
tion network changes), seasonality, day-of-week fluctuations, 
and even certain large-scale one-time events planned in 
advance should not be considered as unreliability manifesta-
tions, but rather modeled explicitly. For example, Olympic 
Games or large conventions should not be directly counted in 
the travel time variation measures. The systematic demand 
variations essentially affect the basic equilibrium point from 
which unreliability effects are measured. Factor 7, inadequate 
base capacity, also relates to the basic equilibrium point.

In the same vein, systematic seasonal variations in the driv-
ing conditions in certain regions due to extreme but predict-
able weather (e.g., winter/icy periods in northern regions, rainy 
periods in tropical regions) should be included in the basic 
equilibrium conditions and not mixed together with the other 
seasons when the travel reliability measures are calculated.

What follows is a suggested list of true random variation fac-
tors that should be included in the reliability calculation. The 
factors are broken into demand-side and supply-side groups.

On the demand side the following factors can be referred 
to as demand spikes:

•	 Special events such as sport events, large conventions, exhi-
bitions (Factor 4). This factor relates to nonrecurrent 
congestion.
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•	 Day-to-day fluctuations due to an inherent randomness of 
individual behavior (people do not repeat the same trips 
exactly every day), as well as to variations on the activity 
supply side, for example, not the same business meeting in 
the office every day (Factor 6). This factor relates to recur-
rent congestion since it is always present in the travel 
demand generation process.

•	 Nonresident populations such as visitors staying in hotels 
and making trips in the area along with the modeled popu-
lation of residents. If the number of visitors is significant 
and there is a clear seasonal pattern in their arrival, a spe-
cial visitors’ model should be developed along with the 
core demand model. In any case, this demand component 
is normally characterized by a higher level of variation 
compared with the resident household behavior. This fac-
tor relates to recurrent congestion since it is always present 
in the travel demand generation process.

•	 Temporary closure or significant change in frequency of 
alternative modes (rail, bus, or other services). This factor 
relates to nonrecurrent congestion.

On the supply side, the following factors can be referred to 
as drops in throughput:

•	 Incidents (Factor 1). This factor relates to nonrecurrent 
congestion.

•	 Work zones (Factor 2). Again, incidental traffic changes for 
road maintenance should be distinguished from planned 
large-scale road construction. This factor relates to non
recurrent congestion.

•	 Weather/visibility beyond predictable seasonal fluctuations 
(Factor 3). This factor relates to nonrecurrent congestion.

•	 Impact of traffic control devices (Factor 5). This factor 
generally relates to nonrecurrent congestion.

•	 Randomness of individual driver behavior. For example, 
an HOV lane can be blocked by a single slow driver, just as 
one slow heavy truck can create a bottleneck on a two-lane 
road. This factor generally relates to recurrent congestion 
since it is always present in the traffic flow.

Quantification of factors producing travel time variation. 
The team explored a method for modeling each type of factor 
of travel time variation. In general, a Monte Carlo variation 
of random numbers involved in the microsimulation process 
is only one of the approaches. Many of the seven factors fall 
into the area in which the randomness can be parameterized 
and probabilities can be assigned based on the known param-
eters of the demand and/or supply.

Quantification and integration of these factors in the 
demand-supply equilibrium is needed to produce the travel 
time distributions by link, segment, and trip (O–Ds) needed 
for modeling reliability. It is also necessary to produce the 

reliability performance measures for the entire system that 
will serve as the important output of the model for compari-
son of different network alternatives, policy, and operation 
scenarios. The travel time distribution in general will reflect 
the combination of recurring and nonrecurring congestion 
as found in real networks.

Systematic and Random 
Fluctuations in Travel Demand 
and Network Supply: Impact  
on Recurrent and Nonrecurrent 
Congestion

The key question to address from a modeling standpoint, 
which goes to the heart of the functional requirements as 
reported in Chapter 4, has to do with the degree of determin-
ism with which an inherently stochastic phenomenon can be 
represented. While this may seem like a contradiction in 
terms, it is not. The variability in system performance at the 
center of interest in this project has both systematic causes, 
which can be modeled and predicted, and causes that can 
only be modeled as random variables and which occur 
according to some probabilistic mechanism. There is, how-
ever, a continuum between what may be captured as system-
atic and what is viewed as a random process with partially or 
fully known characteristics. In particular, the following 
aspects have to be taken into account:

•	 It is still necessary to model the physics of the vehicular 
traffic dynamics when such exogenous events occur. For 
example, if there is a lane blockage, or bad weather is simu-
lated, we still need to be able to model how traffic reacts 
and maneuvers in this situation. In other words, we need 
the rules, or logic for vehicular flow under these events.

•	 The statistical distributions need to be calibrated on a 
location-specific basis, and there is no guarantee that 
they would be stationary (time-invariant), resulting in 
considerable burden for practical application.

•	 Because they are exogenously specified, the model would 
provide no sensitivity to factors that may affect these occur-
rences and so would not be responsive to changes in supply 
and/or demand that are aimed at improving reliability.

•	 Ideally, researchers should capture within the model itself 
the phenomena that cause the variability experienced in 
network travel times. It is at this level that differences will be 
manifested between different simulation approaches, includ-
ing micro versus meso versus macro, as well as between the 
different behavioral rules that may be embedded in a given 
simulation model.

As part of the conceptual framework developed in this 
study, several sources of variability need to be distinguished, 
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namely, demand- versus supply-side, exogenous versus 
endogenous, and systematic versus random. Examples in 
each cell of the resulting taxonomy are shown in Table 2.1.

The focus in this research is primarily on modeling the 
variability in network performance experienced by a given 
demand pattern. In other words, exogenous variation in 
demand patterns is not of primary concern; the research does 
assume that the overall analysis framework recognizes exog-
enous variation and allows for consideration of scenarios 
under different demand realizations, with both systematic 
and transient demand load variation.

The core of the network/supply-side research lies in cap-
turing the endogenous sources of variability. Historically, 
traffic operations (simulation) models have only dealt with 
supply-side sources of variation. Systematic endogenous 
sources have generally been at the core of what traffic simula-
tion models seek to capture and reproduce. While most 
microsimulation models used in practice succeed only in 
capturing flow breakdown under certain situations, captur-
ing congestion at junctions and delay at bottlenecks is one of 
the main capabilities of these models. In general, existing 
traffic simulation models used in practice tend to produce 
“sanitized” traffic behaviors without extreme driver maneu-
vers. Random variation in various traffic phenomena has also 
been captured effectively in traffic microsimulation models. 
To the extent that these random variations are the result of 
fluctuations in individual vehicle responses, traffic micro-
simulation tools (starting with the pioneering approach 
reflected in the NETSIM tool in the 1970s) sought to capture 
them through probabilistic quantities and events for virtually 
all represented driver behaviors. This has come to be viewed 
as inherent randomness in traffic performance, reflecting in 
part user heterogeneity and in part background variation that 
will be present in any microsimulation run. While the hetero-
geneity of users is captured through exogenously specified 
distribution functions for certain key parameters, the inter
actions that determine the resulting performance and its 

variability are part of the model logic and phenomena explic-
itly represented. Three main challenges must be addressed in 
dealing with these sources of variability:

•	 Bifurcations and chaotic behavior. When do natural inherent 
fluctuations become more serious sources of disruption and/
or major delay? Some degree of variability is expected by 
users; purely random sources of randomness (i.e., white 
noise) tend to cancel out over long trajectories. However, in 
some cases, successive maneuvers amplify and lead to disrup-
tions. Flow breakdown is one example in which time lags and 
sudden reactions may combine with traffic that is becoming 
unstable, and the throughput drops considerably.

•	 Endogenizing collision occurrence. Existing models view 
collisions as exogenous random events that occur accord-
ing to some probabilistic distribution input by the user. A 
recent review by Hamdar and Mahmassani (2008) showed 
how all existing car-following models used in traffic simu-
lation tools effectively precluded the occurrence of colli-
sions as a constraint. Alternative car-following models that 
explicitly produce collisions were proposed by Hamdar  
et al. (2008) and are currently under further development.

•	 Behavioral parameters for both demand and supply phenom-
ena. Included in the taxonomy (Table 2.1) are demand-
side behaviors that deeply interact with the performance of 
the traffic system, namely, route choice and user responses 
to information and control measures. These remained out-
side the realm of traditional microsimulation tools, in 
which route choice meant application of aggregate turning 
percentages at junctions as exogenous events. Meso models 
developed for operational planning applications and intel-
ligent transportation system deployment evaluation intro-
duced these behaviors explicitly into the realm of network 
traffic simulation models. They are now recognized as 
integral to any network-level simulation tool. The team’s 
approach views demand-side behavioral parameters (that 
govern phenomena such as route choice and user decisions 

Table 2.1.  Taxonomy of Sources of Travel Time Variability

Source of Variability
Type of 

Variability

Treatment in Modeling

Exogenous Endogenous

Demand fluctuations Systematic Seasonality
Day of week

Mode choice
Time-of-day choice
Route choice

Random Special events
Weather conditions

Day-to-day variability 
in travel behavior

Supply/network  
capacity fluctuations

Systematic Road works
Lane closure

Flow breakdown or 
capacity drop

Random Weather conditions
Collision occurrence

Merge capacity
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in response to information) as part of the range of behav-
ioral parameters that determine supply-side relations 
(such as gap acceptance and lane changing in micro- 
simulation models). These parameters can be viewed as 
randomly distributed across the population of drivers in a 
given application that can be calibrated and specified 
externally, though they play a key role in determining var-
ious aspects of network performance through the rules 
included in the simulation logic.

The functional requirements presented in Chapter 4 are 
intended to identify phenomena and behaviors that account 
for the observed variability in network traffic performance 
and to determine the most effective approach for modeling 
these phenomena at both microscopic and mesoscopic levels. 
As noted, for reliability analysis purposes, the framework uni-
fies all particle-based simulation approaches so long as they 
produce vehicle trajectories. The general approach to model-
ing these phenomena is to incorporate as much as possible, 
and as may be supported by existing or in-progress theories 
and behavioral models, the causal or systematic determinants 
of variability; the remaining inherent variation is then added 
to the representation through suitably calibrated probabilistic 
mechanisms. To increase the framework’s usefulness and 
responsiveness to various reliability-improving measures, the 
team’s philosophy is to push as much as possible the portion 
of the total variation from the unexplained (noise) side of the 
equation to the systematic observable side. This approach can 
be implemented for both micro- and mesosimulation levels, 
both of which are addressed in this project.

Notwithstanding the desire for explanation, the portion of 
variability that must be viewed as inherent, or random, is 
likely to remain substantial. This has important implications 
for how the models are used to produce reliability estimates, 
and how these measures are interpreted and in turn used 
operationally.

Approaches to Incorporating 
Travel Time Variability into 
Network Simulation Tools

While significant progress has been made in understanding 
how different travel time reliability measures can affect such 
dimensions of travel demand as time-of-day (trip departure 
time) choice and route choice, the so-called supply-side of 
reliability that consists of network simulation of travel time 
variability measures remains largely an unexplored area. A 
significant breakthrough is needed to create a consistent 
methodology and computationally efficient network simula-
tion tool that can incorporate distributed travel times. Several 
principally different ways can be outlined, and while it is  
too early to decide which of them is the most promising in  
all respects, some pros and cons are becoming clear. In 

particular, the following main dimensions and characteristics 
can be identified:

•	 An analytical approach in which travel time is represented 
by a random variable (“implicit”) can be contrasted to an 
approach in which multiple simulation runs are imple-
mented (“explicit”). An analytical approach has such 
advantages as closer relation to theoretical equilibrium 
formulations. It is tempting to tackle this issue as an exten-
sion of the stochastic user equilibrium (SUE) model, 
though there is a principal difference between accounting 
for mean of the random travel time that is additive-by-link 
and any reliability measure. Additionally, a single simula-
tion run (though with some implications for analytical 
complexity) seems more efficient computationally than a 
multiple-run strategy. Explicit multiple simulations do not 
directly correspond to any existing equilibrium theory. 
However, from a practical as well as behavioral perspective, 
this analytical approach is quite appealing. As shown 
below, this approach allows for a natural incorporation of 
such phenomena as special events (on the demand side) as 
well as flow breakdowns and incidents (on the supply side). 
An approach that assumes analytical integration with the 
demand model (assuming that some demand-supply equi-
librium can be formulated, existence and uniqueness of the 
solution can be proved, and practical methods for finding 
this solution can be developed) can be contrasted to a loose 
coupling with the demand model by means of iterative 
application with feedback [referred to as a shell approach 
in Institute for Transportation Studies (2008)]. While the 
analytical integration approach has an obvious advantage, 
it currently looks unrealistic to achieve because of the 
complexity and frequent nonconvexity of both network-
related cost and demand functions. Additional argument 
in favor of the loose coupling is that any individual micro-
simulation, by introducing discreteness, inevitably devi-
ates from the perfect analytical equilibrium that is based 
on continuous traffic flows and demand variables.

•	 An approach in which the route choice is assumed to be 
affected by reliability (i.e., is inherently probabilistic) can 
be contrasted to a simpler approach in which route choice 
is assumed to be made deterministically based on the per-
fect knowledge of the traffic conditions for each particular 
trip (by using advance information system, for example). 
In both cases, the route choice model can be either deter-
ministic or probabilistic, reflecting the limited knowledge 
of the modeler. Accounting for reliability in the route 
choice, combined with a consistent generation of travel 
time reliability at the link and O–D-path levels, represents 
a complicated problem for which an effective and efficient 
solution has not yet been proposed. Route choice based on 
average travel times is a simpler solution that can be natu-
rally combined with the explicit multiple-run approach 
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using conventional network simulation tools. It should be 
noted that a deterministic route choice does not mean 
deterministic travel times. Travel time variability can be 
simulated with fixed routes.

•	 In network assignment techniques there is a principal dif-
ference between link-based and path-based assignments. 
On the one hand, link-based assignments are much sim-
pler and in general are more computationally efficient but 
they are limited to cost functions strictly additive by links. 
Path-based algorithms, on the other hand, require the gen-
eration and explicit enumeration of the route sets for each 
O–D pair. They can, however, incorporate any form of cost 
function that is not necessarily additive by links. Most 
travel time variability measures such as standard deviation, 

any percentile (80th, 90th, or 95th) and associated buffer 
time, probability of a certain amount of delay, and so on 
are nonadditive by links. The only variability measure that 
is strictly additive by links is travel time variance but only 
if travel time distribution for different links are indepen-
dent. Since independence is an unrealistic assumption, this 
approach has never been used and does not represent a 
solution. Some heuristic methods to scale link variability 
measures for each O–D path to make them additive are 
proposed in Table 2.2.

Possible combinations of the four outlined aspects and 
perspectives to build an operational model are summarized 
in Table 2.2.

Table 2.2.  Approaches to Incorporating Travel Time Variability into Network Simulation

Single or Multiple 
Simulation

Integration with 
Demand Model

Route Choice 
Made by Drivers

Link-Based  
or Path-Based

Perspective for Construction  
of Operation Tool

Analytical model based 
on a single run

Analytical integration with 
equilibrium solution

Affected by reliability 
and uncertainty

Link-based Problematic in view of non-additive-by-link 
reliability measures; probably impossible

Path-based Possible with different reliability measures in 
small networks depending on demand 
model structure

Based on known or 
average travel 
time

Link-based Represents a surrogate with perceived high-
way time by congestion levels; possible to 
implement in practice depending on 
demand model structure

Path-based Not needed

Loose coupling with 
feedback

Affected by reliability 
and uncertainty

Link-based Problematic in view of non-additive-by-link 
reliability measures; probably impossible

Path-based Possible with different reliability measures in 
small networks

Based on known or 
average travel 
time

Link-based Represents a surrogate with perceived high-
way time by congestion levels; easy to 
implement in practice

Path-based Not needed

Multiple-run structure 
with explicit genera-
tion of different travel 
times

Analytical integration with 
equilibrium solution

Affected by reliability 
and uncertainty

Link-based Problematic in view of non-additive-by-link 
reliability measures; has yet to be explored 
and will probably require reconsideration of 
demand-supply equilibrium

Path-based Has yet to be explored and will probably 
require reconsideration of demand-supply 
equilibrium

Based on known or 
average travel 
time

Link-based Possible but requires reconsideration of 
demand-supply equilibrium

Path-based Not needed

Loose coupling with 
feedback

Affected by reliability 
and uncertainty

Link-based Problematic in view of non-additive-by-link 
reliability measures but can be implemented 
with some heuristics

Path-based Possible with different reliability measures in 
small networks

Based on known or 
average travel 
time

Link-based Straightforward

Path-based Not needed
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Specifics of ABM-DTA 
Equilibration Versus 
Aggregate Models

Two-Way Linkage Between Travel 
Demand and Network Supply

The two-way linkage between travel demand and network 
supply has been described on the TF Resources website as 
follows:

Since the technologies of microsimulation have been brought 
to a certain level of maturity on both the demand side (activity-
based model, or ABM) and supply (network) side (dynamic 
traffic assignment, or DTA), the perspective of ABM-DTA inte-
gration has become one of the most promising avenues in 
transportation modeling. Seemingly, the integration of the two 
models should have been as natural and straightforward as was 
the integration concept between a 4-step model and static traf-
fic assignment (STA) [shown in Figure 3.1]. That relatively 
simple integration was based on the fact that both I/O entities 
involved in the process have the same matrix structure. The 
4-step demand model produces trip tables needed for assign-
ment, and the assignment procedures produce full level of ser-
vice (LOS) skims in a matrix format that is needed for the 
4-step model. Note that the LOS variables are provided for all 
possible trips (not only for the trips generated by the demand 
model at the current iteration). In this case we can say that the 
network model provides a full feedback to the demand model. 
The theory of global demand-network equilibrium is well 
developed for this case, and guarantees a unique solution for 
the problem, as well as a basis for effective practical algorithms.

Both ABM and DTA operate with individual particles as 
modeled units (individual tours and trips) and have compat-
ible levels of spatial and temporal resolution. It might seem 
that exactly the same integration concept as applied for 4-step 
models could just be adjusted to account for a list of indi-
vidual trips instead of fractional-number trip tables.

Moreover, the advanced individual ABM-DTA framework 
would provide an additional beneficial dimension for the inte-
gration, in the form of consistent individual schedules (that 
can never be incorporated into an aggregate framework). 
Individual schedule consistency means that for each person, 
the daily schedule (i.e., a sequence of trips and activities) is 
formed without gaps or overlaps.

However, a closer look at the ABM-DTA framework and 
consideration of the actual technical aspects of implementation 
reveals some nontrivial issues that need to be resolved before 
the advantages offered by an overall microsimulation frame-
work can be realized. Specifically, the problem is that the feed-
back provided by the DTA procedure does not cover all the 
needs of the ABM [as shown in Figure 3.2].

The crux of the problem is that, unlike in the 4-Step-STA 
integration, the microsimulation DTA usually produces an 
individual trajectory (path in time and space) for the list of 
actually simulated trips. It does not automatically produce 
trajectories for all (potential) trips to other destinations and 
at other departure times without additional computation. 
Thus, it would not provide the necessary level of service 
feedback to ABM at the disaggregate level for all modeled 
choices. Any attempt to resolve this issue by “brute force” 
would result in an impractical number of calculations, since 
all possible trips cannot be processed by DTA at the disag-
gregate level. In fact, the list of trips for which the individual 
trajectories are normally produced is a very small share of all 
possible trips.

[As shown in Figure 3.3,] one possible solution is to 
employ DTA to produce relatively coarse LOS matrices (the 
way they are produced by STA) and use these LOS variables 
to feed the demand model. This approach, in the aggregation 
of individual trajectories into coarse LOS skims, however, 
would lose much of the detail associated with DTA and the 
advantages of individual microsimulation (e.g., individual 
variation in VOTs or other person characteristics). Essen-
tially with this approach, the individual schedule consistency 
concept would be of limited value because travel times would 

C h a p t e r  3

Integrating Travel Time Reliability  
into Planning Models
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ABM-DTA Integration Principles

The emphasis in the L04 project is on truly integrating the 
demand and network models and not merely connecting 
them through aggregate measures in an iterative application. 
This approach is based on the following principles:

•	 A fully disaggregate approach implemented at the indi-
vidual level (travel tours by person).

•	 Conceptual integration of the demand and network simula-
tion procedures that ensures a fully consistent daily schedule 
for each individual. This approach is principally different 
from so-called iterative loose coupling of the demand and 
supply models.

•	 The basic travel unit that is exchanged between ABM and 
DTA is a travel tour, rather than an elemental trip. Moreover, 
in many procedures, the basic unit would be an entire indi-
vidual daily schedule (household-day or person-day, if there 
is no joint travel). Subsequent tours also put timing con-
straints on the current tour that should be taken into account 
in any scheduling or rescheduling procedure.

•	 Representation of user heterogeneity (individual travel varia-
tions) in network-based choice processes, with implications 
for optimum path computations.

•	 New algorithms that fully exploit the particle-based 
(individual) representation of vehicles flowing through the 
network in computing equilibria or other demand-supply 
consistent states.

•	 Recognition that different policies call for different types 
of solutions, with varying degrees of user information and 
feedback—such as nonrecurrent congestion with limited or 
local information which calls for one-shot simulations ver-
sus recurrent congestion which calls for a long-term dynamic 
equilibrium solution versus applications in which day-to-
day learning and evolution may be more important than 
the final states.

•	 Exploiting advanced concepts from agent-based modeling 
for integrating behavior processes in a network context, 
with special-purpose data structures geared to the physical 
and behavioral processes modeled.

Consistency of Individual Daily Schedule

The concept of a fully consistent individual daily schedule is 
illustrated in Table 3.1. The daily schedule of a person is mod-
eled for 24 hours starting at 3:00 a.m. on the simulation day 
and ending at 3:00 a.m. next day (formally represented as 
27:00). The integrated model operates with four schedule-
related types of events: (1) in-home activities, (2) out-of-home 
activities, (3) trips, and (4) tours. Start and end times of activi-
ties logically relate to the corresponding departure and arrival 
times of trips connecting these activities. Each tour spans 

Figure 3.1.  Integration of 4-step model and 
static assignment.

4-step demand model

Static assignment

Trip tables

LOS skims
for all

possible
trips

Figure 3.2.  Integration of ABM and DTA (direct).

Microsimulation ABM

Microsimulation DTA

List of
individual

trips

Individual
trajectories

for the
current list of

trips

LOS for
the other
potential

trips?

Figure 3.3.  Integration of ABM and DTA 
(aggregate feedback).

Microsimulation ABM

Microsimulation DTA

List of
individual

trips

Aggregate
LOS skims

for all
possible trips

be crude for each particular individual. Nevertheless, this 
approach has been adopted in many studies due to its inher-
ent simplicity (Bekhor et al. 2011; Castiglione and Vovsha 
2012). The emphasis in those studies was on using more dis
aggregation in the LOS skims (many more time periods, 
smaller zones, several VOT classes), but at a certain point, 
that also becomes unmanageable because of the sheer amount  
of data. (https://tfresource.org/Integrated_Travel_Demand-
and-Network-Models.)

The team proposes instead several new ideas that were 
considered and/or tested in the SHRP 2 C04 and L04 projects. 
These ideas are explained in the subsequent sections.
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several trips and related out-of-home activities and essentially 
represents a fragment of the individual daily schedule.

In reality, the observed individual schedules are always con-
sistent in the sense that they obey time-space constraints and 
have a logical continuous timeline, in which all activities and 
trips are sequenced with no gaps and no overlaps. However, 
achieving full consistency has not been yet resolved in opera-
tional models. The crux of the problem is that all trips and asso-
ciated activities have to obey a set of hard (physical) and soft 
(consideration of probabilistic choices) constraints that can 
only partially be taken into account without a full integration 
between the demand and network simulation models. Also, 
both models should be brought to a level of temporal resolution 
that is sufficient for controlling the constraints (e.g., 5 min).

The following constraints should be taken into account:

•	 Schedule continuity. Activity start time should correspond 
to the preceding trip arrival time, and activity end time 
should correspond to the following trip departure time. 
This hard constraint is not controlled in either the 4-step 
demand models or the static trip-based network simula-
tion models since they operate with unconnected trips and 
do not control for activity durations at all. Also, in 4-step 
models, the inherently crude level of temporal resolution 
does not allow for incorporating this constraint. In ABMs, 
starting from the Columbus model developed in 2004, cer-
tain steps have been made to ensure a partial consistency 

between departure and arrival times, as well as duration at 
the entire-tour level (Vovsha and Bradley 2004). This, 
however, did not include trip details and does not control 
for feasibility of travel times within the tour framework 
(though travel time is used as one of the explanatory vari-
ables). Certain attempts to incorporate trip departure time 
choice in a framework of trip chains have been made 
within DTA models (Abdelghany and Mahmassani 2003). 
However, these attempts were limited to a tour level only 
and also required a simplified representation of activity 
duration profiles. This constraint expresses consistency 
(i.e., the same number) in each row of Table 3.1.

•	 Physical flow process properties. These hard constraints 
apply to network loading and flow propagation aspects in 
DTA procedures. Physical principles such as conservation 
of vehicles at nodes must be adhered to strictly (e.g., no 
vehicles should simply be lost or otherwise disappear from 
the system). This constraint accounts for feasibility of 
travel times obtained in the network simulation that are 
further used to determine trip departure and arrival times 
in the corresponding columns of Table 3.1.

•	 Equilibrium travel times. Travel times between activities in 
the schedule generated by the demand model should corre-
spond to realistic network travel times for the corresponding 
origin, destination, departure time, and route generated by 
the traffic simulation model with the given demand. While 
most of the 4-step models and ABMs include a certain level 

Table 3.1.  Fully Consistent Individual Daily Schedule

In-Home Trips Out-of-Home Tours

Activity Start End Purpose Depart Arrive Activity Start End Purpose Depart Arrive

Sleeping, eating at 
home, errands

  3:00

  7:30 Escort   7:30 Work   7:30

  7:45 Drop-off child 
at school

  7:45

Work   7:50   7:50

  8:30 Work   8:30

Shop 16:30 16:30

17:00 Shop 17:00

Return home 17:30 17:30

Child care, errands 18:00 18:00 18:00

19:00 Disc 19:00 Disc 19:00

19:30 Theater 19:30

Return home 21:30 21:30

Resting, errands, 
sleeping

22:00 22:00 22:00

27:00

Note: Disc = discretionary.
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of demand-supply equilibration, they are limited to achiev-
ing stability in terms of average travel times. There is no con-
trol for consistency within the individual daily schedule. The 
challenge is to couple this constraint with the previous one, 
that is, ensure individual schedule continuity with equilib-
rium travel times. This hard constraint expresses consistency 
between trip departure and arrival times in the correspond-
ing columns of Table 3.1 with the travel times obtained in the 
network simulation. Practically, it is achieved within a certain 
tolerance level.

•	 Realistic activity timing and duration. Activities in the daily 
schedule have to be placed according to behaviorally realistic 
temporal profiles (Parsons Brinckerhoff et al. 2013). Each 
activity has a preferred start time, end time, and duration 
formalized as a utility function with multiple components. 
In the presence of congestion and pricing, travelers may 
deviate from the preferred temporal profiles (as well as even 
cancel or change the order of activity episodes). However, 
this rescheduling process should obey utility-maximization 
rules over the entire schedule and cannot be effectively mod-
eled by simplified procedures that adjust departure time for 
each trip separately. None of the existing operational ABMs 
explicitly control for activity durations [although some of 
them control for entire-tour durations as does the Metro-
politan Transportation Commission’s activity-based model 
in Oakland, California] or the duration of the activity at the 
primary destination [as implemented in the Sacramento 
Area Council of Governments (SACOG) activity-based 
model. The SACOG model also controls for duration of 
activities at secondary destinations as part of the trip-level 
departure time/duration choice model (but only to the half-
hour level of temporal resolution). DTA models that incor-
porate departure time choice have been bound to a simplified 
representation of temporal utilities and limited to trip 
chains in order to operate within a feasible dimensionality 
of the associated choices when combined with the dynamic 
route choice. This soft constraint expresses consistency 
between activity start and end times in the corresponding 
columns of Table 3.1, with the schedule utility maximization 
principle (or in a more general sense with the observed tim-
ing and duration pattern for activity participation). In oper-
ational models, the focus has been primarily on out-of-home 
activities. It should be noted, however, that it is also impor-
tant to preserve a consistent and realistic pattern of in-home 
activities (e.g., reasonable time constraints for sleeping and 
household errands), as well as take into account possible 
substitution between in-home and out-of-home durations 
for work, shopping, and discretionary activities.

Schedule consistency with respect to all four constraints is 
absolutely essential for time-sensitive policies like congestion 
pricing. In reality, any change in timing of a particular 

activity spurred by the policy would trigger a chain of subse-
quent adjustments through the whole individual schedule. It 
can be shown that under certain circumstances, an attempt to 
alleviate congestion in the a.m. period by pricing may result 
in worsening congestion in the p.m. period because of the 
compression of individual daily schedules that are forced to 
start later (Vovsha and Bradley 2006).

To address all five constraints, the model system has to be 
truly integrated with a mutual core between the ABM and 
DTA modules. This mutual core has to fully address the tem-
poral dimension of activities and trips, while other choice 
dimensions can be effectively treated by each corresponding 
module as shown in Figure 3.4.

The mutual core ensures synchronization of time-related 
ABM and DTA components that operate along the temporal 
dimension and is designed to achieve a full schedule consis-
tency at the individual level. The ABM model generates tours 
with origins, destinations, and trip departure times based on 
expected travel times (from the DTA) and time-of-day choice 
utilities. These can be converted to temporal activity profiles 
for each activity episode; the temporal activity profile is essen-
tially an expected utility of activity participation for a given 
time unit. As discussed in the SHRP 2 C04 Report, these tem-
poral activity profiles can be converted into schedule delay 
cost functions for each trip arrival time, which are input to the 
DTA model.

The DTA model assigns each trip onto the network, deter-
mines the route, and reschedules trip departure times based 
on the feasible travel times (which may be different from the 
expected travel times used in the ABM). This rescheduling is 
done based on the updated congested travel times and takes 
into account schedule delay cost as well as interdependencies 
across trips on the same tour. These features have been added to 
the DTA algorithm and have been tested for DYNASMART-P 
(Abdelghany and Mahmassani 2001; Zhou et al. 2008). The 
capability of DTA to handle travel tours rather than trips is 
essential to ensure consistency between DTA and ABM.

After each tour has been adjusted, the synchronization mod-
ule consolidates the entire daily schedule for each individual. 
Depending on the magnitude of adjustments, the schedule 
might result in an infeasible (or highly improbable) state in 
which tours overlap or activity durations have reached unrea-
sonable values. The synchronization module informs the ABM 
which individual daily schedules have to be resimulated. Indi-
viduals whose schedules have to be resimulated undergo a 
complete chain of demand choices based on the updated travel 
times. For the first few global iterations of the integrated model, 
all individual choices are resimulated even if the DTA was able 
to fulfill the planned schedule successfully. For subsequent 
iterations, after aggregate travel times have been stabilized, a 
(gradually diminishing) portion of individuals will be subject 
to demand resimulation, and these individuals will be chosen 
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on the basis of the feasibility of their adjusted schedules and the 
magnitude of the adjustments introduced by the DTA. The 
team’s research on equilibration of the integrated models has 
resulted in new procedures for directing the convergence algo-
rithm toward a mutually consistent solution through selection 
of the fraction of individuals or households whose schedules 
may be replanned in each iteration.

Individual Schedule Adjustments 
(Temporal Equilibrium)

Integration of ABM and DTA at a disaggregate level of indi-
vidual trips requires an additional model component to be 
developed. This component plays a role of interface that trans-
forms the DTA output (individual vehicle trajectories with 
departure and arrival times for each trip simulated with a high 
level of temporal resolution) into schedule adjustments to the 
individual schedules generated by the ABM. The purpose of 
this feedback is to achieve consistency between generated 
activity schedules (activity start times, and times and dura-
tions) and trip trajectories (trip departure time, duration, and 
arrival time). This feedback is implemented as part of temporal 
equilibrium between ABM and DTA when all trip destinations 
and modes are fixed but departure times are adjusted until a 
consistent schedule is built for each individual.

Individual schedule consistency means that for each per-
son, the daily schedule (i.e., a sequence of trips and activities) 
is formed without gaps or overlaps as shown in Figure 3.5. 

In this way, any change in travel time would affect activity 
durations and vice versa.

According to Castiglione and Vovsha (2012),

New methods of equilibration for ABM and DTA are pre-
sented in Figure 3.6, which applies two innovative technical 
solutions in parallel. The first solution is based on the fact that 
a direct integration at the disaggregate level is possible along 
the temporal dimension if the other dimensions (number of 
trips, order of trips, and trip destinations) are fixed for each 
individual. Then, full advantage can be taken of the individual 
schedule constraints and corresponding effects as shown in 
Figure 3.5. The inner loop of temporal equilibrium includes 
schedule adjustments in individual daily activity patterns as 
a result of congested travel times being different from the 
planned travel times. Such adjustments very much help the 
DTA to reach convergence (internal loop) and are nested 
within the global system loop (when the entire ABM is rerun 
and demand is regenerated).

The second solution is based on the fact that trip origins, 
destinations, and departure times can be presampled, and 
the DTA process is only required to produce trajectories for 
a subset of origins, destinations, and departure times. In this 
case, the schedule consolidation is implemented through 
corrections to the departure and arrival times (based on the 
individually simulated travel times) and is employed as an 
inner loop. The outer loop includes a full regeneration of daily 
activity patterns and schedules but with a subsample of 
locations for which trajectories are available (it also can be 
interpreted as a learning and adaptation process with limited 
information).

Figure 3.4.  Integration scheme of ABM and DTA.
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Adjustment of individual daily schedule can be formulated 
as an entropy-maximizing problem of the following form 
(Equation 3.1):

min
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where
i = 1, 2, . . . , I	=	�trips and associated activities at the trip 

destination,
	 i = 0	=	activity at home before the first trip,
	 i = I + 1	=	�(symbolic) departure from home at the end 

of the simulation period,
	 xi	=	adjusted activity duration,
	 yi	=	�adjusted departure time for trip to the 

activity,
	 zi	=	adjusted arrival time for trip to the activity,
	 di	=	planned activity duration,
	 pi	=	�planned departure time for trip to the 

activity,
	 ti	=	planned arrival time for trip to the activity,
	 ti	=	�actual time for trip to the activity that is 

different from expected,
	 wi	=	�schedule weight (priority) for activity dura- 

tion,
	 ui	=	�schedule weights (priority) for trip depar-

ture time, and
	 vi	=	�schedule weight (priority) for trip arrival 

time.

The essence of this formulation is that when the traveler 
experiences travel times that are different from those used to 
build the schedule, he or she will attempt adjustments that 
seek to preserve the schedule to the extent possible. Schedule 
preservation relates to activity start times (trip arrival times), 
activity end times (trip departure times), and activity dura-
tions (Equation 3.1). The relative weights relate to the priori-
ties of different activities in terms of start time, end time, and 
duration. The greater the weight, the more important it is for 
the user to keep the corresponding component close to the 
original schedule. Very large weights correspond to inflexible, 
fixed-time activities. The weights directly relate to the sched-
ule delay penalties. However, the concept of schedule delay 
penalties relates to a deviation from the (preferred or planned) 
activity start time (trip arrival time) only, while the schedule 

Figure 3.5.  Individual daily schedule consistency.
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Figure 3.6.  Integration of ABM and DTA 
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adjustment formulation allows for a joint treatment of devia-
tions from the planned start times, end times, and durations.

The constraints express the schedule consistency rule as 
shown in Figure 3.5. Equation 3.2 expresses departure time 
for each trip as a sum of the previous activity durations and 
travel times. Equation 3.3 expresses arrival time for each trip 
as a sum of the previous activity durations and travel times 
plus travel time for the given trip. (Symbolic) arrival time for 
the home activity prior to the first trip is used to set the scale 
of all departure and arrival times. This way, the problem is 
formulated in the space of activity durations, while the trip 
departure and arrival times are derived from the activity 
durations and given travel times.

The solution to the convex problem can be found by writing 
the Lagrangian function and equating its partial derivatives 
(with respect to activity durations) to zero. It has the following 
form (Equation 3.5):

(3.5)
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This solution is easy to find by using either an iterative 
balancing method or Newton-Raphson method. The essence of 
this formula is that updated activity durations are proportional 
to the planned durations and adjustment factors. The adjust-
ment factors are applied considering the duration priority.  
If the duration weight is very large, then the adjustments will be 
minimal. The duration adjustment is calculated as a product of 

trip departure and arrival adjustments for all subsequent trips. 

The trip departure adjustment
y

j

j

π







and trip arrival adjust-

ment
z

j

j

τ







can be interpreted as lateness versus the planned 

schedule if it is less than 1 and earliness if it is greater than 1. 
Each trip departure or arrival adjustment factor is powered by 
the corresponding priority weight. As the result, activity dura-
tion will shrink if there are subsequent trip departures and/or 
arrivals that would occur later than planned. Conversely, activity 
duration may be stretched if there are many subsequent trip 
departures and/or arrivals that are earlier than planned. Overall, 
the model seeks the equilibrium (compromise) state in which all 
activity durations, trip departures, and trip arrivals are adjusted 
to accommodate the changed travel times while preserving the 
planned schedule components by priority.

The team has provided demonstration software and imple-
mented many numerical tests with this model. In particular, the 
iterative balancing procedure goes through the following steps:

1.	 Set initial activity durations equal to the planned dura-
tions {xi = di}.

2.	 Update trip departure times with new travel times and 
updated activity durations using Equation 3.2.

3.	 Update trip arrival times with new travel times and 
updated activity durations using Equation 3.3.

4.	 Calculate balancing factors
y

j

j

π







for trip departure times 

(lateness if less than 1, earliness if greater than 1).

5.	 Calculate balancing factors
z

j

j

τ







for trip arrival times 

(lateness if less than 1, earliness if greater than 1).
6.	 Update activity durations using Equation 3.5.
7.	 Check for convergence with respect to activity durations; 

if not go to Step 2.

Applying this model in practice requires default values for 
activity durations, trip departure times, and trip arrival times. 
This is an area in which more specific data are welcome on 
schedule priorities and constraints of different person types. 
This type of data is already included in some household travel 
surveys with respect to work schedules. It should be extended 
to include nonwork activities, many of which can also have 
schedule constraints. At this stage, the team suggests the 
default values shown in Table 3.2.

If some activity in the schedule falls into more than one 
category (e.g., work and first activity of the day), the maxi-
mum weight is applied from each column.

Table 3.2.  Recommended Weights for 
Schedule Adjustment

Activity Type Duration

Trip 
Departure  
(to activity)

Trip 
Arrival  

(at activity 
location)

Work (low income) 5   1 20

Work (high income) 5   1 5

School 20   1 20

Last trip to activity at home 1   1 3

Trip after work to NHB 
activity

1   5 1

Trip after work to NHB 
activity

1 10 1

NHB activity on at-work 
subtour

1   5 5

Medical 5   1 20

Escorting 1   1 20

Joint discretionary, visiting, 
eating out

5   5 10

Joint shopping 3   3 5

Any first activity of the day 1   5 1

Other activities 1   1 1

Note: NHB = non–home-based activity.
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Approaches to Quantifying 
Reliability and Its Impacts

Construction of User-Centric Network 
Reliability Measures

In summary, the following two important aspects of the 
problem need to be taken into account when the user’s per-
spective on reliability (and performance in general) is com-
pared with the highway operations perspective:

•	 The user perspective can be different and include many per-
ceived components and weights compared with the physical 
measures of average travel time and reliability. The measure 
that looks the best and most statistically significant from the 
highway operations perspective might not be best when model-
ing user responses. For example, the 95th percentile of travel 
time is favored in highway operations since it singles out the 
most critical cases of nonrecurrent congestion (mostly asso-
ciated with traffic collisions, road works, special events, and 
extreme weather); see Cambridge Systematics, Inc. (2005) 
and Cambridge Systematics, Inc. et al. (2013). The current 
experience with models of individual behavior in the route 
choice context, however, indicates that the decision-making 
point at which users evaluate reliability lies rather some-
where between the 80th and 90th percentile, that is, mixes of 
recurrent and nonrecurrent congestion; see Concas and 
Kolpakov (2009) and Parsons Brinckerhoff et al. (2013).

•	 The user perspective is inherently an entire-trip perspective. 
Thus, the reliability measures for travel models and network 
simulation tools have to be synthesized at the O–D-route level, 
while the bulk of statistical evidence on highway operations 
is naturally collected at the facility/link level. This synthesis 
is not a trivial task, because practically all sensible reliability 
measures are inherently nonadditive (Institute for Trans-
portation Studies 2008). This aspect is discussed in detail 
in the subsequent sections and constitutes one of the major 
challenges for the current project.

Suggested Approaches to Quantifying 
Reliability Impacts on Highway Users

In general, there are four possible methodological approaches 
to quantifying reliability either suggested in the research litera-
ture or already applied in operational models:

•	 Indirect measure: Perceived highway time by congestion levels. 
This concept is based on statistical evidence that in conges-
tion conditions, travelers perceive each minute with a certain 
weight (Small et al. 1999; Axhausen et al. 2007; Levinson et al. 
2004; MRC and PB 2008). Perceived highway time is not a 
direct measure of reliability since only the average travel time 
is considered (although it is segmented by congestion levels). 

It can serve, however, as a good instrumental proxy for reli-
ability since the perceived weight of each minute spent in 
congestion is partially a consequence of associated unreli-
ability. This is the simplest measure that can be readily incor-
porated into both demand models and network simulation 
tools and equilibrated between them.

•	 First direct measure: Time variability (distribution) measures. 
This is considered the most practical direct approach and 
has received considerable attention in recent years. This 
approach assumes that several independent measurements 
of travel time are known that allow for forming the travel 
time distribution and calculation of derived measures, such 
as variance, standard deviation, or buffer time (Small et al. 
2005; Brownstone and Small 2005; Bogers et al. 2008). One 
of the important technical details with respect to the genera-
tion of travel time distributions is that even if the link-level 
time variations are known, it is a nontrivial task to synthe-
size the O–D-level time distribution (reliability “skims”) 
because of the dependence of travel times across adjacent 
links due to a mutual traffic flow. This implementation chal-
lenge posed by issue is specifically addressed in the course of 
the project. This is a more complicated measure—primarily 
on the network simulation side. The network model has to 
incorporate travel time distribution measures (like variance 
or standard deviation) in the route choice and also generate 
the O–D reliability skims. This can be achieved only by using 
path-based assignment algorithms since the reliability 
measures are (in general) not additive by links. Recommen-
dations are made how an equilibrium framework with these 
measures could be implemented.

•	 Second direct measure: Schedule delay cost. This approach has 
been adopted in many research works on individual behavior 
in academia (Small 1982; Small et al. 1999). According to this 
concept, the direct impact of travel time unreliability is 
measured through cost functions (penalties expressed in 
monetary terms) of being late (or early) compared with the 
planned schedule of the activity. This approach assumes that 
the desired schedule is known for each person and activity in 
the course of the modeled period. This assumption, however, 
is difficult to meet in a practical model setting. This is a more 
sophisticated approach that is more difficult to implement. 
However, certain directions are outlined, including incorpo-
ration of schedule delay penalties into the combined trip 
route and departure time cost. It was shown that under cer-
tain assumptions on the shape of the earliness and lateness 
penalties, this approach can be reduced to the mean-variance 
approach (Fosgerau and Karlstrom 2007; Fosgerau 2008).

•	 Third direct measure: Loss of activity participation utility. This 
method can be thought of as a generalization of the schedule 
delay concept. It is assumed that each activity has a certain 
temporal utility profile and individuals plan their schedules 
to achieve maximum total utility over the modeled period 
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(e.g., the entire day), taking into account expected (average) 
travel times. Then, any deviation from the expected travel 
time due to unreliability can be associated with a loss of 
participation in the corresponding activity (or gain if travel 
time proved to be shorter) (Supernak 1992; Kitamura and 
Supernak 1997; Tseng and Verhoef 2008). This approach 
recently was adopted in several research works on DTA for-
mulation integrated with activity scheduling analysis (Kim  
et al. 2006; Lam and Yin 2001). It was shown that under spe-
cific assumptions about the shape of temporal utility profiles 
of two consecutive activities, the expected generalized cost 
function that includes travel time variation impact can be 
reduced to the mean-variance approach (Engelson 2011). 
Similar to the schedule delay concept, however, this approach 
suffers from the data requirements that are difficult to meet in 
practice. The added complexity of estimation and calibration 
of all temporal utility profiles for all possible activities and all 
person types is significant. This makes it unrealistic to adopt 
this approach as the main concept for the current project. 
This approach, however, can be considered in future research 
efforts. Early research indicates that this approach may be the 
most promising theoretical avenue for a fully integrated 
ABM-DTA model formulation that can eliminate the need to 
equilibrate two separate models. Unfortunately, these meth-
ods are currently applicable only in very small networks.

A summary of the main features of the proposed approaches 
to quantifying reliability impacts on travel choices is presented 
in Table 3.3.

Some clarification is needed regarding preferred arrival time 
(PAT) and its relation to time-of-day (TOD) choice. Travel 
demand (TOD choice) models in general predict the preferred 
departure time (PDT) for each trip, since this is the choice 
dimension that is controlled by the traveler. Arrival time in 
general is not controlled, and a PAT is not directly generated by 
travel demand procedures in a conventional ABM.

If travel time is considered deterministic, PAT can always be 
derived from PDT by adding the travel time; thus TOD choice 
with deterministic travel times can be thought of as a (simplis-
tic) simultaneous model for predicting PDT and PAT. How-
ever, travel time reliability is ignored in this case. Also, even if 
times are deterministic within each time of day, as long as con-
gestion causes average travel times to vary across times of day, 
some people may shift their travel away from their most pre-
ferred time to avoid driving in congested conditions (even if it 
is perfectly predictable congestion).

If travel time is considered probabilistic, PAT has to be either 
defined exogenously (assuming fixed scheduling constraints) 
or generated by the demand model before modeling PDT. If 
we assume that PDT is optimized by the traveler, conditional 
on the predetermined PAT with a full knowledge of travel time 
distribution, this leads to a model equivalent to the mean-
variance approach in terms of the form of the generalized cost 
function. It is also possible to assume that PDT is optimized 
by the user based on the PAT and mean travel time only 
(e.g., by subtracting mean travel time from PAT). This would 
mean, however, that travel time reliability is ignored at least 
at the TOD-choice stage. The concept of temporal activity 

Table 3.3.  Methods to Quantify Reliability Impacts on Travel

Method
Representation of 

Travel Time
Impact on Travel Choices Through 

Generalized Cost Function
Special Features 

Needed

Perceived highway time by 
congestion levels

Segmented by congestion 
levels

Travel time is weighted by congestion levels.

Mean-variance (travel time 
distribution measures)

Mean (or mode), variance [or 
SD(T ) or buffer time]

Mean (or mode) and variance [or SD(T ) or buffer 
time] are linearly included in generalized cost 
as LOS components.

Schedule delay Distribution Expected schedule delay cost over travel time 
distribution is linearly included in generalized 
cost along with the mean travel time.

Preferred arrival time 
(PAT) has to be defined 
externally or generated 
by the demand model.

Temporal activity profiles Distribution Expected loss in activity participation over travel 
time distribution is linearly included in gener-
alized cost along with the mean travel time.

Requirements for network 
simulation model with any 
of the methods above

Travel time characteristics 
above have to be generated 
by network simulation model.

Generalized cost function above has to be 
incorporated into route choice.

Requirements for travel 
demand model with any 
of the methods above

Generalized cost function above has to be 
incorporated into mode, time-of-day, destina-
tion, and other choices.

Note: SD(T) = standard deviation of travel time.
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profiles is a way to endogenize PAT within the demand model-
ing (scheduling) framework.

Incorporating Reliability 
into Demand Model

The proposed methods of quantification of reliability should 
be incorporated into the demand model (ABM) with respect 
to subchoices such as tour and trip mode choice, destination 
choice, and TOD choice. In the typical ABM structure, a gen-
eralized cost function with the reliability terms can be directly 
included in the utility function for highway modes. Further 
on, it will have an impact on destination and TOD choice 
through mode choice logsums. In the same vein, it has an 
impact on upper-level choice models of car ownership and 
activity-travel patterns through accessibility measures that 
represent simplified destination choice logsums. The demand 
side of travel time reliability has been explored in detail in the 
recently completed SHRP 2 C04 project. The relevant model 
structures and techniques are described in the Task 11 Report 
(Stogios et al. 2014). This section presents a concise overview 
of each method and its applicability in an operational travel 
demand model.

Perceived Highway Time in Demand Model

This method is easy to implement without a significant restruc-
turing of the demand model. Essentially, the generic highway 
travel time variable in mode choice should be replaced with 
segmented travel time by congestion levels with the recom-
mended weights shown in Table 3.4. For each level of conges-
tion, the table provides approximate volume to capacity (V/C) 
ratios that can be used to classify highway network links after 
the traffic simulation.

The weights applied have to be consistent between traffic 
assignment and mode choice. The table provides pivot points 
that can be interpolated between them linearly using V/C ratio 
or flow density parameter. However, perceived travel time is 
not a direct measure of travel time reliability. It can be used as 

a surrogate when more advanced methods are not available, 
but it is less appealing behaviorally and is not the main focus 
of the current research.

Mean-Variance in Demand Model

This method is easy to implement and does not require a 
significant restructuring of the demand model. Essentially,  
it requires an inclusion of an additional reliability term in the 
mode choice utility for highway modes. The following form  
of generalized cost component in the mode utility function 
(Equation 3.6) can be recommended as the first step for incor-
poration into operational models. There are many additional 
modifications and nonlinear transformations analyzed in 
the SHRP 2 C04 project and described in the Task 11 Report 
(Stogios et al. 2014).

( )= × + × + × SD (3.6)U a T b C c T

where
	 T	=	mean travel time,
	 C	=	travel cost,
	SD(T)	=	standard deviation of travel time,
	 a	=	coefficient for travel time,
	 b	=	coefficient for travel cost,
	 c	=	coefficient for standard deviation of travel time,
	 a/b	=	value of time (VOT),
	 c/b	=	value of reliability (VOR), and
	 c/a	=	reliability ratio (r = VOT/VOR).

A summary of recommended values for the parameters is 
presented in Table 3.5. The parameters are segmented by 
travel purpose, household income, car occupancy, and travel 
distance. More details and the actual values for all coefficients 
can be found in (Parsons Brinckerhoff et al. 2013).

Schedule Delay Cost in Demand Model

There are multiple estimated models with schedule delay cost, 
as described in the Task 11 Report (Stogios et al. 2014). The 
majority of them were estimated using different stated pre
ference (SP) settings in which either route or departure time 
served as the underlying travel choice dimension. The techni-
cal details for the inclusion of this method in an operational 
travel demand model have not yet been fully explored. The 
team outlines two possible approaches that differ in how and 
where the schedule delay cost component is calculated; see 
Figure 3.7.

In both approaches, the travel demand model (its time-of-
day choice or activity scheduling submodel) produces pre-
ferred departure time (PDT) and preferred arrival time (PAT) 
for each trip based on the expected travel times (and known 

Table 3.4.  Recommended Highway Time 
Weight by Congestion Level

Travel Time Conditions Weight LOS V/C

Free flow 1.00 A, B Under 0.5

Busy 1.05 C 0.5–0.7

Light congestion 1.10 D 0.7–0.8

Heavy congestion 1.20 E 0.8–1.0

Stop start 1.40 F 1.0–1.2

Gridlock 1.80 F 1.2+
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Table 3.5.  Recommended Values of Parameters for Generalized Cost Function with Reliability

Travel Purpose

Examples of Population/Travel Model Coefficients and Derived Measures

Household 
Income, $/year

Car 
Occupancy

Distance, 
Miles

Time 
Coefficient

Cost 
Coefficient

Cost for 
SD(T) min

VOT, 
$/h

VOR, 
$/h

Reliability 
Ratio

Work & business 30,000 1.0 5.0 -0.0425 -0.0026 -0.1042 9.9 24.3 2.45

30,000 2.0 5.0 -0.0425 -0.0015 -0.1042 17.2 42.3 2.45

30,000 3.0 5.0 -0.0425 -0.0011 -0.1042 23.9 58.5 2.45

30,000 1.0 10.0 -0.0425 -0.0026 -0.0521 9.9 12.1 1.23

30,000 2.0 10.0 -0.0425 -0.0015 -0.0521 17.2 21.1 1.23

30,000 3.0 10.0 -0.0425 -0.0011 -0.0521 23.9 29.2 1.23

30,000 1.0 20.0 -0.0425 -0.0026 -0.0260 9.9 6.1 0.61

30,000 2.0 20.0 -0.0425 -0.0015 -0.0260 17.2 10.6 0.61

30,000 3.0 20.0 -0.0425 -0.0011 -0.0260 23.9 14.6 0.61

60,000 1.0 5.0 -0.0425 -0.0017 -0.1042 15.0 36.8 2.45

60,000 2.0 5.0 -0.0425 -0.0010 -0.1042 26.1 64.1 2.45

60,000 3.0 5.0 -0.0425 -0.0007 -0.1042 36.2 88.6 2.45

60,000 1.0 10.0 -0.0425 -0.0017 -0.0521 15.0 18.4 1.23

60,000 2.0 10.0 -0.0425 -0.0010 -0.0521 26.1 32.0 1.23

60,000 3.0 10.0 -0.0425 -0.0007 -0.0521 36.2 44.3 1.23

60,000 1.0 20.0 -0.0425 -0.0017 -0.0260 15.0 9.2 0.61

60,000 2.0 20.0 -0.0425 -0.0010 -0.0260 26.1 16.0 0.61

60,000 3.0 20.0 -0.0425 -0.0007 -0.0260 36.2 22.2 0.61

100,000 1.0 5.0 -0.0425 -0.0013 -0.1042 20.4 50.0 2.45

100,000 2.0 5.0 -0.0425 -0.0007 -0.1042 35.5 87.1 2.45

100,000 3.0 5.0 -0.0425 -0.0005 -0.1042 49.1 120.4 2.45

100,000 1.0 10.0 -0.0425 -0.0013 -0.0521 20.4 25.0 1.23

100,000 2.0 10.0 -0.0425 -0.0007 -0.0521 35.5 43.5 1.23

100,000 3.0 10.0 -0.0425 -0.0005 -0.0521 49.1 60.2 1.23

100,000 1.0 20.0 -0.0425 -0.0013 -0.0260 20.4 12.5 0.61

100,000 2.0 20.0 -0.0425 -0.0007 -0.0260 35.5 21.8 0.61

100,000 3.0 20.0 -0.0425 -0.0005 -0.0260 49.1 30.1 0.61

Non-work 30,000 1.0 5.0 -0.0335 -0.0030 -0.0697 6.7 13.8 2.08

30,000 2.0 5.0 -0.0335 -0.0019 -0.0697 10.8 22.5 2.08

30,000 3.0 5.0 -0.0335 -0.0014 -0.0697 14.4 29.9 2.08

30,000 1.0 10.0 -0.0335 -0.0030 -0.0348 6.7 6.9 1.04

30,000 2.0 10.0 -0.0335 -0.0019 -0.0348 10.8 11.2 1.04

30,000 3.0 10.0 -0.0335 -0.0014 -0.0348 14.4 14.9 1.04

30,000 1.0 20.0 -0.0335 -0.0030 -0.0174 6.7 3.5 0.52

30,000 2.0 20.0 -0.0335 -0.0019 -0.0174 10.8 5.6 0.52

30,000 3.0 20.0 -0.0335 -0.0014 -0.0174 14.4 7.5 0.52

60,000 1.0 5.0 -0.0335 -0.0021 -0.0697 9.4 19.6 2.08

60,000 2.0 5.0 -0.0335 -0.0013 -0.0697 15.3 31.8 2.08

60,000 3.0 5.0 -0.0335 -0.0010 -0.0697 20.3 42.3 2.08

60,000 1.0 10.0 -0.0335 -0.0021 -0.0348 9.4 9.8 1.04

(continued on next page)
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  (continued)Table 3.5.  Recommended Values of Parameters for Generalized Cost Function with Reliability

Travel Purpose

Examples of Population/Travel Model Coefficients and Derived Measures

Household 
Income, $/year

Car 
Occupancy

Distance, 
Miles

Time 
Coefficient

Cost 
Coefficient

Cost for 
SD(T) min

VOT, 
$/h

VOR, 
$/h

Reliability 
Ratio

Non-work 
(continued)

60,000 2.0 10.0 -0.0335 -0.0013 -0.0348 15.3 15.9 1.04

60,000 3.0 10.0 -0.0335 -0.0010 -0.0348 20.3 21.1 1.04

60,000 1.0 20.0 -0.0335 -0.0021 -0.0174 9.4 4.9 0.52

60,000 2.0 20.0 -0.0335 -0.0013 -0.0174 15.3 8.0 0.52

60,000 3.0 20.0 -0.0335 -0.0010 -0.0174 20.3 10.6 0.52

100,000 1.0 5.0 -0.0335 -0.0017 -0.0697 12.2 25.3 2.08

100,000 2.0 5.0 -0.0335 -0.0010 -0.0697 19.8 41.1 2.08

100,000 3.0 5.0 -0.0335 -0.0008 -0.0697 26.2 54.6 2.08

100,000 1.0 10.0 -0.0335 -0.0017 -0.0348 12.2 12.6 1.04

100,000 2.0 10.0 -0.0335 -0.0010 -0.0348 19.8 20.5 1.04

100,000 3.0 10.0 -0.0335 -0.0008 -0.0348 26.2 27.3 1.04

100,000 1.0 20.0 -0.0335 -0.0017 -0.0174 12.2 6.3 0.52

100,000 2.0 20.0 -0.0335 -0.0010 -0.0174 19.8 10.3 0.52

100,000 3.0 20.0 -0.0335 -0.0008 -0.0174 26.2 13.6 0.52
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Figure 3.7.  Incorporation of schedule delay cost into demand 
model (mode choice).
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variations if used in the scheduling procedure and departure 
time optimization). In both approaches, schedule delay pen-
alty functions are assumed known for each trip. The principal 
difference is in how the demand model interacts with the net-
work simulation model to produce the expected schedule 
delay cost for each trip.

In the first approach, schedule delay cost is calculated in the 
demand model as part of the mode utility calculation for high-
way modes. The network simulation model assigns trips based 
on PDT without a consideration of PAT. The role of the net-
work simulation model is to produce travel time distributions 
for each trip (through a single equilibrium run or multiple 
runs). Subsequently, schedule delay cost is integrated over the 
travel time distribution in the demand model. This scheme has 
not been tested yet. The most realistic implementation approach 
for this scheme is a multiple-run framework.

In the second approach, the calculation of schedule delay 
cost is incorporated into the network model and is fed into 
the demand model. Perhaps, the most behaviorally appealing 
aspect of this implementation approach is when the network 
simulation model is allowed to optimize PDT based on the 
PAT and specified schedule delay penalties. This means that 
the route choice component is replaced with a joint route and 
departure time choice. This type of model can be imple-
mented in a single-run framework, and some testing of this 
approach has been already reported (Zhou et al. 2008).

In both cases, the main (technical) obstacle for practical 
implementation of the schedule delay approach is the neces-
sity to generate PAT for each trip against which the schedule 
delay cost is calculated as a consequence of unreliable travel 
time. It is currently unrealistic to prepare PAT as an input to 
travel demand models, although for some trips with inher-
ently fixed schedules (work with a fixed schedule, appoint-
ments, ticket shows) this might be ultimately the right 
approach. Some approaches to endogenously calculated PAT 
within the scheduling model as a latent variable were sug-
gested (Ben-Akiva and Abou-Zeid 2007). Further research is 
needed to operationalize this approach within the framework 
of a regional travel model.

Temporal Utility Profiles in Demand Model

This is the most theoretically advanced approach. Its opera-
tionalization on the demand side requires that temporal util-
ity profiles be defined for each activity. The attractive part of 
this approach is that these profiles are indeed implicitly 
defined in the time-of-day choice model embedded in any 
ABM. However, conversion of the time-of-day choice model 
output into the utility profiles with the necessary level of 
temporal resolution is not a trivial procedure and has yet to 
be developed and explored. The crux of the problem is that a 

time-of-day choice model produces probabilities for each 
activity to be undertaken at a certain time in a form of joint 
start (arrival) and end (departure) time probability over all 
feasible combinations P(ta, td) as in Equation 3.7:

, 1 (3.7)
0

P t ta d

t t

T

t

T

d aa
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==

These probabilities are defined for each activity, and they 
are not directly comparable across different activities. To con-
vert the time-of-day choice probabilities into temporal utility 
profiles, an overall scale Uk for each activity k has to be defined. 
Then the utility profile could be calculated as in Equation 3.8:

, , (3.8)u t t U P t tk a d k a d( ) ( )= ×

The overall scale reflects the importance of (a unit duration 
of) each activity versus generalized travel cost. General travel 
cost Cad is a part of the time-of-day choice utility Vk(ta, td) used 
to calculate the probability P(ta, td). Thus the following esti-
mate of Uk can be suggested that is essentially the coefficient 
for travel cost in the time-of-day choice utility, assuming that 
this is a single coefficient not differentiated by departure or 
arrival time (Equation 3.9):

,
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However, these techniques are yet to be explored and fur-
ther research is needed to unify time-of-day choice and tem-
poral utility profiles. Also, even if the temporal utility profiles 
are available for each activity, their incorporation into an 
operational travel demand model is not straightforward. In a 
certain sense, two approaches similar to the approaches out-
lined in Figure 3.7 for the schedule delay method can be 
adjusted to the temporal profiles framework.

The first approach would employ the network simulation 
model to produce travel time distributions for each trip 
departure time bin (30 min). Then, the demand model (mode 
choice) would convert these distributions to estimates of 
activity participation loss using temporal activity profiles. 
This approach has never been applied and its details have yet 
to be explored. The second approach would include temporal 
profiles in the network simulation that would require a 
simultaneous choice of network routes and departure times 
for the entire daily schedule (or each travel tour to make this 
model more realistic). Theoretical constructs of this type and 
corresponding experiments in small networks have been 
reported (Kim et al. 2006; Lam and Yin 2001). However, at the 
current time, the second approach cannot be recommended 
for implementation in real-size networks.
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Incorporating Reliability 
into Network Simulation

This section presents a concise overview of each method of 
quantification of travel time reliability from the perspective 
of its inclusion in an operational network simulation model. 
This means that the reliability measure of interest has to be 
incorporated into the route choice and generated at the O–D 
level to feed into the demand model.

Perceived Highway Time  
in Network Simulation

This method is easy to implement without a significant 
restructuring of the network assignment model, whether a 
user equilibrium static assignment or advanced DTA. Essen-
tially, the generic highway travel time variable in route choice 
is replaced with segmented travel time by congestion levels, 
with the recommended weights shown in Table 3.4. The high-
way LOS skims for the demand model have to be segmented 
accordingly.

However, in the same way as mentioned for a demand 
model, perceived travel time is not a direct measure of travel 
time reliability for network simulation. It can be used as a sur-
rogate when more advanced methods are not available, but it 
is less appealing behaviorally and is not the main focus of the 
current research.

Mean-Variance in Network Simulation

This method requires an inclusion of an additional reliability 
term (standard deviation, variance, or buffer time) in the route 
choice generalized cost along with the mean travel time and 
cost as shown in Equation 3.9. Further on, the correspondent 
O–D skims for the reliability measure have to be generated to 
feed to the demand model (mode choice and other choice 
through mode choice logsums). However, implementation of 
this method on the network simulation side proved to be more 
complicated than its incorporation into a demand model.

Any demand model, whether 4-step or ABM, inherently 
operates with entire-trip O–D performance measures. Conse
quently, adding one more measure does not affect the model 
structure. However, network simulation models that are effi-
cient in large networks operate with link-based shortest-path 
algorithms for route choice. This results in the necessity to 
construct entire-route O–D performance measures from link 
performance measures. While mean travel time and cost are 
additive by link, the reliability measures are not in a general 
case. This represents a significant complication that has to be 
resolved.

Even if an explicit route enumeration is applied, which means 
that several entire O–D routes are explicitly considered in route 

choice, it is not trivial to incorporate a reliability measure like 
standard deviation, variance, or buffer time. In a single-run 
framework, this measure has to be generated based on the traf-
fic flow versus capacity characteristics that require nonstandard 
statistical dependences to be involved. In a multiple-run frame-
work, this measure can be summarized from multiple simula-
tions. However, the whole framework of multiple runs has to be 
defined in a consistent way across demand, network supply, and 
equilibration parameters.

The next section is specifically devoted to an analysis of 
these issues and a substantiation of the team’s recommended 
methods. Single-run and multiple-run equilibration frame-
works are discussed in subsequent chapters.

Schedule Delay Cost in Network Simulation

The previous section outlined two possible approaches that 
differ in how and where the schedule delay cost component is 
calculated (see Figure 3.7). With the first approach, schedule 
delay cost is calculated in the demand model as part of the 
mode utility calculation for highway modes. The network sim-
ulation model assigns trips based on PDT without a consider-
ation of PAT. The role of the network simulation model is to 
produce travel time distributions for each trip (through a sin-
gle equilibrium run or multiple runs). Subsequently, schedule 
delay cost is integrated over the travel time distribution in the 
demand model. The most realistic implementation approach 
with this scheme is a multiple-run framework.

In the second approach, the schedule delay cost calculation 
is incorporated into the network model and is fed to the 
demand model. Perhaps the most behaviorally appealing 
implementation of this approach is when the network simu-
lation model is allowed to optimize departure time based on 
the PAT and specified schedule delay penalties. This type of 
model can be implemented in a single-run framework, and 
some testing of this approach has been already reported 
(Zhou et al. 2008).

In both cases, the main (technical) obstacle for practical 
implementation of the schedule delay approach is the necessity 
to generate PAT (externally or endogenously in the demand 
model scheduling procedure) for each trip against which the 
schedule delay cost is calculated as a consequence of unreliable 
travel time. Further research is needed to operationalize this 
approach in the framework of a regional travel model.

Temporal Utility Profiles  
in Network Simulation

Two approaches similar to the approaches outlined for the 
schedule delay method can be adjusted within a temporal pro-
files framework.
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The first approach employs the network simulation model 
to produce travel time distributions for each trip departure 
time bin (30 min). The second approach includes temporal 
profiles in the network simulation that require a simultaneous 
choice of network routes and departure times for the entire 
daily schedule (or each travel tour to make this model more 
realistic). Theoretical constructs of this type and correspond-
ing experiments in small networks have been reported (Kim 
et al. 2006; Lam and Yin 2001).

Currently, this method cannot be recommended for imple-
mentation in real-size networks because of many technical 
details that have to be explored on both demand and network 
supply size. However, this represents an important avenue for 
future research.

Single-Run Versus 
Multiple-Run Approach

The incorporation of reliability factors into the models can 
be done in either of two principal ways:

•	 Implicitly in a single model run. In this case, travel time is 
implicitly treated as a random variable; and its distribution, 
or some parameters of this distribution, such as mean and 
variance, are described analytically and used in the model-
ing process.

•	 Explicitly through multiple runs (scenarios). In this case, the 
travel time distribution is not parameterized analytically 
but is simulated directly or explicitly through multiple 
model runs with different input variables.

There are pros and cons associated with each method. The 
vision emerging from this research is that both methods are 
useful and could be hybridized to account for different 
sources of travel time variation in the most adequate and 
computationally efficient way. In particular, the team consid-
ers single-run analytical methods whenever possible, since 
they are generally preferable both from a theoretical point of 
view, particularly for network equilibrium formulations, and 
in terms of a more efficient use of computational resources in 
application. Generally, the factors that can be described by 
means of analytical tools and probabilistic distributions 
relate to the baseline demand and capacity estimates, day-to-
day variability in travel demand, impact of weather condi-
tions, traffic control, route choice, meso effects associated 
with traffic flow physics, and individual driver behavior. Fac-
tors that can probably be better modeled through explicit 
scenarios, rather than captured by probabilistic distributions, 
mostly relate to special events, road works, and occurrence of 
incidents.

Some of the factors—such as day-to-day fluctuations  
in demand, weather conditions, and traffic control—can be 

modeled in both ways, and the best approach will be deter-
mined in the course of the project. It should also be noted that 
an explicit simulation by scenarios is in itself based on a proba-
bilistic distribution of input parameters (such as parameter-
ized probability of occurrence of a certain event). However, the 
principal difference is that the resulting variation in travel 
times is generated through multiple simulation runs, rather 
than derived analytically from the distribution of input vari-
ables in a one-time network simulation.

Single-Run Framework

Accounting for Link Correlations  
by Distance-Based Scaling

The team proposes an approach that is based on the following 
line of reasoning supported by empirical evidence. Consider 
a route r that consists of two successive links a and b with 
identical length (da = db) and identical parameters of travel 
time distribution on each link (T̃a = T̃b and sa = sb = s). If we 
assume that travel time distributions on these links are inde-
pendent, the entire-route parameters can be calculated as in 
Equation 3.10:

; ; 2 (3.10)0.5d d d T T Tr a b r a b r
� � �= + = + σ = σ ×

If we assume that the travel time distribution on these links 
is perfectly correlated (as in a case when there is no inter
section between the links, just a formal node), then consider 
Equation 3.11:

; ; 2 (3.11)d d d T T Tr a b r a b r
� � �= + = + σ = σ ×

Comparing Equation 3.10 and Equation 3.11, a general 
formula for standard deviation can be written as Equation 3.12:

2 (3.12)1
rσ = σ × −η

where parameter 0 ≤ h ≤ 0.5 represents the level of correlation 
between travel times on the links that constitute the path. The 
closer the parameter value is to 0.5 the more independent 
the links are, and consequently, they tend to mitigate travel 
time variation on each other. The closer the parameter value 
is to 0, the more correlated the links are and there is no mitiga-
tion of travel time variations on the links along the route.

Now, instead of discrete links, consider elemental distance 
units (e.g., miles) and also assume that there is a basic rela-
tionship between travel time variance and mean established 
for the elemental unit (link of unit length) in the form of 
Equation 3.13:

(3.13)
d

T T

d

�( )σ = γ ×
−
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This particular form is chosen since it is logical to expect 
that the variation should tend to zero when average travel time 
tends to the minimal (free-flow) time. This is appropriate for 
planning applications in which travel time variability is mea-
sured in an aggregate fashion (i.e., between average hourly 
travel times for consecutive days). If an individual-level varia-
tion is taken into account, a certain level of variance is observed 
even at the free-flow condition and a more appropriate form 
would be Equation 3.14:

(3.14)
d

T

d

�σ = γ ×

The empirical evidence currently in hand indicates that the 
values of parameter g should be in the range of 0.2 to 0.3 for 
average hourly travel times and in the range of 0.8 to 1.2 for 
individual trajectories depending on the facility type.

By substituting Equation 3.13 or Equation 3.14 into Equa-
tion 3.12, and taking into account that the route has a number 
of elemental units equal to its length, we obtain the following 
expressions for aggregate-level and individual-level variances 
accordingly (Equations 3.15 and 3.16):

(3.15)

1d d d T T dr r r r r r r
r r r�( )( ) ( ) ( )σ = σ × = σ × × = γ × − ×−η −η −η

(3.16)1d d d T dr r r r r r
r r r�( ) ( ) ( )σ = σ × = σ × × = γ × ×−η −η −η

These formulas can be used in practical applications as a 
heuristic approximation of the route standard deviation func-
tion of the entire route congested travel time over the free-
flow travel time.

Relationship Between Mean and Standard 
Deviation of Time per Unit Distance

The attractiveness of this approach is that there is a body of 
empirical evidence supporting a linear dependence between 
the travel time (per unit distance) standard deviation and 
mean at both the elemental link and route level. For example, 
research undertaken by Hani Mahmassani’s group at the Uni-
versity of Texas in the late 1980s, using data collected using 
the chase-car technique, exhibited such a linear relation 
(Jones et al. 1989).

The proposed approach that has been extensively tested in 
the course of the current project is based on a relationship 
between mean travel time per unit distance and its variability 
established at the entire-route level. This is a simple but 
robust model suggested by the traffic flow theory. It is formu-
lated in the following way (Equation 3.17):

(3.17)1 2t E t( ) ( )σ ′ = θ + θ × ′ + ε

where
	 t′	=	route travel time per unit distance,
	s(t′)	=	�standard deviation of route travel time per unit 

distance,
	E(t′)	=	mean value of route travel time per unit distance,
	q1, q2	=	estimated coefficients, and
	 e	=	random error.

Calibration results for this model based on the GPS traces 
from the Seattle Traffic Choices Study (Puget Sound Regional 
Council 2007) are presented in Figure 3.8. The path-level coef-
ficients are recommended for application in the framework of 
path-based assignment algorithm.

Dependence Between Mean and Standard 
Deviation of Route Travel Time

Another piece of empirical evidence that travel time mean is 
a good predictor of variance is taken from SHRP 2 Project 
L03, Analytical Procedures for Determining the Impacts of 
Reliability Mitigation Strategies (Cambridge Systematics, 
Inc. et al. 2013). It is presented in Figure 3.9. Several outliers 
presented at the figure correspond to a one-time lane closure. 
The L03 authors adopted a nonlinear approximation function, 
though a linear one would fit the data equally well.

This formula reduces the problem of constructing a variance 
characteristic for the O–D-path from link variances to a single 
parameter hr applied in combination with the route length. 
The presence of a route-specific multiplier (dr)hr explains why, 
though the linear dependence can be statistically confirmed 
for a wide range of links and routes, very different slopes are 
observed for different routes. In general, the longer is the route 
and the lower is the level of correlation between the links on 
the route, the lower will be the route-level variance that is 
expressed in a smaller slope.

This formula is also in a principal agreement with the route-
level empirical formula developed on the basis of the data from 
Leeds, United Kingdom, region (Arup 2003). The Arup formula 
is written in the following way (Equation 3.18):

0.148 (3.18)
0.781

0.285

T

T

T
d

r

r

r

r

r�
�

( )σ = × 





× −

It can be equivalently rewritten as Equation 3.19 for better 
compatibility with Equations 3.15 and 3.16, which are dis-
cussed above:

0.148 (3.19)
0.781

0.285T

T
T dr

r

r

r r

�
� ( )σ = × 



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× × −

Another equivalent transformation of the Arup function is 
useful for compatibility with the graphs in Figure 3.9, in which 
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(a)

(b) (c)

Figure 3.8.  Standard deviation of trip time per unit distance as a function of average time per unit distance 
(Mahmassani et al. 2013). (a)  O–D level, (b)  path level, and (c)  link level.

Figure 3.9.  Travel time variance as a function of average 
time (Cambridge Systematics, Inc. et al. 2013).
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the standard deviation per mile is contrasted to the average 
time per mile and takes the following form (Equation 3.20):

0.148 1.6 (3.20)
1.781 0.781

0.285
�

( )σ = × 





× 



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× −
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r

	=	free-flow speed, and

	1.6	=	scaling coefficient from kilometers to miles.

The scaling coefficient is not needed for the other distance 
terms in the formula since it would be canceled out.

The Arup functions for different speed limits and distances 
are presented in Figure 3.10 for different assumptions regard-
ing trip length and speed limits. In general, the longer the trip, 
the lower variability is, and the higher the free-flow speed, the 
greater variability is.

Interestingly, the Arup function is essentially convex with 
respect to the coefficient of variation (i.e., it assumes that time 
variability grows faster than average travel time when conges-
tion grows); the functional form adopted in the SHRP 2 L03 
study suggests concavity (i.e., some saturation effect when travel 
times are somewhat stabilized at high levels of congestion 
becoming “reliably bad”), while the Northwestern researchers 
on the L03 team adopted a linear function. It should be men-
tioned, however, that the level of empirical data in hand does 
not currently allow for an unambiguous choice with respect to 
these functions. In practical terms, they all perform similarly to 
a linear function in the range of most frequently observed levels 
of congestion; the principal differences between the functions 
begin at very high levels of congestion for which, normally, only 
a few observations are available.

By comparing Equation 3.19 with Equations 3.15 and 3.16, 
we can say the following:

•	 Both formulations are similar and relate the standard devi-
ation to mean travel time (proportionately) and distance 

(inversely proportional with a power coefficient between 
-0.5 and 0.0). These two factors relate to the obvious effects 
for which a certain consensus has been reached. The first 
factor states that the longer the average congested travel 
time, the greater its variability. The second factor states that 
the longer the route distance is, the stronger the mitigation 
effects associated with imperfect correlation between the 
links would be.

•	 The Arup formula has an additional multiplier that is the 
Congestion Travel Time Index. Overall, with this multi-
plier, it makes standard deviation an exponential (rather 
than linear) function of the average congested travel time. 
Empirical data so far developed in the current project do not 
confirm this and instead indicate a linear dependence rather 
than an exponential one. Also, this multiplier is not additive 
by links (in addition to the distance-based term), which com-
plicates its practical application. The team’s intention is to 
have an analytical dependence with a single non-additive- 
by-links term and a single route-level parameter to calibrate.

•	 The Arup formula postulates a certain value for the distance-
based exponential scale (-0.285) regardless of the level of 
correlation of link travel times along the route. The team pro-
poses to have a route-specific parameter -0.5 ≤ -hr ≤ 0 that 
is calibrated based on the specific network configuration and 
demand flow structure. To further simplify the approach and 
reduce it to essentially a link-based assignment algorithm 
without explicit route enumeration, the team also proposes 
to calibrate the distance-based scale for each O–D pair rather 
than each network route. This is yet another empirical com-
ponent but it has a certain behavioral basis since the O–D 
measure is dominated by a few chosen (good) routes.

Endogenous Distance-Based Scaling

The basic idea is that if multiple network loadings {vn
a}n are 

available (e.g., by exploiting multiple iterations of equilibrium 
assignment or, alternatively, by randomly varying the demand 

Figure 3.10.  Travel time variance as function of average time.
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matrix), both the link-level and O–D-level travel time vari-
ances can be calculated in a way that gives rise to the following 
estimation method for scaling parameter (Equation 3.21):

(3.21)
1

dij
ij

a

a A

ij

ij

∑
( ) = σ

σ
−η

∈

where
	dij	=	�distance skim based on the shortest path at free-flow 

time,
	sa	=	�link standard deviations for travel times across 

loadings,
	sij	=	�standard deviation for O–D travel time skimmed by 

the shortest path for each iteration, and
	Aij	=	loadings between origin i and destination j.

The following setting and algorithm can be outlined for a 
practical application (i.e., iterative traffic assignment), where 
n now denotes the iteration number:

1.	 Assume an initial link generalized cost function of the form 
ca = T̃a(va) + l × sa[T̃a(va)] according to Equation 3.13 or 
Equation 3.14, where parameter l represents a reliability 
ratio with a normal value of 0.8.

2.	 Set a matrix of distance-based scales according to the 
assumption of independence between link travel times 
hij = 0.5.

3.	 Assign demand Wij to the shortest paths at zero volumes to 
obtain zero iteration volumes {va

0}.
4.	 Set iteration counter n = n + 1.
5.	 Recalculate link generalized cost functions ca

n+1 = T̃a(va
n) + 

l × sa[T̃a(va
n)].

6.	 Assign demand Wij to the shortest paths at volumes {va
n} to 

obtain next iteration volume directions {wa
n+1}. In the path 

building procedure, scale the variance-related component 
of the link generalized cost functions to account for the 
correlation pattern ca

n+1 = T̃a(va
n) + l × sa[T̃a(va

n)] ⁄ (dij)1-hij.
7.	 Calculate new weighted link volumes for the current itera-

	 tions
1 1

1 1 1v
n

w
n

n
va

n
a
n

a
n{ }= + −+ + + .

8.	 Calculate O–D travel time skims.
9.	 Recalculate travel time standard deviations for links and 

O–D pairs across iterations, and recalculate the scaling 
factors by Equation 3.21. Go to Step 4.

It is appropriate to use inter-iteration variability to esti-
mate the correlation scaling factors (that essentially reflect 
the common demand flows going through different links) 
but not to estimate the standard deviation in travel times 
directly. Inter-iteration variability has not much relation to 
real world variability and does not correspond to the actual 
sources of travel time variability (except for some relation to 
route choice). Mechanically, variation across iterations could 

be used to provide a direct measure of standard deviation at 
the O–D level, without going through this process. However, 
that method would hardly produce reasonable estimates.

In reality, some congestion is more reliable than others; so 
even across links, variability is not perfectly correlated with 
mean travel time or speed. The described process broadly 
allows for incorporation of that difference by applying weights 
by facility type. The distance scaling factors in Step 9 could be 
calculated using a weighted sum of link SD(T)s in this case.

Nonmonotonic Relationship Between Mean 
and Standard Deviation

There have been some research approaches in which a non-
monotonic relationship between the mean and standard 
deviation of travel time was advocated (Bates et al. 2002; 
Eliasson 2006).

This effect is due to the serial correlation between different 
values of standard deviation and mean across observations taken 
at successive points in time. It results in a two-fold function with 
one part corresponding to growing congestion and the other 
part corresponding to congestion release. While this effect is 
plausible and in a certain sense similar to two-fold volume-
delay functions advocated by many researchers, this curve in 
Bates et al. (2002) was obtained as a result of a hypothetical 
one-link experiment with many specific assumptions regarding 
the sources of travel time. In Eliasson (2006) it was based on 
automatic travel time measurements on selected urban links. 
Thus, more empirical data are needed to substantiate this type 
of nonmonotonic function for the entire O–D route.

Another possible type of nonmonotonic relationship was the 
focus of discussion at the special session on travel time reliabil-
ity at the 89th Annual Meeting of the Transportation Research 
Board in 2010. Some researchers advocated that at a high level 
of congestion, travel time variation should be reduced since 
travel time becomes “reliably bad.” Again, there is currently very 
little empirical evidence to support this effect (Brennand 2011).

In particular, it was generally agreed that when the recur-
rent congestion grows, the relative impact of nonrecurrent 
congestion (e.g., due to a traffic collision) will not be mitigated, 
but rather exacerbated.

Multiple-Run Framework

Addressing Feedback with Simulation Models

Linking travel demand forecasting to traffic microsimulation 
is one of the most important aspects of the current project. 
The simulated traffic conditions (described not only in terms 
of average travel time, but as travel time distributions with reli-
ability measures) should be fed back to choices of travel route, 
travel mode, departure time, and other possible choice dimen-
sions (including destination choice and even the decision to 
travel at all—i.e., trip frequency/generation choice).
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Incorporating average travel time in the feedback mecha-
nism has become a routine part of travel demand and traffic 
assignment models. Traffic assignment models operate with 
(average) generalized cost combined with (average) travel time 
and (average) cost expressed in travel time units. This measure 
is directly used in route choice embedded in the network simu-
lation procedure. Further on, travel time and cost skims are 
used to form mode choice utilities. The other choice dimen-
sions (time-of-day choice, destination choice) include either 
mode-choice logsums or time/cost skims, depending on the 
structure of the model.

The incorporation of travel time reliability into the feed-
back mechanisms, however, is not trivial since the travel time 
reliability measure in itself requires several iterations with 
varied demand and supply conditions. The reliability measure 
can be introduced in the generalized cost function of route 
choice (in addition to average travel time and cost). Then, the 
route generalized cost (or separate time, cost, and reliability 
skims) can be used in the mode choice and upper level mod-
els. This technique, however, would only address one iteration 
feedback of (previously generated) reliability on average travel 
demand. The fact that both demand and supply fluctuations 
affect reliability creates a major complication. In other words, 
the equilibration scheme should itself incorporate the process 
of generating of reliability measures.

The general suggested structure that resolves this issue is pre-
sented in Figure 3.11. It includes the travel time variation mea-
sure of reliability as the only practical option within the project 

time and budget. The key technical feature of this approach is 
that the very top and bottom components—average demand 
and average travel time—are preserved as they function in the 
conventional equilibration scheme, while the reliability mea-
sures are generated by pivoting off the basic equilibrium point.

The distribution of travel times is modeled as the composi-
tion of three sets of probabilistic scenarios: (1) demand varia-
tion scenarios, (2) network capacity scenarios, and (3) network 
simulation scenarios. Each set of scenarios has its own group 
of factors that cause variation. The final distribution of travel 
times is generated as a Cartesian combination of the demand, 
capacity, and simulation scenarios.

It is essential to have a static demand-supply equilibrium 
point (between the average demand and supply) explicitly 
modeled for two reasons, to

•	 Define the basic travel demand patterns (at least in pro
babilistic terms) off which the variation (scenarios) can be 
pivoted.

•	 Provide the background level of congestion and associated 
fragility of traffic flows from which the probability of 
breakdowns can be derived.

Average demand is a function of both average travel time and 
reliability (through measures like buffer time). It is assumed 
that the average demand and the corresponding equilibrium 
point are simulated separately for each season (if seasonal varia-
tion is substantial), day-of-week (if there is a systematic varia-
tion across days of week), and time-of-day period conditions, 
although there is a linkage across the demand generation steps 
for different periods of a day (especially if an advanced activity-
based model is applied). The demand fluctuation scenarios are 
created by application of several techniques (e.g., Monte Carlo 
variation) and auxiliary models (e.g., special events model) 
described in the subsequent sections.

In addition to feeding back the resulting average travel 
times and reliability measures to the average demand genera-
tion stage (i.e., having a global feedback), two additional 
(internal) feedback options will be considered:

1.	 Internal feedback of scenario-specific travel times through 
route choice adjustments in the network simulation proce-
dure. In this option, travel demand and network capacity are 
considered fixed. However, route choice can change from 
iteration to iteration because of the factors associated with 
traffic control, incidents, individual variation of driving 
habits, and dynamic real-time pricing, if applied. The net-
work simulation can also incorporate the probability of flow 
breakdown. In the course of this project, the corresponding 
network simulation algorithm and route choice feedback 
mechanism will be established first. Then, this module will 
be employed within the demand-supply equilibrium frame-
work (second internal feedback and global feedback).

Average demand

Demand scenarios

Network capacity
scenarios

Season

Day of week

Time of day

Special events

Day-to-day
individual variation

Weather

Work zones

Network simulation
scenarios

Traffic control

Dynamic pricing

Incidents
Day-to-day
individual variation

Scenario-specific
travel times

Travel time
distribution

Average travel
times

Conventional

Buffer time, STD

Schedule
adjustments

Route
adjustments

Figure 3.11.  Implementation of feedback 
with demand and network scenarios.
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2.	 Internal feedback of travel time distributions (and any 
derived measure of reliability) to the demand scenario 
through schedule adjustments of trip departure times. In 
this option, the demand scenario (in terms of trip genera-
tion, distribution, and mode choice) is considered fixed, 
while the trip departure time can change from iteration to 
iteration as the result of travel time fluctuations modeled 
by the network capacity and network simulation scenar-
ios. The purpose of this feedback is to stabilize trip depar-
ture times for each demand scenario. This feedback is 
applied within the global equilibrium loop.

The details of the demand generation process and its sensi-
tivity to reliability measures depend on the type of travel 
demand model. The team plans to address both traditional 
(4-step) trip-based travel demand models and advanced 
activity-based models. The activity-based modeling frame-
work represents a more promising counterpart to microscopic 
and mesoscopic network simulation models because of their 
more compatible temporal resolution. Advanced activity-
based models in practice already operate with 30–60-minute 
demand slices, while traditional 4-step models typically oper-
ate with broad 3–4-hour periods.

For a 4-step travel demand model, the following dimension 
and components of travel demand can be included in the 
equilibrium framework and incorporate reliability measures:

•	 Mode choice, in which utility functions for highway modes 
(drive alone, shared ride) can include buffer time or any 
other reliability measure;

•	 Trip distribution, in which the travel impedance function 
can include mode choice logsum or directly include reli-
ability measures;

•	 Trip time-of-day choice, specifically for highway modes, in 
which the peak (and other period-specific) factors can 
include period-specific reliability measures; and

•	 Trip generation, which can be made sensitive to accessibility 
measures (destination choice logsums) that can include reli-
ability measures along with average travel time and cost.

It should be noted that it may not be easy to incorporate all 
of these features into 4-step models. This has been part of the 
motivation for development and adoption of activity-based 
models by planning agencies over the past two decades.

For an activity-based travel demand model, the following 
dimension and components of travel demand can be included 
in the equilibrium framework and incorporate reliability 
measures:

•	 Mode choice, in which utility functions for highway modes 
(drive alone, shared ride) can include buffer time or any 
other reliability measure;

•	 Primary destination choice, in which the travel impedance 
function can include mode choice logsum or directly 
include reliability measures;

•	 Stop frequency and location choices for chained tours that 
are also based on travel impedance functions with reliabil-
ity measures;

•	 Tour generation models (daily activity-travel pattern), 
which can be made sensitive to accessibility measures (des-
tination choice logsums) that can include reliability mea-
sures along with average travel time and cost; and

•	 Tour time-of-day models (daily schedule), which can be 
made sensitive to time-specific reliability measures.

It should be mentioned that despite certain similarities 
between the 4-step and activity-based models in their 
approaches to incorporating reliability feedback, there are 
some important principal differences. In particular, 4-step 
models operate with aggregate zonal flows, so that any demand 
response to reliability will be identical for all trips within the 
same segment. In contrast, activity-based models are based on 
individual microsimulation, which opens the way to imple-
ment the feedback on the individual level, at which point 
additional individual variation can be taken into account. 
Also, the utility coefficients in activity-based microsimulation 
models can be effectively randomized, taking into account 
individual variation of value of time and value of reliability.

Technical Aspects 
of Scenario Formation

Practical implementation of the equilibrium mechanism 
shown in Figure 3.11 requires the establishment of certain 
rules for scenario formation, as well as specific technical 
aspects for the combination of different sources of travel time 
variability. The team envisions the following general imple-
mentation scheme:

•	 All three types of scenarios are defined as discrete cases 
with a predetermined number of states. These discrete 
states are randomly generated at each global iteration; 
however, the number of states and the core probabilistic 
distributions are prepared in advance. It should be men-
tioned that even with a small number of states generated in 
each dimension, the Cartesian combination of them can 
easily reach a number that would result in unrealistic run-
times for simulations (especially in large urban networks). 
Thus, generally, two to three random scenarios for each 
factor would be enough. A fractional factorial design can 
be effectively employed to reduce random variation.

•	 Scenarios associated with travel demand and network 
capacity are simulated first since they are assumed indepen-
dent. Then they are combined in a Cartesian way. Travel 
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demand scenarios in turn are combined with scenarios for 
special events and day-to-day variation scenarios that are 
also assumed independent. Network simulation scenarios 
are combined with scenarios for weather conditions and 
scenarios for work zones that are also assumed indepen-
dent. For example, assume that for each of the four dimen-
sions we generate two scenarios. This would already result 
in 2 × 2 × 2 × 2 = 16 combined basic scenarios. Taking into 
account that day-to-day variation in travel demand con-
tributes 60% to 70% of the observed variability in travel 
times, we may generate more scenarios (three or four) for 
this particular factor. This would make the total number of 
possible combined scenarios 24 or 32. A fractional factorial 
might also be adequate here, allowing for more scenarios 
for each dimension while keeping the total number of com-
binations realistic. The goal is to come up with a realistic 
distribution of travel times across a wide range of combina-
tions of conditions—not to test every combination.

•	 Each of the 16 basic scenarios is simulated, taking into 
account several possible network simulation scenarios. Each 
network simulation scenario is essentially a full run of net-
work simulation with certain randomly drawn parameters 
that relate to traffic control, dynamic pricing algorithm, 
incidence occurrence, and individual route choice and driv-
ing style. On top of these randomized factors, a flow break-
down probability will be applied. If we implement three 
runs for each scenario, it would result in 3 × 16 = 48 simula-
tions. This would supply travel time distribution for each 
O–D pair with the necessary degree of details. Essentially, 
any of the applied reliability measures (standard deviation; 
80th, 85th, 90th, or 95th percentile) can be derived from this 
distribution. Parallel processing can be effectively employed 
for multiple simulation runs. Since the core 16 scenarios for 
travel demand and network capacity have been defined, the 
simulation runs can be implemented independently.

•	 Trip tables associated with special events will be pre
calculated for each venue and randomly chosen from the list 
based on the frequency (as described in the next subsection). 
These tables will be added to the core trip table generated 
by the demand model.

•	 The core trip table will be randomized as described in the 
next subsection to account for day-to-day individual 
variation.

•	 The weather condition scenarios will be randomly chosen 
from the frequency table that will contain two to three 
weather-related states that are significantly different from 
the travel condition point of view. Dependent on the chosen 
region for simulation, the states will be classified as normal, 
rainy, and/or snowy/icy. For each of the weather condi-
tions different from the normal, network capacities and/or 
volume-delay functions will be adjusted to account for the 
additional difficulty of driving.

•	 The scenarios associated with work zones will be con-
structed based on the observed/planned frequency of link/
lane closures by road type for the time-of-day periods of 
the simulation. Based on the defined frequencies, some 
network links/lanes will be disabled in the traffic simulation 
process.

The methodological and implementation details associated 
with scenario formation are described in Chapter 6. They are 
described again in connection with the applications presented 
in Part 3 of this report.

Travel Demand Scenarios

Individual travel behavior is inherently stochastic from the 
perspective of the modeler. Except for work and school com-
muting, most of the trips are not implemented on a daily basis. 
Even for commuting trips that are the most stable demand 
component of travel, there is an average weekday attendance 
factor (trips per workplace) of around 0.8 because of vaca-
tions, sickness, days off, work in other locations, and so on. 
This means that a 5% spike in traffic flow can be just a com-
bination of random individual trip frequencies. It can be said 
that the random variation in individual travel behavior is a 
consequence of small special events unknown to the modeler. 
There are probably some opportunities to move some of 
the uncertainty attributed to random individual behavior 
into the systematic variation category. For example, one can 
speculate that there might be a seasonal effect in workplace 
attendance. However, in general, randomness of individual 
behavior cannot be eliminated from the travel forecasting 
process, and it should be explicitly incorporated into the new 
generation of travel models. The team suggests two possible 
and different approaches to incorporating this factor.

Approach 1. One of the natural options is embedded in the 
demand microsimulation structure of activity-based models. 
These models operate with parameterized probabilities that 
are converted into travel choices by using Monte Carlo (or 
sometimes more elaborate discretizing method); see Vovsha 
et al. (2008) for technical details. Thus, a certain level of vari-
ability can be effectively modeled by changing random num-
ber seeds in the microsimulation process (so-called Monte Carlo 
variability). This option is comparatively simple to imple-
ment, and it will be fully explored in the current project for 
both travel choices and route choice in the traffic simulation. 
This approach is difficult to operationalize for a 4-step model 
that operates with aggregate flows. The conceptual limita-
tions of this approach have to be understood nonetheless 
since Monte Carlo variability does not have a systematic rela-
tionship to real world variability.

Approach 2. Another possible approach that is equally appli-
cable to 4-step and activity-based models is estimating variation 
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in aggregate demand (trip table) based on the observed variation 
in link traffic counts. This approach has been successfully used in 
the framework of the SHRP 2 C04 project. In this approach, a 
set of trip tables (demand scenarios) can be created (pivoting 
off the average trip table) that, when assigned, would replicate 
the observed distribution of traffic counts for each link. With 
this approach, continuous or repeated traffic counts taken 
multiple times for each link are sorted by scenarios. Contempo-
raneous counts are included in the same scenario, and the cor-
relation patterns between links with a significant common flow 
are taken into account (e.g., adjacent links). After the counts 
have been sorted by scenarios, the trip table is adjusted to each 
scenario (corresponding count values). The process is first cali-
brated for the base year. Then the variation proportions can be 
calculated (for each O–D pair) and applied in forecasting. 
Application of this approach with DTA when discrete trips and 
tours are simulated instead of aggregate O–D flows requires 
some modifications. Individual trips or tours are (randomly) 
replicated and/or deleted based on the correction coefficients. 
When trips are replicated, the exact times and exact network 
entry/exit nodes are randomized to avoid extra “lumpiness.”

Special events represent one of the more important factors 
that contribute to nonrecurrent congestion on the demand 
side. A good operational classification of planned special events 
is provided in Fox et al. (2003) and is reproduced in Table 3.6.

Parsons Brinckerhoff is currently developing a special events, 
activity-based model for the Phoenix metropolitan area, which 

represents an additional component added to the regional 
travel demand model. Different from the core demand model 
that is based on a household travel generation process in 
which  tours/trips are produced by households and then 
attracted to the potential destinations, the special events model 
is based on the reverse logic. The flow attracted to the venue is 
estimated first, and then the origin trip ends are distributed 
across the region. The model is segmented by the special event/
generator type and includes the following major components:

•	 First, the yearly frequency and total daily patronage of the 
venue is estimated, as well as the distribution by time-of-
day periods.

•	 The mode choice model is applied for each relevant time-
of-day period (when the venue is open for visitors). Utili-
ties are obtained for every valid mode and production/
attraction pair, and logsums are computed.

•	 The relative attractiveness of each production (residential) 
zone is computed for each time-of-day period, and event 
trip attractions by attraction zone are distributed to each 
production zone, according to the relative attractiveness of 
the production zone compared with all production zones.

•	 Utilities are recomputed and probabilities are computed 
for every valid mode and production/attraction pair. The 
trips between each zone pair are allocated to the modes 
available by applying the mode choice probabilities.

•	 The trips are assigned to the appropriate network.

Table 3.6.  Classification of Special Events

Event Type Examples Demand Characteristics

Discrete/recurring event 
at a permanent venue

Planned special events include sporting events, concerts, 
shows, theater, festivals, and conventions occurring at 
permanent multi-use venues (e.g., arenas, stadiums, race-
tracks, fairgrounds, amphitheaters, convention centers)

Predictable starting and ending times; known venue 
capacity; anticipated demand typically known; 
advance ticket sales; concentrated arrival and 
departure demands

Continuous Long-term exhibitions, museums, multiple-day conferences 
(e.g., TRB annual meeting)

Occurrence often over multiple days; patrons arrive 
and depart during the event day; less reliance on 
advance ticket sales; capacity of venue not 
always known; occurrence sometimes at tempo-
rary venues; variation in parking availability

Street use Less frequent public events such as parades, fireworks dis-
plays, bicycle races, sporting games, motorcycle rallies, 
seasonal festivals, and milestone celebrations at tempo-
rary venues; temporary venues such as parks, streets, 
and other open spaces with limited roadway and parking 
capacity and undefined spectator capacity

Occurrence on roadway requiring closure; specific 
starting and predictable ending times; capacity of 
spectator viewing area not known; spectators typ-
ically not charged or ticketed; variation in parking 
availability; impacts on emergency access and 
local services

Regional/multiple-venue Olympic games, international festival, world championship Occurrence of events at multiple venues at or near 
same time; ingress and egress operations for con-
current events that occur at same time; parking 
areas that service demand from different events 
during the day

Rural Farm market or festival Rural area and possible tourist destination; high 
attendance events attracting event patrons from a 
regional area; limited roadway capacity; area lack-
ing regular transit service
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A model of this type naturally lends itself to a traffic simu-
lation incorporating reliability. The probability of the event 
occurring during the simulation run is estimated based on 
the frequency for each venue. In each generated demand sce-
nario, some of the randomly selected special events will be 
included. To better control for variability across different 
demand scenarios, the random selection process can be orga-
nized with “no replacement” rules.

Network Capacity Scenarios

Network capacity can be significantly affected by the weather 
conditions and road works that require closure of some lanes 
or entire road segments for some period of time. The impacts 
of weather conditions on road capacity can also be explicitly 
taken into account in the network simulation through param-
eters of car following. To include these factors in the network 
simulation, the following technical steps will be implemented:

•	 Weather conditions. A categorization of possible weather 
conditions will be implemented for the given season and 
hour with probability for each particular condition to 
occur. Then for each condition that is different from nor-
mal, network capacities and speed functions will be adjusted 
accordingly.

•	 Work zones. The probability of lane/road segment closure for 
maintenance or other purpose will be calculated for all facil-
ity types. According to this probability, in the network simu-
lation, some network links are fully or partially disabled. If 
special events are associated with some predetermined road 
closures (in addition to the demand spike associated with the 
event), this factor can be combined with road works in the 
network scenario formation.

Details that relate to these factors are discussed in the pilot 
applications.

Network Simulation Scenarios

For a given combined demand and network capacity sce-
nario, there are two major factors that can significantly affect 
travel time reliability (and specifically relate to nonrecurrent 
congestion): incidences and traffic flow breakdowns. Ways to 
parameterize the probability of these factors occurring, and 
the associated practical techniques to incorporate them into 
network simulations, have been discussed in detail in the 
Task 7 Report (Stogios et al. 2014). In the framework of mul-
tiple simulation runs (implicitly associated with different days), 
these factors form scenarios of network simulation. It should 
be stressed that due to these factors, different simulation runs 
can produce very different travel times even though the 
demand and network capacity are fixed.

Drivers’ response to changing network conditions is subject 
to different time scales. This has to be taken into account when 
forming the equilibration strategies. For example, route choice 
can change in response to a collision or work zone. However, 
this is not a long-term equilibrium state for the network.

Varying time scales affect equilibration (fixed versus 
equilibrated versus one-pass) in the context of recurrent and 
nonrecurrent congestion. This section explains the differences 
between equilibrium in different time scales. This is of special 
relevance for modeling nonrecurrent congestion that cannot 
be considered as a state of equilibrium but is rather a one-pass 
event. Recurrent congestion in general is recognized as an 
example of a well-equilibrated state in which multiple highway 
users tried different routes (presumably on different days) and 
eventually reached a certain level of convergence (average day). 
Recommendations are made on how an equilibration time 
scale can be properly accounted for.

A wide range of travel choices with very different time 
scales for traveler responses are affected by travel time reli-
ability. Short-term responses include travel dimensions such 
as network route choice (including any portion of the route 
when new travelers’ information becomes available), route 
type choice (toll versus nontoll and/or managed lanes versus 
general-purpose lanes), trip departure times, and possibly 
mode choice (if a transit option is competitive). Because the 
perception of travel time reliability generally stems from 
observed variability over time, it requires a certain learning 
curve and experience from travelers to perceive it and respond 
to changes in it, although an advance information system that 
would provide reliability estimates along with the shortest 
and/or average travel times can change this drastically. Mod-
els that are based on the distribution of travel times imply 
that the travelers have a good idea about this distribution, 
which probably means in practical terms at least 5–10 recent 
trips along the route at the same time of day. It is yet to be 
explored how the modeling assumptions about travelers’ 
knowledge and information match the reality, but this is largely 
the same problem with the conventional models that operate 
with average travel time. The assumptions about drivers’ per-
fect knowledge and immediate response to changes in average 
travel times are seen to be essential for making the models 
analytically simple and operational, but they might be quite 
far from reality.

Recommendations 
for Future Research

Several important research directions have become clear in 
the course of the current project. Many of them relate to 
more advanced methods of incorporation of travel time reli-
ability, specifically schedule delay cost and temporal activity 
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profiles. However, improving travel demand models and net-
work simulation tools in this direction is closely intertwined 
with a general improvement of individual microsimulation 
models. The following specific recommendations for future 
research are made:

•	 Continue research on advanced methods for incorporation 
of travel time reliability into demand models and network 
simulations tools, including the schedule delay cost approach 
and temporal utility profile (loss of activity participation) 
approach. As part of such research, continue research and 
development of path-based assignment algorithms that 
incorporate travel time reliability and can generate a trip 
travel time distribution in addition to mean travel time.

•	 Continue research on schemes for the integration of 
advanced ABM and DTA that can ensure a full consistency 
of daily activity patterns and schedules at the individual level 
and behavioral realism of traveler responses. In this regard, 
enhancement of time-of-day choice, trip departure time 
choice, and activity scheduling components are essential to 
address. This relates to the conceptual structure of these 

models and their implementation with respect to temporal 
resolution.

•	 Encourage additional data collection on the supply side of 
activities and on scheduling constraints, including the dis-
tribution of jobs and workers by schedule flexibility, clas-
sification of maintenance and discretionary activities by 
schedule flexibility, as well as developing approaches to 
forecast related trends.

•	 Continue research and application of multiple-run model 
approaches and associated scenario formations, for both 
the demand and network supply sides. The team’s synthe-
sis and research have shown that a conventional single-run 
framework is inherently too limited to incorporate some 
important reliability-related phenomena such as nonre-
current congestion due to a traffic incident, special event, 
or extreme weather condition.

•	 Incorporate travel time reliability in project evaluation and 
user benefit calculations. Restructure the output of travel 
models to support project evaluation and user benefit cal-
culations with consideration of the impact of improved 
travel time reliability.
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C h a p t e r  4

Introduction

This chapter describes the framework and the functional 
requirements for the inclusion of travel time reliability esti-
mates in transportation network modeling tools, with par-
ticular focus on stochastic traffic simulation models. The 
framework identifies phenomena and behaviors that account 
for the observed variability in network traffic performance, 
and unifies all particle-based simulations at the microscopic 
and mesoscopic levels. Recognizing that the requirements 
development process is focused on the uses of traffic opera-
tional models in agencies at the local, metropolitan, regional, 
and state levels, the functional requirements are developed 
for different resolutions and scales. In addition, a repeatable 
framework is proposed to model travel time variability induced 
by incidents and random events, recognizing the difference 
between so-called recurring and nonrecurring congestion 
due to various sources.

Incorporating travel time reliability into stochastic traffic 
simulation models has the primary objective of enabling the 
off-line evaluation of traffic network performance, including 
assessment of management interventions, policies and geo-
metric configuration, and so forth, as well as both short-term 
and long-run impacts of policies aimed at improving travel 
time and service reliability.

Longer-term impact evaluation entails integrating reliabil-
ity considerations in equilibrium planning models. An ideal 
integration would bring together reliability-sensitive network 
simulation models with micro-level activity-based demand 
models. However, practical approaches consistent with the 
current state of the practice can also be formulated.

In addition to off-line applications, reliability-sensitive 
simulation models can support the design and implementa-
tion of real-time operational decisions. The design of online 
traffic information and management strategies calls for sto-
chastic simulation tools that are capable of modeling recur-
rent and nonrecurrent congestion and generating reliability 
measures in real time.

Framework

Traffic operations and planning models generally require both 
demand and supply inputs. Travel demand could be static 
(for planning models), dynamic (for planning and operational 
models), or in the form of activity schedules (for activity-based 
models). In virtually all applications, actual travel demand 
cannot be perfectly forecast and is subject to a variety of dis-
turbances, including special events, day-to-day variation in 
individual behavior, (unfamiliar) visitor traffic, and diversion 
from temporary unavailability of alternative modes. On the 
supply side, the operational capacity of network elements 
could be assumed as fixed, stochastic, or systematically vary-
ing with traffic conditions through actuated signal controls, 
ramp metering, dynamic tolls, and so on. Unreliability sources 
that affect supply-side attributes consist of incidents, work 
zones, weather, traffic control, dynamic pricing, and varia-
tion in individual driving behavior. These variations in 
demand and supply affect the movement of vehicles and the 
propagation of traffic flow, resulting in different travel times 
for drivers traveling on the same link or path or between a 
given origin–destination (O–D) pair. Therefore, travel time 
variability, at the individual or aggregated levels, could be 
quantified based on the simulation results, in particular, 
vehicle trajectories. Commonly used reliability measures 
include the probability of arriving on time, the Travel Time 
Index (ratio of the mean experienced travel time to the free 
mean travel time), the variance (or standard deviation) of 
experienced travel times, and various descriptive statistics 
that can be derived from the distribution of travel times, 
which is the most general and complete way of character-
izing travel time variability across a population of drivers 
in a network.

Figure 4.1 presents a general framework for incorporating 
reliability aspects into modeling tools used to support traffic 
operations and planning applications. The framework recog-
nizes the different sources of unreliability and their interac-
tion with the key components of network simulation models. 

Functional Requirements of Stochastic  
Network Simulation Models
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Depending on the model’s intended purpose, data availability, 
and resource constraints for executing a particular study, 
appropriate assumptions can be formulated and inputs speci-
fied regarding (1) the demand-side and supply-side character-
istics, and (2) the variation sources to be included in the model. 
In addition, the specific travel time reliability measures can be 
accordingly selected. For example, if activity schedules of trip 
makers are available or are of interest, an activity-based travel 
simulation model can be used, considering some or all of the 
sources of variation in demand and supply and the probabil-
ity of arriving on time for each traveler could be produced as 
a model output.

Incorporating reliability into operations modeling tools 
entails three main components: (1) the Scenario Manager, 
which captures exogenous unreliability sources such as spe-
cial events, adverse weather, work zone and travel demand vari-
ation; (2) reliability-integrated simulation tools that model 
sources of unreliability endogenously, including user hetero-
geneity, flow breakdown, collisions, and so forth; and (3) the 
vehicle Trajectory Processor, which extracts reliability informa-
tion from the simulation output, namely, vehicle trajectories. 
Accordingly, the methodological framework for incorporat-
ing reliability into stochastic network simulation models is 
shown in Table 4.1.

Figure 4.1.  Incorporating reliability measures into traffic operations and 
planning models.

Travel Demand 

- Static 
- Dynamic 

- Activity schedule 

Network Capacity 

- Deterministic 
- Stochastic 

- Adaptive 

Simulation Model 

- Microscopic 
- Mesoscopic 

- Macroscopic 

Output 

- Individual level 
- Aggregated 

Demand Variation 
- Special events 
- Day-to-day variation 
in individual behavior 

- Visitors 
- Closure of alternative 
modes 

Supply Variation 
 
- Incidents 
- Work zones 
- Weather 
- Variation in 
individual driver 
behavior 

- Traffic control 

- Dynamic pricing 

Measure of Reliability  
- Travel time distribution 
- Probability of certain delay 
- Reliability proxies 

Table 4.1.  Methodology Framework

Input (exogenous sources) Scenario Manager

Demand
•  Special events
• D ay-to-day variation
• V isitors
• C losure of alternative modes

Supply
•  Incidents
• W ork zones
•  Adverse weather

Simulation model  
(endogenous sources)

Existing simulation tools with suggested improvements

Demand
• �H eterogeneity in route choice and user 

responses to information and control measures
• H eterogeneity in vehicle type

Supply
•  Flow breakdown and incidents
• H eterogeneity in car following behavior
•  Traffic control
• D ynamic pricing

Output Vehicle Trajectory Processor

•  Travel time distribution
•  Reliability performance indicators
• U ser-centric reliability measures
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Functional Requirements

Traffic operation models need to model variations in demand 
and supply sides as well as capture traffic physics. They are 
also expected to support system management decision mak-
ing to control reliability, produce reliability-related measures, 
and retain flexibility to adapt to various agency and policy 
environments. The functional requirements for traffic opera-
tion models needed to estimate travel time variability are 
summarized in Figure 4.2.

Model Variations from Different Sources

According to previous research (Cambridge Systematics, Inc. 
2005, Figure 2.3), seven major factors account for approxi-
mately half of all traffic delay and, therefore, a great deal of the 
uncertainty associated with travel time: (1) traffic incidents, 
(2) work zones, (3) weather (4) special events, (5) traffic con-
trol devices, (6) fluctuations in demand, and (7) inadequate 
base capacity. In addition, factors such as variation in indi-
vidual driver behavior, dynamic pricing, and closure of alter-
native modes also increase travel time unreliability. Therefore, 
the traffic operation models should be capable of recognizing 

and representing both demand- and supply-side causes of 
variability, due to different sources.

Furthermore, rather than affect travel time reliability sepa-
rately, these factors often interact, which requires the ability 
to model all or any combination of the unreliability causes in 
one operational model. For example, adverse weather events 
may affect (supply-side) pavement conditions due to precipi-
tation, as well as (demand-side) travel decisions as travelers 
may adjust their departure time or mode or cancel their trips. 
In addition, severe weather conditions could increase the 
probability of flow breakdown and traffic collisions. There-
fore, traffic operation models intended to capture travel time 
variability need to model the impacts of weather events in all 
related components, including demand variation, traffic flow 
model, flow breakdown prediction, and collision prediction.

Characterize Inherent Probabilistic 
Phenomena: Traffic Physics

To capture the causes of unreliability in traffic, models should 
capture to the extent possible the underlying physics of the 
associated processes and phenomena. For example, density 
can be considered both a cause and an effect of unreliability. 

Figure 4.2.  Functional requirements.

Model variation in demand 
• Special events 

• Day-to-day variation in individual behavior 

• Visitors 

• Closure of alternative modes 

Model supply-side variations 
• Incidents 

• Adverse weather 

• Work zones and special events 

Characterize traffic physics 
• Variation in individual driver behavior 

• User heterogeneity in route choice and 
responses to information and control 
measures 

• Inherent randomness in individual 
maneuvers 

• Collective Effects: Flow breakdown and its 
impact on travel time 

Support management decision making
• Traffic control strategies, integrated system 

management 

• Traveler information systems 

• Dynamic pricing 

• Closure of alternative modes 

Produce reliability related output 
• Construct travel time distributions by link, 

segment, trip, and for the entire system

• Calculate reliability performance indicators 

• Generate user-centric (experienced, 
perceived) reliability measures 

Retain flexibility to adapt to various agency and 
policy environments 
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When density goes above a threshold, the vehicle-to-vehicle 
interactions become a dominant factor. While density can be 
considered a result of these other variables, at a certain thresh-
old, density might itself be an independent random variable 
contributing to instability, such as flow breakdown.

In particular, both systematic variations in individual driver 
behavior and inherent randomness in individual maneuvers—
including driver’s choice of speed, gap acceptance, and lane 
changing—account for considerable observed variability in 
traffic speeds and resulting travel times. Interdriver behav-
ioral differences are essential for capturing certain congestion 
dynamics. For instance, the presence of aggressive drivers and 
conservative drivers in the traffic stream gives rise to traffic dis-
turbances that may increase in intensity (creating congestion 
and even traffic breakdowns) or dampen with time (Daganzo 
1999). Most critically, these models should capture the col
lective effects that arise from the inherent randomness in  
driving behavior, namely, flow breakdown and its impact on 
travel time.

In addition, behavioral models that may be embedded in 
traffic simulation models need to account for user hetero
geneity in route choice and responses to information and 
control measures. For example, when provided with travel 
time information, users could choose whether to react to 
such information and decide how to evaluate the reliability 
aspect in choosing their paths.

Support System Management  
Decision Making

As explained earlier, traffic controls and dynamic pricing affect 
travel decisions, flow distribution, and thus experienced travel 
times. Therefore, operations/traffic control strategies and trav-
eler information systems need to be incorporated into the 
modeling process intended to quantify travel time variability. 
In particular, traffic control strategies can be either explicitly 
modeled in a microsimulation setting or included implicitly 
through intersection capacity. In both cases, adaptation/ 
optimization algorithms can be applied. Alternatively, infor-
mation systems could be incorporated into the traffic simula-
tion models by emulating the real-time information process 
and its resulting effect on the route (and possibly departure 
time in the case of pretrip information) choices of highway 
users both pretrip and at intermediate points along the trip.

Moreover, traffic management actions, including control 
strategies, integrated system management, traveler information 
systems, dynamic pricing, and closure of alternative modes, are 
essential supply-side actions to alleviate congestion and possi-
bly improve travel time reliability. As such, it is essential that 
traffic operation models be able to represent such actions and 
capture their impact on system performance.

Produce Reliability-Related Output

The main intended functionality of reliability-sensitive traffic 
operation models requires the generation of an array of per-
formance indicators and figures of merit that allow model 
users to characterize the existing variability and interpret its 
impact from the standpoint of the quality of traffic service 
experienced by users. A general approach to characterizing 
variability is examining the travel time distribution, which 
reflects the net result of the combination of recurring and 
nonrecurring congestion as found in real networks. It is there-
fore desirable for the traffic simulation models to produce 
travel time distributions by link, path, and trip (O–Ds). In 
addition, these models are expected to produce reliability-
related performance measures. In particular, from the sys-
tem operator’s perspective, reliability performance indicators 
for the entire system should allow comparison of different 
network alternatives and policy and operational scenarios. 
This could facilitate decision making in regard to actions 
intended to control reliability and evaluation of system per-
formance. In addition, it is essential to reflect the user’s point 
of view, by producing user-centric reliability measures, which 
describe user experienced or perceived travel time reliability. 
The reliability-related output processing is realized through 
the vehicle Trajectory Processor, which is discussed in detail in 
Chapter 7.

Retain Flexibility to Adapt to Various  
Agency and Policy Environments

As the ultimate goal of this project is to develop practical 
operational tools that could be eventually applied by metro-
politan planning organizations (MPOs), departments of 
transportation (DOTs), and other agencies for testing pro-
posed projects and policies, the developed approaches need 
to be designed in a flexible way to adapt to various agency and 
policy environments. This means application to a range of 
problems in terms of geographic scope, time frame, stage in 
the development process, and target impact. As such, incor-
porating reliability is of interest for both planning and opera-
tions applications, as well as for operational planning activities. 
As noted previously, this means having sensitivity to an array 
of policy interventions and operational measures, including 
various highway pricing options such as real-time adaptive 
pricing. Real-time adaptive pricing is considered a particularly 
promising strategy to regulate travel demand and improve 
reliability of the highway system. In addition, the operations 
models need to recognize the primary applications for which 
reliability information may be required, calibration require-
ments, and ability/needs of typical agencies to leverage such 
capabilities.
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Quantifying Travel  
Time Variability

As one of the key functional requirements is concerned with 
producing reliability-related output, the operations models 
need to generate travel time distributions by link, path, and 
trip (i.e., O–Ds), as well as reliability performance measures 
for the entire system. This section describes the challenges in 
characterizing travel time variability and associated correla-
tions, followed by the methods to construct travel time distri-
butions. After that, the relation between mean and standard 
deviation of travel time per unit distance is examined; this 
illustrates an important property of travel time variation in a 
traffic network and provides a basis for a practical approach 
for deriving travel time variability measures from measured 
or simulated average values.

Challenges in Characterizing Network 
Variability and Correlations

Characterizing the reliability of travel in a network necessar-
ily entails representing the variability of travel times through 
the network’s links and nodes along the travel paths followed 
by travelers, taking into account the correlation between link 
travel times.

Variability of Travel Time Through Links and Nodes

Empirical studies have confirmed that the distribution of travel 
time along a link or through a network is generally not sym-
metrical, indicating that the mean and median values would 
not be the same. The distribution is highly skewed with a flat 
and long right tail. Under free-flow conditions/off-peak the dis-
tribution of travel times has a shorter right tail. Li et al. (2006) 
suggested that a lognormal distribution best characterizes the 
distribution of travel time when a large (in excess of 1 hour) 
time window is under consideration, especially in the presence 
of congestion. However, when the focus is on a small departure 
time window (e.g., on the order of minutes), a normal distribu-
tion appears more appropriate. In addition, Sohn and Kim 
(2009) used the generalized Pareto distribution (GPD) in com-
puting percentiles, as a travel time reliability index, to recognize 
the asymmetry in the travel time distribution.

The morning peak (7 a.m. to 9 a.m.) travel times collected 
on a freeway section of I-405N in Southern California are used 
to estimate the distribution of travel time. The Travel Time 
Index data show that the mean (1.59) and the median (1.48) 
are to the right of the mode (0.96), which suggests a positive-
skewed (right-skewed) distribution. In Figure 4.3, the his
togram is plotted as an approximate density estimator. In 
addition, the data are fitted to a lognormal distribution.

Capturing the variability of travel times in the form of link-
level distributions is not sufficient for characterizing the reli-
ability of travel. Equally important are travel times by movement 
through the nodes (intersections), particularly delays associ-
ated with left-turning movements, which may differ consider-
ably from the delays experienced by through and right-turning 
vehicles. The intersection delay can be calculated analytically 
using queuing models, in which vehicles arrive at an inter
section controlled by a traffic light and form a queue (McNeill 
1968; van den Broek et al. 2004). Alternatively, the delays can 
be measured directly or extracted from vehicle trajectories 
generated from traffic simulation models.

Correlation Between Link Travel Times

In addition to the individual link and movement delay distri-
butions, a particularly vexing issue is the strong correlation 
between travel times in different parts of the network, gener-
ally in proportion to distance; that is, adjacent links are likely 
to experience delays in the same general time period than 
unconnected links. Therefore, even if the link-level time vari-
ations are known, it is a nontrivial task to synthesize the O–D-
level and path travel time distribution because of the dependence 
of travel times across adjacent links due to a mutual traffic flow. 
The correlation phenomenon in network travel times is a 
direct result of the topological nature of a network and the 
strong interactions it induces.

Capturing these correlation patterns is generally very diffi-
cult when only link-level measurements are available. More 
important, given that a vehicle typically traverses a large num-
ber of links along its journey, deriving path-level and O–D-
level travel time distributions from the underlying link travel 
time distributions, even when the multivariate covariance pat-
tern is known and available, is an extremely unwieldy and ana-
lytically forbidding task for all but very limited special cases.

Figure 4.3.  Distribution of link travel times during 
peak period (7 a.m. to 9 a.m.).
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Constructing Travel  
Time Distributions

To quantify travel time variability, the traffic simulation tools 
need to support various uncertainty analysis methods such as 
Monte Carlo simulation, sensitivity analysis, and scenario 
planning.

Monte Carlo method. Many of the travel time unreliability 
factors mentioned earlier fall into the area in which the ran-
domness can be parameterized and probabilities can be 
assigned based on the known parameters of the demand and/
or supply. The Monte Carlo method considers random sam-
pling of probability distribution functions as model inputs to 
produce hundreds or thousands of possible outcomes. Based 
on the probabilities of different outcomes occurring, namely, 
realizations of travel times, one can construct the resulting 
travel time distribution.

Scenario-based approach. Some of the travel time unreliabil-
ity factors—such as collisions, flow breakdown, and special 
events—can be modeled by constructing a few discrete sce-
narios and then conducting single-point estimation for each 
scenario. Various combinations of input variables are manually 
chosen (such as normal conditions, collision or flow break-
down on a road section, and football games) and the results 
recorded for each “what if” scenario. Therefore, given the sched-
ule of a particular event (e.g., traffic signal plans, dynamic pric-
ing schemes, and football games) or the probability of an event 
occurring (e.g., collision, flow breakdown), travel time variabil-
ity can be computed based on the outcomes of the scenarios.

Sensitivity analysis. Sensitivity analysis techniques can also 
be used to study how the variation in travel time can be appor-
tioned, qualitatively or quantitatively, to different sources of 
travel time unreliability in the input of the traffic operation 
models.

Network Travel Time: Mean  
and Standard Deviation

The relation between mean and standard deviation of travel 
times per unit distance is discussed in this section. By establish-
ing a linear or near-linear relation between these two variables, 
we can easily estimate the variance of travel time based on 
mean travel time. Note that the travel time needs to be normal-
ized by distance, that is, travel time per unit distance (or the 
inverse of the space mean speed) as shown in Equation 4.1.

4.1t
t

d
( )′ =

where
	 t ′	=	travel time per unit distance,
	 t	=	travel time, and
	 d	=	distance.

The assumption of the linear relation between mean and 
standard deviation of travel time per distance can be written 
as in Equation 4.2:

( ) ( ) ( )δ ′ = + ′ 4.2t a b E ti

where
	 d(t ′)	=	standard deviation of t ′,
	 E(t ′)	=	mean value of t ′, and
	 a,b	=	coefficients.

This relation, originally suggested in Herman and Prigogine’s 
work on the characterization of network traffic quality, was 
verified empirically with traffic measurements using vehicle 
probes (Jones 1988; Mahmassani et al. 1989). Simulation results 
on two real-world networks are presented next to further 
explore the relation between mean and standard deviation of 
travel times.

Simulation Results: Travel Time  
from Irvine Network

The simulation experiment is conducted using the Irvine test-
bed network shown in Figure 4.4. DYNASMART had been 
calibrated for this network using real-world observations, 
obtained from multiple-day detector data. This network has 
326 nodes (70 of which are signalized), 626 links (57 of which 
have road detectors), and 61 traffic analysis zones (TAZ). The 
morning peak of 7 a.m. to 9 a.m. is chosen as the study period. 
The time-dependent O–D demand profile for 7 a.m. to 9 a.m. 
(58,450 vehicles) is calibrated using traffic counts.

Assuming user equilibrium is reached, the experienced 
travel time and travel distance of each vehicle can be extracted 

Figure 4.4.  Irvine network.

Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22388


53   

from the vehicle trajectories. The travel time per mile can 
therefore be computed for each vehicle. In Figure 4.5, each data 
point represents the mean and standard deviation of travel 
times per mile for vehicles departing in a 1-minute interval. 
Therefore, there are 120 data points for 2-hour demand. The 
plot shows that the mean and standard deviation of network 
travel time per distance are linearly related; namely, greater 
variability in travel time is associated with more congested traf-
fic conditions (i.e., longer travel time per mile).

In reality, collecting experienced travel times for an entire 
population of drivers would be very costly, if at all practical. In 
most cases, only a small portion of the population might be 
expected to be equipped with GPS devices and report their 
experienced travel times. To explore the possibility of correctly 
calibrating the mean-standard deviation relation of travel 
time per distance using a portion of travel time data, the team 
randomly chose 10% of vehicles in the network and computed 
the mean and standard deviation of travel time per distance. 
In Figure 4.6, each data point represents the mean and stan-
dard deviation of travel times per mile for vehicles departing 

in a 5-minute interval. There are 24 data points corresponding 
to the base case and the case with 10% sample, respectively. By 
comparing Figure 4.5 and Figure 4.6, we can see that the slope 
remains almost unchanged when the aggregation interval var-
ies from 1 minute to 5 minutes. In addition, the statistics com-
puted from 10% of the population (i.e., 10% sample case) can 
characterize the mean-standard deviation relation of the 
entire population (i.e., 100% sample case).

Simulation Results: Travel Time  
from the CHART Network

Additional simulation experiments were conducted on the 
CHART (Coordinated Highways Action Response Team, 
Maryland) network, shown in Figure 4.7. The network pri-
marily consists of the I-95 corridor between Washington, 
D.C., and Baltimore, Maryland, and is bounded by two belt-
ways (I-695 Baltimore Beltway to the north and I-495 Capital 
Beltway to the south). The network has 2,241 nodes, 3,459 
links, and 111 traffic analysis zones (TAZ). A 2-hour morning 
peak dynamic O–D demand table estimated for the network 
is used in the experiments.

Following the same procedure introduced previously for 
the Irvine network, the mean and standard deviation of travel 
time per mile are plotted in Figure 4.8 for the 100% popula-
tion sample and the 10% population sample, respectively. 
Similar patterns are obtained for the CHART network as for 
the Irvine network, that is, (1) the mean and the standard 
deviation of network travel time per mile are linearly related, 
and (2) 10% of the population can produce almost the same 
mean-standard deviation relation as the entire population.

As the demand level affects the degree of congestion in the 
network, and thus the travel time and its variability, mean-
standard deviation relations under different demand levels are 
examined and compared in Figure 4.9. In particular, the low-
demand case corresponds to 80% of the peak hour demand, 
and the high-demand scenario corresponds to 100%.

Figure 4.5.  Network mean travel time per unit  
distance and standard deviation of travel time  
per unit distance, Irvine network.

Figure 4.6.  Comparison of mean versus standard deviation relation 
at different sampling rates, Irvine network.
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Figure 4.7.  CHART network.

Figure 4.8.  Comparison of mean versus standard deviation relation at  
different sampling rates.

Figure 4.9.  Comparison of mean versus standard deviation relation at 
different demand levels.

Finally, the mean-standard deviation relations of the two 
networks are compared, as plotted in Figure 4.10. The ranges 
of mean travel time per mile are comparable (i.e., 1.4–1.9 
minutes per mile), which indicates similar congestion levels. 
However, the CHART network shows lower travel time vari-
ability in general. Therefore, it is suggested that the mean-
standard deviation relation provides a “signature” for a given 
network and so should be calibrated for each network.

Trajectories: A Unifying 
Framework

One way to circumvent the challenges described in the previ-
ous section with regard to travel time correlation across links 
and nodes, and the dependence of link travel times on the 
movement performed at the downstream node, is to obtain or 
measure the path- and/or O–D-level travel times as a complete 
entity instead of by construction from link-level distributions. 
In a simulation model, this means obtaining the travel times 
over entire or partial vehicle (or “particle” trajectories, using 
plasma physics terminology). Regardless of the specific reliabil-
ity measures of interest, to the extent that these can be derived 
from the travel time distribution, the availability of particle 
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trajectories in the output of a simulation model enables 
construction of the path- and O–D-level travel time distri-
butions of interest, as well as the extraction of link-level dis-
tributions. As such, the key building block for producing 
measures of reliability in a traffic network simulation model 
is particle trajectories and the associated experienced tra-
versal times through entirety or part of the travel path.

Vehicle Trajectory Data

The vehicle trajectory contains the traffic information and 
itinerary associated with each vehicle in the transportation 
network. Each trajectory is associated with a set of nodes 
(describing the path), the travel time on each link along the 
path, the stop time at each node, and the cumulative travel/
stop time. It could also include lane information for micro-
scopic models.

Obtain Vehicle Trajectory from  
Direct Measurements

Conventional sensors (e.g., inductive loop detectors) can 
measure traffic stream parameters at an aggregated level, such 
as flow (the number of vehicles passing over the detector per 
unit of time) and occupancy (the proportion of time that a 
vehicle is located directly above the detector). Yet, develop-
ments in information and communication technologies—
such as mobile phones with embedded GPS sending precise 
locations and prevailing speeds to a centralized traffic control 
center, and low-cost wireless sensors on the roads providing a 
snapshot of current traffic conditions—offer opportunities to 
obtain traffic data at less aggregated levels, including record-
ing vehicle trajectories. For example, the Federal Highway 
Administration’s Next Generation Simulation (NGSIM) 
project collected vehicle trajectories on a segment of Highway 
101 in Los Angeles using digital video cameras. The INRIX 

Smart Dust Network collects anonymous, real-time GPS 
probe data from over 1 million commercial fleet, delivery, and 
taxi vehicles. In addition, vehicle trajectories can be measured 
or inferred from the matching of automatic number plate rec-
ognition (ANPR) data, moving vehicle observers, and toll tag 
data from systems such as California’s FasTrak system. Direct 
trajectory measurement enables consistent theoretical devel-
opment in connection with empirical validation.

Obtain Vehicle Trajectory from Microsimulation  
and Mesosimulation Models

Because it is predicated on particle trajectories, which could 
be obtained from both micro- and meso-level simulation 
models, the team’s framework for producing reliability output 
unifies all particle-based simulations, regardless of whether 
the physics underlying vehicle propagation and interactions 
are captured through microscopic maneuvers or through ana-
lytic forms. Regardless of how microscopic the modeling 
approach might be, so long as it is particle-based and not flow-
based, the framework is applicable.

Figure 4.11 shows an example of vehicle trajectory output 
files. The first block pertains to vehicle number 16645. This 
vehicle has exited the network by the time this file has been 
generated (Tag = 2). The origin zone for this vehicle is 5 and the 
destination zone is 9. This vehicle responds to variable message 
sign (VMS) information (Class = 5). The upstream node of its 
generation link is 103; the downstream node of the generation 
link is 102; and the destination node is 11. The departure time 
is 70.20 minutes, and the total travel time is 8.49 minutes. The 
vehicle has 18 nodes in its path, is of vehicle type 1 (passenger 
car), and has an occupancy level (i.e., level of occupancy, or 
LOO) of 1. The next line lists the complete path from the origin 
to the destination (excluding the upstream node of the genera-
tion link), namely, node numbers 102, 160, 102, 103, 151, 97, 
89, 4, 3, 24, 5, 27, 28, 32, 35, 39, 40, and 11.

Figure 4.10.  Comparison of mean versus standard deviation relation for two  
networks.
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The next line shows the time instance, relative to the depar-
ture time, at which the vehicle exited nodes 102, 160, 102, 103, 
151, 97, 89, 4, 3, 24, 5, 27, 28, 32, 35, 39, 40, and 11, which are 
0.80, 0.90, 1.60, 2.20, 3.00, 3.40, 3.80, 5.00, 5.50, 5.90, 6.00, 6.30, 
6.70, 7.10, 7.30, 7.60, 8.20, and 8.40 minutes, respectively.

The next line shows the travel times on links 102→160, 
160→102, 102→103, 103→151, 151→97, 97→89, 89→4, 
4→3, 3→24, 24→5, 5→27, 27→28, 28→32, 32→35, 35→39, 
39→40, and 40→11, which are 0.80, 0.10, 0.70, 0.60, 0.80, 
0.40, 0.40, 1.20, 0.50, 0.40, 0.10, 0.30, 0.40, 0.40, 0.20, 0.30, 
0.60, and 0.20 minutes, respectively.

The next line shows accumulated stop times at nodes 102, 
160, 102, 103, 151, 97, 89, 4, 3, 24, 5, 27, 28, 32, 35, 39, 40, and 
11, which are 0.60, 0.60, 1.20, 1.36, 1.42, 1.44, 1.47, 2.22, 2.57, 
2.57, 2.57, 2.57, 2.57, 2.57, 2.57, 2.57, 2.57, and 2.57 minutes, 
respectively, and so on.

Vehicle Trajectory Processor

The vehicle Trajectory Processor is introduced to extract  
reliability-related measures from the vehicle trajectory out-
put of the simulation models. As shown in Figure 4.12, inde-
pendent measurements of travel time at link, path, and O–D 
level can be extracted from the vehicle trajectories, which allows 
for constructing the travel time distribution. Reliability-
related measures can then be derived from the distribution. 
Alternatively, some of the measures can be computed directly 
from the travel time data, such as 95th percentile, standard 
deviation, and probability of on time arrival. In particular, to 
quantify user-centric reliability measures, which describe 
user experienced or perceived travel time reliability, the expe-
rienced travel time and the departure time of each vehicle are 
extracted from the vehicle trajectory. By comparing the actual 
and the preferred arrival times, the probability of on time 
arrival can be computed. Note that the preferred arrival time 
is an input of the model, which could be obtained from sur-
veys, drawn from statistical distributions parametrically 

calibrated to observed data (Zhou et al. 2008), or simply spec-
ified by the planner to generate performance measures.

Extract Travel Time Information

As explained, the key building block for producing measures 
of reliability in a traffic network simulation model is particle 
trajectories and the associated experienced traversal times 
through entirety or part of the travel path. Travel time vari-
ability at link, path, and O–D levels can be extracted from the 
trajectories generated by micro- or mesosimulation models.

Construction of Travel Time Distribution

To produce travel time distributions by link, path, and trip 
(O–Ds) using simulation models, the following procedures 
are suggested.

Figure 4.11.  Example of vehicle trajectory output.

**** Output file for vehicles trajectories **** 
================================================= 
This file provides all the vehicles trajectories 
Veh # 16645 Tag= 2 OrigZ=  5 DestZ=  9 Class= 5 UstmN=   103 
DownN=   102 DestN=    11 STime= 70.20 Total Travel Time=  8.49 
# of Nodes= 18 VehType 1 LOO 1 
    102    160    102    103    151     97     89      4      3     24 
        5      27      28      32      35     39     40     11 
 ==>Node Exit Time Point 
   0.80   0.90   1.60   2.20   3.00   3.40   3.80   5.00   5.50   5.90 
   6.00   6.30   6.70   7.10   7.30   7.60   8.20   8.40 
 ==>Link Travel Time 
   0.80   0.10   0.70   0.60   0.80   0.40   0.40   1.20   0.50   0.40 
   0.10   0.30   0.40   0.40   0.20   0.30   0.60   0.20 
 ==>Accumulated Stop Time 
   0.60   0.60   1.20   1.36   1.42   1.44   1.47   2.22   2.57   2.57 
   2.57   2.57   2.57   2.57   2.57   2.57   2.57   2.57 

Figure 4.12.  Framework of vehicle Trajectory 
Processor.
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Variation Among Vehicles

1.	 Perform one simulation run.
2.	 Extract link (path or O–D) travel time for each vehicle. 

Each vehicle produces a sample point.
3.	 Construct link (path or O–D) travel time distribution based 

on the sample points obtained in Step 2.

Time-of-Day Variation

1.	 Perform one simulation run.
2.	 Extract link (path or O–D) travel time for each time inter-

val (e.g., 5 minutes). Each time interval produces a sample 
point.

3.	 Construct link (path or O–D) travel time distribution based 
on the sample points obtained in Step 2.

Day-to-Day Variation

1.	 Perform multiple simulation runs. Each run corresponds 
to 1 day.

2.	 Extract link (path or O–D) travel time for each run.
3.	 Construct link (path or O–D) travel time distribution for 

average values and for a certain period of day (e.g., a.m./
p.m. peak, mid-day).

Figure 4.13 shows an example of constructing path travel 
time distribution from simulation results. The experienced 
travel times of all the vehicles traveling on a particular path 
(highlighted in the figure) are extracted from vehicle tra-
jectories. The histogram of travel time per mile is plot-
ted, from which a probability distribution function can be 
estimated.

Reliability Performance Indicators

From the system operator’s perspective, reliability performance 
indicators for the entire system should allow comparison of 
different network alternatives and policy and operational  
scenarios. This could facilitate decision making in regard to 
actions intended to control reliability and evaluation of system 

performance. The following reliability measures can be derived 
from the travel time distribution or computed from the travel 
time data directly.

•	 95th percentile travel time: How much delay will be on the 
heaviest travel days.

•	 Buffer Index: Extra time so traveler is on time most of the 
time, computed as difference between 95th percentile 
travel time and mean travel time, divided by mean travel 
time.

•	 Planning Time Index: Total time needed to plan for an on-
time arrival 95% of the time, computed as 95th percentile 
travel time divided by free-flow travel time.

•	 Frequency that congestion exceeds some expected threshold: 
Percentage of days or time that mean speed falls below a 
certain speed.

User-Centric Reliability Measures

In addition to the reliability performance indicators, it is 
essential to reflect the user’s point of view, as travelers will 
adjust their departure time, and possibly other travel decisions, 
in response to unacceptable arrival in their daily commute 
(Chang and Mahmassani 1988). The following user-centric 
reliability measures describe user experienced or perceived 
travel time reliability:

•	 Probability of on time arrival: The probability of a traveler 
arriving at his/her destination on time.

•	 Schedule delay: The amount of time that a traveler arrives 
at his/her destination late (or early, in which case the sched-
ule delay is negative), compared with the preferred arrival 
time.

•	 Volatility and sensitivity to departure time: Travel time fluc-
tuation over time and its sensitivity to departure time 
changes. As shown in Figure 4.14, during some periods 
travel time changes dramatically, while at other times it 

Figure 4.13.  Path travel time distribution example.
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remains relatively stable. Therefore, travel time is more 
sensitive to the departure time in the periods with high 
volatility. Empirical evidence suggests that certain travelers 
opt to leave early or late so as to avoid such periods.

Model Variability and  
Its Sources in Traffic 
Simulation Tools

To address the functional requirements related to modeling 
variability and its sources we need to identify phenomena 
and behaviors that account for the observed variability in 
network traffic performance and determine the most effec-
tive approach for modeling these phenomena at both micro-
scopic and mesoscopic levels. The key question to address 
from a modeling standpoint has to do with the determinism 
with which an inherently stochastic phenomenon can be rep-
resented. This section discusses the sources of variability and 
the incorporation of these variability sources into traffic 
operation (simulation) models.

Taxonomy of Variability Sources

Several sources of variability need to be distinguished. They 
are demand- versus supply-side, exogenous versus endoge-
nous, and systematic versus random. Examples in each cell of 
the resulting taxonomy are shown in Table 4.2.

The variability in system performance that is at the center 
of interest in this project has both systematic causes, which 
can be modeled and predicted, as well as causes that to the 
team can only be modeled as random variables—which occur 
according to some probabilistic mechanism. There is a con-
tinuum between what may be captured as systematic versus 
what is viewed as a random process with partially or fully 
known characteristics.

Incorporation of Variability into Traffic 
Operations Models: A Conceptual Approach

Ideally, one would want to endogenize (i.e., capture within the 
model itself) the phenomena that cause the variability experi-
enced in network travel times. It is at this level that differences 
will be manifested between different simulation approaches, 
including micro versus meso versus macro, as well as between 
the different behavioral rules that may be embedded in a given 
simulation model.

The general approach to modeling these phenomena would 
be to incorporate as much as possible, and as may be supported 
by existing or in-progress theories and behavioral models, the 
causal or systematic determinants of variability; the remaining 
inherent variation would then be added to the representa-
tion through suitably calibrated probabilistic mechanisms. To 
increase the model’s usefulness and responsiveness to various 
reliability-improving measures, the team’s philosophy is to 
push as much as possible the portion of the total variation from 
the unexplained (noise) side of the equation to the systematic 
observable portion. This approach can be implemented at both 
micro- and mesosimulation levels. Notwithstanding the desire 
for explanation, the portion of variability that must be viewed 

Table 4.2.  Examples of Taxonomy of  
Variability Sources

Exogenous Endogenous

Demand Systematic Seasonality Route choice

Random Transient surge Diversion

Supply Systematic Lane closure Breakdown/ 
capacity drop

Random Collision occurrence Merge capacity

Figure 4.14.  Within-day travel time variation.

Sharp 
increase 

Source: Caltrans Performance Measurement System (PeMS), I-405N at Jeffrey, June 1, 2007. 
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as inherent or “random” is likely to remain substantial. This has 
important implications for how the models are used to produce 
reliability estimates and how these measures are interpreted 
and, in turn, used operationally.

Figure 4.15 illustrates the framework for modeling variabil-
ity and its sources in the traffic simulation models. Different 
from deterministic models, the stochastic network simulation 
models capture random variation in the input and produce 
corresponding output in the form of probability distributions. 
Both systematic and random variation exist in the input of the 
model, namely, X(t) + eX(t), where X(t) represents the system-
atic variation and eX(t) indicates the random variation that 
possibly varies with time as well. By simulating traffic physics 
and human behavior, the travel time distribution can be 
obtained as Y[X(t)] + eY(tX).

Model Demand-Side Variations

The focus in this study is primarily on modeling the variability 
in network performance experienced under a given demand 
pattern. In other words, exogenous variation in demand pat-
terns is not of primary concern, though the team assumes that 
the overall analysis framework recognizes such variation and 
allows consideration of scenarios under different demand 
realizations, with both systematic and transient demand load 
variation.

Demand-side behaviors deeply interact with the perfor-
mance of the traffic system, namely, route choice and user 
responses to information and control measures. These have 
remained outside the realm of traditional microsimulation 
tools, in which route choice typically meant application of 
aggregate turning percentages at junctions as exogenous events. 
Meso models developed for operational planning applications 
and ITS deployment evaluation introduced these behaviors 

explicitly into the realm of network traffic simulation models. 
These are now recognized as integral to any network-level 
simulation tool.

Model Supply-Side Variations

Systematic endogenous sources have generally been at the core 
of what traffic simulation models seek to capture and repro-
duce. To deal with these sources of variability, bifurcations and 
chaotic behavior need to be addressed; that is, when do natu-
ral inherent fluctuations become more serious sources of dis-
ruption and/or major delay? Users expect some degree of 
variability; purely random sources of randomness (i.e., white 
noise) tend to cancel out over long trajectories. However, in 
some cases, successive maneuvers amplify and lead to disrup-
tions. Flow breakdown is such an example, in which time lags 
and sudden reactions may combine with traffic becoming 
unstable and the throughput dropping considerably.

Supply-side behavior parameters, such as gap acceptance 
and lane changing in microsimulation models, can be viewed 
as randomly distributed across the population of drivers in a 
given application, to be calibrated and externally specified, 
though they play a key role in determining various aspects of 
network performance through the rules included in the sim-
ulation logic.

In addition, existing models view collisions as exogenous 
random events that occur according to some probabilistic 
distribution input by the user. A recent review by Hamdar 
and Mahmassani (2008) showed that all existing car follow-
ing models used in traffic simulation tools effectively pre-
cluded the occurrence of collisions as an explicit constraint. 
Alternative car-following models that explicitly produce col-
lisions were proposed by Hamdar et al. (2008) and are cur-
rently under further development.

Figure 4.15.  Model variability in traffic simulation.
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FRAMEWORK AND TOOLS FOR TRAVEL  
TIME RELIABILITY ANALYSIS

This part of the report describes the modeling tools and the general methodology/process of how 
to use the tools and interpret the results.

Pa  r t  2
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Scenario Manager

The Scenario Manager is essentially a preprocessor of simula-
tion input files for capturing exogenous sources of travel time 
variation. Recognizing the importance of the scenario defini-
tion and the complexity of identifying relevant exogenous 
sources, the Scenario Manager provides the ability to construct 
scenarios that entail any mutually consistent combination of 
external events. These may be both demand- and supply-related 
events, including different traffic control plans that may be 
deployed under certain conditions. Accordingly, it captures 
parameters that define external sources of unreliability (such 
as special events, adverse weather, and work zones) and enables 
users either to specify scenarios with particular historical sig-
nificance or policy interest, or to generate them randomly given 
the underlying stochastic processes with specific characteristics 
(parameters) following a particular experimental design.

The built-in Monte Carlo sampling functionality allows the 
Scenario Manager to generate hypothetical scenarios for analy-
sis and design purposes. When exercised in the latter manner 
(i.e., in random generation mode), the Scenario Manager 
becomes the primary platform for conducting reliability analy-
ses: experiments are conducted to replicate certain field condi-
tions, under both actual and hypothetical (proposed) network 
and control scenarios. In particular, the Scenario Manager 
enables execution of experimental designs that entail simula-
tion over multiple days, thus reflecting daily fluctuations in 
demand, both systematic and random.

The Scenario Manager also allows users to manage the 
conduct of reliability analyses by providing an environment 
for storage and retrieval of previously generated scenarios, 
through a scenario library approach. The scenario manage-
ment functionality allows retrieval of historically occurring 
scenarios or of previously constructed scenarios as part of a 
planning exercise (e.g., in conjunction with emergency pre-
paredness planning). Given a particular scenario, the Scenario 
Manager’s main function then is to prepare input files for 

The travel time reliability analysis framework incorporates 
two essential tools that provide the capability to produce reli-
ability performance measures as output from operational 
planning and simulation models. The Scenario Manager, an 
integral component of the overall analytical framework, cap-
tures external unreliability sources such as special events, 
adverse weather, and work zones, and generates appropriate 
files as input into simulation models. The other key analysis 
tool is a vehicle Trajectory Processor that calculates and visu-
alizes travel time distributions and associated reliability indi-
cators (such as 95th percentile travel time, Buffer Time Index, 
Planning Time Index, frequency that congestion exceeds some 
threshold) at link, path, O–D, and network levels.

The travel time distributions and associated indicators are 
derived from individual vehicle trajectories, defined as sequence 
of geographic positions (nodes) and associated passage times. 
These trajectories are obtained as output from particle-based 
microscopic or mesoscopic simulation tools. Such trajectories 
may alternatively be obtained directly through measurement 
(e.g., GPS-equipped probe vehicles), thereby also enabling vali-
dation of travel time reliability metrics generated on the basis of 
output from simulation tools.

It should be noted that both the Scenario Manager and the 
Trajectory Processor have been developed at a prototype level 
of detail and functionality for project team use only and are 
shared with the developer and user community on an “as is” 
basis. For this reason, they may not meet all requirements of 
an implementing agency without further development.

A prerequisite for the use of these analysis tools is the avail-
ability of a particle-based traffic simulation model, capable of 
producing vehicle trajectory output. It is further assumed 
that the simulation model is fully calibrated to reasonably 
simulate traffic flows. For demonstration purposes, the Sce-
nario Manager and Trajectory Processor prototypes incorpo-
rate interfaces to the Aimsun and DYNASMART-P simulation 
platforms, as examples of microscopic and mesoscopic tools, 
respectively.

Model and Data Requirements

C h a p t e r  5
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quantify user-centric reliability measures, the experienced 
travel time and the departure time of each vehicle are extracted 
from the vehicle trajectory. By comparing the actual and the 
preferred arrival time, the probability of on-time arrival can 
be computed.

Data Requirements

This section provides a brief discussion of the types of data 
needed to implement the proposed reliability analysis frame-
work. This discussion assumes that a base simulation model 
is already developed and properly validated, and focuses on 
(a) data required for the development of scenarios for reliability 
analysis, and (b) data required to refine/adapt the simulation 
model and/or to perform travel time reliability analysis based 
on observed congestion conditions.

As indicated, numerous external factors can affect varia-
tions in travel time. To consider these factors in the compre-
hensive methodology, extensive background data are required. 
These includes collision data, weather data, and event data 
encompassing lane closures, work zones, and other incidents 
affecting normal traffic flow. In addition, historical vehicle 
traffic volumes and background travel demand for other sce-
narios are important in being able to simulate events that 
may cause changes in travel patterns or the overall level of 
traffic demand. Desirable data also include trajectory data 
from GPS or other probe vehicle sources. These data can be 
processed to provide valuable information regarding actual 
trip travel times (portions of trips) through the study area, 
thus allowing comparisons to simulated data.

Data for Scenario-Based Analysis

The reliability analysis framework addresses a number of 
sources of travel time variability under both recurring and 
nonrecurring congestion conditions, whether these affect the 
demand or supply side of the transportation system, in a ran-
dom or systematic manner, endogenously or exogenously to 
the involved modeling tools.

In general, data are needed to parameterize factors that will 
be captured endogenously in the model(s), whether on the 
demand or supply side of the system. For example, speed, 
flow, and occupancy data can be used to describe character-
istics relevant to flow breakdown conditions (jam density, 
and so forth); locations, time, and pricing applicable by vehi-
cle class and type (truck, bus, high-occupancy vehicle/single-
occupancy vehicle) would be needed to incorporate dynamic 
pricing schemes; event logs and observed or estimated com-
pliance rates may also be needed to capture user responses to 
information and control measures.

For the proposed scenario-based analysis in particular, data 
are needed to generate scenarios for factors causing travel time 

mesoscopic/microscopic simulation models. In addition, 
the Scenario Manager can facilitate direct execution of the 
simulation software for a particular scenario, by creating the 
necessary inputs that reflect the scenario assumptions.

An especially important and interesting feature of a well-
configured Scenario Manager is that it can be tied into an area’s 
traffic and weather monitoring system(s). As such, particular 
scenario occurrences could be stored when they materialize, 
with all applicable elements that define that scenario, especially 
demand characteristics and traffic control plans triggered for 
that scenario. For example, if Houston experiences major rain-
fall with extensive flood-like conditions, that scenario could be 
stored in terms of the events and exogenous parameter values 
as such. With a properly configured Scenario Manager inter-
faced with the data warehousing system at a given traffic man-
agement center, it would then be possible to extract the relative 
occurrence probabilities and distribution functions, which 
would then allow calibration of these external event scenarios 
to actual observations. Considerable sophistication and func-
tionality could be introduced in such a process over time, as the 
historical data records increase in quantity, quality, and com-
pleteness and allow robust estimation of occurrence probabili-
ties of otherwise infrequent events.

Trajectory Processor

The vehicle Trajectory Processor is introduced to extract 
reliability-related measures from the vehicle trajectory out-
put of the simulation models. It produces and helps visualize 
reliability performance measures (travel time distributions, 
indicators) from observed or simulated trajectories. Indepen-
dent measurements of travel time at link, path, and O–D level 
can be extracted from the vehicle trajectories, which allow for 
constructing the travel time distribution.

From the system operator’s perspective, reliability perfor-
mance indicators for the entire system allow comparison of 
different network alternatives and policy and operational 
scenarios. This could facilitate decision making in regard to 
actions intended to control reliability and evaluation of sys-
tem performance. Reliability measures (such as 95th percen-
tile travel time, Buffer Index, Planning Time Index, frequency 
that congestion exceeds some expected threshold) can be 
derived from the travel time distribution or, alternatively, 
computed directly from the travel time data.

In addition to the reliability performance indicators, it is 
essential to reflect the user’s point of view, as travelers will 
adjust their departure time, and possibly other travel deci-
sions, in response to unacceptable travel times and delays 
in their daily commutes. User-centric reliability measures 
describe user-experienced or perceived travel time reliability, 
such as probability of on time arrival, schedule delay, and vol-
atility and sensitivity to departure time. In particular, to 
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Trajectory Travel Time Data and Sources

The specific analysis approach in the proposed reliability evalu-
ation framework requires a special type of travel time data, 
which was not available until recent technological develop-
ments made this possible. In particular, the requirement for 
trajectory-based travel times for individual vehicles, which are 
then analyzed over their time and space dimensions and various 
aggregate metrics, may almost exclusively be satisfied by vehicle 
probe data.

As the proposed reliability evaluation framework is based 
on travel times reported (and/or estimated) on a per vehicle 
trajectory basis, the travel time data required to support this 
research need to satisfy the following trajectory information 
requirements:

•	 Report travel times by vehicle trip on a trajectory basis; at a 
minimum provide X-Y coordinates and time stamp at each 
reported location.

variability due to supply-side changes that need to be addressed 
exogenously to the models through the Scenario Manager. 
Such data should include information about incidents (ideally 
including severity of incident and length of time), special 
events (type, location, time/date, duration), weather condi-
tions, and work zones. In addition, before-after studies for 
major planned events can be helpful. Similarly, depending 
on the scenarios to be addressed in the reliability analysis, data 
are needed for the Scenario Manager to address demand-side 
changes (e.g., attendance at a special event, visitors to a special 
place, or closure of alternative modes).

Table 5.1 provides a summary of data that could be used to 
generate scenarios for certain exogenous factors. Such data 
are typically available through transportation authorities that 
manage, control, or simply monitor transportation systems 
in an area, or through other third parties (e.g., metrological 
service for weather conditions) if additional detail is needed 
for modeling purposes.

Table 5.1.  Typical Data Requirements for Development of Scenarios for Travel Time Reliability Analysis

Event Type Data Requirements

Incident •	 Type (e.g., collision, disabled vehicle)
•	 Location
•	 Date/time of occurrence and time of clearance
•	 Number of lanes/shoulder affected and length of roadway affected
•	 Severity in case of collision (e.g., damage only, injuries, fatalities)
•	 Weather conditions
•	 Traffic data in the area of impact before and during the incident (e.g., traffic flows, speed/delay/travel time measurements, 

queues and other performance measures or observations, if available)

Work zone •	 Work zone activity (e.g., maintenance, construction) that caused lane/road closure, and any other indication of work zone intensity
•	 Location and area/length of roadway impact (e.g., milepost); number of lanes closed
•	 Date/time and duration
•	 Lane closure changes and/or other restrictions during the work zone activity
•	 Weather conditions
•	 Special traffic control/management measures, including locations of advanced warning, speed reductions
•	 Traffic data upstream and through the area of impact, before and during the work zone (e.g., traffic flows and percentage of 

heavy vehicles, speed/delay/travel time measurements, queues and other performance measures or observations, if available)
•	 Incidents in work zone area of impact

Special event •	 Type (e.g., major sporting event, official visit/event, parade) and name or description
•	 Location and area of impact (if known/available)
•	 Date/time and duration
•	 Event attendance and demand generation/attraction characteristics (e.g., estimates of out-of-town crowds, special additional 

demand)
•	 Approach route(s) and travel mode(s), if known
•	 Road network closures or restrictions (e.g., lane or complete road closures, special vehicle restrictions) and other travel mode 

changes (e.g., increased bus transit service)
•	 Special traffic control/management measures (e.g., revised signal timing plans)
•	 Traffic data in the area of impact before, during, and after the event (e.g., traffic flows, speed/delay/travel time measurements, 

queues and other performance measures or observations, if available)

Weather •	 Weather station ID or name (e.g., KLGA for the automated surface observing system station at LaGuardia Airport, NY)
•	 Station description (if available)
•	 Latitude and longitude of the station
•	 Date/time of weather record (desirable data collection interval: 5 minutes)
•	 Visibility (miles)
•	 Precipitation type (e.g., rain, snow)
•	 Precipitation intensity (inches per hour, liquid equivalent rate for snow)
•	 Other weather parameters: temperature, humidity, precipitation amount during previous 1 hour, etc. (if available)
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•	 Provide travel time at disaggregated levels (e.g., vehicle 
travel time) and at fine time intervals (e.g., link/path travel 
time for every 5 minutes), in addition to average travel 
times, to capture time-of-day variation and vehicle-to-
vehicle variation.

•	 Provide sufficient information on components, causes, 
and other characteristics of congestion, so that appropriate 
parameterization can be established for simulation testing 
purposes.

The emergence of probe data over the past few years has 
opened the opportunity to capture all necessary information 
for this type of analysis, since such data can be available all the 
time for all major roads in the network including major arteri-
als. Probe-based trajectory data represent a significant increase 
in the quality and quantity of relevant information. The 
detail in such data makes it possible to analyze travel time 
data according to network and route components (e.g., on a 
link and path basis) as well as according to geographic aggrega-
tions (e.g., on an O–D zone basis).

•	 Capture both recurring and nonrecurring congestion on a 
range of road facilities (from freeways to arterial roads and 
possibly managed lanes).

•	 Represent sufficient sampling and time-series to allow 
statistically meaningful analysis.

•	 Provide the ability to tie travel time data to other ancillary 
data for time variability sources (to allow parameterization 
for simulation testing purposes as discussed earlier).

Furthermore, the trajectory data should ideally possess 
the following general characteristics for travel time reliability 
analysis:

•	 Capture both types of congestion (recurring and 
nonrecurring).

•	 Cover the range of road facilities that may be included in 
the subject area analysis from freeways to arterial roads and 
(possibly) managed lanes.

•	 Allow statistically meaningful analysis of data through 
availability for a relatively long period of time (e.g., a time 
frame long enough to cover seasonal variation).
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Introduction

Purpose and Objectives

Distinguishing exogenous sources of variation both on the 
demand and the supply sides from endogenous sources of 
variation lie at the foundation of this conceptualization and 
approach. It should be recognized, however, that unlike 
regimes, which are typically mutually exclusive states with 
distinct properties of a physical system, these sources of vari-
ation can operate simultaneously and often will. In other 
words, incidents may well occur during times of otherwise 
recurring congestion, precipitation may act in concert with a 
surge in demand or special event, and so on. Therefore, from a 
modeling standpoint, it is desirable to retain the ability to apply 
any source of variation that may be applicable in a scenario of 
interest.

Recognizing the importance of the scenario definition and 
the complexity of identifying relevant exogenous sources, the 
study adopts the concept of a Scenario Manager, which pro-
vides the ability to construct scenarios that entail any mutually 
consistent combination of external events, both demand as 
well as supply related, including different traffic control plans 
that may be deployed under certain conditions. The Scenario 
Generator also acts in a scenario management role, which 
allows retrieval of historically occurring scenarios or of previ-
ously constructed scenarios as part of a planning exercise (e.g., 
in conjunction with emergency preparedness planning). It 
also allows generation, through Monte Carlo sampling, of 
hypothetical scenarios for analysis and design purposes. Of 
course, the Scenario Manager/Generator facilitates direct exe-
cution of the simulation software for a particular scenario, by 
creating the necessary inputs that reflect the scenario assump-
tions. When exercised in the latter manner (i.e., in random 
generation mode), the Scenario Manager becomes the pri-
mary platform for conducting reliability analyses, as experi-
ments are conducted to replicate certain field conditions, 
under both actual and hypothetical (proposed) network and 

control scenarios. In particular, the Scenario Generator 
enables execution of experimental designs that entail simula-
tion over multiple days, thus reflecting daily fluctuations in 
demand, both systematic and random.

An especially important and interesting feature of a well-
configured Scenario Manager is that it can be tied into an area’s 
traffic and weather monitoring system(s). As such, particular 
scenario occurrences can be stored when they materialize, with 
all applicable elements that define that scenario, especially 
demand characteristics and traffic control plans triggered for 
that scenario. For example, if Houston experienced major rain-
fall with extensive flood-like conditions, that scenario could be 
stored in terms of the events and exogenous parameter values 
as such. With a properly configured Scenario Manager inter-
faced with the data warehousing system at a given traffic man-
agement center, it would be possible to extract the relative 
occurrence probabilities and distribution functions and to 
calibrate these external events to actual observations. Consid-
erable sophistication and functionality could be introduced in 
such a process over time, as the historical data records increase 
in quantity, quality, and completeness and allow robust estima-
tion of occurrence probabilities of otherwise infrequent events.

Concept of Operations

The methodological framework recognizes the different 
sources of uncertainty that affect the reliability of travel time 
in the roadway environment. As discussed in Chapter 4, a 
previous study (Cambridge Systematics, Inc. 2005) identified 
seven major root causes of travel time variability: (1) traf-
fic incidents, (2) work zones, (3) weather, (4) special events, 
(5) traffic control devices, (6) fluctuations in demand, and 
(7) inadequate base capacity. Many existing simulation tools 
view and model these factors as exogenous events using user-
specified scenarios (Mahmassani et al. 2009). Distinct from 
these exogenous factors, there are also endogenous sources of 
variation that are inherently reproduced, to varying degrees, by 
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encompassing any systematic variations. While exogenous 
sources of variation are captured through scenarios by the 
Scenario Manager, endogenous variation sources are captured 
in the traffic simulation model, depending on the modeling 
capability of the selected tool.

In this framework, the traffic simulation models refer to 
particle-based models, namely, microscopic and mesoscopic 
simulation models (Chang et al. 1985; Mahmassani 2001) 
that produce individual vehicle (or particle) trajectories. 
Regardless of the specific reliability measures of interest, to 
the extent that they can be derived from the travel time 
distribution, the availability of particle trajectories in the 
output of a simulation model enables construction of any 
level of travel time distributions of interest (e.g., network-
wide, O–D, path, and link). As such, the key building block 
for producing measures of reliability in this framework 
consists of particle trajectories and the associated experi-
enced traversal times through entirety or part of the travel 
path. Tasks such as converting simulated trajectories into 
various reliability measures are performed by the Trajectory 
Processor. The latter obtains the scenario-specific travel time 

given traffic simulation models. Many studies have proposed 
ways to capture random variation in various traffic phenom-
ena within particular micro- or mesosimulation models. Exam-
ples include flow breakdown (Dong and Mahmassani 2009), 
incidents due to drivers’ risk-taking behaviors (Hamdar and 
Mahmassani 2008), and heterogeneity in driving behaviors 
(Kim and Mahmassani 2011).

Based on this identification, this study establishes a con-
ceptual framework for modeling and estimating travel time 
reliability using simulation models. As shown in Figure 6.1, 
the framework features three components: Scenario Manager, 
traffic simulation model, and Trajectory Processor. The pri-
mary role of the Scenario Manager is to prepare input sce-
narios for the traffic simulation models, which is a core part 
of this framework as it directly affects the final travel time 
distributions. Once the Scenario Manager generates a set of 
input scenarios, which represent any mutually consistent 
combinations of demand- and supply-side random factors, 
these scenarios are simulated in a selected traffic simulation 
model in conjunction with average demand obtained at a 
demand-supply equilibrium point under normal conditions 
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Figure 6.1.  Core elements of reliability modeling framework.
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distribution from each simulation run and constructs the 
overall travel time distribution aggregated over multiple 
scenarios.

While chaining these three modules completes the neces-
sary procedures for performing a scenario-based reliability 
analysis, there are two feedback loops worth mentioning to 
further incorporate behavioral aspects of travelers into the 
reliability modeling framework. The inner loop in Figure 6.1 
suggests that information from scenario-specific travel times 
might be used to make scenario-conditional demand adjust-
ments (e.g., departure time change under severe weather 
condition). The outer loop indicates that the overall system 
uncertainty might affect the average demand by shifting the 
equilibrium point (i.e., reliability-sensitive network equilib-
rium) based on travel demand forecasting models that pre-
dict the impact of reliability measures on travel patterns 
(e.g., Zhou et al. 2008; Jiang et al. 2011).

Methodology for Scenario-Based 
Reliability Analysis Using 
Simulation Tools

Scenario-Based Reliability Analysis

This section elaborates on the basic idea of the scenario-
based reliability analysis within the aforementioned frame-
work. Conceptually, the traffic simulation models can be 
viewed as an input-output function, in which inputs are sce-
narios that represent exogenous sources of roadway disrup-
tions and outputs are travel time distributions experienced by 
travelers under such disruptions. The objective of the sce-
nario-based reliability analysis is to investigate variability in 
the output travel time distribution by controlling the input 
scenario (i.e., input scenarios can be generated completely at 
random or in a more directed manner based on a particular 
experimental design). In this equation, endogenous sources 
of random variations are not part of control variables as those 
are considered as part of the traffic simulation model logic. 
To enhance understanding and conceptualization of pro-
cesses, the mathematical representation of the basic concept 
of this analysis is presented.

Let X denote a vector of exogenous sources of random 
variation (e.g., weather, incident, day-to-day demand varia-
tion) that is selected as scenario components to characterize 
input scenario and let Xj represent the jth element of X. Each 
scenario component itself is also a vector of several attri-
butes describing temporal (e.g., start-time and duration), 
spatial (e.g., event location), and state (i.e., intensity or con-
dition) aspects of a given demand- and supply-side factor. 
Let Si denote the ith input scenario, which is the ith realiza-
tion of the set of scenario components X, that is, Si = X(i) = 
{X1

(i), X2
(i), . . . , XJ

(i)}.

Consider we have N input scenarios S1, S2, . . . , SN drawn 
from a joint distribution of X. Then the output travel time 
distribution for each scenario is obtained by Equation 6.1:

, 1, . . . , 6.1T H S i Ni i( ) ( )= =

where Ti represents a collection of travel time t for a given 
O–D/path/link of interest under the ith scenario Si, and H(z) 
denotes a black-box representation of a traffic simulation 
model. Let fi(t) denote the probability density function of 
scenario-specific travel times under Si such that {t ∈ Ti: t ~ 
fi(t)}. Then the main goal of the analysis is to obtain the 
probability density function of overall travel times f(t) based 
on the scenario-specific travel time distributions fi(t). By 
knowing the probability of each scenario occurring, f(t) can 
be calculated by the weighted sum (i.e., convex combi-
nation) of scenario-specific travel time distribution fi(t) as  
follows in Equation 6.2:

6.2
1

f t w f ti i
i

N

∑( ) ( ) ( )=
=

where wi denotes the weight of the ith scenario with Σn
i =1wi = 1, 

which is typically obtained from the scenario probability  
wi = P(Si). Figure 6.2 presents a schematic diagram to illus-
trate the procedure of constructing the overall travel time 
distribution based on this concept.

Approaches to Assessing Reliability

Travel time reliability is a relative concept in that it depends 
on the temporal and spatial boundaries for which travel times 
are observed. For example, the travel time reliability for week-
days is different from that for weekends on the same road 
network. Therefore, defining time and space domains needs 
to precede assessing reliability. In general, the time domain is 
specified by a date range of the overall time period (e.g., 
6/1/2012–8/31/2012), day of week (e.g., Monday–Friday), 
and time of day (6 a.m.–10 a.m.). Or the time domain could 
be a specific season or day of each year (e.g., Thanksgiving 
Day). The space domain defines at which level travel times are 
collected and the reliability measures are calculated (e.g., 
network-level, O–D-level, path-level, and link-level). Two dif-
ferent approaches are explored to assess the travel time reli-
ability for given time and space domains: (1) Monte Carlo 
approach and (2) mix-and-match approach. The former tries 
to generate all possible scenarios that could occur during the 
given temporal and spatial boundaries to introduce realistic 
variations in the resulting travel time distribution; the latter 
constructs scenarios by manually choosing various combina-
tions of scenario components. These approaches are dis-
cussed in more detail.
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Monte Carlo Approach

This approach uses Monte Carlo simulation to prepare 
input scenarios aimed at propagating uncertainties in 
selected scenario components X into uncertainties in the 
generated scenarios Si (i = 1, . . . , N), which can be, in turn, 
translated into the resulting travel time distribution. As 
depicted in Figure 6.3, the Scenario Manager performs 
Monte Carlo simulation to generate hundreds or thousands 
of input scenarios by sampling from the joint probability 
distribution of scenario components. Each scenario is 
equally likely, thus allowing the Trajectory Processor to sim-
ply aggregate travel time distributions from a large number 
of simulation runs to obtain the most likely (probable) out-
come of a set of reliability performance indicators for the 
given time and space domains.

Mix-and-Match Approach

Instead of generating scenarios randomly given the underly-
ing stochastic processes, one could explicitly specify scenarios 
with particular historical significance or policy interest. The 
mix-and-match approach aims to construct input scenarios 
in a more directed manner either by mixing and matching 
possible combinations of specific input factors or by directly 
using known historical events or specific instances (e.g., holi-
day, ball game). Figure 6.4 shows a schematic diagram illus-
trating this approach with a simple example. Consider two 

scenario components—collision and heavy rain—where each 
component has two discrete states—occur and not occur. 
From the Cartesian product of two components’ states, four 
possible scenario groups are defined as shown in the figure. 
Suppose that we have a representative scenario for each group 
with the scenario probability assigned based on the joint prob-
ability of collision and heavy rain events. Then a probability-
weighted average of travel time distributions under all four 
scenarios can be used as the expected travel time distribution 
to approximate the overall reliability measures. A more infor-
mative use of this approach is to understand the impact of a 
particular scenario component on travel time variability by 
investigating gaps between different combinations of output 
results.

Combined Approach

Unlike the simple example in Figure 6.4, however, it is often 
necessary to allow randomness in scenarios within each 
group, especially when there is no predefined representative 
scenario. It is also possible to have no probability value for 
each scenario group known to users. In both cases, the Monte 
Carlo approach can be used in conjunction with the mix-
and-match approach—that is, sampling random scenarios 
from their conditional distributions given each group (for 
the former); and generating a large number of scenarios for 
the entire scenario space and categorizing them into the 
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Figure 6.2.  Schematic illustration of constructing travel time distribution 
based on scenario-specific simulation outputs.  
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Figure 6.3.  Monte Carlo approach.
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Figure 6.4.  Mix-and-match approach.

associated groups to obtain the group probabilities (for  
the latter).

Generating Scenarios  
Considering Dependencies

One of the practical issues in generating scenarios is consid-
ering dependencies in various random factors. As represented 
by the dotted arrows in Figure 6.5, certain scenario compo-
nents are dependent on other components. Incident occurrence 

is the most prominent example in which event properties (e.g., 
frequency, duration, and severity) tend to be affected by 
weather and other external events. The team investigated 
weather-conditional incident rates (incidents/hour/lane-
mile) by measuring the number of incidents during the total 
period of time exposed to different weather conditions using 
historical incident data collected from 2007 to 2010 in Chicago, 
Illinois. As shown in Figure 6.6, incident rates tend to increase  
as the severity of rain or snow events increases. In addition 
to incidents, dependencies are also observed on the traffic 
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Figure 6.6.  Weather-conditional incident rates (Chicago incident data, 2007–2010). (a) = rain;  
(b) = snow.

management side: weather-responsive traffic management 
(WRTM) strategies are deployed based on types and severities 
of weather events (Mahmassani et al. 2012); and traffic inci-
dent management is triggered by incident events. In the Sce-
nario Manager, such dependencies are taken into account 
during the generation process. Once the scenario compo-
nents of interest are defined, it identifies dependency relations 

between components and derives a generation order such 
that components that affect others are generated before 
their dependent ones. Following the generation order, the 
Scenario Manager generates each component sequentially 
(e.g., weather → incident → incident management) so that 
each component is sampled from its distribution conditioned 
on all the previously sampled components.
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Implementation of  
Scenario Manager

The main role of the Scenario Manager is to prepare a set of 
scenarios that will be used as input to the traffic simulation 
models. The implementation of the Scenario Manager is done 
in two steps: scenario specification and scenario generation. 
The following sections describe each step.

Scenario Specification

In the scenario specification step, the user mainly defines a 
high-level design for the reliability analysis and parameter set-
tings for the scenario generation. Various tasks entail defining 
the spatial and temporal boundaries for which travel time vari-
ability is examined (e.g., a specific road section on weekdays) as 
well as the time-of-day selection for the scenario time horizon 
(e.g., morning peak period between 8 a.m. and 10 a.m.), deter-
mining the analysis approach (e.g., Monte Carlo sampling 
approach versus what-if scenario approach), and selecting sce-
nario components of interest (e.g., weather, collision, demand 
variation). Depending on the scenario component, the user 
might collect historical data to describe probability distribu-
tions of input parameters for attributes like frequency, duration, 
and intensity.

Structure of Scenarios

Throughout this document, a set of terminologies is used to 
describe different components in the structure of scenarios, 
some of which are shown in Figure 6.7. In what follows, a 
definition of each terminology is provided.

Project. A project is a high-level plan that defines temporal 
and spatial boundaries for which the travel time variability is 

examined and other necessary settings required to generate 
scenarios. Based on the boundaries, the user will collect the 
historical event data, determine the scenario components, 
and obtain the necessary information such as event fre-
quency, duration pattern, available states, and so on. As such, 
the scope of each project represents a specific study area and 
time period of interest. For example, the user will create one 
project to study the reliability of a specific road section dur-
ing morning peak hours on weekdays. If the user wants to 
study the reliability of the same road section under a different 
temporal background, another project will be defined.

Scenario group (or scenario case, scenario category). This is a 
simplified representation of a group of scenarios with some 
common features. The scenario group is used to classify indi-
vidual scenarios with high dimensional attributes into pre-
defined representative groups, in which scenarios belonging to 
each group are considered to be similar and to share the same 
probability of occurrence. Under a given project, several sce-
nario groups would be defined for the purpose of experimental 
design. For example, the user could mix and match different 
combinations of scenario components to define scenario 
groups as shown in Figure 6.8: Scenario Group 1 represents sce-
narios containing the weather event (rain) and signal control; 
Scenario Group 2 represents scenarios containing rain, signal 
control, and trip cancelation; and so on. Each scenario group is 
assigned the probability of occurrences either during the gen-
eration process or manually by the user. If the user samples a 
certain scenario from a specific scenario group with the prob-
ability of, say, 0.3 and simulates it using traffic simulation mod-
els, then the travel time distribution from the simulation 
output will be considered to represent the travel time distribu-
tion that occurs 30% of the time in the study area.

Scenario. A scenario is a sequence of event instances. Typi-
cally one scenario represents a single day; the length of the 
“day” depends on the time horizon for the traffic simulation 
(e.g., 8 a.m.–11 a.m. for morning peak). Based on the scenario 
components defined for the scenario specification, zero or 
more instances of each event will be included in the generated 
scenario. Figure 6.9 provides a simplified representation of a 
generated scenario, in which instances of snow, collision, and 
work-zone events are displayed on a time-space diagram as an 
example.

Scenario component. A component that constitutes a sce-
nario. Types of scenario components include all the exogenous 
factors of roadway environment:

1.	 For external events: weather, incident, work zone, and  
special event;

2.	 For traffic management strategies: variable message signs 
(VMS), signal control, ramp metering, and pricing; and

3.	 For travel demand-side factor: day-to-day variation and 
schedule adjustment.
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Figure 6.7.  Structure of scenarios.
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Figure 6.9.  Sequence of event instances representing one  
scenario realization.

In general, each scenario component defines multidimen-
sional distributions of input parameters that represent tem-
poral, spatial, and intensity characteristics of the associated 
event. For example, generating collision events requires the 
user to specify the collision scenario component in terms of 
(1) incident frequency and duration distribution (temporal 
characteristics); (2) collision location (spatial characteris-
tics); and (3) discrete or continuous distribution of capacity 
loss states (intensity characteristics).

State. State is the severity or condition of a given event 
(e.g., light rain, moderate rain, and heavy rain for the rain 
event; Type 1 and Type 2 for VMS). For a given event variable, 
a set of states are defined such that states are mutually exclu-
sive and exhaustive; therefore, the sum of the probabilities 
that one of the specified states will happen is one. For instance, 

if the user defines an event variable named “Rain,” possible 
states might be {No Rain, Light Rain, Moderate Rain, Heavy 
Rain}. If the user defines the event variable in a more aggre-
gate way, say “Weather,” then the possible states might be {No 
Precipitation, Rain, Snow}. As such, how coarse or fine the 
state categorization is completely depends on the experimen-
tal design for the study and also on the availability of the data 
for calculating the probability of each state.

Event (or event instance). An event is an instance (or real-
ization) of the scenario component. Each generated scenario 
consists of a sequence of event instances. The event instance, 
which is the smallest unit in the scenario structure, contains 
the information on start and end times (i.e., duration), loca-
tion, and selected state, which are determined based on the 
associated scenario component specification. Figure 6.10 
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illustrates these event attributes in a time-space-intensity dia-
gram using an example of a collision event.

Scenario Generation

Weather Scenario

Modeling weather events in a fully parametric manner is a 
nontrivial task; it requires theoretical models that characterize 
complex weather phenomena, and identifying such models is 
beyond the scope of this study. Therefore, the team used a 
nonparametric sampling approach, in which the historical 
data are directly used for generating weather scenarios. For 
example, to construct a 4-hour weather scenario, the team 
sampled a 4-hour time-series of 5-minute weather observa-
tions from an automated surface observing system (ASOS), 
collected for given space and time domains. This way, the team 
can preserve the dependency structure between different 
weather attributes (e.g., precipitation intensity, visibility, 
duration). Based on the categorization used in ASOS data, 
seven mutually exclusive and exhaustive states are defined for 
weather: clear (CL), light rain (LR), moderate rain (MR), 
heavy rain (HR), light snow (LS), moderate snow (MS), and 
heavy snow (HS). Each 5-minute data point is assigned one of 
these states, and the same consecutive conditions are grouped 

into one event to identify discrete points in time when the 
weather condition changes, as illustrated in Figure 6.11a.

In many cases, the team may focus on networkwide weather 
scenarios, which assume that the entire network experiences 
the same time-dependent weather conditions. In such cases, 
only the temporal distribution of weather events matters, 
eliminating the need for modeling their spatial distribution.

Incident Scenario

While weather is modeled nonparametrically, we model inci-
dents parametrically as a stochastic spatial–temporal point 
process. The following sections describe detailed methods for 
characterizing temporal and spatial distributions of incidents in 
detail. It is noted that these methods are not limited to the mod-
eling of incidents but can also be applied to generating other 
types of events, such as work zone or planned special events, as 
long as the underlying assumptions for the parametric models 
can hold.

Temporal Distribution

The occurrence of incidents is assumed to follow a Poisson 
process, that is, the probability distribution of the number of 
incidents occurring in a given time interval is a Poisson dis-
tribution. A Poisson random variable is characterized by its 

Figure 6.10.  Properties of event instance.
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rate parameter l, which is the expected number of events that 
occur per unit of time. As previously mentioned in the report, 
the incident rate is not constant over time but depends on the 
prevailing weather condition.

To incorporate such a dependency between weather and inci-
dent into the scenario generation process, we consider the inci-
dent rate as a function of a weather state variable and use it  
to calculate the conditional probability of the incident, given 
weather based on the Poisson formula as follows (Equation 6.3):

P N t k W w
w t e

k
i i

i i

k w ti i

( ) ( )( ) ( )= = = λ ( )( )− λ

|
( )

!
6.3

where
	 N(t)	=	�number of incidents occurring within the time 

interval t in a given network,
	l(W)	=	�mean incident rate under weather condition W 

(incidents/hour),
	 i	=	�index for a time interval with a homogenous 

weather condition,
	 ti	=	length of time interval i (hours), and
	 wi	=	�weather condition (state) during time interval i; 

wi ∈ {CL, LR, MR, HR, LS, MS, HS}.

Equation 6.3 represents the conditional probability distribu-
tion of the number of incidents given a weather condition, 
where the rate parameter is determined based on the given 
weather. The approach to generating incident scenarios using 
Equation 6.3 is described as follows and is also illustrated in 
Figure 6.11b.

•	 Given the weather scenario constructed by the empirical 
approach discussed previously, identify discrete time inter-
vals of varying lengths, where each time interval i is 
assigned one of seven weather state variables wi ∈ {CL, LR, 
MR, HR, LS, MS, HS}.

•	 Estimate weather-conditional incident rates l(W) based 
on historical data W ∈ {CL, LR, MR, HR, LS, MS, HS}.

•	 For each time interval i, obtain the conditional probability 
distribution of the number of incidents given weather con-
dition wi based on l(wi) and the interval length ti using 
Equation 6.3. Determine how many incidents will occur 
over the entire network for each time interval i by randomly 
drawing from the conditional probability distribution; also 
determine their start-times by randomly distributing the 
given number of incidents over ti (i.e., the incident occur-
rence times are uniformly distributed on that interval).

•	 Assign additional properties such as duration and severity 
to each incident instance. For example, one could randomly 
draw the duration of incidents from a gamma distribution 
and the severity, which is expressed as the number of lanes 
closed or the percent of link capacity lost, from an empirical 
probability mass function, respectively. The selection of 

distribution types and the estimation of the parameters can 
be done based on the historical data.

Spatial Distribution

Once the temporal distribution of incident events is deter-
mined, the next step is to distribute the generated incidents 
over the study network (i.e., determine the incident locations). 
The Scenario Manager provides three different ways of deter-
mining the spatial distribution of incidents: (1) distributed 
based on lane-miles, (2) distributed based on vehicles miles 
traveled, and (3) distributed based on historical observations.

1.	 Distributed based on lane-miles. This is the probability that a 
given incident occurring at a specific link is proportional to 
the lane-miles of the given link (see Equation 6.4). This 
method does not take into account the traffic volume on 
each link. For this type of incident distribution, incident rate 
l (incidents/hour) for a given area is calculated based on 
lLM, which denotes the expected number of incidents per 
hour per lane-mile (incidents/hour/lane-mile), representing 
the incident rate per unit space for the target region. Thus, l 
is obtained by multiplying lLM by the total lane-miles for the 
given area as shown in Equation 6.5. Figure 6.12 shows an 
example of the spatial distribution pattern of incidents gen-
erated using this method. The region with light gray roads  
is a target area to which incidents are generated, and the  
triangles represent generated incidents.

2.	 Distributed based on vehicles miles traveled. This is the prob-
ability that a given incident occurring at a specific link is 
proportional to the average daily vehicle-miles traveled on 
the given link (see Equation 6.6). This method randomly 
distributes generated incidents based on the traffic load on 
each road section so that higher-volume roads have higher 
collision probability. It also implicitly captures the effect of 
facility types (e.g., freeway, arterial) in the incident distribu-
tion, as different facility types are largely characterized by dif-
ferent traffic volume levels. Specifically, this method considers 
traffic volume as “exposure” in defining the incident rate (i.e., 
incident rate = incidents/exposure) and uses lVMT, which rep-
resents the expected number of incidents per million vehicle 
miles traveled (incidents/million VMT). The way to obtain 
incident rate l (incidents/hour) from lVMT (incidents/
million VMT) is presented in Equation 6.7. This method 
uses the information on the average daily traffic (ADT) for 
each link so that VMT for each link and the entire target 
network can be calculated. Figure 6.13 depicts an example 
of the spatial distribution pattern of incidents generated 
using this method. In Figure 6.13, incidents are more 
strongly clustered along freeways compared with the pat-
tern in Figure 6.12.

3.	 Distributed based on historical observations. This method 
simply uses the actual incident locations observed in the his-
torical data as candidate links for the incident distribution. 
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Figure 6.12.  Example of spatial distribution pattern of incidents: Distributed based on 
lane-miles of roads. Triangles = generated incidents; dots = actual (observed) incidents.  

Figure 6.13.  Example of spatial distribution pattern of incidents: Distributed based on 
vehicle miles traveled (VMT) of roads. Triangles = generated incidents; dots = actual 
(observed) incidents.  
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This method might be used only when the source region, 
where the incident data are collected and parameters (e.g., 
incident rates) are estimated, fully covers the target region, 
where the incident scenarios will be generated.
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where
	Pr(a)	=	�probability that link a is chosen as the event loca-

tion for a given incident;
	 A	=	�set of all links in the study network; |A | = total 

number of links;
	 la	=	length of link a (mile);
	 ma	=	number of lanes on link a;
	ADTa	=	�average daily traffic on link a; ADTa × la = average 

daily VMT on link a;

	 lLM	=	�expected number of incidents per hour per lane-
mile (incidents/hour/lane-mile); and

	lVMT	=	�expected number of incidents per million VMT 
(incidents/million VMT).

Demand Scenario: Day-to-Day Random Variation

To model day-to-day fluctuations in demand, we define a ran-
dom variable called the demand multiplication factor (DMF). 
The demand multiplication factor is a multiplier that is applied 
to the O–D matrix to uniformly increase or decrease the overall 
network loading level. For example, DMF of 1.1 results in a 10% 
increase in the number of trips for all departure time intervals 
and all O–D pairs given a base-case O-D demand matrix. DMF 
of 0.95 results in a 5% decrease in the base-case demand; DMF 
of 1.0 maintains the base-case demand level, and so on. The 
Scenario Manager allows users to specify the types and param-
eters for the probability distribution of DMF, which could be 
estimated from historical day-to-day demand patterns for the 
study network of interest.

Steps for Using Scenario Manager

This section briefly introduces sample steps for generating a 
set of scenarios using the prototype of the Scenario Manager 
application developed under this project.

Figure 6.14 shows a main window of the Scenario Manager: 
maps and simulation networks are displayed on the right side, 

Figure 6.14.  Scenario Manager main window.
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and various database-related tasks are performed in the left 
panel. The step-by-step procedures for generating scenarios are 
as follows:

Step 1.  Define time and space domains. After launching the 
Scenario Manager application, the user loads a map for 
the study network in the format of a shapefile (.shp). Pro-
vided that the Scenario Manager is populated with histori-
cal weather and incident data associated with the selected 
study network, the user specifies time and space domains 
for investigating travel time variability (i.e., for obtaining 
historical patterns and parameters for exogenous random 
factors such as weather and incidents).

Step 2.  Estimate input parameters from historical data. For 
given time and space boundaries, the Scenario Manager 
estimates necessary input parameters for scenario compo-
nents based on historical data. In the current prototype, 
the parameters include the distribution of weather condi-
tions (i.e., clear, light rain, moderate rain, heavy rain, light 
snow, moderate snow, and heavy snow), incident fre-
quency (i.e., incident rate expressed as incidents/hour/
lane-mile), incident duration, and the weather conditional 
incident occurrence rates (see Figure 6.15).

Step 3.  Launch scenario generation tool. The user launches a sce-
nario generation tool to start the scenario generation pro-
cess as shown in Figure 6.16. Launching a scenario generation 
tool provides a unifying environment for defining various 

scenario-related settings, generating random scenarios, and 
sampling input scenarios for traffic simulation.

Step 4.  Select and specify scenario components. In the scenario 
generation tool, the user can select which components will 
be included in the input scenario (see Figure 6.17). For 
example, the user could choose weather and incident as sce-
nario components to generate input scenarios with the 
combination of various weather and incident events. The 
tabs represent the available scenario components, which 
include weather, incident, planned special event, traffic 
management and control, and demand variation. On each 
tab, the user can specify input parameters for characterizing 
the associated scenario component. In general, event prop-
erties such as frequency, duration, location, and intensity 
are specified either parametrically or nonparametrically.

Step 5.  Generate scenarios. Once all the necessary input param-
eters are specified along with the scenario time horizon (i.e., 
time of day and scenario duration), the user can generate as 
many scenarios as desired by clicking a button, which starts 
a scenario generation process using Monte Carlo simulation. 
All the generated scenarios can be reviewed through a visu-
alization tool as shown in Figure 6.18 and Figure 6.19.

Step 6.  Obtain scenario probabilities. Based on the distribu-
tion of scenarios generated in the previous step, the  
Scenario Manager calculates the probability of any par-
ticular scenario that is of concern to the user. This will  
be used as a scenario weight for aggregating travel time 

Figure 6.15.  Define time and space domains and estimate input parameters from  
historical data.
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Figure 6.16.  Launch scenario generation tool.

Figure 6.17.  Select scenario components and generate scenarios.

Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22388


80

Figure 6.18.  Obtain scenario generation results and examine generated scenarios.

Figure 6.19.  Example of scenario consisting of weather and collision: Temporal profiles  
represented by “rectangular pulse” with duration (width) and intensity (height). 
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distributions across multiple scenarios in the Trajectory 
Processor later.

Step 7.  Export generated scenarios to text file. The user can 
export detailed descriptions for the generated scenarios 
to a single text file in the table-like comma-separated value 
(CSV) file format, as shown in Figure 6.20. This is the main 
output of the Scenario Manager, which describes the 
detailed event properties of the generated scenarios, includ-
ing temporal attributes (e.g., start and end times), location 
information (e.g., latitude and longitude), and intensity 
characteristics (e.g., crash severity or precipitation intensity) 
of a given event type (e.g., weather, incidents, and demand 
variation). Because the Scenario Manager is intended to 

serve as a unifying tool for particle-based traffic simula-
tion models regardless of their specific software packages, 
this output file is designed to have a generic and platform-
independent form. That way it can be easily interpreted 
and converted to the required input format for a specific 
traffic simulation software package at hand.

Step 8.  Output scenario files for traffic simulation models. The 
user can either manually select or randomly sample a set 
of input scenarios to create software-specific input files for 
performing traffic simulation runs. The current version of 
the Scenario Manager produces input files for Aimsun and 
DYNASMART simulation models based on the selected 
scenarios.

Figure 6.20.  Example of Scenario Manager output file.
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C h a p t e r  7

Introduction

To promote the use of end-to-end travel time reliability mea-
sures in the professional community for regionwide transpor-
tation operations planning, it is important and critically 
necessary to develop a flexible visualization platform for ana-
lyzing microscopic and mesoscopic dynamic simulation 
results, particularly in tracking vehicular movement, path, and 
time-dependent trip-related statistics. As a generic visualiza-
tion platform for travel time reliability, the vehicle Trajectory 
Processor designed in this project aims to apply new methods 
of communication between transportation practitioners, 
decision makers, and the public. This software package aims 
to help stakeholders from DOTs and MPOs effectively apply 
data processing and visualization tools to (1) understand 
advanced but sophisticated model structures and reliability-
related output and (2) use higher fidelity transportation simu-
lation and measurement results to estimate and calibrate 
underlying transportation system processes under different 
traffic conditions.

Purpose and Objectives

The objective of the vehicle Trajectory Processor is to provide 
a visualization platform for tracking and analyzing traffic 
assignment simulation results with a special focus on system-
level travel time reliability. The vehicle Trajectory Processor is 
designed to perform the following tasks:

•	 Read vehicle trajectory files for each scenario, including 
an  interface that directly imports simulation outputs 
from DYNASMART and other software packages, such 
as Aimsun.

•	 Read GPS vehicle trajectory data.
•	 Publish scenario-specific travel time reliability measures 

and display on the network/Google maps (e.g., most unre-
liable O–D, link, path).

•	 Display the aggregate travel time distribution over multiple 
scenarios by considering the probability of each scenario.

•	 Compare observed and simulated travel time reliability 
measures.

Concept of Operations

To meet the design goals, the vehicle Trajectory Processor con-
sists of the following basic functioning modules.

Map Matching and Vehicle Data Preprocessor

Internally, simulated vehicle trajectories (from DTA or micro-
simulation) may not contain longitude and latitude infor
mation. In addition, although the GPS trajectories data are 
recorded in a longitude and latitude coordinate system, this 
information may not match to the real-world network. Thus, 
to correctly display the vehicle trajectories on the real-world 
network, the raw data must be preprocessed by the map 
matching module to correct geographic location information. 
As the vehicle trajectory data can come from various sources, 
including geographically distributed (clouded-based) data-
bases, a vehicle data preprocessor must be able to access the 
data, locally or remotely, and convert various sources of data 
into a universal data representation for easier processing for 
the vehicle Trajectory Processor.

Vehicle Trajectory Processor

The vehicle Trajectory Processor module is the core data 
fusion component of the software application developed in 
this research. The inputs to this module include a set of simu-
lated vehicle trajectories, generated using different scenarios 
in traffic simulation software, and GPS vehicle trajectories 
(both data sources are already preprocessed and converted 
into a universal format by the vehicle data preprocessed mod-
ule). Based on the predefined measure of effectiveness (MOE) 

Trajectory Processor
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settings, this module will generate individual scenario-specific 
O–D travel time statistics (scenario-specific average O–D 
travel time and standard deviation) and aggregated O–D travel 
time statistics (aggregated average O–D travel time and stan-
dard deviation). It also produces both O–D-level and path-
level travel time statistics.

Besides these statistics, the vehicle Trajectory Processor 
module also prepares data for various internal visualization 
tools to present the results.

Statistics Result Presenting and Analysis Module

This module provides three styles of user interfaces (UI) to 
present statistics results to better analyze either O–D-level or 
path-level travel time.

a.	 Table-based statistic presentation UI. Both O–D-level and 
path-level travel time statistics (average and standard devia-
tion of travel time) are presented in tables. Scenario-specific 
travel time statistics are listed side-by-side for straight
forward comparisons so that the critical O–D pairs or 
most unreliable O–D pairs can be easily identified.

b.	 Chart-based statistic presentation UI. The O–D-level travel 
time distribution is visualized with different graphs: 
scenario-specific or aggregated probability distribution 
function (PDF) graph, cumulative distribution function 
(CDF) graph, and so on. This UI can also display addi-
tional travel time reliability indices, for example, Planning 
Time Index or buffer time.

c.	 Google Earth-based path presentation UI. To view and 
compare paths, this UI is able to display any possible paths 
between any O–D pair on Google Earth. With this capabil-
ity, it is much easier to identify whether a path is a normal 
path or a detour.

The overall system architecture is illustrated in Figure 7.1.

Software Description

The major software components developed in this research 
can be described by the universal vehicle data representation 
used to describe the vehicle trajectory data and by the data 
flow diagrams, which identify system components and their 
interactions.

Universal Vehicle Data Representation

The input data for the vehicle Trajectory Processor are simu-
lated vehicle trajectory files from traffic assignment and simu-
lation software packages, for example, DYNASMART and 
Aimsun. GPS vehicle trajectory data are another important 
source of input data. The simulated vehicle trajectory files from 

these software packages and the GPS vehicle trajectory data 
have their own unique formats to represent the movements of 
the vehicles in the network. For the vehicle Trajectory Proces-
sor to load and analyze these various sources and formats of 
vehicle trajectory files, it is important to design a universal data 
structure internally to represent these various input data. After 
thoroughly investigating the formats of the vehicle files from 
the DYNASMART and Aimsun software packages and GPS 
vehicle trajectory data, this universal vehicle representation 
(data structure) is designed to encompass necessary informa-
tion to identify the vehicle movement and allow derivation of 
the travel time information between origin and destination 
zones. Table 7.1 lists the necessary information recorded by this 
universal vehicle data structure.

Data Flow

The overall vehicle trajectory processing procedure can be 
divided into three subprocedures: preprocessing, vehicle 
trajectory processing, and result presentation. Figure 7.2 illus-
trates the input and output data for each subprocedure.

During the preprocessing, the map-matching engine 
converts the vehicle movements in a transportation planning 
network into real-network representation. These converted 
vehicle trajectory data are then output in a universal format.

The universally formatted vehicle trajectory data are input 
for the vehicle trajectory processing procedure, along with 
MOE settings. The standard output from this procedure is 
O–D-level or path-level, scenario-specific or aggregated travel 
time statistics (average and standard deviation of travel time). 
Based on specified MOE settings, other MOEs can be gener-
ated as well.

The result presentation procedure takes the statistics gen-
erated in the vehicle trajectory processing procedure and pre-
pares data for display in various UIs. Based on the UI control 
selected by the user, the corresponding UI is activated to present 
the statistic results.

Integration with Selected 
Models (DYNASMART 
and Aimsun)

Procedure

1.	 Import trajectory for multiple scenarios:
a.	 DTA simulation results (e.g., DYNASMART);
b.	 GPS vehicle location records (e.g., from TomTom);
c.	 Simulated vehicle records (e.g., from VisSim, Aimsun).

2.	 Read user defined MOE (critical O–Ds, paths).
3.	 Extract trajectory set for selected spatial element (O–D, 

path).
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Figure 7.1.  System architecture.
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4.	 Calculate travel time PDF/CDF and Planning Time Index/
Buffer Time Index, for individual scenarios and in combi-
nation, based on prespecified MOE settings.

5.	 Present calculated statistics and MOEs in a straightforward 
presentation UI to facilitate comparisons of observed and 
simulated travel time reliability measures.

The calculated O–D-based path statistics may be displayed 
as path travel time PDF/CDF. If multiple scenarios are loaded 
for analysis, the combined PDF and CDF from these scenarios 
can also be generated and displayed. Figure 7.3 shows an 
example O–D statistics user interface.

Additional MOEs, such as planning time and schedule delay, 
if prespecified, can also be displayed in the user interface, as 
shown in Figure 7.4.

To view the path on the Google Earth interface, a user can 
simply select a path (a row) in the path statistics table. The 
user can also press and hold the control key to select mul-
tiple rows in the path statistics table to view multiple paths 
in the Google Earth display. The “Type” column indicates the 
source of the path: “V-file” indicates this path is extracted from 
a DYNASMART vehicle file, and “GPS” indicates this path is 
from a GPS trajectory file. An example of paths between an 
O–D pair is shown in Figure 7.5.

Exporting function is provided to export all of the content in 
the O–D statistics table to the project folder for further analysis.

Processing and Analyzing GPS Data

The GPS traces from TomTom Inc. were used to compare 
with the routes produced by the Google routing engine (i.e., 
Google Earth) to evaluate the applicability of using GPS data 
for traffic simulation calibration and assessment. The first 
objective is to examine and validate the data quality of GPS 
records and provide insights on using those data for travel 
time reliability studies. The second goal is to select some rep-
resentative O–D pairs for further comparisons with simulated 

vehicle trajectories from DTA simulators (e.g., DYNASMART). 
The GPS data provided by TomTom cover approximately 
10 days, with data from May 3, 2010 (Monday), used in the 
following analysis.

The routes that share the same origin and destination are 
analyzed. The zone identification numbers in the GPS data fol-
low the zonal definition from the Best Practice Model for the 
New York region. Consider the O–D pairs Origin ID: 637 and 
Destination ID: 529. For example, the vehicles (Internal Vehi-
cle_IDs: 1051, 1774, 2956, 3049, 3287, 3533; Origin ID: 637; 
Destination ID: 529) share the same origin and destination. 
Table 7.2 shows some of the comparisons of travel time 
between TomTom and Google Earth for O–D pairs with large 
volumes. Figure 7.6 shows a comparison of path from TomTom 
GPS traces and Google Earth.

By investigating the detailed underlying path traces, the 
user can investigate the possible reasons for detour. They may 
be to avoid traffic congestion or perform other activities in a 
single trip (visit intermediate destinations). In the example 
shown in Figure 7.7, the possible reason for detour is to per-
form other activities in a single trip—for example, drop off/
pick up children—and the possible intermediate destination 
may be Thomas Jefferson High School.

The following example, with data shown in Figure 7.8, com-
pares O–D pairs with a large number of records. The travel time 
from TomTom is 25.34 min while the travel time from Google 
Earth is 5 min. The travel speed from TomTom is 13.09 mile/h. 
A possible reason for longer travel time from TomTom com-
pared with the same path by Google Earth may be that conges-
tion was experienced.

From these comparisons between TomTom and Google 
Earth, we can obtain the following conclusions:

1.	 In general, the travel time of GPS traces of TomTom is 
longer than that of Google Earth. The route provided by 
Google Earth is the free flow, which does not take conges-
tion into consideration. And the GPS traces do not always 
comply with the shortest path due to some personal driver 
behaviors. So the travel time of GPS traces of TomTom is 
longer than that of Google Earth.

2.	 Even when the GPS traces of one vehicle have the same path 
as the Google Earth vehicle (Internal Vehicle_ID: 3533), the 
travel time of TomTom is longer than that of Google Earth. 
The possible reason is the congestion in the real world.

3.	 According to the GPS trajectory of the vehicles, some vehi-
cles detour a lot. They may have tried to do something else 
first. For example, a student may drive to pick up his friends 
first before going to the university. In the team’s comparison, 
the vehicle (Internal Vehicle_ID: 358) is typical. We can infer 
that this vehicle detours to the airport to do something. It is 
possible that some vehicles (Internal Vehicle_ID: 1002) got 
lost trying to find a parking lot.

Table 7.1.  Universal Vehicle Representation

Data Element Definition

Vehicle ID Identify an individual vehicle

Origin zone ID The starting zone ID of a vehicle

Destination zone ID The ending zone ID of a vehicle

Departure time The departure time from origin zone by 
this vehicle

Total travel time The total travel time between origin and 
destination zones by this vehicle

Node array An array recording the nodes traveled by 
this vehicle from the origin zone to the 
destination zone

(text continues on page 90)
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Figure 7.2.  Data flowchart.
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Figure 7.3.  Example O–D statistics user interface.

Figure 7.4.  Additional MOEs displayed in the vehicle Trajectory Processor. Upper 
curve, planning time; lower curve, preferred arrival time.
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Table 7.2.  Vehicle Trajectory Path Analysis: Comparison Between GPS and Google Routing Paths

Internal 
Vehicle ID

Departure 
Time 

(2010-5-3)

Trajectory 
Length from 

TomTom 
(mile)

Routing 
Length from 
Google Earth 

(mile)

Travel 
Time from 
TomTom 

(min)

Travel 
Speed from 

TomTom 
(mile/h)

Average 
Link Speed 

(mile/h)

Travel 
Time from 

Google Earth 
(min)

Route 
Comparison

1051 11:54 a.m. 6.77 3.8 24.17 16.81 9.43 5 Detour

1774 6:55 a.m. 5.53 3.8 25.91 12.81 8.80 5 Same Path

2956 8:06 a.m. 5.39 3.8 21.73 14.88 10.49 5 Same Path

3049 8:31 a.m. 6.78 3.8 21.23 19.14 10.74 5 Detour

3287 8:58 a.m. 5.71 3.8 23.51 14.57 9.70 5 Same Path

3533 6:37 a.m. 5.53 3.8 25.34 13.09 9.00 5 Same Path

Figure 7.5.  Paths between an O–D pair.

Figure 7.6.  Comparison of path from TomTom GPS traces and Google Earth.

Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22388


89   

Figure 7.7.  Another comparison of path from TomTom GPS traces and Google Earth.

Figure 7.8.  GPS traces of TomTom and corresponding historical traffic condition maps from Google Maps.
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Processing Vehicle Trajectory Files from 
VisSim and Aimsun Through Map Matching

Vehicle Trajectory File in VisSim and Aimsun

Usually, the vehicle trajectory generated by traffic assignment 
and simulation software packages includes the vehicle move-
ment information. However, this information often represents 
in node IDs/link IDs used by the underlying transportation 
planning network. To display this information to the real-world 
geographic information system (GIS) network, it is necessary 
to map the node IDs/link IDs to the longitude and latitude 
coordinate system. Therefore, map matching is required before 
the reconstructed trajectories can be correctly displayed on 
the map.

VisSim and Aimsun can be programmed to record indi-
vidual vehicle parameters for each simulation step. Recording 
vehicle parameters on a second-by-second basis can be most 
beneficial for creating vehicle trajectory files. The vehicle 
records output in VisSim is configured through Evaluation=> 
Files . . . =>Vehicle record. The Configuration window allows 
for definition of any combination of the vehicle parameters. 
The vehicle trajectory file that can be used for map match-
ing can be obtained through a combination of the following 
parameters:

•	 Simulation time (or simulation time of day);
•	 Vehicle number;
•	 Link number;
•	 World coordinate X; and
•	 World coordinate Y.

If the VisSim simulation resolution is set to 10 (which is 
updating simulation parameters every 0.1 second, most com-
mon for microsimulation models), the Resolution of the Vehi-
cle Record Filter should be set at 10 Time step(s). This provides 
vehicle record outputs for every second. The output is by 
default given in .fzp file, which is basically a text file. However, 
since vehicle records for each vehicle for large networks and 
long-time evaluation periods can be quite large, the team rec-
ommends configuring the database vehicle record file for easier 
manipulation (in the Vehicle Record-Configuration window).

Travel Time Reliability Indices

Various studies have identified a number of reliability perfor-
mance measures and provided recommendations on their suit-
ability for different purposes. Lomax et al. (2003) defined three 
broad categories of reliability performance indicators and dis-
cussed a variety of measures based on these concepts: (1) sta-
tistical range, (2) buffer time measures, and (3) tardy trip 

indicators. The authors suggested three specific indicators—
Percent Variation, Misery Index, and Buffer Time Index—as 
promising measures that provide consistent analytical conclu-
sions. NCHRP Report 618 (Cambridge Systematics, Inc. et al. 
2008) provides guidance on selecting measures for different 
purposes and types of analyses. The reliability measures rec-
ommended by that study include Buffer Index, percent on-
time arrival, Planning Time Index, percent variation, and 
95th percentile. The second Strategic Highway Research Pro-
gram (SHRP 2) conducted an extensive empirical study and 
pointed out some shortcomings of the performance metrics 
recommended by previous studies (Cambridge Systematics, 
Inc. et al. 2013). For example, the 95th percentile travel time 
may be too extreme to reflect certain improvements intro-
duced by traffic operations strategies, but the 80th percentile 
would be useful in such cases. Also, for performance indica-
tors that measure the distance between central and extreme 
values (e.g., Buffer Index), the median would be a more robust 
central tendency statistic than the mean, as travel time distri-
butions are by nature skewed. Based on such modifications, 
the SHRP 2 study recommended a final set of six reliability 
metrics: Buffer Index, failure/on-time measures, Planning 
Time Index, 80th Percentile Travel Time Index, Skew Statistic, 
and Misery Index.

While many previous studies have focused on corridor- or 
link-level travel time reliability, this project aims to perform 
a full range of analysis addressing network-level, O–D-level, 
path-level, and segment/link-level travel time reliability 
using regional planning and operations models. In doing so, 
users need to consider not only different properties of the 
reliability measures, as investigated in the above-mentioned 
studies, but also their applicability to an intended analysis 
level. Table 7.3 presents a list of available reliability measures, 
categorized on the basis of their applicability to different 
levels of travel time distributions and associated reliability 
analysis, namely, network-level, O–D-level, and path/segment/
link-level.

For the network-level, travel times experienced by vehicles 
are not directly comparable because distances traveled by 
vehicles may be significantly different. In this case, measures 
that are normalized by the trip distance can be used. Each 
vehicle’s travel time can be converted into the distance-
normalized travel time (i.e., travel time per mile, or TTPM); 
and various statistics can be extracted from the distribution 
of TTPMs, as presented in Type A measures in Table 7.3. For 
the O–D-level, travel times experienced by vehicles are com-
parable, although actual trip distances could be different 
depending on the route followed by each vehicle. The O–D-
level travel times are not limited to travel times between 
actual traffic analysis zones (TAZ). Travel time distributions 
between any two points can be included in this category. Reli-
ability measures that can be used when travel times are 

(continued from page 85)
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comparable include many conventional metrics such as the 
mean and standard deviation of travel times, percentiles, and 
Buffer Index, as presented in Type B in Table 7.3. For O–D-
level analysis, therefore, both Type A and Type B measures 
can be used. At the path/segment/link-level, not only are the 
travel times for different vehicles comparable but trip dis-
tances are also the same. This allows the calculation of the 

Table 7.3.  Reliability Measures for Different Analysis Types

Analysis Level

Network O–D Path/Segment/Link

Characteristic Travel times for 
vehicles

Not comparable Comparable Comparable

Travel distances for 
vehicles

Different Different Identical

Applicable 
measures

Distance-normalized 
measures (Type A)

•	 Average of travel times per mile (TTPMs)
•	 Standard deviation of TTPMs
•	 95th/90th/80th percentile TTPM

Measures for 
comparable travel 
times (Type B)

•	 Average travel time
•	 Standard deviation of travel times
•	 Coefficient of variation

Standard deviation of travel times/mean travel time
•	 95th/90th/80th percentile travel time
•	 Buffer Index

(95th percentile travel time - mean travel time)/(mean travel time)
•	 Skew Index

(90th percentile travel time - median travel time)/(median travel time 
- 10th percentile travel time)

•	 Percent on-time arrival
Percent of travel times < 1.1 median travel time

Measures for the 
same travel 
distance (Type C)

•	 TTI (Travel Time Index)
Mean travel time/free-flow travel time

•	 PTI (Planning Time Index)
95th percentile travel time/free-flow travel time

•	 Misery Index
Mean of the highest 5% of travel times/free-flow 

travel time
•	 Frequency of congestion

Percent of travel times > 2 free-flow travel time

unique free-flow travel time for a given path and, therefore, 
allows the use of additional measures that require the free-
flow travel time. Such measures include Travel Time Index, 
Planning Time Index, Misery Index, and frequency of con-
gestion as shown in Type C in Table 7.3. As such, users can use 
any of Type A, B, and C measures for the path/segment/link-
level travel time reliability analysis.
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Pa  r t  3

This part of the report describes two case studies incorporating travel time reliability into 
microscopic and mesoscopic models and summarizes the findings and conclusions of this 
research project.

APPLICATIONS
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deterministic scenarios from existing historical sources. This 
case study uses the former approach: a set of random scenarios 
are constructed using Monte Carlo sampling for each category. 
The factors that are considered as scenario components are 
weather, incident, and day-to-day demand random variation as 
shown in Table 8.1. A detailed description for each scenario 
component is presented in the following subsections.

Scenario Specification

Weather

While considering incident and demand variations as random 
factors, we control the weather factor in constructing scenar-
ios in this case study. In other words, we create a specific rain 
scenario and use it for all weather cases (i.e., WD-RA and 
WE-RA). The rain scenario is based on historical observations 
as discussed in the Chapter 6 section, Implementation of Sce-
nario Manager, subsection Weather Scenario. The Scenario 
Manager allows users to supply specific weather time-series 
data to generate a fixed weather scenario. We used the weather 
data collected on May 3, 2010, at the ASOS weather station 
located at the LaGuardia Airport. Figure 8.2 shows the 5-hour 
weather scenario prepared for this case study.

Incidents

Incident properties are characterized using parametric mod-
els as discussed in the Chapter 6 section, Implementation of 
Scenario Manager, subsection Incident Scenario. For fre-
quency, we use a Poisson distribution to model the number of 
incidents for a given time period. To capture the dependency 
between weather and incident frequency, we use weather- 
conditional incident rates. Table 8.1 presents the estimated 
rate parameters. For incident duration, we specified a gamma 
distribution based on model-fitting results and estimated two 
input parameters: shape = 1.210 and scale = 31.553. Incident 
intensity is expressed as the percentage capacity loss (the 

The purpose of this chapter is to demonstrate application of 
the overall methodology for performing reliability analyses 
using the framework and tools developed under this project 
in connection with a mesoscopic traffic simulation model, 
in this case DYNASMART-P (Mahmassani and Sbayti 2009). 
The following sections describe the entire procedure for per-
forming the analysis in sequential order: defining, generating, 
and simulating scenarios; analyzing simulation outputs and 
extracting reliability statistics; and comparing simulation-
based analysis results with observed data.

Defining Scenarios

Defining Spatial and Temporal Boundaries  
for Evaluating Travel Time Reliability

The spatial domain of interest selected for this application is 
an area in the New York City region. Figure 8.1 shows the sim-
ulation network prepared for the analysis, which covers most 
of New York City and part of New Jersey. The time domain of 
interest is the morning time period from 6 a.m. until 11 a.m. 
between May 2, 2010, and May 17, 2010.

Formulating Study Objectives  
and Defining Scenario Cases

The objective of the case study is to examine the effect of 
weather on travel time reliability for weekday and weekend 
traffic. Specifically, we obtain reliability performance measures 
for the following four scenario cases: Weekdays under Rain 
(WD-RA), Weekends under Rain (WE-RA), Weekdays under 
No Rain (WD-NR), and Weekends under No Rain (WE-NR).

Generating Scenarios Using 
the Scenario Manager

Specific scenarios under each of the four cases may be obtained 
either by generating random scenarios using the Scenario 
Manager’s Monte Carlo sampling capability or by using 

Analysis Process: Mesoscopic Models

C h a p t e r  8
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Table 8.1.  Scenario Components and Input Parameters

Weekday or 
Weekend

Exogenous Sources

Scenario CaseWeather

Incident
Day-to-Day 

Demand Variation

Frequency: 
Poisson ()

Duration: 
Gamma (, )

Intensity: 
Empirical PMF DMF: Normal (, )

Weekdays No Rain l(CL) = 0.00136 a = 1.210
b = 31.553

P(0.15) = 0.4,
P(0.30) = 0.5,
P(0.60) = 0.1

µ = 1.0
s = 0.17

Weekdays
No Rain (WD-NR)

Rain (see 
Figure 8.2)

l(LR) = 0.00158
l(MR) = 0.00204
l(HR) = 0.00251

Weekdays
Rain (WD-RA)

Weekends No Rain l(CL) = 0.00055 µ = 1.0
s = 0.14

Weekends
No Rain (WE-NR)

Rain (see 
Figure 8.2)

l(LR) = 0.00064
l(MR) = 0.00083
l(HR) = 0.00101

Weekends
Rain (WE-RA)

Note: l(w) = incident rate under weather state w (incidents/hour/lane-mile); P(x) = probability that the fraction of link capacity lost due to a given incident 
becomes x (i.e., remaining capacity becomes 1 - x); PMF = probability mass function; and DMF = demand multiplication factor.

Figure 8.1.  Study networks: DYNASMART-P New York City network (gray) and Aimsun  
Manhattan network (black).
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fraction of link capacity lost due to the incident). We con-
structed the empirical probability mass function (PMF) based 
on historical incident data, in which three levels of capacity 
loss (15%, 30%, and 60%) are considered in conjunction with 
their probabilities (0.4, 0.5, and 0.1, respectively).

Day-to-Day Demand Random Variation

To understand the day-to-day demand fluctuation pattern, we 
examine GPS probe data obtained from TomTom; the data 
cover 16 consecutive days from May 2, 2010, to May 17, 2010, in 
New York. We aggregated the observed vehicle trajectories for 
each day and estimated the variation in daily traffic volume 
using the demand multiplication factor (DMF) introduced in 
Chapter 6, section, Implementation of Scenario Manager, sub-
section Demand Scenario: Day-to-Day Random Variation. 
Although the available trajectory data represent only a portion 
of the entire travel demand in the study region, the analysis 
results provide insight into the characteristics of respective vari-
ations in weekday and weekend traffic levels. Based on the esti-
mation results, we specify the demand multiplication factor for 
weekdays as a normally distributed random variable with  
mean = 1.0 and standard deviation = 0.17; and the demand 
multiplication factor for weekends as a normal random variable 
with mean = 1.0 and standard deviation = 0.14, as shown in 
Table 8.1.

Scenario Sampling and Calculation  
of Scenario Probabilities

Based on those specified parameters for weather, incident, 
and demand components, we sampled 10 random scenarios 

for each scenario category using the Scenario Manager, yielding 
a total of 40 scenarios to be simulated. The Scenario Man-
ager also calculates the probability of each scenario case, as 
presented in Table 8.2.

Simulating Scenarios  
Using DYNASMART-P

Once input scenarios are prepared, the next step is to simulate 
those scenarios using DYNASMART-P to obtain scenario-
specific outputs (i.e., simulated vehicle trajectory data). The 
simulation time horizon for each scenario is 5 hours, from 
6 a.m. to 11 a.m.

Obtaining Reliability Statistics 
Using the Trajectory Processor

The Trajectory Processor allows users to load vehicle trajec-
tory data obtained from the traffic simulation model and 
examine travel time distributions at various time and space 

Table 8.2.  Joint and Marginal 
Probabilities for Scenario Categories

Day of Week

Weather

SumNo Rain Rain

Weekday 0.400
(WD-NR)

0.265
(WD-RA)

0.665

Weekend 0.265
(WE-NR)

0.070
(WE-RA)

0.335

Sum 0.665 0.335 1.000

Figure 8.2.  Weather scenario (rain): Constructed based on historical data  
from May 3, 2010.
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resolutions. As discussed in Table 7.3 in Chapter 7, different 
reliability metrics can be used to assess the reliability perfor-
mance at different levels of the system: network-level, O–D-
level, and path level.

Network-Level Analysis

To evaluate reliability performance for the entire network, we 
use distance-normalized travel times (i.e., travel time per mile, 
or TTPM) in deriving various network-level metrics. Table 8.3, 
Table 8.4, and Table 8.5 present various network-level perfor-
mance measures obtained from scenario-specific outputs for 
three departure time intervals: 7–8 a.m., 8–9 a.m., and 9–10 
a.m., respectively. The selected measures include average TTPM, 
standard deviation of TTPMs, and 95th/90th/80th percentile 
TTPMs, four of which are depicted in Figures 8.3 through 8.6. 
Each chart displays a total 120 data points (= 10 scenarios ×  
4 scenario cases × 3 departure time intervals) for a given mea-
sure. The X-axis of each chart represents the Scenario ID shown 
in the second column of the tables. Some findings from the 
charts are summarized as follows:

•	 Both the average travel time and the travel time variability 
decrease in the order of Weekdays under Rain (WD-RA), 
Weekends under Rain (WE-RA), Weekdays under No Rain 
(WD-NR), and Weekends under No Rain (WE-NR).

•	 The effect of weather (rain) on travel time unreliability is 
more pronounced than the day-of-week effect, as both 
WD-RA and WE-RA (scenarios with rain) have higher lev-
els of network congestion and travel time variability com-
pared with WD-NR and WE-NR (scenarios without rain).

•	 The time-of-day effect is more pronounced than the effect 
of weather as the difference between the performance mea-
sures for different departure time intervals is more obvious 
than those for different scenario cases. Overall, the value 
range of a given measure significantly increases as the 
departure time interval changes from 7–8 a.m. to 9–10 a.m.

•	 The variability of the estimates across different scenario 
instances (i.e., interscenario variability within each sce-
nario case) tends to decrease in the order of WD-RA, 
WE-RA, WD-NR, and WE-NR. For example, data points 
from WD-RA for the 80th percentile TTPM for 9–10 a.m. 
are much more scattered than those from WE-NR.

O–D-Level Analysis

Users could choose a specific origin–destination (O–D) pair to 
examine O–D-level travel time distributions and the associated 
performance measures. For the analysis, we selected an O–D 
pair between the origin zone 685 and the destination zone 605 
from the network, as shown in Figure 8.7. Multiple routes are 
available for travel between the given O–D pair, two of which 

are depicted in Figure 8.7. As in the network-level analysis, we 
present detailed performance measures for each scenario for 
different departure time intervals, 7–8 a.m. and 8–9 a.m., in 
Table 8.6 and Table 8.7, respectively. The average number of 
vehicles per scenario traveling along the given O–D between  
7 a.m. and 8 a.m. is 105; for 8–9 a.m., it is 112. In addition to 
TTPM-based measures used in the network-level analysis, we 
could also examine metrics based on nonnormalized travel 
times provided that travel times for the same O–D can be com-
parable regardless of what route is used. The analysis uses five 
measures: mean, standard deviation, 80th percentile of the 
travel time distribution, the Buffer Index, and the Skew Index 
(see Table 7.3 for the definitions of the metrics). Figure 8.8 
shows the estimation results for the mean travel time, Figure 
8.9 shows the standard deviation of travel times, and Figure 
8.10 shows the estimation results for the 80th percentile travel 
time. The magnitude and interscenario variability for the mean 
travel time and the 80th percentile travel time decrease in the 
order of Weekdays under Rain (WD-RA), Weekends under 
Rain (WE-RA), Weekdays under No Rain (WD-NR), and 
Weekends under No Rain (WE-NR) as in the network-level 
analysis. This pattern is, however, less evident for the standard 
deviation (Figure 8.9) and the Buffer Index (Figure 8.11).

Path-Level Analysis

Analyst can also examine travel time distributions for a specific 
path. For the path-level analysis, we selected a segment along 
the Franklin D. Roosevelt East River Drive on the east side of 
New York City, as shown in Figure 8.12. The length of the 
selected path (from Point A to Point B) is 3.98 miles. The Tra-
jectory Processor identifies all the vehicles that traverse the 
given path and extracts travel times spent on that path to con-
struct the path-level travel time distribution. Table 8.8 presents 
detailed statistics for the selected performance measures mean, 
standard deviation, 80th percentile of the travel time, Planning 
Time Index, and Buffer Index (see Table 7.3 for the definitions 
of the metrics). Estimated results are visualized in Figures 8.13 
through 8.16.

Comparison with Observed Data

As discussed in Chapter 7, the Trajectory Processor provides 
the ability to process not only simulated outputs but also 
observed vehicle trajectories. Users could perform the same 
types of analyses presented in the previous sections (e.g., 
network/O–D/path-level analyses) using the observed trajec-
tory data. One of the important goals for this capability is to 
validate a constructed (simulated) travel time distribution  
by comparing it with its observed counterpart. We use the 
TomTom GPS probe data already mentioned, which cover 16 

(text continues on page 111)
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Table 8.3.  Network-Level Performance Measures, Departure Time Interval 7 a.m. to 8 a.m.

Scenario Case
Scenario 

ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard 
Deviation of 

TTPM (min/mile)
95th Percentile 

TTPM (min/mile)
90th Percentile 

TTPM (min/mile)
80th Percentile 

TTPM (min/mile)

Weekdays/Rain (WD-RA)   1 1.80 1.08 2.78 2.29 2.03

  2 2.12 1.55 4.43 3.12 2.35

  3 1.97 1.36 3.68 2.66 2.19

  4 1.79 1.05 2.74 2.28 2.03

  5 2.01 1.52 3.88 2.76 2.24

  6 1.99 1.41 3.76 2.71 2.21

  7 1.87 1.26 3.14 2.41 2.10

  8 2.10 1.53 4.32 3.03 2.33

  9 1.82 1.14 2.85 2.31 2.05

10 2.02 1.46 3.93 2.79 2.25

Weekends/Rain (WE-RA) 11 1.85 1.11 3.09 2.40 2.09

12 2.25 1.84 5.04 3.48 2.49

13 1.93 1.28 3.49 2.57 2.16

14 1.91 1.23 3.34 2.49 2.13

15 1.76 0.99 2.62 2.23 1.99

16 2.12 1.59 4.43 3.09 2.34

17 1.83 1.17 2.91 2.33 2.06

18 1.78 1.05 2.69 2.26 2.01

19 1.77 1.02 2.67 2.26 2.01

20 1.84 1.22 3.01 2.36 2.07

Weekdays/No Rain (WD-NR) 21 1.72 1.07 3.11 2.30 1.94

22 1.67 1.02 2.81 2.14 1.88

23 1.64 1.03 2.61 2.07 1.85

24 1.66 0.91 4.00 2.14 1.88

25 1.66 1.07 2.73 2.11 1.86

26 1.75 1.10 3.29 2.41 1.98

27 1.65 1.04 2.71 2.10 1.86

28 1.67 1.00 2.83 2.16 1.89

29 1.55 0.83 2.20 1.95 1.76

30 1.79 1.15 3.44 2.51 2.01

Weekends/No Rain (WE-NR) 31 1.63 0.89 2.64 2.08 1.85

32 1.64 1.04 2.63 2.07 1.84

33 1.60 0.94 2.43 2.02 1.81

34 2.00 1.55 4.41 3.09 2.20

35 1.66 0.95 2.83 2.15 1.88

36 1.63 1.01 2.60 2.06 1.84

37 1.64 0.97 2.65 2.08 1.85

38 1.61 0.90 2.53 2.05 1.83

39 1.59 0.98 2.38 2.01 1.80

40 1.53 0.78 2.15 1.94 1.74
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Table 8.4.  Network-Level Performance Measures, Departure Time Interval 8 a.m. to 9 a.m.

Scenario Case
Scenario 

ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard 
Deviation of 

TTPM (min/mile)
95th Percentile 

TTPM (min/mile)
90th Percentile 

TTPM (min/mile)
80th Percentile 

TTPM (min/mile)

Weekdays/Rain (WD-RA)   1 2.92 3.50 7.62 4.93 3.15

  2 4.36 5.61 12.95 9.10 5.75

  3 3.67 4.29 10.23 7.12 4.64

  4 2.88 3.26 7.45 4.81 3.09

  5 3.87 4.81 11.07 7.75 4.99

  6 3.77 4.56 10.61 7.40 4.82

  7 3.23 3.74 8.66 5.90 3.78

  8 4.30 5.57 12.73 8.89 5.63

  9 3.01 3.50 7.91 5.22 3.34

10 4.01 4.98 11.77 8.17 5.21

Weekends/Rain (WE-RA) 11 3.19 3.72 17.01 5.76 3.76

12 4.91 6.86 14.99 10.49 6.56

13 3.55 4.19 9.78 6.77 4.39

14 3.41 3.86 9.26 6.39 4.16

15 2.61 2.86 6.55 4.08 2.71

16 4.39 5.76 13.04 9.14 5.76

17 3.00 3.42 7.76 5.22 3.39

18 2.76 3.06 6.98 4.56 2.98

19 2.74 3.14 6.92 4.43 2.89

20 3.05 3.53 7.88 5.29 3.47

Weekdays/No Rain (WD-NR) 21 3.08 3.98 8.50 6.00 3.89

22 2.83 3.45 7.48 5.17 3.39

23 2.71 3.42 7.02 4.84 3.14

24 2.74 3.39 7.09 5.01 3.29

25 2.80 3.52 7.39 5.06 3.30

26 3.24 4.32 9.13 6.43 4.13

27 2.81 3.59 7.42 5.13 3.30

28 2.80 3.34 7.35 5.21 3.38

29 2.26 4.68 8.88 5.25 2.88

30 3.40 4.54 9.88 6.88 4.38

Weekends/No Rain (WE-NR) 31 2.65 3.10 6.83 4.79 3.15

32 2.72 3.40 7.16 4.83 3.11

33 2.48 3.13 6.23 4.14 2.70

34 4.02 5.60 12.43 8.67 5.50

35 2.75 3.44 7.07 5.02 3.28

36 2.68 3.24 6.95 4.71 3.07

37 2.72 3.26 7.18 4.91 3.17

38 2.54 3.09 6.39 4.37 2.87

39 2.47 3.24 6.06 4.06 2.65

40 2.22 2.67 5.51 3.24 2.18
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Table 8.5.  Network-Level Performance Measures, Departure Time Interval 9 a.m. to 10 a.m.

Scenario Case
Scenario 

ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard 
Deviation of 

TTPM (min/mile)
95th Percentile 

TTPM (min/mile)
90th Percentile 

TTPM (min/mile)
80th Percentile 

TTPM (min/mile)

Weekdays/Rain (WD-RA)   1 4.39 7.12 14.59 9.27 5.44

  2 6.30 11.20 22.07 14.72 8.87

  3 5.55 9.76 19.07 12.22 7.17

  4 4.43 7.33 14.92 9.55 5.46

  5 6.02 10.34 21.14 13.74 8.17

  6 5.91 10.11 20.53 13.53 8.04

  7 5.03 8.11 17.07 10.94 6.49

  8 6.40 10.90 22.48 15.04 9.04

  9 4.51 7.28 15.05 9.73 5.66

10 6.26 10.32 21.97 14.59 8.67

Weekends/Rain (WE-RA) 11 4.99 8.09 19.22 10.83 6.42

12 7.01 12.16 25.51 16.81 9.75

13 5.46 9.42 18.96 12.02 7.04

14 5.23 8.36 17.29 11.32 6.99

15 3.81 6.10 12.50 7.91 4.40

16 6.45 11.03 22.82 15.00 9.06

17 4.63 7.42 15.26 9.86 5.88

18 4.16 6.98 13.81 8.71 5.07

19 4.04 6.44 13.39 8.56 4.86

20 4.70 7.86 15.84 10.06 5.91

Weekdays/No Rain (WD-NR) 21 4.87 8.96 17.62 11.03 6.12

22 4.76 8.29 16.62 10.33 5.97

23 4.65 8.26 16.37 10.08 5.77

24 4.36 8.35 22.82 9.12 5.10

25 4.76 9.02 16.62 10.11 5.83

26 4.83 9.92 16.70 10.60 6.07

27 4.67 8.20 16.28 10.15 5.89

28 4.44 8.40 15.67 9.34 5.26

29 3.60 6.39 13.03 8.05 4.32

30 5.06 10.06 18.36 11.30 6.27

Weekends/No Rain (WE-NR) 31 4.49 7.68 15.83 9.70 5.59

32 4.55 7.95 16.04 9.78 5.55

33 4.04 7.24 13.56 8.48 4.82

34 5.38 10.55 18.80 12.65 7.13

35 4.36 8.90 14.87 8.87 5.06

36 4.48 8.07 15.74 9.60 5.45

37 4.51 8.02 15.64 9.66 5.57

38 4.17 7.16 14.25 8.82 5.10

39 4.11 7.76 14.06 8.45 4.66

40 3.41 5.95 11.27 6.91 3.69

Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22388


101   

Figure 8.3.  Mean travel time per mile (network-level).

Figure 8.4.  Standard deviation of travel time per mile (network-level).
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Figure 8.5.  80th percentile travel time per mile (network-level).

Figure 8.6.  95th percentile travel time per mile (network-level).
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Zone ID: 685

Zone ID: 605

Figure 8.7.  Selected origin–destination (O–D) pair for O–D-level analysis.

Figure 8.8.  Mean travel time (O–D-level).
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Figure 8.9.  Standard deviation of travel times (O–D-level).

Figure 8.10.  80th percentile travel time (O–D-level).
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Figure 8.11.  Buffer Index (O–D-level).

Figure 8.12.  Selected path for path-level analysis (from Point A to  
Point B).
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Figure 8.13.  Mean travel time (path-level).

Figure 8.14.  80th percentile travel time (path-level).
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Figure 8.15.  Planning Time Index (path-level).

Figure 8.16.  Buffer Index (path-level).
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Table 8.6.  O–D-Level Performance Measures, Departure Time Interval 7 a.m. to 8 a.m.

Scenario Case
Scenario 

ID

O–D-Level Analysis (Zone 685 ➔ Zone 605) 
Average Number of Observations per Scenario  105

Average Travel 
Time (min)

Standard 
Deviation of 

Travel Times (min)
80th Percentile 

Travel Time (min)
Buffer 
Index

Skew 
Index

Weekdays/Rain (WD-RA)   1 15.56 7.45 16.65 0.30 1.90

  2 29.05 27.33 33.82 1.62 6.11

  3 19.34 5.79 23.61 0.64 2.56

  4 14.95 3.54 16.58 0.37 2.32

  5 19.99 6.04 22.86 0.75 2.38

  6 19.91 6.59 24.92 0.58 2.58

  7 17.69 8.55 19.44 0.47 2.99

  8 28.26 27.30 29.88 1.08 4.35

  9 16.56 12.50 17.12 0.44 1.91

10 20.00 6.04 23.87 0.71 2.68

Weekends/Rain (WE-RA) 11 16.43 3.81 17.91 0.43 2.11

12 28.91 21.41 33.23 1.53 3.02

13 19.18 5.86 22.86 0.79 2.63

14 21.51 23.49 21.11 0.32 2.73

15 14.65 4.80 16.19 0.28 1.12

16 26.63 18.77 31.57 1.33 4.61

17 16.44 8.32 17.22 0.40 2.41

18 14.52 2.60 16.42 0.30 1.86

19 14.40 2.39 16.47 0.36 1.63

20 16.84 10.41 18.42 0.44 2.07

Weekdays/No Rain (WD-NR) 21 16.25 5.16 20.20 0.46 3.79

22 17.34 12.76 18.96 0.57 3.26

23 15.25 9.94 16.41 0.40 2.99

24 17.31 12.10 19.73 0.63 3.42

25 16.30 13.25 18.21 0.38 3.24

26 17.83 8.74 22.09 0.82 3.07

27 16.29 12.85 17.49 0.36 3.81

28 16.58 10.72 19.31 0.82 2.80

29 12.22 1.57 13.52 0.23 1.31

30 18.45 8.38 22.93 0.81 3.68

Weekends/No Rain (WE-NR) 31 16.94 13.63 18.62 0.75 3.50

32 15.70 12.71 16.71 0.40 2.42

33 13.57 3.35 15.59 0.39 2.82

34 22.27 12.98 23.94 0.83 4.96

35 16.90 14.76 18.72 0.49 4.14

36 15.48 11.99 16.19 0.35 2.96

37 15.43 8.53 16.51 0.32 2.16

38 14.52 3.78 16.73 0.44 2.74

39 13.15 3.19 14.18 0.43 1.99

40 12.07 1.56 13.28 0.21 1.22
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Table 8.7.  O–D-Level Performance Measures, Departure Time Interval 8 a.m. to 9 a.m.

Scenario Case
Scenario 

ID

O–D-Level Analysis (Zone 685 ➔ Zone 605) 
Average Number of Observations per Scenario  112

Average Travel 
Time (min)

Standard 
Deviation of 

Travel Times (min)
80th Percentile 

Travel Time (min)
Buffer 
Index

Skew 
Index

Weekdays/Rain (WD-RA) 1 45.55 34.41 72.05 1.72 7.14

2 50.42 29.99 83.98 1.13 7.99

3 49.87 34.76 83.76 1.65 5.13

4 41.58 29.29 63.58 1.34 4.47

5 42.20 28.98 74.38 1.32 7.87

6 41.11 26.74 73.78 1.36 6.33

7 40.13 28.62 55.48 1.29 3.18

8 53.79 33.07 96.88 1.00 5.20

9 47.24 37.41 68.54 2.04 5.37

10 47.33 33.75 87.88 1.28 5.58

Weekends/Rain (WE-RA) 11 44.93 35.56 63.32 2.06 3.85

12 65.26 38.65 103.26 0.76 3.54

13 45.09 31.62 74.20 1.32 4.30

14 52.74 38.34 78.55 1.75 4.95

15 42.57 38.33 64.03 2.08 10.28

16 53.24 34.28 92.48 1.23 8.23

17 42.46 33.24 60.78 1.60 4.33

18 40.98 32.09 59.50 1.73 5.55

19 41.27 33.77 57.99 1.92 8.96

20 45.58 36.03 71.70 1.39 4.70

Weekdays/No Rain (WD-NR) 21 44.12 31.75 82.54 1.21 10.15

22 35.87 24.79 63.59 1.32 7.28

23 34.52 24.51 57.21 1.44 6.14

24 38.69 26.92 66.86 1.25 6.87

25 35.17 23.02 58.96 1.38 5.17

26 33.06 22.01 42.88 1.49 9.76

27 35.92 24.40 62.88 1.33 6.37

28 36.15 24.27 66.60 1.19 7.11

29 26.56 23.64 30.74 1.84 6.56

30 40.27 26.31 77.68 1.22 6.26

Weekends/No Rain (WE-NR) 31 32.63 21.30 58.00 1.29 6.00

32 37.30 29.42 56.63 2.04 5.66

33 35.63 26.43 53.41 1.63 6.96

34 52.94 24.35 83.09 0.75 1.94

35 38.45 25.60 67.84 1.22 7.09

36 36.52 24.64 56.58 1.33 4.42

37 38.83 29.23 63.93 1.41 5.83

38 40.14 36.74 55.04 2.03 8.15

39 33.39 26.04 42.79 1.71 5.14

40 31.29 34.84 35.67 2.75 11.43
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Table 8.8.  Path-Level Performance Measures, Departure Time Interval 7 a.m. to 8 a.m.

Scenario Case
Scenario 

ID

Path-Level Analysis (Point A ➔ Point B in Fig. 8.12) 
Average Number of Observations per Scenario  1,199

Average Travel 
Time (min)

Standard 
Deviation of 

Travel Times (min)
80th Percentile 

Travel Time (min)

Planning 
Time 
Index

Buffer 
Index

Weekdays/Rain (WD-RA)   1 31.50 20.10 37.73 2.33 0.85

  2 43.56 28.20 61.74 4.29 1.33

  3 41.45 28.25 55.28 4.05 1.38

  4 31.88 21.71 37.34 2.38 0.86

  5 41.27 28.45 55.03 3.75 1.20

  6 39.31 25.92 51.91 3.80 1.33

  7 37.19 27.31 45.52 3.61 1.40

  8 41.74 26.55 58.24 3.95 1.26

  9 33.69 23.39 40.96 2.74 1.02

10 42.94 30.27 58.91 4.48 1.52

Weekends/Rain (WE-RA) 11 34.91 22.74 43.22 3.01 1.13

12 43.65 27.81 61.53 4.14 1.21

13 39.46 27.11 51.65 3.70 1.29

14 38.01 26.43 47.77 3.72 1.41

15 28.91 15.94 34.32 1.90 0.65

16 43.47 27.69 63.25 4.19 1.29

17 33.48 22.55 41.00 2.77 1.06

18 29.73 17.74 35.14 2.03 0.71

19 30.31 18.35 35.46 2.11 0.74

20 34.41 25.72 40.72 3.14 1.27

Weekdays/No Rain (WD-NR) 21 34.59 22.15 44.23 3.13 1.21

22 30.67 18.23 37.97 2.61 1.10

23 29.72 19.95 35.16 2.44 1.04

24 31.34 18.86 39.40 2.72 1.14

25 31.56 22.88 37.63 2.70 1.12

26 34.50 21.67 46.95 2.94 1.04

27 31.33 24.28 36.46 2.74 1.16

28 32.22 20.18 40.13 2.80 1.14

29 24.79 12.13 29.35 1.52 0.54

30 35.34 19.64 49.40 2.91 0.98

Weekends/No Rain (WE-NR) 31 28.82 16.69 34.70 2.32 0.99

32 29.95 19.65 36.11 2.52 1.10

33 28.04 18.14 33.07 2.04 0.82

34 36.38 20.88 50.47 3.46 1.18

35 30.74 17.67 38.17 2.54 1.04

36 28.78 17.29 34.55 2.27 0.96

37 30.01 20.60 35.63 2.43 1.00

38 27.74 16.29 33.02 2.14 0.92

39 23.66 10.11 28.24 1.42 0.50

40 27.27 17.36 32.00 1.98 0.81
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consecutive days from May 2, 2010, to May 17, 2010, in New 
York, to perform this comparison. We selected the same path 
used in the path-level analysis (see Figure 8.12) to obtain the 
measures for the GPS data and compare them with the simu-
lation results presented in the previous section. For the same 
departure time interval (7–8 a.m.), we identified a total of 
29 GPS traces traversing the selected path. Given this relatively 
small sample size, it was not advisable to further divide the 
sample into different scenario categories to perform detailed 
comparison for each scenario category separately. Instead, we 
used the entire 29 traces to construct the travel time distribu-
tion, which can be viewed as a small sample of observed path 
travel times at departure time interval 7–8 a.m. between May 

2, 2010, and May 17, 2010. The goal of the analysis is thus to 
examine how similar (or different) this observed travel time 
distribution is to (or from) the simulated travel time distribu-
tions in an overall sense.

The estimation results are provided in Table 8.9. Figures 8.17 
through 8.20 display the measures estimated from the GPS data 
(dotted lines) in conjunction with the measures from the simu-
lation outputs (scatter plots). The scatter plots are the same as 
those in Figure 8.13 through Figure 8.16. For all figures, the 
observed statistics lie within the range of the simulated statistics, 
suggesting that (1) the traffic simulation model could reproduce 
the real-world traffic-pattern for the given path, and (2) the con-
structed travel time distributions under various scenarios could 
be effectively used to predict potential variations in travel times.

Table 8.9.  GPS Data Performance Measures, Departure Time Interval  
7 a.m. to 8 a.m.

Number of 
Observations

Mean Travel 
Time (min)

80th Percentile 
Travel Time (min)

Planning 
Time Index

Buffer 
Index

GPS traces 29 27.94 38.89 3.43 1.00

(continued from page 97)

Figure 8.17.  Simulation versus observation: Mean travel time (path-level).
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Figure 8.18.  Simulation versus observation: 80th percentile travel time  
(path-level).

Figure 8.19.  Simulation versus observation: Planning Time Index (path-level).
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Figure 8.20.  Simulation versus observation: Buffer Index (path-level).
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C h a p t e r  9

The purpose of this chapter is to demonstrate how micro-
simulation tools can be used in performing reliability analy-
ses using the framework and tools developed under this 
project. The Aimsun simulation software was used to per-
form the microsimulation task.

Study Area Description

For the micro-model scenario the study area was a section of 
the wider meso-model study area and was located in the East 
Manhattan area bounded by 74th Street to the north, 48th 
Street to the south, 5th Avenue to the west, and York Avenue 
to the east. Figure 9.1 shows the extent of the study area con-
sidered for microsimulation purposes.

The micro-model covers an area that includes 178 lane kilo-
meters and 217 signalized intersections. A total of 147 centroids  
were connected to the network to generate origin–destination 
trips, including 44 gate and 103 internal centroids.

Two base models were constructed representing peak 
a.m. weekday and weekend conditions. The weekday a.m. 
peak period model consisted of a total demand of around 
155,000 vehicles over a 5-hour period from 6 a.m. to 11 a.m. 
The weekend peak period model consisted of a total demand 
of around 80,000 vehicles over a period of 3 hours from 
2 p.m. to 5 p.m.

Microsimulation Approach  
and Objective

The general objective of the microsimulation tests was to 
determine a range of reliability measures that is characteristic 
of the study area for weekday and weekend traffic. The week-
day and weekend scenarios were subjected to incident and 
demand variation events that are typical of the study area. 
Due to limitations with the modeling platform, the imple-
mentation of variable weather conditions was not possible as 
part of the microsimulation study. It was assumed that 

constant fair weather conditions prevailed across all the sce-
narios tested for weekday and weekend.

Scenario Description

The same methodology that was used to generate scenarios 
for the meso-model using the Scenario Manager was applied 
for the micro-model. The approach that was taken was to 
generate all the scenarios in one operational step using the 
Scenario Manager for the wider study area. Additional details 
of that procedure can be found in the Chapter 8 section, Gen-
erating Scenarios Using the Scenario Manager.

The scenarios relevant for the microsimulation study area 
were then selected based on incidents that were located within 
the boundaries. Fifteen of the generated weekday scenarios 
and four of the weekend scenarios contained incidents within 
the microsimulation study area. Figure 9.2 and Figure 9.3 
show the incident locations used for the study.

Microsimulation Travel Time 
Reliability Results

The input scenarios were prepared and imported into the 
Aimsun weekday and weekend models. The trajectories out-
put for each vehicle completing trips were obtained for each 
scenario run and processed through the Trajectory Processor 
to obtain the reliability metrics.

Network-Level Results

The reliability performance across the entire network was 
measured using distance normalized travel times (i.e., aver-
age travel time per mile, or TTPM) across 3 hours for the 
weekday and weekend peak periods. The weekday peak was 
for the a.m. period with time intervals spanning 7–8 a.m., 
8–9 a.m. and 9–10 a.m. (Tables 9.1, 9.2, and 9.3). For the  
weekend, peak hourly intervals were reported between 2 p.m. 

Analysis Process: Microscopic Models
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and 5 p.m. (Tables 9.4, 9.5, and 9.6). The metrics reported 
include average TTPM, standard deviation of TTPM, and 
the 95th/90th/80th percentile TTPMs. The results are dis-
played on the following charts for the 15 weekday scenarios 
and the four weekend scenarios that were modeled and in 
Figures 9.4–9.6.

The observed trends from the data show that for the 
network-wide performance

•	 The travel time variability is significantly less during typi-
cal weekend peak periods than weekday peaks.

•	 The variability by time of day is more pronounced across 
the hourly intervals for the weekday peaks. The travel times 
for the later hours in the period are characterized by more 
variability.

•	 Overall there is a wider range of variability in travel times 
for the microsimulation experiment compared with the 
mesosimulation experiment. For example, for the third 
weekday hour (9–10 a.m.), the average TTPM for Sce-
nario 6 is 7.77 min/mile, while for Scenario 11 the value is 
36.23 min/mile, resulting in a spread of 28.46 min/mile. 
This is much higher compared with the meso-experiment 
in which the largest spread for average TTPM is around 
2 min/mile. Possible reasons for this are discussed further in 
a subsequent section, Summary of Microsimulation Experi-
ment Findings.

O–D-Level Analysis

For travel between origin and destination (O–D) points within 
the network, two gate centroids were selected as is shown in 
Figure 9.7. This pair of centroids had a significant number of 
trips between them for all the hour intervals studied. The 
results for all trips between the O–D pair and for the hourly 
intervals between 7 a.m. and 9 a.m. for weekdays are presented 
in Table 9.7 and Table 9.8, and for the hourly intervals between 
2 p.m. and 4 p.m. for weekends in Table 9.9 and Table 9.10. 

Figure 9.1.  Microsimulation study area  
(© Google Maps).

Weekday Scenario Weekend Scenario

Figure 9.2.  Microsimulation network showing incident locations.

(text continues on page 122)
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Table 9.1.  Network-Level, Departure Time Interval 7 a.m. to 8 a.m., Weekday

Scenario 
Name

Scenario 
ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard Deviation 
of TTPM (min/mile)

95th Percentile 
TTPM (min/mile)

90th Percentile 
TTPM (min/mile)

80th Percentile 
TTPM (min/mile)

4-21 1 10.55 5.46 20.63 16.63 13.47

21-29 2 9.52 4.91 18.59 15.09 12.18

25-3 3 10.26 5.12 19.55 16.25 13.20

41-7 4 9.71 5.02 19.37 15.56 12.61

44-12 5 8.45 4.31 16.12 13.28 10.85

46-39 6 7.17 4.19 14.16 11.46 9.09

48-29 7 7.71 4.18 15.00 12.27 9.81

58-10 8 8.48 4.27 16.11 13.27 10.80

61-34 9 11.55 6.41 23.71 18.78 14.78

65-22 10 10.80 5.74 21.51 17.35 13.94

72-8 11 12.14 6.78 24.65 19.85 15.69

80-26 12 7.35 4.02 14.16 11.64 9.35

85-23 13 11.64 6.86 23.78 18.64 14.87

89-4 14 8.87 4.42 17.06 13.96 11.38

90-49 15 10.32 5.19 20.33 16.60 13.30

Figure 9.3.  Scatter plot: Average travel time per mile.
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Table 9.2.  Network-Level, Departure Time Interval 8 a.m. to 9 a.m., Weekday

Scenario 
Name

Scenario 
ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard Deviation 
of TTPM (min/mile)

95th Percentile 
TTPM (min/mile)

90th Percentile 
TTPM (min/mile)

80th Percentile 
TTPM (min/mile)

4-21 1 13.69 8.18 26.27 21.73 17.46

21-29 2 12.26 5.82 23.45 19.15 15.64

25-3 3 13.86 9.75 26.93 22.15 17.58

41-7 4 12.90 7.77 24.59 20.19 16.25

44-12 5 11.13 5.64 21.78 17.91 14.43

46-39 6 7.77 3.96 14.87 12.09 9.81

48-29 7 8.87 4.57 17.07 13.88 11.33

58-10 8 10.24 4.87 19.62 16.00 13.11

61-34 9 16.27 11.08 31.27 25.86 20.76

65-22 10 14.81 10.03 28.14 23.36 18.63

72-8 11 19.14 17.41 40.10 31.26 23.75

80-26 12 8.08 4.06 15.26 12.58 10.21

85-23 13 18.87 13.31 39.60 31.11 24.42

89-4 14 12.47 6.83 24.33 19.89 15.92

90-49 15 13.86 7.38 26.78 22.07 17.60

Table 9.3.  Network-Level, Departure Time Interval 9 a.m. to 10 a.m., Weekday

Scenario 
Name

Scenario 
ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard Deviation 
of TTPM (min/mile)

95th Percentile 
TTPM (min/mile)

90th Percentile 
TTPM (min/mile)

80th Percentile 
TTPM (min/mile)

4-21 1 24.27 19.55 57.60 43.62 32.97

21-29 2 15.13 8.96 28.48 23.85 19.10

25-3 3 23.03 20.54 51.08 39.40 29.81

41-7 4 15.90 11.24 30.06 24.72 19.96

44-12 5 13.87 9.25 26.51 21.89 17.52

46-39 6 8.72 3.97 15.94 13.22 10.97

48-29 7 11.02 5.21 20.91 17.41 14.15

58-10 8 12.34 5.76 22.73 19.14 15.66

61-34 9 27.32 20.56 60.12 46.01 34.94

65-22 10 26.29 29.44 61.60 46.86 33.34

72-8 11 36.23 27.44 74.87 60.43 49.66

80-26 12 10.14 4.55 18.78 15.57 12.93

85-23 13 27.10 21.02 57.57 44.75 34.62

89-4 14 16.03 11.22 31.09 25.61 20.28

90-49 15 20.68 15.67 41.46 32.95 26.61
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Table 9.4.  Network-Level, Departure Time Interval 2 p.m. to 3 p.m., Weekend

Scenario 
Name

Scenario 
ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard Deviation 
of TTPM (min/mile)

95th Percentile 
TTPM (min/mile)

90th Percentile 
TTPM (min/mile)

80th Percentile 
TTPM (min/mile)

39-4 1 7.86 4.10 15.11 12.46 10.21

56-7 2 7.86 4.10 15.11 12.46 10.21

75-5 3 7.86 4.09 15.05 12.50 10.24

94-4 4 7.64 3.87 14.35 12.00 9.91

Table 9.5.  Network-Level, Departure Time Interval 3 p.m. to 4 p.m., Weekend

Scenario 
Name

Scenario 
ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard Deviation 
of TTPM (min/mile)

95th Percentile 
TTPM (min/mile)

90th Percentile 
TTPM (min/mile)

80th Percentile 
TTPM (min/mile)

39-4 1 9.22 5.50 19.46 15.30 11.99

56-7 2 9.23 5.51 19.46 15.35 12.01

75-5 3 9.10 5.27 18.64 14.80 11.69

94-4 4 8.88 5.21 18.44 14.45 11.41

Table 9.6.  Network-Level, Departure Time Interval 4 p.m. to 5 p.m., Weekend

Scenario 
Name

Scenario 
ID

Network-Level Analysis

Average TTPM 
(min/mile)

Standard Deviation 
of TTPM (min/mile)

95th Percentile 
TTPM (min/mile)

90th Percentile 
TTPM (min/mile)

80th Percentile 
TTPM (min/mile)

39-4 1 10.00 6.06 21.60 17.17 13.28

56-7 2 9.76 5.96 21.20 16.86 13.01

75-5 3 9.44 5.68 20.55 15.90 12.30

94-4 4 10.04 5.96 21.76 17.28 13.37
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Figure 9.4.  Scatter plot: Standard deviation of travel time per mile.

Figure 9.5.  Scatter plot: 80th percentile travel time per mile.
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Figure 9.6.  Scatter plot: 95th percentile travel time per mile.

Figure 9.7.  Location of origin (3457817) and destination 
(3475128) in the network.
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Table 9.7.  Origin (3457817)–Destination (3475128), Departure Time Interval 7 a.m. to 8 a.m., Weekday

Scenario 
Name

Scenario 
ID

O–D-Level Analysis

Average 
Travel Time 

(min)

Standard 
Deviation 
of Travel 

Time (min)

95th Percentile 
Travel Time 

(min)

90th Percentile 
Travel Time 

(min)

80th Percentile 
Travel Time 

(min)
Buffer 
Index

Skew 
Index

Number of 
Vehicles

4-21 1 11.66 4.10 18.66 16.93 15.12 0.60 0.98 592

21-29 2 10.44 4.37 19.70 17.26 13.53 0.89 2.10 579

25-3 3 12.27 3.84 19.04 16.89 15.22 0.55 0.90 632

41-7 4 11.26 4.55 19.95 17.54 15.11 0.77 1.66 585

44-12 5 9.92 4.20 17.33 15.73 13.68 0.75 1.16 613

46-39 6 4.72 1.40 6.86 6.52 6.01 0.45 0.84 613

48-29 7 7.73 3.23 14.21 12.46 10.35 0.84 2.07 668

58-10 8 8.85 2.90 14.20 12.20 10.93 0.60 0.79 685

61-34 9 11.81 4.51 19.61 17.67 15.46 0.66 1.42 560

65-22 10 11.58 3.82 18.08 16.68 15.12 0.56 1.04 578

72-8 11 12.31 5.22 22.99 20.30 16.75 0.87 1.74 530

80-26 12 5.85 2.16 10.48 8.81 7.26 0.79 1.93 685

85-23 13 11.57 4.74 19.26 17.14 14.31 0.66 1.26 653

89-4 14 8.76 3.52 14.90 13.12 11.70 0.70 1.50 632

90-49 15 10.81 3.86 18.31 15.74 14.12 0.69 1.35 573

Table 9.8.  O (3457817)–D (3475128), Departure Time Interval 8 a.m. to 9 a.m., Weekday

Scenario 
Name

Scenario 
ID

O–D-Level Analysis

Average 
Travel Time 

(min)

Standard 
Deviation 
of Travel 

Time (min)

95th Percentile 
Travel Time 

(min)

90th Percentile 
Travel Time 

(min)

80th Percentile 
Travel Time 

(min)
Buffer 
Index

Skew 
Index

Number of 
Vehicles

4-21 1 13.36 4.89 22.15 19.69 16.86 0.66 1.07 412

21-29 2 14.37 5.05 22.40 20.37 18.41 0.56 0.72 439

25-3 3 13.93 4.71 23.16 20.12 17.31 0.66 1.39 462

41-7 4 13.61 4.74 21.87 19.02 17.03 0.61 0.97 456

44-12 5 14.60 5.31 23.53 21.09 18.59 0.61 0.81 496

46-39 6 6.32 1.21 8.34 7.85 7.22 0.32 1.34 688

48-29 7 10.36 3.03 15.98 14.50 12.60 0.54 1.27 625

58-10 8 12.71 4.11 19.86 17.88 15.80 0.56 1.02 496

61-34 9 17.11 5.75 27.41 24.79 21.25 0.60 1.45 439

65-22 10 14.91 4.74 22.95 21.51 18.39 0.54 1.29 547

72-8 11 18.46 10.82 34.00 25.77 22.28 0.84 1.84 454

80-26 12 8.69 2.64 13.70 12.67 10.71 0.58 1.75 665

85-23 13 17.53 6.60 29.94 26.61 22.10 0.71 2.50 463

89-4 14 13.21 4.13 20.66 18.21 16.18 0.56 0.97 536

90-49 15 12.98 3.65 20.33 18.10 15.40 0.57 1.59 450
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Table 9.9.  O (3457817)–D (3475128), Departure Time Interval 2 p.m. to 3 p.m., Weekend

Scenario 
Name

Scenario 
ID

O–D-Level Analysis

Average 
Travel Time 

(min)

Standard 
Deviation 
of Travel 

Time (min)

95th Percentile 
Travel Time 

(min)

90th Percentile 
Travel Time 

(min)

80th Percentile 
Travel Time 

(min)
Buffer 
Index

Skew 
Index

Number of 
Vehicles

39-4 1 6.47 2.28 10.22 8.26 7.53 0.58 1.39 547

56-7 2 6.47 2.28 10.22 8.26 7.53 0.58 1.39 547

75-5 3 6.52 2.31 10.54 8.80 7.61 0.62 1.71 547

94-4 4 6.14 1.36   8.29 7.85 7.25 0.35 1.18 563

Table 9.10.  O (3457817)–D (3475128), Departure Time Interval 3 p.m. to 4 p.m., Weekend

Scenario 
Name

Scenario 
ID

O–D-Level Analysis

Average 
Travel Time 

(min)

Standard 
Deviation 
of Travel 

Time (min)

95th Percentile 
Travel Time 

(min)

90th Percentile 
Travel Time 

(min)

80th Percentile 
Travel Time 

(min)
Buffer 
Index

Skew 
Index

Number of 
Vehicles

39-4 1 10.60 4.80 19.51 17.22 14.05 0.84 1.70 576

56-7 2 10.66 4.80 19.39 17.28 14.26 0.82 1.65 576

75-5 3 8.92 3.42 15.67 12.63 10.94 0.76 1.51 575

94-4 4 9.50 4.46 18.08 15.71 12.48 0.90 2.10 586

The results are reported based on average nonnormalized 
travel times for all trips across all routes between the O–D pair. 
Five metrics were reported: the average travel time, standard 
deviation of travel time, 95th/90th/80th percentile travel 
times, Buffer Index, and Skew Index.

Figures 9.8 to 9.11 display the results that show that the 
interscenario variability is more significant for weekdays com-
pared with weekends. Compared with the meso-model results, 
the results for the micro experiment show a much wider range 
of variation.

Path-Level Analysis

Analysis of travel time reliability can also be done at a path 
level for trips following a route between two points in the 
network. The length of the path chosen for this experiment is 
around 1.2 miles and is shown in Figure 9.12. The weekday 
peak was for the 7–8 a.m. time interval (Table 9.11), and the 
weekend peak was for the 2–3 p.m. interval (Table 9.12). The 
performance measures reported for the path analysis are 
average travel time, standard deviation, 95th/90th/80th per-
centile, Planning Time Index, and Buffer Index. The results 
are displayed in Figures 9.13 to 9.16 and indicate that the 

travel time distribution at a path level is significantly more 
variable between scenarios for the weekday peak versus sce-
narios for the weekend peak.

Summary of Microsimulation 
Experiment Findings

In summary, the findings of the microsimulation experi-
ments across all levels of detail are characterized by the 
following:

•	 Weekday peak period travel times are more variable than 
weekend peak periods.

•	 Variability in travel time increases as the demand increases 
during the simulation period.

•	 Compared with the meso-model the microsimulation 
travel times are much more variable for the same period of 
analysis. This can be attributed to:
44 Study area size. The much smaller study area of the 
micro-model does not allow for much contribution to 
the mean travel time by trips that are not affected by 
incidents. The impact of incidents is more significant in 
this small microsimulation context because the majority 
of the trips in the model are affected. Across a wider 

(continued from page 115)

Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22388


123   

Figure 9.8.  Average travel time (3457817–3475128).

Figure 9.9.  Standard deviation of travel times (3457817–
3475128).

Incorporating Reliability Performance Measures into Operations and Planning Modeling Tools

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22388


124

Figure 9.10.  80th percentile travel time (3457817–
3475128).

Figure 9.11.  Buffer Index (3457817–3475128).
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area, such as in the meso-experiment, overall average 
times would not be as sensitive to local incidents as 
much, since there would be many of the model trips that 
are far removed from the incident and that would oper-
ate under normal travel conditions.

44 Fundamental difference in the microsimulation and meso-
simulation tools. The way Aimsun does micro-modeling 
versus the way DYNASMART does meso-modeling could 
be another reason for greater variability in the micro 
results. In micro-models, individual vehicles typically 
function separately and are tracked continuously through-
out the simulation and reported as separate trajectories. 
In DYNASMART, there is more of a grouping of individ-
ual vehicles in “platoons,” and each vehicle output metric 
is influenced by the way the platoon moves through the 
network.

Figure 9.12.  Path location.

Table 9.11.  Departure Time Interval 7 a.m. to 8 a.m., Weekday

Scenario 
Name

Scenario 
ID

Path-Level Analysis

Average 
Travel Time 

(min)

Standard 
Deviation 
of Travel 

Time (min)

95th Percentile 
Travel Time 

(min)

90th Percentile 
Travel Time 

(min)

80th Percentile 
Travel Time 

(min)
Buffer 
Index

Planning 
Time Index

4-21 1 11.56 3.69 17.94 16.45 14.84 0.55 12.14

21-29 2 10.43 3.60 17.40 15.34 13.15 0.67 11.84

25-3 3 11.15 2.90 15.15 14.69 13.48 0.36 10.30

41-7 4 10.46 3.46 16.60 15.15 13.61 0.59 11.31

44-12 5 9.00 3.27 14.87 13.38 11.62 0.65 10.07

46-39 6 5.62 1.36 7.74 7.32 6.75 0.38 5.28

48-29 7 7.39 2.10 11.57 10.59 8.99 0.57 7.91

58-10 8 9.57 2.80 14.45 13.17 11.96 0.51 9.87

61-34 9 11.12 3.31 17.39 15.86 13.49 0.56 11.75

65-22 10 11.33 3.59 16.71 15.84 14.44 0.48 11.34

72-8 11 13.03 4.33 22.50 18.02 16.07 0.73 15.25

80-26 12 6.24 1.41 8.72 8.24 7.32 0.40 5.95

85-23 13 10.83 3.05 15.09 13.82 13.08 0.39 10.18

89-4 14 8.60 2.42 12.44 12.10 10.84 0.45 8.42

90-49 15 10.55 2.98 15.42 15.03 13.47 0.46 10.43
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Table 9.12.  Departure Time Interval 2 p.m. to 3 p.m., Weekend

Scenario 
Name

Scenario 
ID

Path-Level Analysis

Average 
Travel 

Time (min)

Standard 
Deviation 
of Travel 

Time (min)

95th Percentile 
Travel Time 

(min)

90th Percentile 
Travel Time 

(min)

80th Percentile 
Travel Time 

(min)
Buffer 
Index

Planning 
Time Index

39-4 1 7.52 1.54 10.14 9.36 8.82 0.35 6.95

56-7 2 7.52 1.54 10.14 9.36 8.82 0.35 6.95

75-5 3 7.58 1.68 10.38 9.82 8.95 0.37 7.11

94-4 4 7.35 1.47 9.84 9.42 8.63 0.34 6.74

Figure 9.13.  Average travel time.

Figure 9.14.  80th percentile travel time.
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Figure 9.15.  Planning Time Index.

Figure 9.16.  Buffer Index.
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C h a p t e r  1 0

The SHRP 2 L04 research project has addressed the need for a 
comprehensive framework and a conceptually coherent set of 
methodologies to (1) better characterize travel time reliability 
and the manner in which the various sources of variability 
operate individually and in interaction with each other in 
determining the overall reliability performance of a network, 
(2) assess its impacts on users and the system, and (3) deter-
mine the effectiveness and value of proposed counter mea-
sures. In doing so, this project has closed an important gap in 
the underlying conceptual foundations of travel modeling and 
traffic simulation, and provided practical means of generating 
realistic reliability measures using network simulation models 
in a variety of application contexts.

The general methodology for the inclusion of reliability in 
planning and operational models is based on the notion that 
transportation reliability is intrinsically related to the varia-
tion in experienced (or repeated) travel times for a given 
facility or travel experience. Thus, integrating reliability in 
traffic models is about capturing and representing the effect 
of the various sources of variation on the performance of the 
transportation system. The proposed approach is grounded in 
a fundamental distinction between (1) systematic variation in 
travel times resulting from predictable seasonal, day-specific, or 
hour-specific factors that affect either travel demand or net-
work service rates, and (2) random variation that stems from 
various sources of largely unpredictable (to the user) fluctua-
tion. The former are addressed exogenously through model 
segmentation and demand/supply scenarios, creating the back-
drop against which the random sources of variation are mod-
eled. These sources are modeled both in terms of their direct 
impact on network performance and in terms of travelers’ 
responses which result in changes in travel demand.

In this study, several sources of variability have been dis-
tinguished in a taxonomy that recognizes demand- versus 
supply-side, exogenous versus endogenous, and systematic 
versus random variability. The variability in system perfor-
mance has both systematic causes, which can be modeled 

and predicted, and causes that can only be modeled as random 
variables and which occur according to some probabilistic 
mechanism. The general approach to modeling phenomena 
and sources of variability incorporates as much as possible the 
causal or systematic determinants of variability, while the 
remaining inherent variation is then added to the representa-
tion through suitably calibrated probabilistic mechanisms. 
This approach can be implemented for both micro- and 
mesosimulation levels, as demonstrated in this project. Not-
withstanding the desire for explanation, the portion of vari-
ability that must be viewed as inherent, or random, is likely to 
remain substantial.

The incorporation of reliability factors into the models can 
be done in either of two principal ways: (1) analytically, in 
which case travel time is implicitly treated as a random vari-
able and its distribution, or some parameters of this distribu-
tion, such as mean and variance, are described analytically and 
used in the modeling process or; (2) empirically, through 
multiple scenarios, in which case the travel time distribution 
is not parameterized analytically but is simulated directly or 
explicitly through multiple model runs with different input 
variables. The conclusion emerging from this research is that 
both methods are useful and could be hybridized to account 
for different sources of travel time variation in the most effec-
tive and computationally efficient way.

Travel time variability can be measured and analyzed in a 
variety of ways and at different levels of disaggregation. To 
constructively measure variability of travel times, a specific 
time unit must be chosen in terms of interval during the day 
(e.g., an hour between 7:00 a.m. and 8:00 a.m.), day of week 
(e.g., Monday), and season (e.g., fall). This is necessary to 
control for systematic (e.g., seasonal) differences in travel 
time that occur between hours of the day, between days  
of the week, and between seasons. The remaining variability 
of travel times across different days for the same unit (hour, 
day of week, and season) can then be used as the basic mea-
sure of travel reliability.

Study Findings and Conclusions
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By necessity, the quantification of travel time variability 
(that characterizes the reliability of travel in a network) 
entails representing the variability of travel times through the 
network’s links and nodes along the travel paths followed by 
travelers, and taking into account the correlation between 
link travel times. Capturing these correlation patterns is gen-
erally very difficult when only link-level measurements are 
available. More important, given that a vehicle typically tra-
verses a large number of links along its journey, deriving 
path-level and O–D-level travel time distributions from the 
underlying link travel time distributions is an extremely 
unwieldy and analytically forbidding task.

A way around these challenges with regard to travel time 
correlation across links and nodes is to obtain or measure the 
path- and/or O–D-level travel times as a complete entity and 
not by constructing it from link-level distributions. In a sim-
ulation model, this means obtaining the travel times over 
entire or partial vehicle trajectories. Regardless of the specific 
reliability measures of interest, the availability of vehicle tra-
jectories in the output of a simulation model enables con-
struction of the path- and O–D-level travel time distributions 
of interest, as well as the extraction of link-level distributions. 
As such, the key building block for producing measures of 
reliability in a network simulation model is vehicle trajecto-
ries and the associated experienced traversal times through 
the entirety or part of the travel path. The vehicle trajectory 
contains the traffic information and itinerary associated with 
each vehicle in the transportation network.

An important conclusion and contribution of the study is 
that travel time variability is best measured by variation 
across individual trajectories for the given facility and time 
unit. Thus, for reliability analysis purposes, the proposed 
framework unifies all particle-based simulation approaches so 
long as they produce vehicle trajectories; this methodological 
approach is further supported with the detailed discussion in 
Chapter 4 and the development of functional requirements 
for such simulation models.

In addition, many existing simulation tools view and 
model various sources of travel time variability (e.g., traffic 
incidents, work zones, weather, special events, other fluctua-
tions in demand) as exogenous events using user-specified 
scenarios. Distinct from these exogenous factors, there are 
also endogenous sources of variation that are inherently 
reproduced, to varying degrees, by given traffic simulation 
models. Many studies have proposed ways to capture random 
variation in various traffic phenomena within particular 
micro- or mesosimulation models. Examples include flow 
breakdown, incidents due to drivers’ risk-taking behaviors, 
and heterogeneity in driving behaviors. All these have impor-
tant implications for how the models are used to produce 
reliability estimates, and how these measures are interpreted 
and in turn used operationally.

The proposed methodological approach for modeling and 
estimating travel time reliability using simulation models fea-
tures three components:

1.	 The Scenario Manager, which captures exogenous unre-
liability sources such as special events, adverse weather, 
work zones, and travel demand variation;

2.	 Reliability-integrated simulation tools that model sources 
of unreliability endogenously, including user heterogene-
ity, flow breakdown, and collisions; and

3.	 The Vehicle Trajectory Processor, which extracts reliability 
information from the simulation output, namely, vehicle 
trajectories.

The primary role of the Scenario Manager is to prepare 
input scenarios for the traffic simulation models; this a core 
part of the framework as it directly affects the final travel time 
distributions. The Scenario Manager is essentially a preproces-
sor of simulation input files for capturing exogenous sources 
of travel time variation, such as external events, traffic control 
and management strategies, and travel demand-side factors. 
Recognizing the importance of the scenario definition and the 
complexity of identifying relevant exogenous sources, the  
Scenario Manager provides the ability to construct scenarios 
that entail any mutually consistent combinations of external 
events. It captures parameters that define external sources of 
unreliability (such as special events, adverse weather, and work 
zones) and enables users either to specify scenarios with par-
ticular historical significance or policy interest, or to generate 
them randomly given the underlying stochastic processes of the 
associated events.

Using these generated scenarios in conjunction with the his-
torical average demand as inputs, the traffic simulation models 
produce the vehicle trajectory outputs. During the simulation, 
the traffic simulation models capture the endogenous sources 
of travel time variability, such as endogenous flow breakdown, 
heterogeneous driving behaviors, and so forth. In general, traf-
fic operation models need to model variations from different 
sources in both demand and supply sides; they also need to cap-
ture traffic physics that characterize inherent probabilistic phe-
nomena, including the collective effects that arise from the 
inherent randomness in driving behavior, namely, flow break-
down and its impact on travel time. In general, traffic operation 
models should be capable of recognizing and representing both 
demand- and supply-side causes of variability, due to different 
sources. Importantly, rather than affecting travel time reliability 
separately, these factors often interact, which requires the ability 
to model all or any combination of causes of variability in one 
operational model. Most critically, such operational models 
should be particle-based (whether microscopic or mesoscopic 
simulation models) and capable of producing reliability-related 
output in the form of vehicle travel trajectories.
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The vehicle Trajectory Processor is then introduced to 
extract reliability-related measures from the vehicle trajectory 
output of the simulation models. It produces and helps visual-
ize reliability performance measures (travel time distributions, 
indicators) from observed or simulated trajectories. Observed 
trajectories may be obtained directly through measurement 
(e.g., GPS-equipped probe vehicles), thus enabling validation 
of travel time reliability metrics generated on the basis of out-
put from simulation tools.

While chaining the three modules of the reliability analysis 
framework (Scenario Manager, Simulation Model, and Trajec-
tory Processor) completes the necessary procedures for per-
forming a scenario-based reliability analysis, there are two 
feedback loops worth mentioning to further incorporate 
behavioral aspects of travelers into the reliability modeling 
framework. One of these feedback loops could potentially use 
scenario-specific travel times to make scenario-conditional 
demand adjustment (e.g., departure time change under severe 
weather condition). The other loop suggests that the overall 
system uncertainty might affect the average demand by shift-
ing the equilibrium point (i.e., reliability-sensitive network 
equilibrium), and such feedback could be used in travel 
demand forecasting models that predict the impact of reliabil-
ity measures on travel patterns. These are key considerations 
for future research and development as identified further in the 
subsequent section, Recommendations for Future Research.

The reliability analysis framework and associated proto-
type tools developed in this project enable a full range of 
analysis to address network-level, O–D-level, path-level, and 
segment/link-level travel time reliability using regional plan-
ning and operations models. In doing so, users need to con-
sider not only different properties of the reliability measures 
but also their applicability at an intended analysis level. A 
number of reliability performance measures have been iden-
tified and categorized on the basis of their applicability to 
different levels of travel time distributions and associated 
reliability analysis, namely, network-level, O–D-level, and 
path/segment/link-level. It is essential in the reliability per-
formance analysis to consider the user’s point of view, as trav-
elers will adjust their departure time, and possibly other 
travel decisions, in response to unacceptable travel times and 
delays in their daily commutes. User-centric reliability mea-
sures describe user-experienced or perceived travel time reli-
ability, such as probability of on time arrival, schedule delay, 
and volatility, and sensitivity to departure time. The majority 
of these measures can be readily generated through the pro-
totype Trajectory Processor that was developed as part of this 
project, while others could be incorporated into future devel-
opment and enhancement of the Trajectory Processor.

The potential linking of travel demand forecasting models 
to traffic microsimulation provides the opportunity for more 
accurate representation of traffic conditions to be fed back to 

choices about travel time, travel route, travel mode, or the  
decision to travel at all. This project highlighted the impor-
tance of a feedback mechanism that could incorporate travel 
time reliability into traditional trip-based travel demand 
models, emerging activity-based models, and route choice 
models. In the context of this project, incorporation of reli-
ability was primarily considered in the overall framework of 
demand-network equilibrium, with the demand side repre-
sented by an advanced activity-based model (ABM) and the 
network simulation side represented by an advanced dynamic 
traffic assignment (DTA). Several important aspects of ABM-
DTA integration and associated feedback mechanisms are 
essential and need to be addressed even before incorporation 
of travel time reliability measures. The incorporation of reli-
ability into a network simulation model requires innovative 
approaches to generate the reliability measures that are fed 
into the demand model, to make route choice sensitive to reli-
ability measures, and to ensure that a realistic correlation pat-
tern is taken into account when route-level measures of 
reliability are constructed from link-level measures.

Incorporating travel time reliability into stochastic traffic 
simulation models enables the off-line evaluation of traffic 
network performance, including assessment of management 
interventions, policies, and geometric configuration, as well 
as both short-term and long-run impacts of policies aimed at 
improving travel time and service reliability. The reliability 
analysis tools developed in this project (namely, the Scenario 
Manager and Trajectory Processor), even in their current pro-
totype state of development, can be readily used to perform 
essential elements of such evaluations. A prerequisite for the 
use of the analysis tools is the availability of a particle-based 
traffic simulation model, capable of producing vehicle trajec-
tory output. For demonstration purposes, the Scenario Man-
ager and Trajectory Processor prototypes incorporate interfaces 
to the Aimsun and DYNASMART-P simulation platforms, as 
examples of microscopic and mesoscopic models, respectively. 
It is noted that both the Scenario Manager and the Trajectory 
Processor have been developed at a prototype level of detail 
and functionality for project team use only, and are shared with 
the developer and user community on an “as is” basis. For this 
reason, they may not meet all requirements of an implement-
ing agency without further development.

Implementation Steps

This project has developed and demonstrated a unified 
approach with broad applicability to various planning and 
operations analysis problems, which allows agencies to incor-
porate reliability as an essential evaluation criterion. The 
approach is independent of specific analysis software tools to 
enable and promote wide adoption by agencies and developers. 
The project has also developed specific software tools intended 
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to prototype the key concepts—namely, those of a Scenario 
Manager and a Trajectory Processor—and demonstrated 
them with two commonly used network modeling software 
platforms.

Agency Adoption

Throughout this study, it has become clear that reliability as 
an evaluation and decision factor is here to stay. It is therefore 
essential for agencies and consultants that support them to 
provide the inputs required to consider reliability in design-
ing and evaluating future programs, projects, and policies. 
Agency hesitation to adopt new approaches is rooted in two 
factors: (1) the institutional cost of doing something differ-
ent, and (2) lack of trust and experience in the new genera-
tion of tools available to address this need. The present project 
provides the approaches and tools to address the second fac-
tor. Furthermore, it addresses the first factor by developing an 
approach that is essentially software neutral and can be read-
ily adapted with the agencies’ existing modeling tools.

Nonetheless, unless developers of commercial software 
provide the necessary utilities and linkages to fully enable 
reliability-based analysis approaches, agencies will not totally 
come on board. The SHRP 2 program has taken important 
steps to create further awareness of the importance of reli-
ability as a decision factor and to create further awareness of 
the availability of these new approaches and tools.

To further promote agency adoption, it is important to 
identify and facilitate early adopters—that is, those agencies 
that will show the way and that others can point to as success-
ful examples to be emulated. Program funding for demonstra-
tion projects with full agency engagement and commitment is 
therefore an essential ingredient to achieve greater agency 
adoption.

Developers

Developers of commercial software application tools for both 
planning and operations applications play a critical role in 
the dissemination of new knowledge and advances in meth-
odology developed under projects such as this one. The proj-
ect team members are themselves actively engaged in the 
application and further development of the tools and their 
application; however, the transportation field is a vast one that 
requires a large number of players to work toward similar 
technical goals.

The approaches and tools developed in this project are 
readily applicable with most software tools for microscopic 
and mesoscopic network simulation, albeit to varying degrees 
of completeness. The steps required by developers are rela-
tively minor given the templates and code developed for this 

project. Naturally, commercial developers would all like to 
somehow add unique value to their offerings, for competitive 
market reasons. However, they will only do so if they believe 
there is market demand for the capability. This is where hav-
ing a few early agency adopters will start the cycle of agency 
demand and developer supply. The present project has 
removed the technical risk for the developers, who need only 
invest in programming time to customize to their software’s 
unique features.

Success Factors

Key success factors for the results of this project include the 
following:

•	 Creating greater awareness of the importance of reliability 
analysis for major planning and operations projects, as 
well as of the attainability of such analysis capabilities;

•	 Adopting scenario-based approaches to project evalua-
tion as the primary, default approach for conducting such 
evaluations;

•	 Promoting greater appreciation and recognition of the 
entire distribution of travel time, rather than simply mean 
values; and

•	 Making utilities available for use in connection with most 
network simulation software both to manage the creation 
and generation of scenarios and to analyze the output of 
such scenario runs to obtain travel time distributions and 
reliability descriptors.

Recommendations  
for Further Research

Longer-term impact evaluation entails integrating reliability 
considerations in equilibrium planning models. An ideal inte-
gration would bring together reliability-sensitive network sim-
ulation models with micro-level activity-based demand models. 
To this end, several important research directions have become 
clear in the course of this project. Many of them relate to more 
advanced methods of incorporation of travel time reliability, 
specifically schedule delay cost and temporal activity profiles. 
However, improving travel demand models and network 
simulation tools in this direction is closely intertwined with a 
general improvement of individual mesosimulation and micro
simulation models. The team makes the following specific 
recommendations for future research:

•	 Continue research on advanced methods for incorporating 
travel time reliability into demand models and network sim-
ulations tools, including the schedule delay cost approach 
and temporal utility profile approach. For demand models, 
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reliability should be included in mode choice and time- 
of-day choice and (through these choices or in a different 
way) also be incorporated into the other travel choices such 
as destination choice and trip frequency choice.

•	 For network simulation models, in particular, reliability 
measures should be incorporated in such a way that they 
could be effectively generated within the network simula-
tion procedure, as well as affect the route choice embedded 
in it. Most of the attempts to date have resulted in path-
based route choice models with complicated path utilities 
that cannot be directly incorporated into real-world net-
work simulations.

•	 Travel demand and network simulation models that incor-
porate reliability measures must be operational in large net-
works. This is especially challenging for the network supply 
side, since most of the proposed formulations inherently 
require path-based assignment. Accordingly, and as part of 
the recommendations above, continue research and devel-
opment of path-based assignment algorithms that incor-
porate travel time reliability and can generate a trip travel 
time distribution in addition to mean travel time.

•	 Continue research on schemes for the integration of 
advanced ABM and DTA that can ensure a full consistency 
of daily activity patterns and schedules at the individual 
level and behavioral realism of traveler responses. In this 
regard, addressing enhancement of time-of-day choice, trip 
departure time choice, and activity scheduling components 
is essential. This point relates to the conceptual structure of 
these models and their implementation with respect to 
temporal resolution.

•	 The travel demand models and network simulation models 
that incorporate reliability measures should be combined in 
a certain equilibrium framework. It is probably unrealistic 
to expect that a closed-form equilibrium formulation with 
reliability measures would ever be found. It is more realistic 
to construct a so-called loosely coupled demand-supply 
model with at least some level of consistency between the 
reliability measures generated by the network simulation 
and those used in the route choice and demand models. The 
existence and uniqueness of the equilibrium (stationary) 
solution in this case becomes largely an empirical issue.

•	 Encourage additional data collection on the supply side of 
activities and on scheduling constraints—including the 
distribution of jobs and workers by schedule flexibility, 
classification of maintenance and discretionary activities by 
schedule flexibility—and develop approaches to forecast 
related trends.

•	 Continue research and application of multiple-run model 
approaches and associated scenario formations, for both 
the demand and network supply sides. This project’s syn-
thesis and research have shown that a conventional single-
run framework is inherently too limited to incorporate 
some important reliability-related phenomena such as non-
recurrent congestion due to a traffic incident, special event, 
or extreme weather condition.

•	 Incorporate travel time reliability in project evaluation and 
user benefit calculations. Restructure the output of travel 
models to support project evaluation and user benefit calcu-
lations with consideration of the impact of improved travel 
time reliability.
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